VirelessWorld July 1970 3s Gd

 reo pre-amplifier using i.cs

 reo pre-amplifier using i.cs

 ime Delays

 ime Delays}

STC is proud to announce that its entire range of Star equipment has received the award of the British Council of Industrial Design Elegant and functional in design the Star Mobile Radiotelephone and Starphone Pocket Radiotelephone are milestones in the design of Radiotelephone products.

The rapid acceptance of Star Mobile Radiotelephones in the UK and in over 30 countries throughout the world is a forceful reminder of the importance of design in worldwide marketing success.

For further information
STC Mobile Radiotelephones Limited, New Southgate, London N. 11. Telephone: 01-368 1200.
Telex:261912.

Don't doubt your valves, check them with an AvoVCM163

The Avo VCM163 Valve Characteristic Meter is one of the most versatile valve testers ever developed. With facilities for testing valves with as many as 13 pin connections (and 2 top caps), plus recently introduced types such as nuvistors and compactrons, the VCM163 provides both rapid fault diagnosis and comprehensive static/dynamic characteristics data. Nevertheless, it is even simpler to use than previous models - no backing-off is required. A separate meter displays mutual conductance values continuously during testing, and there is pushbutton monitoring of screen parameters. The full range of $h . t$ voltage -12.6 V to 400 V - can be applied to anode and screen, heater voltage is adjustable in 0.1 V steps from 0 to 119.9 and grid voltage may be varied continuously from 0 to 100 V (calibrated). Get complete information about the VCM163 from your local dealer or Avo Ltd, Avocet House, Dover,
 Kent. Telephone Dover 2626. Telex 96283.
Remember it's not only Amps, Volts and Ohms at Avo now.

SHRINK YOUR SWITCHING PROBLEMS...

 with 4 new improved miniature relays from Associated Automation

Mercury Wetted Contect Relay Type EBRM:
Height only 10 mm for low profile pcb mounting; 20 mW bi-stable, 40 mW single-side-stable; operate time Ims nominal at max. coil power; life over $25 \times 10^{\circ}$ operations at rated load of 100 VA ; bounce-free for both Form C or D contact resistance.

Hermetically Sealed Relay Type TF:
All-welded, T.O. 5 transistor can envelope giving high isolation switching with high shock and vibration characteristics; full CPL approval for standard versions; switching capability 1 amp at 28 V D.C. to low level; single and double pole; operate powers down to 40 mW .

Dry Reed Relay Type ERMC/D/E:
Miniature open, shielded and encapsulated styles with up to 5 poles, offering all the advantages of reeds at low cost; standard relays operate from 35 mW depending on contact arrangement; electrostatic shielding, high voltage insulation and low thermal types can be specified; life expectancy 10×10^{8} operations at full load, contact rating 10 VA .

Enclosed Industrial Relay Series 20:
Wide range of coils, contact arrangements and mountings; up to 6 poles, up to 5 amp 100 W : life over 10×10^{7}. operations; single or twin contacts in wide range of materials; low-priced, readily available, easy to apply.
All these illustrations are full size.

Whatever your switching problem - we can reduce it to size. These new additions increase an already comprehensive range of switches and relays for all communication and control purposes. All competitively priced and backed by Britain's most outstanding applications engineering service. Try us ... for size.

Voltage stabilisers and reference tubes in four easy pages.

Easy-to-check tables of performance facts and figures. Clearly laid-out dimension diagrams. An index of replacement equivalents containing over 80 items.

They're all here in EEV's four-page data digest on voltage stabilisers and voltage reference tubes.

Send for your copy now. Then, when you're looking for reliability plus extreme economy, you'll know where to find it.

English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone: 024561777. Telex: 99103 . Grams: Enelectico Chelmsford.

Vortexion

This is a high fidelity amplifier (0.3\% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. 100 volt balanced line output.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms -15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

Abstract

THE 100 WATT MIXER AMPLI- FIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic. 1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.
200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.
20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced input and HiZ gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

EEV thyratrons give greater accuracy and better performance in three major nuclear physics applications:

Linear accelerators

\square EEV thyratrons can withstand peak inverse voltages up to 20 kV following a pulse.
\square Their operation is unaffected by small reservoir voltage variations.
\square EEV thyratrons need no servicing and give trouble-free operation in oil-filled equipment.

Particle accelerators

\square EEV thyratrons ensure reliable firing. They give nano-second accuracy.
\square There are very few missing pulses
\square They require no external gas supply. \square Because they have an annular current flow EEV thyratrons can switch peak currents very rapidly without risk of arc extinction. When fitted into coaxial housings rates of rise of current up to 100kA/ $\mu \mathrm{sec}$ are possible.

English Electric Valve Co Lid, Chelmsford, Essex, England Telephone: 024561777 Telex: 99103. Grams: Enelectico Chelmsford.

Spark chambers

\square Long life is important for spark chamber operation - and EEV thyratrons have given 10,000 hours service in some cases \square Spurious firing is virtually eliminated.
\square Jitter is kept as low as 1 ns .
\square They make possible repetition rates of up to 50 kHz due to very rapid
deionisation characteristics. \square EEV thyratrons operate over a wide range of H.T. voltages at currents up to 10 kA without change in characteristics - so drive units may be used with different chambers.
\square The low trigger voltage means that simple firing circuits are possible.
 mnemopolymericist

All you need to shrink your cable binding and sleeving costs - is a match!
Our demonstration kit contains two types of wired terminals and Helashrink ${ }^{\star}$ heatshrinkable sleeves. You simply add heat for a tight shrink-fit or shroud. In seconds - and at very low cost. Post coupon and see.

[^0]* Mnemopolymerics - the science of heat-shrinkable polymers with a built-in memory - perfected after many vears of intensive research and development by Hellermann-Electric. Helashrink products include:
Helashrink Electrovin ${ }^{8}$-sleeves, markers and tubing in PVC-designed to cut the cost of cable harness sleeving, terminal insulation, plug shrouding, identification, insulation of condenser and transistor cans, and general mechanical protection. Also for creating multicore cables, harness work and bus-bar protection Two grades: Thin-wall, shrinking at $70^{\circ} \mathrm{C}$; Standard-wall, shrinking at 135° to $150^{\circ} \mathrm{C}$. Both self-extinguishing Good storage stability.
Helashrink Insultite ${ }^{8}$ - sleeves, markers, tubing and end caps in a range of irradiated and non-irradiated materials designed to provide the right product for the job-at the right price Materials can be selected for flexibility, rigidity, shock and vibration protection, resistance to contaminants over a range of operating temperatures from $-55^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$.

You can view X-ray pictures in daylight using onlya 5 micro-Röntgen dosage

What would it mean to you? An X-ray picture that is so bright you can view it in direct daylight as it happens. EEV's Image Isocon is now being used in X-ray equipment for this very purpose reducing X-ray dosages to as little as 5 microRöntgens, allowing longer exposure times for 'live' X-ray picture study, saving time by eliminating the need for operators' eyes to become 'dark-adapted'.

The Image Isocon is so sensitive that it can
convert a very low dosage-level picture to a bright, clear picture on a cathode-ray tube. This in turn means simple direct-from-screen photography.

The Image Isocon is another product of EEV advanced tube technology. For complete data, please post the coupon.

English Electric Valve Co Ltd Chelmsford, Essex, England. Telephone: 024561777. Telex:99103. Grams: Enelectico Chelmsford.

with the EEV Image Isocon

Headsets have come a long way since the old days of "2 LO calling"

in the forefront then in the forefront now... SGERDWN present superlative examples from the CURRENT RANGE OF FINE AUDIO EQUIPMENT

Why are you wise to choose headphones by Brown? You invest in half a century's experience! From radio's cradle days - with "2LO calling" cat's whisker and crystal - S G Brown have led the way. More than ever today they supply the need for the newest and best in head set design. Send today for further details

ENVOY 4B600 Series*
Lightweight and robust the ENVOY is built to withstand vigorous useage yet elegantly desigr.ed to suit the most
Designed to meet NATO Standards.

- Prices on application
recommended for Air Traffic
Controllers, Air Crew and Teachers in Language Laboratory applications.

Hawker Siddeley Group supplies mechanical, electrical and aerospace equipment with world-wide sales and service.

 THERMAL STRIPPERS

The ADAMIN thermal wire strippers allow one-handed operation. using a simple tweezer action.

They strip coverings of up to about $\frac{5}{32}$ in dia. with minimum risk of damaging the conductors.
for $\boldsymbol{P T F E}$ insulation
for $\boldsymbol{P V C}$ insulation
use Model PTFE (illustrated), available for 24 volts only.
and similar low-temperature materials use Model PVC, available for 12 or 24 volts.

LITESOLD TRANSFORMERS permit safe operation from any mains power point.
Free details of the whole wioe range of ADAMIN, LITESOLD and LITESTAT soldering equipment in brochure $\mathrm{A} / 5$.

[^1]
EEV flash flash flashtubes make light of the toughest jobs

For pumping lasers. For strobing. For photography. For any application in which quality, reliability and performance are vital, that's where you'll find EEV flash tubes.

There's almost certainly a flash tube in the EEV range that has the right characteristics for your application and if there isn't we can probably make one!

EEV flash tubes have extra heavy-duty electrodes. They give you long life, with up to 10^{6} flashes, and they
give you high conversion efficiency. Our air-cooled xenon flash tubes have a wide range of input energy levels and can operate at high repetition rates.

Isn't it time you had the full facts about EEV flash tubes? Just post the coupon.

English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone:024561777 Telex:99103 Grams: Enelectico Chelmsford

You will find it in this new Vitality T-1 Range.
Never have such small lamps been so reliable, so competitively priced. With a diameter of only 3 mm they are capable of up to 200,000 hours of life at rated voltage and come either wire ended or based to fit available holders. With wide application in peripheral equipment for the computer industry, this new range is also providing truly reliable integral lighting of instruments and is much used in equipment where space is minimal. Folder NPR details the whole range.

VITALITY BULBS

Vitality Bulbs Limited, a General Instrument Electro-Optical Products Group company.
beetons way, bury st. edmunds,
SUFFOLK. Tel:0284-2071, Tetex 81295.

NEW ADVANCE MULTIMEIER in the handiest pack

1920
PRICE IN U.K.

Discounts for quamities of 5 or more

Mafitimyethiti

DMM2 Digital Multimeter

 VersatilityMeasures :-
DC \& AC Volts 20CmV-1000VFS DC \& AC Current $200 \mu A F S$ External shunts extend ranges to 2 A . Ohms. $200 \Omega-2 \mathrm{M} \Omega=\mathrm{S}$ Operates from AC Supply. External 12 V DC or optional rechargeable battery pack.

Stability LSI Reliability
Dual Slope Integration Single LSI chip with stabilized zero point and storage display provides completely stable operation.
performs all counting and storage functions. Full overload protection.

INSTRUMENFS DIVISION SALFS OFTICI
Raynham Road,Bishop's Storfford, Herts. Telephsne: 02?9 55155.

Now hear this!

Goldring and Toa have a lot of valuable things to tell you on P.A.

Welcome the news that Goldring and Toa can offer you the most advanced range of P.A. systems. Nothing but the best-in high performance products... P.A. Amplifiers-microphones-horn speakers-megaphones-power intercoms-meeting amplifiers-background music players, etc.

Goldring ©

Sole UK distributors of modern P.A. systems by Toa Elcetric Co.. Ltd,
Goldring Manufacturing Co. (Great Britain) Ltd. 486/488 High Road, Leytonstone, London E.II. Write or Telephone or-539 8343 For Full Details

WW-019 FOR FURTHER DETAILS

- $=-10$ AMBITIOUS ENGINEERS

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 164 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlinesa wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Division; explains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. Send for your copy of "ENGINEERING OPPORTUNITIES" today-FREE.

WHICH IS YOUR
PET SUBECT?
Radio
Television
Electronics
Electrical
Mechanical
Civil
Production
Automobile
Aeronautical
Plastics
Building
Draughtsmanship
B.Sc.
City \& Guilds
Gen. Cert. of
Education
etc., etc.

PRACTICAL EQUIPMENT
 INCLUDING TOOLS!

The specinlist Electronics Division of B.I.E.T. NOW offers you a real laboratory training at home with practical equipment. Ask for delails.

POST GOUPON NOWH

Please send me your FREE 164 -page "ENGINEERING OPPORTUNITIES" (Write if you prefer not to cut page)
NAME.
\qquad

$■$
$■$
\square
\square
\square
\square

-

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
(Dept. 303B), Aldermaston Court, Aldermaston, Berkshire

\qquad

STANDARD RESISTANCE BOXES *

LABORATORY QUALITY EXCEPTIONALLY STABLE, SUPPLIED WITH INDIVIDUAL TEST CERTIFICATES

STANDARD MEGOHMS

P401	$1 \mathrm{M} \Omega$	$\pm 0.05 \%$	$£ 52$
P4010	$1 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 60$
P4020	$10 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 60$
P4061	$100 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 75$

PLUG-IN MEGDHM DECADE BOX P400
Range $0-1000 \mathrm{M} \Omega \pm 0.2 \%$. In $100 \mathrm{M} \Omega$ steps $£ 190$

SWITCHED 'MEGOHM'RESISTANCE BOX P4002
4 decades $0.01-0.1-1-10 \mathrm{M} \Omega \pm 0.05 \%$. All decades and sweeping contacts are accessible through separate terminals.
£98

AVAILABLE EX STOCK FROM:
Z \& I AERO SERVICES LTD, 44A, WESTBOURNE GROVE, LONDON, W. 2

Tel: 01-727 5641/2/3

OSM MINATURE OSSM SUBMINATURE

Coaxial Connectors and Components

Factory representatives

Type UD1
Modern-style high
Type RBT \& RB
Miniature ribbon
Type SL1 internal 'anophone, with
microphone, suitable for microphone
sound reinforcement sound reinforcement or stand use. recording.

Record Trimmer

Morganite $0.75^{\prime \prime}$ Cermet Trimming Potentiometers are breaking all our sales records at the moment.
And we can't say we're surprised
We designed our models 82.84 and 86 with a power rating of 0.33 W at $70^{\circ} \mathrm{C}$. We manufactured them to give a tolerance of $\pm 10 \%$ under rough, tough industrial conditions. We packed them into that tight little
$0.75^{\prime \prime}$ construction. And we trimmed down the price tag to match.
Result, they sell like hot cakes. Ask us for samples for evaluation or development projects. and you'll see for yourself.
What you won't see, though. is the work that's put into our record trimmers at our new, expanded cermet production set-up. The examination of components
at 50-to-500 times life size. The survival-of-the-fittest electrical testing. And all the crucial assembly stages in between.
All you'll see is the solid. high reliability that you're entitled to expect from each and every Morganite potentiometer. The reliability that makes us a leader in the field of cermet technology.
Don't settle for less.

'Astronic' series 1700 A COMPLETE RANGE OF MODULES

ASSOCIATED ELECTRONIC ENGINEERS LTD. DALSTON GARDENS, STANMORE, MIDDLESEX. HA7-1BL TELEPHONE 01-204 2125

This unique" $\mathbf{B R A U N}$ "' GLOBAL RECEIVER

 GOLD PLATED CONTACTS ON RANGE SELECTOR INDEPENDENT TUNING OF AM and FM BANDWIDTH ADJUSTABLE
TUNING DEVIATION LESS THAN 1\%
FIELD INTENSITY INDICATOR
BEAT FREQUENCY OSCILLATOR FOR TELEGRAPHY MANUAL GAIN CONTROL AS WELL AS AVC
ELECTRONIC BANDSPREAD ON SHORT WAVEBANDS PHONO TAPE SOCKET FOR DIRECT RECORDING FULLY TRANSISTORISED, NO WARM-UP PERIOD

ACCESSORIES AVAILABLE
MAINS UNIT WITH INPUTS: 18 GNS.
$6 \mathrm{~V}-12 \mathrm{~V}-24 \mathrm{~V}-90 / 130 \mathrm{~V}-150 \mathrm{~V}-240 \mathrm{~V}$ (50 or 60CPS) HEADPHONES 10 GNS.

WRITE FOR DETAILED ILLUSTRATED SPECIFICATIONS
TO THE SOLE U.K. DISTRIBUTORS

MODEL 2000 PLINTH SYSTEM

The SME model 2000 plinth system is more than a handsome and convenient housing for your turntable and SME precision pick-up arm. It meets the mechanical requirements under which the best performance will be obtained. High-quality workmanship is combined with ease of assembly. The basic unit is finished in selected veneers of teak, straight-grained walnut, or rosewood. A one-piece hinged lid in heavy acrylic is reinforced with a polished stainless-steel trim.

Write for details to: SME LIMITED. STEYNING SUSSEX E ENGLAND

Motor boards in matching veneers are ready cut and drilled for screwdriver assembly with the appropriate pick-up arm and turntable. An uncut board is also available.

Four-point spring susperision adjustable for height and damping protects the motor board from acoustic feedback and external vibration.

CHASSIS and CASES

Type N

CASES

ALUMINIUM, SILVER HAMMERED FINISH

Type	e Size	Price	Type	S Size	Price
N	$8 \times 6 \times 2^{*}$	18/-	W 8	$8 \times 6 \times 6$	23/-
N	$6 \times 6 \times 3$	17/6	W 1	$12 \times 7 \times{ }^{\text {* }}$	37/6
N	$4 \times 4 \times 2$	11/-	W 15	$15 \times 9 \times 8$	48/6
U	$4 \times 4 \times 4$	11/-	$Y 8$	$8 \times 6 \times 6$	29/-
U	$5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}$	17/-	Y	$12 \times 7 \times$ $13 \times 7 \times$	45/-
U	$8 \times 6 \times 6$	23/-	Y 1	$15 \times 9 \times 7$	53/6
U	$9 \frac{1}{4} \times 7 \frac{1}{2} \times 3 \frac{1}{2}$	24/-	Z 17	$17 \times 10 \times 9$	72/6
U	$15 \times 9 \times 9$	49/-	Z 1	$\begin{aligned} & 19 \times 10 \times 8 \frac{1}{2} \\ & \text { *Helght } \end{aligned}$	78/-

Type N has a removable bottom, Type U removable bottom or back, Type W removable front, Type Y all-screwed construction, Type Z removable back and front.

BLANK CHASSIS
FOUR-SIDED 16 SWG ALUMINIUM

Size	Price	Base	Size	Price	Base
$6 \times 4 \times 2^{\prime \prime}$	6/3	2/11	$10 \times 8 \times 2 \frac{1}{17}^{\prime \prime}$	12/-	5/6
$7 \times 4 \times 11^{\prime \prime}$	6/\%	$3 / 2$	$12 \times 7 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	12/-	$5 / 11$
$7 \times 5 \times 2$ "	7/6	3/5	$12 \times 9 \times 22^{\prime \prime}$	13/9	7/.
$8 \times 4 \times 2$ "	7/-	3/4	$13 \times 8 \times 2{ }^{11}$	13/9	6/11
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 2^{\prime \prime}$	8/-	3/9	$14 \times 7 \times 3$ "	14/6	6/6
$9 \times 7 \times 2^{\prime \prime}$	$9 / 3$	4/10	$14 \times 10 \times 2 \frac{1}{21}^{\prime \prime}$	16/-	8/7
$10 \times 4 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	9/-	3/9	$15 \times 10 \times 2 \frac{1}{2}^{\prime \prime}$	$16 / 6$	$9 / 1$
$12 \times 4 \times 2 \frac{1}{\prime \prime}$	10\%	4/3	$17 \times 10 \times 3^{11}$	$19 / 6$	10/1
$12 \times 5 \times 3^{\prime \prime}$	12/-	4/9			
Plus post and packing.					
T0 FMT CUS					
Size	Price	Base	Size	Price	Base
$7 \times 5 \frac{1}{4} \times 1{ }^{\prime \prime}$	7/-	3/9	$12 \times 63 \times 2^{\prime \prime}$	10/9	5/11
$7 \times 54 \times 2$ "18	7/9	3/9	$14 \times 83 \times 2$ "	13/6	7/11
$11 \times 6 \frac{1}{3} \times 1 \frac{1}{2}^{\prime \prime}$	10\%	5/6	$153 \times 93 \times 22^{\prime \prime}$	17/-	9/6
$11 \times 63 \times 2$ "	10\%	5/6	$17 \frac{3}{4} \times 9 \frac{3}{4} \times 2 \frac{1}{2 \prime}$	18/6	10/6
Plus post and packing.					
MTTM BASES					
Size		Price	Size		Price
$5 \times 4 \times 2 \underline{\prime}^{\prime \prime}$		9/3	$34 \times 31 \times 21^{\prime \prime}$		6/6
$4 \times 24 \times 17^{\prime \prime}$		6/-	$3 \times 2 \times 1{ }^{\prime \prime}$		5/6
$3 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{\prime \prime}^{\prime \prime}$		7/3	$6 \frac{3}{8} \times 2 \frac{11}{16} \times 1 \frac{15}{16}$	I8SW	8/3
Plus post and packing.					

PANELS: Any size up to 3 ft . at $6 /-$ sq. ft. 16 s.w.g. (18 s.w.g. 5/3). Plus past and packing.

H. L. SMITH \& CO. LTD.
 Electronic Components - Audio Equipment $287 / 289$ EDGWARE ROAD, LONDON, W. 2 Tel: 01-723 5891
 Please note that we shall be closed for annual holidays 27 th July-8th Aug.

WW-033 FOR FURTHER DETAILS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largesi stocks in the U.K. for off-the-shelf delivery.

Anders means meters

ANDERS ELECTROMILS LIMITED

48/56 Bayham Place, Bayham Street,

Looking for a wide range oscillator with *output greater than 30 volts*sinewaves from 10 Hz to 10 MHz *quality squarewaves to $100 \mathrm{kHz} . .$. plus *four output impedances?

The Marconi TF 1370A gives sinewaves from 10 Hz to 10 MHz , in six decade bands - plus quality squarewave to 100 kHz and four output impedances of $75,100,130$ and 600 ohms.
Its excellent handleability includes a particularly smooth frequency control. Especially useful is the frequency coverage of $1-10 \mathrm{MHz}$ in one band, which makes the instrument ideal for response testing in the video and lower h.f. bands.

Primarily a signal source for measurements and tests on a.f. and video amplifiers and networks, the TF 1370 A is ideal for use with transmission lines, filters, attenuators, etc. Price $\mathbb{l} 320$.
Full details from:

MARCONI INSTRUMENTS LTD
A GEC. MarconiElectronics Company
Longacres. St. Albans, Herifordshire,
Tel: St. Albans 59292 . Telex: 23350

On Goldring's 850 cartridge, even the price is magnetic.

£6/10/0
Fact : magnetic cartridges are more compatible with transistor amplifiers than crystal cartridges. Fiction : magnetic cartridges are too expensive to warrant use with any but the more sophisticated units.
Now, there is a magnetic cartridge at a price within easy reach.
The 850 assures you of true tracking, superior sound quality and minimal groove destruction. But unlike most magnetic cartridges, its British. It's made by Goldring !
At $£ 6 / 10 / 0$, that's really magnetic.
(tax paid.)
Send for details on the complete range of Goldring Hi Fi Equipment. Goldring Manufacturing Co. (Great Britain) Ltd.,
486/488 High Road, Leytonstone, London E.11. Tel : 01-539 8343
WW-036 FOR FURTHER DETAILS

The "Studio 80" Power Amplifier has been produced to high performance standards for Studio and Laboratory applications.

Its proven characteristics puts it in a class beyond anything yet available in power, performance, and price, and is the ultimate in economic functional engineering design - Write for full details of guaranteed performance specification.

POWER BANDWIDTH: $\quad 5 \mathrm{~Hz}$ to 35 KHz at 80 W .
FREOUENCY RESPONSE: $\begin{gathered}+0 \mathrm{~dB} \\ -.5 \mathrm{~dB}\end{gathered} 20 \mathrm{~Hz}$ to 20 KHz .
TOTAL DISTORTION: Less than 0.05 at 1 KHz .
SIGNAL TO NOISE RATIO: Better than -95 dB below maximum output. POWER SUPPLY: $\quad 100 / 120-200 / 250 \mathrm{~A} / \mathrm{C} 50-60 \mathrm{~Hz}$.

WAYNE KERR

A.F. Transformer Ratio-Arm Bridges

Slide-rule LC R Bridge has ten overlapping ranges for rapid 1 \% measurements of any component, also tolerance and phase angle. Switch selects 1 kHz or $100 / 120 \mathrm{~Hz}$ operation. 2, 3 and 4-terminal connections

B500

Universal Bridge for 0.1% measurements of any LCR combination from 20 micro-orms to 503 gigohms. Source/ detector (1592 Hz) operate from 3.c. or internal rechargeable battery. Sockets for external $200 \mathrm{~Hz}-50 \mathrm{kHz}$. Display gives units, zeroes and decimal point. Four-terminal connections from Adaptor $\mathbf{Q 2 2 1}$ for accurate low impec ance measurements. B221

Autobalance Universal Bridge for con=inuous 0.1% readout of in-phase and quadrature terms, with analog outputs of both. Backing-off facilities, DVM conrections optional BCD outputs. Push-buttons for optimum discrimination up to five figures. Illuminated readout.

B641

Autobalance Precision Bridge accurate to 0.01% though simple to operate. It measures virtually any meaningful immittance in any quadrant Lutomatic compensation for measurement lead impedance. Six-figure discrimination. Analog outputs.

THE WAYNE KERR COMPANY LIMITED NEW MALDEN • SURREY : ENGLAND

Telephone 01-942 2202
Cąbles Waynkerr. Malden
Telex 262333

GNO1 inSold

One good reason for soldering with Enthoven - whatever your needs - is the Enthoven range. It gives you a wide choice of high quality products developed for use with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders, selective Fluxes, solder specialities, materials for printed Circuitry and for soldering Aluminium. For complete technical details of Europe's widest range, ask Enthoven Solders Limited, Dominion Buildings, South Place, L---- London EC2. Telephone 01-628 :--.- 8030; telex 21457; cables:
 ENTHOVEN LONDONEC2

PLUMBERS BARS-CAR BODY FILLERS TINSMITHS
STICKS
-BLOW PIPE STICKS
INGOTS IN A VARIETY OF WEIGHTS WIRE IN ALL GAUGES
-1 lb . \& 7 lb . REELS FASHION JEWELLERY CASTING ALLOYS
SHEET-RIBBON

Available in a wide range of alloysstandard or custom-made. Certificates of analysis provided.

the choice in over 50 different countries!

Teonex electronic valves and semi-conductors are supplied all the world over where quality and reliability count.

Teonex offer a comprehensive range of receiving, professional and special quality valves. Whether you require a device to mil specifications for government work or a commercial device for replacement in a television set, Teonex products are equally suitable.

For technical specifications and price lists, please write to Teonex Limited 2a Westbourne Grove Mews London W. 11 • England Cables: Tosuply London W.11.

teanek

electronic valves \& semi-conductors

That's our Jo*. . . We gave her seven words and a daisy; and the wall came tumbling down.
The wall of silence. Distinct among the major suppliers of hybrid IC's and passive networks, we at Erie soft-pedalled our publicity. We had to. Because keen commercial minds in UK and Continental companies snapped at the fact that Erie hybrids give complete circuit functions in less time, at less cost, than if you select, buy and assemble your own discrete components ... and give you a hefty bonus in increased reliability. So our order books were
full. And stayed full: even with output rates of 2.5 million units a year.
But now we are coming to you with all this experience. Because now we can give you the only kind of service our reputation will permit. Prompt, personal service. With teams of physicists, chemists, microelectronics specialists, waiting to tackle your problem. With an advanced manufacturing capability that will lift output to the multi-million level. raise reliability even higher, make prices even more competitive. A capability backed by a Quality Assurance laboratory approved
to BS 9000, and all of Erie's world-wide experience.
Send for Publication No. 1. It gives you all the facts. Better still, send for an Erie sales
 engineer. He will understand your problem.

* Short for Joshua? ?

ERIE ELECTRONICS LTD.
Great Yarmouth, Norfolk.
Tel: 0.4934911.
Telex: 97421

The sweet sound of saving

.... can be heard more and more if you listen in the many Schools, Hospitals, Factories and Hotels where S.N.S. Radio Rack Consoles are providing the music.

Our unique Crystal Controlled Radio Tuners, integrated with our fully transistorised amplifiers, mean that we can provide all the programmes you want, AM or FM -12 Watts, 40 Watts or 100 Watts RMS - in a console half the height of ordinary racks.

Not only that, you won't find controls to adjust - sorry about that, knob twiddlers - and we all know that means less unnecessary service calls.

It all adds up to a triple saving to you - Size, Service Calls, and Initial Cost.

We also manufacture Radio Microphones and Loudspeaking Intercom Systems. For full details please contact
S.N.S.
S.N.S. Communications Ltd., 851 Ringwood Road, Bournemouth.
Phone: Northbourne 4845

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

INTERMODULATION DISTORTION ANALYSER

Residual Distortion below 0.005\%! Internal Generators! 1 Minute Calibration! FET Circuitry!
Price £496 !

The IMA Intermodulation Distortion Analyser made it possible for Crown International to produce the World's finest Power Amplifier, the DC300! Now the unique facilities of the IMA are available to you. Your Laboratory or your production line can benefit from 1 minute Inter-Mod measurements. Phone us now for a data sheet, or a demonstration.

Carston Electronics Limited, $\quad 71$ Oakley Road, Chinnor, Oxon.
 Tel. Kingston Blount 8561

> All over the 5 continents and the 7 seas Bantex aerials are helping to maintain reliable communications. Day in and day out.
> Bantex aerials are selected because of their established reputation for reliability. A reputation eamed over many years.
> Bantex menufacture all types of marine aerials and for land use they have a range of mobile and base station aerials whichoperate through all bands and are used by the armed forces. police. taxi networks and industry.
> Bantex are best known for glass fibre aerials made by a unique process giving high strength. Other designs utilise metallic and other materials.
> The photograph shows two boats of the Ford team in the 1969 Round Britain Power Boat Race. Both used Bantex aerials.

Tronsformers, Chokes

Saturable Reactors

Volimobile vollage regulators

Recifier Sels

Transformers

Air cooled power trensformers from 0.5 to 300 kVA at voltages up to 2 kV . 1 or 3 phase, double or auto wound step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from the se designs is built into every Harmsworth, Townley transformer

High Current Transformers
Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. The se techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

Voltmobiles

The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature re search. Our Voltmobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transformers which give control from 1.6% to 100\% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

Rectifiers

Sturdily built air cooled equipment from 50 W to 500 kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers. saturable reactors or Voltmobile regulator.

Saturable Reactors

From 5 kVA up to 300 kVA for controlling the outputs from transformers or rectifier units
Saturable reactors are infinitely variable reactors which can control outputs from transformers
etc, from 10% to 100% of full output.

Chokes

Specific enquiries are invited

> Hormswarth. Townlay

Trunsformers Rextifiers

HARMSWORTH, TOWNLEY \& CO. LTD. 2 Hare Hill, Todmorden, Lancs.

Telephone Todmorden 2601 Extension 22

ERNEST TURNER

ELECTRICAL INSTRUMENTS LTD.
TOTTERIDGE AVENUE
HIGH WYCOMBE
BUCKS. ENGLAND.
Telephone 30931/4

A free film of your choice when you buy Texas, Sprague or Ferranti 74 N TTL integrated circuits. Wel ship at manufacturer's prices and give top quality Agfa film to fit your camera. Our high speed delivery is free too!

Offer closes July 31 st. and applies to orders over £10.
ШEL COMPONENTS LTD. 5 LDVERDCK ROAD, READING. TeI. 580616/9 Telex 84529 MINISTAY OF TECHNOLOGY APPAOVED DISTAIEUTOA WW-057 FOR FURTHER DETALS

OMRON PRECISION CONTROLS

VARIABLE TRANSFORMERS
 \star OUTPUT $0-260 \mathrm{~V} \star$ INPUT 230V 50/60CPS

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.

50 AMP 0-24V DC L.T. SUPPLY UNIT

* Continuousty Rated.
- Large Ammeter and Vohmeter.
* Ideal for Plating Units.
* Fully protected with Instantaneous cut-aut \& Fuse
- Infinitely variable up to 2av DC Size and weight $16^{\prime \prime} \times 12^{\prime \prime} \times 27^{\prime \prime}$ High 70 lbs . Rear wheels fitted for ease of handling.
£85
csp Pimanat 13

20 AMP

24 \& 12V DC
L.T. SUPPLY UNIT £35
C 8 P 40/-

1 amp £5.10.0

$2.5 \mathrm{amp} £ 6.15 .0 \quad 8 \mathrm{amp} £ 14.10 .0 \quad 12 \mathrm{amp} £ 21.0 .0$ $5 \mathrm{amp} £ 9.15 .0 \quad 10 \mathrm{amp} £ 18.10 .020 \mathrm{amp} £ 37.0 .0$

COMPLETE PHOTO-ELECTRIC

SENSOR in one unit

* heflective type with BUILT-IN LIGHT SOURCE - WILL ALSO OPERATE FRDM REMOTE LIGHT SOURCE
- MEMOTE LIGHT S
* MATCHBOX SIZE
- SENSES ANY ObJECTSENSES ANY OBJECT-
COLOURS, THICK SMDKE

0 perates from 12 V.A.C. Dutput signal 0.2 amp. 100 V .
£5.10.0 dependent on quansity

SOLID STATE VARIABLE VOLTAGE CONTROL

- Output 25-240V
* Input 240 V 50 CPS
- 5 amp \& 10 amp models
* Completely sealed

5 amp model
f8.7.6
10 amp model
£13.15.0

TEKTRONIX TYPE 547 VERSATMLITY WITH AUTOMATIC DISPLAY SWITCHING

$6 \times 10 \mathrm{~cm}$ High resolution Display, Bright Uniform Trace, Illuminated Parallax-free Graticule

25 Plug-in Units Vertical Display Switching up to 4 channels and Special Purpose, Differential, Spectrum Analyzers and Sampling

Price:
£873 delivered U.K.
(without plug-in unit)

For detailed information on any of our products, please fill in reader reply card or write, telephone or telex.
Tektronix U.K. Ltd.
Beaverton House, P. O. Box 69, Harpenden, Herts.
Telephone Harpenden 61251. Telex 25559
For overseas enquiries: Australia: Tektronix Australia Pty. Ltd., 80, Waterloo Rd., North Ryde, N.S.W. 2113 Canada: Tektronix Canada Ltd., Montreal, Toronto \& Vancouver. France: Relations Techniques Intercontinentales, S.A. 91, Orsay, Z.I. Courtaboeuf, Route de Villejust (Boite Postale 13) Switzerland; Tektronix International A.G., P.O. Box 57, Zug, Switzerland. Africa, rest of Europe, and the Middle East: Tektronix Ltd., P.O. Box 36, St. Peter
 Port, Guernsey, C.I. All other territories: Tektronix Inc., P.O. Box 500, Beaverton, Oregon, U.S.A.

A slice from the exclusive Thyristor range by IRThe Current Slicers. What IR don't know about thyristors isn't worth knowing. Which is hardly surprising, since IR are the world's largest independent manufacturers of power semiconductors. The world's largest. And often the cleverest too. IR offer you the reliable, high-performance, state-of-the-art thyristors you need, deliver them fast anywhere in the world, and back them up with comprehensive technical, test and applications data. If you'd like a slice (or a million), contact IR or your IR Distributor.

TOR
 the current slicers

International Rectifier • Oxted • Surrey

All that and more.

Altec sound systems have been selected by all types of users throughout the world. Large and small. Famous and not so famous. At indoor sports arenas. Outdoor stadiums. Fieldhouses and auditoriums. Concert halls and theatres. Airports. And all types of religious structures. Before you select your sound system, find out more about Altec.
Write for complete details and a free catalogue today. LTV Ling Altec Ltd., Baldock Road, Royston, Herts; or LTV Ling Altec, International Division, 1515 S. Manchester Avenue, Anaheim, California, U.S.A. 92803.

A Quality Co. of LTVLing Altec, Inc.

You can depend on Altec sound

To reproduce and record realistic and crystal-clear sound, it takes good equipment. And that is where we come in with a complete line of products for the broadcast and recording industries.
\square Monitor speaker systemslarge and small.
\square Speaker components.
\square Power amplifiers-transistorized and even portable.
\square Input equipment-including master studio control consoles, mixer-amplifiers and pre-amplifiers.
\square Audioo controls-including mixers, equalizers, attenuators and custom console components.
\square A full line of professional and general-purpose microphones.

30 years of Altec experience is proof of quality performance in studios, concert halls, theatres, auditoriums and arenas throughout the world. You can depend on Altec-as a standard for performance, reliability and low operating expense.
Write for details to:
LTV Ling Altec Ltd., Baldock Rd., Royston, Herts; or LTV Ling Altec, International Division, 1515 S. Manchester Avenue, Anaheim, California, U.S.A. 92803.

A Quality Co. of LTV Ling Altec, Inc.

* For Tape Recorders \& Other Products

Miers Motor ZF-900

Level Meter Model-08

Magnetic Head 07-03
Micro Motor ZF-900
A transistorized motor for portable dictating machines and tape recorders.
Level Meter Model-08
For cassete tape recorders and record players.

Magnotic Head 07-03

Recording and playback head for cassette tape recorders.

Micro Mótor BF203R

Level Meter Model-15

Magnetic Head 14-03
Micro Motor BF203R
A transistorized governor motor for cassette tape recorders and record plavers.
Level Meter Model-15
Dual level meter for stereo tape recorders and record players.

Magnetic Head 14-03

Erasing head for cassette tape recorders.

A double 3 -in-1 value from Sankyo. Micro motors, level meters. and magnetic heads. Now is the time to rely on one manufacturer for these important product integrals instead of purchasing one here, another there. You will save time and money-and get quality and reliability on top of economy! Many other models available. For further details write:

BSankyo

[^2]

McMurdo's new 0.100" Pitch Connector - "RL" Series

5 to 85 way single sided with solder and printed wiring tails 10 to 170 way double sided with solder and printed wiring tails.

Working Voltage

Proof Voltage
Insulation resistance (dry)
Contact resistance to test gauge Insertion and withdrawal forces Contact finish

700 v. AC/Peak
1750 v. DC
10* Megohms min
10 Milli-ohms max. 6 oz. per contact max Flow tin or hard gold (specify when ordering)

Another new product from:
McMurdo Instrument Co. Ltd., Rodney Road, Portsmouth Hampshire. Telephone: Portsmouth 35361. Telex: 86112.

Authoriséd Stockists:-Lugton \& Co. Ltd.. 209/210 Tottenham
T.T.-electronic services. Standard Telephones \& Cables Ltd Edinburgh Way, Harlow, Essex. Tel: Harlow 26777,
and agents in principal overseas countries.

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohmis lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms. DIMENSIONS -123 $\frac{3}{4}^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{} \times 4 \frac{1}{2}{ }^{\prime \prime}$

Complete the coupon and post today.

QUAD
for the
closest approach to the original sound
Please send me full details of the QUAD 50 Amplifier
NAME
POSITION....
COMPANY.
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,

HUNTINGDON. Telephone: Huntingdon | (0480) $2561 / 2$ |
| :--- |

Plug-in potential

The 43 Series of wide bandwidth (DC 25 MHz)
oscilloscopes offer both and high sensitivity
$(100 \mu \mathrm{~V} / \mathrm{cm})$ for general oscilloscope applications.
With a choice of 7 plug-ins (5 amplifiers and 2 time bases)
it is possible to assemble an oscilloscope capable of
meeting almost any measurement requirement. Combining such
versatility with excellent tube geometry and high
writing speeds makes the D. 43 illustrated
outstanding value for money.
Write for full details Now ! ! !
TELEQUIPMENT \ll >

Wireless World

Electronics, Television, Radio, Audio

July 1970
Volume 76 Number 1417

Our cover picture this month was selected on its artistic merits rather than to highlight any particular technical point. The design was produced by a Univac computer and graphic display unit as described on page 315 .

IN OUR NEXT ISSUE

The first of a short series of articles on the design and construction of a television wobbulator.

Colour EVR. An outline of the system of colour electronic video recording developed by Dr. Goldmark of RCA.

Morse keyer using four m.o.s. logic circuits.

ibpa

[^3]
Contents

311 "Together we stand. . . ."
312 Integrated Circuit Stereo Pre-amplifier by L. Nelson-Jones
Computer Graphics
Circuit Ideas
Time Delays by H. D. Harwood
Mechanical Filters for TV Receivers
15-20W Class AB Audio Amplifier by J. L. Linsley Hood
Electronic Building Bricks- $\mathbf{2}$ by Fames Franklin
News of the Month
Letters to the Editor
Sinusoidal Oscillator for use at High Temperatures by P. Williams
The Unijunction Transistor by O. Greiter
Crossword Puzzle
A Simple Op. Amp. by H.N. Griffiths
Conferences \& Exhibitions
Noise in Transistors by F.N.H. Robinson
Domestic Video Records
Active-Filters-12 by F. E. J. Girling © E. F. Good
H.F. Predictions

Coding Problems in Iterative Arrays by K. S. Hall
Roots and Responses by Thomas Roddam
Signal Monitoring Networks by A. E. Crump
Announcements
New Products at the I.E.A. Exhibition
World of Amateur Radio
Literature Received
Personalities
Real \& Imaginary by "Vector"
APPOINTMENTS VACANT
INDEX TO ADVERTISERS

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $\{3$ Os Od. Overseas; 1 year (3 0s 0d. (Canada and U.S.A.; $\$ 7.50$), 3 years $C 713 \mathrm{~s} 0 \mathrm{~d}$. (Canada and U.S.A.; $\$ 19.20$). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notity a change ot address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GL_ASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: (212) 689-3250

Brimar's new catalogue talks tubes-inyour anguage!

Wireless World

Editor-in-chief:
w. T. COCKING, F.I.E.E

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Editorial Assistant:

J. GREENBANK, B.A.

Drawing Office:

H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Adverisement Manager)

Telephone: 01-928 3333 Ext. 533 \& 246.

"Together we stand"

We have on several occasions deprecated the proliferation of trade associations within the electronics industry. Our criticism has been mainly of the lack of overall co-ordination rather than of the number of organizations, all of which have performed a useful function, some within a limited and diminishing sphere-in fact in some cases there is no longer a raison d'être.

When the Conference of the Electronics Industry (abbreviated C.L.I. to avoid confusion with the Council of Engineering Institutions) was set up, with the top brass of the industry forming the council, it was hoped that here at last was the apex of the broad based triangle. The voice that could speak to governments, other associations and foreign organizations for the whole of the U.K. electronics industry; the industry's co-ordinating authority. As events have shown it was none of these, in fact, except for an annual dinner-at which a few pious platitudes were pronounced-littl if anything was heard of its activities. It may, of course, have exerted a powerful influence without ostentation.

It is now announced that the C.L.I. is to be wound up. Will this mean a further fragmentation or will it open the way for another more effective body (the E.E.A.?) to take the helm?

There are certainly significant moves towards the unification of the various trade associations. First, the Electronic Engineering Association is to move later this year into the same building as the British Electrical and Allied Manufacturers' Association where they will share "service departments" and will liaise much more closely than in the past. The interests of the two associations certainly overlap in some areas. A joint "federation council" is to be set up. It is understood that other trade associations have been invited to come under the same roof (if not the same ceiling!) and thereby to save expense. The response however, has not been very heartening from some of them. One suggested that it could best serve the particular sector of the industry, by retaining its independence.

There has, of course, been a marked co-ordination of effort in the components sector of the industry since the formation of the Electronic Components Board. The question of proposed "federal structure" of the whole electronics industry is mentioned in the recent annual report of the Radio \& Electronic Component Manufacturers' Federation. In view, however, of "the success of the E.C.B. in establishing an organisational identity for the components sector without prejudice to the internal autonomy of the three constituent associations (R.E.C.M.F., B.V.A. \& V.A.S.C.A.) it would seem that the next logical stage in the evolution of an industry federation would be to co-ordinate the policies and activities of the Capital Equipment sector, in which five associations are involved to varying degrees".

This castigation of the "capital equipment sector" is not without justification. Not only would a federal structure bring added strength, avoiding the "you're treading on my territory" attitude which undoubtedly exists between secretariats, but the manufacturers would be saved the direct costs involved in multi-participation, and the indirect costs of representation on several associations in the capital goods sector.

At the annual meeting of the E.E.A. in March it was stated "We are trying to rationalize our trade associations to have a more powerful voice". It is to be hoped that with the moves now going on we may see the dawn of a unifying electronic industries association in this country such as is operating in the U.S.A. and Japan. With the possibility of a closer link with Europe through the Common Market we will need such an organization to speak authoritatively to its opposite numbers in Germany and France.

Integrated Circuit Stereo Pre-amplifier

A simple low-noise design especially for use with the author's recently described 10-W class-A amplifier

by L. Nelson-Jones

The power amplifier' for which this preamplifier was designed has very low levels of noise and distortion, and in order not to impair the overall performance of the system the pre-amplifier had to have a similarly blameless performance.

A note ${ }^{2}$ in the May 1969 issue of Wireless World particularly interested the author, as it described the use for a stereo pre-amplifier of the R.C.A. integrated circuit CA3048, which consists of four identical low-noise audio amplifiers in a 16 -pin dual-in-line package.

The initial study of the integrated circuit centred round the circuit given in the original note in Wireless World ${ }^{2}$. This simple circuit (reproduced here as Fig. 1) was soon found to have a number of major shortcomings: the R.I.A.A. equalization network values given proved to be inaccurate at low frequencies; the noise performance was considerably impaired by the 20 dB loss of the passive tone control network; and the high frequency stability of the circuit was poor, as there was a tendency for the amplifier to oscillate at several megahertz producing noise and distortion, even with a carefully planned layout.

In the final circuit these problems were overcome by modifying circuit values, by adding separate tone control circuits of the active-feedback 'Baxandall' type, and by the addition of two capacitors to reduce the gain at radio frequencies thus curing the instability experienced in the original circuit.

Input stage and equalization

Due mainly to the built-in feedback elements of each section of the CA3048 amplifier circuit, there are limitations on the values which can be used in the equalization network, and also to the total range of gain available for equalization. In practice this means that one has to modify the values which would normally be used with such an amplifier to allow for the parallel internal feedback path. It appears to the author that this had not been done in the original published circuit in the region below about 1 kHz . The author's choice of values corrects the l.f. error at the expense of a slight lift at the h.f. end, due to the previously mentioned limitation of the total range of gain available for equalization. It
was felt, however, that this set of values gave a much flatter overall result and that the h.f. error was in any case too small to be noticeable. In two pre-amplifiers constructed the resultant curves have been within a total spread of 1 dB (between 30 Hz and 20 kHz) of one another.

The stage giving equalization to R.I.A.A. characteristic is used for this purpose only, thus greatly simplifying the switching of the pre-amplifier from one source to another.

The second stage

The second stage, which has a flat frequency response, uses the remaining two sections of the CA3048 package. The gain of the CA3048 is controlled by the value of impedance seen at the right-hand side of the input long-tailed pair (Fig. 3), which will modify the amount of feedback applied via the internal feedback path. A d.c. blocking capacitor is used to ensure maximum d.c. feedback to maintain the correct operating point. A simple balance control is achieved, as in the original circuit, by the use of a potentiometer at this point so that the relative amounts of feedback to the right and left channels may be varied. The range of this control is deliberately restricted, since the unbalances it has to correct in the equipment should be small, those in normal discs are also small, and serious unbalance in any other stereo source should be put right at source. The range of the

control as shown is a total of 6 dB on either channel.

This second stage is preceded by the selector switch, and the gain control. The positioning of the gain control at this point is dictated by the need to avoid overloading of the second stage, which would occur if the control were placed after the second stage.

The selector switch connects the auxiliary, and radio inputs direct to the gain control, with a resultant sensitivity of approximately 20 mV for full output (with the $8-\Omega$ version of the power amplifier) of 560 mV r.m.s. Overload occurs at approximately 2 V r.m.s., taking the form of almost symmetrical clipping. Any attenuators used to match this sensitivity to that of
the source should preferably not cause the gain control to be fed by a source of greater than $10 \mathrm{k} \Omega$ in order to preserve the very good noise level of the preamplifier.

The mono/stereo switch connects the inputs to the gain control in parallel when required.

The instability at first encountered with the CA3048, due to its very high gainbandwidth product, was at first a problem in the second stage. A complete cure was found in connecting a $330-\mathrm{pF}$ capacitor between slider and lower end of each gain control, together with the additional precaution of a screened lead at this point. The h.f. cut-off produced by this capacitor is well above the audio band, but is effective

Fig. 2. Circuit of one section of CA3048

in reducing the gain at r.f., and also acts as one arm of a capacitive attenuator to any pick-up on this second stage input.

Tone controls

The passive tone control of the original circuit not only degraded the noise figure of the pre-amplifier by 20 dB but also proved to be a difficult one with which to obtain consistent results, there being a considerable tendency for the cut-off frequencies to change with control settings.

The active 'Baxandall' circuit adopted does not suffer from any of these side effects. The nominal 'flat' gain of the circuit is unity since there is no need of further gain, especially as the gain of the second stage has already had to be reduced to account for the removal of the $20-\mathrm{dB}$ gain loss of the passive tone control network.

An additional capacitor of 470 pF is added directly between base and collector of the tone-control stage in order to limit the gain at frequencies above the audio band. The value chosen gives a cut of -0.6 dB at 10 kHz , and -2 dB at 20 kHz , in the flat position of the controls. The purpose of the cut at h.f. is to help to ensure that the power amplifier does not get any appreciable input at frequencies where its power handling is restricted. With an input from discs only, this is not a likely problem, but with tape and radio inputs there are possibilities of higher levels of input above the audio range. Some readers may think the cut is at too low a frequency, and may desire to reduce this capacitor; a value reduction to 220 pF is certainly in order, but it should not be eliminated as it assists in ensuring h.f. stability of the whole preamplifier.

Some readers may prefer the use of switched tone controls in which case each of the $2-$ gang $100-\mathrm{k} \Omega$ controls may be

Fig. 4. Input stage R.I.A.A. equalization (tone controls flat).

Fig. S. Tone-control characteristics.
replaced by a 2 -pole 7 -way switch having six $16-\mathrm{k} \Omega$ resistors to each bank, or a 2 -pole 9 -way switch with eight $12-k \Omega$ resistors.

Noise performance

The main source of wideband noise in the pre-amplifier is the second stage. The first stage contributes little as it has such a narrow bandwidth due to the R.I.A.A.
equalization network. The contribution of the input stage is almost entirely $1 / f$ noise which is at a commendably low level and is in any case not particularly audible in practice.

In practice the result is a unit producing no audible hum or noise at any normal setting of the gain control or tone controls. With the gain control set so that peak power reaches 10 watts on a loud recording ($5 \mathrm{~cm} / \mathrm{s}$ at 1 kHz on disc) and with bass and

Fig. 6. Close view of the central region of the pre-amp showing the mounting of the i.c. The equalization network is to the left, the tone-control stage to the right, and the two transistors to the extreme right.
treble both at maximum (which is the worst case to be met in practice) there is still no audible noise 6 feet from both speakers (which are large units of good sensitivity), and only a very faint hum and hiss can be heard close to the speaker. These excellent results are confirmed by the measurements:
(a) Unweighted hum and noise with gain set for 10 W into $8 \Omega(7 \mathrm{mV}$ at 1 kHz from pickup) $\ldots .-63.5 \mathrm{~dB}$, rel. 10 W (b) Wideband noise alone (less hum and $1 / f$.......... approx -80 dB , rel. 10W (c) Unweighted hum and noise at normal listening level (approx. 50 mW average power, 1-2 W peak) approx. -72.4 dB , rel. 10 W
This last figure remains fairly constant for all lesser settings of the gain control, and represents the basic noise of the second stage and succeeding stages. The higher level of the first unweighted noise figure is largely due to hum from the windings of the pickup cartridge and $1 / f$ noise from the first stage-both of which are of low audibility.

9-volt regulator

The integrated circuit requires a lower voltage supply than that available from the power amplifier. To protect the i.c. in the event of circuit failure, a simple shunt regulator was designed. This type of regulator also ensures freedom from voltage surges at switch-on, and switch-off. An incidental advantage of the use of such a regulator, together with its by-pass capacitor, is a very low cross talk figure for the preamplifier between channels. The original circuit ${ }^{2}$ used decoupling for the supply to the first stage, but with the low level of ripple, and the low impedance of the supply from this regulator, a better performance is obtained without decoupling to this stage.

The TO- 5 transistor of the regulator may be any type having a current gain of over 30 at 50 mA , and it should be fitted with a heat-sink as the dissipation is approximately 500 mW .

Constructional details

The underside view of the prototype pre-amplifier is shown in Figs. 6 and 7. The CA3048 was mounted on a perforated bakelite 'pin-board' with fine tinned copper links soldered to 16 pins located in two rows on each side of the package. Layout should be kept simple, but is not critical provided reasonable precautions are taken to keep input and output leads separate. The whole assembly should be well screened, and mains leads, mains transformers, and the like kept as far away as possible, to minimize hum pick-up.

The two versions of the pre-amplifier built (one by the author, and one by one of his colleagues) have quite different layouts, yet give almost identical measured results.

Components

$R_{\text {la }, b}, R_{14}$ are $\frac{1}{4} \mathrm{~W} \quad 10 \%$ carbon.
R_{15} is $330 \Omega 3 \mathrm{~W}$ wirebound for 28 V supply. ($180 \Omega \mathrm{IW}$ for 19.5 V and $470 \Omega 3 \mathrm{~W}$ for 36 V supply.)

Fig. 7. View from the rear towards the front of the prototype pre-amplifier. The supply regulator is at the far end adjacent to the velume control. The tone control circuit is next, adjacent to its controls. The i.c. is at the centre, with the input stage equalization network nearest the camera.

All other resistors are $\frac{1}{4} \mathrm{~W} 5 \%$ 'Histab' carbon or $2 \% \frac{1}{2} \mathrm{~W}$ metal oxide, the latter being preferable.
$C_{1 a . b}, C_{3 a, b}, C_{4 a, b}, C_{7 a, b}, C_{9 a, b}, C_{10 a, b}$ are all polyester types such as Mullard C280AE or C296AA/A. Capacitor ' a ' should be matched to capacitor ' b ' within 5% in each case.
(Matching is essential for $C_{3}, C_{4}, C_{9} \& C_{10}$, but not absolutely essential for $C_{1} \& C_{7}$.)
$C_{8 a, b}, C_{11 a, b} \& C_{13 a, b}$, are polystyrene $2 \frac{1}{2} \%$ tolerance.
C_{16} is $250 \mu \mathrm{~F} 16 \mathrm{~V}$ Mullard C437AR/E/250 or similar.
All the remainder may be Mullard C426 types or similar.
$V R_{\mathrm{l} a, b}$, is $10 \mathrm{k}+10 \mathrm{k} \log$ stereo potentiometer (2 dB match).
$V R_{3 a, b}, V R_{4 a, b}$ are $100 \mathrm{k}+100 \mathrm{k}$ in stereo pots (2 dB match). All these twin gang pots. are Radiospares 'Tandem' types.
$V R_{2}$ is $1 \mathrm{k} \Omega$ in carbon or wirewound.
$S_{\text {la,b }}$ is 3-way 2-pole (prototype uses Radiospares midget wavechange switch 3 -way 4-pole).
S_{2} is miniature rotary type Radiospares 'Changeover SP'.
I.C., is R.C.A.CA 3048 (CA 3052 may also be used with a slughtly worse noise figure, but is cheaper).
$\operatorname{Tr}_{1 a, b}$ are $\mathrm{BCl08}, \mathrm{BC168}$, etc. (for the 36 -volt version BC 107 B or 167 B would be advisable).
$T r_{2}$ any good TO. 5 n-p-n transistor such as $2 \mathrm{~N} 697,2 \mathrm{~N} 1613,2 \mathrm{~N} 3053$, etc.
$T r_{2}$ is fitted with a heat radiator Redpoint 5 F .
$Z D_{1}$ is $8.2 \mathrm{~V}, 250 \mathrm{~mW}$, zener diode. Mullard BZY 88-C8V2, Texas IS2082A, Radiospares MZ-E8.2V etc.
Mainline Electronics Ltd., Thames Avenue, Windsor Berks, are suppliers of
the R.C.A. devices, and Electrovalue and Radiospares the majority of the other components.

Suitable Cartridges

The pre-amplifier has been designed with the use of a high compliance magnetic cartridge in mind. Most of the magnetic cartridges listed in the recent Wireless World summary ${ }^{3}$ are suitable. The sensitivity of the pre-amp. is sufficient to allow for the use of the least sensitive, and the overload limit is high enough to allow for the most sensitive in this range.

I am grateful to my colleague Mr. A. Cullen for the use of the results from
his version of this equipment which have been incorporated in this article, and for his co-operation throughout.
I am also grateful to R.C.A. (Gt. Britain) Ltd, for their help with the supply of very full data on the integrated circuit used.

REFERENCES

1. L. Nelson-Jones, "Ulitra-low Distortion Class-A Amplifer", Wireless World, March 1970.
2. "Microelectronics at Paris Components Show", Wireless World, May 1969.
3. S. Kelly, "Stereo Gramophone Pickups", Wireless World, December 1969.

Computer Graphics

Recently the Univac Division of Sperry Rand Ltd produced several striking multicolour designs using their computers and graphic display consoles. Our front cover this month is an example of one of these. Shapes, which can be distinguished on the picture-squares, triangles, lines and points-were randomly programmed into the computer with no attempt to give them a definite pattern of movement. The tumbling shapes were shown on a graphic display and photographed through several different coloured filters-green and white in the case of our front cover.

A graphic display, one capable of showing engineering drawings, maps etc., is much more complex than the now familiar alphanumeric displays. According to Univac the development of graphic display terminals lags behind that of alphanumeric displays by between three to five years.

Cathode ray tubes are used for both types of display although these will probably be superseded by the laser, or one of the other competing devices, in about five years.

Drawings on graphic displays can be made by causing the c.r.t. electron beam to move between one previously defined point to another such point on the c.r.t. face in a straight line. Curves are simulated using a series of very short straight lines. A graphic display with a c.r.t. with a usable display area of $350 \times$

350 mm (12×12 inches) may have a million precisely defined points on which the beam can be positioned. The million points would be determined by electronics which allow the beam to be positioned at any of 1000 positions in the \mathbf{X} direction and at any one of a 1000 positions in the Y direction. The electronics would also allow the beam to move in a straight line between a point on the screen defined by a certain value of X and Y to another point specified by a different value of X and Y.

In normal practice the values of \mathbf{X} and Y are fed to the display in binary form from a suitable digital processing equipment.

Often, also under digital control, the brightness of the display can be altered to one of a number of predetermined values. Shapes which are often used can be held in a memory, as subsequent values of X and Y , for use when required.

The computer and the display electronics have to work together to handle the formidable amount of data needed to produce even a simple drawing on the screen and must be flexible enough to allow the drawing to be altered at will.

The recent rapid advances in m.o.s. integrated circuitry is having a marked effect on display design as apart from the control logic and character generation circuits, m.o.s. shift registers are replacing other forms of storage in display equipments.

Circuit Ideas

Immersion heater indicator

Here is a circuit idea so simple that it does not require a drawing. If an indicator is required to show when a heavy a.c. current is flowing in a cable, for instance, to monitor thermostat and water heater combination, proceed as follows. Strip the secondary of an old bell-type transformer and wind the live wire of the pair to the heater twice round the transformer core (in the space previously occupied by the secondary) and connect a $47-\mathrm{k} \Omega$ resistor and wire ended neon lamp in series across the transformer primary. When the thermostat is closed sufficient voltage will be developed across the transformer primary (now acting as the secondary) to light the neon. The idea is useful when the supply cable passes near to the indication point and when long additional cables are to be avoided.
B. S. Crank,

Wireless World.

Sensitive thermostat

The circuit uses a reverse biased germanium transistor sensing element in a bridge. The out-of-balance voltage from the bridge feeds a simple d.c. amplifier driving a relay via a bistable. The bridge components shown are suitable for a temperature range of $12-25^{\circ} \mathrm{C}$. The operation is so sensitive that it was found necessary to use the 500 $\mu \mathrm{F}$ capacitor to smooth out short-term fluctuations which otherwise resulted in on-off operation of the bistable. The circuit
has been used for over a year controlling a house central heating pump. The temperature control over the above range has been found to be better than $\pm 0.5^{\circ} \mathrm{C}$. For applications with negligible thermal lag, the control is better than $\pm 0.1^{\circ} \mathrm{C}$.
A. Sewell,

Cheadie, Staffs.

Schmitt triggers

Simplified trigger: The potential divider chain R_{1}, R_{2} and C for biasing $T r_{2}$, in Fig. 1 , can be eliminated by connecting a forward biased diode, D_{1} in the emitter of Tr_{2} (Fig. 2). The diode should be a silicon type of a current rating to suit the load current of Tr_{2} but the voltage rating is not important since it is never reverse biased. Circuit design calculations are simplified and the loop gain is increased for low frequencies. Trigger for variable loads: In Fig. 3 the common emitter resistor is replaced by a zener diode, D_{1}, the slope of the zener characteristic providing the feedback for the trigger action. For successful operation the current of Tr_{1} must lie below the knee of the zener curve and that of Tr_{2}, above. To take an example. Suppose the trigger points are to be between 5 and 6 V and the load of Tr_{2} consists of 680Ω in parallel with a switchable $6-\mathrm{V} \quad 40-\mathrm{mA}$ lamp. D_{2} is used to provide the reverse bias for $\boldsymbol{T r}_{2_{2}}$ a conventional bias chain could have been used. On test, using GET 111 transistors, an SX56 zener and a surplus silicon

diode for D_{2} the trigger points were 5.35 V and 5.65 V with the lamp and 5.35 V and 5.5 V without. Fig. 4 makes the operation clear. When $T r_{1}$ is conducting the current is 2 mA and the zener is at point P on the curve. When $T r_{1}$ is turned off and $T r_{2}$ conducts, the current without the lamp is about 8.5 mA , point Q on the curve, and the voltage at the emitters rises by about 0.2 V . Increasing the current to about 50 mA , by connecting the lamp, produces only a further increase of 0.2 V , point R , as the zener is now on the flat part of the curve.
P. Gascoyne,

Wantage, Berks.

Fig. I. Conventional trigger circuit.

Fig. 2. Using diode to simplify trigger.

Fig. 3. Zener diode in place of common emitter resistor.

Fig. 4. Characteristic curve of the SX56.

A survey of the various methods of obtaining time delays, particularly for use in broadcasting

by H. D. Harwood, b.Sc.

Time delays used in the broadcasting service cover a very wide range from a few nanoseconds in television circuits to several hundred milliseconds in ambiophonyt and the applications are correspondingly many and varied. For the purpose of clarity, therefore, delays are described in this article according to the method of obtaining them and the applications of each type are only briefly mentioned. In this connection it will be seen that for some applications more than one type of delay is required.

A description is also given of other types of delay which are not in use in the broadcasting service at the moment but which appear to offer potential advantages in one of the various fields of application.

All-pass electric circuits

Coaxial cable: This is the cheapest and easiest method of obtaining fixed delays of up to about $0.1 \mu \mathrm{~s}$. The velocity of an electromagnetic wave in a coaxial cable is about 0.6 of the velocity of light and a signal made to traverse a length of cable will suffer a delay amounting to $1 \mu \mathrm{~s}$ per 180 m of cable. The lines can be accurately terminated and, as the cable can also be made with a high degree of uniformity, reflections can be kept to a low level. Beyond a delay of $0.1 \mu \mathrm{~s}$ the volume of cable becomes rather large unless a miniature form is used; but unfortunately, in practice, the miniature type is not so uniform along its length as the standard-size cable and therefore reflections will be more troublesome. The standard cable can be used up to 1 GHz and the cost is very low about $£ 12$ per $\mu \mathrm{sec}$. Applications include equalization of delays for television timing pulses between programme points and central operations room.

Special delay cables: The velocity of propagation along a normal coaxial cable is substantially reduced if the inductance of one of the conductors is increased by winding it in the form of a tight helix. As a fur-
+Ambiophony: A term coined in 1959 by D. Kleis, of Philips, Eindhoven, to describe a system of acoustic feedback designed to modify the acoustics of a room. The sound is picked up by a central microphone, the output of which is delayed by various amounts and then fed back to numerous loudspeakers positioned around the walls and ceiling to modify the reverberation.
ther measure, in one form of cable manufactured by the Hackethal Wire and Cable Co., the centre conductor is wound on a dust core of relatively high permeability ${ }^{1}$ thus reducing the velocity still further.
In practice, it is difficult to make the inner conductor as uniform as that of ordinary cable and the variations give rise to reflections which in some cables may be only 20 dB below the main signal.

The impedance of the cable is of necessity high; values for cable made by the British Insulated Callender Cables Company with a polythene core vary from 130 to 1900Ω, those for the Hackethal cable vary from 1500 to 3800Ω, the higher values being associated with the greater delays per unit length. For very low velocity cables the delay is not quite constant with frequency but varies by about 10% in the 0 to 4 MHz band and also has a temperature coefficient of 0.08% per ${ }^{\circ} \mathrm{C}$. The attenuation in the lowest velocity cables is about $3 \mathrm{~dB} / \mu \mathrm{s}$ at 6 MHz compared with about 1 dB for the higher velocity cables.

One advantage of this form of delay is the lost cost, about 15 s per $\mu \mathrm{s}$; the chief difficulties are that the high impedance makes careful screening imperative to prevent cross talk between the ends; the high level of reflections can also be a nuisance with some cables.

Diameters vary from about 8 to 25.4 mm with delay and manufacturer. Applications include use in pulse generators and for equalizing delays in television programme circuits. A $5-\mu$ s line has been built ${ }^{2}$ by the B.B.C. designs department for the latter purpose
$\boldsymbol{L C}$ circuits: As a further development, a delay line may consist of a single layer coil of insulated wire wound around a core of insulating material covering an earthed conductor; the delay depending on the storage of energy in the dielectric and magnetic fields. This type of line is dispersive in its simple form because the currents in different turns, whilst still magnetically linked, become increasingly out of phase as the frequency rises and changes in delay time of up to 25% may occur within the pass band.

The various means adopted to overcome this difficulty entail breaking the line up into segments. In one method due to Kallman ${ }^{3}$ capacitive coupling between groups of turns
is employed; the line being effectively divided up into as many as 48 segments. In this way, the delay was made constant for a $0.9-\mu$ s line to within 1% over the range 0 to 16 MHz . This rather empirical method was later treated more theoretically by Di Toro ${ }^{4}$, who also gives design data.

Another technique due to Solov'yev ${ }^{5}$ uses coaxial shorted turns to sectionalize the magnetic field in the line. In this way, the falling off of inductance with frequency is prevented but, once again, the design details have to be decided by cut and try methods.

The advantage of these forms of line is that they can easily be adjusted on test to give the precise time delay required and are very compact. They suffer, however, from the disadvantage of empirical design and high impedance, 400 to 4000Ω, the latter condition necessitating the use of amplifiers and matching networks. Delays of up to 1μ s are practicable and are quite cheap to construct. The attentuation is fairly low ($\approx 10 \mathrm{~dB}$ at 6 MHz) and the reflections are more than 40 dB below the signal.

If the process of sectionalizing is taken further, we arrive at low-pass and all-pass networks. Many designs have been published using low-pass networks but the allpass types have the following advantages over them.
(i) Their design does not have to take into account the varying frequency characteristic of the network near cut off.
(ii) The characteristic impedance is theoretically constant over an infinitely wide band and, although this cannot be achieved in practice, more sections can be employed before matching difficulties arise.
(iii) The design can be calculated with a high degree of accuracy.

Howorth ${ }^{6}$ gives a good example of a $1-\mu \mathrm{s}$ all-pass delay line using ten pairs of networks designed to give a fourth order maxi-mally-flat group delay/frequency characteristic and a constant resistance network to equalize for unavoidable high frequency losses in the coils. Further details are given of staggered pairs of networks up to the tenth order for which a considerable improvement is claimed.

The pass band can be designed to cover any desired range of frequencies, there being no difficulty in achieving bandwidths of 6 MHz . The characteristic impedance is again a matter of design; a figure of 75Ω
would normally be chosen for television purposes.

Delays of up to $10 \mu \mathrm{~s}$ can conveniently be made for the video bandwidth and the level of spurious reflections can be kept 40 dB below the signal if individual adjustment of the elements is used. The insertion loss in the line is low, e.g. 6 dB for a $3-\mu$ s line with a $6-\mathrm{MHz}$ bandwidth.

The cost is higher than that of cable and amounts to about $£ 100$ for the example just quoted. The size of such a line would be about $700 \times 76 \times 76 \mathrm{~mm}$.
Applications include a line of $330 \mu \mathrm{~s}$ for the audio band used in a limiter ${ }^{7}$ to give the control chain time to operate before the programme reaches the main path.
The delays so far described are fixed in length, although a circular line of the Kallman type could perhaps be produced with a wiper contact. For purposes where a variable delay is essential one known as the Amtec has been produced by Ampex, in which the delay can be rapidly varied by means of an electrical control signal. The delay consists of a series of coils (wound on a common former so that they are mutually coupled) and shunt-connected varactor diodes. The delay is controlled by adjusting the bias on the diodes and a variation of $\pm 20 \%$ is possible at rates of up to 15 kHz . To minimize the changes in delay caused by the signal itself (which appears across each diode), the diodes are connected so as to alternate in polarity along the delay line. The alteration in the characteristic impedance involved in changing the delay limits the usable variation to not more than about $\pm 5 \%$ before excessive echoes and frequency response changes are produced.
Delays of up to about $5 \mu \mathrm{~s}$ are possible with this device. The bandwidth is adequate for television signals and when properly matched spurious echoes are 40 dB below the main signal. The impedance is of the order of 300Ω and the line will only handle levels of up to 250 mV ; amplifiers are therefor necessary before and after the line. The attenuation at 5 MHz is about 6 dB .
The main use is as a servo operated device to reduce the effect of quadrature errors in head alignment in video tape machines; it is also used in line store converters and vertical aperture correctors. The cost is approximately $£ 500$ and the size is $700 \times 76 \times 76 \mathrm{~mm}$.

Ultrasonic delays

In the delays which have been considered so far the signal has been electrical and the velocity of propagation correspondingly high; this has meant that any delays of more than a few microseconds occupy a considerable path length. In the type of delay to be considered in this section, the sig. nal is converted into a mechanical vibration with a much lower velocity of propagation, and correspondingly higher delays are therefore possible.
Fot example, the velocity of a shear wave in a quartz block is only 3760 metres per second and this is slower than the velocity of an electrical signal in a coaxial cable by a factor of about 10^{5}. Furthermore, it is possible to reflect the wave from a number of faces of the block thereby still further re-
ducing the size necessary for a given delay.
A number of substances have been examined for possible use in delay lines; one example is a water line used by the Scophony television system in the early 1930s and again by the Telecommunications Research Establishment in the early days of radar. This was superseded by the use of mercury which gave a much better match to the quartz transducers and had lower attenuation. Solid materials which have been examined for this purpose include metals, plastics, rubber, glasses and gels ${ }^{8}$. Of these solids the lowest attenuation is obtained with glasses and fused quartz and only these are used today.

Similar low velocities of propagation can be obtained from torsional waves in wires and as these can be coiled to form a helix they can be made quite compact for delays up to 20 ms ; they are also cheaper than quartz or glass blocks.

Solid ultrasonic delay lines: For an ultrasonic delay line fused quartz or glass has the advantage over crystalline materials such as metals in that, being amorphous, the scattering of the waves from crystal boundaries is avoided and hence the attenuation in the medium is less. The attenuation is in fact proportional to the square of the frequency instead of the fourth power as in a crystalline solid. For example, in the region of 10 MHz the mechanical Q factor of fused quartz is approximately 10^{5}. In a solid medium, waves can be propagated both in the shear and longitudinal modes. For very short delays, of the order of a few $\mu \mathrm{s}$, longitudinal propagation is used as it has a higher velocity and thus increases the distance between the transducers for a given delay, so reducing the effects of capacitive coupling between the transducers and the disturbing effects of diffraction near them. For longer delays however the shear mode of propagation is preferable in order to reduce the path length required facilitating a more compact design; the ratio of the two velocities is approximately 1.6 to 1 . One of the advantages of the shear mode is that waves are reflected from surfaces with no mode conversion provided the particle velocity is parallel to the surface. Furthermore, the wave may be guided by the top

Fig. 1. Quartz block delay line.
and bottom surfaces of the block without causing the spurious signals, due to mode conversion, which would occur with longitudinal waves. The major difficulty in using the shear mode of vibration is that of bonding the transducers to the delay medium but this has now been largely overcome by the use of indium cold welds ${ }^{9}$.
For long delays extensive use is made of reflections to increase the path length in a given size block. A good example is shown in Fig. 1 where a 15 -sided figure contains 31 legs in the acoustic path between receiving and transmitting transducers. A $1-\mathrm{ms}$ delay line of this type would have a "diameter" of about 14 cm and delays of up to about 4 ms are feasible, with a bandwidtlı of about 15 MHz . For shorter delays the bandwidth is greater as the attenuation in the medium is less.
The electromechanical coupling of the receiving transducer is so low that very little of the energy in the incident beam is absorbed. The reflected energy returns to the transmitter where it is reflected again to the receiver, forming an echo which has three times the delay of the primary signal. Various means are adopted to reduce the amplitude of this echo. The first measure uses the directivity of the main beam. The transmitter usually consists of a rectangular piece of quartz whose length is long compared with a wavelength and whose directivity is given by:

$$
\left.P=\sin \left(\frac{\pi l}{\lambda} \sin \theta\right) \right\rvert\, \frac{\pi l}{\lambda} \sin \theta
$$

where $/$ is the length of the transducer, λ is the wavelength and θ the angle. This represents a main lobe flanked by a null and side lobes, the first of which is about 18 dB below the amplitude of the main beam. With a transmitter about 100 wavelengths long, the directivity is very high, the first null being about 40 minutes of arc and the first side lobe at about 55 minutes of arc away from the axis. In some designs advantage is taken of this null by tilting the axis of the transmitter so that for a "third time around" reflection already mentioned the null is incident on the receiver. The condition for this is given approximately by the relationship $\theta=0.4 \lambda / /$ (since θ is small) and is equal to $\left(4 \times 10^{8}\right) / f$ minutes of are for a source of length 1 cm . The reduction in pressure due to the axis of the main beam not being exactly on the receiver is small under these conditions and amounts to only 2 or 3 dB . As a further measure the two transducers are often backed by a wedge of lead; this absorbs a proportion of the energy incident on them, because of the attenuation in the lead.

Also, absorbent material is sometimes fixed to the area of the faces of the polygon which do not carry the main beam. As a result the spurious signals have been reduced in some cases to 60 dB below the level of the wanted signal, although 40 dB is a more usual figure.

The attenuation in the line is largely due to low electromechanical coupling in the transducers for short delays but attenuation in the medium is the limiting factor for long delays. Crystalline quartz is usually used for the transducers but various piezeoelec-
tric ceramics ${ }^{10}$ have been utilized as they have a coupling coefficient about six times higher than has quartz. They are much more fragile than quartz and there is some difficulty in bonding them to the quartz or glass block.

Fused quartz has a temperature coefficient of about -8 parts in $10^{5} /{ }^{\circ} \mathrm{C}$ and for accurate work must therefore be temperature controlled. For this reason, glasses have been developed with a negligible temperature coefficient but as they have an appreciably higher attenuation they cannot be used for the longer delay lines. Quartz or glass lines have been used for lincar fieldperiod delays in television scanning systems as in PAL and SECAM receivers.

For the solid delay lines so far described. the time delay is fixed but there are some applications where it is desirable to be able to vary the time delay fairly slowly. For this purpose an optical scheme of pick off has been suggested by Arenberg ${ }^{11}$ and others ${ }^{12,10}$. When glass is stressed it becomes birefringent; light polarized parallel 10 and perpendicular to the direction of stress have different velocities. The magnitude of this effect varies with the stress and so can be made to vary the phase between the two mutually perpendicular components into which light can be resolved.

The arrangement used is shown in Fig. 2.

Fig. 2. Quartz variable delay line.
Light from a source is passed through a polarizing medium, a quarter wave plate, the optical delay medium, a defining slit and then through an analyser to a photocell. The analyser is so positioned that in the absence of a signal and the quarter wave plate no light would fall on the photo cell; the presence of a signal would therefore result in a rectified output from the cell. The quarterwave plate biases the system so that a linear output is obtained from the cell in the presence of a signal. The slit can be moved along the line and continuous variation of the delay can thus be obtained.

One of the difficulties lies in obtaining a good signal to noise ratio, and to this end the stress in the glass is made as high as possible by the use of ceramic piezoelectric transducers which have the highest coupling coefficient.

Mercury delay lines: Mercury delay lines are not so cheap or convenient as quartz

Fig. 3. Construction of a mercury variable delay line.
plates but have the advantage that they are easily adjustable in length, at any rate for delays up to about $350 \mu \mathrm{~s}$. A typical construction is shown in Fig. 3. As in the case of quartz line a highly directional piezeolectric transmitter generates waves which travel along the mercury and are then reflected back from a corner reflector to the receiving transducer situated by the side of the transmitter.
The attenuation in the mercury is proportional to (frequency) ${ }^{2}$ and is given by $\alpha / f^{2}=5 \times 10^{-15} / \mathrm{m}^{-1} \sec ^{2}$. This is low for medium frequencies and amounts to about 15 dB at 15 MHz for a $1-\mathrm{ms}$ line. It is obvious, however, that the attenuation increases rapidly as the frequency rises. In the low attenuation region, measures to reduce spurious reflections are essential. and the methods discussed in the previous section are applied. In addition, the transducers are sometimes terminated at the rear by a mercury filled cavity having a shape designed to trap and absorb the incident energy. By these means reflections can be reduced to about 40 dB below the main signal.

As the acoustic impedance of the mercury is a good match to that of the quartz transducers the bandwidth available is wide and the insertion loss due to mismatch is low. The main loss in the system is the poor electromechanical coupling in the transducers themselves, the total loss amounting to some 50 dB for a $1-\mathrm{ms}$ line. The electrical load applied to the receiving transducer also obviously has a marked effect.
The temperature coefficient of delay of mercury in a steel container is -0.03% per ${ }^{\circ} \mathrm{C}$. The suggestion ${ }^{13}$ has been made that where this is excessive a capillary should be attached to the bath which would thus act as its own thermometer operating a thermostat switch, and control could be exercised to within a few millidegrees.

Static delays of 1 ms and delays adjustable from 30 to $200 \mu \mathrm{~s}$ can be produced. In the latter case the corner reflector is mounted on a lead screw having a pitch such that one complete turn changes the delay by $10 \mu \mathrm{~s}$. The bandwidth is about 8 MHz . The cost of the adjustable line is about $£ 500$ and the size $400 \times 100 \times 100 \mathrm{~mm}$. It has been used in a line store converter, a vertical aperture corrector ${ }^{14}$ and a field store.

Ultrasonic wire delay lines: For these delay lines, waves are propagated along wires using either the longitudinal or shear modes. The expression

$$
v=\sqrt{\frac{E}{\rho}}
$$

for the velocity of low frequency longitu-
dinal waves (E is Young's modulus, ρ is density) is found to be in error at ultrasonic frequencies where the wavelength becomes comparable with the diameter of the wire. Under these conditions Rayleigh gives the velocity as:

$$
v_{e}=\left[I-\pi^{2} \sigma^{2}(a / \lambda)^{2}\right] \sqrt{E / P}
$$

σ being Poisson's Ratio and a the radius of the wire, and this holds if $a / \lambda<0.6$. At the highest frequencies the energy flows almost entirely in the surface layers. Because of the ensuing dispersion. lines using this mode of propagation are restricted to short lengths.

For torsional waves the velocity

$$
v_{s}=\sqrt{\frac{\mu}{\rho}}
$$

where μ is the modulus of rigidity and is thus free of dispersion provided the wire is straight. If however the wire is curved, as is desirable for long lines, a certain amount of dispersion takes place but this is very low provided the wire is naturally straight, i.e. there is no "set" in the line where it has been taken past the elastic limit.

The diameter of the wire is determined by the fact that only the zero order mode is wanted. Higher orders will exist above a lower cut-off frequency given by $f_{c}=$ ($R_{n} V_{s}$)/2na where R_{n} is a constant dependent on the mode. and V_{s} is the sheer velocity. The value of R_{n} for the cut-off frequency $\left(f_{c}\right)$ of the first order made is 5.136. Below their cut-off frequencies these modes are rapidly attenuated and it is safe to use frequencies up to $0.75 f_{c}$.

Another advantage in using the torsional mode rather than the longitudinal mode for long lines. is that the torsional velocity is only 0.6 of the longitudinal velocity with a corresponding gain in delay for a given length. Unlike the quartz and glass considered in the previous section, a wire is composed of a multi-crystalline material. Reflections at the crystal boundaries give rise to additional attenuation, proportional to f^{4}, which places an upper limit to the bandwidth.

Transducers: Wire lines can be driven by piezoelectric elements but in practice magnetostrictive devices are generally used. For longitudinal modes this takes the form shown in Fig. 4. A short coil surrounds the wire, which is biased magnetically by a permanent magnet as indicated. When a pulse of current is applied to the coil the wire changes dimensions (Joule effect) ${ }^{15}$ and this disturbance is propagated in both directions with a velocity v_{e}. The wave arriving at the left hand termination block is absorbed

Fig. 4. Driving a longitudinal wire delay line.
and the other travels to the receiver coil, where it induces an electrical signal (Villari effect) ${ }^{16}$ and thence to the right hand termination. The length of the coil determines the highest frequency of propagation, the efficiency rising to a maximum at a frequency where $f=v_{e} / 2 l$.

For torsional modes a converter due to Scarratt and Naylor may be used as shown in Fig. 5. In this case the longitudinal waves are generated in two strips as described above and excite the wire in the torsional mode. To avoid spurious reflections from the driver the termination must be very good. An alternative form due to Wiedemann ${ }^{17}$ is shown in Fig. 6. In this case a biasing current flows in the solenoid and the signal current flows down the delay line. In either case the conversion efficiency is low the insertion loss of the two transducers amounting to roughly 40 dB .
The design of a typical long delay line is shown in Fig. 7. Delays of up to 10 ms are available but with these the bandwidth does not usually exceed 1 MHz ; spurious echoes

Fig. 5. Driving a torsional wire delay line (due to Scarratt and Naylor).

Fig. 6. Wiedemann transducer.

Fig. 7. A typical wire delay line with a long delay time.
are often as high as -12 dB on these lines. For shorter delays bandwidths up to 5 MHz are feasible. The source impedance should be high and so should the load into which the output coil is connected; matching amplifiers are therefore required. The cost for a line of 3 ms is $£ 70$ and the size approximately $178 \times 254 \times 38 \mathrm{~mm}$.
Because of the limited bandwidth, applications are few. Other ways of producing delays are discussed in the concluding part of this article next month.

REFERENCES

1. Stein Dimitri, R.. "Magnetic Core Delay Cables". I. R.E. National Convention Record, 1954, Vol. 11, Part 3, pp. 30-34.
2. "A 5μ s Delay Panel Type PA7/501". B.B.C. Designs Department Technical Memorandum No. 8.125, 1963
3. Kallmann H. E.. "Equalized Delay Lines". Proc. I.R.E., Vol. 34. No. 9. pp. 646-657.
4. Di Toro, M. J., "General Transmission theory of Distributed Helical Delay Lines with Bridging Capacitance", I.R.E. Convention Record, Part 5 Circuit Theory, 1953. pp. 64-70.
5. Solov"yev, V. A., "Miniature Delay Line with High Resolution", Elekirosvyuz, 1961. No. 2. pp. 11-23.
6. Howortf, D., "Miniature Delay Lines for Television Equipment", B.B.C. Technical Memorandum No. T 1083.
7. Shorter, D. E. L., Manson, W. I. and Stebbings, D. W., "The Dynamic Characteristics of Limiters for Sound Programme Circuits", B.B.C. Research Report No. EL-5 1967/13.
8. "Preliminary Experiments on the use of Solid Materials as Supersonic Transmission Media for Delay Cells". Telecommunications Research Establishment 2940, 1941
9. Brocklesby, C. F.. Palfreeman. J. S. and Gibson, R. W. "Ultrasonic Delay Lines". Iliffe, London (1963).
10. Gibson. R. W., "Solid Ultrasonic Delay Lines", Ultrasonics, April/June 1965.
11. Arenberg, D. L.. "Ultrasonic Solid Delay Lines". J.A.S.A., Vol. 20, No. I, Jan. 1948, pp. 1-26.
12. Brouneus, H. A. and Jenkins, W. H., "Continuously Variable Glass Delay Line", Electronics, Jan. 13th 1961. pp. 86-87.
13. Brocklesby, C. F., "Ultrasonic Mercury Delay Lines". Electronic and Radio Engineer, Dec. 1958, pp. 446-452.
14. Howorth, D. "Vertical Aperture Correction using Continuously Variable Ulirasonic Delay Lines. B.B.C. Engineering Monograph No. 47. May 1963.
15. Joule, J. P., "On the effects of magnetism upon the dimension of iron and steel bars". Phil. Mag. 111, 30, 1847
16. Villari, F., "Change of Magnetization by Tension and Electric Current", Annalen de physikalische Chemie 126, 87, 1865.
17. Brocklesby, C. F. Palfreeman, J. S.. and Gibson. R. W. G., "Ultrasonic Delay Lines", Iliffe, London (1963), p. 137.

Mechanical Filters for TV Receivers

Interest in mechanical filters continues to grow and modern microcircuit technology is helping us to obtain smaller and smaller devices working at higher and higher frequencies. Electrical filters depend for their frequency-sensitive effects on the natural behaviour of electrons oscillating between energy stores in the form of capacitors and inductors (or just capacitors in active filters). In mechanical filters the equivalent energy stores are the mass and compliance of lumps of solid material, say metal or crystal, which can be mechanically activated by suitable transducers, e.g. electromagnetic or piezoelectric. For example, some mechanical filters on the market, operating at centre frequencies up to about 20 MHz , use thin plates of quartz with pairs of electrodes applied for activation and pick-up.

Recent work has been concerned with mechanical waves travelling on the surface of thin films of material. The latest example, from Zenith in the U.S.A., is an experimental device intended to provide a band-pass frequency response for use in the i.f. sections of television receivers. It uses lead zirconate, a piezoelectric ceramic, and the surface waves are launched and picked up by comb-shaped electrodes: the transmitting "comb" exerts mechanical stress on the material and this causes waves to travel across its surface and create a varying electric field which is detected by the receiving comb. In one example the transmitting transducer is a comb of about 20 teeth in the middle of the area of lead zirconate, while the receiving transducer consists of two combs, one on each side, which can be series or parallel connected. The spacing between the comb teeth is significant in determining the frequency response characteristic of the filter.

A complete i.f. section for a colour television set has been constructed, using four of these devices (known as Surface Wave Integrable Filters) with i.c. amplifiers to compensate for insertion losses, all mounted on a 2 in \times lin thick-film circuit on a ceramic substrate. It is said to have given a good picture when substituted for a standard i.f. section in a colour receiver.

Zenith are also working on flat panel television picture displays.

15-20W Class AB Audio Amplifier

A design with class-A performance but reduced thermal dissipation

by J. L. Linsley Hood

Many class B designs can be operated in class A at low power levels if the quiescent current is increased. However, this often worsens the distortion characteristics of the output stage, particularly at intermediate (and audibly important) power levels, by displacing the crossover point to a region where the transfer slope is much steeper, and the crossover discontinuity therefore much more prominent. This effect is considerably accentuated by the fact that almost all modern transformerless power amplifier systems use either Darlington pair or augmented ($p-n-p / n-p-n$) emitter follower output pair configurations, and these have a very high mutual conductance.
The use of a complementary pair of emitter followers, driven from a voltage source having an output impedance which is very much lower than the normal input impedance of the output devices, appeared from this line of thought to offer the best way of minimizing the several problems mentioned above.

In practice, the necessary low impedance base-emitter paths can be arranged quite simply by driving the output transistors from a suitably tapped emitter load resistor in a conventional emitter-follower circuit, provided that the current flow in this load circuit is adequate to deliver the necessary output drive.

Moreover, this type of circuit arrangement will also operate, in class A, as a straightforward cascaded emitter follower, as can be seen from the circuit arrangements shown in Fig. I. In (a), the transistors $T r_{1}$ and $T r_{2}$ act as a conventional Darlington pair, with a resistive emitter load to which the output load Z_{L} is coupled through C_{1}. In (b), essentially the same circuit is employed, but using a complementary type of transistor as the second stage emitter follower.

It is then possible to arrange the circuit as shown in (c), so that both of these configurations are employed simultaneously. Resistors of double the ohmic value can then be employed as R_{1} and R_{2}, with half the emitter current in each transistor, to give an identical matching impedance to the output load. In practice, this circuit arrangement can be simplified into the form shown in Fig. 2, and the resistors R_{1} and R_{2} deleted since the load current for each transistor can flow through the other. This also improves the efficiency since the transistors have a very high dynamic impedance and form good emitter loads for each other. The two small value resistors R_{x} and R_{y} are included to assist in stabilizing the output transistor working points.

The actual value of the quiescent current in the output stage can be set by adjustment to $V R_{1}$. To avoid asymmetry, at low audio frequencies, the bypass capacitor should have as high a value as convenient.

This arrangement of the output transistors was of particular interest to the author, since the first three stages of such an amplifier could be substantially the same as those used in the previously described class A design, of which the performance was known. In fact, the system could be constructed on the basis of the class A design, with the quiescent current reduced to a much lower level, and a pair of suitably biased back-to-back emitter followers interposed between the output and the loudspeaker load. However, this would not have made the most of such a system. In particular, it will be noted that if the potential at the emitter (or base) of Tr_{1} in Fig. 2 is held constant, the current through the resistor chain $R_{3}, V R_{1}$ will be constant for any particular value of

(a)

$V R_{1}$ and therefore the turn-on potential applied between the bases of $T r_{2}$ and $T r_{3}$ will also remain constant (or virtually so). This allows the standing current of the output transistors to be defined precisely, since the d.c. output potential can be controlled by the use of unity gain d.c. negative feedback, and this effectively controls the emitter potential of Tr_{3}.

Also, since the last voltage amplifier stage is not required to deliver significant power, it can be optimized for voltage gain, with an increase in the available negative feedback. A practical amplifier circuit of this type is shown in Fig. 3.

The first two transistor voltage amplifier stages of this follow conventional design practice, with the collector load resistor of $T r_{2}$ boot-strapped to obtain large voltage swing at the base of $T r_{3}$ with as little second harmonic distortion as practicable. The collector of Tr_{3} is also partially boot-strapped in order to reduce the peak voltage swing, and improve the symmetry of the output waveform prior to the application of the loop negative feedback. (Without overall n.f.b. the distortion at full output power is a little

Fig. 3. Power amplifier circuit. The dotted components ($680 \mathrm{pF}, 1.5 \mathrm{k} \Omega$) can be added if electrostatic speakers are used.
less than 4%, almost entirely second harmonic. This is similar to the performance of a good triode valve output stage prior to the application of n.f.b.) The lower end of R_{3} is also fed with the output signal to improve the output voltage swing obtainable from Tr_{5}.

The $390-\mathrm{pF}$ capacitor bet ween the emitter of Tr_{\top} and the collector of $T r_{2}$, and the $8.2-\Omega$ resistor in series with the $0.1 \mu \mathrm{~F}$ capacitor across the output, provide the necessary phase-angle correction and define the high-frequency gain of the feedback loop. With the values shown there is a $6 \mathrm{~dB} /$ octane roll off beyond 100 kHz , and the system is completely stable under all load conditions. However, with the use of a large value capacitive load there will be some overshoot on a rapid transient. The author believes that it is desirable, for tonal purity, for such overshoots to be eliminated, and it is recommended, therefore, that the $390-\mathrm{pF}$ capacitor be shunted with a $680-\mathrm{pF} \quad 1.5-\mathrm{k} \Omega$ combination where it is intended to drive electrostatic speaker systems. However, on normal loads this merely reduces the h.f. roll-off point, and the power output available in the $30-50 \mathrm{kHz}$ region, and can well be omitted.

The 100Ω wire-wound potentiometer between the bases of $T r_{4}$ and $T r_{5}$ is μ sed to set the quiescent current level to about 200 mA . The chosen current level determines the power level at which the system changes from class A to class B operation. With the suggested level of 200 mA , this transfer will occur at approximately 300 mW with a $15-\Omega$ speaker (160 mW for 8Ω) although the measured current consumption will not appear to increase until a power output (into 15Ω) of about 1.2 W is reached because the h.t. line bypass capacitor is able to supply the peak current demands.

If the standing current through the output stage is increased, progressively larger output power levels can be obtained within the class A region, up to the level at which the amplifier acts as a pure class A system. The only observed penalty for this exercise is that the power supply demand and the thermal dissipation in the output transistors are both proportionately increased. However, if the output transistors are of dissimilar origin or are otherwise badly paired the operation of the circuit in class A will ensure that the distortion levels and other performance standards are attained in spite of this.

Performance characteristics

The specifications given below were obtained using the power supply system shown in Fig. 3. The amplifier was specifically designed to work from a poorly smoothed h.t. line, the values and positions of the h.t. decoupling and 'bootstrap' capacitors being chosen to avoid the intrusion of ripple into the signal circuits. The only significant difference observed in using a good quality stabilized and smoothed power supply is a small improvement in the already extremely good hum and noise levels.

Fig. 4. Gain/frequency characteristics.

Fig. 5. Power output/jrequency characteristics.

Power output. 15 W into 15Ω, or 18 W into 8Ω. (20 W with modified output circuit components values).
Bandwidth. $10 \mathrm{~Hz}-100 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$ at 2 V output. $20 \mathrm{~Hz}-50 \mathrm{kHz}$ $\pm 0.5 \mathrm{~dB}$ at maximum power output.
Output impedance. 0.03Ω (at 1 kHz).
Total harmonic distortion. 0.02% at $15 \mathrm{~W} / 15 \Omega$ or $18 \mathrm{~W} / 8 \Omega$; less than 0.02% at all power levels less than maximum output.
Intermodulation distortion. Less than 0.1%. 10W (12.3 V r.m.s.) $15 \Omega 2,70 \mathrm{~Hz}$. 1 V r.m.s. 7 kHz (or 10 kHz).
Square-wave transfer distortion. Less than 0.2 W at 10 kHz .
Rise time. 3μ s.
Input impedance. $20 \mathrm{k} \Omega$ (approx.)
Gain. 18x.
Hum level. (Simple power supply)-70dB w.r.t. IW

Noise level. (Simple power supply) -80 dB w.r.t. 1 W . (These figures are, respectively, better than -80 dB , and -85 dB with the regulated power supply.
Feedback factor. 46dB (typical).
Input voltage for max. output. 850 mV r.m.s.
Load stability. Unconditional.
For the perfectionist, a suitable design for a regulated d.c. power supply, with re-entrant short-circuit and overload protection is shown in Fig. 10. This gives approximately 10 dB improvement in the hum and (r.m.s.-weighted) very low frequency noise.

The gain/frequency, and power output/frequency graphs are shown in Figs. 4 and 5, and the relationship between output power and distortion, and signal frequency and distortion are shown in Figs. 6 and 7. The square wave performance into a $15-\Omega$ resistive load, with any value of shunt capacitance up to $0.1 \mu \mathrm{~F}$, at 1 kHz , 10 kHz , and 50 kHz are shown in Fig. 8. The sine wave output at 1 kHz , and 15 W with a $15-\Omega$ resistive load (42.5 V p-p) and the associated harmonic distortion (representing 0.02%) is shown in Fig. 9.

Listening trials

As described last month, a number of experiments were done during the development of this circuit to try to relate audible effects to the phenomena observable and measurable in the laboratory, and a transfer distortion analyser (British patent application No. 7925/ 1970) was made to judge the performance with non-sinusoidal waveforms. (A point was reached in the earlier stages of the design where the author's ear was no longer able to detect the subsequent improvements.)

The transient response of the 10 -watt class \mathbf{A} design (as originally published ${ }^{1}$, without the modifications ${ }^{2}$, suggested in October 1969 to reduce the h.f. band width) is superior to that of the present circuit in the range $50 \mathrm{kHz}-2 \mathrm{Mhz}$ under load conditions of fairly low capacitive reactance. Under more adverse load conditions the present design will be (technically) better. However, the most careful comparative listening trials, with several of the author's longsuffering friends, have failed to uncover any audible difference between these two designs, both of which will almost certainly surpass in performance the best available valve-operated, transformer-coupled units.

Constructional points

The layout used in one of the prototypes of this design is shown in Fig. 11, using a 0.15 -in matrix copper strip board. The layout should not be particularly critical provided that normal precautions are observed, such as keeping the output and input circuits reason-

Fig. 6. Power output/distortion characteristics. The $8-\Omega$ load characteristic was measured using the modified output-stage components.

Fig. 7 Influence of signal frequency on distortion (IW into 15ת)
atly well separated, and making sure that the power supply leads, and the loudspeaker return lead, connect to the board at a point close to that to which the collector leads of the output transistors are soldered.

Since the circuit has unity gain at d.c. the occurrence of a switchon 'plop' in the loudspeaker can be avoided by the use of a suitably long time-constant in the deccupling circuit which provides the base bias for $T r_{1}$. The voltage at ' X ' (Fig. 3) will then follow the base potential of $T r_{1}$ as it slowly rises following switch on. It is undesirabie to have the full h.t. voltage applied during this period, and this is avoided by the incorporation of a thermistor (Radiospares TH2A or equivalent) in the mains transformer primary circuit. Since this will cause a drop of some $10-15 \mathrm{~V}$, this should be allowed for in the tapping point on the mains transformer. Also, since the thermistor becomes quite hot under operating conditions (this is necessary) it is important to mount it in such a way that this does not damage associated components or wiring.

The dissipation of the output transistors is normally about 8 W , and the output pair can both be mounted on a single $3 \frac{1}{2}$ in $\times 4 i n$.

Fig. 8. Square-wave performance into 15Ω in parallel with $0-0.1 \mu \mathrm{~F}$. (Scale $2 \mathrm{~V} / \mathrm{cm}$) (a) 1 kHz , (b) 10 kHz , (c) 50 kHz .

Fig. 9. 14-W $1-\mathrm{kHz}$ sinewave into $15-\Omega$ resistive load. Distortion 0.018% on scale $35 \mathrm{mV} / \mathrm{cm}$. Fundamental on scale $10 \mathrm{~V} / \mathrm{cm}$.

Fig. 10. Stabilized power supply with re-entrant short-circuit protection (12-49V).
black anodized, ribbed heat sink. The heat sink should be earthed -very simply by omitting the mica washer on the MJ491.
The driver-transistor dissipation is of the order of 2 W in some circumstances, and this is somewhat in excess of the power which can be handled safely by the normal TO-5 cased device, such as the 2 N1613, unless very careful heat sinking arrangements are employed. The use of such devices as the 2N3054 or the Motorola MJE521, mounted on a small piece of black-painted aluminium sheet, say lin $\mathrm{x} 1 \frac{1}{2} \mathrm{in}$, gives a very large safety margin in this stage. The performance of the Motorola MJE52I is slightly to be preferred, and was used in all the prototypes. This stage, however, is not a very critical one, and these transistor type variations are unlikely to make a significant difference to the system's overall performance.

The Texas BC212L and 182L are the preferred transistor types for $T r_{1}$ and $T r_{2}$, although the 2 N 1613 was also used in some development models' as Tr_{2} with identical results. The Motorola 2 N 3906 and 3904 could also be used in the $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}$ positions with almost equivalent performance, but this has not been tried. The use of $\frac{1}{2}$-W carbon film 5% resistors is suggested except in the points where higher wattages are required. R_{1} and R_{2} should be of small diameter or low inductance. The various electrolytic capacitors can be of higher value or voltage working without ill effect.

A suitable printed circuit is obtainable from A1 Factors, of Nottingham, who can also supply the other components.

Appendix 1

Calculation of power output levels obtainable with given quiescent current in class A operation.

The maximum output power which can be obtained from a power output stage such as that in Fig. 3, in class A, is entirely determined by the quiescent current and the load impedance provided that adequate h.t. voltage is available. At frequencies which are low enough for the 'wattless" components of the load current to be ignored, the maximum current excursion which can be caused to flow through the load without taking one or other of the output transistors beyond cut-off is equal to twice the quiescent current (I_{q}) through the output stage. Since this is the 'peak' current through the load, if the waveform is sinusoidal ${ }_{3}$ the r.m.s. equivalent current will be $2 I_{q} / \sqrt{ }$, and at low frequencies, the power developed in the load will be $2 I_{q}{ }^{2} \cdot \mathbf{R}_{\mathbf{L}}$.

For example, if the stage is required to operate in class A up to one watt, with a $15-\Omega$ load, the peak current swing through the load must be $1=2 I_{q}{ }^{2}$. 15 , or $I_{q}=183 \mathrm{~mA}$. Similarly, for an $8-\Omega$ load, $I_{q}=250 \mathrm{~mA}$.

With the standing current suggested $(200 \mathrm{~mA}), 1.2$ watts or 640 mW will be given for $15-\Omega$ and $8-\Omega$ loads respectively. This should be adequate for most normal listening. For full class A operation up to 15 W , quiescent currents of 710 mA and 970 mA respectively will be required.

Fig. 11. Layout of components on 0.15 -in matrix strip board. The 'set current' and 'set mid-point' potentiometer, and the power transistors, are off the board.

Appendix 2

Output transistor protection

The use of class B output circuit configuration (and class AB comes within this category at the power levels concerned) in transistor power amplifiers of this general type leads to the possibility that very high instantaneous currents can flow, which will lead, regrettably, to the equally instantaneous destruction of the transistors involved, if the amplifier is operated at maximum drive into an effective short circuit, and this could be a load with a very high capacitive reactance, in some cases.

The classic system for output transistor protection, using two input bypass transistors, is that due to Bailey ${ }^{3}$, and this is also applicable to the output circuit of this design. However, because of the d.c. asymmetry between the potential at the base of Tr_{3} and the output point ' X ', a much simpler arrangement can be used, consisting solely of a good quality (low leakage) zener diode between these two points, with the positive zener end connected to the base of Tr_{3}. Any 4-4.7V zener will do provided that the leakage current at 3 V reverse, and 0.4 V forward, is less than $10 \mu \mathrm{~A}$. The ITT $400-$ mW series ZF 4.7 is quite suitable. Again, for 2 Q W output into 8Ω, the resistors R_{1} and R_{2} must be reduced to 0.47Ω.

REFERENCES

1. J. L. Linsley Hood, "Simple Class-A Amplifier", Wireless World, April 1969.
2. "Letters to the Editor", Wireless World, October 1969.
3. A. R. Bailey, "Output Transistor Protection in A.F. Amplifiers", Wireless World, June 1968.

Electronic Building Bricks

2. Representing information by electrical variables

by James Franklin

Last month we defined electronics broadly as the use of electrons to represent and process information for human purposes. This is a rather grand phrase, and, like all generalizations, needs a down-to earth example to give it real meaning. Let us, then, look at a simple electronic system.

Fig. 1 shows a system for counting objects moving along a conveyer in a factory. A lamp and lens produce a beam of light which passes across the conveyer belt at such a level that the moving objects interrupt the beam. The light falls on a photo-electric cell, which converts the light energy into electrical energy. The electrical energy from the cell is then conveyed to an electronic counter. This device counts events, not, as the name might suggest, numbers of electrons. In this case the events counted are the interruptions of the light beam, as detected by the photo-electric cell.

The graphs in Fig. 2 show in more detail how it works. At (a) is a graph of the light energy reaching the photo-electric cell over a period of time. It will be seen that this energy falls to a very low value, practically zero, when the beam is interrupted by an object (the small residual energy being the result of room light "leaking" into the cell). At (b) is a time graph of the electrical energy generated by the cell as a result of the incident light energy. One can see that it forms a sequence of falls of electrical energy, corresponding to the interruptions of the light beam. These events can be distinguished more clearly if we invert the vertical axis of the graph as at (c).

Fig. 1. A simple electronic system for counting objects moving on a conveyor

Fig. 2. How the required information in Fig. I is represented by an electrical variable: (a) light energy reaching the photo-electric cell; (b) resultant electrical energy; (c) the graph (b) inverted to show falls of energy as pulses.

Thus we enid up with a sequence of pulses in the flow of electrical energy, represerting the interruptions of the light beam and hence the passage of objects through the light beam. The electronic counter counts these pulses-the "events"-and thereby counts the number of objects travelling along the conveyer.

In this simple system the essential information is the number of objects that pass the detection station on the conveyor. Within the electronic system this -information is represented by the variation of electrical energy shown in Fig. 2 (c)-a pulse (energy fall) for each object. This graph is one example of an electrical signal. In this form the electrical signal is similar to those produced by earlier methods-smoke, arm positions, flags, flashes of light etc.; it is a sequence of events representing and conveying information.
We have carefully said "representing and conveying" because a signal does both. We may, however, merely wish to represent information, without simultaneously conveying it, so that it may be sent later-this is called storage. The two functions are illustrated by analogy in Fig. 3. At (a) the quantity of material held in the container (which can be controlled by the inflow and outflow) may be used to
represent some other variable, say air pressure. This is static information, and the process of holding it, storage. At (b) material is moving along a pipe-this could be the inflow or outflow pipe in (a). Here we could use the rate of flow of the material to represent the variable-and again this could be air pressure. So in both cases we have a mechanical variable made proportional to some other variable, but in one case the information is static (stored) while in the other case it is dynamic (conveyed).

In electronic systems we can .use electrons as the "material" in Fig. 3-for example, quantity of electrons for static information, flow rate of electrons for conveying information. There are, in practice, several electrical variables which may be utilized-voltage, power, electric and magnetic fields, to name a few without explaining them here.

Another type of electrical signal is shown in Fig. 4. Although this time graph is a continuous variation of electrical energy in contrast to the pulses in Fig. 2 (c), it can still be regarded as a sequence of events because it consists of successive values of energy (though these successive values are infinitely close together). The electrical energy values here are actually proportional to sound energy values detected by a microphone, and they result from sound waves produced by a violin being bowed on its E string.

Fig. 3. Analogues illustrating how a material may be used to represent (a) static information and (b) dynamic information.

Fig. 4. Graph of electrical energy varying with time-a signal of a different type from that in Fig. 2 (c).
within the one encapsulation. In addition MFD will manufacture capacitors in various non-standard packages or with special characteristics.

MFD Capacitors Ltd have announced an agreement with Emihus Microcomponents Ltd under which Emihus will market the capacitors in the U.K.

Microelectronics industry survey

The Ministry of Technology and the National Research Development Corporation have announced that they are to sponsor a comprehensive study of the microelectronics industry in Britain. It will cover the period 1970 to 1980 . The survey will cover forecasts of markets, product costs and technological trends in microcircuits and will include a less detailed survey of the electronics industry as a whole and the ever-expanding list of other industries now making use of microelectronics.

The survey will be conducted by Mackintosh Component Consultants Ltd based in Glenrothes, Scotland, and will take about fourteen months to prepare.

New transmitter for Criggion

Early in the 1939-45 war it was decided to build a v.l.f. transmitting station that could take over from Rugby (GBR) should this station be put out of action. The shortage of steel for the aerial masts and the need for large amounts of cooling water led to the choice of a site at Criggion near the river Severn. The huge aerial was supported by three $600-\mathrm{ft}$ towers (which had been built for a new radio station in Ceylon) and an anchorage on the top of Breidden Hill which rises steeply above the river Severn.

Hardly had the new transmitting station been completed when, in 1943, the Rugby station was severely damaged by fire. Criggion took over for the nine months it took to rebuild the Rugby station. Following this Criggion, with the call-sign GBZ, operated for 25 years.

In July 1969 a new, larger, aerial was completed on the Criggion site. Three new $700-\mathrm{ft}$ masts were constructed, in addition to the original masts and the hill anchorage. The conductors used for the aerial represented a departure from normal systems for the Post Office in that steel cored, aluminium sheathed cable was employed offering a number of advantages; light weight, strength, high current carrying capacity, freedom from icing and corona, and high capacity to ground. In all fourteen miles of aerial cable, weighing about 40 tons, was used for the aerial.

The new aerial could handle four times the radiated power of the old one and now a new transmitter has been built to provide it. The new transmitter, built by Redifon, was officially inaugurated a few weeks ago. It consists of synthesizer type
frequency generating equipment driving three amplifiers.

Each of the amplifiers comprises a $5-\mathrm{kW}$ wideband audio frequency amplifier, coupled to a single-stage tuned amplifier having an output of 150 kW . Each or all of these three tuned amplifiers can be connected via heavy-duty r.f. switches to the common tuned tank and aerial circuit, and thence to the aerial system. The power fed to the aerial can, therefore, range from 150 kW to 450 kW , according to the number of amplifiers in use. The tuned output and aerial circuits are of orthodox design employing tuning capacitors of the type first used in the GBR transmitter forty five years ago. The anode tuning inductors are of the variometer type originally developed for a new transmitter built for the Rugby station. The aerial tuning inductor is a modified design of the one previously used at Criggion. The combination of the new aerial and amplifiers has raised the radiated power from approximately 7.5 kW to 30 kW at 19.6 kHz , at which frequency GBZ normally operates.

Skynet-2

Hawker Siddeley Dynamics Lid and GEC-AEI (Electronics) Lid have each been given a contract by the Ministry of Technology to develop, in co-operation with American industry, proposals for higher powered Skynet communications satellites for defence purposes. A decision on which firm is to be the eventual prime contractor for two such satellites will be taken later this year. The craft are to be ready for launching in 1973 to replace the first two Skynet satellites which were built in America. The first of these was successfully launched last November. The replacement satellites will be more powerful and will be able to operate with small transportable ground stations.

U.K. exhibit at Mesucora

Under the sponsorship of the Electronic Engineering Association and with the support of the Board of Trade, under its joint venture scheme, a number of U.K. companies exhibited at the Mesucora exhibition held at the Palais de la Defense, Paris, from May 27th to June 4th. The companies who took advantage of the joint scheme are: Automatic Systems Laboratories, Ceta Electronics, Electronic Associates, the EMI group of companies (comprising EMI Systems and Weapons Division, S.E. Laboratories, Electron Tube \& Microelectronics Division, EMI Tape and Meterflow), Ether, Eurotherm, J. J. Lloyd Instruments, Marconi Instruments, Metals Research, and the Ministry of Technology (comprising British Calibration Service, Scientific Instrument Research Association and Summerfield Research Station).

B.B.C. communications, reject/re-file position with the visual display unit in the centre

Computer controlled communications

The B.B.C's teleprinter network, which handles the transmission of news items, administrative messages and scripts to and from 60 outstations in London and the regions, has recently been equipped with an automatic switching system incorporating an STC6350 Automatic Data Exchange (ADX). The previous manual system handled more than 700,000 messages a year and was incapable of expansion. In this, incoming messages were perforated on paper tape and transferred to transmitting machines which were connected to the addressee outstations by an operator on a switchboard.
If expansion were possible it still would not have relieved the congestion which occurred at peak periods. Now installed in the Communications Centre at Broadcasting House, the store and forward 6350 ADX provides automatic routing and re-transmitting of messages with a transit time of only milli-seconds. This ensures that the circuits are always operating at their maximum carrying capacity. Stations originating a call do not have to wait until the called station is free before passing their message. Incoming messages are stored until destination lines become available. Designed around a Digital Equipment Corporation PDP-9 processor, the ADX system has a planned capacity for 125 inputs and 125 outputs. The processor is equipped with a fast ferrite core with a capacity of $\mathbf{1 6 , 3 8 4}$ 18 -bit words having a cycle time of $1 \mu \mathrm{~s}$. This is backed up by a Burroughs fixed head magnetic disc store with a capacity of 870,00018 -bit words and an average direct access time of 17 ms . Control facilities refer abnormal conditions to one of five supervisory units for action and the system programmes ensure an extremely fast return to service in the event of failure, with full protection for all traffic. One of the supervisory units is a visual display where messages rejected by the ADX because of incorrect routing information in the header can be inspected. The unit has a keyboard
through which the operator may correct the header information and automatically release the message for transmission.

British exhibit at WESCON

The Electronic Engineering Association is sponsoring participation by 29 U.K. electronics companies at the 1970 Western Electronics Show and Convention (WESCON) which this year takes place in Los Angeles from 25th to 28th August. The British companies taking part are: Air Control Installations (Chard), AEI Semiconductors, Birch-Stolec, Bowthorpe-Hellermann, Ceta Electronics, Cossor Electronics, Culton Instruments, Electrolube, Elite Engineering, Ferranti, FieldTech, GEC-Elliot Process Instruments, Green Electronic \& Communication Equipment, Industrial Control Systems, Jermyn Industries, Marconi Instruments, the M-O Valve Company, Mullard, Prosser Scientific Instruments, Racal Instruments, Rank Precision Industries, Research Instruments, Seer TV Surveys, SDC Electronics (Sales), Static Devices, Techne (Cambridge), Vero Electronics, Vision Engineering, and the Wayne Kerr Company.

Synchronous weather satellite

In response to a request from the American National Aeronautics and Space Administration Hughes Aircraft Company have submitted a design for a synchronous meteorological satellite capable of non-stop operation. The satellite, if accepted by N.A.S.A., will be cylindrical in shape measuring five-feet high by five feet in diameter. All-up weight will be around 450 kg .

The satellite after launch, using a Delta booster with six auxiliary strap-on rocket motors, would be under the control of the Environmental Science Services Administration (ESSA). From the height of 22,300 miles the satellite would take cloud cover

(Above) An 8,000-conductor telephone cable being manufactured at the works of British Insulated Callender's Cables and (left) the finished product. The cable employs "Hyperden" insulation, developed by B.I.C.C., made from cellular polythene $90 \mu \mathrm{~m}$ thick giving an increase of 25-pairs-per-cable of a given diameter over earlier methods. The P.O. have successfully laid a length of the cable at Irlam, Lancs.
pictures at the rate of one every twenty minutes, receive information from up to 10,000 sensors (located on ocean buoys, in rivers, on merchant vessels and automatic weather stations), examine solar radiation for high-energy particles and solar X-rays and also measure the earth's magnetic field.

The information received by these means, in addition to photographs, would include temperature, humidity, pressure and water level measurements as well as data on the rate of flow of rivers and streams. All this information would then be transmitted to a ground station for analysis and distribution.

Hughes say that the satellite could be ready for launch eighteen months after the go-ahead was received from N.A.S.A.

The soldered joint

The International Tin Research Council mention, in their annual report for 1969 , work being carried out in response to enquiries received from the electronics industry to assess the integrity of the soldered joint in the light of the demands made upon solder by modern automatic methods of soldering. It would appear that the quality of the solder, which must be very good for use in solder baths, deteriorates during mass soldering because of impurities which dissolve in the bath from the work.

The individual effects of small amounts of zinc, aluminium and phosphorus on the wetting behaviour of a $60 / 40 \mathrm{tin} / \mathrm{lead}$ solder have been studied in some detail. Using a plain resin soldering flux it was found that about 0.005% zinc in the solder began to cause the formation of a visible oxide film. This film could well result in
the solder bridging the gaps between adjacent conductors on printed circuit boards, thus short-circuiting the electrical path. At a zinc content of about 0.01%, dewetting of the solder from a copper surface was manifest and at higher levels still the ability of the solder to spread on the copper was noticeably reduced.

Similar effects were observed when aluminium additions were made to a $60 / 40$ tin/lead solder, but here visible surface oxidation began to occur at a very much lower level (0.0005 to 0.001% aluminium). The deleterious effects of
traces of aluminium appear, however, to be eliminated by the presence of small amounts of antimony in the solder bath. Although phosphorus is less likely to be picked up in solder, it was found that, at phosphorus contents exceeding about 0.01%, the solidified solder deposit had a rough, "gritty" appearance and dewetting began to be apparent.

Naval battle simulator

A complex military tactical trainer which employs more than $£ 0.5 \mathrm{M}$ worth of electronic data display equipment supplied by Marconi Radar Systems has been brought into service at the naval training establishment H.M.S. Dryad at Southwick. The trainer was designed by Ferranti working in co-operation with the Admiralty Surface Weapons Establishment and uses three Ferranti computers which drive more than one-hundred A.E.I. type 1400 displays of various sizes. During the course of a particular battle, at any one time, there may be upwards of 200,000 characters displayed on the various screens. The equipment will simulate ships, submarines, aircraft and other weapons, and it will realistically represent radar, sonar, data handling and communications equipments.

Students are accommodated in cubicles each containing at least two plan displays and a separate tabular display. Each cubicle represents a vehicle in the battle and responds realistically to the commands given by the students. Instrùctors have control of a large number of additional vehicles with which they can inject new circumstances.

A complete photographic record of each exercise is taken for later analysis.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Low-cost horn

I am glad "Toneburst" has brought into the open in his article in the May issue of W.W. the apparent disparity between real and theoretical cut-off frequencies of corner horns. When, some years ago, a home-built horn of mine appeared to cheat by reproducing tones lower than expected, the thoughts indicated below seemed to reconcile fact with theory reasonably well. I offer them, without professional authority, in the hope that confirmation or rejection by those more knowledgeable will help to remedy the absence of any study of the function of the room as a component of the total horn system.

A horn cannot emit frequencies as low as 30 Hz unless it has a mouth of about 38 ft circumference or 10 ft sides if square. If a corner horn reproduces 30 Hz then there must exist a mouth very much larger than that which we see, well forward into the room and connected by some kind of flare extension. With a loudspeaker firing diagonally into a square room this mouth will be the rectangle formed on the other diagonal, with dimensions of room diagonal and room height. (In a rectangular room the effective diagonals would be of the square of the shortest wall.) The extension flare formed by floor, walls and ceiling is not ideal, particularly as the ceiling presents a large and abrupt step in one "contour".
This step is mentioned in a later paragraph. For now, note that the listener is either in this horn or in a position comparable, in terms of wavelength, with having his ear within a few inches of the mouth of a mid-frequency horn, where the losses and aberrations attributed to mouth and flare are less evident than at more ordinary distances.

Whereas sound from the mouth of an auditorium (e.g., cinema) bass horn is distributed widely, from the effective mouth of a corner horn it is confined, hence there should be some apparent gain which would off-set the shortcomings of the extension flare to some extent. The mouth radiates into an enclosed volume of air (half the room volume for a square room) that is much smaller, and therefore stiffer, than that encountered in any ordinaryauditorium. Presented to the cone by horn transformer action this stiffness could be quite considerable and the necessity of some balancing

A, plane of effective mouth; B, desirable, but unattainable lateral expansion (shown for the right hand only); and C, collision plane, virtual partition limiting lateral expansion of both wavefronts.
stiffness behind the cone would help to explain the dramatic improvement in bass response noted by "Toneburst" when he fitted a rear pressure chamber. Cone excursion, and therefore distortion, could be expected to be less than in auditorium horns. Is this, I wonder, another reason why the Klipsch horn is so widely acclaimed?
The rectangular wavefronts emerging from the so-called mouths formed between horn cabinet and corner walls are separated, initially, by the width of the cabinet. Lateral expansion brings the inner vertical edges into collision at a vertical plane on the centre-line shown in the sketch. As the colliding edges have equal and opposing energy the collision plane is a virtual partition which prevents further lateral expansion. It forms, with the floor and walls, two flare sections that would limit expansion to something seriously short of the exponential flare-rate (indicated in the sketch) if vertical expansion was also inhibited. However, the top flare "panel" is the ceiling and the required expansion is accommodated.

It is, of course, exceeded, but the ceiling step now seems lossy only to the extent by which its capacity exceeds the volume needed to fulfil the flare rate. Even the remaining capacity may be taken up by the presence (in the horn!) of large furnishings, such as armchairs, at floor level. Whatever its effective volume may be the ceiling step seems comparable with
a leaky flare panel, but the leak is not into unlimited atmosphere. Even in open air an improvised conical megaphone of rolled, unjointed cardboard, or just a single supped hand-both very leaky hornsare capable of some useful gain.

Despite my admiration of "Toneburst's" experimental effort and design ability, I feel obliged to suggest alternative methods of construction. End-grain butt joints are notoriously weak even with the finest glues, the simple halving joint is far more reliable.

Concrete does not bond with wood; it merely clings, aided in the present case with nail inserts. Effectively we have heavy concrete panels nailed together via sticks. Why, incidentally, if three flare panels must be concrete, should the fourth be wood?
I would use "multi-ply" or blockboard again on the grounds that what's good enough for Klipsch is good enough for me. The panels forming flares, pressure chamber and loudspeaker mounting constitute an array of stiffening webs that impart great rigidity and divide the large panels into smaller areas virtually incapable of flexing, provided a good resin or casein glue is used, with fillets to augment the glue areas.
These observations in no way detract from my admiration of the bold design and experimental effort, against the weight of existing theory, that has provided enthusiasts with a simplified small horn of good performance. My other comments are intended to arouse some responses that may help to explain why it works so well. W. Groome,

Halesowen,
Worcs.

The designer replies:-

Mr. Groome's letter is very interesting indeed. In the bass horn I described, the openings in the sides of the rectangular enclosure together provide a cross-sectional area of 260 sq in (130 sq in on each side). Simply placing the enclosure in a corner yields the remarkable results. The important point to note here is that the rate of expansion of the horn outside the enclosure (i.e., the flaring rate made in conjunction with the walls) is too rapid to be accommodated by horn theory for the results attained. Even for a $40-\mathrm{Hz}$ cut-off the crosssectional area should double in about 16 in . An interesting question: when is a horn not a horn? Mr. West (in the June issue) suggests that the air chamber behind the cone turns the enclosure into an infinite baffe type below 100 Hz in my design. Yet it is a characteristic of the Klipsch horn that the efficiency is well maintained down to about 40 Hz .
Where do we go from here? Perhaps we ought to abandon horn theory as such and get some experimental results on a different track. There is a need for a mediumefficiency loudspeaker that will give cornerhorn quality down to at least 20 Hz -and that is a good design aim for anyone. The delay-line bass speaker (at presentdesignated "transmission line" following Bailey's article ${ }^{1}$) is rather a non-starter because it offers synthetic bass. Synthetic bass? Synthetic because energy from the rear of the
bass speaker cone is delayed for half a cycle before it emerges to augment the signal from the front of the cone. The signal is thus a blend of the past and the present-but very good on sine waves.
Turning again to Mr. Groome's letter I quite agree with his remark about halving joints - that they are much more reliable than end-grain butt joints-but I have to report no breakages myself.
The use of concrete for the large panel areas and the sides gripping the speakermounting board, is to ensure rigidity and thus prevent even the suspicion of hangover. You will certainly get "horn quality" from a well-braced plywood structure but I believe that concrete gives audibly better results, even for the treble horn.

"TONEBURST"

A. R. Bailey, "A Non-resonant Loudspeaker Enclosure Design", Wireless World. October 1965.

Further experience with C-D ignition

I trust that the following practical details of further experience with Mr. Marston's C-D ignition system (January 1970) since my letter in your March issue will be of interest.

Currently, I have the system fitted to two 6 -cylinder cars, one having been recently transferred from a 4-cylinder model. Neither of these cars is in the high-revving class (very few 6 -cylinder engines are) and I would say that the Repanco TT5la transformer that I used is quite capable of handling the power required under ordinary road-running conditions. Therefore, for anyone who wishes to build the system without having to reconstruct a transformer, I would unhesitatingly recommend the TT51a for ignition systems up to 6 -cylinder capacity. Because of its reduced output, compared with that of Mr. Marston's "bespoke" transformer, I would also suggest that R_{6} be dispensed with, also the zener regulating network. Neither of my two systems has these items and there have been no component failures to date. The only other change that I have made to the author's circuit is to make $R_{1}=100 \mathrm{ohms}$ instead of 50 . The resulting c.b. points current is adequate for keeping the points free of oxide. Good sparking is obtained right down to 5 V input from the battery.

The protective resistor in the base of Tr_{3} was added to both systems immediately Mr. Marston suggested its inclusion (March letter). In consequence this probably forestalled premature failure of this transistor, as occurred with Mr. Burn's unit.

Needless to say, I am very pleased with the continuing excellent performance and reliability from the C-D system. It performed extremely well during most of the winter period and its cold-starting capability (notwithstanding the reduced h.t. from the TT51a) is outstanding. In this country, it is nowadays not possible for one to explore the undoubted high-performance potential on an
ordinary road-going car (not legally, at any rate) but I have no doubt that for all practical purposes, this system is a very worthwhile addition to any passenger car. Constancy of ignition tune over very long periods is not the least attractive of its many advantages, to say nothing of the improvement in battery life that ought to follow from rapid cold-weather starting.

Perhaps some enterprising transformer manufacturer could be persuaded to offer a commercial version of Mr. Marston's re-wound transformer at a reasonable price.

Mr. Bolton's C-D ignition unit.
The accompanying photograph shows the simple construction of the two C-D ignition systems, on the lid of a lightweight alloy box. The small heat-sinks on the left would appear to refute the suggestion of Mr. J. F. Henderson (March "Letters") that "the power transistors will suffer from excessive heat-dissipation". The only components that run very hot are the bias resistors for the inverter, and R_{b}, as is to be expected.

D. E. Bolton, Seaford,

Sussex.

The author replies

Mr. Bolton's letter makes very pleasant reading. The only worth-while comment I have to make concerns his elimination of the zener regulating network in the converter circuitry. If these diodes are removed, it is possible that inverter overshoot will cause C_{1} to charge way above 400 volts when the ignition is on with the engine stationary; s.c.r. destruction may result. To check against this danger, use a high-impedance ($20,000 \Omega /$ volt or greater) meter to measure the voltage across the s.c.r. under the above condition; if the voltage greatly exceeds 400 , reduce the value of R_{5} until the potential is correct: R_{5} readily absorbs the surplus overshoot energy that is released when the zener diodes are removed.

Readers may be interested in a progress report on my own C-D unit. This unit has been in constant use for some eighteen months in a 1959 Hillman Minx. It has consistently given very easy starting, even under the severest winter conditions. Acceleration is outstandingly good, and high speed performance is definitely improved. Until recently the car was used
twice each day on a thirty-mile journey, and topped $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. with ease each time.

The most impressive feature of the C-D system, however, is the way in which it improves the life of spark plugs and contact-breaker points, and eliminates the need to adjust them with any precision. My old Minx was exchanged for a 1962 model a few days ago. It had covered a total of 22,000 miles with the C-D system installed, and had not had a single adjustment made to either its spark plugs or c.b. points in all that distance. Before I finally got rid of it, I checked its plug and c.b. gaps. They were 0.060 in and 0.008 in respectively; their correct values should have been 0.025 in and 0.015 in respectively! The vehicle was still running perfectly.

Gadget-minded car owners may like to know that the C-D article is to be included in a book titled " 20 Solid-State Projects for Car and Garage" to be published by Butterworths in December.

R. M. Marston.

As several of your readers have been complaining of misfiring with the capacitor-discharge ignition system, may I make a point that I had the same trouble whilst experimenting about two years ago with a 600 -volt system? I overcame the problem by adjusting the ignition timing as I found that C-D gives a much faster spark.
M. A. Spence,

London S.W. 18.

Symmetry in class B

Far be it from me to cross swords with such a personage as P. J. Baxandall, but I was reading his two-page letter on "Symmetry in Class B" (Sept. 1969) which previously I had only skimmed, when I came across the sentence: "now it is of no fundamental importance which point in a circuit is taken as earth . ..". This is, of course, true, but he then proceeds to 'demonstrate' that the output impedance of his driver transistor (Tr_{1} in Fig. 1, a simplified version of his circuit) provides shunt feedback! The fallacy is obvious, since one can discard the 'ideal transistor' and consider a signal current flowing into (or out of) point.A-

Fig. 1.

Fig. 2.
the resistor representing the transistor output impedance is simply an additional load on the signal source, and not a feedback element-it is, as he says, non-linear, but the effect is not nearly as bad as he suggests.

Mr. Baxandall's error has arisen because when he earthed point B to simplify the analysis he omitted to 'unearth' his signal source, which meant that he had to disconnect it from the negative line, thus producing a circuit like my Fig. 2, which is not now the same as Fig. 1. Since the signal is applied across B and C instead of C and D. This could be the reason for Mr. Baxandall's circuit requiring extra roll-off components, because now the signal source provides shunt feedback through its own output impedance, which might very well be complex.

I think Mr. Baxandall must at some point have lost sight of the wood for all the trees around, since it is impossible to produce shunt feedback with one resistor earthed at one end, but then, even Homer nods occasionally!
A. H. King,

Biggleswade,
Beds.

Dynamic range versus ambient noise

Although my article in the April issue (p. 189) was obviously intended and received as a leg pull, nevertheless, as an electronics engineer, self respect demanded that the circuit should indeed work-and work it does! If one deletes $\operatorname{Trs}_{10-17}$ and if one makes $\operatorname{Tr}_{\mathrm{g}}$ and $T_{r}, 2 \mathrm{~N} 3055 \mathrm{~s}$ and $\operatorname{Trs}_{5,6,7} 2 \mathrm{~N} 1711 \mathrm{~s}$ with a 60 -volt h.t. line, this circuit will deliver 50 watts into 8 ohms at around the 0.1% t.h.d. mark: other circuit details and voltages being amended as necessary, of course. I have, indeed a lash-up of just such an amplifier, and I have made a pair of $15-\mathrm{W}$, 15 -ohm w.w. resistors, in parallel, glow dull red hot on a sinewave input.
G. I. O'VEERING.

Self-starting with ring-of-two

In his article "Stabilized Power Supply", April, 1970, Mr. A. J. Ewins discusses the problem of self-starting with the ring-of-two reference circuit. It may be of interest to users of this and related circuits to note a simple method ${ }^{\prime}$ of ensuring selfstarting with no loss of regulation against
supply variations. Recognizing the essentially bi-stable nature of the circuit, it is clear that the undesired (non-conducting) state must be suppressed. Thus a component should be added that will not allow the p.d. across either or both of the reference diodes to be zero.

A junction field-effect transistor is included as shown in the diagram. Assume no initial current in the reference circuit. This corresponds to zero gate-source p.d. for the f.e.t. which conducts and drives the reference diode and hence the remainder of the circuit into its desired (conducting) state. If the f.e.t. is not to affect the performance of the reference circuit it must

be cut-off when the circuit is operating normally. As a rough guide the limits of pinch-off voltage that provide self-starting without degrading regulation are given by:$V_{\text {ref }}>V_{p}>V_{b e}$ Fortunately with $V_{\text {ref }}$ typically $\sim 6 \mathrm{~V}$ and $V_{p} \sim 0.6 \mathrm{~V}$ the permissible values of V_{p} correspond to those for commerically available general purpose f.e.ts.
P. Williams,

Paisley College of Technology

1. "Self-starting of voltage Reference Circuits", Proc. I.E.E.E., Nov. 1969, p. 2078.

One-transistor voltmeter

In "Letters to the Editor"(March issue)F.P. Mason describes a one-transistor voltmeter that he invented and patented.

This uses the principle of a meter with rectifiers in a feedback path. It is not clear whether he realized (it does not affect the patent) that this principle was not new.

The writer used it fort wo- and three-valve meters in 1954 and does not claim to have invented it. (With feedback to the first cathode the input impedance can be kept high.)

In an article in the December 1969 issue G. W. Short gives a detailed account of how to design this type of one-transistor meter.

Unfortunately he misses out two important points, and appears to make a minor error.

Assuming a sinusoidal input voltage, the meter current will have a rectified sine waveform.

Let I_{m} be the peak value of this.
For 5 times peak current $5 I_{m} r_{m}+2 V_{f}=$ $V_{C B}$ surely, not $V_{C E}$ as in the article, where subtraction is done to find $V_{C B}$. This affects four equations.

Point One. The meter deflection is due to a current I_{d}, say, which is the average of the meter current. $I_{m}=(\pi / 2) I_{d}$
Point Two. Ohm's Law is used to find the
value of R_{M} the input resistor. As $V_{\text {in }}$ (f.s.d.) is an r.m.s. value so must be the meter current, say $I_{r}=I_{m} / \sqrt{2}=(\pi / 2 \sqrt{2}) I_{d}=$ $1.111 I_{d}$
1.111 is the form factor and reduces R_{M} by 10%.

The peaks, for which Mr. Short makes allowance, are averaged in the meter reading.

The writer had designed a simple companion meter to measure the highest and lowest peak levels. This meter will also measure the two levels in square waveforms.
D. L. Clay,

Coventry,
Warwicks.

G. W. Short replies:

The design formula for $V_{C E}$ is intended to yield a practical value rather than state an absolute truth. While the value of the alternating base-emitter voltage should strictly be added it is only a few tens of millivolts and so is not worth bothering about. For similar reasons the design formula ignores the effect of the collector saturation voltage. Anyone who wants to play safe should add IV to the calculated value of $V_{C E}$:
The design procedure did not in fact specify that $V_{\text {in }}$ is an r.m.s. value. It would have been clearer to have done so, and adjusted R_{M} by a factor of 0.9 . Step (5) should therefore be altered to read: $R_{M}=0.9 \mathrm{~V}_{\text {in rms }} I_{m}$

Theoretical and measured response

1 read with interest Mr. P. M. Quilter's comments in the April issue on the tone control circuit of Dr. A. R. Bailey's preamplifier. I should like to add some comments of my own concerning the feedback attenuator R_{1} and R_{2}.

A small ripple voltage v is present at the +20 V supply A. To a first approximation the response of the system to this ripple voltage is that of an operational amplifier with input resistance R_{2} and feedback resistance \boldsymbol{R}_{1}. It follows that the

ripple voltage at point C is $-\frac{R_{1}}{R_{2}} v$ and that the point B is a virtual earth with respect to this signal. Thus if the output is taken from B instead of C a dramatic reduction in background noise results, at the expense of a 50% reduction in gain. A similar effect would be given (with increased tone control range as pointed out by Mr. Quilter) by taking the feedback from point C instead of B.
G. J. Bignold,

Worcester Park,
Surrey.

Sinusoidal Oscillator for High Temperatures

by P. Williams*

The Wien bridge oscillator circuit has a reputation for providing a sine wave free from harmonics, hum and noise. Conventional circuit design uses a high-gain amplifier with the frequency determining $C R$ elements in the positive feedback 'half-bridge' arm and a thermistor or other temperature sensitive resistor element in the negative feedback arm of the bridge ${ }^{1}$. Such an arrangement automatically maintains the oscillator output constant by adjusting the negative feedback. This technique, which does not use a non-linear circuit element (the thermistor resistance changes only slowly, being constant during one cycle of oscillation), has been shown ${ }^{2}$ greatly to improve the frequency stability.

Unfortunately the use of a temperature sensitive element in this way only maintains constant output amplitude independent of the ambient temperature if the element temperature is a good deal higher than ambient. Use of a thermistor is thus not usually practical above about $40^{\circ} \mathrm{C}$. In the course of some industrial instrumentation çircuit development the need arose for an oscillator to provide a constant amplitude

* University of Wales Institute of Science and Technology
sine output at temperatures up to $70^{\circ} \mathrm{C}$, with good frequency stability. The circuit shown was developed to meet this need. It provides a sine output of 1 V r.m.s.swinging symmetrically about the earth line. C_{1}, R_{1} and C_{2}, R_{2} are the frequency determining elements of a Wien half-bridge (values shown are for 5 kHz). They provide frequency selective positive feedback from the output of the amplifier system, comprising the 701 C integrated circuit and $T r_{2}$, to the non-inverting (positive) input terminal of the 701C. The junction field effect transistors Tr_{1} and Tr_{3} and resistors R_{9}, R_{10} constitute a resistive attenuator circuit half-bridge providing negative feedback to the inverting input terminal of the 701 C amplifier. The drain-source resistance of $T r_{1}$ is increased, to the value which provides constant amplitude sinusoidal output, by the negative bias on its gate, derived from the rectified output of Tr_{2}. The potentiometer R_{11} enables the resistance of Tr_{3} to be set to a suitable value for control of Tr_{1}. The fixed resistors R_{9} and R_{10} ensure linear operation by reducing the amplitude of the sine input to $T r_{1}$ and $T r_{3}$ to a value well below the pinch off voltage of these transistors. Although the drain-source resistance

Temperature stable oscillator circuit employing a bipolar transistor, two f.e.ts and an i.c.

Operating frequency	Value of $\mathrm{C}_{1}, \mathrm{C}_{2}$	Value of $\mathbf{R}_{1}, \mathbf{R}_{2}$
20 Hz	$0.068 \mu \mathrm{~F}$ polyester (with $0.022 \mu \mathrm{~F}$ shunting gate of Tr_{f} to earth)	$120 \mathrm{k} \Omega \pm 5 \%$
500 Hz	$0.0027 \mu \mathrm{~F}$ silver mica	$120 \mathrm{k} \Omega$
5 kHz	$0.0027 \mu \mathrm{~F}$ silver mica	$12 \mathrm{k} \Omega$
25 kHz	500pF silver mica	$12 \mathrm{k} \Omega$
70 kHz	120pF silver mica	$\begin{aligned} & 12 \mathrm{k} \Omega \\ & \text { (all 'Histab') } \end{aligned}$

Table of variable components.
of both $T r_{1}$ and $T r_{3}$ falls with temperature, the ratio of the two drain-source resistances (and hence the feedback factor) remains approximately constant. In practice a change in temperature from 25° to $70^{\circ} \mathrm{C}$ produced amplitude changes of about 2% and a frequency change of less than 2%. Operation at frequencies over the range 20 Hz to 70 kHz has been achieved by suitable choice of capacitors C_{1} and C_{2} and resistors R_{1} and R_{2} as shown in the table. At frequencies below 50 Hz a $0.02 \mu \mathrm{~F}$ capacitor was connected between the gate of $T r_{1}$ and the earth line to prevent "squegging"(modulated oscillations).

REFERENCES

1. Hickmann, D. E. D., "Wien Bridge Oscillators", Wireless World, Dec. 1959.
2. Bailey, A. R., Electronic Technology, vol. 37, p. 64.

Holograms on metal film

Very thin films of metal-bismuth, tellurium, aluminium or gold-deposited on a sheet of glass have been used by R.C.A. engineers in America as an alternative to photographic plates for storing holograms. The resolution obtained is about the same as using photographic methods-more than 1000 lines per mm-but the exposure time is reduced to between 5 and 20 nanoseconds. This means that the extremely stable platform, needed to support the subject during photography to prevent movement and subsequent hologram distortion, can be dispensed with due to the very short exposure time.

The light from a pulsed laser is split into two beams, one of these, the reference, is directed on to the metal film, the other reaches the metal film via the object of which the hologram is to be made. At those points where the two beams interfere constructively (add) the laser light is converted into heat which evaporates the metal film. Where the two beams interfere destructively (cancel out) nothing happens.

No further processing is required and the hologram can be viewed at once without moving the film in any way. This means that the hologram is perfectly positioned for the successive observations required in industrial non-destructive testing of materials and products.

For computer memory applications a glass plate coated in a metal film measuring only $400 \times 110 \mathrm{~mm}$ could store 300 million bits of information.

Thelight
 heavyeight champion wins on points

Solartron's light heavyweight champion, the CD1642, is a natural-born winner. Look at its advantages.
Fully transistorised portability, running off every power source you use, with an optional rechargeable battery attachment too. And you lose nothing in full-size lab. 'scope performance. It has $10 \mathrm{mV} / \mathrm{cm}$ sensitivity at 15 MHz , triggering to 25 MHz , dual trace, D.C.- 15 MHz , brilliantly crisp displays and exceptional focus right to the edges. And to top it off, we AGREE test every machine for a week in the toughest conditions to assure top performance.
So stop worrying about losing performance in the field. The CD1642 gets a load off your mind as well as your arm. Post the magazine's reply-paid card and we'll send you our data sheet of full details.

[^4]
the Pacemaker

 in optimum-reliability electronic components

In the continually-evolving technology of the electronics industry, Carr design and research keep pace with, and often ahead of, the everchanging demands for increasingly sophisticated components. But whilst designs may change from week to week, Carr quality and reliability remain constant, ensuring that complex highprecision specifications are met with absolute and consistent accuracy.

The connectors illustrated here are typical examples from our ranges. We have, of course, many other components of special interest to the computer and communications industries, with rapid, reliable deliveries in bulk quantities assured. Ask for data, or for a visit from one of our Technical Sales Staff. The application of his wide experience to your problems can help you towards easier, more advanced assembly techniques, with the collateral benefits of worthwhile savings on time and cosis

The Unijunction Transistor

A close look at its behaviour and a guide to its use

by O. Greiter

The design of electronic circuits is considered, if anyone actually turns his mind to this aspect, to be a calm, logical process. Sometimes, however, if you examine the matter calmly and logically, you get a feeling that whim and fashion play a very great part. Some circuits and some devices seem to be particularly sensitive to this favourite son approach. Oscillator circuits are the subject of unending debates. The unijunction transistor is a device which has, I think, been overlooked by many engineers who could use it to advantage. One indication is that, so far as anyone remembers, Wireless World has never published an article on unijunctions, and has shown very few circuits containing them. And not everyone can afford to read all the American journals.
It is not as though it were some newfangled device: it is not as though it were an expensive device. The pound in your pocket will still buy you a couple of unijunctions and a short ride on the underground. The first devices appeared in 1953, and the silicon version in 1956. Changes in manufacturing technique, and the normal time lags before the line began to run, suggest that as a cheap simple device the unijunction has been with us for just about a decade.
The essential function of a unijunction transistor is that it is a voltage sensing device. Used with a $C R$ circuit it becomes a timing circuit and also, because of its resetting behaviour, an oscillator. We shall see that the circuits are extraordinarily simple in form.
We must begin by exarmining the construction of the device itself and its characteristics. The structure shown in Fig. 1(a) is very convenient for those of us who want to understand the device. A small rod of n-type silicon has ohmic, that is nonrectifying, contacts applied to each end. Near the middle an aluminium wire is used to generate and connect a small p-type region. And that is all. At least that is all that really concerns us. Down at the plant they do not like fiddling about at the ends of long narrow rods and two more practical structures have been devised. These are shown as Figs. 1(b) and 1(c). They are known as the bar structure and the cube structure. The characteristics are slightly different, but we can hardly discuss this until we know what the terms we must use mean.

The structure of Fig. 1(a) looks exactly like the basic structure of the field effect transistor and the reader may wonder if new unijunction is but old f.e.t. writ large. In fact it is surprising how totally unlike each other the two devices are, at least when operated at their design biases. I confess to being too lazy to test whether one could persuade either device to operate in the mode appropriate to the other. There is some interest in this, however, as it suggests a way in which one might get very odd effects in a field effect transistor circuit with excessive input.

If we are to understand the unijunction transistor behaviour we must begin with an

(b)

(a)

(c)

Fig. I. (a) The early construction technique, with two ohmic connections to an
 junction. (b) The bar structure.
(c) The cube structure.

(b)

Fig. 2. Circuit and equivalent.
equivalent circuit. It is convenient to introduce at the same time the standard symbol. This is done in Fig. 2. The total resistance between $B 2$ and $B 1, R_{B B}=R_{B 1}+R_{B 2}$, is called the interbase resistance. As the two end contacts are ohmic constants, this is just the resistance of the rod of silicon, in the simplified structure. It is about 5-10 thousand ohms. Normally we operate unijunctions at about $10-20$ volts. so that the base current will be about 2 mA . It is useful to keep this figure in mind when looking at circuits with additional resistance in series with one or both base connections. At this stage the emitter is assumed to be left open.
The device is just a rod of resistive material, so the point P in Fig. 2(b) will be at a voltage of $\left(R_{B 1} / R_{B B}\right) V_{B B}$. This ratio, ($R_{B 1} / R_{B B}$), is settled by the geometry, the mechanical construction, and it is known as the stand-off ratio, denoted by the symbol. η. A typical value of η might be 0.6 , with a range which depends on how well the mechanical tolerances can be held. So far as we are concerned. the tolerances appear in a sorting operation and if you want a tight tolerance you pay for a hand-picked specimen
We may now apply the battery to the emitter terminal. So long as $V_{E}<\eta V_{B B}$ the diode shown in Fig. 2(b) will be reversebiased, and no emitter current will flow. No current is an abstraction here, because there will be a small leakage current, typically 2 microamps, which is not enough to disturb the voltage at P. This current can be significant in some circuits.
As we increase V_{E} the diode becomes forward biased and will pass current from V_{E} into the bar. This current consists of holes emitted into the silicon, and these holes drift from the emitter to base one. The presence of these holes causes the number of electrons in the lower half of the bar to increase. The conductivity of this part of the bar increases, so that $R_{B 1}$ becomes smaller. Typically, if $R_{B 1}$ is 4500 ohms with no emitter current it will fall to 2000 ohms for one milliamp of emitter current, and to 100 ohms for 20 mA . Let us assume we have $V_{B B}=20$ volts and $\eta=0.6$. When V_{E} goes to just over 12 volts, so that we get our $I_{E}=1 \mathrm{~mA}$, the value of $R_{B 1}$ drops to 2000 ohms, and as $R_{B 2}$ is 3000 ohms the voltage at P falls to 8 volts. Immediately I_{E} shoots up, making $R_{B 1}$ get even smaller and the forward bias on the
diode get even larger. If we were foolish enough to use this test circuit the current would rise until the transistor burnt out.
In all simplified pictures there are defects. By this account, even one hole passed from the emitter into the bar should start the proceedings. Of course this is not true. The current needed is, however, extremely small, and a rough value can be taken as one microamp. This current is called the peak point current, I_{p}.

Another simplication which can cause trouble is that although the holes injected at the emitter should all be drawn towards base one by the field produced by $V_{B B}$, this just does not happen in the practical structures. Some drift off into the $R_{B 2}$ region, hotly followed by their electrons. In consequence $R_{B 2}$ drops a little and the current $I_{B 2}$ increases by more than one would expect. It is necessary to bear this in mind if the overall circuit is one in which there may be excessive power dissipation at the peaks.

Once the triggering action has taken place the emitter-base one circuit is just that of a rather resistive diode. We need an overall device characteristic, or set of characteristics. The most important group is the static emitter characteristics, which are typified by the curve in Fig. 3. From this it can be seen how the current increases quite normally as the emitter voltage is increased from V_{0} to V_{p} : below V_{0} the diode leakage current is flowing out at the emitter, of course. When the peak point is reached, however, the current can increase without the voltage increasing, and we have a region of negative resistance down to the valley point. A rough guide figure for this point is that it corresponds to an emitter current of 4 mA at $V_{v}=2 \mathrm{~V}$. Of course it varies from type to type of unijunction, and depends to some extent on the overall working level, as defined by $V_{B B}$.
Beyond the valley point the characteristic shows the normal positive resistance of the emitter-base one diode. In drawing these typical characteristics one gives this a reasonable slope so that the valley point

Fig. 3. General static eminer wharacteristic.

Fig. 4. Circuit of relaxation oscillator.
shows up nicely. Peering closely at some real characteristics the resistance in this region looks as though it might be down as low as 10 ohms, or even lower. It is possible to get very high peak emitter currents: it is essential to make sure that you do not get destructive values of $I^{2} t$.

The commonest use of unijunction transistors is probably in relaxation oscillators. A complete circuit is shown in Fig. 4, and includes two resistors which are not vital to its operation. R_{1} has the advantage of limiting the emitter-base one current as well as providing a voltage pulse at $B 1$. We will discuss R_{2} later. What happens when we connect the battery to this circuit? On switch-on, the capacitor is not charged, so that V_{E} is zero. The odd milliamp flows from $B 2$ to $B 1$, establishing the bias in the diode of the equivalent circuit. C is charged steadily through R until the capacitor voltage reaches the value of V_{p} for the particular conditions. The triggering action now takes place, discharging C down to about 2 volts. If all is well, this is where we started, and away we go again. All is only well, however, if the value of R is suitable. Let us draw the characteristic in the form we adopt for other devices. This has been done in the S-shaped curve of Fig. 5. A load line corresponding to a resistance R joins the point $V=V_{B B}$ to $I=V_{B B} / R$. It intersects the device curve at the point P, where the resistance is negative. In drawing the S-curve the upper part has been flattened out to keep the scale of the drawing more convenient, for reasons which will become obvious.
A formal discussion must take into account the effect of the capacitor. When the supply is first connected the capacitor holds no charge, and thus V_{E} must he zero. The working point moves from B towards D as the capacitor is charged through R, and virtually no current flows in the unijunction emitter. At A, where the peak point current is flowing, we have a situation where V_{E} wishes to rise above V_{p}, but for very small time increments is held constant by the capacitor. The only point of the device characteristic at which we have $V_{E}=V_{p}+\delta$ is the point B. The circuit triggers and a relatively large current begins to flow. Most of this is supplied by the capacitor, and V_{E} decreases, with the device working point moving down from B towards C. Finite times may make the triggering follow the broken line to a point between B and C, but the general effect is the same. The slope of $B C$ is in practice that of a fairly small resistance, so that the capacitor discharges very quickly. At C we reach the valley point. Obviously V_{E} cannot increase rapidly, because the capacitor will see to that. The current I_{v} cannot be provided by the resistor alone. The only point on the device characteristic which is accessible is D : the device cuts off. And from D there is nowhere to go but A.
The emitter voltage is the sawtooth shown in Fig. 6(a). One current pulse is shown in some detail as Fig. 6(b). This is not the waveform which one observes, because the actual transitions are dominated either by the way the charge concentration builds up or by the circuit strays. The pulse looks,

Fig. 5. Trajectory of emitter conditions in relaxation oscillator.

Fig. 6. The emitrer voluage (a) as a function of time and the current (b) an a greatly expanded scale.
in practice, pulse-shaped. We usually look at the current pulse across the resistance R_{1} in the circuit of Fig. 4. It is a nice clean pulse, conveniently referred to the negative line. We can, however, put a small value of resistance in series with the capacitance, although we may then have problems with the pedestal produced by the capacitor charging current.
A reasonable approximation to the oscillation frequency is obtained by using the time taken for the path OA and neglecting the other terms. This gives us

$$
t=C R \log [1 /(1-\eta)]
$$

If we are lucky enough to get a unit with an η of 0.63 , this reduces simply to

$$
t=C R, \quad f=1 / C R
$$

When we use the cheaper, wide-tolerance, unijunction we can assume this as a likely centre value, giving us a very quick way of choosing the typical size of component we shall need. For most circuits it is safe to say that R will lie between 10^{4} and 10^{6} ohms. Typical values of C range from $0.01 \mu \mathrm{~F}$ to $1 \cdot 0 \mu \mathrm{~F}$, offering a frequency range of 1 Hz to $10,000 \mathrm{~Hz}$.
This has been, of course, a rather oversimplified picture, but for many applications it is actually sufficient. The circuit of Fig. 4 , without R_{1} and R_{2}, provides an oscillator which is stable for small changes of voltage and temperature to better than 1% It is easily the cheapest way of getting this sort of result provided that the waveform is acceptable. Improved performance is, however, usually wasted sooner or later, and here the two resistors enter the circuit. We must consider them separately, beginning with the dull one, R_{1}.
The main effect of the resistor added externally in the base-one lead is to change
the shape and position of the valley. It is not precisely correct to say that we simply add a term $I_{E} R_{1}$ to the voltage V_{E} in the curve of Fig. 3. The current which flows out of $B 1$ is bigger than I_{E}, because of the fall in the value of $R_{B B}$. Qualitatively, however, this describes what happens. The curve beyond the valley point is rotated upwards, moving the valley point up and to the left. Practical circuits use smali values of R_{1}, which do not have very much effect. Typical values are between 15 ohms and 47 ohms and they control the amount you can get out of the circuit much more than they control its oscillation characteristic.
The base-two resistor, R_{2}, is much more interesting. Looking back at Fig. 2(b) we see that in strict truth the emitter voltage at which the unijunction will trigger is given by

$$
V_{E}=\eta V_{B B}+V_{D}
$$

where V_{D} is the drop across the diode junction produced by the flow of the peak point current. This voltage, about half-avolt, is naturally much lower for the highsensitivity devices than it is for those which have a high value of peak point currents. And the peak point current, from a handy list of characteristics, ranges from 2 microamps to 25 microamps, according to one type of unijunction. Regarded purely as a diode we might expect that the voltage $V_{\mathbf{D}}$ would change 2 mV per ${ }^{\circ} \mathrm{C}$. For a typical circuit this would correspond to about $2 / 10^{4}$ of the voltage excursion, giving a frequency shift of $1 / 10^{3}$ for a $5^{\circ} \mathrm{C}$ change of temperature. This stability figure is much better than we actually obtain, so other effects must be at work. One of these, especially for the cube structure, is the temperature variation of η. For the bar structure this is said to be negligible, and V_{D} is given the blame. The reader may feel, as I did, that this just does not make sense. In fact, although the resistance $R_{B B}$ does not appear in the expression we have written for V_{E}, it is the real thing in the wood-pile (and sucks to the Race Relations Board). $R_{B B}$ creeps in because, as the resistance of a lump of semiconductor, it varies quite a lot with temperature. In fact the variation is very nearly 1% per ${ }^{\circ} \mathrm{C}$. This does not affect η very much, and we can see that in the bar structure η is settled by very simple geometry indeed. It does, however, alter the number of charge carriers normally in the semiconductor and it seems fairly obvious that this will in turn aiter the number of carriers injected at the emitter which are needed to disturb the flow. This is what we find. For a rise in temperature of $100^{\circ} \mathrm{C}$ the interbase current is halved, and the peak point current is also halved. This smaller peak point current is produced, of course, by a smaller excess voltage. In fact the value of V_{D} is not as one is tempted to think, the voltage across the diode for a fixed current, but rather the voltage for a current which is itself temperature-dependent.
One rather pleasant surprise is that $R_{B B}$ has a conductor-like behaviour, with a roughly constant temperature coefficient. If we do the mathematics we find that we can get quite good compensation by using the right value of R_{2}. As the temperature rises and the interbase current falls, the
voltage at $B 2$ will increase by a factor of $\Delta I \cdot R_{2}$. This tends to balance but the drop in V_{D}. Notice how the sensing is done by $R_{B B}$, the very factor which causes the change.

This is by no means the full story. It is, however, the first approximation to the story, and we can now quote the value of R_{2} which should give perfect compensation:

$$
\begin{aligned}
& \qquad R_{2}=\frac{0.7 R_{B B}}{\eta V_{1}} \\
& \text { Typically } \quad R_{B B}=7000 \text { and } \eta V_{1}=10 \\
& \text { (notice that } 0.7 \text { is a voltage) } \\
& R_{2}=500 .
\end{aligned}
$$

A correction is needed when we include R_{1} in the circuit, because R_{1} is an anticorrection term. We must add a factor $R_{1}(1-\eta) / \eta$, or about $R_{1} / 2$. But if R_{1} is 50 ohms, this gives us only a change of 5% in R_{2}. Round up to 510 , rather than down to 470 . And only in the electronics industry would anyone round up 500 to 510 .
Without temperature compensation a typical figure for the change in frequency with unijunction temperature is between 3% and 6% for $100^{\circ} \mathrm{C}$. This is $300-600$ p.p.m. $/{ }^{\circ} \mathrm{C}$.

However, the capacitor and the resistor will also be changing in value. At temperatures above $20^{\circ} \mathrm{C}$ a metallized polycarbonate capacitor will have a temperature coefficient of 100 p.p.m. ${ }^{\circ} \mathrm{C}$ and a metal film resistor a temperature coefficient of 50 p.p.m. $/^{\circ} \mathrm{C}$. As both of these are positive, the frequency will fall by 150 p.p.m. $/^{\circ} \mathrm{C}$. Provided that the whole circuit is kept at the same temperature we need only somewhere between $\frac{1}{2}$ and $\frac{3}{4}$ of the predicted compehsation.
The net result is that we should not have to work too hard to get a stability of 100 p.p.m. $/{ }^{\circ} \mathrm{C}$. To do a bit better than this we must measure the values of η and $R_{B B}$ for the individual device, rather than just paying a bit more for the close tolerance type. A really cheap unijunction transistor has a range of $R_{B B} / \eta$ of about 3:1 according to the specification sheet, while the more expensive ones are within a range of about 1.7:1. This means that an average correction could be about 10% in error, which is really better than we know what we are correcting.
The high class thing to do is to temper-ature-cycle the whole oscillator. If you are sure of the capacitor and resistor you can

Fig. 7 Datu on the General Electric 2N1671. unijunction transistor.
just cycle the unijunction, which is a very fast operation, and trim R_{2} to give the theoretically derived positive temperature coefficient. To be sure the capacitor is really warmed up you need a lot of time, and a lot of justification. If you do embark on this path you find that these temperature coefficients you are balancing so nicely are not, in fact, constants. The unijunction is less sensitive at low temperatures, the capacitance is more sensitive if you use the type of polycarbonate unit whose characteristic I quoted. Overall the shape can be called parabolic, the frequency rising at both extremes. It is claimed that one can get 10 p.p.m. $/{ }^{\circ} \mathrm{C}$ for a reasonable temperature range around the minimum.
Meanwhile, back in the system, how constant is the supply voltage? Typical for the dependence of frequency on voltage is a figure of 2 parts per thousand for a 10% change in supply voltage, or 200 p.p.m. $/ 1 \%$ voltage change. When we start talking about 10 p.p.m. per ${ }^{\circ} \mathrm{C}$ we are also talking about supplies which are holding to 0.05% per ${ }^{\circ} \mathrm{C}$ and per everything else. It is found that R_{2} also controls the variation with supply voltage, but the value of R_{2} needed to give good stabilization against voltage changes is somewhere between 30% and 50% of that needed to stabilize against unijunction changes alone. We have already seen that we do not need this full stabilization, because the capacitor and the resistor are providing some compensation. This, indeed, is one of the things which makes this very simple circuit so pleasant to use. For once, it would appear, nature is on your side.

There are, as always, cunning techniques for using diodes in R_{2}, and other odd balancing elements, which will shape the overall temperature coefficient. This is a specialist area and before you start on it you need to go through the full analysis in detail. My own feeling is that for a general purpose oscillator you will not go far wrong if you pick $R_{2}=220$ or 270 ohms, and that it might be cheaper to stick the whole thing in a temperature controlled case instead of fine-tuning every unit. Roll on the days of cheap nuclear min-power, so that we can keep the thermostat system working day and night and avoid waiting for things to settle down-settle up, perhaps, would be more appropriate.

Two additional factors must now be taken into account. In the discussion of the oscillator circuit we took it for granted that only the charging time of the capacitor needed to be considered. For an oscillator operating at 1000 Hz we might conveniently use a $0.1 \mu \mathrm{~F}$ capacitor. It is found that the fall time of such a capacitance ranges from 5 microseconds to 10 microseconds as the temperature increases from $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. This is a change of -50 p.p.m. $/{ }^{\circ} \mathrm{C}$ in oscillation frequency. This fall time depends on the capacitance, but is not directly proportional to it. It also depends on the value of R_{1}, as you might expect.

The second factor is the ease with which the circuit may be triggered. We have seen that the triggering occurs when the emitter voltage reaches, roughly, $\eta V_{B B}$. This is equivalent to saying that

$$
V_{B B}=V_{E} / \eta
$$

Assume that the circuit is oscillating at 1000 Hz . It takes 1000 microseconds for V_{E} to run up to the triggering point. Assume also a linear rise, with $V_{B B}=20 \mathrm{~V}$. The instantaneous value of $V_{B B}$ at which triggering can occur is then rising at the rate of 20 millivolts per microsecond. If a noise pulse of 20 mV appears on the supply line just one microsecond before triggering is due, the triggering will occur after $999 \mu \mathrm{~s}$, and the frequency will be $1 / 10^{3}$ in error. Notice that the $R C$ circuit protects V_{E} from this pulse. We must watch for the danger of synchronization, or partial synchronization, to noise or ripple. It will be noted that we are more likely to get a nuisance effect with a system of low target efficiency, running from a roughly smoothed supply.
than a frequency shift in a system of high design stability, in which there will be a voltage regulator which should also keep down the noise and ripple.
The circuit applications of the unijunction transistor, which are by no means limited to the production of pulses and saw-teeth, must be left to another article. It is, however, desirable to provide some typical characteristics of an actual unit, as distinct from the stylized characteristic used to explain the working. Fig. 7 consists of a selection of the material contained in the data sheet for the General Electric 2N1671 family. It must be added that almost all the material published on the unijunction and its uses appears to originate with General Electric.

Crossword

Across

1. Waveband crept somehow in addition. (8)
2. Group containing one bit used for checking. (6)
3. Wild mice run after a Greek having letters and numbers. (12)
4. It has no meshes in the middle of the street. (4)
5. A cubic metre with nothing for realistic reproduction. (6)
6. A measure of magnetic flux density in a ferrite slab. (5) 14. Turn English book back. (5)
7. Measure inductance the French returned? (3)
8. Lorry ignition features a ferrite. (3)
9. A resonant circuit of military application? (4)
10. Half the alphabet is something very small. (4)
11. A resistor capacitor discharge. (3)
12. Work using epoxy resin glue initially. (3).
13. Music channels? (5)
14. We would set about infra-red with connections made. (5)
15. One in the class is a mastermind. (6)
16. Penultimate letter to a service-man brings an árial. (4)
17. Circuit parameter meant cos distribution in colour. $(4,8)$
18. A course so backward it engenders pity. (6)
19. Fill small room used in weighing. $(4,4)$

Down
2. Fliers must have grounds for starting discharge. $(5,5)$
3. Company with gas to hire like a laser beam. (8)
compiled by P. R. Lloyd

4. Uncontrolled, melted half the domain. (6)
5. Good material for the screen! (7)
6. He raps out a set of notes. (6)
7. Electric talk can show at the corners of the mouth. (6)
8. Half of it to copy for recording perhaps. (4)
13. It's useful in acrodynamics to twist and penetrate the barrier. (4-6)
15. An organ in the middle of the heart. (3)
16. Two-way supplement. (3)
17. Cover with an insulatornot lead! (3)
18. There's nothing in the sideband. Gasp! (3)
22. Attractive enchantment surrounds land. (8)
25. Primitive artist I'd back with about a pound. (7)
27. On-off device possibly faulty with shor circuit. (6) 28. Same rf alignment gives unit pictures. (6)
29. Order paper from an aged organization. (6).
33. A piece of ground 100 square metres plus one. (4)

A Simple Op. Amp.

A design intended to make life easier for the newcomer to operational amplifier techniques

by D. Griffiths, Ph.D.

Grappling with my first practical use of operational amplifier integrated circuits, my upbringing on discrete component circuitry made me want to have a simplified picture of what was going on inside the little packages. Of course, the circuit did just what the manufacturer said it would with given external connections and there was the astoundingly complex equivalent circuit to gaze at. To get a feel of what was going on, I found it a great help to play around with the simple circuit of Fig. 1. While it correctly demonstrates op. amp. characteristics, it has a poor d.c. performance and a curtailed h.f. response, with the closed loop gain being 3 dB down at typically 0.5 to 1 MHz . On the other hand, over the audio frequency band it can show a noise figure of below 2 dB and has less than 0.75% harmonic distortion at 1 kHz with 1 V r.m.s. output before feedback is applied.

The "follower with gain" mode of operation is of wide application and is achieved by the type of connection shown in Fig. 2. Here Tr_{2} acts as an emitter follower causing the emitter of $T r_{1}$ to follow closely the signal from the feedback network. If the amplifier gain is sufficiently large, the base voltage of Tr_{2} accurately follows that on the emitter of $T r_{1}$, since only a very small differential input is necessary to develop an output voltage. This gives a high input impedance and constrains the voltage output to $\left(R_{1}+R_{2}\right) / R_{1}$ times that of the input to Tr_{1}. The decoupling capacitor shown dotted (Fig. 2.) can remove the a.c. feedback and enable the open loop a.c. performance to be assessed while still retaining d.c. stabilization of the operating points.

The input transistors are run at a collector current of just under 100 uA each; the resulting 200 "A or so through R_{d} generates the necessary tail voltage of just under 9 V . Decreasing the collector currents would reduce the input biasing current drain but would also lead to decreased gain and frequency response. It was found that a value of $6.8 \mathrm{k} \Omega$ for R_{5} gave the least harmonic distortion; this is of the same magnitude as suggested by Ridler ${ }^{1}$ for similar transistors in his low-distortion oscillator design. This low value of R_{5} makes the output emitter follower rather a luxury but it does yield
an output resistance of under 30Ω without feedback. The emitter load of $4.7 \mathrm{k} \Omega$ for $T r_{4}$ gives a reasonable battery consumption while still coping with quite high capacitance loading on negative-going signals.

With the feedback loop decoupled by an $80-u$ F capacitor, a mid-band (1 kHz) open loop gain of 1,500 to 2,000 was typically obtained. A greater degree of feedback decoupling can be achieved with a given capacitor if it is put at the centre tap of R_{2} rather than across R_{1}. The gain was 3 dB down at about 35 kHz .

When the non-inverting input in Fig. 2 was connected to common via a $1 \mathrm{k} \Omega$ resistor (to equal that at the inverting input) the standing output voltage was typically a few tens of millivolts. Increasing this $1 \mathrm{k} \Omega$ resistor to $100 \mathrm{k} \Omega$ gave an output of some -1.6 V ; i.e. $1.6 \times 1 / 25 \mathrm{~V}$ across $100 \mathrm{k} \Omega$, indicating an input current of about 0.6 "A. With the feedback decoupled, it was found that a 100 k ? resistor in series with the a.c. inputreduced the output by 50%, yielding a differential input resistance of $100 \mathrm{k} \Omega$. Similarly, Tr_{2} will only lightly load the feedback network. With the a.c. restored as in Fig. 2 to give a gain of 25 , the input resistance became about $2.5 \mathrm{M} \Omega$ increasing to some $6 \mathrm{M} \Omega$ as the gain was reduced to 10 .

With the feedback increased to reduce the closed loop gain much below 10 , the prototypes tended to oscillate at some 5 to 10 MHz , depending on layout, etc. For stable operation with unity gain, the open loop turnover frequency needed to be reduced from 35 kHz to 4 or 5 kHz . This was achieved by putting $0.01 u \mathrm{~F}$ and 100Ω in series across the collector resistor of Tr_{1}, the 100Ω preserving the risetime in the region of 0.25 to 0.5 usec. A feedback resistor of some $15 \mathrm{k} \Omega$ to $33 \mathrm{k} \Omega$ was used in the inverting or non-inverting mode and had to be shunted with 10 pF under these conditions.

With the configuration of Fig. 3 the a.c. input resistance was in the region of $200 \mathrm{M} \Omega$. One must remember though that the source must still supply or pass the input bias current of $0.6 \mu \mathrm{~A}$. This would be a limitation, for instance, when trying to obtain long time constant displays in a peak reading circuit.

The output resistance was assessed by injecting a 1 V r.m.s. signal via a $4.7 \mathrm{k} \Omega$

Fig. 1 The circuit of the simple operational amplifier

Fig. 2 The amplifier connected for the 'follower with gain' mode of operation. With the component values shown the gain is 25

Fig. 3 Source follower with 100% feedback
resistor on to the output terminal and measuring the signal impressed on it. Without feedback, the voltage at A in Fig. 4 was 6 mV r.m.s., indicating that: $R_{\text {out }}=\frac{6 \times 10^{-3}}{1.0} \times 4.7 \mathrm{k} \Omega \approx 30 \Omega$.

At a gain of $25, R_{\text {out }}$ became about 0.6Ω. This does not indicate that the circuit could drive a low impedance device such as a loudspeaker!

The amplifier distortion on sinewave drive was estimated with the aid of a passive twin-T null filter, making a rough correction for the attenuation of higher harmonics due to the broad response. Without a.c. feedback, 1 kHz at 1 V r.m.s. output gave a distortion of some 0.75%, rising to about 1.5% at 3 V r.m.s. output; about 4 V r.m.s. output can be expected before clipping starts. With this simple circuit one might expect the distortion to decrease in proportion to the degree of feedback applied. A check at a gain of 25 showed the output distortion to be indistinguishable from the 0.02% contributed by the test oscillator. Excessive capacitance loading on the input will cause distortion which is particularly evident on negativegoing signals when the output base-emitter junction tends to be cut off. With up to $0.01 \mu \mathrm{~F}$ loading there was no increase in distortion at 15 kHz but $0.02 \mu \mathrm{~F}$ produced a horrible amount of distortion components although the unfiltered output still looked very reasonable on a 'scope. Halving the value of the output resistor enables twice as much capacitive loading to be withstood at a given frequency.
The noise figure was measured by the elegant method recently described by Baxandall ${ }^{2}$, in which the temperature of the amplifier source resistor is varied in order to distinguish between amplifier noise and that introduced by thermal agitation in the source. Small metal oxide resistors were screened by pulling them up inside the braiding of good quality coaxial cable and their temperature was altered between that of liquid nitrogen $\left(77^{\circ} \mathrm{K}\right)$ and room ambient. Fig. 5 shows the method of calculation.
At first sight one might expect to get a very poor noise factor with this circuit in the follower mode since the large thermal noise voltages in the high value $47 \mathrm{k} \Omega$ tail

Fig. 4 Circuit employed to assess output resistance

Fig. 5 Square of amplifier noise (e_{n}) output as a function of the temperature of the source resistance

Fig. 6 Circuit used in noise function observations

Fig. 7 Noise factor over band 100 Hz to 20 kHz as a function of source resistance
resistor are apparently in series with the input circuit. However, this viewpoint overlooks the effect of Tr_{2} which by its emitter follower action clamps the voltage at the top of the tail resistor at its base potential; thermal noise voltage fluctuations in R_{4} would be well suppressed. By the same token, though, the noise voltages in the resistance between Tr_{2} base and common will be coupled into the input in this mode of operation, together with a contribution from Tr_{2}. The 330Ω resistor in Fig. 6 contributes a negligible amount to the amplifier noise factor which is shown in Fig. 7 for a bandwidth of 100 Hz to 20 kHz determined by $R C$ time constants. Due to the logarithmic scale the dependence of noise factor on source resistance appears sharper than it is. The 2 dB noise factor at the optimum source resistance of $10 \mathrm{k} \Omega$ is only increased by a further 2 dB for inputs between $1 \mathrm{k} \Omega$ and $40 \mathrm{k} \Omega$; this would still be very satisfactory in most audio applications.
The amplifier can be used in the inverting or see-saw mode. This would probably not be needed too much in hi-fi work except for you know whose virtual earth tone control circuit ${ }^{3}$. For instruction in op. amp. applications, I would recommend references 4 and 5 .

REFERENCES

1. P. F. Ridler: Wireless World, Aug. 1967.
2. P. J. Baxandall: Wireless World, Dec. 1968.
3. P. J. Baxandall: Wireless World, Oct. 1952 (See also "Cathode Ray", Nov. 1961.)
4. G. B. Clayton: Wireless World, Feb. to Dec. 1969.
5. "Application of Linear Microcircuits", SGS Lid.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

July 13-17
Olympia
Ship's Gear International
(Brintex Exhibitions, 3 Clements Inn, London W.C.2.)

July 22 \& 23 Excelsior, London Airport Marketing Electronic Products-Conference (Electronic Business Review. Morley Hse., Holborn Viaduct, London E.C.I)

BANGOR

July 6-10
University College
Microwave Spectroscopy
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

LANCASTER
July 20-24 The University
Dielectric Materials, Measurements and Applications
(I.E.E., Savoy Pl., London W.C.2)

LEEDS

June 30-July 2
The University
Electronics Exhibition
(C.S. Petch, Dept. of Elect. \& Electronic Eng., University of Leeds, Woodhouse Lane, Leeds LS2 9JT)

NEWCASTLE UPON-TYNE
July 7-9 The University
Scanning Electron Microscopy in Materials Science
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

OVERSEAS

July 14-16
Electromagnetic Compatibility
(J.C. Senn, P.O. Box 1970, Anaheim, Cal. 92803)

July 16
Brussels
Conference Equipment Study Group: Bimultaneous Interpretation
(H. Fr. Schmidt, Technical Installations, Commission of the European Communities, Berlaymont Bldg, B-1040 Brussels.)
July 21-23
San Diego
Nuclear and Space Radiation Effects
(I.E.E.E., 245 E. 47 th St., New York, N.Y. 10017)

Solution to this month's

 Crossword (see p. 336)

Noise in Transistors

A short explanation of noise performance of bipolar and field effect transistors at frequencies of a few kHz to a few MHz

by F. N. H. Robinson,* M.A., D.Phil.

At low frequencies, below a few kHz , the chief source of transistor noise is flicker, or $1 / f$ noise, and no simple, generally valid, theory exists. Above a few hundred MHz the noise behaviour, like the signal behaviour, becomes quite complicated and cannot profitably be discussed in simple terms. In the intervening region, i.e. about 5 decades in frequency, noise in both bipolar and field effect transistors is remarkably simple.

In bipolar transistors the current injected into the base by the emitter consists of electrons which had enough thermal energy to surmount the potential barrier at the depletion layer. It is therefore completely random and displays full shot noise. In a bandwidth $d f$ the mean square fluctuations in the emitter current I_{e} are given by

$$
\begin{equation*}
d i_{k}^{2}=2 e I_{p} d f \tag{1}
\end{equation*}
$$

where e is the electronic charge. In the base, some electrons recombine and constitute the base current, the remainder reach the collector. This random division, of a random current, leads to two uncorrelated sets of fluctuations in the base current I_{b} and the collector current $I_{\boldsymbol{c}}$. Their magnitudes are
and

$$
\begin{align*}
d i_{b}^{2} & =2 e I_{b} d f \tag{2}\\
d i_{c}^{2} & =2 e I_{c} d f \tag{3}
\end{align*}
$$

and, because they are uncorrelated, $d\left(i_{b} i_{c}\right)$ $=0$.

Because any equivalent circuit for a transistor must lead to the relation $i_{e}=i_{b}+i_{c}$, we do not need to consider i_{e} separately. Thus the noise properties are completely specified by i_{b} and i_{c}. A complete noise equivalent circuit for the transistor is shown in Fig. 1.
*Clarendon Laboratory. University of Oxford.

Fig. I. Noise equivalent circuit for a bipolar transistor, valid up to 200 MHz .

The strengths of the two current generators are given by (2) and (3) and they are uncorrelated. This circuit is valid up to frequencies approaching $f_{T} / \beta^{ \pm}$. If $f_{T}=2 \mathrm{GHz}$ and $\beta=100$ this can be as high as 200 MHz .

If the transistor is used in the common emitter connection it will have a mutual conductance

$$
\begin{equation*}
g_{m}=\frac{e I_{c}}{k T} \tag{4}
\end{equation*}
$$

and we can transfer the current generator i_{c} to the input as a voltage generator $v=i_{c} / g_{m}$. Its strength is therefore

$$
\begin{equation*}
d v^{2}=\frac{2 k T}{g_{m}} d f \tag{5}
\end{equation*}
$$

In Fig. 2 is shown an equivalent circuit for a common-emitter stage connected to a signal source of internal impedance R_{x}. The

Fig. 2. An equivalent circuit for a commonemitter stage.
circuit includes the two noise generators i_{b} and v and the thermal noise generator v_{1} associated with the source at a temperature T_{s}

$$
\begin{equation*}
d v_{\mathrm{t}}^{2}=4 k T_{3} R_{s} d f \tag{6}
\end{equation*}
$$

If we assume that the input impedance Z_{i} of the transistor is large compared with the source impedance R_{s} the total noise input is given by
$d V^{2}=4 k T_{s} R_{s} d f+\frac{2 k T d f}{g_{m}}+2 e I_{b} R_{s}{ }^{2} d f$
The noise figure F is the ratio of this total noise to the noise due to the source alone (the first term in (7)), so that

$$
F=1+\frac{T}{2 T_{s}}\left(\frac{1}{g_{m} R_{s}}+\frac{e I_{b} R_{s}}{k T}\right)
$$

We can also write this as

$$
\begin{equation*}
F=1+\frac{T}{2 T_{s}}\left(\frac{1}{g_{m} R_{s}}+\frac{I_{b}}{I_{c}} g_{m} R_{s}\right) \tag{8}
\end{equation*}
$$

The optimum source resistance is

$$
\begin{equation*}
R_{s}=\frac{1}{g_{m}} \sqrt{\frac{I_{c}}{I_{v}}}=\sqrt{\frac{d v^{2}}{d i_{b}^{2}}} \tag{9}
\end{equation*}
$$

Since the input impedance is approximately $1 / g_{m} I_{c} / I_{b}$ we see that our initial assumption that $\boldsymbol{R}_{s} \ll \boldsymbol{Z}_{i}$ was justified. The optimum noise figure is now

$$
\begin{equation*}
F=1+\frac{T}{T_{s}} \sqrt{\frac{I_{b}}{I_{c}}} \tag{10}
\end{equation*}
$$

If for example $T=T$, and the d.c. current gain is 100 we have $F=1 \cdot 1$ or about $\frac{1}{2} \mathrm{~dB}$. If the collector current is 1 mA we have $1 / g_{m}=25 \Omega$ and $R_{s}=250 \Omega$ compared with $Z_{i}=2,500 \Omega$.

Notice first of all that a good low-noise transistor must have a high d.c. current gain and secondly that R_{s} is quite low. Fortunately an error of a factor 2 in R_{s} only increases F to 1.125 so that there is no point in attempting to be too precise in designing input stages.

If R_{s} is fixed then I_{c} (and thus g_{m}) should be adjusted to satisfy (9). If R_{s} is high e.g. $50 \mathrm{k} \Omega$ and the d.c. current gain is 400 it is easy to see that the optimum I_{c} is $10 \mu \mathrm{~A}$. For this reason low-noise transistors should also have high current gain at low currents. This is not usually compatible with good r.f. response. Provided that the input capacitance of the transistor is tuned out, the formula for the optimum value of \boldsymbol{R}_{s} is valid up to about $\frac{1}{3} f_{T}$ but the noise figure begins to deteriorate appreciably at about $\int_{T} / \beta^{\frac{1}{2}}$. At very high frequencies, the effect of base series resistance becomes appreciable and, in any case, F exceeds $1+f / f_{T}+$ $\left(f / f_{T}\right)^{2}$.

In f.e.ts noise arises from thermal noise in the channel. When allowance has been made for the distributed nature of the noise source, the effect is equivalent to a current generator whose strength is

$$
d i_{d}{ }^{2}=\frac{2}{3} .4 k T g_{m} d f
$$

connected between drain and source. This is equivalent to a voltage generator of strength

$$
\begin{equation*}
d v^{2}=\frac{2}{3} \frac{4 k T}{g_{m}} d f \tag{11}
\end{equation*}
$$

in the gate lead.
At low frequencies there is also current noise in the gate lead due to leakage I_{g}

$$
\begin{equation*}
d i_{g}^{2}=2 e I_{g} d f \tag{12}
\end{equation*}
$$

but at high frequencies this is swamped by induced current noise, produced by fluctuations in the channel under the gate. This noise is to all intents uncorrelated with the drain noise and is of magnitude

$$
\begin{equation*}
d i^{2}=\frac{1}{4} \frac{\omega^{2} C^{2}}{g_{m}} 4 k T d f \tag{13}
\end{equation*}
$$

where C is the input capacitance. The complete equivalent circuit is shown in Fig. 3.

Fig. 3. An equivalent circuit for a field effect transistor.

The optimum source resistance and noise figure at low frequencies are

$$
\begin{equation*}
R_{s}=\left(\frac{d v^{2}}{d i_{g}^{2}}\right)^{\frac{1}{2}}=\left(\frac{4 k T}{3 e I_{g} g_{m}}\right)^{\frac{1}{2}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
F=1+\left(\frac{8 e I_{g}}{3 k T g_{m}}\right)^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

If $I_{g}=10^{-9} \mathrm{~A}$ and $g_{m}=5$ millimho, we have $R_{\mathrm{s}} \approx 100 \mathrm{k} \Omega$ and $F \approx 1.005$.
At high frequencies the optimum values are

$$
\begin{equation*}
R_{s}=\frac{1}{\omega C} \sqrt{\frac{8}{3}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{o}=1+\frac{\omega C}{g_{m}} \sqrt{\frac{2}{3}} \approx 1+\frac{f}{f_{T}} \tag{17}
\end{equation*}
$$

where $f_{T}=g_{m} / 2 \pi C$ is the gain bandwidth product. Obviously good low-noise r.f. amplifiers require f.e,ts with a high gain bandwidth product.

Insulated gate f.e.ts tend to have high flicker noise and these results are only valid above about 1 MHz ., but, for junction f.e.ts, they are often valid down to low audio frequencies.

Perhaps the most important part to bear in mind is that there is an optimum source impedance, and that for bipolar transistors this is much less than the input impedance. If the source impedance is high, an f.e.t. will usually be the most suitable input stage. Conversely for low source impedances it will be a bipolar transistor. Finally it should be noted that the use of negative feedback, or other connections (e.g. common base) alters neither the optimum source impedance nor the optimum noise figure.

REFERENCE

1. "Equivalent Circuit for Noise in Bipolar Transistors", by H. Sutcliffe, International Journal of Elecrrical Engineering Education, vol. 6, number 3, October 1968.

Domestic video records

Machines for playing recorded vision programmes into domestic television sets are arriving from all directions. Some are players only, for reproducing programme material on records supplied by outside organizations. Others will, in addition, record and reproduce television programmes (broadcast or closed-circuit) selected by the user. The two latest are the Video Cassette Recorder, from Philips (Holland), shown below, and the Cartrivision system, from Avco (U.S.A.).

The Philips machine (called VCR, perhaps for its convenient euphonic relationship with EVR) was demonstrated in the U.K. at a convention of the Film Industry Organization at Brighton. As the name indicates the machine uses cassettes to hold the recording medium, which is $\frac{1}{2}$-inch magnetic tape. The recorded material, colour or monochrome, is reproduced on a domestic television receiver, and connection to the set is made via the aerial socket.

Two versions of the machine have been produced. The first is a player only, intended for reproducing programme material supplied in cassettes by outside organizations-hence the interest of the film industry. This is expected to cost about $£ 120$ for a monochrome machine and about $£ 140$ for a colour machine. The second
version, justifying the name, will record as well as reproduce, and for recording broadcast television programmes it obtains the video signal by means of a built-in tuner which receives its r.f. signal from the aerial connection on the home television set. This machine will cost about $£ 230$.

Each cassette contains enough tape for an hour's running. It can be put into or taken out of the machine very easily and at any required moment, regardless of the position of the tape. Programme material may be erased and fresh material recorded in its place, as with a sound tape recorder. No rewinding is required.

The cassettes are interchangeable in the sense that, provided they are of the right type to fit the VCR, they can come from any source. Also, colour and monochrome cassettes are compatible, in that either type can be played on monochrome machines and colour machines. On the $\frac{1}{2}$-inch tape two sound record tracks are available, and these can be used, say, for stereophonic sound or for spoken commentaries in two languages.

Other domestic video reproducing systems already launched or announced have the trade names: EVR (Electronic Video Recording), Vidicord, Selectavision and Sony. Domestic v.t.r. machines are already on the market.

Active Filters

12. The Leapfrog or Active-Ladder Synthesis

by F.E. J. Girling* and E. F. Good*

Certain types of passive filter have low sensitivity to errors in component values. Of these the best known types have the form of a ladder, terminated in equal resistances, but otherwise LC and lossfree. The leapfrog or active ladder synthesis allows a close analogue of such a filter to be made, in which integrators replace the reactances with a one-to-one correspondence, and which has the same low sensitivity (provided certain pairs of resistances keep a sensibly constant ratio). The synthesis is, therefore, especially useful for filters which must be designed to a tight specification.
The synthesis may be regarded as an extension of the use of the two-integrator loop.

Sensitivity

Active filters may be divided into three classes: those with high sensitivity to errors, i.e. those in which errors are exaggerated, so that an error of $x \%$ in some critical component causes an error much greater than $x \%$ in some important performance parameter; those with medium sensitivity, i.e. those in which errors in component values cause no more than proportional changes in important performance parameters; and those with low sensitivity, i.e. those which, at least in the pass band, are relatively insensitive to changes in component values. In any filter, whether active or passive, a change in the value of any component whose value enters into one of the time constants or $L C$ products of the transfer function must cause a movement of the response curve along the frequency scale. The sort of change we are discussing is a change in the shape of the response curve such as a broadening or narrowing of the passband, or an increase in unevenness.
In all $C R$ active filters positive feedback (in the strictest sense of the term) must operate to raise the Q factors of $C R$ networks from $\leqslant \frac{1}{2}$ to higher values, and in high-performance filters to much higher values. This means that there are feedback loops for which the input quantity is the vector difference of two larger and nearly equal quantities. In circuits of high sensitivity there is no significant constraint on the relative magnitudes or on the phase difference of the two larger quantities, a not very large change in the value of a critical component can cause the difference to be-

[^5]come zero, and a small change can cause a proportionately much larger change in the magnitude of the difference. This causes a change in gain over a narrow band of frequencies with the undesirable effects already mentioned. In circuits of medium sensitivity the difference between the two large vectors can become zero (if it can happen at all) only as a limiting case, when the ratio of some pair of components becomes infinite, and small changes in the value of a component cause no more than proportional changes in the magnitude of the difference. Circuits of this class were described in Parts 5, 6, and 7.
In a filter of low sensitivity there are constraints on the performance which result in errors in component values having a less than proportional effect on the more important characteristics of the response. Thus in a passive filter of this class, in the pass band the (ideally loss-free) LC network gives almost optimum power match between load resistance and source resistance and the response is close to the maximum possible. Clearly no error, however great, can raise the response above the maximum possible, and the effect of small errors is minimal. If an active filter is to have a similar low sensitivity it must be subject to similar constraints, and this will be the case if it is an analogue of the passive filter to the extent of copying its internal working, so that an error in a critical component has the same effect as an equal percentage error in the counterpart in the passive filter.

Copying

Active 2nd-order systems such as the inte-grator-and-lag and the two-lag loop with negative gain discussed in Parts 5 and 6 copy the working of a 2 nd-order passive $L C R$ network sufficiently closely to have the same sensitivity to component tolerances. And the same is true of the two-integrator loop, Part 7. An explanation is that the coefficients of the denominators of the transfer functions are built up from products and ratios with the dimensions of time such as $C R, L / R$, in virtually the same way. Thus the transfer functions of both the low-pass systems of Fig. I may be written (if in one case the prefixed minus sign is omitted)

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+T_{1} p+T_{1} T_{2} p^{2}} \tag{1}
\end{equation*}
$$

where for the passive circuit $T_{1}=C R$ and $T_{2}=L / R$, and for the active system $T_{1}=$ $C_{1} R_{1}$ and $T_{2}=C_{2} R_{2}$.
When several sections are cascaded to form a higher-order filter as described in Part 9 , the system obtained is equivalent to a cascade of 2 nd-order $L C R$ networks separated by buffer amplifiers, and is virtually Butterworth's filter-amplifier approach (Ref. 1). The sensitivity to component tolerances is clearly the same as that of the individual 2 nd-order stages, and it is not the same as for a well designed equally terminated $L C R$ filter. In this type of filter, in the pass band, where the $L C$ network approximates to an ideal transformer matching the load resistance to the source resistance and the loss is close to the minimum possible $(6 \mathrm{~dB})$, the effect of changes in the value of a component is as shown in curve A, Fig. 2 (see Orchard, Ref. 2), whereas for the factor method a curve such a B applies.
Thus for the 1 -p filter with Chebyshev response shown in Fig. 3(a) a 30\% reduction in C_{3} gives only the small change in response shown by curve (2) of Fig. 3(c), whereas an equal reduction in the time constant of the first stage of the synthesis by factors shown in Fig. 3(b) causes a much greater change in response, curve (3) of Fig. 3(c). In the equally-terminated filter the response is constrained to remain of equal-ripple type

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{k}{(1+q p T)\left(1+p T / q+p^{2} T^{2}\right)} \tag{2}
\end{equation*}
$$

and the reduction in C_{3} causes not only a reduction in the time constant of the istorder factor but also reduction in the q of the 2 nd-order factor, which has a compensating effect. In the synthesis by factors the reduction in C_{3} makes no change in the 2 nd-order factor. In the cut-off region, however, there is no significant difference between the two methods. Here the response is dominated by the coefficient of p^{3}

Fig. 1. A lag-and-integrator loop copies a passive 2nd-order network to the extent of having the same sensitivity to errors in component values.

Fig. 2. Two types of sensitivity.

Fig. 3. Two filters which give the same response when component values are accurate, but have different sensitivity.
in the expansion of the denominators of the transfer functions:

$$
\begin{equation*}
F(p)=\frac{k}{D(p)}=\frac{k}{1+a p+b p^{2}+c p^{3}} \tag{3}
\end{equation*}
$$

For each $c=C_{1} L C_{3} R$ and the response at high frequencies (relative to the response at zero frequency) approximates to

$$
\begin{equation*}
|G(\omega)|=1 / C_{1} L C_{3} R \omega^{3} \tag{4}
\end{equation*}
$$

Of course an error of 30% is unrealistically large, and in practice for such a simple filter synthesis by factors would probably be quite satisfactory. The example does illustrate, however, how the equally terminated structure gives in the passband reduced sensitivity to an error in the value of one of the reactances.
In a narrow band-pass filter, where component tolerances must in any case be tight if the specified centre frequency and band limits are to be obtained, the higher sensitivity of a synthesis by factors, calling for even tighter tolerances (or very close matching of components), could be a serious embarrassment, and the lower sensitivity of an equally terminated structure would be of

(a)

(c)

Fig. 4. Realisation of a band-pass characteristic (a): by factors (b); by an equally terminated structure (c).
real advantage. Fig. 4 shows schematically a band-pass filter of relative bandwidth $1 / 10$ synthesised by factors and as an equally terminated structure. The factor synthesis is the method of stagger tuning, and Fig. $5(a)$ shows the effect of mistuning the low-Q factor by 1% (by a 2% error in the respective tuning capacitance). A pronounced tilt appears in the passband, and mistuning of either of the outer factors also causes a considerable change in mean level. In Fig. 5(b)

Fig. 5. Sensitivity of the two filters of
Fig. 4: (a) synthesis by factors, $C_{2} \pm 2 \%$, (b) equally terminated filter, $C_{2} \pm 2 \%$.
are shown the effects of 2% errors in one of the capacitances in the equally terminated structure, and it can be seen that the increase in ripple or unevenness is approximately only $\frac{1}{3}$ th as much as shown in Fig. 5(a). So if a $\pm 1 \%$ tolerance were needed in the equally terminated structure, a $\pm 0 \cdot 2 \%$ tolerance would have to be set for the synthesis by factors (at least for the ratios of the $C \mathrm{~s}$ and for the ratio of the $L \mathrm{~s}$).

In the equally terminated structure an error in a component causes reactions throughout the structure, and as the examples show these are to a considerable extent compensatory. If an active structure is to reproduce this behaviour it must be an
analogue to the extent of duplicating these internal reactions, and not merely by a system which, when all values are accurate, gives the same transfer function.

Now it has already been shown in Part 7 that a two-integrator loop is an analogue of an $L C R$ tuned circuit, one integrator taking the place of the inductance and the other of the capacitance. Resonance in the $L C R$ circuit arises from the oscillatory interchange of energy between the magnetic field of the coil and the electric field of the capacitor. In the two-integrator loop gain and feedback allow us to use two energy stores of the same kind and so obtain resonance with only one kind of reactance (normally capacitance). The question arises, therefore, can a system of integrators and feedback links be set up to reproduce the performance of more complicated $L C R$ net-works-perhaps any $L C R$ network-and in particular a ladder structure in which all the elements except the terminating source and load resistances are lossless reactances?

All-integrator circuits

For a long time it has been obvious to anyone with a knowledge of analogue computing that if the chosen passive model or response curve is reduced to a transfer function, this can be "instrumented" by standard methods and an active filter obtained consisting of integrators and inverting stages. But in the resultant structure it is not possible to identify one of the integrators with one of the reactances of the passive prototype. About all that can be done of that sort is to identify certain resistors as corresponding to the coefficients of the terms of the denominator and numerator of the transfer function. A theoretical schematic for 3rd-order transfer functions is given in Fig. 6. So the method no more produces a filter with the lookedfor one-to-one correspondence than a synthesis by factors; and since it can be shown that a finite change in the value of a component can make such a system unstable (oscillate), i.e. cause an infinite change in response, it seems likely that the sensitivity to errors will be greater.

The leapfrog synthesis

Fig. 7(a) shows a 2nd-order 1-p filter, or, equally well, the output end of some longer

Fig. 6. "Analogue-computer" realisation of a 3rd-order transfer function.

1-p ladder. By dividing all impedances by R in Fig. 7(b) the network has been normalised to make the terminating resistance 1 ohm. This simplifies the synthesis, though it makes some of the equations in the analysis appear dimensionally incorrect.

As usual with a ladder, the network is conveniently analysed by supposing an output voltage and finding the currents and voltages that must exist to produce it:

$$
\begin{align*}
I_{0} & =V_{\text {out }} /(1 \mathrm{ohm}) \tag{5}\\
I_{1} & =p C R V_{\text {out }} \tag{6}\\
I_{2} & =I_{0}+I_{1} \tag{7}\\
V_{L} & =(p L / R) I_{2} \tag{8}\\
V_{\text {in }} & =V_{\text {out }}+V_{L} \tag{9}
\end{align*}
$$

whence

$$
\begin{equation*}
V_{\text {in }}=\left(1+p L / R+p^{2} L C\right) V_{\text {out }} \tag{10}
\end{equation*}
$$

An active system, using abstract integrators, which is described by an exactly parallel set of equations, is shown in Fig. 7(c). The dependent variables at the inputs and outputs of the integrators and differential gears are designated by θ s to indicate the generality of the analogue, for in principle they can be any physical quantity capable of oscillatory motion (e.g. the angular position of a shaft). When electronic integrators are used, however, they will be electrical quantities, and when the ubiquitous Blumlein (or Miller) feedback integrator is used, voltages. Thus voltages will represent both the voltages in the passive circuit, and the currents; and any feeling of dimensional inconsistency which this may give can be removed by supposing the currents multiplied by an arbitrary resistance. In the schematic of Fig. 7(b) this resistance is the 1 ohm termination of the passive network, but in a practical situation some other value may be advisable. If, for example, the system is lightly damped, near the upper end of the passband I_{1} will be considerably greater than I_{0}. But θ_{1} and $\theta_{\text {out }}$ can have equal amplitudes if a suitable scaling factor k is introduced into the paths
(a)

(b)

Fig. 7. The two reactances at the output end of a low-pass ladder are replaced by two integrators.
(a)

(b)

Fig. 8. The ladder is lengthened.

Fig. 9. The effect of the terminating resistance at the sending end is reproduced.
leading both to and away from θ_{1}, i.e. if the T s of the integrators are made $k L / R$ and $C R / k$, and the feedback representing I_{0} is reduced to $1 / k$. Indeed in principle different scaling constants may be used at each point, since the only rule to be observed to leave the dynamic properties of the system unchanged apart from a scalar multiplier is that for every feedback loop the loop gain (the product of the gains of the forward and feedback parts of the loop) must be unchanged. This flexibility has already been noticed in Part 7, where the two-integrator loop is derived as an analogue of a series $L C R$ circuit, and is helpful in allowing best use to be made of the internal gain and the dynamic range of the integrator amplifiers.

Equations (5) to (9) are of three types: simple summations representing Kirchhoff's laws for the currents at a node or the voltages round a mesh; 1 st-order differential equations representing the action of the reactances; and the Ohm's-law equation describing the proportionality of current and voltage for a resistance. When the ladder is extended, Fig. 8(a), no new types of process are brought into action, only the same types of equation are needed in the analysis, and the active analogue can be correspondingly lengthened by adding further integrators and feedback connections as shown in Fig. 8(b). The lengthening of the passive ladder and of the corresponding active system may be continued without limit, the number of integrators in the latter always equalling the number of reactances in the former, and at the input end it is easy to add a final feedback loop to duplicate the action of the source resistance, R_{3} (Fig. 9). Thus an active synthesis has been found which gives a one-to-one correspondence between the reactances of the passive filter and the integrators of the active system and duplicates not only the overall response of a simple low-pass ladder of any length, but also, as required, the internal workings.

Fig. 10. Formal derivation of the active ladder.

Theorem

A simple ladder working with voltage input and voltage output can be divided into inverted-L sections, and a more formal derivation of the synthesis may be made by first proving the following theorem.

The inverted-L section of a ladder network as shown in Fig. 10(a) gives when passing signals from left to right the same

transmission as the active analogue shown in Fig. 10(b).
In the passive network

$$
\begin{aligned}
I_{n} & =V_{n} / Z_{n} \\
I_{n+1} & =I_{n}+I_{n-1} \\
& =V_{n} / Z_{n}+I_{n-1} \\
V_{n+1} & =I_{n+1} Z_{n+1} \\
& =\left(V_{n} / Z_{n}+I_{n-1}\right) Z_{n+1} \\
V_{n+2} & =V_{n}+V_{n+1} \\
& =V_{n}\left(1+Z_{n+1} / Z_{n}\right)+I_{n-1} Z_{n+1}
\end{aligned}
$$

In the active system there are two amplifiers of gain Z_{n} / R and R / Z_{n+1} respectively and two differential boxes which take the difference of the voltage applied from the left and the feedback voltage, so that $V_{a}=V_{b}-V_{c}$ as shown inset. If then a voltage $=I_{n-1} R$ is available from another section, it can be seen by inspection that

$$
\begin{aligned}
& I_{n} R=V_{n} R / Z_{n} \\
& I_{n+1} R=I_{n} R+I_{n-1} R \\
&=V_{n} R / Z_{n}+I_{n-1} R \\
& V_{n+1}=I_{n+1} Z_{n+1} \\
&=V_{n} Z_{n+1} / Z_{n}+I_{n-1} Z_{n+1} \\
& V_{n+2}=V_{n}\left(1+Z_{n+1} / Z_{n}\right)+I_{n-1} Z_{n+1} \\
& \text { q.e.d. }[R \text { is an arbitrary resistance.] }
\end{aligned}
$$

When the shunt impedance Z_{n} is $1 / p C_{n}$ the reactance of an ideal capacitor, the gain $Z_{n} / R=1 / p C_{n} R$, which is the voltage transfer ratio of an integrator. And when the series impedance Z_{n+1} is $p L_{n+1}$ an ideal inductive reactance, the gain $R / Z_{n+1}=$ $1 /\left(p L_{n+1} / R\right)$, which also is the transfer ratio of an integrator. Thus the synthesis allows inductance to be simulated by capacitance, which is the object of the exercise.
For the output section of the ladder a terminating load resistance makes $I_{n-1}=$ $V_{\text {out }} / R_{\mathrm{L}}$. Hence in the active system the required feedback is a voltage proportional to $V_{\text {our }}$. Alternatively the load resistance may be taken as in parallel combination with the shunt impedance Z_{n} and the final amplifier of the active system assigned a gain $Z_{n} R_{\mathrm{L}} /\left(Z_{n}+R_{\mathrm{L}}\right) R$. If $Z_{n}=1 / p C$ this reduces to $R_{L} / R\left(1+p C R_{L}\right)$. So the amplifier should have the response of a simple lag of time constant $C R_{L}$ combined with a zerofrequency gain R_{L} / R. If the amplifier has the form of an integrator a resistance is
placed across the integrating capacitor. For all other sections the voltage $I_{n-1} R$ is available from the section to the right.
At the input end a source resistance R_{s} calls for a voltage $I_{n+1} R_{s}$ to be introduced in series with the input, i.e. a voltage $\propto I_{n+1} R$, which is already present in the active system. Or again alternatively, R_{s} may be treated as combined with Z_{n+1} and the input amplifier given a gain $R /\left(Z_{n+1}+R_{s}\right)$. And again if $Z_{n+1}=p L_{n+1}$ this has the form $A /(1+p T)$.

A ladder of T type

If the reactances of the passive ladder are connected to form one or more tees, Fig. 11 , the analysis of the action proceeds as follows:

$$
\begin{aligned}
V_{\text {out }} & =R_{L} I_{\text {out }} \\
V_{1} & =p L_{1} I_{\text {out }} \\
V_{2} & =V_{\text {out }}+V_{1} \\
I_{2} & =p C_{2} V_{2} \\
I_{3} & =I_{\text {out }}+I_{2} \\
\hdashline V_{n} & =V_{1}+V_{m} \\
I_{n} & =p C_{n} V_{n} \\
I_{p} & =I_{m}+I_{n} \\
V_{p} & =p L_{p} I_{p} \\
V_{q} & =V_{n}+V_{p} \\
I_{q} & =V_{q} / R_{S} \\
I_{S} & =I_{p}+I_{q} \\
{\left[V_{\text {in }}\right.} & \left.=I_{S} R_{S}\right]
\end{aligned}
$$

If these are compared with the parallel set of equations for a π-form ladder, which begins as equations (5) to (9), it is found that

Fig. 12. T-form and π-form filters with the same response.
the sets are exactly the same except that the roles of voltage and current, and of inductance and capacitance are reversed. And it follows that the same active system. where one kind of quantity (voltage) represents both the voltages and the currents of the passive models, can represent both forms of ladder.
The correspondence between the two forms of ladder is, of course. well known, and explains why, for example, the two filters shown in Fig. 12 have the same voltage transfer ratio. Because of the exchange of roles between voltage and current. resistance in one form corresponds to conductance in the other; and whereas high values of R_{S} and R_{L} give light damping in the π-form filter, Fig. 12 (lower), low values give light damping in the T-form filter, Fig. 12 (upper).

Drawing and naming

The name "leapfrog feedback filter" was suggested by the appearance of the schematic diagrams when all the feedback links are drawn on one side of the row of integrators and difference boxes. If the feedback links are drawn alternately above and below the forward signal path crossings over are avoided, Fig. 13(b), and it is then easy to proceed to drawing the system as a ladder, as will appear in later diagrams.

Electrical circuits

Fig. 13(a) shows two 5 th-order low-pass ladders, and Fig. 13(b) the block schematic of the active system which can equally well be the counterpart of either. This schematic is really a diagram of mathematical processes, and by using the precedent of the two-integrator loop it is easily appreciated that the difference boxes need not appear as separate entities and that each feedback loop will be closed in the correct sense if it contains two Blumlein ("Miller") integrators and one phase-inverting amplifier. as this gives, as required, an odd number of sign changes at zero frequency. The inverting amplifiers may be placed in positions x_{1} giving Fig. 13(c), or in positions x_{2} giving Fig. 13(d). The second is the more economical arrangement as it uses only two inverting amplifiers. The first has the possible advantage that there are fewer stages in the forward path-only the integrators.

In both Fig. 13(c) and in Fig. 13(d) there are considerably more than five resistances. If all have the correct value, then the five capacitances may be identified with the five reactances of the passive models, and the one-to-one correspondence principle is exactly observed. If in Fig. 13(d) one of the resistances marked r is in error, it is equivalent to an equal percentage error in the capacitance of the preceding integrator. So the active system still shows the desired correspondence with the passive models, though with an error in one of the reactances. And lack of infinite gain in the inverting amplifiers is also equivalent to a change in the T of the preceding integrator. An error in only one of a pair of resistances such as $R_{2}, R_{2}{ }^{\prime}$, however, has no exact counterpart in a change in the value of any single component in the passive models, since it
(a)

$\xrightarrow{\mathrm{V} \text { in }}$
(c)

$V_{\text {in }}$

(e)

T_{5}	T_{4}	T_{3}	T_{2}	T_{1}
$\frac{L_{5}}{R}$	$C_{4} R$	$\frac{L_{3}}{R}$	$C_{2} R$	$\frac{L_{1}}{R}$

Fig. 13. Derivation of electrical active ladders.
causes one of the integrators to have a different T in one loop from in another.

Suppose in Fig. 13(d) that R_{2} is too small. The current in R_{2} will be too large, all the signal levels to the right of R_{2} will be increased, and in particular the feedback current in $R_{3}{ }^{\prime}$ (which represents the current in L_{2} in the π-form model) is increased. The effect is the same as if an ideal transformer (effective down to zero frequency) of ratio 1: $\left(R_{2}\right.$ (nom) $\left./ R_{2}\right)$ is interposed between C_{3} and L_{2} in the passive model. Similarly the effect of other possible errors in nominally equal resistors can be represented as shown in Fig. 13(e). Clearly, unless one of the terminating resistances $R_{1}{ }^{\prime}$ and R_{5} is adjusted to compensate, the active system no longer exactly represents a power-matched structure. But with the errors to be expected from modern high-stability resistors, the departure from the ideal will be small and the effect will be no more serious than the effect of inequality in load and source re-
sistance in the passive model repeated a number of times

In Fig. 13(c) there are an even greater number of resistances to be in error; but by similar reasoning a passive model can again be constructed. That the active systems are analogues of passive models is itself an assurance that they cannot have high sensitivity to errors, since no finite change in component values can make the system unstable. The effects of any unwanted phase shifts are, of course, excluded in this argument.

REFERENCES

1. "On the Theory of Filter Amplifiers", by S. Butterworth. Experimental Wireless and Wireless Engineer, Oct. 1930, Vol. 7. No. 85, pp. 536-541.
2. "Inductorless Filters", by H. J. Orchard Electronics Letters. June 1966, Vol. 2, No. 6. pp. 224-225

H.F. Predictions -July

The charts are based on an ionospheric index (IF2) of 94 and sunspot number 84 These values are predicted from smoothed data which include allowance observed during March/April. The Greenwich sunspot number for May was 136 showing that the high activity had, rather surprisingly, not only continued but further increased. If this activity is taken into account the median standard frequency (MUF) for Montreal would be 0.5 MHz higher than that shown at 12.00 and 1.5 MHz higher at midnight. The correction for the lowest usable frequency (LUF) would be in opposite sense1 MHz higher at 12.00 and unchanged at midnight. Other routes would be similarly affected. Disturbed days have been relatively frequent (April 15 days, May 6 days) and are expected to continue, but rarely intense.

Coding Problems in Iterative Arrays

A logic circuit for multiplying by three is developed as an illustration

by K. S. Hall*

In a recent article ${ }^{1}$ K. J. Dean described how iterative arrays of logical circuits may be used to perform arithmetic operations, giving a number of examples. The purpose of the present article is to discuss some problems which arise in the design of these arrays, partly because the arrays themselves are interesting and useful, and partly because they form a convenient peg on which to hang a discussion of some problems that arise in the design of a wider class of logic circuits.

Dean begins by pointing out how networks for multiplication by two and four may be devised. These are shown in Fig. 1 which has been adapted from his article. As he says they are rather trivial, consisting merely of leads which transfer a digit to a more significant place. However they do serve as a convenient introduction to the next circuit, which is for multiplication by three. The form of the circuit is shown in Fig. 2. It should be pointed out that while there is one input wire A and one output wire B for each block, the number of wires between blocks bearing information about the carry digit C is as yet undetermined. The problem is to design the circuit within each block.

Design of a component block

The function of each block is to add together two numbers. One, which we will call a_{r}, has the value 0 when $A_{r}=0$ and the value 3 when $A_{r}=1$. The other, c_{r}, is carried from the block on the right. The greatest value that c_{r} can have is given by:

$$
2^{r} c_{r} \leqslant 3\left(2^{r}-1\right)
$$

so that c_{r} is 0,1 or 2 . To distinguish these three values requires two binary digits and the coding problem is to decide how best to use the four possible combinations of these digits to convey three alternative messages about the value of the carry digit.
Dean proposed to give the two digits weights of 1 and 2 respectively, so that 00 , 01 and 10 represent carry digits of 0,1 and 2 respectively, and 11 was not used at all. One block of the array may now be redrawn as in Fig. 3, showing the two binary digits separately, and the table of combinations, giving the values of B_{r}, P_{r+1} and Q_{r+1} in terms of A_{r}, P_{r} and Q_{r} may be drawn up as shown in table one.

[^6]

Fig. l(a). An array for multiplication by two. (b) an array for multiplication by four. In both cases leads merely transfer digits to a more significant position.

Fig. 2. An array for multiplication by three.

Fig. 3. One block of the array for multiplication by three.

The information contained in this table can now be plotted on Karnaugh maps, and the logic functions deduced. The maps, which are shown in Fig. 4, are the same as in Dean's Fig. 3, except for the changes in notation. From these maps it can be seen that :

$$
\begin{aligned}
B_{r}= & \bar{A}_{r} Q_{r}+A_{r} \bar{Q}_{r} \\
& \text { or } \\
B_{r}= & \left(\bar{A}_{r}+\bar{Q}_{r}\right)\left(A_{r}+Q_{r}\right) \\
\bar{B}_{r}= & \bar{A}_{r} \bar{Q}_{r}+A_{r} Q_{r} \\
P_{r+1}= & A_{r} P_{r}+A_{r} Q_{r} \\
& \quad \text { or } \\
P_{r+1}= & A_{r}\left(P_{r}+Q_{r}\right) \\
\bar{P}_{r+1}= & \bar{A}_{r}+\bar{P}_{r} \bar{Q}_{r} \\
Q_{r+1}= & \bar{A}_{r} P_{r}+A_{r} \bar{P}_{r} \bar{Q}_{r} \\
& \quad \text { or } \\
Q_{r+1}= & \bar{Q}_{r}\left(\bar{A}_{r}+\bar{P}_{r}\right)\left(A_{r}+P_{r}\right) \\
\bar{Q}_{r+1}= & Q_{r}+\bar{A}_{r} \bar{P}_{r}+A_{r} P_{r}
\end{aligned}
$$

The functions were given first in the sum-of-products form, and each of them could be realised using one OR- and two ANDgates, or else three NAND-gates. Secondly the functions were given in product-of-sums form. In this form they require altogether eight gates for their realisation, either five OR- and three AND-gates, or eight NORgates. However, not only B_{r}, P_{r+1} and Q_{r+1} are required, but $\bar{P}_{r+1}, \bar{Q}_{r+1}$ and, possibly, \bar{B}_{r}. These may be produced by means of inverters, but it may be more economical to produce the complement directly and complement that.* To see whether this is so expressions for $\bar{B}_{r}, \bar{P}_{r+1}$ and \bar{Q}_{r+1} in sum-of-products form have also been given. To produce \bar{P}_{r+1} with NAND-gates two are required compared with three to produce P_{r+1}. The former is therefore the more economical course. With the other two output variables there is no difference, so that the total number of gates required may be reduced from nine to eight.
Further economy is possible. The expression for \bar{P}_{r+1} may be modified to $\bar{A}_{r}+A_{r} \bar{P}_{r} \bar{Q}_{r}$ (this may be seen from the map or from the well-known result that $X+\bar{X} Y=X+Y$). When this has been done the term $A_{r} \bar{P}_{r} \bar{Q}_{r}$ is common to the expressions for \bar{P}_{r+1} and Q_{r+1}, so that a further gate may be saved, reducing the number per block to seven. The inverters for P and Q may be placed at the input or output of a block. The former course reduces the number of leads between blocks, and this is the arrangement which has been shown in Fig. 5.

Alternative codings

In the previous circuit a weighted binary code was used for the carry digit. There are,

[^7]Table one

A_{r}	P_{r}	a_{r}	a_{r}	c_{r}	$a_{r}+c_{r}$	$c_{r}+1$	B_{r}	$P_{r}+1_{1}$
0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1	0
0	1	0	0	2	2	1	0	0
0	1	1	-	-	-	-	ϕ	ϕ
1	0	0	3	0	3	1	1	0
1	0	1	3	1	4	2	0	1
1	1	0	3	2	5	2	1	1
1	1	1	-	-	-	-	ϕ	ϕ
1		0						

ϕ denotes an optional value

Fig. 4. Karnaugh maps for one block of an array for multiplication by three.

Fig. 5. The logic circuit of a block which will multiply by three.
however, many other ways of coding the carry digit and some of these lead to more economical circuits. The first step is to set out the various possibilities and the second is to distinguish those alternatives which lead to different circuits from those which merely lead to the same circuit differently labelled. It is convenient in setting out the alternatives to make use of Karnaugh maps, arranging the three values of the carry digit, 0,1 and 2 , in various ways in the four spaces of a two-variable map. Leaving one space vacant for the present, the opposite space may be occupied by 0,1 and 2 , giving the three possibilities of Fig. 6(a). The three possibilities of Fig. 6(b) differ from those of Fig. 6(a) only in having P_{r} and Q_{r} interchanged, so that they lead to designs which are identical, though differently labelled. The three possibilities of Fig. 6(c) are obtained from those of Fig. 6(a) by comple-

	0	1		1	\bigcirc	1
$Q_{\text {r }}$	(a)					
0	0	2	1	2	2	1
1	1		0		0	
			(b)			
0	0	1		0	2	0
	2		2		1	
			(c)	c)		
0	2	0	2	1	1	2
1		1		0		0

Fig. 6. Coding possibilities, first step.

		01	
a_{τ}	(a)	(b)	(c)
0	$\bigcirc 2$		
1	1ϕ	- ϕ	0
	(d)	(e)	(f)
0			
1	10	$\bigcirc 0$	
	(g)	(h)	(j)
0	$\bigcirc 2$		2
1			\bigcirc
	(k)	(2)	(m)
0			
1	12	$\bigcirc 2$	

Fig. 7. Coding possibilities showing all alternatives with some duplication.

Table two

A_{r}	P_{r}	Q_{r}	a_{r}	c_{r}	$a_{r}+c_{r}$	$c_{r}+1$	B_{r}	$P_{r}+1$	$Q_{r}+1$
0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1	0	0
0	1	0	0	2	2	1	0	ϕ	1
0	1	1	0	1	1	0	1	0	0
1	0	0	3	0	3	1	1	ϕ	1
1	0	1	3	1	4	2	0	1	0
1	1	0	3	2	5	2	1	1	0
1	1	1	3	1	4	2	0	1	0

Fig. 8. Karnaugh maps for one block of an array for multiplication by three using an alternative coding.

Fig. 9. The logic circuit required when using the alternative coding. Note that fewer gates are now required.
maps are given in Table two and Fig. 8. From these maps:

$$
\begin{aligned}
B_{r}= & \bar{A}_{r} Q_{r}+A_{r} \bar{Q}_{r} \\
& \text { or } \\
B_{r}= & \left(\bar{A}_{r}+\bar{Q}_{r}\right)\left(A_{r}+Q_{r}\right) \\
\bar{B}_{r}= & \bar{A}_{r} \bar{Q}_{r}+A_{r} Q_{r} \\
P_{r+1}= & A_{r} \\
\bar{P}_{r+1}= & \bar{A}_{r} \\
Q_{r+1}= & \bar{A}_{r} P_{r} \bar{Q}_{r}+A_{r} \bar{P}_{r} Q_{r} \\
& \quad \text { or } \\
Q_{r+1}= & \bar{Q}_{r}\left(\bar{A}_{r}+\bar{P}_{r}\right)\left(A_{r}+P_{r}\right) \\
\bar{Q}_{r+1}= & Q_{r}+\bar{A}_{r} \bar{P}_{r}+A_{r} P_{r}
\end{aligned}
$$

Since $P_{r+1}=A_{r}, \bar{P}_{r+1}=\bar{A}_{r}$ so only two inverters are required, assuming \bar{B}_{r} is not
wanted. If NAND-gates are used, six are required. It is marginally better to produce Q_{r+1} directly and use an inverter to obtain Q_{r+1}, rather than the reverse, since then only one of the six NAND-gates will have three inputs. The resulting design for one block is shown in Fig. 9.

REFERENCES

I. K. J. Dean, "Iterative arrays of logical circuits for performing arithmetic", Electronic Engineering, Vol. 40, No. 490 (Dec. 1968)
2. D. Zissos and G. W. Copperwhite, "Further Developments in the Design of Minimal NOR (and NAND) Combinational Switching Circuits for N-Variables", Electronic Engineering, Vol. 38, No. 461 (July 1966).

The professional one

Here it is, Solartron's outstand ing 1240.

The multimeter that's not just a toy but a real step forward in instrument technology.

Now everyone can go digitall
You get Amps, Volts, Ohms a.c. and d.c. - down to 100 micro-
volts and dual slope inlegration for noise rejection.

Technology apart, the 1240 has automatic polarity indication and a straightforward control layout including a single range selector and fingertip function switches. It's the easy-to-handle go-anywhere
portable multimeter.
Go digital with the new 1240. From Solartron, European leaders in digital instrumentation.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

Both operate from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. Both offer resistance range 50Ω to $20 \mathrm{k} \Omega$. Both are power rated 0.5 W at $70^{\circ} \mathrm{C}$. Both are well established products with proven reliability Both come from Electrosil and were formerly products of M.E.C. Ltd. Add those two reputations together and you've got an unsurpassed combination. What's the difference, then? Well, one is the 'T20' series, a military version and is guaranteed to an exacting Electrosil speciflcation based on DEF5124A. Its double is the MT20P
precisely the same in all aspects, but not subjected to such intensive performance testing. The MT20P is suggested for applications such as computors and instrumentation where saving in cost is an asset to be considered.

T21P

Either way you get supreme reliability, the hallmark of anything Electrosil turn out. Each basic type is a vailable in three alternative styles: printed circuit mounting top adjustment; p.c. mounting side adjustment; and panel mounting.
Write now for full details of Electrosil trimming potentiometers. ELECTROSIL LIMITED, P.O. Box 37, Pallion, Sunderland, Co. Durham. Telephone Sunderland 71481. Telex 53273.

Roots and Responses

Showing how the root technique applies to filter design

by Thomas Roddam

When I began writing this group of articles a few months ago it was because I wanted to discuss the question of why we use sine waves, why we go to a good deal of trouble to make sine waves. The answer turned out to be that it is very easy to produce a perfect sine wave, if you are a mathematician. All you need is inductance, capacitance, a battery and a switch. One thing you must not be is a physicist. I assert that my $L C$ circuit has a sinusoidal current flowing in it and that the frequency is such and such. Call me a liar and I connect a measuring device. A measuring device, however, must load the circuit down and, to some extent affect the frequency. As a mathematician I can use positive feedback to give me infinite input impedance, but I have the problem of keeping the noise energy finite.

The engineer is not driven into this corner. He has real coils and capacitors producing a straightforward complex frequency. He has two quite separate ways of keeping his signal going. In practical circuits they may get a bit mixed up, but essentially they are totally different. In one method the maintaining circuit can be analyzed into a negative resistance which is used to balance out the resistances in the practical $L C$ circuit. Various sorts of a.g.c. circuit are used so that this balance is maintained at a particular level of oscillation. It sounds very easy but it can be a life-time career. Some of the rules are easy to write down. The system must be linear: the negative resistance must appear in the circuit in the same way as the circuit positive resistance. This last rule is normally concealed in a sea of mathematics. The reason behind it is simple. If the circuit loss is, for example, the wire resistance of a coil, and we have a parallel tuned circuit with a parallel maintaining negative resistance, the negative resistance must balance out an admittance term $R /\left(R^{2}+\omega^{2} L^{2}\right)$. The self-adjusting property allows this, but there is still a term in R in the frequency expression. What happens, in terms of those root diagrams, is that the root is moved bodily sideways to the $j \omega$ axis. Because R is temperature dependent; the frequency will also be temperature dependent. Because the frequency displacement is normally happening as we move round the top of the root locus semicircle the change will not be very big. and if we start with a good circuit Q may not be the most important change. If we

Fig. 1. Simple low-pass filter with high impedance load.
use a series negative resistance and a series $L C$ circuit we should go round to oscillate at $\omega^{2} L C=1$. Now, however, any shunt losses must be transformed to series losses.
A quite different method generates the tuned circuit root frequency itself. This is the way we produce substantial amounts of sine wave power and have done since I don't know when. In simple terms a reversing switch, or even a simple short contact duration switch is used to flip energy into the tuned circuit every half-cycle, every cycle, or even, in frequency multipliers, every n cycles. One common form of this is the familiar square wave inverter with a simple filter.
A class-C oscillator is a fine example of a mix-up. The on period of the amplifier moves the root over into the right-hand half of the plane. If the amplifier saturates, of course, back we go to the left. During the off period the tuned circuit is aware only of its own complex frequency. The great days of the class-C oscillator were the days of the self-biased system, in which the circuit itself settled the amount of each cycle spent in each mode. If anyone had stopped to work it out they would never have built an oscillator.

The use of roots in the complex plane, that is the use of the complex natural frequencies of circuits, introduced a new age in the design of filter and frequency dependent networks. The old school grew up on the work of Campbell and Zobel. This followed on the real beginnings, with names like Kelvin, Heaviside, Pupin. The Great Eastern, black smoke pouring from her funnels, lays the transatlantic cable. The loading coil made it possible, with the valve amplifier, for the great moment. in 1915, when no fewer than three telephone circuits connected San Francisco to New York and Washington. Four wires, strung on poles. More wires. strung on poles, and
by 1937 there were 140 circuits. Wireless World was already being published before it was possible to 'phone across America.

The growth of trunk telephone circuits depended on carrier operation, and this, in turn, depended on filter design. The filter design grew out of the theory of long lines and, in its beginnings, ignored its ends. I suppose that a large number of the filters being built today are still based on the handy summaries of constant $-k$ and m derived sections which are to be found in all the reference books. These are slices from a long chain of similar sections, with reactance all the way through like the town's name in a stick of seaside rock. In the simple theory the source and the load matched the filter. In reality source and load were resistive: the calculations were patched up by the use of mismatch loss. interaction loss and other delicate corrections.
The first step away from the assembly kit was the result of examining the reactance network as a whole. The filter, by itself, showed a set of characteristic frequencies at which the reactance was either zero or infinite. The distribution of poles and zeros determined the overall response. apart from the patches. Two problems remained: the effect of the losses of the elements themselves and the effect of the resistive terminations. Cauer and Bode are the great names of the classic lattice network period. Reading system into the random walk of the historical development it was the need to allow for the losses of practical components which opened up the great leap forward. The theorists of finite losses moved into the complex plane.
The move was a rather timid one. The whole line of roots was moved bodily sideways, and ideally for all the elements the value of $R / L=G / C$ was the same. But the theory had moved from one dimension to two.
Instead of moving from one dimension to two by introducing the resistances associated with each and every reactive component we may just introduce one or two resistances associated with the source and the load. Let us take the simplest circuit worth considering, the simple low-pass network of Fig. I, fed from a generator of impedance R and feeding an infinite impedance load. This is a common situation when the load is in fact a high input impedance amplifier.

If you think of the three components as a voltage divider you can write down the proportionality equation

$$
\frac{V_{1}}{R+j \omega L+1 / j \omega C}=\frac{V_{2}}{1 / j \omega C}
$$

so that

$$
\begin{aligned}
\frac{V_{1}}{V_{2}} & =1+(R+j \omega L) j \omega C \\
& =1+j \omega C R-\omega^{2} L C
\end{aligned}
$$

Of course, I should not have used $j \omega$. That's the equation for response, but I want a function,

$$
G=1+p C R+p^{2} L C
$$

in which p can have any value. If we put $G=0$ we have

$$
L C p^{2}+C R p+1=0
$$

so that

$$
p=\frac{-C R \pm \sqrt{C^{2} R^{2}-4 L C}}{2 L C}
$$

giving two roots, p_{1} and p_{2} :
and $G=\left(p-p_{1}\right)\left(p-p_{2}\right)$.
When we take the special case of $\left(V_{1} / V_{2}\right)$, we see that this corresponds to $p=j \omega$, so that

$$
\frac{V_{1}}{V_{2}}=G(j \omega)=\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right)
$$

In Fig. 2 we see these two poles, p_{1} and p_{2}. We know from our previous discussion that they are complex conjugate, though we see this in the equation above, 100. I have assumed that $4 L C>C^{2} R^{2}$, to get them up off the negative real axis.

The term $\left(j \omega-p_{1}\right)$ is the vector l_{1} in Fig. 2, and l_{2} is, of course, $\left(j \omega-p_{2}\right)$. The response is the product $l_{1} l_{2}$. It is rather easy geometry to see that this can be described by Fig. 3 instead of Fig. 2. One method of proceeding from this point is to do some more algebra to show how we can plot frequency responses using an electrolytic tank. I have seen a good many discussions of the use of this sort of analogue technique over the years but I have never actually come across anyone who really built networks for systems in this way. I am pretty certain that now I never shall: if the network needs that sort of approach you hire a mathematician, or computer time, or both.

The really conscientious reader may be

Fig. 2. The poles for the network of Fig. I.

Fig. 3. Another way of getting the quantilies in Fig. 2.

Fig. 4. Position of poles, and network response, sketched sideways compared with usual form, for Butterworth response.
wondering why we have plodded through to

$$
\frac{V_{1}}{V_{2}}=1+j \omega C R-\omega^{2} L C
$$

all over again. Let us get out our Avometers, and measure V_{1} and V_{2}. Phase angle goes overboard, and all we determine is

$$
\left|\frac{V_{1}}{V_{2}}\right|^{2}=1+\omega^{2}\left(C^{2} R^{2}-2 L C\right)+\omega^{4} L^{2} C^{2}
$$

This is the equation which describes the behaviour of the network as a frequencyselective network. Last month we considered the network as a frequency-dependent one. This distinction is one which can be very real among designers and it can lead to quite serious communication difficulties. Engineers working on radio frequencies use this network, and the slightly more complicated one with a capacitance at each end, as band-pass impedance transformers. They consider it as a kind of tapped tank circuit, and, very often, do all their calculations at a single frequency, the carrier frequency. Sometimes they regard the circuit as a lumped version of a quarter-wave line. The Campbell-Zobel filter man sees it as a lowpass filter, but the element values used in the r.f. coupling circuits indicate very large mismatch effects. In classical filter theory these are exceedingly tedious to work out, and when they have taken charge completely one loses all feel, one doesn't know what is going on. In fact, we are concerned with situations where one important root, p_{1}, is relatively close to the $j \omega$ axis (should we really call this the ω axis?), and the
length l_{1} in Fig. 2 takes complete control.
The filter man would like $\left|V_{1} / V_{2}\right|$ to stay pretty constant up to the cut-off frequency. This would give him a well-defined pass region. Now $\left|V_{1} / V_{2}\right|^{2}$ depends on ω^{2} and on ω^{4}, and if these are small the ω^{4} term is smaller than the ω^{2} term. Put like that it sounds rather a dubious statement. Let us write

$$
\omega^{2} L C=\sigma^{2}
$$

Then

$$
\left|\frac{V_{1}}{V_{2}}\right|^{2}=1+\sigma^{2}\left(\frac{C^{2} R^{2}-2 L C}{L C}\right)+\dot{\sigma}^{4}
$$

Here $\sigma^{4}<\sigma^{2}$ so long as $\sigma<1$. We can guess that to make the coefficient of σ^{2} zero will give us a rather simple way of holding $\left|V_{1} / V_{2}\right|$ near unity over a limited range of frequencies. For this condition,

$$
C^{2} R^{2}=2 L C, \quad \text { or } \quad \frac{L}{C}=\frac{R^{2}}{2}
$$

We now have

$$
\left|\frac{V_{1}}{V_{2}}\right|^{2}=1+\omega^{4} L^{2} C^{2}
$$

This is the simplest form of what is called a Butterworth response. The roots of the basic function

$$
\begin{aligned}
G & =1+p C R+p^{2} L C \\
\text { are at } p & =\frac{-C R \pm \sqrt{C^{2} R^{2}-4 L C}}{2 L C}
\end{aligned}
$$

and if we substitute $C R^{2}=2 L$ we get

$$
\begin{aligned}
p & =\frac{-C R \pm \sqrt{-C^{2} R^{2}}}{2 L C} \\
& =\frac{1}{2 L C}[-C R \pm j C R]
\end{aligned}
$$

These two poles lie in the positions shown in Fig. 4. Suppose now that we add a capacitance across the input end of the network. In the p form the ratio V_{1} / V_{2} is now:
$\frac{V_{1}}{V_{2}}=1+p\left(C_{1}+C_{2}\right) R+p^{2} L C_{2}$

$$
+p^{3} L C_{1} C_{2} R
$$

The Butterworth, or maximally flat, response takes the form, in terms of ω, of

$$
\left|\frac{V_{1}}{V_{2}}\right|^{2}=1+g^{2} \omega^{6}
$$

It is not an insuperable task to substitute $j \omega$ for p, separate out the j terms, square up and solve the equations. There will be two of these, to make the ω^{2} and ω^{4} terms vanish. We can proceed in a rather different way. We are substituting $j \omega$ for p, and so the network response function could be written

$$
1+g^{2}(p / j)^{6}
$$

This is an expression which must break down into a group of factors of the form $\left(p-p_{k}\right)$. To find the values of p_{k} we write
or

$$
\begin{aligned}
\left(1+g^{2}(p / j)^{6}\right) & =0 \\
g^{2}(p / j)^{6} & =-1
\end{aligned}
$$

Here the mathematician enters. We know that if
we have $\quad x= \pm j$.

What happens if $x^{3}=-1$, or $x^{4}=-1$, or $x^{n}=1$? It is not enough to say that $x=-1$ if $x^{3}=-1$. We expect three roots. The form 1 means unit whatever, but let us take it as a section of a line, a unit movement in a defined direction, and -1 is the same length, the other way. Displaced, or rotated, we say, by 180°. For $x^{2}=-1$ we take two bites, moving 90° and then 90° (or $-90^{\circ}+$ -90°). For $x^{3}=-1$ we can take (-180°) $+\left(-180^{\circ}\right)+\left(-180^{\circ}\right)$, one and a half times round the compass. We can also try $60^{\circ}+$ $60^{\circ}+60^{\circ}$ round, and go round clockwise or anticlockwise. For higher orders, x^{n}, we are like a legendary north country figure, whose hat-band went nine times round and wouldn't tie. In case you are confused, he was going to a funeral. In fact, if we settle for the even functions, with

$$
\begin{aligned}
g^{2} x^{2 n} & =-1, \quad \text { we get } \\
x_{k} & =j g^{-1 / n} \exp (j(2 k-1) \pi / 2 n)
\end{aligned}
$$

where k is $1,2 \ldots 2 n$.
These roots are arranged round a circle of radius $g^{-1 / n}$, and if we collect only the roots for $k \leqslant n$ they all lie in the left-hand half of the plane. For reasons of symmetry the absolute value of the product of the factors produced by the right-hand roots is equal to that of the left-hand roots. We therefore get a set
$\left(p-p_{1}\right)\left(p-p_{2}\right) \ldots\left(p-p_{n}\right)=\mathrm{II}(p)$
and

$$
\left|1+g^{2} \omega^{2 n}\right|=g^{2}|\operatorname{II}(j \omega)|^{2}
$$

This means that $g|I I(j \omega)|$ can be taken to give us, in the form we are using, $\left|V_{1} / V_{2}\right|$. And as $\left|1+g^{2} \omega^{2 n}\right|$ is the Butterworth response term, the roots are found from the equation for x_{k}. Since it is not too easy to think in terms of the exp function, we convert it to sines and cosines:

$$
\begin{aligned}
& p_{k}=g^{-1 / n} {[-\sin (2 k-1) \pi / 2 n} \\
&+j \cos (2 k-1) \pi / 2 n] . \\
& 1 \leqslant k \leqslant n
\end{aligned}
$$

We, at the moment, are interested in the case $n=3$, and so we have angles of

$$
\begin{array}{rll}
\text { for } k=1 & 2 & 3 \\
\text { angle }=\pi / 6 & 3 \pi / 6 & 5 \pi / 6 \\
& 30^{\circ} & 90^{\circ}
\end{array}
$$

All the roots, including those in the righthand half of the plane, are shown in Fig. 5. Compared with Fig. 4, we see that adding one reactance we have added one root. Symmetry about the vertical axis implies that with 2×3 roots we must get one of the left-hand plane roots on the real axis.
Although this is still a pretty simple network it can be used to give some insight into circuit behaviour. The root p_{1} in Fig. 5 is closer to the frequency axis than is p_{1} in Fig. 4. The circuit, so far as this pole (and its mate p_{3}) is concerned, is more like a tuned circuit. It has, in other language, a higher Q. The root p_{2}, however, corresponds to an $R C$ circuit. The roots taken together are the combination of an underdamped circuit and an overdamped circuit. This is a technique well-known in i.f. amplifier design. Indeed, there are two different

Fig. 5. (a) The six roots, of which only p_{1}, p_{2} and p_{3} are needed, for studying $\left|V_{1} / V_{2}\right|$ for network (b).
ways of getting the effect. One is by choosing the Q values of the i.f. transformers, which are all tuned up to the same frequency. The other is by stagger tuning. In staggered systems each stage produces one root, and they are set around a semicircle whose centre is at the band centre and whose radius is the 3 dB bandwidth. Design is obviously very easy now. For a twenty stage monster, plot out the 20 roots, find the frequency and damping for each and tune them up individually. All you need is sine and cosine tables.
The modern thing, as you cannot help knowing, is active filters. I showed last month how a simple two-stage amplifier with two $R C$ circuits could have its roots moved about in the left-hand half of the plane by varying the feedback. Each circuit of this kind can be used to put a pair of roots wherever we like. By tandem connection you can have all the roots you want, where you want. I do not propose to enter the active filter area except to point out that it does rely much more on root-thinking. For younger readers I must add that it is only really sound engineering now that cheap amplifiers are possible. Around 1950, with the transistor just on the way, a rough cost of using a valve was $£ 20$, allowing for power consumption and replacements over the life of the equipment. In present terms that would be about $£ 50$. I have not done the sum for a transistor, but I will guess $£ 0.5$. Amplifiers are much cheaper, nickel is much dearer, and inductors are no longer the economical answer.
Let us go back to our simple low-pass filter. For the designer the advantage of the Butterworth response is obvious: it gives some very easy mathematics. Unfortunately

Fig. 6. Typical 'good' filter characteristic.
the customer, whether he is an outsider or just another section or individual inside the same organization, does not really care if the filter designer has an easy life. He wants the best performance, even if that means that you get the best headaches. He knows that a rather wider pass-band for a given tolerance across the band will be obtained if the response rises slightly towards cut-off and then drops away. A very coarse picture of this appeared as Fig. 10(a) in last month's article. Fig. 6 shows a response with a number of peaks and valleys in the passband. The important thing to notice is that it is fitted firmly into the space between the zero loss line and the $\left|V_{1} / V_{p}\right|$ line. The object of the exercise is to use the tolerance as efficiently as possible. It is quite fair to use a slightly different version of this, the section to the right of the point Q, and the special case we have been looking at has only one-what shall we call it, half-cycle? -to the right of Q.

What about the mathematics? It was done for us nearly 100 years ago. The functions we want are called the Tchebyscheff polynominals, and they are good, not only for designing networks, but also for promoting vigorous argument, not about mathematics but about spelling. The Russian letter Ψ is the problem, at the beginning, and problems go right through to the end: is it "eff" or "ev"? My own guess is that confusion really set in when the French speakers in St. Petersburg turned into the English students in Leningrad. Whether you are old-fashioned, like me, or a modern who writes Chebishev, many of the texts write $T_{n}(x)$ for the function. The moderns are thus left with the sort of confusion I feel when old Mr. Weller calls out "Spell it with a wee, my lord".

When we turn to using the T function we write the basic equation in the general form

$$
\left|\frac{V_{1}}{V_{2}}\right|^{2}=\left\{1+g^{2}\left[T_{n}(\omega)\right]^{2}\right\} N_{0}^{2}
$$

Where N_{0} is the value of $\left|V_{1} / V_{2}\right|$ at $\omega=0$. All we need to know now is what the form of $T_{n}(\omega)$ will be.
By an analytical approach we get

$$
T_{n}(\omega)=\cos \left(n \cos ^{-1} \omega\right)
$$

which is neat but not frightfully convenient.
Fortunately the expression has been expanded for us, in quite a number of publications. As a polynominal,

$$
\begin{aligned}
T_{n}(\omega) & =2^{n-1}\left[\omega^{n}-\frac{n}{2^{2}[1} \omega^{n-2}+\right. \\
& \left.\frac{n(n-3)}{2^{4}[2} \omega^{n-4}-\frac{n(n-4)(n-5)}{2^{6}\lfloor 3} \omega^{n-6}\right]
\end{aligned}
$$

and so on until the term ω or ω^{0} is reached. For our simple little filter, $n=4$, and we have

$$
\begin{aligned}
T_{4}(\omega) & =8\left(\omega^{4}-\omega^{2}+\frac{1}{8}\right) \\
& =1-8 \omega^{2}+8 \omega^{4}
\end{aligned}
$$

If $\omega=\mathbf{0}$ this is unity: if ω is large, it is very large indeed: it has one minimum at the response peak, and to find this we differentiate, and get

$$
\begin{aligned}
32 \omega^{3} & =16 \omega \\
\omega^{2} & =\frac{1}{2}
\end{aligned}
$$

Then $T_{4}(0.7)=1-4+2=-1$, as we might have guessed from the form $T_{n}=\cos \left(n \cos ^{-1} \omega\right)$.

The coefficient g fixes the size of the ripple and if we choose a value of g we can write

$$
\begin{aligned}
& 1+\omega^{2}\left(C^{2} R^{2}-2 L C\right)+\omega^{4} L^{2} C^{2} \\
= & N_{0}\left[1+g^{2}-8 g^{2} \omega^{2}+8 g^{2} \omega^{4}\right] .
\end{aligned}
$$

Solving this equation is always tedious, because specification writers will choose round numbers of decibels, giving very unround values of g. There are, however, charts and tables available. We, in thinking about roots, will write $\omega=p / j$. We use the equation

$$
T_{n}(\omega)=\cos \left[n \cos ^{-1}(p / j)\right]
$$

and since for the roots

$$
1+g^{2}\left(T_{n}\right)^{2}=0
$$

we must have $T_{n}= \pm j / g$, giving us

$$
\cos \left[n \cos ^{-1}(p / j)\right]= \pm j / g
$$

If we now put $\cos ^{-1}(p / j)=\alpha-j \beta$ we can solve this equation. I do not propose to write down all the mathematics, even though it means that you must either do it yourself or take the conclusions on trust. The conclusions are that the roots lie on an ellipse. This seems fair enough when you think that the circle is just a special kind of ellipse, in which the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

is simplified by making $a=b$ and losing one control factor. The position of the roots on the ellipse is found by the following procedure. We draw a semi-circle of radius

$$
\cosh \left[1 / n \sinh ^{-1}(1 / g)\right]
$$

This looks complicated, but it consists only of things you look up in tables. If, for example,

$$
\begin{aligned}
g & =0.1 \text { and } n=2 \\
\sinh ^{-1} 10 & \simeq 3 \\
\cosh 3 / 2 & =\cosh 1 \cdot 5=2.35
\end{aligned}
$$

We also need, while the tables are open, $\sinh \left(1 / n \sinh ^{-1}(1 / g)\right)$,
and

$$
\sinh 1 \cdot 5=2 \cdot 13
$$

Fig. 7. Butterworth and Tchebyscheff poles.

(b)

Fig. 8. A set of four roots (a), and the circuit (b).

Now we can draw Fig. 7. We mark off the point A at a distance 2.35 and draw the semicircle. Then we mark B at $-2 \cdot 13$. and construct the ellipse. Next, put in the evepnly spaced Butterworth roots round the circle. Finally, draw lines parallel to the α axis to intersect the ellipse at the Tchebyscheff poles. With only a small ripple the ellipse is nearly a circle, and the roots have not moved very far. The more the ripple the flatter the ellipse. The picture for more complicated networks is just as easy to draw. We have two roots in the left-hand half of the plane: if we take $n=20$ we shall get 20 roots, evenly spaced at 9° apart, and it is just as easy to look up cosh $3 / 20$ as to look up $\cosh 3 / 2$.

The active filter designers, free to move their roots about, can equally get the T response. There thus remain two topics needing mention. Let us suppose that we place roots at the four points shown in Fig. 8. The pair p_{1} and p_{2} are positioned on a circle with its centre at ω_{0}. If this is a small circle, on the overall scale, p_{3} and p_{4} are so far away that we can forget them. We can convert the circle into an ellipse, if we wish. In the region not too far from ω_{0} the response shape will be of the kind shown in Fig. 4, except that negative frequencies in Fig. 4 now appear as negative values of $\left(\omega-\omega_{0}\right)$. The design, whether for a B response or a T response, follows the low-pass procedure to establish L and C in the network of Fig. 8(b). When these have been found the centre frequency is moved to ω_{0} by tuning these elements separately to ω_{0} by the additional C and L. Analysis shows that it is not $\left(\omega-\omega_{0}\right)$ we must consider, but

$$
\omega_{0}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)
$$

This correction automatically takes into acçount the effect of p_{3} and p_{4}

A feature of this way of analysing the circuit of a band-pass system is that it
indicates quite clearly why we are liable to get asymmetry with filters of large fractional bandwidth. In a diagram of the scale I have used it is pretty obvious that at $\omega_{0} / 2$ the root p_{3} is just about as important as the root p_{1} but quite a bit more important than p_{4}. There is all the makings of asymmetry in this arrangement.

The networks we have analysed have the constant-k behaviour, the steady rise of attenuation outside the pass-band. To produce the sort of characteristic we normally use we want to add some peaks of attenuation, as we do with m -sections in classical theory. Our roots have been at the zeros of the function $\left|V_{1} / V_{2}\right|$: now we must consider that infinities, the poles, of $\left|V_{1} / V_{2}\right|$. We can actually place these on the frequency axis if we use resistance-balancing circuits, and they will normally be very close to this axis, because we will go for a high Q at the suppression peaks. In the stop band we can go for Tchebysheff behaviour of the inverse kind, with all the troughs at the same level. Again RC networks combined with amplifiers will give us what we want, but now we must be sure that in bringing a root near to the axis we do not let it stray into the right-hand half of the plane.

From this point on the mathematics gets unwieldy. Once that happens the analysis is a formal operation. The object of this article is to work with circuits which are familiar, so that the root technique is seen to work. For complex circuits you need faith, and hard work. I hope I have provided some foundations for the faith.

Books Received

Beginner's Guide to Radio, by Gordon J. King, is an updated (entirely rewritten) version of F. J. Camm's "A Beginner's Guide to Radio". The twelve chapters treat, by simple physical theory, the fundamental principles of electricity and magnetism, radio waves, and modulation. A simple explanation is given of how valves and transistors function in receivers and transmitters. Stereo radio is introduced, and hi-fi reproduction is given a very good explanation, again in very simple terms. A comprehensive list of circuit symbols is given at the front of the book with abbreviations, units, symbols and standard frequency ranges, at the back. Pp. 190 and an index. Price 11 .
Butterworth \& Co. (Publishers) Ltd, 88 Kingsway, London W.C.2.
Telecommunications Pocket Book, edited by T. L. Squires, is written in twelve chapters, each by an expert in the field concerned. An attempt has been made to give a broad outline of each aspect of telephony, television, telex, data communication etc. The first chapter, "Communications in the Modern World: an Introduction", gives coherence to the more specialized chapters which follow. Pp .139 with a 4 -page index. Price $£ 14 \mathrm{~s}$. Butterworth \& Co (Publishers) Ltd, 88 Kings way, London W.C. 2.

Signal Monitoring Networks

Simple design formulae for rapid evaluation of the basic requirements of monitoring systems

by A. E. Crump*

The basic problem of monitoring either a.c. or d.c. signals is, that in order to do so, some energy has to be absorbed by the monitoring device. Thus the presence of a monitor modifies the value of the monitored quantity.
Methods for determining whether a passive monitoring device would be suitable for a given application are described, and also the basic methods for calculating amplifier performance should an amplifier be necessary. The design of a monitor circuit is approached by fixing four of the five interrelated parameters shown below and calculating the fifth.

The interrelated parameters are:
Signal level in bearer (P).
Characteristic impedance of bearer (R_{0}).
Maximum insertion loss tolerable in bearer circuit (l).

Fig. I. (a) Current monitor (passive), (b) equivalent primary circuit; (c) method of introducing gain. The input impedance of the amplifier need not equal R_{L}, but if not, the calculations must be repeated using the input impedance in place of R_{L} in the formulae.

Output level required from monitor $\left(V_{L}\right)$. Load impedance presented to monitor output (R_{L}).
For our purpose P and l are expressed in dB, V_{L} in volts, and R_{0} and R_{L} in ohms.

Current (series) mode

Figure 1(a) shows the arrangement for using a current transformer to produce the necessary output voltage across R_{L}. Figure 1 (b) shows the equivalent impedance of the transformer (r) in series with the bearer circuit.

The insertion loss incurred by the inclusion of r in the signal path can be obtained from the established expression :

Insertion loss

$$
\begin{aligned}
& \quad=\frac{\text { Power in } R_{0} \text { with } r \text { short-circuit }}{\text { Power in } R_{0} \text { with } r \text { in circuit }} \\
& \text { i.e. } \quad l=20 \log _{10}\left(1+\frac{r}{2 R_{0}}\right) \mathrm{dB} .
\end{aligned}
$$

But according to transformer theory $r=\frac{R_{L}}{n^{2}}$,
also

$$
V_{L}=\left(\frac{i}{n}\right) R_{L}
$$

By substitution and transposition we obtain the formulae :

$$
\begin{align*}
& P= \\
& 10 \log _{10}\left[\frac{V_{L}^{2}\left(10^{3}\right)}{\left\{\operatorname{antilog} \log _{10}(1 / 20)-1\right\} 2 R_{L}}\right] \mathrm{dBm} \\
& l=20 \log _{10}\left[1+\frac{R_{L}}{2\left(n^{2}\right) R_{0}}\right] \\
& n=\sqrt{\left[\frac{R_{L}}{2 \cdot R_{0} \cdot\{\operatorname{antilog} 10(1 / 20)-1\}}\right]} \tag{3}\\
& V_{L}=\sqrt{\left[2 \cdot R_{L} \cdot\left\{\operatorname{antilog}\left(\frac{P}{10}\right)\right\}\right.} \\
& \left.R_{L}=\left\{\operatorname{antilog}\left(\frac{l}{20}\right)-1\right\} 10^{-3}\right] \tag{4}\\
& \frac{V_{L}^{2}\left(10^{3}\right)}{2[\operatorname{antilog} P / 10][\operatorname{antilog}(1 / 20)-1]}
\end{align*}
$$

Having the expressions (1) to (5) it is now possible to substitute known parameters and obtain a guide regarding the validity of the requirement in hand.

Example 1. Consider a system similar te Fig. 1(a) in which the signal level of +18 dBm in 75Ω is required to produce 6 V r.m.s. across R_{L}. What transformer turns ratio is required. What is the value of R_{L} required to guarantee 6 V output without exceeding the maximum permissible insertion loss of 0.3 dB ?
\(\left.\begin{array}{rl}P \& =+18 \mathrm{dBm}

R_{0} \& =75 \Omega

I \& =03 \mathrm{~dB}

V_{L} \& =6 \mathrm{~V}\end{array}\right\}\)| From (5) $R_{L}=8.15 \mathrm{k} \Omega$ |
| :--- |
| (preferred value $8.2 \mathrm{k} \Omega$) |
| From (3) $n=39.5$. |

It is possible thus to satisfy the requirement provided that the output load resistance is $8.2 \mathrm{k} \Omega$ and a transformer tums ratio of 39.5 to 1 is used. The high turns ratio precludes use above about 150 kHz because of the practical problems of producing the transformer. The turns ratio would be smaller, of course, if a higher insertion loss figure were permissible.

Example 2. It is required to produce 6 V across a $5000-\Omega$ load without exceeding 0.3 dB insertion loss in the bearer circuit which is 75Ω characteristic resistance. What turns ratio and power level would be required to achieve this?
\(\left.\begin{array}{rl}R_{L} \& =5000 \Omega

R_{0} \& =75 \Omega

l \& =0.3 \mathrm{~dB}

V_{L} \& =6 \mathrm{~V}\end{array}\right\}\)| From (1), minimum power |
| :--- |
| required $=+20 \mathrm{dBm}$ |
| From (3), turns |
| ratio $=30.8$. |

Example 3. It is required to produce a 6 V signal across a $5000-\Omega$ load without exceeding 0.3 dB insertion loss, for a signal level of 0 dBm in 75Ω. Is this possible?

From (3), $n=952$. This is an unrealistic transformer ratio, therefore some amplification is necessary. Now assume that a practical ratio for the transformer at the frequency under consideration is N, then the current amplification required is $\delta=\frac{952}{N}$ and the system would appear as

Fig. 2. (a) Voltage monitor (passive); (b) method of introducing gain. As is the case of the current monitor in Fig. 1, if the impedance of the amplifier does not equal R_{L} the calculations should be repeated using the input impedance in place of R_{L}.
in Fig. l(c) where $\delta=$ current gain of amplifier.

Voltage (shunt) monitoring

The criterion here is to present a high impedance across the bearer rather than a low impedance in series with it.

Referring to Fig. 2, the insertion loss due to the addition of R can be expressed as:

$$
\begin{equation*}
l=20 \log _{10}\left(1+\frac{R_{0}}{2 R}\right) \mathrm{dB} \tag{6}
\end{equation*}
$$

Proceeding in the same manner as in the series case:

$$
\begin{align*}
R_{L} & =\frac{n^{2} R_{0}}{2[\operatorname{antilog}(l / 20)-1]} \tag{7}\\
P & = \\
10 & \log _{10}\left[\frac{\left(10^{3}\right) V_{L}^{2}}{2 R_{L}\{\operatorname{antilog}(l / 20)-1\}}\right] \mathrm{dBm} \tag{8}
\end{align*}
$$

$n=\sqrt{\left[\frac{2 R_{L}}{R_{0}}\left\{\operatorname{antilog}\left(\frac{l}{20}\right)-1\right\}\right]}$
$V_{L}=\sqrt{\left[\operatorname{antilog}\left(\frac{P}{10}\right)\left\{\operatorname{antilog}\left(\frac{l}{20}\right)-1\right\}\right.}$

$$
\begin{equation*}
\left.2 R_{L}\left(10^{-3}\right)\right] \tag{10}
\end{equation*}
$$

The versatility of these formulae is comparable to that of the "series" expressions and examples could be given as before. Let us however consider a case where a passive device is insufficient, i.e the voltage analogy to example (3).

Example 4.

$$
\left.\begin{array}{rl}
R_{0} & =75 \Omega \\
R_{\mathrm{L}} & =5000 \Omega \\
l & =0.3 \mathrm{~dB} \\
V_{L} & =6 \mathrm{~V} \text { r.m.s. } \\
P & =+10 \mathrm{dBm}
\end{array}\right\} \quad \begin{aligned}
& \text { From }(9) n=2.16 \\
& \text { From }(10) V_{L}=84 \mathrm{mV}
\end{aligned}
$$

A voltage amplifier is necessary with input
impedance of 5000Ω and voltage gain of $\frac{6 \mathrm{~V}}{84 \mathrm{mV}}=71.4$.

Effect of monitoring on return loss

Now the return loss $=20 \log _{10} \frac{R_{0}+Z}{R_{0}-Z}$ or $20 \log _{10} \frac{R_{0}+Z}{Z-R_{0}}$ (dB) where
$R_{0}=$ Characteristic resistance of bearer
$Z=$ load resistance
$\left\{\right.$ For series case $\left.Z=R_{0}+(r+j x)\right\}$
$\left\{\dagger\right.$ For parallel case $\left.Z=R_{0}\|R\|(j x)\right\}$
\therefore for current monitoring (ignoring reactance):

$$
\text { return loss }=20 \log \left(1+\frac{2 R_{0}}{r}\right)(\mathrm{dB})
$$

and for voltage monitoring (ignoring reactance):

$$
\begin{equation*}
\text { return loss }=20 \log \left(1+\frac{2 R}{R_{0}}\right)(\mathrm{dB}) \tag{12}
\end{equation*}
$$

†The symbol $\|$ is coming into use with the meaning "in parallel with". Thus, $R_{1} \| R_{2}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$.

Announcements

The British Amateur Electronics Club is holding its fifth annual exhibition of electronic games from July 25th to August 1st at the Shelter on the Esplanade at Penarth, Glamorgan.

The two British subsidiaries of Tektronix Inc.Tektronix U.K. Ltd and Telequipment Ltdbecame a single company, Tektronix U.K. Ltd, on May 1st with two operating units. The Telequipment Division, with Bob Groom as managing director, will remain at Southgate and the Tektronix Division, with Harry Sellers as managing director, will continue to operate from Harpenden.
Lyons Instruments Ltd, Hoddesdon, Herts, have been appointed exclusive U.K. representatives for Frequency Electronics Inc, of Long Island, New York, and their subsidiaries Atomichron Inc, and FKS Communications Inc. Frequency Electronics design and manufacture high-stability frequency standards, digital clocks, digital phase comparators, standard frequency distribution amplifiers and a range of high-stability crystal oscillators. Lyons Instruments have also been appointed exclusive U.K. representatives for TAU-TRON Inc, of Massachusetts. U.S.A., manufacturers of a range of data generators and digital signal generators.

Techmation Lid, 58 Edgware Way, Edgware, Middx HA8 8JP, have been appointed sole agents in the U.K. and Eire for the range of silicon PIN photodiodes and light measuring instruments manufactured by United Detector Technology, of Santa Monica, California.
Data Recognition Ltd has appointed Teleprint GmbH of Frankfurt, as exclusive distributor
in West Germany for their optical mark reading equipment and systems.

The newly formed Hitachi Sales (U.K.) Ltd, of 10th Floor, Winchester House, London Wall, London E.C.2, has announced the cessation of the exclusive U.K. distributorship of Hitachi radio receivers by Lee Products.
The electronics division of Union Carbide Ltd has agreed to sell to Solidev Lid (the U.K. subsidiary of Solitron Devices Inc.) their semiconductor operation based at Aycliffe. Co. Durham.

GEC-Elliott Space and Weapon Systems Ltd, will in future be known as Marconi Space and Defence Systems Lid.
Pye of Cambridge Ltd are to establish a marketing company, Pye Business Communications Ltd, to sell, hire and service a comprehensive range of audio and video products.

West Hyde Developments Ltd has moved to new works and sales offices at Ryefield Crescent. Northwood Hills. Northwood. Middx HA6 INN. Tel: Northwood $24941 / 26732$.
Flann Microwave Instruments Ltd, of Kingston-upon-Thames, Surrey, have moved to a new factory and laboratories at Dunmere Road, Bodmin, Cornwall. Tel: Bodmin 3161.
Hayden Laboratories Ltd, East House, Chiltern Avenue, Amersham, Bucks, have opened an audio equipment showroom, despatch and service department at $12 / 13$ Poland Street, London WIV 3DE. Tel: 01-734 3748.

The communications division of Redifon Ltd, has developed a 100 W s.s.b. military radio station, and an order for the Royal Air Force, valued at $£ 156,000$ has been completed. The radio station is all solid-state and designed for mobile or transportable use.
Marconi Instruments Ltd has received an order valued at approximately $£ 80,000$ from the Post Office to supply pulse-code modulation test equipment. The order includes pattern generator and selective level measuring sets and regenerator testers.

The South African Post Office has placed an order with Plessey for the supply of eight 10 kW h.f. transmitters. The transmitters are self tuned and cover the frequency band $2-30 \mathrm{MHz}$ and are intended for point-to-point and ground-to-air operation.

The Marçoni Aeronautical Division has been awarded a contract worth more than $£ 250,000$ by the Yugoslav Air Force for the installation of AD370 automatic direction finders.
F. C. Lane Electronics Lid, has moved from Albion Road to Slinfold Lodge, Horsham, Sussex. Tel: Slinfold 661.
U.K. Solenoid Lid, of Hungerford, Berkshire, manufacturers and distributors of Blue Line rotary switches have opened a London office at Bondway House, 3/9 Bondway, S.W.8. Tel: 01-735 8859.

The Tripletone Manufacturing Co. Ltd, has moved from 241a The Broadway to Factory No.I. 138 Kingston Road. Wimbledon. London S.W.19. Tel: 01-542 1189.

Farnell-Tandbere Lid, has moved to Farnell House, 81 Kirkstall Road, Leeds LS3 IHR. Tel: Leeds 35111 .

Mordaunt-Short Ltd, has moved from London, to The Courtyard, Heath Road, Petersfield, Hants. Tel: Petersfield 4761.

New Products at the I.E.A. Exhibition

The International Instruments, Electronics and Automation exhibition held at Olympia, London, from 11th-16th May attracted 950 exhibitors with more than 20% coming from overseas. In a statement at the close of the exhibition, chairman William Logan described it as "yet again a record breaker". He was referring to the overseas attendance figures which were 9,658 . Total attendance was fractionally down on 1968 at 110,266 . Opened officially by Mr. Anthony Wedgwood Benn, Minister of Technology, the show was looked to by British companies to give a boost to business in the electronics export trade. Computer manufacturers in particular, who boast a growing export output, had millions of poundsworth of equipment on display. These were mostly medium or small size computers, in the $£ 50,000 £ 120,000$ cost bracket, designed for process and production control. Computer aided design was featured by many exhibitors.

A general feature of the many types of measuring instruments on display was their high order of accuracy, a requirement increasingly called for by industry. The demand too for professional class batteries to power the growing number of self-contained instruments and compact communications equipment was met by several exhibitors. Rechargeable batteries are in big demand and a German company was showing a conventional lead-acid accumulator in a form as versatile as an ordinary dry battery. It will also withstand gross ill-treatment. The widening use of electronics in medicine was evidenced by analytical equipment, and instruments for early warning of incipient tumours and high-speed blood sampling. Developments in devices and components for consumer use underlined the way industry is working towards cheaper and more reliable domestic colour receivers and transmitters. There were also several new materials such as self-lubricating plastics and new laminates for printed circuits.
Forty-five American companies with the backing of the U.S. Department of Commerce were combined in a large United States exhibit. Although most of these had contributed to the Apollo space programme. they were said to be taking a "hard sell" approach to the European market and were not engaged on a "national prestige" exercise. "The I.E.A. is a highly effective merchandising device," we were told by their organizers. So much was to be seen that to attempt a general survey of new equipmert was far too intimidating. Instead, we have selected a few of the items which are likely to be of particular interest to our readers, brief details of which are given in the pages which follow.

Miniature Tape Recorder

The world's smallest two-hour tape recorder was the claim made by AIM Electronics for the feature exhibit on their stand. This miniature tape recorder

combines many conventional recorder facilities, such as fast forward wind and fast and slow rewind, in a case measuring only $80.3 \times 122.5 \times 28 \mathrm{~mm}$ and weighing 468 g . By means of a signal operated clip-on unit spasmodic readings can be recorded over a period as long as two years without attention. The recorder is particularly suitable for data collection in arduous environments or small places. It has a remote on /off switch and automatic switch-off when the tape runs out. Tape reels are 56 mm in diameter and tape speed is $24 \mathrm{~mm} / \mathrm{s} \pm 3 \%$. Frequency range is 300 Hz to 3 kHz ; wow and flutter better than 1.2%. Input is via a $5 \mathrm{k} \Omega$ microphone and normal speech can be recorded within a range of 6 metres. External connections are made via screw-in jacks. AIM Electronics Ltd, P.O. Box 10, Cambridge.
WW 328 for further details

Resistor Kit

Electrosil were showing their C3 resistor (the smallest glass-tin-oxide) in a designer's pack. The new kit, made in Perspex, measures $380 \times 100 \times 65 \mathrm{~mm}$ and contains 600 resistors in a range of 30 values from 10Ω to $150 \mathrm{k} \Omega$. The resistors are held in clearly labelled tubes making for simple selection of the required component. Electrosil Ltd, Pallion, Sunderland, Co. Durham.
WW 327 for further details

Measuring Amplifier, Filter and Frequency Analyser

Brüel \& Kjaer, Denmark, has introduced a new series of measuring amplifiers and octave/third-octave filters. The system consists of the measuring amplifier type 2606, the octave/third-octave filters types 1614 and 1615 , and the frequency analyser type 2113 which is a combination of the type 2606 and the type 1615. The measuring amplifier and the frequency analyser have a sensitivity of $10 \mu \mathrm{~V}$ for full deflection. A new rectifier gives correct r.m.s. indication for signals with crest factors up to 40 . Two indicators light up if the amplifiers are overloaded and allowable crest factor is exceeded. Interchangeable scales give direct reading of both sound and vibration levels with all B \& K accelerometers and condenser microphones. An impulse measuring facility with maximum hold enables impulse sound measurements to be made to the proposed I.E.C. standards. All four weighting networks, A, B, C and D, are built-in. The two new bandpass filter sets, of which the 1615 is included in the analyser type 2113 , also have new features. Frequency range for the type 1614 filter is from 2 Hz to 160 kHz and for the 1615 filter is from 22.4 Hz to 22.4 kHz . Both filter sets are in accordance with the I.E.C. 225-1966 and the U.S.A.S.I. S1.11-1966 class III filters. This means they have a very flat passband, within $\pm 0.25 \mathrm{~dB}$; and a very high damping outside the passband, better than 75 dB at 5.2 times the centre frequency. The filters below 200 Hz are made as active
filters. All filters can be scanned automatically with the B \& K level recorder type 2305 for automatic recording of sound-vibration and other spectrograms. B \& K Laboratories Ltd, Cross Lances Road, Hounslow, Middx.
WW 320 for further details

Digital-to-synchro Converter

Analogue servomechanisms using synchros may be controlled from digital computers, or other equipment producing pulses by means of a digital-to-synchro converter introduced by Moore Reed. The device accepts 11-bit binary number pulses, in serial or parallel form, representing the desired angular position of the synchro shaft. It converts each number, in a time of 20Ω, to a three-phase synchro signal that is proportional to the digital input and is also related to the reference signal of the analogue servo system (50 , 60 or 400 Hz sinewave, 26 or 115 V r.m.s.). Each binary increment represents approximately $10 \frac{1}{\frac{1}{2}}$ minutes of arc in shaft rotation. Digit pulse levels at the input: logic " 1 " is 5 V ; logic " 0 " is 0 to +0.5 V .

The converter can be made available as a number of printed circuit cards for wiring into equipment, or as a complete chassis-mounted assembly already wired up and operating. Power supply lines required are +15 V and -15 V d.c., 1.2 A each line. Moore Reed and Company Ltd, Walworth Industrial Estate, Andover, Hants.
WW 315 for further details

Super Megohmmeter

British Physical Laboratories were showing a super megohmneter, model RM170, covering resistance values of from $500 \mathrm{k} \Omega$ to $1000 \mathrm{~T} \Omega *$ at 500 V test voltage in 17 ranges. It employs an amplifier with m.o.s.f.e.t. input and several i.cs and is produced in modular construction. Basic resistance range is $100 \mathrm{k} \Omega-2 \mathrm{M} \Omega$ at 100 V test voltage with multipliers of $\times 3, \times 10, \times 30$, $\times 100 \ldots \times 10^{8}$. The RM170 will read currents from $0-10 \mathrm{pA}$ to $0-1 \mathrm{~mA}$ in 17 ranges. Here the basic range is $0-10 \mathrm{pA}$ $\left(10^{-12} \mathrm{~A}\right)$. Test voltage is $5-500 \mathrm{~V}$ d.c. and measurement time 100 ms ($>\operatorname{lnA}$ or $<0.5 \mathrm{~T}$ at 500 V) and $5 \mathrm{~s}(<100 \mathrm{pA}$ or $<5 \mathrm{~T} \Omega$ at 500 V). A special feature is a built-in go/no-go lamp limit indication with an output voltage accessible for driving automated test systems. A selector switch enables earthed or unearthed samples to be measured. The instrument is fully protected against any overload that may occur as a result of use on incorrect range. Operation is from $110-125 \mathrm{~V}$ or $200-250 \mathrm{~V}$ $50 / 60$ a.c. mains. Dimensions 330×210 $\times 140 \mathrm{~mm}$. British Physical Laboratories, Radlett, Herts.

WW306 for further details

FAM Colour Adaptor

Readers will be familiar with the characteristics of PAL, N.T.S.C. and SECAM colour television systems but may know little of another system called FAM (frequency-amplitude modulation) which was developed by IRT, Munich, and was once a contender for the European broadcast standard. This system, however, has been adopted by Ampex for a colour adaptor developed by the company for use with their $1-$ in helical scan
applied to an f.m. detector and an a.m. detector recovering the respective V and U signals. Chrominance information is removed from the Y signal by a delay line notch filter with maximum attenuation at 2.65 MHz , and the three signals (Y, V and U) are fed to a matrix producing $R C B$ outputs. Because of the restricted luminance bandwidth, the loss in picture resolution is compensated by a crispening technique which enhances outline detail.

As supplied, the FAM colour adaptor is capable of working on $525 / 60$ or $625 / 50$

videotape recorders. The unit cost about $£ 625$ and its chief merit is that it will provide a colour facility on systems which are normally suitable for monochrome transmissions only because of bandwidth restrictions and poor phase response.
$R G B$ signals entering the encoder are converted into a luminance signal \boldsymbol{Y}, a red difference signal $V(R-Y)$ and blue difference signal $U(B-Y)$. Low-pass filters restrict the bandwidths to 2 MHz for the Y signal and 0.7 MHz for the U and V signals. The
standards and synchronizing pulses of broadcast or industrial type without the need for switching or adjustment. It will accept $R C B$ inputs with or without synchronizing pulses; with non-composite inputs, an external sync input is required. $R G B$ outputs are composite only and an external sync output is provided. Unlike established systems, the FAM sub-carrier is not a function of the line frequency so that it is independent of line and field standards. Although the carrier frequency

V signal is applied to a frequency modulator (centre frequency 2.65 MHz) and the f.m. signal is then amplitude modulated by the U signal, and added to the luminance signal. The resulting coded signal occupies a total bandwidth of only 3 MHz .

In the decoder no phase-sensitive circuits are required. The chrominance information is separated by a bandpass filter with 6 dB points at 2.1 and 3.9 MHz and is then
and bandwidth specifications have been chosen for the Ampex 1-in helical scan recorders, these standards can be varied to suit narrower or wider bandwidths, where available. The FAM encoded signal is not monochrome compatible. That is, an FAM recorded tape cannot be played through a black and white monitor. Ampex Great Britain Ltd, Acre Road, Reading, Berks. RG20QR.
WW 301 for further detalls

Bright Display Tube

Included in a new range of c.r.ts on the M-O Valve stand was model 2800 A , a

280 mm diagonal data display tube operating at 8 kV and using P39 phosphor to give a bright display down to 30 Hz repetition rate. The manufacturers claim that the electron gun and focusing system design is capable of giving better resolution than conventional c.r.ts of similar size and brightness. The spot has a sharp edge due to non-gaussian distribution of electrons in the beam and resolution at the edge of the display is improved by a reduced beam diameter. This company was also showing several microwave products including a rugged, pulsed, low inter-line noise tunable X-Band magnetron with a rapid warm-up cathode. This was type E3320 which operates at a very low voltage-typically $8-900 \mathrm{~V}$ and produces up to 300 W peak power. The tuning range is $\pm 25 \mathrm{MHz}$. The M-O Valve Co. Ltd, Brook Green Works, London W. 6.
WW310 for further details

Telemetry System for Process Control

A fully comprehensive telemetry system for industrial data acquisition and remote supervisory control was given its first showing by Kent Instruments. Developed for applications such as petrochemical processing, public utilities and power generation, the telemetry system, designated Dataflex, is claimed to offer

economy and flexibility through the use of modern modular components. It is compatible with all modern process control instrumentation and with Kent's K70 computer system. Described as a digital time-division multiplex system, Dataflex incorporates remote control, supervision and monitoring of physical variables between a central control position and up to 64 separate outstations. Each outstation will be basically identical having seven plug-in circuit boards and wired to take additional modules as required. The master station has similar plug-in modules. Information, event signals and commands can be transmitted over Post Office or private lines and u.h.f. radio links. The speed of the system can be $100,200,600$, 1200 or 4800 bauds through data transmission modems or by direct injection into the transmission line via line drivers. Kent Instruments Lid, Biscot Road, Luton, Beds.
WW 308 for further details

Monolithic Crystal Filters

Monolithic crystal filters with channel spacings of $50,25,20$ and 12.5 kHz available from ITT Components Group Europe at Harlow, offer 90 dB stop-band discrimination. The common input and output impedance for all channel spacings is 910Ω in parallel with 25 pF . The standard case sizes are 901 and 923.

The 923 case may be ordered with isolated earth or non-isolated earth as desired. ITT Components Group Europe, Quartz Crystal Product Division, Edinburgh Way, Harlow, Essex.
WW 317 for further details

Tunable Gunn-effect Oscillators

A Gunn-effect oscillator with an output power greater than 5 mW and capable of being electronically tuned from 7 to 12.4 GHz was shown by Microwave and Electronic Systems. The tuning is achieved by means of an yttrium-irongarnet sphere magnetically biased to resonance, in which condition it is electrically equivalent to a shunt resonant circuit. There is an isolator on the output of the oscillator, allowing the oscillator to "look at" open- or short-circuited loads

without deterioration in performance. Other similar tunable oscillators available from the company have tuning ranges of $4-8 \mathrm{GHz}$ and $12-18 \mathrm{GHz}$. Microwave and Electronic Systems Ltd, 66 Tilehurst Road, Reading, Berks. RG3 2LU.
WW 316 for further details

Industrial Semiconductors

New semiconductor devices exhibited by Mullard included four f.e.ts intended for switching applications and three dual-in-line packages containing four discrete transistors. Three of the f.e.ts, types BSV7880, are n-channel devices that are electrically symmetrical and have very low "on" resistance and extremely high "off" resistance. Maximum drain-to-source voltage is 40 V . The fourth, type BSV81, is a depletion-type, insulated-gate device in a metal envelope with the substrate connected internally to the case. Because of its very high "off" resistance ($>10 \mathrm{G} \Omega$) it is particularly suitable in applications where extremely low leakage currents are important during the "off" periods. The three new multiple solid-state devices on display contained four transistors of the same type, matched for gain, within a 14 lead d.id. encapsulation. This facilitates the layout of printed boards designed for use with i.cs. The transistors are not interconnected and can be used as discrete components. The three devices are development types 272BC7, 273BSX and 274 BC 7 . They contain four BC107, four BSX 19 and four BC177 transistors respectively.

Among piezoelectric material exhibited was a sonic detector type MB4013 which is intended for use in remote control systems operated by sound waves. It has a resonant frequency of $6 \mathrm{kHz} \pm 0.4 \mathrm{kHz}$ and a 3 dB bandwidth of 80 Hz (independent of load). Impedance is $7 \mathrm{k} \Omega$ and capacitance at $100 \mathrm{kHz}>4,300 \mathrm{pF}$. The MB4013 consists of a disc of PXE5 material mounted centrally on an aluminium diaphragm held by a zinc ring. Because, unlike other forms of sound detector, the
response is limited to a narrow frequency band, no extra stages are required to filter out signals at unwanted frequencies. The sonic detector is unaffected by moisture, large temperature changes or adjacent magnetic fields. Mullard Ltd, Mullard House, Torrington Place, London W.C.1. WW309 for further details

Power Supplies

Coutant showed two new ranges of power supplies. The GP series of regulated a.c.-d.c. power supplies, comprises a total of 15 units. Within the range, models are available with fixed outputs of 6,12 , 18 or 24 V . This series includes various models with current ratings of 2 to 10 A in the 6 V range and 1 to 10 A in the other three voltage ranges; its three physical sizes (which depend on the rating required) are all based on BS 4318 metric preference dimensions. Other principal specifications for the GP series are a

line regulation of $0.01 \%+1 \mathrm{mV}$; load regulation of $0.03 \%+3 \mathrm{mV}$ (0 to full load); 1.5 mV ripple voltage; re-entrant protection; input a.c. voltages of 220 or 240 V a.c. $\pm 10 \%$, with a frequency range of 45 to 400 Hz ; a temperature coefficient of $0.02 \%+2 \mathrm{mV}$ per ${ }^{\circ} \mathrm{C}$; and nominal d.c. outputs variable $\pm 10 \%$.

Coutant's other new power supply range-the BPS-is an unregulated series offering four voltage ranges (6 , 12. 24 and 48 V) at 2.5 and 10A. Like the GPs, they are available in sizes based on BS 4318, and will operate from an a.c. mains input of 220 or 240 V $\pm 10 \%$; regulation is 20% for a 10 to 100% load variation; ripple is 2 V r.m.s., and the ambient operating temperature range is 0 to $55^{\circ} \mathrm{C}$. Coutant Electronics Ltd, 3 Trafford Road, Reading RG1 8JR. WW 321 for further details

Digital Voltmeter

From Bradley, a small size high performance digital voltmeter, type 173 , will measure from $100{ }_{\mu} \mathrm{V}$ to 1000 V d.c. in four ranges. An additional $\times 4$ range reads down to $25 \mu \mathrm{~V}$, whilst the provision of a 50% over-range facility extends the

maximum reading to 1500 V . Common mode rejection is typically 140 dB at line frequency. The accuracy is $\pm 0.01 \%$ of reading ± 1 digit and the instrument is calibrated by using an unsaturated standard cell as an internal reference. Automatic indication of polarity is incorporated as standard, and display storage is provided to eliminate flicker. 1-2-4-8 coded data output is avilable at the rear panel. The price complete is £340. G \& E Bradley Ltd, Electrical House, Neasden Lane, London N.W.10.
WW 318 for further details

Calibration Sound Source

A pocket-size instrument which produces a standard sound level for calibrating sound level measuring instruments has been introduced in the U.K. by B \& K Laboratories. Made by Brüel \& Kjaer (Denmark), it generates a sound level of 94 dB (this being a dynamic pressure of $1 \mathrm{~N} / \mathrm{m}^{2}$ in SI units) at a frequency of 1 kHz . The calibrator uses a piezoelectric transducer driving a diaphragm which creates the standard pressure level in a coupler chamber. Behind the diaphragm is a Helmholtz resonator which gives the system an equivalent coupler volume of more than $200 \mathrm{~cm}^{3}$ at its resonant frequency. Driving the system at this frequency therefore results in low distortion and makes the generated sound pressure independent of both the static pressure and the equivalent volume of the microphone to be calibrated. B \& K Laboratories Ltd, Cross Lances Road, Hounslow, Middx.
WW 314 for further details

Distortion Factor Meter

Distortion factor meter type DM344 by Sign Electronics Ltd, was being shown on the Aveley Electric stand. This is an instrument comprising two basic sections, a filter and a voltmeter, designed to measure total harmonic distortion in high quality audio amplifiers, recording and transmission equipment. The filter is used to remove the fundamental component of the signal and the voltmeter to measure
the residual harmonic components, and to establish the initial reference level. Frequency range is $20 \mathrm{~Hz}-20 \mathrm{kHz}$ for fundamental in six third-decade bands. Fundamental attenuation is $>80 \mathrm{~dB}$ and second harmonic $<0.5 \mathrm{~dB}$. The harmonic bandwidth is 100 kHz . The instrument residual distortion is $<0.1 \%$ from 10 Hz to 10 kHz . Input impedance is $10 \mathrm{k} \Omega / \mathrm{V}$ or 600Ω, overload protected to 100 V . A veley Electric Ltd, South Ockendon, Essex.
WW 302 for further details

Reference Unit for Lock-in Amplifiers

Lock-in amplifiers, which are signalrecovery devices working on the synchronous detector principle, require a local reference source of oscillation which can be adjusted in frequency and phase. Brookdeal Electronics have produced an instrument called Reference Unit Type 422 which takes an input signal of any wave-shape (frequency range 1 Hz to 1 MHz), uses it to generate a square-wave output (+3 V from 100Ω impedance) and provides means for adjusting the phase of this output signal,

relative to the input signal, in various ways. For example, there are two outputs available, one 90° phase-advanced on the other. Control of phase can be: 0 to 100° variable; 0 or 90° switched; 0 or 180° switched. In addition phase shift may be controlled by an external programming voltage: +1 V to -1 V gives $+90^{\circ}$ to -90°. The input level range is 10 mV to $100 \mathrm{~V}(\mathrm{pk})$ and the input impedance is greater than $10 \mathrm{k} \Omega$. Brookdeal Electronics Ltd, 1 Market Street, Bracknell, Berks. WW 313 for further details

Semiconductor Random-access Memory

Full semiconductor memories for computers are possible utilizing a new device launched by Motorola. This was a mono-

lithic high-speed random access memory with an 8192-bit capacity. Constructed with 1.s.i. techniques, the module combines the low power of p-channel m.o.s. flip-flops for the storage array with the high operating speed of bipolar transistors for the address decoding, word drive sense and digit drive circuits. No complicated tuning is necessary to operate the module which can be cycled every 100 ns . Interface to and from other circuitry is performed at emitter-coupled logic current levels for high speed. It can be easily interfaced to saturated-logic levels with the use of additional interface devices. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.
WW 311 for further details

Transducer Read-out Unit

Designed primarily for use with their T500 series pressure transducers, Southern Instruments introduced a readout unit type M1861. This displays an output voltage on a panel meter which varies

proportionally to input pressure. The meter can be scaled directly in pressure units and the unit sensitivity can be set to suit any transducer without the need for system calibration. A crystal-controlled reference frequency gives good zero stability and an adjustable reference voltage is provided. Zero drift is less than 0.03% f.s.d. $/{ }^{\circ} \mathrm{C}$. Other characteristics include: linearity $\pm 1 \%$, noise level less than 25 mV p-p at output, frequency response better than $0-500 \mathrm{~Hz}(-3 \mathrm{~dB})$. Voltage output is $0-10 \mathrm{~V}$, output resistance $<\mathrm{I} \Omega$. A connection is provided to allow marker pulses to be added into the amplifier output. U.K. price of model 1861 is $£ 96$. It measures $200 \times 290 \times 102 \mathrm{~mm}$ and weighs 1.6 kg . Operation can be from $100 / 125$ or $200 / 250 \mathrm{~V}, 50-65 \mathrm{~Hz}$ mains supplies. Southern Instruments Ltd, Frimley Road, Camberley, Surrey.
WW 307 for further details

Computing Counter

One of a new series of digital instruments shown by Racal was a computing counter, model 9521 . Of half-rack-width dimensions and incorporating t.t.l. integrated circuits, it has a timebase variable in $100-\mu_{\mathrm{s}}$ steps from $100 \mu_{\mathrm{s}}$ to 10 s . This facilitates direct indication of speed, ratio, time interval etc, on the four-digit display. The com-

puting counter is expected to find wide application in the process control industry where it can provide accurate indication of gallons per minute, r.p.m. or similar parameters. Capabilities include frequency measurement $(5 \mathrm{~Hz}-10 \mathrm{MHz})$ on either of two channels, frequency ratio, time interval and totalize. Racal Instruments Ltd, Duke Street, Windsor, Berks.

WW 303 for further information

Modular System for Counting, Storing and Display

For designers of control consoles and panels who need a "building block" system which will relieve them of logic design responsibility, and which does not require rackmounted hardware, Contraves were showing the Codicount system. This provides ten variations in a module 22 mm wide $\times 33 \mathrm{~mm}$ high, dimensionally compatible with the new Multiswitch which is used for preselection of constants such as factors and datum levels. Codicount modules employ i.cs, ensuring short transmission lines. Good frequency response, high reliability and freedom from noise problems is claimed. The logic supply terminal, on each module, is decoupled from line noise by a tantalum capacitor. The circuit components will operate at frequencies well in excess of the module rating of 5 MHz giving an assured safety margin. Function permutations vary from read-out display with decimal input, to bi-directional counter with memory and read-out, or without read-out. Supply voltages required are +5 V for the logic system at $21-105 \mathrm{~mA}$ depending on the module type, and +250 V at 2.2 mA for the read-out tube. The Multiswitch, which is compatible dimensionally with the Codicount, is based on five new types in the existing miniature range. Innovations include improved readability and an enclosure for logic components. Contraves Industrial Products Ltd, Times House, Station Approach, Ruislip, Middx.
WW322 for further details

Variable Filter

A new solid-state variable filter instrument, model EF2, was shown by Barr \& Stroud. This contains two independent low- and high-pass filter channels and it has a frequency range of $0.1 \mathrm{~Hz}-100 \mathrm{kHz}$ in five decades. Attenuation slope can be 36 or $72 \mathrm{~dB} /$ octave and maximum attenuation 75 dB . Bandpass, band stop or band separation functions are selected by switch. Operation is from an integral power supply or external batteries and the output is short-circuit protected. Barr \& Stroud Ltd, Caxton Street. Anniesland, Glasgow W. 3 .
WW 312 for further details

Micro-miniature Potentiometers

Among several new types of potentiometer introduced at the Show by Painton was the 3260 which is only 6.35 mm square and has a power rating of 0.2 W at $70^{\circ} \mathrm{C}$. It is available in a range of eleven values from 10Ω to $20 \mathrm{k} \Omega$, and in two configurations -for side adjustment and top adjustment. Nominal resolution of a 100Ω potentiometer is 0.82% and of a $5 \mathrm{k} \Omega$ device 0.30%. Painton \& Co. Ltd., Kingsthorpe, Northampton.
WW324 for further details

Sub-miniature Choke

A sub-miniature choke, type 550-3399, from Cambion is only 0.25 in long x 0.095 in in diameter, but offers a continuous range of inductance values from 0.1 to $1000 \mu \mathrm{H}$ in 49 discrete steps. Cambion

Electronic Products Ltd., Cambion Works, Castleton, Near Sheffield.
WW 319 for further details

Carrier Servo Generator

Newcomers to the I.E.A. exhibition, Prosser Scientific Instruments used the occasion to announce their A 103 carrier servo generator. This instrument is based on the previous A 100 waveform generator and is intended for a.c. and d.c. servo and system measurements. It provides a two-phase carrier modulated output and is available with either manual or automatic control of phase and frequency. The instrument can also be used as a multiple output function generator for sine, square, ramp and triangle waveforms. Frequency range is 0.0008 Hz to 200 kHz and output voltage $\pm 10 \mathrm{~V}$ peak (maximum). The atteruator has a switched range of $0-10$, $20,30 \ldots 60 \mathrm{~dB}$ with fine control between $20-100 \%$ of switched amplitude. Phase is +280 to -100° on variable phase output, $+90^{\circ}$ on auxiliary output and 0° on main output. Cost of the A103 is $£ 615$. It is illustrated at the top of the page. Prosser Scientific Instruments Ltd, Lady Lane Industrial Estate, Hadleigh, Ipswich, Suffolk.
WW 326 for further details

Portable À.F. Power Meter

Dymar were showing their new portable a.f. power meter type 585. This comprises the basic meter unit, common to ail Dymar instruments, and a plug-in circuit module. A wide power-measuring range is provided in the frequency range $30 \mathrm{~Hz}-30 \mathrm{kHz}$. High accuracy of the terminating impedance and measured power is claimed. Twelve power ranges in 1. 3,10 sequence give f.s.d. readings from $100 \mu \mathrm{~W}$ to 30 W and an auxiliary scale allows direct readings in dBm $(0 \mathrm{dBm}=1 \mathrm{~mW})$ from -20 to +45 dBm . A temperature-compensated "square law" detector gives a true power reading irrespective of waveform, particularly
useful for accurate measurement of noise. There is a choice of 30 input impedances arranged in 3 decades from 1.25Ω to 1.000Ω each capable of dissipating 50W with an accuracy of 2%. The 585 is battery-operated and weighs 6 kg . An illustration of the Dymar common meter unit, fitted in this case with modulation meter type 765 , appears at the foot of the page, left. Dymar Electronics Ltd, Colonial Way, Radlett Road, Watford, Herts.
WW 325 for further details

Digital Multimeter

Solartron are aiming at the mass market for the first time with a digital multimeter,

type LM1240. The new instrument has 26 ranges and is capable of measuring a.c. and d.c. voltage and current, and resistance. It is priced at $£ 195$ and is claimed to incorporate features regarded as standard in high-priced d.v.ms. These include automatic polarity, high input resistance, an integration technique to
eliminate noise, fully isolated input, overload protection and the option of mains or battery operation. By comparison with the traditional analogue meter the LM1 240 offers improved accuracy, ease of reading both polarities, and input resistance defined in megohms rather than ohms per volt. The Solartron Electronic Group Ltd, Farnborough, Hants.
WW $\mathbf{3 0 5}$ for further details

Economy S.C.R.

A low-cost s.c.r. designed for use in consumer electronics was shown by Transitron. This is a 4-A type, housed in four alternative plastics flat packs, available in the voltage range $15-400 \mathrm{~V}$. Peak forward current of 75 A at $75^{\circ} \mathrm{C}$ is featured. It is designated TC106. Transitron Electronic Ltd, Gardner Road. Maidenhead. Rerks WW323 for further details

Wide-range Oscillators

A series of oscillators, TG200 series, that cover 1 Hz to 1 MHz in twelve ranges were introduced by Levell Electronics. Versions are available that generate sine and square waves or sine waves only. Output is variable from $200 \mu \mathrm{~V}$ to 7 V r.m.s. by a variable control and switched attenuator with 10 dB steps up to 70 dB . Output impedance is 600 S at all settings. The circuit uses a single-track linear potentiometer giving frequency control with absence of amplitude bounce, characteristic of Wien bridge circuit with dual-track controls. Amplitude variation is less than $\pm 1 \%$ up to 300 kHz . Rise time on square waves is less than 150 ns at all frequencies. Harmonic content on sine waves is less than 0.1% up to 5 V output from 10 Hz to 100 kHz . Power supply can be from four PP9 batteries or a.c. mains if power unit is fitted. Dimensions of the TG200 are 180 $\times 250 \times 140 \mathrm{~mm}$, and weight 4.5 kg . It is illustrated below. Levell Electronics Ltd, Park Road, High Barnet, Herts. WW304 for further details

World of Amateur Radio

Pressure on v.h.f. /u.h.f. bands

Further evidence of the mounting pressure being applied by mobile radio interests in efforts to take over amateur sections of the v.h.f. and u.h.f. bands is provided in the recently published annual report (1969) of the Electronic Engineering Association. The section reporting the current activities of the E.E.A. Radio Communications Division contains the following passage: "The lack of spectrum space continues to be seen as the most likely factor which could seriously limit the expansion of mobile radio communications. Negotiations have therefore now begun with the Ministry of Posts and Telecommunications to secure use of the 68 to 71.5 MHz and 420 to 450 MHz bands."

While most amateurs appreciate the increasing demands being made to secure maximum use of all frequencies in this part of the radio spectrum, most will note with considerable concern and regret that the E.E.A. claim includes the entire amateur 4 -metre and $70-\mathrm{cm}$ bands (currently 70.025 to 70.7 MHz , and 425 to 450 MHz with a gap from 429 to 432 MHz). Amateurs may thus regard this claim in the nature of a test case in which the outcome may well indicate the future intentions of Minpostel towards amateur frequency allocations. Some may suspect, however, that by putting in claims of this magnitude, the mobile radio industry is aiming primarily at the upper portion of the $70-\mathrm{cm}$ band, with many amateurs seeing the section 440 to 450 MHz at particular risk.

Old timers

Among the many associations and groups of radio amateurs having local or special interests, a few have come to occupy a highly respected role. Undoubtedly one of these is the Radio Amateur Old Timers' Association which was formed some 17 years ago.
The object of R.A.O.T.A. is to maintain and foster a spirit of friendship among amateur transmitters of long standing, and to be mindful of any who may be in special need. Membership is open to all transmitting amateurs who were licensed, with either a radiating or artificial aerial licence, before September 1939, and
who currently hold a British transmitting licence. Membership is limited to 300 ; at present it is about 50 below this figure. The membership fee is $£ 1$ ls. Applications may be sent to the honorary secretary, Miss May Gadsden, 79 New River Crescent, London N. 13.

President of R.A.O.T.A. is Kenneth Alford, G2DX, whose amateur radio activities stretch back to the pre-World War I era; a 1914 issue of Wireless World described the four-wire cage aerial, high-speed mercury turbine "break", his nine Leyden jars and the three "jiggers" with which he could work distances of over 10 miles.

On the h.f. bands

Despite the falling off of maximum usable frequencies due to the approach of summer conditions, plenty of West Coast American, Canadian and Mexican stations have been coming through in the early mornings at good strength and can be worked with simple vertical and dipole aerials. Recent contacts, for example, have been with VU5XX Andaman Islands, 7Q7AA Malawi, UAoYT and JT1AH both in the usually rare Zone 23, SM6CNS maritime mobile in the Mozambique Channel and similarly SM5CTU/MM a Swedish ship off the west coast of Central America. Among the rarer calls heard on 14 MHz c.w. have been DUIOR near Manila, YA2HWI/1 Kabul, Afghanistan, UAIKED Franz Josef Land, and PJ2PS near Curacao. King Hussein, who operates on 28 MHz phone from Amman with the callsign JY1 is known to have worked British amateurs recently. The Thor Heyendahl expedition on the raft $R a I I$ is again using the callsign LI2B (s.s.b. on 14214 kHz).

V.H.F. activities

For the first time, a two-way link has been established on 144 MHz between the U.K. and Iceland. John Stace, G3CCH, of Scunthorpe, Lincolnshire, made contact, via meteor scatter, with Finar Palsson, TF3EA, over a distance of about 1100 miles, during the Aquarids meteor shower in early May. Another widespread auroral opening occurred both in Europe and North America on April 21st-22nd. The
$70-\mathrm{cm}$ beacon station, GB3SC, is now operating with aerials mounted 300 ft up the B.B.C. Sutton Coldfield mast. One aerial beams north, another towards the south-south-east. The station uses frequency shift keying on 433.5 MHz to a 24 -hour schedule. The Rhodesian beacon station, ZE2AZE, is similarly running continuously on 69.998 MHz from a site over 4000 ft above sea level, with just over 20 -watts input to a four-element Yagi.

World DX Club conference

The annual conference of the World DX Club takes place over the weekend July 3rd to 5th at the Adelphi Hotel, Micklegate, Yorkshire. During this period the conference station GB2WDX will be in operation. Although this is primarily a club for broadcast-band short-wave listeners, it includes an active amateur radio section.

In Brief: Licences figures to the end of March show that in five months, Class B licences have risen by 187 to 2084 compared with an increase_of 73 in Class A licences to 13486. With one additional amateur TV licence (180), U.K. amateur licences (excluding mobile permits) totalled $15,750 \ldots$ Derby and District Amateur Radio Society is holding a mobile rally on August 16th at Rykneld School, Bedford Street, Derby (details T. Darn, G3FGY, "Sandham Lodge", Sandham Lane, Ripley, Derby) . . . The A.R.M.S. mobile rally, announced for July 5th at Alconbury, has been cancelled

The Stourbridge society, in collaboration with the management of the narrow-gauge Welshpool and Llanfair railway are setting up, on July 4th, an amateur station, GW6OI/P, at the Llanfair Caereinion terminal; this will operate during the afternoon mainly on $3.5 \mathrm{MHz} \ldots$ GB3WRA will be set up again this year at the 24th annual High Wycombe show on the Rye on September 5th, operating in all bands from 1.8 to 28 MHz (details A. C. Butcher, G3FSN, 70, Hughenden Avenue, High Wycombe, Bucks.) . . . When Senator Barry Goldwater, K7UGA, visited Vietnam he left behind slow-scan TV equipment which has been used from Cam Ranh Bay on the U.S. military-affiliate radio system frequency of 19.2 MHz to transmit pictures back to Senator Goldwater's MARS station AF7UGA in Pheonix George Grammer, WIDF, who joined A.R.R.L. staff in 1929 and has been technical editor of QST since 1939, has recently retired. Doug De Maw, W1CER/W8HHS, has been appointed acting technical editor. He has strong "family connections" with amateur radio, apart from his own two callsigns his wife is WICKK and his son WN1LZQ Contests for home-constructed equipment will again be a feature of the R.S.G.B. Show which this year is being held from August 19th to 22nd, in the New Horticultural Hall, London.

Pat Hawker, G3VA

Literature Received

For further information on any item include the $W W$ number on the reader reply card

ACTIVE DEVICES

"Designers Guide" gives pin connections and loading rules for the series $54 / 74$ t.t.l. integrated circuits produced by Transitron Electronic Ltd, Gardner Rd, Maidenhead \qquad WW401 Price list for above range WW402

The $54 / 74$ range of t.t.l. is also the subject of a 29-page catalogue from Fairchild Semiconductor Ltd, Kingmaker House, Station Rd, New Barnet, Herts. Performance data and other relevant details are given ..WW403 Price list for above range. WW404
"Integrated Circuits t.t.I. series (TL. . . . 74N)" is a 119 -page booklet giving pin connections, loading rules, performance data, and application information on the 74 series t.t.l. integrated circuits available from AEG-Telefunken, Fachbereich Halbleiter Vertricb. 71 Heilbronn, Postfach 1042, West Germany

WW405

The 1970 edition of the ever popular "Mullard Data Book" is available. It lists valves, semiconductors, television tubes and other components. The price is 4 s to individuals outside the radio and television trade. It may be obtained from bookshops and component dealers.

We have received a batch of data sheers from Brimar, Thorn Radio Valves and Tubes Ltd. 7 Soho Square, London, WIV 6DN.

DI4-170GH. $10 \times 8 \mathrm{~cm}$ oscilloscope tube. WW406
"GV Screen for Data Display and Radar". Very long persistance phosphor WW407 D14-180GH, $10 \times 8 \mathrm{~cm}$ oscilloscope tube. WW408
"Monoscopes". Character generating tubesgives some application information. WW409 M $38-100 \mathrm{GH},-100 \mathrm{~W},-101 \mathrm{GH},-11 \mathrm{GH}, 38 \mathrm{~cm}$ data display/monitor tubes. WW410 D13-600GH, 13.3 cm oscilloscope tube.WW41I An equivalents chart for Vidicon camera tubes is available from E.M.I. Electronics Ltd. Hayes, Middlesex

The range of potted amplifiers produced by Ancom Lid, Devonshire St, Cheltenham, GL50 3LT, are the subject of a leaflet; all the significant characteristics are given

WW4 13
"Application Report No. 5" from Brookdeal Electronics Led, Market St, Bracknell, Berks, deals with the automatic measurement of semiconductor junction capacitance WW414
"Data Distribution No. 6" contains a number of leaflets for insertion in the Ferranti Microspot Cathode Ray Tubes and Display Equipment Manual. Ferranti Lid, Gem Mill, Chadderton, Oldham. Lancs.
..WW4 15
"Issue 15" from AEI Semiconductors, Carholme Rd, Lincoln. contains data sheets for inclusion in the AEI Semiconductors Technical Data Handbook.

We have received the following literature from Westinghouse Brake and Signal Co. Lid., 82 York Way, Kings Cross, London N.I.

Engineering publication D/WB "Silicon Diodes". Low, medium and high power. WW417 Technical publication T17. "Thyristor type 17TX, 16A"WW418 Technical publication T20. "Thyristor type 20TX, 20A". ..WW419 Technical publication 36-113. "Power transistor type 2N3054".WW420 Technical publication 36-114. "Power transistors, type $2 \mathrm{~N} 3371-3^{\prime \prime}$.

WW421

PASSIVE COMPONENTS

Termiswitches are rail mounted terminal units which incorporate a relay-they are described in a leaflet from Lion Systems Developments (Gerrards Cross) Lid, 45 /47 Station Rd. Gerrards Cross, Bucks

WW422
A catalogue from Fairchild Controls, 225 Park Ave, Hicksville, L.I., New York 11802, U.S.A., describes a range of trimming potentiometersWW423
"Siemens Electronic Components Bulletin, 2-70" contains articles on the demagnetization of colour tubes using p.t.c. resistors, pulse transformers, a surge voltage protector, miniature switches, low-speed logic etc. It is available from Cole Electronics Lid, Lansdowne Rd, Croydon CR9 2HB

We have received the following literature from Erie Electronics Ltd, South Denes. Great Yarmouth Norfolk, which is intended for inclusion in the Erie catalogue:

PCF/5, metallized film capacitors, polycarbonate series PE31A. WW425 PCF/4, metallized film capacitors, "Metalmac" series ML30A. WW426 EC/6, aluminium electrolytic capacitors, 201 series. WW427
Mullard have produced a wall chart (36×26 inches) dealing with their electrolytic, film and variable capacitors. Copies of the chart can be obtained from A. Stewart, I.E.D., Mullard Ltd, Torrington Place, London, WCIE 7HD

WW 428
A tripie-sheet wall chart (20×22 inches) has been prepared by Ultra Electronics (Components) Lid, Fassetts Rd, Loudwater, Bucks. From this it is possible to select a variety of wafer switches.WW429

EQUIPMENT

An interesting self-powered tachometer system (0 to $500,1,000,2,000,5,000,10,000$ or 20,000 r.p.m.) requiring no mechanical link to the shaft being monitored is described in a leaflet from the Dynalco Corporation, 4107 N.E. 6th Avenue. Ft Lauderdale, Florida 33308, U.S.A
..WW430
A four-terminal resistance bridge (type K.B.5) is the subject of a leaflet from the Croydon Precision Instrument Company. Hampton Rd. Croydon. CR9 2RU. It covers 0 to 111 . 110Ω with five decade dials and incorporates eight switch-selected standard resistors

A capacitor-discharge ignition system is described in a leaflet obtainable from Argent Electronics

Company. 805 Kam Chung Building. 54 Jaffe Rd Hong Kong

WW432
Nuclear Enterprises Lid, Bath Rd, Beenham, Reading, have prepared a 129 -page catalogue which lists a huge range of electronic and scientific test and measuring apparatus

WW433
A decade resistance box, amplifiers, various oscillators and other measuring equipment are described in the catalogue of Levell Electronics Led, Park Rd, High Barnet, Herts
..WW434
A 47-page catalogue devoted entirely to power supplies is available from Lambda Electronics, Marshlands Rd, Farlingion, Portsmouth PO6 1ST ...

WW435
We have received the following leaflets from Sivers Lab, Old Haverhill Rd, Little Wratting, Suffolk.

HARDWARE

"Helpful Hints on Threaded Fastenings" is the tite of a 52 -page booklet which is produced by Firth Cleveland Fastenings Lid. It sets out the basic engineering facts and figures that determine the best choice of fastener type, grade and size for a particular application.
..WW439
"Southern's Tool Catalogue", complete with price list, lists a wide variety of tools for electronic and other purposes. Southern Watch and Clock Supplies Lid, Industrial Tool Division, Precista House, 48-56 High St, Orpington, Kent, BR6 OJHWW440 Cabinets for housing printed circuit cards are described in a revised catalogue from the Elco Corporation, Willow Grove, Pennsylvania, 19090, U.S.A. It lists 32 standard models which are made in aluminium .WW444

A booklet called "PTFE/polyester glass fibre insulators for power transmission ${ }^{n}$ is available from I.C.I., Plastics Division, P.O. Box No. 6, Bessemer Rd, Welwyn Garden City, Herts WW445

Also from I.C.I. a booklet called "Better cleaning the I.C.I. way" which discusses industrial cleaning products and solvents. I.C.I. Mond Division, Thames House North, Millbank, London S.W.IWW 446

GENERAL INFORMATION

The following information is available from the International Telecommunication Union, Place des Nations, Geneva. Switzerland.
Wall chart describing the organization of the Union and the Consultative Committees.WW441 Eighth report by the International Telecommunication Union of telecommunications and the peaceful uses of outer space
..WW442
If you are interested in the performance of nickel/cadmium batteries a new technical bulletin published by the Marketing Services dept. Power Sources Division, Alkaline Batteries Ltd (P.O. Box No. 4, Redditch, Wores) will be of value. It deals with sealed cells of the sintered plate cylindrical type

The latest book in the "Circuit Concepts series" from Tektronix U.K. Lid. Beaverton House, P.O. Box 69, Harpendon, Herts, is called "Sampling Oscilloscope Circuits". The price is 10 s per copy including postage.
B.S.I568. Part I:1970, "Specification for Magnetic Tape Recording Equipment" may be obtained from the British Standards Institution, 2 Park St, London W. 1 .

Personalities

Stuart Sansom, M.I.E.R.E., chief engineer of Thames Television (formerly ABC Television) since 1966. has become technical controller. He will be responsible for all technical and engineering facilities of the company (which provides the weekday programmes for the London I.T.A. station) at Teddington, Hanworth \& Euston studios. Mr. Sansom, who is 40 . spent two years with the Royal Corps of Signals and then joined E.M.I. to continue his technical training, moving to High Definition Films in 1953. Four years later he joined T.W.W., the South Wales I.T.A. programme company, as a vision engineer, afterwards taking charge of electronic maintenance. He joined ABC Television Ltd, as head of engineering equipment group in 1959.
J. C. Akerman, head of Mullard's Consumer Electronics Division, has been appointed a director of the company. Mr. Akerman, who is 52, joined Mullard in 1936. After six years' wartime service with the R.A.F. he was made assistant sales manager of the company's Radio Sales Department. He transferred to the Setmaker Department in 1950 and was appointed product manager for cathode-ray tubes three years later. In 1966 he moved to the Industrial Electronics Division as commercial product manager for semiconductor components and

J. C. Akerman
subsequently became a director of Associated Semiconductor Manufacturers Lid--the company responsible for the development and production of Mullard semiconductor devices. He was appointed to his present post in 1969. He is vice-chairman of the British Radio Valve Manufacturers' Association.
G. H. Sturge, M.I.E.R.E., who joined the B.B.C. in 1962, has been appointed assistant head of the Engineering Information Department in succession to $\mathrm{H} . \mathrm{T}$. Greatorex. B.Sc.(Eng.). who has retired. Mr. Sturge trained as an electrical engineer at Faraday House and from 1946 to 1962 held posts in the service, export and distribution departments of Murphy Radio Lid. He joined the B.B.C. as an assistant to the Engineering Recruitment Officer and since 1967 he has been head of the engineering section of the Grading Department, with responsibility for the application of job evaluation to technical staff. Mr Greatorex, who is retiring after 37 years' service, graduated at the City and Guilds College. London, and joined the B.B.C. as an assistant maintenance engineer. In 1935 he went into what is now the Engineering Information Department. of which he has been assistant head for the last 16 years. During this time his responsibilities have included the organization and management of the B.B.C. technical enquiry stands at exhibitions and conferences.

Brian Shone, head of the systems development unit in the B.B.C's Transmitter Planning and Installation Department has received the Royal Television Society's Geoffrey Parr award for his pioneering work in the design and development of a four-channel combining unit. This system has made it technically possible to use common transmitting aerials for high- and low-power u.h.f. stations.

Stephen Cox, a post-graduate research assistant in the depart-
ment of electrical and electronic engineering at Plymouth Poly technic. has won the 1970 Baird Travelling Scholarship of the Royal Television Society. The award, valued at $£ 500$ and financed by Radio Rentals, will be used by him to visit North America in order to gain experience in the theory and practice of educational television production. Mr. Cox is studying the relation of colour to learning in education TV and hopes to present his Doctoral Thesis at Exeter University in 1972/1973.

Denzil Bradbury has joined Brookdeal Electronics Lid as senior designer at their factory in. Market Street, Bracknell. Mr. Bradbury joined Hirst Electronic Developments as an improver in 1946 and, after National Service,

Denzil Bradbury
was with Sperry Gyroscope from 1950-1960. Since then he has undertaken contract work as a design engineer, including projects for Decca Electronics. Nuclear Enterprises and Taylor Electronics.

Decca Radio \& Television Ltd have announced two appointments in the audio field. P. B. Cooper, who is appointed commercial manager (audio) has been associated with Decca for over 20 years and has latterly been manager of special products. He will retain responsibility for this Division in his new post while at the same time extending his sphere of activity to cover all audio products: radio receivers, radiograms, test apparatus and the Deccasound audio systems. Peter Earthy, who joined the company in 1965, has become audio development manager.

Charles Dain has joined the Electron Tube and Microelectronics Division of EMI Electronics Ltd as facilities director. He will be responsible for all production facilities throughout the Division
and for the manufacture of all established product lines. This will include responsibility for factories, and product operations including camera-tubes and c.r.ts, nonscanning photoelectric devices and microelectronics. Mr. Dain was previously in the Automation Division.
D. F. Downie has been appointed product manager of the newly formed Computer Peripherals Division at S.E. Laboratories (Engineering) Ltd (part of the EMI Group). Mr. Downie was previously in the EMI Central Research Laboratories, where he managed the development of the new S.E. Labs. alpha-numeric display terminal.

Ted Tingay, who joined Guest International Ltd two years ago, has become marketing manager with the Industrial Electronic Components Division. He has latterly been product promotion manager. Before joining Guest Mr. Tingay was with Ether Ltd, of Stevenage, for one year as a sales engineer and prior to that spent 12 years with Thorn Electrical Industries Lid as a development engineer.

Dr. P. Feltham, formerly Reader in the Physics Department of Brunel University, Uxbridge, Middx. has been appointed to a new Chair of Applied Physics at the University. He is known internationally for his work in the field of metal physics and semiconductors.

Jack R. Piddington, O.B.E., M.C., has joined Electronic Facilities Design Lid, electronics consultants and systems designers of Wargrave, Berks, as chief executive. He was formerly assistant director of electronics research and development (ielecommunications) at the Ministry of Aviation.

OBITUARY

John Alexander Ward, chief engineer of Data Recognition Ltd, died recently at the age of 32. He began his career with Solartron Ltd, where he was one of the small team of British pioneers working on the development of document reading machines. He later joined Montague Burton Ltd as the senior engineer in charge of the operation and further development of their optical mark reading equipment. He joined Data Recognition when it was founded in December 1966 and was responsible for all the electronic and logic circuit design for the company's OMR systems and equipment.

Real \& Imaginary

by Vector

Off the record

There are two schools of thought about birds-the feathered, not the miniskirted variety-and in particular their irresponsible summer habit of performing a dawn chorus long before the aforesaid dawn has arrived. Some citizens rave about it. I know several who think nothing of rising at some ungodly hour to crawl through half a mile of ditches and brambles to get the maximum number of dBs . Others, however, awakened by the first twitterings, twist restlessly between the sheets, cursing the day they forsook the bright lights for the rural life.

Myself, I'm a sort of floating voter between the two viewpoints. You will not find me out and about at 04.00 to capture the mating call of the lesser spotted milkboy; but neither do I lie infuriated in my bed, stuffing my ears against the fluting and screaming from without, for the simple reason that I sleep through it. At least, I did until this morning when a maniac cuckoo chose to practise his circuits and bumps from my bedroom window-sill and banished all sleep in so doing.

Now, ordinarily I have a great respect for cuckoos and in particular for their laudable habit of laying eggs in an alien nest and then zooming off, leaving somebody else to do the dirty work. I always feel that in their next existence they will take human shape and grow up to be group chiefs or lab. managers. As knocker-uppers, however, they do not have my vote. I mean, one can fling a shoe at a caterwauling cat with a reasonable probability of the missile landing in the target area-but how does one deal with an erratically-flying cuckoo? To design a radar-controlled shot-gun with a cuckoo-voice-operated firing mechanism seems to me to be carrying the matter a shade too far.

The incident did, however, fulfil one useful purpose. It served to remind me of a letter received from a reader whose identity shall be shrouded in the initials 'S.T.C.' (no connection with Standard Telephones \& Cables). The cloak of anonymity is one of which I'm sure he will approve, since if it were removed the full majesty of the law would clamp a firm hand on his shoulder.

It seems that S.T.C. has purchased what was described in the small ad. as a "record-player transmitter". I haven't
seen this device but presumably it is a lowpower oscillator with sockets for applying external modulation and some form of output that is capable of radiating over a very limited range. I would guess that its radiation is in the m.f. or possibly h.f. band, because S.T.C. says that he uses it to provide music from his indoor tape recorder to his transistor radio in the garden on warm summer afternoons.

He is, of course, fully aware that he is, to all intents and purposes a pirate transmitter but as he has been using the device for a year or so now without attracting the attentions of a Post Office detector van it is obvious that the device is used with restraint and causes offence to no one. Which is more than can be said for electric bells and unsuppressed car ignition systems. Spark transmission was made illegal donkey's years ago but, illogically, no legal steps can be taken to compel a car driver to fit suppressors and cease transmission.* The electricity cables, too, are notorious radiators of interference and can carry man-made static over many miles without let or hindrance; yet it is illegal for a rediffusion service to use the electricity mains for programme transmissions.
What brought me, via the dawn chorus, to S.T.C's letter was his mention of another project of his, namely the enjoyment of his local bird choir at a reasonable hour of the day. What he proposes to do is to plant a microphone and his "record player transmitter" in an appropriate thicket and connect his home radio to his tape recorder. The two latter devices could be switched on automatically at the requisite ungodly hour and the consequent recording could then be enjoyed later.
He goes on to point out other instances in which the eleventh commandment"Thou shalt not be found out"-operates. The recording of B.B.C. programmes, for instance, is illegal but (he says) in a radio talk on hi-fi a year or so ago it was mentioned that of all the uses to which tape recorders are put, over half the recorded material is of radio programmes. He also instances the fact that it is illegal to rerecord discs and yet most tape recorders

[^8]have sockets for doing this and include instructions in their manuals. Indeed, the record players themselves very often have sockets inscribed "Tape" (I've just looked at my own, and it has). So we have a situation in which the record manufacturers frown on the practice of tape recording from their products, but are also manufacturers of record players which directly invite one to do so!
S.T.C. also mentions another way in which he may, or may not, be falling foul of the law. For good and sufficient reasons he does, on occasion, record telephone conversations. I haven't consulted the Post Office but I imagine that it all depends on how you go about this. The automatic telephone-answering device is in widespread use, so any Post Office-approved method of carrying out the operation is presumably valid for normal private conversations.

As my correspondent mentions, recording from the telephone raises the larger and far more serious issue of bugging and snooping. Does much of this go on in industrial concerns I wonder? Certainly one does not read of specific instances in the papers, but possibly this is because firms which have been victimized do not wish their business to be further noised abroad. On the other hand, dire hints of widespread malpractice have been given, both in the Press and on television. I would have thought, however, that a simpler and less 'Paul Templish' approach to industrial spying would be to cultivate the acquaintance of a selection of key secretaries and, after judicious wining and dining, take it from there. I'm not in any sense disparaging the sense of loyalty of the bosses' secretaries, but many are inadequately paid in relation to their responsibilities and a cash-down offer of, say, $£ 50$, to a girl who is struggling to make a Majorcan holiday on a weekly income of perhaps $£ 15$, would be a considerable temptation. Most, I'm sure, would resist it, but there are bound to be exceptions. Telephone bugging, the picking of filing cabinet locks and the photographing of documents with a micro-min camera is glamorous on TV but in real life the insertion of an extra carbon when copying a confidential document is much less likely to be spotted.

But to return to the anomalies of the law in the matter of illicit transmitters and tape recordings. If S.T.C. continues to use his illegal "record player transmitter" he is liable to have the Post Office running him in for illicit transmission of programmes. But if, by way of revenge, he instals an electric motor with the dirtiest brushes and commutator he can find, the most the P.O. can do is to knock on the door and ask politely if they may inspect it.

The trouble is, I suppose, that the law is not only an ass but a mechanical ass. Its regulations have to be designed to protect the commonsensical majority from the knavish minority. If no curbs on signal radiation were made, the frequency bands would be in chaos; if the same law makes criminals of responsible electronics engineers in the process, it's just too bad.

Anyway, S.T.C., many thanks for a most interesting letter.

EIGHT POLE CONNECTOR

P. 550 is a versatile 7 -pole + Earth connector rated 6A. 250V. A.C. with both members designed so that when un-mated live parts are shrouded and safe to handle thus enabling use of both mains inlet and outlet applications. Of rugged, all moulded plastic construction with positive keying which prevents incorrect insertion. The Plug has screw Terminal connections, and the Socket tags accepting 187 series push-on-tabs. The advantages of this connector are obvious and the extra safety conscious design will appeal to all users.

NEW D.P.M.B. MOULDED SWITCHES

The fine range of over 100 varieties of Moulded Insulation Switches is extended by these New D.P.M.B. contacting models. They are identical in size (except that two contacts and an insulation web are omitted). rating (2A. at 250 V . A.C.) and performance to their well established D.P.C.O. counterparts: and are also dimensionally interchangeable with the obsolete laminated models which they are replacing. The complete range of D.P.M.B. operating means available are as follows: Toggle (illustrated right): Biased Toggle: Biased Push: Push-Push: Semi-Rotary, Key: and Slider.

NEW MINIATURE SIGNAL LAMP

Now under development and shortly to go into production. is this New Sub-Miniature Signal Lamp (illustrated right at actual size). The T-I Sub-Miniature flange cap lamp is used and solder tags, isolated from the fixing, are provided for cable connection. The lens is available in five transparent or translucent colours, and fixing is by a keyed panel hole with a push or rear spring clip.

PRINTED CIRCUIT COMPONENTS

D. 965 -D. 966 P.C. Signal Lamp. illustrated right. is avairable with two lens styles, flat (illustrated) on domed end, each in five transparent or translucent colours. Working Date: 30V. max. 1.5 W . max. L.E.S. Lamps, mounting/contact pins on 0.1×0.3 centres. A new version is now under development for rear mounting.
F. 330 P.C. Fuseholder. illustrated far right. accepts $5 \times 20 \mathrm{~mm}$ fuses The screw-in cap is legended fuse with a coin slot to assist with removal Provisional rating 250V. 5A max

COMPETA INTERNATIONAL PRODUCTS

MINIATURE SLIDE SWITCHES

A new range of Miniature Printed Circuit Mounting Slide Switches of advanced design suitable for use in a wide variety of equipment. Switching covers 2. 4 or 6 pole types with a choice of momentary or locking push action. Contacts are fine silver or gold plated. all metal parts are corrosion proof, sliders and bases are phenolic mouldings and contact/fixing pins are designed for plug-in or dip-solder mounting.

Miniature toggle switches

A range of high quality. Sub-Miniature Toggle Switches of proven technical excellence. All models are metal clad, have moulded insulation, silver plated contacts and solder tags and come complete with a tock-to-panel washer. The highly polished chrome operator can also be fitted with a choice of five coloured sleeves and switching is S.P.M.B.. S.P.C.O. S.P.C.O + centre off. D.P.C.O. and D.P.C.O. + centre off. Ratings are 3 A. at 250 V. A.C.

ROCKER SNAP SWITCHES

A range of Single-Pole on-off Rocker-Action Switches for all Voltages up to 250 V . A.C. Mains. at up to 2 Amps. Moulded in Black or White with a wide range of coloured operators and screw terminal connections. Extremely reliable having Fine Silver contacts and light but positive snap action. Two types are available, rear nut or push fixing.

TRIO's TS -510 has opened countless SSB vistas through its creative design that enables it to operate at constant maximum power with top durability. This transceiver uses a high frequency crystal filter and covers all ham bands from 3.5-29.7 MHz. Because the TS-510's frequency coverage has been compressed to 25 KHz for one complete dial rotation, tuning in on SSB signals is easy. By using TRIO's PS-510 (Power supply and speaker) and VFO-5D (Variable frequency oscillator) optimum results may be obtained. The PS-510 operates on an AC power supply through a 6-1/2" speaker. The VFO-5D has a double-gear dial covering 25 KHz per rotation.

TS-510 SSB TRANSCEIVER

- Receive and Transmit Frequencies

3. $5 \mathrm{MHz}-29.7 \mathrm{MHz}$

- Receive Sensitivity
$0.5 \mu \mathrm{~V}, \mathrm{~S} / \mathrm{N}$ ratio of 10 dB at $2.5 \mathrm{MHz}-21 \mathrm{MHz}$
$1.5 \mu \mathrm{~V}, \mathrm{~S} / \mathrm{N}$ ratio of 10 dB at 28 MHz
- DIMENSIONS : $13^{\prime \prime}(W), 7^{\prime \prime}(H), 13-5 / 8^{\prime \prime}(D)$.

VFO-5D VARIABLE FREQUENCY OSCILLATOR

- Frequency Range: $3.5 \mathrm{MHz} \cdot 29.7 \mathrm{MHz}$
- Oscillator Method: VFO unit-clapp Osc. Circuit Xtal Osc. Unit-Pierce C-B Circuit
- DIMENSIONS: 7.7/8"(W), 8-21/32"(H), 7-9/16"(D)

PS-510 POWER SUPPLY AND SPEAKER

- Designed as an A.C. power supply unit exclusively for the SSB transceiver TS-510
-6.1/2" communication speaker is incorporated
- DIMENSIONS: $8^{\prime \prime}(W), 7: 1 / 8^{\prime \prime}(H), 14.5 / 8^{\prime \prime}(D)$.

TRIO KENWOOD ELECTRONICS S.A.

160 Ave., Brugmann, 1060 Bruxelles, Belgium
Sole Agent for the U.K.
B.H. MORRIS \& CO., (RADIO) LTD.

84/88. Nelson Street. Tower Hamlets, London E.1. Phone: 01-790 4824

SINCLAIR IC-10

MONOLITHIC
INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring on/y one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier. it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

Output:
10 Watts peak. 5 Watts R.M.S. continuous Frequency response: Total harmonic distortion: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Less than 1% at full output. Load impedance: Power gain: Supply voltage: Size:
Sensitivity:
Input impedance
$110 \mathrm{~dB}(100.000 .000 .000$ times) total.

Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfacţory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR

Project 60

laboratory-standard high fidelity modules

Sinclair Project 60 comprises a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.
The modules are: 1. The Z-30 and Z-50 high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 pre-amplifier and control unit. 3. The Active Filter unit with both high and low audio frequency cut-offs. 4. The PZ-5 and PZ-6 power supplies. A complete system could comprise, for example, two Z-30's, one Stereo-60, and a PZ-5. The P-Z6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may be added as required. In a normal domestic application, there will be no significant difference between using a PZ-5 or PZ-6 unless loudspeakers of very low efficiency are being used, in which case the PZ-6 will be required. For assemblies using two $\mathrm{Z}-50$'s there is the new $\mathrm{PZ}-8$ stabilised supply unit to ensure maximum performance from these more powerful amplifiers.

All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled into the wood of the plinth to mount the control unit and the A.F.U. Any slight slip here will be covered by the aluminium front panels of these two units.
The Project 60 manual gives all the building and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe, Project 60 prices are remarkably low.

Z. 30
 20 Watt R.M.S. POWER AMPLIFIER (40 WATTS PEAK)
 Z. 50

40 WATT R.M.S.
POWER AMPLIFIER (80 WATTS PEAK)

The Z.30, together with the higher powered $\mathbf{Z . 5 0}$ are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the $Z .30$ or $Z .60$ power amplifiers in your Project 60 system will depend on personal preference. But they are both the same physical size and may be used with other units in the Project 60 range equally well. The $\mathbf{Z . 3 0}$ is unique in that it may be used with any power source between 8 and 35 volts without need for adjustment and may thus be driven from a car battery for example. For operating from mains, for the $Z .30$ use PZ.5 power supply unit for mos domestic requirements, or P.Z. 6 if you have very low efficiency loudspeakers. For 2.50 , use the PZ.5, PZ. 6 or PZ. 8 described below

SPECIFICATIONS

Power Outpute 2.3015 watis R.M.S. Into 8 ohms, using 35 V . . 20 watts R.M.S into 3 ohms using 30 volis.
2.5040 watts R.M.S. Into 3 ohms : $\mathbf{3 0}$ watts R.M.S. into 8 ohms both continuous, operating on 50 v .
Frequency response-30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distortion 0.02% into 8 ohms
Signal to nolse ratlo better than 70dB unwelghted
input sensitivity 250 mV into 100 K ohms
For speakers from 3 to 15 ohms impedance
Size $3 \mathrm{fln} . \times 2 \mathrm{i} / \mathrm{n} . x \mathrm{i}$ in.

STEREO 60 Pre-amp Control Unit

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs The tone controls are also very carefully designed and tested.

ACTIVE FILTER UNIT

The purpose of the filter unit is to reject frequencies above (scratch) or below (rumble) a specific cut off frequency when they contain unwanted interference. The Sinclair A.F.U. is unique in that the cut off frequency is continuously variable for both the scratch and rumble units and, as the ttenuation in the rejection band is rapld (12dB per octave), the remova of interference can be achieved with less loss of the wanted signal than has proviously been possible
Each channel has an overall gain of unity and the unit may be connected between the pre-amplifier and power amplifier sections of any system. Both amplitude and phase distortion have been made quite negligible by careful design and generous negative feedback employed.

SPECIFICATIONS

Employs two Sallen \mathscr{G} Key type active fitter steges, one rumble high pass) and one sclatch (low pass)
The iwo stages use complementary transistors to minimise distortion.
Supply voltage 15 to $35 \vee$ Curfent 3 mA max.
Gain at 1 kHz , filters flat $0.98(-0.2 \mathrm{~dB})$
H.F. cut off (-3 dB) variable from 28 kHz to 5 kHz at 12 dB /octave L.F. cut off (-3 dB) varlable from 25 Hz to 100 Hz at 12 dB /octave Distortion at $1 \mathrm{kHz}(35 \mathrm{~V}$ supply) 0.02% at rated outpu:

Bufft, tested and guaranteed
£5.19.6

Treble and bass cul and boost curves

SINCLAIR POWER SUPPLY UNITS

PZ-5 30 volts unstabilised-sufficient to drive two Z.30's and a Stereo 60 for the majority of domestic applications. for the majority of domestic applications. 84.19 .6
PZ-6 35 volts stabilised-ideal for driving two $Z .30$'s and a Stereo 60 when very low efficiency speakers are employed19.6 PZ-8 45 volts stabilised power supply unit for use with $\mathbf{Z - 5 0}$ amplifiers (less maíns transformer)
PZ-8 Mains Transformer

GUARANTEE

Power versus distortion curve for $Z .30$ and $Z .50$

SPECIFICATIONS FOR STEREO 60
Input sensitivittes - Radio-up to 3 mV Magnetic P.U.3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} ; 20$ io $25,000 \mathrm{~Hz}$ Ceramic P.U.-up to 3 mV . Aux.-up to 3 mV Output- 250 mV

- Signal-to-noise ratio-better than 70 dB - Channel matching-within 1dB. - Tone Controls-TREBLE+15 to -15 dB . at 10 kHz BASS +15 to -15 dB at 100 Hz . - Front panel-brushed aluminium with black knobs and

Size $8 \downarrow \times 1 \frac{1}{\ddagger} \times 4$ ins.

Built. tested
Built. lested
£9.19.6
BUILDING A PROJECT 60 ASSEMBLY

The illustration here shows quite clearly how easily Project 60 can becontalned in one of today's slim. modern plinths. Very little space is required to house these Sinclair units, and whitin the space of the motor pilinth. qou can install a stereo a mplity if for example you have already put together an assembly as illustrated here, adding the Active Filter Unit would be very easy.

If at any time within 3 monins of purchasing Project 60 modules from us, ou are dissatistled with them, we will refund your money at once. Each module is guaranteed to work perfecily and should any defect arise in provided that it is returned to us within 2 vears any cos: to you whatsoever provided that it is returned to us within 2 years of the purchase date. There wili be a small charge for services thereafter. No charge for postage by surface mail. Als-mall charged at cost

SINCLAIR RADIONICS LIMITED, 22 NEWMARKET ROAD, Ior which/enclose cash/cheque/money order WW770 CAMBRIDGE

Tel 022362731

CATALOGUE AVAILABLE NOW!

Send today for our NEW LIST 300
detailing our wide range-from
miniature air spaced trimmers up to
large high voltage
transmitting capacitors.

SUB MINIATURE TRANSFORMERS
We have facilities for the manufacture of miniature transformers to customers' own designs-and would welcome any enquiries.

Write today for complete details
H. TINSLEY \& CD LTD • WERNDEE HALL

SOUTH NORWOOD • LONDDN SE25 • 01-654 6046

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMMENT

Codes: Int. No. 2 Mercury/Pegasus, Malliot 803, Biniry and special purpose Codes.

2-5-6-7-8-TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MDDEM TERMINALS, TELEPRINTER SWITCHBDARDS

Picture Telegraph, Desk-Fax. Marse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter Morse, Teledetros Paper Tape
 and Ribbons; Polarised and specialised relays and Bases; Terminals VF relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessorics, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Streec, Tring, Herts.
Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044282 TELEX 82362

WW- 078 FOR FURTHER DETAILS

We also manufacture P.A. Amplifiers, Loudspeakers, Tuners, etc. For full details please contact:
S.N.S. Communications Ltd., 851 Ringwood Road, Bournemouth. Telephone: Northbourne 4845

MODEL P-1B

USED THROUGHOUT THE WORLD, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY. RELIABILITY, VERSATILITY, UNSURPASSED TESTER PERFORMANCE COMES WITH EVERYSANWA

6 Montha' Guarantee. Excellent Ropair Sorvice. | Model P-1.B | $£$ | 3 | 7 | 6 | Model K-30THD | E12 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Model JP-5D | $£$ | 5 | 10 | 0 | Model F-80TRD | F13 | 15 |

 Model A-303TAD fio 10 Model EM-700 E51 0 $\begin{array}{llll}\text { Model AT-1 } & 711 \quad 6\end{array}$

PLEASE WRITE FOR ILLUSTRATED LEAFLETS OF THESE SANWA METERS

- Write now for full details and for a copy of the latest Hatfield Short Form Catalogue.

HATFIELD INSTRUMENTS LTD., Dept. WW,
Burrington Way. Plymouth. Devon. PL5 3LZ Telephone: Plymouth (0752) 72773/5 Telegrams: Sigjen Plymouth, Telex: 45592.
S.E. ASIA: for prompt service and deliveries, contact

HATFIELDINSTRUMENTS (NZ) LTD.,P.O. Box 561 , Napier, New Zealand.

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $£ \mathbf{3 2 . 0 . 0}$

Si 452
£27.0.0
Distortion Measuring Unit
$15 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}-.01 \%$

Si 453
. £37.0.0
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501

BRADFORD ROAD, CLECKHEATON, YORKSHIRE

WW- 081 FOR FURTHER DETALS

Instant selection from 1 to 100 dB attenuation

 Housed in neat, die-cast aluminium boxes only$5 \frac{1}{2} \times 1 \frac{1}{8} \times 2 \frac{1}{2} \mathrm{in}$. Hatfield Type 687 Attenuators provide precise switched attenuation from 1 to 100 dB in steps of 1 dB . Models for use In the frequency range d.c. to 250 MHz are available in 50 or 75 ohm form. 600 ohm Balanced and Unbalanced network versions are also available, operating with good accuracy up to 5 MHz .

Type 687 Attenuator renge comprises.
Type Impedance
687A 50 ohms
687B 75 ohms
687C* 50 ohms
$687 \mathrm{D}^{\mathrm{m}} 75$ ohms
$687 \mathrm{E} \quad 600$ ohms Unbalanced 687F* 600 ohms Unbalanced $687 \mathrm{G} \quad 600$ ohms Balanced $687 \mathrm{H}^{*} \quad 600$ ohms Balanced *with gold-plated switch contacts. Note: Types 687 G and 687 H are fitted with terminals. All other types fitted BNC connections

WW-082 FOR FURTHER DETALLS

XCELITE

Precision made hand tools for the professional

PLIERS
69CG Radio - TV Plier 70CG Flat Nose Pliers 7ICG Round Nose Pliers

72CG Chain Nose Pliers 73CG Tip Cutting Pliers
74CG Diagonal Close Cutting Pliers A complete range of miniature lightweight pliers specially designed for holding, bending, shaping and cutting of fine wires in electronic, Radio/T.V., electrical and jewellery work. Precision made for the expert with miniatures in mind. Cushion grip handle, coil spring openers.

SEIZERS

32 H 5" Staight Nose Junior $5^{" ~ S e i z e r ~}$
42H $6^{\prime \prime}$ Straight Nose Seizer $33 \mathrm{H} 5^{\prime \prime}$ Curved Nose Junior 5^{*} Seizer 43H 6" Curved Nose Seizer Box joint construction, two position snap on lock. Precision machined from perfectly tempered stainless steel.
Holds like surgical clamp and acts as heat sink.
Straight or curved nose, in 5 " and 6 " sizes.
Distributed by:
Special Products Distributors Limited 81 Piccadilly London.W.1.
Tel: 01-629 9556 Cables: SPECIPROD London W.1. Full details on request.

A NEW ADDITION TO THE RANGE

Miniature P.T.F.E. Tubular Capacitors

Oxley Developments Company Limited have introduced a new and improved range of miniature P.T.F.E. Tubular Trimmer Capacitors with capacitance swings from 5 to 30pF; $\mathrm{TU} / 30 / \mathrm{PC} 1$, for horizontal mounting on printed circuit boards, as illustrated.

This range of components uses P.T.F.E. as the dielectric medium, resulting in a power factor of less than 5×10^{-4} at 10 kHz , and the patented concentric design ensures uniformly smooth adjustment with linear, reversal-free tuning and temperature coefficient of $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Please contact our Sales Department for the technical data sheet.

OXLEY DEVELOPMENTS COMPANY LIMITED Priory Park. ULVERSTON, North Lancs.
$O X L E Y^{\circ} \oplus$
Telephone ULVERSTON 2621. Telex 6541

-

Slectro-Yed Sales

NEW HYSTERESIS MOTORS BY WALTER tating, outpue 20 O/12. Size: Length (less spindle) 31°. Width $2 \frac{1}{2}^{\circ} \times 21^{-}$. pindle $1^{\prime \prime} \times 3 / 16^{\circ}$. Weight lb. Maker's price in region e22.10.0. Our price c6.10.0. each.

NEW "CROYDON" 240v, A.C.
reversible motors. Cholce of $\mathrm{i} / 50 \mathrm{~h}$
 750 RPM (identical In appearance). Size 30° high $\times 5^{\circ}$ long plus spindle $11^{\circ} \times t^{*}$ dia. A beautiful motor at less than half maker's original price. E6. 10.0 each.

100 Parvalux Reversible
Type S.D.14, 230/250v. A.C $22 \mathrm{lb} . / \mathrm{in}$. Standard foot mounted, varlable angle final drive. Removable 9 rooth chain spiggot on $3 / 16^{\circ}$ spindle. lst class condition. 67.10 .0 each.

$$
\text { P. \& P. } 10 \%
$$

 Also limited number only as above. W
NEW "CARTER ELECTRIC"
 cast aluminium cased gearbox. Stoutly Il structed. Approx.
$3^{3} \times 3^{7} \times 4^{-}$
 pindle. 45 \%. P. \& p p

English Electric $\&$ h.p. Motors. 240 v . single-phase, standard foot mounted, l.425 r.p.m., continuous rating. 44.15.0. Carriage 20/-.	
Isolation Transformers. By Majestic Winding Co. I to I ratio. 240v. input, 240 v . centre rapped out, at 2K.V.A., mounted in metal case measuring $88_{8}^{\prime \prime} \times 81^{\prime \prime} \times 11^{\prime \prime}$ high. Weight 651b. C16.10.0. Plus CI. 10.0 carriage.	
GENERAL ELECTRIC "TELETYPE". 115 y .50 cps . Synchronous motor, 3,000 RPM, double ended $5 / 16^{\circ}$ spindle. These motors are precision built to a very high standard, silent running, continuous rating, drawing 70 watt on run. Original cost is belleved to be in region of $£ 25$ each. We are offering these Brand New at 45/- each.	
"HONEYWELL" TYPE 23AC-NE - 15 amp . change-over switch is fitted on angled metal mount with spring loaded plastic rod operating cam. 10/- each.	

"HONEYWELL" V3 SERIES.Flush micro-switch 10 mp . c/o. The side panel is insulated. End-plate size $2^{\prime \prime} \times 1^{\prime \prime} .36 /-$ per doz.

OMRON MICRO SWITCH. Type $V V-15-1 A$. Single c/o 10 amp. at 250 v . It $\times{ }^{-1 "} \times 1$. $30 /-$ per dozen. HONEYWELL" MICROSWITCH. deal for and double bank, manual-push. deal for vending machines, ete. Each 15 amps. 240v. A.C. The shrough-panel mounting assembly is in heavy polythen surmounted by black knob. Neck dla. A"

THORN DIGITAL INDICA TOR. A modular unit easily even under bright lighting 12 characters, 0 to 9, decimal point and minus sign. Character 3/16 high on acrylic, edge-lit by watt midget lamp. Front pane ta $\times 1$, depth overall mat black finish. Supplled with ratings.-6v. 08A. 44.0 .0 each or 24/-per dozen
 Welwyn high value Resistors Type GA 36501. Values between 9.4 and 10.9 kilo-meg $\pm 1 \%$, glass
encapsulated $15 /$. . "WELWYN" RESISTORS,-TYpe HI2. One value SPECIAL OFFER En closed Relay, complete with base. Brand New. Type MQ308 $600 \Omega 24 \mathrm{v}, 4 \mathrm{c} / \mathrm{o}$. Size

$$
\begin{aligned}
& 12 /- \text { each. } \\
& 050810,000
\end{aligned}
$$

Type MQ508 10.000Ω 100 $4 \mathrm{c} / \mathrm{o} .65$ per dozen. $12 / \mathrm{e}$ each E6 per dozen, $13 / 6$ each. Type MQ208 $150 \Omega 12 \mathrm{v} .4 \mathrm{c} / \mathrm{o}$ C6 per dozen. 13/6 each

SPECIAL SUMMER OFFER

LIMITED PERIOD ONLY FROM NOW UNTIL 31st JULY 1970. DISCOUNT OF 15% ($3 /$ - in £1) WILL BE DEDUCTED ON ALL ORDERS OF $£ 3$ AND OVER.

NEW "F.I.R.E." PLUG-IN RELAY.-ll5v. Coil 50/60 c.p.s. 3 heavy ducy silver change-over contacts. Very robuse. $17 / 6$.	
NEW DIAMOND "H" 240 RELAY.- 3 heavy duty silver over contacts. $17 / 6$.	Ige-
SEIMENS HIGH SPEED LAY, Type 89L. $1,700 \Omega+1,700$ coil. New 15/- each.	$\therefore \text { 院 }$
MINIATURE "'LATCH MASTER" RELAY 6, 12, or 24v D.C. operation. One make on break, contacts rated 5 amps . a 30y. Once current is applied relay remains latched until inpu polariey is reversed. Manufac tured for high acceleration re quirements by Sperry Gyroscop dia. $9 / 16^{\prime \prime}$ (including mount). Pl horizontal mount and voltage. 12	Co. Size: Length :", ease state vertical or . 5.0 each.
	DIAMOND "H" SEALED RELAY Type. BR 115 C.I.T.IC 26v. I50 4 P.D.T. Completaly encapsulated in heavy gause brass case, glass sealed terminals, very robust. 17/6 each.
K.L.G. Sealed Terminals. Type TLSI AA, overall length $11 / 16^{\circ}$, box of $100,25 \mathrm{~s}$. Type TLSI BB, overall length 1°. box of $100,35 \mathrm{~s}$.	

CENTRIFUGAL BLOWER BY AIR CONTROL LTD. 240 v . AC. $9^{\prime \prime}$ dia, 2,850 RPM. I/losh HP. Ideal for organ blowing, powerful, low noise level. Ist class

GARDNERS AUTO-TRANSFORMERS. 110/115/ $200 / 250 \mathrm{v}$. 1500 watts. Welght 231 b . Few only. Cl 10.10 .0 . P. \& P. 25

GARDNERS CASTLE SERIES. Isolation trans former type CAS 934. 240v. fused. Primary 24v. 41 amps. out. These units are constructed for outside use with fitted 5^{\prime} mains lead and ${ }^{3}$ socket outlet with plug supplied. Brand New. Makers price $\mathbf{1 7 . 1 8 . 6}$. Other
price $£ 4.15 .0$. P. \& P. 15/-. price E4.15.0. P. \& P. $15 /-1^{\text {. }}$

WE WELCOME OFFICIAL ORDERS FROM ESTABLISHED COMPANIES EDUCATIONAL DEPTS., ETC.

ARAND NEW "KLAXON" GEARED MOTORS. $230 / 250 \mathrm{v} .250 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Cont. 45/b./in. Few only. E25.0.0. POWER SUPPLY UNIT, 240v. A.C. To 112 or 125 D.C. at 3 amps, Ripple at 3 amps less than 500 millivoles.
Output resistance 5Ω. Size $15^{\prime \prime} \times 99^{\prime \prime} \times 7^{\circ}$ high. Weight Gutput resistance 5Ω. Size 15
441 b . C8.10.0. C. \& P. Cl.10.0.
SYLVANIA MAGNETIC SWITCH-a mag
netically activated switch operating in a vacuum. $200^{\circ} \mathrm{C}$. Silver contacts normally closed rated 3 amps. at 120 v . 1.5 amp . at 240 v . $10 /-$ each. B0/- per dozen. Special quotations for 100 or over. Reference Magnets avaliable $1 / 6$ each.

ASYLVANIA CIRCUIT BREAKERS gas filled providing a fast thermal response between 80° and $180^{\circ} \mathrm{C}$. Will withstand pressures up to $2,000 \mathrm{lb}$, sq. $/ \mathrm{in}$. rated 10 amp . at 240 v . continuous. Faule currents of 28 amps . at 120 v . or 13 amp . at 240 v . silver contacts. Supplied in any of the following opening temperatures (degs. cent.) 80, 85, 95, 100, 105, $110,120,125$, $130,135,140,145,150,155,160,170,175$, 180. 10/- each or $80 /$-per dozen ATLAS SUB-MINIATURE LAMPS type Ll 122 and Lili23-a high efficient
light-source with excellent light-output aght-source with excellent low power demand. Ratings 5 v .

and $\mathrm{ma} . .35 \pm 25 \%$ lumens. Life expect | 60 ma. $.35 \pm 25 \%$ lumens. Life expect- |
| :--- |
| ancy 60.000 hours or at 6 v. 70 ma. |
| .75 |
| 5% lumens 5000 hours. Dimen. |

 in excess of $12 /$-each, our price $30 /$-per dozen or boxes of ATLAS MIDGET PANEL LAMPS Un-
 24/-per dozen or boxes of 50 at 44 per box.
INDICATOR LAMP HOLDERS AND CAPS for MIDGET PANEL LAMPS (as above) available red, green,
blue, $2 / 6$ each (complete) minimum order 4 units. "DECCO" MAINS SOLENOID. Compact and very powerful. I6 lb, pull. "travel which can be increased to $1^{\text {b }}$ by $2^{\prime \prime} \times 21^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$ high. $35 /-$. P. \& P. $5 / \%$.

Now "Magnatic Devlces solenoid 240v. A.C. Type 42117 1 to 3 lb . pull, frame size $1^{\circ} \times$ $13^{\circ} \times 1^{\prime \prime} .20 /=$ each.

"TEDDINGTON" CONTROLS THERMOSTAT,-Adiustable internal adjuster takes the maximum $4 p^{\text {to }} 120^{\circ} \mathrm{C}$. Circuit cuts in again at 3° below cut-out setting. $42^{\prime \prime}$ capillary and sensor probe. The thermostat actuates a 15 amp . 250 v , c/o switch.
 second single pole on/of switch mechanism. 17/6.
New 75-0.75 Micro. ammeter by Sifam. 750 ohm movement, clear reading. $5 \mu \mathrm{a}$ divisions x t"; plastic front, projection $\mathbf{1}^{\prime \prime}$ (tapering forward). Size: $43^{\prime \prime} \times 33^{\circ}, 57 / 6$ each.

Ernest Turnar $5^{\circ} \times 4^{\circ} 0.1 \mathrm{Ma}$. meter \longrightarrow calibrated $0-10$ in 50 divisions mirrored flush mounting. A quality instrument E6.10.0.

MINIATURE

B.P.L. $500-0-500$ Mirt $13 / 16^{\prime \prime} \quad$ Micro-Ammeter. mounting. Hermatically sealed $45 / \mathrm{s}$.
TRIMPOTS. "Painton" Types: 200S-1-502 5K Ω " 200S-1-103 iOK $\Omega ; 200 \mathrm{~S}-1-501$ 500K $\Omega ; 200 \mathrm{~S}-1-503$ 50K $\Omega ; 224 \mathrm{P}-1-2022 \mathrm{~K} \Omega ; 224 \mathrm{~S}-1-102 \mathrm{IK} \Omega ; 200 \mathrm{~S}-1-203$ 20K $; 275-1-252$ 2.5K Ω. "Ril", Type: 321 IOK Ω. "Morganite" Type: 80 IK Ω. "Mec" Type: 025 (tubular)
200Ω; $\mathbb{T 2 0 P} 50 \Omega$. All types $12 /-$ each. GARDNERS CHOKES. Type C237: 20H I80MA 30/-P. \& P. 5/. TYpe C570: 0.05 H 3.5 A 35/-P. \& P. $5 / \mathrm{F}$
 500MA $37 / 6 \mathrm{P}$. \& P. 7/6. Type C576: $0.05 \mathrm{H} 7.5 \mathrm{~A} 50 / \mathrm{F}$ P. \& P. 10/: Type C527: 0.5 H 4A 50\% P. P. 10/\%,
Type SK7486: 35 MH 3 BA D.C. $30 / \mathrm{P}$. \& P. $5 /-$, Type Type SK7486: 35 MH 3A D.C. $30 /-$
F9719: 25 H 60MA 8/6 P. \& P. $3 / 6$.
"KNOWLE" (U.S.A.) MINIATURE MICROPHONE CAPSULES. Impedance 2000Ω. Output abous 100 dB as I KC (Type A). As above, but output
60 dB (Types B \& C), as used in miniature hearingesids bugging devices. etc. All tested. $20 /$ - each. Also "KNOWLE" M/C SUB-MINIATURE EAR TRANSDUCERS. Type 1530. Size $7 / 16^{\circ} \times 7 / 32^{\circ} \times 1^{\prime \prime}$ thick. 15/- each.

WHERE NO CARRIAGE CHARGE IS
NDICATED PRICE IS INCLUSIVE
PERSONAL CALLERS WELCOME.

BUSINESS HOURS :
9.30-6 (1 p.m. Safs.)

MuOpTolietronilis from PRops

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)
Inexpensive light sensitive resistors which require only simple circuitry to work as light eriggering units in a wide range of devices. such as: flashing or breakdown Ilghts, exposure meters, brightness controls, automatic parch lights, etc. Not polarity
conscious - use with A.C. or D.C. Spectral response covers whole visible light range.

MKY101-C
Epoxy sealed. In. diam. $x \neq$ in. thick. Resistance at 100 Lux -500 to 150 mW .

MKY71

Glass sealed with M.E.S. base. Glass envelope of in. diam., overall length 1 in. Resistance al 100 Lux - 50 Kohms to 150 Kohms . Maximum length 1 in. Resistance al 100 Lux -50 Kohms 10150 Kohms. Maximum
voltage 150 A.C. or D.C. Maximum current 75 mW . $8 / 6$ post free

PHOTOGENERATIVE CELLS

Selenium cells in which light energy is converted into electricity directly masurable on microammeter or used with amplifier as
devices, fuminous fluxmeters. exposure meters. colorimeters, etc.. Spectral response covers visible light range.
 Type 3-100 $\times 50 \mathrm{~mm}$. Output 4 mA at 0.6 volt at 1.000 22/6 post free

REED SWITCH COILS \& CAPSULES

Compact assemblies of reed swithes and operating coils that permit the design of an infinte variety of multiple switch circuits in an extremely small space. They eliminate the bulk and open contact reliability. Small enough to combine with solid-state components on printed circuit boards. Ideal for switching matrices, blnary kits, control systems, erc. These were removed intact from highly expensive computer mechanisms and are guaranteed to be in perfect working order. Each capsule consists of a rare-metal screened. 24 volt DC operating coll on a nylon former with one detachable end for the removal and replacemunt of reed switches.
Types avallable
A/C2 Tworeed switches, contacts normaliy open. Size overall: $1\|x\| x$ in. 5 - post free R/C4 Four reed switches, contacts normally open Size overall: $1\|x\| x$ in $10 /$-post free

RCA TRIAC - CA40432 45/-post free Suitable for light dimming and motor control circuits Gate-controlled, full-wave, A.C. silicon switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Suitable for A.C. operation up to 250 votis; controls currents up to 1440 watts. Size only in in. operation up to 250 volts; controls currents up 101440 warts. Size only $\frac{1}{2}$ in. diam. ${ }_{x}$? in. high. Complete with heat sink, data and apolications diam, $\times \frac{3}{7}$ in

CONTROL THERMISTOR
Type A25 by STC retained on 1×1 in. paxolin board with soldep tags and mounting lug with captive screws. Bead type thermistor is contained in 1 in. Iong $\times 5 / 32$ in. diam. gas filled glass bulb and is panticularly suitable for amplltude control. timing devices.
current surge suopression, etc. Sate power dissloation. 60 mW . Sensitivity $3.5^{\circ} \mathrm{C} / \mathrm{mW}$. current surge suppression. etc. Sate power disslpation. 60 mW . Sensitivity $3.5^{\circ} \mathrm{C} / \mathrm{mW}$. Maximum temperatura - Amblent $150^{\circ} \mathrm{C}$. Bead $300^{\circ} \mathrm{C}$. Resistance at $20^{\circ} \mathrm{C}$ 200,00 ohms. Average dissipation at 60 mW in free air at $20^{\circ} \mathrm{C}$: 575 onms.
price $15 / 9$ each. Brand new. Special bargain offer : 5 for $15 /$ post free. POWER TRANSISTOR HEAT SINKS Heavy gauge aluminium extrustons with fitment for one pair of power transistors. Size overall: $4 \times 3 \% \times 1$ tin. high. Base is $3 / 16$ in. thick and
ready punched to accept all standard types. Seven cooling fin surfaces ensure adequate heat dissipation. Brand new. Special offer
two for 12/6 post free

INFRA-RED TRANSMITTERS \& RECEIVERS

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Miniaturized construction and solid state circuit design is comblned ties as short distance speech and data links, remote relay controls, safery devices, burglar alarms, batch counters, leval detectors, etc., etc.
o. $\square 35$
 85/-

MGA 100
MSP3
GALLIUM ARSENIDE LIGHT SOURCE-MGA 100 Filamentless, infra-red emitter in a robust. sealed cylinder coaxial with beam to facilitate oprical alignment and heat sinking
max ratings
 ower dlssimation: Reverse voltage V_{A} max .600 m
1.0 V.
m heat $\operatorname{sink} \operatorname{lin} . x \operatorname{din} \times \operatorname{lin}$ in
INFRA-RED PHOTO RECEIVER - MSP3
Ultra senstive detector/empllfer for Intra-red (Gallium Arsenide) or visible light optical llnks reception. Spectral response 9500 A. Robust, cylindrical package is coaxial with incident light to facilitate optical alignment and heat sinking.
MAX RATINGS \quad Toral dissipation (in free alt, Tsmb $=25^{\circ} \mathrm{C}$.) $\quad 100 \mathrm{~mW}$. Derazing Factor $\quad 2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Output Current Intensity........100mA. Volrage.........25V. Operating Tempersture........from
 including Line of Sight Speech Link.

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccossible places as assliy as electricity is conducted by copper wires. Fibre optics make it possible to control. minhaturize, split, reflect or transfer light from one source $t 0$ many places at once
and to operate photo devices, Iogic circuits. or tlluminate in ways never before pos. and to operate photo devices, 10 gic circuits, or inuminate in ways never be fore pos:
sible. Proops offer both glass fibre optics or inexpensive Crofon plastic fibres for hundreds of experiments or serious applications in a fascinating new science.
 15/-post free

£16
. $\times 18$ and $6 \mathrm{~mm} . \times 12$ in. light guides, plus 24 in. long x 2 exit component for punched card or coding applications. Also battery operated light source, 2-way 'r' adzplor with non-random separation, and $3 \mathrm{~mm} . / 3 \mathrm{~mm}$. and 3 mm ./

- Special offer of IMAGE FIBRESCOPES £5 Postroe Between 50,000 and 60,000 coherenty arranged, 15 micron glass fibres that provide (with appropriate optics) perfect visual inspection into otherwise inaccessible areas, Originally made by Rank Taylor-Hobson for use in industrial and medical fibrescopes at C 72 each. these have stight. superficially imperceptible faults and are assembled in transparent, lay-llat tubing instead of opaque, Hexibla conduit. as usual. Ends are ground, polished and metal capped. Absolutely ideal for demonstration in Schools and Technical Colleges and for many other applications that require highly sophisticated means of access to enclosed. difficult to get at places. Length overall: 3 ft . Cross sectional area: $3 \times 3 \mathrm{~mm}$. Resolution: $10 \mathrm{LP} / \mathrm{mm}$. to $20 \mathrm{LP} / \mathrm{mm}$.
LOW COST CROFON FLEXIBLE LIGHT GUIDES
Newly developed plastlc light transmitting media by Oupont, which can be used for both serious projects and inexpensive prototype work. Ends can be ground tlat, dyed or capped with epoxy resin. Temperature range: $-40^{\circ} 10+170^{\circ} \mathrm{F}$. No loss of light through bending. 12 page Data and Applications booklet suppliad

Multi-strand- 64 special plastic fibres. fightly bundled together in a tough. flexible conduit. 8/6 per foot. Minimum order two feet. $17 /-p \& p 1 / 6$

RANK TAYLOR-HOBSON
ENGINEERS KITS
Basic fibre optic components that demonstrate new ways of employing light in serious applications. Two kits are available : each contains high:grade glass-fibre llght guides consisting of thousands of fibres tightly bundled in flexible sheaths with ferruled, optically polished ends, together with connecting and light source components. Each is supplied complete
with card wallets. containing technical and application data.
KIT 2 £28 PostFree Contains: 3 mm , 18 in ., $6 \mathrm{~mm} \times 12 \mathrm{in}$. light guides: 1.5 mm . ' Y ' gulde with iwo 12 in . long or punched card applications, 24 in . lengths of Crofon 64 filament and monofilament plastic light guide. Also, coherent sollds consisting of 25 mm . diam. field flattening lens, $6 \mathrm{~mm} . *$ 12 in. image condult with polished ends. $4 \mathrm{~mm} \times 25 \mathrm{~mm}$ image inverior Complete with 2 -way adaptor, fibre optic torch and batteries, 2-way adaptor, fibre oplic $10 \mathrm{~mm}^{2} .3 \mathrm{~mm}$. and $3 \mathrm{~mm} . / 1.5 \mathrm{~mm}$. connectors

TRANSFORMERS

We hold in stock a standard range of over 200 types of Transformers, a few of themore populartypes are represented here.

TRANSFORMERS

coils
CHOKES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
miniature transformers
RELAY AND INSTRUMENT COILS
VACUUM IMPREGNATION TO APPROVED STANDARDS
ELEATPD MIIIDS LTI.
CONTRACTORS TO G.P.O., LEE.B., B.B.C.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01-6532261 CR48LZ EST. 1933

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CÁLIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone
FIRNOR-MISILON LIMITED
10 COMMERCE LANE, LETCHWORTH, HERTS Tel: 6069

MICRO SWITCH

 5 amp. changeover contecte. $1 / 9$ each COMPUTER MULTI-CORE CABLES $12.14 / 0076$ copper cores, each one innulated by colouredP.V.C. then separately norrened, the 12 metal braided corea laid tigether and P.V.C. covered overall inaking a cable Junt
under $\$$ th. diu. but quite plable, Price $7 / 8$ per ft. Any length cut. Other aisea avaitible 7 core $\mathrm{G} /-\mathrm{ft}$., 6 core $4 /-\mathrm{ft}$. 4 core 3/6 ft.

FLEX BARGAINS

Screened 2 Core Flex. Each core 14/0076 Copper P.V.C. bralded overall. Price EQ .15 per 100 yda coll.
13 Amp 3 Core Non-link Flex, $70 / 7078$ inulated coloured 15 Amp 3 Core Non-hink Flez, $70 / 7078$ invulated coloured
cores, protected by Lough mubher aheah, then black cotion $03 \mathrm{k}=$ frea. Regutar prico $3 / 6$ per yd. 50 yd . coll 84.10 . or cut to your length $2 / 6$ per yd.
10 Amp 3 Gore Non-inin Fier. $20 / 0076$ Copper Normal price $2 / 6$ per 5 d . 100 yd. coll 87.10 or cut to your length $1 / 9$ per yard.
8 Amp 2 Core Flex. As mbove, but 2 cores ench $23 / 0076$ a used for Vacuum Cleaners, Electric Blanketh. etc., 39/6 23/0076 triple core P.V.C. covered, circular, normully sold
at $1 / 6 \mathrm{yd}$. Our price 100 yd . coll $\mathbf{2 3} \mathbf{1 9 . 6}$. Pokt and tan. $8 / 6$, CONSTRUCTORS' PARCEL 1. Plessey miniature 2 -gang tuning condeniser with bulthin
trimmers ald wave gang switch. 2. Ferrite siab serlal writh
coiln to sult the above tuning condenser. 3. Circuit diagram coiln to sult the above tuning condenser. 3. Clrcult diagram giving all component valuea for 6-tranaliwor circuit
full medium wave and the long wave band around Radio 2 . tuntong condenier alone

10 AMP $24 V$ BATTERY CHARGER Ideal unil for garage, boat itation, etc. \&28.10.0 each,

BEHIND-THE-EAR DEAF AID Made by a very Larmous maker. Thoroughly overhauled,
cleaned and re-conditioned. Guaranteed 6 montha. Regular price amund 250 . Our price $£ 10$.
ISOLATION TRANSFORMERS $\mathbf{2 0 0 - 2 5 0}$ Mns A must if you work on minins equipment. Prevents necudenta aeparately ger
250 watt 25 .

SLOW MOTION DRIVES
For coupling to tuning condensers, ote. One end tha. whath, the other end flas w.
$4 / 6$ esch; $48 /-$ dozen.

LARGE PANEL MOUNTING Size Bin. X tha. Centre zefo $200-0-200$ micro amp, made by
Rangamo. Weston. Regular price probably Ex. Our price
$58 / 6$. Ditho but $100.0-100$ 79/6. 58/6. Ditto but $100.0+100$ 79/6.
A.C. AMETER
$0-5$ ampe., flush mounting, moving Iron. EI-eruipment but
suarauteed perfect $29 / 6$. guarauteed perfect 28/6.

CIRCUIT BOARDS
Heary copper on $3 / 32$ paxollin sheet. Ideal for making power

GKVA AUTO-TRANSFORMER
In ventlisted sheet uleel case tupped $110 \mathrm{v}-140 \mathrm{v}-170 \mathrm{v}$.
Q00v-230v. Fix-equipment but guarantced perflect. 219.10 .0 . Carriage at coat.
$-\longrightarrow$ REED SWITCHES Glass encased, swilches nperwted by axternal triagnet-rok
 thake and brenk up to $1 \mathrm{~A} u \mathrm{p}$ to $\$ 00$ volts, Price $2 / \mathrm{B}$ eacli. tandard. 2 in . lone $\times 3 / 18 \mathrm{in}$. diameter. Thls will break
turrents of up to 1 A, voltugea up to 250 volts. Price $2 /-$ erch
 Lean be nitted tato a maller apace or a larger quantity hat be packed Into a square solenold. Rating 1 anp 200 volts. Price 8 V - each. f 3 per dozen. dinall cerminle maynets to operate themo reed awlechea
$1 / 8$ each. $18 /=$ dozen. 0.0005 mFd TUNING

CONDENSER
Proved denign, Ideal for atralght or renex
clreuits $2 / 8$ each. $24 /=$ doz.
SUB-MINIATURE MOVING COIL MICROPHONE u ured in behind the ear den! aids Acta almo ith carphone aize only \ddagger tin. \times if \times ito. Regular
 PP3 BATTERY ELIMINATOR Run your amall tranaletor radlo from ready to wire Into your aet and $8 / 6$ each. This un

CHART RECORDER MOTOR
Sraull (2in. diameter approz.) instrument motor with nxtag

IGNITION (E.H.T.) TRANSFORMER
 I2-YOLT EXTRACTOR FAN BY DELCO
 Ideal for venthation in caravan, car of
boat. 6 -buded sin. diameter fan inside
heavy duty cy llader with 3 -point ining heavy duty cyinder with 3 -point fixing finnge. stin. diameter fixing hole.
length approx. 81n, Exceptional bar-
gain. $27 / 6$ plus. $5 / 6$ pout and insurauce. 4-PUSH SWITCH
Ideal to control fan heater, atc. 3 on awitches and 1 off. MAINS TRANSISTOR POWER PACK Dealgned to operate transintor seto and ampllifers. Adjurl orkidig). Takes the place of any of the following butterien: PP1, PP3, PP4, PP6, PP7, PP9, and others, KIf comprises:

DISTRIBUTION PANELS

Just what you need for work beach or lab. 4×13 amp mockets to metal box to take staudard 13 arap foc Plukis and on/ofis switeh with neon waralng light, Buppled complete with 7 feet of heav 15 amp plug, płus $4 / 6 \mathrm{P}$. \& I . $39 / 6$ less plug ; 45 , with atted 19 amp pluf ; $47 / 6$ with ntte

MOTORISED CAM SWITCH

These have a normal mains $200-240 \mathrm{v}$ motor which drives a ratchet
mechanimm geared to give one ratchet acton every minute approx The cam operntes 8 awivehes (8 chatgeorer and 2 on/ofil thue approx. have been set for certaln awlich combinutiona but cand, no doubt, be altared to suit a special job. Aloo other wwh waters or devices can be
atteched to the shaft which extends approximately one loch. $47 / 6$. STANDARD WAFER SWITCHES

Blandard alse $1 f$ waler-ailver-plated 5 -amp contact,
ntandand \boldsymbol{i}^{-}spladje 2^{2} long-with locking wanher nud nut.

MICROSONIC KEYCHAIN RADIOS
 Frequency range: 830 to $1600 \mathrm{Kc} / \mathrm{sup}$. Senaltivity: 5
my/m. 7 . $\mathrm{my/m}$. Intermediate frequency: $465 \mathrm{Kc} / \mathrm{m}$, of $45.5 \mathrm{Kc} / \mathrm{s}$. apenker: Permanent magriet type. In tranuit from the East, these set a nuftered nilight corrosion an the batterie
were left in, but when this cormoion is cleared a wey ahouh, work perfectly ooffered without quan mantee except that they sre new. $84 / 8$ pluy $2 / 6$ pont and in. surunce. Rechat
charger 12/8

OUT OF SEASON BARGAIN

 NTI This heater unit is the very latent type, mont
efficient, and qulet rumning. Is as atted in Hoover and browor healera coosting. Is as atted in Ho Hover more. Wo have
and A few only. Comprises nootor, imper ier, 2 kW .
olement and 1 KW . element alowling avtiching

 except 2 kitowitte. $39 / 6$. Postage nad tinturance
6/6. Don't mist this.

RE-CHARGEABLE TORCH

Nent fant torch, ats unobtrunively in your pocket, contains
2 Nicm cells and buith-tn charger. Pluga into nhaver aifaptor 2 Nicad cellg and buith-in charger. Pluga into nhaver aifaptor

3 STAGE PERMEABILITY TUNER

 This Tuner is a preciaion instrument made by the tamous "Cyldon" Company for the equally famous Radlomobile Car Radlo. It in a medium wave taner
(but aet of longwuye coila a valiabie ak an extra if required) with a frequency
 reduction gear for fine tankge. Snip price this month. $18 / 6$ with circult of
Amont end aulable for car radio or ai a general purpone tuner for use with
Amplifer. Poat Free. Campliner. Pout Free.

PROTECT VALUABLE DEVICES

from thermal rumaway or overheatma: sinkisank tanily be protected slmply mate the contact thermotat part of the heat-ink. Motora and equipment
generally, can also be adequately protected by having

NEED A SPECIAL SWITCH
Double Leaf Contact

Heary duty $23 / 38$, average length 5 ft. $10 /$ per dozen
lengths, plua $4 / 6$ pont and ine.

INSTRUMENT KNOBS
 MIDGET OUTPUT
 TRANSFORMER Katio $140:$ 1. Sise approz. Ilin. $\times \frac{1}{2} \mathrm{~m} . \times$ Mider each. $48 /$ - doi MIDGET OUTPUT

4GANG AIR-SPACED
TUNING CONDENSER
Por AM/FM elrcuits. AM Hf section
200 pf , osc section 80 pl , both with 200 pf , ose section 80 pf , both with
trimmers- FM of section 9.5 pf osc
section 11.2 of -integral stow-motion section 11.2 p -
drivo. $8 / 6$ emch.

MAINS CONNECTOR A qujek way to connect equipment to
the manion anfely and firmy- Li, N.
and E. codod to new colour meheme: and E. codod to new colour neheme;
disoonnectlon by plugs preventa sechidental awitching on; ha, neveketa
which allow lusertlon of meter without disconnection; cable inleta firmly
hold one halr wire on up to four hold one hair wire on
7.029 cables. 18/6 each.
THE 5×5 WATT STEREO AMPLIFIER Maile by one of our most famous makera for a do-fuxe
player. Thin amplifier hinn a quality of reproduction much better than average. Uning a total 16 tranaistora and a gencrously sizod maina power pack. Controle Include bass.
trebie, balance and volume. Suitabie for 8.16 obrus impedance apenkera with crosoovers for tweler midd range and
hasy thus giving option of 1,2 or y apeakers per channel lase thus giving optino of 1,2 or y apeakera per channel.
orered at about one-thind of its orginal price, only

GRO-LUX LIGHTING

Special tubes give light rich in U.V. and other raya necemary
for plante and fith tept ludoors awty from natival suolight.
 ntarter, tube end a and clips, wharter holder and diagram
$19 / 6$. Pust and iusurance $3 / 6$ on either; or $4 / 6$ on both ltema 19ther tube aises in stock, wo mend for Lift.

DRILL CONTROLLER Electronicaly changes apoed
from sppoximately 10 reve.
to maiturm Pull trom spproximntely 10 reve.
to maximum. Full power at ali
speeds by finger-lip control.

ELECTRIC CLOCK
 Made by Smilh's, these units ware as control the oved. The elock is mala driven and frequency controlled so it in extremely socurata. The two sminll be accurately net. Idenl for nwiching
on tape reconders. Otfered at only a traethon of the regular price-new and ununed only, 38/9
lesm than the value of the clock alone-post and insurance $2 / 0$

COLOURED FLUORESCENT TUBES

 to white depending upon choke uned. Avallable to the follow ing colours: Red, Yellow, Blue, Peach, Dayilght, Natural,
White. Epecial anfp price (About hall reaniar price) $9 / 8$ each plas $8 /-$ poatage and insurnace on any quanulty np to 12
when they would be post froe. Note: Two tubes may be When they would be post froe. Note: Two fubres may be rua
of one choke. We can aupply sutinbie choke, two startera and oif one choke. We can aupply atitabie choke, two staricra and
ail other Attings requitred for 29/8 plas $4 / 8$ post per kith.

[^9]
nector and fixing brackets.
ELECTRONICS (CROYDON) LTD
Dept. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

ELECTRONIC

COUNTERS

VEEDER ROOT 6 DIGIT COUNTER
Gultable for countling all kinds of pro. tion Mechaniculls driven Type K A1337.
Reset mannul Reset manual knob. Ex-equipment but
new condition. Spectal price $25 /-$ plut ${ }_{B / \sim}^{\text {new }}$. $\&$ P.
miniature
SQUARE COUNTER 6 DIGIT
By Veder Root. Rotary ratchet type
add 1 count for each s $\$ 0^{\circ}$ movement of
Shatt. $8 / 8$ pluo $2 / 8$ P. did

DIGIT ELECTRICAL
IMPULSE COUNTER With electrical and trechanical resel
Counter driven by 4.400 ohms coll. Reset 110 v. D.c. 80 ohm coll. Housed in plastic-alloy case,
The units can be interlocked with each
other to give vertical other to give vertical or horizontal
displaye. Ex, equipment. Price $58 / 6$
plue $5 /-P$. \& P.

EAC DIGIVISOR Mk. II
DIGITAL READ-OUT
DispLay
Ideally nuituble for une in conjunction

 DIGIVIBOR incorporates A moring coll
rovement which moved A trunalucent scale through an optical aystem and the reauliant ingle plane hagate is projected made to reprement digitis 0.9 soecifica.
 thon: immp 6.3 volt movement sensitivity
 £̇/13/6. Lat price 8 g ghe

BERKELEY DECIMAL COUNTING UNIT 0.9 4 valver double triode type 5905 special quailty Unit plaga lato atandard octal base, Modutar coastruction with 10 minature geon

5 DIGIT COUNTER

A very eturdy counter. Coll resietance 100 obms. Minimum operntional voltage 5v. Counting speed 13 counts per sec. Bultable
for continuous counting with ine wave drive. Coincidence, recording and frequency meter $35 /-$ p. \& p. $5 /$.

HI-SPEED ELECTRIC RESE ELECTRO MAGNETIC COUNTER
${ }^{6}$ Digit 24 F, D.C. $31 \mathrm{~W}, 20$ countal second. Pize $3 i \times 21$. Panel Mounting.

HIGH STABILITY D.C. POWER SUPPLY TYPE D.C. 200 AND D.C. 202
A ctablisised ex-equipment power pack made to a tight apeciacation. -10 s at 4A, -20v, at 2A. Type D.C. 202 : Input $200 / 250 \mathrm{v}, 50 \mathrm{Zz}$.
 Length 18 in . Eeight 96 in . Width 12 in . Weight 92 lbs . Price ع65. Carringe extra.

ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDITIONS A COPY OF WHICH MAY BE INSPECCED AT OUR PREMISES DURING TRADING HOURS OR WILL BE EENT ON APPLICATION THROUGH THE POST

HIGH GRADE COMPONENTS

double audio faders

IW

1000 plus 1000 ohms. Eacb rectitive dimmer in adjustable and independent of each other. Ex-equipment but in an
almosi new. condition. Price $\mathbf{£ 3 / 1 8 / 6 . ~}$
\mathbf{P}. $\mathbb{P} .7 / 6$.

VOLSTATS

VOLSTATS and cobstant voluge tranulormera. Large runge in atock

OSCILLOSCOPES

SOLARTRON C.D. 1014/2 Double beam portable oncillo acope very suitable as a general purpose equipment. $3 f$ In. Flat
Face tube with the followlag fentures. Auto trigger mode. Provilon for extemal " $2^{-\prime}$ modulation. TV line and Frame syne meparator with D.C. rentoration. Accurate "X" and "Y" Callbration and stabilised E.H.T, Bpecincation: Bandwidth D.C. to 3 MHz . Sentitlity 1 millivolit/cm on "Y2". Time Base ax postlons from "X" Shit approximately 10 diametera. Power Supply $100 / 125 \mathrm{~s}$. and $200 / 250 \mathrm{v}, 45 \mathrm{~F} 40 \mathrm{~Hz}$. at $75 \nabla \mathrm{FA}$. Dimensions: Whath 9 in in. Height $11 \frac{14}{}$ in. Depth 15 ka . Weight 25 lb . Price $\mathbf{E 4 0}$. Carriage
EXTRA.
TEKTRONIX. Type 524AD apecifically denigned for maintenance and adjumment of television tratimittern and ntudio equipment. Price $£ 175$. HEATHKIT, Laboratory and general purpose ncope. Mode.
$10-12$ U. Single Beam. Prlce 215 . Carriage extra. DARTRONIC. Model 381 single Beam. Bandwith D.C. to
 0.7 sec/em to 0.5 micro sec/cry. Power Suppll
95 watts. Price $£ 29 / 10 / 0$. Carriage extra.

MOTORS

HYSTERESIS REVERSIBLE MOTOR locorporating ewo colis. Each coll when energied will produce

HIGH TORQUE INDUCTION MOTOR
 LOW TORQUE HYSTERESIS MOTOR MA23 Idcal for tnstrument chart drives. Extremely quilet, useful in areas
where ambleat aoise levele are low. High starting torque enable relative hugh inertis loada to be driven up to 6-0z/Lin. Avallable in

 r.p.m., $1 / 360$ r.p.m. $1 / 720$ r.p.ra., $, 1 / 1 / 20,1 / 45$ r.p.m.; $120 V^{50} \mathbf{5 0} \mathrm{~Hz} 1 / 6$ r.p.m., $1 / 15$ r.p. . m, $1 / 16$ r.p.m. $1 / 20$ r.p.m., $1 / 24$ r.p.m. $1 / 30$ r.p.m..
1/60 r.p...... $1 / 120$ r.p.m., $1 / 240$ r.p.m., $1 / 300$ r.p.m., $1 / 720$ r.p.m.,

A.C. MOTOR GENERATOR

Type 11005 Motor spec. 6000 r.p.m. Torque $25 \mathrm{gm} / \mathrm{cm}$. Control
 Price £ $7 / 10 / 0$ p. \& p.
O.C. TACHOGENERATOR Type 9c/lo6 16\%, at 1000 r.p.m. Drive £16/10/0.

SYNCHRONOUS MOTOR WITH GEARBOX Motor 11 M 83 gearbox trie 11 H 21 . Thin ubil 1 an an 800 r r.m.m., 115 v .,
400 Hz motor fitled with concentric epicycle reduction Rearboz of

RAGONOT MOTOR
220 V 3-phsse $50 \mathrm{~Hz} 1 / 20 \mathrm{HP}$. 1500 RPM. Precision Ex-COMPUTER TAPE DRIVES. Rotor moven I in. axially on
"Bwitch on" to take up drive and on "Switch ofr" is spring returued

—

FRACMO

EVERSHED \& VIGNOLES

SPLIT FIELD SERYO MOTOR

GENERATORS

A.M. SIGNAL GENERATOR Maroond Model TF 144 ES This in a current model thatrumeut with
ath the denirable features the such important factorn in achleving the popularity of this range of instruments. The layout of controis is extremaety neat and easy to use. The irequency range is
durided into 12 bands each having a range cover of more than $2 / 1$. Thls way a large effective scale length is obtalned
on the turning dial which carries on the turning dial which carries a
separate scale for each hand. The the signal generator apecification: Frequency Range band of 72 MHz . 8 tability 0.002 per cent. High diecrimination plus crystal calibrator. Good R.F. Wavelorm at all frequencies. Protected thermocouple level monitor. Output normal 2 volte. Eigh 2.75 volts. Power requirements $200 / 250 \mathrm{r}$ rad $100 / 130 \mathrm{v}$. $40 \cdot 100 \mathrm{~Hz}$. 80 watts.
Can almo be used with D.C. battery supply. Dimensions: Height l4t in. Width 199 in. Depth 11 ins Weight 58 Ibs. Used in equip$14 \ddagger$ in. Width 192 in. Depth 11 in Welght 58 Ibs. Used
meat in V.G. condition. Price £195. Corriage EXTRA

BRE\| α KERS

MEASURING INSTRUMENTS AND RECORDERS

PORTABLE AC/DC PEN RECORDER
 PEN RECORDER

A mont vermatile pean recoriler. Produces
 limith and/or low preneat it exceeds the high and/or low prenet valizea. Kange:
0 . 1MA D.C. Meter Hesinance too ohma: - iMA A.C. Meter Registance 600 ohn 1 mpedanee 8 curce. Chart ape "d
1 ln . and $6 \mathrm{in} / \mathrm{hr}$. Chart width: 3 in curd-Ifnear. Powry Rupply: 230
60 Hz driving fynchmnoun Motor. STRIP-CHARTINDICATING RECORDER
Chart width 96 lu .10 mV . Sensitirity ± 0.17 of Tull seale. Source impedance
100 ohman. Speed of pertion 33 sec. for

 vablable.
A.C.-D.C. CONVERTERS TYPE 2140/AI-BI and 2140/A3-B3
A texible mudulur symem for use with a DVM for nccurate mean
(RMB) or true (RMS) Voltage meanurements. Module AI LF Amplitier X 0.1 to X 1000 . Module A3 LF Amplifer $X 0.1$ to X 100 . $2140 / \mathrm{Al}$ - B1 1010 V True RMS Converter. Priee E175. $2114 / \mathrm{A}$
E 150.
BRAND NEW SENSITIV A.C. MILLIVOLTMETER A very neat attrachive indtrument at
very modeat price. Extremely high input impedance maintalned over 10 overlap-
plag ranges. Bhtcery powered glvigg
portablility and freedon from main portablity, and freedom from mining
bum. Bpecincaton: 30 my to 1000 y .
-20 to 2 decibels. Frequency: 3 Hz to $B_{0} \mathbf{K H H z}$. Input Impedance: 100 Meg ohms. Overall Accuracy: 10 per cent of
F.8.D. Power Aupply:
 mereened input cable. Dlmension

PRECISION

POTENTIOMETERS

TEN TURN 3600° ROTATION
BRAND NEW

BOURNS KNOB POT

conisting of potentlometer, knobsand readout dial in onc extremely compuc fnished in black plastle with white dial Available in $100 \mathrm{~K}, 20 \mathrm{~K}, 5 \mathrm{~K}, 1 \mathrm{~K} .11 \mathrm{~W}$. Resimtance tolerance 5%. Accuracy
correlation of dial reading to $0 / \mathrm{P} 0.5 \%$

NUMICATORS
Type NI 1. End reading
Price £1 ench. P. \& P. $2 / 6$.
Cold cnthode gas . Alled. in. 1 ine $0-9$ digit display tubes. Long life expectancy Minimum strikins roluge 180%. Bld

MERCURY WETTED
RELAYS
RELAYS of as operat lng time as ehort as 5 milli.
feconda. A BILLION OPERATIONB! Bmall chasile epace required. Cod
venleat mounting. Environment-free Tamper-proot. High senaltifity. Maib tenance free. No contact wear, Perfor mance is made poathe by the presence the ame tine cuabiohe the contacta and providen an unbroken trotalicic path for the electrical circult, Thismercury film,
constantly renewed by capiliary action prevente wear. diseipateo heat and thus
 avoin a contact erosion and eliminsted
bounce or chatter in the electrical circult. Hermetio sealing of the swicch and mer
cury pool io a glasa capsule elminlatee dirt and assures constant adjuatment.
Thil
 New Reiny: £2/10/0. Fr.equip. 21/10/0. P. \& P. $8 /=$. PHOTOMULTIPLIER VMPII/44 (CV 2317) by 20th Century Electronics
g wotte for $10 \mathrm{~A} / \mathrm{L} 1100$ volts. E.Mat. 6097 and 20th Century CV 2317 29/10/0.

ANIMAL SONARAY
 Type 1803B by Dawes

An inatrumeat for meaouring the thick-
ness of fat on an andinal by ultrasonico using the pulseecho prinelpal. The andmal sonary whe apecifcenly
deigned for the measure of back fat deoigned for the measure or back fat Fully portable welghing only 26
With handbook. price: $£ 149 / 10 / 0$ CRYSTAL OVENS Redifon Pltted BI-Metal gitip 78°
$\mathbf{g}^{\circ} \mathrm{C}$. Octal Base Type A 4260 EDN ${ }^{\circ} \mathrm{C}$

 ع12/1010. P. d P. $2 / 6$. Variou eypes avaliable, including aingle- and three phane manuas

SYNCHRONOUS

CHOPPERS
thon of time contacta $50-60 \mathrm{~Hz}$. Propo Aleos avall
ع $8 / 20 / 0$.

NEW COMPLETE TELE. PHONE DIAL ASSEMBLIES Clear Perapex dials
20/-each. P. $\$$ P. $\% /$

LINEAR THYRISTER CON. TROLLED LIGHT DIMMER 600w. moduls. Idemily suitable Wor
photothood or speed controller, etc. Wul mount into ntandard socket boxea.
Our price $59 / 8$. P. \& \mathbf{P}. 3/-.

HIGH VALUE RESISTANCE

 BOX TYPE R. 7003 8peciffction. Mange: $0.01-111$ Meg. In 0.05%. Maxlmum power ratlige: 0.1 w. per ntep. Case: Hammer finlsh atoreenamat. Lot price E60. Our price

£22/10/0.

PORTABLE WHEATSTONE BRIDGE
 5. 500 to 50,000 ohras. Bcalen: Switched. Blldenire: 0.5 to 50 Galvanometer acale: 10-0-10. Case: Moulded plastio. Internal
Bource: V. Dry bettery. Dimensions: $200 \times 110 \times 65 \mathrm{~mm}$. Welght: 0.9 kg . List price 225 . Our price $£ 9 / 18 / 6$.

MUTUAL INDUCTANCE COIL TYPE R. 7006 Specificatlon. Value: 0.001 R . Accuracy: $\pm 0.3 \%$. Operating Fre-
quency: $5 \mathrm{~K} / \mathrm{B}, 10 \mathrm{Kc} \mathrm{C}$. Maximum current: $1 \mathrm{~A}, 3 \mathrm{~A}$. Renjitauce of coile: 4 obm, 1 ohm. Case: Moulded Plastle. List price 8 ghs. Oar price 50%.
MUTUAL INDUCTANCE BOX TYPE R. 7005 Speciflcation Range: 0-11.100 mH in
0.002 mH dillitions. $\frac{0.012}{M}$) \% where $\mathrm{M}=$ value of mutual Laductance \ln tu H get on the hox. Fre-
quency range: $0-2.5 \mathrm{Kc} / \mathrm{s}$ for all decadea quency range: $0-2.5 \mathrm{Kc} / \mathrm{B}_{\text {for }}$ fll decades
except $\times 1=0.15 \mathrm{Kc} / \mathrm{s}$. Maximum current: 0.6A for decadel la for vario-
meter (both primary and secondary wingingb). Cane: Pollehed tea
price E65. Our price $£ 26 / 10 / 0$.

DIGITAL VOLTMETERS
Type LMAL2-2. Adigit £75. LM902-2R. 4 digit E75. LM1010. 1 digit Dysoob. An all sollditatate D.V.M. having is ulde applicatlon.
 B.C.D. S245. Carriage free.
DM2010. Bccule 10999 . D.C. Accura 0.001 per cent. D.C. Range 10 micero volt.t to 1.1 kV . $1 / \mathrm{P}$ Z greater that 25000 Megohma. DM2001. Scale 19005 DC. Accuracy 0.025% F8D. DC RANGE 50 microvoit $20{ }^{2} \mathrm{KV} 1 / \mathrm{P}$ Impedance greater thian 10.000 M ohm
Parallel BCD Output or Declinal (not Inolated). Price $£ 235$.

Available now! The new Mullard data book for 1970

Quick! get up-to-date with the latest information about Mullard semiconductors, valves, television picture tubes and components.

For easy flick-through location, each section of this pocket-sized data book is colour-coded.

LOOK AT THE SPECIFICATIONS!
 25 WATT \& 50 WATT RMS SILICON AMPLIFIERS

 NEW: Self-powered Stereo Preamplifiers - every facility. Slim modern designs, push-buttonsillicon transistors, sillicon eransistors, FET \star FETIS4 Ster*o *IC Stereo $\begin{array}{r}\text { £16.10.0 } \\ 624.0 .0 \\ \hline\end{array}$

- at full power 0.3% distortion. - Ac full power- $1 \mathrm{ldB} / \mathrm{lc} / \mathrm{s}$ to $40 \mathrm{ke} / \mathrm{s}$. - Response— $1 \mathrm{~dB}|\mid \mathrm{e} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$.

PORTABLE GEIGER COUNTER
£9.10.0.
 FOr MEASUREMENT OF RADIO ACTIVITY supplied complote
with inntructions haversack, csbles and
poobe. Liot price
and
pion Olobe. List price 670 rupted, complete
with coll H. With ${ }^{4}$ EEll $\mathrm{H} . \mathrm{T}$

Complete system comprising Control Unic headphones, etc.. I2V D.C. operation. Low battery drain, 8 watts power output. The ideal system for mobile use, outdoor
meetings,
sports
days.
factories,
zarden fetes, etc. speakers can be spaced effectively over hundreds of yards. Also has talk back facility. Guaranzeed Erand New in sealod dUANTITIES AVAILABLE FOR EXPORT

HENRY'S STOCK EYERY TYPE OF COMPONENT YOU NEED
SINCLAIR $\quad 230$ 75 $/$., project 60 amp E8.10.0, PE5 79/6. EQUIPMENT Pz6 E6.19.6, 250 25.9.6, Pz8 65.19.6. *Two Z30 P25 up 60 pre-amp (usually 02.10 .0) $\mathbb{1} 9$ (or with P26 in place of P25 c21)

TEST EQUIPMENT

For Educational, Professional and Home Constructors special prices for quantities

AFIO5 $50 \mathrm{k} /$ vole multimeter (illus.). Price $6 \mathbf{6} 10.0$ p.p. $3 / 6$. Leather case 28/6.

200H 20k/vole. Price 63.17.6 p.p. 3/5. Case 12/6.

THL $33 \mathrm{~A} 2 \mathrm{k} / \mathrm{vole}$. Price $\mathbf{C 4 . 2 . 6} \mathrm{HP}$. P .

TE65 Valve volemeter (illus.). E17.10.0 p.p. $7 / 6$.

VM5I Transiscorised AF/RF multimeter Price $£ 32$.

TE20D RF generator (illus.). Price $1 / 5 \mathrm{p} . \mathrm{p} .7 / 6$ TE22D Matching audio generator
Price
if p.p. $7 / 6$.

TE15 Grid dip meter. Price 612.10 .0 p.p. $3 / 6$ TO3 Scop (illus.). 3" tube. Price 637.10.0 p.p. $10 /$.

PANEL METERS COMPLETE RANGE SPECIAL PRICES
SPECIAL PRICES
FOR QUANTITIES
*FULL RANGE IN THE LATEST CATALOGUE SEE FOR YOURSELF

NEW $\frac{1}{4}$-TRACK TAPE DECK

British made, takes 7 " spools, operates horizoncally or vertically, piano key operation. Fitted three-speed Marriot $13 \times 10 \times 5$ and XES II heads. Size
$13 \times$ Price \&i3.19.6 p.p. $7 / 6$

E.A.C. DIGIVISOR mk. II At a frection of normal pric
Moviny Coil 0 to 9 Disolay. Movink Coil ohr to 9 Display.
One
Inch charcrer ize
 Character lamp 6.3 volts poine. OVverall size: 4 4. x 11×21.
Price $79 / 6$.

GRAVINER FIRE DETECTOR UNIT Fire Detector Unit
containing 931 A photo multillier and
cold eathode tube cold eathode tube.
Shock and fire proof. Shock and fire proof.
Originally made for C74. Price complere with daze shees Es
Brand new

YOU CAN SAVE 25\%

BRAND NEW FULLY GUARANTEED SP25 mk11 611.19 .6 . AP75 \quad 16.19.6. SL65 B 614.19 .6.

 SPECIAL OFFER. Above supplied with carsridge GARRARD TURNTABLES 9TAH/C diam. add $£ 2$, magnetic 940 add £3.10.0, with G800
add $£ 8.10 .0$. De-luxe plinkhs and covers for above (except FRE COMPLETE LIST add CB. 10.0 . De-luxe plinnhs and covers for above (except FREE COMPLETE LIST
A기) Price 68.10 .0 REQUEST no. 1617. A70) Price 68.10 .0 p.p. 6/-.
Goldrinz GL69 deck only. C22 p.p. 2/6. With G800 $\mathbf{6 3 0}$ p.p. 7/6. Wish G 800 plinsh and cover $\mathbf{6 3 9 . 1 0 . 0}$ p.p. 10/-.
Garrard Model 50 c8.10.0. $\mathbf{3 0 0 0 1 m} \mathbf{6 9 . 1 5 . 0 (f i t t e d ~ 9 T A H C ~ d i a m . ~ c a r t s .) ~ p . p . ~ 7 / 6 . ~ P l i n e h s / ~}$ covers 99/6 p.p. $8 / \mathrm{m}$.

ELECTRONIC ORGANS

*MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READY
tVENEERED CABINETS FOR ALL MODELS t 49 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE *KITS AVAILABLE IN SECTIONS AS REQUIRED tHP and CREDIT SALE FACILITIES
When in London call in and try for yourself.
FREE 16 PAGE ORGAN BROCHURE COVERING ORGANS IN KIT FORM ANO READY BUILTPETER ELYINS.

CI-FI equipment to suit EVERYPOCKET

*Complete systems and individual units at specia, low prices-choose from 100 selected stereo systems. Call in for a demonstration when in London. *Free lo-page stock/systems List No. 16/17. LOW CASH AND CREDIT/HP PRICES
(Credit terms for purchases from $\mathbf{\text { c }} 30$-callers only.)

Wilkinsons FOR RELAYS

P.O. TYPE 3000 AND 600

 BUILT TO YOUR REQUIREMENTS - QUICK DELIVERY COMPETITIVE PRICES-VARIOUS CONTACTS DUST COVERS-QUOTATIONS BY RETURN LARGE STOCKS HELD OF MINIATURE SEALED RELAYS SIEMENS • S.T.C. - ERICSSON • E.M.I.2500 ohms
2 ohms
2500 ohms
2500 ohms 2500 ohms
2500 ohms 2500 ohms
5000 ohms 5000 ohms
2 ohms
2500 2500 ohms
2500 ohms 2500 ohms
40 ohms $10 \mathrm{ohms}^{2}$
$10 \mathrm{hmms}^{2}$ 40 ohms
40 ohms 40 ohms
180 ohms 670 ohms
670 ohms 2500 oms 2500 ohms
2 ohms 5000 ohms $40{ }^{40}{ }^{25}$ 10 omss $1800 \mathrm{hms}^{8}$
$180 \mathrm{hms}^{2}$
$180 \mathrm{hms}^{2}$ 180 ohms
180 ohms 180 ohms
180 ohms 180 ohms
670 ohms 670 ohms
180 ohms
670 ohms 670 ohms
670 ohms 180 ohms SINGLE FUSE SINGLE FUSE
one hole fixing $3 / 6$ ea.

VARIABLE AUTO TRANSFORMER. Input 230 N

L. WILKISSON (CROYDON) LONGLEY house longey rd. Croydon surrey

MAGNE Counts per minute, counting to 999,999 , It zero reset. 110 volts A.C. PRECISION GERMAN MADE MAGNETIC COUNTERS.

 TEED. Complete list available.
Mieroampi $0 / 1002$ in. MC....70\%-
Mieroamps $0 / 1502$ in. MC...70/Microamps 0/200 2 i in . MCR.. $80 /=$ Milliamps $0 / 502$ iin. MC...... 35/Milliamps $0 / 50031 \mathrm{in}. \mathrm{MC....54/m}$ Amps 50-0.50 2 in . MC.. Amps $0 / 52 \mathrm{in} . \mathrm{MC}$. Voles $0 / 202 \mathrm{in}$. MC Voles 0/10 A.C. 3 tin MCR

 PORTABLE VOLTMETERS 30 v moving coil DC precision E8.17.6, post $8 / 6$. 160 y moving iron polished wood case cale in P . wood case 44.19 .5 , post 716.250 y movint iro AC/DC bin. scale in p. wood case 88 . 10.0 , post $7 / 6$. CELL TESTING VOLTMETERS $3-0.3$ v moving coll DC CAMBRIDGE POATABLE MILLIAMMETER Precision grade AC moving iron 7 in . scale ranges- $50,100,200,500$ PORTABLE AMMETERS 0.3 A Moving iron ACIDC scale in case, 35/- ea., post 4/-.
MEGGERS, SERIES 2. 500 voles, rango $0 / 100 \mathrm{Meg}$ ohms-infincy. Metal case. Complet with test leads in leathor case with

ELLIOTT CENTURY TEST SETS. First-grade reading Absolute. D.C. volts $.075,3,30,150,300$ and
$750(F S D ~$
$20 \mathrm{~mA})$ and Absolute D.C. amps 15, 15 , 150 and $800(75 \mathrm{mV})$ on Sin. Mirror scale. Wood case, with thunts in fited compartment, 225, cge $15 /-$.

VITAVOX

FOR HICH QUALITY
MICROPHONES

LOUDSPEAKERS

and ancillary equipment
Further information from:
VITAVOX LTD., Westmoreland Rd., London, N.W. 9 (Tel: 01-204 4234)

Presenting the AVONLEA PIERCER

A versatile, simple, hand operated machine specifically designed for cutting a large variety of shapes in light gauge sheet metal.

The ease of operation and range of easily interchanged attachments provides a wide application of uses for the cutting, punching, bending and forming of sheet metal and other similar materials, and it is this versatility that makes it particularly suitable for the radio, T.V. Electronics Industries, and Research Establishments.
For further details write or phone:
ESMANCO LTD BROOK STREET
GLOSSOP
DERBYSHIRE. Telephone Glossop 5427

Ww- 088 FOR FURTHER DETAILS

This superb stereo system is a real price breasthrough. It ccmurises the VISCOUNT F.E.T. amplifier on which full ceatails are give ibelow, the famous Garrard SP 25 Mk II (inctudi gg teak veneer tast and transparent coverl with diamond cartridge or 2025 TC ans the very successful DUO type 2 speakers.

Meas ring $17 \frac{1}{n}^{\prime \prime}=10^{3 n} \times 63^{3 \prime}$ the Duo tove 2 speakers are beautifuly finished in teak veneer with matching vynair grills. They insorporate a $10_{\frac{1}{2} "} \times 6 \frac{4}{4}^{\prime \prime}$ " trise unit end high trequency speaker, both of which are of 3 ohms impedanc 3 . The Duo speaker sysiem 5 also available separately at E6.6.0. eath plus $\$ 5, \quad$, \& P. Cormplete stereo system $\mathbf{E 4 1}$ plus f2 10 P \& P.
F.E.T. £14.5s. plus 7/6 P \& P

High fidelity transistor stereo amplifier employing field effect transistors. With this feature \& accompanying guaranteed specifications below. the Viscount F. E.T. vastly surpasses ampllfiers costing far more.

Specification: Qutput per channel 10 watts r.m.s. Froquency bondwidth 20 Hz to $20 \mathrm{kHz} \ddagger 1 \mathrm{db}$ (c) Total distortion: 1 kHz 9 watts 0.5% Input sensikivitis: CER. P.U. 100 mV into 3 meg ohms. Tuner 100 mV into 100 K ohms.
Tape 100 nav into 100 K ohms.
Signal to nocise matio: 70 than 26 db .
Coin 6 . Specfication same as Mk 1 , but with the following inputs. Controls: 6 position setection switch 13 pos stereo \& 3 pos. Mag. P.U. CER. P.U. Tuner. Spec. on Mag, P.U. 3 mV ©

LIQUIDATED STOCK Dinf 1112

TOURISTE MK3 CAR RADIO

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3

watts. Pre-aligned I.F. module and tuner together with comprehensive instruction's guarantees success first time. 12 volts negative or positive earth. Size $7^{\prime \prime} \times 2^{\prime \prime}$ $\times 4 \frac{1}{2}^{\prime \prime}$ deep.

ORIGINALLY SOLD COMPLETE FOR £15.4.6.
SET OF PARTS 6.6 . PLUS 7/6 P \& P.
Speaker, baffle, and fixing kit 25/- extra plus 4/-P \& P.

50 WATT AMPLIFIER

f28 10s. olus 20/- D. \& D
An extremetr ralisbia general purpose valve amplifies Its tugged consstruction ve spaca apa sypling and desian mekes it br tor the best value for money.
technical specifications 3 riecisonncally mised channels with 2 inpurs per Chamel enables the use of 6 separata instruments
at the sume time The viuma controls for eact at the sume time The voluma controla for each channel
and loccted directiry above the cortisponding inpur sockets SEmsitivitis and imput Impeoances. Channels 1824 mV at 470 K These 2 thanneis is inputsl ane suitabie for microphone ar puitars Chamelis 3 \& 430 imb at 1 m Sutrabie for most high ourput instruments (gram. tuner. organ, etce). Inpul sensifivity Telative to 10 w output TONE COMTROLS ARE COMmON TO All IMPUTS. Bass Bowat +12 db st 60 Hz 8 ass Cmy-1308 at 60 Hz Treble 8 oost
+110 B at 15 kHz Trible Cut - 12 dB oi 15 kHz +1108 at 15 KHz Tribbie $\mathrm{CuI}-12 \mathrm{~dB}$ at 15 KHz are 30 Hz and 20 KHz POWER OUTPUT: For apeech and music 50 walls rma 100 walls panke For sustained music 45 walts rms. 90 watts peatk for tinc wave 38.5 wath me Nearty 80 watlls prake Total distortion It reted ourput 3.2% at 1 KHz Total diztortion at 20 watts 0.15 He IKMz NEGATIVE FEEDBACK 20dB II I KHz SIGMAL TO NOISE RATIO BOOB MANS VOLTAGES Hodurtuble from $200 \cdot 250 \mathrm{~V}$. AC $50-80 \mathrm{~Hz}$ A protectivy tusa is located at the rell of unit Output
impodence 9 :i and 15 ohms.

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.
Also 323 Edgware Road, London, W.2. ALL ORDERS BY POST io AcIon Goods not dispathed outside U.K. Terms C.W.O. All enguries S. A E

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination. ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful
NEW
SELF-BUILD RADIO COURSES
Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio. T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 222, Intertext House, Stewarts Road, London, S.W. 8
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME

ADDRESS

INTERNATIOHAL CORBIESPONDENCE SCHOOLS

로IMTFロM

2 CHANNEL AUDIO RECORDER

* 10 watts continuous per channel
* Fully transistorised on 10 printed circuit boards
* 3 head system and 3 speeds 19-9.5-4.75 cms
* Mechanism operated by 4 DC solenoids
* Provision for full remote control

Robust construction and attention to detail make this an outstanding, British tape recorder for industrial or domestic use.
Portable 4 speaker version
Oiled Teak surround version

RELIABLE

SHORT CIRCUIT

Send for informative brochure fully explaining:

1. Why a single motor. 2. Electrical periormance. 3. Wow and flutter.

MAGNETIC TAPES LTD.
CHILTON WORKS, GARDEN ROAD, RICHMOND, SURREY Tel: 01-876 7957
WW- 090 FOR FURTHER DETAILS

Low cost regulated DC power supplies

Compact modular design providing optimum performance at low cost. Fully stabilised supplies from $0-60 \mathrm{~V}$ up to 3 A per module. Modules can be arranged for series or parallel operation.

KSM Electronics Lid., Bradmore Green Brookmans Pk., Herts. Tel Potters Bar 59707
Teen 1970 prices

G G 5

(-) AC1272 $\quad 9 / 6$

A WIDE SELECTION OF SERVOMOTORS NOW AVAILABLE INCLUDES THE FOLLOWING TYPES:
Mil size $11-400 \mathrm{~Hz}$ versions for 26 and 115 v . operation with
$10 / 2013 / 26$ and $57.5 / 115 \mathrm{v}$ control phase windings. 10/20. 1126 and 11.15 . control phase winding. Moperation with' 26 and 115 v , energised tacho generato Hz Mil size 08,10 , 15 and 18 two phase servomotors also avail able with 400 Hz windings and a limited range in 50 Hz types Mil Permanent Magnet Field Servomotori Slze
15 and IB with supply voltages from 6 to 50 v . D.C.
MII Tachogenerators SIze 08 and 10 for 400 Hz supply. Mil size Il Servomotor searheads available in varlous ratlos from $10: 1$ to 10001 .
All items available ex stock and at extremely competitive All ite
Evershed and Vignoles' Servomotors and Servomotor-Eenerators-we hold stocks of this well known manufac turer's items amounting to about 100 different sypes-an enquiry stating your broad design considerations will bring a reply by return indicating ex stock availability of the moto
Write for our Data Sheots A 131 on
available Servomotors.
MIL SYNCHROS avallable ox stock in sizes 08,11 . 15, 16 , 18 and 23 for 50,60 and 400 Hz operation.
Synchro Control Transmitters
Synchro Control Differential Transmitters
Synchro Torque Transmileters and Receivers
Equlvalent MAGSLIP ELEMEN
educational use also in etock.
Write for our Data Sheete A 001 onwarde for Synchro and Masslip Information

> PRECISION POTENTIOMETERS

Numerous instrument types, continuous rotaHELIPOTEntiometers for control applicat

PLUGS, SOCKETS \& CONNECTORS. Over 150,000 irems in stock Including Plessoy Mk 4, 6, 7, 104, U.K.A.N. Transradio, etc. Enquiries for specífic items to Orpington or Lydd. Gertich COMPLEX RATIO BRIDGE MOdel CRB2B

DRY REED INSERTS

Ovorall length 1.8° (Body length 1.1) Diameter 0.14* so witch up to 500 mA at up to 250 D D.C. Gold clad contacts. 0,000. All carrlage paid. BSX 76 FAST SWITCHING n.D.n. TRANSISTORS (CV8615). For quantities up to 1,000 2/- each; up to 5,000
$/ 9 \mathrm{~d} . ;$ over 5,000 I/7d. each. Minimum order 10 off. in makers PAST SWITCHING LOGIC DIODES BAY 38 (CV86I7) TA DATALUM CAPACITORS We hold large stocks by TANTALUM CAPACITORS We hold large stocks by
5.T.C., T.C.C., Dubilier, Kemet, Plessey, G.E., etc., send for stock list with lowest pricer for immediate dalivery.
SEALED RELAYS by G.E.C., S.T.C., Ericson, Plessey erc. WEEMEGGERS Everthed in leather case $1400(\mathrm{Carr}$ Pd) WEEOREGGERS Evershed in leather case iNT. GIO.10 (Carr. Pd.) shorting wipers $65 /-$ Carriage Paid ms unless indicated otherwise.

Servo and Electronic Sales Ltd

Electrical and Servo Control Engineers . Electrical Suppliers - Engineering Stockises. - Aeronautical Suppliers Post orders to 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066/33976/3322I 19 MILL ROAD, LYDD, KENT (Works). Phone: Lydd 252
67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs). Phone: 01-688-1512 (Croydon)

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $£ 87 / 10 /-$ each, carr. $£ 2$.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES : new, $£ 3 / 10 /-$ a set, post $7 / 6$; SPEAKERS: new, £3 each, post 10/-. *HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post $5 /$-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24 ;$ and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.01 \mathrm{mfd}$., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 /-$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd} .360 \mathrm{v}$., £2 each, $4 /$ post. Output transformers $901666-501$ 27/6 each, 4/- post.

- Available with Receiver only.
S.A.E. for all enquiries. If wishing to call at Stores, please telephone for appointment.
W. MILIS

3-B TRULOCK ROAD, TOTTEMAAM, N. 17
Phone: 01-808-9213

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing
control. AVC and signal sirength meter. Compleie HRO 5 SET (Receiver, Set of 5 Coils \& Power Unit) for $£ 27 / 10 / \mathrm{m}$, cars. $30 /$ -
COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$, as new, price $£ 5 / 10 /-$ each,
COMMAND TRANSMITTERS, $\mathrm{BC}-438: 5.3-7 \mathrm{Mc} / \mathrm{s}$, , approx. 25 W
 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- £3/10/- each, 10/post.
Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2! Valve line-up $7 \times 9001 ; 3 \times 6$ AK5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only E 3 each , $7 / 6$ post; or Rec.

RECEIVERS: Type BC-348, operates from 24 v D.C., freq, range 200-500 $\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc} / \mathrm{s}$. (New) £35.0.0 each; (second hand) $£ 20.0 .0$ each, good condition, carr. 15/- both types.
MARCONI RECEIVER 1475 type $88: 1.5-20 \mathrm{Mc} / \mathrm{s}$, second-hand condition £10.0.0 each. New condition $\mathbf{£ 2 5 . 0 . 0}$ each, carr. $15 /$,
RACAL EQUIPMENT: Frequency Meter type SA20: $\mathbf{2 3 5}$ each, carr. £1 Frequency Counter type SA21: £65 each, carr. $30 /$. Converter Frequency
Electronic VHF Type $\mathrm{S} . \mathrm{A} .80$ (for use with the SA. 20): $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}$, $£ 40$ Electronic VHF Type S.A. 80 (for use with the SA. 20): $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}$, £40
each, carr. $£ 1$. each, carr. $£ 1$.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $88 / 10 /-$ each, $8 /-$ post. 24 v D.C. input, 175 v D.C. (3) 40 mA output, 25\%. each, post 2/-.

CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $£ 7 / 10 /-$ each, carr. $15 /-.40 \mathrm{mfd}, 440 \mathrm{v}$
 $15 \mathrm{mfd}, 330$ V A.C. wkg., $15 /-$ each, post $5 / \mathrm{F} .10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$
 $8 / 6$ each, post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{wkg},{ }^{2} 3$ each, poat $7 / 6$. 2 mfd, 3000 v wkg ., £ 2 each, for 5 . Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$ wkg. $£ 3.15 .0$ each, $10 /-$ post.

OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base $2 \mathrm{c} / \mathrm{s}-750 \mathrm{Kc} / \mathrm{s}$ Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $106 \mathrm{Kc} / \mathrm{s}$, and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /$ - each, $30 /$ - carr.
COSSOR 1035 OSCILLOSCOPE, £30 each, $30 /$ - carr.
COSSOR 1049 Mk . 111 , 145 each , $30 / \mathrm{l}$ carr.
RELAYS: GPO Type 600, 10 relays (a) 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., $\mathbf{c} 2$ each, $6 /$ - posi.
12 Small American Relays, mixed types $£ 2$, post $4 /$-.
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach etc. Prices and further details on request 6 d .

GEARED MOTORS: 24 y. D.C., current 150 mA , output 1 r.p.m., $30 /$ - each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentio meter, 3 r.p.m., $£ 2$ each, 5/- post.

SYNCHROS: and other special purpose motors aveilable. British and American ex stock. List available 6d.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $£ 2 / 10 /-$ each post $6 /$.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., $£ 2 / 10 /$ - each, carr, 12/6.
OHMITE VARIABLE RESISTOR: $5 \mathrm{ohms}, 5 \frac{1}{2} \mathrm{amps}$; or 2.6 ohms at 4 amps . Price (either type) $£ 2$ each, $4 / 6$ post each.

TX DRIVER UNIT: Freq. 100-156 Mc/s. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v. A.C. Mounted in 19 in . panel, £4/10/-each, 15/-carr.

POWER SUPPLY UNIT PN-12A: 230V a.c. input 50-60 c/s. 513 V and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings@ 3 Amps each, and 5 V @ 6 Amp and 4 V @ 0.25 Amp . Mounted
on steel base $19^{\circ} \mathrm{W} 11^{\prime \prime} \mathrm{Hx} 14^{\prime} \mathrm{D}$. (All connections at the rear). Excellent condition on steel base $19{ }^{" W} \mathrm{~W} 11^{\prime \prime} \mathrm{H}$.
£6.10.0. each, Carr. $£ 1$.

AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong steel case $5^{\prime \prime} \times 61^{\prime \prime} \times 7^{\prime \prime}$. Bitumin impregnated. £5 each, Carr. 12/6. 230-115V $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\circ} \times 5^{\prime \prime}$. Mounted in steel ventilated case. £3 each, Carr. 10/-.

POWER UNIT: 110 v. ot $230 v$ input switched; $28 v$. @ 45 amps. D.C. output. Wt. approx, 100 lbs., $£ 17 / 10 /$ - each, $30 /-$ carr. SMOOTHING UNITS suitable for above £7/10/- each, $15 /$ - carr.

CORPORAL ROCKET ELECTRONIC GUIDANCE EQUIPMENT: Beacon Radio DRN. 7. Rec/Trans. Assembly MX.2048DPW-8. Electronic Control
Amplifier AMi510/DJW3. Transmitter C-1493/MRQ.1. Power Units and misAmplifier AM1510/DJW3. Transmitter C-1493/MRQ.1. Power Units and miscellaneous spares available.

MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves microphone and modulator transformers etc. \&7/10/- each, 15/- carr.

ALL GOODS OFFERED WHILST STOCKS LAST IN

NIFE BATTERIES; 4 v. 160 amps, new, in cases, $£ 20$ each, $£ 110 /$ carr.
FUEL INDICATOR Type $113 \mathrm{R}_{1} 24 \mathrm{v}$. complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter casc. Price 30/- each, postage 5/..
FREQUENCY METERS: BC-221, meter only $\mathbf{E 3 0}$ each, BC-221 complete with stabilised power supply $£ 35$ each, carr. $15 / \mathrm{l}$. LM13, $125-20,000 \mathrm{Kc} / \mathrm{s} ., \$ 25$ each, stabilsed power supply £35 each, cart. 15
carr. $15 /-$ TS. $175 / \mathrm{C}$, £ 75 each, carr. \&1.
CANADIAN HEADSET ASSEMBLY: Moving coll headphones 1000 , with chamols leather carmuffs. Small hand microphone complete with switch and moving coil insert. New condition. Price 35/- each, post 5/-.
AUDIO OSCILLATOR 382/Fi Input 115 v . A.C., $50 \mathrm{c} / \mathrm{s}, 20-200,000 \mathrm{c} / \mathrm{s}$ per sec. in 4 ranges. Cont. wave. Output $0-10 \mathrm{v}$. in 7 ranges. Power output 100 mW Output impedance $1,000 \Omega$. $£ 27 / 10 /=$ each, $£ 1$ carr.

RACK CABINETS (totally enclosed) for std. 19in. panels. Size: 6ft, high x 21 in . wide $\times 16 \mathrm{in}$. deep. With rear door. 212 each, $£ 2 / 10 /=$ carr. OR 4 ft . high \times 23in. wide $\times 191 \mathrm{n}$. deep. With rear door. £8/10/- each, $£ 2$ carr.
CATHODE RAY TUBE UNIT: With 3in, tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $£ 3 / 10$ - each, post $7 / 6$. APNI ALTIMETER TRANS./REC., sultable for conversion $420 \mathrm{Mc} / \mathrm{s}$, complete with all valves 28 v. D.C. 3 relays, 11 valves, price 23 each, carr. $10 / \mathrm{e}$,

CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., power input 12V. D.C., new cond complete set £50. Carr, £2/10/-. Power Unit for Rec., new £3/5/-. Carr. 10/=.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, $5 /-$ poss. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% ~ £ 3 / 10 /=$ each, $5 /=$ post.
TELESCOPIC ANTENNA: In 4 sections, adiustable to anytheight up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . EJ each $+10 / \mathrm{carr}$. O s $£ 9$ for two $+£ 1$ carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH—Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " N "" female connectors fitted to receive UG-21/U series plugs. New in ctns., $\mathbf{~} 6 / 10 /-$ each, post 7/6, CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type

PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, 0.250-1.0 KMC/SEC. (New) £75 each, post 12/6. FIXED ATTENUATOR: Type 130c, 2.0-10.0 KMC/SEC. (New) $\& 5$ each, post $4 /-$. FIXED ATTENU ATOR: Type $1157 \mathrm{~S}-1$, (new) $\mathbf{~} 6$ each, post $5 / \mathrm{m}$.

FOR EXPORT ONLY
 BRITISH G AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts, Output $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter system, with antennac. W.S. Type 88 , Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type
$\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, 1.5-12 $\mathrm{HF}-156$, Mk. II, Crystal controled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, $1.5-12$ output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, 144-174 Mc/s, 50 watt, narrow band wideh. A.C. input 115 V . BC- $640 \mathrm{Tx}, 100-156 \mathrm{Mc} / \mathrm{s}, 50$ watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986 TR1987 and TR1998, 100-156 Mc/s. TRC-1 Tx/Rx, Types T. 14 and R.19, FM 60-90 Mc/s. With associated equipment available. Redifon GR410 Tx/Rx, SSB, 1.5-20 Mc/s. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A. Collins Tx/Rx Type ARC-27, $200-400 \mathrm{Mc} / \mathrm{s}, 28 \mathrm{~V}$ d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458
455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Telephone Installation type XY, (U.S.A.), 600 Line Auto matic Telephone Exchange. Complete system with full set of Manuals. Mobile Communications Installation mounted In a trailer with $4 \times$ pneumatic tyres. Consisting of $3 x A R C-27 \mathrm{Tx} / \mathrm{Rx}$ with all associated equipment (as new).

CALLERS BY TELEPHONE APPOINTMENT ONLY

 AF. SNE WAVE
$20 \cdot 200.000 \mathrm{cps}$. Square
 Eug IMP.
 Variable R.F. attenue
tlon. Int./Ext. Modula on. Iacorporates dual purppese meter to monitor $232 \cdot 10.0$ Carr. $7 / 0$. TE-20RF SIGNAL GENERATOR
 Accurate wide rang

R.F. attenuator. OpBraad new.

PEAK SOUND PRODUCTS

TE22 SINE SQUARE WAVE
AUDIO GENERATORS

Ontput impedance
3.000 obms. 200 250 V. A.C. opera.
thon. Bupphed brand new and guaran
leed with instruotion mamual
leads. E.16.10.0.
Carr. $7 / 6$.

LAFAYETTE TE-46 RESISTANCE
 2 pr-2.000 mid.
2 ohms 200 mes.
ohma. Also check: obman. Also checks
lmpedace
turns ${ }_{200 / 250}^{\text {ratho }}$ insulation. Brand Now, £17.10

TE-20D RF SIGNAL GENERATOR

 8 banda. Directly cali.
brated. Variable RP. atcenustor, audio output. Clal socket for callora.
Ston. $220 / 240 \mathrm{~V}$ A.
Brand new with inatr Brand new with instruc-
tions. $215 . \quad$ Carr. $7 / 6$.
Size $140 \times 215 \times 170$ mm.

ADVANCE TEST EQUIPMENT Brand new and hoxed in origlizal nealed cartons Is e/b to $50 \mathrm{Kc} / \mathrm{s}$. Bine wave. Ontput 600 ohanis VM79. UHF MILLIVOLT METER 10 mV to 3 Fr . Current 0.01 uA to 0.3 mA . Rerist. Rnce 1 ohmp to 10 megohms. 2125.0 .0 . Fall range if facilities for testling PNR on NPI transistors in or out of circult. $£ 3 \% .10 .0$ Carringe 101- per item
SOLARTRON CD 7IIS2 DOUBLE BEAM OSCILLOSCOPES

$$
\begin{aligned}
& \text { D.C. to } 9 \text { Mc/j. Perfect order. E65. Car } \\
& \text { Few avalable leas C.R.T. £25. Cerr. }
\end{aligned}
$$

avo CT. 38 ELECTRONIC MULTIMETERS
High quality 97 ranga lnstrument which tneanure
A.C. and D.C. Vollage. Cument, Reenintance and
 mpa. Onmas. O-1.000 megg. A.C. volt 100 mF .
250 V (with R.F. neasuring head up to $250 \mathrm{Mc} / \mathrm{s}$. A.C. current $10 \mu \mathrm{~A}-25$ amp. Power output 60
micro.waths-5 watts. Operation $0 / 110 / 200 / 250 \mathrm{~V}$. A.C. Bupplied in periect condition complete with
\qquad
RUSSIAN CI-16 DOUBLE BEAM OSCILLOSCOPE
 Rectangular
 Bulk in Une hase callibritur nind nriplitude

GARRARD

Full current range affered brand new and guaranteed at fantastic savings

 For RP2s.
$1000 . \mathrm{EA}^{2} .10 .0$
 8. Carriaxe $7 / 6$ extra each type.

SPECIALOFFERS

 Garrard SP25 fitted Goldring G800cartridge and wooden plinth. Total list price \&32.8.5. 15.0. Carr 10/ GOLDRING GL69 fitted Goldring G800 cartridge complete with de luke S50.16.0.
OUR PRICE 639.

Variable Voltage ThANSFOBMERS C(CSO)

Brand new, guaranteed and carriage paid.
High quality construction. Input 230 v. $50-60$ cycles.
Output full variable from $0-260$ volts.
 $8 \mathrm{amp} .-214 / 10 /-; 10 \mathrm{amp} .-218 / 10 /=; 12 \mathrm{amp} .-£ 21 ; 20 \mathrm{amp} .-837$

MULTIMETERS for EVERY purpose)

MODEL TE-90 50,000 O. Mirror scale, overiond oprotec.
tion. $0 / 3 / 2 / 200 / 300 / 600 / 1200$ tion. $0 / 3 / 12 / 60 / 300 / 600 / 1,200$
v.D.C. $0 / 6 / 361 / 20 / 300 / 1 / 200 . V$
D.C. $03 / 6 / 60 / 600$ MA. D.C. D.C. . $03 / 6 / 60 / 600 \mathrm{MA}$. D.C
$16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 / 16 \mathrm{MEG}$ R
$-20-63 \mathrm{db} . \mathrm{E}^{7 / 10 / 0}$
 P. B ,

MODEL TE-80. 20,000 O.P.V.
$0 / 10 / 50 / 100 / 500 / 1,000 ~ W . ~ A . C . ~$ 0/5/25/50/250/500/1,000
D.C. $0.50 \mu \mathrm{~A}$.
$5 / 50 / 500 \mathrm{~mA}$. D.C. $0-50,1 \mathrm{~A}$. $5 / 50 / 500 \mathrm{~m}$
$0 / 6 \mathrm{~K} / 60 \mathrm{~K} / 800 \mathrm{~K} / 6 \mathrm{meg}$.

TE-51. NEW $20,000 \Omega /$ VOLT MULTMMETER, with
overload protection and mirror scale. $0 / 6 / 60 / 120$,
1.200 v. A.C. $0 / 3 / 30 / 60 / 300 /$ 1.200 Y. A.C. $0 / 3 / 3 / 6 / 60 / 300 /$
$600 / 3.000 \mathrm{~V}$ D.C. $0 / 60 / \mathrm{A} / 12$

SAVEUPTO $33+\%$ ON HI-FI EQUIPMENT
Send for full discount price list

MODEL TE-70, 30,000 O.P $0 / 3 / 15 / 60 / 300 / 600 / 1,200$
D.C. $0 / 0 / 30 / 120 / 600 / 1,200$

MODEL TE-12. 20,000 O.P.V $0 / 0.6 / 6 / 30 / 120 / 600 / 1,200 /$
$3,000 / 6,000$ r. D. C. $0 / 6 / 30 / 120 /$ 60011,200 v. A.O. O/60 $12 / 0$
$60 / 600 \mathrm{~mA}$
$0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$ $60 / 600 \mathrm{mA},. 0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$.

MODEL PT $34.1,000$ $0.8 . V .0 / 10 / 50 / 250$
$500 / 1,000 \mathrm{~V}$ a.c. $500 / 1,000 \mathrm{~V}$. a.c. and
d.c. $0 / 1 / 100 / 500 \mathrm{~mA}$
d.c. $0 / 100 \mathrm{~K} \Omega 39 / 6$. d.c. $0 / 100 \mathrm{~K}$
P. \& P. $1 / 6$.

LAFAYETTE 57 Range Supe SOK Q/V. Multimoter. volts $1.5 \mathrm{v}-1000 \mathrm{v}$. D.c. Cur
rent $25 \mu \mathrm{~A}-10$ Amp. Ohmm
$0-10{ }_{\text {Mega }}$ D.B. 20 to

AVO CTA7IA MULTIMETER Buttery opersted, folly transintorised. Benaitivily
100 Molv . Measureo A.C./D.C. voltakeo 12mV. to 1,200V. A.C./D.C. current 1212 A. to 1.2 Amp.

SINCLAIR EQUIPMEN Project tho range of new zadele now in stock 230 Amplifter...
8tereo 60 Control Unit
P25 Power Supply. $\begin{array}{ll}\text { P25 } & \text { Power Supply } \\ \text { PZ6 } & \text { Power } \\ \text { Q16 } & \text { Bpply }\end{array}$

84/9/6
E8/19/6
S4/19/6
£7/19/8
£8/19/8
SPECLAL PACKAGE OFFER
Z20 Amplifier, Stereo 60 and PZS Fowe

seoterle Amplifier £46/0/C. Cart. 7/6.
ECHO HS-606 STEREO
HEADPHONES

HOSIDEN DHO4S 2-WAY STEREO HEADPHONES

Each headphone contatios
Ruilt in thdividual leve controls. $25 \cdot 18,000$ c.p.e stereo plug. $£ 5 / 19 / 6$. P. \& P

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
 prens to talk buttons. 2 -wire cations. Besutifully finishe
in eboas. Supplled complet In eboay, Supplied complet
with barteriea mind wall bracket E8/19/6 palr. P. \& P. $\$ / 6$.
TEIII DECADE RESISTANCE ATTENUATOR

$+10+20+30+$
40 db. Frequency:
DC
to $200 ~$
KHz Accuracy: 0.05 db . + Indication db $\times 0.01$.
Maximum lipput less than 4 wats $(50$ volte) $)$

$$
\begin{array}{r}
\text { RECORDING HEADS } \\
\text { Conmocord t track heads: Pont extra. }
\end{array}
$$

$$
\begin{aligned}
& \text { Erame. Low track heads Pont extra. } \\
& \text { Marriott }
\end{aligned}
$$

AMERICAN RECORDING TAPES

\qquad
guaranteed.
Dlscounts for
quantitien.
quantitien
Pontage $2 /$
Over 83 po
TAPE CASSETTES
Top quality in phastic library boze
$080-60$ maln. $8 / 6 ; 3$ for $24 / 6$.
c90- 90 mann . $12 / 6 ; 3$ for $36 /-$
C120- $120 \mathrm{~min} 15 /-; 3$ for $43 / 6$.

3, LISLE STREET, LONDON, W.C. 2
Tel: 01-437 8204 34, LISLE STREET, LONDON, W.C. 2

Tel: 01-437 9155 311, EDGWARE ROAD, LONDON, W. 2 Tel: 01-262 0387 open 9-6 monday to saturdar (EDGWARE Road $1 / 2$ day thursday)

LIQUID LEVEL DETECTOR．Detects even mildly con ductive ligulds，i．e．ether．etc．N．O．／N．C．contacts．Fails sate Elo
MODULAR POWER SUPPLIES．Fully stablised 8.5 individual spec．with each unit．$£ 10$ ea．

RADIATION MONITORING EQUIPMENT．POIT－

勆（brand new）S．a．e．inerature． KLYSTRON POWER SUPPLY（Solartion AS562）．KLYSTRON POWER SUPPLY（Elliotl PKU1）． $\mathbf{f 1 0 0}$ 120 AMP．AUTO TRANSFORMERS． $190-270 \mathrm{v}$ ． $50 \mathrm{c} / \mathrm{s}$（1apped every 5 volts）．£50 8a．（Carf．by arrangement．）
801 A SIGNAL GENERATOR， $10-300 \mathrm{mc} / \mathrm{s} \mathrm{in}$ 4 bands．Ext． $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ ．Output $200 \mathrm{~m} / \mathrm{v}$ ．
E 50 ea．P．P． $25 / \%$

SPEAKERS

＇E．M．I．＂ $19 \times 14 \mathrm{in}$ ． 50 watts． 8 ohm（ $14 \mathrm{~A} / 600 \mathrm{~A}$ ．）Four iweeters mounted across maln axis．Separate＂X－over＂ unit balances both bass and $h . l$ ．sectlons． 20 Hz ．to 20,000
Hz ．Bass unit flux 16.500 gss．A truty magnificent system Hz ．Bass unit flux 16,500 oss．A fruly magnificent system．
£25．P．P． $50 /-$ ． E．M．I． 13×8 in
E．M．1． $13 \times 8 \mathrm{in}$ ． 10 watt with integral iweeter． 15 ohm ． ＂E．M．f．＂ 6 it in．Rd． 10 watt woofers． $8 \mathrm{ohm} .30 /-$ ea． ＂FANE＂ 12 in． 20 watt． 15 ohm．（122／10A．）With integra SPEAter．£6 ea．P．P．7／6．
SPEAKER SYSTEM $(20 \times 10 \times 10 \mathrm{in}$ ．）Made to Spec． from 2 in ．board．Finished in black leathercloth． $13 \times 8 \mathrm{in}$ ． speaker with twin iweeters complete
50 Hz to $20,000 \mathrm{~Hz} £ 710 \mathrm{~s}$ ．P．P． 10% ．
SPEAKER CABINET KIT Above mentio
SPEAKER CABINET KIT．Above mentioned cabinet only In kit form which you may assemble and cover to your own

EXTRACTOR FANS／BLOWERS

AIRMAX＂7it In．FAN．In aluminlum diecast housing （9 in．）． 240 v ．Brand new．£410s．P．P． 10
PLANNAIR＂By in．FAN．（Type 5 PL 121－122．）Dlecast housing．240v．Brand new．E6．P．P．10／－
SOLARTRON＂TANGENTIAL BLOWERS．Overall size $16 \times 5 \frac{3}{4} \times 3 \frac{1}{2} \mathrm{in}$ ．Alr outlet $12 \times 1 \frac{1}{2} \mathrm{th} .240 \mathrm{v}$ ．Brand new BULK COMPONENT OFFER．Resistors／capacltors．All types and values．All new modern components．Over 500 pleces，£2．（Trial

LEVEL METERS（ $\left.1 \frac{1}{2} \times+\ln .\right) .200$ micro－amp．Made in Geimany． $15 / \cdot$ each
SILICON PHOTOVOLTIC CELLS（MS2BE） $550 \mathrm{~m} . \mathrm{V}$ ． $35 \mathrm{~m} . \mathrm{B} .30 /-$ ea
RELAYS H．D． 2 pole 3 way 10 amp ．contacts． $12 \mathrm{v} . \mathrm{w} .7 / 6 \mathrm{ea}$ ． LIGHTWEIGHT RELAYS（with dust－proof covers） 4 c／o contacts． $24 \mathrm{v}, 500 \mathrm{ohm} 7 / 6$ ea．
PRECISION CAPACITANCE JIGS．Beautliflly made with Moore \＆Wright Micrometer Gauge．Type 18.5 pt－ 1.220 pt £10 e日．Type 29.5 pf－11．5 pf．£6 ea．

POT CORES LA1／LA2／LA3．10／－en
71 WAY PLUG \＆SOCKET（Painton Series 159）Gold plated contacts with hood \＆retaining clips．30／• pair 50 WAY PLUG \＆SOCKET（U．C．L．miniature）．Gold plated contacts 20／－pali． 34 way version 15／－Datr
CO－AX RELAYS（magnetic devices） 1 change－over 12 v．w 20／－өa

COMPUTER BOARDS

4－OC23；4－2N1091；4－2G302；4－OA10．20／－ө日
8－OC42（long leads）：16－0A47．7／6 0e．
8－DA11A：14－OA47．5／－ea．
Bargain pack least 100 transistors and diodes varied to

TRANSFORMERS

L．T．TRANSFORMERS（shrouded）．Prim．200／250y Sec．20／40／60v． 2 日mp．52／6．P．P．7／6． L．T．TRANSFORMER
＂ADVANCE＂：CONSTANT VOLTAGE．Pilm．190／250v． $\pm 15 \%$ ．Sec． 115 v ．2，250 watts．E15．ea．P．P． $50 / \mathrm{C}$ ．T．TRANSFORMER $20 \mathrm{v} .1 .5 \mathrm{amp} .15 /-$ ．P．P $2 / 6$
SOLATION TRANSFORMERS． 250 watts．45／ P．P．10／
L．T．TRANSFORMER．
STEP－DOWN TRAN
STEP－DOWN TRANSFORME
$115 \mathrm{v} .1 .25 \mathrm{amps}, 25 /-$ es L．T．TRANSFORMERS Pilm．
3.6 amp models $20 /-: 5$ amp model $28 / \cdot$ P．P． $5 / 6 / 20 / 25 v$ L．T．TRANSFORMERS Prim．240v．Sec 14v． 1 amp $10 /$

COPPER LAMINATE PRINTED CIRCUIT BOARD （ $\left.8 \frac{1}{2} \times 5 \frac{1}{3} \times \frac{1}{1} \mathrm{in}.\right), 2 / 6$ sheet， 5 for $10 /$

ELECTRIC SLOTMETERS（1／－） 25 amp．L．R． 240 v ．A．C 85／－AO．P．P． $5 /-$ ELECTRIC CHECK METERS， 40 amp
QUARTERLY 240 v ．A．C．， $20 /=$ ש日 P．P．5／－
LONG LIFE＂ELECTROLYTICS（screw terminal） 25,000 u．f． 40 v ．（ $4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$ ．）． $20 /-$ ea．P．P． $2 / 6$.
10,000 u．f． 75 v ．$\left(4 \frac{1}{3} \times 2 \frac{1}{2} \mathrm{ln}\right.$ ．$) 17 / 6$ ea．P．P． $2 / 6$. 3.150 u．f． 40 v ．（ $4 \frac{1}{2} \times 1 \frac{1}{2} \ln$ ．） 15 ？－өa．P．P． $2 / 6$ EXECUTIVE＂SIXTV＂AMPLIFIER．（60 w．r．m．s．into 8 ohm．）Biltish designed and bullt，True hi－fl performance． Bulit－in filters to protect speakers．Three independently Magnetic Cartilde or aux equipment E55．P．P．50／－ S．a．e．literature

TELEPHONE DIALS（New）20／－ea

 RELAYS（G．p．0．＇3000）．All Yypes．Brand EXTENSION TELEPHONE（TYDE 706） Black or 2 tone Grey．65／－．P．P．5／•UNISELECTORS（Brand new）25－way 78 ohm． 8 bank $\frac{\frac{1}{3}}{}$ wipe $65 / \% 10$ bank
$\frac{1}{1}$ wipe $78 /=$ ．Oiner iypes from $45 /-$

REED RELAYS 4 make $9 / 12 \mathrm{v}$ ．（ 1,000 ohm．） $12 / 6$ ea 2 make $7 / 6$ ea． 1 make $5 /-$ ea．Reed Switches $\left(1 \frac{1}{4} \ln\right.$ ．） $2 / \mathrm{2}$ ．
ea． f 1 per doz． ea．E1 per doz．
B－MINIATURE REED RELAYS（ $1 \ln , \times \frac{1}{2} \mathrm{in}$ ．）．Welgh toz．TVpe 1． 960 ohm， $3 / 9 \mathrm{v}$ ．${ }^{1} \mathrm{ma}$
$1800 \mathrm{ohm}, 3 / 12 \mathrm{v}$ ． 1 make．18／－ea．
 8／6 ва．

H．T．TRANSFORMERS．Prim．200／240v．Sec．300－0－300v $80 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$.
$\mathbf{C . T}$.
$350-0 \mathrm{ar} .30 \mathrm{v}$.
$60 \mathrm{~m} / \mathrm{a}$.
6.3 v.

CONVERTOR/BATTERY CHARGER. Input 240 V
 $0+\times 10 \times 4$ in. Weisht 191 b . An extremely compact unit that will give many years' reliable service. Supplied with that will gre many years rellable service. Supplied with
plug and lead. Oniy $64 / 10 / .-\mathrm{P}$. \& \mathbf{P}, $15 /$ extra.
As above fully serviceable perfet interior but solled exterior cases, E3. P. \& P. 15
G.M. TUBES. Brand new: G24/G38/G00 ut 27/6 ea.
G53/1, brase cased. 66 ea.

MULLARD MX 115 GM TUBE with holder.
Plat and 300 volte. $30 /-$ ea. P. \& P. $3 / 6$.
PHOTOMULTIPLIERS. EMI 6097X at E8/10/- eas.
TRANSISTOR OSCILLATOR. Vartable frequenc 40 c/a to $5 \mathrm{kc} / \mathrm{s}$ if rolt gquare wave o/p, for 6 to $12 v$ new. Boxed. II/6 ea.
RACAL Diversity unit. $\in 10$ each. Cartiage $£ 1$.
CRAMER TIMER 28V, DC Sweep $1 / 100 \mathrm{th}$ sec \& sweep 60 necs. 4^{*} dlal. Remoté control stop/atart reset 26.10 .0 Omron/Schrack octal RELAYS plug-in relays. 2 pole c/o bA, GV only. Brand new. Boxed. $12 / 6$ ea.
G.E.C. 4 pole c/o $6 / 12$ v operation 180 ohms. Platinum G.E.C. Dole c/o $8 / 12$ voperation 180

MIniature STC Plug In relavi Plastic dust cover,
4 pole c/o $7.5-18$ v. operation. 185 Ohms $8 /-$ each. 4 pole c/o 7.518 v. operathon. 185 Ohms $8 /=$ each
8.T.C. sealed 2 pole c/o, 2,500 ohms. (okay $24 v$) $2 / 6$ ea:-12v-7/-ea.
CARPENTERS polarised Single pole c/0 20 and 65 ohm coll as new. coniplete with base $7 / 6$ ea. $8 \operatorname{lngle}$ pol Single pole c/o 14 ohm coil $6 / 6 \mathrm{ea}$.; Single pole c/o 45 ohm coll $6 / 6$ es.
Brand New. Single Pole c/o (type 5 A 2), 2×1200 ohma.
$8 / 6$ es.
POTENTIOMETERS
COLVERN Brand new. 5: 10; 50; 100: 250; 500 new MORGANITE 250K IIn. senled. Normal price 9/-, our price $3 / 6 \mathrm{ea}$.
INSTRUMENT 3* Colvern. 5; 25; 100 ohms. 7/- ea. TRIM POTS. Palgnton-solder lugs 5,10 \& 25 K at
$5 /$ each: PIns 10: 20; $50: 100 ; 200 ; 250 ; 500$ ohms: 5/: each: PIns 10: 20; $50 ; 100 ; 200 ; 250 ; 500$ ohms:
$2.5: 25$ and 50 K at 10% each. 2.5: 2.5 and 30 K at $10 /$ - each.
DARSTA N -preset-sealed t' dia. I high. 1:2 and 5 K I/6

HigH RESOLUTION 25 K 80 turns. Complete with
ALMA preclsion resistors 100 K ; 400 K ; and $998 \mathrm{~K}-0.1 \%$
$5 / 6$ ea: $3.25 \mathrm{~K}-0.1 \% 4 /-$ ea.
DALE heat sink reaistors. non-Inductive 50 watt. Brand
new. 10 ohms- $6 / 6$ ea. ; 8.2 K 4/6 ea. Excellent dummy
load.
Wheatatone Bridge by TINSLEY type 1138 c75.

CAPACITORS

ERIE feed through cerannicons 1000 pf-9d. en.
Sub-min. TRIMMER isulure. 8. 5 pf . Brand new $2 / 6$ ea Sub-min. TRIMMER is Buare. 8. 5pf. Brand new $2 / 6$ ea
Concentric TRIMMER $3 / 30$ pf. Brand new $1 / 6$ ea. Concentric TRIMMER $8 / 30 \mathrm{pf}$. Brand new $1 / 6$ ea.
ELECTROLYTICS. Brand new. 2500 mfd B4V $9 / 6$ ea $4000 \mathrm{mffl} 40 \mathrm{~V} 9 / 6 \mathrm{ea} \cdot ; 250 \mathrm{mfl} 70 \mathrm{~V} 4 / 6$ ea.; 2000 mfd EHT 2 infd 5 KV . Brand new 12 each
VISCONOL EHT. Brand new 0.0005 25 kV , $16 /-$ ea.
E.H.T. 0.02 nfd 8 KV . $6 / \mathrm{e}$ ea.; 0.1 mfd 2.5 KV -nitrogel//6 ea, : 0.5 mfd 5 KV - $11 /-\mathrm{ea} .: 0.5 \mathrm{mfd} 2.5 \mathrm{KV} 7 /$ ea.
DECADE DIAL UP SWITCH. Finker-tip. 25° deep 1° wide. $30 /-$ ea. Bank of 4 with escutchin plates etc. $21^{\prime \prime}$ high $2 t^{-2}$ deed. $2 t^{\circ}$ wide. 65 .
DIODES 1N914. Brand new 1/3 ea.: 12/- doz. : $54-100$
25-1.000.
PHOTOCELL equivalent OCP $712 / 6$ ea.
BURGESS Mlcro Swilchea V3 5930 . Brand new $2 / 6$ ea. BULGIN panel mountlng Lamp holders. Red. Brand new 2/3 ea.
TRANSISTORS BC 114 -NPN Low nolse high gain uudio, etc.; BC 116 -PNP General purpose $200 \mathrm{mc} / \mathrm{s}$ Ex brand new equipment. Guaranteed perfect. Good
lead length. $2 /$ ea. ead lensth. 2/- ea.
SCALER TYME 1000 IC INSTRUMENTS
SCALER type 1000 by Dynatron. Suitable Beta/
ganman counts. Bull in test signal Calibrited gamma counts. Bullt in test signal. Calibrited adjust able discriminator. Read out 2 decade neons and
4 digit counter. Supplled in as new condition at 65 ea . Carr. $30 /$-. but with resettable counter $£ 8$ ea Carr. $30 /$. built in EHTT supply. Separste metering EHT and
 Portable Gelger Counter in haversack. complete
 1363H. Ag new $\mathbf{E 7 5}$. As above but type 1363C. 1120.
ECKO PULSE HEIGHTANALYSER type N10i E25. Carr. 30/- Display unlt type NLS 223. ©20. Carr. 30/* Tranaistorised Nucleonic scaler with adjustahle risacriminator. 6 meter diaplay o-9 giving
count of 10 to the 5 . New Condition. Now ONL Y $f 18$. Carr. 15/-
PULSE Generator type 1147A. $\mathbf{f 6}$. Carr. 30/.

BRAND NEW BCII4 TRANSISTORS. 5/- ea:
$4 / 3$ ea. per $100 ; 3 / 6 \mathrm{ea}$, per 1.000 .
MINIATURE SPEAKERS 15 ohm 2In. diameter.

TEST GEAR

$\underset{\substack{\text { EMIL } \\ \text { SOARTRON }}}{ }$ SOLARTRON SOLARTRON St
 solatitron

OSCILLOSCOPES COSsOR
HARTLEY
M 2 DO- $13 \mathrm{mc} / \mathrm{s}$ € 35 All carefully chectise DB. $618 / 10 /=$ MARCONI
TF 956 (Cr44) Audio Frea. Wattmeter E15. Carr, 10/. TF 886 Masmlfication Meter 645 Carr. $81.80 /$ TF 144 G Signal Generator, serviceable, Clean E 15 In exceptlonal conditlon E25. Carr. 80/-
TF 885 Video Oscllator Sine/Square
TF 885 Video Oscllator Slne/Square 635 Carr. $80 / \mathrm{F}$
TF 105 M sine wave osclllator $0 / 40 \mathrm{kc} / \mathrm{s}$ E/2 Carr. \&1 TF 105 M Sine wave ocillator $0 / 40 \mathrm{kc} / \mathrm{s}$ \& 12 Cart. 11

TF $428 \mathrm{BB} / 1$ Valve voltmeter C4 Carr. 10%
Type 801 81g. Gen. E35, Carr, $30 /$.
TF $934 / 2$ FM Deviation Meter E 25.
TF $934 / 2$ FM Deviation Meter $\& 25$. Carr. $80 /$ -
TF 791 B Cartier Devtation Meter $\mathbf{C 3 5}$, Carr. $30 /$. SOLARTRON
Pulse generator POS $100050 \mathrm{c} / \mathrm{s}-1 \mathrm{mc} / \mathrm{g}$ © 18 Carr . $£ 1$
Laboratory amplifler AWS51A. $15 \mathrm{c} / \mathrm{s}-350 \mathrm{kc} / \mathrm{s} ~$
6 Laboratory amplifler AWSB1A. $15 \mathrm{c} / \mathrm{s}-350 \mathrm{kc} / \mathrm{s}$ C C 35
Stabilised P.U. SRS 151 A € 20 Carr. 80/-
8tabilised P.U. 8R8 152 ¢ 15 Carr. $30 /-$
8tabillsed P. U. AS 518 \& AS B17 © 3 . and 66 Carr 10/Callbration Unit type AT203. C25. Carr. $30 /$. Proceas Response Analyser, Fine Condition 6250
Oscllator type 08101 . 35 ea. Carr, 30 /.
AVO TRANSISTOR AVO
AVO TRANSISTOR ANALYSER-६75 only.
Testmeter No. 1 C|4 Carr. $15 /$. Complete $£ 18$ Carr.
Testmeter No. 1 Cla Carr. 15/- Complete $£ 18$ Carr. \&1 SPECIAL by G. \& E. BRADLEY. Multimeter type CT471B. Battery operated, fully translstorised,
genultivity 100 M ohm/V, mesures a.c./d.c. voltage gensitivity 100 M ohm $/ \mathrm{V}$ meagures a.c./d.c. voltage
$(12 \mathrm{mV}-1200 \mathrm{~V}$ scales, $+/-3 \% /+/-2 \%$ f.a.d.)
 scales. $+/-3 \%$ m.s.d.). h.f./vhf/uhf. voltage with
multipller ($4 \mathrm{~V} \cdot 400 \mathrm{~V}$ scales up to $50 \mathrm{MHz} ; 40 \mathrm{mV}-4 \mathrm{~V}$ up to 1000 MHz). Brand new. Few only. $£ 60$ Carr. $30 /$. CINTEL
Wide Range Capacitor Bridge $£ 25$ Carr. 15/-
Sine and Pulse Generator type 1873 E25 Carr. 15/. AIRMEC
Valve Millivoltmeter type 204, 3MV-1V C20 Carr. £1
Counter type 865.6 decades. Bright Vertical display Counter type 865. 6 decades. Bright Vertical display gate facilities. Sery good condition $£ 25$.
Klygtron Power Supply 688 B \&25 Carr. $£ 1$
Slgna! Generator tyme 701. 635 . Carr. 30/.
OSCILLOSCOPE CAMERA. Shackman 25 ft . Exp 270 frames, Timen from $1 / 250$ to 1 seas. auto. Dimere
Focal ifin. with standard 41 h . to 5 in . fitting. E 30 .
BECKMAN MODEL A. Ten turn sot complete
with dial. $100 \mathrm{k} 3 \%$ Tol 0.1% only $52 / 6$ ea. E.H.T. Bare B9A in Polystyrene holder witb cover. Brand new. 2/6 ea. Tester, with Probes. Metered $0-3.5 \mathrm{kv}$.
ZENITH E.H.T. Te ZENITH E.H.T. Teater, with Probes. Metered $0-3.5 \mathrm{kv}$. DVM \& RATIOMETER BIE 2116 by Blackburn E75 ea.
OENCO S band low nolse travelling Wave amplifier E35. Carr. 30/
SIGNAL Generstor CT 53. Complete with leads. Good condition. E10 Carr. $15 /-$. With copy of charts.
BCEQ weNCY Meter LM 14. Modulated. version of SPECIAL. FURZEHILL V200 Valve millivolt meter. 10 mv to 1 IV. E25 Carr. IL 1 .
FURZEHILL Valve Voltneter type 578B/2. Hange $0-80 \mathrm{dbs} \& 10$ millivoits to 100 Volte in 5 ranges. Size MIC-O-VAC type 22 (CT54) Volts; Current; Ohms. MIC-O-VAC type 22 (CT54) Volts; Current; Ohms.
DC to 200 me/s with probe, leads etc. As new $\mathbf{E 8 / 1 0 / 0}$
VIBRATING REED ELECTROMETER type N 572 by ECKO. Range 10 to the -14 . Max seligitivity FSD for of 0.03 Micro-microamps. $\mathbf{E} 20$ ea. Carr. £1.
8 CM Wave Guide, some flex: Sanders Attenuatom:
Decca Wavegulde Switches; Delay Ilnes. etc. Phone Decca Waveguide Switches; Delay Ilned etc. Phone

DISTRIB UTED AMPLIFIER type 2C/3 $50 \mathrm{c} / \mathrm{e} 100 \mathrm{mc} / \mathrm{s}$ Guin 300 . $£ 30$ each.
Type $50 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s} \mathrm{E} 16$ esch
DAWE Wide Range ogcillator type 400A. 20 ca to $20 \mathrm{kc} / \mathrm{s}$ Sine wave. 500, 600 and 2000 ohru. Fine condition. 625.

PAIGNTON ATTENUATORS 0.1 db . to 100 db . in 3 decades, 600 ohm. 19^{*} rack mounting, 620 ea. Carr. $15 /$ PISTON ATTENUATOR' in carrying case. $\mathbf{3 0 - 1 4 0}$ me/B calibrated 0/70
Preciston THERMISTOR by YBI. 100 k . at $25^{\circ} \mathrm{C}$. Range : $40^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. Supplied with charts giving ohms ADVANCE Slgnal Generator trpe D1 o me/s to 100 ADVANCE Slgnal Generator tspe D1. ${ }^{2} \mathrm{mc} / \mathrm{s}$ to 100 mc / s. Sine and aquare mod. With CLAUDE LYONS Main Stablizer. Type 7000 C
Input $212-252$ volts $47 / 65 \mathrm{c} / \mathrm{s}$. OutDut 238 volts 0.6% B8 ampe. 640 . Carrlage at cont.
SERVOMEX Mains Stabilizer. Type AC7 Mk. 11. 200/250 yolts $0.1 \%, 45 / 65 \mathrm{c} / \mathrm{s} \cdot 60$ ampe. New Condition ROBAND P.U. Type M39A. Stabllized 300 volts 2 amps. 622 lac. carringe.
HOLGATE of channel Event recorder. 11 n . or 10 in. Inches per second. Slze $4 \frac{1}{5} \times 5 \times 81 n$. Excellent condition 620.

HEWLETT PACKARD Recorder and Decoder type 20A10. As new. Write or phone for further detalls.
191n. Rack Mounting CABINETS 6ft. hlgh aft. deed. Side and rear doors. Fully tapped, complete with base

Double Bay complete with doors. Fine condition. 625 . Carriage at cost.
MULLARD Tranelatorlsed Analogue to Disital Con-
vertor Model 281 . As new. $\mathbf{E 2 0}$ Cart. $15 /$. SUNVIC DC chopper Ampllfler type DCA 1. Superb SUNVIC DC chopper Amplifle
condition. $622 / 10 / 0$ eas. Carr. $20 /$ -
CINTEL Universal Counter E30. Carr, 30/.
PROCESS TIMERS 8 individual timer circulte each with 0.100 gec callbrated dials. Ideal diaplays 1SOLATING TRANSFORMERS 240 V in 240 V KWiout As new. 625 es. Carr. $82 / 10 /{ }^{\circ}$
DIECAST ALLOY hoxed. Size $4 \times 21 \times 1 / \mathrm{in}$. Drilled ends for Belling Coax socket. 3 compartmients link holes
CONVERTOR $50 \mathrm{c} / \mathrm{s}$ single ph. to $400 \mathrm{c} / \mathrm{a} 3 \mathrm{ph} .250 \mathrm{w}$.
In 6 ft . enclosed 19^{*} ragk cablnet. $£ 35 \mathrm{em}$. Carr. at cost. AMPEX FR400 with Renson-Layner ' XY ' Plotter. AMPEX FR400 with Renson-Layner
Lange vacuum table. Auto paper feed. 6500 .

4 DIGIT RESETTABLE COUNTERS. 1000 ohm. coll. Size 1 i $\times 1 \times 4 / \ln$. As new, by sorteco of Geneva. $6 / 10 / 0$ each.
 As above but 350 ohm. $63 / 10 / 0$ en

METERS-WESTON $\mathbf{2 5 . 0 . 2 5}$ microamit. Scaled
$-100 \cdot 0 \cdot+100.51^{\prime \prime} \times 4^{\prime \prime} .44$ ea.
TRANSFORMERS. All standard Inputs. STEP DOWN ISOLATING trana. Standard 240 v AC to 120 v tapped $130-0 \cdot 60700 \mathrm{w}$. Brand new. 66 ea 75 above but $500 w$. 4 ea.
75 WATT Constant voltace transformer. 195 to 255 MODULATION trans. PP-6 RW6. 30/. each. Transformer $0.215-250120 \mathrm{MA} ; 6.3 \mathrm{~V}$ 4A CT $\times 2 ; 2 \times 6.3$ 0.5 A and separate $90 \mathrm{v} 100 \mathrm{MA} 25 /$ - each P. \& P. $4 /$ Matching contact cooled bridge rectifler $7 / 6$ each. $350-0-35075 \mathrm{~mA} .5 \mathrm{v} 2$ amps $\times 2.21 /-$ ea.
Gardners $0.3 \mathrm{v} 2 \mathrm{~A} ; 6.3 \mathrm{v} 1.5 \mathrm{~A} ; 6.3 \mathrm{v} 0.1 \mathrm{~A}$. Size $3 \times 1 \frac{1}{2} \times 44 \mathrm{ln}$. As new. 9/6 ea. P. \& P. 3/- ea.
Parmeko/Gardners. Potted. 475-60-0-60-475 at 160 mA ; Peparate winding 215.0215 at 45 mA : $6-3 \mathrm{v} 5 \mathrm{~A}: 6.3 \mathrm{v}$ 0.75A: 5v 3A. As new. 63 en.

Garduers/Gresham. Potted $450-400-0-400-450180$ ma: $04 \cdot 6.39 \mathrm{~A} \times 2: 0-4-6.34 \mathrm{~A}: 0-4-5 \mathrm{~V} 3 \mathrm{~A}$. In original boxes c4 ea. Incl. postase.
Gariners 2 kV 10MA and 4 volta $\times 2$. $£ 4 / 10 /-$ ea incl. postage.
Parmeko 65v 1 amp. Separate 0-18.24v at 05 amp. $30 /$-ea
Gard/Parm/Part. $450-400-0-400-450.180 \mathrm{MA} .2 \times 6.3 \mathrm{v}$ ¢3 ea. ADV ANCE Constan
1.5 KW available $\mathbf{6 3 0}$
ADVANCE Constant Voltage Trans. 6 volts 50 watt As new $\operatorname{E3}$ P. \& P. 10\%
Gariners 5r 30 mmp . Brand new $\mathrm{El} / 10$ each incl. postage CHOKES 5 H ; $10 \mathrm{H}: 15 \mathrm{H}$; up to 120 mA . $8 / 6 \mathrm{ea}$. Op Large quantity LT, HT. EHT transformers. Your reguirements. please.
Panel switchea DPDT ex eq. $2 / 6$ eat: DPST Brand new
$3 / 6$ ea. DPDT twice. brand new $6 /=$ heavy duty DPST 3/6 ea.: DPDT tw
brand new 6/-ea.
brand new 6/- ea
SPECIAL. 813 ralves. Brand new, boxed $£ 2 / 10 / 0$.
MOTOR DRIVEN SWITCHES. 4 t 24 volt. 0 pole. 24 way. Brand new. 6 ea.
PRECISION continually rotarable atud switches. Single pole. 80 way, can be stacked If reoured. $t 3$ ea. PRECISION rotary stud switches 2 bole 12W size $2-$
sq., t^{\prime} shaft. $£ 2 / 10 / 0$ es. Min. SEALED 4 pole 3
Min. SEALED 4 pole 3 way and 3 pole 4 way rotary
switcbea. ${ }^{\circ}$ abaft i° dia. $\times i^{-} 10 /=$ ea. Must go-Ainerican Preasure Grugres. Scaled $0.200 /$
$0.2800, ~ K 8 C / P S I: ~ 270$
0 Solartron Storuse. Osell loscone ty pe QD 910. MUST GO.

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

CURRENT RANGE OF BRAND. NEW LTT. TRANS
FORMERS. FULLYSHAOUDED (Bexcepted)TERMINAL
 voltagni can be obtained Example: No. 1 .
$7-0-10-15-17-25-33-40-50 v$.
$\substack{4-0-12-16-20-24-32 v .}$
AUTO TRANSFORMERS
 Two-pin Amarlcan Sock

Type	Wats	Approx. Weight	Price		Corr
2	150	${ }_{4} 10$	${ }_{6} 12$		616
	300	64^{16}	6312	6	616
5	500 1000	${ }^{88}{ }^{81}{ }^{16}$	${ }_{67} 8_{2}$	${ }_{6}^{6}$	89/6
6.	1500	25 品	69	。	1016
$7 *$	1750	28 lb	61415		12
8.	2250	30 lb	61717		

Completely anclosed in beeuvifully finished metal case fitted with two 2-pin American sockets, neon inderor, onfonswiten,
heavy duty let. TRANSFORMERS
 618.10 .0 carr. 20% c. C18. 10.0 carr.
Pri. $220-240 \mathrm{v}$.
Pri. 220-240v. Sec. tapped. $14-15 \cdot 2-28-31 \mathrm{v} .20 \mathrm{a}$. Open type
table zoo connections el2.10.0
 All windings conservatively rated. Tropically finished.
minimal connections.
Size
$\times 71$
7

Sarresonis

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

01-262-512

AMERICAN HIGMLY STABILISED POWER SUPPLY UNIT

[9700.
Regulation betweon $7-15$ voles D.C. at 20 amps. Fitted 0.30

 Medee. Ex equipment but guaranteed in perfect condicion. 2401100 vol
43 extra.
G.P.O. L.T. SUPPLY UNIT

Type 19. A.C. .inpus, tapped 200-250v., $100-120 \mathrm{v}$. D.C. output,
12 or 2 A volts, ver conservitivaly rated at 3 amps. Cap be 12 or 24 volts, very conservitivaly razed $2 t 3$ amps. Can be
connected 80 glye 12 yolts 6 amps. Built into strong metal

ZENITH DOUBLE-WOUND VARIABLE
 Carr. extra.

OIL-FILLED BLOCK CAPACITORS

 T.C.C. 8 mld .2500 v . wkg. et $70^{\circ} \mathrm{C} .37 / 6$, P. \& P. $8 / 6.0 .5 \mathrm{mid}$. $10,000 \mathrm{v}$, wkg. at $70^{\circ} \mathrm{C} .37 / 6$, P. \& P. 8/6. Dubilier 4 mid. 2500 v . wkg. $2 t 70^{\circ} \mathrm{C} .251 \mathrm{~m}, \mathrm{P} . \&$ P. 716.2 mid. 4000 y. wkg. at $70{ }^{\circ} \mathrm{C}$ $23 /=1$, P. \& P. $7 / 6.0 .25 \mathrm{mfd} .7500 \mathrm{v}, \mathrm{wkg}$. $17 / 6$, P. \& P. $1 / 6$. T.C.C. Visconol tubuiar S-hole fixing. I mid. 2500 v . wke. at $60^{\circ} \mathrm{C}$. $12 / 6$, P. \& P. $2 / 6.0 .1 \mathrm{mfd}$. 8000 v , wkg. at $60^{\circ} \mathrm{C}$. $10 / 6$. P. \& P, $2 /-0.1 \mathrm{mfd} .5000 \mathrm{v}$. wkg. at $60^{\circ} \mathrm{C}$. $7 / 6$, P. \& P. $2 / \mathrm{m}$ 0.05 mfd . $10,000 \mathrm{v}$, wkg. at $60^{\circ} \mathrm{C}$. B/6, P. \& P. $21-$

HEAVY DUTY ISOLATION TRANSFORMER

SPECIAL OFRER OF PARMERO
NEPTUNE SERES TRANSFORMERS
ALL PRIMARIES TAPPED $115-230 v$

GARDNERS HT TRANSFORMERS
$5 \mathrm{Sec} .500-0.500 \mathrm{v} .250 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .4 \mathrm{za} .6 .3 \mathrm{vv} .4 \mathrm{a} .6 .3 \mathrm{vv} .3 \mathrm{z} .5 \mathrm{v} .3 .5 \mathrm{a}$

 shrouded. 47/16. Piv. 0.8 Ba .6 .3 v . Ia. Open eypee Table 80

 600 wates auto rapped 200-210-220-230-240-250v. Open
type.
\qquad

$$
\begin{aligned}
& \text { PARMEKO C CORE TRANSFORMERS }
\end{aligned}
$$

ADVANCE C/V TRANSFORMERS
 Type MT140. Input $190-260 \mathrm{v}$. Output 230 v , 150 w . E5.15.0.

alprepak

> F
$A_{A C 107}$
> AC107 LLY TESTED AND MARKED
> AC126
AC127
> ${ }_{A} \mathrm{ACl} 128$
> AC128
AC176
> AC176
ACY1
AF114
> ACY1
AF 114
AF 115
> AF 116
> AF117
> AF239
AF186
> AF186
> AF139
BFY50
> BFY50
BSY25
> BSY25
BSY26
> BSY26
BSY27
> BSY28
BSY29
> BSY29
BSY95A
> BSY96A
> OC44
> OC45
OC71
> OC71
0 OC 72
> OC72
OC73
> $\mathrm{OC73}$
$\mathrm{OC81}$
> OC81D
OC83
> OC139
> $2 / 6$ OC170

> | $2 / 6$ | OC171 |
| :--- | :--- |
| $3 / 6$ | OC200 |

> $3 / 6$
$2 / 6$
> OC200
OC201
> 20
20
20
> 2 G 301
2 G 303
2 N 71
2 N 43 O
> 2 N 711
$2 \mathrm{~N} 13 \mathrm{O} 2-3$
2 N 13 O
> 2N13O4-

> | $3 / 6$ | $2 N 1306-7$ |
| ---: | ---: |
| $12 / 6$ | $2 N 1308-9$ |

> 2N1308-9
2N3819F.E.T.
> Power
> Transis
0 OC 20
> OC 20
OC 23
> OC23
OC25
OC26
> OC25
OC26
OC28
> $\mathrm{OC2}$
OC 28
OC 35
> OC
> $\triangle D 149$
$2 S 034$
> 2 SO34
$2 N 2287$
> 2 N 3055
Diodes
> Diodes
AAY42
$0 A 95$
> OA95
OA79
> OA79
OAB1
> $2 / 6$
$3 / 6$
> IN914

ANOTHER SCOOP FOR BI-PRE-PAK
JUST RELEASED FROM STOCK
These are brand new genuine surplus stocks. marked and guaranteed to full makers specification and not remarked rejects.
$\begin{array}{ll}\text { NE808A } & \text { Single } 81 / P \text { N and Gate TTL } \\ \text { NE816A } & \text { Dual } 4 \mathrm{~V} / \mathrm{P} \text { Nand Gate TTL }\end{array}$
NE825A O.C. Clocked J-K Flip. Flon
NE840A Dual 4 VP Exclusive OR Gate TT
NE855A Dual 4 Power Gate TTL
NE870A Triple $31 / P$ Nand TTL
NE880A Quad 2 Nand TTL
SP616A Dual 4 Nand Gate OTL
SP631A Quad 2 I/P Gate Expander DT
$\begin{array}{ll}\text { SP670A } & \text { Triple } 3 \text { Nand Gate DTL } \\ \text { SP806A } & \text { Dual I/P Expander TTL }\end{array}$
Sp806A Dual I/P Expander Tit
SP816A Dual $4 \mathrm{I} / \mathrm{P}$ Nand Gate TTL
$\begin{array}{ll}\text { Sp816A } & \text { Dual } \\ \text { SP825A } & \text { O.C Clocked J-K Flip. Flop TTL }\end{array}$
SP840A Dual 4 I/P Exclusive DR Gate TTL
Sp855A Dual 4 Power Gate TTL
SP870A Triple 3 1/P Nand TTL
SP880A Quad 2 V/P Nand TTL
NE500K Video Amplifier
7/-
NEW TESTED \& GUARANTEED PAKS
H8 4 BY127 Sllicon Recs. 1000 P...V. 1 amp
Plastic. Replaces the Byilo 10/-

в79 4	1N4007 Sil. Rec. Diodes. 1.000 PI.IV. 1 amp. Plasic.	10/-
88110	REED SWITCHES MIXED TYPES LARGE \& SMALL	10/-

NE501K Video Amplifier 40 MHz
NE808J Dual 4 I/P Expander TTL
NE808J Single 8 I/P Nand Gate
$\begin{array}{ll}\text { NE808J } & \text { Single } 8 \text { I/P Nand Gate TTL } \\ \text { NE816J } & \text { Dual I/P Nand Gate TTL }\end{array}$
NE825J D.C. Clocked J-K Flip-Flop TTL
NE840J Dual 4 VP Exclusive OR Gate TTL
NE855J Dual 4 oower Driver TL
NEB8OU Quad 2 VP Nand TTL
STE20A J-K Flip.Flop DTL
STE59A Dual 4 Auffer/Driver DTL
Suffix: $A=$ DIP 14 lead k
$J=$ Flat Pack

PACKS OF YOUR OWN CHOICE UP TO
THE VALUE OF 10/- WITH ORDERS OVER I 4

LOOK! TRANSISTORS ONLY 6d EACH

TYPE A
PNP SILICON ALLOY
to-5 CAN
Spec:-
ICER AT VCE $=20 \mathrm{~V}$ 1 mA MAX.
HFE. $15-100$
These are of the 25300 type which
is a direct equivalent to the

TYPE B
PNP SILICON PLASTIC ENCAPSULATION Spec:- - ICER AT VCE $=10 \mathrm{v}$

1 mA MAX. HFE, 10-200 These are of th
$2 N 4059 / 62$ range

TYPE E
PNP GERMANIUM
fully marked AND TESTED. STATE R.F. OR A.F WHEN ORDERING.

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

$=\square \square \square \begin{aligned} & \text { DEPT. B, 222-224 WEST ROAD, WESTCLIFF-ON-SEA,ESSEX } \\ & \text { TELEPHONE: SOUTHEND (0702) } 46344\end{aligned}$

DAVID CLARKE COMPANY

30 CRAVEN STREET STRAND, LONDON, WC2

fantastic value portable transistor TV

By Famous Manufacturer

£15.10.0

Ideal for holidays, caravans, camping, the beach. Completely portable. ITV, BBC built-in aerial. Reconditioned in immaculate condition. Guaranteed. 12 volt or A.C. mains. Rechargeable batteries 25/- extra. Carriage 10/6. Hurry while stocks last

SUPER BARGAIN TRANSISTOR RADIO OUR PRICE $62 / 6$ PLUS $3 / 6$ p. \& p.

7 transistor fully tunable, long and medium wave. Superhet. Complete with leather carrying case, earpiece for private listening Fully guaranteed, brand new. Ideal for holidays.

BURGESS MICRO SWITCHES V3 5930 NEW $1 / 9$ EACH - 6d. p. \& p.

THE FAMOUS RCA AR88 RECEIVER

We have only 50 of these remarkable receivers at the give away price of

$$
£ 32.10 .0
$$

Secondhand condition but guaranteed perfect order. Input 110 volt or 250 volt A.C. Frequency on 6 bands. 535 kcs to 32 mes with crystal filter, noise limiter. BFO, RF and AF variable controls, output 2.5-600. Carriage $£ 2$. Orders treated on first come first served basis. Carriage anywhere in British Isles.

SEND ONLY £10 TO SECURE

Balance payable on delivery of receiver
COMPONENTS - COMPARE PRICES
NEW MULLARD
TRANSISTORS
TRESISTORS
OCARBON FILM
OC22
OC26
OC28
OC45
OC46

TERMS, Cash with order Unless otherwise stated, callers by appointment only please

All our goods carry full money back guarantee

LOUDSPEAKERS

$5^{n \prime}10$ watt $.35 /-$
$8^{\prime \prime} \ldots 8$ watt $. . . .35 /-$
$10^{n} \ldots10$ watt $. . . .45 /-$

Heavy construction. 3 ohm or 15 ohm. Latest high efficiency ceramic magnets. Extended range up to $15,000 \mathrm{cps}$. Excellent value. Post and packing 2/6 per speaker.

NO EXCUSES! NO DELAYS! FROM STOCK! taniable voltane transfonumbis

INPUT 230 ४. A.C. 50/60 BRAND NEW. Keenest prices in the country. All Types (and spares) from $\frac{1}{2}$ to 50 amp . available from atock. $0-260 \mathrm{v}$ at $1 \mathrm{amp} \ldots \mathrm{f5} 100$ $0-260$ v. at 2.5 amps. .. \&6 150 $0-260$ v. at 5 amps. 19150 $0-260 \mathrm{v}$. at 8 amps. $0-260$ v. at 10 amps. $0-260$ v. at 12 amps $0-260 \mathrm{v}$. at 15 amps $0-260$ v. at 20 amps $0-260$ v. at 37.5 amps... $£ 3700$ $0-260$ v. at 50 amps. 6920 20 DIFFERENT TYPES AVAILABLE FOR IMMEDIATE DELIVERY.

INSULATION

Transformers

Fully isolated, low tension seconFully isolated, low tension Secon-
dary winding. Input 230 v. A.C. dary winding. Input 230 V. A.c.
OUTPUT cONTINUOUSLY VARIABLE 0.36 V .A.C.
V.36 v. at 5 amp. \&9.12.6-
p. \& p. 8/
0.36 v. at 20 amp. \&21.0.0-

15/- p. \& c.
These fully shrouded Transformers, designed to our specifications, are ideally suited for Educa-
tional, Industrial and Laboratory

TESTERS (NEW)

500 VOLTS, 500 megohms. Price £ 28 carriage paid.

1,000 VOLTS, 1,000 megohms, £ 34 carriage paid. ELECTROSTATIC (3) GENERATOR
\qquad motor with f if A.C. giving f approx 50 potential Supplied jbsolutely volts. Supplied absolutely com-
plete including accesplete including acces-
sories for carrying out a sories for carrying out a
number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonstrations. Price $£ 7 / 7 /$. plus $4 / \mathrm{F}$ Price $\& 7 / 7 /-$. plus $4 /-$
P.

LATEST TYPE SOLIO STATE

 variable controller Ideal for lighting and heating cir cuits, compact panel mounting. Builc LY VARIABLE.Input 230v AC output 25-230v AC 5 amp model $\mathrm{fB}, 7.6$
\qquad
SPEEDIVAC HIGH VOLTAGE high frequency generator Input $100 / 110$ volts or $200 / 250$ volts AC/DC Output 19 KV variable. Ideal for testing insulation, vacuum, leakage path, gas discharge Manufactured by Edwards High Vacuum Ltd. Brand new in maker's polished wooden carrying case. Offered at fraction of maker's price.
E10.0.0 plus $7 / 6 \mathrm{p}$. \& p.

SERVICE TRADING CO

Posiage aud Carriage show below are inland ouly overnemy Motation. We do no VEEDER ROOT COUNTER 230 v. A.C. 50 cycle 5 figure counter
(non resetable). $18 / 4$, P. \& P. $1 / 6$.

Ex.W.D. MINIATURE

 BLOWER UNIT
SOLID STATE INTERVALTIMER 24-30v. D.C. oparation. Stabilised untiunction Timer ind S.C.R. (30v. 1Amp.), encapsulated in merai core. Timing Interval adjustable
from a fraction of a second to several From a fraction of a second to severa
minues by minutes by means of externa
resistor or pot. By adding a 24
 resistor or pot By adding a 24, Relay many other complex timing functions are possible. Price: $16 / 6 \mathrm{incl}$. circuit, p. \& P. 2/6. Suitable relay 9/6. P. \& P. $1 / 6$. A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$) 15 amp . coneacts. 230/240 V. A.C. operation. Brand new. 22/6 plus $1 /-$ P. \& P.

RING TRANSFORMER

Functional Versorile Educational Thit multi-purpote Auto Transformar, with wound current Tranaformer, Auto Transformer H.T. or LT. Tranaformer, by aimply hand wind lng the required number of Eurns through the centre apent E.I. Using the R. engive
Price:

- $={ }^{R}$
L.T. TRANSFORMERS

All primaries $220-240$ voles
 IN8ULATED TERMINAL8 Avallable in black, red, white, yellow, blu

LIGHT SENSITIVE SWITCHES Kit of parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and Circulk. Now supplied with new Siemens High Speed Relay for 6 or 12 volt operakions. 12 and CIrcuit $12 / 4$ post paid

220/240 A.C. MAINS MODEL

Incorporates mains transformer rectifier and specia relay with 2×5 amp. mains c/o contacts. Price inc
 LIGHT SOURCE AND PHOTO CELL
MOUNTING
Precision englineered light source
with adjustable lens assembly and
ventilated lamp housing to take MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell with optic window. Both units
are single hole fixing. Price per pair $6 / 15 / 0$ plus $3 / 6$ are single hole fixing. Price per pair E2/15/0 plus $3 / 6$
P. \& P.

MOTORISED SWITCHING UNIT (EX-W.D.)

 Powerful, precision-made, ex-W.D. 12 v. D.C., reversible motor, drives multiple gear train with outputs approx. 4 r.p.m. $2 n$.
P. \& P. $4 / 6$.

> 2 . RHEOSTATS
(NEW) Ceramic construction, windEnamel, heavy duty brush assembly designed for continuous duty, AVAILABLE FROM STOCKIN THE FOLLOWING II VALUES
100 WATT I ohm 10 a . 5 ohm $4.7 \mathrm{a} ., 10$ ohm 3a. 100 WATT 1 ohm 10 a .5 ohm 4.7 a ., 10 ohm 3 a ., $250 \mathrm{hm} 2 \mathrm{a} ., 50 \mathrm{ohm} 1.4 \mathrm{a}, 100 \mathrm{ohm} 1 \mathrm{a}, 250 \mathrm{ohm}$ $97 \mathrm{a} ., 500$ ohm 945 a . Ik ohm 280 mA .. I'5k ohm 3tin. Shaft length 1 lin. dia. hin., 27/6. P. \& P. I/6. 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / \mathrm{KK} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ I
5 K ohm. All at $21 /-$ P. \& P. $1 / 6$. 25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1$
All at $14 / 6$, P \& P , $16.250 / 500 / \mathrm{K} / 1.5 \mathrm{~K} / 2.5 \mathrm{~K}$ ohm
Black Silver Skirted knob calibrated in Nos. I-9. I
Black Siver skirted knob calibrated in Nos. 1-9. 1 ?
in. dia. brass bush. Ideal for above Rheostats, $3 / 6$ each.

MOTOROLA MAC/II PLASTIC

 THYRISTER 400 PIV 8 AMPNow avallable EX STOCK supplled complete with full data and applications sheet. Price 21/- plus $1 / 6$ P \& \& P.

230/240V 10 RPM MOTOR (Non Reversible)

Extremely powerful. Conlow price of $35 /$ post paid.

T.M.C. ILLUMINATED

LATCHING PUSH BUTTON
KEY SWITCH No. S525594 $\overline{\text { BTI }}$

LOCK $4 \mathrm{c} / \mathrm{o}$

Complete with mounting
bracket, PushKnobandLenses
(GREEN, AMBER, RED or CLEAR
(GREEN, AMBER, bulb Post Paid, Discount for quantities of 200 or over bulb, Post Paid. Discount for quantities of 200 or over

x
3
3
3
3
3
3
THREE EASY TO BUILO KITS USING XENON WHITE TRIGGERING CIRCUITS SOLID STATE TIMING + TERNALTRIGGERING. 2jo-250v, A.C. OPERATION. The Strobe is one of the most useful and interesting
instruments in the laboratory or workahop. Is is
invaluable for the study of movement and checking of speeds. Many uses can be found in the psychiatric
and photographic fields, also in the entertainment and photographic
business. It is used agraz deal in the moter industry
and tisa real tool as well as an interesting scientific device.
EXPERIMENTERS "ECONOMY" KIT
Adjurrable I to 36 Flash por sec. All electronic com-
 Xenon Tube +instructions CS
NEW INDUSTRIAL KIT
NEW INDUSTRIAL KIT
Ideally suitable for chools laboratories etc. Roller
tin printed circuir New tin printed circuit. New trigger coil, plastic th
HY-LYGHT STROBE
This atrobe has been desienned for use in large rooms,
halls and the photographic field, and utilizes a silica halls and the photographic field, and usilizes a silica
eube for longer life expectancy. printod circuis for
easy assembly, also a special erisger coil and output
 approx. 4 loules. Price $\$ 10.17 .6$. P. \& P. $7 / 6$.
7.INCH POLIS HED REFLECTOR. Ideally sulted
for above Strobe Kits. Price $10 / 6$ and $2 / 6$ P. \& P. or - for above Strobe K

- pose paid with kith.

COMPLETE NI. CAD. BATTERY OUTFIT (EX W.D.) 2 metal carrying cases each containing 0×1. also $10 \times 1.2 \mathrm{y} 22 \mathrm{AH}$ (12v) batteries (40 bat-
teries in all). 1 Dual voltage, dual meter thyristor controlled
charging unit. Designed
for charging the 7AH
 for charging the 7AH and 22AH batteries simultaneously. Anput
$100-250 \mathrm{v}$ AC . Built to ministry specification. Ideal power supply for field work. Offered at fraction of makers price. 2 sets of batteries. I charging unit. The makers price. 3 set s 45 e \& $\mathrm{p} .30 \%$.

MINIATURE UNISELECTOR 3 banks of 11 positlons, plus homing bank. 40 ohm coll, 24.36 v . D.C. operation. Carefully removed from equipment and tested. $22 / 6$, plus $2 / 6$ P. \& P.

UNISELECTOR SWITCHES NEW

4 BANK 25 WAY FULL WIPER
25 ohm coll. 24 v. D.C. op.
c5.17.6, plus $2 / 6$ P. \&
\&
6 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v. D.C operation. 66.10 .0 plus $2 / 6$ P. \& P. P.
8-BANK
25-WAY FULL

WI FULL WIPER
24 v. D.C. operation, 67.12 .6 , plus 4 1-P. \& P.

RELAYS

NEW SIEMENS PLESSEY, etc. MINIATURE RELAYS AT A HIGHLY COMPETITIVE PRICE.

COIL	WORKING D.C. VOLT CONTACTS		
-			PRICE
52	6-9	6 M	12/6
170	$9-12$	$4 \mathrm{c} / \mathrm{o}$ H.D.	$14 / 6$
170	$9-12$	$3 \mathrm{c} / \mathrm{O}+1 \mathrm{H.D.c/o}$	12/6
230	6-12	2 co	12/6
280	6-12	$2 \mathrm{e} / 0 \mathrm{incl}$. base	14/6
700	12-24	$2 \mathrm{c} / 0$ incl. base	12/6
700	16-24	$4 \mathrm{c} / \mathrm{o}$ incl. base	15/6
700	16-24	4M 2B Incl. base	12/6
1250	36-45	6 M	12/6
2500	36-45	6M	12/6
5800	80-85	4 clo	12/6
9000	$40-70$	2 c/o incl. base	10%

MINIATURE RELAYS
$9-12$ volt D.C. operation. $2 \mathrm{c} / 0500$ M.A. contacts Size only lin. $x \$ \times \$ \mathrm{in}$. Price II/s Post paid. $30-36$ v. D.C. operation. 2 c/o 500 M.A. contacts. 3.200 ohm coil. Size only $1 \times \frac{1}{1 / 2} \times$ tin. $8 / 6$ post paid.
SPECIAL OFFER

400 ohm coil. NEU
TYPE A.G.C. IM 1812 V . A.C. ${ }^{3}$ amp contects. 230 VOLT AC RELAY LONDEX four c/o 3 amp contacts. 18/6, Incl. base. Post Paid.

230 v. A.C. SOLENOID. Heavy duty type. Approx 3ib. pull. $17 / 6$ plus $2 / 6$ P. \& P. 12 V. Approx. JIt. pull. $10 / 6$, P. \& P.I/6.
50 v. D.C. SOLENOID. Approx. Itb. pull. $10 / 6$, P. \& P. $1 / 6$.
50 v. D.C. SOLENOID. Approx. 21b. pull. $12 / 6$, P. \& P. 1/6.

NEW MODEL

HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coil speaker, also earpiece for personal mon
morse key. $45 / \mathrm{plus} 3 / 6 \mathrm{~d}$. p. \& p

PANEL METERS AT BARGAIN PRICES A.C. AMMETERS 0-1, 0-5, 0-10, 0-15, 0-20 amp. F.R. 21 in . dia. ALL AT 21/-EACH.
A.C. VOLTMETERS $0-25$ v. 0 - 50 v., $0-150$ v. M. 121 in . Flush round ALL AT M- 0300 v. A.C. Rect. M-Coil $2 \downarrow$ in. 29/-

RECHARGEABLE NICKEL

CAD. BUTTON CELLS.
 Fully tested and unused. Price $9 / 6$ e.C. charger. SANGAMO WESTON SYNCHRONOUS GEARED MOTOR
 12 Rev per
p. 8 p. $2 / 6$.

34R SILICON SOLAR CELL
$4 \times .5$ volt unit series connected, output up to 20 V . 30 times the efficiency of selenium. $45 /=$, P. \& P. I/6d.

SILICON RECTIFIERS

	50	100	ERS	400	600	800	1000	1200	
1 A	2/9	3-	3/3	316	3/9	4.	4/6		
${ }^{3} \times$	$3 \cdot$		5	46	6	6.	10.		
10A	-	16	11/6	$13 /$	15/6	1716	1916		
17A	-	11/6	$12 / 6$	15/6	18/-	19/6	24,	$31 / 6$	37/6
35A		$27 / 6$	32/.	39/6	47/6	54.	62/-	701-	

TIC47 0.6 amp, 200 PIV 14//o
Also 12 Amp 100 PIV $15 / 9,600$ PIV 35/6, 2 N3525 at 25/6
VEROBOARD
$21^{\circ} \times 31^{\circ}$
$21^{\circ} \times$
35°
$35^{\circ} \times$
35°
$\times 5^{\circ}$
..

	. 15 Matrix	. 1 Matrix
.		4/-
.	4/3	419
\cdots	$4 / 3$	4/9
\cdots	$5 / 6$	5/6
.	$12 / 6$	
\because	16/-	$\begin{aligned} & 21 / 6 \\ & 11 / 6 \end{aligned}$
-	171.	

RESISTORS Carbon Film

Carbon film					
1 wate 5\%	\cdots	. 4 5d.	1 watt 10\%	\cdots	d.
2 watt 10%	.	\cdots. ${ }^{\text {5d }}$ /	- watt 5\%		3d.

Wire wound
2.5 wate 5% (Up 270 ohms only)
5 watt 5% (Up to 8.2 k ohms only) 5 watt 5% (Up 208.2 k ohms only)
$10 \mathrm{wate} 5 \%$ (Up 20.25 k ohms only)
CAPACITORS. Polyester, ceramics, Polystyrene, silver mica,

Abstract

tantalum, trim Electrolytics MFD. | MFD. |
| :--- |
| 25 |
| 32 |
| 32 |
| 40 |
| 40 |
| 50 |
| 50 |
| 50 |
| 64 |
| 80 |
| 80 |
| 100 |
| 100 |
| 100 |
| 100 |
| 125 |
| 200 |
| 250 |
| 250 |

50 40 450 16 10 25 25 16 25 12 25 10 1 25 50 $1 / 6$ $1 / 6$ $5 / 6$ $1 / 6$ $1 / 6$ $1 / 6$ $1 / 6$ $2 / 6$ $1 / 6$ $1 / 6$ $1 / 6$ $1 / 6$ $1 / 6$ $2 / 6$ $2 / 6$ $1 / 6$ $1 / 6$ $2 / 9$ $3 / 9$

THERMISTORS (MULLARD)

3 (STC)	VAl010	216	VA1039	31-	VA1077	4/*
25/6	VAl015	3/9	VAl040	$2 / 6$	VAl091	4/6
K 151 (Sie-	VAl033	216	VA1053	${ }_{2}^{216}$	VA1096	4/.
ns) ${ }^{1 K}{ }_{2 / 6}$	VA 1034 VA1037	216 216	VA1066	319 216	VA1097	4/-
Valoos 3/.	VA1038	$2 / 6$	VAl075	4/6	VA1098	4/-

Send 2/6 for our latest comprehensive catalogue containing transistor selection charts and all prices, and free vouchers value 6/-.
 RANGES TO ORDER

"SEW" CLEAR PLASTIC METERS

Type MR.58P. 2 tin. aquare fronts.	
$\mathrm{s}_{\text {¢и A......... 62/- }}$	10v. D.C....... 40/.
80-0.50رLA 52/•	20V. D.C.,.... 40/.
$100 \mu \mathrm{~A}$. 52\%	50V. D.C. 40/*
$100-0.100 \mu \mathrm{~A} . .47 / 6$	300V. D.C. . . 40 /
${ }^{500 \mu} \mathrm{~A}$ A 45/-	13V. A.C. 40% -
$1 \mathrm{~mA}4 .40 \%$	300V. A.C. . . . 40 /-
bma 40\%	8 Meter Ima .. 42/-
10 mA 40/-	vu Meter...... 62/.
50 mA 40/-	1 amp. A.C.* . . 40/-
$100 \mathrm{~mA}{ }^{\text {a }}$ 40/-	5 mmp A.C.* . $40 /$ -
$500 \mathrm{~mA}4 .40 \%$	10 amp. A.C.* . 40%
1 атир. 40/.	20 amp. A.C.* . . 40\%
\% amp. 40/-	30 amp A.C.*. 40%

$$
\text { Type Mr.65P. 3lin. } \times \text { 3hin. fronts. }
$$

$$
\begin{aligned}
& 500-53 \mu \mathrm{~A} \\
& 100 \mu \mathrm{~A} \\
& 100-0-100 \mu \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& 10 \mu \mathrm{~A} \\
& 1000 \mathrm{O}, 10 \mathrm{\beta} \\
& 500 \mathrm{~A} \\
& 800 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& 500-0-500 \\
& 1 \mathrm{~mA} \ldots \\
& 5 \mathrm{ma} \ldots
\end{aligned}
$$

10 mA
50 mA
50 mA
100 mA
500 mA
1
1 gmp.
5 ampp.
10 mmp.
10 mpp.
10 mp.
10 mpp
20 amp.
15 amp .
20 amp .
30 amp.
50 m. 50 armp.
$10 \mathrm{v} . \mathrm{D} . \mathrm{C}$

*MOVING IRON

ALL OTHERS MOVING COIL Please add postage

Type Mr.38p, $121 / 32 \mathrm{in}$, square tronts.

$=4$	
30нA......... 40/\%	20V. D.C....... 27/6
${ }^{50-0050, ~} \mathrm{~A}$ A $\quad 3.37 / 6$	100V. D.C. 27/6
${ }_{10004 \mathrm{~A}}^{100 .}$	130 V. D.C. ... $27 / 6$
	300 V. D.C. 27/6
$500 \mu \mathrm{~A}$ …..... 30/-	OV. D.C. ... 27/6
500-0-500 A A . $27 / 6$	750V. D.C. $27 / 6$
	13V. A.C. $27 / 6$
	50 V . A.C. $27 / 6$
	${ }^{130 V}$ V. A.C. ... 27/6
10 mA …..... $27 / 6$	$300 \mathrm{~V}, \mathrm{AC}$. . . . $27 / 6$
20 mA $27 / 6$	300 V . A.C. $27 / 6$
${ }^{80} \mathrm{~mA}$. 8 2\%/6	8 meter $\lim A . .32 \%$ -
100 mA $27 / 8$	
Type Mr.45P. 2in. square Ironts.	
вомА.......... 45/-	5 amp. 30/•
$5000050 \mu \mathrm{~A}$. . . $48 /$.	10V. D.C. ${ }^{\text {a }}$. 301.
$100 \mu \mathrm{~A}$. 42/.	20V. D.C...... 30/*
100-10-100 A A . $37 / 8$	${ }^{30 V} 0$. D.C...... 30\%
200,4A37/6	300 V . D.C. 301-
500 ¢ A 32/*	15V. A.C....... 30/*
$500-0-500 \mu \mathrm{~A}$. . . 30/-	$3 \mathrm{moV}. \mathrm{A.C}.{ }^{\text {co. } 30 \%}$
1 mA 301.	8 moler 1 mA .. 37/6
	VU tueter, 45 .
100 ma 30/.	10 ump. A.C. ${ }^{\text {a }}$ 30/*
500 ma 30/-	20 amp. A.C.* ${ }^{\text {a }}$ 30/*
$1 \mathrm{mmp}{ }^{\text {c }}$ 30/-	30 amp . A.C.* . 30/-

'SEW' BAKELITE PANEL METERS

0	
${ }^{25 \mu A} \times \ldots \ldots \ldots$. $70 /$ -	30 V. A.C.: \ldots 35/
	${ }^{50 V}{ }^{\text {d }}$ A.C.**
	100V. A.C. 300 ... 35/
$100 \cdot 0 \cdot 100 \mu \mathrm{~A}$.. 45).	500ma A.C.* . . . 351-
	$\frac{1}{8}$ amp. A.C. ${ }^{\text {a }}$ - 35
	10 mmp. A.C. $* * 35{ }^{\circ}$
3rnA 35/.	20 amp. A.C.
$10 \mathrm{~mA} \mathrm{.......}. \mathrm{351}$.	30 amp. A.C.* ${ }^{\text {a }}$ 35/0
${ }^{50 \mathrm{~mA}}$. $\cdot \cdots \cdots \cdots{ }^{351 \cdot}$	80 amp. A.C.* . 35%

EDGWISE METERS

 Type PE.70. 3 17/32in. $\times 1$ 15/32in. $\times 21$ in

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL. METERS - DISCOUNTS FOR QUANTITIES
U.K. DISTRIBUTORS OF TMK multimeters
This range of Multimeters, manufactured by Tachilkawa Radlo Instrument Co, of Japan, offers excellent value for money combined with quality and accuracy of measurement. IMMEDIATE DELIVERY
TRADE ENQUIRIES INVITED

MD. 120

LAB TESTER

PL. 436

TW. 50k
\star All models fitted overload protection and supplied with batteries, prods and instructions.

500

5025

mivity: $50 \mathrm{k} \Omega /$ Volt D.C. Bk $\Omega /$ Volt A.C. D.C. Volts: $123, .23,1.25,5,10,25,50,125, \mathrm{f12} .10 .0$

 6 Ilin. $\times 3$ in.

SOLE U.K. AGENTS FOR JAPAN'S PREMIER MANUFACTURER

'YAMABISHI'
VARIABLE VOLTAGE TRANSFORMERS

- Excellent quality - Low price

 - Immediate delivery
ALL MODELS

INPUT 230 VOLTS, 50/60 CYCLES. OUTPUT VARIABLE 0.260 VOLTS
MODEL S-260 General Purpose

Bench Mounting

1 Amp	C5.10.0	MODEL S-260 B
2.5 Amp	C6.15.0	Panel Mounting
5 Amp	c9.15.0	1 Amp 55.10 .0
8 Amp	\$14.10.0	2.5 Amp ¢6.12.6
10 Amp	¢18.10.0	
. 12 Amp	\&21.0.0	Please add postage.
20 Amp	¢37.0.0	Speclal discounts for quali

from Poland

electronic components receiving valves for radio and TV receivers picture tubes guns for TV getters

HIGHLY STABLE PARAMETERS

 LONG OPERATIONAL LIFE

are offered by

Foreign Trade Enterprise

Warszawa, A1.Jerozolimskie 44, Poland P.O. Box Warszawa 1 No 370

Telex No 81437

CATALOGUE, PRICES, AND FULL DETAILS AVAILABLE UPON REQUEST

WW- 093 FOR FURTHER DETALLS

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. versation from MASTER to SuB and Su Baby Alarm and Door Phone. Complete with Ideal as Baby Alarm and Door Phone. Comp

MAINS INTERCOM

No wires-no batteries. Just plug in and it is ready to use. Room to room or house to house. Both units must be on the same side of power line distribution. Lock button. Light indicator. Also useful as baby alarm. Price per pair £11.19.6. P. \& P. 8/6.

SIILCON TRANSISTTORS 1,000,000 FOR SALE

Clearance of pnp Sillcon Alloy Transistors from the 2 S 300 (TO-5) and 2 S 320 (SO-2) range and simllar to the OC200205 and BCY30-34 series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for Industrial use but owing to company policy change have been made avallable to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, I.e., TO-5 25300 or SO-2 25320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off- \&1 15s. (plus p. \& p. 3s.)
500 off- 6210 s . (plus p. \& p. 3s. 6d.)
1,000 off- $\kappa 4$ (plus p. \& p. 5 s .)
10,000 off- $£ 35$ (plus p. \& p. Ils.)
Large quantities quoted for on request. EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES

P.O. BOX 5

63a High Street, Ware, Herts. Tel: WARE 3442

Solve your communication problems with this new 4-8tation Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to subs and 8ubs to Master. Operates on one $9 \mathbf{v}$. battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hos. pital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

LEARN HOW COMPUTERS WORK WITH COMPUKIT

 प్ర్ర亿 20

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12 01 -743 4946

orderad from us is completely over in our own laboratories

AVO SIGNAL GENERATOR CT

AVO'S METERS
Model $7 \times$ with leads, Meads 15 . 5.10 .0 .
Model 7 with leads, $\$ 14.10 .0$.
Model 48A complete with multiplier chunts, etc.. in specia Model 47A Él2
Carrlase for each of above 7/6.
PANEL METERS. See our last

IMPEDANCE BRIDGE TYPE TF 369 (No. 5). Measures L \& C as $80 \mathrm{~Hz}_{\text {, }}$ $1 \mathrm{kHz}, 10 \mathrm{kHz}$, Ranges:- $\mathrm{L}: 1 \mu \mathrm{H}=100 \mathrm{H}$ C: ImF- 100μ F. R: 0.1 ohms -100 mohms . AC Bridge volts monitored and varlable. Automatic detector sensitivity control, $\mathbb{6} 105$. Carriage 30/-

29/41FT. AERIALS each consisting of sen 3 f́t. fin. dia. tubular serew-in sections. Iff. (6-section) whip aerial with adaptor to fit the 7 in . rod, insulated base, stay plate and stay assemblies, pegs, reamer, hammer, etc. Absolutely in canvas bag, ©3/9/6. P. \& P. $10 / 6$.

SOLARTRON EQUIPMENT
 LAB. AMP AWS 15IA, Frequency: iscope viewing etc E29.10.0. Carriage 20/-
 Regulated and stabilised P.S.U. SRS $151 \mathrm{~A}, 20$ so 500 V positive at 300 mA in two ranges. Variable and fixed negatills.2. Double beam, DC 7 MHz 'scope, $\mathbf{8 8 5}$. Carriage 30/CD 643.2 . Single beam Laboratory Model, $D C$ to 14 MHz price upon application.
 QD 910 . Storage Oscilloscope, as new

FIELD TELEPHONE TYPE "F" Housed in portable wooden cases Excellen for uo to 10 miles. Pair including doors for up to fullested. \&6.10.0, or with 220 yds field cable in drum E7.10.0.
4,5 and 8 bank 25 way uniselectors, $\mathbf{E 4 . 1 0 . 0}$ g E6.17.6 respectively.
DAWE STORAGE OSCILLOSOMPE complete wih trace shifer, price on request. FURZEHILL YALVE VOLTMETER TYPE 378B/2 lomV to 100V.
HARNESS "A" a " \mathbf{B} " control units. junction boxes, headphones, micro BOONTON O METER TYPE '160A. Freq, range 50 kHz to 75 MHx , main capaci-

BOONTON SIGNAL GENERATOR TS 497/B/URR, 2-400MHz. $\mathbf{6 9 5}$ TS $418 \mathrm{~B} / \mathrm{U}$ SIGNAL GENERATOR, $400-1000 \mathrm{MHz}$. cl05. Carr. $30 /=$

 To view TEST EQUIPMENT please phone for appointmenSPECIALOFERR TRANSISTORS, ZENER DIODES 20

 3F100
3FRR
3N128
3N139
3N110
3N154
3N159
6FRS
12FR6
10D1
40694
40693
40636
40668
40869
AC26
AC127
AC28
AC176
ACY1
ACY2
AD149
AD18
AD16
AF17

OR81 MARF OTHERS IN STOOK Melude Cathode Ray Tubea and
£1 $2 /-\ln \mathrm{f}$, over 23 pont free. C.O.D. 4 - extra
valve OLTMETER TYPE TF 958. Measures $A C 100 \mathrm{mV}$
$20 \mathrm{e} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s}$,
$D C 50 \mathrm{mV}$ to 100 V DC 50 mV so 100 V , multiplier extends ac
range to $\quad 1.5 \mathrm{kV}$. Bange tanced inpue and entre-zero scale for 100 MHz . 32.10 .0

DISTORTION FACTOR METER TYPE TF 142E. Frequency range: $100-8,000 \mathrm{~Hz}$ in four ranges. Distortion range: 0.05 to 50%. Inpue impedance 600 a , attenuation $0-60 \mathrm{db}$ continuously variable. Sensitivity 1 mW . £42.10.0. Carriage 201-

230v, 3 pole, 10 amp plug in change over relays. Il pin base, perspex cover. PHASE MONITOR ME-63/U. Manufactured recently by Cont rol Electronics inc. Measures directly and displays on panel metie tho phase frequency siznals within the rang from $20-20,000 \mathrm{c} p$. to an accuracy of $\pm 1.0^{\circ}$. Input slgnals can be sinusoldal or non-sinusoidal between 2 and 30 v. peak. In excellent condlition. E75. Carriage 30/-.
TFI4AH SIGNAL GEN. Frea, range $10 \mathrm{KHz}-72 \mathrm{MHz}$ R. F . output 2 uV to 2 V at
50 ohms 400 and 1000 Hz internal mod. 50 ohms 400 and 1000 Hz internal mod.
Limited qty, only avallable. Full spec. and price on reques.
TFl041C VTVM A.C. voltage range 300 MV to 300 V in 7 ranges. $20 \mathrm{~Hz}-1500 \mathrm{MHz}$ D.C. Voltage ranges $100 \mathrm{MV}-1000 \mathrm{~V}$ in 8
ranges. D.C. reistance 50 ohms so 500 ranges. D.C. reistance 50 ohms to 500
Mohms. Price Cis.10.0. ARBA SPARES. We h
WEE MEGGERS. 2SOV E12.0.0. 500v GENERAL RADIO AMPLITUDE MODULATION MONITOR TYPE hera.
A.F. SWEEP FAEQUENCY OSCILrate 0-7 ocraves/min. Varlable output automatic or manual frequency concrol.

FOR EXPORT ONLY

MULLARD N.W.S.TT TRANS. in one floorestanding unit approx.
ift x
Lff . $\times 2 \mathrm{ft}$. The transmister is 4ft. $\times 2$ ift. $\times 2 \mathrm{ft}$. The transmiter is
crystal controlled with eight switehed channels. the receiver is continuously
euned over the range 1.5 to 13 MHz .
The tuned over the range 1.5 to 13 MHz .
The transmikter delivers up to $2 A$
into the aerial. Complete wish bulls-in inso the aerial. Complete wish bulls-in COLLINS TYPE 231 D 4 KW TRANSMITTERS. tune and manual tuning. Complete
with very comprehensive spares. Full Complete spares. No. 19 WIRELESS SETS. H.P. SETS and all spares R. 210
RECEIVERS with all necessary accessories.
PYE PTC 2002N A.M. Ranger new and complete, 645 .

INTEGRATED CIRCUITS

 RCA 3005 wide band R.F. Ampl. 300 mW diss CA 3020 Audio power ampl........ 19$\begin{array}{ll}1 \mathrm{C} & 3301 \mathrm{~B} \text { Digital dual } 4 \mathrm{impus} \text { gates } \\ \text { 66/- }\end{array}$ H1C 709-1C Linear operational ampl. 190/ Plessey. SL402A 2.5W 42/6 SL403A 3.5 S2/6

overseas enquiries \& orders please address to:

All preferred
voltage
 $\begin{array}{ll}\mathrm{f} \mathbf{W} & 3 / 8 \\ \mathbf{1 W} & 7 / 8 \\ 1 . \mathrm{sw} & \delta /- \\ 7 \mathrm{~W} & 7 / 6\end{array}$

COLOMOR (ELECTRONICS
170 Goldhawk Rd., London, W. 12
Tel. $01-7430899$

SODECO IMPULSE COUNTERS Will accept $10 \mathrm{lmp} / \mathrm{s}$-mechanical reset 220 v . D. C. 27 ma coil can be used on A.C. 240 with suicable recsifier. 4 digit type offered brand new 45/- ea. Also as above with 160 v. 3200Ω coil

ADVANCE VOLT STAT CV500/31

 Input $162-276 \mathrm{v}$. A.C., $50 \mathrm{c} / \mathrm{s}$. 1 phase ourput 115 v. constant at 410 watt. Offered BRAND NEW at only E8. P. \& P. 15/-
ADVANCE D.C. SERIES

Output 24 V. D.C. at 5 amps. Input $200-245$ r. A.C. $\pm 15 \%$. Fully smoothed and protected.
only $E 10$ each.

HIGH VOLTAGE TRANSFORMERS Input 240 V ., output 2560 v . and 2820 V . at I amp. Weight 75 lb . Price $\mathrm{El} / 5$.

NICKEL-CADMIUM BATTERIES

D.E.A.C. manufacture RS 3.5 rating 3.5 Ah 1.24 v . Size as British U2, fully rechargeP. \& P. $1 / 6$.

INSTRUMENT CONNECTING CABLES. Terminated with Plessey Mk III Free Plugs/Free Sockers. In stock now 25-way, 12-way, 6-way, 3-way. Supplied in nominal 6-ft. lengths. Price 50/- 25-way and 12 -way each; $35 /=6$-way and 3 -way each. All Connectors Brand New P. \& P. $2 / 6$.

OHMITE RHEOSTATS

40 ohms, 500 watts. Torodial wound on ceramic formers. BRAND NEW high quality units. Size 5 in. dia. Price 35/- each P. \& P. 5/.

BERCO RHEOSTATS
 3000 ATCO RHEOSTATS

Torodial wound on ceramic former with control knob. BRAND NEW at $12 / 6$ P. \& P. I/6.

HEWLETT PACKARD RF. POWER
METER-Type 431B
Measures RF, power in 7 ranges, from 0.01 MW to 10 MW. This instrument is fully complerely solid state, small portable, current series equipment. Mains or either $478 \mathrm{~A} 10 \mathrm{Mc} / \mathrm{s}$ to $10 \mathrm{~K} . \mathrm{Mc} / \mathrm{s}$. Supplled in good used condition whth thermistor mounts. 695.
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and inco your equipment the Catalogue Nos. are $2202 \mathrm{~A}, 4 / 33 \mathrm{~A} 63 / 1$; coil resistance is 250 ohms. Complese with base, and the available.

FOSTER VOLTAGE REGULATING EQUIPMENT TYPE I2A80
Inpur 250 A.C. max., input variation $\pm 5.15 \%$ ourput 250 v. A.C. constant.
Load 80 A max. As new $£ 65$. Carr. £4.

AVO METER CALIBRATION TEST UNIT TYPE CTIS5
A modern precision instrument, giving A modern precision instrument, giving
7 standard voltages I v. A.C.- 2.5 v . A.C.10 v. A.C. -25 v. A.C.- 100 v. A.C. and 250 mV . A.C. Also 250 mV . D.C. from internal standard cell. Internal power supply $110-250 \mathrm{v}$. A.C., contained in portable carrying case. Size $11 \times 8 \times 7 \mathrm{in}$. Brand new equipment. $£ 7.10 .0$ P. \& P. $10 / 6$.

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. Il METROHM by famous British manufacturer. All solid state. No handles to crank. Runs off 9 volt transistor batsery. Simply press button for 1 to 100 Range 0.1 to 25 M ohms for insulation testing. Also concise seale. ohms for resistance and concine modern instrument, complete with carrying serap and protecting cover. Offered in good used condition with battery ready so work. For 250 vole pressure only. List Price $\mathbf{1 9} 10.0$.

Rhode \& Schwarz ESM300 UHF Receiver AM/FM $85 \mathrm{MHz}-300 \mathrm{MHz}$.
 Rhode \& Schwarz BNI5031 Field strength test receiver AM/FM $90 \mathrm{MHz}-470 \mathrm{MHz}$. Rhode\&SchwarzBN4151/2"60 Noise generator $3 \mathrm{MHz}-1000 \mathrm{MHz}$.
 Rhode \& Schwarz BNI 8042 Unbalanced standard Attenuator $0-100 \mathrm{db} 50 \mathrm{hm}$ $0 \mathrm{MHz}-600 \mathrm{MHz}$.
 Rhode \& Schwarz BN33664/50 UHF Load resistor 100 watt $50 \mathrm{ohm} 0 \mathrm{MHz}-600 \mathrm{MHz}$. Rhode \& Schwarz BN4521 Vibration Meter 30 Hz - 12 KHz .
 Rhode \& Schwarz
 ZD Diagraph.
 $$
\begin{array}{lr} \text { Advance Q meter type T.I. } & 100 \mathrm{kHz}-100 \mathrm{MHz} . \\ \text { Marconi Q meter type } 329 \mathrm{G} & 50 \mathrm{kHz}-50 \mathrm{MHz} . \\ \text { Marconi Q meter type } 886 \mathrm{~A} & 15 \mathrm{MHz}-170 \mathrm{MHz} . \end{array}
$$

 Advance Q meter type T.I. $\quad 100 \mathrm{kHz}-100 \mathrm{MHz}$.

 Advance Q meter type T.I. $\quad 100 \mathrm{kHz}-100 \mathrm{MHz}$.

 Marconi Q meter type $329 \mathrm{G} \quad 50 \mathrm{kHz}-50 \mathrm{MHz}$.

 Marconi Q meter type $329 \mathrm{G} \quad 50 \mathrm{kHz}-50 \mathrm{MHz}$. Marconi Q meter type $886 \mathrm{~A} \quad 15 \mathrm{MHz}-170 \mathrm{MHz}$. Marconi Q meter type $886 \mathrm{~A} \quad 15 \mathrm{MHz}-170 \mathrm{MHz}$.
 Marconi Impedance Bridge cype TF936 Marconi Universal Bridge type TF868/I Marconi Universal Bridge type TF868
 Wayne Kerr Inductance meter type M149 Extremely sensitive 0.100 mH first Indication 0.8 microhenrie. Price 122

RF GENERATORS

 Marconi UHF signal generator TF762C $300-600 \mathrm{MHz}$............. $\mathbf{M 5}$ Marconi FM/AM Signal Generator 2-216 MHz TF995A/3 P.U.R. Services type CT212 AM/FM signal generator $85 \mathrm{kHz}-32 \mathrm{MHz} \ldots . .$. € 45 Services type CT2II AM/FM signal generator $20-80 \mathrm{MHz} \ldots . . .$. Avo Signal generator portable $50 \mathrm{kHz}-80 \mathrm{MHz}$......................... $\mathbb{1} 15$
Hewlett Packard 616B $1.8 \mathrm{GHx}-4 \mathrm{GHz}$, also special generators up to X band Hewlett Packard 540A Transfer function Oscillator 675
Marconi signal generator TFI44H/4. Range 10 kHz to 72 MHz P.U.R.
General Radio $1021 \mathrm{~A} 250-920 \mathrm{MHz}$

D.C./A.C. ELECTRONIC VOLTMETERS

Philips GM6010 Sensitive D.C. Millivolt Meter IMV/FSD to 300 voles in Ewelve ranges
Philips GM6505 Transistor measuring test unit designed for labs' sest departments
Advance VM77 wide range A.C. Valve Volimeter 1 mv- 300 v
Philips GM6016 $3 \mathrm{mv}-1000 \mathrm{v}, 1 \mathrm{kHz}-30 \mathrm{mHz}$
Philips GM6014 $1 \mathrm{mv}-300 \mathrm{v} .1 \mathrm{kHz}-30 \mathrm{mHz}$
Rohde \& Schwarz UHF Millivoltmeter type URV with insertion unit for measurements up to 2400 mHz
Hatfield Militivolemeter LE48C 0.3 MV- 30 voles. Large eight Inch scale indication balance and unbalanced inputs

CAMBRIDGE INSTRUMENT Co. Led. Precision test meters. Electrodynamic A.C. Ammeter 0 to 15 amps with test certificate

Dynamometer A.C. Ammeter range 0 to 15 amps
Cambridge Dynamometer A.C. test set 0-225 Watts/0-330 v./0-30 v. 655

Tinsley Universal Shunt type 4309 C
Tinsley Vernier Potentiometer type 4363E Auto
Foster Thermocouple potentiometer type DX
. $\quad . \quad \cdots \quad$ P.U.R.

Digital Voltmeter Solartron LM902-2 four digit readout 685
Solartron A.C. Convertor LM 903 matching unit for LM902
Hewlett Packard DVM 405CR four digit readout auto polarity
Glouster DVM BIE 2123 A.C./D.C. transistor portable $0-1000 \mathrm{v}$.

Frequency Counters Analogue/Digital

Marconi TFI $345 / 2$ digital 10 Hz to 220 mHz C/W full complement plug in's Racal Digital frequency meter SA520 as new 10 Hz to 400 kHz
Racal Digital frequency meter older type valve model $10 \mathrm{~Hz}-300 \mathrm{kHz}$ Rank Cintel Counter/timer transistorised model $10 \mathrm{~Hz}-1 \mathrm{mHz}$ Venner Counter/timer type TS a3 Mains or portable Digital meter readout U.S.A. BC22। Heterodyne frequency meter $125 \mathrm{kHz}-20 \mathrm{mHz}$ new or used from U.S.A. TSI75/U $85-1000 \mathrm{mHz}$ Modulated, reception/emission CW, MCW, as new U.S.A. TSI86/D Heterodyne frequency meter $100-10,000 \mathrm{mHz} \mathrm{CW}, \mathrm{MCW}$, pulse

Ł $\mathbf{6} 00$
 625
 645
 125
 18

 2API C.R.T, mumetal screen/kube base and graticule. The lot 45/-. P. \& P. 2/6TMC MINIATURE KEY SWITCHES Two change-overs, non-biased, two position offered. New, only $8 / 6$ each.

PAXOLIN PC BOARDS contains five Mullard OC36 power transistors-made up as solenoid drive unit. Guaranteed. Brand new, only $30 /$ - inc.
PAXOLIN PC BOARD contains ten GETII3 transistors with polythene hold
ers, ten miniature glass diodes and 25 tW. resistors. BRAND NEW 19/6. P. \& P. 6d.

STEPHENS
 ELECTRONICS,
 P.O. BOX 26
 AYLESBURY, BUCKS.

SENDS.A.E.FORLISTS GUARANTEE
 Satisfaction or money refunded.

VALVES

AZ31	$9 / 6$	EF184	11/3	PL38	18/-	6 U 4	5/-
DAF91	8/3	EH90	10/3	PL81	10/3	6 AT6	9/9
DpF96	8/3	EL34	9/9	PL81A	12/6	6U6A	15/6
F91	9/-	EL41	10/-	PL82	7/3	6AV6	6/6
DF96	9/-	EL81	9/6	PL83	10/3	6BA6	9/6
DK91	11/6	EL84	7/9	PL84	8/3	6BE6	12/-
DK96	11/6	EL95	9/-	PL500	16/6	$6 \mathrm{BR7}$	15/-
DL92	7/6	EM81	11/6	PL504	17/-	6BR8	19/-
DL94	7/6	EM84/7	12/9	PL505	29/-	6BW6	16/6
DL96	9/3	EY51	7/6	PL508	20/-	6BW7	13/9
DY86/7	8/-	EY86/7	7/9	PL509	30/9	6CD6C	28/-
DY802	8/6	EZ40/1	7/6	PL802	17/3	6V6G	8/-
EABC80	10/6	E280	6/6	PL805	17/3	6×4	7/6
EBC33	11/-	EZ81	5/9	PY32	10/-	6×5	9/6
EBC41	9/6	GY501	14/6	PY33	10/9	12 AU 6	15/-
EBC81	6/6	GZ30	9/6	PY81	8/3	$12 \mathrm{BA6}$	9/6
EBC90	9/6	G232/4	11/9	PY800	8/3	12 BE 6	12/-
EBF80	8/-	G233/7	16/3	PY801	8/3	12 BH 7	14/-
E8F83	8/-	KT66	25/6	PY82	7/-	35W4	9/6
EBF89	8/--	KT88	32/6	PY83	10/-	50 C 5	12/6
E891	5/3	N37	15/6	PY88	8/3	50CD6	28/-
ECC81	8/-	N339	25/6	PY500	20/-	6F23	15/6
ECC82/3	8/6	PC86/8	10/3	PZ30	16/-	6F24/5	12/6
ECC84/5	8/6	PC900	10/3	R19	13/-	6F26	8/3
ECC88	11/-	PC95	7/3	R20	15/-	6F28	11/6
E88CC	12/6	PC97	8/3	UABC80	10/6	6/30L2	15/6
ECF80/2	9/6	PCC84	9/3	UBF89	8/-	10F1	15/-
ECF86	11/-	PCC85	8/6	UBC41	9/9	10F18	10/-
ECH35	13/6	PCC88	14/-	UCC85	9/3	10P13	16/-
ECH42	13/3	PCC89	12/3	UCH42	13/9	10P14	19/-
ECH81	10/3	PCC189	12/3	UCH81	10/9	20P4	20/-
ECH83	8/-	PCF80	10/3	UCL82	10/3	30 C 1	10/3
ECH84	9/6	PCF82	10/6	UCL83	12/3	30 C 15	13/9
ECLL800	20/-	PCF84	9/6	UF41/2	11/-	30C17	15/9
ECL80	8/-	PCF86	12/3	UF80/5	7/6	30C18	13/6
ECL82	9/9	PCF200/1	16/3	UF89	8/3	30F5	16/6
ECL83	11/6	PCF801	12/3	UL41	11/6	30 FL 1	12/9
ECL86	9/9	PCF802	12/3	UL84	11/-	30 FL 12	17/6
EF39	10/6	PCF805	13/-	UM80/	9/-	$30 F L 14$	13/6
EF80	8/-	PCF806	12/3	UY41	$8 /-$	30L1	9/3
EF83	10/7	PCF808	13/6	UY85	6/9	30L16	15/3
EF85	8/3	PCH200	19/6	U25	15/-	30 L17	14/6
	13/3	PCL82	10/3	U26	15/	30 P 12	15/6
EF89	$8 / \rightarrow$	PCL83	12/3	U191	14/6	30PL1	12/9
EF91	8/6	PCL84	10/3	U193	8/3	30PL1	12/9
EF92	10/-	PCL86	10/6	U301	17/-	30P19	
EF93	9/6	PCL86	10/3	W729	11/-	30P19	12/9
EF94	15/6	PD500	30/6	2759	24/6	30 PL 13	18/6
EF95	12/6	PFL200	14/9	5 Y 3	8/6	30PL14	18/6
EF183	11/3	PL36	12/9	52.4	9/6	30PL15	18/6
90\%	, A	BOXE	(N	MAL	A	TEE)	R
OWN VAL.VES SUPPLIED, 1 YEAR'S GUARANTEE. ADD 6d. PER VALVE ON ORDERS UNDER 6, OTHERWISE FREE POST \& PACKING.							

SEMICONDUCTORS

AC117	12/-	BC115	6/6	8F225	6/-	2N1 305	4/10
AC126	4/4	BC117	7/9	BF257	9/6	2N1306	6/2
AC127	4/9	BC118	7/9	BF22A	9/6	2N3055	15/-
AC128	4/6	BC134	11/6	NKT125	5/9	2N3392	5/-
AC176	7/4	BC147	5/8	NKT281	4/-	2N3702	5/6
ACY17	6/-	BC148	4/4	NUT401	17/6	2N3705	4/6
ACY20	6/-	BC152	5/6	OC25	9/6	2N3711	4/9
AD149	11/8	BC175	5/6	OC44	5/6	2N3819	9/-
AD161	6/9	BC187	5/8	OC45	5/4	2N3826	6/-
AD162	6/9	BC213L	5/4	0 C 71	4/4	2N4062	4/6
AF114	4/8	BDY20	30/6	$0 C 72$	5/4	2N4289	4/6
AF195	4/8	BFY50	5/-	0 C 77	5/6		
AF116	4/9	BFX84	7/-	0 C 78	5/-		
AF117	4/6	BFX29	7/6	$0 \mathrm{C81}$	4/-	RECTIF	S
AF118	12/-	BF115	5/6	OC81D	4/-	BY126	
AF126	4/8	BF117	9/6	(GET113)		BY127	5/-
AF127	4/8	BF1 63	71-	OC84	5/-		5/-
AF139	8/8	BF1 67	6/-	OC169	4/8		
AF178	9/-	BF173	7/-	OC171	6/-		
AF179	9/-	BF178	7/-	OC200	6/6	DIODES	
AF180	12/4	BF180	8/-	OC202	9/6	AA119	2/-
AF181	9/4	BF181	8/-	OC203	6/6	0447	1/9
AF186	13/4	BF182	8/-	OCP71	12/6	OA79	1/10
AF239	8/6	BF184	5/-	P346A	4/6	OA81	1/10
BC107A	6/-	BF194	5/-	2N456A	17/6	OA91	2/-
BC108B	4/6	BF197	6/4	2N697	5/10	OA202	2/-
BC109C	5/-	BF200	7/4	2N698	10/6	BZY88	
BC113	5/6	BF224	6/-	2N1132	11/6	(SERIE	$6 /$

CATHODE RAY TUBES

New and Budget tubes made by the leading British manufacturers Guaranteed for 2 years. In the event of failure under guarantee, replacement is made without the usual time wasting forms and postage expense.
Type
MW36
MW36
MW36-21
MW43-69
MW43-80Z
AW43-80Z

	CME1703	6.12 .0	4.12 .6
	CME1706	6.12 .0	4.12 .6
	C17AA	6.12 .0	4.12 .6
	C17AF	6.12 .0	4.12 .6
AW43-88	CME1705	6.12 .0	4.12 .6
AW47-90		6.12 .0	4.12 .6
AW47-91	A47-14W	7.13 .4	5. 7.6
A47-14W	CME1901	7.13 .4	5. 7.6
	CME1902	7.13 .4	5. 7.6
	CME1903	7.13 .4	5. 7.6
	C19AH	7.13 .4	5. 7.6
A47-13W	CME1906	10. 5.6	8.10 .0
A47-11W	CME1905	8.17 .3	7. 0.0
A47-26W	CME1905	8.17.3	7.15 .0
A47-26W/R	CME1913 ${ }^{\text {P }}$	9. 6.8	
A50-120W/R	CME2013	10.17.0	
AW53-80		8.18.8	6. 5.0
AW53-88	CME2101	8.18.8	6. 5.0
AW59-90			
AW59-91	CME2303	9.11 .8	7. 4.0
A59-15W	CME2301		7. 4.0
	CME2302		
	CME2303	9.11 .8	7. 4.0
A59-11 W	CME2305		7. 4.0
A59-13W	CME2306	13.13 .0	10.19.6
A59-16W	CME2306	13.13 .0	10.19 .6
A59-23W	CME2305	12.12 .0	10.10.0
A59-23W/R		12.12.0	10.10.0
PORTABLE SET	TUBES		
TSD217			6.15.0
TSO282			6.15 .0
A28.14W		9. 3.4	Not supplied
CME1601			$7.15 .0$
CME1602			8. 0.0
A discount of 1	0\% is also give	purchase	New tubes
at any one time.			
All types of tubes	in stock. Carri	insurancè	

TRANSISTORISED UHF TUNER UNITS NEW AND GUARANTEED FOR 3 MONTHS

Complete with Aerial Socket and wires for Radio and Allied TV sets but can e used for most makes.
Continuous Tuning. 90/- : Push Button. 100/-

STYLI

TC8. GC2, GP59, GC8. DC284, Stereo 105, 106. 208, 2/- each (individually boxed) : ST3/5, ST8/9, 9TA. 9TA/HC, GP91, 8/-. Diamond, Post and packing bd. per item for orders under 24.

TAPES (Polyester PVC)

4in. L.P., 8/6: 3in. LP 5/6
Standard Play: 600ft bin, 8/6:900ft 5 fin, 10/6: 1.200ft 7in, 12/6. Long Play: $900 \mathrm{ft} 5 \mathrm{in}, 11 /=; 1,200 \mathrm{ft} 5 \mathrm{tin}, 13 /=; 1.800 \mathrm{ft} 7 \mathrm{in}, 18 /-$ Double Play: 1.200 ft 5 in . $16 /-; 1,800 \mathrm{ft} 5 \frac{1}{2} \mathrm{in}, 19 /-; 2.400 \mathrm{ft} 7 \mathrm{in}, 28 /-$. Philips type Cassettes (in plastic library pack) : C60, 10/6; C90, 12/6; C120,
Post and packing $1 / 6$ on all orders.

ACOS CARTRIDGES

GP91-1—Medlum output Mono Crystal, 21/. inc. P. Tax GP91-3sc-High output Mono Crystal (TC8H, TC8M. BSR X3H, X3M). 21/- inc. P. Tax.
GP93-1-Stereophonic Crystal, 24/9 inc. P. Tax.
GP94-1-Stereophonic Ceramic, 31/- inc. P. Tax
GP95-1-Stereophonic Crystal, 24/9 inc. P. Tax.
GP96/1-Stereophonic Ceramic, 31/6 inc. P. Tax.

ADD 5d. PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES.

TERMS, CASH WITH ORDER ONLY. POST \& PACKING PAYABLE ON ORDERS UP TO £3, AFTER
THAT, FREE EXCEPT C.R.T.'S.

ELEOTROALUE

EVERYTHING BRAND NEW AND TO SPECIFICATION - LARGE STOCKS BARGAINS IN NEW SEMI-CONDUCTORS
ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS

RESISTORS

Values:
E 12 denotes series: $10,12,15,18,22,27,33,39$, 47, 56, 68, 82 and thair decades. $13,16,20,24$, E24 denotes series: 2s $50,36,43,51,62,75,91$ and their decades.
ZENER DIODES 5% full rango E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 30 V , $/ 6$ each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to 82 V , 9 - ach; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 12 /-$ each. Clip to in
$266 \mathrm{~F}), 9 \mathrm{~d}$.

CARBON TRACK POTENTIOMETERS, CARBON spindles. Double wiper ensures minimum long spindle. Single gang linear 220Ω to $2 \cdot 2 \mathrm{M} \Omega, 2 / 6$; Single gang log, $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 2 / 6$; Dual gang linear, $4.7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 8 / 6$; Dual gang \log. $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 8 / 6$; Log/antilog, $10 \mathrm{~K}, 47 \mathrm{~K}$, $1 \mathrm{M} \Omega$ only $8 / 6$; Dual antilog, IOK only, 8/6. Any eype with 1 A D.P. mains swirch, exera $2 / 6$.

Please note: only decades of 10,22 and 47 are
CARBON SKELETON PRE-SETS
Small high quality, type PR, linear only: 100 , $220 \Omega, 470 \Omega, 1 \mathrm{~K}, 2 \mathrm{K2}, 4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}$, lo K K, $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, $1 /$-each.
COLVERN 3 watt Wire-wound Potentiometers. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 250 \Omega, 500 \Omega, 1 K$
ENAMELLED COPPER WIRE even No. SWG only: 2 oz, reels: 16-22 SWG 4/3; 24-30 SWG 5/-: 32,34 SWG, $5 / 6 ; 36,38$ SWG $6 / 3$.
4 or. reels: $16-22$ SWG only $7 / 6$.

TYGAN SPEAKER MATERIAL
7 desins, 36×27 in, sheets, $31 / 6$ she
7 designs, $36 \times 27 \mathrm{in}$. sheets, $31 / 6$ she
Pattern book, 5 .A.E. plus $6 d$, stamp.
MULLARD polyester C280 series
$250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.047 \mathrm{gd}$. each; $0.068,0.9$ 9d, each; 0.15 , $11 \mathrm{d},$.0.22 , $1 /$ $10 \% ; 0.33,1 / 5 ; 0.47,1 / 8 ; 0.68,2 / 3 ; 1 \mu \mathrm{~F}, 2 / 9$; MULLARD SUB-MIN ELECTROLYTICS Valves ($\mu \mathrm{F} / \mathrm{V}): 0.64 / 64 ; 1 / 40: 1.6 / 25 ; 2.5 / 16: 2.5 / 64$. $4 / 10 ; 4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5 ;$ 10/16; 10/64; $12.5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6.4 ;$ 25/25; 32/4; 32/10; 32/40; 32/64; 40/16; 40/2.5; $50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; 80 / 16 ;$ $\begin{array}{lll:l}80 / 25 ; 100 / 6 \cdot 4 ; & 125 / 4 ; & 125 / 10 ; & 125 / 16 ; 160 / 2.5 ; \\ 200 / 6 \cdot 4 ; & 200 / 10 ; & 250 / 4 ; & 320 / 2 \cdot 5 ; \\ 320 / 6 \cdot 4 ; & 400 / 4 ;\end{array}$

LARGE CAPACITORS

High ripple current types: $1000 / 25,5 / 6 ; 1000 / 50$, $8 / 2 ; 1000 / 100,16 / 3 ; 2000 / 25,7 / 4 ; 2000 / 50$, $11 / 4 ;$ 2000/100, 28/9; 2500/64, 15/5; 2500/70, 19/6; $10000 / 15,17 \% ; 10000 / 25,24 / 6 ; 10000 / 50,48 / 1$
$10000 / 70,61 /=$
COMPONENT DISCOUNTS
10% on orders for components for 65 or more
15% on orders for components for $\mathbf{f} 15$ or moe
(No discount on nett items)
POSTAGE AND PACKING
Free on orders over $£ 2$
Please add $1 / 6$ if order is under $£ 2$
Overseas orders welcome: carriage and insurance

PEAK SOUND PRODUCTS ENGLEFIELD CABINET KITS

Stereo amplifier in modular kit form 12 watts per channel 438/9/-: 25 wates 458/15/Cabinet kit only 46 . These prices nets

BAXANDALL SPEAKER SYSTEM

Designed by Peter Baxandall. Superb reproduction for its size. Handles 10 watts with ease. Uses ELAC 15 5 S9RMIO9 speaker unit. Kit $\mathrm{f} 13 / 12 /-$ nett; buile

STEREO AMPLIFIER SA.IO-10.

Developed from the very successful SA. 88 amplifier giving first-class stereo amplification foaturing separate volume conerols. 10 watts per channel into 5 to 8Ω. Kit $£ 19 / 7 / 6$ nett; built $\epsilon 24 / 16 / 8$ nett. Suitable 8Ω wide MAINLINE AMPLIFIER KITS
RCA/SGS designed main amplifier kits. Input sensitivity 500700 mv
Power

Kit price	Suitable unreg.
including components	power supply kit
$140 /-$ nett	$86 /-$
$165 /-$ nett	N / A
$195 /-$ nett	$101 / 6$
$210 /-$ nets	$131 /-$

30 WATT BAILEY AMPLIFIER KIT

Special summer reduction (to Sept. 30th 1970 only) Sensitivity $1 \cdot 2 \mathrm{~V}$ for full ousput into 80
Transistors for one channel $\mathbf{6 7 / 5 / 6}$ list, 66 only nere
Transistors for ewo channels $\{\mid 4 /\| \| /-$ list, $\mathbb{L} \|$ only ners. Capacitors and resistors (metal oxide), 30/-per channel nett. Complete unregulated power supply $\mathrm{klt}, 87 / 6$ nett.

FETS n-channel

Low cost general purpose 2N5163, 25 volt .. only 5/- each
Audio/r.f. Texas 2N3819
8/6 each
Motorola 2N5457 (MPF103)
Motorola 2N5459 (MPFIO5)
9/9 each

INTEGRATED CIRCUITS

PLESSEY SL4053A 3 watts into 7.5 ohms. Data book supplied FREE when two of these units are purchased. Price per unit,

SINCLAIR IC. 10 as adyertised, complete with instructions and applications manual $39 / 6$ nert.

S-DeCs PUT AN END TO BIRDS NESTING
ponents. Sol (70 points), $30 /$ -
Complete T-Dec, may be temperature-cyeled (100 points), 50/-
Also μ-Decs and le carriers.

WAVECHANGE SWITCHES

IP I2W; $2 P 6 W ; 3 P 4 W ; 4 P 3 W$-long spindles .. $4 / 9$ each

SLIDER SWITCHES
Double pole, double throw 3/- each
MEDIUM RANGE ELECTROLYTICS
Axial leads: $50 / 50,1 / 9 ; 100 / 25$, 1/9; 100/50, 2/6;
$250 / 25,2 / 6 ; 250 / 25,2 / 6 ; 250 / 50,3 / 9 ; 500 / 25,3 / 9 ;$
$500 / 50,4 / 6 ; 1000 / 25,4 /-; 100 / 50,6 /-; 2000 / 25,6 /-$.
SMALL ELECTROLYTICS
Axial leads: $4.7 / 10,4.7 / 25,5 / 50$, 1 - each; $10 / 10$,
10/25, 10/50, 33/10, 50/10, 1/-each; 25/25, 25/50,


```
CA 3003 RF amplifer, 100me/s bandwidth.
CA3012 Wide Band Amplifer tor IF applications. CA 3020850 mW Audio Amplifier
CA3038 Two super-alpha pairs for stereo pick-up systema CA 3052 Latest addition to RCA range. Four-is-one Paz22 1.2 watt Audio Asoplifer PA237 2 watta Audio Amplifer MC1709G-G.P. operatlonal Amplifier TAA263 3 -stage direct coupled Amplifier TAA293 3-atage direct courpled Aropllier TAA320 mosT laput + bjepolar stage TAD100 AII ac
AM receiver

\section*{TRANSISTORS}


TWO NEW OSCILLOSCOPES FROM RUSSIA

- -5 SINGLE BEAM OSCILLOSCOPE 10 me/s passband, triggered suee from \(1 /{ }^{\prime \prime}\) sec. to 3 millifrom ree ruaning hime base time marker calibrator, 3 - in. cathode ray tube with telescopic viewing

\section*{CI-16 DOUBLE BEAM}

O8CILLOSCOPE \({ }^{5} 1\) mc/s passband. Separate rectangular 5 in. \(x 4\) in. cathode ray tube. Calibrated triggered 8 weep
from 0.2 sec. to \(100 \mathrm{milli}-\) sec. per cm. Free running lime base \(50 \mathrm{c} / \mathrm{s}\) to \(1 \mathrm{mc} / \mathrm{s}\). Built-in thae base calibra. tion and amplitude calibrath details on \(\mathbf{\text { m }}\). \(87 / 10 / 0\) Full servicing facilities and rpares available.


WHEN ORDERING BY POST PLEASE ADD \(2 / 6\) IN \(\&\) FOR HANDLING AND POSTAGE

NO C.O.D. ORDERS ACCEPTED
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.


\section*{FULLY GUARANTEED}








四 8 多










 \(\left|\begin{array}{ll}\text { PCL83 } & 13 /- \\ \text { PCLS4 } & 8 / 9\end{array}\right|\)
FIRST QUALITY valves

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN

\section*{Head Office:}

\section*{44a WESTBOURNE GROVE, LONDON, W. 2}
A.R.B. Approved for inspection and
release of electronic valves, tubes, E.l.D. Approved stockists.

\section*{WE WANT TO BUY:}

SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

\section*{APPOINTMENTS VACANT}

DISPLAYED SITUATIONS VACANT AND WANTED: \(£ 7\) per single col. inch.
LINE advertisements (run-on): 8/- per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of \(1 /\).
SERIES DISCOUNT: \(15 \%\) is allowed on orders for twelve monthly insertions provided a contract
is placed in advance.
BOX NUMBERS: Replies should be addressed to the Boz number in the advertisement, e/o
Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

Advertisements accepted up to Advertisements accepted upto for the AUGUST issue, subject tor space being avallable.

\section*{RADIO OPERATORS}

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and in subsequent years.
Specialist training courses lasting approximately nine months, according to the trainee's progress, are held at intervals. Applications are now invited for the course starting in January, 1971.

During training a salary will be paid on the following scale
\begin{tabular}{cr} 
Age 21 & \(£ 848\) per annum \\
". 22 & \(£ 906\) \\
". 23 & \(£ 943\) \\
". 24 & \(£ 981\) \\
". 25 and over & \(£ 1,023\)
\end{tabular}

Free accommodation will be provided at the Training School.

After successful completion of the course, operators will be paid on the Grade 1 scale.
\begin{tabular}{|c|c|c|}
\hline Age 21 & \multicolumn{2}{|l|}{£1.023 per annum} \\
\hline . 22 & £1,087 & \\
\hline ., 23 & £1,150 & , \\
\hline ., 24 & £1,214 & \% \\
\hline 25 (highest age point) & £1,288 & \\
\hline
\end{tabular}
then by six annual increases to a maximum of £1,749 per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 35 years of age at start of training course and must have at least two years' operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970.
Application forms and further particulars from : Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos.. GL52 6AJ Telephone No. Cheltenham 21491, Ext. ,2270

\section*{AUDIO TECHNICIAN}
to be responsible to Senior Engineer for the maintenance of professional sound recording systems. Applicants should be capable of developing/wiring and maintaining a wide range of audio equipment. Minimum qualifications C. \& G. Electronics Tech. or Radio and TV 1 st year. Age 18-21. Commencing salary \(£ 850\). North London.

Write details to: Rupert Chetwynd Recruitment Ltd., 1 Crane Court (Ref. A/T), London, E.C.4.

\section*{Broaden your engineering experience Work in the rapidly moving computer industry}

Our Quality Assurance Engineers play a major role in ICL's future and are involved in a wide variety of activities on the whole range of computer equipment.

We can offer you challenging and rewarding opportunities in the following fields:-
- reliability prediction
- equipment evaluation
- quality control techniques
- circuit and logic design review
\(\square\) production feasibility studies
Although HNC is ideal, emphasis will be placed on previous experience.

Why not telephone now ? Ring Stevenage 3361, extension 221, and ask for C. Atkinson, Manager, Quality Assurance Planning, or write quoting reference no.WW 212 M to \(C\). W. Squires, Area Personnel Recruitment Office, International Computers Ltd., Cavendish Road, Stevenage, Herts.


\section*{RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE}

This priyate College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

\section*{SENIOR INSTALLATION ENGINEERS AND INSTALLATION ENGINEERS}

Required for the engineering, installation and commissioning of L.F., M.F. and H.F. communications schemes, principally for overseas administrations.
Engineers suitable for these vacancies should have wide experience of as many as possible of the following:-
A.M., S.S.B. and I.S.B. Transmitters and Receivers
F.S.K. Equipment
V.F. Telegraphy

Erection and matching of antennae Marine Coastal Radio Stations Airfield Radio Communications
Military and Police Communication Systems. They would need to be able to work on their own initiative to effect the installation and commissioning of equipment. The ability to train the staff of the overseas territory would be desirable.
Applicants should be able to show not less than two years' Overseas experience in this career and applicants for senior posts must have had experience in a supervisory capacity.
Good basic salaries are offered which are supplemented by a generous allowance payable during periods of overseas service. Applications, stating the grade of post for which application is made and giving a résumé of experience and qualifications, should be addressed to:

The Personnel Officer, REDIFON LIMITED

> Broomhill Road,


Wandsworth, London, S.W. 18.


A Member Company of the Rediffusion Organisation

\section*{If you can put a'Yes' in every box, you might just make a RADIO TECHNICIAN in Air Traffic Control}

An all-consuming interest in telecommunications \(\square\)
At least one year's practical experience in telecommunications, preferably with 'ONC' or ' C and G ' technical qualifications \(\square\)
A highly developed sense of responsibility


Willingness to undergo a rigorous programme of training


Aged 19 or over \(\square\)
To the right man, the National Air Traffic Control Service offers the prospect of an interesting and steadily developing career as a Radio Technician in air traffic control.

The work involves the installation and maintenance of some of the very latest electronic equipment at civil airports, radar stations and other specialist establishments all over the country. Important today, the job will become increasingly vital as Britain's air traffic continues to grow, and prospects for promotion are excellent. Starting salary varies from \(£ 1.044\) (at 19) to \(£ 1.373\) (at 25 or over). Scale maximum \(£ 1.590\) (higher rates at Heathrow). The annual leave allowance is good, and there is a non-contributory pension for established staff.

If you feel you can meet the demands of this rather special job-and you have a strong determination to succeed-you are invited to complete the coupon below.

Send this coupon for full details and application form
To: A. J. Edwards, C Eng, MIEE
The Adelphi, Room 705, John Adam Street, London W:C2 marking your envelope "Recruitment".

\(\qquad\)

Not applicable to residents outside the United Kingdom


National Air Traffic Control Service

\section*{Electronic desigm/
development engineers...}

\section*{...now PyeTelecomprovide twice the opportunityand more!}

A high-salaried career now-and massive scope in the near future. If that's what you want, that's exactly what your experience can earn you at Pye Telecom.
Because Pye Telecom plan to double turnover within the next 5 years. What's more, after 1975, this forward-thinking Company-already at the top in radio-telephone manufacture-will be launching even further expansion. Which means rapid change -and early promotion to management for everyone with the right qualities.

\section*{When you start...}

Yours will be a vital job. For Pye Telecom new innovations are the key to success. You will be deeply concerned in evolving products to take over from those marketed today. New techniques, new components, more efficient and effective ways of doing things-these will be your business. With your skills, Pye Telecom will go on giving customers the sophisticated up-to-the-minute equipment which will bring increasing rewards for everyone in the organisation. All possible help is given for you to succeed.

In particular;
* Extensive research facilities throughout Europe are on-line to Pye design teams.
* Computers-frequently used as a design aid.
* Among the best company benefits in British industry.
* Company-paid relocation expenses.
* A choice of locations to live and workCambridge or Southend.

\section*{Your qualifications...}

With either an electronics degree or equivalent, you should also ideally have \(2 / 3\) years' UHF/VHF radio telephone design experience. Experience in other fields, such as radar, broadcasting or television, will be an additional advantage. An absolute essential is circuitry experience.

\section*{Action...}

Ready to go with Pye towards an expansive, exciting tomorrow . . . for the change to growth, responsibility and high rewards? Good. Phone (reverse the charges) or write now to: M. Timmins, Senior Personnel Officer,

Pye Telecommunications Ltd
Newmarket Road, Cambridge.

\section*{APPOINTMENTS}

\section*{filigh SIMULATOR SERVICE ENGINEERS}

Redifon Flight Simulator Division are designers and manufacturers of highly sophisticated simulators of current civil and military aircraft and linked products for use in the U.K. and world wide export markets.
We need skilled Service Engineers to keep this complex and hard worked equipment in continuous first class condition.
You should have a minimum of O.N.C. or City and Guilds Certificate, theoretical and practical experience of digital computing, hardware, software and computer peripherals. Knowledge of analogue computing and hydraulics would be advantageous. We will train those who have good experience in
transistorised and integrated circuits.
The job is varied and interesting and in an expanding business. Promotion prospects are good. But you must expect to travel anywhere in U.K. and overseas at short notice, perhaps for extended periods.
Excellent welfare benefits include contributory pension and free life assurance. Our Sussex factory is only 25 miles from Brighton.
There are vacancies at both Aylesbury, Bucks and Crawley locations.
Send brief details or ring now:
H. C. Hall, Personnel Manager, REDIFON LIMITED
Flight Simulator Division
Gatwick Road, Crawley, Sussex Tel : Crawley 28811


OPERATE A
TELEVISION UNIT FOR HORSERACING
and require a

\section*{TELEVISION ENGINEER}
for operation and maintenance of the MCR
QUALIFICATIONS
* HNC, City \& Guilds or equivalent.
* Experience in operation and maintenance of high grade television equipment.
\(\star\) Willing to travel.

\section*{OPPORTUNITIES}
*The Company is planning further expansion in the fields of television and electronics. -Good salary and prospects. \(\star\) Expenses paid on location.

Applications stating age and experience should be sent to: RACECOURSE TECHNICAL SERVICES LTD. 88 Bushey Road, Raynes Park, London, S.W. 20.


\section*{require an \\ }
with particular interest in high quality audio reproduction. This new post is primarily to provide liaison between lab and production, with responsibility for specifying test procedures and designing the gear for full production testing of high quality audio and VHF equipment.

As part of a small specialised design team this provides an excellent opportunity for a young, qualified engineer, preferably with some production experience, and a genuine interest in high quality reproduction.
Non-contributory pension scheme, free life insurance, and all the advantages of working with a small firm, acknowledged leaders in their field, and determined to stay there.
Apply in writing giving main details of qualifications and experience to

\author{
J. H. Walker \\ Acoustical Mfg. Co. Lid. St. Peter's Road HUNTINGDON
}

\title{
The Government of Malawi ENGINEERING OFFICER (MAINTENANCE)
}

Required by the Posts and Telecommunications Department, to serve on contract for one tour of 24-36 months in the first instance. Salary, according to experience, in scale rising to \(£ \mathrm{M} .1,223\) a year plus Overseas Addition rising to £Stg. 682 a year. A Supplement of up to \(£ S t g .244\) a year is also payable by the British Govt. direct to the officer's bank in the U.K. Gratuity \(25 \%\) total emoluments (excluding Supplement) on completion of 30 month tour. Liberal paid leave. Furnished accommodation. Free passages. Education
and outfit allowances. Contributory pension scheme available.

Candidates, 25-45, must possess appropriate City and Guilds Certificates and have had a minimum of two years approved training, with not less than five years subsequent experience, on the maintenance of carrier systems, H.F., V.H.F. or U.H.F. radio. Experience in the maintenance of X -ray equipment would be an advantage.

The officer will be required to undertake the maintenance of
multiplex carrier, telephone and telegraph equipment, H.F., V.H.F. and microwave radio and electromedical equipment, and to give assistance and guidance to local staff under training.

Apply to CROWN AGENTS, ' \(\mathrm{M}^{\prime}\) Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/680847/WF.

\section*{Electronic Video Recording}

The development of our EVR Project at Basildon in Essex is now reaching an advanced stage and we now wish to recruit further staff who have experience in television or sound recording and outside broadcasting work for engagements in one of the following fields.

\section*{VTR Engineers}
with good working knowledge of \(2^{\prime \prime}\) quadruplex video tape recorder operations and maintenance.

\section*{Senior Audio Engineer}
to be responsible for the operation and maintenance of broadcast quality magnetic and optical sound equipment. A working knowledge of automation and digital techniques voould be an advantage.

\section*{Shift Control Engineer}

The man we require will be responsible for the overall operation of the video tape and sound transfer facilities on shift basis and will preferably have experience of video tape recording and editing, telecine operation, telerecording and film characteristics, sound transfer optical and magnetic, vision and
sound mixing, apparatus room equipment and staff control in a senior television engineering capacity.
Applicants for the above positions must be prepared to work on a shift system. Commencing salaries will be negotiable in line with responsibilities and experience. Generous assistance will be given with relocation expenses and rented accommodation will be available under the Basildon New Town scheme. We operate a contributory pension scheme and free life assurance. Interviews will be arranged in London.
Ilford is a subsidiary of CIBA, the international chemical group. Career prospects are international too.
Applications in writing, giving details of your career to date, should be addressed, quoting reference ZH.12, to the Personnel Manager, llford Limited, Christopher Martin Road, Basildon, Essex.
数 ILFORD


Installation Engineers Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.

Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to The Personnel Officer. STC Chester Hall Lane, Basildon, Essex.

\section*{CONTINUOUS} Expansion

Standard Telephones \& Cables, Microwave and Line Division based at Basildon are growing fast. In order to keep pace with this 'consistent growth rate we require


\section*{Test Technicians}

Ref. 27221
The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

\section*{BBG \(\boldsymbol{6 7}\) SCOTLAND ASSISTANT FILM RECORDIST}

BBC tv requires Assistant Film Recordist in Glasgow to assist in the balance, control and recording of sound for television film.
Essential Qualifications: Practical knowledge of modern film recording techniques with particular emphasis on magnetic recording. Salary: \(£ 1.185\) (may be higher if qualifications exceptional) \(x £ 72\) to \(£ 1.545\) p.a.
If no fully qualified candidate available, consideration given to appointment as Trainee Assistant Film Recordist (Salary \(£ 1.016\) x \(£ 61\) to \(£ 1.312\) p.a. with promotion when fully qualified). Qualifications: G.C.E. standard of education and practical interest in the film medium. (Evidence normally sought is membership of film making group.)
Write for application form (enclosing addressed foolscap envelope and quoting reference 70.G.717W.W.) to Appointments Department, BBC, London, W1A 1AA, by June 22nd.


582

\section*{cominuiter cngilimecring}

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of \(£ 900 / £ 1.350\) per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR. 1.000 North Circular Road,
London, NW2
quoting publication and month of issue.

\section*{East African Posts and Telecommunications Corporation}

\title{
ASSISTANT Exchizers GRADE 1 (RADIO)
}

To serve on contract for one tour of 24 months in the first instance. Basic salary E.A.Shg.24,300 (Approx. £Stg. 1417.) a year rising to E.A.Shg. 27.780 (Approx. EStg.1620) a year plus an Inducement Allowance, normally TAX FREE, of \(\mathrm{fStg} .822-886\) a year, paid direct into the officer's bank in the U.K. Gratuity \(25 \%\) of total emoluments drawn. Liberal paid leave. Furnished accommodation. Overseas Installation Grant. Free passages.

Contributory pension scheme available.
Candidates, \(28-45\) years, should possess the City and Guilds Intermediate Certificate (Telecomms.) plus a pass in Radio Grade 2 and must have a thorough knowledge of the installation and maintenance of HF and VHF radio equipment. A knowledge of microwave, carrier and telegraph equipment would be an advantage.

The officers' duties will be connected with the installation and maintenance of
radio stations and will involve travelling to outlying stations at a considerable distance from their headquarters, sometimes for periods of a week ôr more.

Apply to CROWN AGENTS, ' \(M\) ' Division, 4 Milibank, London, S.W.1.. for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/ 690815/WF

\section*{UNIVERSITY OF STIRLING}

Department of Psychology TECHNICIAN/SENIOR TECHNICIAN

Applicants should have completed a recognised apprenticeship, or other appropriate training, and have interests in A.F. techniques and instrumentation, including use of digital and linear integrated circuits. Formal qualifications an advantage, day release facilities if fications an advancage, day release fachicies
required. Salary: Technician \(6935-\mathrm{El}, 303\); required. Salary: Technician \(2935-\mathrm{k}\), sos; Senlor Technician \(\mathbf{~ 1}, 278-E 1,586\). Applica-
tions, with names of two referees, should be tions, with names of two referess, should be
received by the Deputy Secretary (WW), received by the Deputy Secretary
University of Stirling, Stirling, by 10 August, 1970.

600

\section*{ASTRO COMMUNICATION LABORATORY (U.K.) require VHF/UHF \\ Development Engineers}

Vacancies exist for a number of development Engineers in the field of VHF/UHF radio.
Applicants should preferably have H.N.C. or B.Sc. qualifications and Laboratory experience is a definate advantage. The applicants should be capable of guiding a development project from its conception to the final stages of quantity production.
Successful applicants will be offered a substantial salary with a 12 month renewable contract and where applicable moving expenses. Apply in writing to:
The Chief Engineer, Astro Communication Laboratory (U.K.),
Tower Street, Coventry, Warwickshire.

\section*{Gitrmarculizhinis}

\section*{1 \\ TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON QUALIFIED OR NOT!}

VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits.
RE-LOCATION EXPENSES available in many instances.
CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
\(37 \frac{1}{2}\)-hour, 5 -day, office-hours week.
WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required, quoting WW3.

MARCONIINSTRUMENTS LIMITED, Longacres, St. Albans, Herts
Tel: St. Albans 59292
Luton Airport, Luton, Beds
Tel: Luton 31441.
A GEC-Marconi Electronics Company

\section*{Electronics Maintenance Engineers}

There are excellent opportunities in the Installation and Maintenance Division of U.K Electronics and Industrial Operations of E.M.I. Ltd., at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to \(£ 1.500\) per annum will be paid and staff conditions include contributory pension scheme and free life assurance.

Please apply in writing giving brief personal and career details to:
G. W. Fox, Personnel Department, U.K. Electronics \& Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex. Tel: 01-573 3888, Ext. 411.

EMI


\section*{REDIFFUSION}

\section*{COLOUR TELEVISION FAULTFINDERS \& TESTERS}

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 54II

\section*{SENIOR TECHNICIAN}
speciallsing in electronics and instrumentation work required to work on the development and servicing of instruments and systems applied to biochemistry research.
The positlon will involve responsibility and the supervision of junior staff. Applicants should have experience in a relevant fleid and possess a Higher Natlonal Certificate or equivalent qualifications.
Salary according to age and experience in the range of \(£ 1,271\) to \(£ 1,613\) per annum. Superannuation scheme, good condlitions of service. Applleations in writing to
Department of Biochemistry,
Imperial College, London, S.W.7.

\title{
broadcastinc axclivers UGANDA
}
> * Salary £2,010 - £2,506 according to experience
> * Low Taxation.
> \(\star 25 \%\) Gratuity.
> * Contract 21-27 months.
> * Subsidised accommodation.
> * Education Allowances.

Duties will include the maintenance of broadcasting equipment in transmitting stations and studios and outside broadcasts and recordings in remote districts.

Candidates should possess City and Guilds Final Certificate in Telecommunications (with Radio) or equivalent and have wide practical experience of technical broadcasting equipment including high power M.F. transmitting and studio control equipment.

Apply to CROWN AGENTS 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference M2K/690995/WF

\section*{UNIVERSITY OF SOUTHAMPTON ELECTRICAL engineering department}

ELECTRONIC ENGINEER required for interesting post as EXPERIMENTAL OFFICER. The work concerns the electronics associated with electrical machine research. The successful applicant will be expected to advise on instrumentation, signal acquisition and processing and, where necessary, to design spectal purpose equipment both analogue and digifal. Candidates should have a university degree or equivalent quallfication, a broad knowledge of electronics and appropriate industrial
experience.

Salary scale from \(\mathbb{1} 355\) to \(£ 2230\) plus F.S.S.U. depending on age and ability.
Applications giving date of birth and detalls of qualifications and experience together with the names of two referees should be sent to the Deputy Secretary. The Unlversliy, Southampton, SO9 5NH by 22 June, quoting ref. WW

\section*{METROSOUND AUDIO PRODUCTS LTD}

Due to increased expansion Metrosound now have a few well paid vacancies for TESTING AND FAULT FINDING ENGINEERS.
Applicants, who must be throughly conversant with Transistorised Audio Amplifier circuitry and be rapid and accurate workers should apply in person, by letter or telephone to: Mr. R. Bishop, METROSOUND AUDIO PRODUCTS LTD., Cartersfield Road, Waltham Abbey, Essex. Tel.: Waltham Cross 31933.

572

\section*{METEOROLOGICAL OFFICE}

\section*{ELECTRONIC ENGINEER}

\author{
UP TO £2438
}

Post of Assistant Signals Officer at the Meteorological Office Headquarters in Bracknell, Berks. DUTIES relate to the planning, provision and installation of meteorological landline and radio telecommunication systems embracing transmission by both low/medium/high speed data and analogue/digital facsimile, and including facilities for reception from satellites. A particular objective will be to automate the U.K. system making optimum use of computers.

QUALIFICATIONS: Either (a) Corporate Membership of the Insitution of Electrical Engineers, the Institute of Electronic and Radio Engineers or the Royal Aeronautical Society, or exemption from their requirements, or (b) Ist or 2nd class honours degree in Electrical Engineering, Physics or Applied Physics, together with at least 2 years' training and experience. Wide knowledge of telecommuncations and aptitude for planning expected. Some experience of planning for automation in telecommunications an advantage.

STARTING SALARY: within the scale \(£ 1405-\$ 2438\) according to qualifications and experience. Non-contributory pension.

Write to Civil Service Commission, 23 Savile Row, London WIX 2AA, or TELEPHONE 01.7346010 ext 229 (after 5.30 pm 01.7346464 "Ansafone" service), for application form, quoting S/7249/69. Closing date 2 July 1970.

\title{
CHALLENGING OPPORTUNITIES in CANADA
}

Radio and Electronic Technicians with a desire to see more of the world can find rich rewards by joining Canadian Marconi Company. Technicians are required for maintenance duties on Northern installations.
Successful applicants will enjoy minimum salaries of \(\$ 8.000\) plus first-class prospects for rapid advancement and further substantial rises during the first year. There are also genuine opportunities for promotion to supervisory grades with salary ranges of over \(\$ 14.000\) per annum.
Food and accommodation is provided free for the employee (no family accommodation), in addition to heavy duty clothing. Assistance with air passage is available.
A chance of a lifetime is offered to accrue substantial savings.

Formal training and experience in maintenance of communica-tions-type equipment is required with special emphasis on:

\author{
Microwave \\ Tropospheric Scatter Communications Systems Telephone and Carrier (Multiplex)
}

If you have three or more years' experience in installation or maintenance on this type of equipment together with recognized qualifications, i.e. City and Guilds. Higher National or equivalent, the answer is Yes! Interviews will be held in London in the near future. Please send brief career details, quoting P.O. Box 540. to Mr. D. S. Howell, Canadian Marconi Company, Station "O", Montreal 379, Quebec, Canada.

CANADIAN MARCONI COMPANY

\section*{RADIO TECHNICIANS}
with sound knowledge of at least three of the following types of equipment required immediately for Meteorological Office Ocean Weather Ships: MF, HF, VHF and UHF, Single and Double side-band transmitters, Radar (Navigational), Radar (Height finding), Radio Receivers, MF and VHF, Auto DF, Digital telemetering equipment, Low voltage servo recorders, Loran and echo sounders.
Salary Scale \(£ 885-£ 1500\) per annum according to age ( \(£ 1295\) at 25 age point), plus £162 per annum overtime allowance. Liberal leave allowance. Free food and accommodation provided on board ship.
Applicants must be natural born British subjects.
Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone 24291.

568

\section*{JUNOR ELECTRONLC ENGINEER}

A vacancy with very good prospects occurs for a versatile energetic and conscientious young man to act as an assistant in the Service department of an expanding Electronic Company
Chief requirements are a good all round theoretical training and some mechanical training, plus the ability to quickly relate this in practical terms to the servicing of a wide variety of electronic and electro-mechanical instruments.
Salary will be commensurate with experience and a permanent and very progressive position is assured for the right man. Write stating age, experience and present salary to:

Personnel Manager, B \& K Instruments Ltd.
59 Union Street, London, S.E. 1

\section*{SERVICE ENGINEERS}
required for maintenance of tape recorder and dictating machines, training given to suitable applicants on dictating machines. Salary \(£ 130\) per month.
Apply:
Tape Recorder Maintenance Co. Telephone: 01-7359683

\section*{UNIVERSITY OF SOUTHAMPTON \\ INSTITUTE OF SOUND AND VIBRATION RESEARCH}

Person required to help with development and operation of instrumentation systems for noise and vibration measurement, including analysis of data and routine maintenance of equipment. Salary on scale-sither \(£ 456-£ 771\) or \(£ 905\) \(£ 1.273\) with supplementary allowances for qualffications. Please write stating date of birth, experience and qualifications and giving the names of two referees to the Deputy Secretary, The University, Southampton, S09 5NH, quoting ref. WW

601

\title{
ASSISTANT ENCINEER GRADE II (BROADCASTING) BOTSWANA
}

\author{
* Salary up to \(\mathbf{£ 2 , 3 8 7}\) \\ \(\star\) Low taxation \\ \(\star\) Appointments grant \(£ 100\) or £200 in certain circumstances \\ \(\star 25 \%\) gratuity on basic salary \\ \(\star\) Contract 24-36 months \\ \(\star\) Subsidised accommodation \\ \(\star\) Education Allowances
}

The Posts and Telecommunications Department requires an officer to undertake operational duties including the installation and maintenance of broadcasting equipment in transmitting stations and to assist with the training of junior engineering staff.

Candidates, aged \(30-45\), must possess the City and Guilds Intermediate Certificate (Telecommunications) or equivalent and have had five years relevant practical experience, (additional to any period of approved training) of technical broadcasting equipment including M.F. and H.F. transmitting equipment up to 10 KW .

Apply to CROWN AGENTS, 'M' Dlvision, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/690420/WF.

\section*{JUNIOR TECHNICAL OFFICER or TECHNICIAN}
required at our Hampstead Laboratories, Holly Hill, N.W.3, to assist scientists engaged on new concept of medical research of 'Human Aerodynamics.' Suitable for applicant in early \(20^{\circ}\) s with some experience of workshop practice and interest in electronic instrumentation. Salary interest in electronic instrumentation. Salary according to experience and qualifications (O.N.C./H.N.C.) on scale £759-£1,508 p.a. Please apply quoting our refereace WW \(51 / 1\) to: Mr. J. H. Woodcock, National Institute For Medical Research, The Fidgeway, MHI HIII, London, N.W.7. Telephone: 9593666.

\section*{THE UNIVERSITY OF SUSSEX SCHOOL OF \\ MOLECULAR SCIENCES}

Engineer required to work on Electronics and Instrumentation in the Chemical Laboratory. Candidates should be skilled in fault clearing in modern electronic equipment.
Salary scale: \(£ 1278-£ 1583\). Three weeks paid holiday. Protective cloihing provided. Superannuation and sichness benefit schemes.
Applications and/or enquiries for further information should be addressed to: The Laboratory Superintendent, School of Molecular Sciences, University of Sussex, Brighton, BN1 92J. 564

\section*{(ELESTROMIGQENGINEERS Imaging Systems}

Applications are invited for two vacancies in our Electronics Laboratory from Engineers holding a Degree or Higher National Certificate and having several years' development experience. These positions will be in a team developing television and I.R. Imaging Systems. Experience in video and/or digital techniques would be an advantage.

The firm is engaged in a wide variety of instrument work much of it combining mechanical, electronics and optical features. The Electronics Laboratories cover medical instrumentation, laser applications, filters and microwave serials for both Government and Commerical Contracts.
In appropriate cases a flat may be made available and removal expenses given to suitable applicants.
Apply stating age, qualifications and experience to:
The Personnel Manager,
Barr \& Stroud Limited,
Anniesland, Glasgow W.3.


\({ }_{587}\)

\section*{Electronic Technicians}

Are you interested in joining the leading Manufacturer of Magnetic Recording Equipment?
If you think you have experience in any one of the following fields, backed by O.N.C. or City and Guilds, we want to hear from you.
- FINAL COMMISSIONING OF CORE MEMORY PRODUCTS
- FINAL COMMISSIONING OF COMPUTER TAPE HANDLERS
- EXPERIENCE OF DIGITAL CIRCUIT TECHNIOUES
- FAULT DIAGNOSIS OF SOLID STATE PRINTED CIRCUIT ASSEMBLIES

Ampex Corporation is a world-wide organisation employing some 12,000 people. This is an ideal opportunity for you to expand your knowledge of
sophisticated computer peripheral equipment with a modern progressive Company.
An attractive salary will be paid and the Company operates an excellent range of Life Assurance, Pension and Sickness Benefit Schemes. Three weeks annual holiday, Canteen, Sports and Social Club.
Please write or telephone for application form to the Personnel Officer, Ampex Electronics Limited, Acre Road, Reading, Berkshire. (Telephone Reading 84411).

AMPEX

\section*{TV MECHANICS FOR NEW ZEALAND}

RADIO and TV MECHANICS-are you dissatisfied with your present working conditions, high taxation and lack of progress? Why not shift to the sunny South Pacific and join the friendly team at TISCO. New Zealand's largest Service Companyi Being purely in Television Service, our mechanics are important people, not just numbers on a time sheet.
All 30 of our Branch Managers are mechanics. You can be with us in 3 months if you write now. Requirements: 5 years' experience and \(£ 20\) towards the family's fare, remainder of which will be paid. Age limit for persons wishing to come to New Zealand is 45 .

> Mr. B. I. Wells, Toch. Supervisor,
> Tisco Lid.,

Prlvate Royal Oak, Auckland,
NEW ZEALAND.

\section*{BROADCAST RELAY ENGINEERS}
are required for the
ISLAND OF MASIRAH
(Off the coast of Muscat and Oman)
Applications for contract employment for a one year unaccompanied tour of duty are invited from engineers with experience of the operation and maintenance of high power radio transmitters and who are of third year City and Guilds Telecommunications Technicians Certificate or equivalent standard.
Salary \(£ 4,000\) per annum plus a tax free allowance of \(£ 350\) per annum for single, or \(£ 865\) for married unaccompanied officers.
Free furnished accommodation and passages are provided.
Further details and application forms can be obtained from:

The Personnel Officer.
Diplomatic Wireless Service
Foreign \& Commonwealth Office, Hanslope Park.
Wolverton, BUCKS.

DISPLAYED SITUATIONS VACANT AND WANTED: \(£ 7\) per single col. inch.
LINE advertisements (run-on): 8/- per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of \(1 /-\).
SERIES DISCOUNT: \(15 \%\) is allowed on orders for twelve monthly insertions provided a contract
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o
BOX NUMBERS: Replies should be addressed to the Box
No responsibility accepted for errors.

\section*{SENIOR TECHNICIAN (GRADE III)}

\section*{with electrical and preferably some mechanical} experience to maintain Cobalt and Caesium and Therapeutic X-ray equipment at the Royal Marsden Hospital, Fulham Road, London, S.W.3. The successful candidate will also have the opportunity to develop new equipment.
Minimum qualifications, O.N.C. in Electrical Engineering. Salary scale E1270-£1590 per annum.
Applications with details of experience and names of two referees to the Deputy Administrator, The Royal Marsden Hospital, Downs Road, Sutton, Surrey. Further details may be obtained from Mr. E. Hawkins, Chief Technician, telephone 01-642 6011, Ext. 278.

\section*{SITUATIONS VACANT}

A full-TIME technical experienced salesman required for retall sales; write giving detalls of age, Henry's Radio, Ltd., 303 Edgware Rd.. Landon. W.2.

A RE YOU INTERESTED IN HI FI? if so, and you Trade, an excellent opportunity awaits you at Telesonic Ltd. 92 Tottenham Court Road, London, W.1. Tel.
\(01-3877467 / 8\).

Berkshire college of education. Television 3 Technidian for expanding CCTV system and moblle unic, responsibility for VHF distribution system, expertence of hellcalscan video tape recorders an advantage but not essential (training course provided). Salary
Technictan Grade III \(£ 965-£ 1,130\). Application forms and further particulars from the Bursar. Berkshire Colange of Education, Woodlands Avenue, Early, Reading,
lisi
Berks, return within 10 days.

ELECTRONICS Workshop Senior Techniclan. Nuclear versity of London), Mite End Road, E.1. Work Includes development, construction and maintemance of instrumentation for reseach. Adaptability. Initiative and experlence in electronlc techniques required. Salary at present in the range \(£ 1,029-1,300\) p.a. (but a substantial increase is under review), plus London Weighting up to
\(£ 125\) p.a. and possible \(£ 30\) or \(£ 50\) qualification supple£ 125 p.a. and possible \(£ 30\) or \(£ 50\) quallifation supplescheme. Excellent working conditions. Letters only to Registrar (N/ST) should state full detalls of experience and present work.
\(R_{\text {EDIFON }}\) LTD. require fully experienced TELEELECTRONICS INSPECTORS. ENGINEERS and salaries. We would particularly welcome enquiries from ex-Service personnel or personnel about to leave the Services. Please write giving full detalls toWandsworth, S.W.18. Rediron Ltd., Broomhill Road,

SENIOR technictan/technician required for the construction, development and servicing of an interesting varlety of electronic apparatus in modern chemistry teaching and research laboratories. Salary In ranges age and experience (but a substantial increase is under review) plus London Weighting \(£ 125\) p.a. and possible £ 30 or \(\mathcal{\&} 80\) qualification allowance. Five-day week. Four/five weeks annual leave. Pension scheme. Letters only to Registrar (C/T/ST), Queen Mary College, Mile and present experience, any quallifations.

SENIOR ELECTRONIC TECHNICIAN required by a shop. Duties will include desien and construction of new products and improvement to existing lines, some service work may be necessary initially. Free use of company vehicle. Age \(25-35\) with good experience in transistorised circuit design, adaptable and able to work stating age, experience, guallfications. Box No. Wew 574, Wireless world.

We have vacancies for four expertenced Test Applicants Finding and Testing of Moblle VHF and UHF Moblle Equipment. Excellent Opportunitles for promotion due to Expansion Programme. Please apply to Personnel Manager, Pye Telecommunicattons Ltd., Cambridge Works, Haig Road. Cambridge. Tel. Cambridge 51351.

\section*{ELECTRONIC ENGINEERS}

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

\section*{ARTICLESTFOR SALE}

BUILD IT La a DEWBOX quallty plastlcs cabinet. \(\mathrm{B}_{2} \mathrm{in} . \times 2 \mathrm{x}^{2} \mathrm{in}, x\) any length. D.E.W. Ltd. (W), Ringwood Rd. FERNDOWN, Dorset. S.A.E. for leafet.
Write now-Right now.
[76
CAPACITORS, 0.25 mfd . 32.5 KV DC working, £6. C 0.5 mfd . \(, 7.5 \mathrm{KV}, 17 / 6.0 .01 \mathrm{mfd} ., 5 \mathrm{KV}, 4 /-\) Rotax rotary inverters, 24 v DC/115v, 3 phase, \(400 \mathrm{~Hz} ., 1.8 \mathrm{amps} .\), \&6. Carbon pile voltage regulators, \(12 / 24 \mathrm{v}, 17 / 6\). Carrlage extra. Westover Electronlcs, Braidley House, \({ }^{\text {St. }}\)
[6aul's Lane, Bournemouth. Tel. 23944.

\section*{WITWORTH} TRANSFORMERS LTD.

\section*{Dept. WW., 16 All Saints Road.}

North Kensington, W.II
Telephone: 01-229907I. 9 a.m. sill 5 p.m.
TELEVISION LINE OUTPUT TRANSFORMERS
PRACTICALLY ANY MAKE OR MODEL SUPPLIED OR REWOUND

\section*{EKCO, FERRANTI, DYNATRON} Replacement cases \(16 /-\) each, please state model. S.A.E. for return of post quotation. 4s. for postage.
C.O.D. orders will be charged \(6 s\).

Transformers fully guaranteed.

COIL WINDER. Avo. Douglas No. 6 coll winder complete with motor and gears, etc. Cost \(£ 150\). As
 COLOUR TELEVISION COMPONENTS. All speciallst C parts for home constructed colour recelvers, including W.W. design (reprints now obtainable from W.W.) Catalogue from: Forgestone Components, Ketteringham. Wymondham, Norfolk.
\begin{tabular}{l} 
FOR SALE-' "Wireless World," 1930-1948, 25/- dozen. \\
[527 \\
\hline 1,43 Dundonsld Road. Colwyn Bay.
\end{tabular}
MUSICAL MIRACLES. Send S.A.E. for detalls of \(\mathrm{M}_{\text {Cymbals and Drum Modules, versatile independent }}\) bass pedal unit for organs, planos or solo, musical novelties. waa-was kits (49/-). Also bargaln components list reed switches etc. D.E.W. Ltd., 254 Ring-
wood Road, Ferndown Dorset.

\section*{AMAZING VALUE}

\section*{NEW BRANDED FULL SPECIFICATION SEMICONDUCTOR DEVICES BEST} FOR PERFORMANCE AND RELIABILITY G.E. D 40 Cl 4W. Darlington Amplifier. Very High Gain 10,00 minimum \(\quad 13 / 6\) IT IAmp Plastic Rectifiers:
IN4001,50V \(\quad 1 / 9\) IN4004, 400 V IN4002, \(100 \mathrm{~V} \quad \therefore 2 / \%\) IN4005, 600 V IN \(4003,200 \mathrm{~V}, 2 / 2\) IN4006, 800 V IN4007, 1000 V

\section*{Cash With Order. Mail Order only.}

\section*{JEF ELECTRONICS (w.w.6)}

York House, 12 York Drive, Grappenhall Wse, 12 York Drive, Grappenhall,
Warrington, Lancs.
Money back if not satisfied

NEW CATALOGUE No. 18, containing credit vouchers surplise \(10 /-\), nod nvallable. Manulacturers new an post free Street, Brighton. Sussex.
\(\mathrm{N}^{\text {EW Precision }} \frac{1 \mathrm{MHz}}{7}\) crystal oscillators In evenand further lists B.a.e. B. M. Sandall. Amber Croft.
Higham, Derbyshire. DE5
[ 560 EH

NEW SONY CRF-230 GLOBAL RADIO. Amateur, Commercial and Professlonal reception. Brings you everything that's on the atr, anywhere in the world Operates from batteries or AC malns! Bullt-in voltage seiector permits use in any country. Numerous contro features that put it in a class by itselfl Retalls at \(\mathbf{£ 3 9 0}\) yours for £ 250 or near offer. Phone: Herongate 359
( 2 Billericay Road, Essex).
\(\mathbf{I 5 9 0}\)

PUBLIC ADDRESS EQUIPMENT FOR SALE. Philips outfits, each containing an EL 6400 Mixer Amplifier ( \(2 \times\) EL81 output) and an ET 3108, 5 speaker column. UNIT \({ }^{1}\) AM/FM radio changer, mike input. input. UNIT 3 auto changer, mike input. Call J. Fagk Bedford 55233.

R ADIO MIKE (S.N.S.). as new, £60. C.C.T.V. 1 Apprentice. St. Austell, Cornwall. [54

UHF, COLOUR and TV SERVICE SPARES. Leading time base unlts incl. EHT transformer, £5, carrlag 10/-. Integrated UHF/VHF 6 position push buttor tuner, 4 transistors, knobs, circuit data. Easily adjusted for use as 6 position UHF tuner, £4/10/-: P/P \(4 / 6\).
UHF 3 transistor tuner incl. circuit. \(£ 2 / 10 /\) P/P \(4 / 6\). MORPHY \(600 / 700\) series complete UHF converslon 1 it incl. tuner, drive assy, 625 IF amplifter, 7 valves, accessories, housed in special cabinet plinth assembly, \(£ 8 / 10 /-\) or less tuner \(£ 2 / 18 / 6\), P/P \(10 /\). SOBELLL/GEC 405/625 switchable IF amplifer and output chassis, \(32 / 6, P / P\) 4/6. UHF tuners Incl valves, slow motion
drive assy, knobs, aerial panel. \(£ 5 / 10 /-, P / P 4 / 6\). VHF list available on request. New or manufacturer tested Featherlight \(35 /-\) AT7639 Peto Scott, Decca, Ekco Ferranti, Cossor \(50 /-\), Cyldon C 20/-, AB mintature with UHF Injection Incl. valves 78/6. Ekco 283/330, Ferrantl \(1001 / 6\) 25/- New fireball tuners, Ferguson, tuners with UHF injection, incl. valves. 58/6. Many others available. \(P / P\) all tuners \(4 / 6\). Large selection channel colls. Surplus Pye. Ultra, Murphy, \(110^{\circ}\) scan colls \(30 /-\), Sobell \(110^{\circ}\) Frame O/P transformers \(17 / 6\) P/P 4/6. Perdlo "Portorama" LOPT assy incl. DY8B.
sultable for transistorised TV, 40/-, P/P \(4 / 6\). LOPTs. Scan Colls. FOPTs avallable for most popular makes PYE/LABGEAR transistorised booster units B1/B3 or UHF battery operated 75/-, UHF Masthead \(55 / 5 / 0\). post free. COD despatcl avallable. MANOR 8UPPLIES 172 WEST END LANE, LONDON, N.W. 6 (No., 28 Bus
or W. Hampstead Tube Station). MAIL ORDER: 64 GOLDERS MANOR DRIVE. LONDON, N.W.11. [60
"WIRELESS WORLD" substantially completě, 1937 ing, 1941 to 1962 . four missing. offers, Haydon, Byron House. Slines Oak Rond, Woldingham, Caterham,
Surrey.

YAXLEY SWITCHES, 1 pull 24 way \(1^{* *}\) spindle, \(5 / 6\) I each p.p. Holly Electronics. 167 Folkestone Road,
Dover.
\(7700 / 2\) Eddystone VHF \(150 / 500 \mathrm{Mc} / \mathrm{s}, ~ £ 105 . \quad 770 \mathrm{R}\) Eddystone VHF \(197165 \mathrm{Mc} / \mathrm{s}\) (with muting), \(£ 75\) Private sale. Good condition. Telephone 01-656 1350

\section*{PATENT NOTICES}

TRADE MARK No. B. 878772 consisting of the letters R-F-T and device and registered in respect of "Elec-
 Mews. London, W.11, to VEB Funkwerk Erfurt of 47 Rudolistrasse, \({ }^{101}\) Erfurt. East Germany: WHTHOUT THE GOODWTLI OF THE BUSINESS IN WHICH IT WAS THEN IN USE.

\section*{TEST EQUIPMENT - SURPLUS \\ ANDSECONDHANO}

SiGNAL generators, oscluloscopes, output meters, wave voltmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& I. Etectronics, Le., A.

\section*{RECEIVERS AND AMPLIFIERS \\ SURPLUS AND SECONDHAND \\  Ashville Old Hau. Ashvillo Rd., London, E.11. Ley.}

\section*{NEW GRAM AND SOUND EQUIPMENT \\ CONSOLT Arst our 76 -page Mustrated equipment Cotalogue on H1-F1 (6/6), Advisory service, generous Assoclation, 18 Blenhelm Road, London, W.4. Assoc9a 1661 . \\ G LASGOW.-Recorders bought, sold, exchanged; versa.-Victor Morris, 343 Argyle St., Glaskow. Cer. \\ 

 London, N.W.6. Mall order only, \\ TAPE RECORDING ETC. \\ \(\mathrm{I}_{\text {transer }}\) quality, durability matter, consult Pritatn's oldest transter service. Quality records from your sultable
tapes. (Excellent tax-free fund ralsers for schools. Lapes. (Excellent tax-free fund raisers for schools. Grand. Sound News, 18 Blenhelm Road, London \({ }_{1} .48\) \\ YOUR TAPES TO DISC- \(\varepsilon 6.000\) Lathe. From \(25 /\). High Bank, Bawk St., Carnforth, Lancs. \\ Valves \\ }

\section*{FOR HIRE}

FOR HIRE CCTV equipment, including cameras, monitors, video tape recorders and tape-any perlod. Herent ARIClESSANTED
\(W_{\text {and }}^{\text {ANTED, }}\) test thes of communications Electrondcs, Lest equipment.-Detalls to R. T. Rville old Hall, Ashrille Rd., London. E.11. Ley. 4986.
\(\mathbf{W}^{\text {ANTED, televisions, tape recorders, radiograms. }}\)
 High St., West Bromwich, stans. Wel. Wes. 166 . 72 \(W_{\text {ANTED, }}\) WIRELESS WORLDS, Feb., March, May,


\section*{We VALVES WANTEO}
\(\mathbf{W}^{\text {E buy new valves, transistors and clean new com- }}\) ponents, large or small quantites. ail details, quotation by return. Walton's Wireless Stores, 55
Worcester
St., Wolverhampton.

\section*{SERVICE \& REPAIRS}

A VO and Selectest repairs, John Baggs Electric Ltd., 3785. Relay Works. Hollins Road, Oldham. Ter. \(061-681\)

\section*{CAPACITY AVAILABLE} A production runs. Also PC Boards Assembles. Suppliers to P.O. M.O.D.. etc. Export enguiries welcomed.
\(3_{3}\) Walerand Road, London. S.E.13. Tel. 01-852 1706 [61 Flectronics writina/Editina ior industry. Reports, appllcation notes, manuals, hand-outs, written to spectifed ienkth. Send full detanls for com-
pettitive quote. Fast turnround. ELECTROSCRIPT SERVICES, \({ }^{18}\) Grange Road, Bournemouth, BM6 \begin{tabular}{c}
3 NY [566 \\
\hline
\end{tabular}
\(\mathbf{M}^{\text {ETALWORK, }}\) all types cablnets, chassis, racks, for smail milling and capstan work up to 11 n bar.PHTLPOTT'S METALWORKS. Ltd., Chapman St, Loughborough.
PRODUCTION/SERVICE MANAGERS don't take up valuable on line assembly time, for small/medlum printed clrcuit/wiring runs, let us have the problem.
Also instalation contracts,
iarge or small are
Invited Also installation contracts large or small are Lnvited; i.e. internal teiephones, security systems, electrical, etc.
UNIT ELECTRONICS, Pound Hill 2390, Sussex.
[594 \(\mathbf{S}_{\text {MALL }}\) servicing and repair contracts undertaken. Field service any distance. Best possible rates for
top-quality work. Cambrlan Electronics, 96 B High St.

TECHINICAL TRAINING
\(\mathrm{B}_{\text {ETE }}^{\text {ECOME }}\) "Technically Quallaed" In your spare time
guaranteed diploma and exam. home-study courses


Clty \& Gullds. etc., highly Informative, 120-pare Ouide-free-- Ohambers College (Dept. 837K), College
House, \(29-31\) Wrights Lane, Kensington, London. W. (16
CITY \& GUILDS_(Electrical, etc.), on "Satistaction Cor Refund of Fiee" terms. Thousands of passes. For details of modern courses in aill branches of elec etc.: send for 132-pago nandbook-iree.-B.I.E.T (Dept. 152 K ), Aldermaston Court. Aldermaston, Berks.
TECHNICAL TRAINING IN Radio, TV and Electronica home-study courses write: ICS, Dept. 443. Intertext
House, London, S.W.8.
TV and radio A.M.I.E.R.E., City \& Gulds. R.T.E.B.; thousands of posses satisfaction or refund of ree terms training courses (Including practical equipment) in al branches of radlo, TV, electronics, etc. write sor \(132-\) page hanabook-iree; pleasechralosy (Dept. 150K) Aldermaston Court. Aldermaston, Berks.

\section*{TUITION}

E NGINEERS.-A Techatcal Certiacate or quallicaElem. and adv. private postal courses for C. Eng.,
 Guilds, A.M.IM.I. A.I.O.B. and O.C.E Exams. Dlploma courses in all branches of EngineeringDraushts, Bullding, etc.-For full details write for FREE 132-page Eulde: British Institute of Ensineering Technology (Dept. 151K). Aldermaston Court,
Aldermaston, Berks.
Kinaston-UPON-HULL Education Committee. K College of Technology. Principal: E. Jones, M.Sc., FURL-TIME courses for P.M.C. certiacates and the Radar Matntenance certificate.-Information from College of Technology, Queen's Gardens, Kingston-upon-

\section*{BOOKS, INSTRUCTIONS, ETC.}

Mandals, circuits of all British ex-w.D. 1939-45 R.E.M.E. Instructions; s.a.e. for list, over 70 types.R.E.M.E. Balley. 167 Ia, MoÏat Road. Thornton Heath,
Wub
Surrey CR4-8PZ.
\(\mathbf{R}_{60}\) ADIO JOURNALS avallable, 1911-1940. Lambert,

\section*{AGENCIES}

A GENTS WANTED to sell on commission basis direct aite dealer a new range of quallo spare kits and complete loudspeaker systems marketed by an
already well-known company. Future agents will have existing connectlons with hi-fil dealers and preferably carry non-conflicting lines. Applications to be accompanied by personal history, qualifcations, experitence. etc. Box W.W. 514 WIreless World.

Serid an S.A.E. for New Comprehensive I.C. and Semiconductor price llsts.
INTEGRATED CIRCUITS
NEW LOW PRICES

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{mullard linear} \\
\hline TAA241 & 32/6 \\
\hline 242 & 85/. \\
\hline 243 & 30\%- \\
\hline 2 23 & 15/6 \\
\hline 293 & 19/6 \\
\hline 300 & 33/0 \\
\hline 310 & 25/- \\
\hline :20 & 14/8 \\
\hline 350 & 38/- \\
\hline d3s & 29/6 \\
\hline 521 & 28/8 \\
\hline 522 & 88/- \\
\hline 330 & 98/- \\
\hline 811 & 89/- \\
\hline tabiol & 19/6 \\
\hline Tadien & 30/8 \\
\hline tadio & 39/8 \\
\hline sinclair & \\
\hline 16-10 & 57/6 \\
\hline \multicolumn{2}{|l|}{plessey} \\
\hline 8L402A & \({ }^{42 / 8}\) \\
\hline RL403a & 42/6 \\
\hline 8L701C & 15/6 \\
\hline 8L702C & 29/6 \\
\hline \multicolumn{2}{|l|}{general} \\
\hline \multicolumn{2}{|l|}{electric} \\
\hline raz22 & 874 \\
\hline Paz30 & 22/6 \\
\hline PA234 & 21/6 \\
\hline PA237 & 38/- \\
\hline P4246 & 57/6 \\
\hline & \\
\hline
\end{tabular}

Please send a S.A.E. for our new comprehensive I.C. price list ,utamem A. MARSHALL \& SONS LTD. 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2
CALLERS WELCOME 9.8 .30 see our main aovertisement on page 80 for semiconouctors

\section*{『IN}
has a vacancy for a SOUND ASSISTANT 'B' Grade H. Salary E 1.415 per annum, plus minimum \(4 \%\) increase from July 1 st, for operation of magnetic film and tape recordings and tape and disc replay machines for television transmission and film dubbing.
Applicants shouid have practical experience in one or more of these operations and possess a basic technical knowledge of electronics as applied to sound recording techniques.

Application forms are available from the Recruiting Office, telephone \(01-6372424\) extension 392

\footnotetext{
2
WE KNOW YOU Want a better Job
WE WILL HELP YOU FIND IT.
Experienced engineers in Design and Development. Systems Test. Technical Sales, Production Engineering. Field Service or Technical Writing should
Contact Electronics Appointments Ltd.
and we will help you.
Our placement service is professional. specialised and completely confidential. We are in consultation with over 800 companies on all aspects of electronics engineering.
Phone or write at any time quoting EW 101.
}

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logle modules. CONTIL and BRIGHTLIFE products are all ex-seock. For details see January, February, April, 1970 lssues, advertisements. For further details use reader service card. New prices on now leaflet. All customers on mailing list will receive these automatically. WEST HYDE DEVELOPMENTS LIMITED, 30 HIGH STREET, NORTHWOOD, MIDDX

Telephone: Northwood 24941
geiger counters latest government release, OF THESE EXCEEDINGLY POPULAR AND WELL KNOWN CONTAMINATION METERS. Which were intended for use, should the need arise, by the Civil Defence etc.


These are now or virually es now, being shaif stored anly, and are completo with all parts including, Corrying Maversack, Cabie and Probe Inatructions for use This Madel incorporatesa Plug in Vibretor Power Unit instead of the normad Buetary Hoader. therebby using four stendard Maliony R.M. 12 A. Long Lita Battanes (not supphiad). The unt is complatery portable. being made in Cass Alumirium,
 carton complete and tested go- post io- two caralage paid J. h. TOWNEND 21 THE ROUMOWAY, MORLEY, NR. LEEDS. YOAKS

Thanks to a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythone and have fitted leaders, etc. Their qualley is as good as any other on the market, in no way are imported, used or sub-standard tapes. 24-hou despatch service.
Should goods not meer with full approval, purchase
prico and postage will be relunded
S.P. \(\left\{\begin{array}{lll}3 \mathrm{in} . & 160 \mathrm{ft} .2 / \mathrm{Sin} \text {. 600ft. \$/- }\end{array}\right.\)

LP. \(\left\{\begin{array}{llllll}\text { Sin. } & 900 \mathrm{fc} . & 8 / 6 & 7 \mathrm{in} . & 1.200 \mathrm{ft} & 9 / 6 \\ 3 \mathrm{in} . & 225 \mathrm{fc} . & 2 / 6 & \operatorname{Sin} . & 500 \mathrm{ft} . & 8 / 6\end{array}\right.\)
L.P. \(\left\{\begin{array}{lllll}\text { sifin. } 1,200 \mathrm{fe} . & 10 \% & 7 \mathrm{in} . & 1,800 \mathrm{ft} . & 13 / \mathrm{K}\end{array}\right.\)
D.P. \(\left\{\begin{array}{llll}3 i n . & 350 f t \\ 5 i / i n & 4 / 6 & 5 i n & 1,200 \mathrm{ft} .12 /-\end{array}\right.\)
postage on all orderi 1/6
COMPACT TAPE CASETTES AT HALF PRICE
60,90, and 120 minutes playing time, in original plastic library boxes.

\section*{STARMAN TAPES}

28 LINKSCROFT AVENUE, ASHFORD, MIDDX

Ashford E3020
WW-095 FOR FURTHER DETAILS

\section*{HIGH FIDELITY LOUDSPEAKER SYSTEMS}

ATLANTEA. Our latest design gives superb reproduction. The wide frequency range of \(40 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{~K} / \mathrm{s}\) and power rating of low will satisfy the most critical listener. Impedance \(8 \Omega\) or \(15 \Omega\). Size approx. \(23 \frac{z^{\prime \prime}}{\prime \prime} \times 11 \frac{t^{\prime \prime}}{} \times 9^{\prime \prime}\), finished in teak, oak or mahogany (please state which is required). 12 GNS. each. Matched pair for stereo \(23 \frac{1}{2}\) GNS. inc. p. \& p

\section*{S.P. LOUDSPEAKERS}

69 Whitehill, DALKEITH, Scotland


\section*{WANTED-}

Redundant or Surplus stocks of Transformer materlals (Laminations, C. cores, Copper wire, etc), Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc. Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. Tel. 01-203 1855 and 3033


DEIMOS \({ }_{\text {LTo }}\) TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichanne! 8 CORWELL LANE, HILLINGDON, MDX. 01.5733561


PRINTED CIRCUITS electronic equipment manufacturebs Large and small quanti ties. Full design and Prototype Service, Assemblies at Reasonable Prices. P.O. Approved Let us solve your problems
K. J. BENTLEY \& PARTNERS 18 GREENACRES ROAD. OLDHAM Tel: 061-624 0939 WW--096 FOR FURTYER DETAILS


Private enquiries, send two \(5 d\) stamps for brochure THE QUARTZ CRYSTAL CO. LTD
a.C.C. Works, Wallington Crescent New Malden. Surrey \(\quad 101.9420334 \& 2988\) ) wW- 097 FOR FURTHER DETALLS

\section*{THERE ARE GEMS IN IRELAND}

This is one


THIS is another


IF YOU WANT A REAL GEM CONTACT
 AFTER ALL, WE'RE IN THE EMERALD ISLE

WW-098 FOR FURTHER DETAILS


\section*{BAILEY PRE-AMPLIFIER}

High quality pre-amplifier circuit described by Dr. A. R. Bailey in the December, 1966, "Wireless World". This is a low distortion circuit of \(g\) reat suitable for driving Bailey 20W and 30W Ampllfiers Linsley Hood Class A Amplifier and many others. All Linsley Hood Class A Amplifier and many others. An incorporated. A new Printed Circuit Board containing latest modifications 7 in . by \(3 \frac{3}{3} \mathrm{in}\). features edge connector mounting, roller tinned finish and silk screened component locations. This board is a vailable in S.R.B.P. material or fibreglass and the complete Kit for the unit contains gain graded BC. 109 transistors, polyeste capacitors and metal oxide resistors where specified

BAILEY 3OW AMPLIFIER
All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed a new Printed Circuit intended for edge connector mounting. This has the component locations marked smaller at \(4 \frac{1}{2}\). by \(2 \frac{\mathrm{z}}{\mathrm{in}}\). Price in SRBP material \(11 / 6 \mathrm{~d}\) in Fibreglass 14/6d.

BAILEY 20W AMPLIFIER
All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Malns Transformer for mono or stereo primary for use with CZ6 Thermistor, 35/6d., post prim
\(5 /-\).
Trifilar wound Driver Transformer, 22/6d., post \(1 /\)-. Power Amp. PC Board, 12/6d., post'9d.
Reprint of "Wireless World " articles, 5/6d. post f́ree.
DINSDALE IOW AMPLIFIER
All parts still available for this design.
Reprint of articles \(5 / 6 \mathrm{~d}\)., post free.
LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special matt black anodised Metalwork and all power supply components.

PLEASE SEND S.A.E. FOR ALL LISTS.

\section*{HART ELECTRONICS,}

32I Great Western St., Manchester 14
The firm for quality.
Personal callers welcome, but please note we are closed all day Saturday.

\section*{NWI BODF}
(Editors \& Engineers)
RADIO HAND BOOK 18TH EDN.
by William I. Orr (April) 105/-
how to use integrated
CIRCUIT LOGIC ELEMENTS
Cby J. W. Streater (March)
101 OUESTIONS \& ANSWERS
ABOUT HI-FI \& STEREO
by Leo G. Sands \& Fred Shunaman (March) 24/-
SWL \& ANTENNA CONSTRUCTION
PROJECT
by Edward M. Noll (June)
ABC'S VOLTAGE-DEPENDENTS \&
RESISTORS
by Rufus P. Turner (June)
WORKSHOP IN SOLID STATE
by Harold E. Ennes (July)
TAPE RECORDER SERVICIng GuIde
by Robert G. Middleton (July)
ABC'S DF THERMISTORS
by Rufus P. Turner (Juily)

\section*{FOULSHAM-SAMS TECHNICAL BOOKS \\ (W. FOULSHAM \& CO. LTD.) YEOVIL RD., SLOUGH, BUCKS, ENGLAND}


SALES
P.O. BOX 5 WARE, HERTS TEL. WARE 3442

SEMICONDUCTORS FORIW.W. CAP.-DIS 2N 2525
\(2 N 3055\)
2N \({ }^{2} 3055\)
\(2 N 3702\)
\(2 N 3704\)
\(2 N 3704\)
IN 4001
IN 4005
New and


I/6 each. Planar or Germ. Fully NPN Silicon \(1 / 6\) each. Planar or Gorm. Fully Tasted and
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\(A C 125\) \\
\({ }_{A}^{A C l} 26\) \\
\({ }_{A}{ }^{A C l} 28\) \\
\begin{tabular}{l} 
ACI \\
ACY \\
\hline
\end{tabular} \\
ACY20 \\
ACY21 \\
ACY27 \\
ACY28 \\
ACY30 \\
ACY 31 \\
ACY34
\end{tabular} & \begin{tabular}{l}
ACY36 \\
BCI 08 \\
BC109 \\
BFY50 \\
BFYSI
BEX84 \\
BFX86 \\
BFX88 \\
NKT141 \\
NKTI 42 \\
NKT212 \\
NKT213 \\
NKT214 \\
NKT215 \\
NKT271
NKT677
\end{tabular} &  & \(2 G 381\)
\(2 G 382\)
\(2 G 399 \mathrm{~A}\)
2 N 696
2 N 697
2 N 706
2 N 708
2 N 929
2 N 930
2 N 1131
2 N 1132
2 N 1613
2 N 1711
2 N 2904
2 N 2905
2 N 2924 & 2N2926
2 N 2220
2 N 3707
2 N 3711
2 N 2906
2 N 2907
2 N 2696
2 N 3391
2 N 3702
2 N 3703
2 N 102
25103
25104
25732
25733 \\
\hline
\end{tabular}

TRANSISTOR EQVT. BOOK 2,500 cross references of transistors-British, European,
American and Japanese. A must for every transistor user.
Exclusively distributed by DIOTRAN SALES.
IS/-EACH.

Vast mixed lot of subminiature glaze diodes. Comprining of silicon, Gorm. Point Contact and Gold
Bonded Eypes plus some Zeners. So0,000 available at


BRAND NEW FULLY TESTED EPOXY CASE BEN 3000 and replacement for 2N2646. Full data available. LOWEST PRICE AVAILA8LE ANYWHERE. 100 of \(4 / 1\)
Leach
E20; 500 of \(3 / 6\) each
CB7. \(10 ; 1,000\) of \(3 /=~ e a c h ~\) each \(=\) C20; 500 off \(3 / 6\) each e \(687.10 ; 1,000\)
\(=\) CISO. Sample devices \(71-\) each on request.

HIGH OUALITY SILICON PLANAR DIODES. SUB-MINIATURE DO-7 Glass Type, suitable replacements for OA200, OA202, 8AY38, ISI 30 . 15940 . 200,000 zo clear
at 64 per 1,000 pieces. GUARANTEED B0\% GOOD.

FULLY TESTED DEVICES AND QUALITY OA A 202 Silicon Diode. Fully Coded.
150 PIV 250 mA Oty. Price 630 per 1,000 pieces.
50 PIV 250 mA . Qty Price 625 per i. 000 .
BY100 SIL. RECT'S 800 PIV 550 mA .
\(1 / 492 / 6\) each; \(50-992 / 3\) each; \(100-999\)
2/- each; 1,000 up 1/10 each. Fully Coded. First Quality

Post and Packing costs are continually rising. Please add
I/- towards same. CASH WITH ORDER. PLEASE. GIRO No. 30-102

OVERSEAS QUOTATIONS BY RETURN. SHIP-
MENTS TO ANYWHERE IN THE WORLD.

\section*{SCOPE TROLLIES}

Tektronix type \(500 / 53\) A overall size \(38 \times 26 \times 17\) with shelf, drawer and stowage for 2 amps, E15.0.0

\section*{U.H.F. CONVERTORS}

Range 250 to \(475 \mathrm{Mc} / \mathrm{s}\) directly calibrated dial, in cabinet with mains P.U. 50 ohm \(1 / \mathrm{P}, 60 \mathrm{Mc} / \mathrm{s} 1 . \mathrm{F}\). O/P REF 6AK5 6AFA In eood cond tested e25.0.0

\section*{SCANNER UNITS}

With Ind etc. see April W.W. £48.0.0
Prices include carriage
A.H. SUPPLIES

57 Main Road, Sheffield S9 5HL

\section*{WE PURCHASE ALL FORMS OF ELECTRICAL EQUIPMENT AND COMPONENTS, ETC.}

\section*{CHILTMEAD LTD.}

7, 9 , 11 Arthur Road, Reading, Herks.

Tel: 582605

\section*{NEW EDITION \\ THE MICROELECTRONICS DATA BOOK}
by Motorola
60/-
Postage 5/-
THE RADIO AMATEUR'S HAND. BOOK 1970 edition by A.R.R.L. 48/0 Postage 4/6.
PAL COLOUR TELEVISION by Boris Townsend. 60/. Postage I/-.
SERVICING WITH THE OSCILLOSCOPE by Gordon J. King. 28/a Postage 1/-.

TRANSISTOR, THYRISTOR AND DIODE MANUAL by RCA. 20/Postage \(1 / 6\).

\section*{HOW TO USE INTEGRATED} CIRCUIT LOGIC ELEMENTS by Jack W. Streater. 28/-. Postage I/-.

PARAMETRIC AMPLIFIERS by Howson and Smith. 68/-. Postage \(1 / 6\).
THE SEMICONDUCTOR DATA BOOK by Motorola. 60/-. Postage 5/-. SEMICONDUCTOR POWER CIRCUITS HANDBOOK by Motorola. 20/-. Postage 1/-
SCR MANUAL by General Electric Company. 25/-. Postage 1/6.

\section*{THE MODERN BOOK CO.}
britain's Largest stockist
of British and American Technical Books
19-2| PRAED STREET; LONDON, W. 2
Phone PADdington 4185
Closed Sot. I D.m.

\section*{BIILD YOUREETFA TRANSSTOR RADIO}

\section*{roamer eight mk I with tone} CONTROL SEVEN WAVEBANDS MW1. MW2. LW. SW1, SW2. SW3 ANC trawler bano. 8 transisiors and dilodes Ferm
arial Soctut lor can serial. \(1 \times 4\) in Speaket. Airspaced ganged tuning condensel. Earpiece sochel and earpiece Selectivn switch Size 9 : 7 \& 4 in Toum Building Coste f5. \(19.5-\mathrm{P}\) \&
liss \(5 /\) ( free mith pars)
pocket five, med. and longwaves \& trawten gand with speaker 5 Hansistors and 2 diodes. ferite to mial. tuning condenser, mowing cal
 Plans and Parts list \(1 / 8\) (liee with porns)
Plating Costs ROAMER SEVEN Mh \& 7 WAVE-BAMD MWI. MW2. LW, SWI. SW2. SW3. AND TRAWLER BAND. 7 rransistors and 2 diodes Fertitu pod abnal and telascopic astial Socket tor cas setrial 7 \& 4 in speakel Airspaced panged tuning condenser atc Sue \(9 \times 7 \times\) ain Intai Building Costi c5/9/5. P of P. 7/8. Personal earpiect. mith switched sockel lort private listening 5. extr
parts).
transona five medium. long ano trawler band with speaker an EARPIECE. 5 transistors and 2 diodes. terrixe rod asiral. maving coil speake.
 P. \& P. \(3 / 8\).
with pans).
transeight 6 wavebanos. mw IW. 3 shoat waves ano trawle BANO. 8 improved type ctensistors 3 diodes ferrite rod and telescopic aeriais 3 in speatire. Push pull ourput. Sie of \(\times 5\)
\(2 / 5 \mathrm{jin}\) Total Buiding Costs \(89 / 6\) of 5/6. Plans end Parts list \(5 / 4\) / frea with lut Personal earpiece with swathed sochel for privale listening \(5 /\) - extris.


RADIO EXCHANGE CO. LTD.
Dept WW. 61 High Street, Bẹdford. Phone 023452367
- Open 10.1. 2.30.4.30. Sat. 9.12

\section*{MACLEANS 6" FAN}

230 V AC. 3 Amp. 2,800 ipm
IMLOCK
MLOCK COLLAPSIBLE ALUMINIUM CHASSIS F
AIR CONTROL INST. BLOWER MOTORS
Single phase 200-250v AC \(2,800 \mathrm{rpm}\).

20-WAY 3-POLE P.O. TYPE JACK STRIPS
\(10 \frac{1}{n " ~}^{\prime 2} \times 3\) t" \(19 / 6 \mathrm{pp}\) 3/6. Ex-equip.
12 VOLT SOLENOIDS PULL ACTION
Size \(2^{\prime \prime} \times 1\) " \(\times\).
SOLAR CONSTANT VOLT TRANSFORMERS.
Hasmonlc neutralized. Primary volts \(95 / 190-130 / 260\)
Rated \(V\) A. 25050 Hertz. Enclosed in case.
Sec.: 118 V AC \(^{\prime \prime} 2.12\) Amps.
Size \(8^{\prime \prime} \times 12^{\prime \prime} \times 4^{\prime \prime}\)
E9 0s. Od. each. Carr, \(20 /\)
E9 Os. Od. each. Carr, 20/--
New conditlon ex. equlp. Test
New conditlon ex. equip. Tested
STC SEALEDRELAYS DOUBLE POLE
CHANGEOVER
48V \(2500 \Omega\) Ex-equip.
HONEYWELL NICRO-SWITCH, LEVER
HONEYWEL
OPERATED
\(10 A 250 \mathrm{v}\) AC
Lever action ex-equip. 3/6 each pp \(2 /\).
ANALEX POWER SUPPLIES
Size \(7^{\prime \prime} \times 19^{\prime \prime} \times 13^{\circ}\). 230v AC Inpul
ully Transistorised
Marginal adjustment on outpu
E35 Os. Od plus \(£ 3\) carriage.
ANALEX POWER SUPPLY
Size \(13^{\circ} \times 19^{\prime \prime} \times 5 \lambda^{\prime \prime}\).230v AC Input.
36 v 14 A Output. Siabilized
Ex. Equip. Fully Tested. New condition.
\(£ 27\) Os. Od. plus \(£ 210 \mathrm{~s}\). cartiage.
VEEDER-ROOT MECHANICAL COUNTERS
5 digit ; lever operated; resetiable
(10/6 pp 2/6
DORMAN LOADMASTER
50/44v AC. 5 amp triple pole circult breaker
\(29 / 6\) plus b/-pp.
Brand new with fixing bracket.
Inpui 230vaC
Output: \(6.3 \mathrm{v} 8 \mathrm{amp} \times 2: 6.3 \mathrm{v} 4 \mathrm{Amp} \times 3\).
Size \(4 \frac{z^{\prime \prime}}{} \times 4 \frac{z^{\prime \prime}}{} \times 6^{\circ}\) approx.
New condition tested. 45/-pp 12/6
Input 230v. Output: 6.6 v 122 Amp
Size \(6 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{1}{ }^{\prime \prime} \times 9^{\prime \prime}\) Including terminats
Brand new. \(\mathbf{E} 15\) Os. Od. plus \(£ 2\) carriage
ASHGROVE TRANSFORMER
-240v AC In
228 v AC 6.6 Amp Ou:
£88s. Od. plus 30
88 8.
TRANSFORMER
\(0-250 \mathrm{v}\) AC In
\(-240 v\) AC 15 Amp Out
E12 0s. Od. plus 40/- Carriage
PARMEKO TRANSFORMER
0-115/250 49/60 Hertz
- 125 v AC 13 Amp Ou
\(8^{\prime \prime} \times 11^{\prime \prime} \times 9^{*} .2\) only.
E15 0s. Od. pp 50/-
PARTRIDGE TRANSFORMER
\(0-115 / 265\) AC In
240 v AC 13 Amp Ou
\(9 \frac{1}{2} \times{ }^{\prime \prime} \times 12\).
15 Os. Od. plus 50/- Cartiage
ADVANCE VOLTSTAT TRANSFORMER
190-260v AC In
3000 watt
230 Os . Od. plus carriage.
GARRARD 2 TRACK TAPE DECKS MAG TYPE Solenoid operated 230v, \(1 / \mathrm{fips} 50 \mathrm{v}\) Solenoid
deal for contin. tape players etc
27 10s. Od. each. Brand new in manufacturers cartons. pp 22/6d.
OMRON MIDGET POWER RELAY
Type MK1 230v AC. New 9/6d. each pp. 1/6d.
TELESCOPIC AERIALS CHROMED
"closed 28"extended. 6 section
Ball jointed base 4/6d. each pp. 1/6d. New 4 MULLARD DM160 INDICATORS Slze approx. \(1 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{*}^{\prime \prime} \times \frac{1^{\prime \prime}}{2}\) in plastic holder ren plastic covex-equlpmenh \%/6. po 1/6.
CERAMIC STEREO CARTRIDGE
Output \(135 \mathrm{~m} / \mathrm{v}\) at \(1 \mathrm{~cm} / \mathrm{sec}\)
rea. response 40.12000 cDs . Loed 1 meg
Tracking weight \(5-6\) grams. 30
MALLORY ELECTROLYTICS
25,000 , MFD \(25 v\) DC \(\quad 55,000\), MFD \(15 v\) DC \(\begin{array}{llll}40,000, & 10 v \mathrm{DC} & 27.000, & \text {.. } 15 \mathrm{~V} \text { DC } \\ 20,000, & 30 \mathrm{VDC} & 32,000, & \text {." } 25 \mathrm{~V} \text { DC }\end{array}\) \(\begin{array}{ll}20,000, \\ 37,500, & \text { 30v DC } \\ 15 v & \text { DC }\end{array}\)
All at 10/- each. D.p. 2/6. Screw terminais.
POWER SUPPLIES
AC INPUT 200-250v:
20v 4.5 Amp; 10 v 3 Amp; 10 v 300 MAmp . DC
E15 0. 0. pp. 30/-.
Toggle Switches, single pole, double throw.

\section*{FIED EEECTRCLTO.}

3 SHENLEY ROAD, BOREHAMWOOD, HERTS. Adjacent Elslree Malnine Statlon. Callers welcomed Telephone Elstree 6009


\section*{TACHOMETERS TACHOGENERATORS}
* Very accurate-linearity - \(1 \%\)
\(\star\) Bidirectional output to \(\frac{1}{4}\) of \(1 \%\) tolerance
\(\star\) Brush life 100,000 hrs. or 10 years continuous operation
\(\star\) Low driving torque
\(\star\) Temperature compensated
\(\star\) Ideal as speed transducers

\section*{NECO ELECTRONICS (EUROPE) LIMITED WALTON ROAD, EASTERN ROAD COSHAM PO6 1SZ, HANTS. Tel: COSHAM 71711/5. Telex, 86149}

WW- 099 FOR FURTHER DETALLS

\section*{TH Eetement \\ Components}

RCA Semiconductors
from stock
Cat. \& Price List by return
Hams-free OSL cards \(\boldsymbol{f}\)
Ham Tips' with every order.
This month's offer


40w. Peak-Envelope-Power amplifier for 118 to 136 MHz AM . Transmitters, comprising:
Transistors
\(2 \mathrm{~N} 3866 \quad 21 / 9 \mathrm{ea} \quad 40291 \quad\).\(99 / ea.\) \(40290 \quad 23 /-\) ea. 40292 (2) 113/8 еа
(send for leafitet AN-3749 for circuit details \(2 /-\)-)
Magnetic tape keying system for code recording and transmission, comprising:
Transistors
\(\begin{array}{ll}\text { 1N319317) } & 3 / 3 \text { ea } \\ \text { 2N3242A(7) } \\ 7 / 9 \text { ea }\end{array}\)
2N2614
(send for Ham Tips Vol. 29 No. 3. for circuit details \(2 /\)-)
A wide range of semiconductors always in stock. Make sure of your copy of 'Ham Tips' and OSL card, both free with order, by placing your order with us NOW.

\section*{Send for catalogue to}
 EQUIPMENT AND COMPONENTS LTD Croft House, Bancroft. Hitchin, Herts Tolephone: Hitchin 50551/2/3 and 52202

EXGLUSIVE OFFERS LATEST TYPE HIGHEST QUALITY CABINETS
FOR STANDARD 19 " RACK PANELS TOTALLY ENCLOSED

 PE B: \(7 R^{\circ}\) high
\(30^{\circ}{ }^{\text {deep }} \times 24^{\circ}\) Wide. These cabinets wil
take rack panela both sides. that is
back and front and are drilled
tapped all th
this parposy " for
are fitied
fity are fitted mith
"Instantit" pateot
(ully adfustable rack mounts which
are vertically and horizontally adjust
hoblo-Lhene the parele to be recessed when they
are afted wth are Atted with pro-
jecting componente
aud it is desired to enclo
doors.
* Other features liclude - all cornore and edges rounded ducte Removable bulititised. Removable buik in cabie insect proofed tops. Delachable side panels. Full length tastantly detachable doors fitted expanding bolts ordered with cabinela. Made is U.S.A.-Cost the American
Government \(\& 107\) before dcvalumtion, Fintshed in grey primer and in new condition.

PRICE E286.10.0 Each (Carriake extra)
oor sare not needed lif pauels are mounted
Door ane not needed painels are mounted hack and front TYPE C: \(80^{\circ}\) hlyh \(\times 27^{\circ}\) deep \(\times 22^{\circ}\) wide. America Standand First Grade totally enclosed renturted 18 rack
panel mounting cabineta, made by Dulane, U.BA. Open frout fitted rack mountadrlled and tapped all the Why down every \({ }^{10}\). Full length rear door with lateh Finlikind in grey thete cabinetis have been used but are in
good condition but if decoration is of importance it is good condition but if deconation bofore use.
TYPE D: \({ }^{\text {PRICE }}\) fign \(\times 18^{\circ}{ }^{\circ}\) esth (Carriage ertra)
TYPE D: \(76^{\circ}\) hgn \(\times 18^{\circ}\) daep \(\times 22^{\circ}\) wide. These are
sighty smatler and Anished in black otherwise they sre nilphty smatler and fanshed in black otherwipe they aro
nimilar in conatract lon and conditlon to Type above. Made by R.C.A. of U.B.A.
TYPEE: \(68^{\circ}\) bigh 212.10 .0 each (Carriake extra) TYPFE: E8 bigh \(\times 1 \mathrm{R}^{\circ}\) deep \(\times 22^{\circ}\) wide, totally enclosed U.B.A. Thene unit: have front and rear doors sod rack mounts interaally receased within the cablnet. The rack mounte are atandard \(19^{\circ}\) wide. The aetual front pane able glazed punal. \(\quad\) PRICE 10.0 each (Carriage extra) TRANSPORT: We have made special econouncal tranaport srrangementa for these cabineta to ennure they arrive
undarnaged and to avold expensive crating. Full dotails on requent.


\section*{TRAIN TODAY FOR TOMORROW}

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:
- RADIO/TV ENG. \& SERVICING AUDIO FREQUENCY
- closed circuit tV
- ELECTRONICS-
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND

CONTROL SYSTEMS
- numerical control

ELECTRONICS
- COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for:
- C. \& G. Telecom. Techns' Certs.
- C. \& G. Electronic Servicing
- R.T.E.b. Radio/TV Servicing Cert.
- Radio Amateur's Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education


\section*{WE PURCHASE}

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS MOTORS TRANSISTORS. SOCKETS. MOTOAS. TRANSISTORS. RESISTORS, CAPACITORS. POTENTIO METERS. RELAYS TAANSFORMERS ETC
ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

silont-running. hign eapacity units with recengular duct outlets powered by continuousty ated heavy duty notore. Made by Smiths for many suitable for a wida variery of other applications in kitchens, workshops, tollets etc. Heavy tteet construcion, enamel protected. For \(220 / 240\) volts a.a. operstion. Type DI-850: Oouble inlet aluminium impeller; onamel finish. Stze overall: \(117 \times 12 \frac{1}{6} 132\) in. high Kingston Electrical
134 London Road, KIngston upon Thames Tel.: \(01-5467534\)
WW-101 FOR FURTHER DETAILS

\section*{LINSLEY HOOD PRE-AMPLIFIER Components as specified in May issue WW PCB (Designer approved) \(8^{\circ} \times 4 \frac{t^{*}}{}\).. 25 Hi-stab resistors and 2 pre-sers \(15 / 6\)
\(\cdot \quad 10 /-\) 23 polyester and electrolytic cap's \\ 3 pots (Mono) \\ 4 pots (Mono) \\ 2 Radiospares sw's (Mono) \\ 2 Radiospares sw's (Stere \\ Complete kit (Mono) \\ Complete kit (Stereo) : \\ Matched 10 Tr's (Bailey 30W) with Pcb Matched 10 Tr's (Texas 15W) \& 152082 A Matched 4 Tr's (Hood loW) with M1480s Matched 4 Tr's (Hood IOW) with M1481s Postage \(1 /\) - on orders below \(£ 1.0 .0\). \\ Send S.A.E. for decziled lists including Linsley Hood 15-20W Class AB Amplifier. GUARANTEED DESPATCH BY FIRST CLASS RETURN A.IFACTORS. 72 BLAKE RDAD.STAPLEFORD.NOTTS}


The MIts-Litt dimmerawitch will dim up to

 with MK mounting llome for use whate more denth is requitred
Prica bult end tested 63/. complete thit 55/.
 111. Snolliolid Rd, Wy mondhem morfolk. RINTED CIRCUIT PROBLEMS' ?
 5 Small to modium botch production at reasicnabia rates I Complote design end manufacture from eitevit diagoms I fniechils Quote WW3 when ordering



\section*{VACUUM}

OVENS, PUMPS, PLANT, GAUGES, FURNACES ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, r. f. heaters. free catalogue.
V. N. BARRETT \& CO. LTD. I MAYO ROAD, CROYDON, CRO 2AP. \(01.6849917 .0-9\)

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

\section*{J. Black}

OFFICE: 44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033 STORES: 30 BARRETTS GROVE, N. 16

Tel: 01-254 1981

\section*{WE BUY}
any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors; cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

\section*{AMERICAN \\ TEST AND COMMUNICATIONS EQUIPMENT \(\star\) GENERAL CATALOGUE AN/104 1/6 * Manuals offered for most U.S. equipments \\ SUTTON ELECTRONICS \\ Salthouse, Nr. Holt, Norfolk. Cley 289}

\section*{Oscilloscope Camera-Type p}

Setting a new standard combining lower purchase and operating costs with superior performance, the Telford Type \(P\) meets requirements where smaller or standard oscilloscopes are employed.
SIMPLE OPERATION-ATTRACTIVE APPEARANCE -LIGHTWEIGHT-ECONOMY SIZE POLAROID FILM TYPE 20

LENS
High-quality Dallmeyer F4.5 2.4" \((61 \mathrm{~mm})\) lens provides a reproduction of trace and graticule with good linearity. The object/image ratio is \(1: 0.7\) (nom).

\section*{SHUTTER SPEEDS}

Three modes of operation are provided including fixed exposure \(1 / 25 \mathrm{sec}\) (nom.). time and brief.

\section*{ADAPTERS}

Comprehensive range of adapters are available to fit most popular oscilloscopes.

TELFORD PRODUCTS LTD.
4 Wadsworth Road, Greenford, Middlesex. Telephone: 01-998 1011
the davail photo optical company of the bentima group


WW-103 FOR FURTHER DETALLS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SURPLUS HANDBOOKS} \\
\hline 19 eet Circult and Noten & & 7/- p/p 9d. \\
\hline 1155 not Circult and Noten & & \(\therefore 7 / \mathrm{p} / \mathrm{p} 9 \mathrm{~d}\). \\
\hline F.r.O. Technical Inatructions & & \(\cdots\) 8/- p/p od. \\
\hline 38 set Technical Instructione & & \(\cdots\) 6/- plp 9d. \\
\hline 46 eet Worklag Instructions & & 8/- p/p od. \\
\hline 88 set Tectinical Instructiona & & \(7 / 6 \mathrm{p} / \mathrm{p} 9 \mathrm{~d}\). \\
\hline BO. 221 Clrcult and Notea & & \(61 . \mathrm{plp} 9 \mathrm{d}\). \\
\hline Waverneter Clans D Tech. Insi. & & 6/- p/p 9d. \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{}} \\
\hline & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
BC. 1000 (31 set) Clreuit and Notes \\
CR. 100/B. 28 Cincuit and Notea
\end{tabular}} & \(10 / 6 \mathrm{plp} 9 \mathrm{~d}\). \\
\hline & \multicolumn{2}{|l|}{R. 107 Clircult and Notea .. .. .. .. 7/6 p/p} \\
\hline \multicolumn{3}{|l|}{A1R.88D Instruction Manual .. .. .. 18/6 p/p 10d.} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
62 set Circult and Notea \\
Ctrenit Diagram 5/6 each postíree, R.111i/A, R. \(1224 / \mathrm{p} / \mathrm{p} / \mathrm{pd}\).
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Ctrcuit Diakram \(5 / 6\) each post free, R.1118/A, R.1224/A, R.1355,} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{BC. \(348 \mathrm{~J}, \mathrm{BC} .348\) (E.N.P.), BC.624, 22 set.}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Colour Code Indicator 2/6, p/p 8d,} \\
\hline \multicolumn{3}{|l|}{8.A.E. with all enquiries please.} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{poatage ratea apply to U.K. onig.}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{INSTRUCTIONAL HANDBOOK SUPPLIES} \\
\hline Dept. W.W. Talbot House, 28 T & Talbot & dens, LEEDS 8 \\
\hline
\end{tabular}


COMPONENT PARTS EX STOCK FOR FOLLOWING HI FI DESIGNS

> BAILEY, LINSLEY-HOOD, TEXAS INSTRUMENTS

\section*{TELERADIO ELECTRONICS}

8073719

\section*{LAWSDN BRAND NEW TELEVISION TUBES}
\(12^{*}\) ©4.10.0
\(14^{*}\) E4.19.0
17" 65.19 .0
\(19^{\circ} \quad 6.19 .0\)
\(21^{\prime \prime}\) E8. 5.0
\(23^{\circ}\) 69.15.0
19* Panorama E8.10.0 23* Panorama Ell.10.0 \(19^{\circ}\) Twin Panel K9.17.6
\(23^{\circ}\) Twin Panel \(£ 12.15 .0\)
Carriage and insurance 12"-19"-1216 \(21 "-23 *-1510\)

The continually increasing demand for tubes of the very highest performance and reliability is nors being met by the nero Lateson" Century 99" range of C.R.T.s.
"Century 99" are absolutely brand nerv tubes throughout manufactured by Britain's largest C.R.T manufacturers. They are guarameed so give absolutely superb performance with needle sharp definition. Screens
of the very latest type giving maximum Contrast and Light output; zogesher with high reliability and very long lije.
"Century 99 " are a complete range of rubes in all sizes for all British sets manufactured 1947-1970. Complete fitting instructions are supplied with 2 YEARB FULL REPLAOEMENT GUARANTEE


\section*{LAWSON TUBES}

18 ChURCHDOWN ROAD MALVERN, WORCS.

\section*{OSMABET LTD.}

WE MAKE TRANGFORMERG AMONGGT OTHER THINGB


 BAOO wat to order.
MANS TRANSFOBMERS. Prim 200/240 F a.c. TX1, 125-0-423 V









 HEATER TRANFORMERS PTIm 200/ 40


 0.75 A O 2 2/8 ench
 50 watt (KTB8 etc.) \(135 /-; 100\) watt \(225 /-\); suto matching W.W. IINTITON CIBCUIT tran wo spec \(50 /-\) plus \(4 / 8\) p.p.

any bize apool of magnetle tape, new boxed \(42 / 8 \mathrm{p} . \mathrm{p}\). \(3 / \mathrm{p}\).
FLUORT LOW VOLTAGE LIGHTING
 13 watt, 851 -: less difuser, 18 ins. 15 watt, \(70 /=\) tubes at \(150 /-\), for single 20 watt tube \(100 /\) - plus

CONDENSERS. Electrolytice, \(1000 \mathrm{mld} 25 \mathrm{~F}, 4 / 8 ; 2500 \mathrm{mfd}\) 450 . \(5 /=1100 \times 200 \mathrm{mld} 350 \mathrm{v}, 7 / 6 ; 60 \times 100 \mathrm{mpd} 4507 \mathrm{~F} / 6\). LOUDSPEAKERS. Now boxed, famous makes 25 watt \(107 /\)-;
 LOUDSPEAKRE, Kx-equip.
10/- plus \(\% / 0\) min. cerriage.
S.A.E. ALL ENOUIRIES PLEASE. MAIL OROER ONLY 46 KENILWORTH ROAD, EDGWARE, MIDDX. HAS \(8 Y G\).

Tel: 01-9589314
WW-104 FOR FURTHER DETAILS

\section*{AMATRONIX LTID}

ALL GOODS MINT AND QUARANTEED
\begin{tabular}{llllll} 
2N706 & \(2 / 7\) & 2SB187 & \(2 /-\) & BF224 & \(5 /-\) \\
2N2926G & \(2 / 6\) & AD161/2 12/- & BF225 & \(5 /-\) \\
2N3702 & \(3 /-\) & AF239 & \(10 /-\) & BFY51 & \(4 / 6\) \\
2N3704 & \(3 / 6\) & B-5000G11/3 & I844 & \(1 / 4\) \\
2N3707 & \(3 / 6\) & BD121 & \(18 /-\) & MC140 & \(4 /-\) \\
2N3794 & \(3 /-\) & BD145 & \(50 /-\) & OA90 & \(1 / 3\) \\
2N3819 & \(7 / 6\) & BC107 & \(3 /-\) & SF115 & \(3 /-\) \\
2N3983 & \(6 / 6\) & BC168 & \(2 / 3\) & T1407 & \(6 / 6\) \\
2N4058 & \(4 /-\) & BC169 & \(2 / 6\) & 40468A & \(7 / 6\) \\
2N4284 & \(3 /-\) & BF178 & \(9 /-\) & CA3020 & \(28 /-\) \\
2N4289 & \(3 /-\) & BF196 & \(5 /-\) & TAB101 21/- \\
2N4291 & \(3 /-\) & BF167 & \(5 / 3\) & MEM564C \\
& & & & & \(16 /-\)
\end{tabular}

\section*{CERAMIC I.F. RESONATORS}

Tailor-make 455 kHz selectivity to your own needs with new Brush Clevite Identical adding fixed capacitors. Resonators Type TF04-442, 10/- each, four for \(30 /-\), with brief data and hints on use.
```

SPECIAL OFFER (Closes July 31) CA3020 l.c. amp., with data, 25/AF239 low-nolse TV head amp. translstor, 7/6.
B-5000@ hl-gain 25 W npn Si, 10 /2N3819 Junctlon FET, 7/-

```

MINI MAINS TRANSFORMERS \(30 \times 30 \times\) NEW! MT7, \(7-0.7 \mathrm{~V}, 120 \mathrm{~mA}, 13 / 6\). MT9, \(9-0-9 \mathrm{~V}\) \(80 \mathrm{~mA}, 12 / 6\). MT12, \(12-0-12 \mathrm{~V}, 50 \mathrm{~mA}, 13 / 6\). All normal mains primarles.

\footnotetext{
MAIL ORDER ONLY. CASH WITH ORDER. ORDERS OVER 10/- U.K. POST FREE. DISCOUNTS: \(10 \%\) on orders over \(£ 3.15 \%\) over \(£ 10\).
396 SELSDON ROAD, SOUTEI CRDIDON, SURREV, CR2 DIDE
}

\section*{Inde}

\section*{INDEX TO ADVERTISERS \\ Appointments Vacant Advertisements appear on pages 89-102}
Page A1 Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Acoustical Mfg. Co. Ltd. . . . . . . . . . . . . . . . . . . . . . 41
Adcola Products Ltd. Cover iii
A. H. Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Advance Electronics Lid. . . . . . . . . . . . . . . . . . . . . 11
Altec Lancing International . . . . . . . . . . . . . . . . . . 38
Amtronix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Anders Electronics Ltd. . . . . . . . . . . . . . . . . . . . . . . 20, 34
A.P.I. Electronics. . . . . . . . . . . . . . . . . . . . . . . . . . 16
Associated Automation Lid..
Associated Elec. Eng. Ltd.
Ates Electronics Ltd.
Audix, B. B., Lid..
2
.......................... . . . . 30

Bantex Ltd..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Barnet Factors Lid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Barrett, V. N.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Batey, W., \& Co. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Bentley Acoustical Corporation Ltd.. . . . . . . . . . . . 72
Bentley K. J. \& Partners. . . . . . . . . . . . . . . . . . . . . . 103
B.I.E.T.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bi-Pak Semiconductors. . . . . . . . . . . . . . . . . . . . . . . 84
Bi-Pre-Pak Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Black, J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103, 106
Bosch Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Bowthorpe-Hellerman Ltd. . . . . . . . . . . . . . . . . . . . 6, 16
Brooklands Plating Co. Ltd...................... . . . . 107
Brown, S. G., Ltd. .
Bulgin, A. F., \& Co. Ltd.. . . . . . . . . . . . . . . . . . 49
Butterworth \& Co. (Pub.) Ltd........ . . . . . . . . . . . 103
Carr Fastener Co. Lid. . . . . . . . . . . . . . . . . . . . . . 46
Carston Electronics Ltd.......... . . . . . . . . . . . . . . 28
Cesar Products Ltd. (Yukan). . . . . . . . . . . . . . . . . 103
Chiltmead Lid...................................... . . 73, 104
Clarke, David, Co. Messrs........... . . . . . . . . . . 78
Computer Training Products..................... . . . 30
Daystrom Lid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Deimos Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Diathane Ltd.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Diotran Ltd.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82, 104
Drake Transformers Lid. 33
Dynamco Ltd. ..... 10
E.B. Instruments ..... 107
Electronic Brokers ..... \(60,61,106\)
Electronics (Croydon) Ltd. ..... 59
Electrosil Lid.Electrovalue.
Electro-Tech Sales. ..... 5648
Electro-Winds Lid. ..... 58
English Electric Valve Co. Lid.. ..... 3,5, 7, 9
Erie Electronics Lid.. ..... 25
Page
Radio \& TV Components Lid. ..... 65
Radio Components Specialists. ..... 107
Radio Exchange Co ..... 104
Radiospares Ltd. . ..... 82
Ralfe, P. F. ..... 85
Rank Audio Visual Lid. ..... 24
R.E.L. Equipment \& Components Lid. ..... 105
Reslo Mikes. . ..... 14
R.S.C. Hi-Fi Centres Ltd. . ..... 75
R.S.T. Valves. ..... 76
Samsons (Electronics) Ltd. ..... 74
Sankyo Seiki Mfg. Co. Ltd. ..... 39
Service Trading Co ..... 78,79
Servo \& Electronic Sales Lid. ..... 68
Sinclair Radionics Lid.. ..... 51,52,53
S.M.E. Ltd. .19
S.P. Loudspeakers, Messrs. ..... 103
S.T.C. Mobile Radio Telephone. . ..... Cover ii
Smith, G. W. (Radio), Ltd. . ..... \(.70,71\)
Smith, H. L., Co. Ltd. ..... 20
Smith, J., Ltd. ..... 32
S.N.S. Communications Lid. ..... 26,54
Solartron Electronic Group Lid. ..... 45, 47
Special Products Ltd. ..... 55
Starman Tapes. ..... 103
Stephens Electronics. ..... 86
Sugden, J. E. . ..... 55
Sutton Electronics. ..... 106
Teclare Lid. . . ..... 103
Tektronix Lid. ..... 36
Telequipment Lid. ..... 42
Teleradio, The, Co. (Edmonton) Lid. ..... 107
Telford Products Lid ..... 106
Teonex Ltd. ..... 24
Thorn Radio Valves \& Tubes Ltd.Tinsley, H. .44
Trio Corporation ..... 50
Turner, E., Electrical Insts. Ltd. ..... 32
Universal. . ..... 82
University of Leeds ..... 58
Valradio Lid. ..... \(.20,26\)
Vitality Bulbs Ltd ..... 10
Vitavox Ltd. ..... 64
Vortexion Lid.
107
Watts, Cecil E.s Ltd..
23
Wayne Kerr, The, Co. Ltd. ..... 23
Webber, R. A., Ltd. ..... 30
Wel Components Ltd.West Hyde Developments Lid.103
West London Direct Supplies. ..... 82
Wilkinson, L. (Croydon), Ltd. ..... 64
Winter Trading Co. Ltd.3, 88


For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
\(\star\) THREE DAY REPAIR SERVICE \(\star\) INTERCHANGEABLE BITS—STOCK ITEMS \(\star\) SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.
ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

\section*{4}

No. 107. GENERAL ASSEMBLY TYPE
Fill in the coupon to get your copy of our latest brochure:

\section*{ADCOLA PRODUCTS LTD}
(Dept. H) Adcola House, Gauden Rd., London, 8 W4 Tel. 01-822 0291/3 Tclegrams : Soljoint, London, Tclex Talox: Adeola, London 21851


Please rush me a copy of your latest brochure:

NAME
COMPANY
ADDRESS

\section*{The worlds' industry uses a mile of Ersin Multicore solder every... 3minutes? 3hours? 3days?}

The answer is every 3 minutes!
A mile of Ersin Multicore Solder is used every 3 minutes during normal working hours. That shows how the world's leading electronic manufacturers rely on Ersin Multicore 5 core Solder for thousand upon thousand of fast, economic and consistently reliable joints.

If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investIg ate the wide range of specifications, which are available.

Besides achieving better joints always-your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

EXTRUSOL The first oxide free high purity extruded solder for printed circuit soldering machines, baths and pots, is now available to all international specifications, together with a complete range of soldering fluxes and chemicals.

Should you have any soldering problems, or require details on any of our products, please write on your company's note paper to:
MULTICORE SOLDERS LTD., HEMEL HEMPSTEAD, HERTS.
Tel. No. Hemel Hemptead, 3636, Telex: 82363.


\section*{EXTRUSOL}


Extrusol high purity extruded solder, available in 1 lb . and 2 lb . bars, and also Extrusol pellets, for printed circuit soldering machines, pots and baths polythene protected

\section*{GALLON CONTAINERS}

All liquid chemicals and fluxes supplied in
1 gallon polythene 'easy pouring
conta \(n\) -
ers, with
carrying handle.

\section*{AEROSOLS}

PC. 21 A, PC. 10 A . and PC. 52 available in 16 oz , aerosol sprays.

\section*{7lb.REELS}

Available in standard wire gauges from \(10-22\) swg., on strong plastic reels.


\section*{SOLDER TAPE, RINGS, PREFORMS, WASHERS, DISCS\&PELLETS}

Made in a wide range solid or cored alloys. Tape, rings and pellets are the most economical to use.


\section*{1lb.REELS}

Available in all
standard wire
gauges from
10-34 swg., on
unbreakable plastic
reels. (From 24-34
swg. only \(\frac{1}{2} \mathrm{lb}\). is
wound on one reel)


> THE FNEST CORED SOLDER IN THE WORLD```


[^0]:    Free demonstration kit
    Please send me your free Mnemopolymerics Demonstration Kit - plus full details of the complete Helashrink range.
    Name
    $\qquad$
    ww 7/70
    WORLD LEADERS IN CABLE ACCESSORIES
    TELLERMANN ELECTRIC A divislon of Bowthorpe-Mellermann Lid

    Gatwick Road, Crawley, Sussex. Tel : Crawley 28888 A member of the Bowthorpe Holdings Group of Companies

[^1]:    LIGHT SOLDERING DEVELOPMENTS LTD.

[^2]:    Sankyo (Europb) Export und Import G.m.b.H.: 4 Duisseldorf. Bahnstraße 45.47, W. Germany.
    Sankyo Seiki Mfg. Co., Ltd.:
    17-2, Shinbashi l-chome, Minato-ku, Tokyo 105. Japan American Sankyo Corp.:

[^3]:    I.P.C. Electrical-Electronic Press Ltd Managing Director: Kenneth Tett Editorial Director: George H. Mansell Adverisement Director: George Fowkes Dorset House, Stamford Street, London, SE 1 C I.P.C. Business Press Ltd, 1970

    Bricf extracts or comments are allowed provided acknowledgement to the journal is given.

[^4]:    The Solartron Electronic Group Ltd Fernborough Hampshire England Telephone 44433

[^5]:    -Royal Radar Establishment.

[^6]:    - City University, London

[^7]:    - Zissos and Copperwhite ${ }^{2}$ have considered the problem of realising a logic function with gates when the complements of the inputs are not available, and have shown that to design a circuit which is minimal when the complements are available, and add inverters, does not always lead to the most economical solution. Although, in general, their results are applicable to the situation considered here, a systematic procedure for applying them to multiple-output networks has not been worked out, and no attempt has been made to make use of them here.

[^8]:    * Since 1953 it has been obligatory to fit suppressors on all new cars and it is an offence to remove them. ED.

[^9]:    Whare postage is not stated then orders
    over $\mathbb{S}$ are poit fres. Below 65 add $2 / 9$.
    Semi-conductors add $1 /-$ posk Over $\& 1$
    post free. S.A.E. with enquiries please.

