Vireless Vorld July 1970 3s 6d

reo pre-amplifier using i.cs ime Delays

STC is proud to announce that its entire range of Star equipment has received the award of the British Council of Industrial Design. Elegant and functional in design the Star Mobile Radiotelephone and Starphone Pocket Radiotelephone are milestones in the design of Radiotelephone products.

an associate of

The rapid acceptance of Star Mobile Radiotelephones in the UK and in over 30 countries throughout the world is a forceful reminder of the importance of design in worldwide marketing success.

For further information : STC Mobile Radiotelephones Limited, New Southgate, London N.11. Telephone : 01-368 1200. Telex :261912.

Mobile Radiotelephones

WW-001 FOR FURTHER DETAILS

Wireless World, July 1970

Don't doubt your valves, check them with an AvoVCM163

The Avo VCM163 Valve Characteristic Meter is one of the most versatile valve testers ever developed. With facilities for testing valves with as many as 13 pin connections (and 2 top caps), plus recently introduced types such as nuvistors and compactrons, the VCM163 provides both rapid fault diagnosis and comprehensive static/dynamic characteristics data. Nevertheless, it is even simpler to use than previous models – no backing-off is required. A separate meter displays mutual conductance values continuously during testing, and there is pushbutton

monitoring of screen parameters. The full range of h.t. voltage–12.6V to 400V – can be applied to anode and screen, heater voltage is adjustable in 0.1V steps from 0 to 119.9 and grid voltage may be varied continuously from 0 to 100V (calibrated). Get complete information about the VCM163 from your local dealer or Avo Ltd, Avocet House, Dover, Kent. Telephone Dover 2626. Telex 96283.

Remember it's not only Amps, Volts and Ohms at Avo now.

WW-006 FOR FURTHER DETAILS

SHRINK YOUR SWITCHING PROBLEMS...

with 4 new improved miniature relays from **Associated Automation**

Mercury Wetted Contact Relay Type EBRM: Height only 10mm for low profile pcb mounting; 20mW bi-stable, 40mW singleside-stable; operate time Ims nominal at max. coil power; life over 25 x 10⁹ operations at rated load of 100VA; bounce-free for both Form C or D contact resistance.

Dry Reed Relay Type ERMC/D/E: Miniature open, shielded and encapsulated styles with up to 5 poles, offering all the advantages of reeds at low cost; standard relays operate from 35mW depending on contact arrangement; electrostatic shielding, high voltage insulation and low thermal types can be specified; life expectancy 10 x 10⁶ operations at full load, contact rating 10VA.

Hermetically Sealed Relay Type TF: All-welded, T.O.5 transistor can envelope giving high isolation switching with high shock and vibration characteristics; full CPL approval for standard versions; switching capability 1 amp at 28V D.C. to low level; single and double pole; operate powers down to 40mW.

Enclosed Industrial Relay Series 20: Wide range of coils, contact arrangements and mountings; up to 6 poles, up to 5 amp 100W; life over 10 x 10⁷ operations; single or twin contacts in wide range of materials; low-priced, readily available, easy to apply.

All these illustrations are full size.

WW-007 FOR FURTHER DETAILS

www.americanradiohistory.com

Whatever your switching problem – we can reduce it to size. These new additions increase an already comprehensive range of switches and relays for all communication and control purposes. All competitively priced and backed by Britain's most outstanding applications engineering service. Try us ... for size.

Please send me your fully illustrated literature on (tick box applicable) 1 2 3 4 NAME COMPANY ADDRESS A member of the G.E.C. Group of Companies WW 6/70	ELECT 70, DU LOND	SSOCIATED AUTOMATION LIMITED, ROMAGNETICS, DDEN HILL LANE, DN, N.W.10. Tel: 01-459 8070. turers of Clare Ellicht and Ellicht Relays
NAME		
COMPANY	1	2 3 4
ADDRESS	NAME	
	COMP	ANY
A member of the G.E.C. Group of Companies WW 6/70	ADDRI	SS
A member of the G.E.C. Group of Companies WW 6/70		
A member of the G.E.C. Group of Companies WW 6/70		
	A membe	r of the G.E.C. Group of Companies WW 6/70

Voltage stabilisers and reference tubes in four easy pages.

Easy-to-check tables of performance facts and figures. Clearly laid-out dimension diagrams. An index of replacement equivalents containing over 80 items.

They're all here in EEV's four-page data digest on voltage stabilisers and voltage reference tubes.

Send for your copy now. Then, when you're looking for reliability plus extreme economy, you'll know where to find it.

English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone: 0245 61777. Telex: 99103. Grams: Enelectico Chelmsford.

and reference tubes.

 Name & Position

 Company

 Address

 Tel: exchange or code

 Number
 Ext.

 ENGLISH ELECTRIC VALVE CO LTD

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable—100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30/60\Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. 100 volt balanced line output.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.S.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms-15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100K ohms.

THE 100 WATT MIXER AMPLI-

FIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic. 1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms-15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of 30 c/s-20 Kc/s ± 1 dB. Less than 0.2% distortion at 1 Kc/s. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output 100-120 V or 200-240 V. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to 20,000 cps within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced input and HiZ gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

VORTEXION LIMITED, 257-263 The Broadway, Wimbledon, S.W.19

Telephone: 01-542 2814 and 01-542 6242/3/4

Telegrams: "Vortexion, London S.W.19"

ww-009 FOR FURTHER DETAILS

EEV thyratrons give greater accuracy and better performance in three major nuclear physics applications:

Linear accelerators

EEV thyratrons can withstand peak inverse voltages up to 20 kV following a pulse.

 Their operation is unaffected by small reservoir voltage variations.
 EEV thyratrons need no servicing and give trouble-free operation in oil-filled equipment. Particle accelerators

EEV thyratrons ensure reliable firing. They give nano-second accuracy.

 There are very few missing pulses.
 They require no external gas supply.
 Because they have an annular current flow EEV thyratrons can switch peak currents very rapidly without risk of arc extinction. When fitted into coaxial housings rates of rise of current up to 100kA/µsec are possible.

Spark chambers

Long life Is important for spark chamber operation - and EEV thyratrons have given 10,000 hours service in some cases.
 Spurious firIng is virtually eliminated.
 Jitter is kept as low as 1 ns.
 They make possible repetition rates of up to 50 kHz due to very rapid deionisation characteristics.
 EEV thyratrons operate over a wlde range of H.T. voltages at currents up to 10 kA without change in characteristics - so drive units may be used with different chambers.

The low trigger voltage means that simple firing circuits are possible.

Chelmsfor	d, Essex,	Englan	d.	
Telephone	e: 0245 61	777 Te	lex: 99	103.
Grams: Er	electico (Chelms	ford.	
de la				

English Electric Valve Co Ltd,

00
000
-

To: English Electric Valve C	o Ltd <mark>, Chelmsford, Essex</mark> .	
I am interested in thyratrons	for	(application
Name & Position		
Company		
Address		
	Concernant and the second second	
Tel: exchange or code		No Contractor
Number	Extension	
ENGLISH ELECTRI	C VALVE CO LTD	But stall

WW----010 FOR FURTHER DETAILS

How to be a memomemopolymericist

4/11

0

0

0

All you need to shrink your cable binding and sleeving costs – is a match! Our demonstration kit contains two types of wired terminals and Helashrink® heatshrinkable sleeves. You simply add heat for a tight shrink-fit or shroud. In seconds – and at very low cost. Post coupon and see.

Free demonstration kit	
Please send me your free Mnemopolymerics Demonstration Kit – plus full details of the complete Helashrink range.	
Name	1
Company	-
Address	
ww.1/20	St
WORLD LEADERS IN CABLE ACCESSORIES ELLERMANN ELECTRIC A division of Bowthorpe-Hellermann Ltd	an
Gatwick Road, Crawley, Sussex. Tel: Crawley 28888 A member of the Bowthorpe Holdings Group of Compenies	

*Mnemopolymerics – the science of heat-shrinkable polymers with a built-in memory – perfected after many years of intensive research and development by Hellermann-Electric. Helashrink products include:

Helashrink Electrovin® – sleeves, markers and tubing in PVC – designed to cut the cost of cable harness sleeving, terminal insulation, plug shrouding, identification, insulation of condenser and transistor cans, and general mechanical protection. Also for creating multicore cables, harness work and bus-bar protection. Two grades: Thin-wall, shrinking at 70°C; Standard-wall, shrinking at 135° to 150°C: Both self-extinguishing. Good storage stability.

Helashrink Insultite® – sleeves, markers, tubing and end caps in a range of irradiated and non-irradiated materials designed to provide the right product for the job – at the right price. Materials can be selected for flexibility, rigidity, shock and vibration protection, resistance to contaminants over a range of operating temperatures from -55°C to 300°C.

You can view X-ray pictures in daylight using only a 5 micro - Röntgen dosage

What would it mean to you? An X-ray picture that is so bright you can view it in direct daylight as it happens. EEV's Image Isocon is now being used in X-ray equipment for this very purpose – reducing X-ray dosages to as little as 5 micro-Röntgens, allowing longer exposure times for 'live' X-ray picture study, saving time by eliminating the need for operators' eyes to become 'dark-adapted'. The Image Isocon is so sensitive that it can convert a very low dosage-level picture to a bright, clear picture on a cathode-ray tube. This in turn means simple direct-from-screen photography.

The Image Isocon is another product of EEV advanced tube technology. For complete data, please post the coupon.

English Electric Valve Co Ltd Chelmsford, Essex, England. Telephone: 0245 61777. Telex:99103. Grams: Enelectico Chelmsford.

with the EEV Image Isocon

To: English Electric Valve Co Ltd Chelmsford, Essex, England. Send for full details of EEV Image Isocon range.

Name & position		
Company		
Address	and the second se	NAME AND ADDRESS OF
Tel. exchange or co	de	
Number	Ext.	
ENGLISH ELE	ECTRIC VALVE C	COLTD

WW-012 FOR FURTHER DETAILS

Headsets have come a long way since the old days of **"2 LO** calling"

a8

in the forefront then in the forefront now... S G BROWN present superlative examples from the CURRENT **RANGE OF FINE AUDIO** EQUIPMENT

Why are you wise to choose headphones by Brown? You invest in half a century's experience! From radio's cradle days – with "2LO calling" cat's whisker and "CANADA" HA10 Series Paragons of high performance, these pro-fessional studio type headsets bring the orchestra into your home. Circum-surel earpieces, with liquid seal earpads defeat outside noise. Highly commended for recording studios; instrument/ musical training and all personal listening applications. Frequency responses from 20 - 20,000 Hz from (20, 1s, -d crystal – S G Brown have led the way. More than ever today they supply the need for the newest and best in head set design. Send today for further details

ENVOY 4B600 Series

ENVOY 4B600 Series' Lightweight and robust the ENVOY is built to withstand vigorous uscage yet elegantly designed to suit the most discerning user. Specially recommended for Air Traffic Controllers, Air Crew and Teachers in Language Laboratory applications.

4C100 Series* Military Lightweight Boom Micro phone and Headset assembly. Designed to meet NATO Standards. Widely used in Military and Civil Applications.

* Prices on application

from £20. 1s. -d

HAWKER SIDDELEY COMMUNICATIONS

S. G. BROWN LTD., KING GEORGE'S AVENUE, WATFORD, HERTFORDSHIRE TEL: WATFORD 23301 TELEX 23412 TELEGRAMS RADIOLINK WATFORD Hawker Siddeley Group supplies mechanical, electrical and aerospace equipment with world-wide sales and service.

WW-013 FOR FURTHER DETAILS

THERMAL STRIPPERS

The ADAMIN thermal wire strippers allow one-handed operation, using a simple tweezer action.

They strip coverings of up to about $\frac{5}{32}$ in dia. with minimum risk of damaging the conductors.

FOR **PTFE** INSULATION FOR **PVC** INSULATION

use Model PTFE (illustrated), available for 24 volts only.

and similar low-temperature materials use Model PVC, available for 12 or 24 volts.

LITESOLD TRANSFORMERS permit safe operation from any mains power point. Free details of the whole wide range of ADAMIN, LITESOLD and LITESTAT soldering equipment in brochure A/5.

LIGHT SOLDERING DEVELOPMENTS LTD. 28 Sydenham Road, Croyd Tel: 01-688 8589 & 4559 28 Sydenham Road, Croydon, CR9 2LL

WW-014 FOR FURTHER DETAILS

EEV flash flash flash tubes make light of the toughest jobs

For pumping lasers. For strobing. For photography. For any application in which quality, reliability and performance are vital, that's where you'll find EEV flash tubes.

There's almost certainly a flash tube in the EEV range that has the right characteristics for your application – and if there isn't we can probably make one !

EEV flash tubes have extra heavy-duty electrodes. They give you long life, with up to 10⁶ flashes, and they give you high conversion efficiency. Our air-cooled xenon flash tubes have a wide range of input energy levels and can operate at high repetition rates.

Isn't it time you had the full facts about EEV flash tubes? Just post the coupon.

English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone: 0245 61777 Telex: 99103 Grams: Enelectico Chelmsford

				Typical	operating coi	nditions		To: English Electric Valve Co Ltd, Chelmsford, Essex, England
Түре	Energy input per flash max. (J)	Arc length (in.)	Bore diameter (mm)	Voltage (kV)	Series inductance (µH)	*Flash rate	Trigger voltage (kV)	Send for full data on EEV flash tubes. I am interested in (application)
XL615/4/3	400	3	4.0	2.5	400	1 per 30 sec.	12-16	Name Position
XL615/7/3	600	3	7.0	2.5	400	1 per 15 sec.	12-16	Company
XL615/9/4	1500	4	9.0	2.5	400	1 per 30 sec.	16-20	
XL615/10/5.5	3500	5.5	10.0	2.5	400	1 per 60 sec.	16-20	Address
XL615/10/6.5	5000	6.5	10.0	2,5	800	1 per 2 min.	20-25	
XL615/10/12	9000	12	10.0	2.5	800	1 per 2 min.	25	Tel, exchange or code
XL615/13/6.5	10000	6.5	13.0	2.5	800	1 per 2 min.	25	Number Ext.
XL615/13/12	18000	12	13.0	2.5	800	1 per 2 min. nput levels (ai		ENGLISH ELECTRIC VALVE COLTD

You will find it in this new Vitality T-1 Range.

Never have such small lamps been so reliable, so competitively priced. With a diameter of only 3mm they are capable of up to 200,000 hours of life at rated voltage and come either wire ended or based to fit available holders. With wide application in peripheral equipment for the computer industry, this new range is also providing truly reliable integral lighting of instruments and is much used in equipment where space is minimal. Folder NPR details the whole range.

VITALITY BULBS

Vitality Bulbs Limited, a General Instrument Electro-Optical Products Group company.

BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. Tel: 0284-2071, Telex 81295. WW-016 FOR FURTHER DETAILS

Save yourself time by talking about your applications (PCM, TV, pulse, HF, etc) to our specialist engineers. If we can't meet your requirements from our own extensive range, then we'll tell you who can. Call Chertsey 2636,

The scope specialists

World Wide Sales & Service

DYNAMCO

WW-017 FOR FURTHER DETAILS

DMM2 Digital Multimeter Stability LSI Reliability Versatility

Measures :-

DC & AC Volts 20CmV-1000VFS with stabilized zero DC & AC Current 200µAFS-External shunts extend ranges to 2A. Ohms. 200Ω-2MΩ=S Operates from AC Supply. External 12V DC or optional rechargeable battery pack.

Dual Slope Integration Single LSI chip point and storage display provides completely stable operation.

vw.american

performs all counting and storage functions. Full overload protection.

ADVANCE.

I WOULD LIKE A DEMONSTRATION A COPY OF THE DMM2'LEAFLET

ADVANCE LECTRONICS

INSTRUMENTS DIVISION SALES OFFICE

Raynham Road, Bishop's Stortford, Herts. Telephane: 0279 55155.

TELEPHONE NJ.

PO

iohistory.com

COMP

ADDRESS

AWWD

WW-018 FOR FURTHER DETAILS

NAME POSITION

INSTRUMENTS

Now hear this!

Goldring and Toa have a lot of valuable things to tell you on P.A.

Welcome the news that Goldring and Toa can offer you the most advanced range of P.A. systems. Nothing but the best-in high performance products ... P.A. Amplifiers-microphones-horn speakersmegaphones-power intercoms-meeting amplifiers-background music players, etc.

Goldring (e)

Sole UK distributors of modern P.A. systems by Toa Electric Co., Ltd, Goldring Manufacturing Co. (Great Britain) Ltd. 486/488 High Road, Leytonstone, London E.11. Write or Telephone 01-539 8343 For Full Details

.....

Civil

Production

Automobile

Aeronautical

Plastics

Building Draughtsmanship

> B.Sc. City & Guilds

Gen. Cert. of Education

etc., etc.

and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio & Electronics Courses, administered by our Specialist Electronics Training Division; explains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. Send for your copy of "ENGINEERING OPPOR-TUNITIES" today-FREE.

POST COUPON NOW! Please send me your FREE 164-page "ENGINEERING OPPORTUNITIES" (Write if you prefer not to cut page) NAME ADDRESS	Please send me your FREE 164-page "ENGINEERING OPPORTUNITIES" (Write if you prefer not to cut page) NAME	Basic Practical and Theor- etic Courses for beginners in Radio, T.Y., Electronics, etc. A.M.I.E.R.E. City & Guilds Radio Amateur's Exam. R.T.E.B. Certificate P.M.G. Certificate Practical Radio Radio & Television Servicing Practical Electronics Electronics Engineering Automation	The specialist Elec- tronics Division of B.I.E.T. NOW offers you a real lab- oratory training at home with practical equipment. Ask for details.	ORTUNITIES
-	ADDRESS	POST COUP	ON NOW!	
		"ENGINEERING O	PPORTUNITIES"	U 7

OF ENGINEERING TECHNOLOGY (Dept. 303B), Aldermaston Court, Aldermaston, Berkshire

BRITISH INSTITUTE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

STANDARD RESISTANCE BOXES * LABORATORY QUALITY EXCEPTIONALLY STABLE, SUPPLIED WITH INDIVIDUAL TEST CERTIFICATES SWITCHED 'MEGOHM' RESISTANCE PLUG-IN MEGDHM DECADE **STANDARD MEGOHMS BOX P4002 BOX P400** P401 $1M\Omega$ +0.05% £52 4 decades 0.01-0.1-1-10MΩ ±0.05%. Range 0-1000M 2 +0.2%. $1M\Omega$ +0.02% £60 P4010 All decades and sweeping contacts are +0.02% In $100M\Omega$ steps £190 $10M\Omega$ £60 P4020 accessible through separate terminals. £75 $100M\Omega$ P4061 +0.02%£98 AVAILABLE EX STOCK FROM: Z & I AERO SERVICES LTD,

Z & I AERO SERVICES LTD, 44A, WESTBOURNE GROVE, LONDON, W.2 Tel: 01-727 5641/2/3

WW-021 FOR FURTHER DETAILS

www.americanradiohistory.com

· · 3038

IF YOU'RE SENSITIVE **TO SOUND** you'll be receptive to Reslo

Famed for a wide range of bi-directional, cardioid and radio microphones, Reslo also produce amplifiers, loudspeakers, P.A. systems and accessories, all precision-engineered to the highest acoustical-performance standards. Sounds good? Sounds great - with Reslo. Clip the coupon and we'll tell you more . .

Octave bandwidth V.T.O's covering the frequency spectrum from 10 MHz to 5.2 GHz with power outputs ranging from 20-750 mw.

Narrow band V.T.O's and mechanically tuned oscillators are also available-or linearised and digitally tuned sources for special applications.

Write or 'phone for the new Omni Spectra Arizona Division Catalogue.

OSM MINATURE OSSM SUBMINATURE

Coaxial Connectors and Components

Type UD1

Modern-style high-

internal 'anti-pop' filter.

Please send me

your free brochure

giving full details.

Type RBT & RBTS

sound reinforcement or

Miniature ribbon

recording.

Type SL1 **Omni-directional**

Omni

Spectra, Inc.

TRANSIST

omni Spectro

MODEL 287745 FREQ. 2.6-5 SERIAL 168

OSCILLA

VARACTOR

Morganite 0,75" Cermet Trimming Potentiometers are breaking all our sales records at the moment.

And we can't say we're surprised.

We designed our models 82, 84 and 86 with a power rating of 0.33W at 70°C. We manufactured them to give a tolerance of $\pm 10\%$ under rough, tough industrial conditions. We packed them into that tight little

Record Trimmer

0,75" construction. And we trimmed down the price tag to match.

Result, they sell like hot cakes. Ask us for samples for evaluation or development projects, and you'll see for yourself.

What you won't see, though, is the work that's put into our record trimmers at our new, expanded cermet production set-up. The examination of components at 50-to-500 times life size. The survival-of-the-fittest electrical testing. And all the crucial assembly stages in between.

All you'll see is the solid, high reliability that you're entitled to expect from each and every Morganite potentiometer..The reliability that makes us a leader in the field of cermet technology.

Don't settle for less.

MORGANITE RESISTORS LIMITED

Bede Industrial Estate, Jarrow, County Durham.Telephone : Jarrow 897771Telex : 53353

Morgan

WW-028 FOR FURTHER DETAILS

ASSOCIATED ELECTRONIC ENGINEERS LTD. DALSTON GARDENS, STANMORE, MIDDLESEX. HA7-1BL TELEPHONE 01-204 2125

This unique **"BRAUN"** GLOBAL RECEIVER

13 wavebands (FM — 2MW — 2LW 8SW including MARINE) GOLD PLATED CONTACTS ON RANGE SELECTOR INDEPENDENT TUNING OF AM and FM BANDWIDTH ADJUSTABLE TUNING DEVIATION LESS THAN 1% FIELD INTENSITY INDICATOR BEAT FREQUENCY OSCILLATOR FOR TELEGRAPHY MANUAL GAIN CONTROL AS WELL AS AVC ELECTRONIC BANDSPREAD ON SHORT WAVEBANDS PHONO TAPE SOCKET FOR DIRECT RECORDING FULLY TRANSISTORISED, NO WARM-UP PERIOD

ACCESSORIES AVAILABLE MAINS UNIT WITH INPUTS: 18 GNS. 6V—12V—24V—90/130V—150V—240V (50 or 60CPS) HEADPHONES 10 GNS.

WRITE FOR DETAILED ILLUSTRATED SPECIFICATIONS TO THE SOLE U.K. DISTRIBUTORS

WINTER HOUSE 95/99 LADBROKE GROVE, LONDON, W.11 Tel. 01-727 1341 AND BRANCHES

WW-030 FOR FURTHER DETAILS

MODEL 2000 PLINTH SYSTEM

The SME model 2000 plinth system is more than a handsome and convenient housing for your turntable and SME precision pick-up arm. It meets the mechanical requirements under which the best performance will be obtained. High-quality workmanship is combined with ease of assembly. The basic unit is finished in selected veneers of teak, straight-grained walnut, or rosewood. A one-piece hinged lid in heavy acrylic is reinforced with a polished stainless-steel trim.

Write for details to: SME LIMITED · STEYNING · SUSSEX · ENGLAND

Motor boards in matching veneers are ready cut and drilled for screwdriver assembly with the appropriate pick-up arm and turntable. An uncut board is also available.

Four-point spring suspension adjustable for height and damping protects the motor board from acoustic feedback and external vibration.

Wireless World, July 1970

WW-032 FOR FURTHER DETAILS

Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

Anders means meters

ANDERS ELECTRONICS LIMITED

48/56 Bayham Place, Bayham Street, London NW1. Tel: 01–387 9092 WW-034 FOR FURTHER DETAILS

[·]vvv--1000 POWER UNITS alzadio Now available with 3 OUTPUTS making these units more versatile for: **PRODUCTION TESTING** SERVICING DEVELOPMENT Type VRU/30/20'- £144.7.0 *OUTPUT 1, 0-30V 20A DC. Will provide accumulator performance from AC mains for production testing and servicing of battery operated equipment. Output continuously variable 0-30V at up to 20A. *OUTPUT 2. 0-70V 10A AC. For the testing and devolopment of low voltage AC equipment. * OUTPUT 3, 0-250V 4A. Continuously variable AC mains supply voltage for SVV testing equipment at various voltages. Send for publication WPU9 VALRADIO LTD. Dept. WPU9, BROWELL'S LANE, FELTHAM, MIDDLESEX, ENGLAND Telephone: 01-890 4242 MM. m WW-033 FOR FURTHER DETAILS Accurate and direct measurement of speed without to moving parts -----------7 for hand use or permanent mounting Ranges and combinations of ranges from 900 to 100,000 r.p.m.

Looking for a wide range oscillator with %output greater than 30 volts %sinewaves from 10Hz to 10MHz %quality squarewaves to 100kHz...plus %four output impedances?

The Marconi TF 1370A gives sinewaves from 10 Hz to 10 MHz, in six decade bands – plus quality squarewave to 100 kHz and four output impedances of 75, 100, 130 and 600 ohms.

Its excellent handleability includes a particularly smooth frequency control. Especially useful is the frequency coverage of 1-10 MHz in one band, which makes the instrument ideal for response testing in the video and lower h.f. bands. Primarily a signal source for measurements and tests on a.f. and video amplifiers and networks, the TF 1370A is ideal for use with transmission lines, filters, attenuators, etc. Price $\pounds 320$. Full details from:

it is!

MARCONI INSTRUMENTS LTD

***Here**

A GEC - Marconi Electronics Company Longacres, St. Albans, Hertfordshire, England. Tel: St. Albans 59292, Telex: 23350

WW-035 FOR FURTHER DETAILS

On Goldring's 850 cartridge, even the price is magnetic.

£6/10/0

Fact : magnetic cartridges are more compatible with transistor amplifiers than crystal cartridges. Fiction : magnetic cartridges are too expensive to warrant use with any but the more

sophisticated units.

Now, there is a magnetic cartridge at a price within easy reach.

The 850 assures you of true tracking, superior sound quality and minimal groove destruction. But unlike most magnetic cartridges, its British. It's made by Goldring !

At £6/10/0, that's really magnetic.

Send for details on the complete range of Goldring Hi Fi Equipment. Goldring Manufacturing Co. (Great Britain) Ltd., 486/488 High Road, Leytonstone, London E.11. Tel: 01-539 8343

WW-036 FOR FURTHER DETAILS

"Studio 80" amplifier

The "Studio 80" Power Amplifier has been produced to high performance standards for Studio and Laboratory applications.

Its proven characteristics puts it in a class beyond anything yet available in power, performance, and price, and is the ultimate in economic functional engineering design - Write for full details of guaranteed performance specification.

POWER OUTPUT:

POWER BANDWIDTH: FREQUENCY RESPONSE:

TOTAL DISTORTION:

POWER SUPPLY:

5 Hz to 35 KHz at 80 W. + 0 dB 20 Hz to 20 KHz.

Max 80W into 8 ohm.

Less than 0.05 at 1 KHz.

SIGNAL TO NOISE RATIO: Better than-95 dB below maximum output. 100/120-200/250 A/C 50-60 Hz.

AUDIX B.B.LIMITED STANSTED ESSEX Tel: STANSTED 3132/3437 (STD 027-971)

WW-037 FOR FURTHER DETAILS www.americanradiohistory.com

WAYNE KERR

A.F. Transformer Ratio-Arm Bridges

Slide-rule LCR Bridge has ten overlapping ranges for rapid 1% measurements of any component, also tolerance and phase angle. Switch selects 1kHz or 100/120Hz operation. 2, 3 and 4-terminal connections

B500

Universal Bridge for 0.1% measurements of any LCR combination from 20 micro-of-ms to 500 gigohms. Source/ detector (1592Hz) operate from a.c. or internal rechargeable battery. Sockets for external 200Hz–50kHz. Display gives units, zeroes and decimal point. Four-terminal connections from Adaptor Q221 for accurate low impecance measurements. B221

Autobalance Capacitance Bridge gives direct readout frcm 0.1pF to 10µF and w II follow a changing value. Comprehensive facilities for 'zero suppression' and comparative measurements. Analog voltage and current outputs. Accuracy 0.25%. Internal 1kHz source, 'detector. A.C. or battery operation. B541C

Autobalance Universal Bridge for continuous 0.1% readout of in-phase and quadrature terms, with analog outputs of both. Backing-off facilities, DVM connections optional BCD outputs. Push-buttons for optimum discrimination up to five figures. Illuminated readout.

Autobalance Component Bridge for immediate readout of resistance, capacitance and shunt loss, inductance and series loss. C and R comparisons from -25% to +25%. Electrolytics tested with d.c. Accuracy 0.25% (R & C), 2% (L). Internal 1kHz source/detector. B421

Autobalance Precision Bridge accurate to 0.01% though simple to operate. It measures virtually any meaningful immittance in any quadrant Automatic compensation for measurement lead impedance. Six-figure discrimination. Analog outputs.

B331

THE WAYNE KERR COMPANY LIMITED NEW MALDEN - SURREY - ENGLAND Telephone 01–942 2202 Cąbles Waynkerr, Malden Telex 2623**33**

V91inSolder

ENTHOVEN offers you Europe's Widest Range

One good reason for soldering with Enthoven – whatever your needs – is the Enthoven range. It gives you a wide choice of high quality products developed for use with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders, selective Fluxes, solder specialities, materials for printed Circuitry and for soldering Aluminium. For complete technical details of Europe's widest range, ask Enthoven Solders Limited, Dominion Buildings, South Place,

London EC2. Telephone 01-628 8030; telex 21457; cables: **ENTHOVEN LONDONEC2**

SOLID SOLDERS

PLUMBERS BARS-CAR BODY FILLERS TINSMITHS STICKS -BLOW PIPE STICKS INGOTS IN A VARIETY OF WEIGHTS WIRE IN ALL GAUGES -1 lb. & 7 lb. REELS

FASHION JEWELLERY CASTING ALLOYS SHEET-RIBBON

Available in a wide range of alloysstandard or custom-made. Certificates of analysis provided.

WW-039 FOR FURTHER DETAILS

the choice in over 50 different countries!

Teonex electronic valves and semi-conductors are supplied all the world over where quality and reliability count.

Teonex offer a comprehensive range of receiving, professional and special quality valves. Whether you require a device to mil specifications for government work or a commercial device for replacement in a television set, Teonex products are equally suitable.

WW-040 FOR FURTHER DETAILS

For technical specifications and price lists, please write to Teonex Limited 2a Westbourne Grove Mews London W.11 · England Cables: Tosuply London W.11.

EXPORT ENQUIRIES ONLY

And how to stop it First, measure it – on the Rank Studio Flutter Meter. The Type 1740 measures accurately the degree of Wow and Flutter on sound recorders and reproducers. For more information write to: RANK FILM

Visual Limited P.O. Box 70 Great West Road Brertford, Middx. Tel 01-568 9222

WW-041 FOR FURTHER DETAILS

Hybrids?

We make them by the million!

That's our Jo*... We gave her seven words and a daisy; and the wall came tumbling down.

ERIE

The wall of silence. Distinct among the major suppliers of hybrid IC's and passive networks, we at Erie soft-pedalled our publicity. We had to. Because keen commercial minds in UK and Continental companies snapped at the fact that Erie hybrids give complete circuit functions in less time, at less cost, than if you select, buy and assemble your own discrete components... and give you a hefty bonus in increased reliability. So our order books were full. And stayed full; even with output rates of 2.5 million units a year.

But now we are coming to you with all this experience. Because now we can give you the only kind of service our reputation will permit. Prompt, personal service. With teams of physicists, chemists, microelectronics specialists, waiting to tackle your problem. With an advanced manufacturing capability that will lift output to the multi-million level, raise reliability even higher, make prices even more competitive. A capability backed by a Quality Assurance laboratory approved to BS 9000, and all of Erie's world-wide experience.

ERIE

ELECTRONICS

LIMITED

ERIE

Send for Publication No. 1. It gives you all the facts. Better still, send for an Erie sales

engineer. He will understand your problem.

* Short for Joshua??

ERIE ELECTRONICS LTD., Great Yarmouth, Norfolk. Tel: 0.493 4911. Telex: 97421

Wireless World, July 1970

.... can be heard more and more if you listen in the many Schools, Hospitals, Factories and Hotels where S.N.S. Radio Rack Consoles are providing the music.

Our unique Crystal Controlled Radio Tuners, integrated with our fully transistorised amplifiers, mean that we can provide all the programmes you want, AM or FM - 12 Watts, 40 Watts or 100 Watts RMS - in a console half the height of ordinary racks.

Not only that, you won't find controls to adjust - sorry about that, knob twiddlers - and we all know that means less unnecessary service calls.

It all adds up to a triple saving to you - Size, Service Calls, and Initial Cost.

We also manufacture Radio Microphones and Loudspeaking Intercom Systems. For full details please contact

S.N.S. Communications Ltd., 851 Ringwood Road, Bournemouth Phone: Northbourne 4845

Hall Electric Limited Haltron House, Anglers Lane London, N.W.5. Telephone: 01-485 8531 (10 lines) Telex: 2-2573 Cables : Hallectric, London, N.W.5.

WW-046 FOR FURTHER DETAILS

INTERMODULATION DISTORTION ANALYSER

Residual Distortion below 0.005% ! Internal Generators ! 1 Minute Calibration ! FET Circuitry ! Price £496 !

The IMA Intermodulation Distortion Analyser made it possible for Crown International to produce the World's finest Power Amplifier, the DC300! Now the unique facilities of the IMA are available to you. Your Laboratory or your production line can benefit from 1 minute Inter-Mod measurements. Phone us now for a data sheet, or a demonstration.

Carston Electronics Limited,

71 Oakley Road, Chinnor, Oxon. Tel. Kingston Blount 8561

WW-048 FOR FURTHER DETAILS

All over the 5 continents and the 7 seas Bantex aerials are helping to maintain reliable communications. Day in and day out.

Bantex aerials are selected because of their established reputation for reliability. A reputation earned over many years.

Bantex manufacture all types of marine aerials and for land use they have a range of mobile and base station aerials which operate through all bands and are used by the armed forces, police, taxi networks and industry.

Bantex are best known for glass fibre aerials made by a unique process giving high strength. Other designs utilise metallic and other materials.

The photograph shows two boats of the Ford team in the 1969 Round Britain Power Boat Race. Both used Bantex aerials.

Transformers, Chokes Saturable Reactors Voltmobile voltage regulators Rectifier Sets

Transformers

Air cooled power transformers from 0.5 to 300kVA at voltages up to 2kV. 1 or 3 phase, double or auto wound, step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harmsworth, Townley transformer

Voltmobiles

The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Voltmobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transformers which give control from 1.6% to 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

High Current Transformers

Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

Rectifiers

Sturdily built air cooled equipment from 50W to 500kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers, saturable reactors or Voltmobile regulator.

Saturable Reactors

From 5kVA up to 300kVA for controlling the outputs from transformers or rectifier units. Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from 10% to 100% of full output.

Chokes

A.C. and D.C. chokes

Specific enquiries are invited

Transformers Rectifiers

HARMSWORTH, TOWNLEY & CO. LTD. 2 Hare Hill, Todmorden, Lancs. Telephone Todmorden 2601 Extension 22

WW-056 FOR FURTHER DETAILS

1000000 A free film of your choice when you buy Texas, Sprague or Ferranti 74N TTL integrated circuits. Wel ship at manufacturer's prices and give top quality Agfa film to fit your camera. Our high speed delivery is free too! Offer closes July 31st. and applies to orders EL COMPONENTS LTD. 5 LOVEROCK ROAD, READING. Tel. 580616/9 Telex 84529 MINISTRY OF TECHNOLOGY APPROVED DISTRIBUTOR **WW-057 FOR FURTHER DETAILS**

WW-058 FOR FURTHER DETAILS

WW-059 FOR FURTHER DETAILS

Horizontal

views

Display Switching

two time scales

simultaneously

DC-50 MHz Full Bandwidth Triggering

Calibrated Sweep Delay

0.2 mV to 100 V Square Wave

Current Probe

Calibrator

Amplitude Calibrator

TEKTRONIX **TYPE 547** VERSATILITY WITH AUTOMATIC DISPLAY SWITCHING

TYPE 547 OSCILLOSCOPI

.

6

-0

6

6

6 x 10 cm Highresolution Display, **Bright Uniform** Trace, Illuminated Parallax-free Graticule

a36

25 Plug-in Units Vertical Display Switching up to 4 channels and Special Purpose, Differential, Spectrum Analyzers and Sampling

Price: £873 delivered U.K. (without plug-in unit)

For detailed information on any of our products, please fill in reader reply card or write, telephone or telex.

Tektronix U.K. Ltd. Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone Harpenden 61251. Telex 25559 For overseas enquiries: Australia: Tektronix Australia Pty. Ltd., 80, Waterloo Rd., North Ryde, N.S.W. 2113 Canada: Tektronix Canada Ltd., Montreal, Toronto & Vancouver. France: Relations Techniques Intercontinentales, S.A. 91, Orsay, Z.I. Courtaboeuf, Route de Villejust (Boite Postale 13) Switzerland; Tektronix International A.G., P.O. Box 57, Zug, Switzerland. Africa, rest of Europe, and the Middle East: Tektronix Ltd., P.O. Box 36, St. Peter Port, Guernsey, C.I. All other territories: Tektronix Inc., P.O. Box 500, Beaverton, Oregon, U.S.A.

à

WW-060 FOR FURTHER DETAILS

A slice from the exclusive Thyristor range by IR– The Current Slicers. What IR don't know about thyristors isn't worth knowing. Which is hardly surprising, since IR are the world's largest independent manufacturers of power semiconductors. The world's largest. And often the cleverest too. IR offer you the reliable, high-performance, state-of-the-art thyristors you need, deliver them fast anywhere in the world, and back them up with comprehensive technical, test and applications data. If you'd like a slice (or a million), contact IR or your

IR Distributor.

International Rectifier · Oxted · Surrey

WW-026 FOR FURTHER DETAILS

When it comes to selecting a sound system you want a lot of things. Loud and clear sound to the farthest corner. 100 per cent reliability. The most modern components. Proper installation. Back up from a company with experience. And a minimum cost.

All that and more.

Altec sound systems have been selected by all types of users throughout the world. Large and small. Famous and not so famous. At indoor sports arenas. Outdoor stadiums. Fieldhouses and auditoriums. Concert halls and theatres. Airports. And all types of religious structures. Before you select your sound system, find out more about Altec.

Write for complete details and a free catalogue today.

LTV Ling Altec Ltd., Baldock Road, Royston, Herts; or LTV Ling Altec, International Division, 1515 S. Manchester Avenue, Anaheim, California, U.S.A. 92803.

A Quality Co. of LTV Ling Altec, Inc.

You can depend on Altec sound

To reproduce and record realistic and crystal-clear sound, it takes good equipment. And that is where we come in with a complete line of products for the broadcast and recording industries.

- Monitor speaker systems large and small.
- Speaker components.
- Power amplifiers—transistorized and even portable.
- Input equipment—including master studio control consoles, mixer-amplifiers and pre-amplifiers.
- Audio controls—including mixers, equalizers, attenuators and custom console components.
- A full line of professional and general-purpose microphones.

30 years of Altec experience is proof of quality performance in studios, concert halls, theatres, auditoriums and arenas throughout the world. You can depend on Altec—as a standard for performance, reliability and low operating expense. Write for details to: LTV Ling Altec Ltd., Baldock Rd., Royston, Herts; or LTV Ling Altec, International Division, 1515 S. Manchester Avenue, Anaheim, California, U.S.A. 92803.

A Quality Co. of LTV Ling Altec, Inc.

and magnetic heads. Now is the time to rely on one manufacturer for these important product integrals instead of purchasing one here, another there. You will save time and money—and get quality and reliability on top of economy! Many other models available. For further details write

Sankyo (Europe) Export und Import G.m.b.H.: 4 Dusseldorf. Bahnstraße 45-47, W. Germany. Sankyo Seiki Mfg. Co., Ltd.: 17-2, Shinbashi 1-chome, Minato-ku, Tokyo 105, Japan American Sankyo Corp.: Rm. 801-3, 95 Madison Ave., New York, N.Y. 10016, U.S.A.

WW-062 FOR FURTHER DETAILS

WW-063 FOR FURTHER DETAILS

em

VSMP

McMurdo's new 0.100" Pitch Connector - "RL" Series

5 to 85 way single sided with solder and printed wiring tails. 10 to 170 way double sided with solder and printed wiring tails.

Working Voltage Proof Voltage Insulation resistance (dry) Contact resistance to test gauge Insertion and withdrawal forces Contact finish 700 v. AC/Peak 1750 v. DC 10^e Megohms min. 10 Milli-ohms max. 6 oz. per contact max. Flow tin or hard gold (specify when ordering)

Another new product from: McMurdo Instrument Co. Ltd., Rodney Road, Portsmouth, Hampshire, Telephone: Portsmouth 35361. Telex: 86112.

great facility for service

Member of the Louis Newmark Group, with access to the combined facilities of all other member companies.

Authoriséd Stockists:—Lugton & Co. Ltd., 209/210 Tottenham Court Road, London W.1. Tel: 3261 I.T.T.—electronic services, Standard Telephones & Cables Ltd., Edinburgh Way, Hørlow, Essex. Tel: Harlow 26777, and agents in principal overseas countries.

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS – 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines. **OUTPUTS** – isolated providing 50 watts into almost any impedance from 4 to 200 ohms. **DIMENSIONS** – $12\frac{3}{4}$ " x $6\frac{1}{4}$ " x $4\frac{1}{2}$ "

Complete the coupon and post today.

Please send me full details of the QUAD 50 Amplifier
NAME
POSITION
COMPANY
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,
HUNTINGDON. Telephone : Huntingdon (0480) 2561/2

for the closest approach to the original sound

ww---065 FOR FURTHER DETAILS

www.americanradiohistory.com

The 43 Series of wide bandwidth (DC 25MHz) (100µV/cm) for general oscilloscope applications. With a choice of 7 plug-ins (5 amplifiers and 2 time bases) it is possible to assemble an oscilloscope capable of meeting almost any measurement requirement. Combining such versatility with excellent tube geometry and high writing speeds makes the D.43 illustrated outstanding value for money. Write for full details Now !!!

g-in potential

TELEQUIPMENT <

Telequipment, 313 Chase Road. · Southgate · N.14. Telephone: 01-882 1166. Telex 262004

ww-066 FOR FURTHER DETAILS

PI

Wireless World

Electronics, Television, Radio, Audio

Sixtieth year of publication

July 1970

Volume 76 Number 1417

Our cover picture this month was selected on its artistic merits rather than to highlight any particular technical point. The design was produced by a Univac computer and graphic display unit as described on page 315.

IN OUR NEXT ISSUE

The first of a short series of articles on the design and construction of a television wobbulator.

Colour EVR. An outline of the system of colour electronic video recording developed by Dr. Goldmark of RCA.

Morse keyer using four m.o.s. logic circuits.

I.P.C. Electrical-Electronic Press Ltd Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1

C I.P.C. Business Press Ltd, 1970

Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Contents

- 311 "Together we stand. . . . "
- 312 Integrated Circuit Stereo Pre-amplifier by L. Nelson-Jones
- 315 Computer Graphics
- 316 Circuit Ideas
- 317 Time Delays by H. D. Harwood
- 320 Mechanical Filters for TV Receivers
- 321 15-20W Class AB Audio Amplifier by J. L. Linsley Hood
- 325 Electronic Building Bricks-2 by James Franklin
- 326 News of the Month
- 329 Letters to the Editor
- 332 Sinusoidal Oscillator for use at High Temperatures by P. Williams
- 333 The Unijunction Transistor by O. Greiter
- 336 Crossword Puzzle
- 337 A Simple Op. Amp. by H. N. Griffiths
- 338 Conferences & Exhibitions
- 339 Noise in Transistors by F. N. H. Robinson
- 340 Domestic Video Records
- 341 Active-Filters-12 by F. E. J. Girling & E. F. Good
- 345 H.F. Predictions
- 346 Coding Problems in Iterative Arrays by K. S. Hall
- 349 Roots and Responses by Thomas Roddam
- 353 Signal Monitoring Networks by A. E. Crump
- 354 Announcements
- 355 New Products at the I.E.A. Exhibition
- 361 World of Amateur Radio
- 362 Literature Received
- 363 Personalities
- 364 Real & Imaginary by "Vector"
- A89 APPOINTMENTS VACANT
- A108 INDEX TO ADVERTISERS

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; £3 0s 0d. Overseas; 1 year £3 0s 0d. (Canada and U.S.A.; \$7.50). 3 years £7 13s 0d. (Canada and U.S.A.; \$19.20). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notity a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: 0BR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: (212) 689-3250.

divon pui

Standard Graticules

HEAL

E-10415

Brimar's new catalogue talks tubes-in your language!

Radar & Compass Tubes Our new catalogue is packed with technical information about the comprehensive Brimer range of irdustrial cathcde ray tubes - abridged data on the tubes themselves, together with details of the wide choice or graticules, screen phospholis, etc All designed o help you find the right tube, at the right price, in the right language - fast. Call, phone, or drop us a line - and we'll let you have your copy by return.

t Scanner

oes

Thorn Radio Valves and Tubes Limited THORN 7 Soho Sq., London, W1V 6DN. Telephone : 01-437 5233

Wireless World

"Together we stand"

We have on several occasions deprecated the proliferation of trade associations within the electronics industry. Our criticism has been mainly of the lack of overall co-ordination rather than of the number of organizations, all of which have performed a useful function, some within a limited and diminishing sphere—in fact in some cases there is no longer a *raison d'être*.

When the Conference of the Electronics Industry (abbreviated C.L.I. to avoid confusion with the Council of Engineering Institutions) was set up, with the top brass of the industry forming the council, it was hoped that here at last was the apex of the broad based triangle. The voice that could speak to governments, other associations and foreign organizations for the whole of the U.K. electronics industry; the industry's co-ordinating authority. As events have shown it was none of these, in fact, except for an annual dinner—at which a few pious platitudes were pronounced—little if anything was heard of its activities. It may, of course, have exerted a powerful influence without ostentation.

It is now announced that the C.L.I. is to be wound up. Will this mean a further fragmentation or will it open the way for another more effective body (the E.E.A.?) to take the helm?

There are certainly significant moves towards the unification of the various trade associations. First, the Electronic Engineering Association is to move later this year into the same building as the British Electrical and Allied Manufacturers' Association where they will share "service departments" and will liaise much more closely than in the past. The interests of the two associations certainly overlap in some areas. A joint "federation council" is to be set up. It is understood that other trade associations have been invited to come under the same roof (if not the same ceiling!) and thereby to save expense. The response however, has not been very heartening from some of them. One suggested that it could best serve the particular sector of the industry, by retaining its independence.

There has, of course, been a marked co-ordination of effort in the components sector of the industry since the formation of the Electronic Components Board. The question of proposed "federal structure" of the whole electronics industry is mentioned in the recent annual report of the Radio & Electronic Component Manufacturers' Federation. In view, however, of "the success of the E.C.B. in establishing an organisational identity for the components sector without prejudice to the internal autonomy of the three constituent associations (R.E.C.M.F., B.V.A. & V.A.S.C.A.) it would seem that the next logical stage in the evolution of an industry federation would be to co-ordinate the policies and activities of the Capital Equipment sector, in which five associations are involved to varying degrees".

This castigation of the "capital equipment sector" is not without justification. Not only would a federal structure bring added strength, avoiding the "you're treading on my territory" attitude which undoubtedly exists between secretariats, but the manufacturers would be saved the direct costs involved in multi-participation, and the indirect costs of representation on several associations in the capital goods sector.

At the annual meeting of the E.E.A. in March it was stated "We are trying to rationalize our trade associations to have a more powerful voice". It is to be hoped that with the moves now going on we may see the dawn of a unifying electronic industries association in this country such as is operating in the U.S.A. and Japan. With the possibility of a closer link with Europe through the Common Market we will need such an organization to speak authoritatively to its opposite numbers in Germany and France.

Editor-in-chief: W. T. COCKING, F.I.E.E.

Editor: H. W. BARNARD

Technical Editor: T. E. IVALL

Assistant Editors: B. S. CRANK I. H. WEADEN

Editorial Assistant:

J. GREENBANK, B.A.

Drawing Office: H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager) G. J. STICHBURY R. PARSONS (Classified Advertisement Manager) Telephone: 01-928 3333 Ext. 533 & 246.

Integrated Circuit Stereo Pre-amplifier

A simple low-noise design especially for use with the author's recently described 10-W class-A amplifier

by L. Nelson-Jones

The power amplifier¹ for which this preamplifier was designed has very low levels of noise and distortion, and in order not to impair the overall performance of the system the pre-amplifier had to have a similarly blameless performance.

A note² in the May 1969 issue of *Wire*less World particularly interested the author, as it described the use for a stereo pre-amplifier of the R.C.A. integrated circuit CA3048, which consists of four identical low-noise audio amplifiers in a 16-pin dual-in-line package.

The initial study of the integrated circuit centred round the circuit given in the original note in Wireless World². This simple circuit (reproduced here as Fig. 1) was soon found to have a number of major shortcomings: the R.I.A.A. equalization network values given proved to be inaccurate at low frequencies; the noise performance was considerably impaired by the 20 dB loss of the passive tone control network; and the high frequency stability of the circuit was poor, as there was a tendency for the amplifier to oscillate at several megahertz producing noise and distortion, even with a carefully planned layout.

270

10011

In the final circuit these problems were overcome by modifying circuit values, by adding separate tone control circuits of the active-feedback 'Baxandall' type, and by the addition of two capacitors to reduce the gain at radio frequencies thus curing the instability experienced in the original circuit.

Input stage and equalization

Vcc

Due mainly to the built-in feedback elements of each section of the CA3048 amplifier circuit, there are limitations on the values which can be used in the equalization network, and also to the total range of gain available for equalization. In practice this means that one has to modify the values which would normally be used with such an amplifier to allow for the parallel internal feedback path. It appears to the author that this had not been done in the original published circuit in the region below about 1 kHz. The author's choice of values corrects the l.f. error at the expense of a slight lift at the h.f. end, due to the previously mentioned limitation of the total range of gain available for equalization. It was felt, however, that this set of values gave a much flatter overall result and that the h.f. error was in any case too small to be noticeable. In two pre-amplifiers constructed the resultant curves have been within a total spread of 1 dB (between 30 Hz and 20 kHz) of one another.

The stage giving equalization to R.I.A.A. characteristic is used for this purpose only, thus greatly simplifying the switching of the pre-amplifier from one source to another.

The second stage

The second stage, which has a flat frequency response, uses the remaining two sections of the CA3048 package. The gain of the CA3048 is controlled by the value of impedance seen at the right-hand side of the input long-tailed pair (Fig. 3), which will modify the amount of feedback applied via the internal feedback path. A d.c. blocking capacitor is used to ensure maximum d.c. feedback to maintain the correct operating point. A simple balance control is achieved, as in the original circuit, by the use of a potentiometer at this point so that the relative amounts of feedback to the right and left channels may be varied. The range of this control is deliberately restricted, since the unbalances it has to correct in the equipment should be small, those in normal discs are also small, and serious unbalance in any other stereo source should be put right at source. The range of the

Wireless World, July 1970

control as shown is a total of 6 dB on either channel.

This second stage is preceded by the selector switch, and the gain control. The positioning of the gain control at this point is dictated by the need to avoid overloading of the second stage, which would occur if the control were placed after the second stage.

The selector switch connects the auxiliary, and radio inputs direct to the gain control, with a resultant sensitivity of approximately 20 mV for full output (with the $8-\Omega$ version of the power amplifier) of 560 mV r.m.s. Overload occurs at approximately 2 V r.m.s., taking the form of almost symmetrical clipping. Any attenuators used to match this sensitivity to that of

the source should preferably not cause the gain control to be fed by a source of greater than 10 k Ω in order to preserve the very good noise level of the pre-amplifier.

The mono/stereo switch connects the inputs to the gain control in parallel when required.

The instability at first encountered with the CA3048, due to its very high gainbandwidth product, was at first a problem in the second stage. A complete cure was found in connecting a 330-pF capacitor between slider and lower end of each gain control, together with the additional precaution of a screened lead at this point. The h.f. cut-off produced by this capacitor is well above the audio band, but is effective

in reducing the gain at r.f., and also acts as one arm of a capacitive attenuator to any pick-up on this second stage input.

Tone controls

The passive tone control of the original circuit not only degraded the noise figure of the pre-amplifier by 20 dB but also proved to be a difficult one with which to obtain consistent results, there being a considerable tendency for the cut-off frequencies to change with control settings.

The active 'Baxandall' circuit adopted does not suffer from any of these side effects. The nominal 'flat' gain of the circuit is unity since there is no need of further gain, especially as the gain of the second stage has already had to be reduced to account for the removal of the 20-dB gain loss of the passive tone control network.

An additional capacitor of 470 pF is added directly between base and collector of the tone-control stage in order to limit the gain at frequencies above the audio band. The value chosen gives a cut of -0.6 dB at 10 kHz, and -2 dB at 20 kHz, in the flat position of the controls. The purpose of the cut at h.f. is to help to ensure that the power amplifier does not get any appreciable input at frequencies where its power handling is restricted. With an input from discs only, this is not a likely problem, but with tape and radio inputs there are possibilities of higher levels of input above the audio range. Some readers may think the cut is at too low a frequency, and may desire to reduce this capacitor; a value reduction to 220 pF is certainly in order, but it should not be eliminated as it assists in ensuring h.f. stability of the whole preamplifier.

Some readers may prefer the use of switched tone controls in which case each of the 2-gang $100-k\Omega$ controls may be

Fig. 4. Input stage R.I.A.A. equalization (tone controls flat).

Fig. 5. Tone-control characteristics.

replaced by a 2-pole 7-way switch having six $16 \cdot k \Omega$ resistors to each bank, or a 2-pole 9-way switch with eight $12 \cdot k \Omega$ resistors.

Noise performance

The main source of wideband noise in the pre-amplifier is the second stage. The first stage contributes little as it has such a narrow bandwidth due to the R.I.A.A. equalization network. The contribution of the input stage is almost entirely 1/f noise which is at a commendably low level and is in any case not particularly audible in practice.

In practice the result is a unit producing no audible hum or noise at any normal setting of the gain control or tone controls. With the gain control set so that peak power reaches 10 watts on a loud recording (5 cm/s at 1 kHz on disc) and with bass and

Fig. 6. Close view of the central region of the pre-amp showing the mounting of the i.c. The equalization network is to the left, the tone-control stage to the right, and the two transistors to the extreme right.

treble both at maximum (which is the worst case to be met in practice) there is still no audible noise 6 feet from both speakers (which are large units of good sensitivity), and only a very faint hum and hiss can be heard close to the speaker. These excellent results are confirmed by the measurements: (a) Unweighted hum and noise with gain

- set for 10W into 8Ω (7 mV at 1 kHz from pickup) -63.5 dB, rel. 10W
- (b) Wideband noise alone (less hum and 1/f)approx 80 dB, rel. 10W

This last figure remains fairly constant for all lesser settings of the gain control, and represents the basic noise of the second stage and succeeding stages. The higher level of the first unweighted noise figure is largely due to hum from the windings of the pickup cartridge and 1/f noise from the first stage—both of which are of low audibility.

9-volt regulator

The integrated circuit requires a lower voltage supply than that available from the power amplifier. To protect the i.c. in the event of circuit failure, a simple shunt regulator was designed. This type of regulator also ensures freedom from voltage surges at switch-on, and switch-off. An incidental advantage of the use of such a regulator, together with its by-pass capacitor, is a very low cross talk figure for the preamplifier between channels. The original circuit² used decoupling for the supply to the first stage, but with the low level of ripple, and the low impedance of the supply from this regulator, a better performance is obtained without decoupling to this stage.

The TO-5 transistor of the regulator may be any type having a current gain of over 30 at 50mA, and it should be fitted with a heat-sink as the dissipation is approximately 500 mW.

Constructional details

The underside view of the prototype pre-amplifier is shown in Figs. 6 and 7. The CA3048 was mounted on a perforated bakelite 'pin-board' with fine tinned copper links soldered to 16 pins located in two rows on each side of the package. Layout should be kept simple, but is not critical provided reasonable precautions are taken to keep input and output leads separate. The whole assembly should be well screened, and mains leads, mains transformers, and the like kept as far away as possible, to minimize hum pick-up.

The two versions of the pre-amplifier built (one by the author, and one by one of his colleagues) have quite different layouts, yet give almost identical measured results.

Components

- $R_{1a,b}$, R_{14} are $\frac{1}{4}$ W 10% carbon.
- R_{15} is 330 Ω 3W wirebound for 28V supply. (180 Ω 1W for 19.5V and 470 Ω 3W for 36V supply.)

Wireless World, July 1970

Fig. 7. View from the rear towards the front of the prototype pre-amplifier. The supply regulator is at the far end adjacent to the volume control. The tone control circuit is next, adjacent to its controls. The i.c. is at the centre, with the input stage equalization network nearest the camera.

- All other resistors are $\frac{1}{4}W$ 5% 'Histab' carbon or 2% $\frac{1}{2}W$ metal oxide, the latter being preferable.
- $C_{1a,b}, C_{3a,b}, C_{4a,b}, C_{7a,b}, C_{9a,b}, C_{10a,b}$, are all polyester types such as Mullard C280AE or C296AA/A. Capacitor 'a' should be matched to capacitor 'b' within 5% in each case.
- (Matching is essential for $C_3, C_4, C_9 \& C_{10}$, but not absolutely essential for $C_1 \& C_2$)
- $C_{8a,b}, C_{11a,b} \& C_{13a,b}$, are polystyrene $2\frac{1}{2}\%$ tolerance.
- C₁₆ is 250 µF 16V Mullard C437AR/E/250 or similar.
- All the remainder may be Mullard C426 types or similar.
- $VR_{1a,b}$, is 10 k + 10 k log stereo potentiometer (2 dB match).
- $VR_{3a,b}$, $VR_{4a,b}$, are 100 k + 100 k in stereo pots (2 dB match). All these twin gang pots. are Radiospares 'Tandem' types.
- VR_2 is 1 k Ω in carbon or wirewound.
- S_{1a,b} is 3-way 2-pole (prototype uses Radiospares midget wavechange switch 3-way 4-pole).
- S_2 is miniature rotary type Radiospares 'Changeover SP'.
- *I.C.*₁ is R.C.A. CA3048 (CA3052 may also be used with a slightly worse noise figure, but is cheaper).
- $Tr_{1a,b}$ are BC108, BC168, etc. (for the 36-volt version BC107B or 167B would be advisable).
- Tr₂ any good TO-5 n-p-n transistor such as 2N697, 2N1613, 2N3053, etc.
- Tr_2 is fitted with a heat radiator Redpoint 5F.
- ZD₁ is 8.2V, 250mW, zener diode. Mullard BZY 88-C8V2, Texas 1S2082A, Radiospares MZ-E8.2V etc.

Mainline Electronics Ltd., Thames Avenue, Windsor Berks, are suppliers of the R.C.A. devices, and Electrovalue and Radiospares the majority of the other components.

Suitable Cartridges

The pre-amplifier has been designed with the use of a high compliance magnetic cartridge in mind. Most of the magnetic cartridges listed in the recent *Wireless World* summary³ are suitable. The sensitivity of the pre-amp. is sufficient to allow for the use of the least sensitive, and the overload limit is high enough to allow for the most sensitive in this range.

I am grateful to my colleague Mr. A. Cullen for the use of the results from

his version of this equipment which have been incorporated in this article, and for his co-operation throughout.

I am also grateful to R.C.A. (Gt. Britain) Ltd, for their help with the supply of very full data on the integrated circuit used.

REFERENCES

1. L. Nelson-Jones, "Ultra-low Distortion Class-A Amplifier", Wireless World, March 1970.

2. "Microelectronics at Paris Components Show", Wireless World, May 1969.

3. S. Kelly, "Stereo Gramophone Pickups", Wireless World, December 1969.

Computer Graphics

Recently the Univac Division of Sperry Rand Ltd produced several striking multicolour designs using their computers and graphic display consoles. Our front cover this month is an example of one of these. Shapes, which can be distinguished on the picture—squares, triangles, lines and points—were randomly programmed into the computer with no attempt to give them a definite pattern of movement. The tumbling shapes were shown on a graphic display and photographed through several different coloured filters—green and white in the case of our front cover.

A graphic display, one capable of showing engineering drawings, maps etc., is much more complex than the now familiar alphanumeric displays. According to Univac the development of graphic display terminals lags behind that of alphanumeric displays by between three to five years.

Cathode ray tubes are used for both types of display although these will probably be superseded by the laser, or one of the other competing devices, in about five years.

Drawings on graphic displays can be made by causing the c.r.t. electron beam to move between one previously defined point to another such point on the c.r.t. face in a straight line. Curves are simulated using a series of very short straight lines. A graphic display with a c.r.t. with a usable display area of $350 \times$ 350mm (12 \times 12 inches) may have a million precisely defined points on which the beam can be positioned. The million points would be determined by electronics which allow the beam to be positioned at any of 1000 positions in the X direction and at any one of a 1000 positions in the Y direction. The electronics would also allow the beam to move in a straight line between a point on the screen defined by a certain value of X and Y to another point specified by a different value of X and Y.

In normal practice the values of X and Y are fed to the display in binary form from a suitable digital processing equipment.

Often, also under digital control, the brightness of the display can be altered to one of a number of predetermined values. Shapes which are often used can be held in a memory, as subsequent values of X and Y, for use when required.

The computer and the display electronics have to work together to handle the formidable amount of data needed to produce even a simple drawing on the screen and must be flexible enough to allow the drawing to be altered at will.

The recent rapid advances in m.o.s. integrated circuitry is having a marked effect on display design as apart from the control logic and character generation circuits, m.o.s. shift registers are replacing other forms of storage in display equipments.

Circuit Ideas

Immersion heater indicator

Here is a circuit idea so simple that it does not require a drawing. If an indicator is required to show when a heavy a.c. current is flowing in a cable, for instance, to monitor thermostat and water heater combination, proceed as follows. Strip the secondary of an old bell-type transformer and wind the live wire of the pair to the heater twice round the transformer core (in the space previously occupied by the secondary) and connect a $47-k\Omega$ resistor and wire ended neon lamp in series across the transformer primary. When the thermostat is closed sufficient voltage will be developed across the transformer primary (now acting as the secondary) to light the neon. The idea is useful when the supply cable passes near to the indication point and when long additional cables are to be avoided. B. S. CRANK,

Wireless World.

Sensitive thermostat

The circuit uses a reverse biased germanium transistor sensing element in a bridge. The out-of-balance voltage from the bridge feeds a simple d.c. amplifier driving a relay via a bistable. The bridge components shown are suitable for a temperature range of $12-25^{\circ}$ C. The operation is so sensitive that it was found necessary to use the 500 μ F capacitor to smooth out short-term fluctuations which otherwise resulted in on-off operation of the bistable. The circuit has been used for over a year controlling a house central heating pump. The temperature control over the above range has been found to be better than $\pm 0.5^{\circ}$ C. For applications with negligible thermal lag, the control is better than $\pm 0.1^{\circ}$ C. A. SEWELL,

Cheadle, Staffs.

Schmitt triggers

Simplified trigger: The potential divider chain R_1 , R_2 and C for biasing Tr_2 , in Fig. 1, can be eliminated by connecting a forward biased diode, D_1 in the emitter of Tr_2 (Fig. 2). The diode should be a silicon type of a current rating to suit the load current of Tr_2 but the voltage rating is not important since it is never reverse biased. Circuit design calculations are simplified and the loop gain is increased for low frequencies. Trigger for variable loads: In Fig. 3 the common emitter resistor is replaced by a zener diode, D_1 , the slope of the zener characteristic providing the feedback for the trigger action. For successful operation the current of Tr_1 must lie below the knee of the zener curve and that of Tr_2 , above. To take an example. Suppose the trigger points are to be between 5 and 6V and the load of Tr_2 consists of 680Ω in parallel with a switchable 6-V 40-mA lamp. D_2 is used to provide the reverse bias for Tr_{7} —a conventional bias chain could have been used. On test, using GET11'I transistors, an SX56 zener and a surplus silicon

diode for D_2 the trigger points were 5.35V and 5.65V with the lamp and 5.35V and 5.5V without. Fig. 4 makes the operation clear. When Tr_1 is conducting the current is 2mA and the zener is at point P on the curve. When Tr_1 is turned off and Tr_2 conducts, the current without the lamp is about 8.5mA, point Q on the curve, and the voltage at the emitters rises by about 0.2V. Increasing the current to about 50mA, by connecting the lamp, produces only a further increase of 0.2V, point R, as the zener is now on the flat part of the curve.

P. GASCOYNE, Wantage, Berks.

Fig. 1. Conventional trigger circuit.

Fig. 2. Using diode to simplify trigger.

Fig. 3. Zener diode in place of common emitter resistor.

Fig. 4. Characteristic curve of the SX56.

Time Delays

A survey of the various methods of obtaining time delays, particularly for use in broadcasting

by H. D. Harwood, B.Sc.

Time delays used in the broadcasting service cover a very wide range from a few nanoseconds in television circuits to several hundred milliseconds in ambiophony† and the applications are correspondingly many and varied. For the purpose of clarity, therefore, delays are described in this article according to the method of obtaining them and the applications of each type are only briefly mentioned. In this connection it will be seen that for some applications more than one type of delay is required.

A description is also given of other types of delay which are not in use in the broadcasting service at the moment but which appear to offer potential advantages in one of the various fields of application.

All-pass electric circuits

Coaxial cable: This is the cheapest and easiest method of obtaining fixed delays of up to about 0.1 µs. The velocity of an electromagnetic wave in a coaxial cable is about 0.6 of the velocity of light and a signal made to traverse a length of cable will suffer a delay amounting to 1 μ s per 180 m of cable. The lines can be accurately terminated and, as the cable can also be made with a high degree of uniformity, reflections can be kept to a low level. Beyond a delay of 0.1 µs the volume of cable becomes rather large unless a miniature form is used; but unfortunately, in practice, the miniature type is not so uniform along its length as the standard-size cable and therefore reflections will be more troublesome. The standard cable can be used up to 1 GHz and the cost is very low about £12 per μ sec. Applications include equalization of delays for television timing pulses between programme points and central operations room.

Special delay cables: The velocity of propagation along a normal coaxial cable is substantially reduced if the inductance of one of the conductors is increased by winding it in the form of a tight helix. As a further measure, in one form of cable manufactured by the Hackethal Wire and Cable Co., the centre conductor is wound on a dust core of relatively high permeability¹ thus reducing the velocity still further.

In practice, it is difficult to make the inner conductor as uniform as that of ordinary cable and the variations give rise to reflections which in some cables may be only 20 dB below the main signal.

The impedance of the cable is of necessity high; values for cable made by the British Insulated Callender Cables Company with a polythene core vary from 130 to 1900 Ω , those for the Hackethal cable vary from 1500 to 3800 Ω ; the higher values being associated with the greater delays per unit length. For very low velocity cables the delay is not quite constant with frequency but varies by about 10% in the 0 to 4 MHz band and also has a temperature coefficient of 0.08% per °C. The attenuation in the lowest velocity cables is about 3 dB/ μ s at 6 MHz compared with about 1 dB for the higher velocity cables.

One advantage of this form of delay is the lost cost, about 15s per μ s; the chief difficulties are that the high impedance makes careful screening imperative to prevent cross talk between the ends; the high level of reflections can also be a nuisance with some cables.

Diameters vary from about 8 to 25.4 mm with delay and manufacturer. Applications include use in pulse generators and for equalizing delays in television programme circuits. A 5- μ s line has been built² by the B.B.C. designs department for the latter purpose.

LC circuits: As a further development, a delay line may consist of a single layer coil of insulated wire wound around a core of insulating material covering an earthed conductor; the delay depending on the storage of energy in the dielectric and magnetic fields. This type of line is dispersive in its simple form because the currents in different turns, whilst still magnetically linked, become increasingly out of phase as the frequency rises and changes in delay time of up to 25% may occur within the pass band.

The various means adopted to overcome this difficulty entail breaking the line up into segments. In one method due to Kallman³ capacitive coupling between groups of turns is employed; the line being effectively divided up into as many as 48 segments. In this way, the delay was made constant for a $0.9-\mu$ s line to within 1% over the range 0 to 16 MHz. This rather empirical method was later treated more theoretically by Di Toro⁴, who also gives design data.

Another technique due to Solov'yev⁵ uses coaxial shorted turns to sectionalize the magnetic field in the line. In this way, the falling off of inductance with frequency is prevented but, once again, the design details have to be decided by cut and try methods.

The advantage of these forms of line is that they can easily be adjusted on test to give the precise time delay required and are very compact. They suffer, however, from the disadvantage of empirical design and high impedance, 400 to 4000 Ω , the latter condition necessitating the use of amplifiers and matching networks. Delays of up to 1 μ s are practicable and are quite cheap to construct. The attentuation is fairly low (≈ 10 dB at 6 MHz) and the reflections are more than 40 dB below the signal.

If the process of sectionalizing is taken further, we arrive at low-pass and all-pass networks. Many designs have been published using low-pass networks but the allpass types have the following advantages over them.

(i) Their design does not have to take into account the varying frequency characteristic of the network near cut off.

(ii) The characteristic impedance is theoretically constant over an infinitely wide band and, although this cannot be achieved in practice, more sections can be employed before matching difficulties arise.

(iii) The design can be calculated with a high degree of accuracy.

Howorth⁶ gives a good example of a $1-\mu s$ all-pass delay line using ten pairs of networks designed to give a fourth order maximally-flat group delay/frequency characteristic and a constant resistance network to equalize for unavoidable high frequency losses in the coils. Further details are given of staggered pairs of networks up to the tenth order for which a considerable improvement is claimed.

The pass band can be designed to cover any desired range of frequencies, there being no difficulty in achieving bandwidths of 6 MHz. The characteristic impedance is again a matter of design; a figure of 75 Ω

[†]Ambiophony: A term coined in 1959 by D. Kleis, of Philips, Eindhoven, to describe a system of acoustic feedback designed to modify the acoustics of a room. The sound is picked up by a central microphone, the output of which is delayed by various amounts and then fed back to numerous loudspeakers positioned around the walls and ceiling to modify the reverberation.

would normally be chosen for television purposes.

Delays of up to $10 \ \mu s$ can conveniently be made for the video bandwidth and the level of spurious reflections can be kept 40 dB below the signal if individual adjustment of the elements is used. The insertion loss in the line is low, e.g. 6 dB for a 3- μs line with a 6-MHz bandwidth.

The cost is higher than that of cable and amounts to about £100 for the example just quoted. The size of such a line would be about $700 \times 76 \times 76$ mm.

Applications include a line of 330 μ s for the audio band used in a limiter⁷ to give the control chain time to operate before the programme reaches the main path.

The delays so far described are fixed in length, although a circular line of the Kallman type could perhaps be produced with a wiper contact. For purposes where a variable delay is essential one known as the Amtec has been produced by Ampex, in which the delay can be rapidly varied by means of an electrical control signal. The delay consists of a series of coils (wound on a common former so that they are mutually coupled) and shunt-connected varactor diodes. The delay is controlled by adjusting the bias on the diodes and a variation of $\pm 20\%$ is possible at rates of up to 15 kHz. To minimize the changes in delay caused by the signal itself (which appears across each diode), the diodes are connected so as to alternate in polarity along the delay line. The alteration in the characteristic impedance involved in changing the delay limits the usable variation to not more than about \pm 5% before excessive echoes and frequency response changes are produced.

Delays of up to about 5 μ s are possible with this device. The bandwidth is adequate for television signals and when properly matched spurious echoes are 40 dB below the main signal. The impedance is of the order of 300 Ω and the line will only handle levels of up to 250 mV; amplifiers are therefor necessary before and after the line. The attenuation at 5 MHz is about 6 dB.

The main use is as a servo operated device to reduce the effect of quadrature errors in head alignment in video tape machines; it is also used in line store converters and vertical aperture correctors. The cost is approximately £500 and the size is $700 \times 76 \times 76$ mm.

Ultrasonic delays

In the delays which have been considered so far the signal has been electrical and the velocity of propagation correspondingly high; this has meant that any delays of more than a few microseconds occupy a considerable path length. In the type of delay to be considered in this section, the signal is converted into a mechanical vibration with a much lower velocity of propagation, and correspondingly higher delays are therefore possible.

For example, the velocity of a shear wave in a quartz block is only 3760 metres per second and this is slower than the velocity of an electrical signal in a coaxial cable by a factor of about 10^5 . Furthermore, it is possible to reflect the wave from a number of faces of the block thereby still further reducing the size necessary for a given delay.

A number of substances have been examined for possible use in delay lines; one example is a water line used by the Scophony television system in the early 1930s and again by the Telecommunications Research Establishment in the early days of radar. This was superseded by the use of mercury which gave a much better match to the quartz transducers and had lower attenuation. Solid materials which have been examined for this purpose include metals, plastics, rubber, glasses and gels⁸. Of these solids the lowest attenuation is obtained with glasses and fused quartz and only these are used today.

Similar low velocities of propagation can be obtained from torsional waves in wires and as these can be coiled to form a helix they can be made quite compact for delays up to 20 ms; they are also cheaper than quartz or glass blocks.

Solid ultrasonic delay lines: For an ultrasonic delay line fused quartz or glass has the advantage over crystalline materials such as metals in that, being amorphous, the scattering of the waves from crystal boundaries is avoided and hence the attenuation in the medium is less. The attenuation is in fact proportional to the square of the frequency instead of the fourth power as in a crystalline solid. For example, in the region of 10 MHz the mechanical Q factor of fused quartz is approximately 10⁵. In a solid medium, waves can be propagated both in the shear and longitudinal modes. For very short delays, of the order of a few μ s, longitudinal propagation is used as it has a higher velocity and thus increases the distance between the transducers for a given delay, so reducing the effects of capacitive coupling between the transducers and the disturbing effects of diffraction near them. For longer delays however the shear mode of propagation is preferable in order to reduce the path length required facilitating a more compact design; the ratio of the two velocities is approximately 1.6 to 1. One of the advantages of the shear mode is that waves are reflected from surfaces with no mode conversion provided the particle velocity is parallel to the surface. Furthermore, the wave may be guided by the top

Fig. 1. Quartz block delay line.

and bottom surfaces of the block without causing the spurious signals, due to mode conversion, which would occur with longitudinal waves. The major difficulty in using the shear mode of vibration is that of bonding the transducers to the delay medium but this has now been largely overcome by the use of indium cold welds⁹.

For long delays extensive use is made of reflections to increase the path length in a given size block. A good example is shown in Fig. 1 where a 15-sided figure contains 31 legs in the acoustic path between receiving and transmitting transducers. A 1-ms delay line of this type would have a "diameter" of about 14 cm and delays of up to about 4 ms are feasible, with a bandwidth of about 15 MHz. For shorter delays the bandwidth is greater as the attenuation in the medium is less.

The electromechanical coupling of the receiving transducer is so low that very little of the energy in the incident beam is absorbed. The reflected energy returns to the transmitter where it is reflected again to the receiver, forming an echo which has three times the delay of the primary signal. Various means are adopted to reduce the amplitude of this echo. The first measure uses the directivity of the main beam. The transmitter usually consists of a rectangular piece of quartz whose length is long compared with a wavelength and whose directivity is given by:

$$P = \sin\left(\frac{\pi l}{\lambda}\sin\theta\right) \left|\frac{\pi l}{\lambda}\sin\theta\right|$$

where l is the length of the transducer, λ is the wavelength and θ the angle. This represents a main lobe flanked by a null and side lobes, the first of which is about 18 dB below the amplitude of the main beam. With a transmitter about 100 wavelengths long, the directivity is very high, the first null being about 40 minutes of arc and the first side lobe at about 55 minutes of arc away from the axis. In some designs advantage is taken of this null by tilting the axis of the transmitter so that for a "third time around" reflection already mentioned the null is incident on the receiver. The condition for this is given approximately by the relationship $\theta = 0.4\lambda/l$ (since θ is small) and is equal to $(4 \times 10^8)/f$ minutes of arc for a source of length 1 cm. The reduction in pressure due to the axis of the main beam not being exactly on the receiver is small under these conditions and amounts to only 2 or 3 dB. As a further measure the two transducers are often backed by a wedge of lead; this absorbs a proportion of the energy incident on them, because of the attenuation in the lead.

Also, absorbent material is sometimes fixed to the area of the faces of the polygon which do not carry the main beam. As a result the spurious signals have been reduced in some cases to 60 dB below the level of the wanted signal, although 40 dB is a more usual figure.

The attenuation in the line is largely due to low electromechanical coupling in the transducers for short delays but attenuation in the medium is the limiting factor for long delays. Crystalline quartz is usually used for the transducers but various piezeoelec-

Wireless World, July 1970

tric ceramics¹⁰ have been utilized as they have a coupling coefficient about six times higher than has quartz. They are much more fragile than quartz and there is some difficulty in bonding them to the quartz or glass block.

Fused quartz has a temperature coefficient of about -8 parts in 10^{5} /°C and for accurate work must therefore be temperature controlled. For this reason, glasses have been developed with a negligible temperature coefficient but as they have an appreciably higher attenuation they cannot be used for the longer delay lines. Quartz or glass lines have been used for lincar fieldperiod delays in television scanning systems as in PAL and SECAM receivers.

For the solid delay lines so far described, the time delay is fixed but there are some applications where it is desirable to be able to vary the time delay fairly slowly. For this purpose an optical scheme of pick off has been suggested by Arenberg¹¹ and others^{12, 10}. When glass is stressed it becomes birefringent; light polarized parallel to and perpendicular to the direction of stress have different velocities. The magnitude of this effect varies with the stress and so can be made to vary the phase between the two mutually perpendicular components into which light can be resolved.

The arrangement used is shown in Fig. 2.

Light from a source is passed through a polarizing medium, a quarter wave plate, the optical delay medium, a defining slit and then through an analyser to a photocell. The analyser is so positioned that in the absence of a signal and the quarter wave plate no light would fall on the photo cell; the presence of a signal would therefore result in a rectified output from the cell. The quarterwave plate biases the system so that a linear output is obtained from the cell in the presence of a signal. The slit can be moved along the line and continuous variation of the delay can thus be obtained.

One of the difficulties lies in obtaining a good signal to noise ratio, and to this end the stress in the glass is made as high as possible by the use of ceramic piezoelectric transducers which have the highest coupling coefficient.

Mercury delay lines: Mercury delay lines are not so cheap or convenient as quartz

Receiver

Fig. 3. Construction of a mercury variable delay line.

plates but have the advantage that they are easily adjustable in length, at any rate for delays up to about 350 μ s. A typical construction is shown in Fig. 3. As in the case of quartz line a highly directional piezeolectric transmitter generates waves which travel along the mercury and are then reflected back from a corner reflector to the receiving transducer situated by the side of the transmitter.

The attenuation in the mercury is proportional to (frequency)² and is given by $\alpha/f^2 = 5 \times 10^{-15} l m^{-1} sec^2$. This is low for medium frequencies and amounts to about 15 dB at 15 MHz for a 1-ms line. It is obvious, however, that the attenuation increases rapidly as the frequency rises. In the low attenuation region, measures to reduce spurious reflections are essential, and the methods discussed in the previous section are applied. In addition, the transducers are sometimes terminated at the rear by a mercury filled cavity having a shape designed to trap and absorb the incident energy. By these means reflections can be reduced to about 40 dB below the main signal.

As the acoustic impedance of the mercury is a good match to that of the quartz transducers the bandwidth available is wide and the insertion loss due to mismatch is low. The main loss in the system is the poor electromechanical coupling in the transducers themselves, the total loss amounting to some 50 dB for a 1-ms line. The electrical load applied to the receiving transducer also obviously has a marked effect.

The temperature coefficient of delay of mercury in a steel container is -0.03% per °C. The suggestion¹³ has been made that where this is excessive a capillary should be attached to the bath which would thus act as its own thermometer operating a thermostat switch, and control could be exercised to within a few millidegrees.

Static delays of 1 ms and delays adjustable from 30 to 200 μ s can be produced. In the latter case the corner reflector is mounted on a lead screw having a pitch such that one complete turn changes the delay by 10 μ s. The bandwidth is about 8 MHz. The cost of the adjustable line is about £500 and the size 400 × 100 × 100 mm. It has been used in a line store converter, a vertical aperture corrector¹⁴ and a field store.

Ultrasonic wire delay lines: For these delay lines, waves are propagated along wires using either the longitudinal or shear modes. The expression

$$v = \sqrt{\frac{E}{\rho}}$$

for the velocity of low frequency longitu-

dinal waves (E is Young's modulus, ρ is density) is found to be in error at ultrasonic frequencies where the wavelength becomes comparable with the diameter of the wire. Under these conditions Rayleigh gives the velocity as:

$$v_e = \left[l - \pi^2 \sigma^2 (a/\lambda)^2 \right] \sqrt{E/P}$$

 σ being Poisson's Ratio and *a* the radius of the wire, and this holds if $a/\lambda < 0.6$. At the highest frequencies the energy flows almost entirely in the surface layers. Because of the ensuing dispersion, lines using this mode of propagation are restricted to short lengths.

For torsional waves the velocity

$$v_s = \sqrt{\frac{\mu}{\mu}}$$

where μ is the modulus of rigidity and is thus free of dispersion provided the wire is straight. If however the wire is curved, as is desirable for long lines, a certain amount of dispersion takes place but this is very low provided the wire is naturally straight, i.e. there is no "set" in the line where it has been taken past the elastic limit.

The diameter of the wire is determined by the fact that only the zero order mode is wanted. Higher orders will exist above a lower cut-off frequency given by $f_c = (R_n V_s)/2\pi a$ where R_n is a constant dependent on the mode, and V_s is the sheer velocity. The value of R_n for the cut-off frequency (f_c) of the first order made is 5.136. Below their cut-off frequencies these modes are rapidly attenuated and it is safe to use frequencies up to 0.75 f_c .

Another advantage in using the torsional mode rather than the longitudinal mode for long lines, is that the torsional velocity is only 0.6 of the longitudinal velocity with a corresponding gain in delay for a given length. Unlike the quartz and glass considered in the previous section, a wire is composed of a multi-crystalline material. Reflections at the crystal boundaries give rise to additional attenuation, proportional to f^4 , which places an upper limit to the bandwidth.

Transducers: Wire lines can be driven by piezoelectric elements but in practice magnetostrictive devices are generally used. For longitudinal modes this takes the form shown in Fig. 4. A short coil surrounds the wire, which is biased magnetically by a permanent magnet as indicated. When a pulse of current is applied to the coil the wire changes dimensions (Joule effect)¹⁵ and this disturbance is propagated in both directions with a velocity v_e . The wave arriving at the left hand termination block is absorbed

Fig. 4. Driving a longitudinal wire delay line.

and the other travels to the receiver coil, where it induces an electrical signal (Villari effect)¹⁶ and thence to the right hand termination. The length of the coil determines the highest frequency of propagation, the efficiency rising to a maximum at a frequency where $f = v_e/2l$.

For torsional modes a converter due to Scarratt and Naylor may be used as shown in Fig. 5. In this case the longitudinal waves are generated in two strips as described above and excite the wire in the torsional mode. To avoid spurious reflections from the driver the termination must be very good. An alternative form due to Wiedemann¹⁷ is shown in Fig. 6. In this case a biasing current flows in the solenoid and the signal current flows down the delay line. In either case the conversion efficiency is low the insertion loss of the two transducers amounting to roughly 40 dB.

The design of a typical long delay line is shown in Fig. 7. Delays of up to 10 ms are available but with these the bandwidth does not usually exceed 1 MHz; spurious echoes

Fig. 5. Driving a torsional wire delay line (due to Scarratt and Naylor).

Helical total field

Fig. 6. Wiedemann transducer.

Fig. 7. A typical wire delay line with a long delay time.

are often as high as -12 dB on these lines. For shorter delays bandwidths up to 5 MHz are feasible. The source impedance should be high and so should the load into which the output coil is connected; matching amplifiers are therefore required. The cost for a line of 3 ms is £70 and the size approximately $178 \times 254 \times 38$ mm.

Because of the limited bandwidth, applications are few. Other ways of producing delays are discussed in the concluding part of this article next month.

REFERENCES

- Stein Dimitri, R., "Magnetic Core Delay Cables", I.R.E. National Convention Record, 1954, Vol. II, Part 3, pp. 30-34.
- "A 5 µs Delay Panel Type PA7/501". B.B.C. Designs Department *Technical Memorandum* No. 8.125, 1963.
- Kallmann H. E., "Equalized Delay Lines", Proc. I.R.E., Vol. 34, No. 9, pp. 646-657.
- Di Toro, M. J., "General Transmission theory of Distributed Helical Delay Lines with Bridging Capacitance", *I.R.E. Convention Record*, Part 5 Circuit Theory, 1953, pp. 64-70.
- Solov'yev, V. A., "Miniature Delay Line with High Resolution", *Elektrosvyuz*, 1961. No. 2, pp. 11-23.
- Howorth, D., "Miniature Delay Lines for Television Equipment", B.B.C. Technical Memorandum No. T 1083.
- Shorter, D. E. L., Manson, W. I. and Stebbings, D. W., "The Dynamic Characteristics of Limiters for Sound Programme Circuits", B.B.C. *Research Report* No. EL-5 1967/13.
- "Preliminary Experiments on the use of Solid Materials as Supersonic Transmission Media for Delay Cells". Telecommunications Research Establishment 2940, 1941.
- 9. Brocklesby, C. F., Palfreeman, J. S. and Gibson, R. W. "Ultrasonic Delay Lines", Iliffe, London (1963).
- Gibson, R. W., "Solid Ultrasonic Delay Lines", Ultrasonics, April/June 1965.
- Arenberg, D. L., "Ultrasonic Solid Delay Lines". J.A.S.A., Vol. 20, No. 1, Jan. 1948, pp. 1–26.
- Brouneus, H. A. and Jenkins, W. H., "Continuously Variable Glass Delay Line", *Electronics*, Jan. 13th 1961, pp. 86-87.
- Brocklesby, C. F., "Ultrasonic Mercury Delay Lines", *Electronic and Radio Engineer*, Dec. 1958, pp. 446-452.
- Howorth, D. "Vertical Aperture Correction using Continuously Variable Ultrasonic Delay Lines, B.B.C. Engineering Monograph No. 47, May 1963.
- Joule, J. P., "On the effects of magnetism upon the dimension of iron and steel bars", *Phil. Mag.* 111, 30, 1847.
- Villari, F., "Change of Magnetization by Tension and Electric Current", Annalen de physikalische Chemie 126, 87, 1865.
- Brocklesby, C. F. Palfreeman, J. S., and Gibson, R. W. G., "Ultrasonic Delay Lines", Iliffe, London (1963), p. 137.

Mechanical Filters for TV Receivers

Interest in mechanical filters continues to grow and modern microcircuit technology is helping us to obtain smaller and smaller devices working at higher and higher frequencies. Electrical filters depend for their frequency-sensitive effects on the natural behaviour of electrons oscillating between energy stores in the form of capacitors and inductors (or iust capacitors in active filters). In mechanical filters the equivalent energy stores are the mass and compliance of lumps of solid material, say metal or crystal, which can be mechanically activated by suitable transducers, e.g. electromagnetic or For piezoelectric. example, some mechanical filters on the market, operating at centre frequencies up to about 20MHz, use thin plates of quartz with pairs of electrodes applied for activation and pick-up.

Recent work has been concerned with mechanical waves travelling on the surface of thin films of material. The latest example, from Zenith in the U.S.A., is an experimental device intended to provide a band-pass frequency response for use in the i.f. sections of television receivers. It uses lead zirconate, a piezoelectric ceramic, and the surface waves are launched and picked up by comb-shaped electrodes: the transmitting "comb" exerts mechanical stress on the material and this causes waves to travel across its surface and create a varying electric field which is detected by the receiving comb. In one example the transmitting transducer is a comb of about 20 teeth in the middle of the area of lead zirconate, while the receiving transducer consists of two combs, one on each side, which can be series or parallel connected. The spacing between the comb teeth is significant in determining the frequency response characteristic of the filter.

A complete i.f. section for a colour television set has been constructed, using four of these devices (known as Surface Wave Integrable Filters) with i.c. amplifiers to compensate for insertion losses, all mounted on a $2in \times 1in$ thick-film circuit on a ceramic substrate. It is said to have given a good picture when substituted for a standard i.f. section in a colour receiver.

Zenith are also working on flat panel television picture displays.

15-20W Class AB Audio Amplifier

A design with class-A performance but reduced thermal dissipation

by J. L. Linsley Hood

Many class B designs can be operated in class A at low power levels if the quiescent current is increased. However, this often worsens the distortion characteristics of the output stage, particularly at intermediate (and audibly important) power levels, by displacing the crossover point to a region where the transfer slope is much steeper, and the crossover discontinuity therefore much more prominent. This effect is considerably accentuated by the fact that almost all modern transformerless power amplifier systems use either Darlington pair or augmented (p-n-p/n-p-n) emitter follower output pair configurations, and these have a very high mutual conductance.

The use of a complementary pair of emitter followers, driven from a voltage source having an output impedance which is very much lower than the normal input impedance of the output devices, appeared from this line of thought to offer the best way of minimizing the several problems mentioned above.

In practice, the necessary low impedance base-emitter paths can be arranged quite simply by driving the output transistors from a suitably tapped emitter load resistor in a conventional emitter-follower circuit, provided that the current flow in this load circuit is adequate to deliver the necessary output drive.

Moreover, this type of circuit arrangement will also operate, in class A, as a straightforward cascaded emitter follower, as can be seen from the circuit arrangements shown in Fig. 1. In (a), the transistors Tr_1 and Tr_2 act as a conventional Darlington pair, with a resistive emitter load to which the output load Z_2 is coupled through C_1 . In (b), essentially the same circuit is employed, but using a complementary type of transistor as the second stage emitter follower.

It is then possible to arrange the circuit as shown in (c), so that both of these configurations are employed simultaneously. Resistors of double the ohmic value can then be employed as R_1 and R_2 , with half the emitter current in each transistor, to give an identical matching impedance to the output load. In practice, this circuit arrangement can be simplified into the form shown in Fig. 2, and the resistors R_1 and R_2 deleted since the load current for each transistor can flow through the other. This also improves the efficiency since the transistors have a very high dynamic impedance and form good emitter loads for each other. The two small value resistors R_x and R_y are included to assist in stabilizing the output transistor working points.

The actual value of the quiescent current in the output stage can be set by adjustment to VR_1 . To avoid asymmetry, at low audio frequencies, the bypass capacitor should have as high a value as convenient.

This arrangement of the output transistors was of particular interest to the author, since the first three stages of such an amplifier could be substantially the same as those used in the previously described class A design, of which the performance was known. In fact, the system could be constructed on the basis of the class A design, with the quiescent current reduced to a much lower level, and a pair of suitably biased back-to-back emitter followers interposed between the output and the loudspeaker load. However, this would not have made the most of such a system. In particular, it will be noted that if the potential at the emitter (or base) of Tr_1 in Fig. 2 is held constant, the current through the resistor chain R_3 , VR_1 will be constant for any particular value of

 VR_1 and therefore the turn-on potential applied between the bases of Tr_2 and Tr_3 will also remain constant (or virtually so). This allows the standing current of the output transistors to be defined precisely, since the d.c. output potential can be controlled by the use of unity gain d.c. negative feedback, and this effectively controls the emitter potential of Tr_3 .

Also, since the last voltage amplifier stage is not required to deliver significant power, it can be optimized for voltage gain, with an increase in the available negative feedback. A practical amplifier circuit of this type is shown in Fig. 3.

The first two transistor voltage amplifier stages of this follow conventional design practice, with the collector load resistor of Tr_2 boot-strapped to obtain large voltage swing at the base of Tr_3 with as little second harmonic distortion as practicable. The collector of Tr_3 is also partially boot-strapped in order to reduce the peak voltage swing, and improve the symmetry of the output waveform prior to the application of the loop negative feedback. (Without overall n.f.b. the distortion at full output power is a little

Fig. 3. Power amplifier circuit. The dotted components (680pF, $1.5k\Omega$) can be added if electrostatic speakers are used.

less than 4%, almost entirely second harmonic. This is similar to the performance of a good triode valve output stage prior to the application of n.f.b.) The lower end of R_3 is also fed with the output signal to improve the output voltage swing obtainable from Tr_5 .

The 390-pF capacitor between the emitter of Tr_T and the collector of Tr_2 , and the 8.2- Ω resistor in series with the 0.1 μ F capacitor across the output, provide the necessary phase-angle correction and define the high-frequency gain of the feedback loop. With the values shown there is a 6 dB/octane roll off beyond 100 kHz, and the system is completely stable under all load conditions. However, with the use of a large value capacitive load there will be some overshoot on a rapid transient. The author believes that it is desirable, for tonal purity, for such overshoots to be eliminated, and it is recommended, therefore, that the 390-pF capacitor be shunted with a 680-pF 1.5-k Ω combination where it is intended to drive electrostatic speaker systems. However, on normal loads this merely reduces the h.f. roll-off point, and the power output available in the 30-50 kHz region, and can well be omitted.

The $100 \cdot \Omega$ wire-wound potentiometer between the bases of Tr_4 and Tr_5 is used to set the quiescent current level to about 200 mÅ. The chosen current level determines the power level at which the system changes from class A to class B operation. With the suggested level of 200 mÅ, this transfer will occur at approximately 300 mW with a 15- Ω speaker (160 mW for 8Ω) although the measured current consumption will not appear to increase until a power output (into 15Ω) of about 1.2 W is reached because the h.t. line bypass capacitor is able to supply the peak current demands.

If the standing current through the output stage is increased, progressively larger output power levels can be obtained within the class A region, up to the level at which the amplifier acts as a pure class A system. The only observed penalty for this exercise is that the power supply demand and the thermal dissipation in the output transistors are both proportionately increased. However, if the output transistors are of dissimilar origin or are otherwise badly paired the operation of the circuit in class A will ensure that the distortion levels and other performance standards are attained in spite of this.

Performance characteristics

The specifications given below were obtained using the power supply system shown in Fig. 3. The amplifier was specifically designed to work from a poorly smoothed h.t. line, the values and positions of the h.t. decoupling and 'bootstrap' capacitors being chosen to avoid the intrusion of ripple into the signal circuits. The only significant difference observed in using a good quality stabilized and smoothed power supply is a small improvement in the already extremely good hum and noise levels.

Fig. 4. Gain/frequency characteristics.

Fig. 5. Power output/frequency characteristics.

Power output. 15W into 15 Ω , or 18W into 8 Ω . (20W with modified output circuit components values).

Bandwidth. 10Hz— $100kHz \pm 0.5dB$ at 2V output. 20Hz— $50kHz \pm 0.5dB$ at maximum power output.

Output impedance. 0.03Ω (at 1kHz).

Total harmonic distortion. 0.02% at $15W/15\Omega$ or $18W/8\Omega$; less than 0.02% at all power levels less than maximum output. Intermodulation distortion. Less than 0.1%. 10W (12.3V r.m.s.) 15Ω , 70Hz. 1V r.m.s. 7kHz (or 10kHz).

Square-wave transfer distortion. Less than 0.2W at 10kHz.

Rise time. $3\mu_{\rm S}$. Input impedance. $20k\Omega$ (approx.)

Gain. 18x.

Hum level. (Simple power supply)-70dB w.r.t. 1W

Wireless World, July 1970

Noise level. (Simple power supply) -80dB w.r.t. 1W. (These figures are, respectively, better than -80dB, and -85dB with the regulated power supply.

Feedback factor. 46dB (typical). Input voltage for max. output. 850mV r.m.s. Load stability. Unconditional.

For the perfectionist, a suitable design for a regulated d.c. power supply, with re-entrant short-circuit and overload protection is shown in Fig. 10. This gives approximately 10dB improvement in the hum and (r.m.s.-weighted) very low frequency noise.

The gain/frequency, and power output/frequency graphs are shown in Figs. 4 and 5, and the relationship between output power and distortion, and signal frequency and distortion are shown in Figs. 6 and 7. The square wave performance into a $15-\Omega$ resistive load, with any value of shunt capacitance up to 0.1μ F, at 1kHz, 10 kHz, and 50 kHz are shown in Fig. 8. The sine wave output at 1 kHz, and 15W with a $15-\Omega$ resistive load (42.5 V p-p) and the associated harmonic distortion (representing 0.02%) is shown in Fig. 9.

Listening trials

As described last month, a number of experiments were done during the development of this circuit to try to relate audible effects to the phenomena observable and measurable in the laboratory, and a transfer distortion analyser (British patent application No. 7925/ 1970) was made to judge the performance with non-sinusoidal waveforms. (A point was reached in the earlier stages of the design where the author's ear was no longer able to detect the subsequent improvements.)

The transient response of the 10-watt class A design (as originally published¹, without the modifications², suggested in October 1969 to reduce the h.f. bandwidth) is superior to that of the present circuit in the range 50kHz–2Mhz under load conditions of fairly low capacitive reactance. Under more adverse load conditions the present design will be (technically) better. However, the most careful comparative listening trials, with several of the author's longsuffering friends, have failed to uncover any audible difference between these two designs, both of which will almost certainly surpass in performance the best available valve-operated, transformer-coupled units.

Constructional points

The layout used in one of the prototypes of this design is shown in Fig. 11, using a 0.15-in matrix copper strip board. The layout should not be particularly critical provided that normal precautions are observed, such as keeping the output and input circuits reason-

Fig. 6. Power output/distortion characteristics. The 8- Ω load characteristic was measured using the modified output-stage components.

Fig. 7 Influence of signal frequency on distortion (1W into 15Ω)

ably well separated, and making sure that the power supply leads, and the loudspeaker return lead, connect to the board at a point close to that to which the collector leads of the output transistors are soldered.

Since the circuit has unity gain at d.c. the occurrence of a switchon 'plop' in the loudspeaker can be avoided by the use of a suitably long time-constant in the deccupling circuit which provides the base bias for Tr_1 . The voltage at 'X' (Fig. 3) will then follow the base potential of Tr_1 as it slowly rises following switch on. It is undesirable to have the full h.t. voltage applied during this period, and this is avoided by the incorporation of a thermistor (Radiospares TH2A or equivalent) in the mains transformer primary circuit. Since this will cause a drop of some 10-15V, this should be allowed for in the tapping point on the mains transformer. Also, since the thermistor becomes quite hot under operating conditions (this is necessary) it is important to mount it in such a way that this does not damage associated components or wiring.

The dissipation of the output transistors is normally about 8W, and the output pair can both be mounted on a single $3\frac{1}{2}$ in x 4in.

Fig. 8. Square-wave performance into 15Ω in parallel with $0-0.1\mu$ F. (Scale 2V/cm) (a) 1kHz, (b) 10kHz, (c) 50kHz.

Fig. 9. 14-W 1-kHz sinewave into $15-\Omega$ resistive load. Distortion 0.018% on scale 35mV/cm. Fundamental on scale 10V/cm.

Fig. 10. Stabilized power supply with re-entrant short-circuit protection (12-49V).

black anodized, ribbed heat sink. The heat sink should be earthed -very simply by omitting the mica washer on the MJ491.

The driver-transistor dissipation is of the order of 2W in some circumstances, and this is somewhat in excess of the power which can be handled safely by the normal TO-5 cased device, such as the 2N1613, unless very careful heat sinking arrangements are employed. The use of such devices as the 2N3054 or the Motorola MJE521, mounted on a small piece of black-painted aluminium sheet, say 1 in x 1 $\frac{1}{2}$ in, gives a very large safety margin in this stage. The performance of the Motorola MJE521 is slightly to be preferred, and was used in all the prototypes. This stage, however, is not a very critical one, and these transistor type variations are unlikely to make a significant difference to the system's overall performance.

The Texas BC212L and 182L are the preferred transistor types for Tr_1 and Tr_2 , although the 2N1613 was also used in some development models as Tr_2 with identical results. The Motorola 2N-3906 and 3904 could also be used in the Tr_1 , Tr_2 positions with almost equivalent performance, but this has not been tried. The use of $\frac{1}{2}$ -W carbon film 5% resistors is suggested except in the points where higher wattages are required. R_1 and R_2 should be of small diameter or low inductance. The various electrolytic capacitors can be of higher value or voltage working without ill effect.

A suitable printed circuit is obtainable from A1 Factors, of Nottingham, who can also supply the other components.

Appendix 1

Calculation of power output levels obtainable with given quiescent current in class A operation.

The maximum output power which can be obtained from a power output stage such as that in Fig. 3, in class A, is entirely determined by the quiescent current and the load impedance provided that adequate h.t. voltage is available. At frequencies which are low enough for the 'wattless'' components of the load current to be ignored, the maximum current excursion which can be caused to flow through the load without taking one or other of the output transistors beyond cut-off is equal to twice the quiescent current (I_q) through the output stage. Since this is the 'peak' current through the load, if the waveform is sinusoidal, the r.m.s. equivalent current will be $2I_q/\sqrt{2}$, and at low frequencies, the power developed in the load will be $2I_q^2$. R_L.

For example, if the stage is required to operate in class A up to one watt, with a 15- Ω load, the peak current swing through the load must be $1 = 2I_q^2$. 15, or $I_q = 183$ mA. Similarly, for an 8- Ω load, $I_q = 250$ mA. With the standing current suggested (200mA), 1.2 watts or

With the standing current suggested (200mA), 1.2 watts or 640mW will be given for $15-\Omega$ and $8-\Omega$ loads respectively. This should be adequate for most normal listening. For full class A operation up to 15W, quiescent currents of 710mA and 970mA respectively will be required.

Fig. 11. Layout of components on 0.15-in matrix strip board. The 'set current' and 'set mid-point' potentiometer, and the power transistors, are off the board.

Appendix 2 Output transistor protection

The use of class B output circuit configuration (and class AB comes within this category at the power levels concerned) in transistor power amplifiers of this general type leads to the possibility that very high instantaneous currents can flow, which will lead, regrettably, to the equally instantaneous destruction of the transistors involved, if the amplifier is operated at maximum drive into an effective short circuit, and this could be a load with a very high capacitive reactance, in some cases.

The classic system for output transistor protection, using two input bypass transistors, is that due to Bailey³, and this is also applicable to the output circuit of this design. However, because of the d.c. asymmetry between the potential at the base of Tr_3 and the output point 'X', a much simpler arrangement can be used, consisting solely of a good quality (low leakage) zener diode between these two points, with the positive zener end connected to the base of Tr_3 . Any 4-4.7V zener will do provided that the leakage current at 3V reverse, and 0.4V forward, is less than 10μ A. The ITT 400mW series ZF 4.7 is quite suitable. Again, for 20 W output into 8Ω , the resistors R_1 and R_2 must be reduced to 0.47Ω .

REFERENCES

1. J. L. Linsley Hood, "Simple Class-A Amplifier", Wireless World, April 1969.

2. "Letters to the Editor", Wireless World, October 1969.

3. A. R. Bailey, "Output Transistor Protection in A.F. Amplifiers", Wireless World, June 1968.

Electronic Building Bricks

2. Representing information by electrical variables

by James Franklin

Last month we defined electronics broadly as the use of electrons to represent and process information for human purposes. This is a rather grand phrase, and, like all generalizations, needs a down-to-earth example to give it real meaning. Let us, then, look at a simple electronic system.

Fig. 1 shows a system for counting objects moving along a conveyer in a factory. A lamp and lens produce a beam of light which passes across the conveyer belt at such a level that the moving objects interrupt the beam. The light falls on a photo-electric cell, which converts the light energy into electrical energy. The electrical energy from the cell is then conveyed to an electronic counter. This device counts events, not, as the name might suggest, numbers of electrons. In this case the events counted are the interruptions of the light beam, as detected by the photo-electric cell.

The graphs in Fig. 2 show in more detail how it works. At (a) is a graph of the light energy reaching the photo-electric cell over a period of time. It will be seen that this energy falls to a very low value, practically zero, when the beam is interrupted by an object (the small residual energy being the result of room light "leaking" into the cell). At (b) is a time graph of the electrical energy generated by the cell as a result of the incident light energy. One can see that it forms a sequence of falls of electrical energy, corresponding to the interruptions of the light beam. These events can be distinguished more clearly if we invert the vertical axis of the graph as at (c).

Fig. 1. A simple electronic system for counting objects moving on a conveyor

Fig. 2. How the required information in Fig. 1 is represented by an electrical variable: (a) light energy reaching the photo-electric cell; (b) resultant electrical energy; (c) the graph (b) inverted to show falls of energy as pulses.

Thus we end up with a sequence of *pulses* in the flow of electrical energy, representing the interruptions of the light beam and hence the passage of objects through the light beam. The electronic counter counts these pulses—the "events"—and thereby counts the number of objects travelling along the conveyer.

In this simple system the essential information is the number of objects that pass the detection station on the conveyor. Within the electronic system this information is represented by the variation of electrical energy shown in Fig. 2 (c)—a pulse (energy fall) for each object. This graph is one example of an electrical signal. In this form the electrical signal is similar to those produced by earlier methods—smoke, arm positions, flags, flashes of light etc.; it is a sequence of events representing and conveying information.

We have carefully said "representing and conveying" because a signal does both. We may, however, merely wish to represent information, without simultaneously conveying it, so that it may be sent later—this is called *storage*. The two functions are illustrated by analogy in Fig. 3. At (a) the quantity of material held in the container (which can be controlled by the inflow and outflow) may be used to represent some other variable, say air pressure. This is static information, and the process of holding it, storage. At (b) material is moving along a pipe—this could be the inflow or outflow pipe in (a). Here we could use the rate of flow of the material to represent the variable—and again this could be air pressure. So in both cases we have a mechanical variable made proportional to some other variable, but in one case the information is static (stored) while in the other case it is dynamic (conveyed).

In electronic systems we can use electrons as the "material" in Fig. 3—for example, quantity of electrons for static information, flow rate of electrons for conveying information. There are, in practice, several electrical variables which may be utilized—voltage, power, electric and magnetic fields, to name a few without explaining them here.

Another type of electrical signal is shown in Fig. 4. Although this time graph is a continuous variation of electrical energy in contrast to the pulses in Fig. 2 (c), it can still be regarded as a sequence of events because it consists of successive values of energy (though these successive values are infinitely close together). The electrical energy values here are actually proportional to sound energy values detected by a microphone, and they result from sound waves produced by a violin being bowed on its E string.

Static information (Stored) Variable : quantity held Inflow (a) Outflow Dynamic information (Conveyed) Variable : rate of flow

Fig. 3. Analogues illustrating how a material may be used to represent (a) static information and (b) dynamic information.

Fig. 4. Graph of electrical energy varying with time—a signal of a different type from that in Fig. 2 (c).

Where can you order a $1.35 \mu F \pm 0.5\%$ capacitor?

You can now order a special capacitor of the above value and tolerance in one off quantity and expect a short delivery time. For your 38s 3d, and that is what it will cost you, you will get a high-quality polycarbonate capacitor with either axial or radial leads (your choice) in a rectangular package measuring 24×14 $\times 12$ mm; the working voltage will be 63 from -55 to +85°C. A temperature swing from 10°C to 60°C will change the capacitance by only 0.15%.

In fact the firm which offers this service manufactures 63V polycarbonate capacitors from 470nF to 22μ F (any value) with tolerances of ± 5 , 2, 1 or 0.5%. A $\pm 5\%$ version of the capacitor mentioned above would cost 11s 4d.

The firm, which is British and is called MFD Capacitors Ltd, is offering a service which is unique, although their main business will be in standard value precision capacitors within the limits mentioned above.

This service is made possible by a new manufacturing process and by a new approach to the problem of determining the capacitance of the final product. Once the metal-coated polycarbonate films have been wound they are measured and put in bins of a nominal standard value or in bins of a value representing given percentage increments above and below the nominal value. It is normal in film capacitor manufacture for the capacitors in this stage of manufacture to contain shortcircuits which are later burnt away by the application of a high-voltage. MFD uses a winding technique that makes this process unnecessary. In fact the polycarbonate film used is so thin (0.002mm) it would be damaged by the process.

Subsequent stages of manufacture —coating the ends of the roll attaching the lead out wires and encapsulation normally involve the application of heat and alter the value of the winding. The processes used at MFD do not alter the value making it possible to know the final value of the capacitor before manufacture is complete.

Because of this, and because two capacitor 'rolls' can be encapsulated together in the standard cases used, any desired value can be produced by connecting two selected rolls in parallel

Elliott Flight Automation have received a £5M order for digital inertial navigation and weapon aiming systems to be fitted to Jaguar aircraft for the R.A.F. The basic components of the system, which is built around the Elliott 920M miniature computer, are shown in the photograph. This system is much smaller and lighter than Elliott's first i.n. system which was designed for the Blue Steel stand-off bomb carried by V-bombers.

within the one encapsulation. In addition MFD will manufacture capacitors in various non-standard packages or with special characteristics.

MFD Capacitors Ltd have announced an agreement with Emihus Microcomponents Ltd under which Emihus will market the capacitors in the U.K.

Microelectronics industry survey

The Ministry of Technology and the National Research Development Corporation have announced that they are to sponsor a comprehensive study of the microelectronics industry in Britain. It will cover the period 1970 to 1980. The survey will cover forecasts of markets, product costs and technological trends in microcircuits and will include a less detailed survey of the electronics industry as a whole and the ever-expanding list of other industries now making use of microelectronics.

The survey will be conducted by Mackintosh Component Consultants Ltd based in Glenrothes, Scotland, and will take about fourteen months to prepare.

New transmitter for Criggion

Early in the 1939-45 war it was decided to build a v.l.f. transmitting station that could take over from Rugby (GBR) should this station be put out of action. The shortage of steel for the aerial masts and the need for large amounts of cooling water led to the choice of a site at Criggion near the river Severn. The huge aerial was supported by three' 600-ft towers (which had been built for a new radio station in Ceylon) and an anchorage on the top of Breidden Hill which rises steeply above the river Severn.

Hardly had the new transmitting station been completed when, in 1943, the Rugby station was severely damaged by fire. Criggion took over for the nine months it took to rebuild the Rugby station. Following this Criggion, with the call-sign GBZ, operated for 25 years.

In July 1969 a new, larger, aerial was completed on the Criggion site. Three new 700-ft masts were constructed, in addition to the original masts and the hill anchorage. The conductors used for the aerial represented a departure from normal systems for the Post Office in that steel cored, aluminium sheathed cable was employed offering a number of advantages; light weight, strength, high current carrying capacity, freedom from icing and corona, and high capacity to ground. In all fourteen miles of aerial cable, weighing about 40 tons, was used for the aerial.

The new aerial could handle four times the radiated power of the old one and now a new transmitter has been built to provide it. The new transmitter, built by Redifon, was officially inaugurated a few weeks ago. It consists of synthesizer type

Wireless World, July 1970

frequency generating equipment driving three amplifiers.

Each of the amplifiers comprises a 5-kW wideband audio frequency amplifier, coupled to a single-stage tuned amplifier having an output of 150kW, Each or all of these three tuned amplifiers can be connected via heavy-duty r.f. switches to the common tuned tank and aerial circuit. and thence to the aerial system. The power fed to the aerial can, therefore, range from 150kW to 450kW, according to the number of amplifiers in use. The tuned output and aerial circuits are of orthodox design employing tuning capacitors of the type first used in the GBR transmitter forty five years ago. The anode tuning inductors are of the variometer type originally developed for a new transmitter built for the Rugby station. The aerial tuning inductor is a modified design of the one previously used at Criggion. The combination of the new aerial and amplifiers has raised the radiated power from approximately 7.5kW to 30kW at 19.6kHz, at which frequency GBZ normally operates.

Skynet-2

Hawker Siddeley Dynamics Ltd and GEC-AEI (Electronics) Ltd have each been given a contract by the Ministry of Technology to develop, in co-operation with American industry, proposals for higher powered Skynet communications satellites for defence purposes. A decision on which firm is to be the eventual prime contractor for two such satellites will be taken later this year. The craft are to be ready for launching in 1973 to replace the first two Skynet satellites which were built in America. The first of these was successfully launched last November. The replacement satellites will be more powerful and will be able to operate with small transportable ground stations.

U.K. exhibit at Mesucora

Under the sponsorship of the Electronic Engineering Association and with the support of the Board of Trade, under its joint venture scheme, a number of U.K. companies exhibited at the Mesucora exhibition held at the Palais de la Defense, Paris, from May 27th to June 4th. The companies who took advantage of the joint scheme are: Automatic Systems Laboratories, Ceta Electronics, Electronic Associates, the EMI group of companies (comprising EMI Systems and Weapons Division, S.E. Laboratories, Electron Tube & Microelectronics Division, EMI Tape and Meterflow), Ether, Eurotherm, J. J. Lloyd Instruments, Marconi Instruments, Metals Research, and the Ministry of Technology (comprising British Calibration Service, Scientific Instrument Research Association and Summerfield Research Station).

B.B.C. communications, reject/re-file position with the visual display unit in the centre

Computer controlled communications

The B.B.C's teleprinter network, which handles the transmission of news items, administrative messages and scripts to and from 60 outstations in London and the regions, has recently been equipped with an automatic switching system incorporating an STC6350 Automatic Data Exchange (ADX). The previous manual system handled more than 700,000 messages a year and was incapable of expansion. In this, incoming messages were perforated on paper tape and transferred to transmitting machines which were connected to the addressee outstations by an operator on a switchboard.

If expansion were possible it still would not have relieved the congestion which occurred at peak periods. Now installed in the Communications Centre at Broadcasting House, the store and forward 6350 ADX provides automatic routing and re-transmitting of messages with a transit time of only milli-seconds. This ensures that the circuits are always operating at their maximum carrying capacity. Stations originating a call do not have to wait until the called station is free before passing their message. Incoming messages are stored until destination lines become available. Designed around a Digital Equipment Corporation PDP-9 processor, the ADX system has a planned capacity for 125 inputs and 125 outputs. The processor is equipped with a fast ferrite core with a capacity of 16,384 18-bit words having a cycle time of 1µs. This is backed up by a Burroughs fixed head magnetic disc store with a capacity of 870,000 18-bit words and an average direct access time of 17ms. Control facilities refer abnormal conditions to one of five supervisory units for action and the system programmes ensure an extremely fast return to service in the event of failure, with full protection for all traffic. One of the supervisory units is a visual display where messages rejected by the ADX because of incorrect routing information in the header can be inspected. The unit has a keyboard

through which the operator may correct the header information and automatically release the message for transmission.

British exhibit at WESCON

The Electronic Engineering Association is sponsoring participation by 29 U.K. electronics companies at the 1970 Western Electronics Show and Convention (WESCON) which this year takes place in Los Angeles from 25th to 28th August. The British companies taking part are: Air Control Installations (Chard), AEI Semiconductors, Birch-Stolec, Bowthorpe-Hellermann, Ceta Electronics, Cossor Electronics, Culton Instruments, Electrolube, Elite Engineering, Ferranti, FieldTech, GEC-Elliot Process Instruments, Green Electronic & Communication Equipment, Industrial Control Systems, Jermyn Industries, Marconi Instruments, the M-O Valve Company, Mullard, Prosser Scientific Instruments, Racal Instruments, Rank Precision Industries, Research Instruments, Seer TV Surveys, SDC Electronics (Sales), Static Devices, Techne (Cambridge), Vero Electronics, Vision Engineering, and the Wayne Kerr Company.

Synchronous weather satellite

In response to a request from the American National Aeronautics and Space Administration Hughes Aircraft Company have submitted a design for a synchronous meteorological satellite capable of non-stop operation. The satellite, if accepted by N.A.S.A., will be cylindrical in shape measuring five-feet high by five feet in diameter. All-up weight will be around 450 kg.

The satellite after launch, using a Delta booster with six auxiliary strap-on rocket motors, would be under the control of the Environmental Science Services Administration (ESSA). From the height of 22,300 miles the satellite would take cloud cover

(Above) An 8,000-conductor telephone cable being manufactured at the works of British Insulated Callender's Cables and (left) the finished product. The cable employs "Hyperden" insulation, developed by B.I.C.C., made from cellular polythene 90μ m thick giving an increase of 25-pairs-per-cable of a given diameter over earlier methods. The P.O. have successfully laid a length of the cable at Irlam, Lancs.

pictures at the rate of one every twenty minutes, receive information from up to 10,000 sensors (located on ocean buoys, in rivers, on merchant vessels and automatic weather stations), examine solar radiation for high-energy particles and solar X-rays and also measure the earth's magnetic field.

The information received by these means, in addition to photographs, would include temperature, humidity, pressure and water level measurements as well as data on the rate of flow of rivers and streams. All this information would then be transmitted to a ground station for analysis and distribution.

Hughes say that the satellite could be ready for launch eighteen months after the go-ahead was received from N.A.S.A.

The soldered joint

The International Tin Research Council mention, in their annual report for 1969, work being carried out in response to enquiries received from the electronics industry to assess the integrity of the soldered joint in the light of the demands made upon solder by modern automatic methods of soldering. It would appear that the quality of the solder, which must be very good for use in solder baths, deteriorates during mass soldering because of impurities which dissolve in the bath from the work.

The individual effects of small amounts of zinc, aluminium and phosphorus on the wetting behaviour of a 60/40 tin/lead solder have been studied in some detail. Using a plain resin soldering flux it was found that about 0.005% zinc in the solder began to cause the formation of a visible oxide film. This film could well result in the solder bridging the gaps between adjacent conductors on printed circuit boards, thus short-circuiting the electrical path. At a zinc content of about 0.01%, dewetting of the solder from a copper surface was manifest and at higher levels still the ability of the solder to spread on the copper was noticeably reduced.

Similar effects were observed when aluminium additions were made to a 60/40 tin/lead solder, but here visible surface oxidation began to occur at a very much lower level (0.0005 to 0.001% aluminium). The deleterious effects of

The Harlech colour television outside broadcast vehicle (right) is equipped with four of the EMI colour television cameras type 2001 and is sub-divided to provide separate control areas for production, sound and vision. The sound facilities provide for 24 inputs into six groups. The vision system allows simultaneous mixing and special effects operation from up to ten inputs and a separate caption scanner.

traces of aluminium appear, however, to be eliminated by the presence of small amounts of antimony in the solder bath. Although phosphorus is less likely to be picked up in solder, it was found that, at phosphorus contents exceeding about 0.01%, the solidified solder deposit had a rough, "gritty" appearance and dewetting began to be apparent.

Naval battle simulator

A complex military tactical trainer which employs more than £0.5M worth of electronic data display equipment supplied by Marconi Radar Systems has been brought into service at the naval training establishment H.M.S. Drvad at Southwick. The trainer was designed by Ferranti working in co-operation with the Admiralty Surface Weapons Establishment and uses three Ferranti computers which drive more than one-hundred A.E.I. type 1400 displays of various sizes. During the course of a particular battle, at any one time, there may be upwards of 200,000 characters displayed on the various screens. The equipment will simulate ships, submarines, aircraft and other weapons, and it will realistically represent radar, sonar, data handling and communications equipments.

Students are accommodated in cubicles each containing at least two plan displays and a separate tabular display. Each cubicle represents a vehicle in the battle and responds realistically to the commands given by the students. Instructors have control of a large number of additional vehicles with which they can inject new circumstances.

A complete photographic record of each exercise is taken for later analysis.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Low-cost horn

I am glad "Toneburst" has brought into the open in his article in the May issue of W.W, the apparent disparity between real and theoretical cut-off frequencies of corner horns. When, some years ago, a home-built horn of mine appeared to cheat by reproducing tones lower than expected, the thoughts indicated below seemed to reconcile fact with theory reasonably well. I offer them, without professional authority, in the hope that confirmation or rejection by those more knowledgeable will help to remedy the absence of any study of the function of the room as a component of the total horn system.

A horn cannot emit frequencies as low as 30Hz unless it has a mouth of about 38ft circumference or 10ft sides if square. If a corner horn reproduces 30Hz then there must exist a mouth very much larger than that which we see, well forward into the room and connected by some kind of flare extension. With a loudspeaker firing diagonally into a square room this mouth will be the rectangle formed on the other diagonal, with dimensions of room diagonal and room height. (In a rectangular room the effective diagonals would be of the square of the shortest wall.) The extension flare formed by floor, walls and ceiling is not ideal, particularly as the ceiling presents a large and abrupt step in one "contour".

This step is mentioned in a later paragraph. For now, note that the listener is either *in* this horn or in a position comparable, in terms of wavelength, with having his ear within a few inches of the mouth of a mid-frequency horn, where the losses and aberrations attributed to mouth and flare are less evident than at more ordinary distances.

Whereas sound from the mouth of an auditorium (e.g., cinema) bass horn is distributed widely, from the effective mouth of a corner horn it is confined, hence there should be some apparent gain which would off-set the shortcomings of the extension flare to some extent. The mouth radiates into an enclosed volume of air (half the room volume for a square room) that is much smaller, and therefore stiffer, than that encountered in any ordinary auditorium. Presented to the cone by horn transformer action this stiffness could be quite considerable and the necessity of some balancing

A, plane of effective mouth; B, desirable, but unattainable lateral expansion (shown for the right hand only); and C, collision plane, virtual partition limiting lateral expansion of both wavefronts.

stiffness behind the cone would help to explain the dramatic improvement in bass response noted by "Toneburst" when he fitted a rear pressure chamber. Cone excursion, and therefore distortion, could be expected to be less than in auditorium horns. Is this, I wonder, another reason why the Klipsch horn is so widely acclaimed?

The rectangular wavefronts emerging from the so-called mouths formed between horn cabinet and corner walls are separated, initially, by the width of the cabinet. Lateral expansion brings the inner vertical edges into collision at a vertical plane on the centre-line shown in the sketch. As the colliding edges have equal and opposing energy the collision plane is a virtual partition which prevents further lateral expansion. It forms, with the floor and walls, two flare sections that would limit expansion to something seriously short of the exponential flare-rate (indicated in the sketch) if vertical expansion was also inhibited. However, the top flare "panel" is the ceiling and the required expansion is accommodated.

It is, of course, exceeded, but the ceiling step now seems lossy only to the extent by which its capacity exceeds the volume needed to fulfil the flare rate. Even the remaining capacity may be taken up by the presence (in the horn!) of large furnishings, such as armchairs, at floor level. Whatever its effective volume may be the ceiling step seems comparable with a leaky flare panel, but the leak is not into unlimited atmosphere. Even in open air an improvised conical megaphone of rolled, unjointed cardboard, or just a single cupped hand—both very leaky horns are capable of some useful gain.

Despite my admiration of "Toneburst's" experimental effort and design ability, I feel obliged to suggest alternative methods of construction. End-grain butt joints are notoriously weak even with the finest glues, the simple halving joint is far more reliable.

Concrete does not bond with wood; it merely clings, aided in the present case with nail inserts. Effectively we have heavy concrete panels nailed together via sticks. Why, incidentally, if three flare panels must be concrete, should the fourth be wood?

I would use "multi-ply" or blockboard again on the grounds that what's good enough for Klipsch is good enough for me. The panels forming flares, pressure chamber and loudspeaker mounting constitute an array of stiffening webs that impart great rigidity and divide the large panels into smaller areas virtually incapable of flexing, provided a good resin or casein glue is used, with fillets to augment the glue areas.

These observations in no way detract from my admiration of the bold design and experimental effort, against the weight of existing theory, that has provided enthusiasts with a simplified small horn of good performance. My other comments are intended to arouse some responses that may help to explain why it works so well. W. GROOME,

Halesowen, Worcs.

The designer replies:----

Mr. Groome's letter is very interesting indeed. In the bass horn I described, the openings in the sides of the rectangular enclosure together provide a cross-sectional area of 260 sq in (130 sq in on each side). Simply placing the enclosure in a corner yields the remarkable results. The important point to note here is that the rate of expansion of the horn outside the enclosure (i.e., the flaring rate made in conjunction with the walls) is too rapid to be accommodated by horn theory for the results attained. Even for a 40-Hz cut-off the crosssectional area should double in about 16in. An interesting question: when is a horn not a horn? Mr. West (in the June issue) suggests that the air chamber behind the cone turns the enclosure into an infinite baffle type below 100Hz in my design. Yet it is a characteristic of the Klipsch horn that the efficiency is well maintained down to about 40Hz.

Where do we go from here? Perhaps we ought to abandon horn theory as such and get some experimental results on a different track. There is a need for a mediumefficiency loudspeaker that will give cornerhorn quality down to at least 20Hz—and that is a good design aim for anyone. The delay-line bass speaker (at present designated "transmission line" following Bailey's article¹) is rather a non-starter because it offers synthetic bass. Synthetic bass? Synthetic because energy from the rear of the bass speaker cone is delayed for half a cycle before it emerges to augment the signal from the front of the cone. The signal is thus a blend of the past and the present—but very good on sine waves.

Turning again to Mr. Groome's letter I quite agree with his remark about halving joints—that they are much more reliable than end-grain butt joints—but I have to report no breakages myself.

The use of concrete for the *large* panel areas and the sides gripping the speakermounting board, is to ensure rigidity and thus prevent even the suspicion of hangover. You will certainly get "horn quality" from a well-braced plywood structure but I believe that concrete gives audibly better results, even for the treble horn. "TONEBURST"

A. R. Bailey, "A Non-resonant Loudspeaker Enclosure Design", Wireless World, October 1965.

Further experience with C-D ignition

I trust that the following practical details of further experience with Mr. Marston's C-D ignition system (January 1970) since my letter in your March issue will be of interest.

Currently, I have the system fitted to two 6-cylinder cars, one having been recently transferred from a 4-cylinder model. Neither of these cars is in the high-revving class (very few 6-cylinder engines are) and I would say that the Repanco TT51a transformer that I used is quite capable of handling the power required under ordinary road-running conditions. Therefore, for anyone who wishes to build the system without having to reconstruct a transformer, I would unhesitatingly recommend the TT51a for ignition systems up to 6-cylinder capacity. Because of its reduced output, compared with that of Mr. Marston's "bespoke" transformer, I would also suggest that R_6 be dispensed with, also the zener regulating network. Neither of my two systems has these items and there have been no component failures to date. The only other change that I have made to the author's circuit is to make $R_1 = 100$ ohms instead of 50. The resulting c.b. points current is adequate for keeping the points free of oxide. Good sparking is obtained right down to 5V input from the battery.

The protective resistor in the base of Tr_3 was added to both systems immediately Mr. Marston suggested its inclusion (March letter). In consequence this probably forestalled premature failure of this transistor, as occurred with Mr. Burn's unit.

Needless to say, I am very pleased with the continuing excellent performance and reliability from the C-D system. It performed extremely well during most of the winter period and its cold-starting capability (notwithstanding the reduced h.t. from the TT51a) is outstanding. In this country, it is nowadays not possible for one to explore the undoubted high-performance potential on an ordinary road-going car (not legally, at any rate) but I have no doubt that for all practical purposes, this system is a very worthwhile addition to any passenger car. Constancy of ignition tune over very long periods is not the least attractive of its many advantages, to say nothing of the improvement in battery life that ought to follow from rapid cold-weather starting.

Perhaps some enterprising transformer manufacturer could be persuaded to offer a commercial version of Mr. Marston's re-wound transformer at a reasonable price.

Mr. Bolton's C-D ignition unit.

The accompanying photograph shows the simple construction of the two C-D ignition systems, on the lid of a lightweight alloy box. The small heat-sinks on the left would appear to refute the suggestion of Mr. J. F. Henderson (March "Letters") that "the power transistors will suffer from excessive heat-dissipation". The only components that run very hot are the bias, resistors for the inverter, and R_1 , as is to be expected.

D. E. BOLTON, Seaford, Sussex.

The author replies

Mr. Bolton's letter makes very pleasant reading. The only worth-while comment I have to make concerns his elimination of the zener regulating network in the converter circuitry. If these diodes are removed, it is possible that inverter overshoot will cause C_1 to charge way above 400 volts when the ignition is on with the engine stationary; s.c.r. destruction may result. To check against this danger, use a high-impedance (20,000 Ω /volt or greater) meter to measure the voltage across the s.c.r. under the above condition; if the voltage greatly exceeds 400, reduce the value of $R_{\rm s}$ until the potential is correct: $R_{\rm s}$ readily absorbs the surplus overshoot energy that is released when the zener diodes are removed.

Readers may be interested in a progress report on my own C-D unit. This unit has been in constant use for some eighteen months in a 1959 Hillman Minx. It has consistently given very easy starting, even under the severest winter conditions. Acceleration is outstandingly good, and high speed performance is definitely improved. Until recently the car was used

www.americanradiohistorv.com

twice each day on a thirty-mile journey, and topped 70 m.p.h. with ease each time.

The most impressive feature of the C-D system, however, is the way in which it improves the life of spark plugs and contact-breaker points, and eliminates the need to adjust them with any precision. My old Minx was exchanged for a 1962 model a few days ago. It had covered a total of 22,000 miles with the C-D system installed, and had not had a single adjustment made to either its spark plugs or c.b. points in all that distance. Before I finally got rid of it, I checked its plug and c.b. gaps. They were 0.060in and 0.008in respectively; their correct values should have been 0.025in and 0.015in respectively! The vehicle was still running perfectly.

Gadget-minded car owners may like to know that the C-D article is to be included in a book titled "20 Solid-State Projects for Car and Garage" to be published by Butterworths in December.

R. M. MARSTON.

As several of your readers have been complaining of misfiring with the capacitor-discharge ignition system, may I make a point that I had the same trouble whilst experimenting about two years ago with a 600-volt system? I overcame the problem by adjusting the ignition timing as I found that C-D gives a much faster spark.

M. A. SPENCE, London S.W.18.

Symmetry in class B

Far be it from me to cross swords with such a personage as P. J. Baxandall, but I was reading his two-page letter on "Symmetry in Class B" (Sept. 1969) which previously I had only skimmed, when I came across the sentence: "now it is of no fundamental importance which point in a circuit is taken as earth...". This is, of course, true, but he then proceeds to 'demonstrate' that the output impedance of his driver transistor (Tr_1 in Fig. 1, a simplified version of his circuit) provides shunt feedback! The fallacy is obvious, since one can discard the 'ideal transistor' and consider a signal current flowing into (or out of) point.A—

Fig. 1.

the resistor representing the transistor output impedance is simply an additional load on the signal source, and not a feedback element—it is, as he says, non-linear, but the effect is not nearly as bad as he suggests.

Mr. Baxandall's error has arisen because when he earthed point B to simplify the analysis he omitted to 'unearth' his signal source, which meant that he had to disconnect it from the negative line, thus producing a circuit like my Fig. 2, which is not now the same as Fig. 1. Since the signal is applied across B and C instead of C and D. This could be the reason for Mr. Baxandall's circuit requiring extra roll-off components, because now the signal source provides shunt feedback through its own output impedance, which might very well be complex.

I think Mr. Baxandall must at some point have lost sight of the wood for all the trees around, since it is impossible to produce shunt feedback with one resistor earthed at one end, but then, even Homer nods occasionally!

A. H. KING, Biggleswade, Beds.

Dynamic range versus ambient noise

Although my article in the April issue (p. 189) was obviously intended and received as a leg pull, nevertheless, as an electronics engineer, self respect demanded that the circuit should indeed work-and work it does! If one deletes Trs_{10-17} and if one makes Tr_8 and Tr_9 2N3055s and $Tr_{5,6,7}$ 2N1711s with a 60-volt h.t. line, this circuit will deliver 50 watts into 8 ohms at around the 0.1% t.h.d. mark: other circuit details and voltages being amended as necessary, of course. I have, indeed a lash-up of just such an amplifier, and I have made a pair of 15-W, 15-ohm w.w. resistors, in parallel, glow dull red hot on a sinewave input. G. I. O'VEERING.

U. I. U VEEKINU.

Self-starting with ring-of-two

In his article "Stabilized Power Supply", April, 1970, Mr. A. J. Ewins discusses the problem of self-starting with the ringof-two reference circuit. It may be of interest to users of this and related circuits to note a simple method¹ of ensuring selfstarting with no loss of regulation against supply variations. Recognizing the essentially bi-stable nature of the circuit, it is clear that the undesired (non-conducting) state must be suppressed. Thus a component should be added that will not allow the p.d. across either or both of the reference diodes to be zero.

A junction field-effect transistor is included as shown in the diagram. Assume no initial current in the reference circuit. This corresponds to zero gate-source p.d. for the f.e.t. which conducts and drives the reference diode and hence the remainder of the circuit into its desired (conducting) state. If the f.e.t. is not to affect the performance of the reference circuit it must

be cut-off when the circuit is operating normally. As a rough guide the limits of pinch-off voltage that provide self-starting without degrading regulation are given by:– V_{ref} > V_p > V_{be} . Fortunately with V_{ref} typically~6V and V_p ~0.6V the permissible values of V_p correspond to those for commerically available general purpose f.e.ts.

P. WILLIAMS, Paisley College of Technology

1. "Self-starting of voltage Reference Circuits", Proc. I.E.E.E., Nov. 1969, p.2078.

One-transistor voltmeter

In "Letters to the Editor" (March issue) F.P. Mason describes a one-transistor voltmeter that he invented and patented.

This uses the principle of a meter with rectifiers in a feedback path. It is not clear whether he realized (it does not affect the patent) that this principle was not new.

The writer used it for two- and three-valve meters in 1954 and does not claim to have invented it. (With feedback to the first cathode the input impedance can be kept high.)

In an article in the December 1969 issue G. W. Short gives a detailed account of how to design this type of one-transistor meter.

Unfortunately he misses out two important points, and appears to make a minor error.

Assuming a sinusoidal input voltage, the meter current will have a rectified sine waveform.

Let I_m be the peak value of this.

For 5 times peak current $5I_m r_m + 2V_f = V_{CB}$ surely, not V_{CE} as in the article, where subtraction is done to find V_{CB} . This affects four equations.

Point One. The meter deflection is due to a current I_{cb} say, which is the average of the meter current. $I_m = (\pi/2)I_{cb}$

Point Two. Ohm's Law is used to find the

www.americanradiohistory.com

value of R_M the input resistor. As V_{in} (f.s.d.) is an r.m.s. value so must be the meter current, say $I_r = I_m/\sqrt{2} = (\pi/2\sqrt{2})I_d = 1.111I_d$.

1.111 is the form factor and reduces R_M by 10%.

The peaks, for which Mr. Short makes allowance, are averaged in the meter reading.

The writer had designed a simple companion meter to measure the highest and lowest peak levels. This meter will also measure the two levels in square waveforms.

D. L. CLAY, Coventry, Warwicks.

G. W. Short replies:

The design formula for V_{CE} is intended to yield a practical value rather than state an absolute truth. While the value of the alternating base-emitter voltage should strictly be added it is only a few tens of millivolts and so is not worth bothering about. For similar reasons the design formula ignores the effect of the collector saturation voltage. Anyone who wants to play safe should add 1V to the calculated value of V_{CE} :

The design procedure did not in fact specify that V_{in} is an r.m.s. value. It would have been clearer to have done so, and adjusted R_M by a factor of 0.9. Step (5) should therefore be altered to read: $R_M=0.9V_{in rms}/I_m$

Theoretical and measured response

I read with interest Mr. P. M. Quilter's comments in the April issue on the tone control circuit of Dr. A. R. Bailey's preamplifier. I should like to add some comments of my own concerning the feedback attenuator R_1 and R_2 .

A small ripple voltage v is present at the +20V supply A. To a first approximation the response of the system to this ripple voltage is that of an operational amplifier with input resistance R_2 and feedback resistance R_1 . It follows that the

ripple voltage at point C is $-\frac{R_1}{R_2}v$ and that the point B is a virtual earth with respect to this signal. Thus if the output is taken from B instead of C a dramatic reduction in background noise results, at the expense of a 50% reduction in gain. A similar effect would be given (with increased tone control range as pointed out by Mr. Quilter) by taking the feedback from point C instead of B.

G. J. BIGNOLD, Worcester Park, Surrey.

Sinusoidal Oscillator for High Temperatures

by P. Williams*

The Wien bridge oscillator circuit has a reputation for providing a sine wave free from harmonics, hum and noise. Conventional circuit design uses a high-gain amplifier with the frequency determining CR elements in the positive feedback 'half-bridge' arm and a thermistor or other temperature sensitive resistor element in the negative feedback arm of the bridge¹. Such an arrangement automatically maintains the oscillator output constant by adjusting the negative feedback. This technique, which does not use a non-linear circuit element (the thermistor resistance changes only slowly, being constant during one cycle of oscillation), has been shown? greatly to improve the frequency stability.

Unfortunately the use of a temperature sensitive element in this way only maintains constant output amplitude independent of the ambient temperature if the element temperature is a good deal higher than ambient. Use of a thermistor is thus not usually practical above about 40°C. In the course of some industrial instrumentation circuit development the need arose for an oscillator to provide a constant amplitude

*University of Wales Institute of Science and Technology

sine output at temperatures up to 70°C, with good frequency stability. The circuit shown was developed to meet this need. It provides a sine output of 1 V r.m.s. swinging symmetrically about the earth line. C_1, R_1 and C_2 , R_2 are the frequency determining elements of a Wien half-bridge (values shown are for 5 kHz). They provide frequency selective positive feedback from the output of the amplifier system, comprising the 701C integrated circuit and Tr_2 , to the non-inverting (positive) input terminal of the 701C. The junction field effect transistors Tr_1 and Tr_3 and resistors R_9 , R_{10} constitute a resistive attenuator circuit half-bridge providing negative feedback to the inverting input terminal of the 701C amplifier. The drain-source resistance of Tr_1 is increased, to the value which provides constant amplitude sinusoidal output, by the negative bias on its gate, derived from the rectified output of Tr_2 . The potentiometer R_{11} enables the resistance of Tr_3 to be set to a suitable value for control of Tr_1 . The fixed resistors R_0 and R_{10} ensure linear operation by reducing the amplitude of the sine input to Tr_1 and Tr_3 to a value well below the pinch off voltage of these transistors. Although the drain-source resistance

Temperature stable oscillator circuit employing a bipolar transistor, two f.e.ts and an i.c.

Wireless World, July 1970

Operating frequency	Value of C ₁ , C ₂	Value of R ₁ , R ₂
20 Hz	0.068#F polyester (with 0.022#F	120 k Ω ± 5%
	shunting gate of Tr ₁ to earth)	
500 Hz	0.0027 µF silver mica	120 k Ω
5 kHz	0.0027 µF silver mica	12 k Ω
25 kHz	500pF silver mica	12 k Ω
70 kHz	120pF silver mica	
		(all 'Histab')

Table of variable components.

of both Tr_1 and Tr_3 falls with temperature, the ratio of the two drain-source resistances (and hence the feedback factor) remains approximately constant. In practice a change in temperature from 25° to 70°C produced amplitude changes of about 2% and a frequency change of less than 2%. Operation at frequencies over the range 20 Hz to 70 kHz has been achieved by suitable choice of capacitors C_1 and C_2 and resistors R_1 and R_2 as shown in the table. At frequencies below 50 Hz a 0.02 μ F capacitor was connected between the gate of Tr_1 and the earth line to prevent "squegging" (modulated oscillations).

REFERENCES

1. Hickmann, D. E. D., "Wien Bridge Oscillators", Wireless World, Dec. 1959.

2. Bailey, A. R., *Electronic Technology*, vol. 37, p. 64.

Holograms on metal film

Very thin films of metal-bismuth, tellurium, aluminium or gold-deposited on a sheet of glass have been used by R.C.A. engineers in America as an alternative to photographic plates for storing holograms. The resolution obtained is about the same as using photographic methods-more than 1000 lines per mm-but the exposure time is reduced to between 5 and 20 nanoseconds. This means that the extremely stable platform, needed to support the subject during photography to prevent movement and subsequent hologram distortion, can be dispensed with due to the very short exposure time.

The light from a pulsed laser is split into two beams, one of these, the reference, is directed on to the metal film, the other reaches the metal film via the object of which the hologram is to be made. At those points where the two beams interfere constructively (add) the laser light is converted into heat which evaporates the metal film. Where the two beams interfere destructively (cancel out) nothing happens.

No further processing is required and the hologram can be viewed at once without moving the film in any way. This means that the hologram is perfectly positioned for the successive observations required in industrial non-destructive testing of materials and products.

For computer memory applications a glass plate coated in a metal film measuring only 400×110 mm could store 300 million bits of information.

The light heavyweight champion wins on points

Solartron's light heavyweight champion, the CD1642, is a natural-born winner. Look at its advantages. Fully transistorised portability, running off every power source you use, with an optional rechargeable battery attachment too. And you lose nothing in full-size lab. 'scope performance. It has 10 mV/cm sensitivity at 15 MHz, triggering to 25 MHz, dual trace, D.C.-15 MHz, brilliantly crisp displays and exceptional focus right to the edges. And to top it off, we AGREE test every machine for a week in the toughest conditions to assure top performance. So stop worrying about losing performance in the field. The CD1642 gets a load off your mind as well as your arm. Post the magazine's reply-paid card and we'll send you our data sheet of full details.

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

WW-068 FOR FURTHER DETAILS

'GREENLINE' 0.1'' PITCH MODULAR EDGE CONNECTOR No. of Ways: 65 max. Moulding: Glass filled Diallyl Phthalate

in optimum-reliability electronic components

the Pacemaker

PERMACON MOULDED EDGE CONNECTOR. Maximum No. of Contact Positions and Pitches: 40 for 0.150'' Pitch 20 for 0.200'' Pitch 26 for 0.150'' Pitch Moulding: Polypropylene

The connectors illustrated here are typical examples from our ranges. We have, of course, many other components of special interest to the computer and communications industries, with rapid, reliable deliveries in bulk quantities assured. Ask for data, or for a visit from one of our Technical Sales Staff. The application of his wide experience to your problems can help you towards easier, more advanced assembly techniques, with the collateral benefits of worthwhile savings on time and costs

'GREENLINE' 0.150[®] PITCH MOULDED EDGE CONNECTOR No. of Ways: 4, 8, 12, 16, 24, 32 and 40. Moulding: Glass filled Dially! Phthatate

In the continually-evolving technology of the electronics industry, Carr design and research keep pace with, and often ahead of, the everchanging demands for increasIngly sophisticated components.

But whilst designs may change from week to week, Carr quality and reliability remain constant, ensuring that complex highprecision specifications are met with absolute and consistent accuracy.

RADIO AND ELECTRONIC CONNECTORS

OPTIMUM-RELIABILITY COMPONENTS FOR HIGH-PRECISION ELECTRONIC APPLICATIONS

the firm with the best connections

www.americanradiohistory.com

The Unijunction Transistor

A close look at its behaviour and a guide to its use

by O. Greiter

The design of electronic circuits is considered, if anyone actually turns his mind to this aspect, to be a calm, logical process. Sometimes, however, if you examine the matter calmly and logically, you get a feeling that whim and fashion play a very great part. Some circuits and some devices seem to be particularly sensitive to this favourite son approach. Oscillator circuits are the subject of unending debates. The unijunction transistor is a device which has, I think, been overlooked by many engineers who could use it to advantage. One indication is that, so far as anyone remembers, Wireless World has never published an article on unijunctions, and has shown very few circuits containing them. And not everyone can afford to read all the American journals.

It is not as though it were some newfangled device: it is not as though it were an expensive device. The pound in your pocket will still buy you a couple of unijunctions and a short ride on the underground. The first devices appeared in 1953, and the silicon version in 1956. Changes in manufacturing technique, and the normal time lags before the line began to run, suggest that as a cheap simple device the unijunction has been with us for just about a decade.

The essential function of a unijunction transistor is that it is a voltage sensing device. Used with a CR circuit it becomes a timing circuit and also, because of its resetting behaviour, an oscillator. We shall see that the circuits are extraordinarily simple in form.

We must begin by examining the construction of the device itself and its characteristics. The structure shown in Fig. 1(a) is very convenient for those of us who want to understand the device. A small rod of n-type silicon has ohmic, that is nonrectifying, contacts applied to each end. Near the middle an aluminium wire is used to generate and connect a small p-type region. And that is all. At least that is all that really concerns us. Down at the plant they do not like fiddling about at the ends of long narrow rods and two more practical structures have been devised. These are shown as Figs. 1(b) and 1(c). They are known as the bar structure and the cube structure. The characteristics are slightly different, but we can hardly discuss this until we know what the terms we must use mean.

The structure of Fig. 1(a) looks exactly like the basic structure of the field effect transistor and the reader may wonder if new unijunction is but old f.e.t. writ large. In fact it is surprising how totally unlike each other the two devices are, at least when operated at their design biases. I confess to being too lazy to test whether one could persuade either device to operate in the mode appropriate to the other. There is some interest in this, however, as it suggests a way in which one might get very odd effects in a field effect transistor circuit with excessive input.

If we are to understand the unijunction transistor behaviour we must begin with an

Fig. 1. (a) The early construction technique, with two ohmic connections to an *n*-type silicon rod and a small p-n emitter junction. (b) The bar structure. (c) The cube structure.

www.americanradiohistory.com

Fig. 2. Circuit and equivalent.

equivalent circuit. It is convenient to introduce at the same time the standard symbol. This is done in Fig. 2. The total resistance between B2 and B1, $R_{BB} = R_{B1} + R_{B2}$, is called the interbase resistance. As the two end contacts are ohmic constants, this is just the resistance of the rod of silicon, in the simplified structure. It is about 5-10 thousand ohms. Normally we operate unijunctions at about 10-20 volts, so that the base current will be about 2 mA. It is useful to keep this figure in mind when looking at circuits with additional resistance in series with one or both base connections. At this stage the emitter is assumed to be left open.

The device is just a rod of resistive material, so the point P in Fig. 2(b) will be at a voltage of $(R_{B1}/R_{BB})V_{BB}$. This ratio, (R_{B1}/R_{BB}) , is settled by the geometry, the mechanical construction, and it is known as the stand-off ratio, denoted by the symbol. η . A typical value of η might be 0.6, with a range which depends on how well the mechanical tolerances can be held. So far as we are concerned, the tolerances appear in a sorting operation and if you want a tight tolerance you pay for a hand-picked specimen.

We may now apply the battery to the emitter terminal. So long as $V_E < \eta V_{BB}$ the diode shown in Fig. 2(b) will be reversebiased, and no emitter current will flow. No current is an abstraction here, because there will be a small leakage current, typically 2 microamps, which is not enough to disturb the voltage at *P*. This current can be significant in some circuits.

As we increase V_E the diode becomes forward biased and will pass current from V_E into the bar. This current consists of holes emitted into the silicon, and these holes drift from the emitter to base one. The presence of these holes causes the number of electrons in the lower half of the bar to increase. The conductivity of this part of the bar increases, so that R_{B1} becomes smaller. Typically, if R_{B1} is 4500 ohms with no emitter current it will fall to 2000 ohms for one milliamp of emitter current, and to 100 ohms for 20 mA. Let us assume we have $V_{BB} = 20$ volts and $\eta = 0.6$. When V_E goes to just over 12 volts, so that we get our $I_E = 1$ mA, the value of R_{B1} drops to 2000 ohms, and as R_{B2} is 3000 ohms the voltage at P falls to 8 volts. Immediately I_E shoots up, making R_{B1} get even smaller and the forward bias on the

VE

diode get even larger. If we were foolish enough to use this test circuit the current would rise until the transistor burnt out.

In all simplified pictures there are defects. By this account, even one hole passed from the emitter into the bar should start the proceedings. Of course this is not true. The current needed is, however, extremely small, and a rough value can be taken as one microamp. This current is called the peak point current, I_{g} .

Another simplication which can cause trouble is that although the holes injected at the emitter should all be drawn towards base one by the field produced by V_{BB} , this just does not happen in the practical structures. Some drift off into the R_{B2} region, hotly followed by their electrons. In consequence R_{B2} drops a little and the current I_{B2} increases by more than one would expect. It is necessary to bear this in mind if the overall circuit is one in which there may be excessive power dissipation at the peaks.

Once the triggering action has taken place the emitter-base one circuit is just that of a rather resistive diode. We need an overall device characteristic, or set of characteristics. The most important group is the static emitter characteristics, which are typified by the curve in Fig. 3. From this it can be seen how the current increases quite normally as the emitter voltage is increased from V_0 to V_p : below V_0 the diode leakage current is flowing out at the emitter, of course. When the peak point is reached, however, the current can increase without the voltage increasing, and we have a region of negative resistance down to the valley point. A rough guide figure for this point is that it corresponds to an emitter current of 4mA at $V_{v} = 2V$. Of course it varies from type to type of unijunction, and depends to some extent on the overall working level, as defined by V_{BB} .

Beyond the valley point the characteristic shows the normal positive resistance of the emitter-base one diode. In drawing these typical characteristics one gives this a reasonable slope so that the valley point

Fig. 4. Circuit of relaxation oscillator.

shows up nicely. Peering closely at some real characteristics the resistance in this region looks as though it might be down as low as 10 ohms, or even lower. It is possible to get very high peak emitter currents: it is essential to make sure that you do not get destructive values of $I^2 t$.

The commonest use of unijunction transistors is probably in relaxation oscillators. A complete circuit is shown in Fig. 4, and includes two resistors which are not vital to its operation. R_1 has the advantage of limiting the emitter-base one current as well as providing a voltage pulse at B1. We will discuss R_2 later. What happens when we connect the battery to this circuit? On switch-on, the capacitor is not charged, so that V_E is zero. The odd milliamp flows from B2 to B1, establishing the bias in the diode of the equivalent circuit. C is charged steadily through R until the capacitor voltage reaches the value of V_p for the particular conditions. The triggering action now takes place, discharging C down to about 2 volts. If all is well, this is where we started, and away we go again. All is only well, however, if the value of R is suitable. Let us draw the characteristic in the form we adopt for other devices. This has been done in the S-shaped curve of Fig. 5. A load line corresponding to a resistance R joins the point $V = V_{BB}$ to $I = V_{BB}/R$. It intersects the device curve at the point P, where the resistance is negative. In drawing the S-curve the upper part has been flattened out to keep the scale of the drawing more convenient, for reasons which will become obvious.

A formal discussion must take into account the effect of the capacitor. When the supply is first connected the capacitor holds no charge, and thus V_E must be zero. The working point moves from B towards D as the capacitor is charged through R, and virtually no current flows in the unijunction emitter. At A, where the peak point current is flowing, we have a situation where $V_{\rm F}$ wishes to rise above $V_{\rm n}$, but for very small time increments is held constant by the capacitor. The only point of the device characteristic at which we have $V_E = V_p + \delta$ is the point *B*. The circuit triggers and a relatively large current begins to flow. Most of this is supplied by the capacitor, and V_E decreases, with the device working point moving down from B towards C. Finite times may make the triggering follow the broken line to a point between B and C, but the general effect is the same. The slope of BC is in practice that of a fairly small resistance, so that the capacitor discharges very quickly. At C we reach the valley point. Obviously V_E cannot increase rapidly, because the capacitor will see to that. The current I_v cannot be provided by the resistor alone. The only point on the device characteristic which is accessible is D: the device cuts off. And from Dthere is nowhere to go but A.

The emitter voltage is the sawtooth shown in Fig. 6(a). One current pulse is shown in some detail as Fig. 6(b). This is not the waveform which one observes, because the actual transitions are dominated either by the way the charge concentration builds up or by the circuit strays. The pulse looks,

www.americanradiohistory.com

IE

Fig. 5. Trajectory of emitter conditions in relaxation oscillator.

Fig. 6. The emitter voltage (a) as a function of time and the current (b) on a greatly expanded scale.

in practice, pulse-shaped. We usually look at the current pulse across the resistance R_1 in the circuit of Fig. 4. It is a nice clean pulse, conveniently referred to the negative line. We can, however, put a small value of resistance in series with the capacitance, although we may then have problems with the pedestal produced by the capacitor charging current.

A reasonable approximation to the oscillation frequency is obtained by using the time taken for the path OA and neglecting the other terms. This gives us

$$t = CR \log \left[\frac{1}{(1-\eta)} \right].$$

If we are lucky enough to get a unit with an η of 0.63, this reduces simply to

$$t = CR, f = 1/CK$$

When we use the cheaper, wide-tolerance, unijunction we can assume this as a likely centre value, giving us a very quick way of choosing the typical size of component we shall need. For most circuits it is safe to say that *R* will lie between 10^4 and 10^6 ohms. Typical values of *C* range from 0.01 μ F to 1.0μ F, offering a frequency range of 1 Hz to 10,000 Hz.

This has been, of course, a rather oversimplified picture, but for many applications it is actually sufficient. The circuit of Fig. 4, without R_1 and R_2 , provides an oscillator which is stable for small changes of voltage and temperature to better than 1%. It is easily the cheapest way of getting this sort of result provided that the waveform is acceptable. Improved performance is, however, usually wasted sooner or later, and here the two resistors enter the circuit. We must consider them separately, beginning with the dull one, R_1 .

The main effect of the resistor added externally in the base-one lead is to change the shape and position of the valley. It is not precisely correct to say that we simply add a term $I_E R_1$ to the voltage V_E in the curve of Fig. 3. The current which flows out of B1 is bigger than I_E , because of the fall in the value of R_{BB} . Qualitatively, however, this describes what happens. The curve beyond the valley point is rotated upwards, moving the valley point up and to the left. Practical circuits use small values of R_1 , which do not have very much effect. Typical values are between 15 ohms and 47 ohms and they control the amount you can get out of the circuit much more than they control its oscillation characteristic.

The base-two resistor, R_2 , is much more interesting. Looking back at Fig. 2(b) we see that in strict truth the emitter voltage at which the unijunction will trigger is given by

 $V_E = \eta V_{BB} + V_D$

where V_p is the drop across the diode junction produced by the flow of the peak point current. This voltage, about half-avolt, is naturally much lower for the highsensitivity devices than it is for those which have a high value of peak point currents. And the peak point current, from a handy list of characteristics, ranges from 2 microamps to 25 microamps, according to one type of unijunction. Regarded purely as a diode we might expect that the voltage $V_{\rm D}$ would change 2 mV per °C. For a typical circuit this would correspond to about 2/104 of the voltage excursion, giving a frequency shift of 1/10³ for a 5°C change of temperature. This stability figure is much better than we actually obtain, so other effects must be at work. One of these, especially for the cube structure, is the temperature variation of η . For the bar structure this is said to be negligible, and V_D is given the blame. The reader may feel, as I did, that this just does not make sense. In fact, although the resistance R_{BB} does not appear in the expression we have written for V_E , it is the real thing in the wood-pile (and sucks to the Race Relations Board). Ras creeps in because, as the resistance of a lump of semiconductor, it varies quite a lot with temperature. In fact the variation is very nearly 1% per °C. This does not affect n very much, and we can see that in the bar structure η is settled by very simple geometry indeed. It does, however, alter the number of charge carriers normally in the semiconductor and it seems fairly obvious that this will in turn alter the number of carriers injected at the emitter which are needed to disturb the flow. This is what we find. For a rise in temperature of 100°C the interbase current is halved, and the peak point current is also halved. This smaller peak point current is produced, of course, by a smaller excess voltage. In fact the value of V_p is not as one is tempted to think, the voltage across the diode for a fixed current, but rather the voltage for a current which is itself temperature-dependent.

One rather pleasant surprise is that R_{BB} has a conductor-like behaviour, with a roughly constant temperature coefficient. If we do the mathematics we find that we can get quite good compensation by using the right value of R_2 . As the temperature rises and the interbase current falls, the

voltage at B2 will increase by a factor of $\Delta I.R_2$. This tends to balance out the drop in V_D . Notice how the sensing is done by R_{BB} , the very factor which causes the change.

This is by no means the full story. It is, however, the first approximation to the story, and we can now quote the value of R_2 which should give perfect compensation:

$$R_2 = \frac{0.7 R_{BB}}{\eta V_1}$$

Typically $R_{BB} = 7000$ and $\eta V_1 = 10$

(notice that 0.7 is a voltage)

 $R_2 = 500.$

A correction is needed when we include R_1 in the circuit, because R_1 is an anticorrection term. We must add a factor $R_1(1-\eta)/\eta$, or about $R_1/2$. But if R_1 is 50 ohms, this gives us only a change of 5% in R_2 . Round up to 510, rather than down to 470. And only in the electronics industry would anyone round up 500 to 510.

Without temperature compensation a typical figure for the change in frequency with unijunction temperature is between 3% and 6% for 100°C. This is 300-600 p.p.m./°C.

However, the capacitor and the resistor will also be changing in value. At temperatures above 20°C a metallized polycarbonate capacitor will have a temperature coefficient of 100 p.p.m./°C and a metal film resistor a temperature coefficient of 50 p.p.m./°C. As both of these are positive, the frequency will fall by 150 p.p.m./°C. Provided that the whole circuit is kept at the same temperature we need only somewhere between $\frac{1}{2}$ and $\frac{3}{4}$ of the predicted compensation.

The net result is that we should not have to work too hard to get a stability of 100 p.p.m./°C. To do a bit better than this we must measure the values of η and R_{BB} for the individual device, rather than just paying a bit more for the close tolerance type. A really cheap unijunction transistor has a range of R_{BB}/η of about 3:1 according to the specification sheet, while the more expensive ones are within a range of about 1.7:1. This means that an average correction could be about 10% in error, which is really better than we know what we are correcting.

The high class thing to do is to temperature-cycle the whole oscillator. If you are sure of the capacitor and resistor you can

just cycle the unijunction, which is a very fast operation, and trim R_2 to give the theoretically derived positive temperature coefficient. To be sure the capacitor is really warmed up you need a lot of time, and a lot of justification. If you do embark on this path you find that these temperature coefficients you are balancing so nicely are not, in fact, constants. The unijunction is less sensitive at low temperatures, the capacitance is more sensitive if you use the type of polycarbonate unit whose characteristic I quoted. Overall the shape can be called parabolic, the frequency rising at both extremes. It is claimed that one can get 10 p.p.m./°C for a reasonable temperature range around the minimum.

Meanwhile, back in the system, how constant is the supply voltage? Typical for the dependence of frequency on voltage is a figure of 2 parts per thousand for a 10% change in supply voltage, or 200 p.p.m./1% voltage change. When we start talking about 10 p.p.m. per °C we are also talking about supplies which are holding to 0.05% per °C and per everything else. It is found that R_2 also controls the variation with supply voltage, but the value of R_2 needed to give good stabilization against voltage changes is somewhere between 30% and 50% of that needed to stabilize against unijunction changes alone. We have already seen that we do not need this full stabilization, because the capacitor and the resistor are providing some compensation. This, indeed, is one of the things which makes this very simple circuit so pleasant to use. For once, it would appear, nature is on your side.

There are, as always, cunning techniques for using diodes in R_2 , and other odd balancing elements, which will shape the overall temperature coefficient. This is a specialist area and before you start on it you need to go through the full analysis in detail. My own feeling is that for a general purpose oscillator you will not go far wrong if you pick $R_2 = 220$ or 270 ohms, and that it might be cheaper to stick the whole thing in a temperature controlled case instead of fine-tuning every unit. Roll on the days of cheap nuclear min-power, so that we can keep the thermostat system working day and night and avoid waiting for things to settle down-settle up, perhaps, would be more appropriate.

Two additional factors must now be taken into account. In the discussion of the oscillator circuit we took it for granted that only the charging time of the capacitor needed to be considered. For an oscillator operating at 1000 Hz we might conveniently use a $0.1 \ \mu F$ capacitor. It is found that the fall time of such a capacitance ranges from 5 microseconds to 10 microseconds as the temperature increases from 25°C to 125°C. This is a change of -50 p.p.m./°C in oscillation frequency. This fall time depends on the capacitance, but is not directly proportional to it. It also depends on the value of R_1 , as you might expect.

The second factor is the ease with which the circuit may be triggered. We have seen that the triggering occurs when the emitter voltage reaches, roughly, ηV_{BB} . This is equivalent to saying that

Assume that the circuit is oscillating at 1000 Hz. It takes 1000 microseconds for $V_{\rm F}$ to run up to the triggering point. Assume also a linear rise, with $V_{BB} = 20V$. The instantaneous value of VBB at which triggering can occur is then rising at the rate of 20 millivolts per microsecond. If a noise pulse of 20 mV appears on the supply line just one microsecond before triggering is due, the triggering will occur after 999 µs, and the frequency will be $1/10^3$ in error. Notice that the RC circuit protects V_E from this pulse. We must watch for the danger of synchronization, or partial synchronization, to noise or ripple. It will be noted that we are more likely to get a nuisance effect with a system of low target efficiency, running from a roughly smoothed supply.

than a frequency shift in a system of high design stability, in which there will be a voltage regulator which should also keep down the noise and ripple.

The circuit applications of the unijunction transistor, which are by no means limited to the production of pulses and saw-teeth, must be left to another article. It is, however, desirable to provide some typical characteristics of an actual unit, as distinct from the stylized characteristic used to explain the working. Fig. 7 consists of a selection of the material contained in the data sheet for the General Electric 2N1671 family. It must be added that almost all the material published on the unijunction and its uses appears to originate with General Electric.

Crossword

Across

- 1. Waveband crept somehow in addition. (8)
- 6. Group containing one bit used for checking. (6)
- 9. Wild mice run after a Greek having letters and numbers. (12) 10. It has no meshes in the middle
- of the street. (4) 11. A cubic metre with nothing
- for realistic reproduction. (6) 12. A measure of magnetic flux density in a ferrite slab. (5)
- 14. Turn English book back. (5) 16. Measure inductance the
- French returned? (3)
- Lorry ignition 19. features a ferrite. (3)
- 20. A resonant circuit military application? (4)
- 21. Half the alphabet is something very small. (4)
- 23. A resistor capacitor dis-
- charge. (3) 24. Work using epoxy resin glue initially. (3).
- 26. Music channels? (5)
- 30. We would set about infra-red with connections made. (5) 31. One in the class is a master-
- mind. (6) 32. Penultimate letter to
- service-man brings an aerial. (4) 34. Circuit parameter meant cos
- distribution in colour. (4,8) 35. A course so backward it engenders pity. (6)
- 36. Fill small room used in weighing. (4,4)

Down

2. Fliers must have grounds for starting discharge. (5,5) 3. Company with gas to hire

www.americanradiohistory.com

like a laser beam. (8)

4. Uncontrolled. melted half the domain. (6)

compiled by P.R.Lloyd

- 5. Good for the material screen! (7)
- 6. He raps out a set of notes. (6) 7. Electric talk can show at the
- corners of the mouth. (6) 8. Half of it to copy for recording perhaps. (4)
 - 13. It's useful in aerodynamics to twist and penetrate the barrier. (4-6)
- 15. An organ in the middle of the heart. (3)
- 16. Two-way supplement. (17. Cover with an insulatorsupplement. (3) not lead! (3)

- 18. There's nothing in the sideband. Gasp! (3)
- 22. Attractive enchantment surrounds land. (8) 25. Primitive artist I'd back with
- about a pound. (7) possibly 27. On-off device
- faulty with short circuit. (6) 28. Same rf alignment gives unit pictures. (6)
- 29. Order paper from an aged organization. (6).
- 33. A piece of ground 100 square metres plus one. (4)

Solution on page 338

A Simple Op. Amp.

A design intended to make life easier for the newcomer to operational amplifier techniques

by D. Griffiths, Ph.D.

Grappling with my first practical use of operational amplifier integrated circuits, my upbringing on discrete component circuitry made me want to have a simplified picture of what was going on inside the little packages. Of course, the circuit did just what the manufacturer said it would with given external connections and there was the astoundingly complex equivalent circuit to gaze at. To get a feel of what was going on, I found it a great help to play around with the simple circuit of Fig. 1. While it correctly demonstrates op. amp. characteristics, it has a poor d.c. performance and a curtailed h.f. response, with the closed loop gain being 3dB down at typically 0.5 to 1 MHz. On the other hand, over the audio frequency band it can show a noise figure of below 2dB and has less than 0.75% harmonic distortion at 1 kHz with 1 V r.m.s. output before feedback is applied.

The "follower with gain" mode of operation is of wide application and is achieved by the type of connection shown in Fig. 2. Here Tr₂ acts as an emitter follower causing the emitter of Tr_1 to follow closely the signal from the feedback network. If the amplifier gain is sufficiently large, the base voltage of Tr, accurately follows that on the emitter of Tr_1 , since only a very small differential input is necessary to develop an output voltage. This gives a high input impedance and constrains the voltage output to $(R_1 + R_2)/R_1$ times that of the input to Tr_1 . The decoupling capacitor shown dotted (Fig. 2.) can remove the a.c. feedback and enable the open loop a.c. performance to be assessed while still retaining d.c. stabilization of the operating points.

The input transistors are run at a collector current of just under $100 \ uA$ each; the resulting $200 \ uA$ or so through R_4 generates the necessary tail voltage of just under 9 V. Decreasing the collector currents would reduce the input biasing current drain but would also lead to decreased gain and frequency response. It was found that a value of $6.8 \ k\Omega$ for R_5 gave the least harmonic distortion; this is of the same magnitude as suggested by Ridler¹ for similar transistors in his low-distortion oscillator design. This low value of R_5 makes the output emitter follower rather a luxury but it does yield

an output resistance of under 30Ω without feedback. The emitter load of $4.7 \ k\Omega$ for Tr_4 gives a reasonable battery consumption while still coping with quite high capacitance loading on negative-going signals.

With the feedback loop decoupled by an 80-uF capacitor, a mid-band (1 kHz) open loop gain of 1,500 to 2,000 was typically obtained. A greater degree of feedback decoupling can be achieved with a given capacitor if it is put at the centre tap of R_2 rather than across R_1 . The gain was 3dB down at about 35 kHz.

When the non-inverting input in Fig. 2 was connected to common via a 1 k Ω resistor (to equal that at the inverting input) the standing output voltage was typically a few tens of millivolts. Increasing this 1 k Ω resistor to 100 k Ω gave an output of some -1.6 V; i.e. $1.6 \times 1/25$ V across 100 k Ω , indicating an input current of about 0.6 uA. With the feedback de-coupled, it was found that a 100 k? resistor in series with the a.c. input reduced the output by 50%, yielding a differential input resistance of 100 k Ω . Similarly, Tr, will only lightly load the feedback network. With the a.c. restored as in Fig. 2 to give a gain of 25, the input resistance became about 2.5 M Ω increasing to some $6 M \Omega$ as the gain was reduced to 10.

With the feedback increased to reduce the closed loop gain much below 10, the prototypes tended to oscillate at some 5 to 10 MHz, depending on layout, etc. For stable operation with unity gain, the open loop turnover frequency needed to be reduced from 35 kHz to 4 or 5 kHz. This was achieved by putting 0.01 μ F and 100 Ω in series across the collector resistor of Tr_1 , the 100 Ω preserving the risetime in the region of 0.25 to 0.5 μ sec. A feedback resistor of some 15 k Ω to 33 k Ω was used in the inverting or non-inverting mode and had to be shunted with 10 pF under these conditions.

With the configuration of Fig. 3 the a.c. input resistance was in the region of 200 M Ω . One must remember though that the source must still supply or pass the input bias current of 0.6 μ A. This would be a limitation, for instance, when trying to obtain long time constant displays in a peak reading circuit.

The output resistance was assessed by injecting a 1V r.m.s. signal via a 4.7 k Ω

Fig. 1 The circuit of the simple operational amplifier

Fig. 2 The amplifier connected for the 'follower with gain' mode of operation. With the component values shown the gain is 25

Fig. 3 Source follower with 100% feedback

resistor on to the output terminal and measuring the signal impressed on it. Without feedback, the voltage at A in Fig. 4 was 6 mV r.m.s., indicating that: $R_{out} = \frac{6 \times 10^{-3}}{1.0} \times 4.7 \text{ k}\Omega \approx 30\Omega.$

At a gain of 25, R_{out} became about 0.6 Ω . This does not indicate that the circuit could drive a low impedance device such as a loudspeaker!

The amplifier distortion on sinewave drive was estimated with the aid of a passive twin-T null filter, making a rough correction for the attenuation of higher harmonics due to the broad response. Without a.c. feedback, 1 kHz at 1 V r.m.s. output gave a distortion of some 0.75%, rising to about 1.5% at 3 V r.m.s. output; about 4 V r.m.s. output can be expected before clipping starts. With this simple circuit one might expect the distortion to decrease in proportion to the degree of feedback applied. A check at a gain of 25 showed the output distortion to be indistinguishable from the 0.02% contributed by the test oscillator. Excessive capacitance loading on the input will cause distortion which is particularly evident on negativegoing signals when the output base-emitter junction tends to be cut off. With up to 0.01 µF loading there was no increase in distortion at 15 kHz but 0.02 µF produced a horrible amount of distortion components although the unfiltered output still looked very reasonable on a 'scope. Halving the value of the output resistor enables twice as much capacitive loading to be withstood at a given frequency.

The noise figure was measured by the elegant method recently described by Baxandall², in which the temperature of the amplifier source resistor is varied in order to distinguish between amplifier noise and that introduced by thermal agitation in the source. Small metal oxide resistors were screened by pulling them up inside the braiding of good quality coaxial cable and their temperature was altered between that of liquid nitrogen (77°K) and room ambient. Fig. 5 shows the method of calculation.

At first sight one might expect to get a very poor noise factor with this circuit in the follower mode since the large thermal noise voltages in the high value 47 k Ω tail

Fig. 4 Circuit employed to assess output resistance

Fig. 5 Square of amplifier noise (e_n) output as a function of the temperature of the source resistance

Fig. 6 Circuit used in noise function observations

Fig. 7 Noise factor over band 100Hz to 20kHz as a function of source resistance

resistor are apparently in series with the input circuit. However, this viewpoint overlooks the effect of Tr_2 which by its emitter follower action clamps the voltage at the top of the tail resistor at its base potential; thermal noise voltage fluctuations in R_4 would be well suppressed. By the same token, though, the noise voltages in the resistance between Tr_2 base and common will be coupled into the input in this mode of operation, together with a contribution from Tr_2 . The 330 Ω resistor in Fig. 6 contributes a negligible amount to the amplifier noise factor which is shown in Fig. 7 for a bandwidth of 100 Hz to 20 kHz determined by RC time constants. Due to the logarithmic scale the dependence of noise factor on source resistance appears sharper than it is. The 2dB noise factor at the optimum source resistance of 10 k Ω is only increased by a further 2dB for inputs between 1 k Ω and 40 k Ω ; this would still be very satisfactory in most audio applications.

The amplifier can be used in the inverting or see-saw mode. This would probably not be needed too much in hi-fi work except for you know whose virtual earth tone control circuit³. For instruction in op. amp. applications, I would recommend references 4 and 5.

REFERENCES

- 1. P. F. Ridler: Wireless World, Aug. 1967. 2. P. J. Baxandall: Wireless World, Dec. 1968. 3. P. J. Baxandall: Wireless World, Oct. 1952
- (See also "Cathode Ray", Nov. 1961.) 4. G. B. Clayton: Wireless World, Feb. to Dec. 1969

5. "Application of Linear Microcircuits", SGS Ltd.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON July 13-17

- Olympia Ship's Gear International
- (Brintex Exhibitions, 3 Clements Inn, London W.C.2.)
- July 22 & 23 Excelsior, London Airport Marketing Electronic Products-Conference (Electronic Business Review, Morley Hse., Holborn Viaduct, London E.C.1)

BANGOR

- July 6-10 University College Microwave Spectroscopy
 - (I.P.P.S., 47 Belgrave Sq., London S.W.1)

LANCASTER

July 20-24 The University Dielectric Materials, Measurements and Applications

(I.E.E., Savoy Pl., London W.C.2)

LEEDS

- June 30-July 2 The University (C.S. Petch, Dept. of Elect. & Electronic Eng., University of Leeds, Woodhouse Lane, Leeds
 - LS2 9JT)

NEWCASTLE-UPON-TYNE

July 7-9 The University Scanning Electron Microscopy in Materials Science

(I.P.P.S., 47 Belgrave Sq., London S.W.1)

OVERSEAS

- July 14-16 Anaheim **Electromagnetic Compatibility**
- (J.C. Senn, P.O. Box 1970, Anaheim, Cal. 92803)
- July 16 Brussels Conference Equipment Study Group: Simultaneous Interpretation
- (H. Fr. Schmidt, Technical Installations, Commission of the European Communities, Berlaymont Bldg, B-1040 Brussels.) July 21-23 San Diego
- Nuclear and Space Radiation Effects (I.E.E.E., 245 E. 47th St., New York, N.Y. 10017)

Solution to this month's **Crossword** (see p. 336)

Noise in Transistors

A short explanation of noise performance of bipolar and field effect transistors at frequencies of a few kHz to a few MHz

by F. N. H. Robinson,* M.A., D.Phil.

At low frequencies, below a few kHz, the chief source of transistor noise is flicker, or 1/f noise, and no simple, generally valid, theory exists. Above a few hundred MHz the noise behaviour, like the signal behaviour, becomes quite complicated and cannot profitably be discussed in simple terms. In the intervening region, i.e. about 5 decades in frequency, noise in both bipolar and field effect transistors is remarkably simple.

In bipolar transistors the current injected into the base by the emitter consists of electrons which had enough thermal energy to surmount the potential barrier at the depletion layer. It is therefore completely random and displays full shot noise. In a bandwidth df the mean square fluctuations in the emitter current I_e are given by

$$di_e^2 = 2eI_e df \tag{1}$$

where e is the electronic charge. In the base, some electrons recombine and constitute the base current, the remainder reach the collector. This random division, of a random current, leads to two uncorrelated sets of fluctuations in the base current I_b and the collector current I_c . Their magnitudes are

$$di_{\rm h}^2 = 2eI_{\rm h} df$$

(2)

and
$$di_e^2 = 2eI_e df$$
 (3)

and, because they are uncorrelated, $d(i_b i_c) = 0$.

Because any equivalent circuit for a transistor must lead to the relation $i_e = i_b + i_e$, we do not need to consider i_e separately. Thus the noise properties are completely specified by i_b and i_e . A complete noise equivalent circuit for the transistor is shown in Fig. 1.

*Clarendon Laboratory. University of Oxford.

Fig. 1. Noise equivalent circuit for a bipolar transistor, valid up to 200 MHz.

The strengths of the two current generators are given by (2) and (3) and they are uncorrelated. This circuit is valid up to frequencies approaching $f_T/\beta^{\frac{1}{2}}$. If $f_T = 2$ GHz and $\beta = 100$ this can be as high as 200 MHz.

If the transistor is used in the common emitter connection it will have a mutual conductance

$$g_m = \frac{eI_c}{kT} \tag{4}$$

and we can transfer the current generator i_e to the input as a voltage generator $v = i_e/g_m$. Its strength is therefore

$$dv^2 = \frac{2kT}{g_m} df \tag{5}$$

In Fig. 2 is shown an equivalent circuit for a common-emitter stage connected to a signal source of internal impedance R_s . The

Fig. 2. An equivalent circuit for a commonemitter stage.

circuit includes the two noise generators i_b and v and the thermal noise generator v_t associated with the source at a temperature T_s

$$dv^2 = 4kT_R df \tag{6}$$

If we assume that the input impedance Z_i of the transistor is large compared with the source impedance R_s the total noise input is given by

$$dV^{2} = 4kT_{s}R_{s}df + \frac{2kTdf}{g_{m}} + 2eI_{b}R_{s}^{2}df \quad (7)$$

The noise figure F is the ratio of this total noise to the noise due to the source alone (the first term in (7)), so that

$$F = 1 + \frac{T}{2T_s} \left(\frac{1}{g_m R_s} + \frac{e I_b R_s}{kT} \right)$$

We can also write this as

$$F = 1 + \frac{T}{2T_s} \left(\frac{1}{g_m R_s} + \frac{I_b}{I_c} g_m R_s \right) \tag{8}$$

The optimum source resistance is

$$R_{\rm s} = \frac{1}{g_m} \sqrt{\frac{I_c}{I_v}} = \sqrt{\frac{dv^2}{di_b^2}} \tag{9}$$

Since the input impedance is approximately $1/g_m I_c/I_b$ we see that our initial assumption that $R_s \ll Z_i$ was justified. The optimum noise figure is now

$$F = 1 + \frac{T}{T_s} \sqrt{\frac{I_b}{I_c}}$$
(10)

If for example $T = T_s$ and the d.c. current gain is 100 we have $F = 1 \cdot 1$ or about $\frac{1}{2}$ dB. If the collector current is 1 mA we have $1/g_m = 25 \Omega$ and $R_s = 250 \Omega$ compared with $Z_i = 2,500 \Omega$.

Notice first of all that a good low-noise transistor must have a high d.c. current gain and secondly that R_s is quite low. Fortunately an error of a factor 2 in R_s only increases F to 1.125 so that there is no point in attempting to be too precise in designing input stages.

If R_s is fixed then I_c (and thus g_m) should be adjusted to satisfy (9). If R_s is high e.g. 50 k Ω and the d.c. current gain is 400 it is easy to see that the optimum I_c is 10 μ A. For this reason low-noise transistors should also have high current gain at low currents. This is not usually compatible with good r.f. response. Provided that the input capacitance of the transistor is tuned out, the formula for the optimum value of R, is valid up to about $\frac{1}{3}f_T$ but the noise figure begins to deteriorate appreciably at about $f_T/\beta^{\frac{1}{2}}$. At very high frequencies, the effect of base series resistance becomes appreciable and, in any case, F exceeds $1 + f/f_T + f$ $(f/f_T)^2$

In f.e.ts noise arises from thermal noise in the channel. When allowance has been made for the distributed nature of the noise source, the effect is equivalent to a current generator whose strength is

$$di_d^2 = \frac{2}{3} \cdot 4kTg_m df$$

connected between drain and source. This is equivalent to a voltage generator of strength

$$dv^{2} = \frac{2}{3} \frac{4kT}{g_{m}} df$$
 (11)

in the gate lead.

At low frequencies there is also current noise in the gate lead due to leakage I_g

$$di_g^2 = 2eI_g df \tag{12}$$

but at high frequencies this is swamped by induced current noise, produced by fluctuations in the channel under the gate. This noise is to all intents uncorrelated with the drain noise and is of magnitude

$$di^{2} = \frac{1}{4} \frac{\omega^{2} C^{2}}{g_{m}} 4kT df$$
 (13)

where C is the input capacitance. The complete equivalent circuit is shown in Fig. 3.

Fig. 3. An equivalent circuit for a field effect transistor.

The optimum source resistance and noise figure at low frequencies are

$$R_s = \left(\frac{dv^2}{di_g^2}\right)^{\frac{1}{2}} = \left(\frac{4kT}{3eI_g g_m}\right)^{\frac{1}{2}} \quad (14)$$

and

$$F = 1 + \left(\frac{8el_g}{3kTg_m}\right)^{\frac{1}{2}} \tag{15}$$

If $I_g = 10^{-9} A$ and $g_m = 5$ millimho, we have $R_s \approx 100 \text{ k}\Omega$ and $F \approx 1.005$.

At high frequencies the optimum values are

$$R_s = \frac{1}{\omega C} \sqrt{\frac{8}{3}}$$
(16)

and

$$F_o = 1 + \frac{\omega C}{g_m} \sqrt{\frac{2}{3}} \approx 1 + \frac{f}{f_T} \quad (17)$$

where $f_T = g_m/2\pi C$ is the gain bandwidth product. Obviously good low-noise r.f. amplifiers require f.e.ts with a high gain bandwidth product.

Insulated gate f.e.ts tend to have high flicker noise and these results are only valid above about 1 MHz., but, for junction f.e.ts, they are often valid down to low audio frequencies.

Perhaps the most important part to bear in mind is that there is an optimum source impedance, and that for bipolar transistors this is much less than the input impedance. If the source impedance is high, an f.e.t. will usually be the most suitable input stage. Conversely for low source impedances it will be a bipolar transistor. Finally it should be noted that the use of negative feedback, or other connections (e.g. common base) alters neither the optimum source impedance nor the optimum noise figure.

REFERENCE

1. "Equivalent Circuit for Noise in Bipolar Transistors", by H. Sutcliffe, International Journal of Electrical Engineering Education, vol. 6, number 3, October 1968.

Domestic video records

Machines for playing recorded vision programmes into domestic television sets are arriving from all directions. Some are players only, for reproducing programme material on records supplied by outside organizations. Others will, in addition, record and reproduce television programmes (broadcast or closed-circuit) selected by the user. The two latest are the Video Cassette Recorder, from Philips (Holland), shown below, and the Cartrivision system, from Avco (U.S.A.).

The Philips machine (called VCR, perhaps for its convenient euphonic relationship with EVR) was demonstrated in the U.K. at a convention of the Film Industry Organization at Brighton. As the name indicates the machine uses cassettes to hold the recording medium, which is $\frac{1}{2}$ -inch magnetic tape. The recorded material, colour or monochrome, is reproduced on a domestic television receiver, and connection to the set is made via the aerial socket.

Two versions of the machine have been produced. The first is a player only, intended for reproducing programme material supplied in cassettes by outside organizations—hence the interest of the film industry. This is expected to cost about $\pounds 120$ for a monochrome machine and about $\pounds 140$ for a colour machine. The second version, justifying the name, will record as well as reproduce, and for recording broadcast television programmes it obtains the video signal by means of a built-in tuner which receives its r.f. signal from the aerial connection on the home television set. This machine will cost about £230.

Each cassette contains enough tape for an hour's running. It can be put into or taken out of the machine very easily and at any required moment, regardless of the position of the tape. Programme material may be erased and fresh material recorded in its place, as with a sound tape recorder. No rewinding is required.

The cassettes are interchangeable in the sense that, provided they are of the right type to fit the VCR, they can come from any source. Also, colour and monochrome cassettes are compatible, in that either type can be played on monochrome machines and colour machines. On the $\frac{1}{2}$ -inch tape two sound record tracks are available, and these can be used, say, for stereophonic sound or for spoken commentaries in two languages.

Other domestic video reproducing systems already launched or announced have the trade names: EVR (Electronic Video Recording), Vidicord, Selectavision and Sony. Domestic v.t.r. machines are already on the market.

Active Filters

12. The Leapfrog or Active-Ladder Synthesis

by F. E. J. Girling* and E. F. Good*

Certain types of passive filter have low sensitivity to errors in component values. Of these the best known types have the form of a ladder, terminated in equal resistances, but otherwise LC and lossfree. The leapfrog or active ladder synthesis allows a close analogue of such a filter to be made, in which integrators replace the reactances with a oneto-one correspondence, and which has the same low sensitivity (provided certain pairs of resistances keep a sensibly constant ratio). The synthesis is, therefore, especially useful for filters which must be designed to a tight specification.

The synthesis may be regarded as an extension of the use of the two-integrator loop.

Sensitivity

Active filters may be divided into three classes: those with high sensitivity to errors, i.e. those in which errors are exaggerated, so that an error of x% in some critical component causes an error much greater than x% in some important performance parameter; those with medium sensitivity, i.e. those in which errors in component values cause no more than proportional changes in important performance parameters; and those with low sensitivity, i.e. those which, at least in the pass band, are relatively insensitive to changes in component values. In any filter, whether active or passive, a change in the value of any component whose value enters into one of the time constants or LC products of the transfer function must cause a movement of the response curve along the frequency scale. The sort of change we are discussing is a change in the shape of the response curve such as a broadening or narrowing of the passband, or an increase in unevenness.

In all *CR* active filters positive feedback (in the strictest sense of the term) must operate to raise the *Q* factors of *CR* networks from $\leq \frac{1}{2}$ to higher values, and in high-performance filters to much higher values. This means that there are feedback loops for which the input quantity is the vector difference of two larger and nearly equal quantities. In circuits of high sensitivity there is no significant constraint on the relative magnitudes or on the phase difference of the two larger quantities, a not very large change in the value of a critical component can cause the difference to be-

*Royal Radar Establishment.

come zero, and a small change can cause a proportionately much larger change in the magnitude of the difference. This causes a change in gain over a narrow band of frequencies with the undesirable effects already mentioned. In circuits of medium sensitivity the difference between the two large vectors can become zero (if it can happen at all) only as a limiting case, when the ratio of some pair of components becomes infinite, and small changes in the value of a component cause no more than proportional changes in the magnitude of the difference. Circuits of this class were described in Parts 5, 6, and 7.

In a filter of low sensitivity there are constraints on the performance which result in errors in component values having a less than proportional effect on the more important characteristics of the response. Thus in a passive filter of this class, in the pass band the (ideally loss-free) LC network gives almost optimum power match between load resistance and source resistance and the response is close to the maximum possible. Clearly no error, however great, can raise the response above the maximum possible, and the effect of small errors is minimal. If an active filter is to have a similar low sensitivity it must be subject to similar constraints, and this will be the case if it is an analogue of the passive filter to the extent of copying its internal working, so that an error in a critical component has the same effect as an equal percentage error in the counterpart in the passive filter.

Copying

Active 2nd-order systems such as the integrator-and-lag and the two-lag loop with negative gain discussed in Parts 5 and 6 copy the working of a 2nd-order passive *LCR* network sufficiently closely to have the same sensitivity to component tolerances. And the same is true of the two-integrator loop, Part 7. An explanation is that the coefficients of the denominators of the transfer functions are built up from products and ratios with the dimensions of time such as CR, L/R, in virtually the same way. Thus the transfer functions of both the low-pass systems of Fig. 1 may be written (if in one case the prefixed minus sign is omitted)

$$\frac{V_{out}}{V_{in}} = \frac{1}{1 + T_1 p + T_1 T_2 p^2}$$
(1)

When several sections are cascaded to form a higher-order filter as described in Part 9, the system obtained is equivalent to a cascade of 2nd-order LCR networks separated by buffer amplifiers, and is virtually Butterworth's filter-amplifier approach (Ref. 1). The sensitivity to component tolerances is clearly the same as that of the individual 2nd-order stages, and it is not the same as for a well designed equally terminated LCR filter. In this type of filter, in the pass band, where the LC network approximates to an ideal transformer matching the load resistance to the source resistance and the loss is close to the minimum possible (6dB), the effect of changes in the value of a component is as shown in curve A, Fig. 2 (see Orchard, Ref. 2), whereas for the factor method a curve such a B applies.

Thus for the l-p filter with Chebyshev response shown in Fig. 3(a) a 30% reduction in C_3 gives only the small change in response shown by curve (2) of Fig. 3(c), whereas an equal reduction in the time constant of the first stage of the synthesis by factors shown in Fig. 3(b) causes a much greater change in response, curve (3) of Fig. 3(c). In the equally-terminated filter the response is constrained to remain of equal-ripple type

$$\frac{V_{out}}{V_{in}} = \frac{k}{(1+qpT)(1+pT/q+p^2T^2)}$$
 (2)

and the reduction in C_3 causes not only a reduction in the time constant of the 1storder factor but also reduction in the q of the 2nd-order factor, which has a compensating effect. In the synthesis by factors the reduction in C_3 makes no change in the 2nd-order factor. In the cut-off region, however, there is no significant difference between the two methods. Here the response is dominated by the coefficient of p^3

Fig. 1. A lag-and-integrator loop copies a passive 2nd-order network to the extent of having the same sensitivity to errors in component values.

Fig. 2. Two types of sensitivity.

342

Fig. 3. Two filters which give the same response when component values are accurate, but have different sensitivity.

in the expansion of the denominators of the transfer functions:

$$F(p) = \frac{k}{D(p)} = \frac{k}{1 + ap + bp^2 + cp^3}.$$
 (3)

For each $c = C_1 L C_3 R$ and the response at high frequencies (relative to the response at zero frequency) approximates to

$$|G(\omega)| = 1/C_1 L C_3 R \omega^3 \qquad (4)$$

Of course an error of 30% is unrealistically large, and in practice for such a simple filter synthesis by factors would probably be quite satisfactory. The example does illustrate, however, how the equally terminated structure gives in the passband reduced sensitivity to an error in the value of one of the reactances.

In a narrow band-pass filter, where component tolerances must in any case be tight if the specified centre frequency and band limits are to be obtained, the higher sensitivity of a synthesis by factors, calling for even tighter tolerances (or very close matching of components), could be a serious embarrassment, and the lower sensitivity of an equally terminated structure would be of

Fig. 4. Realisation of a band-pass characteristic (a): by factors (b); by an equally terminated structure (c).

real advantage. Fig. 4 shows schematically a band-pass filter of relative bandwidth 1/10synthesised by factors and as an equally terminated structure. The factor synthesis is the method of stagger tuning, and Fig. 5(a) shows the effect of mistuning the low-Q factor by 1% (by a 2% error in the respective tuning capacitance). A pronounced tilt appears in the passband, and mistuning of either of the outer factors also causes a considerable change in mean level. In Fig. 5(b)

Fig. 5. Sensitivity of the two filters of Fig. 4: (a) synthesis by factors, $C_2 \pm 2^{\circ}_{\circ}$, (b) equally terminated filter, $C_2 \pm 2^{\circ}_{\circ}$.

are shown the effects of 2% errors in one of the capacitances in the equally terminated structure, and it can be seen that the increase in ripple or unevenness is approximately only $\frac{1}{3}$ th as much as shown in Fig. 5(a). So if a $\pm 1\%$ tolerance were needed in the equally terminated structure, a $\pm 0.2\%$ tolerance would have to be set for the synthesis by factors (at least for the ratios of the Cs and for the ratio of the Ls).

In the equally terminated structure an error in a component causes reactions throughout the structure, and as the examples show these are to a considerable extent compensatory. If an active structure is to reproduce this behaviour it must be an analogue to the extent of duplicating these internal reactions, and not merely by a system which, when all values are accurate, gives the same transfer function.

Now it has already been shown in Part 7 that a two-integrator loop is an analogue of an LCR tuned circuit, one integrator taking the place of the inductance and the other of the capacitance. Resonance in the LCR circuit arises from the oscillatory interchange of energy between the magnetic field of the coil and the electric field of the capacitor. In the two-integrator loop gain and feedback allow us to use two energy stores of the same kind and so obtain resonance with only one kind of reactance (normally capacitance). The question arises, therefore, can a system of integrators and feedback links be set up to reproduce the performance of more complicated LCR networks-perhaps any LCR network-and in particular a ladder structure in which all the elements except the terminating source and load resistances are lossless reactances?

All-integrator circuits

For a long time it has been obvious to anyone with a knowledge of analogue computing that if the chosen passive model or response curve is reduced to a transfer function, this can be "instrumented" by standard methods and an active filter obtained consisting of integrators and inverting stages. But in the resultant structure it is not possible to identify one of the integrators with one of the reactances of the passive prototype. About all that can be done of that sort is to identify certain resistors as corresponding to the coefficients of the terms of the denominator and numerator of the transfer function. A theoretical schematic for 3rd-order transfer functions is given in Fig. 6. So the method no more produces a filter with the lookedfor one-to-one correspondence than a synthesis by factors; and since it can be shown that a finite change in the value of a component can make such a system unstable (oscillate), i.e. cause an infinite change in response, it seems likely that the sensitivity to errors will be greater.

The leapfrog synthesis

Fig. 7(a) shows a 2nd-order 1-p filter, or, equally well, the output end of some longer

 $\frac{1 + \alpha_1 p + \alpha_2 p^2 + \alpha_3 p^3}{\beta_0 + \beta_1 p + \beta_2 p^2 + p^3}$

Fig. 6. "Analogue-computer" realisation of a 3rd-order transfer function.

Wireless World, July 1970

I-p ladder. By dividing all impedances by R in Fig. 7(b) the network has been normalised to make the terminating resistance I ohm. This simplifies the synthesis, though it makes some of the equations in the analysis appear dimensionally incorrect.

As usual with a ladder, the network is conveniently analysed by supposing an output voltage and finding the currents and voltages that must exist to produce it:

$$I_0 = V_{out} / (1 \text{ ohm}) \tag{5}$$

$$I_1 = pCRV_{out} \tag{6}$$

$$I_2 = I_0 + I_1 \tag{7}$$

$$V_L = (pL/R)I_2 \tag{8}$$

$$V_{in} = V_{out} + V_L$$

whence

$$V_{in} = (1 + pL/R + p^2LC)V_{out}$$
(10)

(9)

An active system, using abstract integrators, which is described by an exactly parallel set of equations, is shown in Fig. 7(c). The dependent variables at the inputs and outputs of the integrators and differential gears are designated by θ s to indicate the generality of the analogue, for in principle they can be any physical quantity capable of oscillatory motion (e.g. the angular position of a shaft). When electronic integrators are used, however, they will be electrical quantities, and when the ubiquitous Blumlein (or Miller) feedback integrator is used, voltages. Thus voltages will represent both the voltages in the passive circuit, and the currents; and any feeling of dimensional inconsistency which this may give can be removed by supposing the currents multiplied by an arbitrary resistance. In the schematic of Fig. 7(b) this resistance is the 1 ohm termination of the passive network, but in a practical situation some other value may be advisable. If, for example, the system is lightly damped, near the upper end of the passband I_1 will be considerably greater than I_0 . But θ_1 and θ_{out} can have equal amplitudes if a suitable scaling factor k is introduced into the paths

Fig. 7. The two reactances at the output end of a low-pass ladder are replaced by two integrators.

Fig. 9. The effect of the terminating resistance at the sending end is reproduced.

leading both to and away from θ_1 , i.e. if the Ts of the integrators are made kL/R and CR/k, and the feedback representing I_0 is reduced to 1/k. Indeed in principle different scaling constants may be used at each point, since the only rule to be observed to leave the dynamic properties of the system unchanged apart from a scalar multiplier is that for every feedback loop the loop gain (the product of the gains of the forward and feedback parts of the loop) must be unchanged. This flexibility has already been noticed in Part 7, where the two-integrator loop is derived as an analogue of a series LCR circuit, and is helpful in allowing best use to be made of the internal gain and the dynamic range of the integrator amplifiers.

(a)

Equations (5) to (9) are of three types: simple summations representing Kirchhoff's laws for the currents at a node or the voltages round a mesh; 1st-order differential equations representing the action of the reactances; and the Ohm's-law equation describing the proportionality of current and voltage for a resistance. When the ladder is extended, Fig. 8(a), no new types of process are brought into action, only the same types of equation are needed in the analysis, and the active analogue can be correspondingly lengthened by adding further integrators and feedback connections as shown in Fig. 8(b). The lengthening of the passive ladder and of the corresponding active system may be continued without limit, the number of integrators in the latter always equalling the number of reactances in the former, and at the input end it is easy to add a final feedback loop to duplicate the action of the source resistance, R_s (Fig. 9). Thus an active synthesis has been found which gives a one-to-one correspondence between the reactances of the passive filter and the integrators of the active system and duplicates not only the overall response of a simple low-pass ladder of any length, but also, as required, the internal workings.

(b)

Fig. 10. Formal derivation of the active ladder.

Theorem

A simple ladder working with voltage input and voltage output can be divided into inverted-L sections, and a more formal derivation of the synthesis may be made by first proving the following theorem.

The inverted-L section of a ladder network as shown in Fig. 10(a) gives when passing signals from left to right the same

transmission as the active analogue shown in Fig. 10(b).

In the passive network

$$I_{n} = V_{n}/Z_{n}$$

$$I_{n+1} = I_{n} + I_{n-1}$$

$$= V_{n}/Z_{n} + I_{n-1}$$

$$V_{n+1} = I_{n+1}Z_{n+1}$$

$$= (V_{n}/Z_{n} + I_{n-1})Z_{n+1}$$

$$V_{n+2} = V_{n} + V_{n+1}$$

$$= V_{n}(1 + Z_{n+1}/Z_{n}) + I_{n-1}Z_{n+1}$$

In the active system there are two amplifiers of gain Z_n/R and R/Z_{n+1} respectively and two differential boxes which take the difference of the voltage applied from the left and the feedback voltage, so that $V_a = V_b - V_c$ as shown inset. If then a voltage = $I_{n-1}R$ is available from another section, it can be seen by inspection that

$$I_{n}R = V_{n}R/Z_{n}$$

$$I_{n+1}R = I_{n}R + I_{n-1}R$$

$$= V_{n}R/Z_{n} + I_{n-1}R$$

$$V_{n+1} = I_{n+1}Z_{n+1}$$

$$= V_{n}Z_{n+1}/Z_{n} + I_{n-1}Z_{n+1}$$

$$V_{n+2} = V_{n}(1 + Z_{n+1}/Z_{n}) + I_{n-1}Z_{n+1}$$

q.e.d. [R is an arbitrary resistance.]

When the shunt impedance Z_n is $1/pC_n$ the reactance of an ideal capacitor, the gain $Z_n/R = 1/pC_nR$, which is the voltage transfer ratio of an integrator. And when the series impedance Z_{n+1} is pL_{n+1} an ideal inductive reactance, the gain $R/Z_{n+1} = 1/(pL_{n+1}/R)$, which also is the transfer ratio of an integrator. Thus the synthesis allows inductance to be simulated by capacitance, which is the object of the exercise.

For the output section of the ladder a terminating load resistance makes $I_{n-1} = V_{out}/R_L$. Hence in the active system the required feedback is a voltage proportional to V_{out} . Alternatively the load resistance may be taken as in parallel combination with the shunt impedance Z_n and the final amplifier of the active system assigned a gain $Z_n R_L/(Z_n + R_L)R$. If $Z_n = 1/pC$ this reduces to $R_L/R(1 + pCR_L)$. So the amplifier should have the response of a simple lag of time constant CR_L combined with a zerofrequency gain R_L/R . If the amplifier has the form of an integrator a resistance is placed across the integrating capacitor. For all other sections the voltage $I_{n-1}R$ is available from the section to the right.

At the input end a source resistance R_s calls for a voltage $I_{n+1}R_s$ to be introduced in series with the input, i.e. a voltage $\propto I_{n+1}R$, which is already present in the active system. Or again alternatively, R_s may be treated as combined with Z_{n+1} and the input amplifier given a gain $R/(Z_{n+1}+R_s)$. And again if $Z_{n+1} = pL_{n+1}$ this has the form A/(1+pT).

A ladder of T type

If the reactances of the passive ladder are connected to form one or more tees, Fig. 11, the analysis of the action proceeds as follows:

$$V_{out} = R_L I_{out}$$

$$V_1 = pL_1 I_{out}$$

$$V_2 = V_{out} + V_1$$

$$I_2 = pC_2 V_2$$

$$I_3 = I_{out} + I_2$$

$$V_n = V_1 + V_m$$

$$I_n = pC_n V_n$$

$$I_p = I_m + I_n$$

$$V_p = pL_p I_p$$

$$V_q = V_n + V_p$$

$$I_q = V_q / R_S$$

$$I_S = I_p + I_q$$

$$[V_{in} = I_S R_S]$$

If these are compared with the parallel set of equations for a π -form ladder, which begins as equations (5) to (9), it is found that

Fig. 12. T-form and π -form filters with the same response.

the sets are exactly the same except that the roles of voltage and current, and of inductance and capacitance are reversed. And it follows that the same active system, where one kind of quantity (voltage) represents both the voltages and the currents of the passive models, can represent both forms of ladder.

The correspondence between the two forms of ladder is, of course, well known, and explains why, for example, the two filters shown in Fig. 12 have the same voltage transfer ratio. Because of the exchange of roles between voltage and current, resistance in one form corresponds to conductance in the other; and whereas high values of R_s and R_L give light damping in the π -form filter, Fig. 12 (lower), low values give light damping in the T-form filter, Fig. 12 (upper).

Drawing and naming

The name "leapfrog feedback filter" was suggested by the appearance of the schematic diagrams when all the feedback links are drawn on one side of the row of integrators and difference boxes. If the feedback links are drawn alternately above and below the forward signal path crossings over are avoided, Fig. 13(b), and it is then easy to proceed to drawing the system as a ladder, as will appear in later diagrams.

Electrical circuits

Fig. 13(a) shows two 5th-order low-pass ladders, and Fig. 13(b) the block schematic of the active system which can equally well be the counterpart of either. This schematic is really a diagram of mathematical processes, and by using the precedent of the two-integrator loop it is easily appreciated that the difference boxes need not appear as separate entities and that each feedback loop will be closed in the correct sense if it contains two Blumlein ("Miller") integrators and one phase-inverting amplifier. as this gives, as required, an odd number of sign changes at zero frequency. The inverting amplifiers may be placed in positions \times_1 giving Fig. 13(c), or in positions \times_2 giving Fig. 13(d). The second is the more economical arrangement as it uses only two inverting amplifiers. The first has the possible advantage that there are fewer stages in the forward path-only the integrators.

In both Fig. 13(c) and in Fig. 13(d) there are considerably more than five resistances. If all have the correct value, then the five capacitances may be identified with the five reactances of the passive models, and the one-to-one correspondence principle is exactly observed. If in Fig. 13(d) one of the resistances marked r is in error, it is equivalent to an equal percentage error in the capacitance of the preceding integrator. So the active system still shows the desired correspondence with the passive models, though with an error in one of the reactances. And lack of infinite gain in the inverting amplifiers is also equivalent to a change in the T of the preceding integrator. An error in only one of a pair of resistances such as R_2 , R_2' , however, has no exact counterpart in a change in the value of any single component in the passive models, since it

Fig. 13. Derivation of electrical active ladders.

causes one of the integrators to have a different T in one loop from in another.

Suppose in Fig. 13(d) that R_2 is too small. The current in R_2 will be too large, all the signal levels to the right of R_2 will be increased, and in particular the feedback current in R_{3} (which represents the current in L_2 in the π -form model) is increased. The effect is the same as if an ideal transformer (effective down to zero frequency) of ratio $1: \sqrt{(R_2(\text{nom})/R_2)}$ is interposed between C_3 and L_2 in the passive model. Similarly the effect of other possible errors in nominally equal resistors can be represented as shown in Fig. 13(e). Clearly, unless one of the terminating resistances R_1' and R_5 is adjusted to compensate, the active system no longer exactly represents a power-matched structure. But with the errors to be expected from modern high-stability resistors, the departure from the ideal will be small and the effect will be no more serious than the effect of inequality in load and source resistance in the passive model repeated a number of times.

In Fig. 13(c) there are an even greater number of resistances to be in error; but by similar reasoning a passive model can again be constructed. That the active systems are analogues of passive models is itself an assurance that they cannot have high sensitivity to errors, since no finite change in component values can make the system unstable. The effects of any unwanted phase shifts are, of course, excluded in this argument.

REFERENCES

- "On the Theory of Filter Amplifiers", by S. Butterworth. Experimental Wireless and Wireless Engineer, Oct. 1930, Vol. 7, No. 85, pp. 536-541.
- "Inductorless Filters", by H. J. Orchard. Electronics Letters, June 1966, Vol. 2, No. 6, pp. 224-225.

H.F. Predictions —July

The charts are based on an ionospheric index (IF2) of 94 and sunspot number 84. These values are predicted from smoothed data which include allowance observed during March/April. The Greenwich sunspot number for May was 136 showing that the high activity had, rather surprisingly, not only continued but further increased. If this activity is taken into account the median standard frequency (MUF) for Montreal would be 0.5MHz higher than that shown at 12.00 and 1.5MHz higher at midnight. The correction for the lowest usable frequency (LUF) would be in opposite sense-1MHz higher at 12.00 and unchanged at midnight. Other routes would be similarly affected. Disturbed days have been relatively frequent (April 15 days, May 6 days) and are expected to continue, but rarely intense.

Coding Problems in Iterative Arrays

A logic circuit for multiplying by three is developed as an illustration

by K. S. Hall*

In a recent article¹ K. J. Dean described how iterative arrays of logical circuits may be used to perform arithmetic operations, giving a number of examples. The purpose of the present article is to discuss some problems which arise in the design of these arrays, partly because the arrays themselves are interesting and useful, and partly because they form a convenient peg on which to hang a discussion of some problems that arise in the design of a wider class of logic circuits.

Dean begins by pointing out how networks for multiplication by two and four may be devised. These are shown in Fig. 1 which has been adapted from his article. As he says they are rather trivial, consisting merely of leads which transfer a digit to a more significant place. However they do serve as a convenient introduction to the next circuit, which is for multiplication by three. The form of the circuit is shown in Fig. 2. It should be pointed out that while there is one input wire A and one output wire B for each block, the number of wires between blocks bearing information about the carry digit C is as yet undetermined. The problem is to design the circuit within each block.

Design of a component block

The function of each block is to add together two numbers. One, which we will call a_r , has the value 0 when $A_r = 0$ and the value 3 when $A_r = 1$. The other, c_r , is carried from the block on the right. The greatest value that c_r can have is given by:

$$2^{\prime}c_{\prime} \leq 3(2^{\prime}-1)$$

so that c_r is 0, 1 or 2. To distinguish these three values requires two binary digits and the coding problem is to decide how best to use the four possible combinations of these digits to convey three alternative messages about the value of the carry digit.

Dean proposed to give the two digits weights of 1 and 2 respectively, so that 00, 01 and 10 represent carry digits of 0, 1 and 2 respectively, and 11 was not used at all. One block of the array may now be redrawn as in Fig. 3, showing the two binary digits separately, and the table of combinations, giving the values of B_r , P_{r+1} and Q_{r+1} in terms of A_r , P_r and Q_r may be drawn up as shown in table one.

*City University, London.

Fig. 1(a). An array for multiplication by two. (b) an array for multiplication by four. In both cases leads merely transfer digits to a more significant position.

Fig. 2. An array for multiplication by three.

Fig. 3. One block of the array for multiplication by three.

Wireless World, July 1970

The information contained in this table can now be plotted on Karnaugh maps, and the logic functions deduced. The maps, which are shown in Fig. 4, are the same as in Dean's Fig. 3, except for the changes in notation. From these maps it can be seen that:

$$B_{r} = \overline{A}_{r}Q_{r} + A_{r}Q_{r}$$

or

$$B_{r} = (\overline{A}_{r} + \overline{Q}_{r})(A_{r} + Q_{r})$$

$$\overline{B}_{r} = \overline{A}_{r}\overline{Q}_{r} + A_{r}Q_{r}$$

$$P_{r+1} = A_{r}P_{r} + A_{r}Q_{r}$$

or

$$P_{r+1} = \overline{A}_{r}(P_{r} + Q_{r})$$

$$\overline{P}_{r+1} = \overline{A}_{r} + \overline{P}_{r}\overline{Q}_{r}$$

$$Q_{r+1} = \overline{A}_{r}P_{r} + A_{r}\overline{P}_{r}\overline{Q}_{r}$$

or

$$Q_{r+1} = \overline{Q}_{r}(\overline{A}_{r} + \overline{P}_{r})(A_{r} + P_{r})$$

$$\overline{Q}_{r+1} = Q_{r} + \overline{A}_{r}\overline{P}_{r} + A_{r}P_{r}$$

The functions were given first in the sumof-products form, and each of them could be realised using one OR- and two ANDgates, or else three NAND-gates. Secondly the functions were given in product-of-sums form. In this form they require altogether eight gates for their realisation, either five OR- and three AND-gates, or eight NORgates. However, not only B_r , P_{r+1} and Q_{r+1} are required, but \overline{P}_{r+1} , \overline{Q}_{r+1} and, possibly, \overline{B}_r . These may be produced by means of inverters, but it may be more economical to produce the complement directly and complement that.* To see whether this is so expressions for \overline{B}_r , \overline{P}_{r+1} and \overline{Q}_{r+1} in sum-of-products form have also been given. To produce \bar{P}_{r+1} with NAND-gates two are required compared with three to produce P_{r+1} . The former is therefore the more economical course. With the other two output variables there is no difference, so that the total number of gates required may be reduced from nine to eight.

Further economy is possible. The expression for \overline{P}_{r+1} may be modified to $\overline{A}_r + A_r \overline{P}_r Q_r$ (this may be seen from the map or from the well-known result that $X + \overline{X}Y = X + Y$). When this has been done the term $A_r \overline{P}_r \overline{Q}_r$ is common to the expressions for \overline{P}_{r+1} and Q_{r+1} , so that a further gate may be saved, reducing the number per block to seven. The inverters for P and Q may be placed at the input or output of a block. The former course reduces the number of leads between blocks, and this is the arrangement which has been shown in Fig. 5.

Alternative codings

In the previous circuit a weighted binary code was used for the carry digit. There are,

T	a	b	e	or	ne

Ar	Pr	Qr	ar	Cr	a _{r+c}	c _r +1	Br	Pr+1	Qr+1
0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1	0	0
0	1	0	o	2	2	1	0	0	1
0	1	1	-	-	-	-	φ	φ	φ
1	0	0	3	0	3	1	1	0	1
1	0	1	3	1	4	2	0	1	0
1	1	0	3	2	5	2	1	1	0
1	1	1	-	÷	-	-	φ	φ	φ

 ϕ denotes an optional value

Fig. 4. Karnaugh maps for one block of an array for multiplication by three.

Fig. 5. The logic circuit of a block which will multiply by three.

however, many other ways of coding the carry digit and some of these lead to more economical circuits. The first step is to set out the various possibilities and the second is to distinguish those alternatives which lead to different circuits from those which merely lead to the same circuit differently labelled. It is convenient in setting out the alternatives to make use of Karnaugh maps, arranging the three values of the carry digit, 0, 1 and 2, in various ways in the four spaces of a two-variable map. Leaving one space vacant for the present, the opposite space may be occupied by 0, 1 and 2, giving the three possibilities of Fig. 6(a). The three possibilities of Fig. 6(b) differ from those of Fig. 6(a) only in having P, and Q, interchanged, so that they lead to designs which are identical, though differently labelled. The three possibilities of Fig. 6(c) are obtained from those of Fig. 6(a) by comple-

/	Pr	0	1	0 1	0 1
Q,				(a)	
а _г 0		0	2	1 2	2 1
1		1		0	0
				(b)	
0		0	1	1 0	20
		2		2	1
				(c)	
0		2	0	2 1	1 2
1			1	0	0

Fig. 6. Coding possibilities, first step.

[•]Zissos and Copperwhite² have considered the problem of realising a logic function with gates when the complements of the inputs are not available, and have shown that to design a circuit which is minimal when the complements are available, and add inverters, does not always lead to the most economical solution. Although, in general, their results are applicable to the situation considered here, a systematic procedure for applying them to multiple-output networks has not been worked out, and no attempt has been made to make use of them here.

/	P _r 0 1	0 1	0 1
Q,	(a)	(b)	(c)
0	0 2	1 2	2 1
1	1Φ	οφ	οφ
	(d)	(e)	(f)
0	0 2	1 2	2 1
1	1 0	0 0	0 0
	(g)	(h)	(j)
0	0 2	1 2	2 1
1	1 1	0 1	O 1
	(k)	(1)	(m)
0	0 2	1 2	2 1
1	1 2	0 2	0 2

Fig. 7. Coding possibilities showing all alternatives with some duplication.

menting P_r , that is, they are the same except that the variable previously called P_r has been called \overline{P}_r . In general, since both P_r and \overline{P}_r are required, they lead to identical designs. The same applies if Q_r is complemented.

So far there are only three distinct alternatives. Next it is necessary to decide how to use the spare state. One possibility is not to use it at all. This is what Dean did with the first coding of Fig. 6(a), and it leads to the solution we have already described. On the other hand, the spare state may be used as an alternative way of conveying the information that the carry digit has one of the three values, for example, in Fig. 7(d) when the carry digit is 0 this information may be conveyed by $P_{r+1}Q_{r+1} = 00$ or $P_{r+1}Q_{r+1} = 11$. In Fig. 7(e) the same information is conveyed by $P_{r+1}Q_{r+1} = 01$ or 11. This means that when $Q_{r+1} = 1$ the carry digit is 0 whatever the value of P_{r+1} , so that when the carry digit is 0 the value of P_{r+1} is optional. Thus the flexibility available as a result of having a spare state has not been lost by assigning to that state a specific message-it has been made use of in a different way.

Fig. 7 has been obtained from Fig. 6(a) by inserting \emptyset , 0, 1 or 2 in the vacant space. There appear to be twelve alternatives but on inspection it may be seen that (f) becomes the same as (e) on complementing P_r , (l) becomes the same as (k) on complementing Q_r , and (j) becomes the same as (g) on interchanging P_r and Q_r and then complementing P_r , so that there are only nine alternatives.

Designs with alternative codings

Designs for all these alternative codings have been worked out, and the best was found to be (g). It may be noted that this differs from the weighted code only in the use made of the spare state. The table of combinations and the resulting Karnaugh

a	bl	e	t	W

A

Iui	JIE LW	10							
Ar	Pr	Qr	ar	Cr C	$a_r + c_r$	C _T +1	Br	Pr+1	Q++1
0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1	0	0
0	1	0	0	2	2	1	0	φ	1
0	1	1	0	1	1	0	1	0	0
1	0	0	3	0	3	1	1	φ	1
1	0	1	3	1	4	2	0	1	0
1	1	0	3	2	5	2	1	1	0
1	1	1	3	1	4	2	0	1	0
	Br				P _r +	.1		Qrt	+1
P		1 1		Pr	00	1 1		PT 0 0	1 1
a	т 0 1	10		0,	0 1	10		a _T 0 1	10
50	0 1	1 0	2 A	50	00	0 \$	AT	000	0 1
1	10	0 1		1 [φ 1	1 1	1	1 1 0	00

Fig. 8. Karnaugh maps for one block of an array for multiplication by three using an alternative coding.

Fig. 9. The logic circuit required when using the alternative coding. Note that fewer gates are now required.

maps are given in Table two and Fig. 8. From these maps:

$$B_{r} = \overline{A}_{r}Q_{r} + A_{r}\overline{Q}_{r}$$

or

$$B_{r} = (\overline{A}_{r} + \overline{Q}_{r})(A_{r} + Q_{r})$$

$$\overline{B}_{r} = \overline{A}_{r}\overline{Q}_{r} + A_{r}Q_{r}$$

$$P_{r+1} = A_{r}$$

$$\overline{P}_{r+1} = \overline{A}_{r}$$

$$Q_{r+1} = \overline{A}_{r}P_{r}\overline{Q}_{r} + A_{r}\overline{P}_{r}Q_{r}$$

or

$$Q_{r+1} = \overline{Q}_{r}(\overline{A}_{r} + \overline{P}_{r})(A_{r} + P_{r})$$

$$\overline{Q}_{r+1} = Q_{r} + \overline{A}_{r}\overline{P}_{r} + A_{r}P_{r}$$

Since $P_{r+1} = A_r$, $\overline{P}_{r+1} = \overline{A}_r$, so only two inverters are required, assuming \overline{B}_r is not wanted. If NAND-gates are used, six are required. It is marginally better to produce Q_{r+1} directly and use an inverter to obtain Q_{r+1} , rather than the reverse, since then only one of the six NAND-gates will have three inputs. The resulting design for one block is shown in Fig. 9.

REFERENCES

- K. J. Dean, "Iterative arrays of logical circuits for performing arithmetic", *Electronic Engineering*, Vol. 40, No. 490 (Dec. 1968).
- D. Zissos and G. W. Copperwhite, "Further Developments in the Design of Minimal NOR (and NAND) Combinational Switching Circuits for N-Variables", *Electronic* Engineering, Vol. 38, No. 461 (July 1966).

Here it is, Solartron's outstanding 1240.

The multimeter that's not just a toy but a real step forward in instrument technology.

Now everyone can go digital! You get Amps, Volts, Ohms -

volts and dual slope integration for noise rejection.

Technology apart, the 1240 has automatic polarity indication and a straightforward control layout and fingertip function switches. It's a.c. and d.c. - down to 100 micro- the easy-to-handle go-anywhere

portable multimeter.

Go digital with the new 1240. From Solartron, European leaders in digital instrumentation.

Post the magazine's reply-paid including a single range selector card and we'll send you our data sheet of full details.

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

WW-070 FOR FURTHER DETAILS

www.americanradiohistory.com

performer tiometers....

Both operate from -55° C to $+150^{\circ}$ C. Both offer resistance range 50n to 20kn. Both are power rated 0.5W at 70°C. Both are well established products with proven reliability. are well established products with proven reliability. Both come from Electrosil and were formerly products of M.E.C. Ltd. Add those two reputations together and you've got an unsurpassed combination. What's the difference, then? Well, one is the 'T20' series, a military version and is guaranteed to an exacting Electrosil specification based on DEF5124A. Its double is the MT20P ... precisely the same in all aspects, but not subjected to such intensive performance testing. The MT20P is suggested for applications such as computors and instrumentation

as computors and instrumentation where saving in cost is an asset to be considered.

Either way you get supreme reliability, the hallmark of anything Electrosil turn out. Each basic type is available in three alternative styles: printed circuit mounting top adjustment; p.c. mounting side adjustment; and panel mounting.

Write now for full details of Electrosil trimming potentiometers. ELECTROSIL LIMITED, P.O. Box 37, Pallion, Sunderland, Co. Durham. Telephone Sunderland 71481. Telex 53273.

ELPS

Roots and Responses

Showing how the root technique applies to filter design

by Thomas Roddam

When I began writing this group of articles a few months ago it was because I wanted to discuss the question of why we use sine waves, why we go to a good deal of trouble to make sine waves. The answer turned out to be that it is very easy to produce a perfect sine wave, if you are a mathematician. All you need is inductance, capacitance, a battery and a switch. One thing you must not be is a physicist. I assert that my LC circuit has a sinusoidal current flowing in it and that the frequency is such and such. Call me a liar and I connect a measuring device. A measuring device, however, must load the circuit down and, to some extent affect the frequency. As a mathematician I can use positive feedback to give me infinite input impedance, but I have the problem of keeping the noise energy finite.

The engineer is not driven into this corner. He has real coils and capacitors producing a straightforward complex frequency. He has two quite separate ways of keeping his signal going. In practical circuits they may get a bit mixed up, but essentially they are totally different. In one method the maintaining circuit can be analyzed into a negative resistance which is used to balance out the resistances in the practical LC circuit. Various sorts of a.g.c. circuit are used so that this balance is maintained at a particular level of oscillation. It sounds very easy but it can be a life-time career. Some of the rules are easy to write down. The system must be linear: the negative resistance must appear in the circuit in the same way as the circuit positive resistance. This last rule is normally concealed in a sea of mathematics. The reason behind it is simple. If the circuit loss is, for example, the wire resistance of a coil, and we have a parallel tuned circuit with a parallel maintaining negative resistance, the negative resistance must balance out an admittance term $R/(R^2 + \omega^2 L^2)$. The self-adjusting property allows this, but there is still a term in R in the frequency expression. What happens, in terms of those root diagrams, is that the root is moved bodily sideways to the $j\omega$ axis. Because R is temperature dependent, the frequency will also be temperature dependent. Because the frequency displacement is normally happening as we move round the top of the root locus semicircle the change will not be very big. and if we start with a good circuit Q may not be the most important change. If we

Fig. 1. Simple low-pass filter with high impedance load.

use a series negative resistance and a series *LC* circuit we should go round to oscillate at $\omega^2 LC = 1$. Now, however, any shunt losses must be transformed to series losses.

A quite different method generates the tuned circuit root frequency itself. This is the way we produce substantial amounts of sine wave power and have done since I don't know when. In simple terms a reversing switch, or even a simple short contact duration switch is used to flip energy into the tuned circuit every half-cycle, every cycle, or even, in frequency multipliers, every n cycles. One common form of this is the familiar square wave inverter with a simple filter.

A class-C oscillator is a fine example of a mix-up. The on period of the amplifier moves the root over into the right-hand half of the plane. If the amplifier saturates, of course, back we go to the left. During the off period the tuned circuit is aware only of its own complex frequency. The great days of the class-C oscillator were the days of the self-biased system, in which the circuit itself settled the amount of each cycle spent in each mode. If anyone had stopped to work it out they would never have built an oscillator.

The use of roots in the complex plane, that is the use of the complex natural frequencies of circuits, introduced a new age in the design of filter and frequency dependent networks. The old school grew up on the work of Campbell and Zobel. This followed on the real beginnings, with names like Kelvin, Heaviside, Pupin. The Great Eastern, black smoke pouring from her funnels, lays the transatlantic cable. The loading coil made it possible, with the valve amplifier, for the great moment. in 1915, when no fewer than three telephone circuits connected San Francisco to New York and Washington. Four wires, strung on poles. More wires, strung on poles, and

by 1937 there were 140 circuits. *Wireless World* was already being published before it was possible to 'phone across America.

The growth of trunk telephone circuits depended on carrier operation, and this, in turn, depended on filter design. The filter design grew out of the theory of long lines and, in its beginnings, ignored its ends. I suppose that a large number of the filters being built today are still based on the handy summaries of constant-k and mderived sections which are to be found in all the reference books. These are slices from a long chain of similar sections, with reactance all the way through like the town's name in a stick of seaside rock. In the simple theory the source and the load matched the filter. In reality source and load were resistive: the calculations were patched up by the use of mismatch loss, interaction loss and other delicate corrections.

The first step away from the assembly kit was the result of examining the reactance network as a whole. The filter, by itself, showed a set of characteristic frequencies at which the reactance was either zero or infinite. The distribution of poles and zeros determined the overall response. apart from the patches. Two problems remained: the effect of the losses of the elements themselves and the effect of the resistive terminations. Cauer and Bode are the great names of the classic lattice network period. Reading system into the random walk of the historical development it was the need to allow for the losses of practical components which opened up the great leap forward. The theorists of finite losses moved into the complex plane.

The move was a rather timid one. The whole line of roots was moved bodily sideways, and ideally for all the elements the value of R/L = G/C was the same. But the theory had moved from one dimension to two.

Instead of moving from one dimension to two by introducing the resistances associated with each and every reactive component we may just introduce one or two resistances associated with the source and the load. Let us take the simplest circuit worth considering, the simple low-pass network of Fig. 1, fed from a generator of impedance R and feeding an infinite impedance load. This is a common situation when the load is in fact a high input impedance amplifier. If you think of the three components as a voltage divider you can write down the proportionality equation

$$\frac{V_1}{R+j\omega L+1/j\omega C} = \frac{V_2}{1/j\omega C}$$

so that

$$\frac{V_1}{V_2} = 1 + (R + j\omega L)j\omega C$$
$$= 1 + j\omega CR - \omega^2 LC$$

Of course, I should not have used $j\omega$. That's the equation for response, but I want a function,

$$G = 1 + pCR + p^2LC$$

in which p can have any value. If we put G = 0 we have

$$LCp^2 + CRp + 1 = 0$$

so that

$$p = \frac{-CR \pm \sqrt{C^2 R^2 - 4LC}}{2LC}$$

giving two roots, p_1 and p_2 ,

and $G = (p-p_1)(p-p_2)$. When we take the special case of (V_1/V_2) ,

we see that this corresponds to $p = j\omega$, so that

$$\frac{V_1}{V_2} = G(j\omega) = (j\omega - p_1)(j\omega - p_2)$$

In Fig. 2 we see these two poles, p_1 and p_2 . We know from our previous discussion that they are complex conjugate, though we see this in the equation above, too. I have assumed that $4LC > C^2R^2$, to get them up off the negative real axis.

The term $(j\omega - p_1)$ is the vector l_1 in Fig. 2, and l_2 is, of course, $(j\omega - p_2)$. The response is the product $l_1 l_2$. It is rather easy geometry to see that this can be described by Fig. 3 instead of Fig. 2. One method of proceeding from this point is to do some more algebra to show how we can plot frequency responses using an electrolytic tank. I have seen a good many discussions of the use of this sort of analogue technique over the years but I have never actually come across anyone who really built networks for systems in this way. I am pretty certain that now I never shall: if the network needs that sort of approach you hire a mathematician, or computer time, or both.

The really conscientious reader may be

Fig. 2. The poles for the network of Fig. 1.

Fig. 3. Another way of getting the quantities in Fig. 2.

Fig. 4. Position of poles, and network response, sketched sideways compared with usual form, for Butterworth response.

wondering why we have plodded through to

$$\frac{V_1}{V_2} = 1 + j\omega CR - \omega^2 LC$$

all over again. Let us get out our Avometers, and measure V_1 and V_2 . Phase angle goes overboard, and all we determine is

$$\frac{\left|\frac{V_1}{V_2}\right|^2}{\left|\frac{V_2}{V_2}\right|^2} = 1 + \omega^2 (C^2 R^2 - 2LC) + \omega^4 L^2 C^2$$

This is the equation which describes the behaviour of the network as a frequencyselective network. Last month we considered the network as a frequency-dependent one. This distinction is one which can be very real among designers and it can lead to quite serious communication difficulties. Engineers working on radio frequencies use this network, and the slightly more complicated one with a capacitance at each end, as band-pass impedance transformers. They consider it as a kind of tapped tank circuit. and, very often, do all their calculations at a single frequency, the carrier frequency. Sometimes they regard the circuit as a lumped version of a quarter-wave line. The Campbell-Zobel filter man sees it as a lowpass filter, but the element values used in the r.f. coupling circuits indicate very large mismatch effects. In classical filter theory these are exceedingly tedious to work out, and when they have taken charge completely one loses all feel, one doesn't know what is going on. In fact, we are concerned with situations where one important root, p_1 , is relatively close to the j ω axis (should we really call this the ω axis?), and the length l_1 in Fig. 2 takes complete control.

The filter man would like $|V_1/V_2|$ to stay pretty constant up to the cut-off frequency. This would give him a well-defined pass region. Now $|V_1/V_2|^2$ depends on ω^2 and on ω^4 , and if these are small the ω^4 term is smaller than the ω^2 term. Put like that it sounds rather a dubious statement. Let us write

$$\omega^2 LC = \sigma^2$$

Then

$$\left|\frac{V_1}{V_2}\right|^2 = 1 + \sigma^2 \left(\frac{C^2 R^2 - 2LC}{LC}\right) + \sigma^4$$

Here $\sigma^4 < \sigma^2$ so long as $\sigma < 1$. We can guess that to make the coefficient of σ^2 zero will give us a rather simple way of holding $|V_1/V_2|$ near unity over a limited range of frequencies. For this condition,

$$C^2 R^2 = 2LC$$
, or $\frac{L}{C} = \frac{R^2}{2}$.

We now have

$$\frac{V_1}{V_2}\Big|^2 = 1 + \omega^4 L^2 C^2$$

This is the simplest form of what is called a Butterworth response. The roots of the basic function

$$G = 1 + pCR + p^2LC$$

are at
$$p = \frac{-CR \pm \sqrt{C^2R^2 - 4LC}}{2LC}$$

and if we substitute $CR^2 = 2L$ we get

$$p = \frac{-CR \pm \sqrt{-C^2 R^2}}{2LC}$$
$$= \frac{1}{2LC} [-CR \pm jCR]$$

These two poles lie in the positions shown in Fig. 4. Suppose now that we add a capacitance across the input end of the network. In the p form the ratio V_1/V_2 is now:

$$\frac{V_1}{V_2} = 1 + p(C_1 + C_2)R + p^2 L C_2 + p^3 L C_1 C_2 R$$

The Butterworth, or maximally flat, response takes the form, in terms of ω , of

$$\left|\frac{V_1}{V_2}\right|^2 = 1 + g^2 \omega^6$$

It is not an insuperable task to substitute $j\omega$ for p, separate out the j terms, square up and solve the equations. There will be two of these, to make the ω^2 and ω^4 terms vanish. We can proceed in a rather different way. We are substituting $j\omega$ for p, and so the network response function could be written

$$+g^{2}(p/j)^{6}$$

This is an expression which must break down into a group of factors of the form $(p-p_k)$. To find the values of p_k we write

$$(1+g^2(p/j)^6) = 0$$

 $g^2(p/j)^6 = -1$

or

Here the mathematician enters. We know that if

$$x^2 = -1$$

we have $x = \pm j$.

What happens if $x^3 = -1$, or $x^4 = -1$, or $x^n = 1$? It is not enough to say that x = -1 if $x^3 = -1$. We expect three roots. The form 1 means unit whatever, but let us take it as a section of a line, a unit movement in a defined direction, and -1 is the same length, the other way. Displaced, or rotated, we say, by 180°. For $x^2 = -1$ we take two bites, moving 90° and then 90° (or -90° + -90°). For $x^3 = -1$ we can take (-180°) $+(-180^{\circ})+(-180^{\circ})$, one and a half times round the compass. We can also try 60° + 60° + 60° round, and go round clockwise or anticlockwise. For higher orders, x^* , we are like a legendary north country figure, whose hat-band went nine times round and wouldn't tie. In case you are confused, he was going to a funeral. In fact, if we settle for the even functions, with

$$g^2 x^{2n} = -1$$
, we get
 $x_k = jg^{-1/n} \exp(j(2k-1)\pi/2n)$
where k is 1, 2, ... 2n.

These roots are arranged round a circle of radius $g^{-1/n}$, and if we collect only the roots for $k \le n$ they all lie in the left-hand half of the plane. For reasons of symmetry the absolute value of the product of the factors produced by the right-hand roots is equal to that of the left-hand roots. We therefore get a set

$$(p-p_1)(p-p_2)...(p-p_n) = II(p)$$

and

$$|1 + g^2 \omega^{2n}| = g^2 |II(j\omega)|^2$$

This means that $g|II(j\omega)|$ can be taken to give us, in the form we are using, $|V_1/V_2|$. And as $|1+g^2\omega^{2n}|$ is the Butterworth response term, the roots are found from the equation for x_k . Since it is not too easy to think in terms of the exp function, we convert it to sines and cosines:

$$p_{k} = g^{-1/n} \left[-\sin(2k-1)\pi/2n + j\cos(2k-1)\pi/2n \right].$$

We, at the moment, are interested in the case n = 3, and so we have angles of

for $k = 1$	2	3
angle = $\pi/6$	$3\pi/6$	$5\pi/6$
30°	90°	150°

All the roots, including those in the righthand half of the plane, are shown in Fig. 5. Compared with Fig. 4, we see that adding one reactance we have added one root. Symmetry about the vertical axis implies that with 2×3 roots we must get one of the left-hand plane roots on the real axis.

Although this is still a pretty simple network it can be used to give some insight into circuit behaviour. The root p_1 in Fig. 5 is closer to the frequency axis than is p_1 in Fig. 4. The circuit, so far as this pole (and its mate p_3) is concerned, is more like a tuned circuit. It has, in other language, a higher Q. The root p_2 , however, corresponds to an *RC* circuit. The roots taken together are the combination of an underdamped circuit and an overdamped circuit. This is a technique well-known in i.f. amplifier design. Indeed, there are two different

Fig. 5. (a) The six roots, of which only p_1, p_2 and p_3 are needed, for studying $|V_1/V_2|$ for network (b).

ways of getting the effect. One is by choosing the Q values of the i.f. transformers, which are all tuned up to the same frequency. The other is by stagger tuning. In staggered systems each stage produces one root, and they are set around a semicircle whose centre is at the band centre and whose radius is the 3 dB bandwidth. Design is obviously very easy now. For a twenty stage monster, plot out the 20 roots, find the frequency and damping for each and tune them up individually. All you need is sine and cosine tables.

The modern thing, as you cannot help knowing, is active filters. I showed last month how a simple two-stage amplifier with two RC circuits could have its roots moved about in the left-hand half of the plane by varying the feedback. Each circuit of this kind can be used to put a pair of roots wherever we like. By tandem connection you can have all the roots you want, where you want. I do not propose to enter the active filter area except to point out that it does rely much more on root-thinking. For younger readers I must add that it is only really sound engineering now that cheap amplifiers are possible. Around 1950, with the transistor just on the way, a rough cost of using a valve was £20, allowing for power consumption and replacements over the life of the equipment. In present terms that would be about £50. I have not done the sum for a transistor, but I will guess £0.5. Amplifiers are much cheaper, nickel is much dearer, and inductors are no longer the economical answer.

Let us go back to our simple low-pass filter. For the designer the advantage of the Butterworth response is obvious: it gives some very easy mathematics. Unfortunately

Fig. 6. Typical 'good' filter characteristic.

www.americanradiohistory.com

the customer, whether he is an outsider or just another section or individual inside the same organization, does not really care if the filter designer has an easy life. He wants the best performance, even if that means that you get the best headaches. He knows that a rather wider pass-band for a given tolerance across the band will be obtained if the response rises slightly towards cut-off and then drops away. A very coarse picture of this appeared as Fig. 10(a) in last month's article. Fig. 6 shows a response with a number of peaks and valleys in the passband. The important thing to notice is that it is fitted firmly into the space between the zero loss line and the $|V_1/V_p|$ line. The object of the exercise is to use the tolerance as efficiently as possible. It is quite fair to use a slightly different version of this, the section to the right of the point Q, and the special case we have been looking at has only one-what shall we call it, half-cycle? -to the right of Q.

What about the mathematics? It was done for us nearly 100 years ago. The functions we want are called the Tchebyscheff polynominals, and they are good, not only for designing networks, but also for promoting vigorous argument, not about mathematics but about spelling. The Russian letter 4 is the problem, at the beginning, and problems go right through to the end: is it "eff" or "ev"? My own guess is that confusion really set in when the French speakers in St. Petersburg turned into the English students in Leningrad. Whether you are old-fashioned, like me, or a modern who writes Chebishev, many of the texts write $T_n(x)$ for the function. The moderns are thus left with the sort of confusion I feel when old Mr. Weller calls out "Spell it with a wee, my lord"

When we turn to using the T function we write the basic equation in the general form

$$\left|\frac{V_1}{V_2}\right|^2 = \{1 + g^2 [T_n(\omega)]^2\} N_0^2$$

Where N_0 is the value of $|V_1/V_2|$ at $\omega = 0$. All we need to know now is what the form of $T_n(\omega)$ will be.

By an analytical approach we get

$$T_n(\omega) = \cos(n\cos^{-1}\omega)$$

which is neat but not frightfully convenient. Fortunately the expression has been ex-

panded for us, in quite a number of publications. As a polynominal,

$$T_{n}(\omega) = 2^{n-1} \left[\omega^{n} - \frac{n}{2^{2} [1]} \omega^{n-2} + \frac{n(n-3)}{2^{4} [2]} \omega^{n-4} - \frac{n(n-4)(n-5)}{2^{6} [3]} \omega^{n-6} \right]$$

and so on until the term ω or ω^0 is reached. For our simple little filter, n = 4, and we have

$$T_{4}(\omega) = 8(\omega^{4} - \omega^{2} + \frac{1}{8})$$

= 1 - 8\omega^{2} + 8\omega^{4}

If $\omega = 0$ this is unity: if ω is large, it is very large indeed: it has one minimum at the response peak, and to find this we differentiate, and get

$$32\omega^3 = 16\omega$$
$$\omega^2 = \frac{1}{3}$$

OF

Then $T_4(0.7) = 1-4+2 = -1$, as we might have guessed from the form $T_n = \cos(n \cos^{-1} \omega)$. The coefficient g fixes the size of the

The coefficient g fixes the size of the ripple and if we choose a value of g we can write

$$1 + \omega^{2}(C^{2}R^{2} - 2LC) + \omega^{4}L^{2}C^{2}$$

= $N_{0} \left[1 + g^{2} - 8g^{2}\omega^{2} + 8g^{2}\omega^{4} \right].$

Solving this equation is always tedious, because specification writers will choose round numbers of decibels, giving very unround values of g. There are, however, charts and tables available. We, in thinking about roots, will write $\omega = p/j$. We use the equation

$$T_n(\omega) = \cos\left[n\cos^{-1}\left(\frac{p}{j}\right)\right],$$

and since for the roots

$$1+g^2(T_n)^2=0$$

we must have $T_n = \pm j/g$, giving us

$$\cos\left[n\cos^{-1}\left(\frac{p}{j}\right)\right] = \pm \frac{j}{g}.$$

If we now put $\cos^{-1} (p/j) = \alpha - j\beta$ we can solve this equation. I do not propose to write down all the mathematics, even though it means that you must either do it yourself or take the conclusions on trust. The conclusions are that the roots lie on an ellipse. This seems fair enough when you think that the circle is just a special kind of ellipse, in which the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

is simplified by making a = b and losing one control factor. The position of the roots on the ellipse is found by the following procedure. We draw a semi-circle of radius

$$\cosh\left[\frac{1}{n}\sinh^{-1}\left(\frac{1}{g}\right)\right]$$

This looks complicated, but it consists only of things you look up in tables. If, for example,

> g = 0.1 and n = 2sinh⁻¹ 10 \approx 3 cosh 3/2 = cosh 1.5 = 2.35

We also need, while the tables are open,

$$\sinh(1/n \sinh^{-1}(1/g)),$$

Fig. 7. Butterworth and Tchebyscheff poles.

Fig. 8. A set of four roots (a), and the circuit (b).

Now we can draw Fig. 7. We mark off the point A at a distance 2.35 and draw the semicircle. Then we mark B at -2.13. and construct the ellipse. Next, put in the evenly spaced Butterworth roots round the circle. Finally, draw lines parallel to the α axis to intersect the ellipse at the Tchebyscheff poles. With only a small ripple the ellipse is nearly a circle, and the roots have not moved very far. The more the ripple the flatter the ellipse. The picture for more complicated networks is just as easy to draw. We have two roots in the left-hand half of the plane: if we take n = 20 we shall get 20 roots, evenly spaced at 9° apart, and it is just as easy to look up cosh 3/20 as to look up cosh 3/2.

The active filter designers, free to move their roots about, can equally get the Tresponse. There thus remain two topics needing mention. Let us suppose that we place roots at the four points shown in Fig. 8. The pair p_1 and p_2 are positioned on a circle with its centre at ω_0 . If this is a small circle, on the overall scale, p_3 and p_4 are so far away that we can forget them. We can convert the circle into an ellipse, if we wish. In the region not too far from ω_0 the response shape will be of the kind shown in Fig. 4, except that negative frequencies in Fig. 4 now appear as negative values of $(\omega - \omega_0)$. The design, whether for a B response or a T response, follows the low-pass procedure to establish L and C in the network of Fig. 8(b). When these have been found the centre frequency is moved to ω_0 by tuning these elements separately to ω_0 by the additional C and L. Analysis shows that it is not $(\omega - \omega_0)$ we must consider, but

$$\omega_0\left(\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega}\right)$$

This correction automatically takes into account the effect of p_3 and p_4 .

A feature of this way of analysing the circuit of a band-pass system is that it indicates quite clearly why we are liable to get asymmetry with filters of large fractional bandwidth. In a diagram of the scale I have used it is pretty obvious that at $\omega_0/2$ the root p_3 is just about as important as the root p_1 but quite a bit more important than p_4 . There is all the makings of asymmetry in this arrangement.

The networks we have analysed have the constant-k behaviour, the steady rise of attenuation outside the pass-band. To produce the sort of characteristic we normally use we want to add some peaks of attenuation, as we do with m-sections in classical theory. Our roots have been at the zeros of the function $|V_1/V_2|$: now we must consider that infinities, the poles, of $|V_1/V_2|$. We can actually place these on the frequency axis if we use resistance-balancing circuits, and they will normally be very close to this axis, because we will go for a high Q at the suppression peaks. In the stop band we can go for Tchebysheff behaviour of the inverse kind, with all the troughs at the same level. Again RC networks combined with amplifiers will give us what we want, but now we must be sure that in bringing a root near to the axis we do not let it stray into the right-hand half of the plane.

From this point on the mathematics gets unwieldy. Once that happens the analysis is a formal operation. The object of this article is to work with circuits which are familiar, so that the root technique is seen to work. For complex circuits you need faith, and hard work. I hope I have provided some foundations for the faith.

Books Received

Beginner's Guide to Radio, by Gordon J. King, is an updated (entirely rewritten) version of F. J. Camm's "A Beginner's Guide to Radio". The twelve chapters treat, by simple physical theory, the fundamental principles of electricity and magnetism, radio waves, and modulation. A simple explanation is given of how valves and transistors function in receivers and transmitters. Stereo radio is introduced, and hi-fi reproduction is given a very good explanation, again in very simple terms. A comprehensive list of circuit symbols is given at the front of the book with abbreviations, units, symbols and standard frequency ranges, at the back. Pp.190 and an index. Price £1.

Butter worth & Co. (Publishers) Ltd, 88 Kingsway, London W.C.2.

Telecommunications Pocket Book, edited by T. L. Squires, is written in twelve chapters, each by an expert in the field concerned. An attempt has been made to give a broad outline of each aspect of telephony, television, telex, data communication etc. The first chapter, "Communications in the Modern World: an Introduction", gives coherence to the more specialized chapters which follow. Pp.139 with a 4-page index. Price £1 4s.

Pp. 139 with a 4-page index. Price £1 4s. Butter worth & Co (Publishers) Ltd, 88 Kingsway, London W.C.2.

Signal Monitoring Networks

Simple design formulae for rapid evaluation of the basic requirements of monitoring systems

by A. E. Crump*

The basic problem of monitoring either a.c. or d.c. signals is, that in order to do so, some energy has to be absorbed by the monitoring device. Thus the presence of a monitor modifies the value of the monitored quantity.

Methods for determining whether a passive monitoring device would be suitable for a given application are described, and also the basic methods for calculating amplifier performance should an amplifier be necessary. The design of a monitor circuit is approached by fixing four of the five interrelated parameters shown below and calculating the fifth.

The interrelated parameters are:

Signal level in bearer (P).

Characteristic impedance of bearer (R_0) . Maximum insertion loss tolerable in bearer circuit (1)

Fig. 1. (a) Current monitor (passive); (b) equivalent primary circuit; (c) method of introducing gain. The input impedance of the amplifier need not equal R_L , but if not, the calculations must be repeated using the input impedance in place of R_L in the formulae. Output level required from monitor (V_L) . Load impedance presented to monitor output (R_L) .

For our purpose P and l are expressed in dB, V_L in volts, and R_0 and R_L in ohms.

Current (series) mode

Figure 1(a) shows the arrangement for using a current transformer to produce the necessary output voltage across R_L . Figure 1(b) shows the equivalent impedance of the transformer (r) in series with the bearer circuit.

The insertion loss incurred by the inclusion of r in the signal path can be obtained from the established expression:

Insertion loss

i.e.

P =

1 =

$$= \frac{\text{Power in } R_0 \text{ with } r \text{ short-circuit}}{\text{Power in } R_0 \text{ with } r \text{ in circuit}}$$
$$l = 20 \log_{10} \left(1 + \frac{r}{2R_0} \right) \text{dB.}$$

But according to transformer theory $r = \frac{R_L}{r^2}$,

also
$$V_L = \left(\frac{i}{n}\right)R_L$$

By substitution and transposition we obtain the formulae:

$$0 \log_{10} \left[\frac{V_L^2(10^3)}{(antilog (l/20) - 1)2R} \right] dBm$$

$$\lfloor \{ \operatorname{antilog}_{10}(t/20) - 1 \} 2R_{L} \rfloor$$
(1)

$$\frac{20\log_{10}\left[1+\frac{R_L}{2(n^2)R_0}\right]}{\left[1+\frac{R_L}{2(n^2)R_0}\right]}$$
 (2)

$$n = \sqrt{\left[\frac{2 \cdot R_0 \cdot \{\operatorname{antilog}_{10}(l/20) - 1\}\right]} \quad (3)$$

$$V_L = \sqrt{\left[2 \cdot R_L \cdot \left\{\operatorname{antilog}\left(\frac{P}{10}\right)\right\}} \quad \left\{\operatorname{antilog}\left(\frac{l}{20}\right) - 1\right\} 10^{-3}\right] \quad (4)$$

$$R_L =$$

$$\frac{V_L^2(10^3)}{2[\text{antilog } P/10][\text{antilog } (l/20) - 1]}$$
(5)

www.americanradiohistory.com

Having the expressions (1) to (5) it is now possible to substitute known parameters and obtain a guide regarding the validity of the requirement in hand.

Example 1. Consider a system similar to Fig. 1(a) in which the signal level of +18 dBm in 75 Ω is required to produce 6 V r.m.s. across R_L . What transformer turns ratio is required. What is the value of R_L required to guarantee 6 V output without exceeding the maximum permissible insertion loss of 0.3 dB?

$$\begin{array}{l} P = +18 \text{ dBm} \\ R_0 = 75 \Omega \\ l = 03 \text{ dB} \\ V_L = 6 \text{ V} \end{array} \right\} \begin{array}{l} \text{From (5) } R_L = 8.15 \text{ k}\Omega \\ \text{(preferred value 8.2 k}\Omega) \\ \text{From (3) } n = 39.5. \end{array}$$

It is possible thus to satisfy the requirement provided that the output load resistance is $8.2 \text{ k}\Omega$ and a transformer turns ratio of 39.5 to 1 is used. The high turns ratio precludes use above about 150 kHz because of the practical problems of producing the transformer. The turns ratio would be smaller, of course, if a higher insertion loss figure were permissible.

Example 2. It is required to produce 6 V across a 5000- Ω load without exceeding 0.3 dB insertion loss in the bearer circuit which is 75 Ω characteristic resistance. What turns ratio and power level would be required to achieve this?

$R_L = 5000 \Omega$	From (1), minimum power
	required = $+20 \text{dBm}$
l = 0.3 dB	From (3), turns
$V_L = 6 V$ J	ratio = 30.8 .

Example 3. It is required to produce a 6 V signal across a 5000- Ω load without exceeding 0.3 dB insertion loss, for a signal level of 0 dBm in 75 Ω . Is this possible?

From (3), n = 952. This is an unrealistic transformer ratio, therefore some amplification is necessary. Now assume that a practical ratio for the transformer at the frequency under consideration is N, then the current amplification required is 952

 $\delta = \frac{952}{N}$ and the system would appear as

Fig. 2. (a) Voltage monitor (passive); (b) method of introducing gain. As is the case of the current monitor in Fig. 1, if the impedance of the amplifier does not equal R_L the calculations should be repeated using the input impedance in place of R_L .

in Fig. 1(c) where $\delta = \text{current gain of amplifier.}$

Voltage (shunt) monitoring

The criterion here is to present a high impedance across the bearer rather than a low impedance in series with it.

Referring to Fig. 2, the insertion loss due to the addition of R can be expressed as:

$$l = 20 \log_{10} \left(1 + \frac{R_0}{2R} \right) dB.$$
 (6)

Proceeding in the same manner as in the series case:

$$R_{L} = \frac{n^{2} R_{0}}{2 [\text{antilog} (l/20) - 1]}$$
(7)

P =

$$10 \log_{10} \left[\frac{(10^3) V_L^2}{2R_L \{ \text{antilog} (l/20) - 1 \}} \right] dBm$$

(8)

$$n = \sqrt{\left[\frac{2R_L}{R_0}\left\{\operatorname{antilog}\left(\frac{l}{20}\right) - 1\right\}\right]} \quad (9)$$

$$V_L = \sqrt{\left[\operatorname{antilog}\left(\frac{P}{10}\right)\left\{\operatorname{antilog}\left(\frac{l}{20}\right) - 1\right\}} \quad 2R_L(10^{-3})\right]} \quad (10)$$

The versatility of these formulae is comparable to that of the "series" expressions and examples could be given as before. Let us however consider a case where a passive device is insufficient, i.e. the voltage analogy to example (3).

Example 4.

$$\begin{cases} R_0 = 75 \Omega \\ R_L = 5000 \Omega \\ l = 0.3 \text{ dB} \\ V_L = 6 \text{ V r.m.s.} \\ P = +10 \text{ dBm} \end{cases}$$
 From (9) $n = 2.16$
From (10) $V_L = 84 \text{ mV}$

A voltage amplifier is necessary with input

impedance of 5000 Ω and voltage gain of $\frac{6 \text{ V}}{84 \text{ mV}} = 71.4$.

Effect of monitoring on return loss

Now the return $loss = 20 \log_{10} \frac{R_0 + Z}{R_0 - Z}$ or

$$20 \log_{10} \frac{R_0 + Z}{Z - R_0}$$
 (dB) where

 R_0 = Characteristic resistance of bearer Z = load resistance

For series case $Z = R_0 + (r+jx)$ For parallel case $Z = R_0 ||R||(jx)$

.'. for current monitoring (ignoring reactance):

return loss =
$$20 \log \left(1 + \frac{2R_0}{r}\right) (dB)$$
 (11)

and for voltage monitoring (ignoring reactance):

return loss =
$$20 \log \left(1 + \frac{2R}{R_0}\right) (dB)$$
 (12)

† The symbol || is coming into use with the meaning "in parallel with". Thus, $R_1 || R_2 = R_1 R_2 / (R_1 + R_2)$.

Announcements

The British Amateur Electronics Club is holding its fifth annual exhibition of electronic games from July 25th to August 1st at the Shelter on the Esplanade at Penarth, Glamorgan.

The two British subsidiaries of Tektronix Inc.— Tektronix U.K. Ltd and Telequipment Ltd became a single company, Tektronix U.K. Ltd, on May 1st with two operating units. The Telequipment Division, with Bob Groom as managing director, will remain at Southgate and the Tektronix Division, with Harry Sellers as managing director, will continue to operate from Harpenden.

Lyons Instruments Ltd, Hoddesdon, Herts, have been appointed exclusive U.K. representatives for Frequency Electronics Inc, of Long Island, New York, and their subsidiaries Atomichron Inc, and FKS Communications Inc. Frequency Electronics design and manufacture high-stability frequency standards, digital clocks, digital phase comparators, standard frequency distribution amplifiers and a range of high-stability crystal oscillators. Lyons Instruments have also been appointed exclusive U.K. representatives for TAU-TRON Inc, of Massachusetts. U.S.A., manufacturers of a range of data generators and digital signal generators.

Techmation Ltd, 58 Edgware Way, Edgware, Middx HA8 8JP, have been appointed sole agents in the U.K. and Eire for the range of silicon PIN photodiodes and light measuring instruments manufactured by United Detector Technology, of Santa Monica, California.

Data Recognition Ltd has appointed Teleprint GmbH of Frankfurt, as exclusive distributor in West Germany for their optical mark reading equipment and systems.

The newly formed **Hitachi Şales (U.K.)** Ltd, of 10th Floor, Winchester House, London Wall, London E.C.2, has announced the cessation of the exclusive U.K. distributorship of Hitachi radio receivers by Lee Products.

The electronics division of Union Carbide Ltd has agreed to sell to Solidev Ltd (the U.K. subsidiary of Solitron Devices Inc.) their semiconductor operation based at Aycliffe. Co. Durham.

GEC-Elliott Space and Weapon Systems Ltd, will in future be known as Marconi Space and Defence Systems Ltd.

Pye of Cambridge Ltd are to establish a marketing company, Pye Business Communications Ltd, to sell, hire and service a comprehensive range of audio and video products.

West Hyde Developments Ltd has moved to new works and sales offices at Ryefield Crescent. Northwood Hills. Northwood. Middx HA6 1NN. Tel: Northwood 24941/26732.

Flann Microwave Instruments Ltd, of Kingston-upon-Thames, Surrey, have moved to a new factory and laboratories at Dunmere Road, Bodmin, Cornwall. Tel: Bodmin 3161.

Hayden Laboratories Ltd, East House, Chiltern Avenue, Amersham, Bucks, have opened an audio equipment showroom, despatch and service department at 12/13 Poland Street, London WIV 3DE. Tel: 01-734 3748.

The communications division of Redifon Ltd, has developed a 100 W s.s.b. military radio station, and an order for the Royal Air Force, valued at £156,000 has been completed. The radio station is all solid-state and designed for mobile or transportable use.

Marconi Instruments Ltd has received an order valued at approximately £80,000 from the Post Office to supply pulse-code modulation test equipment. The order includes pattern generator and selective level measuring sets and regenerator testers.

The South African Post Office has placed an order with Plessey for the supply of eight 10-kW h.f. transmitters. The transmitters are self tuned and cover the frequency band 2-30MHz and are intended for point-to-point and ground-to-air operation.

The Marçoni Aeronautical Division has been awarded a contract worth more than £250,000 by the Yugoslav Air Force for the installation of AD370 automatic direction finders.

F. C. Lane Electronics Ltd, has moved from Albion Road to Slinfold Lodge, Horsham, Sussex. Tel: Slinfold 661.

U.K. Solenoid Ltd, of Hungerford, Berkshire, manufacturers and distributors of Blue Line rotary switches have opened a London office at Bondway House, 3/9 Bondway, S.W.8. Tel: 01-735 8859.

The **Tripletone Manufacturing Co. Ltd,** has moved from 241a The Broadway to Factory No.1, 138 Kingston Road, Wimbledon, London S.W.19, Tel: 01-542 1189.

Farnell-Tandberg Ltd, has moved to Farnell House, 81 Kirkstall Road, Leeds LS3 IHR. Tel: Leeds 35111.

Mordaunt-Short Ltd, has moved from London, to The Courtyard, Heath Road, Petersfield, Hants. Tel: Petersfield 4761.

New Products at the I.E.A. Exhibition

The International Instruments, Electronics and Automation exhibition held at Olympia, London, from 11th-16th May attracted 950 exhibitors with more than 20% coming from overseas. In a statement at the close of the exhibition, chairman William Logan described it as "yet again a record breaker". He was referring to the overseas attendance figures which were 9,658. Total attendance was fractionally down on 1968 at 110,266. Opened officially by Mr. Anthony Wedgwood Benn, Minister of Technology, the show was looked to by British companies to give a boost to business in the electronics export trade. Computer manufacturers in particular, who boast a growing export output, had millions of poundsworth of equipment on display. These were mostly medium or small size computers, in the £50,000-£120,000 cost bracket, designed for process and production control. Computer aided design was featured by many exhibitors.

A general feature of the many types of measuring instruments on display was their high order of accuracy, a requirement increasingly called for by industry. The demand too for professional class batteries to power the growing number of self-contained instruments and compact communications equipment was met by several exhibitors. Rechargeable batteries are in big demand and a German company was showing a conventional lead-acid accumulator in a form as versatile as an ordinary dry battery. It will also withstand gross ill-treatment. The widening use of electronics in medicine was evidenced by analytical equipment, and instruments for early warning of incipient tumours and high-speed blood sampling. Developments in devices and components for consumer use underlined the way industry is working towards cheaper and more reliable domestic colour receivers and transmitters. There were also several new materials such as self-lubricating plastics and new laminates for printed circuits.

Forty-five American companies with the backing of the U.S. Department of Commerce were combined in a large United States exhibit. Although most of these had contributed to the Apollo space programme, they were said to be taking a "hard sell" approach to the European market and were not engaged on a "national prestige" exercise. "The I.E.A. is a highly effective merchandising device," we were told by their organizers. So much was to be seen that to attempt a general survey of new equipment was far too intimidating. Instead, we have selected a few of the items which are likely to be of particular interest to our readers, brief details of which are given in the pages which follow.

Miniature Tape Recorder

The world's smallest two-hour tape recorder was the claim made by AIM Electronics for the feature exhibit on their stand. This miniature tape recorder

combines many conventional recorder facilities, such as fast forward wind and fast and slow rewind, in a case measuring only $80.3 \times 122.5 \times 28$ mm and weighing 468g. By means of a signal operated clip-on unit spasmodic readings can be recorded over a period as long as two years without attention. The recorder is particularly suitable for data collection in arduous environments or small places. It has a remote on /off switch and automatic switch-off when the tape runs out. Tape reels are 56mm in diameter and tape speed is 24 mm/s $\pm 3\%$. Frequency range is 300Hz to 3kHz; wow and flutter better than 1.2%. Input is via a $5k \Omega$ microphone and normal speech can be recorded within a range of 6 metres. External connections are made via screw-in jacks. AIM Electronics Ltd, P.O. Box 10, Cambridge. WW 328 for further details

www.americanradiohistory.com

Resistor Kit

Electrosil were showing their C3 resistor (the smallest glass-tin-oxide) in a designer's pack. The new kit, made in Perspex, measures $380 \times 100 \times 65$ mm and contains 600 resistors in a range of 30 values from 10ρ to $150 k \rho$. The resistors are held in clearly labelled tubes making for simple selection of the required component. Electrosil Ltd, Pallion, Sunderland, Co. Durham.

WW 327 for further details

Measuring Amplifier, Filter and Frequency Analyser

Bruel & Kjaer, Denmark, has introduced a new series of measuring amplifiers and octave/third-octave filters. The system consists of the measuring amplifier type 2606, the octave/third-octave filters types 1614 and 1615, and the frequency analyser type 2113 which is a combination of the type 2606 and the type 1615. The measuring amplifier and the frequency analyser have a sensitivity of 10 µV for full deflection. A new rectifier gives correct r.m.s. indication for signals with crest factors up to 40. Two indicators light up if the amplifiers are overloaded and allowable crest factor is exceeded. Interchangeable scales give direct reading of both sound and vibration levels with all B & K accelerometers and condenser microphones. An impulse measuring facility with maximum hold enables impulse sound measurements to be made to the proposed I.E.C. standards. All four weighting networks, A, B, C and D, are built-in. The two new bandpass filter sets, of which the 1615 is included in the analyser type 2113, also have new features. Frequency range for the type 1614 filter is from 2Hz to 160kHz and for the 1615 filter is from 22.4Hz to 22.4kHz. Both filter sets are in accordance with the I.E.C. 225-1966 and the U.S.A.S.I. S1.11-1966 class III filters. This means they have a very flat passband, within ± 0.25 dB; and a very high damping outside the passband, better than 75dB at 5.2 times the centre frequency. The filters below 200Hz are made as active

filters. All filters can be scanned automatically with the B & K level recorder type 2305 for automatic recording of sound-vibration and other spectrograms. B & K Laboratories Ltd, Cross Lances Road, Hounslow, Middx. WW 320 for further details

Digital-to-synchro Converter

Analogue servomechanisms using synchros may be controlled from digital computers, or other equipment producing pulses by means of a digital-to-synchro converter introduced by Moore Reed. The device accepts 11-bit binary number pulses, in serial or parallel form, representing the desired angular position of the synchro shaft. It converts each number, in a time of 20Ω , to a three-phase synchro signal that is proportional to the digital input and is also related to the reference signal of the analogue servo system (50, 60 or 400Hz sinewave, 26 or 115V r.m.s.). Each binary increment represents approximately $10\frac{1}{2}$ minutes of arc in shaft rotation. Digit pulse levels at the input: logic "1" is 5V; logic "0" is 0 to +0.5V.

The converter can be made available as a number of printed circuit cards for wiring into equipment, or as a complete chassis-mounted assembly already wired up and operating. Power supply lines required are +15V and -15V d.c., 1.2A. each line. Moore Reed and Company Ltd, Walworth Industrial Estate, Andover, Hants.

WW 315 for further details

Super Megohmmeter

British Physical Laboratories were showing a super megohmneter, model RM170, covering resistance values of from $500k\Omega$ to $1000T \Omega^*$ at 500V test voltage in 17 ranges. It employs an amplifier with m.o.s.f.e.t. input and several i.cs and is produced in modular construction. Basic resistance range is $100k \Omega - 2M \Omega$ at 100V test voltage with multipliers of $\times 3$, $\times 10$, $\times 30$, \times 100 \times 10⁸. The RM170 will read currents from 0-10pA to 0-1mA in 17 ranges. Here the basic range is 0-10pA (10⁻¹²Å). Test voltage is 5-500V d.c. and measurement time 100ms (>1nA or at 500V) and 5s (<100pA or < 0.5T $< 5T\Omega$ at 500V). A special feature is a built-in go/no-go lamp limit indication with an output voltage accessible for driving automated test systems. A selector switch enables earthed or unearthed samples to be measured. The instrument is fully protected against any overload that may occur as a result of use on incorrect range. Operation is from 110-125V or 200-250V 50/60 a.c. mains. Dimensions 330 \times 210 × 140mm. British Physical Laboratories, Radlett, Herts.

WW306 for further details

FAM Colour Adaptor

Readers will be familiar with the characteristics of PAL, N.T.S.C. and SECAM colour television systems but may know little of another system called FAM (frequency-amplitude modulation) which was developed by IRT, Munich, and was once a contender for the European broadcast standard. This system, however, has been adopted by Ampex for a colour adaptor developed by the company for use with their 1-in helical scan applied to an f.m. detector and an a.m. detector recovering the respective V and U signals. Chrominance information is removed from the Y signal by a delay line notch filter with maximum attenuation at 2.65MHz, and the three signals (Y, V and U) are fed to a matrix producing RCB outputs. Because of the restricted luminance bandwidth, the loss in picture resolution is compensated by a crispening technique which enhances outline detail.

As supplied, the FAM colour adaptor is capable of working on 525/60 or 625/50

videotape recorders. The unit cost about £625 and its chief merit is that it will provide a colour facility on systems which are normally suitable for monochrome transmissions only because of bandwidth restrictions and poor phase response.

RGB signals entering the encoder are converted into a luminance signal Y, a red difference signal V(R-Y) and blue difference signal U (B-Y). Low-pass filters restrict the bandwidths to 2MHz for the Y signal and 0.7MHz for the U and V signals. The standards and synchronizing pulses of broadcast or industrial type without the need for switching or adjustment. It will accept *RCB* inputs with or without synchronizing pulses; with non-composite inputs, an external sync input is required. *RGB* outputs are composite only and an external sync output is provided. Unlike established systems, the FAM sub-carrier is not a function of the line frequency so that it is independent of line and field standards. Although the carrier frequency

V signal is applied to a frequency modulator (centre frequency 2.65MHz) and the f.m. signal is then amplitude modulated by the U signal, and **ad**ded to the luminance signal. The resulting coded signal occupies a total bandwidth of only 3MHz.

In the decoder no phase-sensitive circuits are required. The chrominance information is separated by a bandpass filter with 6dB points at 2.1 and 3.9MHz and is then and bandwidth specifications have been chosen for the Ampex 1-in helical scan recorders, these standards can be varied to suit narrower or wider bandwidths, where available. The FAM encoded signal is not monochrome compatible. That is, an FAM recorded tape cannot be played through a b lack and white monitor. Ampex Great Britain Ltd, Acre Road, Reading, Berks. RG2 0QR.

WW 301 for further details

.

Bright Display Tube

Included in a new range of c.r.ts on the M-O Valve stand was model 2800A, a

280mm diagonal data display tube operating at 8kV and using P39 phosphor to give a bright display down to 30Hz repetition rate. The manufacturers claim that the electron gun and focusing system design is capable of giving better resolution than conventional c.r.ts of similar size and brightness. The spot has a sharp edge due to non-gaussian distribution of electrons in the beam and resolution at the edge of the display is improved by a reduced beam diameter. This company was also showing several microwave products including a rugged, pulsed, low inter-line noise tunable X-Band magnetron with a rapid warm-up cathode. This was type E3320 which operates at a very low voltage-typically 8-900V and produces up to 300W peak power. The tuning range is ± 25 MHz. The M-O Valve Co. Ltd, Brook Green Works, London W.6. WW310 for further details

Telemetry System for Process Control

A fully comprehensive telemetry system for industrial data acquisition and remote supervisory control was given its first showing by Kent Instruments. Developed for applications such as petrochemical processing, public utilities and power generation, the telemetry system, designated Dataflex, is claimed to offer

economy and flexibility through the use of modern modular components. It is compatible with all modern process control instrumentation and with Kent's K70 computer system. Described as a digital time-division multiplex system, Dataflex incorporates remote control, supervision and monitoring of physical variables between a central control position and up to 64 separate outstations. Each outstation will be basically identical having seven plug-in circuit boards and wired to take additional modules as required. The master station has similar plug-in modules. Information, event signals and commands can be transmitted over Post Office or private lines and u.h.f. radio links. The speed of the system can be 100, 200, 600. 1200 or 4800 bauds through data transmission modems or by direct injection into the transmission line via line drivers. Kent Instruments Ltd, Biscot Road, Luton, Beds.

WW 308 for further details

Monolithic Crystal Filters

Monolithic crystal filters with channel spacings of 50, 25, 20 and 12.5kHz available from ITT Components Group Europe at Harlow, offer 90dB stop-band discrimination. The common input and output impedance for all channel spacings is 910Ω in parallel with 25pF. The standard case sizes are 901 and 923.

The 923 case may be ordered with isolated earth or non-isolated earth as desired. ITT Components Group Europe, Quartz Crystal Product Division, Edinburgh Way, Harlow, Essex. WW 317 for further details

Tunable Gunn-effect Oscillators

A Gunn-effect oscillator with an output power greater than 5mW and capable of being electronically tuned from 7 to 12.4GHz was shown by Microwave and Electronic Systems. The tuning is achieved by means of an yttrium-irongarnet sphere magnetically biased to resonance, in which condition it is electrically equivalent to a shunt resonant circuit. There is an isolator on the output of the oscillator, allowing the oscillator to "look at" open- or short-circuited loads

without deterioration in performance. Other similar tunable oscillators available from the company have tuning ranges of 4-8GHz and 12-18GHz. Microwave and Electronic Systems Ltd, 66 Tilehurst Road, Reading, Berks. RG3 2LU. WW 316 for further details

Industrial Semiconductors

New semiconductor devices exhibited by Mullard included four f.e.ts intended for switching applications and three dualin-line packages containing four discrete transistors. Three of the f.e.ts, types BSV78-80, are n-channel devices that are electrically symmetrical and have very low "on" resistance and extremely high "off" resistance. Maximum drain-to-source voltage is 40V. The fourth, type BSV81, is a depletion-type, insulated-gate device in a metal envelope with the substrate connected internally to the case. Because of its very high "off" resistance (> $10G\Omega$) it is particularly suitable in applications where extremely low leakage currents are important during the "off" periods. The three new multiple solid-state devices on display contained four transistors of the same type, matched for gain, within a 14lead d.i.l. encapsulation. This facilitates the layout of printed boards designed for use with i.cs. The transistors are not interconnected and can be used as discrete components. The three devices are development types 272BC7, 273BSX and 274BC7. They contain four BC107, four BSX 19 and four BC177 transistors respectively.

Among piezoelectric material exhibited was a sonic detector type MB4013 which is intended for use in remote control systems operated by sound waves. It has a resonant frequency of $6kHz \pm 0.4kHz$ and a 3dB bandwidth of 80Hz (independent of load). Impedance is $7k\Omega$ and capacitance at 100kHz > 4,300pF. The MB4013 consists of a disc of PXE5 material mounted centrally on an aluminium diaphragm held by a zinc ring. Because, unlike other forms of sound detector, the response is limited to a narrow frequency band, no extra stages are required to filter out signals at unwanted frequencies. The sonic detector is unaffected by moisture, large temperature changes or adjacent magnetic fields. Mullard Ltd, Mullard House, Torrington Place, London W.C.1. WW309 for further details

Power Supplies

Coutant showed two new ranges of power supplies. The GP series of regulated a.c.d.c. power supplies, comprises a total of 15 units. Within the range, models are available with fixed outputs of 6, 12, 18 or 24V. This series includes various models with current ratings of 2 to 10A in the 6V range and 1 to 10A in the other three voltage ranges; its three physical sizes (which depend on the rating required) are all based on BS 4318 metric preference dimensions. Other principal specifications for the GP series are a

line regulation of 0.01% + 1mV; load regulation of 0.03% + 3mV (0 to full load); 1.5mV ripple voltage; re-entrant protection; input a.c. voltages of 220 or 240V a.c. $\pm 10\%$, with a frequency range of 45 to 400Hz; a temperature coefficient of 0.02% + 2mV per °C; and nominal d.c. outputs variable $\pm 10\%$.

Coutant's other new power supply range—the BPS—is an unregulated series offering four voltage ranges (6, 12, 24 and 48V) at 2, 5 and 10A. Like the GPs, they are available in sizes based on BS 4318, and will operate from an a.c. mains input of 220 or 240V \pm 10%; regulation is 20% for a 10 to 100% load variation; ripple is 2V r.m.s., and the ambient operating temperature range is 0 to 55°C. Coutant Electronics Ltd, 3 Trafford Road, Reading RG1 8JR. WW 321 for further details

Digital Voltmeter

From Bradley, a small size high performance digital voltmeter, type 173, will measure from $100 \,\mu\text{V}$ to $1000 \,\text{V}$ d.c. in four ranges. An additional $\times 4$ range reads down to $25 \,\mu\text{V}$, whilst the provision of a 50% over-range facility extends the

maximum reading to 1500V. Common mode rejection is typically 140dB at line frequency. The accuracy is $\pm 0.01\%$ of reading ± 1 digit and the instrument is calibrated by using an unsaturated standard cell as an internal reference. Automatic indication of polarity is incorporated as standard, and display storage is provided to eliminate flicker. 1-2-4-8 coded data output is avilable at the rear panel. The price complete is £340. G & E Bradley Ltd, Electrical House, Neasden Lane, London N.W.10. WW 318 for further details

Calibration Sound Source

A pocket-size instrument which produces a standard sound level for calibrating sound level measuring instruments has been introduced in the U.K. by B & K Laboratories. Made by Brüel & Kjaer (Denmark), it generates a sound level of 94dB (this being a dynamic pressure of $1N/m^2$ in SI units) at a frequency of 1kHz. The calibrator uses a piezoelectric transducer driving a diaphragm which creates the standard pressure level in a coupler chamber. Behind the diaphragm is a Helmholtz resonator which gives the system an equivalent coupler volume of more than 200cm³ at its resonant frequency. Driving the system at this frequency therefore results in low distortion and makes the generated sound pressure independent of both the static pressure and the equivalent volume of the microphone to be calibrated. B & K Laboratories Ltd, Cross Lances Road, Hounslow, Middx.

WW 314 for further details

Distortion Factor Meter

Distortion factor meter type DM344 by Sign Electronics Ltd, was being shown on the Aveley Electric stand. This is an instrument comprising two basic sections, a filter and a voltmeter, designed to measure total harmonic distortion in high quality audio amplifiers, recording and transmission equipment. The filter is used to remove the fundamental component of the signal and the voltmeter to measure

Wireless World, July 1970

the residual harmonic components, and to establish the initial reference level. Frequency range is 20Hz-20kHz for fundamental in six third-decade bands. Fundamental attenuation is >80dB and second harmonic <0.5dB. The harmonic bandwidth is 100kHz. The instrument residual distortion is <0.1% from 10Hz to 10kHz. Input impedance is $10k\Omega/V$ or 600Ω , overload protected to 100V. A veley Electric Ltd, South Ockendon, Essex. WW 302 for further details

Reference Unit for Lock-in Amplifiers

Lock-in amplifiers, which are signalrecovery devices working on the synchronous detector principle, require a local reference source of oscillation which can be adjusted in frequency and phase. Brookdeal Electronics have produced an instrument called Reference Unit Type 422 which takes an input signal of any wave-shape (frequency range 1Hz to 1MHz), uses it to generate a square-wave output $(+3V \text{ from } 100\Omega)$ impedance) and provides means for adjusting the phase of this output signal,

relative to the input signal, in various ways. For example, there are two outputs available, one 90° phase-advanced on the other. Control of phase can be: 0 to 100° variable; 0 or 90° switched; 0 or 180° switched. In addition phase shift may be controlled by an external programming voltage: +1V to -1V gives +90° to -90°. The input level range is 10mV to 100V (pk) and the input impedance is greater than 10k Ω . Brookdeal Electronics Ltd, 1 Market Street, Bracknell, Berks. WW 313 for further details

Semiconductor Random-access Memory

Full semiconductor memories for computers are possible utilizing a new device launched by Motorola. This was a mono-

Wireless World, July 1970

lithic high-speed random access memory with an 8192-bit capacity. Constructed with l.s.i. techniques, the module combines the low power of p-channel m.o.s. flip-flops for the storage array with the high operating speed of bipolar transistors for the address decoding, word drive sense and digit drive circuits. No complicated tuning is necessary to operate the module which can be cycled every 100ns. Interface to and from other circuitry is performed at emitter-coupled logic current levels for high speed. It can be easily interfaced to saturated-logic levels with the use of additional interface devices. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.

WW 311 for further details

Transducer Read-out Unit

Designed primarily for use with their T500 series pressure transducers, Southern Instruments introduced a readout unit type M1861. This displays an output voltage on a panel meter which varies

proportionally to input pressure. The meter can be scaled directly in pressure units and the unit sensitivity can be set to suit any transducer without the need for system calibration. A crystal-controlled reference frequency gives good zero stability and an adjustable reference voltage is provided. Zero drift is less than 0.03% f.s.d./°C. Other characteristics include: linearity $\pm 1\%$, noise level less than 25mV p-p at output, frequency response better than 0-500Hz (-3dB). Voltage output is 0-10V, output resistance $< I\Omega$. A connection is provided to allow marker pulses to be added into the amplifier output. U.K. price of model 1861 is £96. It measures $200 \times 290 \times 102$ mm and weighs 1.6kg. Operation can be from 100/125 or 200/250V, 50-65Hz mains supplies. Southern Instruments Ltd, Frimley Road, Camberley, Surrey.

WW 307 for further details

Computing Counter

One of a new series of digital instruments shown by Racal was a computing counter, model 9521. Of half-rack-width dimensions and incorporating t.t.l. integrated circuits, it has a timebase variable in $100-\mu$ s steps from 100μ s to 10s. This facilitates direct indication of speed, ratio, time interval etc, on the four-digit display. The com-

puting counter is expected to find wide application in the process control industry where it can provide accurate indication of gallons per minute, r.p.m. or similar parameters. Capabilities include frequency measurement (5Hz-10MHz) on either of two channels, frequency ratio, time interval and totalize. Racal Instruments Ltd, Duke Street, Windsor, Berks.

WW 303 for further information

Modular System for Counting, Storing and Display

For designers of control consoles and panels who need a "building block" system which will relieve them of logic design responsibility, and which does not require rackmounted hardware, Contraves were showing the Codicount system. This provides ten variations in a module 22mm wide x 33mm high, dimensionally compatible with the new Multiswitch which is used for preselection of constants such as factors and datum levels. Codicount modules employ i.cs, ensuring short transmission lines. Good frequency response, high reliability and freedom from noise problems is claimed. The logic supply terminal, on each module, is decoupled from line noise by a tantalum capacitor. The circuit components will operate at frequencies well in excess of the module rating of 5MHz giving an assured safety margin. Function permutations vary from read-out display with decimal input. to bi-directional counter with memory and read-out, or without read-out. Supply voltages required are +5V for the logic system at 21-105mA depending on the module type, and +250V at 2.2mA for the read-out tube. The Multiswitch, which is compatible dimensionally with the Codicount, is based on five new types in the existing miniature range. Innovations include improved readability and an enclosure for logic components. Contraves Industrial Products Ltd, Times House, Station Approach, Ruislip, Middx. WW322 for further details

Variable Filter

A new solid-state variable filter instrument, model EF2, was shown by Barr & Stroud. This contains two independent low- and high-pass filter channels and it has a frequency range of 0.1Hz-100kHz in five decades. Attenuation slope can be 36 or 72dB/octave and maximum attenuation 75dB. Bandpass, band stop or band separation functions are selected by switch. Operation is from an integral power supply or external batteries and the output is short-circuit protected. Barr & Stroud Ltd, Caxton Street, Anniesland, Glasgow W.3.

WW 312 for further details

Micro-miniature Potentiometers

Among several new types of potentiometer introduced at the Show by Painton was the 3260 which is only 6.35mm square and has a power rating of 0.2W at 70°C. It is available in a range of eleven values from 10Ω to $20k\Omega$, and in two configurations —for side adjustment and top adjustment. Nominal resolution of a 100Ω potentiometer is 0.82% and of a 5k Ω device 0.30%. Painton & Co. Ltd., Kingsthorpe, Northampton.

WW324 for further details

Sub-miniature Choke

A sub-miniature choke, type 550-3399, from Cambion is only 0.25in long \times 0.095in in diameter, but offers a continuous range of inductance values from 0.1 to 1000 μ H in 49 discrete steps. Cambion

Electronic Products Ltd., Cambion Works, Castleton, Near Sheffield. WW 319 for further details

Carrier Servo Generator

Newcomers to the I.E.A. exhibition, Prosser Scientific Instruments used the occasion to announce their A103 carrier servo generator. This instrument is based on the previous A100 waveform generator and is intended for a.c. and d.c. servo and system measurements. It provides a two-phase carrier modulated output and is available with either manual or automatic control of phase and frequency. The instrument can also be used as a multiple output function generator for sine, square, ramp and triangle waveforms. Frequency range is 0.0008Hz to 200kHz and output voltage $\pm 10V$ peak (maximum). The attenuator has a switched range of 0-10, 20, 30 . . . 60dB with fine control between 20-100% of switched amplitude. Phase is +280 to -100° on variable phase output, +90° on auxiliary output and 0° on main output. Cost of the A103 is £615. It is illustrated at the top of the page. Prosser Scientific Instruments Ltd, Lady Lane Industrial Estate, Hadleigh, Ipswich, Suffolk.

WW326 for further details

Portable A.F. Power Meter

Dymar were showing their new portable a.f. power meter type 585. This comprises the basic meter unit, common to ail Dymar instruments, and a plug-in circuit module. A wide power-measuring range is provided in the frequency range 30Hz-30kHz. High accuracy of the terminating impedance and measured power is claimed. Twelve power ranges in 1. 3, 10 sequence give f.s.d. readings from 100μ W to 30W and an auxiliary scale allows direct readings in dBm (0dBm = 1mW) from -20 to +45dBm. A temperature-compensated "square law" detector gives a true power reading irrespective of waveform, particularly

useful for accurate measurement of noise. There is a choice of 30 input impedances arranged in 3 decades from 1.25Ω to 1.000Ω each capable of dissipating 50W with an accuracy of 2%. The 585 is battery-operated and weighs 6kg. An illustration of the Dymar common meter unit, fitted in this case with modulation meter type 765, appears at the foot of the page, left. Dymar Electronics Ltd, Colonial Way, Radlett Road, Watford, Herts.

WW325 for further details

Digital Multimeter

Solartron are aiming at the mass market for the first time with a digital multimeter,

type LM1240. The new instrument has 26 ranges and is capable of measuring a.c. and d.c. voltage and current, and resistance. It is priced at £195 and is claimed to incorporate features regarded as standard in high-priced d.v.ms. These include automatic polarity, high input resistance, an integration technique to

eliminate noise, fully isolated input, overload protection and the option of mains or battery operation. By comparison with the traditional analogue meter the LM1240 offers improved accuracy, ease of reading both polarities, and input resistance defined in megohms rather than ohms per volt. The Solartron Electronic Group Ltd,

Farnborough, Hants. WW 305 for further details

Economy S.C.R.

A low-cost s.c.r. designed for use in consumer electronics was shown by Transitron. This is a 4-A type, housed in four alternative plastics flat packs, available in the voltage range 15-400V. Peak forward current of 75A at 75° C is featured. It is designated TC106. Transitron Electronic Ltd, Gardner Road, Maidenhead. Berks. WW323 for further details

Wide-range Oscillators

A series of oscillators, TG200 series, that cover 1Hz to 1MHz in twelve ranges were introduced by Levell Electronics. Versions are available that generate sine and square waves or sine waves only. Output is variable from $200\mu V$ to 7V r.m.s. by a variable control and switched attenuator with 10dB steps up to 70dB. Output impedance is 600Ω at all settings. The circuit uses a single-track linear potentiometer giving frequency control with absence of amplitude bounce, characteristic of Wien bridge circuit with dual-track controls. Amplitude variation is less than ± 1% up to 300kHz. Rise time on square waves is less than 150ns at all frequencies. Harmonic content on sine waves is less than 0.1% up to 5V output from 10Hz to 100kHz. Power supply can be from four PP9 batteries or a.c. mains if power unit is fitted. Dimensions of the TG200 are 180 \times 250 \times 140mm, and weight 4.5kg. It illustrated below. Levell Electronics is Ltd, Park Road, High Barnet, Herts. WW304 for further details

World of Amateur Radio

Pressure on v.h.f. /u.h.f. bands

Further evidence of the mounting pressure being applied by mobile radio interests in efforts to take over amateur sections of the v.h.f. and u.h.f. bands is provided in the recently published annual report (1969) of the Electronic Engineering Association. The section reporting the current activities of the E.E.A. Radio Communications Division contains the following passage: "The lack of spectrum space continues to be seen as the most likely factor which could seriously limit the expansion of mobile radio communications. Negotiations have therefore now begun with the Ministry of Posts and Telecommunications to secure use of the 68 to 71.5 MHz and 420 to 450 MHz bands."

While most amateurs appreciate the increasing demands being made to secure maximum use of all frequencies in this part of the radio spectrum, most will note with considerable concern and regret that the E.E.A. claim includes the entire amateur 4-metre and 70-cm bands (currently 70.025 to 70.7 MHz, and 425 to 450 MHz with a gap from 429 to 432 MHz). Amateurs may thus regard this claim in the nature of a test case in which the outcome may well indicate the future intentions of Minpostel towards amateur frequency allocations. Some may suspect, however, that by putting in claims of this magnitude, the mobile radio industry is aiming primarily at the upper portion of the 70-cm band, with many amateurs seeing the section 440 to 450 MHz at particular risk.

Old timers

Among the many associations and groups of radio amateurs having local or special interests, a few have come to occupy a highly respected role. Undoubtedly one of these is the Radio Amateur Old Timers' Association which was formed some 17 years ago.

The object of R.A.O.T.A. is to maintain and foster a spirit of friendship among amateur transmitters of long standing, and to be mindful of any who may be in special need. Membership is open to all transmitting amateurs who were licensed, with either a radiating or artificial aerial licence, before September 1939, and who currently hold a British transmitting licence. Membership is limited to 300; at present it is about 50 below this figure. The membership fee is $\pounds 1$ Is. Applications may be sent to the honorary secretary, Miss May Gadsden, 79 New River Crescent, London N.13.

President of R.A.O.T.A. is Kenneth Alford, G2DX, whose amateur radio activities stretch back to the pre-World War I era; a 1914 issue of *Wireless World* described the four-wire cage aerial, high-speed mercury turbine "break", his nine Leyden jars and the three "jiggers" with which he could work distances of over 10 miles.

On the h.f. bands

Despite the falling off of maximum usable frequencies due to the approach of summer conditions, plenty of West Coast American, Canadian and Mexican stations have been coming through in the early mornings at good strength and can be worked with simple vertical and dipole aerials. Recent contacts, for example, have been with VU5XX Andaman Islands, 7Q7AA Malawi, UAoYT and JT1AH both in the usually rare Zone 23, SM6CNS maritime mobile in the Mozambique Channel and similarly SM5CTU/MM a Swedish ship off the west coast of Central America, Among the rarer calls heard on 14 MHz c.w. have been DUIOR near Manila, YA2HWI/1 Kabul, Afghanistan, UA1KED Franz Josef Land, and PJ2PS near Curacao. King Hussein, who operates on 28 MHz phone from Amman with the callsign JY1 is known to have worked British amateurs recently. The Thor Hevendahl expedition on the raft Ra II is again using the callsign LI2B (s.s.b. on 14214 kHz).

V.H.F. activities

For the first time, a two-way link has been established on 144 MHz between the U.K. and Iceland. John Stace, G3CCH, of Scunthorpe, Lincolnshire, made contact, via meteor scatter, with Finar Palsson, TF3EA, over a distance of about 1100 miles, during the Aquarids meteor shower in early May. Another widespread auroral opening occurred both in Europe and North America on April 21st-22nd. The 70-cm beacon station, GB3SC, is now operating with aerials mounted 300 ft up the B.B.C. Sutton Coldfield mast. One aerial beams north, another towards the south-south-east. The station uses frequency shift keying on 433.5 MHz to a 24-hour schedule. The Rhodesian beacon station, ZE2AZE, is similarly running continuously on 69.998 MHz from a site over 4000 ft above sea level, with just over 20-watts input to a four-element Yagi.

World DX Club conference

The annual conference of the World DX Club takes place over the weekend July 3rd to 5th at the Adelphi Hotel, Micklegate, Yorkshire. During this period the conference station GB2WDX will be in operation. Although this is primarily a club for broadcast-band short-wave listeners, it includes an active amateur radio section.

In Brief: Licences figures to the end of March show that in five months, Class B licences have risen by 187 to 2084 compared with an increase of 73 in Class licences to 13486. With one A additional amateur TV licence (180), U.K. amateur licences (excluding mobile permits) totalled 15,750 . . . Derby and District Amateur Radio Society is holding a mobile rally on August 16th at Rykneld School, Bedford Street, Derby (details T. Darn, G3FGY, "Sandham Lodge", Sandham Lane, Ripley, Derby) ... The A.R.M.S. mobile rally, announced for July 5th at Alconbury, has been cancelled . . The Stourbridge society, in collaboration with the management of the narrow-gauge Welshpool and Llanfair railway are setting up, on July 4th, an amateur station, GW6OI/P, at the Llanfair Caereinion terminal; this will operate during the afternoon mainly on 3.5 MHz.... GB3WRA will be set up again this year at the 24th annual High Wycombe show on the Rye on September 5th, operating in all bands from 1.8 to 28 MHz (details A. C. Butcher, G3FSN, 70, Hughenden Avenue, High Wycombe, Bucks.) . . . When Senator Barry Goldwater, K7UGA, visited Vietnam he left behind slow-scan TV equipment which has been used from Cam Ranh Bay on the U.S. military-affiliate radio system frequency of 19.2 MHz to transmit pictures back to Senator Goldwater's MARS station AF7UGA in Pheonix . . . George Grammer, W1DF, who joined A.R.R.L. staff in 1929 and has been technical editor of OST since 1939, has recently retired. Doug De Maw, WICER/W8HHS, has been appointed acting technical editor. He has strong "family connections" with amateur radio, apart from his own two callsigns his wife is WICKK and his son WNILZO . . . Contests for home-constructed equipment will again be a feature of the R.S.G.B. Show which this year is being held from August 19th to 22nd, in the New Horticultural Hall, London.

PAT HAWKER, G3VA

.....WW433

Literature Received

For further information on any item include the WW number on the reader reply card

ACTIVE DEVICES

"Designers Guide" gives pin connections and loading rules for the series 54/74 t.t.l. integrated circuits produced by Transitron Electronic Ltd, Gardner Rd, MaidenheadWW401

The 54/74 range of t.t.l. is also the subject of a 29-page catalogue from Fairchild Semiconductor Ltd, Kingmaker House, Station Rd, New Barnet, Herts. Performance data and other relevant details are given WW403 are given

"Integrated Circuits t.t.l. series (TL. 74N)" is a 119-page booklet giving pin connections, loading rules, performance data, and application information on the 74 series t.t.l. integrated circuits available from AEG-Telefunken, Fachbereich Halbleiter Vertrieb, 71 Heilbronn, Postfach 1042, West Germany WW405

The 1970 edition of the ever popular "Mullard Data Book" is available. It lists valves, semiconductors, television tubes and other components. The price is 4s to individuals outside the radio and television trade. It may be obtained from bookshops and component dealers.

We have received a batch of data sheets from Brimar, Thorn Radio Valves and Tubes Ltd. 7 Soho Square, London, WIV 6DN.

D14-170GH. 10 X 8cm oscilloscope tube. "GV Screen for Data Display and Radar". Very D14-180GH, 10 × 8cm oscilloscope tube. "Monoscopes". Character generating tubesgives some application information. WW409 M38-100GH, -100W, -101GH, -111GH, 38cm An equivalents chart for Vidicon camera tubes is available from E.M.I. Electronics Ltd. Hayes, WW412 Middlesex ...

The range of potted amplifiers produced by Ancom Ltd, Devonshire St, Cheltenham, GL50 3LT, are the subject of a leaflet; all the significant characteristics WW413 are given

Application Report No. 5" from Brookdeal Electronics Ltd, Market St, Bracknell, Berks, deals with the automatic measurement of semiconductor

"Data Distribution No. 6" contains a number of leaflets for insertion in the Ferranti Microspot Cathode Ray Tubes and Display Equipment Manual. Ferranti Ltd, Gem Mill, Chadderton, Oldham,WW415 Lancs

"Issue 15" from AEI Semiconductors, Carholme Rd, Lincoln. contains data sheets for inclusion in the AEI Semiconductors Technical Data Handbook.

We have received the following literature from Westinghouse Brake and Signal Co. Ltd., 82 York Way, Kings Cross, London N.1.

Engineering publication D/WB "Silicon Diodes". Low, medium and high power. WW417 Technical publication T17. "Thyristor type 17TX, 16A". WW418 Technical publication T20. "Thyristor type 20TX, 20A". WW419 Technical publication 36-113. "Power transistor type 2N3054". WW420 Technical publication 36-114. "Power transistors,

PASSIVE COMPONENTS

Termiswitches are rail mounted terminal units which incorporate a relay-they are described in a leaflet from Lion Systems Developments (Gerrards Cross) Ltd, 45 /47 Station Rd, Gerrards Cross, Bucks WW422

A catalogue from Fairchild Controls, 225 Park Ave, Hicksville, L.I., New York 11802, U.S.A., describes a range of trimming potentiometers

"Siemens Electronic Components Bulletin, 2-70" contains articles on the demagnetization of colour tubes using p.t.c. resistors, pulse transformers, a surge voltage protector, miniature switches, low-speed logic etc. It is available from Cole Electronics Ltd, Lansdowne Rd, Croydon CR9WW424 2HB ..

We have received the following literature from Erie Electronics Ltd, South Denes, Great Yarmouth, Norfolk, which is intended for inclusion in the Erie catalogue:

PCF/5. series ML30A. WW426 EC/6, aluminium electrolytic capacitors, 201

Mullard have produced a wall chart (36 \times 26 inches) dealing with their electrolytic, film and variable capacitors. Copies of the chart can be obtained from A. Stewart, I.E.D., Mullard Ltd, Torrington Place, London, WCIE 7HD WW428

A triple-sheet wall chart (20×22 inches) has been prepared by Ultra Electronics (Components) Ltd, Fassetts Rd, Loudwater, Bucks. From this it is possible to select a variety of wafer switches.WW429

EQUIPMENT

An interesting self-powered tachometer system (0 to 500, 1,000, 2,000, 5,000, 10,000 or 20,000 r.p.m.) requiring no mechanical link to the shaft being monitored is described in a leaflet from the Dynalco Corporation, 4107 N.E. 6th Avenue. Ft Lauderdale, Florida 33308, U.S.A.WW430

A four-terminal resistance bridge (type K.B.5) is the subject of a leaflet from the Croydon Precision Instrument Company, Hampton Rd. Croydon, CR9 2RU. It covers 0 to 111, 110 Ω with five decade dials and incorporates eight switch-selected standard WW431 resistors ...

A capacitor-discharge ignition system is described in leaflet obtainable from Argent Electronics

Hong Kong. WW432 Nuclear Enterprises Ltd, Bath Rd, Beenham, Reading, have prepared a 129-page catalogue which lists a huge range of electronic and scientific test and measuring apparatus decade resistance box, amplifiers, various oscillators and other measuring equipment are described in the catalogue of Levell Electronics Ltd,

> A 47-page catalogue devoted entirely to power supplies is available from Lambda Electronics, Marshlands Rd, Farlington, Portsmouth PO6 1ST . WW435

Company, 805 Kam Chung Building, 54 Jaffe Rd.

We have received the following leaflets from Sivers Lab, Old Haverhill Rd, Little Wratting, Suffolk.

PM7512,	Coaxial	video	detecto	rs, 2	-18GHz.
					WW436
PM7550,	Coaxial	Swite	ches d	.C.	-18GHz.
	<mark></mark>				WW437
PM7101X	, Rotary	vane	attenua	ator,	0-60dB.
8.2-12.4G	Hz		<mark></mark>		WW438

The following data sheets dealing with lasers have been received from Ferranti Ltd, Dunsinane Ave, Dundee. Scotland. 200

DDF/501/370. Argon Laser Type · · · <mark>· · · · ·</mark>

HARDWARE

"Helpful Hints on Threaded Fastenings" is the title of a 52-page booklet which is produced by Firth Cleveland Fastenings Ltd. It sets out the basic engineering facts and figures that determine the best choice of fastener type, grade and size for a particular application

'Southern's Tool Catalogue", complete with price list, lists a wide variety of tools for electronic and other purposes. Southern Watch and Clock Supplies Ltd, Industrial Tool Division, Precista House, 48-56 High St, Orpington, Kent, BR6 WHWW440 Cabinets for housing printed circuit cards are described in a revised catalogue from the Elco Corporation, Willow Grove, Pennsylvania, 19090, U.S.A. It lists 32 standard models which are made in ...WW444 aluminium

bookiet called "PTFE/polyester glass fibre insulators for power transmission" is available from I.C.I., Plastics Division, P.O. Box No. 6, Bessemer

Also from I.C.I. a booklet called "Better cleaning the I.C.I. way" which discusses industrial cleaning products and solvents. I.C.I. Mond Division, Thames House North, Millbank, London S.W.1 WW446

GENERAL INFORMATION

The following information is available from the International Telecommunication Union, Place des Nations, Geneva, Switzerland.

Wall chart describing the organization of the Union and the Consultative Committees.WW441 Eighth report by the International Telecommunication Union of telecommunications and the peacefulWW442 uses of outer space

If you are interested in the performance of nickel/cadmium batteries a new technical bulletin published by the Marketing Services dept, Power Sources Division, Alkaline Batteries Ltd (P.O. Box No. 4, Redditch, Worcs) will be of value. It deals with sealed cells of the sintered plate cylindrical typeWW443

The latest book in the "Circuit Concepts series" from Tektronix U.K. Ltd, Beaverton House, P.O. Box 69, Harpendon, Herts, is called "Sampling Oscilloscope Circuits". The price is 10s per copy including postage.

B.S.1568, Part 1:1970, "Specification for Magnetic Tape Recording Equipment" may be obtained from the British Standards Institution, 2 Park St, LondonPrice 14s each W 1

Personalities

Stuart Sansom, M.I.E.R.E., chief engineer of Thames Television (formerly ABC Television) since 1966. has become technical controller. He will be responsible for all technical and engineering facilities of the company (which provides the weekday programmes for the London I.T.A. station) at Teddington, Hanworth & Euston studios. Mr. Sansom, who is 40. spent two years with the Royal Corps of Signals and then joined E.M.I. to continue his technical training, moving to High Definition Films in 1953. Four years later he joined T.W.W., the South Wales I.T.A. programme company, as a vision engineer, afterwards taking charge of electronic maintenance. He joined ABC Television Ltd, as head of engineering equipment group in 1959.

J. C. Akerman, head of Mullard's Consumer Electronics Division, has been appointed a director of the company. Mr. Akerman, who is 52, joined Mullard in 1936. After six years' wartime service with the R.A.F. he was made assistant sales manager of the company's Radio Sales Department. He transferred to the Setmaker Department in 1950 and was appointed product manager for cathode-ray tubes three years later. In 1966 he moved to the Industrial Electronics Division as commercial product manager for semiconductor components and

J. C. Akerman

subsequently became a director of Associated Semiconductor Manufacturers Ltd—the company responsible for the development and production of Mullard semiconductor devices. He was appointed to his present post in 1969. He is vice-chairman of the British Radio Valve Manufacturers' Association.

G. H. Sturge, M.I.E.R.E., who joined the B.B.C. in 1962, has been appointed assistant head of the Engineering Information Department in succession to H. T. Greatorex, B.Sc.(Eng.), who has retired. Mr. Sturge trained as an electrical engineer at Faraday House and from 1946 to 1962 held posts in the service, export and distribution departments of Murphy Radio Ltd. He joined the B.B.C. as an assistant to the Engineering Recruitment Officer and since 1967 he has been head of the engineering section of the Grading Department, with responsibility for the application of job evaluation to technical staff. Mr. Greatorex, who is retiring after 37 years' service, graduated at the City and Guilds College, London, and joined the B.B.C. as an assistant maintenance engineer. In 1935 he went into what is now the Engineering Information Department, of which he has been assistant head for the last 16 years. During this time his responsibilities have included the organization and management of the B.B.C. technical enquiry stands at exhibitions and conferences.

Brian Shone, head of the systems development unit in the B.B.C's Transmitter Planning and Installation Department has received the Royal Television Society's Geoffrey Parr award for his pioneering work in the design and development of a four-channel combining unit. This system has made it technically possible to use common transmitting aerials for high- and low-power u.h.f. stations.

Stephen Cox, a post-graduate research assistant in the depart-

ment of electrical and electronic engineering at Plymouth Polytechnic, has won the 1970 Baird Travelling Scholarship of the Royal Television Society. The award, valued at £500 and financed by Radio Rentals, will be used by him to visit North America in order to gain experience in the theory and practice of educational television production. Mr. Cox is studying the relation of colour to learning in education TV and hopes to present his Doctoral Thesis at Exeter University in 1972/1973.

Denzil Bradbury has joined Brookdeal Electronics Ltd as senior designer at their factory in. Market Street, Bracknell. Mr. Bradbury joined Hirst Electronic Developments as an improver in 1946 and, after National Service,

Denzil Bradbury

was with Sperry Gyroscope from 1950-1960. Since then he has undertaken contract work as a design engineer, including projects for Decca Electronics, Nuclear Enterprises and Taylor Electronics.

Decca Radio & Television Ltd have announced two appointments in the audio field. P. B. Cooper, who is appointed commercial manager (audio) has been associated with Decca for over 20 years and has latterly been manager of special products. He will retain responsibility for this Division in his new post while at the same time extending his sphere of activity to cover all audio products: radio receivers, radiograms, test apparatus and the Deccasound audio systems. Peter Earthy, who joined the company in 1965, has become audio development manager.

Charles Dain has joined the Electron Tube and Microelectronics Division of EMI Electronics Ltd as facilities director. He will be responsible for all production facilities throughout the Division and for the manufacture of all established product lines. This will include responsibility for factories, and product operations including camera-tubes and c.r.ts, nonscanning photoelectric devices and microelectronics. Mr. Dain was previously in the Automation Division.

D. F. Downie has been appointed product manager of the newly formed Computer Peripherals Division at S.E. Laboratories (Engineering) Ltd (part of the EMI Group). Mr. Downie was previously in the EMI Central Research Laboratories, where he managed the development of the new S.E. Labs. alpha-numeric display terminal.

Ted Tingay, who joined Guest International Ltd two years ago, has become marketing manager with the Industrial Electronic Components Division. He has latterly been product promotion manager. Before joining Guest Mr. Tingay was with Ether Ltd, of Stevenage, for one year as a sales engineer and prior to that spent 12 years with Thorn Electrical Industries Ltd as a development engineer.

Dr. P. Feitham, formerly Reader in the Physics Department of Brunel University, Uxbridge, Middx. has been appointed to a new Chair of Applied Physics at the University. He is known internationally for his work in the field of metal physics and semiconductors

Jack R. Piddington, O.B.E., M.C., has joined Electronic Facilities Design Ltd, electronics consultants and systems designers of Wargrave, Berks, as chief executive. He was formerly assistant director of electronics research and development (telecommunications) at the Ministry of Aviation.

OBITUARY

John Alexander Ward, chief engineer of Data Recognition Ltd, died recently at the age of 32. He began his career with Solartron Ltd, where he was one of the small team of British pioneers working on the development of document reading machines. He later ioined Montague Burton Ltd as the senior engineer in charge of the operation and further development of their optical mark reading equipment. He joined Data Recognition when it was founded in December 1966 and was responsible for all the electronic and logic circuit design for the company's OMR systems and equipment.

Real & Imaginary

by Vector

Off the record

There are two schools of thought about birds—the feathered, not the miniskirted variety—and in particular their irresponsible summer habit of performing a dawn chorus long before the aforesaid dawn has arrived. Some citizens rave about it. I know several who think nothing of rising at some ungodly hour to crawl through half a mile of ditches and brambles to get the maximum number of dBs. Others, however, awakened by the first twitterings, twist restlessly between the sheets, cursing the day they forsook the bright lights for the rural life.

Myself, I'm a sort of floating voter between the two viewpoints. You will not find me out and about at 04.00 to capture the mating call of the lesser spotted milkboy; but neither do I lie infuriated in my bed, stuffing my ears against the fluting and screaming from without, for the simple reason that I sleep through it. At least, I did until this morning when a maniac cuckoo chose to practise his circuits and bumps from my bedroom window-sill and banished all sleep in so doing.

Now, ordinarily I have a great respect for cuckoos and in particular for their laudable habit of laying eggs in an alien nest and then zooming off, leaving somebody else to do the dirty work. I always feel that in their next existence they will take human shape and grow up to be group chiefs or lab. managers. As knocker-uppers, however, they do not have my vote. I mean, one can fling a shoe at a caterwauling cat with a reasonable probability of the missile landing in the target area—but how does one deal with an erratically-flying cuckoo? To design a radar-controlled shot-gun with a cuckoo-voice-operated firing mechanism seems to me to be carrying the matter a shade too far.

The incident did, however, fulfil one useful purpose. It served to remind me of a letter received from a reader whose identity shall be shrouded in the initials 'S.T.C.' (no connection with Standard Telephones & Cables). The cloak of anonymity is one of which I'm sure he will approve, since if it were removed the full majesty of the law would clamp a firm hand on his shoulder.

It seems that S.T.C. has purchased what was described in the small ad. as a "record-player transmitter". I haven't seen this device but presumably it is a lowpower oscillator with sockets for applying external modulation and some form of output that is capable of radiating over a very limited range. I would guess that its radiation is in the m.f. or possibly h.f. band, because S.T.C. says that he uses it to provide music from his indoor tape recorder to his transistor radio in the garden on warm summer afternoons.

He is, of course, fully aware that he is, to all intents and purposes a pirate transmitter but as he has been using the device for a year or so now without attracting the attentions of a Post Office detector van it is obvious that the device is used with restraint and causes offence to no one. Which is more than can be said for electric bells and unsuppressed car ignition systems. Spark transmission was made illegal donkey's years ago but, illogically, no legal steps can be taken to compel a car driver to fit suppressors and cease transmission.* The electricity cables, too, are notorious radiators of interference and can carry man-made static over many miles without let or hindrance; yet it is illegal for a rediffusion service to use the electricity mains for programme transmissions.

What brought me, via the dawn chorus, to S.T.C's letter was his mention of another project of his, namely the enjoyment of his local bird choir at a reasonable hour of the day. What he proposes to do is to plant a microphone and his "record player transmitter" in an appropriate thicket and connect his home radio to his tape recorder. The two latter devices could be switched on automatically at the requisite ungodly hour and the consequent recording could then be enjoyed later.

He goes on to point out other instances in which the eleventh commandment— "Thou shalt not be found out"—operates. The recording of B.B.C. programmes, for instance, is illegal but (he says) in a radio talk on hi-fi a year or so ago it was mentioned that of all the uses to which tape recorders are put, over half the recorded material is of radio programmes. He also instances the fact that it is illegal to rerecord discs and yet most tape recorders

*Since 1953 it has been obligatory to fit suppressors on all new cars and it is an offence to remove them. ED. have sockets for doing this and include instructions in their manuals. Indeed, the record players themselves very often have sockets inscribed "Tape" (I've just looked at my own, and it has). So we have a situation in which the record manufacturers frown on the practice of tape recording from their products, but are also manufacturers of record players which directly invite one to do so!

S.T.C. also mentions another way in which he may, or may not, be falling foul of the law. For good and sufficient reasons he does, on occasion, record telephone conversations. I haven't consulted the Post Office but I imagine that it all depends on how you go about this. The automatic telephone-answering device is in widespread use, so any Post Office-approved method of carrying out the operation is presumably valid for normal private conversations.

As my correspondent mentions, recording from the telephone raises the larger and far more serious issue of bugging and snooping. Does much of this go on in industrial concerns I wonder? Certainly one does not read of specific instances in the papers, but possibly this is because firms which have been victimized do not wish their business to be further noised abroad. On the other hand, dire hints of widespread malpractice have been given, both in the Press and on television. I would have thought, however, that a simpler and less 'Paul Templish' approach to industrial spying would be to cultivate the acquaintance of a selection of key secretaries and, after judicious wining and dining, take it from there. I'm not in any sense disparaging the sense of loyalty of the bosses' secretaries, but many are inadequately paid in relation to their responsibilities and a cash-down offer of, say, £50, to a girl who is struggling to make a Majorcan holiday on a weekly income of perhaps £15, would be a considerable temptation. Most, I'm sure, would resist it, but there are bound to be exceptions. Telephone bugging, the picking of filing cabinet locks and the photographing of documents with a micro-min camera is glamorous on TV but in real life the insertion of an extra carbon when copying a confidential document is much less likely to be spotted.

But to return to the anomalies of the law in the matter of illicit transmitters and tape recordings. If S.T.C. continues to use his illegal "record player transmitter" he is liable to have the Post Office running him in for illicit transmission of programmes. But if, by way of revenge, he instals an electric motor with the dirtiest brushes and commutator he can find, the most the P.O. can do is to knock on the door and ask politely if they may inspect it.

The trouble is, I suppose, that the law is not only an ass but a mechanical ass. Its regulations have to be designed to protect the commonsensical majority from the knavish minority. If no curbs on signal radiation were made, the frequency bands would be in chaos; if the same law makes criminals of responsible electronics engineers in the process, it's just too bad.

eers in the process, it's just too bad. Anyway, S.T.C., many thanks for a most interesting letter. Wireless World, July 1970

EIGHT POLE CONNECTOR

P.550 is a versatile 7-pole + Earth connector rated 6A. 250V. A.C. with both members designed so that when un-mated live parts are shrouded and safe to handle thus enabling use of both mains inlet and outlet applications. Of rugged, all moulded plastic construction with positive keying which prevents incorrect insertion. The Plug has screw Terminal connections, and the Socket tags accepting 187 series push-on-tabs. The advantages of this connector are obvious and the extra safety conscious design will appeal to all users.

NEW D.P.M.B. MOULDED SWITCHES

The fine range of over 100 varieties of Moulded Insulation Switches is extended by these New D.P.M.B. contacting models. They are identical in size (except that two contacts and an insulation web are omitted), rating (2A. at 250V. A.C.) and performance to their well established D.P.C.O. counterparts; and are also dimensionally interchangeable with the obsolete laminated models which they are replacing. The complete range of D.P.M.B. operating means available are as follows: Toggle (illustrated right): Biased Toggle: Biased Push: Push-Push: Semi-Rotary; Key; and Slider.

NEW MINIATURE SIGNAL LAMP

Now under development and shortly to go into production, is this New Sub-Miniature Signal Lamp (illustrated right at actual size). The T-I Sub-Miniature flange cap lamp is used and solder tags, isolated from the fixing, are provided for cable connection. The lens is available in five transparent or translucent colours, and fixing is by a keyed panel hole with a push or rear spring clip.

PRINTED CIRCUIT COMPONENTS

D.965-D.966 P.C. Signal Lamp, illustrated right, is available with two lens styles, flat (illustrated) on domed end, each in five transparent or translucent colours. Working Date: 30V. max., 1.5W. max., L.E.S. Lamps, mounting/contact pins on 0.1 x 0.3 centres. A new version is now under development for rear mounting.

F.330 P.C. Fuseholder, illustrated far right, accepts 5 x 20mm fuses. The screw-in cap is legended fuse with a coin slot to assist with removal. Provisional rating 250V. 5A max.

COMPETA INTERNATIONAL PRODUCTS

MINIATURE SLIDE SWITCHES

A new range of Miniature Printed Circuit Mounting Slide Switches of advanced design suitable for use in a wide variety of equipment. Switching covers 2, 4 or 6 pole types with a choice of momentary or locking push action. Contacts are fine silver or gold plated, all metal parts are corrosion proof, sliders and bases are phenolic mouldings and contact/fixing pins are designed for plug-in or dip-solder mounting.

MINIATURE TOGGLE SWITCHES

A range of high quality, Sub-Miniature Toggle Switches of proven technical excellence. All models are metal clad, have moulded insulation, silver plated contacts and solder tags and come complete with a lock-to-panel washer. The highly polished chrome operator can also be fitted with a choice of five coloured sleeves and switching is S.P.M.B., S.P.C.O., S.P.C.O. + centre off, D.P.C.O. and D.P.C.O. + centre off. Ratings are 3A. at 250V. A.C.

BOCKER SNAP SWITCHES

A range of Single-Pole on-off Rocker-Action Switches for all Voltages up to 250V. A.C. Mains, at up to 2 Amps. Moulded in Black or White with a wide range of coloured operators and screw terminal connections. Extremely reliable having Fine Silver contacts and light but positive snap action. Two types are available, rear nut or push fixing.

a49

SEND FOR NEW PRODUCTS BROCHURE 1541/C

F. BULGIN & COMPANY, LIMITED MANUFACTURERS OF ELECTRONIC COMPONENTS BY-PASS ROAD, BARKING, ESSEX

01-594 5588

WW-072 FOR FURTHER DETAILS www.americanradiohistory.com

Wireless World, July 1970

TRIO'S TS-510 ULTRA-ACCURATE RECEIVER

TRIO's TS-510 has opened countless SSB vistas through its creative design that enables it to operate at constant maximum power with top durability. This transceiver uses a high frequency crystal filter and covers all ham bands from 3.5-29.7 MHz. Because the TS-510's frequency coverage has been compressed to 25 KHz for one complete dial rotation, tuning in on SSB signals is easy. By using TRIO's PS-510 (Power supply and speaker) and VFO-5D (Variable frequency oscillator) optimum results may be obtained. The PS-510 operates on an AC power supply through a 6-1/2" speaker. The VFO-5D has a double-gear dial covering 25 KHz per rotation. TS-510 SSB TRANSCEIVER

- Receive and Transmit Frequencies:
- 3.5 MHz-29.7 MHz
- Receive Sensitivity:
- 0.5μ V, S/N ratio of 10dB at 2.5MHz-21MHz 1.5 μ V, S/N ratio of 10dB at 28MHz
- DIMENSIONS: 13"(W), 7"(H), 13-5/8"(D).

VFO-5D VARIABLE FREQUENCY OSCILLATOR

Frequency Range: 3.5MHz-29.7MHz
 Oscillator Method: VFO unit-clapp Osc. Circuit Xtal

- Osc. Unit-Pierce C-B Circuit
- DIMENSIONS: 7.7/8"(W), 8-21/32"(H), 7-9/16"(D).

PS-510 POWER SUPPLY AND SPEAKER

- Designed as an A.C. power supply unit exclusively for the SSB transceiver TS-510
- 6-1/2" communication speaker is incorporated
- DIMENSIONS: 8"(W), 7-1/8"(H), 14-5/8"(D).

TRIO KENWOOD ELECTRONICS S.A.

160 Ave., Brugmann, 1060 Bruxelles, Belgium

Sole Agent for the U.K. **B.H. MORRIS & CO., (RADIO) LTD.** 84/88, Nelson Street, Tower Hamlets, London E.1. Phone: 01-790 4824

WW-073 FOR FURTHER DETAILS

www.americanradiohistory.com

MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10w. peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

MORE SINCLAIR DESIGNS ON PAGES FOLLOWING

Output:	10 Watts peak, 5 Watts R.M.S. continuous
Frequency respon	se: 5 Hz to 100 KHz ± 1dB
Total harmonic di	stortion: Less than 1% at full output.
Load impedance:	3 to 15 ohms.
Power gain:	110dB (100,000,000,000 times) total.
Supply voltage:	8 to 18 volts.
Size:	1 x 0.4 x 0.2 inches.
Sensitivity:	5mV.
Input impedance:	Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class AB output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from cross-over distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR RADIONICS LTD. 22 NEWMARKET ROAD, CAMBRIDGE Telephone: 0223 52731

www.americanradiohistory.com

Project 60

laboratory-standard high fidelity modules

Sinclair Project 60 comprises a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.

The modules are: 1. The Z-30 and Z-50 high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 pre-amplifier and control unit. 3. The Active Filter unit with both high and low audio frequency cut-offs. 4. The PZ-5 and PZ-6 power supplies. A complete system could comprise, for example, two Z-30's, one Stereo-60, and a PZ-5. The P-Z6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may be added as required. In a normal domestic application, there will be no significant difference between using a PZ-5 or PZ-6 unless loudspeakers of very low efficiency are being used, in which case the PZ-6 will be required. For assemblies using two Z-50's there is the new PZ-8 stabilised supply unit to ensure maximum performance from these more powerful amplifiers. All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled into the wood of the plinth to mount the control unit and the A.F.U. Any slight slip here will be covered by the aluminium front panels of these two units.

The Project 60 manual gives all the building and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe, Project 60 prices are remarkably low.

SINCLAIR RADIONICS LIMITED 22 NEWMARKET ROAD CAMBRIDGE Telephone 0223 52731

ww—075 FOR FURTHER DETAILS

Z.30 20 Watt R.M.S. POWER AMPLIFIER (40 WATTS PEAK)

The Z.30, together with the higher powered Z.50 are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the Z.30 or Z.50 power amplifiers in your Project 60 system will depend on personal preference. But they are both the same physical size and may be used with other units in the Project 60 range equally well. The Z.30 is unique in that it may be used with any power source between 8 and 35 volts without need for adjustment and may thus be driven from a car battery for example. For operating from mains, for the Z.30 use PZ.5 power supply unit for most domestic requirements, or P.Z.6 If you have very low efficiency loudspeakers. For Z.50, use the PZ.5, PZ.6 or PZ.8 described below

SPECIFICATIONS

Power Outputs Z.30 15 watts R.M.S. Into 8 ohms, using 35 v. 20 watts R.M.S. into 3 ohms using 30 volts. Z.50 40 watts R.M.S. Into 3 ohms : 30 watts R.M.S. Into 8 ohms, both continuous, operating on 50 v.

Frequency response-30 to 300,000 Hz ±1dB Distortion 0.02% Into 8 ohms Signal to noise ratio better than 70dB unweighted Input sensitivity 250mV into 100 K ohms For speakers from 3 to 15 ohms impedance Size 3 jin. x 2 jin. x jin.

STEREO 60 Pre-amp Control Unit

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

ACTIVE FILTER UNIT

The purpose of the filter unit is to reject frequencies above (scratch) or below (rumble) a specific cut off frequency when they contain unwanted interference. The Sinclair A.F.U. is unique in that the cut off frequency Is continuously variable for both the scratch and rumble units and, as the attenuation in the rejection band is rapId (12dB per octave), the removal of Interference can be achieved with less loss of the wanted signal than has previously been possible.

Each channel has an overall gain of unity and the unit may be connected between the pre-amplifier and power amplifier sections of any system. Both amplitude and phase distortion have been made quite negligible by careful design and generous negative feedback employed.

SPECIFICATIONS

Employs two Sallen & Key type active filter stages, one rumble (high pass) and one scratch (low pass) The two stages use complementary transistors to minimise distortion. Supply voltage 15 to 35 V Current 3mA max Gain at 1 kHz, filters flat 0.98 (-0.2dB)

H.F. cut off (-3dB) variable from 28kHz to 5kHz at 12dB/octave L.F. cut off (-3dB) variable from 25Hz to 100Hz at 12dB/octave Distortion at 1 kHz (35V supply) 0.02% at rated output

Built, tested and guaranteed £5.19.6

SINCLAIR POWER SUPPLY UNITS

PZ-5 30 volts unstabilised-sufficient to drive two Z.30's and a Stereo 60 for the majority of domestic applications. £4.19.6 PZ-6 35 volts stabilised—ideal for driving two Z.30's and a Stereo 60 when very low efficiency speakers are employed £7.19.6 PZ-8 45 volts stabilised power supply unit for use with Z-50 amplifiers mains transformer). £5.19.6 PZ-8 Mains Transformer £5.19.6

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for services thereafter. No charge for postage by surface mail. Alr-mall charged at cost.

SINCLAIR RADIONICS LIMITED, 22 NEWMARKET ROAD, CAMBRIDGE Tel 0223 52731

and 89/6 **Z.30** tested Built. guaranteed, with manual

SPECIFICATIONS FOR STEREO 60

Input sensitivities—Radio—up to 3mV Magnetic P.U.— 3mV: correct to R.I.A.A. curve ± 1dB; 20 to 25,000 Hz. Ceramic P.U.—up to 3mV. Aux.—up to 3mV. Output-250mV. Signal-to-noise ratio—better than 70dB.

Channel matching—within 1dB. Tone Controis—TREBLE+15 to —15dB, at 10 kHz: BASS+15 to —15dB at 100 Hz. Front panel—brushed aluminium with black knobs and

controls. Size 81 x 11 x 4 ins.

BUILDING A PROJECT 60 ASSEMBLY

The illustration here shows quite clearly how easily Project 60 can be contained in one of today's slim, modern plinths. Very little space is required to house these Sinclair units, and within the space of the motor plinth, you can install a stereo amplifier of the very highest quality, if, for example you have already put together an everythic blue the statue base adding the Active filter. Unit assembly as illustrated here, adding the Active Filter Unit would be very easy.

TO: SINCLAIR RADIONICS LTD., Z	2 NEWMARKET RD., CAMBRIDGE
Please send	NAME
	ADDRESS
for which I enclose cash/cheque/money order	ww770

TELEPRINTERS PERFORATORS REPERFORATORS TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803, Binny and special purpose Codes.

2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBDARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialiced relaw and Reset. Terminal

and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, es; Cords, Wires, Cables and Switch-

Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY & COMPANY Galety Works, Akeman Street, Tring, Herts.

Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 0442 82 TELEX 82362

TELEX 82362

WW-078 FOR FURTHER DETAILS

In Universities, Churches, Schools, T.V. and Film Studios, the S.N.S. Mk.III Radio Microphone is proving daily that, while the cost of freedom is low, reliability and performance are high. This combination is the reason why more and more people are using our wide band and narrow band systems. We will gladly send you details, but would be even happier to demonstrate the unit to you, and arrange a free 7 day trial.

We also manufacture P.A. Amplifiers, Loudspeakers, Tuners, etc.

For full details please contact: S.N.S. Communications Ltd., 851 Ringwood Road, Bournemouth. Telephone: Northbourne 4845

WW-079 FOR FURTHER DETAILS

CATALOGUE AVAILABLE NOW!

Send today for our NEW LIST 300 detailing our wide range—from miniature air spaced trimmers up to large high voltage transmitting capacitors.

SUB MINIATURE TRANSFORMERS We have facilities for the manufacture of miniature transformers to customers' own designs—and would welcome any enquiries.

H. TINSLEY & CD LTD · WERNDEE HALL SOUTH NORWOOD · LONDDN SE25 · 01-654 6046

WW-077 FOR FURTHER DETAILS

WW-080 FOR FURTHER DETAILS

Illustrated the Si 451 Millivoltmeter — pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges £32.0.0

 Si 453**£37.0.0** Low distortion Oscillator. Sine — Square — RIAA

J. E. SUGDEN & CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE

Instant selection from 1 to 100 dB attenuation

Housed in neat, die-cast aluminium boxes only $5\frac{1}{2} \times 1\frac{5}{6} \times 2\frac{1}{2}$ in. Hatfield Type 687 Attenuators provide precise switched attenuation from 1 to 100 dB in steps of 1 dB. Models for use in the frequency range d.c. to 250 MHz are available in 50 or 75 ohm form. 600 ohm Balanced and Unbalanced network versions are also available, operating with good accuracy up to 5 MHz.

Гуре 687	Attenuator range comprises:
Туре	Impedance
687A	50 ohms
687B	75 ohms
687C*	50 ohms
687D*	75 ohms
687E	600 ohms Unbalanced
687F*	600 ohms Unbalanced
687G	600 ohms Balanced
687H*	600 ohms Balanced
with go	old-plated switch contacts.
Note: T	pes 687G and 687H are fitted
with ter	minals. All other types fitted
BNC cor	nnections.

• Write now for full details and for a copy of the latest Hatfield Short Form Catalogue.

HATFIELD INSTRUMENTS LTD., Dept. WW, Burrington Way, Plymouth, Devon. PL5 3L2. Telephone: Plymouth (0752) 72773/5 Telegrams: Sigien Plymouth, Telex: 45592. S.E. ASIA: for prompt service and deliveries, contact:

HATFIELD INSTRUMENTS (NZ) LTD., P.O. Box 561, Napier, New Zealand.

A NEW ADDITION TO THE RANGE

HATFIELD BALUN

Miniature P.T.F.E. Tubular Capacitors

Oxley Developments Company Limited have introduced a new and improved range of miniature P.T.F.E. Tubular Trimmer Capacitors with capacitance swings from 5 to 30pF; TU/30/PC1, for horizontal mounting on printed circuit boards, as illustrated.

This range of components uses P.T.F.E. as the dielectric medium, resulting in a power factor of less than 5×10^{-4} at 10kHz, and the patented concentric design ensures uniformly smooth adjustment with linear, reversal-free tuning and temperature coefficient of \pm 50 ppm/°C.

Please contact our Sales Department for the technical data sheet.

OXLEY DEVELOPMENTS COMPANY LIMITED Priory Park, ULVERSTON, North Lancs. Telephone ULVERSTON 2621. Telex 6541

WW-084 FOR FURTHER DETAILS

AVAILATE ELECTRONICS from PROOPS

New Science Projects combine fascination of Optics with Electronics.

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds) Inexpensive light sensitive resistors which require only simple circuitry to work as light triggering units in a wide range of devices, such as: flashing or breakdown Ilghts, exposure meters, brightness controls, automatic porch lights, etc. Not polarity conscious — use with A.C. or D.C. Spectral response covers whole visible light range.

MKY101-C

Epoxy sealed. § in. diam. x § In. thick. Resistance at 100 Lux -500 to 2,000 ohms. Maximum voltage 150 A.C. or D.C. Maximum current 150 mW. 10/6 post free

MKY71

Glass sealed with M.E.S. base. Glass envelope $\frac{1}{16}$ in. diam., overall length 1 In. Resistance at 100 Lux – 50 Kohms to 150 Kohms. Maximum voltage 150 A.C. or D.C. Maximum current 75 mW. **8/6** post free

PHOTOGENERATIVE CELLS

Selenjum cells in which light energy is converted into electricity directly measurable on microammeter or used with amplifier as light trigger for alarm and counting devices, luminous fluxmeters, exposure meters, colorimeters, etc., Spectral respons covers visible light range.

REED SWITCH COILS & CAPSULES

Compact assemblies of reed switches and operating coils that permit the design of an infinite variety of multiple switch circuits in an extremely small space. They eliminate the bulk and open contact of multiple switch circuits in an extension small space. They emininate the bulk and open Contact disadvantage of electro-mechanical relays; hermetically sealed contact isolation ensures ionglife reliability. Small enough to combine with solid-state components on printed circuit boards. Ideal for switching matrices, binary kits, control systems, etc. These were removed intact from highly ex-pensive Computer mechanisms and are guaranteed to be in perfect working order. Each Capsule pensive computer mechanisms and are guaranteed to be in perfect working order. Each capsule consists of a rare-metal screened, 24 volt DC operating coll on a nylon former with one detachable nd for the removal and replacement of reed switches

Types available R/C2 Two reed

Two reed switches, contacts normally open. Size overall: 1 #x #x # in . 5/- post free R/C4 Four reed switches, contacts normally open Size overall: 1 + x + x + in 10/- post free

R/C6 Six reed switches, 4 contacts normally open, 2 normally closed. Size overall : 1 | x 1 | x] in. 15 - post free

RCA TRIAC - CA40432 45/- post free

Suitable for light dimming and motor control circuits Gate-controlled, full-wave, A.C. silicon switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Suitable for A.C. operation up to 250 volts; controls currents up to 1440 watts. Size only $\frac{1}{2}$ in. diam. x $\frac{1}{2}$ in. high. Complete with heat sink, data and applications diam, $x \frac{3}{16}$ in information.

CONTROL THERMISTOR

Type A25 by STC retained on 1 x 1 $\frac{1}{2}$ ln. paxolin board with solder tags and mounting lug with captive screws. Bead type thermistor is contained in 1 in. long x 5/32 ln. diam. unting gas filled glass bulb and is particularly suitable for amplitude control, fining devices, current surge suppression, etc. Safe power dissipation, 60 mW. Sensitivity 3.5 "C/mW. MaxImum temperature – Amblent 150°C, – Bead 300°C. Resistance at 20°C 200,000 ohms. Average dissipation at 60 mW in free air at 20°C: 575 ohms. Usual price 15/9 each. Brand new. Special bargain offer : 5 for 15/- post free.

POWER TRANSISTOR HEAT SINKS

Heavy gauge aluminium extrusions with fitment for one pair of power transistors. Size overall: $4 \times 3 \ddagger x 1 \ddagger$ in. high. Base is 3/16 in. thick and ready punched to accept all standard types. Seven cooling fin surfaces ensure adequate heat dissipation. Brand new. Special offer: two for 12/6 post free.

RCA

INFRA-RED TRANSMITTERS & RECEIVERS

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Miniaturized construction and solid state circuit design is combined with outstanding modulation and switching capabilities to provide infinite possibili-ties as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc., etc.

MGA 100 GALLIUM ARSENIDE LIGHT SOURCE-MGA 100 tless, Infra-red emitter in a robust, sealed cylinder coaxial with beam to facilitate optical

d heat sinking. MAX RATINGS

7.5mW/°C When mounted on an aluminium heat sink 1 in. x 1 in. x 1 in.

INFRA-RED PHOTO RECEIVER — MSP3 Ultra sensitive detector/amplifier for infra-red (Galium Arsenide) or visible light optical links reception. Spectral response 9500 A. Robust, cylindrical package is coaxial with incident light to facilitate optical alignment and heat sinking. MAX RATINGS

....2mW/°C. trom

Supplied complete with suitable lenses, full Technical Data and Application Sheets. Including Line of Sight Speech Link.

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible places as easily as electricity is conducted by copper wires. Fibre optics make it possible to control, miniaturize, split, reflect or transfer light from one source to many places at once, and to operate photo devices, logic circuits, or illuminate in ways never before post. sible. Proops offer both glass fibre optics or inexpensive Crofon plastic fibres for hundreds of experiments or serious applications in a fascinating new science.

£16 Postfree KIT 1

1.5 mm. x 24 in., 3 mm. x 18 in., and Contains 6 mm, x 12 in, light guides, plus 24 in, long x 2 exit component for punched card or coding applications. Also battery operated light source, 2-way 'Y' adaptor with non-random separation, and 3 mm./3 mm. and 3 mm./ 1.5 mm. connectors

Special offer of IMAGE FIBRESCOPES £5 Post Free

Between 50,000 and 60,000 coherently arranged, 15 micron glass fibres that provide Between 50,000 and 60,000 coherently arranged. 15 micron glass fibres that provide (with appropriate optics) perfect visual inspection into otherwise inaccessible areas. Originally made by Rank Taylor-Hobson for use in industrial and medical fibrescopes at £72 each, these have slight, superficially imperceptible faults and are assembled in transparent, lay-flat tubing instead of opaque, flexible conduit, as usual. Ends are ground, polished and metal capped. Absolutely ideal for demonstration in Schools and Technical Colleges and for many other applications that require highly sophisticated means of access to enclosed. difficult to get at places. Length overall: 3 ft. Cross sectional area: 3x3mm. Resolution:10 LP/mm. to 20 LP/mm.

LOW COST CROFON FLEXIBLE LIGHT GUIDES

Newly developed plastic light transmitting media by Dupont, which can be used for both serious projects and inexpensive prototype work. Ends can be ground flat, dyed or capped with epoxy resin. Temperature range: -40° to $+170^{\circ}$ F. No loss of light through bending. 12 page Data and Applications booklet supplied free with each order. Types available:

Multi-strand-- 64 special plastic fibres, tightly bundled together in a tough, flexible conduit. 8/6 per foot, Minimum order two feet. 17/-p & p 1/6.

Monofilament- single 0.040" plastic fibre which is specially useful for light indication in confined spaces. 4/-per foot. Minimum order three feet, 12/-p & p1/-.

a57

Proops Bros. Ltd., 52 Tottenham Court Road, London WIP OBA Telephone: 01-580 0141

25 mm. diam. field flattening lens, 6 mm. + 12 in. image condult with pollshed ends, 4 mm. x 25 mm. image invertor. Complete with 2-way adaptor, fibre optic torch and batterles, 3 mm./3 mm. and 3 mm./1.5 mm. connectors.

of thousands of fibres tightly bundled in flexible sheaths with ferruled, optically polish-ed ends, together with connecting and light source components. Each is supplied complete with card wallets containing technical and application data.

KIT 2 **£28** Post Free Contains : 3 mm. x 18 ln. 6 mm. x 12 ln. light guides; 1.5 mm. Y guide with two 12 ln. long talls; 24 in. long 12 exit component for coding or punched card applications, 24 in. lengths of Cofon 64 filament and monofilement plastic

light quide. Also, coherent sollds consisting of

Wireless World, July 1970

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone

FIRNOR-MISILON LIMITED 10 COMMERCE LANE, LETCHWORTH, HERTS Tel: 6069

www.americanradiohistory.com

MICRO SWITCH

5 amp. changeover contacts. 1/9 each 18/- doz. 15 amp model 2/- ea. or 21/- doz.

COMPUTER MULTI-CORE CABLES 12, 14/0076 copper cores, each one insulated by coloured P.V.C. then separately screened, the 12 metal braided cores laid together and P.V.C. covered overall making a cable just under 4 in. dia. but quite pilable. Price 7/6 per ft. Any lergth cut. Other sizes available? core \mathcal{G}_2 -ft. C. for \mathcal{G}_2 -ft. core 3/8 ft.

-

4 core 3/6 ft. FLEX BARGAINS Screened 2 Core Flex. Each core 14/0075 Copper P.V.C. Insulated and coloured, the 2 cores laid together and metal braided overall. Price 22:15 per 100 yds. coil. 15 Amp 3 Core Non-kink Plex. 70/7076 insulated coloured cores, protected by tough rubber sheath, then black cotton braided with white tracer. A normal domestic flex as fitted to 3 kw fires. Regular price 3/6 per yd. 50 yd. coil 24.10. or cut to your length 2/6 per yd. 100 yd. coil 27.10. or cut to your length 1/9 per yard. 6 Amp 3 Core Flex. As above, but 2 cores each 23/0076 as used for Vacuum Cleaners. Electric Blankets, etc., 30/6 100 yd. coil.

100 yd. coil. 23/0076 triple core P.V.C. covered, circular, normally sold at 1/6 yd. Our price 100 yd. coil **23.19.6.** Post and Ins. 6/6,

CONSTRUCTORS' PARCEL

1. Pleasey miniature 2-gang switch. 2. Perrite siab aerial with trimmers and wave gang switch. 2. Perrite siab aerial with colls to suit the above funing condenser. 3. Circuit diagram giving all component values for 6-transistor circuit covering full medium wave and the long wave band around Radio 2. The three times for outy 7/8 which is half of the price of the tuning condenser alone.

10 AMP 24V BATTERY CHARGER

unit for garage, boat station, etc. <u>\$22.10.0</u> each, carriage at cost.

BEHIND-THE-EAR DEAF AID by a very famous maker. Thoroughly overhauled, ed and re-conditioned. Guaranteed 6 months. Regular around £50. Our price £10.

ISOLATION TRANSFORMERS 200-250 Mns

A must if you work on mains equipment. Prevents accidents and shocks even in damp conditions. Input and output separately screened by connection block. 100 watt £3.10.0. 200 watt £5.

SLOW MOTION DRIVES

For coupling to tuning condensers, etc. One end in. shaft, the other end fits to a jin. shaft with grub screws. Price 4/6 each; 48/- dozen.

LARGE PANEL MOUNTING MOVING COIL METERS

Size 5in. × 4in. Centre zero 200-0-200 micro amp. made by Sangamo Weston. Regular price probably £8. Our price 59/6. Ditto but 100-0-100 79/6.

A.C. AMMETER 0-5 amps., flush mounting, moving iron. Ex-equipment but guaranteed perfect 29/6.

CIRCUIT BOARDS Heavy copper on packs, etc., as sh

Heavy copper on 3/32 paxolin abeet, ideal for making power packs, etc., as sheet is very strong and thick enough to allow copper to be cut a way with hacksaw blade, 5in. \times 5in. 1/8 each. 15in. \times 5in. 4/6 each.

6KVA AUTO-TRANSFORMER

In ventilated sheet steel case—tapped 110v-140v-170v-200v-230v. Ex-equipment but guarantced perfect. g19.10.0. Carriage at cost.

- REED SWITCHES

Glass encased, switches operated by external magnet-gold weided contacts. We can now offer 3 types: Ministure. In. iong x-approximately \$10. diameter. Will make and break up to \$4 up to 300 volts. Price 2/8 each. 24. doese.

This sample break up to $\frac{1}{4}$ up to 300 volts. Price $\frac{2}{6}$ each. $\frac{24}{6}$, doren. Standard. Jin. long × 3/16in. diameter. This will break currents of up to 1A, voltages up to 200 volts. Price $\frac{2}{6}$, each 18/- per doren. Flat. Flat type 21m. one, just over 1/16in. thick, approxi-flat. Flat type 21m. The Standard Type flattened out, so that it can be fitted into a smaller space or a larger quantity may be packed into a square solenoid. Rating 1 am 200 volts. Price 6/- each. $\frac{2}{3}$ per dozen. Small corrantic magnets to operate these reed switches 1/9 each. 18/- dozen.

0:0005mFd TUNING CONDENSER Proved design, ideal for straight or reflex circuits 2/6 each. 24/- doz.

August 2015 August

PP3 BATTERY ELIMINATOR

Run your small transistor radio from the mains—full wave circuit. Made u ready to wire into your set and adjustable high or low current. 8/6 each. This unit is not isolated from the mains.

CHART RECORDER MOTOR Small (2in. diameter approx.) instrument motor with fixing flange and spindle (\$in. long, \$in. diameter); integral gear-box gives 1 rev. per 24 hours. 19/8.

IGNITION (E.H.T.) TRANSFORMER Made by Parmeko Ltd. Primary 240v, 50 c.p.s. Secondary 5Kv at 33mA. Size approx. 4kin. × 3kin. × 2kin. thick. Price 29/6 + 4/6.

12-YOLT EXTRACTOR FAN BY DELCO

4-PUSH SWITCH

Ideal to control fan heater, etc. 3 on switches and 1 of Contacts rated at 15 amp on all switches. Price 4/6 es 48/- dozen

MAINS TRANSISTOR POWER PACK

- INTEGRATED CIRCUITS -

A parcel of integrated circuits made by the famous Pleasey Company. A once in a lifetime offer of Micro-electronic devices well below cost of manufacture. The parcel contains 5 ICs all new and perfect, first grade device definitely not sub-standard or seconds. The ICs are all single silicon chip General Purpose Amplifiers. Regular price of which is well over £1 each. Full circuit details of the ICs are included and in addition you will receive a list of 60 different ICs available at bargain prices 5s. upwards with circuits and technical data of each. Complete parcel only £1 post paid or List and all technical data.

ERGOTROL UNITS

ERGOTROL UNITS These units made by the Mullard Group are for operating and controlling d.e. Motors and equip-ment from A.C. mains. Thyristors are used and these supply a variable d.e. resulting in motor speed control and operations efficiency far superior to most other methods. The units are contained in wall mounting cabinets with front control panel on which are fuses—push buttons for on/off and the variable thyristor fring control. 4 models are available—all are brand new in makers cases:

Model 2411 for up to		£27.10.0
Model 2413 for up to	45 amps	£47.10.0
Model 2415 for up to	80 amps	£95. 0.0
Note: 2415 is a floor i	mounting u	nit.
		-

DISTRIBUTION PANELS

Just what you need for work bench or lab. 4 x 13 amp sockets in metal box to take standard 13 amp fused plusa and ox/off switch with neou warning light. Bupplied complete with 7 fee cable. Wired up ready to work. 39/6 less plug; 45/- with fitted 13 amp plug; 47/6 15 amp plug, plus 4/8 P. & I.

0 4

THIS MONTH'S SNIP

THE "PRINCESS" 4 SPEED AUYOMATIC EECORD CHANGER for beauty, long-life. Will lake up to then records which may be mixed, styling brunh cleans stylue after each playing-other features include pick up-height adjustment and stylus pressure adjustment. This truly is a fine instrument, part of a cancelled export order, which has travelled back and forth. The changer, therefore, may need mechanical re-adjustment but we supply service manual. We offer these at least than the price of a single player—only 49/6+6/d p. & p.

MULICARISED CAM SWITCH These have a normal main 200-240 motor which drives a ratchet mechanism geared to give one ratchet action every 4 minute approx. The cam operates 8 switches (6 changeover and 2 ouloff thus approx. 600 circuit changes per hour are possible). Contacts, rated at 15 amps have been sets for certain switch combinations but can, no doubt, be altered to suit a special job. Also other switch waters or devices can be attached to the shaft which extends approximately one inch. 47/6. Fost and ins. 4/6.

STANDARD WAFER SWITCHES .

Standard size 1 wafer-silver-plated 5-amp contact, standard $\frac{1}{4}''$ spindle 2" long-with locking washer and nut

No. of Pok	es 2 way	3 way	4 way	5 way	6 way	8 way	10 way	12 way
1 pole	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6
2 poles	6/6	6/6	6/6	6/6	6/6	6/6	10/6	10/6
3 poles	6/6	6/6	6/6	6/6	10/6	10/6	14/6	14/6
4 poles	6/6	6/6	6/6	10/6	10/6	10/6	18/6	18/6
5 poles	6/6	6/6	10/6	10/6	14/8	14/6	22/6	22/6
6 poles	6/6	10/6	10/6	10/6	14/6	14/6	26/6	26/6
7 poles	6/6	10/6	10/6	14/6	18/6	18/6	30/6	30/6
8 poles	10/6	10/6	10/6	14/6	18/6	18/6	34/6	34/4
9 poles	10/6	10/6	14/6	14/6	82/6	22/6	38/6	38/6
0 poles	10/6	10/6	14/6	18/8	00/8	09/6	49/6	49/6
1 poles	10/6	14/6	14/6	18/6	26/6	26/6	46/6	46/6
2 poles	10/6	14/6	14/6	18/6	26/6	26 6	50/6	50/6

MICROSONIC KEYCHAIN RADIOS 7 transistor Key chain Radio in very pretty case, alse 23 × 23 × 13 in.-complete with soft leadher zipped bag. 8pecification: Circuit; Transistorsuperheterodyne Frequency range: 530 to 1600 Kc/s. Senaltivity: 5 my/m. Intermediate frequency: 436 Kc/s. or 455 Kc/s. Power output: 40mW. Antenna: ferrite rod. Lond-opacker: Fernament magnet type. In transit from the East, these sets auffered slight corrosion as the batterice were left in, but when this corrosion is cleased away they should work parfectly-offered without guarantee except that they are new. 24/8 plus 2/6 post and in-surance. Rechargeable batteries 8/6 pair. Plug-in mains charger 12/8. charger 12/8.

OUT OF SEASON BARGAIN 34W TANGENTIAL HEATER UNIT

This heater unit is the very latest type, most efficient, and quiet running. Is as fitted in Hoover and blower heatern conting £15 and more. We have a few only. Comprises motor, impeller, 2kW, element and 1kW, element allowing switching 1, 2 and 5kW, and with thermal safety cut-out. Can be fitted into any metal line case or cabined, ODH peed control switch, 59/6. 2kW, Model as above ercept 2 kineration 39/6. Postage and insurance 6/6. Don't miss this.

RE-CHARGEABLE TORCH

Neat flat torch, fits unobtrusively in your pocket, contains 2 Nicad cells and built-in charger, Plugs into shaver adaptor and charges from our standard 200/240 volt mains. American made, sold originally at over 4 dollars. Our price only

3 STAGE PERMEABILITY TUNER

PROTECT VALUABLE DEVICES

FROM THERMAL RUNAWAY OR OVERHEATING: Thyristors, rectifiers, transistors, etc., which use heat sinks can easily be protected. Simply make the contact thermostat part of the heat-sink. Mixotrs and equipment generally, can also be adequately protected by having thermostat in strategic spots on the casing. Our contact thermostat has a enibrated dial for setting between 90 deg. to 190 deg. F. or with the dair emoved range setting is between 80 to 800 deg. F. Price 10/-

Where postage is not stated then orders over £5 are post free. Below £5 add 2/9. Semi-conductors add 1/- post. Over £1 post free. S.A.E. with engulries please.

NEED A SPECIAL SWITCH Double Leaf Contact

°O

200xp ST .

Plastic push-rod suitable for operating, 1/- each, 9/- doz.

3-CORE LEADS

Heavy duty 23/36, average length 5ft. 10/- per dozen lengths, plus 4/6 post and ins.

PAPST MOTORS

Est. 1/40th h.p. Made for 110-120 volt working, but two of these work ideally together off our standard 240 volt³ mains. A really beautiful motor, extremely quiet running and reversible. 30/s each

a 59

INSTRUMENT KNOBS

Very slight pressure closes both

contacts. 1/3 each. 12/- doz.

\$in. dis. head with Sin. shank for flatted in. spindle, 9d. each, 8/- dozen. Ditto but with metai disc, 1/- each, 11/- dozen

MIDGET OUTPUT

Ratio 140 : 1. Size approx. lin. × in. × in. × in. × in. primary impedance 450 (2. Connection by flying leads. 4/8 each. 48/- doz.

MIDGET OUTPUT

TRANSFORMER Ratio 80 : 1. 6ize approx. 14in. × 1in. × in. Primary impedance 132.0. Printed circuit board connection. 5/6 each. 23 dox

4GANG AIR-SPACED TUNING CONDENSER

For AM/FM circuits. AM rf section 200 pf, osc section 80 pf, both with trimmers—FM rf section 9.5 pf, osc section 11.2 pf—integral slow-motion drive. 9/6 each.

MAINS CONNECTOR

A quick way to connect equipment to the mains safely and firmly—L., N. and E. coded to new colour scheme; diaconnection by plugs prevents aecidental switching on; has sockets which allow inaertion of meter without disconnection; cable inlets firmly hold one hair wire on up to four 7.029 cables. 12/6 each.

DRILL SPEEDS

ELECTRIC CLOCK WITH

THE 5 × 5 WATT STEREO AMPLIFIER

Made by one of our most famous makers for a de-luxe player. This amplifier has a quality of reproduction much better than average. Using a total 16 transistors and a gencroualy sized mains power pack. Controls include bass, trebie, balance and volume. Buitable for 8-16 ohms imped-ance speakers with crossovers for tweeter mid-range and bass thus giving option of 1, 2 or 3 speakers per channel. Offered at about one-third of its original price, only 29.19.6 plus 6/6 post and insurance.

GRO-LUX LIGHTING

Special tubes give light rich in U.V. and other rays necessary for plants and that kept indoors away from natural sunlight. Jun, 8-wat tube 23/6. Control kit comprising choke and starter, tube ends and clips, starter holder and diagram 19/8. Post and insurance 3/6 on either; or 4/8 on both itema. Other tube sizes in stock, so send for List,

L3 AMP SWITCH Made by Smith's, these units are as fitted to many top quality cookers to control the oven. The clock is main criven and frequency controlled so it is extremely accurate. The two smith that can be switch on and off times to be accurately set. Ideal for switching on tape recorders. Offered at only a fraction of the regular price—new and unused only. 38(9) less than the value of the clock alone-post and insurance 2(9)

COLOURED FLUORESCENT TUBES For special lighting effects. Wonderful for lighting on num-mer garden. All tubes perfect not seconds. Marke by Atlas, Echo or similar companies 21t. suitable for working at 20 or 40 watta depending upon choke used. Available in the follow-ing colours: Bed, Yellow, Buce, Peach, Daylight, Natural, White. Bpecial snip price (about half regular price) 8/6 each plus 6/- postage and insurance on any quantity ap to 12 when they would be post free. Note: Two tubes may be run off one choke. We can supply suitable choke, two attacters and all other fittings required for 29/6 plus 4/6 post per kit.

COLOURED FLUORESCENT TURES

EXTRACTOR FAN

EXTRACTOR FAN Cleans the air at the rake of 10,000 cubic feet per hour. At the pull of a cord it extracts grease, prime and cooking meils before they dirty decorations. Buitable for kitchens, bathrooms, factories, changing rooms, etc., 16's so quiet it can hardly be heard. Compact. 54 in. casing with 54 in. fan blades, Suitable wherever it is necessary to move all fast. Kit comprises motor, fan blades, sheet steel casing, pull writch, mai con-nector and faing brackens. 39/6 plus 4/6 port and insurance.

ELECTRONICS (CROYDON) LTD

Dept. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

DRILL CONTROLLER CONTROL DRILL CONTROLLER Electronically changes speed from approximately 10 reva. to maximum. Full power at all speeds by finger-tip control. Kit includes all parts, case, everything and full instruc-tions 19/6, plus 2/6 post and finaurance. Made up model alloo available 37/6 plus 2/6 p. A p.

LECTRON

NEW 6-CHANNEL TIME AND EVENT RECORDER

A self-contained instrument, specifically for recording events without the need for a combined recorder.

There is a separate and independent paper drive, with a monitor lamp indicating when it is in operation. The pens are displaced 1/16", activated by a close contact system. Each of the 6 channels works Independently of each other, with the pens writing at 72 hours per filling at a maximum speed of 10 pulses per second.

The recorder is supplied either in a portable cabinet or with rack mounting adaptions and the size is 15" × 9" × 91" deep. It weighs 10 lb. and is available in 220-240 volt A.C. (50 cycles) or 110-115 volt A.C. (60 cycles). The 6-channel time and event recorder is available at the following speeds: 30, 20, 10, 5, 1 per minute. 18, 12, 9, 6 per hour. Width of paper roll is 6", maximum diameter of roll is 3", length on standard 3" diameter paper roll is 200'. Price of the event marker is \pounds 79-10-0, plus \pounds 5-0-0 for the special vinyl-treated portable case.

The instrument is guaranteed for one year, and is available with a complete range of accessories, including teledotos paper, graphic paper, plain paper, pens, pen containers and time bases. Prices of these items are available on application.

COUNTERS

EEDER ROOT 6 DIGIT COUNTER

Sultable for counting all kinds of pro-duction runs, business machine opera-tion. Mechanically driven Type KA1337. React manual knob. Ex-equipment but new condition. Special price 25/- plus 5/- P. & F.

MINIATURE SQUARE COUNTER

By Veeder Root. Rotary ratchet type, adds 1 count for each 36° movement of shaft. 9/8 plus 2/6 P. & P.

6 DIGIT ELECTRICAL

With electrical and mechanical reset, Counter driven by a 110 v. D.C. 4,400 ohm coll. Reset 110 v. D.C. 800 ohm coll. Housed in plastic-alloy case. The units can be interioxic and be interioxic and be other to give vertical or horizontal displays. Ex. equipment. Price 59/6 plus 5/- P. & P.

EAC DIGIVISOR Mk. II DIGITAL READ-OUT DISPLAY Ideally suitable for use in conjunction with transistoriaed decade counting devices. No need for amplifiers or relays as only a few milliwants of power are required to change the digits. The DIGIVISOR incorporates a moving coll movement which moves a transiterent scale through an optical system and the resultant single plane image is projected on a screen. The transiticent scale is made to represent digits 0-3 Specifica tion: lamp 6.3 volt movement sensitivity 200 microamp. Image. height jin. Size 4 3/16 × 2.9964 × 1 jin. Our price £3/13/6. List price 8 gns.

BERKELEY DECIMAL COUNTING UNIT 0-9 4 valves double triode type 5965 special quality Unit plugs into standard octal base. Modular construction with 10 miniature neon lampa on display panel. Power supplies 6.3v. A.C. 160v D.C. Cut-on or Cut-on-15v. Size 5à × 5à in. × à in. Price 65/- p. & p. 5/-.

S DIGIT COUNTER

A very sturdy counter. Coil resistance 100 ohms. Minimum operational voltage 5v. Counting speed 13 counts per sec. Buitable for continuous counting with sine wave drive. Coincidence, recording and frequency meter 35/- p. & p. 5/-.

HI-SPEED ELECTRIC RESET ELECTRO MAGNETIC COUNTER 6 Digit 24v. D.C. 31W. 20 counts/ second. 81ze 31 × 21. Panel Mounting. List £10/19/6. Our Price 24/9/6, P. & P. 5/-. 4 Digit 24v. 79/6. P. & P. 5/-.

HIGH STABILITY D.C. POWER SUPPLY TYPE D.C. 200 AND D.C. 202 A stabilised ex-equipment power pack made to a tight specification. Type D.C.200: Input 200/250v. 50Hz; D.C. 01put 200/250v. 60Hz; D.C. 00tput - 35v. at 9A, Type D.C. 202: Input 200/250v. 60Hz; D.C. 00tput - 35v. at 9A, +24v. at 4A, +10v. at 0A. Dimensions: Length 16 in. Height 94 in. Width 12 in. Weight 92 lbs. Price £65. Carriage extra.

ALL OBDERS ACCEPTED SUBJECT TO OUR TRADING CONDI-TIONS A COPY OF WHICH MAY BE INSPECTED AT OUR PREMISES DURING TRADING HOURS OR WILL BE SENT ON APPLICATION THROUGH THE POST.

HIGH GRADE COMPONENTS

VOLSTATE and constant voltage transformers. Large range in stock. Prices from £8/10/0. I/P 190-260v 50Hz, O/P from 6v. to 240v. Loads 25w to 1000w.

DOUBLE AUDIO FADERS

1000 plus 1000 ohms. Each resistive dimmer's adjustable and independent of each other. Ex-equipment but in an almost new condition. Price $\pm 3/19/6$. P. & P. 7/6.

OSCILLOSCOPES

HIGH PRECISION MAINS MOTOR 3 Phase—I Phase 230V 50 Hz 1/8 h.p. continuously rated. 3000 r.p.m. Made by Croydon Engineer-ing. Model KA 60 JFB. duitable for ubman whore Size 5 h.n long, 44 h. duitable reikh in diameter flange and dixing boles. 24/10/09 cach. F. & F. 26/-. SYNCHRONOUS MOTORS

Model 8 71 r.p.h. and 1/60 r.p.h. Self starting complete with gearing shaft j in. dia. j in. long. 200/250V 50 Hz. New condition Ex. Equipment. 40/*. P. & P. 3/*.

DATA TRANSMISSION-SYNCHROS

Type	Maker	Voltage	Ha	Price
11TR 4a ACN 1550C 11TR 4a 11CT 4BT 26v08CT 4c 11CT 4b 11CX 4a 11CX 4a 11CX 4a	Sperry	90/115v 26,12.3 90/115v 26v 11/9v 1/90/deg 11.8/26v 90/115v	400 400 400 400 400 400 400 400 400 400	$\begin{array}{c} \mathbf{f} & \mathbf{f} \\ \mathbf{f} & \mathbf{f} \\ 7 & 10 & 0 \\ 7 & 10 & 0 \\ 7 & 10 & 0 \\ 7 & 10 & 0 \\ 6 & 10 & 0 \\ 6 & 10 & 0 \\ 6 & 10 & 0 \\ 6 & 10 & 0 \\ 6 & 10 & 0 \\ 6 & 10 & 0 \\ 10 & 10 & 0 \end{array}$
	bran a care			EXTRA

A.C. MOTOR GENERATOR Type G1005 Motor Bpec. 6000 r.p.m. Torque 2Agm/cm. Control winding 20v., 400Hz. Ref. Winding 26v., 400Hz. Generator Spec. Ref. Winding 26v., 400Hz. G/PO 1v/1000 r.p.m. Length 2 in., dia. 1 in. Price £7/10/0 p. & p. 5/

D.C. TACHOGENERATOR Type 9c/106 16%, at 1000 r.p.m. Drive shaft dia. 3/16 in., 3/8 in. long. Price £16/10/0.

SYNCHRONOUS MOTOR WITH GEARBOX Motor 11 M83 gearbox type 11 H21. This unit is an 8000 r.m., 115v., 400 Hz motor fitted with concentric epicycle reduction gearbox of 9/2/1. Motor torque 6 oz./in. length c/w gearbox 2 5/8 in. × 1 indiameter.

RAGONOT MOTOR 220V 3-phase 50Hz 1/20 HP, 1500 RPM, Frecision Ex-COMPUTER TAPE DRIVES. Rotor moves i in axially on "Switch on" to take up drive and on "Switch off" is a spring returned to disengagedrive. 45/- each. P. & P.10/-.

FRACMO 240/250v., 50Hz single phase. 1/20 h.p., 2800 r.p.m., shaft dia. 15 m. Price 45/-.

EVERSHED & VIGNOLES SPLIT FIELD SERVO MOTOR Type FB6A-A1/B # in. keyed shaft. Price £12/10/0 each.

GENERATORS

A.M. SIGNAL GENERATOR Marconi Model TP 144 HS This is a current model instrument with all the desirable (natures that have been popularity of this range of instruments) and casy to use. The frequency range range cover of nore than 2/1. This way a large effective scale blongth is ourtise on the turning dia web hand. The separate scale of example coincides with a single tuning band of tallitan desired of the scale oper cent. High discrimination plus crystal calibration. Good R.P. waveform at all frequencies. Protected the distrumentation, Output he discrimination plus crystal calibration. Good R.P. waveform at all frequencies. Protected the distrumentation plus crystal calibration. Good R.P. waveform at all frequencies. Protected the distrumentation plus crystal calibration. Good R.P. C. batery supply. Dimensions: Height Cover requirements 200/2007 and 100/1507, 40-100Hz. 80 watts. Can also be used with D.C. batery supply. Dimensions: Height 14 h. With 19 h. Depth 11 ha. Weight 58 hs. Used in equip-ment in V.G. condition. Price £105. Carriage EXTRA.

HIGH TORQUE INDUCTION MOTOR

LOW TORQUE HYSTERESIS MOTOR MA23 Ideal for instrument chart drives. Extremely quiet, useful in areas where ambient noise levels are low. High starting torque enable relative high inertia loads to be driven up to 6-oxil.n. Available in the following speeds and ranges: 240V 50 Hs 4 r.p.m., 2 r.p.m., 1/3 r.p.m., 1 r.p.m., 1/7 r.p.m., 1/7 n.p.m., 1/10 r.p.m., 1/2 r.p.m., 1/20 r.p.m., 1/3 r.p.m., 1/7 n.p.m., 1/10 r.p.m., 1/10 r.p.m., 1/10 r.p.m., 1/16 r.p.m., 1/20 r.p.m., 1/10 r.p.m., 1/00 r.p.m., 1/100 r.p.m., 1/20 r.p.m., 1/300 r.p.m., 1/40 r.p.m., 1/20 r.p.m., 1/24 r.p.m., 1/300 r.p.m., 1/440 r.p.m., 25/- each. P. & P. 3/-.

995641

Solartron CD513 Solartron CD 513/2 Bolartron AD 557 Solartron CD 711

VOLSTATS

£49.10 £48.10 £55.0 £865.0 £275.0 £25.0 £25.0 £19.10 £85.0 £75.0 £75.0 £35.0

SOLARTRON C.D. 1014/2 Double beam portable oscilio-acope very suitable as a general purpose squipment. 34 in. Plat. Face tube with the following features, attub trigger mode. Provision for the D.C. restoration. Accurate "X" and "Y" Calibration and stabilized E.H.T. Specification: Bandwidth D.C. to 5MH. denai-tivity J millivolitien on "Y2". Time Base site posliloss from 1 microjase/em to 1/ase/em. Velocity 1 cm/micro see to 1 cm/sec. "X" shift approximately 10 diameters. Power 8 wuppi 100/125v. and 200/250v, 45-440Hz. at 75VA. Dimensions: Wildth 94 in. Height 114 in. Depth 15 h. Weight 25 lb. Price £40. Carriage EXTRA.

TEKTRONIX. Type 524AD specifically designed for main-tenance and adjustment of television transmitters and studio ance and adjustment ipment. Price £175.

HEATHKIT. Laboratory and general purpose scope. Mode. 10-12 U. Single Beam. Price £15. Carriage extra.

DARTRONIC. Model 381 Single Beam. Bandwith D.C. to 9MHz, Sensitivity 100 mV/cm. Time Base 9 switched steps from 0.7 sec/cm to 0.5 micro sec/cm. Power Supplies 200/250v. 50/100Hz. 95 watz. Price <u>229</u>/10/0. Carriage extra.

MOTORS

HYSTERESIS REVERSIBLE MOTOR will produce

Incorporating two colis. Each coli when energised will produce opposite rotation of output shaft. 240V 50 Hz, § r.p.m., § r.p.m., 1/6 r.p.m., 120V 60 Hz, 1/10 r.p.m., 30/- each. P. & P. 3/-.

3-30 oz/inch. Available in the following speeds only 240V 50 Hz <u>i</u> r.p.m., 1 r.p.m., 2 r.p.m. 120 V 50 Hz. 20 r.p.m 30/- each. P. & P. 3/-.

8000 8011 8011 0000 -----

MEASURING INSTRUMENTS AND RECORDERS

PORTABLE AC/DC

First the versatile pear recorder. Produces a trace on a curvi-linear $3\frac{1}{2}$ in. strip chart. Two speeds 1 in. and 6 in./br. Limiting contacts to give alarni, and limits the current when It exceeds the high and/or low preset values. Range: 0 - 1MA D.C. Meter Resistance 00mma; 0 - 1MA A.C. Meter Resistance 1800 at 50 Hz; --10 to +53 dB Into 600 onm impedance Source.Chartsperd; 600 ohm impedance Source. Chartspeed: 1 in. and 6 in./hr. Chart width: 3) in. curvel-linear. Power supply: 230V 50 Hz driving Synchronous Motor. Price: £52.10.0. P. & F. £1.5.0.

STRIP-CHART INDICATING

Chart vidth 94 in. 10 mV. Sensitivity ±0.17 of full scale. Source impedance 100 ohms. Speed of operation 33 sec. for full-scale travel. Chart speed $\frac{1}{2}$ in. 3 in., 6 in. per hour. Single volat. $\frac{249 \cdot 10.0}{10.0}$ P. & P. 30/., 12 Multi-point recorder available.

PORTABLE D.C. 3 inch SINGLE PEN RECORDER (Panel Mounting)

(Panel Mounting) Mide to G.P.O. specification, this is a very compact and accurate instrument. Available 0-1mA and 0-500 milero amp. Fitted with alarm circuit which operates when current exceeds preset values. Specifications: Chart width 3 ins. (Chart specifications: Chart width 3 ins.) K ohms. (Solo milero amp range). Power Supply 190/230v. dbHz for synchronoux dirte motor. Dimensions: Width 6 ins. Height 7 ji in. Depth 9 ins. Weight 22 ib. Frice 0-1ma. £49/10/0; 0-500 milero-amp £55.

PEN RECORDER

Pertable 1, 2 and 4 channel pen recorders by Kelvin Hughes, General purpose recorders providing clear instantaneous and permanent records of phenomena with comparatively high rates of change. The torsion-strip suspension of the moving-coll renders the instrument immune to the effects of vibration and acceleration. mune w

acceleration. Six possible chart speeds, chart width 55 mm, length 150 ft., linearity 8 v, at 5 m.A, response D.C. to 100 c/s. Single pen with amplifier $\mathfrak{SD9}$; 2 pen recorder $\mathfrak{SB5}$ 4 pen with amplifier $\mathfrak{S149}$. Also 5 pen recorder complete with amplifiers, perification as above but housed in cabinet $\mathfrak{L225}$. P. & P. extra.

POTENTIOMETRIC 6 POINT STRIP CHART RECORDER BRAND NEW

For use with thermocouplers. pyro-meters and other c.m.t. sources. 6 point. Range (-100)-0-(+100) mV; 0-1,600 deg. C. 64 in. chart wildth; pen speed 8 secs. Accuracy $\pm 0.5\%$; 10 chart speeds 20-720 mm/hr. Tropicalled. Including tools and sparse. Listed at over 2200, Our price 279.10.0. Also available 0-100 mW F.8.D. \$89.10.0

SERVORITER Model FWS

SERVORITER Model FWS By well-known American manufacturer. Power supply 120 v 50 Hz. Response time 24 secs. Resistance source 10 K ohms max. Chart withit 11 in. This is a slow-speed recorder that can be used for measuring any quantify with a com-paralizely slow rate of change such as the sensitivity, reset, proportional band and rate to be adjusted. This unit enables the demanded temperature to be controlled and the actual temperature recorded. Bize: 16jin. wide, 17j in. high, 13j in. deep. Price £175. Carriage extra.

METERS

DIGITAL VOLTMETERS Type LM902-2. 4 digit 275. LM902-2R. 4 digit 275. LM1010. 4 digit 275. All the above units have been calibrated. DM2006. An all solid state D.V.M. having a wide application. Reale 9099. D.C. accuracy 0.017 f.a.d. with a D.C. rauge of 10 µV to IKV. Input Impedance 10000MQ. C.M. I. 1644B. Outputs parallel B.C.D. 2245. Carriage free. DM2010. Scale 109999. D.C. Accuracy 0.001 per cent. D.C. Range 10 micro volts to 1.1 kV. 1/P Z greater than 25000 Megohna. Outputs Parallel BCD. Price 2500. DM2001. Scale 19995. DC. Accuracy 0.025% F8D. DC RANGE 50 DM2001. deale 19995. DC. Accuracy 0.025% F8D. DC RANGE 50 DM2001. deale 19995. DC. Accuracy 0.025%

A.C.-D.C. CONVERTERS TYPE 2140/AI-BI and 2140/A3-B3

2140/Å3-B3 A flexible modulor system for use with a DVM for accurate mean (RMS) or true (RMS) Voltage measurements. Module A1 LF Amplifier X 0.1 to X 1000. Module A3 LF Amplifier X 0.1 to X 100. 2140/A1-B1 1000 V True RMS Converter. Price 2175. 2140/A3-B3 200 V Mean (RMS CALIBRATED) Converter. Price 2150 £150.

BRAND NEW SENSITIVE A.C. MILLIVOLTMETER A very neat attractive instrument at a very modest price. Extremely high input impedance maintained over 10 overlap-ping ranges. Battery powered giving portability and freedom from mains hum. 8pecefication: 30mV to 1000v. --20 to 2 decibela. Prequency: 5Hz to 50K Hz. Input Impedance: 100 Meg-ohma. Overail Accuracy: 10 per cent of F.B. D. Power Buppi?: 9v. PP9 battery. Consumption: 8.5mA giving approxi-mately 300 hours use. Supplied c/w screened input cable. Dimensions: Width 6 in. Meight 4 jin. Weight 34 jibs. Price: £B/10/0. F. & P. 10/-.

TEN TURN 3600° ROTATION

Linearity Per cent Res. Ohms 100/100/100 Manufacturer Model Beckman. Beckman. Beckman. A A.S. A. 8. 2501. PX4. 2610. .0.5 .0.5 .0.1 Beckman. Colvern. Colvern. Colvern. 500 500 500 1K 2K 2K 2K 2K 5K 26/1000/11 HEL107-10 HEL0710 8A1101 Relcon... Beckman .1.0 0.5 GPM15 GPA15/4 Reliance General Controle. Reicon. Colvera. Beckman Beckman X. Colvera. Colvera. Beckman. 07-10 CLR2503. 5K 10H 10H .0.5 .0.1 .0.1 A CLR26/1001 CLR2402. 10K 15K 18K 29K 30K 30K 30K 30K 30K Beckman Beckman Colvern Beckman Beckman Beckman Colvern BAJ3370.5. BA1244 2402. 8A95C. A.88 8A1692 8A1679 0.25 2402/1 07.10 07.5 Colvern . Reliance Colvera 2503. PX4. 50 K Foxes 50K 50K 100K/100K. A A A A 2501 2610 8A3902 Beckman Beckman Ford Beckman Beckman .0.5 100 K 0.1 0.5 100K 100 K 100 K 298 K Colvern . Colvern . Beckman .0.1 A ... 300K THREE TURN 780° ROTATION 60/-60/-45/-45/-60/-35/-C. Type C. Beckman Beckman Beckman Fox .0.5 100/100. PX2/H3 . 0.5 Beckman C.88 10K 20K/20K 10K/10K Beckman. Beckman. C.s. 10 watts £6.10/-10 watts £6/10/-PXM130 . 80/-General Controls. Reliance 156 TURN 56160° ROTATIONKTP0701 29/10/-460. FIVE TURN 1800° ROTATION HELO7.05 Relcon. . 45/-40/-40/--F/11 .CLR2505... .CLR2605... .Colvern 111 5 K FIVE-&-A-HALF TURN 40/-SINE COSINE

Maker Price Coivern £17/100 Smith £22/10/0 Coivern £17/10/0 Coivern £17/10/0 Coivern £17/10/0 Kelvin-Hughes £17/10/0 A £17/10/0 Values 5 Kohms 14 Kohms 15 Kohms 20 5 Kohms 25 Kohms 30 Kohms 32 Kohms 35 Kohms Colvern Smith Colvern Colvern

BOURNS KNOB POT

BOURNS KNOB POT New 10-turn precision potentiometers consisting of potentiometer, knob sand readout dial in one extremely comjusct assembly. A very attractive unit finished in black plastic with while dial. Available in 100K, 20K, 5K, 1K. 11W. Resistance tolerance 5%. Accuracy correlation of dial reading to 0/P 0.5%. Weight 0.6 oz., overall length 11/16 in., diameter 1 in. New price £7.15.0 each. Our price £4/10/0. P. & P. 2/6.

Type NI 1. End reading as shown. Price £1 each. P. & P. 2/6. Cold cathodegas.filled. in-line 0-9 digital display tubes. Long Iffe expectancy. Minimum striking voltage 180v. 8ide reading type XN 13. Price 18/6 each. P. & P. 2/6.

MERCURY WETTED

MERCURY WETTED RELAYS Type (new) HG4B1007 relay is capable of an operating time as short as 5 milli-econds. A BILLION OFERATIONSI small chassis space required. Con-venient mounting. Exavironment-free. Tamper-proof. High sensitivity. Main-teuance-free. No contact wear, Perfor-mance is made possible by the presence of a film of mercury which at one and the same time cushions the contacts and the same time cushions the contacts and the same time cushions the contacts and the same time cushions the contact and the same time cushions the contacts and the same time cushions the contacts and the same time cushions the contacts and the same time cushions are contact and the same time cushions and eliminates bounce or chatter in the electrical circuit. Hermetic assumes contacts and duminates ofits and assures contacts and mer-cury pool in a glass capsule eliminates the contact and the same to contact and the saures contacts and summer. Type Coil Resistance

	Coil Resistance		Contaels
HG2B 1004	5000 ohm		28P8T
НО2ь 1006	1300 ohm	24	28P8T
	1300 ohm		
HQ4B 1005			48PST
HG4B 1007	1300 ohm		48P8T
BOTH NE	W AND EX-EQUI	PMENT AVAILA	BLE
New Relays £2/	10/0. Ex-equip. £1/.	10/0. P. & P. 5/	

PHOTOMULTIPLIER VMPII/44 (CV 2317) by 20th Century Electronics Cathode sensitivity 40µA/L. Operating voits for 10 A/L 1100 voits. DARK current 0.004µA. £91(10)0. E.M.I. 6097 and 20th Century CV 2317 £9/10/0. P. & P. 5/-.

ANIMAL SONARAY Type 1803B by Dawes An instrument for measuring the thick-ness of fat on an animal by the use of ultrasonicsusing the pulse cho principal. The animal sonary was specifically designed for the measure of back fat thickness for use under field conditions. Fully portable weighing only 26 lb. With handbook. price: £146/10/0.

With Bandoook, pres: 2149/10/0. CRYSTAL OVENS Rediton Flitted Bi-Metal Strip 75°C 5°C. Octal Base Type A 4280 EDN°C° CY AG and I2V ACOr DC. Price 24/10/0 P. # P. 2/8. Type A 4860 EDN°A° 12V/24V AC/DC. Price 24/10/0. Marconi Type F 3008-01 E12/10/0. P. & P. 2/8. VARIABLE VOLTAGE TRANSFORMERS Various types available, including single- and three-phase manual or motor drive. Contact us by phone or letter for stock appraisal and delivery.

SYNCHRONOUS CHOPPERS Base B-9. Coll 6.3 v., 50-60 Hz. Propor-tion of time contacts are closed 45%. Also available 100 Hz and 400 Hz. Price g6/10/0. P. & P. 5/-.

and a series

0000

NEW COMPLETE TELE-PHONE DIAL ASSEMBLIES Clear Perspex dials-no markings. 20/- each. P. & P. 5/-.

LINEAR THYRISTER CON-TROLLED LIGHT DIMMER 600w. module. Ideally suitable for photoflood or speed controller, etc. Will mount into standard socket boxes. mount into standard socket Our price 59/6. P. & P. 3/-.

HIGH VALUE RESISTANCE

HIGH VALUE RESISTANCE BOX TYPE R.7003 Specification. Range: 0.01-111 Meg. In 0.01 Megohm dirkinos. Accuracy: 0.05%, Maximum power rating: 0.1w. per step. Case: Hammer finish store enamel. List price £60. Our price \$99210.00 £22/10/0.

Beckinstion. Type: Moving coll galvanometer. Ranges: 1. 0.05 to 5 ohms. 20. 0.5 to 50 ohms. 3. 5 to 500 ohms. 4. 50 to 5.000 ohms. 5. 500 to 50,000 ohms. Scales: 3 witched, Sildswire: 0.5 to 50. Galvanometer scale: 10-0-10. Case: Moulded pisstic. Internal Source: V. Dury battery. Dimensions: 200 × 110 × 65mm. Weight: 0.9 kg. List price 225. Our price 28/19/6.

Specification. Value: 0.001H. Accuracy: ±0.3%. Operating Fre-quency: 5 Kc/s, 10 Kc/s. Maximum current: 1A, 3A. Resistance of colis: 4 ohm. 1 ohm. Case: Moulded plastic. List price 8 gns. Our price 50/-.

MUTUAL INDUCTANCE

PP

BOX TYPE R.7005 Specification Range: 0-11.100 mH in 0.002 mH divisions. Accuracy: $\pm (0.3 \times 0.012)$ % where M=value of mutual -M→)% where *s* = value of inductan inductance in mH set on the box. Fre-quency range: 0-2.5 Kc/s for all decades except X1=0-15 Kc/s. Maximum current: 0.5Å for decades 1A for vario-meter (both primary and secondary wingings). Case: Polished teak. List price £65. Our price £26/10/0.

ELECTRONIC BROKERS LTD., 49-53 PANCRAS ROAD, LONDON, N.W.I. Tel: 01-837 7781/2. Cables: SELELECTRO

5 4

...

(ZIL) Prove of

Do

Available now! The new Mullard data book for 1970

Quick! get up-to-date with the latest information about Mullard semiconductors, valves, television picture tubes and components.

For easy flick-through location, each section of this pocket-sized data book is colour-coded.

III INCOMENT

just 4/-

	В			Fully		aranteed Qu & DEVICI	
1N4001	2/-	AAZ17	2/-	BSX20	4/-	INTEGRATE	D CIRCUITS
1N4002 1N4003	2/3 2/6	AC126 AC127	5/	BSX20 BSX21 BSX76	5/-	Type 1-11 12	
1N4004 1N4005	3/-3/6	AC127Z AC128	5/-	B8Y27 B8Y28	4/-	IUL923 12/6 11	/9 1/- 0/- 9/
1N4006 1N4007	4/- 5/-	AC154 AC169	3/-	BSY29 BSY50	5/-	SL403A 49/6 45 MC1303 52/6 48 MC1304 55/- 50	/- 45/- 40/- 35/
1N4009 1N4148	1/6	AC153 AC176	4/-	BSY53 BSY66	5/-	PA246 52/6 48	/- 45/- 40/- 35/
2G301 2G302	4/- 4/6	AC187 AC188	5/-	BSY67 BSY95	5/-	2N3055 15/-	12N3819 8/-
2G303 2G306	5/-7/6	ACY17 ACY18	6/-	BSY95	3/- 3/6	Mullard 115 watt	Texas F.E.T.
2G308 2G309	7/6	ACY19 ACY20	5/	BY100 BY103 BY127	4/6	Silicon Power 25+13/- 100+11/-	25+6/9 100+5/9 500+5/-
2G371 2G374	4/6	ACY21 ACY22	4/6 3/6	BY126 BYZ10	3/6		
2G381 2G382	5/-	ACY28	3/6	BYZ11	9/- 8/-		2N2646 10/6
2G383 2N404	5/-	ACY34 ACY36 ACY39	5/- 9/6	BYZ12 BYZ13 BYZ15	5/-	NPN Planar All colours	Motorola Unijunction
2N696 2N697	4/6	ACY40 AD140	3/-	BYZ16 GET10	12/6	25+1/8 100+1/6	25+8/9 100+7/6
2N698 2N706	8/6 1/6	AD149 AD161	12/6	GET10 MPF10	3 4/6		1
2N706A	2/6	AD162 AF102	7/6	MPF10 MPF10	3 7/-	AF139 6/-	AF186 9/-
2N708 2N914	3/-	AF114 AF115	6/6	MPF10 OA5	5 8/-	Siemens V.H.F. 25+5/3 100+4/6	Mullard V.H.F. 25+8/- 100+7/-
2N916 2N918	4/6	AF116 AF117	6/6	OA7 OA9	4/	500+3/9	500+6/-
2N919 2N920	4/	AF118 AF124	12/6	OA10 OA47	4/-	AD161/AD162	BY126 3/6
2N922 2N930	8/6	AF125 AF126	5/-	OA70 OA71	2/-	13/- PAIR Mullard	Mullard 800v.
2N1131 2N1132	6/- 8/-	AF127 AF139	4/-	OA73 OA74	2/-	NPN/PNP Pairs	1 amp. plastic
2N1303 2N1304	4/6	AF178 AF181	9/6	OA79 OA81	2/-	25+10/- 100+8/6	
2N1305 2N1306	5/- 5/-	AF186 AF239	9/-	0A85 0A86	2/6	BY127 4/-	BYZ13 5/-
2N1307 2N1308	5/-	AFY19 AFZ11	22/6	OA90 OA91	2/-	Mullard 1000v. 1 anip. plastic	Mullard 6A. 200v 25+4/- 100+3/4
2N1309	5/- 5/-	AFZ12	10/-	OA95 OA200	1/6	25+3/3 100+3/-	
2N2147	17/6	ASY26 ASY27 ASY28	7/6	OA202 OA210	2/-	BT102/500R 12/6	BCI07/8/9 2/9ea.
2N2287	25/-	A8Y29	6/-	0A211 0AZ22	9/6 5 7/6	Mullard thyristor 500 p.i.v. 6.5 amp.	I.T.T. Planars 25+2/5 100+2/-
2N2904 2N2905	8/6	ASY67 ASZ21 AUY10	8/6	OAZ22 OAZ22	8 7/6 9/6	25+11/- 100+10/3	
2N2925 2N2926	4/- 2/-	BSM BA110	19/6	OAZ23 OAZ23 OAZ23	1 9/6	0A200/0A2021/9	OCP71 19/6
2N3011 2N3053	7/6	BAY31 BC107	2/-	OAZ23 OC16	8 9/6	Silicon. Diodes	Mullard Photo
2N3054 2N3055	12/6	BC108 BC109	2/9	OC16 OC19 OC20	7/6	25+1/6 100+1/3	25+17/3 100+14/9 500+13/6
2N3702 2N3703	3/6 3/6	BC113 BC116	6/- 8/-	OC22 OC23	9/6 12/6	500+1/1	
2N3704 2N3705	4/-3/6	BC118 BC134	7/6	0C24 0C25	12/6	0C42 6/-	0C44 4/-
2N3707 2N3709	4/-3/6	BC135 BC136	6/- 7/-	OC26 OC28	5/-	Mullard 25+5/3 100+4/9	Mullard 25+3/3 100+2/9
2N3710 2N3794	3/-2/6	BC137 BC138	8/- 8/-	OC29 OC35	12/6	500+4/3	500+2/4
	3/6	BCY30 BCY31 BCY32	5/6 8/6	OC35 OC36 OC41	12/6	0C45 3/6	0071 3/-
2N3819	12/6	BCY 33	10/	0C42 0C43	6/- 8/-	Mullard	Mullard
2N3823	19/6	BCY34 BCY38	6/- 7/-	OC44 OC45	4/-3/6	25+3/- 100+2/6 500+2/-	25+2/3 100+2/- 500+1/9
2N4058 2N4061	5/6	BCY39 BCY40	8/6	0C46 0C70	5/6		BCY34 6/-
2N4286 2N4288	3/	BCY42 BCY43	5/- 5/-	0C71 0C72	3/- 5/-	0C75 5/-	Mullard
2N4289 2N4290	3/6	BCY70 BCZ11	4/- 7/6	0C73 0C74	6/-	25+4/3 100+3/6	25+5/- 100+4/3
2N4291 2N4292	3/-	BC147 BC148	3/9 2/9	OC75 OC76	5/-	500+3/-	500+4/-
40362	12/-	BC149 BF152	4/	OC77 OC78	8/-	0C20 19/6	IN4001/2/3 2/3
	10/	BF194 BF195	3/6	0C81 0C81D 0C82	5/- 4/-	Mullard 100v. 25+15/9 100+14/6	1 amp. 100-300v. 25+1/10 100+1/6
28004	9/6 9/6	BD124 BEN300		0083	5/	500+13/3	500+1/4
28012 2	15/-	BF115 BF154	5/- 8/-	0C84 0C122	5/-	IN4004/5 3/-	ZENER DIODES
28017	20/-	BF158 BF159	6/-	OC123 OC139 OC140	5/-	400-600v. 1 amp.	400MW 5%
28036 7	12/6	BF163 BF167	8/-	OC141	7/6	25+2/6 100+2/-	BZY88 RANGE
28320 28321	9/- 6/-	BF173 BF180	6/- 7/6	OC169 OC170 OC171	5/-	500+1/10	All voltages 3.3v,-33v, 4/-
	7/6 10/- 12/6	BF181 BFX30 BFX88	7/6	OC200 OC201	6/- 5/- 9/6	IN4006/7 4/-	25+2/6 100+2/-
28512 28701	9/6	BFY20 BFY50	12/6	OC202	12/6 7/6	800-100v. 1 amp.	500+1/9
28701 28702 28731	8/6 11/- 8/6	BFY51 BFY52	5/- 4/6 5/-	OC203 OC204 OC205	8/- 12/6	25+3/4 100+3/-	1000+1/7 Any one type
29732 29733	8/6 9/6	BFY53	4/-	OC206	15/-	500+2/6	
AA178 AAY12	8/6	BFY64 BLY10	8/6 20/-	OC207 OCP71	15/-	0C139 5/-	0C140 7/6
AAZ12 AAZ13	4/- 2/6	BLY11 BPX10		ORP12 ORP60	12/6	25+4/- 100+3/3	25+6/- 100+5/-
	-/-					500+3/-	500+4/-
_						MUM ORDER	
		INTEGR.	ATED 10-2		1TS 25-99	SEND FOR YO OF 1970 LIST N	
MULLA	1	7/6	14/-	-	12/-		ES TODAY!
FJH101 FJH111	1	7/8	14/-	-	12/-	Discounts 10% on 15% on	12 + any one type 25 + any one type
FJH101 FJH111 FJH121 FJH131	1	7/6			12/-	QUANTITY PI	RICES PHONE
FJH101 FJH111 FJH121 FJH131 FJH141 FJH231	1	7/6 7/6 7/6	14/-		0110		
FJH101 FJH111 FJH121 FJH131 FJH141	111111111111111111111111111111111111111	7/6		9	27/6 25/- 48/6	ALL LISTED DEV	ICES ARE FROM
FJH101 PJH111 PJH121 PJH131 PJH141 PJH231 PJJ121 PJJ131	111111111111111111111111111111111111111	7/6 7/6 7/6 2/6 2/6 2/6 2/6	14/- 32/- 28/ 56/	9 8 8	27/6 25/- 48/6 48/6	ALL LISTED DEV STOCK AT TIME OF PLEASE ADD 1/6d.	ICES ARE FROM
PJH101 PJH111 PJH121 FJH131 PJH141 PJH231 PJJ121 PJJ131 PJJ141 PJJ211	111111111111111111111111111111111111111	7/6 7/6 7/6 2/6 2/6 2/6 2/6	14/- 32/- 28/ 56/	9 8 8	27/6 25/- 48/6 48/6 ation.	ALL LISTED DEV STOCK AT TIME OF PLEASE ADD 1/6d.	COING TO PRESS POST & PACKING CORDER
PJH101 PJH111 PJH121 FJH131 PJH141 PJH231 PJJ121 PJJ131 PJJ141 PJJ211	111111111111111111111111111111111111111	7/6 7/6 7/6 2/6 2/6 2/6 2/6	14/- 32/- 28/ 56/	9 8 8	27/6 25/- 48/6 48/6 ation.	ALL LISTED DEV STOCK AT TIME OF PLEASE ADD 1/6d. TO YOU 03 EDGWARE R ONDON, W. 2	COING TO PRESS POST & PACKING CORDER

TRANSISTOR STABILISED POWER SUPPLY-TYPE R31/A Ortput Vallage: 0 to 30V continuesity variable. Ortput Contact: 0 to 15A. Reprie & Heise: tot RMS approx. Stabilization Ratio; 10005. Minter Votage: Z40V @ 50Hz (110V if responsed Dimensione: Height: 5" (15.25cm), Width: 4j" (11.43cm), Dupth: 10j" (26.03cm), Price: 28.10.0 P&P-17/6 (U.K. mby)

TRANSISTOR STABILISEO POWER SUPPLY-TYPE B32 POWER SUPPLY—IYPE R32 Organ Varlage: 0 to 19-0-caminum by vandala. Oxford Carrent: 0 to 0.5A. Rapis & Nains: Varlage: 240V @ 50H: 010V if marries Varlage: 240V @ 50H: 010V if marriestand. Rapidle: 5' 0.2.2mil. Vedito: 5' 0.2.7mil. 019/fit: 5' (2.0.4mil. Price: E18.10 0 P&P-12/6 (U.K. enty)

TRANSISTOR A.F. SIGNAL GENERATOR---TYPE R21 Fragmany: 15ht to 20ht/s in diver ranges Frag. Accuracy ± 5% (hypical TM sin all diver ranges: 0 trajer: Vallage: 0 to 1% MMS estimated variable. Removes, to Exterior Better than PA. Battery Lills: Own 300 hums. Disasesises: Height 4" (Dulfson), Webs 6" (States): Own 301 hums. Childle.php-WB (U.K. unly).

CHARGER-TYPE R42 CHARGEN-TYPE R82 Dirthat: Carrent: 10 to 500mA continuously variable. Cell Capacity: 1 to 20 (1.27) calls in series. Meter Accuracy: ± 2% FSB. Dimensions: Huipht: 5" (12.7cm). Width: 5" (12.7cm) Opple: 5" (20.8cm). Piles: 108.0.0 PBP. -12/5 (ILK matel

O. & R. ELECTRONICS LTD., WORKS ADDRESS: 5, LONG STREET, HACKNEY, LONDON, E.2

WW-089 FOR FURTHER DETAILS

Wireless World, July 1970

transparent cover) with diamond cartridge or 2025 TC and the very successful DUO type 2 speakers.

beautifully finished in teak veneer with matching vynair grills. They incorporate a $10\frac{1}{2}$ $6\frac{1}{2}$ trive unit and high frequency speaker, both of which are of 3 ohms impedance. The Duo speaker system is also available separately at £6.6.0, each plus 15. P & P. Complete stereo system £41 plus £2 10 P & P.

Specification: Output per channel 10 watts r m s Frequency bandwidth 20 Hz to 20 kHz ± 1db @

Frequency bandwidth 20 Hz to 20 kHz ± 1db @ 1 watt. Total distortion: @ 1 kHz @ 9 watts 0.5% Input sensitivities: CER. P.U. 100mV into 3 meg ohms. Tuner 100mV into 100K ohms. Verioad restor: Better than 26db. Signal to noise mitio: 70db on all inputs (with vol. max). Signal to noise mitio: 70db on all inputs (with vol. max).

Controls: 6 position selection switch (3 pos. stereo & 3 pos. mono) Separate Vol. controls for left & right channels Bass 14db @ 60 Hz Treble (with D.P.S. gn/off mono) Separate Vol. cont Bass 14db @ 60 Hz

High fidelity translator stereo amplifier employing field effect translators. With this feature & accompanying guaranteed specifications below, the Viscount F.E.T. vastly surpasses amplifiers costing far more.

± 12db @ 10 kHz. Tape Recording output sockets on each charmel Size: 121" X 6" X 21" in teak-finished case. BUILT & TESTED.

Mk II (MAG, P.U.) £15,15.0. Post & packing 10/- extra

Specification same as Mk I, but with the following inputs. Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3mV @ 1 kHz input impedance 47K Fully equalised to within \pm 1db RIAA. Signal to noise ratio—65db (vol. max).

STOCK

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3

watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size 7" x 2" X 41/2" deep.

ORIGINALLY SOLD COMPLETE FOR £15.4.6. SET OF PARTS £6.6. PLUS 7/6 P & P.

Speaker, baffle, and fixing kit 25/- extra plus 4/- P & P.

50 WATT AMPLIFIER

00 (3.0

3 electronically mixed channels with 2 inputs per channel, enables the use of 6 separate instruments at the same time. The volume controls for each channel are located are located directly above the corresponding input sockets SENSITIVITIES AND INPUT IMPEDANCES. relative to 10w output TONE CONTROLS ARE COMMON FO ALL INPUTS. Bass Boost + 12db at 60 Hz Bass Cent-13dB at 60 Hz Treble Boost + 11dB at 15 KHz Treble Cut - 12dB at 15 KHz With bass and treble controls central - 3dB points With bass and trable controls central — 32dB at 15 RNz were 30 Hz and 20 KHz POWRE 0UTPOT: for speech and music 50 watts mm, 100 watts paak. For sustained music 45 watts mm, 90 watts paak. For since wave 385 watts mm. Nearty 80 watts paak. For since wave 385 watts mm. Nearty 80 watts paak. For since wave 385 watts mm. Nearty 80 watts paak. Total distortion at rated output 3.2% at 1KHz. NEGATIVE FEEDBACK 20dB at 1 KHz SIGNAL TO NOISE RATIO 5005. MAINS VOLTAGES edistable from 200-250%. AC 50-80 Hz. A protective fuse is located at the rear of unit. Output impedance 3.8 and 15 ohms.

RADIO & TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3. Also 323 Edgware Road, London, W.2. ALL ORDERS BY POST to Action

Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

www.americanradiohistory.com

Wireless World, July 1970'

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs—they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. & G. Telecommunication Techns'. Certs.
- C. & G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs, in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5-valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

FILL BOLL	INTERNATIONAL CORRESPONDENCE SCHOOLS						
	Intertext House,	Stewarts	Road, Lor	ndon, S.W.8			
Please send	me the ICS prosp	ectus—free	and witho	ut obligation.			
(state Subject	t or Exam.)			**********			
		••••••••••		******			
NAME			••••				
ADDRESS							
				7/70			
INTERNAT	IONAL CORP	RESPON	DENCE	SCHOOLS			

KSM KSM Electronics Ltd., Bradmore Green Brookmans Pk., Herts. Tel Potters Bar 59707

WW-091 FOR FURTHER DETAILS

New 1970 prices 157. Electronic	. Components Ltd
 A C107 14/6 BD119 15/- NKT121 11/- OC71 3/- 12C306 9/6 2N3133 6/- 25003 13/- AC127 5/6 BD123 11/6 NKT122 8/- OC75 4/6 20371 3/- 2N3135 6/- 25003 15/- 2002 15/- 20127 2/6 BD123 11/6 NKT125 5/6 OC76 1/6 203716 3/- 2N325 28/6 25006 15/- 2002 12/- 2N3225 28/6 25006 15/- 2002 13/- 2N325 28/6 25006 15/- 2002 13/- 2N326 5/- 25012 4 12/- NKT125 5/6 OC76 1/6 203716 3/- 2N325 28/6 25016 13/- 25012 4 12/- NKT125 5/6 OC76 1/6 20376 5/- 2N325 28/6 25016 13/- 25012 4 22/- 2N326 1/6 2/- 2002 13/- 2012 13/- 2N330 3/- 25012 4 22/- 2N326 1/6 2/- 2N330 3/- 25012 4 22/- 2N326 1/2/- 2N330 3/- 25012 4 2/- 2N326 1/2/- 2N330 3/- 25012 4 2/- 2N326 1/2/- 2N330 3/- 25012 4/- 2N326 1/2/- 2N340 4/- 2N326 3/- 2N340 4/- 2/- 2N3	LOWEST I.C. PRICES VET! () PA330 20/- IC Preamplifier PA337 32/6 2 watt audio amp. PA347 32/6 3 watt audio amp. PA346 52/6 5 watt audio amp. SL403A 42/6 3 watt Plessey amp. SL403A 42/6 3 watt Plessey amp. SL403A 42/6 Mullard linear amp. SL403A 42/6 Mullard gen. purp. amp. TA263 15/- Mullard gen. purp. amp. TA200 45/- IC receiver TA232 20/- Mullard gen. purp. amp. TA310 30/- Record/Playback preamp. TA310 30/- Record/Playback preamp. TA320 13/- MOS LF amplifier 3N84 26/- Silicon controlled switch Data sheets available on request I/- per copy. LEASE NOTE: Only new-full specifica- tion integrated circuits, no below-specifica- tion integrated circuits, no below-specifica- tion integrated circuits article—2/8. Page data and circuits article—2/8. Page data and circuits article—2/8. Pastic spreaders—1/8 each. DEMESTIONE CONSTITUTIONED DEMESTIONE CONSTITUTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED DEMESTIONED
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ZENER DIODES 400mW 10% GLASS CASE TEXAS Mfr. 152036 152037 152047 152047 152047 152062 152066 152068 152067
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \text{bd} 0 \text{ bd} 0 \text{ bd}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IRC 20 8/6 Plastic SCR Thyristor, 200 piv 1-2amp (almilar ClOSBI) 25 + 7/9 100 + 7/- BC107 / 8/9 2/9 NPN Planar transistors BC107 6 9 25 + 2/3 100 + 2/2 BC108 25 + 2/3 100 + 2/2
BCZII 7/6 NKT0013 9/6 OC70 2/6 2G302 3/9 2N3055 15/- 25002 12/6 15113 4/6	BY 127 4/- Mullard Plastic HV rectifier 2N2926 2/- Mullard Plastic HV rectifier Similar NPN Planar transistors 2/- BY100 etc. 25 + 3/3 100 + 3/- 25 + 1/8 100 + 1/6 25 + 1/8 100 + 1/6
Manufacturers' original markings and are subject to our full replacement guarantee if not to published specifications. WE DO NOT offer "Re-marked" makers' rejects or similar out of specification devices. Please enclose a stamped self-addressed envelope with any query. Quantity prices on application: many more types in stock and expected daily. If you buy in bulk we can save you money!	INFRA-RED DEVICES 56 CAY 29/6 Gallium arsenide emitter
ADDRESS YOUR ORDERS TO:	MGA 100 35/- Gallium arsenide emitter 31F2 28/6 Mullard Phototransistor 25 + 17/3 100 + 14/9

L.J. LTD. 7 COPTFOLD ROAD, BRENTWOOD, ESSEX DIRECT LINES TO SALES DEPT: BRENTWOOD (ESSEX) 226470/1

www.americanra

Infra-red detector diode

25+17/3 100+14/9

GRATING MOTORS for 1.5, 6, 12 and 24V operation in

stock. PRESSURE TRANSDUCERS G291S up to 350 p.s.i., 100 pF sensitivity 1pF/20 p.s.i. 45/- post paid. LINEAR ACCELERATION TRANSDUCERS I.T-I-4F±

JOG 201- POST PAID. FULL TRACK (* TAPE) ERASE, RECORD REPLAY HEADS set of 3 75.4 (post paid). SINE-COSINE POTENTIOMETERS Types SCPI, SCP4, SCP5, CLR96, CLR66 in stock. BOURNE TRIMPOTS. Wide range available at attractive price

BOUNNE I RIMPOIS, VYIGE FARE AVIIABLE AT ATTRACT Prices. TRANSFORMERS 220/110v Hz 50VA Double wound Redcliffe. In steel case 55/- (post paid). CLASS D WAVEMETERS No. 2 1.2-19 Mc with charts. Brand new GIS (carriage 30/-). BC22IT WAVEMETER with charts. 425 (carriage 22/-). BC22IT WAVEMETER by reputable British Manufacturers. Flush 100mA MC 27(6 Proj 500mA RF 25/-500mA MC 36/-10A MC 37/6 CAMBRIDGE DYNAMOMETER VOLTMETERS in as new condition. 10 rankes up to 150v. in as new condition 445 each (plus carriage).

new condition. 10 ranges up to 150v. in as new condition £45 each (plus carriage). GLOSTER DIGITAL VOLTMETERS to 999V D.C. & A.C. send for pamphlet. £92.10.0 (carriage a)d). MARCONI VIDEO OSCILLATORS TF885A 50Hz-50HHz sine-square wave outputs ImV-31.6V in 11 ranges metered output £35 (carriage 30/-) fully serviced. MARCONI SIGNAL GENERATOR TF801A 10-300 MHz in 4 bands. £45 (carriage 30/-). MARCONI SIGNAL GENERATOR TF144G £30. Brand new with sources (carriage 30/-).

MARCONI SIGNAL GENERATOR TF144G (30. Brand new with spares (carriage 30/-). MARCONI A METER TF329G (50 (carriage 30/-). MARCONI A.F. WATTMETER TF950 | µ watts to 6 watts into switched loads. (20 (carriage paid). HIGH SPEED OSCILLOSCOPE TYPE CT90 P.O.A. AIRMEC SIGNAL GENERATOR TYPE 701 (33. (Carr. 30(-).

SCILLOSCOPES SOLARTRON'CD711552 D.C-9 MHz

FOLLOWING TYPES:

Mil size 11-400 Hz versions for 26 and 115v. operation with 10/20. 13/26 and 57.5/115v. control phase windings. Mil size 08, 10, 11, 15 and 18 motor generators for 400 Hz operation with 26 and 115v. energised tacho generators. Mil size 08, 10, 15 and 18 two phase servomotors also avail-able with 400 Hz windings and a limited range in 50 Hz types. Mil Permanent Magnet Field Servomotors Size 08, 11, 15 and 18 with supply voltages from 6 to 50v. D.C. Mil Size 10. Servomotors estanda available in variour

Mil Size II Servomotor gearheads available in various ratios from 10:1 to 1000:1. All items available ex stock and at extremely competitive

prices. Evershed and Vignoles' Servomotors and Servomotor-generators—we hold stocks of this well known manufac-turer's items amounting to about 100 different types—an enquiry stating your broad design considerations will bring a reply by return indicating ex stock availability of the motor most nearly meeting your requirements. Write for our Data Sheets A 131 onwards for details of available Servomotors.

Write for our Data Snees o 151 Unander of Saviable Savomotors. MIL SYNCHROS available ex stock in sizes 08, 11, 15, 16, 18 and 23 for 50, 60 and 400 Hz operation. Synchro Control Transformers Synchro Control Differential Transmitters Synchro Traue Transmitters and Receivers Synchro Resolvers Equivalent MAGSLIP ELEMENTS more suitable for educational use also in stock. Write for our Data Sheets A 001 onwards for Synchro and Magslip Information.

PRECISION POTENTIOMETERS

Numerous instrument types, continuous rota-tion potentiometers for control application and HELIPOTS In stock. List on application.

DRY REED RELAYS AND COILS FOR TRANSISTOR OPERATION Stocks of these Relays and Colls are now available for use at voltages from 1-48v and at operate powers from 2.5 to 30m W. Their characteristics render them ideal for transistor opera-tion. Details are as follows—deliveries are all ex stock.

Coll	Res	Typical Operate volts	Break	Coil	Relay Number		
37992D	190 ohms	2.3V	1.8V	4/-			9/-
37992Z	325 ohms	3.5V	2.5V	3/6	4.14	01	
37992J 37992B	2.2K 4K	5.5V 7.0V	2.5V 3.0V	4/-		8/-	014
37992M	4.05K	44	2.3V	4/6	7/-		9/6
37992G	7K	144	54	46	• /-		9/6
37992E	200 + 4.2K	3.5V	2.5V	4/6			9/6
		6.5V	4.5V	4/0			
37992H	1.2K+9K	7.0V	4.0V	4/-			9/-
		23.0V	9.0V				
37992R	1.5K +4K	4.2V	3.2V	4/-			
		5V	3.5V				
37992E	2.5K +4.2K	IIV	4.5	4/6			9/-
37358A	200	15V 2.5V	57	34			7/6
37338A	100 .	0.5V	2.0V 0.5V	3/-			//0
37991B	1.2K	24	14	5/- 1	Single Re	ed.	
37991A	2.4K	2.7	2.2V	4/- }	(Coils onl		
37822B	3.3K	4.5V	3.5V	5/- 1	(//	
	DOV	-		cro	TC		
	DRY	REED		SEK	15		

Overall length 1.85° (Body length 1.1°) Diameter 0.14° to switch up to 500 mA at up to 250v D.C. Gold clad contacts. 12/6d. per doz. 75/- per 1000; £27.10.0 per 1,000; £250 per 10,000. All carrlage paid. BSX 76 FAST SWITCHING n.p.n. TRANSISTORS (CV8615). For quanties up to 1,000 2/- each; up to 5,000 1/9d.; over 5,000 1/7d. each. Minimum order 10 off. In makers nacke

Packs. FAST SWITCHING LOGIC DIODES BAY 38 (CV8617) C24 per 1,000 (post pald).

A WIDE SELECTION OF SERVOMOTORS NOW AVAILABLE INCLUDES THE

a68

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Complete HRO 5T SET (Receiver, Set of 5 Coils & Power Unit) for \$27/10/-, carr. 30/	NIFE BATTERIES: 4 v. 160 amps, new, in cases, £20 each, £1 10/- carr. FUEL INDICATOR Type 113R: 24 v. complete with 2 magnetic counters 0-9999, with locking and reset controls mounted in a 3in. diameter case. Price 30/- each, postage 5/
COMMAND RECEIVERS; Model 6-9 Mc/s., as new, price \$5/10/- each, post 5/	FREQUENCY METERS: BC-221, meter only £30 each, BC-221 complete with stabilised power supply £35 each, carr. 15/ LM13, 125-20,000 Kc/s., £25 each, carr. 15/ TS.175/U, £76 each, carr. E1.
COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25W output, directly calibrated. Valves 2 × 1625 PA; 1 × 1626 orc.; 1 × 1629 Tuning Indicator; Crystal 6,200 Kc/s. New condition—£3/10/- each, 10/-	CANADIAN HEADSET ASSEMBLY: Moving coll headphones 1000, with chamois leather earmuffs. Small hand microphone complete with switch and
(Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)	moving coil insert. New condition. Price 35/- each, post 5/ AUDIO OSCILLATOR 382/F: Input 115 v. A.C., 50 c/s, 20-200,000 c/s per sec. in 4 ranges. Cont. wave. Output 0-10 v. in 7 ranges. Power output 100 mW.
AIRCRAFT RECEIVER ARR. 2t Valve line-up 7 × 9001; 3 × 6AK5; and 1 × 12A6. Switch tuned 234-258 Mc/s. Rec. only £3 each, 7/6 post; or Rec. with 24 v. power unit and mounting tray £3/10/- each, 10/- post.	Output impedance 1,00001 £27/10/- each, £1 carr. RACK CABINETS (totally enclosed) for std. 19in, panels, Size: 6ft, high ×
RECEIVERS : Type BC-348, operates from 24 v D.C., freq. range 200-500 Kc/s, 1.5-18 Mc/s. (New) £35.0.0 each; (second hand) £20.0.0 each, good condition, carr. 15/- both types.	21in. wide × 16in. deep. With rear door. £12 each, £2/10/- carr. OR 4ft. high × 23in. wide × 19in. deep. With rear door. £8/10/- each, £2 carr. CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour
MARCONI RECEIVER 1475 type 88: 1.5-20 Mc/s, second-hand condition £10.0.0 each. New condition £25.0.0 each, carr. 15/-,	green, medium persistence complete with nu-metal screen, £3/10- each, post 7/6. APNI ALTIMETER TRANS./REC., sultable for conversion 420 Mc/s., com-
RACAL EQUIPMENT: Frequency Meter type SA20: £35 each, carr. £1. Frequency Counter type SA21: £65 each, carr. 30/ Converter Frequency Electronic VHF Type S.A.80 (for use with the SA.20): 25 Mc/s-160 Mc/s, 540	plete with all valves 28 v. D.C. 3 relays, 11 valves, price £3 each, carr. 10/
each, carr. £1.	TEST EQUIPMENT
ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, 400 c/s 3 phase, £6/10/- each, 8/- post. 24 v D.C. input, 175 v D.C. @ 40mA output, 25/- each, post 2/	MARCONI TF-1274 VHF Bridge Oscillator . 275 each TF-1275 VHF Bridge Detector . 275 each TF-1067/1 Heterodyne Frequency Meter . 285 each TF-899 Valve Millivoltmeter
CONDENSERS: 150 mfd, 300 v A.C., £7/10/- each, carr. 15/ 40 mfd, 440 v A.C. wkg., £5 each, 10/- post. 30 mfd, 600 v wkg. D.C., £3/10/- each, post 10/ 15 mfd, 330 v A.C. wkg., 15/- each, post 5/ 10 mfd, 1000 v, 12/6 each, post 2/6.	TF-329G Circuit Magnification Meter £45 each TF-428/2 Valve Voltmeter £12/10/- each
10 mfd, 600 v, 8/6 each, post 5/ 8 mfd, 1200 v, 12/6 each, post 3/ 8 mfd, 600 v, 8/6 each, post 2/6. 4 mfd, 3000 v wkg., £3 each, post 7/6. 2 mfd, 3000 v wkg., £2 each, post 7/6. 0.25 mfd, 2Kv, 4/- each, 1/6 post. 0.01 mfd. MICA 2.5 Kv. Price £1 for 5. Post 2/6. Capacitor: 0.125 mfd, 27,000v wkg. £3.15.0 each, 10/- post.	6075A Deviation Test Meter £35 each
OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base 2 c/s750 Kc/s. Bandwidth up to 5 Mc/s. Calibration markets 100 Kc/s. and 1 Mc/s. Double	TF-987/1 Noise Generator £20 each TF-956 (CT.44) A.F. Absorption Wattmeter £20 each
Beam tube. Reliable general purpose scope, £22/10/- each, 30/- carr. COSSOR 1035 OSCILLOSCOPE, £30 each, 30/- carr. COSSOR 1049 Mk. 111, £45 each, 30/- carr.	FIRZ HILL V.200 Sensitive Valve Voltmeter £35 each B.810 Incremental Inductance Bridge £75 each SOLATRON CD-513 Oscilloscope 45 each
RELAYS: GPO Type 600, 10 relays @ 300 ohms with 2M and 10 relays @ 50 ohms with 1M., \$2 each, 6/- post.	CD-513-2 Oscilloscope £47/10/- each AW-553 Power Amplifier £30 each
12 Small American Relays mixed types £2, post 4/ Many types of American Relays available, i.e., Sigma; Allied Controls; Leach;	AIRMEC Type 701 Signal Generator £50 each PHILLIPS Type GM-6008 Valve Voltmeter. £35 each
etc. Prices and further details on request 6d.	DAWE Type 402C Megohm Meter £12 each
GEARED MOTORS: 24 v. D.C., current 150 mA, output 1 r.p.m., 30/- each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentio- meter, 3 r.p.m., £2 each, 5/- post.	CANADIAN C52 TRANS/REC.: Freq. 1.75-16 Mc/s on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., power input 12V. D.C., new cond., complete set £50. Carr. £2/10/ Power Unit for Rec., new £3/5/ Carr. 10/
SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.	DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1\%$ £3 each, 5/- post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1\%$ £3/10/- each, 5/- post.
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/	TELESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft. Closed measures 6 ft. Diameter 2 in. tapering to 1 in. $\pounds 5$ each + 10/- carr. Or $\pounds 9$ for two + $\pounds 1$ carr. (brand new condition).
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post 6/	COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female compactor first to receive UG 21 UL carity shown New in type "N" female
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., £2/10/- each, carr. 12/6.	connectors fitted to receive UG-21/U series plugs. New in ctns., £6/10/- each, post 7/6. CO-AXIAL SWITCH—Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) £6/10/- each, 4/6 post. 1 pole, 4 throw, Type M1460-4. (New) £6/10/- each, 4/6 post.
OHMITE VARIABLE RESISTOR: 5 ohms, 5 amps; or 2.6 ohms at 4 amps. Price (either type) £2 each, 4/6 post each.	PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, 0.250-1.0 KMC/SEC. (New) \$75 each, post 12/6. FIXED ATTENUATOR:
TX DRIVER UNIT : Freq. 100-156 Mc/s. Valves 3 × 3C24's; complete with filsment transformer 230 v. A.C. Mounted in 19in. panel, £4/10/- each, 15/- carr.	Type 130c, 2.0-10.0 KMC/SEC. (New) £5 each, post 4/ FIXED ATTENU- ATOR: Type 1157S-1, (new) £6 each, post 5/
POWER SUPPLY UNIT PN-12A: 230V a.c. input 50-60 c/s. 513V and 1025V @ 420 mA output. With 2 smoothing chokes 9H, 2 Capacitors, 10MRfd 1500V and 10MRfd 600V. Filament Transformer 230V a.c. input. 4 Rectifying Valves type 5Z3. 2 x 5V windings @ 3 Amps each, and 5V @ 6 Amp and 4V @ 0.25 Amp. Mounted on steel base 19 Wx11"Hx14"D. (All connections at the rear). Excellent condition £6.10.0. each, Carr. £1.	FOR EXPORT ONLY BRITISH & AMERICAN COMMUNICATION EQUIPMENT
AUTO TRANSFORMER: 230-115V, 50-60c/s, 1000 watts. mounted in a strong	VRC.19X Trans-ceiver, 150-170Mc/s, 2 Channel, 20 Watts, Output 12/24V d.c.
steel case $5^{"} \times 6\frac{1}{2}^{"} \times 7^{"}$. Bitumin impregnated. £5 each, Carr. 12/6. 230-115 \overline{V} , 50-60c/s, 500 watts. $7^{"} \times 5^{"} \times 5^{"}$. Mounted in steel ventilated case. £3 each, Carr. 10/	system, with antennae. W.S. Type 88, Crystal controlled, 40-48 Mc/s. W.S. Type HF-156, Mk. II, Crystal controlled, 2.5-7.5 Mc/s. W.S. Type 62, tunable, 1.5-12 Mc/s. C.44, Mk. II, Radio Telephone, Single Channel, 70-85 Mc/s, 50 watts, output, 230V. ac. input. G.E.C. Progress Line Tx Type D036, 144-174 Mc/s.
POWER UNIT: 110 v. or 230 v. input switched; 28 v. @ 45 amps. D.C. output. Wt. approx. 100 lbs., £17/10/- each, 30/- carr. SMOOTHING UNITS suitable for above £7/10/- each, 15/- carr.	50 watt, narrow band width. A.C. input 115V. BC-640 Tx, 100-156 Mc/s, 50 watt output, 110V or 230V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1989, 100-156 Mc/s. TRC-1 Tx/Rx, Types T.14 and R.19, FM 60-90 Mc/s. With associated equipment available. Redifon GR410 Tx/Rx,
CORPORAL ROCKET ELECTRONIC GUIDANCE EQUIPMENT: Beacon Radio DRN.7. Rec/Trans. Assembly MX.2048DPW-8. Electronic Control Amplifier AM1510/DJW3. Transmitter C-1493/MRQ.1. Power Units and mis- cellaneous spares available.	operation. General Electric Transmitter, 410-419 Mc/s, thin line trops scatter system, with antennae. W.S. Type 88, Crystal controlled, 40-48 Mc/s. W.S. Type HF-156, Mk. II, Crystal controlled, 2.5-7.5 Mc/s. W.S. Type 62, tunable, 1.5-12 Mc/s. C.44, Mk. II, Radio Telephone, Single Channel, 70-85 Mc/s, 50 watts, output, 230V. ac. input. G.E.C. Progress Line Tx Type D036, 144-174 Mc/s, 50 watt, narrow band width. A.C. input 115V. BC-640 Tx, 100-156 Mc/s, 50 watt output, 110V or 230V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, 100-156 Mc/s. TRC-1 Tx/Rx, Types T.14 and R.19, FM 60-90 Mc/s. With associated equipment available. Redifon GR410 Tx/Rx, SSB, 1.5-20 Mc/s. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 1854A. Collins Tx/Rx Type ARC-27, 200-400 Mc/s, 28V d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458; 455 Tx/Rx. Directional Finding Equipment CRD.6 and FRD.2 complete Sets available and spares. Telephone Installation type XY, (U.S.A.), 600 Line Auto- matic Telephone Exchange. Complete system with full set of Manuals. Mobile
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2 × 811 valves, microphone and modulator transformers etc. £7/10/- each, 15/- carr. ALL GOODS OFFERED WHILST STOCKS LAST IN "	Communications installation mounted in a trailer with $4 \times$ pneumatic tyres. Consisting of 3xARC-27 Tx/Rx with all associated equipment (as new).

CALLERS BY TELEPHONE

APPOINTMENT ONLY

3-B TRULOCK ROAD, TOTTENHAM, N.17 Phone: 01-808 9213

BEDFORD STORES: Elstow Depot., Bldg. 10C7, Kempston Hardwick. Tel: Wilstead 605

www.americanradiohistory.com

OPEN 9-6 MONDAY TO SATURDAY (EDGWARE ROAD 1/2 DAY THURSDAY)

BENTLEY ACOUSTIC EZ41 8/6 PCF84 8/- R19 7/6 U76 4/9 AAZ13 3/6 BCY34 4/6 GET119 4/- OC24 5/- E280 4/6 PCF86 12/9 8.20 11/6 U78 4/3 AC107 3/- BCY38 5/- GET573 7/6 OC25 5/-
FW4/5006/6 PCP800 13/- 39/6 U193 6/9 AC127 2/6 BC168 3/6 GET873 3/- OC35 7/6
38 CHALCOT BOAD CHALK FARM LONDON NUM 4 GZ30 7/- PCF801 7/- RK34 7/6 U251 14/6 AC154 5/- BC113 5/- GET874 0C36 7/6
THE VALVE SPECIALISTS Telephone 01-722-909 0232 12/6 CP802 9 - 9F13C 12/6 U281 8/- ACI56 4/- BC116 3/- 23/6 OC88 9/6
GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX, S
GZ87 14/6 PCF808 14/6 THAR 10/- U329 14/6 AC166 5- BCZ11 3/6 GET889 4/6 OC43 23/6
Please forward all mail orders to Littlehampton HABC80 8/6 PCH20018/3 TH223 7/- U403 6/6 AC167 12/- BD110 9/- GET890 4/6 OC44 2/-
Save portal contail Cash and carry by callers welcome. HL130 4/- PCL82 7/8 TP2620 8/9 U404 7/6 AC168 7/6 BF154 5/- GET894 4/9 OC44F 8/3 BL23DD5/- PCL83 10/- UABC80 6/8 U601 19/6 AC169 6/6 BF154 5/- GET894 4/6 OC44F 2/6
072 58 65 W0 14/3 0/06T 6/8 20L1 80/- 807 11/9 DL86 7/- ECH88 8- HL41DD PCL84 7/6 UAF42 10/3 U4020 7/6 AC176 11/- BF168 4/- GEX13 3/6 OC46 8/-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
024 4/0 6C4 5/-6X5GT 5/- 20P3 18/- 1821 10/6 DM71 7/6 ECL80 7/- HL42DD9/- PCL88 15/- UEC41 9/- VP2B 9/6 ACY17 3/- BF180 6/- GEX38 10/- OC70 2/3 1A3 4/6 6C6 3/9 6 Y6G 8/- 20P4 18/8 5763 10/- DW4/330 ECL82 6/6 HN 309 27/4 PCL805/85 UEC81 7/- VP13C 7/- ACY18 3/8 BF181 8/- GEX45 6/6 OC71 2/-
1A6 5/- 6C9 14/6 6Y7G 12/6 20P5 20/- 6060 5/6 8/6 ECL83 9/- HVR2 10/6 9/0 UB261 6/7 4 202 9/0 BP161 6/- GEX51 5/- 0072 9/0
1A/01 //3 0017 12/6 /250 10/9 251001 5/6 7193 10/6 DY86/7 5/9 ECL84 12/- HVE2A10/6 PEN45 7/- UBF89 6/9 VP41 7/6 ACY20 3/6 BFY50 4/- GT3 5/- 0C73 16/-
1D5 7/4 ACTUA 7/ 7/8 AL DSVSO B/4 A1044 00/ DOD A4 DOW DA A1 1WS D/0 FEASDDD UBL/21 9/- VR/D 24/- ACY21 3/9 BPY51 4/- M1 2/10 UC/4 2/6
1D6 9/6 6CL6 8/6 7F8 18/6 2524G 6/- A2134 19/6 E83F 24/- ECLL800 1W4/300 6/- PENAG 4/-
1FD1 6/6 6CW4 12-7H7 5/6 25Z5 8/- A3042 15/- E88CC 12/+ 30/- KT2 5/- PEN453DD UCC85 7/3 VT61A 7/- AD140 7/6 40/- MAT101 6/6 0C78 8/-
1FD9 43 6D3 7/6 7R7 13/- 25266 8/6 AC3PEN E180F 19/- EF22 18/6 KT8 34/6 19/6 UCF80 8/3 VT501 3/- AD149 8/- BY100 3/6 MAT120 7/9 OC78D 3/-
1 HAGT 7/ AD1 10/2 DBW2 7/ SACIS 12/ ACODEN/ W11/2 10/0 R141 15/0 CE21 9/- VOII 7/3 AD101 9/- BY101 3/- MAT121 5/0 UC/9 8/-
114 2/6 6Fd 12/6 9D7 15/6 30C17 18/- DD 19/6 EA50 1/6 EF39 5/- KT61 12/- 4020 17/6 UCH81 6.6 VU120A18/- ADT14012/6 BY114 3/6 OA9 2/6 OC81D 2/-
12.00 0/ 0F0G 0/ 10C1 25/ 30C18 14/ AC6 PEN EA78 13/ EF40 10/ KT63 5/ PFL20011/9 UCL82 7/ VUI33 7/ AF102 18/ BY126 3/ OA10 8/6 OC81M 5/
1R5 5/6 6P14 15/- 10D9 14/7 30FL2 15/- 19/6 EAF42 10/- EF54 12/6 FT75 19/6 PL81 0/6 0/6 0741 10/- W6131 10/6 AF145 4/- BF173 20/6 0A73 3/- 0A23 2/-
184 4/9 6F15 10- 10F1 16/- SOFL12 16/- AC/PEN (7) EB34 3/- EF73 6/6 KT88 34/- PL61A 10/6 UF80 6/9 W729 18/- AF117 4/6 BY211 5- 0A79 1/9 0C84 8/-
155 4/6 UF85 6/9 XE3 4/5 AF119 3/- BYZ12 5/- OA81 1/9 OC123 4/6
9701 818 STALL 10/2 10/10 10/1
3A5 10/- 6F26 18/- 10P13 13/- 30L17 15/6 AL60 15/6 EBC81 5/6 EF86 5/3 L63 3/9 PL302 19/- 1141 10/9 AP124 2/0 B1215 30/- 0420 9/6 0420 13/-
3B7 D-6726 5/3 10P14 20/- 30P4 12/- ARP3 7/- EBC00 4/- EP89 5/- LN319 13/9 PL500 13/- UL46 12/6 X61 5/9 AF139 13/- C664H 4/- OA91 1/9 OC172 4/-
204 T/4 attack at 10 LA39 10/8 TL004 13/6 UL84 6/6 A60 10/- AF1/8 13/6 PSYILA 4/6 UA90 1/9 UC200 4/4
3Q4 7/8 6H60T 3/- 12AC6 7/6 17/8 AZ1 8/- EBF80 6/9 EF92 2/6 M8162 12/6 PL505 28/9 UM80 6/6 K66 10/- AF179 13/6 F8Y28A 4/6 OA200 1/- OC201 5/6 8Q5GT 6/- 6J5G 8/9 12AD6 7/6 30P12 13/9 AZ31 9/6 EBF83 8/- EF97 10/- ME140014/9 PL508 27/10 UE1C 10/8 X101 30/6 AF180 9/6 GD4 6/6 OA202 2/- OC202 4/6
384 5/9 6J6 8/- 12AE6 12/6 30P19 12/- AZ41 10/6 EBF89 6/3 EF98 10/6 MH14 12/6 PL609 28/9 ULT 7/6 17/6 17/6 AF181 14/- GD8 5/6 0A210 9/6 0C203 4/6
3V3 0/0 05/0 4/9 12AT6 4/6 50FL1 13/9 BL03 10- EBL21 12/- EF183 6/- MHLD612/6 PL802 15/- UU8 14/- Z329 16/- AF186 11/- GD6 5/6 0A211 18/6 0C204 5/6
STAD 5/8 8/70 6/ 104TE 4/0 00DT 14 14/ 0020 4/0
5V4G 7/6 6K7GT 4/6 12AU7 4/6 30PL15 15/- CV988 4/- EC70 4/9 EK90 4/9 N78 40/3 PV80 6/- UVIN 9/6 2/00/ ASV2 6/6 GD10 4/- 042002 9/-
513GT 5/6 6K8G 4/- 12AV6 5/6 35A3 10/- CY1C 10/6 EC86 12/6 EL32 3/6 N108 27/10 PY81 5/3 IIV01 9/8 and diades A8V99 10/- GD11 4/- OAZ903 9/6 OCP71 23/-
523 9/-6L1 19/6 12AX7 4/6 35A5 16/-0T31 7/6 EC88 12/-EL33 12/-113 6/6 1799 5/3 UV41 7/6 1X1124 10/6 X100 28/- GD12 4/- OA2204 9/- ORP12 10/6 5246 7/-6L607 7/9 12A7 9/9 35D5 12/6 D63 6/-EC92 6/6 EC92
6/30L2 12/- 6L7GT 12/6 12BA6 6/- 35L6GT 8/6 D77 2/3 ECC31 15/6 EL37 17/3 N154 6/6 PV66 6/9 U136 6/6 PV66 10/6 B1161 10/6 0/- B1161 10/6 0/2 B106 10/6 B1161 0/6 B116100 0/6 B1161 0/6 B1161 0/6 B1161 0/6 B1161 0/6 B116
6A8G 6/6 6L18 0/- 12BE6 5/9 35W4 4/6 DAC32 7/- ECC32 4/6 EL41 11/- N308 17/6 PY301 12/6 112/14 7/6 2N1756 10/- BA115 2/8 GD18 4/- 0A220710/6 8M1038 10/-
6AC7 3/- 6L19 2//6 128H7 6/- 3523 10/- DAF91 4/3 ECC33 31/6 EL42 10/6 N329 6/6 PY800 7/6 U16 16/- 2N9147 17/- BA116 5/- GET111 OAZ210 7/- ST1276 10/-
0 WE & ANTOM ALA DATE OF ALL D
6AK6 6/- 6P1 12/- 12K5 10/- 50B5 6/3 DD4 10/6 ECC81 3/9 EL84 4/9 N379 6/6 COVASUO 109 370 20 20 20 20 20 20 20 20 20 20 20 20 20
6AL5 2/3 6F25 12/- 12K7GT 6/9 56C5 6/3 DF33 7/9 ECC82 4/6 EL85 8/- N709 4/9 24/- U25 13/- 2N3053 6/6 BCY12 5/- GET116 6/6 OC22 5/- Y728 8/6
4 MA SIG 2002 961 100 4700 100 100 100 100 100 100 100 100 100
6AQ5 5/6 6Q7G 6/- 8/- 72 6/6 DF97 10/- EC65 5/6 EL95 5/3 PC86 10/3 19/6 U13 9/6 DN370 5/4 MATCHED TRANSFOR SETS
6AB6 20- 807GT 8/6 128C7 5/- 85A2 8/6 DH63 6/- ECC86 8/- EM80 7/6 PC88 10 8 QVO4/7 12/6 U35 16/6 2N3866 20/- LP15 (AC113, AC154, AC157, AA120). 10/6.
6AT0 4/= 6K/G 7/- 12807 4/6 88A3 8/- DH76 5/- ECC85 7/- EM81 7/6 PC95 8/3 R10 16/- U37 34/11 2N 3988 10/- 1-OC81D and 2-OC81, 7/6.
6AV6 5/6 68A70T 7/- 128J7 4/6 90AV 67/6 DH81 10/9 ECC80418/- EM85 11/- PC000 7/6 DH81 137/5 U40 10/0 E3323 10/- 1-0.44 Bd 2-0.049 Bd 2-0.049 B/4 Set of 2-0.049 B/4
6B8G 2/6 68C7GT 6/6 128K7 4/9 90CG 34/- DH101 25/- ECC807 27/- EM87 7/6 PCC84 6/3 R17 17/6 1149 11/9 AA120 3/- BTC. 1 watt Zener Diodes, 2.4v., 2.7v., 3.0v.
0 BAO 4/0 0507 0/- 1250 (318/- 90CV 33/6 DK32 7/3 ECF80 6/6 EY81 7/6 PCC85 6/6 B18 10/- U50 5/6 AA129 3/- 3.6v., 4.3v., 13v., 15v., 16v., 20v., 3/6 each.
4DW8 7/8 4917 8/4 1497 14/ 15000 14/4 DV01 5/8 DOD04 0/ 19700 11/1 10000 0/0
6BJ6 8/6 68K7 4/6 18 12/6 150C2 5/9 D K02 9/- ECP804 EY84 10/- PCC189 10/6 All goods are new and subject to the manufacturers' guaranteed. We do not handle manufacturers
SPOTA 7/ SHOT 7/ 10 101 40/ 302 10/ DI 32 1/ DI
appr 15/9 61/407 19/ 2001 13/ 203 18/ DL35 4/9 PCH23 16/9 PCH30 10/9 Terms of business. Cash with order only. Post/packing 6d. per item. Orders over 25 post/
6BB8 12/6 6U7G 10/6 20D4 20/5 305 16/6 DL92 5/9 ECH42 12/9 EZ35 5/- PCF80 6/6 Dacking free. All orders deared same day by first-class mail. Any parcel manage in
6B87 25/-6V60 3/6 20P2 14/- 306 18/- DL94 5/9 ECH81 5/9 E240 7/6 PCP52 6/3 of statist for only 56 extra. Complete catalogue of waves, transactoring and complete catal
as suice have and have a suid much support of the subject of the s

LIQUID LEVEL DETECTOR. Detects even mildly con-ductive liquids, i.e. ether. etc. N.O./N.C. contacts. Fails to safe. £10 ea. S.a.e. literature. COPPER LAMINATE PRINTED CIRCUIT BOARD $(8\frac{1}{2} \times 5\frac{1}{2} \times \frac{1}{14}$ In.), 2/6 sheet, 5 for 10/-. Also 11 × 6 $\frac{1}{2}$ in., 3/- ea., 4 for 10/-. HIGH SPEED MAGNETIC COUNTERS (4×1×1 in.) 4 digit. 24/48v. (state which), 6/6 ea. P.P. MODULAR POWER SUPPLIES. Fully stabilised 8.5 to 9.5 volt, 10 amp. (12 x 6 x 4 in.) Brand new. Individual spec. with each unit. £10 ea. ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240v. A.C

RADIATION MONITORING EQUIPMENT. Portable and bench models (brand new) S.a.e. literature KLYSTRON POWER SUPPLY (Solartron AS562). £40. Carr. 50/-.

KLYSTRON POWER SUPPLY (Elliott PKU1) €100 120 AMP. AUTO TRANSFORMERS. 190-270v. 50 c/s (tapped every 5 volts). £50 ea. (Carr. by arrangement.)

801A SIGNAL GENERATOR. 10-300 mc/s in 4 bands. Ext. 50 c/s-10 Kc/s. Output 200 m/v. £50 ea. P.P. 25/-.

SPEAKERS

- SPEAKERS
 "E.M.I." 19 x 14 in. 50 watts. 8 ohm (14A/600A.) Four tweeters mounted across main axis. Separate "X-over" unit balances both bass and h.f. sections. 20 Hz. to 20,000 Hz. Bass unit flux 16,500 gss. A truly magnificent system. £25. P.P. 50/-.
 E.M.I. 13 x8 in. 10 watt with integral tweeter. 15 ohm. 56/- ea. P.P. 5/-.
 "E.M.I." 6½ in. Rd. 10 watt woofers. 8 ohm. 30/- ea. P.P. 2/6.
- P.P. 2/6 in. 20 watt. 15 ohm. (122/10A.) With Integral tweeter, £6 ea. P.P. 7/6. SPEAKER SYSTEM (20×10×10 in.) Made to Spec.
- SPEAKER SYSTEM (20×10×10 in.) Made to Spec. from ½ in. board. Finished in black leathercloth. 13×8 in. speaker with twin tweeters complete with "X-over".
 50 Hz. to 20,000 Hz. £7 10s. P.P. 10/-.
 SPEAKER CABINET KIT. Above mentioned cabinet only. In kit form which you may assemble and cover to your own choice. 40/-, P.P. 5/-.
 EXTRACTOR FANS/BLOWERS
 "AIRMAX" 7½ in. FAN. In aluminium diacast housing (9 in.). 240v. Brand new. £4 10s. P.P. 10/-.
 "PLANNAIR" 5½ in. FAN. (Type 5 PL 121-122.) Diecast housing. 240v. Brand new. £6. P.P. 10/-.
 "SOLARTRON" TANGENTIAL BLOWERS. Overall size 16×5½×3½ in. Air outlet 12×1½ in. 240v. Brand new. 50/- ee. P.P. 7/6.
 BULK COMPONENT OFFER. Resistors/capacitors. Ali

- 50/- ea. P.P. 7/6. BULK COMPONENT OFFER. Resistors/capacitors. All types and values. All *new* modern components. Over 500 pieces, £2. (Trial order 100 pieces 10/-.) We are confident you will re-order.

LEVEL METERS (1½ × ½ In.). 200 micro-amp. Made in Germany. 15/- each.

SILICON PHOTOVOLTIC CELLS (MS2BE) 550m.V. m.a. 30/- ea.

RELAYS H.D. 2 pole 3 way 10 amp. contacts. 12v.w. 7/6 ea. LIGHTWEIGHT RELAYS (with dust-proof covers) 4 c/o contacts. 24v. 500 ohm 7/6 ea.

PRECISION CAPACITANCE JIGS. Beautifully with Moore & Wright Micrometer Gauge. Type 1 15 1.220 pl. £10 ea. Type 2 9.5 pf-11.5 pl. £6 ea. POT CORES LA1/LA2/LA3. 10/- ea.

71 WAY PLUG & SOCKET (Painton Series 159) Gold plated contacts with hood & retaining clips. 30/- pair. 50 WAY PLUG & SOCKET (U.C.L. miniature). Gold plated contacts 20/- pair. 34 way version 15/- pair.

CO-AX RELAYS (magnetic devices) 1 change-over 12 v.w 20/- 68

COMPUTER BOARDS 4-OC23; 4-2N1091; 4-2G302; 4-OA10. 20/- ea. 8-OC42 (long leads); 16-OA47. 7/6 ea. 8-DA11A; 14-OA47. 5/- ea. Bargain pack of 5 boards. Components too varied to enumerate. At least 100 transistors and diodes. £2 lot.

TRANSFORMERS

- TRANSFORMERS (shrouded). Prim. 200/250v 20/40/60v. 2 amp. 52/6. P.P. 7/6. L.T. TRANSF Sec. 20/40/60v.
- L.T. TRANSFORMERS. Prim. 200/250v. Sec. 20/40v.
- 1.5 amp. 30/-, P.P. 5/-, "ADVANCE" CONSTANT VOLTAGE. Prim. 190/250v. \pm 15%. Sec. 115v. 2,250 watts. £15 ea. P.P. 50/-.
- L.T. TRANSFORMER 20v. 1.5 amp. 15/-, P.P. 2/6. ISOLATION TRANSFORMERS, 250 watts. 45/-. P.P. 10/
- LT, TRANSFORMER. Prim. 240v. Sec. 33-0-33v. 5 amp. 45/-, P.P. 10/-. STEP-DOWN TRANSFORMERS Prim. 200/250v. Sec.

115v. 1.25 amps, 28/- ee. P.P. 5/-L.T. TRANSFORMERS Prim. 240v. Sec. 8/12/20/25v 3.5 amp models 20/- ; 5 amp model 25/-. P.P. 5/6.

L.T. TRANSFORMERS Prim. 240v. Sec 14v. 1 amp 10/-ea. P.P. 2/6.

www.americanradiohistory.com

- ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240v. A.C 85/- ea. P.P. 5/-. GUARTERLY ELECTRIC CHECK METERS, 40 amp 240v. A.C., 20/- ea. P.P. 5/-. "LONG LIFE" ELECTROLYTICS (screw terminal) 25,000 u.f. 40v. (4¹/₃ × 2¹/₃ ln.) 17/6 ea. P.P. 2/6. 10,000 u.f. 40v. (4¹/₃ × 2¹/₃ ln.) 17/6 ea. P.P. 2/6. 3,150 u.f. 40v. (4¹/₃ × 2¹/₃ ln.) 17/6 ea. P.P. 2/6. 3,150 u.f. 40v. (4¹/₃ × 1¹/₃ ln.) 15/- ea. P.P. 2/6. EXECUTIVE "SIXTY" AMPLIFIER. (60 w. r.m.s. into 8 ohm.) British designed and built, True hi-fliperformance. Built-in filters to protect speakers. Three Independently mixed inputs. High-Low impedance. Mic. Crystal-Ceramic-Magnetic Cartridge, or aux. equipment £55. P.P. 50/-S.a.e. literature. Magnetic Cartr S.a.e. literature.

TELEPHONE DIALS (New) 20/- ea

RELAYS (G.P.O. '3000'). All types. Brand new from 7/6 each. 10 up quotations only EXTENSION TELEPHONE (Type 706) Black or 2 tone Grey. 65/-. P.P. 5/-. UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank 1 wipe 65/-. 10 bank 1 wipe 75/-. Other types from 45/-.

REED RELAYS 4 make 9/12v. (1,000 ohm.) 12/6 ea. 2 make 7/6 ea. 1 make 5/- ea. Reed Switches (11 in.) 2/-ea. £1 per doz.

SUB-MINIATURE REED RELAYS (1in.×±in.). Weight ± oz. Type 1. 960 ohm, 3/9v. 1 make. 12/6 ea. Type 2. 1800 ohm, 3/12v. 1 make. 15/- ea.

SILICON BRIDGES. 100 P.I.V 1 amp. (#x#x# in.).

- H.T. TRANSFORMERS, Prim, 200/240v, Sec. 300-0-300v, 80 m/a. 6.3v, C.T. 2a. 6.3v, 2a. 30/- ea. P.P. 7/6, 350-0-350v, 60 m/a. 6.3v, C.T. 2a. 20/- ea. P.P. 5/-.
- **PATTRICK & KINNIE** 191 LONDON ROAD · ROMFORD · ESSEX RM79DD ROMFORD 44473

CONVERTOR/BATTERY CHARGER. Input 240v 50 c/s, output 12v 5 amp DC. Input 12v DC, output 240v AC. 170 watt max. With fuse and indicator lamps. Size $91 \times 10 \times 41$. Weikth 191b. An extremely compact unit that will give many years' reliable service. Supplied with plus and lead. Only 44/10/. P. & P. 15/. extra. As above—fully serviceable—perfect interior but solied exterior cases, (3. P. & P. 15/. C.M. THESE. Bread and COL/COS/COS0 at 27/6 co G.M. TUBES. Brand new. G24/G38/G60 at 27/6 ea. G53/1, brass cased, 66 ea. MULLARD MX 115 GM TUBE with holder. Plat app 300 volts. 30/- ea. P. & P. 3/6. PHOTOMULTIPLIERS. EMI 6097X at 68/10/- ea. TRANSISTOR OSCILLATOR. Variable frequency 40 c/s to 5 kc/s. 5 volt square wave o/p, for 6 to 12v DC input. Size 14×14 × 14 in. Not encapsulated. Brand new. Boxed. 11/6 ea. RACAL Diversity unit. £10 each. Carriage £1. CRAMER TIMER 28V, DC Sweep 1/100th sec & sweep 80 secs. 4" dial. Remote control stop/start reset 26.10.0. Omron/Schrack octal based plug-in relays. 2 pole c/o 5A, 6v only. Brand new. Boxed. 12/6 ea. G.E.C. 4 pole c/o 61/2v operation 180 ohms. Platinum contacts. Brand new. Boxed 12/6 ea. Miniature STC Plug in relays Plastic dust cover. 4 pole c/o 7.5-18 v. operation. 185 Ohms 8/- each. 4 pole c/o 7.5-18 6/- each per 100. S.T.C. sealed 2 pole c/o. 2.500 ohms. (okay 24v) 2/6 es. 127-7/-ea. **CARPENTERS** polarised Single pole c/o 20 and 65 ohm coll as new, complete with base 7/6 ea. Single pole c/o 680, 1,110 and 1,570 ohm coll. As new 6/6 ea. Single pole c/o 14 ohm coll 6/6 ea.; Single pole c/o 45 ohm coll 6/6 ea. Brand New. Single Pole c/o (type 5A2), 2×1200 ohme 8/6 ea. 8/6 ea. POTENTIOMETERS COLVERN Brand new. 5: 10: 50; 100; 250; 500 ohms; 1; 2.5; 51: 02: 25; 50k all at 2/6 ea. Special Brand new MORGANITE 250K 1 in. sealed. Normal price 9/-, our price 3/6 ea. TRUMENT 3" Colvern. 5; 25; 100 ohms. 7/- ea. TRIM POTS. Palgnton-solder lugs 5, 10 & 25K at 5/- each: Pins 10; 20; 50; 100; 200; 250; 500 ohms; 2.5; 25 and 50K at 10/- each. DARSTAN-preset-sealed }" dia. | high. 1; 2 and 5K 1/6 HIGH RESOLUTION 25K 80 turns. Complete with ALMA precision resistors 100K; 400K; and 998K-0.1% 5/6 ea: 3.25K-0.1% 4/- ea. DALE heat sink resistors, non-inductive 50 watt. Brand new, 15 ohms-6/6 ea.; 8.2K 4/6 ea. Excellent dummy load. Wheatstone Bridge by TINSLEY type 1138 £75. CAPACITORS ERIE feed through ceramicons 1000 pf—9d. ea. Sub-min. TRIMMER i square. 8, 5pf. Brand new 2/6 ea. Concentric TRIMMER \$130 pf. Brand new 1/8 ea. ELECTROLYTICS. Brand new. 2500 mfd 64V 9/6 ea. 4000 mfd 40V 9/6 ea.; 250 mfd 70V 4/6 ea.; 2000 mfd V 7/- ea. HT 2 infd 5 KV. Brand new £2 each. VISCONOL EHT. Brand new 0.0005 25 kV. 16/- ea. E.H.T. 0.02mfd 8KV- 6/- ea.; 0.1mfd 2.5 KV-nitrogel— 4/6 ea.; 0.5mfd 5KV—11/- ea.; 0.5mfd 2.5KV 7/- ea. DECADE DIAL UP SWITCH. Finger-tip. Engraved 0/9. Gold plated contacts. Size 21^o high, 22^o deep 1^o wide. 30.^o ea. Bank of 4 with escutchin plates etc. 21^o high 21^o deep, 21^o wide. 45. **DIODES** 1N914. Brand new 1/3 ea.; 12/- doz.; £4-100; £25-1.000. PHOTOCELL equivalent OCP 71 2/6 ea. BURGESS Micro Switches V3 5930. Brand new 2/6 ea. BULGIN panel mounting Lamp holders. Red. Brand

TRANSISTORS BC 114—NPN Low noise high gain audio, etc.; BC 116—PNP General purpose 200 mc/s. Ex brand new equipment. Guaranteed perfect. Good lead length. 2/~ ea.

NUCLEONIC INSTRUMENTS SCALER type 1000 by Dynatron. Suitable Beta/ ganuna counts. Built in test signal. Calibrated adjust-able discriminator. Read out 2 decade neons and 4 disit counter. Supplied in as new condition at **45** ea. Carr. 30/-. As above but with resettable counter £8 ea.

As above but with resettable counter $\pounds 8$ ea. Carr. 30/-. Few only RATEMETER type 1161B Complete with built in EHT supply. Separate metering EHT and Count. EHT available for external equipment 0 to 8 kv. As new $\pounds 35$, Carr. 30/-. Portable Geizer Counter in haversack, complete $\pounds 5$ ca. P. & P. 10/-. 100 CHANNEL PULSE HEIGHT analyser type 1363B. As new $\pounds 75$. As above but type 1363C. $\pounds 120$. ECKO PULSE HEIGHT ANALYSER type N101 $\pounds 55$. Carr. 30/-.

DEKATRON Display unit type NIS 223. £20.

Carr. 30/-. CINTEL Transistorised Nucleonic Scaler with adjustable discriminator. 6 meter display 0-9 giving count of 10 to the 5. New Condition. Now ONLY £18.

PULSE Generator type 1147A. £6. Carr. 30/-.

CASH WITH ORDER

BRAND NEW BCI14 TRANSISTORS. 5/- ea; 4/3 ea. per 100; 3/6 ea. per 1,000. MINIATURE SPEAKERS 15 ohm 21n. diameter. TEST GEAR

0	SCILLOSCOPES
E.M.I.	WM 2 DO-13 mc/s £35
E.M.I.	WM 8-680
SOLARTRON	7118.2 D.B. DC-9 n.c/s £60
SOLARTRON	643 DC-15 mc/s NOW only £65.
SOLARTRON	DC-10 inc/s. CD518-£35, 513.2
	-£40, CD523-£45
SOLARTRON	568 DC-6 mc/s £18
COSSOR	1035 DB. £20
COSSOR	1049; 1049 Mk. 8. DB. £22/10 and
and the second second	£30
HARTLEY	13A DB. £18/10/-

All carefully checked and tested. Carriage 30/- extra.

All carefully checked and tested. Carriage 30/- extra. MARCONI TF 956 (CT44) Audio Frea. Wattmeter £15. Carr. 10/. TF 886 Magnification Meter £45 Carr. £1 TF 869 N.5. Impedance Bridge £55 Carr. 30/-TF 144G Signal Generator, Serviceable, Clean £15 In exceptional condition £25. Carr. 30/-TF 195M Sine wave oscillator 0/40kc/a £12 Carr. £1 TF 428E/1 Valve voltmeter £4 Carr. 10/-TF 428E/2 Valve voltmeter £6 Carr. 10/-TF 930 Sig. Gen. £35. Carr. 30/-TF 93B Carrier test £6 Carr. 10/-TF 93B Carrier Deviation Meter £25. Carr. 30/-TF 93B Carrier Deviation Meter £25. Carr. 30/-TF 93B Carrier Deviation Meter £25. Carr. 30/-SOLARTRON

SOLARTRON Pulse generator POS 100C 50 c/s-1 mc/s **618** Carr. £1 Laboratory amplifter AWS51A. 15c/s-350kc/s **635** Carr. £1

Carr. £1 Stabilised P.U. SRS 151A £20 Carr. 30/-Stabilised P.U. SRS 152 £15 Carr. 30/-Stabilised P.U. AS 516 & AS 517 £3, and £6 Carr. 10/-Calibration Unit type AT203. £25. Carr. 30/-Process Response Analymer. Fine Condition £250 Oscillator type OS 101. £35 ca. Carr. 30/-

Usculiator type OS 101. £35 ca. Carr. 30/-AVO AVO TRANSISTOR ANALYSER-£75 only. Testmeter No. 1 £14 Carr. 15/-Electronic Testmeter CT 38. Complete £18 Carr. £1 SPECIAL by G. & E. BRADLEY. Multimeter type CT471B. Battery operated, fully transistorised, sensitivity 100 M ohm/V. measures a.c./d.c. voltage (12mV-1200V scales, +|-3%|/+|-2%|/6.8.d.) a.c./d.c. current (12 microA-12.4 scales, +|-3%|/6.8.d.) a.c./d.c. current (12 microA-12.4 scales, +|-3%|/6.4.d.) a.c./d.c. current (12 microA-12.4 scales, +|-3%|/6.4.d.) multiplier (4V-400V scales up to 50 MHz; 40 mV-4V up to 1000 MHz). Brand new. Few only. £60 Carr. 30/-

CINTEL Wide Range Capacitor Bridge **£25** Carr. 15/-Sine and Pulse Generator type 1873 **£25** Carr. 15/-

Sine and Pube Generator type 161 213 Carr. 10/ Valve Millivoltmater type 264. 3MV-11V (20 Carr. £1 Counter type 865. 6 decades. Bricht Vertical display gate facilities. Very good condition (215. Carr. 30/-Signal Generator type 701. (35. Carr. 51)

OSCILLOSCOPE CAMERA. Shackman 25ft. Exp 270 frames. Times from 1/250 to 1 secs. auto. Dalmere Fl. 9 Focal 14in. with standard 4in. to 5in. fitting. £30.

BECKMAN MODEL A. Ten turn pot complete with dial. 100k 3% Tol 0.1%—only 52/6 ea.

E.H.T. Base B9A in Polystyrene holder with cover. Brand new. 2/6 ca. ZENITH E.H.T. Tester, with Probes. Metered 0-3.5 kv. £25 Carr. 30/-. DVM & RATIOMETER BIE 2116 by Blackburn £75 ea.

DENCO S band low noise travelling Wave amplifier £35. Carr. 30/-.

Carr. 30/-.
SIGNAL Generator CT 53. Complete with leads. Good condition. 410 Carr. 15/-. With copy of charts.
FREQUENCY Meter LM 14. Modulated version of BC 221 with charts and covers. Brand new 230. Carr. 30/-.
SPECIAL. FURZEHILL V200 Valve millivolt meter. 10 my to 1 kv. 425 Carr. 61.
FURZEHILL Valve Voltineter type 378B/2. Range 0-80 dba & 10 millivolts to 100 Volts in 5 ranges. Size 11 x 84 x 7tm. 412. Carr. 15/-.
MIC-O-VAC type 22 (CT54) Volts; Current; Ohna. Ct 200 mc/s with probe, leads etc. As new 48/10/0 P. & P. 10/-.
VIBRATING REED ELECTROMETER type N 572

VIBRATING REED ELECTROMETER type N 572 by ECKO, Range 10 to the -14. Max sensitivity FSD for 1 of 0.03 Micro-microamps. £20 ea. Carr. £1.

3 CM Wave Guide, some flex; Sanders Attenuators; Decca Waveguide Switches; Delay lines, etc. Phone or call.

DISTRIBUTED AMPLIFIER type 2C/3 50 c/s 100 mc/s Gain 300, £30 each. Type 2C 50 c/s to 100 mc/s £16 each.

DAWE Wide Range oscillator type 400A. 20 cs to 20 kc/s Sine wave. 500, 600 and 2000 ohm. Fine condition. £25. Carr. 30/-.

PAIGNTON ATTENUATORS 0.1 db. to 100 db. in 3 decades, 600 ohm, 19" rack mounting, 620 ea. Carr. 15/-PISTON ATTENUATOR' in carrying case. 30-140 mc/s calibrated 0/70 db. £10 ea. Carr. £1

Precision THERMISTOR by YSI. 100 k. at 25°C. Range: 40°C. to 150°C. Supplied with charts giving ohms for each degree over entire range. Brand new. 42 ea. ADVANCE Signal Generator type D1. 2 mc/s to 190 mc/s. Sine and square mod. With original charts. Excei-lent condition £12/10/0 P. & P. £1

CLAUDE LYONS Main Stabilizer. Type 7000C. Input 212-252 volts 47/85 c/s. Output 238 volts 0.5% 53 amps. **£40**. Carriage at cost.

SERVOMEX Mains Stabilizer. Type AC7 Mk. 11. 200/250 volte 0.1%, 45/65 c/s-60 amps. New Condition. 475. Carriage at cost.

ROBAND P.U. Type M39A. Stabilized 300 volts 2 amps. 622 inc. carriage. HOLGATE 6 channel Event recorder. 1in. or 10in. inches per second. Size 4j × 5 × 8in. Excellent condition. 620.

HEWLETT PACKARD Recorder and Decoder type 20610. As new. Write or phone for further details. 19in. Rack Mounting CABINETS 61t. high 2ft. deep. Side and rear doors. Fully tapped, complete with base and wheels. £12/10/0 Carriage at cost.

Double Bay complete with doors. Fine condition. **£25**. Carriage at cost.

MULLARD Translatorised Analogue to Digital Con-vertor Model L 281. As new. 420 Carr. 15/-SUNVIC DC chopper Amplifier type DCA 1. Superb condition, £22/10/0 ea. Carr. 20/-

CINTEL Universal Counter £30. Carr. 30/-

PROCESS TIMERS 8 individual timer circuits. each with 0-100 sec calibrated dials. Ideal displays, processes, etc. Standard mains input £20 Carr. 25/-.

ISOLATING TRANSFORMERS 24/0V in 24/07 DIECAST ALLOY boxes. Size $4 \times 2\frac{1}{2} \times 1\frac{1}{2}$ in. Drilled ends for Belling Coax socket. S compartments link holes between, 6/6 each, P. & P. 2/-.

CONVERTOR 50 c/s single ph. to 400 c/s 3 ph. 250w. In 6ft. enclosed 19" rack cabinet. £35 ea. Carr. at cost. AMPEX FR400 with Benson-Layner 'XY' Plotter. Large vacuum table. Auto paper feed. £500.

4 DIGIT RESETTABLE COUNTERS. 1000 ohm. coll. Size 11 × 1 × 41in. As new, by Sodeco of Geneva. £2/10/0 each.

As above but 350 ohm. £3/10/0 ea.

METERS-WESTON 25.0.25 microamp. Scaled -100-0-+100.5}" × 4". **£4** ea.

100-0.+100. 51" × 4". 64 ea.
TRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trans. Standard 240v AC to 120v tapped 60-0-60 700w. Brand new. 66 ea.
As above but 500w. 64 ea.
75 WATT Constant voltage transformer. 195 to 255 volta=240v out. 30'- each. P. &. P. 5/-.
MODULATION trans. PP-6 BW6. 30/- each. P. &. P. 5/-.

Transformer 0-215-250 120 MA; 6.3V 4A CT × 2; 2×6.3v 0.5A and separate 90v 100 MA 25/- each P. & P. 4/-.

Matching contact cooled bridge rectifier 7/6 each. 350-0-350 75mA, 5v 2 amps $\times 2$, 21/- ea.

300-0-300 (2011A, 37 2 amp8 × 2, 41/- 6a. Gardners 6.37 2A; 6.39 1-5A; 6.37 0-1A. Size 3 × 1‡ × 4‡in. As new. 9/6 ca. P. & P. 3/- ca. Parmeko/Gardners. Potted. 475-60-060-475 at 160 mA; separate winding 215-0215 at 45mA; 6.37 5A; 6.37 0.75A; 57 3A, As new. £3 ca.

Gardners/Gresham. Potted 450-400-0-400-450 180 ma; 0-4-6.3 SA x 2: 0-4-6.3 4A; 0-4-5V 3A. In original boxes 44 ea. incl. postage.

Gardners 2kV 10MA and 4 volts × 2. £4/10/- ea incl. postage.

Parmeko 65v 1 amp. Separate 0-18-24v at 0.5 amp. 30/-ea. Gard/Parm/Part. 450-400-0-400-450. 180 MA. 2×6.3v.

ADVANCE Constant Voltage Trans. 3KW **£50**. Also 1.5 KW available **£30**. ADVANCE Constant Voltage Trans. 6 volts 50 watt. As new **£3** P. & P. 10/-

Gardners 5v 30amp. Brand new £1/10 each incl. postage.

CHOKES. 5H; 10H; 15H; up to 120mA. 8/6 ea. Up to 250mA 12/6 ea.

Large quantity LT, HT, EHT transformers. Your requirements, please.

Panel switches DPDT ex eq. 2/6 ea.; DPST Brand new 3/6 ea.; DPDT twice, brand new 6/-; heavy duty DPST brand new 6/- ea. SPECIAL, 813 valves, Brand new, boxed £2/10/0.

SPECIAL. 813 valves, brand new, boken E21/00, MOTOR DRIVEN SWITCHES, 4 to 24 volt, 6 pole, 24 way, Brand new, 66 ea. P. & P. 5/-, PRECISION continually rotarable stud switches, Single pole. 80 way, can be stacked if required. 63 ea. PRECISION rotary stud switches 2 pole 12W size 2° sq. 4° shaft, 62/10/0 ea.

Min. SEALED 4 pole 3 way and 3 pole 4 way rotary switches, $\frac{1}{2}$ shaft $\frac{1}{2}$ dia, $\times \frac{3}{2}$ 10/2 ea.

Must go—American Pressure Gauges. Scaled 0-200/ 0-2800, KSC/PS1; 270° dial 5°. 22/6 ea. P. & P. 5/-. Solartron Storage, Oscilloscope type QD 910. MUST GO. Now only £100 each.

OFFICIAL ORDERS WELCOMED

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

CHILTMEAD 22 Sun Street · Reading · Berks · Tel. No. 65916

now at 7.9-11 ARTHUR ROAD, 300 yds. east (near Tech. College) Tel. No. 582605

FOR	MERS. FL	ILLY SH	ROU	DED (*	excepted) T	ERMI	NAL
			ONS.	Ambs	PRIMARIE	5 14	Carr.
No.		ec. Taps		Amps 15	£10 10	0	12/6
	25-33-4	0-50			67 12	6	9/6
B	25-33-44		* *	10	66 15	õ	9/6
IC ID	25-33-40		* *	3	£4 0	0	7/6
24	4-16-24		* *	12	67 2	6	8/6
2B	4-16-24	33		8	65 7	6	8/6
2C	4-16-24	33		4	£3 12	6	7/6
20	4-16-24			2	62 7	6	5/-
34 .	25-30-3			40	£16 10	õ	12/6
38.	25-30-3			20	610 5	ō	10/6
3C	25-30-3	ś		10	67 5	õ	8/6
3D	25-30-3			5	64 2	6	7/6
3E	25-30-3			ž	63 2	6	7/6
44 .	12-20-2			30	£13 0	0	12/6
4B	12-20-2	4		20	£8 5	0	9/6
4C	12-20-2			10	£4 5	0	8/6
4D	12-20-2			5	£3 12	6	7/6
5A	3-12-18			30	£9 12	6	9/6
5B	3-12-18			20	£7 2	6	8/6
5C	3-12-18			10	£4 5	0	7/6
5D	3-12-18			5	62 17	6	7/6
6A	48-56-6			2	63 12	6	6/6
6B	48-56-6	0			12 12	6	6/6
7A *	6-12			50	£10 7 £6 2	6	10/6
7B		** **		20	66 2	6	8/6
70				10	62 15	õ	7/6
7D	6-12	•• ••			61 12	6	6/6
A8 A8	12-24	** **		8	66 5	õ	8/6
10A *	9-15	•• ••		2	61 9	6	6/6
ILA	6-3			15	62 10	õ	7/6
12A		-25-30		2	63 12	6	6/6
	: By us			mediat		any	other
	ges can b		ned.				
	Example:		. 7-8-	-10-15-	17-25-33-4	0-50v.	
		No. 2 .	. 4-8-	-12-16-1	20-24-32.		
		No. 5 .	. 3-6-	-9-12-1	5-18v.		
-							_
		AUTO	TRAP	NSFOR	MERS		
240v.	llov. or	100v. 0	Comple	stely S	hrouded	fitted	with
Two-	pin Ame	rican Se	ockets	or ter	minal blo	cks.	Please
	which tv	De Feau	ired.				

state	which type						
Type	Watts	Approx.	Weight	P	rice		Carr.
1	80	21	lb	£1	19	6	5/6
2	150	4	Ib	(2	12	6	6/6
3	300	61	Ib	63	12	6	6/6
4	500	81	Ib	£5	2	6	8/6
5	1000	15	Ib	£7	2	6	9/6
6.	1500	25	Ib	£9	15	0	10/6
7.	1750	28	Ib	614	15	0	12/6
8*	2250	30	Ib	£17	17	6	15/-
* Completely enclosed in beautifully finished metal case fitted							
with two 2-pin American sockets, neon indicator, on/off switch,							

and carrying hand

HEAVY DUTY LT. TRANSFORMERS Pri, 220-240v, Sec. 12v. 175 a. Open type flying leads. Size 8 × 8 × 7 ins. £36 carr, £2. 12v. 90a. Size 74 × 64 × 6 ins. £18.10.0 carr. 20/-.

ETO. 19.0 CAPT. 20/-. **Pri. 220-240v.** Sec. tapped 14-15-2-28-31v. 20a. Open type table top connections. £12-10.0 carr. 15/-. **Pri. tapped 110-220-240v.** Sec. 55v. 24a. 14v. 10a., 60v. 2a. All windings conservatively rated. Tropically finished. Ter-minal connections. Size 9 x 7 \pm x 7 ins. Weight 65 lbs. £15 carr. 17/6.

110 volt primary only. Sec. 46v. 29a. Very conservatively rated. Size II x 7 x 7 ins. Weight 75 lbs. By Partridge Transformer Co. £10 carr. 15/-.

Regulation between 7-15 volts D.C. at 20 amps. Fitted 0-30 D.C. antmeter. 0-15 D.C. voltmeter and overload protec-tion switch, Built to a very high specification. Bench or restance of the second second second second second second protection. Example 19 x 8 x 17 ins. A.C. input 110v, 50 Maker's price in excess of 200. Our price £39,10.0. Carr. 30/-240/110 volt, 400 watts, Mains Transformer available if required. 43 extra.

G.P.O. L.T. SUPPLY UNIT Type 19. A.C. input, tapped 200-250v. 100-120v. D.C. output, 12 or 24 volts, very conservatively rated at 3 amps. Can be connected to give 12 volts 6 amps. Built into strong metal case size 19 X 7 X 6% Ins. With fitted fuese. On/off switch. Socket outlet. Circuit supplied, 67.19.6, carriage 15/-.

OIL-FILLED BLOCK CAPACITORS

OIL-FILLED BLOCK CAPACITORS T.C.C. 8 mfd. 2500v. wkg. at 70°C. 37/6, P. & P. 8/6. 0.5 mfd. 10,000v. wkg. at 70°C. 37/6, P. & P. 8/6. Dubilier 4 mfd. 2500v. wkg. at 70°C. 35/5, P. & P. 7/6. 2 mfd. 4000v. wkg. at 70°C. 25/5, P. & P. 7/6. 0.25 mfd. 7500v. wkg. 17/6, P. & P. 4/6. American Micamold 8 mfd. 600v. wkg. at 10°C. 10/6, P. & P. 2/-2/- 4 mfd. 600v. wkg. Tubular 5-hole fixing. 6/6, P. & P. 2/-T.C.C. Viaconol tubular 5-hole fixing. 1 mfd. 2500v. wkg. at 60°C. 12/6, P. & P. 2/6. 0.1 mfd. 8000v. wkg. at 60°C. 10/6, P. & P. 2/-. 0.1 mfd. 5000v. wkg. at 60°C. 7/6, P. & P. 2/-. 0.05 mfd. 10,000v. wkg. at 60°C. 8/6, P. & P. 2/-.

HEAVY DUTY ISOLATION TRANSFORMER

Pri 240v. Sec. 120v. 85 amp. conservatively rated. Size 19 x 14 x 8 ins., weight 18 cwt. £55 + carr. One only.

SPECIAL OFFER OF PARMEKO NEPTUNE SERIES TRANSFORMERS ALL PRIMARIES TAPPED 115-230v.

ALL PRIMARIES TAPPED 115-230v. Sec. 6-3v. CT 5a. 6-3v. CT 2a. 6-3v. CT 2a. 37/6 P. & P. 5/-. Sec. 9-10v. 0-5a. 6-3v. 3-5a. 6-3v. 4-2a. 19/6 P. & P. 4/-. Sec. 400-0-350v. 100 m/a. 3-6-12-18v. 5a. 23.19.6 P. & P. 8/6. Sec. 30v. 0-350v. 100 m/a. 3-6-12-18v. 5a. 23.19.6 P. & P. 8/6. Sec. 6-3v. 1-3a. 6-3v. 1-2a. 6-3v. 1-2a. 27/6 P. & P. 5/-. Sec. 6-3v. 1-3a. 6-3v. 1-2a. 6-3v. 1-2a. 27/6 P. & P. 5/-. Sec. 6-3v. 5-32.5 v. 2a. 33/6 P. & P. 5/-. Sec. 4v. 0-5a. four times. 15/- P. & P. 3/6. Sec. 6-3v. CT 0-6a. 6-3v. 0-6a. 12/6 P. & P. 3/6. Sec. 250-0-250v. 50 m/a. 6-3v. 1a. 22/6 P. & P. 4/6. Pri. 2002-420v. Sec. 250-0-250v. 60 m/a. 6-3v. 2a. 6-3v. 3a. 5v. 2-5a. 30/- P. & P. 7/6.

GARDNERS HT TRANSFORMERS ALL PRIMARIES TAPPED 200-250v.

Sec. 500-0-500v. 250 m/a. 6-3v. 4a. 6-3v. 4a. 6-3v. 3a. 5v. 3-5a. Fully shrouded. **66.10.0**. Carr. 10/-. Sec. tapped 350-360-370-380-390-400v. 350 m/a. 15v. 2a. 6-3v. 3a. x 3. 6-3v. 2a. 6-3v. 1a. Fully shrouded. **£4.19.6**.

6'3v. 3a. \times 3. 6'3v. 2a. 6'3v. 1a. Fully shrouded. 4'14.9.6. Carr. 8/6. Sec. 350-0.350v. 60 m/a. 4-6'3v. 4a. 4-5v. 2.5a. Fully shrouded. 27/6. P. & P. 5/-. Sec. 500-0.500v. 80 m/a. 6'3v. 2a. 6'3v. 2a. 5v 2a. Fully shrouded. 47/6. P. & P. 5/-. Sec. 13v. 16a. 24v. 0'8a. 6'3v. 1a. Open type. Table top connections. 65/-. P. & P. 7/6. Sec. 12v. 16a. 24v. 0'8a. 6'4v. 2:2a. 5v 28a. Fully shrouded. 17/6. P. & P. 3/6. Sec. 7v. 5a. 6'4v. 4a. 6'4v. 2:2a. 6'4v. 2:2a. 5v 28a. 4v. 1a. Olil-filled potted type. 50/-. Carr. 8/6. Sec. 370.90-410v. 6 m/a. Open 'C core type. 12/6. P. & P. 2/6. Sec. 12v. 6a. and 15'6v. 1'5a. Fully shrouded. 57/6. P. & P. 2/6. Sec. 12v. 6a. and 15'6v. 1'5a. Fully shrouded. 57/6. P. & P. 2/6. Sec. 12v. 6a. and 15'6v. 1'5a. Fully shrouded. 57/6. P. & P. 2/6. Sec. 12v. 6a. 3rd 15'6v. 1'5a. Fully shrouded. 57/6. P. & P. 2/6. Sec. 12v. 6a. 3rd 15'6v. 1'5a. Fully shrouded. 57/6. P. & P. 2/6. Sec. 370.3'75' m/a. 4kv. D.C. wkg. Twitce. 4v. 1a. 4v. 0'3a. 19/6. P. & P. 4/6. Obv. Tats auto tapped 200-210-220-230-240-250v. Open type. T.T. connections.

H.T. TRANSFORMERS H.I. TRANSFORMENS Parmeko Neptune. Pri. 115-210v. Sec. 2000v. 5 m/a. 4v. I.a. 47/6. P. & P. 5/-, Gardners Pri. 200-240v. Sec. 2150v. 22 m/a. 75/-, P. & P. 7/6. Pri. 200-240v. Sec. 1650v. 25 m/a. 75/-, P. & P. 7/6. Pri. 200-240v. Sec. tapped 3000-3300v. 10 m/a. 4-6-3v. 1-5a. 3kv. wkg. 2=4v. 2a. 3kv. wkg. 64.19.6. Carr. 10/-.

PARMEKO C CORE TRANSFORMERS Pri, tapped 110-200-240v. 5ec. 1 250v. 197 m/a. 5ec. 2 161v. 110 m/a. 5ec. 3 152v. 76 m/a. 5ec. 4 124v. 25 m/a. 5ec. 5 28v. 0-4a. 5ec. 6 6 4 v. 6 -2a. 6 -3v. 3 -25a. 6 -3v. 1 -4a. Table top connections. 5ize 5 x 4 x 4 lns. Brand new boxed. 35', P. & P. 7/6, Special prices for qty.

ADVANCE C/V TRANSFORMERS

Type CV 15/95. Input 95-130v., 190-260v. Output 4v. rms + or - 1%. 3 watts. Open frame type. 25/-, P. & P. 5/-. Type MT140. Input 190-260v. Output 230v. 150w. £5.15.0. Carr. 10/-.

Type 500. Input 190-260v. Output 240v. 500 watts. £12.10.0 Carr. 15/-.

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full-time 2 year College Diploma Course which gives a thorough fundamental training for radio and television engineers starts on 2nd September, 1970.

The course includes theoretical and practical instruction on Colour Television receivers and is designed to cover the syllabus of the new City and Guilds Radio, Television and Electronics Technicians' Course. Pembridge College diplomas are awarded to successful students.

The way to get ahead in this fast growing industry—an industry that gives you many farreaching opportunities—is to enrol now. Minimum entrance requirements 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W.16

	A01 9/6 ACT9 500/- ARP38 16/-	ECL83 10/3 ECL96 9/- ECL1800	PL84 7/- PL508 29/- PL509 29/-	XH8/100 300/- XR13/200	7¥4 8/6 10F1 14/9 11E3 70/-	2G382 6/- 2G401 5/- 2G402 6/-		
	AZ31 10/- BT19 60/- BT79 57/- BT89 67/-	30/- EF9 20/- EF37A 7/- EF39 8/-	PL802 16/6 PT15 15/- PX4 24/- PX25 27/6	266 15/- Z319 25/- Z759 30/-	12AC6 10/- 12AD6 11/- 12AE6 9/6	2G414 6/- 2G415 6/- 2G416 6/6		
	C1O 20/- CBL31 16/- CCH35 15/-	EF41 10/- EF50 5/- EF80 4/6	PY32 10/9 PY33 10/9 PY31 5/9	Z800 20/- Z801 30/- Z803U 15/-	12AT6 4/9 12AT7 6/- 12AU7 5/9 12AX7 6/3	2G417 8/- 2N247 9/6 2N555 12/6 AC107 5/6		
	CV5 95/- CV74 80/- CV82 50/-	EF86 6/6 EF89 5/6 EF91 8/6	PY82 5/8 PY83 7/- PY500 18/6	OA2 6/3 OB2 6/- OZ4 4/6	12BA6 6/- 12BE6 6/3 12E1 20/-	AC127 5/- AC128 4/6 ACY19 5/-		
	CV 315 80/- CV 354 110/- CV 370 800/-	EF92 2/6 EF98 15/0 EF183 6/6 EF184 7/-	PY800 9/6 PY801 9/6 PZS0 10/- QF41 400/-	1B3GT 7/3 1Z2 25/- 2C39A 140/- 2C43 70/-	12K7GT 7/- 12K8GT 8/- 12Q7GT 6/-	ACY20 5/- ACY21 4/6 AD140 8/- AF114 5/-		
	CV372 57/- CV408 50/- CV428 45/- CV429 350/-	EF604 21/- EFP60 10/- EH90 7/6	QQV02/6 45/- QQV03/10	2D21 6/6 2E26 20/- 2K25 160/-	13E1 190/- 20P4 20/- 24B1 110/- 25Z4 6/3	AF115 5/- AF116 4/6 AF117 7/-		
	CV 450 25/- CV 1144 60/- CV 1385	EL33 12/6 EL34 10/8 EL36 9/3 EL38 22/6	27/8 QQV03/20 105/- QQV04/15	3A/167M 80/ 3A5 20/	25Z5GT 8/- 25Z6GT 8/6 27M1 72/6	BY100 4/6 GET571 5/- GET875 6/-		
	140/- CV1522 180/-	EL41 11/- EL42 11/6 EL81 9/-	105/- QQV06-40 A 100/-	3B24 29/- 3B240M 110/- 3B241M	30C15 15/- 30C17 16/- 30F5 17/-	NKT211 6/8 NKT214 4/4 NKT216 6/4 NKT217 8/4		
	CV1526 65/- OV2155 32/6 CV2306 350/-	EL84 4/9 EL85 7/9 EL86 8/3	QQV06/40 90/ QQV5/10 70/	110/- 3B28 40/- 3C24 60/-	30FL1 15/- 30L15 17/- 30L17 17/- 30P4 22/6	NKT218 22/6 NKT228 6/-		
	OV2312 35/- OV4003 10/- CV4004 10/-	EL90 6/3 EL95 6/6 EL360 24/- EL820 8/-	Q870/20 5/6 Q875/20 5/6 Q875/60	3C45 65/- 3D21A 35/- 3E29 70/-	30P19 15/- 30PL1 16/- 30PL13 18/6	NKT404 12/6 NKT675 6/- NKT677 5/-		
	CV4005 8/- CV4006 18/- CV4007 7/-	EL821 7/6 EL822 16/- ELL80 20/-	20/- Q883/3 7/3 Q892/10 4/-	4C35 300/- 4CX250B 240/- 4X150A	30PL1415/- 35L6 9/- 35L6GT 9/- 35W4 4/6	NKT713 7/6 OC16 15/- OC19 8/6		
	CV4014 7/- CV4015 10/- CV4024 6/- CV4025 7/-	EM34 16/- EM80 7/6 EM81 10/- EM84 7/6	Q895/10 5/6 Q8108/45 15/ Q8150/15	95/- 4X150D 200/-	35Z4GT 8/6 50C5 6/3 50CD6G	OC20 20/- OC24 9/- OC25 7/8 OC26 6/-		
	CV4031 7/- CV4033 7/- CV4044 12/-	EN32 25/- EY51 7/6 EY61 7/-	Q8150/30 6/-	4X250B 180/- 5B/254M	31/- 80 7/6 85A1 25/- 85A2 7/3	OC28 12/6 OC29 14/6 OC35 6/3		
	CV4045 10/- CV4046 90/- CV4048 12/6 CV4062 17/6	EY83 8/6 EY84 9/- EY86 7/- EZ40 9/-	Q8150/36 20/- Q8150/45 20/-	37/- 5B/255M 37/6 5C22 320/-	88L 160/- 90AG 45/- 90AV 45/-	OC44 4/- OC45 3/3 OC71 3/- OC72 4/-		
	CY 4064 30/- CY 30 12/6 DAF91 4/6	EZ41 9/6 EZ80 5/6 EZ81 5/6	Q8150/80 20/6 Q81209 7/3	5R4GY 10/6 5U4G 5/6 5V4G 8/-	90C1 12/- 90CG 25/- 90CV 25/- 150B2 11/6	OC74 4/6 OC75 4/6 OC76 3/-		
	DAF96 7/6 DCC90 20/- DET3 1,000/-	GT1C 57/6 GU20 100/- GU21 100/- GY501 15/-	QV03-12 12/- QV04-7 12/6 QV05-25 9/-	5Y3GT 6/- 5Z4G 7/- 6/30L2 15/- 6AK5 5/-	150B3 8/6 705A 10/- 723A/B	OC77 8/- OC78 3/- OC81 4/- OC81 3/-		
	DET19 6/6 DET20 2/6 DET22	GZ30 10/- GZ32 10/- GZ34 11/-	QV06-20 27/6 QY3-125 180/-	6AK6 12/6 6AL5 3/- 6AM6 3/6	120/- 725A 240/- 801 9/6 803 35/-	OC81M 5/- OC81DM 3/- OC82 3/- OC82 3/-		
	110/- DET23 110/- DET24	GZ37 15/- H63 18/- HL41DD 13/6	R10 15/- R17 8/- R18 7/6	6AN8 10/- 6AQ4 4/- 6AQ5 6/3 6A86 6/-	807 9/- 811 35/- 813 75/-	OC83 4/6 OC169 6/- OC170 5/6		
	50/- DET25 15/- DF91 4/- DF96 7/6	KT6 35/- KT61 22/6 KT66 30/-	R19 7/9 RG3/1250 120/- RG5/500	6A87 15/- 6AT6 4/9 6AU3GT	813U8A 160/- 829B 60/- 833A 360/-	OC171 6/- OC200 5/6 8X642 3/6 XA101 3/6		
	DH63 6/- DH77 4/9 DK32 7/9	KT67 45/- KT81(7C5) 22/6 KT81	80/- 81M2 32/6 811E12 70/-	20/- 6B4G 20/- 6BA6 5/-	837 17/6 866A 15/- 872A 57/6	XA111 3/6 XA112 4/6 XA125 5/-		
	DK91 6/- DK92 9/- DK96 7/9 DL66 25/-	(GEC) 35/- KT88 34/- KTW6112/6	8130 40/- 8130P 40/- 8P41 3/6 8P61 3/6	6BE6 5/- 6BH6 9/- 6BJ6 9/- 6BK4 21/6	931A 72/6 954 5/8 955 3/- 2050 15/-	XA141 7/- XA142 5/- XA143 5/-		
	DL92 6/8 DL94 6/9 DL96 7/9	KTW62 12/6 M505 600/- M513 600/-	8TV280/40 25/- 8TV280/80	6BN6 7/6 6BQ7A 7/- 6BR7 17/-	5644 40/- 5651 7/3 5654 8/-	TUBES 2AP1 80/- 3BP1 60/-		
	DL810 12/6 DL816 30/- DL819 30/- DY86 6/-	ME140025/- ME150125/- ML4 17/6	95/- 8U2150 12/6 8U2150 A 12/6	6B87 25/- 6BW6 14/6 6BW7 13/-	5672 7/- 5687 10/- 5691 25/-	3DP1 40/- 3EG1 65/- 3FP7 29/-		
	DY87 6/6 DY802 12/6 E88CC 12/-	N37 17/6 N78 19/- PC86 11/6 PC88 11/6	T41 17/6 TD03-5 110/-	6C4 5/- 6CB6 5/- 6CD6G 24/-	5694 30/- 5702 15/- 5749 10/- 5763 12/-	3GP1 40/- 5BP1 80/- 5CP1 55/- 5FP7 35/-		
	E180F 17/6 E182CC 22/6 E810F 50/-	PC97 8/9 PC900 8/6	TD03-10 110/- TZ40 40/- U19 35/-	6CH6 7/6 6CL6 8/6 6CW4 13/6 6D4 15/-	5784 35/- 5842 65/- 5876 60/- 5879 22/6	88L 80/- 88D 200/- ACR22 80/-		
	EABC80 6/6 EAF42 10/- EAF806	PCC84 6/6 PCC85 8/- PCC89 10/6 PCC189 10/6	U24 24/- U25 15/6 U26 15/6	6DK6 9/- 6F23 16/- 6F32 2/9	5893 150/- 5899 10/- 5902 17/-	C27A 160/- CV960 76/- CV966 35/- CV1526 65/-		
-	17/6 EB91 3/- EBC33 8/6 EBC41 9/9	PCF80 6/9 PCF86 9/- PCF20016/-	U33 30/- U37 20/- U191 13/9 U404 7/6	6F33 19/6 6J5G 4/- 6J6 3/6 6J7G 6/-	5963 10/- 6057 10/- 6058 10/-	CV1587 60/- CV1588 35/- E4504/B/16		
	EBC90 4/9 EBF80 7/6 EBF83 9/-	PCF20115/6 PCF80015/- PCF8019/9 PCF802	U801 23/6 UABC80 6/6 UAF42 10/6	6K6GT 8/ 6K7 1/9 6K7G 2/-	6059 18/- 6060 6/- 6061 12/- 6062 14/-	76/- ECR30 60/- ECR35 50/- MW-2 100/-		
	EBF89 6/6 EBL21 12/- EBL31 27/6 ECC33 15/-	9/9 PCF80613/- PCH200	UBC41 9/3 UCH42 10/6 UCH81 7/- UCL82 7/6	6K8G 3/- 6L6G 7/9 6L6WGB	6063 7/- 6064 7/- 6065 9/-	09D 80/- 09G 80/- 09L 80/-		
-	ECC40 17/6 ECC70 15/- ECC81 6/-	12/6 PCL82 7/9 PCL83 10/3 PCL84 8/6	UCL83 10/- UL41 12/- UL84 7/- UU6 21/-	17/6 6Q7G 6/- 68Q7M 7/6	6067 10/- 6072 12/- 6080 25/- 6111 12/6	VCR97 45/- VCR13860/- VCR138A 60/-		
	ECC82 5/9 ECC83 6/3 ECC85 5/- ECC88 7/6	PCL85 9/3 PCL86 9/8 PD500 29/-	UU7 21/- UU8 21/- UY41 8/6	68G7 6/- 68J7M 7/- 68L7GT 6/- 68N7GT 5/6	6146 27/8 7475 14/- 9003 9/-	VCR139A 45/- VCR516		
	ECF80 6/6 ECF82 6/6 ECH35 11/6 ECH42 13/-	PENB420/- PEN45DD 12/- PFL200	UY85 6/6 VL863130/- VP4B 25/- VR105/30	6V6G 4/8 6X4 4/6 6X5G 4/8 7B7 7/8	9004 2/6 Diodes Transistors 18113 3/-	80/- VCR517A 46/-		
	ECH81 5/9 ECH83 8/6 ECL80 7/- ECL82 7/-	14/- PL36 10/9 PL81 9/8 PL82 8/6	W81M 12/6	7C5 22/6 7C6 15/- 7H7 6/6 787 45/-	IS115 4/6 1S131 2/6 2G210 12/6 2G381 5/-	VCR517B 46/- VCR517O 46/-		
		Valves tested	and released to A	.R.B. specificatio	n if required.			
	Ordinary p	stage 9d. per ostage 6d. per 15 postage fre	valve.		onday to Sat 9 a.m.—5.30 p d Sat I-30—2-	.m.		
		1-769 0199/1649		Comple	te range of " liable from	TV Tubes		
	S	END S.A.E						
	VALVES, TUBES AND TRANSISTORS							

www.americanradiohistory.com

DAVID CLARKE COMPANY · 30 CRAVEN STREET STRAND, LONDON, WC2

FANTASTIC VALUE PORTABLE TRANSISTOR TV

By Famous Manufacturer

£15.10.0

Ideal for holidays, caravans, camping, the beach. Completely portable. ITV, BBC built-in aerial. Reconditioned in immaculate condition. Guaranteed. 12 volt or A.C. mains. Rechargeable batteries 25/- extra. *Carriage* 10/6. Hurry while stocks last.

THE FAMOUS RCA AR88 RECEIVER

We have only 50 of these remarkable receivers at the give away price of

£32.10.0

Secondhand condition but guaranteed perfect order. Input 110 volt or 250 volt A.C. Frequency on 6 bands. 535 kcs to 32 mcs with crystal filter, noise limiter. BFO, RF and AF variable controls, output 2.5-600. *Carriage* £2. Orders treated on first come first served basis. Carriage anywhere in British Isles.

SEND ONLY £10 TO SECURE

Balance payable on delivery of receiver

Heavy construction. 3 ohm or 15 ohm.

Latest high efficiency ceramic magnets.

Extended range up to 15,000 cps. Excellent

value. Post and packing 2/6 per speaker.

LOUDSPEAKERS

5"..... 10 watt 35/-

8"..... 8 watt 35/-

10"..... 10 watt 45/-

BURGESS MICRO SWITCHES V3 5930 NEW 1/9 EACH-6d. p. & p.					
	COMPONE New Mu		MPARE PRICES RESISTORS		
	TRANSIS		CARBON FILM		
	OC22	3/6	10 ohm to		
	OC26	3/6	1 meg.		
	OC28	3/6	1 watt 10%		
	OC45	1/3	4.7 ohm to		
	OC46	2/6	10 meg.		
	OC65	18/6	All at 2d. each.		
	OC70	2/-	Minimum order		
	OC71	1/9	5/- your choice		
	OC72	1/9	of values.		
	OC73	14/-	<i>Post free</i> .		
	OC74	1/9	All values in		
	OC81	3/-	stock; immediate		
	OC84	3/6	despatch.		

SUPER BARGAIN TRANSISTOR RADIO

OUR PRICE 62/6 PLUS 3/6 p. & p.

7 transistor fully tunable, long and medium wave. Superhet. Complete with leather

carrying case, earpiece for private listening. Fully guaranteed, brand new. Ideal for holidays.

TERMS, Cash with order Unless otherwise stated, callers by appointment only please

All our goods carry full money back guarantee

.

WW-092 FOR FURTHER DETAILS

www.americanradiohistory.com

www.americanradiohistory.com

SILICON TRANSISTORS

1,000,000 FOR SALE

Clearance of pnp Sillcon Alloy Transis-tors from the 25300 (TO-5) and 25320 (SO-2) range and similar to the OC200-205 and BCY30-34 series. Available only

from us at a fraction of the manufacturing

cost. All these devices would normally be subject to re-selection for industrial use

but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for

experimental use in Schools, Colleges and Industry. Supplied uncoded (no warranty by the

manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, I.e., TO-5 2\$300 or \$O-2 2\$320.

25300 or SO-2 25320. Approximate count by weight: 100 off—15s. (plus p. & p. 2s.) 300 off—£1 15s. (plus p. & p. 3s.) 500 off—£2 10s. (plus p. & p. 3s. 6d.) 1,000 off—£35 (plus p. & p. 11s.) Large quantities quoted for on request. EXPORT ENQUIRIES WELCOME ENDERTE ENQUIRIES WELCOME

All correspondence, cheques, postal

DIOTRAN SALES P.O. BOX 5

63a High Street, Ware, Herts.

Tel: WARE 3442

orders, etc., to:

from Poland

electronic components receiving valves for radio and TV receivers picture tubes guns for TV getters

HIGHLY STABLE PARAMETERS LONG OPERATIONAL LIFE

are offered by

a82

Foreign Trade Enterprise

UNIVERSAL

Warszawa, A1. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No 370 **Telex No 81437**

CATALOGUE, PRICES, AND FULL DETAILS **AVAILABLE UPON REQUEST**

WW-093 FOR FURTHER DETAILS

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v. battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hos-pital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66ft. and other accessories. Nothing else to buy. P. & P. 7/6 in U.K.

Same as 4-Station Intercom for two-way instant con-versation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66ft. connecting wire. Battery 2/6. P. & P. 4/6.

MAINS INTERCOM

No wires-no batteries. Just plug in and it is ready to use. Room to room or house to house. Both units must be on the same side of power line distribution. Lock button. Light indicator. Also useful as baby alarm. Price per pair £11.19.6, P. & P. 8/6.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor **TELEPHONE AMPLI-FIER** which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v. battery which lasts for months. Ready to operate. P. & P. 3/6 in U.K. Add 2/6 for Batterv. Battery.

Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W.8

ww-106 FOR FURTHER DETAILS

VAL	VFS	6K8GT 7/8 6K25 14/- 6L6GT 9/- 6P25 11/- 68A7 7/-
IUL	ILU	68A7GT 6/6
¥31 7/-	PL83 7/3 PL84 6/6	68C7GT 5/- 68G7 6/-
F96 7/6 K96 7/6	PL500 14/9 PL504 16/-	68J7 7/6 68J7GT 6/6
0L92 6/6 0L94 6/6	PX4 14/-	68K7 7/- 68L7GT 6/6
0M70 6/- 0M71 7/6 0Y86 6/-	PX25 30/- PY33 12/- PY80 6/6	68N7GT 6/- 68Q7 7/9 68Q7GT 7/9
Y87 6/6 Y802 9/9	PY80 6/6 PY81 5/6 PY82 5/6	6V6G 3/6
88CC/01	PY83 7/- PY88 7/6	6X4 4/9 6X5G 5/-
ABC80 6/6 AF42 10/- EB91 2/-	PY800 9/6 PY801 9/6	6760 11/-
CBC33- 8/- 1	QQVO3-10 25/- QQVO6-40	6-30L2 14/- 6Z4 5/- 7B7 7/-
BC81 6/6 BF80 7/6	85/- QQV06-40A	7C5 14/6
CBF83 8/6 CBF89 6/-	R17 8/-	7H7 5/6 7Y4 12/- 9D6 7/6
20C81 6/- 20C82 5/9 20C83 5/6	B19 7/6 BTV280/40 60/-	9D6 7/6 11E2 30/- 12AT6 4/6 12AT7 4/- 12AU7 5/9 12AV6 5/6 12AX7 6/- 12PAC 6/-
POCAL B/-	8TV280/80 180/-	12AT7 4/- 12AU7 5/9
CC86 7/6 CC88 7/- CC189 9/9	TT21 51/- U25 14/6	12AV6 5/6 12AX7 6/-
ECF80 6/6 ECF82 6/6 ECF83 15/6	U26 14/6 U27 8/- U191 14/-	12BA6 6/- 12BE6 6/- 12BH7 3/6
ECF801 12/6	U301 11/6 U801 20/-	12C8 5/6
ECF802 12/6	UABC80.6/6 UAF42 10/6	12K5 10/- 12K7GT 6/9
ECH35 12/- ECH42 13/- ECH81 5/9	UBC41 9/6 UBF80 7/- UBF89 7/-	12K80T 7/8 12Q7GT 5/8 12807 7/-
KCHA3 8/6	UCF80 10/- UCH42	1487 15/- 19AQ5 7/9
ECH200 12/6	19/8	19G3 70/ 19G6 20/
ECL80 9/- ECL82 6/6 ECL83 10/6	UCH81 6/6 UCL82 7/6 UCL83 12/- UP41 10/-	19H4 85/- 20P4 17/6 251.6GT 7/3
ECL86 8/6 EF36 3/6	UF80 7/3 UF89 6/9	30C15 15/
EF37A 7/- EF39 6/-	UL41 12/- UL84 6/6	30C18 15/- 80F5 16/9
EF40 10/- EF41 12/6	UU3 7/- UY41 8/6 UY85 5/9	30FL1 15/- 30FL12 18/6
EF80 5/- EF83 9/7 EF85 6/6	VB105/30 6/-	30FL13 9/3 30FL14 15/6
EF86 6/8 EF89 5/3	V R150/30 6/-	30L15 17/- 30L17 17/- 30P12 16/-
EF91 3/- EF92 7/6	Z759 35/- Z800U 29/- Z801U 25/-	30P19 14/- 30PL1 13/-
EF95 5/- EF183 6/6 EF184 7/-	Z900T 18/- 11.4 2/6	30PL14 17/- 35L6GT 9/6
EF800 20/- EF812 15/6	IR5 6/- 184 5/-	35Z4GT 9/-
EFL200 15/8	185 4/6 IT4 3/- 1X2A 7/6	50C5 7/- 50CD6G30/-
EL41 11/6 EL42 10/6	1X2B 7/6 3A4 4/-	50EH5 12/- 75 5/6 76 6/-
EL84 4/9 EL85 8/-	3D6 3/- 3Q4 7/6	78 5/- 80 9/-
BL96 8/- EL90 6/- EL95 7/-	384 6/9 3V4 8/- 5B254M36/-	803 60/-
EL500 17/- EL8035 17/-	5B/255M 35/-	807 9/- 813 75/- 832A 55/-
EM31 5/- EM80 7/6	5R4GY 10/6	866A 15/- 954 4/6
EM84 7/- EM87 11/- EY51 8/-	5V4G 7/6	955 4/- 956 2/-
EY86 7/- EY81 7/-	5Y3GT 6/- 5Z4 14/- 6AB7 4/-	957 6/- 991 6/- 1622 17/-
EY88 8/6 EZ41 8/6	6AC7 3/- 6AH6 11/6	2051 10/- 5933 22/6
EZ80 5/- EZ81 5/- GZ34 10/6	6AK5 5/- 6AK8 6/-	6057 10/- 6060 7/6 6064 7/-
KT66 27/6 KT88 33/-	GALSW 7/-	6064 7/- 6065 13/- 6080 27/6
N78 20/-	6AN8 10/- 6AQ5 6/-	6146 28/- 8020 35/-
OB2 6/- PABC80 7/6 PC97 9/-	6A86 6/- 6A86 6/- 6A87G 16/-	9001 8/- 9002 4/6 9003 10/-
PC900 9/6 PCC84 6/6	6AT6 4/6 6AU6 5/-	9004 2/6 9006 2/6
POC89 9/6 POC189 11/6	6AX4 8/- 6AX5GT	C.B. Tubes
PCE800	13/- 6B7 5/6 6BK7 8/-	VCR51750/- VCR517B 55/-
PCF80 6/6 PCF82 6/9 PCF84 9/3	6BA6 4/6 6BE6 5/-	VCR517C 45/-
PCF86 10/- PCF200	6BG6G 11/- 6BJ6 8/6	5FP7 26/7 88D 180/-
15/6 PCF201	6BQ7A 6/9 6BR7 16/- 6BW6 16/-	88J 80/- 88L 90/- Photo Tubes
15/6 PCF801 9/9 PCF802 9/9	6BW7 13/- 6C4 5/9	Photo Tubes CMG25 25/- 931A 62/6
PCF803 9/9 PCF805 14/6	6C6 4/- 6CH6 11/-	6097C 350/- Special Vivs. CV1031
PCF806 13/-	6CL6 9/9 6D6 3/-	100/-
PCF808 14/6	6EAS 11/- 6EU7 7/- 6F23 15/-	CV2339 £20 JP9/7D 750/-
PCH200 14/- POL81 9/6	6H6M 3/-	K301 £4 K305 £12
PCL82 7/6 PCL83 13/-	6J4WA 14/- 6J5 7/-	K308 £12 K337 £12
PCL84 8/6 PCL85 9/3	6J5GT 5/- 6J6 3/6	KRN2A70/- WL417A 30/-
PCL86 9/- PFL20014/-	6J7M 8/- 6K6GT 8/-	3J/92/E #3710/-
PL36 10/9 PL81 8/9	6K7 6/6 6K7G 2/-	5C22 £15 714AY £4
PL82 8/-	6K8G 4/-	725A £10
P. C.	RADIO	LTD.
170 GOL	DHAWK R	D., W.12
	01-743 4946	

PLEASE NOTE Unless offered ALL EQUIPMENT ordered from us is completely over-hauled mechanically and electrically in our own laboratories MARCONI TEST EQUIPMENT

FIARCONTIES SIGNAL GENERATOR TF 801/A. 10-300 Mc/s. in 4 bands. Internal at 400 c/s. 1 kc/s. External 50 c/s to 10 kc/s. Output 0-100 db below 200 mV from 75 ohms source. £85. DITTO but 801/A/1 with additional high level output. £89. Both P. & P. 20/-, in-cluding necessary connectors, plugs, and interurting manual and instruction manual. TF 899 VALVE VOLTMETER, IOMV to 2V, £17.10.0. Carriage 30/-, VIDEO OSCILLATOR TF 885A & 885A/1, £55 and £85 resp. Carr. 30/-,

FM DEVIATION METER TYPE FM DEVIATION METER TYPE TF 791B, Frequency range: 4-250MHz, deviation I-75kHz. 662.10.0 TF 144 SIGNAL GENERATOR. To clear. In very good "as seen" condition. Complete with mains and battery cables, etc. 615. etc. 215. IGNITION TESTER TYPE TF 1348 For all vehicale electrical fault-finding and tuning £60.

BRADLEY PORTABLE ELECTRONIC MULTIMETER TYPE CT4718. This instrument operates from three 11V cells, is fully transistorised and measures A.C. and D.C. current, A.C. and D.C. voltage and D.C. resistance. Built-in battery check and calibration check. Full spec. and price on contest on request.

As above but MODEL CT 471A manu-factured by AVO, full spec and price on

AVO VALVE CHARACTERISTIC METER complete manual, Carriage. 30/-.

AVO SIGNAL GENERATOR CT 378, 2-225MHz. £38.10.0. Carriage 18/-.

AVO'S METERS AVO'S METERS Model 8 with leads, £18. Model 7X with leads, £15.10.0. Model 7 with leads, £14.10.0. Model 48A complete with multiplier shunts, etc., In special fitted wooden shunts, etc., In special fitted y case, £14.10.0. Model 47A £12. Carriage for each of above 7/6.

PANEL METERS. See our last month's advertisement for list and prices.

BOONTON SIGNAL GENERATOR TS 497/B/URR, 2-400MHz. £95.

TELEPHONE ENQUIRIES relating to TEST EQUIPMENT should be made to 01-748 8006 Extension 23. To view TEST EQUIPMENT please phone for appointment

091	TUBE	\$5/-						
QA5	2/6 1	OC38	8/8	IN43 4/-	3F100	12/6	AFY19 22/6	CR81/40
OA10	6/-	0C44	4/-	IN70 4/-	3FR5	6/6	ASY26 5/6	12/6
OA70	2/-	QC45	2/6	IN702-725	3N128	17/8	ASY28 5/6	CR83/05 6/-
OA71	2/-	OC70	3/-	7/3	3N139	35/-	ASY67 22/-	CR83/20
QA73	1/6	OC71	2/6	IN746A	3N140	19/6	BAW19 5/6	10/- CR83/30
OA74	2/-	0072	4/-	series 5/3	3N154	19/~	BC107 3/6	11/6
OA79	1/9	OC73	11/-	IN821A 21/-	3N159	29/-	BC108 4/-	CR325/025
0481	1/6	OC75	4/6	IN823A 26/-	6FR5	7/9	BC113 6/-	0163201020

13 1/0	00/1 2/0	THAT ADT	014140 1010	DAWIN 010			
74 2/-	0072 4/-	series 5/3	3N154 19/-	BC107 3/6			
79 1/9	OC73 11/-	IN821A 21/-	3N159 29/-	BC108 4/-			
181 1/6	OC75 4/6	IN823A 26/-	6FR5 7/9	BC113 6/-	1		
91 1/3	OC76 5/-	1844 3/6	12FR6014/9	BC118 7/6			
200 1/9	OC81 4/-	IZMT5 7/-	10D1 3/4	BCY10 9/-			
202 2/-	OC81D 3/-	IZMT10 6/9	40594 27/0	BCY72 7/9	ε.		
1210 7/6	OC81DM 8/-	IZT5 13/6	40595 27/6	BF115 5/-	1		
211 9/6	OC82 5/-	IZT10 12/9	40636 29/-	BF173 6/-	14		
Z20011/-	OC82DM 3/-	2G385 10/6	40668 27/-	BFY51 4/6			
Z20110/-	OC83 4/6	2G403 10/8	40669 29/-	BFY52 4/6	. (
Z202 to	OC83B 3/-	IN607 22/-	AC126 4/6	B805 7/6	1		
Z206 8/6	OC84 5/-	IN4785 11/-	AC127 4/6	BS 9/1			
Z207 9/6	OC122 10/-	· 2N1304 6/-	AC128 4/-	B82 9/3	1		
Z208 to	OC139 6 6	2N1306 6/6	AC176 7/6	BSY29 3/6	1		
Z215 6/6	OC140 8/-	2N1307 6/6	ACY17 5/-		٤		
Z223 to	OC170 5/-	2N2147 17/6	ACY28 4/-	BU100 38/-	2		
AZ22510/-	OC171 6/-	2N2904 7/6	AD149 11/-	BYZ13 5/-	1		
216 15/-	OC172 7/6	2N 3053 6/6	AD161 7/-	BYZ16 15/-	1		
22 8/6	OC200 6/-	2N3054 12/6	AD162 7/-	CRS1/10 5/-	1		
25 7/6	OC201 7/6	2N 3055 15/-	AF117 4/9	CR81/20 9/6	1		
26 5/-	OC206 10/-	2N3730 25/-	AF118 10/-	CR81/30	1		
28 8/-	IN21 3/6	2N3731 25/-	AF139 10/-	10/-			
29 15/-	IN21B 5/-	2N5109 41/-	AF178 12/6	CR81/35			
235 8/6	IN25 12/-	82303 10/-	AF186 9/-	11/6			
MAN	Y OTHERS IN	STOCK include	Cathode Ray Tu	bes and			
			0/- 1/-; to £1 2/-	-; over			
£1 2/-	In £, over £3 po	at free. C.O.D.	i/- extra.				

Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.

IMPEDANCE BRIDGE TYPE TF 369 (No. 5). Measures L & C at 80Hz, 1kHz, 10kHz, Ranges:—L: 1µH-100H. C: 1mF-100µF. R: 0.10hms-100mohms. AC Bridge volts monitored and varl-able. Automatic detector sensitivity control. £105. Carriage 30/-.

29/41FT. AERIALS each consisting of ten 3ft., fin. dia. tubular screw-in sections. 11ft. (6-section) whlp aerial with adaptor to fit the 7in. rod, insu-lated base, stay plate and stay assembles, pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect, in canvas bag, £3/9/6. P. & P. 10/6.

SOLARTRON EQUIPMENT

LAB. AMP AWS ISIA, Frequency: ISHz to 350kHz. Matered output, 'scope viewing, etc. £29.10.0. Carri-age 20/-

age 20/-. Regulated and stabilised P.S.U. SRS ISIA, 20 to 500V positive at 300mA In two ranges, Variable and fixed 170V negative output, £35. Carriage 20/-. CD 711S.2. Double beam, DC to 7MHz 'scope, £85. Carriage 30/-. CD 643.2. Single beam Laboratory Model, DC to 14MHz price upon application.

application. QD 910. Storage Oscilloscope, as new.

Price on request.

FIELD TELEPHONE TYPE "F", Housed in portable wooden cases. Excellent for communication in and out-doors for up to 10 miles. Pair including batteries, fully tested. £6.10.0, or with 220 yds field cable in drum £7.10.0.

4, 5 and 8 bank 25 way uniselector 24V, guaranteed perfect, £3.15, £4.10.0; £6.17.6 respectively. £3.15.6:

DAWE STORAGE OSCILLO-SCOPE complete with trace shifter, complete as new, specification and price on request.

FURZEHILL VALVE VOLTMETER TYPE 378B/2. 10mV to 100V. To clear in "as seen" condition. £12.10.0.

HARNESS "A" & "B" control units, junction boxes, headphones, micro-phones, etc.

BOONTON & METER TYPE 160A. Freq. range 50kHz to 75MHz, main capaci-tor 30 to 500pF. Vernier capacitor ± 3pF; q range. 0-250 with 2.5 x multiplier. 285 plus carriage.

TS 418 B/U SIGNAL GENERATOR, 400-1000MHz. £105. Carr. 30/-.

CRS25/025 15/-CRS3/40 12/6 GET103 4/-GET115 8/-GET16 8/-GEX66 15/-NKT222 4/-NKT304 7/-SD918 5/3 5/3 6/3 6/6 4/4 7/3 8D918 8D918 8D928 8D938 8D94 8D968 8D968 8D968 8D968 8D968 9/3 7/9 Z Range Zener dio 3/6 der All preferred voltage 1W 3/6 1W 7/8 1-5W 5/-7W 7/6

DISTORTION FACTOR METER TYPE TF 142E. Frequency range: 100-8,000Hz in four ranges. Distortion range: 0.05 to 50%. Input impedance 600 g, attenuation 0-60db continuously variable. Sensitivity ImW. £42.10.0. Carriage 20/-.

TELEMETRY STATION We are able to offer, one only, Telemetry Station of very recent American manufacture. Compris-ing Helical Antenna, oscilloscope receiver and associated units, Ampex tape recorder and power supply for the entire installation, Interested clients with a knowledge of this type of equipment are in-particulars.

230v, 3 pole, 10 amp plug in change over relays. 11 pln base, perspex cover. 25/-. P. & P. 1/-

PHASE MONITOR ME-63/U. Manufactured recently by Control Electronics Inc. Measures directly and displays on a panel meter the phase angle between panel meter the phase angle between two applied audio frequency signals within the range from 20-20,000 c.p.s. to an accuracy of $\pm 1.0^{\circ}$, input signals can be sinusoidal or non-sinusoidal between 2 and 30 v. peak. In excellent condition. £75. Carriage 30/-

TFI4H SIGNAL GEN. Freq. range 10 KHz-72 MHz, R.F. output 2uV to 2V at 50 ohms 400 and 1000 Hz internal mod. Limited qry, only available. Full spec. and price on request.

price on request. TFI04IC VTVM A.C. voltage range 300 MV to 300V in 7 ranges. 20 Hz-1500MHz. D.C. voltage ranges 300 MV-1000V in 8 ranges, D.C. reistance 50 ohms to 500 Mohms, Price 602.10.0. AR88 SPARES. We hold the largest stock in U.K. Write for list. WEE MEGGERS. 250v £12.0.0. 500v £14.10.0.

GENERAL RADIO AMPLITUDE MODULATION MONITOR TYPE 1931A, £45 plus carriage.

INITA, 445 plus carriage. A.F. SWEP FREQUENCY OSCIL-LATOR. Range 12.5 to 25,000Hz, sweep rate 0-7 octaves/min. Varlable output, automatic or manual frequency control. 455 plus carriage.

FOR EXPORT ONLY

MULLARD N.W.S./T TRANS-MITTER/RECEIVER. Self contained In one floor-standing unit approx. dft. x 24t. The transmitter is channels, the resiver is continuously uned over the range 1.5 to 13MHz. The transmitter delivers up to 2A into the aerial. Complete with bullt-in handset.

COLLINS TYPE 23ID 4KW TRANSMITTERS. 10 channel, auto-tune and manual tuning. Complete with very comprehensive spares. Full specification and price on application. Complete installations and all spares. No. 19 WIRELESS SETS. H.P. SETS and all spares R.210 RECEIVERS with all necessary

accessories PYE PTC 2002N A.M. Ranger Mobile Radio Telephone, brand new and complete, £45.

INTEGRATED CIRCUITS

RCA CA 3005 wide band R.F. Ampl. 300mW diss	27/-			
CA 3012 wide band ampl. 150mW diss CA 3020 Audio power ampl CA 3036 Audio pre-ampl.	22/- 30/- 19/-			
STC MIC 9301B Digital dual 4 imput gates MIC 709-1C Linear operational ampl. MIC 9005D Highspeed flip-flop Plessey, SL402A 2+5W 42/6 SL403A 3-5	66/- 190/- 54/- 52/6			
All overseas enquiries & orders please address to: COLOMOR (ELECTRONICS) 170 Goldhawk Rd., London, W-12				

Tel. 01 - 743 0899

a83

	BI-PAK=LOW COST LC's	VALUE ALL THE WAY	
	U-PAK semiconductors now offer you the isreest and most	QUALITY-TESTED PAKS 6 Matched Trans. OC44/45/81/81D10/- 20 Red Bpot AF Trans. PNP	
	ackages.	2 10 A Billion Rects 100 PIV. 10/-	
	brder No. 1-24 25-99 100 up	1 12 A SCR 100 PIV.	
	POI = 8N7400N Quad 2-Input NAND GATE 6/6 5/6 4/6	3 200 Mc/s 8il. Trans. NPN BSY26/2710/- 3 Zener Diodes 1W 33V 5% Fol10/- Pak No.	
	COLLECTOR	4 High Current Trans. OC42 Eqvt	
	P10 = 8N7410N Triple 3-Input NAND GATE 6/6 5/6 4/6	4 OC75 Transistors 10/- U4 40 Germanium Transistors like OC81, AC128,	
		10 OA202 Sil. Diodes Sub-min. 10/- U5 60 200mA Sub-min. Sil. Diodes.	
	P40 = 8N7440N Dual 4-Input BUFFER GATE 6/6 5/6 4/6	1 Sil. Trans. NPN VCB 100 ZT8610/- 8 OA81 Diodes	
	- Burterian beb to decempt decoder and tria	4 OC72 Transistors 10/- 4 OC77 Transistors 10/- U9 20 Mixed Volts 1 watt Zener Diodes.	
NAME NAME <th< td=""><td>P50 = 8N7450N Dual 2-Input AND/OB/NOT GATE</td><td>6 GET884 Trans. Eqvt. OC44. 10- U12 12 Silicon Rectifiers EPOXY BY126/127.</td></th<>	P50 = 8N7450N Dual 2-Input AND/OB/NOT GATE	6 GET884 Trans. Eqvt. OC44. 10- U12 12 Silicon Rectifiers EPOXY BY126/127.	
	P53 = SN7453N Single S-Input AND/OR/NOT	2 2N708 Bil. Trans. 300Mc/s NPN 10/- U13 30 PNP-NPN 8il. Transistors OC200 & 28104	
	$GATE = expandable \dots 6/6 5/6 4/6$ $P60 = 8N7460N Dual 4-Input = expandable \dots 6/8 5/8 4/8$	6 IN914 Sil, Diodes 75 PIV 75mA 10/- 8 OA95 Germ. Diodes Sub-min, IN69 10/-	
REFINATIONS Dual Mater functions of Registry Dial Mater function		2 OC22 Power Trans. Germ. 10/- U17 30 Germanium PNP AF Transistors TO-5 like AOY 17-22.	
		4 AC128 Trans. PNP High Gain. 10/- U19 30 Silicon NPN Transistors like BC108.	
	P75 - 8N7475N Qued Bistable Latch 11/- 10/- 0/8	3 2N1307 PNP Switching Trans	
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	P76 = SN7476N Dual Master Slave Flip-Flop with	3 AF116 Type Trans. 10/- 12 Assorted Germ, Diodes Marked. 10/-	
marge = springer pringer prin	P83 - 8N7483N Four Bit Binary Adder 26/- 22/6 20/-	4 Silicon Beets. 100 PIV 750mA	
Partel and Pa		7 OC81 Type Trans	
$ \frac{1}{2} 1$	17/6 20/2 20/2 20/2 17/6 20/2 20/2 17/6	7 OC71 Type Trans. 10/- 029 101 amp SCR # 10-5 can up to 600 PTV CR81/25-000 2	
Partie Paritie Paritie Parit	P95 = 8N7495N 4 Bit Up-Down Shift Register 22/6 20/- 17/6	2 28701 Sil. Trans. Texas. 10- 2 10 A 600 PIV Sil. Rects 1845B. 10- 10- 10- 10- 10- 10- 10- 10-	
Due to a walkable for the 37 with sets and performance during its howship form. Difference Difference <thdifference< th=""> <thdifference< th=""></thdifference<></thdifference<>		1 2N919 NPN 611, Trans. VCB 100	
INTEGRATED CIRCUITS Manufacturer "Pail out Out <td>Data is available for the SN 74N Series of Integrated Circuits in bookiet form.</td> <td>3 88 Y95A Sil. Trans. NPN 200Mc/s 10/- U34 30 Sil. PNP alloy trans. TO-5 BCY26, 28302/4</td>	Data is available for the SN 74N Series of Integrated Circuits in bookiet form.	3 88 Y95A Sil. Trans. NPN 200Mc/s 10/- U34 30 Sil. PNP alloy trans. TO-5 BCY26, 28302/4	
INTEGRATED CLRCUTS NUMENDATE: CIRCUIS Numentation: Control Sites Trans. 1871 hand if RT10010 Utility Utility <td></td> <td>2 GET880 Low Noise Germ. Trans</td>		2 GET880 Low Noise Germ. Trans	
and methodas buy classed as out of spec. from the madutature? very treat in Oct dream Trains Ar ar M. So. provide as reads provide as reads <td>INTEGRATED CIRCUITS</td> <td>3 NPN Trans. 1 ST141 and 2 ST14010/-1 U37 30 SU alloy trans. SO-2 PNP, OC200 28322</td>	INTEGRATED CIRCUITS	3 NPN Trans. 1 ST141 and 2 ST14010/-1 U37 30 SU alloy trans. SO-2 PNP, OC200 28322	
Nume + Click PAK No. 1 x 2008 PAK No. 2 x 2008 PA	art functional but classed as out of spec. from the manufacturers' very rigid	4 OC44 Germ. Trans. AF	
11000 = 0.5 7 4003 100- 1000 = 0.5 7 4003 100- <td< td=""><td>ome will be found perfect.</td><td>1 2N 3906 Sil. PNP Trans. Motorola 10/- U41 30 RF Germ. trans. TO-1 OC45 NKT72</td></td<>	ome will be found perfect.	1 2N 3906 Sil. PNP Trans. Motorola 10/- U41 30 RF Germ. trans. TO-1 OC45 NKT72	
1003 = 5 × 74481 10 UIC80 = 5 × 74481 10 UIC80 = 5 × 74481 10 <	$\frac{1000}{1001} = 5 \times 7400 \text{ N} \frac{10}{-} \text{UIC42} = 5 \times 7442 \text{ N} \frac{10}{-} \text{UIC80} = 5 \times 7480 \text{ N} \frac{10}{-} \frac{1000}{1000} = 5 \times 7400 \text{ N} \frac{10}{-} \text{UIC82} = 5 \times 7480 \text{ N} \frac{10}{-} 10$	1 Sil. Power Trans. NPN 100Mc/s TK201A	
10:00 = 0.5 × 44081 10- 10:00 = 0.5 × 40.00 × 0.5 × 40081 10- 10:00 = 0.5 × 40081 10- 10:00 =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2N697 Epitavial Planar Trans Bil 16/-	
ICC00 = 0.5 × 1408N IO- UIC04 = 0.5 × 1448N IO- UIC04 = 0.5 × 1448N IO- Dest List. Dest L	$1010 = 5 \times 7410$ $10/- 01073 = 5 \times 7473$ $10/- 01093 = 5 \times 7493$ $10/-10$	4 Germ. Power Trans. Eqv. OC16	
PAR NO. ULCX 1 = 20 × Associed 74 × 300- PAR NO. ULCX 1 = 20 × 300-	$IC20 = 5 \times 7420N$ 10/- UIC74 = 5 × 7474N 10/- UIC94 = 5 × 7494N 10/- 2	20 NKT Trans. AP. RF. VHF. Coded +	
Carder cannol de spill but 20 auortele piecel (oir nuit) is available en PAK ULUX. marked, New	PAK NO. UICXI = 20 × Assorted 74's 30/-	8 BY100 Type SD. Rects	
MOTOROLA DIGITAL I.C'S WILL ADD IN DEPART Price ach 101 - sch Type MC3452 (coler Pip-Pip- Pip MC3452 (coler Pip-Pip-Pip- Pip MC3452 (coler Pip-Pip)) MILL ALL I.L.C.S	acas cannoe of spire out to assorted preces (out many is available as I at over the		
NUTL fuel bi-ling acadeIAAAAAAGAIGABILLONPIOTOOPCREWOPType MC345P Clocked Flip-FlopDip StateID	MOTOROLA DIGITAL LC'S	NEW LOW PRICE TESTED S.C.R'S SIL. RECTS. TESTE DNPN DIFFURED MATCHED COMPI	
Type MS447 expandable dual 4-input NAND Power Gate 10/- each 10/- each FULL DATA SUPPLIED WITH UNITS 10/- each 10/- each FULL DATA SUPPLIED WITH UNITS 10/- each 10/- each FULL DATA SUPPLIED WITH UNITS 10/- each 10/-	IDTL dual in-line package. Price		
BARD NEW, FULL TO MANUFACTURERS' SPECIFICATION Price each L-24 00 24'/s Display 100 20'/s 10'/s 20'/s 20'/s 10'/s 20'/s 20'/s 10'/s 10'/s 10'/s	ype MC845P Clocked Plip-Plop	(10-5 (10-66 (10-48 (10	
BAND NEW, FULL TO MANUFACTURERS* Price each SPECIFICATION 200 7/- 7/6 11/6 15/- 100 28/- 600 3/2, 3 6/9 0/-37/- clator, 50% 2.30m W. High Prove population of the provided of the		00 4/8 5/- 9/6 10/6 25 20/- 400 2/6 5/6 7/6 25/	
This is a high performance operational amplifier with high impedance differential papts and low impedance outputs. APOTTED BRIDGE BRIDGE BECTFITERS, 200V. 15/- 800V. 20/- 10/- 600 MILLAR DATE 200V. 15/- 800V. 20/- 10/- 600 MILLAR DATE 200V. 15/- 600 MILLAR DATE 200V. 15/- 600 MILLAR DATE 200V. 15/- 600 MILLAR DATE 200V. 10/- 600V.	SPECIFICATION 1-24 25-99 100 up 4	200 7/- 7/8 11/8 15/- 100 28/- 600 3/3 6/9 9/- 37/- cators, 50V, 250mW, 400 8/6 9/6 13/6 18/6 200 32/- 600 3/8 7/8 11/- 40/- Our Price 10/- each; HIGH POWER 81	
apute and low impedance output. PATTER Service output. TRIACS VCB40 VCB40 FAIRCHILD (U.S.A.) I.C's S00V10/- 600V15/- 800V20/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 800V10/- 600V15/- 800V20/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 800V15/- 800V20/- 10/- 800V10/- 600V15/- 800V20/- 10/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 10/- 800V15/- 800V20/- 10/- 10/- 10/- 10/- 800V15/- 800V20/- 10/-	P709 Operational Amplifier, dual-in-line 14 pin pack- age = 8N72709 and similar to MIC709 and ZLD709C 10/8 9/- 8/-	600 10/6 11/6 15/6 25/- 400 35/- 1000 5/- 9/3 12/6 50/- 50 or over 8/6 each. CON PLANAR TR/ 800 12/6 14/- 18/- 30/- 600 80/- 1200 6/611/615/-	
FAIRCHILD (U.S.A.)I.C'sConstraints	puts and low impedance output.	2A POTTED BRIDGE BECTIFIERS, TRIACS	
FAIRCHILD (U.S.A.) I.C's TL Micrologic Gircuits Gry. prices each Day Case To Stemp, range 15°C to 55°C. 1-11 1.900 Buffer 9/9 8/- 7/6 6/6 12 + 24 25-99 100 up 12 + 24 25-99 12 25 12 + 24 25-99 12 25 12 26 12 25 12 25 12 25 12 26 12 26 12 26 12 25 26 12 26 26 26 26 26 26 26 26 26 26 <t< td=""><td></td><td>200V10/- 600V15/- 800V20/- VBOM 2A 6A 10A (TO- (TO- (TO-) DV BOM 2DV - 10A)</td></t<>		200V10/- 600V15/- 800V20/- VBOM 2A 6A 10A (TO- (TO- (TO-) DV BOM 2DV - 10A)	
11. Biterologic Lincuits 11. 11 12. 22.99 100 up 100 up 11. 11 12. 22.99 100 up 100 up <td></td> <td>TRANSISTOR EQVT. AND SPECIFICATION 100 14/- 15/- 22/6 MULLARD AF 117 VEB8 hFE13 BOOK (Corners Publication) 4 complete 200 17/6 20/- 28/- TRANSISTOR PRICE 15/- EAC</td>		TRANSISTOR EQVT. AND SPECIFICATION 100 14/- 15/- 22/6 MULLARD AF 117 VEB8 hFE13 BOOK (Corners Publication) 4 complete 200 17/6 20/- 28/- TRANSISTOR PRICE 15/- EAC	
$\begin{array}{c} 1283 - k \\ 1283$	poxy case To-5 temp, range 15°C to 55°C. 1-11 12-24 25-99 100 up C	Transistoria	
10/2 10/2 9/2 9/3 EX-COMPUTES BR100 7/6 each Call Data and Circuits available. INTEGRATED CROUTS INTEGRATED CROUTS <td cols<="" td=""><td>914 Dual two-input GATE</td><td>OUR PRICE 12/6</td></td>	<td>914 Dual two-input GATE</td> <td>OUR PRICE 12/6</td>	914 Dual two-input GATE	OUR PRICE 12/6
LASTIC CASE To 5 6 lead up to 100 m/es. III Data and Chrouits available. INTEGRATED CIRCUITS BI-PAK MONOLITHIC AMPLIFIERS (TO-5 5 lead) Differ (vith Zener out- Differ (vith Direc out- Di	A 703E Linear RF-IF AMPLIFIER 11/- 10/- 9/- 8/3	PRINTED CIRCUITS For use with Triacs 15 for 10/ FULL BANGE EX.COMPUTER BR100	
INTEGRATED CIRCUITS IC AMPLIFIER TORCOWAVE MULLARD I.C. AMPLIFIERS (TO-5 S lead) MULLARD I.C. AMPLIFIERS (TA-5 S lead) MULLARD I.C. AMACHED PAIR 8. Eq. (TA-5 S lead) MULLARD I.C. MULLARD I.C. MU	LASTIC CASE To-5 6 lead up to 100 m/cs.	Packed with semiconductors and com-	
$\begin{array}{c} \textbf{INTEGRATED} \\ \textbf{CIRCUITS} \\ \textbf{BI-PAK} \\ \textbf{MONOLITHIC} \\ \textbf{AMPLIFIERS} \\ (TO-5 8 lead) \\ \textbf{pinct}, \dots, 15/e each \\ \textbf{pinct}, \dots, 15/e each \\ \textbf{pinct}, \dots, 15/e each \\ \textbf{add} a coded thered up to the delivering up t$	ICAMPLIFIER MULLARD LC.	30 trans, and 30 diodes. Our price 10 boards 10/-, plus 2/- P. & P. Special Price, stud type, DIODER-SVIVANIA Hat) 3/6 ca. 14W (T	
$\begin{array}{c} \begin{array}{c} \text{CRUUTIS} \\ \text{DiPAK MONOLIFIC} \\ \text{AMPLIFICES} \\ \text{FOSC, Operational am-} \\ \text{piffer} \\ \text{outfices and purposed of livers of up times and purposed of livers of up times are amplifier. \\ \text{DiPAK MONOLIFIC} \\ \text{AMPLIFICES} \\ \text{FOSC, Operational am-} \\ \text{piffer} \\ \text{outfices are amplifier} \\ \text{piffer} \\ \text{outfices are amplifier} \\ \text{DiPAK MONOLIFIC} \\ DIPAK MONOLIFIC \\ \text{D$	INTEGRATED	flying lead $22/6$ each (U.S.A.) 10 Stud) 5/- ea. All fut tested 5% tol. of	
AMPLIFIERS (TO-5 S lead) (TO-5 S lead)Identical encapsulation and pin configuration to the pin configuration to the cass A.B. Power amp stage pint 12/6 each cass A.B. Power amp stage class A.B.	TAA263, Linear AF ampli-	14 AND 16 Lead Sockets for use with UT46. Eqvt. 2N2646. ALL DOLLAR REPORTED Frequired.	
P709C, Operational ant-following: BL402-3; IC10 Coded and Gaara P709C, Operational ant-following: BL402-3; IC10 TA320 Coded and Gaara P701C, Operational ant-following: BL402-3; IC10 TA320 Coded and Gaara P701C, Operational ant-following: BL402-3; IC10 TA320 Coded and Gaara P016r. .12/6 each caspable of delivering up to Coded and Blivering up to Coded and Pliker P702C, Operational ant-following: 3 wats RMS. Pully tested Audio Power Amplifier. Audio Power Amplifier. BL102-4 PHOTO TRANS PHOTO TRANS PHOTO TRANS ILCON FLAND PHOTO TRANS ILCON FLAND FT 8 26378 40 PHOTO TRANS PHOTO TRANS PHOTO TRANS ILCON FLAND FT 8 26378 40 PHOTO TRANS PHOTO TRANS PHOTO TRANS ILCON FLAND PHOTO TRANS ILCON FLAND PHOTO TRANS PHOTO TRANS PHOTO TRANS PHOTO TRANS PHOTO TRANS ILCON FLAND PHOTO TRANS PHOTO TRAN	AMPLIFIERS (TO-5 S lead) Identical encapsulation and TAA293, General purpose of the splitter 200/mach	Price each 5/6 each; 25-39 5/; BAND MIXER. Max. BBAND NEW TEX Order No. 1-24 25-99 100 up 100 up 4/	
$\begin{array}{c} CA3020 \ \text{KC} \ (0.5.4) \\ \text{plifer} (with direct outand guaranteed, Supplied or delivering up to put) \\ \text{plifer} (with direct outand guaranteed, Supplied Science in the interval of $	P709C, Operational amplifier	T8014 14 pin type 7/6 6/- 5/3 NPN SILICON PLANAE 13.7 dB at 3000 m/cs. Pak No. EQ	
$\begin{array}{c} put \\ put \\$	plifier (with Zener out class A.B. Power amp stage LINEAR INTEGRATED	BC107/8/9, 2/- each; BEAND NEW AND T1 8 2G371A OC7	
put)	P702C, Operational am- 3 watts RMS. Fully tested Audio Power Amplifier.	2N 3819 10/- 1/6 each. Fully tested	
fer 18/- each OUE LOWEST PRICE DIUTAL CIRCUTTS PHOTO TRANS 1000 25 (200 moch 1000	put)	08P60, 08P61 8/- ea. MPP105 8/-	
	fier	TAGE RECTIFIERS TIRO NO. TE 8 20378 007	
band amp. 14/- each OTHER MONOLITHIC BP305A, 6-Input AND OCP71 Type 8/6	p20/C, General purpose OTHER MONOLITHIC BP305A, 6-Input AND	B 130	
(voltage or current amp.) D13D1 Silicon Unitateral BP314A, 7-Input NOR 19/6 ach switch	(voltage or current amp.) D13D1 Silicon Unilateral BP314A, 7-Input NOR	Please and all orders direct to our warehouse and densited densities densities of TRANS. CODE Di-	
2. Operational amplifier A Silicon Planar, mono- BP315A, Dual 3-Input with Zener output. Hithic integrated circuit NOB gate	C. Operational amplifier A Silicon Planar, mono- BP315A. Dual 3-Input. with Zener output.	Postage and packing add 1/ Overseas add extra for Airmail. Minimum order 10/ Cash each.	
rpe 7010. Ideal for P.E. having thyristor electrical B2316A. Dual 2-Input with order please. BY RETURN POSTAL SERVICE 120 VCB NIXIE DR	pe 701C. Ideal for P.E. having thyristor electrical BP316A, Dual 2-Input characteristics, but with an NOR gate (excandable).	with order please. BY RETURN POSTAL SERVICE 120 VCB NIXIE DRIV	
ull data. Our price 12/6 each "Zener" diode between BP320A, J-K-Binary ele- gate and cathode, Full ment, and the sach	ill data. "Zener" diode between BP320A, J-K-Binary ele-	BI-PAK SEMICONDUCTORS B6X21 & C407, 2N1 FULLY TESTED A	
off 11/- each. Large data and application cir. BF352A, Dual 3-Input untity Prices quoted for, cutts available on request. OB state	off 11/- each. Large data and application cir- BP332A, Dual 3-Input	P.O. BOX 6, WARE, HERTS. CODED ND120. 1 3/6 each. To-5 NP	
125 up 3/- each.		25 up 3/- each.	
KING OF THE PAKS BI-PAK GUARANTEE SATISFACTION OR MONEY BACK	KING UP THE PAKS BI-PAK	GUARANTEE SATISFACTION OR MONEY BACK	

SODECO IMPULSE COUNTERS Will accept 10 Imp/s-mechanical reset, 220 v. D.C. 27 ma coil can be used on A.C. 240 with suitable rectifier. 4 digit type offered brand new 45/- ea. Also as above with 160 v. 3200Ω coil type ATCEZ4E. New boxed. $35/-$ ea.	SPECIAL OFFER "INSULATION TESTERS" TYPE No. 11 METROHM by famous British manufacturer. All solid state. No handles to crank. Runs off 9 volt transistor battery. Simply press button for function. Range 0-1 to 25M ohms for insulation testing. Also 0-11 to 100 ohms for resistance and continuity checking. Clear, concise scale.	Coutant Stabilised Power Supplies Model EDS0/18/18. Double module units Vari- able between 3-30 volts 500 ma twice, high quality units of recent manufacture offered new boxed at only £25 each.
ADVANCE VOLT STAT CV500/31 Input 162-276 v. A.C., 50 c/s. I phase out- put 115 v. constant at 410 watt. Offered	Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition with battery ready to work. For 250 volt pressure only. List Price £19.10.0. Our Price £5.19.6 plus 4/6 post/packing.	LUCAS CAR RELAYS. 12 v. Heavy duty make. Suitable for spotlights, horns, overdrives, etc. Brand new. Only 7/6. Special price for quantities.
ADVANCE D.C. SERIES ADVANCE D.C. SERIES Output 24 v. D.C. at 5 amps. Input 200-245 v. A.C. ± 15%. Fully smoothed and protected. BRAND NEW units at only £10 each.	Rhode & Schwarz ESM300 UHF Receiver AM/FM 85MHz—300 MHz. Rhode & Schwarz BN15031 Field strength test receiver AM/FM 90 MHz—470 MHz. Rhode & Schwarz BN4151/2*60 Noise generator 3 MHz—1000 MHz. Rhode & Schwarz BN18042 Unbalanced standard Attenuator 0-100db 50 ohm 0 MHz—600 MHz. Rhode & Schwarz BN3664/50 UHF Load resistor 100 watt 50 ohm 0 MHz—600 MHz.	BARGAIN OFFER 200-yard reels equipment wire, size 1/024, STC quality, various colours. Brand new reels only 15/ P. & P. 2/6.
HIGH VOLTAGE TRANSFORMERS Input 240 v., output 2560 v. and 2820 v. at I amp. Weight 75 lb. Price £15.	Rhode & Schwarz BN4521 Vibration Meter 2D Diagraph. 30Hz—12 KHz. Rhode & Schwarz ZD Diagraph. 100 kHz—100 MHz. Advance Q meter type T.I. 100 kHz—100 MHz. 50 kHz—50 MHz. Marconi Q meter type 886A 15 MHz—170 MHz.	HIGH SPEED RELAYS. "Suitable for translstor circuits." Plessey. Type minl sealed. I C/O contacts. 12 v. 31000. Brand new. 15/- each. Siemens High Speed. Type H96E. Twin 1700 Ω coils. 48 v. 15/- Siemens High Speed. Type H96D. Twin
NICKEL-CADMIUM BATTERIES D.E.A.C. manufacture RS 3-5 rating 3-5 Ah 1-24 v. Size as British U2, fully recharge- able. Offered BRAND NEW 19/6 each. P. & P. 1/6.	Marconi Impedance Bridge type TF936 Marconi Universal Bridge type TF868/I Marconi Universal Bridge type TF868 Marconi Universal Bridge type TF868	500Q coils. 12 v. 15/ GEC UNISELECTOR U.301 GPO pattern 3 bank full wipe 3 bridging contacts. 75 ohm. Coil. 25 position.
INSTRUMENT CONNECTING CABLES. Terminated with Plessey Mk. III Free Plugs/Free Sockets. In stock now 25-way. 12-way. 6-way. 3-way. Supplied in nominal 6-ft. lengths. Price 50/- 25-way and 12-way each; 35/- 6-way and 3-way each. All Connectors Brand New. P. & P. 2/6.	RF GENERATORS Marconi Standard Signal generator TF867 15 kHz—30 MHz £200 Marconi UHF signal generator TF762C 300—600 MHz £75 Marconi FM/AM Signal Generator 2-216 MHz TF995A/3 P.U.R. Services type CT212 AM/FM signal generator 85 kHz—32 MHz £45 Services type CT211 AM/FM signal generator 20-80 MHz £40 Avo Signal generator portable 50 kHz—80 MHz £15	Brand New 40/-, P. & P. 4/6. GEC UNISELECTOR. GPO pattern. 5 bank full wipe 5 bridging contacts. 25 position. 75 ohm. Coil 28-36 v. Brand new 50/-, P. & P. 4/6.
OHMITE RHEOSTATS 40 ohms, 500 watts, Torodlal wound on ceramic formers. BRAND NEW high quality units. Size 5 in. dia. Price 35/- each. P. & P. 5/	Hewlett Packard 616B 1-8 GHz.—4 GHz, also special generators up to X band Hewlett Packard 510A Transfer function Oscillator Marconi signal generator TF144H/4. Range 10 kHz to 72 MHz P.U.R. General Radio 1021A 250—920 MHz	R.D.O. UHF. RECEIVER. 38-1000 mHz offered with 3 tuning units to cover full frequency range. Ideal communications receiver/or can be supplied with Pan- adaptor for laboratory work. £95.
BERCO RHEOSTATS 3000 Ω AT 100 Watts Torodial wound on ceramic former with control knob. BRAND NEW at 12/6. P. & P. 1/6.	D.C./A.C. ELECTRONIC VOLTMETERS Philips GM6010 Sensitive D.C. Millivolt Meter IMV/FSD to 300 volts in twelve ranges Philips GM6505 Transistor measuring test unit designed for labs' test departments etc. Advance VM77 wide range A.C. Valve Voltmeter 1 mv-300 v. £125	WATSON MARLOW ORBITAL LOBE PUMPS Specially designed for corrosive liquids etc. Rated output against 10 ft. head- 110 G.P.H. directlon of flow reversible. Supply 240 v. A.C. mains. Nett weight 14 lb. Supplied as new. Price £12.10.0
HEWLETT PACKARD RF. POWER METER—Type 431B Measures RF. power in 7 ranges, from 0.01 MW to 10 MW. This instrument is fully completely solid state, small portable, current series equipment. Mains or battery powered C/W thermistor mount either 478A 10 Mc/s to 10 K.Mc/s. Supplied in good used condition with thermistor	Philips GM6016 3 mv-1000 v. 1 kHz-30 mHz £30 Philips GM6014 1 mv-300 v. 1 kHz-30 mHz £25 Rohde & Schwarz UHF Millivoltmeter type URV with insertion unit for measurements up to 2400 mHz £95 Hatfield Millivoltmeter LE48C 0-3 MV- 30 volts. Large eight Inch scale indication balance and unbalanced inputs £30	P. & P. 10/ List £22,10.0.
A.E.I. MINIATURE UNISELECTOR SWITCHES No waiting, straight off the shelf and into your equipment the Catalogue Nos.	CAMBRIDGE INSTRUMENT Co. Ltd. Precision test meters. Electrodynamic A.C. Ammeter 0 to 15 amps with test certificate	CAMBRIDGE SPOT GALVANO METER. Type 41153/1-3. Offered branc new with hand book. Price £22.
are 2202A, 4/33A63/1; coil resistance is 250 ohms. Complete with base, and the price is £4.19.6. Limited quantity only available. Also: 2203A, 2200A, 2202A.	Tinsley Universal Shunt type 4309C	5 in. mirrow scale, MC type. Flush fitting Supplied brand new, boxed only 75/-
	Digital Voltmeter Solartron LM902-2 four digit readout	CRYSTAL Type Qml20/F contained in B7G envelope with flying lead connections Brand new only 20/- each.
SPE	Frequency Counters Analogue/Digital Marconi TF1345/2 digital 10 Hz to 220 mHz C/W full complement plug in's £300 Racal Digital frequency meter SA520 as new 10 Hz to 400 kHz	
FOSTER VOLTAGE REGULATING EQUIPMENT TYPE 12A80	Racal Digital frequency meter older type valve model 10 Hz-300 kHz £25 Rank Cintel Counter/timer transistorised model 10 Hz-1 mHz £45 Venner Counter/timer type TS a3 Malns or portable Digital meter readout £25 U.S.A. BC221 Heterodyne frequency meter 125 kHz-20 mHz new or used from £16 £18 U.S.A. TS175/U 85-1000 mHz Modulated, reception/emission CW, MCW, as new £85 £85	COMPLETE C.R.T. KIT comprisin 2API C.R.T. mumetal screen/tube bas and graticule. The lot 45/ P. & P. 2/6
Input 250 A.C. max., input variation ±5·15% output 250 v. A.C. constant. Load 80A max. As new £65. Carr. £4.	U.S.A. TSI86/D Heterodyne frequency meter 100-10,000 mHz CW, MCW, pulse 29	TMC MINIATURE KEY SWITCHES Two change-overs, non-biased, two position offered. New, only 8/6 each.
AVO METER CALIBRATION TEST UNIT TYPE CTISS A modern precision instrument, giving 7 standard voltages I v. A.C2:5 v. A.C 10 v. A.C25 v. A.C 100 v. A.C. and 250 mV. A.C. Also 250 mV. D.C. from internal standard cell. Internal power supply 110-250 v. A.C., contained in portable carrying case. Size II × 8 × 7in. Brand new equipment. £7.10.0 P. & P. 10/6.	IO Chapel St London N.W.I	PAXOLIN PC BOARDS contains fiv Mullard OC36 power transistors-mad up as solenoid drive unit. Guaranteed Brand new, only 30/- inc. PAXOLIN PC BOARD contains te GETI13 transistors with polythene hold ers, ten miniature glass diodes and 2 4W. resistors. BRAND NEW 19/4 P. & F. 6d.

Budget

SENDS.A.E. FORLISTS

GUARANTEE Satisfaction or money

refunded.

WISE FREE POST & PACKING.

SEMICONDUCTORS

10117 43	1 1 00115	0.10	I DEADE			1.
AC117 12		6/6	BF225	6/-	2N1305	4/10
	/4 BC117	7/9	BF257	9/6	2N1306	6/2
	/9 BC118	7/9	BF22A	9/6	2N3055	15/-
	/6 BC134	11/6	NKT125	5/9	2N3392	5/-
AC176 7	/4 BC147	5/8	NKT281	4/-	2N3702	5/6
ACY17 6	/- BC148	4/4	NUT401	17/6	2N3705	4/6
ACY20 6.	/- BC152	5/6	OC25	9/6	2N3711	4/9
AD149 11		5/6	OC44	5/6	2N3819	9/-
	/9 BC187	5/8	OC45	5/4	2N3826	6/-
AD162 6,	9 BC213L	5/4	OC71	4/4	2N4062	4/6
	8 BDY20	30/6	OC72	5/4	2N4289	4/6
AF115 4	/8 BFY50	5/-	OC77	5/6		·/ •
AF116 4	/9 BFX84	7/-	OC78	5/-		
AF117 4	6 BFX29	7/6	OC81	. 4/-	RECTIFI	FRC
AF118 12	/- BF115	5/6	OC81D	4/-	BY126	4/4
AF126 4,	8 BF117	9/6	(GET113)		BY127	5/-
AF127 4,	/8 BF163	7/-	OC84	5/-	01127	5/-
AF139 8,	8 BF167	6/	OC169	4/8	b	
AF178 9,	- BF173	7/-	OC171	6/		
AF179 9/	/- BF178	7/-	OC200	6/6	DIODES	
AF180 12/	4 BF180	8/-	OC202	9/6	AA119	2/-
AF181 9/	4 BF181	8/-	OC203	6/6	0A47	1/9
AF186 13/	4 BF182	8/-	OCP71	12/6	OA79	1/10
AF239 8/	6 BF184	5/-	P346A	4/6	OA81	1/10
BC107A 5/	- BF194	5/-	2N456A	17/6	0A91	2/-
BC108B 4/	6 BF197	6/4	2N697	5/10	OA202	2/-
BC109C 5/	– BF200	7/4	2N698	10/6	BZY88	-,
BC113 5/	6 BF224	6/-	2N1132	11/6	(SERIES	6/6

ADD 5d. PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES.

CATHODE RAY TUBES

New

New and Budget tubes made by the leading British manufacturers. Guaranteed for 2 years. In the event of failure under guarantee, replacement is made without the usual time wasting forms and postage expense.

		14044	Duuget
and the second se		£	£
MW36-20			4,10,0
MW36-21			4.10.0
MW43-69Z	CRM171		4.10.0
1111140 000	CRM172	C 4 0 0	
MW43-80Z		6.12.0	4.12.6
	CRM173	6.12.0	4.12.6
AW43-80Z	CME1702	6.12.0	4.12.6
	CME1703	6.12.0	4.12.6
	CME1706	6.12.0	4.12.6
	C17AA	6.12.0	4.12.6
	C17AF	6.12.0	4.12.6
AW43-88	CME1705	6.12.0	
AW47-90	CIVILI705	0.12.0	4.12.6
		10 10 10 10 10 10 10 10 10 10 10 10 10 1	
AW47-91	A47-14W	7.13.4	5. 7.6
Á47-14W	CME1901	7.13.4	5. 7.6
	CME1902	7.13.4	5. 7.6
	CME1903	7.13.4	5. 7.6
	C19AH	7.13.4	5, 7.6
A47-13W	CME1906	10. 5.6	8.10.0
A47-11W	CME1905	8.17.3	7. 0.0
A47-26W	CME1905	8.17.3	
A47-26W/R	CME1913R		7.15.0
A50-120W/R		9. 6.8	
	CME2013	10.17.0	
AW53-80		8.18.8	6. 5.0
AW53-88	CME2101	8.18.8	6. 5.0
AW59-90			
AW59-91	CME2303	9.11.8	7. 4.0
A59-15W	CME2301		
	CME2302		
	CME2303	9.11.8	7. 4.0
A59-11W	CME2305	5.11.0	7. 4.0
A59-13W	CME2306	13.13.0	10.10.5
A59-16W	CME2306		10.19.6
A59-23W		13.13.0	10.19.6
	CME2305	12.12.0	10.10.0
A59-23W/R		12.12.0	10.10.0
PORTABLE SET	TUBES		
TSD217			6.15.0
TSD282			6,15.0
A28-14W		9. 3.4	Not supplied
CME1601			7.15.0
CME1602			8. 0.0
	1000		8. 0.0

A discount of 10% is also given for the purchase of 3 or more New tubes

All types of tubes in stock. Carriage and insurance 15/-.

TRANSISTORISED UHF TUNER UNITS NEW AND GUARANTEED FOR 3 MONTHS

Complete with Aerial Socket and wires for Radio and Allied TV sets but can be used for most makes. Continuous Tuning. 90/-; Push Button, 100/-.

STYLI

TC8. GC2. GP59. GC8. DC284. Stereo 105. 106. 208. 2/- each (individually boxed) ; ST3/5. ST8/9. 9TA. 9TA/HC, GP91. 8/-. Diamond. Post and packing 5d. per item for orders under 24.

TAPES (Polyester PVC)

4in. L.P., 8/6; 3in. L.P., 5/6. Aun. L.P., 9/0, 3in. L.P., 9/0. Standard Play: 600ft 5in, 8/6; 900ft 5[§]in, 10/6; 1,200ft 7in, 12/6. Long Play: 900ft 5in, 11/-; 1,200 ft 5[§]in, 13/-; 1,800ft 7in, 18/-. Double Play: 1,200ft 5in, 16/-; 1,800ft 5[§]in, 19/-; 2,400ft 7in, 28/-. Phillps type Cassettes (in plastic library pack): C60, 10/6; C90, 12/6; C120, 19/6.

Post and packing 1/6 on all orders.

ACOS CARTRIDGES

GP91-1—Medlum output Mono Crystal, 21/- inc. P. Tax. GP91-3sc—High output Mono Crystal (TC8H, TC8M, BSR X3H, X3M), 21/- inc. P. Tax. GP93-1—Stereophonic Crystal, 24/9 inc. P. Tax. GP94-1—Stereophonic Crystal, 24/9 inc. P. Tax. GP95-1—Stereophonic Crystal, 24/9 inc. P. Tax.

GP96/1-Stereophonic Ceramic, 31/6 inc. P. Tax.

TERMS, CASH WITH ORDER ONLY. POST & PACKING PAYABLE ON ORDERS UP TO £3, AFTER THAT, FREE EXCEPT C.R.T.'s.

...

EVERYTHING BRAND	BTRO NEW AND TO SPECIFI	CATION - LARGE STOCKS		
	EMI-CONDUCTORS	PEAK SOUND PRODUCTS		
ALL POWER TYPES SUPPLIED W IN914 1/3 2N3706 3/3 40512 IN3754 4/- 2N3707 4/- 40602 IN4148 1/9 2N3708 3/- ACI07 IN5054 4/- 2N3709 3/- ACI26 IN5054 4/- 2N3709 3/- ACI27 2N696 5/6 2N3711 3/11 AC128 2N697 5/6 2N3731 3/11 AC128 2N706 2/- 2N3794 3/3 ACY22 2N1302 4/- 2N3819 8/6 ACY40 2N1303 4/- 2N3804 7/6 AD140 2N1304 4/6 2N3904 7/6 AD142 2N1305 4/6 2N3905 7/3 AD161/6 <	VITH FREE INSULATING SETS 45/6 BC147 3/6 BFY51 4/3 9/6 BC147 3/6 BFY51 4/3 9/6 BC147 3/6 BFY51 4/3 9/6 BC147 3/6 BY164 10/- 6/6 BC153 10/- BY238 3/6 6/- BC154 11/- C106B1 14/6 6/- BC157 3/9 MC140 5/- 11/- BC167 3/9 M1480 21/- 3/9 BC167 2/6 MKT403 15/6 11/- BC167 2/3 MFF102 7/6 14/3 BC169 2/6 NKT403 15/6 NC162 BC177 6/3 NKT403 15/6 NC162 BC178 5/8 NKT405 15/- A/10 BC181 2/3 OA91 1/3 7/- BC1821 4/3 OA91 1/3 7/- <	ENGLEFIELD CABINET KITSμεία		
2N3704 3/9 40408 14/6 BC125 2N3705 3/5 40430 37/- BC126	12/- BFX88 6/9 ZTX530 5/5 12/- BFY50 4/6 ZTX531 6/9	MAINLINE AMPLIFIER KITS RCA/SGS designed main amplifier kits. Input sensitivity 500-		
RESISTORS Code Power Talerance Range C 1/20/v 5% 82Ω -220/cl C 1/8/W 5% 4.7Ω -330/cl C 1/8/W 5% 4.7Ω -10/MΩ C 1/2W 5% 4.7Ω -10/MΩ C 1/2W 5% 4.7Ω -10/MΩ C 1/2W 2% 10Ω-1/MΩ MO 1/2W 2% 10Ω-1/MΩ WW 10% ± 1/20Ω 0.22Ω-3.9Ω 12Ω-10KΩ WW 3W 5% 12Ω-10KΩ 12Ω-10KΩ Codes: C c carbon film, high stability, low noise. MO MO metal oxide, Electrosil TRS, ultra low no WW wrow MO	2 E24 2·5 2 1·75 E12 2·5 2 1·75 E24 3 2·5 2·25 E12 6 5 4·5 E24 9 8 7 E12 15d. all quantities 15d. all quantities E12 18d. all quantities 18d. all quantities Prices are in pence each for same ohmic value and nower rating NOT mixed	700mV for full output into 8Ω. Suitable unreg. Power Kit price Suitable unreg. 12W Including components power supply kit 12W 140/- nett 86/- 25W 165/- nett N/A 40W 195/- nett 101/6 70W 210/- nett 131/- Special summer reduction (to Sept. 30th 1970 only) Sensitivity 1:2V for full output into 8Ω. Transistors for one channels £14/11/- list, £6 only nett. Transistors for two channels £14/11/- list, £11 only nett. Capacitors and resistors (metal avide), 30/- per channel netc. Complete unregulated power supply kit		
Values: E12 denotes series: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 and their decades. E24 denotes series: as E12 plus 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75, 91 and their decades.	TYGAN SPEAKER MATERIAL 7 designs, 36 x 27 in. sheets, 31/6 sheet. Pattern book, S.A.E. plus 6d. stamp.	FETS n-channel Low cost general purpose 2N5163, 25 volt Audio/r.f. Texas 2N3819 Motorola 2N5457 (MPF103) Motorola 2N5459 (MPF105)		
ZENER DIODES 5% full range E24 values: 400mW: 2-7V to 30V, 4/6 each; I/V: 6-8V to 82V, 9/- each; I-5W: 4-7V to 75V, I2/- each. Clip to increase I-5W rating to 3 watts (type 266F), 9d. CARBON TRACK POTENTIOMETERS, long spindles. Double wiper ensures minimum	MULLARD polyester C280 series 250V 20%; 0·01, 0·022, 0·033, 0·047 8d. each; 0·068, 0·1; 9d. each; 0·15, 11d., 0·22, 1/~, 10%; 0·33, 1/5; 0·47, 1/8; 0·68, 2/3; 1µF, 2/9; 1.5µF, 4/2; 2·2µF, 4/9 IIId., 0·22, 1/~, 1/8; 0·68, 2/3; 1µF, 2/9; MULLARD SUB-MIN ELECTROLYTICS I/3 each Valves (µF/V): 0·64/64; 1/40; 1·6/25; 2·5/16; 2·5/64; I/3 each Valves (µF/V): 0·64/64; 6·4/6·4; 6·4/25; 8/4; 8/40; 10/2·5; I/0/2·5; 0/10; 4/40; 5/64; 6·4/6·4; 0·0/2·10/2·5; 0/64; 20/6; 20/6; 20/6; 2/6/4; I/0/2·5;	INTEGRATED CIRCUITS PLESSEY SL4053A 3 watts into 7.5 ohms. Data book supplied FREE when two of these units are purchased. Price per unit, nett 45/ SINCLAIR IC.10 as advertised, complete with instructions and applications manual 59/6 nett.		
noise level. Single gang linear 220 Ω to 2.2 $M\Omega$, 2/6; Single gang log, 4.7K Ω to 2.2 $M\Omega$, 2/6; Dual gang linear, 4.7K Ω to 2.2 $M\Omega$, 8/6; Dual gang log, 4.7K Ω to 2.2 $M\Omega$, 8/6; Dual gang log, 4.7K Ω to 2.2 $M\Omega$, 8/6; Log, fantilog, 10K, 47K, 1M Ω only 8/6; Dual antilog, 10K only, 8/6. Any type with $\frac{1}{2}A$ D.P. mains switch, extra 2/6. Please note: only decades of 10, 22 and 47 are available within ranges quoted. CARBON SKELETON PRE-SETS Small high quality, type PR, linear only: 100 Ω , 220 Ω , 47 Ω , 1K, 2K2, 4K7, 10K, 22K, 47K, 100K,	25/25; 32/4; 32/10; 32/40; 32/44; 40/16; 40/2-5; 50/6-4; 50/25; 50/40; 64/4; 64/10; 80/2-5; 80/16; 80/25; 100/6-4; 125/4; 125/10; 125/16; 160/2-5; 200/6-4; 200/10; 250/4; 320/2-5; 320/6-4; 400/4; 500/2-5. LARGE CAPACITORS High ripple current types: 1000/25, 5/6; 1000/50, 8/2; 1000/100, 16/3; 2000/25, 7/4; 2000/50, 11/4; 2000/100, 28/9; 2500/64, 15/5; 2500/70, 19/6; 5000/25, 12/4; 5000/50, 21/11; 500/100, 58/3; 10000/15, 17/-; 10000/25, 21/6; 1000/50, 44/-;	Components pack for mono or stereo available. S-DeCs PUT AN END TO BIRDS NESTING Components just plug in-saves time-allows re-use of com- ponents. S-Dec (70 points), 30/ Complete T-Dec, may be temperature-cycled (100 points), 50/- Also µ-Decs and Ic carriers. WAVECHANGE SWITCHES IP 12W; 2P 6W; 3P 4W; 4P 3W-long spindles 4/9 each SLIDER SWITCHES		
220K, 470K, IM, 2M2, 5M, 10Mail. Vertical or horizontal mounting, I/- each. COLVERN 3 watt Wire-wound Potentlometers. 10Ω, 15Ω, 25Ω, 25Ω, 25Ω, 500Ω, 1K, 1-5K,	10000/70, 61/ COMPONENT DISCOUNTS 10% on orders for components for £5 or more. 15% on orders for components for £15 or moe. (No discount on nett items)	Double pole, double throw 3/- each MEDIUM RANGE ELECTROLYTICS Axial leads: 50/50, 1/9; 100/25, 1/9; 100/50, 2/6; 250/25, 2/6; 250/25, 2/6; 250/25, 3/9; 500/25, 3/9;		
2-5K, 5K, 10K, 15K, 25K, 50K, 5/6 each. ENAMELLED COPPER WIRE even No. SWG only: 2 oz. reels: 16-22 SWG 4/3; 24-30 SWG 5/-; 32, 34 SWG, 5/6; 36, 38 SWG, 6/3. 4 oz. reels: 16-22 SWG only 7/6.	POSTAGE AND PACKING Free on orders over £2 Please add 1/6 if order is under £2 Overseas orders welcome: carriage and insurance charged at cost.	500/50, 4/6; 1000/25, 4)-; 1000/50, 6/-; 2000/25, 6/-; SMALL ELECTROLYTICS Axial leads: 4-7/10, 4-7/25, 5/50, 1/- each; 10/10, 10/25, 10/50, 33/10, 50/10, 1/- each; 25/25, 25/50, 47/25, 100/10, 220/10, 1/3 each.		
ELECTROVALUE DEPT. WW.707, 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY, Hours: 9-5.30, 1.0 p.m. Saturdays. Phone: Egham 5533 (STD 0784-3) Telex 264474				

INTEGRATED CIRCUIT AMPLIFIERS

CA3005 RF amplifier, 100mc/s band	width			27/-
CA3012 Wide Band Amplifier for LF	applica	tions.		28/-
CA3020 550mW Audio Amplifier .				30/-
CA3036 Two super-alpha pairs for s	tereo pie	ck-up syste	ems	19/-
CA3052 Latest addition to RCA	range.	Four-in-	one	201
amplifier				42/-
				65/-
PA234 1 watt Audio Amplifier .				27/6
PA237 2 watts Audio Amplifier .				40/-
MC1709G-G.P. operational Amplifi				40/-
TAA263 3-stage direct coupled Amp	lifier			15/-
TAA293 3-stage direct coupled Amp	lifer			
TAA320 MOST input + bl-polar sta				13/-
TAD100 All active components req	uired to		-	TO
AM receiver				45/-
SL403A 3 watts Audio Amplifier .				49/6

ZENER DIODES

BZY88 series, from 3.3V to 9.1V± 5% 400mW	• •	3/6 each	
BZY94 series, from 10.0V to 12.0V ± 5% 400mW	• •	4/1 each	A.
D614 series, from 7.5V to 13.0V ± 10% 340mW		3/- each	ı
D815 series. from 4.7V to 18.0V ± 10% 8 Watta		7/8 each	1
D816 series, from 22V to 47V ± 10% 5 Watts		7/6 each	1
D817 series, from 56V to 100V ± 10% 5 Watts		7/6 each	1
Outlines: BZY series-miniature-wire ended			
D814-Top Hat' type			

D815-D817-stud mounted, supplied complete with hardware

Please state voltage required-nearest standard voltage will be supplied.

LONDON W.2. Tel: LANgham 8403

2N290510/- AC113 3/- 10/- B8Y26 5/- OC206 14/- OFFICE AND NOT TO KETAL SHOT.					
OA2 6/6 5/255M 68Q60TB OA3 9/- 45/- 13/- OA4G 22/- 5021 80/- 68Q7A 7/6 OB2 6/6 516 8/- 68Q7A 7/6 13/- OB2 6/6 516 8/- 6887 17/- 083 10/- 5840 Y 11/- 6887 7/6 12/- 50/- 6827 7/6 12/- 50/- 6877 7/6 12/- 50/- 6877 7/6 12/- 50/- 6877 7/6 12/- 50/- 6877 13/- 50/- 6877 14/- 50/- 6877 14/- 50/- 50/- 6877 14/- 50/- 50/- 50/- 50/- 50/- 6877 13/- 12AU7 6/- 50/- 50/- 6877 13/- 12AU7 6/- 50/- 50/- 50/- 50/- 50/- 50/- 50/- 50/- 50/- 50/- 50/- 50/-	10/- Actis 3/- 10/- Bs Y26 5/- Occ266 14/- D Image: Construction of the state of th	PCL83 13/- PCL84 QV03-12 Bits UCL81 11 UCL82 AVESS PCL84 8/9 PCL84 13/- PCL84 UCL83 13/- UCL82 UCL83 12/- UCL82 UCL83 12/- UCL82 UCL83 12/- UCL82 UCL83 12/- UCL83 UCL83 12/- UCR83 UCL83 12/- UCR83 UCL83 12/- UCR86 UCL83 12/- UCR86 UCL83 12/- UCR86 UCL83 12/- UCR86 UCL83 12/- UCR86 UCL83 12/- UCR86			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Contraction Contraction Tol-Foron Shie	8 AC/TH1 8/- E180F 19/- ECL84 11/- EM84 7/6 KT	8 40/- PCL82 7/9 QU37 30/- UCH81 6/6			
Head Office:					
44a WESTBOURNE GROVE, LON	DON, W.2				
Tel.: PARK 5641/2/3 Cables: ZAERO LONDON	A.R.B. Approved for inspection and release of electronic valves, tubes, klystrons, etc. E.I.D. Approved stockists.	WE WANT TO BUY: SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.			
85 TOTTENHAM COURT RD.,	OUR 1969/1970 CATALOGUE IS AVAILABLE. PLEASE SEND OUARTO S.A.F. FOR YOUR FRF.	F COPY TELEY 241304			

TRANSISTORS

		100			
1	2N404 3/6	ASY74	AC125 6/6	ASY77 7/-	BSY27 5/6
Т	2N410 3/8	16/-			BSY28 5/-
L	2N412 3/6	2N2923 3/-	AC127 5/8		BSY65 4/6
L	2N444A 5/-	2N2924 3/-	AC128 4/6		BSY95A
Ł	2N696 4/8	2N2926'b'		BC108 3/-	
н	2N697 4/8	3/-	AC153 5/-		D29A4 3/8
н.	2N698 8/6	2N2926'r	AC154 3/-		D29A4 3/6 OC16 15/-
ъ	2N705 15/-	3/-		BC118 8/6	
н	2N706 3/-	2N2926'o'	AC169 2/-	BC147 4/6	
L.	2N708 3/8		AC176 6/9	BC148 3/3	
Ł	2N753 4/9	3/-		BC149 3/6	OC24 15/-
л	2N916 8/6	2N2926'y'		BC152 3/2	OC25 7/6
		3/-	ACY18 4/-	BC175 5/6	0C26 6/-
L	2N929 6/- 2N930 6/8	2N2926 'g'	ACY19 4/9	BC187 6/-	OC28 14/6
1	2N987 6/6	5/6	ACY20 4/-	BCY 30 7/-	OC29 14/9
Ł	2N1131 8/6	2N 3053 6/3	ACY21 3/11	BCY31 5/-	OC30 15/-
E	2N1132 9/6	2N 3055 15/-		BCY33 5/-	OC35 11/3 OC36 12/8
L	2N1184 25/-	2N3133 7/-	AD140 16/-	BCY34 5/-	
L.	2N1301 7/-	2N3133 7/-	AD149 12/6	BCY39 5/-	
L.	2N1302 7/-	2N3134 8/8	AD161 9/-	BCY72	OC44 4/-
L	2N1304 4/8	2N3391 4/-	AD162 9/-	3/10	OC45 3/6
L	2N1305 4/6	2N3392 3/2	AF102 15/6	BCZ11 7/8	OC71 3/6
L	2N1306 5/-	2N3393 2/6		BD121 18/-	OC72 5/-
L	2N1306 8/-	2N3394 2/6	AF115 6/-	BD123 25/-	0073 7/8
L	2N1308 7/8	2N3395 3/6	AF116 5/8	BF115 4/9	OC75 5/- OC76 5/-
L		2N3402 5/-		BF167 5/-	
L		2N3403 5/-		BF178 6/-	
L	2N1711 6/- 2N1756 15/-	2N3404 6/6	AF125 6/-	BF181 6/-	OC78D 3/3
L.	2N2147	2N3414 4/-	AF126 5/3		OC81 4/6
L	14/9	2N3415 4/3	AF127 5/3		OC81D 3/-
L		2N3416 4/6	AF178 12/6	BF194 3/6	OC83 4/6
L	2N2160 23/-	2N 3417 5/2	AF186 11/-		0084 5/-
L	2N2217 6/6	2N 3702 4/6	AF239 10/-	BF196 4/6	OC139 7/8 OC140 9/8
L	2N2218 7/9	2N3703	AFY19	BF197 4/6	
L.	2N2219 8/6	3/10	22/6 AFZ11 9/-		OC170 5/-
L	2N2369A	2N 3704 5/6			OC171 5/6
L	4/6			BFY18 5/-	OC200 4/4
L	2N 2477	2N3707 4/- 2N3709 3/5			OC201 10/-
1	12/6	2N3710 3/-	ASY28 6/6 ASY29 6/-		OC202 13/-
1	2N2646	2N3819 12/-	ASY54 6/-	BFY52 4/8	OC203 18/3 OC204 6/-
L.	12/6	2N3906 6/-	ASY73		
E	2N2905 10/-				
8	211 2000 IO/4		10/-	AND 1 AU 0/-	OC206 14/-

CI-5 SINGLE BEAM OSCILLOSCOPE 10 mc/s passband, triggered sweep from 1 μ sec. to 3 milli-sec. Free running time base from 20 c/s to 200 kc/s. Built-in time marker and amplitude calibrator, 3-in. cathode ray tube with telescopic viewing hood. £39.0.0

.

. 9 -

.

.

.

.

. . 10

WHEN ORDERING BY POST PLEASE ADD 2/6 IN £ FOR HANDLING AND POSTAGE. NO C.O.D. ORDERS ACCEPTED ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.

TELEX 261306

www.americanradiohistory.com

OUR 1969/1970 CATALOGUE IS AVAILABLE. PLEASE SEND QUARTO S.A.E. FOR YOUR FREE COPY

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: £7 per single col. inch. LINE advertisements (run-on): 8/- per line (approx. 7 words), minimum two lines. Where an advertisement includes a box number (count as 2 words) there is an additional charge of 1/-. SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.

Advertisements accepted up to THURSDAY, 12 p.m., 9th JULY for the AUGUST issue, subject to space being available.

BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.I. No responsibility accepted for errors.

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress, are held at intervals. Applications are now invited for the course starting in January, 1971.

During training a salary will be paid on the following scale:

Age 21	£848 per annum
22	£906 "
., 23	£943 "
24	£981 "
25 and over	£1.023

Free accommodation will be provided at the Training School.

After successful completion of the course, operators will be paid on the Grade 1 scale:

	-		
Age	21	£1,023 p	er annum
	22	£1,087	
	23	£1,150	
	24	£1,214	100
	25 (highest		
	age point)	£1,288	**

then by six annual increases to a maximum of £1,749 per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 35 years of age at start of training course and must have at least two years' operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970.

Application forms and further particulars from: Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ Telephone No. Cheltenham 21491, Ext. 2270

AUDIO TECHNICIAN

to be responsible to Senior Engineer for the maintenance of professional sound recording systems. Applicants should be capable of developing/wiring and maintaining a wide range of audio equipment. Minimum qualifications C. & G. Electronics Tech. or Radio and TV 1st year. Age 18-21. Commencing salary £850. North London.

Write details to: Rupert Chetwynd Recruitment Ltd., 1 Crane Court (Ref. A/T), London, E.C.4.

Broaden your engineering experience Work in the rapidly moving computer industry

Our Quality Assurance Engineers play a major role in ICL's future and are involved in a wide variety of activities on the whole range of computer equipment.

We can offer you challenging and rewarding opportunities in the following fields:-

- reliability prediction
- equipment evaluation
- quality control techniques
- circuit and logic design review
- production feasibility studies

Although HNC is ideal, emphasis will be placed on previous experience.

Why not telephone now ? Ring Stevenage 3361, extension 221, and ask for C. Atkinson, Manager, Quality Assurance Planning, or write quoting reference no. WW212M to C. W. Squires, Area Personnel Recruitment Office, International Computers Ltd., Cavendish Road, Stevenage, Herts.

RADIO & TELEVISION SERVICING RADAR THEORY & MAINTENANCE

This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training.

Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721. 84

APPOINTMENTS

SENIOR INSTALLATION ENGINEERS AND INSTALLATION ENGINEERS

a90

Required for the engineering, installation and commissioning of L.F., M.F. and H.F. communications schemes, principally for overseas administrations.

Engineers suitable for these vacancies should have wide experience of as many as possible of the following:-

A.M., S.S.B. and I.S.B. Transmitters and Receivers F.S.K. Equipment V.F. Telegraphy Erection and matching of antennae Marine Coastal Radio Stations Airfield Radio Communications Military and Police Communication Systems.

They would need to be able to work on their own initiative to effect the installation and commissioning of equipment. The ability to train the staff of the overseas territory would be desirable.

Applicants should be able to show not less than two years' Overseas experience in this career and applicants for senior posts must have had experience in a supervisory capacity.

Good basic salaries are offered which are supplemented by a generous allowance payable during periods of overseas service. Applications, stating the grade of post for which application is made and giving a résumé of experience and qualifications,

If you can put a'Yes' in every box, you might just makea RADI TECHNICIAN in Air Traffic Control

An all-consuming interest in telecommunications	
At least one year's practical experience in telecommunications, preferably with 'ONC' or 'C and G' technical qualifications	
A highly developed sense of responsibility	
Willingness to undergo a rigorous programme	

Aged 19 or over

of training

To the right man, the National Air Traffic Control Service offers the prospect of an interesting and steadily developing career as a Radio Technician in air traffic control.

The work involves the installation and maintenance of some of the very latest electronic equipment at civil airports, radar stations and other specialist establishments all over the country. Important today, the job will become increasingly vital as Britain's air traffic continues to grow, and prospects for promotion are excellent. Starting salary varies from £1,044 (at 19) to £1,373 (at 25 or over). Scale maximum £1,590 (higher rates at Heathrow). The annual leave allowance is good, and there is a non-contributory pension for established staff.

If you feel you can meet the demands of this rather special job-and you have a strong determination to succeed-you are invited to complete the coupon below.

Send this coupon for full details and application form To: A. J. Edwards, C Eng, MIEE, The Adelphi, Room 705, John Adam Street, London W#C2, marking your envelope "Recruitment" Name Address WWT/GI Not applicable to residents outside the United Kingdom National Air Traffic Control Service

APPOINTMENTS

a91

Electronic design/ development engineers...

...now Pye Telecom provide twice the opportunityand more!

A high-salaried career now—and massive scope in the near future. If that's what you want, that's exactly what your experience can earn you at Pye Telecom.

Because Pye Telecom plan to double turnover within the next 5 years. What's more, after 1975, this forward-thinking Company—already at the top in radio-telephone manufacture—will be launching even further expansion. Which means rapid change —and early promotion to management for everyone with the right qualities.

When you start...

Yours will be a vital job. For Pye Telecom new innovations are the key to success. You will be deeply concerned in evolving products to take over from those marketed today. New techniques, new components, more efficient and effective ways of doing things—these will be your business. With your skills, Pye Telecom will go on giving customers the sophisticated up-to-the-minute equipment which will bring increasing rewards for everyone in the organisation. All possible help is given for you to succeed. In particular;

- * Extensive research facilities throughout Europe are on-line to Pye design teams.
- * Computers-frequently used as a design aid.
- * Among the best company benefits in British industry.
- * Company-paid relocation expenses.
- * A choice of locations to live and work-Cambridge or Southend.

Your qualifications...

With either an electronics degree or equivalent, you should also ideally have 2/3 years' UHF/VHF radio telephone design experience. Experience in other fields, such as radar, broadcasting or television, will be an additional advantage. An absolute essential is circuitry experience.

Action...

Ready to go with Pye towards an expansive, exciting tomorrow . . . for the change to growth, responsibility and high rewards? Good. Phone (reverse the charges) or write now to: M. Timmins, Senior Personnel Officer,

APPOINTMENTS

FLIGHT Simulator Service Engineers

Redifon Flight Simulator Division are designers and manufacturers of highly sophisticated simulators of current civil and military aircraft and linked products for use in the U.K. and world wide export markets.

We need skilled Service Engineers to keep this complex and hard worked equipment in continuous first class condition.

You should have a minimum of O.N.C. or City and Guilds Certificate, theoretical and practical experience of digital computing, hardware, software and computer peripherals. Knowledge of analogue computing and hydraulics would be advantageous. We will train those who have good experience in transistorised and integrated circuits.

The job is varied and interesting and in an expanding business. Promotion prospects are good. But you must expect to travel anywhere in U.K. and overseas at short notice, perhaps for extended periods.

Excellent welfare benefits include contributory pension and free life assurance. Our Sussex factory is only 25 miles from Brighton.

There are vacancies at both Aylesbury, Bucks and Crawley locations.

Send brief details or ring now :

H. C. Hall, Personnel Manager, REDIFON LIMITED Flight Simulator Division Gatwick Road, Crawley, Sussex Tel: Crawley 28811

OPERATE A

TELEVISION UNIT FOR HORSERACING

and require a

TELEVISION ENGINEER

for operation and maintenance of the MCR

QUALIFICATIONS

★HNC, City & Guilds or equivalent.
 ★Experience in operation and maintenance of high grade television equipment.
 ★Willing to travel.

OPPORTUNITIES

★The Company is planning further expansion in the fields of television and electronics.
★Good salary and prospects.

*Expenses paid on location.

Applications stating age and experience should be sent to:

RACECOURSE TECHNICAL SERVICES LTD., 88 Bushey Road, Raynes Park, London, S.W.20.

ELECTRONICS ENGINEER

with particular interest in high quality audio reproduction. This new post is primarily to provide liaison between lab and production, with responsibility for specifying test procedures and designing the gear for full production testing of high quality audio and VHF equipment.

As part of a small specialised design team this provides an excellent opportunity for a young, qualified engineer, preferably with some production experience, and a genuine interest in high quality reproduction.

Non-contributory pension scheme, free life insurance, and all the advantages of working with a small firm, acknowledged leaders in their field, and determined to stay there.

Apply in writing giving main details of qualifications and experience to:

J. H. Walker Acoustical Mfg. Co. Ltd. St. Peter's Road HUNTINGDON

495

598

a93

APPOINTMENTS

The Government of Malawi ENGINEERING OFFICER (MAINTENANCE)

Required by the Posts and Telecommunications Department, to serve on contract for one tour of 24-36 months in the first instance. Salary, according to experience, in scale rising to £M.1,223 a year plus Overseas Addition rising to £Stg.682 a year. A Supplement of up to £Stg.244 a year is also payable by the British Govt. direct to the officer's bank in the U.K. Gratuity 25% total emoluments (excluding Supplement) on completion of 30 month tour. Liberal paid leave. Furnished accommodation. Free passages. Education

and outfit allowances. Contributory pension scheme available.

Candidates, 25-45, must possess appropriate City and Guilds Certificates and have had a minimum of two years approved training, with not less than five years subsequent experience, on the maintenance of carrier systems, H.F., V.H.F. or U.H.F. radio. Experience in the maintenance of X-ray equipment would be an advantage.

The officer will be required to undertake the maintenance of multiplex carrier, telephone and telegraph equipment, H.F., V.H.F. and microwave radio and electromedical equipment, and to give assistance and guidance to local staff under training.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/680847/WF.

Electronic Video Recording

The development of our EVR Project at Basildon in Essex is now reaching an advanced stage and we now wish to recruit further staff who have experience in television or sound recording and outside broadcasting work for engagements in one of the following fields.

VTR Engineers

with good working knowledge of 2" quadruplex video tape recorder operations and maintenance.

Senior Audio Engineer

to be responsible for the operation and maintenance of broadcast quality magnetic and optical sound equipment. A working knowledge of automation and digital techniques would be an advantage.

Shift Control Engineer

The man we require will be responsible for the overall operation of the video tape and sound transfer facilities on shift basis and will preferably have experience of video tape recording and editing, telecine operation, telerecording and film characteristics, sound transfer optical and magnetic, vision and sound mixing, apparatus room equipment and staff control in a senior television engineering capacity.

Applicants for the above positions must be prepared to work on a shift system. Commencing salaries will be negotiable in line with responsibilities and experience. Generous assistance will be given with relocation expenses and rented accommodation will be available under the Basildon New Town scheme. We operate a contributory pension scheme and free life assurance. Interviews will be arranged in London.

Ilford is a subsidiary of CIBA, the international chemical group. Career prospects are international too.

Applications in writing, giving details of your career to date, should be addressed, quoting reference ZH.12, to the Personnel Manager, Ilford Limited, Christopher Martin Road, Basildon, Essex.

APPOINTMENTS

CONTINUOUS EXPANSION Standard Telephones & Cables, Micro-

Standard Telephones & Cables, Microwave and Line Division based at Basildon are growing fast. In order to keep pace with this consistent growth rate we require the following

Installation Engineers Technicians & Testers

a94

Ref. 25720

To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.

Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

> Applications should be addressed to The Personnel Officer, STC Chester Hall Lane, Basildon, Essex.

Test Technicians

Ref. 27221

The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.

Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

91

BBC EV SCOTLAND ASSISTANT FILM RECORDIST

BBC tv requires Assistant Film Recordist in Glasgow to assist in the balance, control and recording of sound for television film.

Essential Qualifications: Practical knowledge of modern film recording techniques with particular emphasis on magnetic recording. Salary: £1,185 (may be higher if qualifications exceptional) x £72 to £1,545 p.a.

If no fully qualified candidate available, consideration given to appointment as Trainee Assistant Film Recordist (Salary £1,016 x £61 to £1,312 p.a. with promotion when fully qualified). Qualifications: G.C.E. standard of education and practical interest in the film medium. (Evidence normally sought is membership of film making group.)

Write for application form (enclosing addressed foolscap envelope and quoting reference 70.G.717W.W.) to Appointments Department, BBC, London, W1A 1AA, by June 22nd.

computer engineering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of £900/£1,350 per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, NW2 quoting publication and month of issue.

Plan your future with

www.americanradiohistory.com

85

a95

APPOINTMENTS

East African Posts and Telecommunications Corporation

ASSISTANT ENGINEERS GRADE 1 (RADIO)

To serve on contract for one tour of 24 months in the first instance. Basic salary E.A.Shg.24,300 (Approx. £Stg. 1417) a year rising to E.A.Shg.27,780 (Approx. £Stg.1620) a year plus an Inducement Allowance, normally TAX FREE, of £Stg.822-886 a year, paid direct into the officer's bank in the U.K. Gratuity 25% of total emoluments drawn. Liberal paid leave. Furnished accommodation. Overseas Installation Grant. Free passages Contributory pension scheme available.

Candidates, 28-45 years, should possess the City and Guilds Intermediate Certificate (Telecomms.) plus a pass in Radio Grade 2 and must have a thorough knowledge of the installation and maintenance of HF and VHF radio equipment. A knowledge of microwave, carrier and telegraph equipment would be an advantage.

The officers' duties will be connected with the installation and maintenance of

radio stations and will involve travelling to outlying stations at a considerable distance from their headquarters, sometimes for periods of a week or more.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/ 690815/WF.

UNIVERSITY OF STIRLING Department of Psychology TECHNICIAN/SENIOR TECHNICIAN

Applicants should have completed a recognised apprenticeship, or other appropriate training, and have interests in A.F. techniques and instrumentation, including use of digital and linear integrated circuits. Formal qualifications an advantage, day release facilities if required. Salary: Technician £935-£1,303; Senior Technician £1,278-£1,586. Applications, with names of two referees, should be received by the Deputy Secretary (WW), University of Stirling, Stirling, by 10 August, 1970. 600

ASTRO COMMUNICATION LABORATORY (U.K.)

VHF/UHF Development Engineers

Vacancies exist for a number of development Engineers in the field of VHF/UHF radlo.

Applicants should preferably have H.N.C. or B.Sc. qualifications and Laboratory experience is a definate advantage. The applicants should be capable of guiding a development project from its conception to the final stages of guantity production.

Successful applicants will be offered a substantial salary with a 12 month renewable contract and where applicable moving expenses. Apply in writing to:

The Chief Engineer, Astro Communication Laboratory (U.K.), Tower Street, Coventry, Warwickshire.

Longacres, St. Albans, Herts. Tel: St. Albans 59292 Luton Airport, Luton, Beds. Tel: Luton 31441. A GEC-Marconi Electronics Company

584

Wireless World, July 1970

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K. Electronics and Industrial Operations of E.M.I. Ltd., at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel. Commencing salaries of up to £1,500 per annum will be paid and staff conditions include contributory pension scheme and free life assurance.

Please apply in writing giving brief personal and career details to:

INMININA

G. W. Fox, Personnel Department, U.K. Electronics & Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex. Tel: 01-573 3888, Ext. 411.

-

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS & TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.

Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.

These will be staff appointments with all the expected benefits. Applications to:

Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades). Phone: 01-397 5411 NORFOLK EDUCATION COMMITTEE THE COUNTY TECHNICAL COLLEGE • KING'S LYNN LECTURER GRADE I

to teach LIGHT ELECTRICAL EN-GINEERING to C. & G. 49 final level. Telegraphy and telephony essential. Applicants must hold appropriate quelifications and preferably have experience of Post Office systems. Salary on Lecturer Grade I scale (£1230-£2075), point of entry depending upon the qualifications and experience of the successful candidate. Further details and forms of application may be obtained from the Registrar at the College.

F. LINCOLN RALPHS Chief Education Officer. County Hall, Martineau Lane, Norwich, NOR 49A 565

www.americanradiohistorv.com

91

578

a97

APPOINTMENTS

- Salary £2,010—£2,506 according to experience
- *** Low Taxation.**
- * 25% Gratuity.
- **★ Contract 21-27 months.**
- * Subsidised accommodation.
- **★ Education Allowances**.

Duties will include the maintenance of broadcasting equipment in transmitting stations and studios and outside broadcasts and recordings in remote districts.

Candidates should possess City and Guilds Final Certificate in Telecommunications (with Radio) or equivalent and have wide practical experience of technical broadcasting equipment including high power M.F. transmitting and studio control equipment.

Apply to CROWN AGENTS 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference M2K/690995/wF

UNIVERSITY OF SOUTHAMPTON ELECTRICAL ENGINEERING DEPARTMENT

ELECTRONIC ENGINEER required for interesting post as EXPERIMENTAL OFFICER. The work concerns the electronics associated with electrical machine research. The successful applicant will be expected to advise on instrumentation, signal acquisition and processing and, where necessary, to design special purpose equipment both analogue and digital. Candidates should have a university degree or equivalent qualification, a broad knowledge of electronics and appropriate industrial experience.

Salary scale from £1355 to £2230 plus F.S.S.U. depending on age and ability.

Applications giving date of birth and details of qualifications and experience together with the names of two referees should be sent to the Deputy Secretary, The University, Southampton, SO9 SNH by 22 June, quoting ref. WW 583

METROSOUND AUDIO PRODUCTS LTD

Due to increased expansion Metrosound now have a few well paid vacancies for TESTING AND FAULT FINDING ENGINEERS.

Applicants, who must be throughly conversant with Transistorised Audio Amplifier circuitry and be rapid and accurate workers should apply in person, by letter or telephone to: Mr. R. Bishop, METROSOUND AUDIO PRODUCTS LTD., Cartersfield Road, Waltham Abbey, Essex. Tel.: Waltham Cross 31933.

ELECTRONIC ENGINEER

UP TO £2438

Post of Assistant Signals Officer at the Meteorological Office Headquarters in Bracknell, Berks. **DUTIES** relate to the planning, provision and installation of meteorological landline and radio telecommunication systems embracing transmission by both low/medium/high speed data and analogue/digital facsimile, and including facilities for reception from satellites. A particular objective will be to automate the U.K. system making optimum use of computers.

QUALIFICATIONS: Either (a) Corporate Membership of the Insitution of Electrical Engineers, the Institute of Electronic and Radio Engineers or the Royal Aeronautical Society, or exemption from their requirements, or (b) 1st or 2nd class honours degree in Electrical Engineering, Physics or Applied Physics, together with at least 2 years' training and experience. Wide knowledge of telecommuncations and aptitude for planning expected. Some experience of planning for automation in telecommunications an advantage.

STARTING SALARY: within the scale £1405-£2438 according to qualifications and experience. Non-contributory pension.

WRITE to Civil Service Commission, 23 Savile Row, London WIX 2AA, or TELEPHONE 01-734 6010 ext 229 (after 5.30 pm 01-734 6464 "Ansafone" service), for application form, quoting S/7249/69. Closing date 2 July 1970.

CHALLENGING OPPORTUNITIES in CANADA

Radio and Electronic Technicians with a desire to see more of the world can find rich rewards by joining Canadian Marconi Company. Technicians are required for maintenance duties on Northern installations.

a98

Successful applicants will enjoy minimum salaries of \$8,000 plus first-class prospects for rapid advancement and further substantial rises during the first year. There are also genuine opportunities for promotion to supervisory grades with salary ranges of over \$14,000 per annum.

Food and accommodation is provided free for the employee (no family accommodation), in addition to heavy duty clothing. Assistance with air passage is available.

A chance of a lifetime is offered to accrue substantial savings.

Formal training and experience in maintenance of communications-type equipment is required with special emphasis on:

Microwave Tropospheric Scatter Communications Systems Telephone and Carrier (Multiplex)

If you have three or more years' experience in installation or maintenance on this type of equipment together with recognized qualifications, i.e. City and Guilds, Higher National or equivalent, the answer is Yes! Interviews will be held in London in the near future. Please send brief career details, quoting P.O. Box 540, to Mr. D. S. Howell, Canadian Marconi Company, Station "O", Montreal 379, Quebec, Canada.

CAN YOU QUALIFY?

CANADIAN MARCONI COMPANY

RADIO TECHNICIANS

with sound knowledge of at least three of the following types of equipment required immediately for Meteorological Office Ocean Weather Ships: MF, HF, VHF and UHF, Single and Double side-band transmitters, Radar (Navigational), Radar (Height finding), Radio Receivers, MF and VHF, Auto DF, Digital telemetering equipment, Low voltage servo₃recorders, Loran and echo sounders.

Salary Scale £885-£1500 per annum according to age (£1295 at 25 age point), plus £162 per annum overtime allowance. Liberal leave allowance. Free food and accommodation provided on board ship.

Applicants must be natural born British subjects.

Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone 24291. 568

SERVICE ENGINEERS

required for maintenance of tape recorder and dictating machines, training given to suitable applicants on dictating machines. Salary £130 per month.

Apply :

Tape Recorder Maintenance Co. Telephone: 01-735 9683

589

JUNIOR ELECTRONIC ENGINEER

A vacancy with very good prospects occurs for a versatile energetic and conscientious young man to act as an assistant in the Service department of an expanding Electronic Company.

Chief requirements are a good all round theoretical training and some mechanical training, plus the ability to quickly relate this in practical terms to the servicing of a wide variety of electronic and electro-mechanical instruments.

Salary will be commensurate with experience and a permanent and very progressive position is assured for the right man. Write stating age, experience and present salary to:

Personnel Manager, B & K Instruments Ltd., 59 Union Street, London, S.E.1

581

UNIVERSITY OF SOUTHAMPTON

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Person required to help with development and operation of instrumentation systems for noise and vibration measurement, including analysis of data and routine maintenance of equipment. Salary on scale—either £456-£771 or £905-£1.273 with supplementary allowances for qualifications. Please write stating date of birth, experience and qualifications and giving the names of two referees to the Deputy Secretary, **The University, Southampton, S09 5NH**, quoting ref. WW 601

Wireless World, July 1970

a99

APPOINTMENTS

ASSISTANT ENGINEER ADE BROADCASTING) BOTSWANA

- ★ Salary up to £2.387
- **★** Low taxation
- * Appointments grant £100 or £200 in certain circumstances
- ★ 25% gratuity on basic salary
- ★ Contract 24 36 months
- ★ Subsidised accommodation
- ★ Education Allowances

The Posts and Telecommunications Department requires an officer to undertake operational duties including the installation and maintenance of broadcasting equipment in transmitting stations and to assist with the training of junior engineering staff.

Candidates, aged 30-45, must possess the City and Guilds Intermediate Certificate (Telecommunications) or equivalent and have had five years relevant practical experience, (additional to any period of approved training) of technical broadcasting equipment including M.F. and H.F. transmitting equipment up to 10 KW.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/690420/WF.

JUNIOR TECHNICAL OFFICER or **TECHNICIAN**

required at our Hampstead Laboratories, Holly Hill, N.W.3, to assist scientists engaged on new concept of medical research of 'Human Aero-dynamics.' Suitable for applicant in early 20's with some experience of workshop practice and interest in electronic instrumentation. Salary According to experience and qualifications (O.N.C./H.N.C.) on scale £759-£1,508 p.a. Please apply quoting our reference WW 51/1 to: Mr. J. H. Woodcock, National Institute For Medical Research, The Fidgeway, Mill Hill, London, N.W.7. Telephone: 959 3666. 605

Engineer required to work on Electronics and Instrumentation in the Chemical Laboratory. Candidates should be skilled in fault clearing in modern electronic equipment.

Salary scale: £1278-£1583. Three weeks paid holiday. Protective clothing provided. Superannuation and sickness benefit schemes.

Applications and/or enquiries for further information should be addressed to: The Laboratory Superintendent, School of Molecular Sciences, University of Sussex, Brighton, BN1 92J. 564

<section-header><section-header><section-header><text><text><text><text><text>

Electronic Technicians

Are you interested in joining the leading Manufacturer of Magnetic Recording Equipment?

If you think you have experience in any one of the following fields, backed by O.N.C. or City and Guilds, we want to hear from you.

- FINAL COMMISSIONING OF CORE MEMORY PRODUCTS
- FINAL COMMISSIONING OF COMPUTER TAPE HANDLERS
- EXPERIENCE OF DIGITAL CIRCUIT TECHNIQUES
- FAULT DIAGNOSIS OF SOLID STATE PRINTED CIRCUIT ASSEMBLIES

Ampex Corporation is a world-wide organisation employing some 12,000 people. This is an ideal opportunity for you to expand your knowledge of sophisticated computer peripheral equipment with a modern progressive Company.

An attractive salary will be paid and the Company operates an excellent range of Life Assurance, Pension and Sickness Benefit Schemes. Three weeks annual holiday, Canteen, Sports and Social Club.

Please write or telephone for application form to the Personnel Officer, Ampex Electronics Limited, Acre Road, Reading, Berkshire. (Telephone Reading 84411).

Radio Operators Your chance of a shore job with good pay from the start!

If you hold a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Minister of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic, the Post Office can offer you employment at a United Kingdom Coast Station, with a starting salary of £965—£1,215 (depending on age). Annual rises will take you to £1,650 and there are good prospects of promotion to more responsible and better paid posts.

If you are 21 or over, please write for more details to:

The Inspector of Wireless Telegraphy, External Telecommunications Services, Wireless Telegraph Section (WW), Union House, St. Martins-le-Grand, LONDON E.C.1.

596

TV MECHANICS FOR NEW ZEALAND RADIO and TV MECHANICS—are you dis-

RADIO and IV MECHANICS—are you dissatisfied with your present working conditions, high taxation and lack of progress ? Why not shift to the sunny South Pacific and join the friendly team at TISCO, New Zealand's largest Service Company I Being purely in Television Service, our mechanics are important people, not just numbers on a time sheet.

All 30 of our Branch Managers are mechanics. You can be with us in 3 months if you write now. Requirements: 5 years' experience and £20 towards the family's fare, remainder of which will be paid. Age limit for persons wishing to come to New Zealand is 45.

Mr. B. I. Wells, Tech. Supervisor, TISCO Ltd., Private Bag, Royal Oak, Auckland, NEW ZEALAND. 351

BROADCAST RELAY ENGINEERS

are required for the

ISLAND OF MASIRAH

(Off the coast of Muscat and Oman)

Applications for contract employment for a one year unaccompanied tour of duty are invited from engineers with experience of the operation and maintenance of high power radio transmitters and who are of third year City and Guilds Telecommunications Technicians Certificate or equivalent standard.

Salary £4,000 per annum plus a tax free allowance of £350 per annum for single, or £865 for married unaccompanied officers.

Free furnished accommodation and passages are provided.

Further details and application forms can be obtained from:

The Personnel Officer, Diplomatic Wireless Service Foreign & Commonwealth Office, Hanslope Park, Wolverton, BUCKS. 535

DISPLAYED SITUATIONS VACANT AND WANTED: £7 per single col. inch. LINE advertisements (run-on): 8/- per line (approx. 7 words), minimum two lines. Where an advertisement includes a box number (count as 2 words) there is an additional charge of 1/-. SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance. BOX NUMBERS: Replies should be addressed to the Box number in the advertisement c/o

BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.I. No responsibility accepted for errors.

SENIOR TECHNICIAN (GRADE III)

with electrical and preferably some mechanical experience to maintain Cobalt and Caesium and Therapeutic X-ray equipment at the Royal Marsden Hospital, Fulham Road, London, S.W.3. The successful candidate will also have the opportunity to develop new equipment.

Minimum qualifications, O.N.C. in Electrical Engineering. Salary scale £1270-£1590 per annum.

Applications with details of experience and names of two referees to the Deputy Administrator, The Royal Marsden Hospital, Downs Road, Sutton, Surrey. Further details may be obtained from Mr. E. Hawkins, Chief Technician, telephone 01-642 6011, Ext. 278. 567

SITUATIONS VACANT

A FULL-TIME technical experienced salesman required for retail sales; write giving details of age, previous experience, salary required to-The Manager, Henry's Radio, Ltd., 303 Edgware Rd., London, W.2.

ARE YOU INTERESTED IN HI FI? If so, and you have some experience of selling in the Retail Radio Trade, an excellent opportunity awaits you at Telesonic t.d., 92 Tottenham Court Road, London, W.1. Tel. 01-387 7467/8.

BERKSHIRE COLLEGE OF EDUCATION. Television Technician for expanding CCTV system and mobile units, responsibility for VHF distribution system, experience of helical scan video tape recorders an advantage but not essential (training course provided). Salary Technician Grade III 2965-21,130. Application forms and further particulars from the Bursar. Berkshire College of Education, Woodlands Avenue, Early, Reading, Berks, return within 10 days. [562]

ELECTRONICS Workshop Senior Technician. Nuclear Engineering Laboratory, Queen Mary College (University of London), Mile End Road, E.1. Work includes development, construction and maintenance of instrumentation for reseach. Adaptability, initiative and experience in electronic techniques required. Salary at present in the range £1,029-1,300 p.a. (but a substantial increase is under review), plus London Weighting up to £125 p.a. and possible £30 or £50 qualification supplement. Five-day week. Four weeks annual leave. Pension scheme. Excellent working conditions. Letters only to negastrar (N/ST) should state full details of experience and present work. [517

REDIFON LTD. require fully experienced TELE-COMMUNICATIONS TEST ENGINEERS and ELECTRONICS INSPECTORS. Good commencing salaries. We would particularly welcome enquirtes from ex-Service personnel or personnel about to leave the Services. Please write giving full details to— The Personnel Manger, Redifon Ltd., Broomhill Road, Wandsworth, S.W.18. [26]

SENIOR technician/technician required for the construction, development and servicing of an interesting variety of electronic apparatus in modern chemistry teaching and research laboratories. Salary in ranges $\pounds_{1,026}$, $\pounds_{1,281}$ p.a. and \pounds_{743} , $\pounds_{1,047}$ p.a. according to age and experience (but a substantial increase is under review) plus London Weighting \pounds_{125} p.a. and possible \pounds_{30} or \pounds_{80} qualification allowance. Five-day week. Four/five weeks annual leave. Pension scheme. Letters only to Registrar (C/T/ST), Queen Mary College. Mile End Road, \pounds_1 , stating which post applied for, age, past and present experience, any qualifications. [523]

SENIOR ELECTRONIC TECHNICIAN required by a new company to head a research/development workshop. Duties will include design and construction of new products and improvement to existing lines, some service work may be necessary initially. Free use of company vehicle. Age 25-35 with good experience in transistorised circuit design, adaptable and able to work on own initiative. Starting salary £1,500-£2,000. Reply stating age, experience, qualifications. Box No. W.W. 574, Wireless World.

WE HAVE VACANCIES for Four Experienced Test Engineers in our Production Test Department, Applicants are preferred who have Experience of Fault Finding and Testing of Mobile VHF and UHF Mobile Equipment. Excellent Opportunities for promotion due to Expansion Programme. Please apply to Personnel Manager, Pye Telecommunications Ltd., Cambridge Works, Haig Road, Cambridge. Tel. Cambridge 51351. Extn. 327.

ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

ARTICLES FOR SALE

BUILD IT in a DEWBOX quality plastics cabinet. 2 in. × 24 in. × any length. D.E.W. Ltd. (W), Ringwood Rd., FERNDOWN, Dorset. S.A.F. for leaflet. Write now-Right now. [76]

CAPACITORS, 0.25mfd., 32.5KV DC working, £6. o.5mfd., 7.5KV, 17/6. 0.01mfd., 5KV, 4/-. Rotax rotary inverters, 24 y DC/115v, 3 phase, 400Hz, 1.5 amps., £6. Carbon pile voltage regulators, 12/24v, 17/6. Carriage extra. Westover Electronics, Braidley House, St. Paul's Lane, Bournemouth. Tel. 23944. [604

COIL WINDER. Avo. Douglas No. 6 coll winder, complete with motor and gears, etc. Cost £150. As new, £50 o.n.o. Contact A. C. E. Stuart, Department of Chemistry, The University, Southampton. [524

COLOUR TELEVISION COMPONENTS. All specialist parts for home constructed colour receivers, including W.W. design (reprints now obtainable from W.W.) Catalogue from: Forgestone Components, Ketteringham. Wymondham, Norfolk. [542

FOR SALE-" Wireless World," 1930-1948, 25/- dozen. W1, 43 Dundonald Road, Colwyn Bay. [527

MUSICAL MIRACLES. Send S.A.E. for details of Cymbals and Drum Modules, versatile independent hass pedal unit for organs, planos or solo, musical novelties. waa-waa kits (49/-). Also bargain components list reed switches etc. D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset. [95

New CATALOGUE No. 18, containing credit vouchers value 10/-, now available. Manufacturers' new and surplus electric and mechanical components, price 4/6, post free. Arthur Sallis Radio Control Ltd., 28 Gardner Street, Brighton, Sussex.

 N_{τ}^{EW} Precision 1MHz crystal oscillators in evenand further lists s.e. B. M. Sandall, Amber Croft. Higham, Derbyshire. DE5 6EH

NEW SONY CRF-230 GLOBAL RADIO. Amateur, Commercial and Professional reception. Brinss you everything that's on the air. anywhere in the worldl 23-band reception. Covers AM, SW, MW, LW and FM. Operates from batteries or AC mains! Bullt-in voltage selector permits use in any country. Numerous control features that put it in a class by itself! Retails at £290, yours for £250 or near offer. Phone: Herongate 359 (2 Billericay Road, Essex).

PUBLIC ADDRESS EQUIPMENT FOR SALE. 3 Philips outfits, each containing an EL 6400 Mixer Amplifier (2×EL81 output) and an ET 3108, 5 speaker column. UNIT 1 AM/FM radio changer, mike input. UNIT 2 AM/FM radio. auto changer, tape deck, mike input. UNIT 3 auto changer, mike input. Call J. Pagg, Bedford 55233. [595]

RADIO MIKE (S.N.S.). as new, £60. C.C.T.V. 1" Vidicon tube and lens, £16. D. F. Buckby, London Apprentice. St. Austell, Cornwall.

UHF, COLOUR and TV SERVICE SPARES. Leading British makers' surplus Colour Frame and Line time base units incl. EHT transformer, £5, carriage (b)-. Integrated UHF/VHF 5 position push button tuner, 4 transistors, knobs, circuit data. Easily adjusted for use as 6 position UHF tuner, £4/10/-, P/P 4/6. UHF 3 transistor tuner incl. circuit, £2/10/-, P/P 4/6. UHF 3 transistor tuner incl. circuit, £2/10/-, P/P 4/6. UHF 3 transistor tuner incl. circuit, £2/10/-, P/P 4/6. UHF 3 transistor tuner incl. circuit, £2/10/-, P/P 4/6. UHF 3 transistor tuner for conversion kits incl. tuner, drive assy, 625 IF amplifier, 7 valves, accessories, housed in special cabinet plinth assembly, £8/10/- or less tuner £2/18/6, P/P 10/. SOBBILL/GEO (69/625 switchable IF amplifier and output chassis, 32/6, P/P 4/6. UHF tuners incl valves, slow motion drive assy, knobs, aerial panel. £5/10/-, P/P 4/6. UHF list available on request. New or manufacturer tested VHF tuners, AT7650 Philips 19TG170, Sobell 1010. KB Featherlight 35/-. AT7639 Peto Scott, Decca, Ekco, Ferranti, Cossor 50/-, Cyldon C 20/-, AB miniature with UHF injection, incl. valves, 78/6. Ekco, 283/330. Perranti 1001/6 25/-. New threball tuners, FerRuson, HMV, Marconi type 37/6, Plessey 4 position push button tuners with UHF injection, incl. valves, 58/6. Many others available. P/P all tuners 4/6. Ekco 283/330. Perfantion transformer 0/0 transformers 17/6, P/P 4/6. Perdio 'Portorama'' LOPT assy incl. DY85. Soan Colis. SUrplus Pye, UItra, Murphy, 110° scan colis 30/-, Sobell 110° Frame O/P transformers 17/6, P/F 4/6. Perdio 'Portorama'' LOPT assy incl. DY85. Soan Colis. FOPTs available for most popular makes. PYE/LAGEAR transistorised Docoster units Bi/183 or UHF, battery operated 75/-. UHF Masthead £5/5/0. Dost tree. COD despatch available. MANOR SUPPLIES, 12 WEST END LANE, LONDON, N.W.6 (No. 26 Bus or W. Hampstead Tube Station). MAIL ORDER: 64 GOLDERS MANOR DRIVE. LONDON, N.W.1 [60]

"WIRELESS WORLD" substantially complete, 1937, onwards, some 1935. 1936, "Electronic Engineering, 1941 to 1962, four maissing, offers, Haydon, Byron House, Slines Oak Road, Woldingham, Caterham, Surrey. [543]

YAXLEY SWITCHES, 1 pull 24 way 1" spindle, 5/6 each p.p. Holly Electronics, 167 Folkestone Road, Dover. [561

7700/2 Eddystone VHF 150/500 Mc/s, £105. 770R Eddystone VHF 19/165 Mc/s (with muting), £75. Private sale. Good condition. Telephone 01-656 1360 Croydon. [579]

PATENT NOTICES

TRADE MARK No. B.878772 consisting of the letters R-F-T and device and registered in respect of "Elec-tronic Valves" was assigned on 23 July, 1989, by T.O. Supplies (Export) Limited of 2a Westbourne Grove Mews, London, W.11, to VEB Funkwerk Erfurt of 47 Rudolfstrasse, 101 Erfurt, East Germany: WITHOUT THE GOODWILL OF THE BUSINESS IN WHICH IT WAS THEN IN USE. [515

TEST EQUIPMENT - SURPLUS AND SECONDHAND

AND SECONDITATIC SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. & I. Electronics, Ltd., Ash-ville Old Hall, Ashville Rd., London, E.11. Ley. 4986. [64]

RECEIVERS AND AMPLIFIERS-SURPLUS AND SECONDHAND HRO RIBS, etc., AR88, CR100, BRT400, O209, S640, etc., etc., in stock.-R. T. & I. Electronics, Ltd., Ashville Old Hall, Ashville Rd., London, E.11. (5986.

NEW GRAM AND SOUND

CONSULT first our 76-page illustrated equipment catalogue on Hi-Fl (6/6). Advisory service, generous terms to members. Membership 7/6 p.a.-Audio Supply Association, 18 Blenheim Road, London, W.4. [27] terms to men Association, 01-995 1661. [27

GLASGOW.--Recorders bought, sold, exchanged; cameras, etc., exchanged for recorders or vice-versa.--Victor Morris, 343 Argyle St., Glasgow, C.2. [1]

 SHURE GOLDRING Cartridges post free, G800 £7.17.6.

 M3D £5.5, M44/5/7 £7.10, M44E £8.19.6, M55E

 £9.19.6, M75E/2 £16.10, Garrard SP25/2 £10.17.6,

 AP.75 £16.17.6, P. & P. 7/6 U.E. 30 Achilles Road,

 London, N.W.6. Mail order only.

TAPE RECORDING ETC.

IF quality, durability matter, consult Britain's oldest transfer service. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools. churches.) Modern studio facilities with Steinway Grand.-Sound News, 18 Blenheim Road, London W.4. 01-995 1661.

YOUR TAPES TO DISC-£6.000 Lathe. From 25/-Studio/Location Unit. S.A.E. Leaflet. Deroy Studios. High Bank, Hawk St., Carnforth, Lancs. [70

VALVES

VALVE cartons by return at keen prices; send 1/-for all samples and list.-J. & A. Boxmakers. 75a Godwin St., Bradford, 1. [10]

FOR HIRE

FOR HIRE CCTV equipment, including cameras, monitors, video tape recorders and tape—any period. —Details from Zoom Television, Chesham 6777 [75

ARTICLES WANTED

WANTED, ali types of communications receivers and test equipment.—Details to R. T. & I. Electronics, Ltd. Asbville Old Hall, Ashville Rd., Lon-don. E.II. Ley. 4986. New valves, transistors, etc.—Stan Willetts, 37 High St., West Bromwich, Staffs. Tel. Wes. 0186. [72 WANTED. WIRELESS TVORLDS, Feb., March, May, June, 1964, July, 1965. Richardson, 162 Bucking-ham Road, Hampton, Middlesex. 01-979 4322 evenings.

VALVES WANTED

WE buy new valves, transistors and clean new com-ponents, large or small quantities, all details, quotation by return.-Waiton's Wireless Stores, 55 Worcester St., Wolverhampton.

SERVICE & REPAIRS

A VO and Selectest repairs, John Baggs Electric Ltd. Relay Works, Hollins Road, Oldham. Tel. 061-68 f 603

CAPACITY AVAILABLE AIRTRONICS LTD., for Coll Winding-large or small production runs. Also PC Boards Assemblies. Sup-pliers to P.O., MO.D., etc. Export enquiries welcomed. 3a Walerand Road, London. S.E.13. Tel. 01-852 1706 [61 or small es. Sup-

3a Walerand Road, Longol, S.E.I.S. Ter, or Manuals, S.E.I.S. Ter, or Manuals, Mand-outs, written to specified length. Send full details for competitive quote. Fast turnround. ELECTROSCRIPT SERVICES, 18 Grange Road, Bournemouth, BM6 3NY. [566]

[566 METALWORK, all types cabinets, chassis, racks, etc., to your own specification, capacity available for small milling and capstan work up to lin bar.-PHILPOTT'S METALWORKS, Ltd., Chapman St., Loughborough. [17

PRODUCTION/SERVICE MANAGERS don't take up valuable on line assembly time, for small/medium printed circuit/wiring runs, let us have the problem. Also installation contracts large or small are invited; i.e. internal telephones, security systems, electrical, etc. UNIT ELECTRONICS, Pound Hill 2309, Sussex. [594

SMALL servicing and repair contracts undertaken. Field service any distance. Best possible rates for top-quality work. Cambrian Electronics, 96a High St., Frimley, Surrey.

TECHNICAL TRAINING

BECOME "Technically Qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio. TV. servicing and maintenance. R.T.E.B.,

City & Guilds. etc., highly informative 120-page Guide-free.-Ohambers College (Dept. 837K), College House, 29-31 Wrights Lane, Kensington, London, W.8. [16 House, 29-31 Wignts Lanc, actistate with determined of the control of the control

TECHNICAL TRAINING IN Radio, TV and Electronics through world-famous ICS. For details of proven home-study courses write: ICS, Dept. 443, Intertext House, London, S.W.8.

Touse, London, S.W.S. TV and radio A.M.I.E.R.E., City & Guilds, R.T.E.B.; Certs., etc., on satisfaction or refund of fee terms; thousands of passes; for full details of exams and home training courses (including practical equipment) in all branches of radio, TV, electronics, etc., write for 132-page handbook-free; please state subject.-British Institute of Engineering Technology (Dept. 150K), Aldermaston Court. Aldermaston, Berks. [15

TUITION

ENGINEERS.—A Technical Certificate or qualifica-tion will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. & Elec.), City & Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering-mech., Elec., Auto, Electronics, Radio, Computers, Draughts, Building, etc.—For full details write for FREE 132-page guide: British Institute of Engineer-ing Technology (Dept. 151K). Aldermaston Court, Aldermaston, Berks. [14]

Adermation, Berks. [14 KINGSTON-UPON-HULL Education Committee. College of Technology. Principal: E. Jones, M.Sc., F.R.I.C. FULL-TIME courses for P.M.G. certificates and the Radar Maintenance certificate.—Information from College of Technology, Queen's Gardens, Kingston-upon-Hull. [18]

BOOKS, INSTRUCTIONS, ETC.

MANUALS, circuits of all British ex-W.D. 1939-45 R.E.M.E. instructions; s.a.e. for list, over 70 types.-W. H. Balley. 167a Moffat Road. Thornton Heath, Surrey, CR4-692. R ADIO JOURNALS available, 1911-1940. Lambert, 60 Salhouse Road, Rackheath, Norwich. [415

AGENCIES

AGENCIES A GENTS WANTED to sell on commission basis direct to the dealer a new range of quality hi-fi speaker kits and complete loudspeaker systems marketed by an already well-known company. Future acents will have existing connections with hi-fi dealers and preferably carry non-conflicting lines. Applications to be accom-panied by personal history, qualifications, experience, etc. Box W.W. 514 Wireless World.

33 10/6 TEXAS MULLARD LOGICS 42 25/- 5N740N 18/- FJH101 17/6 43 29/- 5N740N 18/- FJH101 17/6 44 29/- 5N740N 18/- FJH101 17/6 45 29/- 5N740N 18/- FJH101 17/6 46 27/- 5N740N 18/- FJH161 17/6 46 27/- 5N740N 18/- FJH161 17/6 47 29/- 5N740N 18/3 FJH171 18/3 5L701C 15/6 47 29/- 5N7413N 18/3 FJH171 18/3 5L702C 29/6 48 45/- 5N7413N 18/2- FJ1311 27/6 5L702C 29/6 49 35/- 5N7413N 18/- FJ1311 27/6 5L702C 29/6 49 35/- 5N7413N 18/- FJ1311 62/6 GENERAL ELSC71C FM233 29/6 52 36/6 5N7440N 18/- FJ1321	CA3000 39/8 MC724P 17/6 16/- 13/6 TAA241 32/6 Salary £1,415 per annum, plus from July 1st, for operation of m recordings and tape and disc representation of m recordings and tape and disc representations and poly of the more of these operations and poly with the more of these operations and poly more of these operations and poly how more of the second more of the sec
28A 16/6 Loo 1/0 <th>28A 16/6 Long 10/1 12/7 TAB10 18/6 18/6 Application forms are available fro 28B 24/- L914 9/9 9/- 6/- TAD100 38/6 Application forms are available fro 29B 24/- L914 9/9 9/- TAD100 38/6 TAD100 38/6 Application forms are available fro 29A 38/6 L709C 36/6 18/- 17/- SiNCLAIR TC-10 57/6 TC-10 57/6 TEXAS MULLARD LOGICS SN7400N 18/- FJB101 12/6 PLESSEY WE KNOW YOU WANT A BET</th>	28A 16/6 Long 10/1 12/7 TAB10 18/6 18/6 Application forms are available fro 28B 24/- L914 9/9 9/- 6/- TAD100 38/6 Application forms are available fro 29B 24/- L914 9/9 9/- TAD100 38/6 TAD100 38/6 Application forms are available fro 29A 38/6 L709C 36/6 18/- 17/- SiNCLAIR TC-10 57/6 TC-10 57/6 TEXAS MULLARD LOGICS SN7400N 18/- FJB101 12/6 PLESSEY WE KNOW YOU WANT A BET
35 27/- L711C 21/- 10/6 18/6 17/- DALARE 36 16/6 L716C 66/- 50/- 1C-10 57/6 39 19/6 TEXAS MULLARD LOGICS 1C-10 57/6 42 26/- 687400N 18/- PJH101 17/6 43 29/- 687401N 18/- PJH101 17/6 44 29/- 687401N 18/- PJH121 17/6 45 27/- 587402N 18/- PJH121 17/6 46 19/6 587403N 18/- PJH21 17/6 47 29/- 587403N 18/2 PJH121 17/6 46 45/- 587403N 18/2 PJH121 17/6 47 29/- 587403N 18/2 PJH121 27/6 46 45/- 587403N 18/- PJH21 27/6 47 29/- 587403N 18/- PJH21 27/6 48 45/- 587403N 18/- PJH2141 27/6 </td <td>35 27/- L7110 21/- 19/6 18/- 17/- 10-0 57/6 39 19/6 41 25/- TEXAS MULLARD LOGICS 57/6 42 25/- SN7400N 18/- - 12/6 PLESSEY</td>	35 27/- L7110 21/- 19/6 18/- 17/- 10-0 57/6 39 19/6 41 25/- TEXAS MULLARD LOGICS 57/6 42 25/- SN7400N 18/- - 12/6 PLESSEY
43 29/- 8N7401N 18/- P/11/21 17/8 8L402A 42/6 45 27/- 8N7402N 18/- P/11/21 17/8 8L402A 42/6 45 27/- 8N7402N 18/- P/11/21 17/8 8L402A 42/6 46 29/- 8N7402N 18/3 P/11/21 17/8 8L402A 42/6 47 29/- 8N7402N 19/3 P/11/21 17/8 8L701C 15/6 48 45/- 8N7402N 18/- P/11/21 17/8 8L702C 29/6 48 45/- 8N7402N 18/- P/11/21 17/8 8L702C 29/6 49 35/- 8N7402N 18/- P/11/21 62/6 8L702C 29/6 40 35/- 8N7402N 18/- P/11/21 62/6 GENERAL Experienced engineers in velopment. Systems Test. 52 38/6 8N7402N 18/- P/11/21 62/6 GENERAL PA230 82/6 PA230 7/6 PA230 7/2 7/6 PA230	41 25/- TEXAS MULLARD LOGICS 42 25/- SN7400N 18/- FJH101 17/6 PLESSEY WE KNOW YOU WANT A BE
44 27/- SN740SN 18/- FJH16i 17/8 SL403A 42/6 45 27/- SN740SN 18/3 P/11171 18/3 SL701C 15/6 46 19/6 SN740SN 18/3 P/11211 18/3 SL701C 15/6 47 29/- SN740N 18/3 P/11211 17/6 SL701C 15/6 48 45/- SN741NN 18/3 P/11211 17/6 SL701C 29/6 49 35/- SN741NN 18/- P/11411 62/6 SL702C 29/6 50 39/6 SN7440N 18/- P/12161 62/6 GENERAL ELECTRIC FA220 52/6 53 18/- SN7440N 18/- P/1221 62/6 FA234 21/6 54 50/- Data Sheets all 1/- per type except 1/900/ PA234 21/6 PA237 38/- 55 24/- 8 Pin To-5 1.C. Holders, 10/6 PA234 57/6 PA246 57/6 50 24/- 8 Pin To-5 1.C. Holders, 10/6 PA246 57/6 PA246 57/6	43 29/e DN/901N 10/e FJD121 14/0 07 1001 1000
46 19/6 SN740N 19/3 10/101 17/9 SL70C 10/101 10/10 47 29/- SN740N 18/3 10/101 27/8 SL70C 29/6 SL70C 29/6 46 45/- SN740N 18/3 P.J.101 27/6 SL702C 29/6 WE WILL HELP YOU FIND IT. 49 35/- SN740N 18/- P.J.141 62/6 GENERAL ELCOTRIC 7/9 P.A230 EX.66 P.A230 Experienced engineers in velopment, Systems Test, Production Engineering, TA222 P.A231 8/6 P.A233 8/6 P.A233 8/6 P.A234 8/6 P.A237 8/6 P.A234 8/6	44 271- 8N7402N 18/- F/8141 17/8 BL403A 42/8 and what is more
S0 S0/5 SN7430N 18/- FJJ101 37/6 GENERAL 51 28/- SN7440N 18/- FJJ101 62/6 FJ	46 19/6 87/4087 19/3 19/3 19/1 21 17/6 81/01C 19/6 47 29/- 8174021 18/3 19/1 27/6 81/02C 29/6 WE WILL HELP YOU FIND IT. 48 45/- 81/14121 27/6 27/6
54 50/- Data Bheeta all 3/- per type except L300/ PA334 21/6 55 24/- 8 Pin To-5 1.C. Holders, 10/6 PA337 38/- 59 27/- 14 Pin Duti-in-Line 1.C. Holders, 10/6 PA246 57/6	30/0 8N7430N 18/- FJJ191 37/6 GENERAL 61 28/- 8N7440N 18/- FJJ191 6//6 ELECTRAL ELECTRAL Eventeration Experienced engine 52 38/6 52 38/6 FJY101 18/- FL222 67/6 Eventeration Eventeration
55 24/- 8 Pin To-5 I.C. Holders, 10/6 59 27/- 14 Pin Dust-in-Line I.C. Holders, 11/- PA246 57/6 Contact Electronics Annointmi	54 50 Data Bheeta all 3/- per type except 1900/ PA234 21/6
Intrart Piperining Andread Internet Andread	55 24/- 8 Pin Tos I C Holders 10/6 PA23/ 00/-
and we will help you.	64 35/- 16 Pin Dual-in-Line 1C. Holders, 12/6 PA424 49/6 Contact Electromics A

s a vacancy for a SOUND ASSISTANT 'B' Grade H. lary £1,415 per annum, plus minimum 4% increase m July 1st, for operation of magnetic film and tape cordings and tape and disc replay machines for teleion transmission and film dubbing.

plicants should have practical experience in one or pre of these operations and possess a basic technical owledge of electronics as applied to sound recording chniques.

plication forms are available from the Recruiting Office, ephone 01-637 2424 extension 392.

our placement service is professional, specialised and ompletely confidential. We are in consultation with over 00 companies on all aspects of electronics engineering. hone or write at any time quoting EW 101.

7777

Postage 5/=

BALLEY PRE-AMPLIFIER

a104

BAILEY PRE-AMPLIFIER High quality pre-amplifier circuit described by Dr. A. R. Bailey in the December, 1966, "Wireless World". This is a low distortion circuit of great versatility with a maximum output of 2 volts making it suitable for driving Bailey 20W and 30W Amplifiers, Linsley Hood Class A Amplifier and many others. All normal pre-amplifier facilities and controls are incorporated. A new Printed Circuit Board containing latest modifications 7in. by 32in. features edge con-nector mounting, roller tinned finish and silk screened component locations. This board is available in S.R.B.P. component locations. This board is available in S.R.B.P. material or fibreglass and the complete Klt for the unit contains gain graded BC.109 transistors, polyester capacitors and metal oxide resistors where specified.

BAILEY 30W AMPLIFIER

All parts are now available for the 60-volt single supply rail version of this unit. We have also designed a new Printed Circuit intended for edge connector mounting. This has the component locations marked and is roller tinned for ease of assembly. Size is also smaller at 421n. by 221n. Price in SRBP material 11/6d. In Fibreglass 14/6d.

BAILEY 20W AMPLIFIER

All parts In stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Malns Transformer for mono or stereo with bifilar wound secondary and special 218V primary for use with CZ6 Thermistor, 35/6d., post 5/4

Trifilar wound Driver Transformer, 22/6d., post 1/-. Power Amp. PC Board, 12/6d., post 9d. Reprint of "Wireless World" articles, 5/6d. post free.

DINSDALE IOW AMPLIFIER

All parts still available for this design. Reprint of articles 5/6d., post free.

LINSLEY HOOD CLASS A AMPLIFIER

Parts now available for this unit including special matt black anodised Metalwork and all power supply components

PLEASE SEND S.A.E. FOR ALL LISTS.

HART ELECTRONICS.

321 Great Western St., Manchester 14 The firm for quality.

Personal callers welcome, but please note we are closed all day Saturday.

TECHNICAL BOOKS (W. FOULSHAM & CO. LTD.) YEOVIL RD., SLOUGH, BUCKS, ENGLAND

	_	_		
DIOTRA	N	P.O. B WARE,	LES OX 5 HERTS RE 3442	
SEMICONDUCTORS FOR W.W. CAPDIS IGNITION SYSTEM 2N3525				
IN4001 IVANOS IN4005 4/r Iver's seconds Iver's				
S.C.R's 16 AMP (unplated) 1-24 25-99 100 up 100 PIV 9/6 7/6 6/- ADP PIV 14/- 12/- 10/- All tested perfect functional devices guaranteed.				
1/6 TESTED TRANSISTORS One price only PNP. NPN Silicon each. Planar or Germ. Fully Tested and similar to the following types:				
similar to the following types: AC125 ACY36 NKT713 2G381 2N3926 AC126 BC108 NKT713 2G381 2N3226 AC127 BC108 NKT773 2G382 2N3220 AC127 BC108 OC44 2G396A 2N3701 AC128 BY50 OC45 2N696 2N3711 AC120 BYK84 OC71 2N697 2N2907 ACY19 BYK84 OC72 2N706 2N2907 ACY20 BYK86 OC61 2N929 2N3391 ACY21 BYK88 OC61 2N929 2N3391 ACY22 NKT141 DG202 2N1312 2S102 ACY28 NKT212 2G301 2N1132 2S103 ACY30 NKT214 2G302 2N1613 2S103 ACY30 NKT214 2G303 2N1711 2S103 ACY31 NKT215 2G371 2N2904 2S732 ACY34 NKT277 2G37				
TRANSISTOR EQVT. BOOK 2,500 cross references of transistors—British, European, American and Japanese. A must for every transistor user. Exclusively distributed by DIOTRAN SALES, 15/- EACH.				
Vast mixed lot of subminiature glass dlodes. Com- prising of Silicon, Germ, Point Contact and Gold Bonded types plus some Zeners, 500,000 available at Lowest of Low Price. 1,000 pieces £3.0.0, 5,000 pieces £13.10.0, 10,000 pieces £32.				
BRAND NEW FULLY TESTED EPOXY CASE UNIJUNCTION TRANSISTORS. Type TIS43 and BEN 3000 and replacement for 2N2646. Full data available. LOWEST PRICE AVAILABLE ANYWHERE. 100 off 4/- each = £20; 500 off 3/6 each = £87.10; 1,000 off 3/- each = £150. Sample devices 7/- each on request.				
HIGH QUALITY SILICON PLANAR DIODES. SUB-MINIATURE DO-7 Glass Type, suitable replacements for OA200, OA202, BAY3B, ISI30, IS940, 200,000 to clear at 44 per 1,000 pieces. GUARANTEED 80% GOOD.				
FULLY TESTED DEVICES AND QUALITY GUARANTEED-SURPLUS TO REQUIREMENTS O A202 Silicon Diode. Fully Coded. 150 PIV 250mA Qty. Price 430 per 1,000 pleces. O A200 Silicon Diode. Fully Coded. 50 PIV 250mA. Qty. Price 432 per 1,000. BY100 SIL. RECTS 800 PIV 550mA. 1-49 2/6 each; 50-99 2/3 each; 100-999 2/- each; 1,000 up 1/10 each. Fully Coded. First Quality.				
Post and Packing Costs are I/- towards same. CASH GIRO N	Continu WITH Io. 30-	ORDER, 102	Please add PLEASE.	
OVERSEAS QUOTATIC	ERE I	Y RETUR	N. SHIP- WORLD.	
SCOPE 1 Tektronix type 500/53A with shelf, drawer and good mech. condition slig	overall stowa	size 38 x 3 ge for 2 a	imps, in	
U.H.F. CONVERTORS Range 250 to 475 Mc/s directly calibrated dial, in cabinet with mains P.U. 50 ohm I/P, 60 Mc/s I.F. O/P 50/80 ohm, these are fully tunable, valves 417A R.F., 6AK5, 6AF4. In good cond. tested. £25.0.0			l dial, in I.F. O/P es 417A	
With Ind etc. see April W Prices inclus	SCANNER UNITS With Ind etc. see April W.W. £48.0.0 Prices include carriage			
A.H. SUPPLIES 57 Main Road, Sheffield S9 5HL				
8				

WE PURCHASE ALL FORMS **OF ELECTRICAL EQUIPMENT** AND COMPONENTS, ETC. CHILTMEAD LTD.

7, 9, 11 Arthur Road, Reading, Tel: 582 605 Berks.

NEW EDITION THE MICROELECTRONICS

DATA BOOK

by Motorola

60/-

THE RADIO AMATEUR'S HAND-BOOK 1970 edition by A.R.R.L. 48/-Postage 4/6.

PAL COLOUR TELEVISION by Boris Townsend. 60/-. Postage 1/-.

SERVICING WITH THE OSCIL-LOSCOPE by Gordon J. King. 28/-Postage 1/-.

TRANSISTOR, THYRISTOR AND DIODE MANUAL by RCA. 20/-Postage 1/6.

HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS by Jack W. Streater. 28/-. Postage 1/-.

PARAMETRIC AMPLIFIERS by Howson and Smith. 68/-. Postage 1/6.

THE SEMICONDUCTOR DATA BOOK by Motorola. 60/-. Postage 5/-.

SEMICONDUCTOR POWER CIR-CUITS HANDBOOK by Motorola. 20/-. Postage 1/-.

SCR MANUAL by General Electric Company. 25/-. Postage 1/6.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET.

LONDON, W.2 Phone PADdington 4185 Closed Sat. 1 p.m.

BUILD YOURSELF A FRANSISTOR RADIO

ROAMER EIGHT ME 1 WITH TONE CONTROL SEVEN WAVEBANDS-MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BANO. 8 transistors and 3 findes Ferrite rod aerial and talescopi aerial. Socket for car verial. 7 x 4 in. Speaker aenal, Socket for car ternal, 7 x 4 in, Speaker, Airspaced ganged Tuning condenser, Earpiece socket and earpiece, Selectnithy switch, Size 9 x 7 x 4 in, **Total Building Costs 6:13.6**, P & P 7/8, Plans and Parts list 5/- (free with parts).

POCKET FIVE, MED. AND LONGWAVES PUCKET FIVE, MED. AND LUNDWAVES & TRAVER BAND WITH SPEAKER, 5 transistors and 2 diodes, ferrite rod aerial, tuning condenser, moving coll speaker, etc. $5\frac{1}{2} \times 1\frac{1}{2} \times 3\frac{1}{2}$ in Total Building Costs 44.06 P. P. 9. 36. Plans and Parts list 1/6 (free with parts). ROAMER SEVEN MA 4, 7 WAVE-BANDS MW1, MW2, LW, SW1, SW2, SW3, AND TRAWLER BAND. 7 transistors and 2 diodes. errite rod aenel and telescopic aerial Socket for car aerial. 7 x 4in. speaker Airspaced ganged tuning condenser atc. Size 9 x 7 × 4in. Total Building Costs (5/19/6. P. & P. 7/6. Personal earpiece with switched socket for private listening 5/- extra. Plans and Parts list 3/- Ifree with (arts)

TRANSONA FIVE MEDIUM. LONG ANO TRAWLER BAND WITH SPEAKER AND EARPIECE. 5 transistors and 2 diodes, ferrite rod aerial, moving coil speaker. remove four along the speaker $6\frac{1}{2} \ge 4\frac{3}{2} \ge 1\frac{1}{2}$ in. Total Building Costs 47/6. P. & P. 3/9. Plans and Plans list 1/6 (free with parts).

TRANSEIGHT 6 WAVEBANDS LW, 3 SHDRT WAVES AND TRAWLER BAND. 8 improved type transistors and 3 diades. Ferrite rod and telescopic aerials dindes Ferrite rod and telescopic aerials n speaker, Push pull ourput. Size 9 x 5 $\frac{1}{2}$ 2 $\frac{3}{2}$ in. Total Building Costs 89/6, P, & P, 8. Plans end Parts list 55- (trea with kuld, rsonal earpiece with switched socket private listening 5/- extra.

3 SHENLEY ROAD, BOREHAMWOOD, HERTS.

Adjacent Elstree Malnine Station. Callers welcomed Telephone Elstree 6009

WW-100 FOR FURTHER DETAILS

EXCLUSIVE OFFERS

LATEST TYPE HIGHEST QUALITY

CABINETS

We have a large quantity of "bits and pieces" we cannot list-please send us your requirements we can probably help-all enquiries answered.

P. HARRIS ORGANFORD - DORSET BHI6 6ER WESTBOURNE 65051

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Electronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include:

- RADIO/TV ENG. & SERVICING
- AUDIO FREQUENCY
- **CLOSED CIRCUIT TV** .
- ELECTRONICS-
- **ELECTRONIC MAINTENANCE**
- **INSTRUMENTATION AND**
- **CONTROL SYSTEMS** NUMERICAL CONTROL
- ELECTRONICS
- COMPUTERS
- **PRACTICAL RADIO** (with kits)

Guaranteed Coaching for:

- C. & G. Telecom. Techns' Certs.
- C. & G. Electronic Servicing
- R.T.E.B. Radio/TV Servicing Cert.
- **Radio Amateur's Examination**
- P.M.G. Certs. in Radiotelegraphy
- **General Certificate of Education**

ELECTRONIC BROKERS LTD.

Pancras Road, London, N.W.1. 01-837 7781

For hot air systems Ventilation & Air conditioning Night storage heaters £6 P&P.154 Silent-running, high capacity units with rec-tangular duct outlets powered by continuously rated heavy duty motors. Made by Smiths for many well-known electric and gas warm air heaters. but also suitable for a wide variety of other applications in kitchens, workshops, tollets, etc. Heavy steel construc-tion, enamel protected. For 220/240 volts a.e. operation. Type DI -850: Oouble Inlet aluminium impeller: enamet finish. Size overall: 113 x 123 x 133 in. high. Kingston Electrical 134 London Road, Kingston upon Thames Tel.: 01-546 7534 WW-101 FOR FURTHER DETAILS LINSLEY HOOD PRE-AMPLIFIER Components as specified in May Issue WW PCB (Designer approved) 8° × 4⁴/₂ ... 25 Hi-stab resistors and 2 pre-sets 23 polyester and electrolytic cap's ... 2 Texas BC109 and 1 Amelco 2N4302 27 6 15/-10/-27/6 31/-42/-£5.7.6 pots (Mono) ... pots (Stereo) ... Postage 1/- on orders below £1.0.0. Send S.A.E. for detailed lists Including Linsley Hood IS-20W Class AB Amplifier. GUARANTEED DESPATCH BY FIRST CLASS RETURN A.I FACTORS.72 BLAKE ROAD. STAPLEFORD.NOTTS. The NIte-Life dimmerswitch will dim up to 400 wests at lacandascent lighting from zers to full brillinger. This unit simply repictes the nervent light writch, and le supplied with Mit mounting from the use where more death. with MK mounting frame for use where more depth is required. 83/. Price built and tested complete hit 55/ All evders CW0 + 1/8 plap Trede sequences weicen DIATHANE LTD. 111. Sheffield Rd., Wymondham, NORFOLK.

Direct drive

PRINTED CIRCUIT PROBLEMS' ? Prototype circuits produced from your actwock: 2/- per sa, ia, +2/8 p & p. Small to medium batch production at reasonable rates (Complete design and manufacture from circuit diagrams) Quote WW3 when ordering Fairehild pt 914 sssss! X STOCK B/

Ousdrac 400v 4A (as used in our lamp dimmer) 29/6 Untested SCRs 300v 1A TOS case 2/- SAE for full list.

I MAYO ROAD, CROYDON, CRO 200. 01-684 9917-8-9

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, R. F. HEATERS. FREE CATALOGUE.

V. N. BARRETT & CO. LTD.

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" & "E" cores. Case and Frame assemblies.

MULTICORE CABLE IN STOCK CONNECTING WIRES

Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black OFFICE: 44 GREEN LANE, HENDON, N.W.4 Tel: 01-203 1855. 01-203 3033 STORES: 30 BARRETTS GROVE, N.16 Tel: 01-254 1991

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields & Mayco Disposals, 21 Lodge Lane, London, N.12

RING 445 2713

445 0749

958 7624

AMERICAN

TEST AND COMMUNICATIONS EQUIPMENT * GENERAL CATALOGUE AN/104 1/6 * Manuals offered for most U.S. equipments

SUTTON ELECTRONICS Salthouse, Nr. Holt, Norfolk. Cley 289

IEW LOW COS

High-quality Dallmeyer F4.5 2.4" (61 mm) lens provides a reproduction of trace and graticule with good linearity. The object/image ratio is 1:0.7 (nom).

SHUTTER SPEEDS

Three modes of operation are provided, including fixed exposure 1/25 sec. (nom.). time and brief.

ADAPTERS

Comprehensive range of adapters are available to fit most popular oscilloscopes.

Oscilloscope **Camera-Type** p

Setting a new standard combining lower purchase and operating costs with superior performance, the Telford Type P meets requirements where smaller or standard oscilloscopes are employed.

SIMPLE OPERATION-ATTRACTIVE APPEARANCE -LIGHTWEIGHT-ECONOMY SIZE POLAROID FILM TYPE 20

TELFORD PRODUCTS LTD.

4 Wadsworth Road, Greenford, Middlesex. Telephone: 01-998 1011 THE DAVALL PHOTO OPTICAL COMPANY OF THE BENTIMA GROUP

a106

23" £9.15.0

19" Panorama £8.10.0

23" Panorama £11.10.0

19" Twin Panel £9.17.6

23' Twin Panel £12.15.0

Carriage and insurance

12"-19"-12/6

long life.

BAILEY, LINSLEY-HOOD, TEXAS INSTRUMENTS For list of parts and other information send S.A.E. to: **TELERADIO ELECTRONICS**

807 3719

Darby House

Complete fitting instructions are supplied with every tube 2 YEARS FULL REPLACEMENT GUARANTEE

WW-105 FOR FURTHER DETAILS

WE MAKE TRANSFORMERS AMONGST OTHER THINGS AUTO TRANSFORMERS. 0-110-200-220-240 v a.c. up or down, fully abrouded fitted terminai blocks. 30 w 26/6; 50 w 34/-e; 75 w 41/6; 100 w 49/-e; 150 w 60/-e; 200 w 75/-; 300 w 97/6; 400 w 120/-; 500 w 142/6; 600 w 165/--; 750 w 195/-; 1000 w 240/-; 1500 w 345/-; 2000 w 480/-; 3000 w 600/- and up to 8000 wait to optic.

400 w 120/-: 500 w 14270; 240/-: 500 w 345/-: 2000 w 480/-: 3000 w 600/- and up w 240/-: 1500 w 345/-: 2000 w 480/-: 3000 w 600/- and up w 2000 watt to order. MAINS TRANSFORMERS. Prim 200/240 v a.c. TX1, 425-0-425 v 260-0-250 v 160 Ma, 6.3 v 4a, CT, 0-5-6.3 v 3 a, 135/-: TX2, 260-0-250 v 160 Ma, 6.3 v 4a, CT, 0-5-6.3 v 3 a, 73/6; TX3, 260-0-250 v 100 Ma, 6.3 v 17, 2, 0.5 v 1 a, 60/-: TX5 300-0-300 v 120 Ma, 6.3 v 2 a CT, 6.3 v 2 a, CT, 6.3 v 1 a, 70/-: TX5 300-0-250 v 120 Ma, 6.3 v 1.5 a, 42/-: MT1 200 v 30 Ma, 6.3 v 1 a, 24/-: MT2 230 v 45 Ma, 6.3 v 1.5 a, 22/6.

6.3 v 1 5 a, 42/-; MT 120 v 30 Ma, 6.3 v 1 a, 24/-; MT 230 v 45 Ma, 6.3 v 1.5 a, 29/6. MULTYOUT TRANSPORMERS. Prim 200/240 v a.c. OMT4/1 One tapped sec, 5-20-30-40-60 v giving 5-10-15-20-25-30-35-40-55-60, 10-0-10, 20-0-20, 30-0-30 v a.c. 1 anp. 45/-; ditto tran 2 amp OMT4/2. 67/6; OMT5/1 One tapped sec, 40-50-65-80-95-100-110 v, giving 10-20-30-40-50-07-80-90-100-110, 10-0-10, 20-0-20, 30-0-30, 40-0-40, 50-0-50 v a.c. 1 amp. 47/6; OMT4/0 0 ne sec 40 v CT 3 amp. 67/6; DUOVOLT TRANSPORMERS. Prim 200/240 v a.c. m12/V Bec 1, 12 v 4 a, 87/16; 'D25V' 8 sec, 110-20-25 v 2 x, 8ec 2, 10-20-20 v 2 a, 71/6; LT AUTO TRANSPORMERS. Prim 200/240 v a.c. output 24 v a.c. 150 watt 90/-; 250 watt 135/-; for quartz lodine lampa 16/9(; 3 a 20)-; 0 a CT 24/-; 11 v 1.5 a 21/-; 3 a CT 36/-; 56(6; 5 a 75/-; 18 v 1.6 a CT 26/6; 2 v 1.5 a CT 34/-; 3 a CT 56(6; 5 a 75/-; 18 v 1.6 a CT 26/2; 4 v 1.5 a CT 34/-; 3 a CT 56(6; 5 a 75/-; 18 v 1.6 a CT 26/2; 3 v 0-20 v 0.153, 21/-0-9, v size 1, 2 x 1 4 lns. Prim 200/240 v a.c. output PPT 19-0-9, v size 1, 2 x 1 4 lns. Prim 200/240 v 0.153, 21/- each. Size 2 x 1 2 x 1 a x 1 x 1 x 0 -0-20 x 0.153, 21/- each. Size 2 x 1 x 1 x x 1 4 lns. Prim 200/240 v 0.153, 21/- each. Size 2 x 1 x 1 x x 1 4 lns. Prim 200/240 v 0.153, 21/- each. Size 2 x 1 x 1 x x 1 4 lns. Prim 200/240 v 0.153, 21/- each. Size 2 x 1 x 1 x x 1 x 1 x x 1 x 1 x x 1 x 0 x 200/240 v 0.153, 21/- each. Size 2 x 1 x 1 x x 1 x 1 x x 1 x 1 x x 1 x 0 x 200/240 v 0.153, 21/- each. Size 2 x 1 x 1 x x x 1 x 1 x x x 1 x 1 x x x 1 x 0 x 200-20 v 0.153, 21/- each.

Post

0

GRANADA 4

Size 2 x 21 x 14 ina. MT12V 12-0-12 v 1 a. MT20V 20-0-20 v 0.75 a. 2006 such. OUTPUT TRANSFORMERS. Mullard 5/10 UL 57/6; 7 watt iterce 01L 60/-: 5 watt PP3 30/-: PP 11K / 3-8-15 ohm 78/6; 60 watt (KT86 etc.) 135/-: 100 watt 225/-: auto matching with ratio 7/10 watt 33/-: 100 watt 225/-: auto matching W.W. COLURE TELE. Choke L1. 60/-: Tran T1 57/6; Field 0/P 60/-... Carriage estra on all transformers 4/6 minimum. BULK TAPE ERASERS. 200/250 w.a.c. immediate erasure of any size spool of magnetic tape, new boxed 42/6 p. 3/-

CONDENSERS. Electrolytics, 1000 mfd 25 v, 4/8; 2500 mfd 50 v, 10/6; 6000 mfd 15 v, 5/-; 1500 mfd 150 v, 12/8; 80 mfd 450 v, 5/-; 100 x 200 mfd 350 v, 7/6; 60 x 100 mfd 450 v, 7/8. LOUDSPEAKERS. New boxed, famous makes, 25 wat 107/-; 38 watt 130/-; 10 watt 180/-; 60 watt 215/-; 100 watt 350/-; 13 x 3 lin. 40/-; 13 x 8 lin. 8 ftd 21 watekrasand resouver 70/-LOUDSPEAKER. Kz-equip, perfect Elac etc., 6 lins. 3 ohms, 10/- plus 3/- min. carriage.

Carriage extra on all orders. S.A.E. ALL ENQUIRIES PLEASE. MAIL ORDER ONLY 46 KENILWORTH ROAD, EDGWARE, MIDDX. HA8 SYG. Tel: 01-958 9314

WW-104 FOR FURTHER DETAILS

AMATRONIX LTD

ALL GOODS MINT AND GUARANTEED

2N706	2/7	2SB187	2/-	BF224	5/-
2N2926Q	2/6	AD161/2	12/-	BF225	5/-
2N3702	3/-	AF239	10/-	BFY51	4/8
2N3704	3/6	B-5000Q	11/3	1844	1/4
2N3707	3/6	BD121	18/-	MC140	4/-
2N3794	3/-	BD145	50/-	OA90	1/3
2N3819	7/6	BC107	3/-	SF115	3/-
2N3983	6/6	BC168	2/3	T1407	6/6
2N4058	4/-	BC169	2/6	40468A	7/6
2N4284	3/-	BF178	9/-	CA3020	28/-
2N4289	3/-	BF196	5/-	TAB101	21/-
2N4291	3/-	BF167	5/3	MEM564	
					16/-

CERAMIC I.F. RESONATORS Tailor-make 455kHz selectivity to your own needs with new Brush Clevite identical Resonators. A wide choice of bandwidths by adding fixed capacitors. Resonators Type **TF04-442**, 10/- each, four for 30/-, with brief data and hints on use.

MAIL ORDER ONLY. CASH WITH ORDER. ORDERS OVER 10/- U.K. POST FREE. DISCOUNTS: 10% on orders over £3. 15% over £10

396 SELSDON ROAD, SOUTH CROYDON, SURREY, CR2 ODE

www.americanradiohistory.com

INDEX TO ADVERTISERS Appointments Vacant Advertisements appear on pages 89-102

PAGE	P	AGE		PAGE
A1 Factors 106	Esmanco Ltd	64	Radio & TV Components Ltd	65
Acoustical Mfg. Co. Ltd 41	Field Electric Ltd	105	Radio Components Specialists	107
Adcola Products LtdCover iii	Firnor-Misilon Ltd	58	Radio Exchange Co	104
A. H. Supplies	Foulsham, W., & Co. Ltd	104	Radiospares Ltd.	82
Advance Electronics Ltd 11		22	Ralfe, P. F.	85
Altec Lancing International	Goldring Manufacturing Co. Ltd 12,		Rank Audio Visual Ltd	24
Amtronix. 107	Grampian Reproducers Ltd		R.E.L. Equipment & Components Ltd	105
Anders Electronics Ltd	Greenwood W. (London), Ltd	39	Reslo Mikes	14
	Hall Electric Ltd	27	R.S.C. Hi-Fi Centres Ltd	75
A.P.T. Electronics	Harmsworth Townley & Co	31	R.S.T. Valves.	76
Associated Automation Ltd	Harris Electronics (London) Ltd	30	Samsons (Electronics) Ltd	74
Associated Elec. Eng. Ltd	Harris, P	105	Sankyo Seiki Mfg. Co. Ltd.	39
Ates Electronics Ltd	Hart Electronics	104		
Audix, B. B., Ltd	Hatfield Instruments Ltd	55	Service Trading Co	
Auriema Ltd 14	Henry's Radio Ltd			68
Avo Ltd 1	Henson		Sinclair Radionics Ltd	-
Bantex Ltd			S.M.E. Ltd.	
	I.C.S. Ltd		S.P. Loudspeakers, Messrs.	
	I.M.O. (Electronics) Ltd	35	S.T.C. Mobile Radio Telephone	
Barrett, V. N	Instructional Handbook Supplies	107	Smith, G. W. (Radio), Ltd	-
Batey, W., & Co	International Rectifier Co. Ltd	37	Smith, H. L., Co. Ltd	
Bentley Acoustical Corporation Ltd	Johns Radio	103	Smith, J., Ltd.	32
Bentley K. J. & Partners 103	K.S.M. Electronics.	66	S.N.S. Communications Ltd2	
B.I.E.T. 13			Solartron Electronic Group Ltd4	
Bi-Pak Semiconductors	Keytronics	74	Special Products Ltd	
Bi-Pre-Pak Ltd 77	Kingston Electrical Supplies	106	Starman Tapes.	
Black, J	Lasky's Radio Ltd	74	Stephens Electronics	
Bosch Ltd	Lawson Tubes	107	Sugden, J. E.	55
Bowthorpe-Hellerman Ltd	Ledon Instruments Ltd	26	Sutton Electronics	106
Brooklands Plating Co. Ltd 107	Light Soldering Developments Ltd	8	Teclare Ltd	103
Brown, S. G., Ltd	Lind-Air Optronics (Industrial) Ltd	58	Tektronix Ltd	36
Bulgin, A. F., & Co. Ltd 49	Livingston Hire Ltd	108	Telequipment Ltd.	42
Butterworth & Co. (Pub.) Ltd 103	L.S.T. Components	67	Teleradio, The, Co. (Edmonton) Ltd	107
			Telford Products Ltd	106
Carr Fastener Co. Ltd 46	Magnetic Tapes Ltd	66	Teonex Ltd	24
Carston Electronics Ltd 28	Marconi Instruments	21	Thorn Radio Valves & Tubes Ltd	44
Cesar Products Ltd. (Yukan) 103	Marshall, A., & Son (London) Ltd80,		Tinsley, H	54
Chiltmead Ltd 73, 104	Mills, W		Trio Corporation	50
Clarke, David, Co. Messrs	Modern Book Co		Trio Instruments Ltd	28
Computer Training Products	Morganite Resistors Ltd.	17	Turner, E., Electrical Insts. Ltd	32
Daystrom Ltd	Mullard Ltd	62	Universal	82
Deimos Ltd	Multicore Solders LtdCover		University of Leeds.	58
Diathane Ltd	McMurdo Instrument Co. Ltd	40		
	Neco Electronics (Europe) Ltd	105	Valradio Ltd2	
Diotran Ltd	Nombrex Ltd.	30	Vitality Bulbs Ltd	10
Drake Transformers Ltd			Vitavox Ltd	64
Dynamco Ltd	Omron Precision Controls O. & R. Electronics Ltd	35	Vortexion Ltd	4
E.B. Instruments 107		64	Watts, Cecil E., Ltd	107
Electronic Brokers		107	Wayne Kerr, The, Co. Ltd	23
Electronics (Croydon) Ltd	Oxley Developments Co. Ltd	55	Webber, R. A., Ltd.	30
Electrosil Ltd 48	Pattrick & Kinnie	72	Wel Components Ltd	32
Electrovalue	P.C. Radio Ltd.	83	West Hyde Developments Ltd	
Electro-Tech Sales	Pembridge College, The	76	West London Direct Supplies	82
Electro-Winds Ltd		57	Wilkinson, L. (Croydon), Ltd	64
English Electric Valve Co. Ltd	Proops Bros. Ltd.		Winter Trading Co. Ltd.	18
Enthoven Solders Ltd 24	Quality Electronics Ltd	55		
Erie Electronics Ltd	Quartz Crystals Co. Ltd	103	Z. & I. Aero Services Ltd	3, 88

Printed in Great Britain by Southwark Offset, 25 Lavington Street, London, S.E. 1, and Published by the Proprietors, L.P.O. ELECTRICAL-ELECTRONIC PRESS, LTD., DOTSET HOUSE, Stamford St., London, S.E. 1, telephone 01-928 3333, Wireless World can be obtained abroad from the following: ATSTRAITA and New ZEALAND: Gordon & Gotch, Lid. INILA: A. H. Wheeler & Co. OAMADA: The Wrn. Dawson Stubertption Service, Ldd: Gordon & Gotch Lid. Sourt AFRICA: Central News Agency, Lid.; William Dawson & Sone (S.A.) Ldd. UNITED STATES: Exactran News Co., 306 West Lift Street, New York Ld. CONDITIONS OF SALE AND SUPPLY: This periodical is sold subject to the following conditions, namely that it shall not, without the written consent of the publishers first given, be lent, re-sold, hired out or otherwise disposed of by way of Trade at a price in excess of the recommended maximum price shown on the cover; and that it shall not be lent, re-sold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

CLEARWAY to lower production costs with ADCOLA Precision Tools

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment—and we provide:

★ THREE DAY REPAIR SERVICE ★ INTER-CHANGEABLE BITS—STOCK ITEMS ★ SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.

ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

ADCOLA PRODUCTS LTD

(Dept. H) Adcola House, Gauden Rd., London, 8W4 Tel. 01-622 0291/3 Telegrams : Soljoint, London, Telex Telex : Adcola, London 21851

Please rush me a copy of your latest brochure:		
NAME		
COMPANY		
	••••••••••••••••••••••••••••••••••••••	
	····· ••••••••••••••••••••••••••••••••	

WW-002 FOR FURTHER DETAILS

The world's industry uses a mile of Ersin Multicore solder every... 3minutes? 3hours? 3days?

The answer is every 3 minutes !

A mile of Ersin Multicore Solder is used every 3 minutes during normal working hours. That shows how the world's leading electronic manufacturers rely on Ersin Multicore 5 core Solder for thousand upon thousand of fast, economic and consistently reliable joints.

If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investigate the wide range of specifications, which are available.

Besides achieving better joints – always – your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets – Cored or Solid – and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes. EXTRUSOL The first oxide free high purity extruded solder for printed circuit soldering machines, baths and pots, is now available to all international specifications, together with a complete range of soldering fluxes and chemicals.

Should you have any soldering problems, or require details on any of our products, please write on your company's note paper to:

MULTICORE SOLDERS LTD., HEMEL HEMPSTEAD, HERTS. Tel. No. Hemel Hemptead, 3636, Telex: 82363.

WW-003 FOR FURTHER DETAILS