Tektronix 7000 Series

Antomatic Scale Factor Readout-

a character generator senses the position of volts/div, amps; div, time/div, polarity, and uncalibrated variable controls, then accounts for probe attenuation and displays the correct scale factors for all channels directly on the CRT. In addition to this facility, illuminated push-button switching and true automatic triggering assure faster, more accurate, less complicated measurements.

150 MHz Bandwidth-

using the type 7704 main-frame, 90 MHz for the type 7504.

More Sensitivity-

higher sensitivities are achieved at greater bandwidths than ever before. $5 \mathrm{mV} / \mathrm{div}$ at $150 \mathrm{MHz}, 1 \mathrm{mV} / \mathrm{div}$ at 100 MHz and $10 \mu \mathrm{~V} /$ div at 1 MHz .

More Flexibility-

each mainframe accepts up to four plug-in units. Thirteen plug-in units are currently available to cover virtually all multi-trace, differential, sampling, and $X-Y$ applications. Price of Mainframe (with scale factor readout) and the minimum of a single channel vertical and single time-base plug-in units :
7504 from £1,459। delivered U.K.
$77 C 4$ from £1,764
Manufactured in Guernsey C.I.

For detailed information on any of our products please fill in reader reply card or write, telephone or telex

UHF klystron efficiency? You can rely on it with EEV.

For reliable UHF klystron performance choose from the largest range available today. The EEV range. $40 \mathrm{~kW}, 25 \mathrm{~kW}, 10 \mathrm{~kW}, 7 \mathrm{~kW}$ and 5 kW .

Each one offers economy and ease of use, solid-state compatibility and, above all, efficiency-even at low drives.

Broadcasting authorities around the world are using

EEV klystrons for UHF television - proving their operational flexibility, reliability and efficiency in climatic conditions as varied as those of Australia and Finland. To get the full facts about the tube you need, please post the coupon. English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone 024561777. Telex:99103. Grams: Enelectico Chelmsford

The great EEV radardisplay

These radar components represent just part of our total radar capability, and they indicate the size of our investment in radar. We know radar from thyratrons to magnetrons, from duplexers to klystrons. And we have the resources to back this immense fund of knowledge. EEV's advanced tube technology is at your service. If a device to suit your equipment is not already in our catalogue, we would consider making one specially for you.

So that we can send you the latest, up-to-date information, please return the coupon opposite.

English Electric Valve Co. Ltd., Chelmsiord, Essex, England. Telephone: 0245 61777. Telex:99103. Grams: Enelectico, Chelmsford.

1. Magnetrons

2. High power klystrons

3. High-power travelling-wave tubes

This little fellow gets all the tough assignments

Redcap Capacitors are ready for any assignment. As part of the Monobloc Ceramicon range, they can pack 10 to 100 times the capacitance/volume ratio of conventional components. They tolerate temperatures from $-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. They cover a broad range of values from 10 pF to $470,000 \mathrm{pF}$ (up to $2,200 \mathrm{pF}$ in high stability NPO, with the remainder of the range in

Hi-K Dielectric), at voltage ratings of 50 or 100 Volts d.c.
Redcaps are now made in Britain. The technique is the fusion of Thin Ceramic Films and Platinum Electrodes. The result is an inherently stable dielectric, and volumetric efficiencies as high as $380 \mu \mathrm{~F}$ per cubic inch.
Finished in Jetseal Phenolic Insulating coating, with weldable solder-coated
copperclad steel leads, Redcaps are
 equipped to perform their tasks with complete reliability.
Send for details to :-
ERIE ELECTRONICS LTD,
Gt. Yarmouth, Norfolk. Telephone : 0493.4911 Telex : 97421

Vortexion

STEREO MIXERS

These electronic Stereo Mixers range from $2+2$ to $5+5$ input channels, with left and right outputs at 500 millivolts into 20 K ohms up to infinity.
Separate control knobs are provided for L \& R signals on each stereo channel so that a Mono/ Stereo changeover switch provided can give from four to ten channels for monaural operation, in which state the L \& R outputs provide identical signals.
A single knob ganged Master Volume control is fitted, plus a pilot indicator.
The units are mains powered and have the same overall dimensions as monaural mixers.

Also available Monaural Electronic Mixers:-

4 Way Monaural Mixers
6 Way Monaural Mixers
8 Way Monaural Mixers
10 Way Monaural Mixers

3 Way Monaural Mixers with P.P.M.
4 Way Monaural Mixers with P.P.M.
6 Way Monaural Mixers with P.P.M.
8 Way Monaural Mixers with P.P.M.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.'s. This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 W att Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.
100 uV on $30 / 60 \mathrm{ohm}$ mic. input. 100 mV to 100 volts on gram/auxiliary input $100 \mathrm{~K} \Omega$.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.

4. Hydrogen thyratrons

5. Pulse tetrodes

6. Low-power travelling-wave tubes

7. Low power klystrons and backward wave oscillators

8. Duplexer devices

9. Voltage stabilisers

10. Storage tubes

Just five seconds per point for perfect fixing - neater, more compact, safe and permanent. The Cradleclip® system permits quick and easy wiring amendments-cuts costs all round. Comprises binders and clips for loose wiringcradles and clips for anchored wiring. Binders and cradles are in tough, virtually unbreakable inylon for all-climate insulation. Clips are in PVC, Neoprene (for special duties) or Butyl rubber (for aircraft applications). Post the coupon for samples by return.

Never Built a Kit Before? Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

See for yourself how EASY it is to build a HEATHKIT model . . . Why not purchase a construction manual now. ONLY 10/- EACH. Simply order the manual for the model of your choice on the order form below. If you order the kit later the manual price may be deducted from the price of the kit.

Stereo Record Player Exciting Sound-Budget Price Kit K/SAP-1 $£ 27-6$ Carr. 11 .

Deluxe SW Receiver Many extras for price Kit K/GR-54 \quad £48-16 Carr. 9\%

For Hobbyists-Householders Kit K/IM-17 \quad 144-8 Carn. 6 .

FM Mono Receiver Modest Price-Natural Sound Kit K/AR-27 $£ \mathbf{£ 2} \mathbf{- 1 0}$ car. $11 /$. (Cab Extra)

FM Stereo Tuner/Amplifier Unbeatable Value
Kit K/AR-17 $\mathbf{£ 3 6 - 1 0 ~ C a m . ~} 1 \%$.

Kit K/ID-29 f17-8 Сап. 5 .

Deluxe Car Radio
Top Value-Powerful output Kit K/CR-1 $\quad \mathbf{£ 1 2 - 1 2 \quad \text { Carr.5/. }}$

$12 w+12 w$ Stereo Amplifier 8 or 15Ω outputs Kit K/TSA-12
(Cab Opt. Extra) £32-16 Carn. $\%$

Avon Mini Speaker
Luxury Sound-Small Size
Kitk/Avon f13-8 Cam. 11/.

ORDER YOUR MANUAL
 PRICE ONLY 10/- EACH TODAY!

IHEATMITIT

A Schlumberger Company

HEATH (Gloucester) LTD.
GLOUCESTER GL2 6EE Tel. 29451 Telex. 43216

MICROPHONES \& ACCESSORIES
 Our range of microphones includes all types, ribbon, omnidirectional and cardioid, with or without switches, for hand or stand use. All microphones are manufactured in a special section of our works, under strictly controlled conditions with stringent test and inspection at every stage. Each and every microphone is individually tested both aurally and on Bruel \& Kjoer visual and graphic recording test equipment for conformity to a prescribed performance. Accessories such as desk or floor stands, wind shields and parabolic reflectors are also well catered for.
 Besides microphones, every need of Public Address is met by a wide range of amplifiers, both mains and battery operated, mixers and ambiophonic units, loudspeakers and associated equipment, disc recorder amplifiers and cutter heads.
 Please send for fully descriptive literature to the firm who back you with SERVICE

JACW/X/59 (M22)
WW-014 FOR FURTHER DETALS

ASTRONIC SERIES 1700

For the finest reproduction invest in Astronic Equipment built from standard modules for use in clubs, factories hospitals, sportcentres, hotels, schools or where only the best will do

ASSOCIATED ELECTRONIC ENGS LTD. DALSTON GARDENS, STANMORE, MIDDX. TEL: 01-204 2125

Not onlybeautiful, but...

* Practically unbrea<able
* High impedence, high level phones * Carbon microphones available * Extremely comfortable
* Simple to service.

The new 'Astrolite' readset has been acopted by many of the leading Television. Broadcasting and Programme companies for studio and
O.B. use, and no wonder.

It's fully interchangeable with all kno:vn carbon level systems. No more of the 'snap, crackle and pop', just the message, c ear and rel able, using our new noise - cancelling high quality moving-coil microphone with integral amplifiers.

AMPLIVOX COMMUNTCAIMONS LIMITED

AMPLIVOX COMMUNICATIONS LTD. BERESFORD AVENUE • WEMELEY • MIDDX. TELEPHONE 01-902 8991
 GRAMS AND CABLES • AMPLIVOX • WEMBLEY

For noise-free communications, without 'carbon' crackles. Write or telephone for a free demonstration, at your premises, without any obligation.

Name
Title
Address

COLUMN LOUDSPEAKERS

L 470 (LEFT) A 4' line source loudspeaker providing the highest quality audio reproduction available from a column unit. Designed specifically for outside broadcast use, the L 470 has an exceptional directional characteristic, and will ensure good intelligibility, even under poor acoustic conditions.

Power Rating: 8 watts.
LM 204 (CENTRE) A 2' line source loudspeaker having an all metal construction, and designed for use in churches, conference halls, etc., where top quality speech reproduction is required.

Power Rating: 6 watts.
'200' Series (FAR RIGHT) This range of column loudspeakers are constructed in matt finished solid afrormosia timber. The acoustic venting and high flux speaker units incorporated, provide top quality sound distribution over the entire audio range. Models are available with power outputs between 7 and 45 watts, varying in height between 2 and 7 'respectively.

INTERMODULATION DISTORTION ANALYSER

Residual Distortion below 0.005\%! Internal Generators! 1 Minute Calibration! FET Circuitry!
Price £496!

The IMA Intermodulation Distortion Analyser made it possible for Crown International to produce the World's finest Power Amplifier, the DC300! Now the unique facilities of the IMA are available to you. Your Laboratory or your production line can benefit from 1 minute Inter-Mod measurements. Phone us now for a data sheet, or a demonstration.

Why Mullard chose the high-voltage solution for transistorised TV

One of the major decisions that manufacturers of TV componerts have faced is the choice between high and low voltage line output circuitry. On the basis of an extended evaluation programme, Mullard settled for the high-voltage solution some three years ago, and started work to solve the specific device problems. This decision was based on the specialised knowledge which our Central Applications Laboratory had of the advantages this solution would bring to Setmakers.

Once the development tasks had been set, all our resources were co-ordinated to make a concentrated effort to develop these necessary and most complex devices-the TV line output transistor BU105 and the BT106 thyristor.

The BU105 is technically outstanding. It can operate at a maximum peak collector-to-emitter voltage of 15 kV , and one device can supply the scanning and e.h.t. power for 110° monochrome TV,
which can be as high as 3000 VA . For colour TV, where the VA can rise to 5000 VA , two BU105's are usually used in series, and the nominal peak operating valtage of 2 kV is well within the combined ratings of the two transistors. The peak collector current requirement is adequately covered by the BU105's 2.5A rating.

At the same time that the BUIOS was being developed, a second team was working on the problems of providing a fully protected and regulated power supply for TV. This was built around the rugged Mullard Thyristor BTI06.
The circuit was developed using techniques our designers have employed for the speed control of domestic appliances, and is designed to supply a stabilised line of up to 200 V at up to 700 mA . A number of special passive components are used in these circuits; and these were developed at the same time within the Mullard organisation.

Why the Mullard High-Voltage Solution is the Answer. By using our line output transistor BU105 and thyristor BT106, Setmakers are able to build receivers of excellent stability, and at the same time save on component costs, space, and lower the heat level within the television cabinet. The old bulky and expensive mains transformer can be eliminated together with its incumbent magnetic field.
Uniquely the BU 105 transistor also acts as its own efficiency diode with no loss of
linearity, thereby saving yet more components.

The BTI06 power supply circuitry has a high safety factor even under fault conditions. It is compact and has extremely low dissipation. Together, the BU 105 and BT106 and their associated circuits represent what is probably the most advanced television scanning plus power supply concept in the world today.

Worth it? Our unique experience in components for consumer electronics allows us to bring many resources to bear on individual problems and in this case made possible an outstanding TV circuit solution. We can also be sure that our products will give continuous and consistent service-our detailed knowledge of their use helps us to relate the highest quality with the best possible price, and this is something which applies across the very wide Mullard component range.

Mullard
 components for consumer electronics

[^0]
TRANSFORMERS

We hold in stock a standard range of over 200 types of Transformers, a few of the more populartypes are represented here.

WE ALSO OFFER A PROTOTYPE AND PRODUCTION WINDING SERVICE.

- STOCKISTS OF ELECTROSIL GLASS TIN OXIDE RESISTORS
- COMPREHENSIVE RANGE OF INDUSTRIAL VALVES AND SEMICONDUCTOR DEVICES ALWAYS IN STOCK

LIND-AIR OPTRONICS (INDUSTRIAL) LTD.
 ELECTRONIC COMPONENT DISTRIBUTORS 6-12 TUDOR PLACE, LONDON, W. 1 Telephone: 01-6371601 (10 lines)

Nombrex accuracy!

in the palm of your hand
TRANSISTORISEO-COMPACT-MODERN STYLING

Standard Model 29-S

- $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals
- Eight clear scales. Total length 40
- Smooth vemier tuning- ratio 7t :
- Magniffer cursor-precision tuning
- Overall accuracy. better than 1.5%
- Modulation. variable depth and frequency
X tal Check Model 29-X
- All the features of the Model 29-S

AND

- Integral Crystal Oscillator providing calibration cheet points throughout all ranges. For adjustment of scale accuracy to $\pm 0.02 \%$

Pricter27-10-0
Illustrated: R. F. SIGNAL GENERATOR MODEL 29, Spin Wheel Tuning © $1.0-0$ extra
\mid Trade \& Export enquiries welcome. Send for full technical leaflets. Post and Packing 6/6 extra

VALUABLE NEW HANDBOOK FREE EOMBINITERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department ${ }_{\text {. }}$

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Draughtsmanship - Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Structural Eng. E Santary
Eng. - Road Eng, - HyEng. - Road Eng. - Hy-
draulics - Mining - Water draulics - Mining \rightarrow Wate Supply - Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.

MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press 2 ool Design - Welding
Sheet Metal Work - Win Sheet Metal Work \rightarrow Welding - Eng. Pattern Making \rightarrow Metallurgy - Production Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Entg. - Automobile Maintenance - Repair -Automobile Diesel Maintenance - Automobile Electrical Ence - Automobile Electrical ment.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS IN. CLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?

 M.R.S.H.ÉRT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

\star HOW to get a better paid, more interesting job. * HOW to qualify for rapid promotion.

* HOW to put some letters after your name and become a key man . . . quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take a
you are now missing. - HOW, irrespective of your age, education or experience, YOU can succeed in any branch of

164 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL

 EQUIPMENTBasic Practical and Theoretic Courses for beginners in Radio, T.V., Elecners
tronics, Radio, A.M.I.ElecCity \& Guilds Radio Amateurs' Exam., R.T.E.B. Certificate, P.M.G. Certificate, Practical Radio, Radio \& Television Ser vicing, Practlcal Elec Engineering, Automation

INCLUDING TOOLS
The specialist Electronics Division of B.I.E.T.

NOW offers you a real laboratory training at home with Ask for derails.

B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.

POST COUPON NOW!

TO B.I.E.T., 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

- RADFORD

AUDIO AMPLIFIERS

A range of high quality audio amplifiers is available to comprise a complete system for the recording and reproduction of sound from any type of input system for the recording and reproduction of sound from any type of input
source. Amplifiers are of modular construction using plug-in printed wiring boards having hard electro-gold plated contacts and immersion gold plated conductors. Mechanical build is of the highest standard. The quality of materials and components is to MIL speclfication where possible, or the best avallable. Performance characteristics are unmatched and in advance of present day requirements. Performance diagrams of the SC24 preamplifier, and PA50 and SPA50 power amplifiers below illustrate this.

Pre-amplifier Control Unit SC24
A comprehensive stereophonic pre-amplifier control unit having extensive facillites and flexibility. Total distortion less than 0.01% at 1 Volt output with progressive reduction with input level. Price: $\mathbf{£ 8 0 . 0 . 0}$

SC.24. SQUARE WAVE PERFORMANCE INCLUDING TONE CONTROLS

Powar Ampliflers PA50 and SPA50
Single or dual channel amplifiers having identical characteristics. Low distortion true complementary symmetry output stage. Fully protected by voltage and current sensing in the power amplifier proper, and current limiting in the power supply. Rating 50 watts per channel continuous sine wave output. Price: PA50 £55.0.0; SPA50 £85.0.0

Radford audio equipment Is available for home use through franchised dealers in the U.K. and for professional and commercial use direct.

(10)
 STOCKISTS

REPAIR SERVICE
 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS.89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

WW-024 FOR FURTHER DETAILS

the choice in over 50 different countries!

Teonex electronic valves and semi-conductors are supplied all the world over where quality and reliability count.

Teonex offer a comprehensive range of receiving, professional and special quality valves. Whether you require a device to mil specifications for government work or a commercial device for replacement in a television set, Teonex products are equally suitable.

For technical specifications and price lists, please write to Teonex Limited 2a Westbourne Grove Mews London W. 11 • England
Cables: Tosuply London W. 11 .

TEDIEK

electronic valves \& semi-conductors

WAYNEKERR
 A.F. Transformer Ratio-Arm Bridges

Slide-rule LCR Bridge has ten overlapping ranges for rapid 1% measurements of ant component, also tolerance and phase angle. Switch selects 1 kHz or $100 / 120 \mathrm{~Hz}$ operation. 2, 3 and 4-terminal connections

B500

Autobalance Capacitance Bridge gives direct readout from 0.1 pF to $10 \mu \mathrm{~F}$ and will follow a changing value. Comprehensive facilities for 'zero suppression' and comparative measurements. Analog voltage and current outputs. Accuracy 0.25%. Internal 1 kHz source/detector. A.C. or battery operation. B541 C

Autobalance Compoent Bridge for immediate readout of resistance, capacitance and shunt loss, inductance and series loss. C and R comparisons from -25% to $+25 \%$. Electrolytics tested with d.c. Accuracy 0.25% (R \& C), 2\% (L). Internal 1 kHz source/detector.

Universal Bridge for 0.1% measurements of a7y LCR combination from 20 micro- 2 ms to 500 gigohms. Source/ detector $(1592 \mathrm{~Hz})$ operate fram a.c. or internal rect argeable battery. Sockets for external $200 \mathrm{~F} z-50 \mathrm{kHz}$. Display gives units, zeroes and decimal pont. Four-terminal connections from Adaptor Q221 for accurate low impedance measurements. B221

Autobalance Universal Bridge for continuous 0.1% readout of in-phase and quadrature terms, with analog outputs of both. Backing-off facilities, DVM connec:ions, optional ECD outputs. Push-buttons for optimum discrimination up to five figures. Illuminated readout.

B641

Autobalance Precision Bridge accurate to 0.01\% though simple to operate. It rreasures virtually any meaningful immittance in any quadrart. Autamatic compensation for measurement lead impedance. Sx-figure discrimination. Analog outputs.

B331

THE WAYNE KERR COMPANY LIMITED NEW MALDEN . SURREY. ENGLAND

Telephone 01-942 2202 Cables Weynkerr. Malden Telex 262333

WW- 027 FOR FURTHER DETAILS

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

Special Codes Prepared
TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS
Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

```
Gaiety Works, Akaman Streat, Tring. Merts
```


STANDARD BENDING CLAMP

An easily adjusted hand tool for the accurate bending of resistor, capacitor, diode leads, etc., for printed circuits. Will bend leads to within $\frac{1}{16}$ " of ends of components and up to $3 \frac{1}{4}$ " centres.
Infinitely adjustable between $\mathrm{O}^{\prime \prime}$ and $1 \frac{3}{4}{ }^{\prime \prime}$ to suit component body length. All type lead diameters accommodated. Overall Dimensions $\frac{7}{8}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$.

Price: 57/6d.
TRIO INSTRUMENTS LTD.
BURNHAM ROAD.
DARTFORD, KENT. Telephone: Farningham 2082

Mnemo

 polymerics*Mnemopolymericsthe science of heat-shrinkable polymers with a built-in memory perfected after many years of research and development by Hellermann-Electric.

The Helashrink ${ }^{\text {® }}$ range of Moldanized (${ }^{\text {(}}$ Shapes gives you the fast, low-cost answer to encapsulation of electrical connectors; water sealing of cable glands; cable jointing; sealing crutches on power cables; covering spurs in wire harnesses and cable.

More than 70 standard shapes are available and specials can be supplied to meet your particular needs.

Shrinking is fast - by heat gun,

Moldanized Shapes have excellent electrical properties. They add strength, insulation, abrasion and moisture protection - resist acids,

Shrink-it-yourself kit FREE
(All you need is a match)
Please send me your free Mnemopolymerics Demonstration Kit - plus full details of Helashrink Moldanized Shapes.
| Name
Company
Address

TRIO's TS -510 has opened countless SSB vistas through its creative design that enables it to operate at constant maximum power with top durability. This transceiver uses a high frequen. cy crystal filter and covers all ham bands from $3.5-29.7 \mathrm{MHz}$. Because the TS-510's frequency coverage has been compressed to 25 KHz for one complete dial rotation, tuning in on SSB signals is easy. By using TRIO's PS-510 (Power supply and speaker) and VFO-5D (Variable frequency oscillator) optimum results may be obtained. The PS-510 operates on an AC power supply through a 6-1/2" speaker. The VFO-5D has a double-gear dial covering 25 KHz per rotation.

TS-510 SSB TRANSCEIVER

- Receive and Transmit Frequencies $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$
- Receive Sensitivity
$0.5 \mu \mathrm{~V}, \mathrm{~S} / \mathrm{N}$ ratio of 10 dB at $2.5 \mathrm{MHz}-21 \mathrm{MHz}$
$1.5 \mu \mathrm{~V}, \mathrm{~S} / \mathrm{N}$ ratio of 10 dB at 28 MHz
- DIMENSIONS: $13^{\prime \prime}(W), 7^{\prime \prime}(H), 13-5 / 8^{\prime \prime}(D)$.

VFO-5D VARIABLE FREQUENCY OSCILLATOR

- Frequency Range: $3.5 \mathrm{MHz} \cdot 29.7 \mathrm{MHz}$
- Oscillator Method: VFO unit-clapp Osc. Circuit Xtal Osc. Unit-Pierce C•B Circuit
- DIMENSIONS: 7.7/8"(W), 8-21/32"(H), 7-9/16"(D).

PS-510 POWER SUPPLY AND SPEAKER

- Designed as an A.C. power supply unit exclusively for the SSB transceiver TS-510
-6.1/2" communication speaker is incorporated
- DIMENSIONS: $8^{\prime \prime}(W), 7: 1 / 8^{\prime \prime}(H), 14-5 / 8^{\prime \prime}(D)$.
the sound approach to quality

1. RADFORD

AUDIO MEASURING INSTRUMENTS

Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world.

LOW DISTORTION OSCILLATOR

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.
Specification

Frequency Range:
Output Impedance Oulput Antenuation Sine Wave Distorito

Square Wave Rise Time Monitor Output Meter: Mains Input
Size:
Weight:
$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges).
500 Onms.
10 Volts s.m.s. max
0.110 dB continuously variable
0.005% from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz .
Less than 0.1 microseconds.
Scaled $0-3,0-10$, and dBm .
$100 \mathrm{~V} .250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$.
$17 \pm \times 11 \times 8$ in.
25 lb.
$f 150$
£150.

DISTORTION MEASURING SET

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.
Speciflcation
Fiequency Range
Distontion Range
Meler:
Input Resistance
High Pass filter
Frequency Response
Power Requilements
Size:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges).
$0.01 \%-100 \%$ i.s.d. (9 ranges)
100 mV - 100 V . (3 ranges).
Square law I.m.s. reading.
100 kOhms
3 dB down gi 350 Hz .
30 dB down at 45 Hz .
± 1 dB from second harmonic of rejection frequency to 250 kHz .
Included batiery
$17+\times 11 \times 8$ in.
$17 \pm \times 11 \times 8$ in.
15 lb.
f 120.
Descriptive technical leatlets are avaliable on request.

RADFORD LABORATORY INSTRUMENTS LTD.

BRISTOL BS3 2 HZ
Telephone: 0272, 662301

L67-KiT-CN

For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Ejectors, LUCO Electrically Heared Wire Serippers (see illusera tion), Finest Soldering Needles Box Joint Miniature Cutters and Pliers including Tip Cutzin Pliers, Princed Circuir Crimpin and Curting Pliers, Torque Wrenches and Piercing Punches If you require quality cools ask for Catalogue WW/70 ask for Catalogue WW/r

STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403 WW 035 FOR FURTHER DETAILS

SINGLE SOURCE SENSE

OR

How to get What you Want without Having to Try Very Hard

If your parts requirements are small, and your call-off irregular, you have a problem. If, as often happens, you want parts quickly, you have another problem.
We are in business to help you solve both, quickly.
As stockholders of an enormous range of Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies by Cinch Dot and FT, we are the "single source" for pretty well everything of this kind you want in whatever quantity you want and at short notice.
Two illustrated catalogues. Thousands of stock items are detailed in our two fully illustrated catalogues-Fasteners and Electronics-either of which will be sent, post-free, to firms and organisations.
Send for yours now,
stating which catalogue you require.

Make United-Carr Supplies

 your
SINGLE SOURCE

for Cinch Dot and FT Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies.
United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

UNITED-CARF
SUPPLIES

Take a QUAD 50E Amplifier ${ }_{\text {la goos sast tor ary insalataion) }}$

plug it into your monitor system and it bridges 600Ω lines to drive your speakers.
Take that same amplifier and, without changing it in any way, plug it into another installation to deliver 50 watts into 100 volt line * from a 0.5 volt unbalanced source. This versatility and its attendant easing of stocking and maintenance problems is one reason why large organisations use the Quad 50E.
*or indeed any other impedance from 5 to 250 ohms.

Other advantages appropriate to users of all sizes include.
Excellent power and frequency response (-1 dB). Low distortion (0.1% at 1 kHz at all power levels). Low background (better than 83 dB referred to full output)
Pre-set level control adjustable from front panel.
Unconditionally stable with any load.
Proof against misuse including open or short circuited output.
Small size ($\left.4 \frac{3^{\prime \prime}}{4} \times 6 \frac{1^{\prime \prime}}{} \times 12 \frac{3^{\prime \prime}}{4}\right)$ -
($120 \mathrm{~mm} \times 159 \mathrm{~mm} \times 324 \mathrm{~mm}$).
Low price ($£ 47.0 .0$ each nett for 1 off to the professional user).

QUAD
for the closest approach to the original sound

2 CHANNEL AUDIO RECORDER

* 10 watts continuous per channel
* Fully transistorised on 10 printed circuit boards
* 3 head system and 3 speeds 19-9.5-4.75 cms
* Mechanism operated by 4 DC solenoids
- Provision for full remote control

Robust construction and attention to detail make this an outstanding British tape recorder for industrial or domestic use
Portable 4 speaker version
Oiled Teak surround version
RELIABLE
SHORT CIRCUIT
 IN VALUE

Send for informative brochure fully explaining

1. Why a single motor. 2. Elactrical performance. 3. Wow and flutter.

MAGNETIC TAPES LTD.

CHILTON WORKS, GARDEN ROAD, RICHMOND, SURREY Tel: 01-876 7957
WW- 044 FOR FURTHER DETAILS

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone

FIRNOR-MISILON LIMITED 10 COMMERCE LANE, LETCHWORTH, HERTS Tel: 6069

The S20 range of metal oxide resistors is $1 / 2 \mathrm{Watt}\left(70^{\circ} \mathrm{C}\right)$ rating, available in E24 range of values from 10 Ohms to 1 Megohm with a 2% tolerance. They may be used as general purpose, high stability or semi-precision resistors dependant on the rating employed. Identical in format with established types they are readily available at a competitive price, for example, 4 d each at 100 pieces. Wels Fargo get your shipment through.
11 EL CDMPDNENTS LTD 5 LDVERDCK RDAD. READING, RG3 1DS Tel. 580616/9 Telex 84529
MINISTRY OF TECHNDLDGY APPROVEDDISTAI日UTOR WW-047 FOR FURTHER DETAILS

Special Products Distributors Ltd.
81 Piccadilly. London WIV OHL Tel: 01-6299556

"CONTROLOX" PROGRAMMING SYSTEM

The "Controlox" Programming System is provided in modular form and offers up to six planes of contact. The programming area can be supplied to customers configurations, utilising the standard 10×10 socket point modules. The system features many ancillaries, including fully colour-coded component and shorting pins and a bezel frame to facilitate fixing.

Applications include

- computer memories
- cordless patch panels
- machine tool control
- vending machines
- data channelling and logging
- studio lighting control
- process control

OXLEY DEVELOPMENTS COMPANY LTD.
Priory Park, Uiverston, North Lancs., England
OXLEY ${ }^{\circ}$ D Tel: Ulverston 2621 Telex: 6541 Cables: Oxley Ulverston

WW-048 FOR FURTHER DETAILS

We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
Whitworth, unified and metric threads are also available from stock in many sizes.

Please send for List W2/69 (WW)

WALKER-SPENCER COMPONENTS LTD.

5, High Street, Kings Heath, Birmingham, 14.
Telephone: 021-444 3155 (Soles) and 5278
WW-050 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

Relay module 12-way "MS" range
 Knapps Lane, Bristol 5. 0272657228

It's new and great from Shure...

the most-for-your-money 588 Series

This is the one. The mike with the most.
A new fine quality Unisphere
that gives you maxi features at a mini price.
See what you get

used as standards in many industries

- Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified
- Not sensitive to voltage or temperature changes, within wide limits
- Unaffected by waveform erpors, load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C., and superimposed circuits
- Need only low input power
- Compact and self-contained - Rugged and dependable

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery. anders electranics umited 48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092
WW-053 FOR FURTHER DETAILS

A

PRONOUNCED R-TEZ SEMICONDUCTORS

Write now for catalogue
ATES ELECTRONICS LTD., MERCURY HOUSE, PARK ROYAL, LONDON W5
TEL: 01.9986171 TELEX:ATES LONDON 262401
WW-054 FOR FURTHER DETAILS

For the best electrical contacts

This latest edition of Electrical Who's Who is completely updated. Over 8,500 entries include key names in all branches of the industry: supply, manufacturing, contracting, consulting and trading-as well as in Government Departments, Universities, Technical Colleges and other bodies. It is the only publication of its kind. Absolutely indispensable to all who need an up-to-date guide to individuals, firms and organizations.
Size: $9^{\prime \prime} \times 6^{\prime \prime} .512$ pages. Price 65 s . By post 69 s . 6 d Obtainable from: Electrical Who's Who, Dorset House,Stamford St., London SE1

WHO'S WHO 1970/71

Presenting the
 AVONLEA PIERCER

A versatile, simple, hand operated machine specifically designed for cutting a large variety of shapes in light gauge sheet metal.

The ease of operation and range of easily interchanged attachments provides a wide application of uses for the cutting, punching, bending and forming of sheet metal and other similar materials, and it is this versatility that makes it particularly suitable for the radio, T.V. Eleztronics Industries, and Research Establishments.
For further details write or phone:
ESMANCO LTD BROOK STREET GLOSSOP DERBYSHIRE. Telephone Glossop 5427 WW-O55 FOR FURTHER DETALLS

Completely New Range!

- POWER BALUNS
 - PASSIVE MULTICOUPLERS - HYBRID TRANSFORMERS

Features of the 1 kW Power Balun illustrated include pressurised construction, corrosion-resistant cases, frequency range to 30 MHZ , power range to 3 kW P.E.P., alternative terminations. Write now for Data Sheets and for the latest edition of the Hatfield Short Form Catalogue.
HATFIELD INSTRUMENTS LTD.
Dept. WW, Burrington Way, Plymouth, Devon PL5 3 LZ.
Telephone: Plymouth (0762) 72773/5 Telex: 46592
Telegrams: Sigjon. Plymouth

Crash Dive

This was a Morganite type 81 E Cermet Trimming Potentiometer that didn't make it.
Shame really.
The more so because this particular specimen had already survived several rigorous mechanical and electrical tests. But then, we are unusually strict at

Morganite, because our customers like it that way.
Another thing they like is having the right products at the right time, complete with full technical information to match. So our constant research and development is more than an ivory-tower luxury-it's a common-sense necessity.

We reckon that reliable delivery makes sense too. As you'll see when you ring us for samples for evaluation or development projects. Then you can put oưr Cermet Trimming Potentiometers through your test routine and watch how they stand up to it.
You'll like what you see.

MORGANITE RESISTORS LIMITED

Bede Industrial Estate, Jarrow, County Durham
Telephone: Jarrow 897771 Telex: 53353

do a
 'which? hunt on mini-meters

Which has a d.c. sensitivity of 20,000 ohms per volt? Which has an a.c. sensitivity of 2,000 ohms per volt? Which has a d.c. accuracy $+2 \frac{1}{4} \%$ F.S.D.? Which has an a.c. accuracy $+2 \frac{3}{4} \%$ F.S.D.?
Which maintains a.c. accuracy to $20 / \mathrm{kcs}$?
Which provides high voltage probes to extend the range to 25 or 30 kV d.c. for testing electronic equipment with high source impedance? Which provides probes that can be used with any other meter of similar sensitivity?
Which type of case would you like? Leather or Vinyl. Both available. Which meter makes every user a devil's advocate for it's performance and handiness?

The pocket size Minitest

Get the catalogue for a full briefing.

SALFORD ELECTRICAL INSTRUMENTS LIMITED
Peel Works, Barton Lane, Eccles. Manchester M30 OHL Telephone 061-789 5081 Telex 66711
A Member Company of GEC Electrical Components Lid.

S\&C.

STANDARD RESISTANCE BOXES

LABORATORY QUALITY EXCEPTIONALLY STABLE, SUPPLIED WITH INDIVIDUAL TEST CERTIFICATES

STANDARD MEGOHMS

P401	$1 \mathrm{M} \Omega$	$\pm 0.05 \%$	$£ 52$
P4010	$1 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 60$
P4020	$10 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 60$
P4061	$100 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 75$

$\begin{array}{llll}\mathrm{P} 4020 & 10 \mathrm{M} \Omega & \pm 0.02 \% & £ 60 \\ \mathrm{P} 4061 & 100 \mathrm{M} \Omega & \pm 0.02 \% & £ 75\end{array}$

PLUG-IN MEGOHM DECADE BOX P400
Range $0-1000 \mathrm{M} \Omega \pm 0.2 \%$. In $100 \mathrm{M} \Omega$ steps $£ 190$

SWITCHED 'MEGOHM'RESISTANCE BOX P4002
4 decades $0.01-0.1-1-10 \mathrm{M} \Omega \pm 0.05 \%$ All decades and sweeping contacts are accessible through separate terminals. £98

AVAILABLE EX STOCK FROM:
Z \& I AERO SERVICES LTD, 44A, WEStbourne Grove, LONDON, W. 2

Tel: 01-727 5641/2/3

The answer-everything.
It took years of intensive research and development to perfect every little part that goes to make the Hawker Harrier.
And these specially developed components include Gardners Transformers.
Many people seem to think that Gardners only provide 'off-the-shelf' equipment.
It isn't true- 80% of our production is for special components.
We design and develop highly specialised transformers for Defence projects, Radar, Sonar, electronics, control systems and similar sophisticated equipments.
Of course, we don't expect everyone to be making things like aircraft that don't need runways.
They wouldn't be special any more.

Incidentally, Gardners manufacture the largest standard range of transformers in Europe. So even our un-specials are special!
Comprehensive publications available on request include.
Microphone and Line Matching Transformers GT22.
Microminiature Transformers GT12.
Audio Transformers GT4
Inverters GT21.
Saturable Reactors GT1.
Low Voltage, Isolating and Audio Transformers GT17.
Transformers for Tube Type Circuits GT24.

GARDNERS TRANSFORMERS LIMITED, Christchurch, Hampshire BH23 3PN.
Tel: Christchurch 2284. (STD 02015 2284) Telex 41276 GARDNERS XCH.

JACBSONS

Radio and Electronic Components
(Made in England)

NEW FLEXIBLE SHAFT COUPLING

This new shaft coupling embodies the same well tried principles used in our Couplings. Only $\frac{3}{\frac{1}{2} i n . ~ d i a m e t e r, ~}$ oin. long, permits constant velocity coupling and mis-alignment of -005in. and 15°. Robust too. Can take l5Ibs in. torque.

Write for literature

JACKSON BROS. (London) LTD. DEPT. W.W. KINGSWAY-WADDON CROYDON, CR9 4DG
Phone: Croydon 2754-5 (01-688) 'Grams: Walfilco, Croydon U.S. office : M. Swedgal, 258 Broadway, N. York, N.Y. 10007

SOLDERING IRONS?

Whatever your particular application we are almost certain to have just the tool for the job.

ADAMIN - featherweight instru ments with the slip-on bits and the big performance

LITESOLD-the best-selling sevenmodel range of top-quality 'conventional' irons.

THERMOSTATIC CONTROL?
The new LITESTAT instruments are surely the most advanced available-at not so advanced prices.

YOU ought to get the whole story Ask for catalogue G/5. Free.

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL
Telephone 01-688 8589 and 4559

SYS TIMER

* SYnchrondus motor \& Clutch
- 10 MILLION OPERATIONS
- Instantaneous \& Timed out

5 AMP contacts

- Repeat Accuracy
\star Dial ranges 0.10 secs up to
0.28 hrs. May also be used as impulse star.
f 11 dependent
on quantity.

STP TIMER
SYNCHRONOUS MOTOR \& CLUTCH Matchbox size frontal acea Automatic re-set

* Plug-in octal base
- InSTANTANEDUS AND TIMED dUt 2 AMP CONTACTS
- RANGES 6 secs to 72 mins
£ $6 \begin{aligned} & \text { dependent } \\ & \text { on quantity. }\end{aligned}$

NSY TIMER

- 2 sets 5 amp changeover output contacts
* 5 Million operations
- Repeat accuracy $\pm \frac{1}{2} \%$
- Set time can be altered whilst in operation. Dial ranges from seconds to hours
Approx.
\&8.10.0 $0_{\text {on quantify. }}^{\substack{\text { each depentent }}}$

OMRON PRECISION CONTROLS OMRON APPROVALS CSA US Mil Spec. SEV. UL

* OUTPUT 0-260V - INPUT 230 V 50/60 CPS \star SHROUDED FOR BENCH OR PANEL MOUNTING

1 amp £5.10.0

2.5 amp £6. 15.0 10 amp £18.10.0 $5 \mathrm{amp} £ 9.15 .0$ 12 amp £21. 0.0 $8 \mathrm{amp} £ 14.10 .0$ comtinuess adjustment.

Just what is this ABR, that makes such a vital difference to the 'DITTON 15'?

The "DITTON 15"
Now firmly established as a superb high-fidelity loudspeaker. Design features include the exclusive CELESTION ABR (auxiliary bass radiator), HF1300 treble unit-as used in B.B.C. Monitor Loudspeakers-and specially developed mid/bass unit. Low loss L/C crossover.
Power handling: 15 watts r.m.s.; 30 watts peak. Impedance 4-8 ohms.
Dimensions: 21 in. $\times 9 \frac{1}{2}$ in. $\times 9 \frac{1}{\frac{1}{4}}$ in.
Choice of finish: Teak or walnut.
Recommended Retail Price $\mathbf{E 2 9}$

1. Studio quality high frequency unit (HF1300 Mk. 2).
As used in B.B.C. Monitors.
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR) -plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz double roll suspension allowing
excursions up to $\frac{3}{}{ }^{\prime \prime}$ with virtual absence of distortion.
5. 8" bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network.

It's an interesting story-and worth enquiring about. Send for details of the three Celestion 'Ditton' Hi-Fi Speaker Systems.

Celestion

"WE CALIL IT THE ODIENN*

Ever since Sidney and Hilda met Ginger Rogers in the front room it's been love at first sight.

So, if the TV set refuses to give them their regular dose of Hollywood, the headaches start. And, if you provided them with their private Odeon, they'll probably work their suffering out on you. We'd gladly run them a movie in our theatre, but that's not how they take their oldies.

So we'll stick to helping by making ou TV components as reliable, efficient and easy to get as they can be. Which means, for example, insisting on using the latest and best equipment. This year we are investing £5.4 millions on production equipment for TV components, magnets passive components and integrated circui

It won't put our name on the credits. But it should polish up yours.

© Mullard Components for troublefreeTV

a multimeter for only

MODEL 3800
ACCURACY TO 0.1\%
MEASURING AC/DC, ohms/amps SEE IT-TRY IT-NOW!

DANA ELECTRONICS LIMITED
Bitton Way, Dallow Road, Luton. Beds.

SN74N STANDARD TTL-EX STOCK* SN74HN HIGH SPEED TTL-EX STOCK SN74LN LOW POWER TTL-EX STOCK

THE FULL TEXAS INSTRUMENTS TTL RANGE

come QUICKER from QUARNDON

FULL DETAILS
IN QUARNDON SEMICON 70

* AT NEW LOW PRICES

No other

 TRUE
DUAL BEAM

oscilloscope

call

compete in price

... except the D51, by Telequipment of course

The D52 is a tough little portable oscilloscope at the remarkably low price of $£ 130$.

Here are a few of its outstanding characteristics:

* True Dual Beam
* Large $5^{\prime \prime}$ flat faced PDA Tube
\star Matched Y Amplifiers-
$100 \mathrm{mV} / \mathrm{cm}, \mathrm{DC}-6 \mathrm{MHz}$
$10 \mathrm{mV} / \mathrm{cm}, \mathrm{DC}-1 \mathrm{MHz}$
* Calibrated Sweep Speeds18+ (+ variable)
* Triggering Modes-full range including TV sync.
\star Weight 24 lb .
This is one of a range of fifteen oscilloscopes at prices from $£ 28$ to the sophisticated DM53A Storage Oscilloscope for laboratory use at $£ 560$: send for detai's and short-form catalogue NOWI!!

TelequipmenT \ll 霜>

Telequipment,

313, Chase Road, Southgate, London, N. 14.
Telephone 01-882 1166. Telex 262004.
A Division of Tektronix U.K. Limited.
W'W-068 FOR FURTHER DETALS

Wireless World

Electronics, Television, Radio, Audio

Although not exclusively associated with the subject of this month's main article (colour EVR) our cover illustration typifies colour television reproduction. The photograph of a Mullard tube was taken by students at the Polytechnic School of Photography, Regent Street, London.

IN OUR NEXT ISSUE

Inductorless stereo decoder which uses a phaselocked loop to regenerate the suppressed subcarrier.

Transistor breakdown-voltage meter providing direct reading at fixed reverse currents.

Increasing the bandwidth of the Hartley 13A double-beam oscilloscope.

August 1970
Volume 76 Number 1418

Contents

365 Editorial Comment

366 Colour Electronic Video Recording by Peter C. Goldmark and collaborators
372 Television Wobbulator-1 by W. T. Cocking
376 H.F. Predictions
377 The Video Disc by f. C. G. Gilbert
379 Electronic Morse Keyer by C. I. B. Trusson \mathcal{E} M. R. Gleason
382 News of the Month
386 Letters to the Editor
389 100-MHz Frequency Divider by D. R. Bowman
394 Transient Trinity by Thomas Roddam
397 Announcements
398 Time Delays-2 by H. D. Harwood
401 B.B.C. Band-two Broadcasting Stations
402 Circuit Ideas
403 The Unijunction Transistor-2 by O. Greiter

408 Letter from America
409 World of Amateur Radio
410 Personalities
411 New Products
416 Literature Received
a81 APPOINTMENTS vaCANT
A102 INDEX TO ADVERTISERS
We regret Pt. 13 of Active Filters has had to be held over.

ibpa

I.P.C. Electrical-Electronic Press Ltd

Managing Director: Kenneth Tetı Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1

C I.P.C. Business Press Ltd, 1970
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; 3 Os Od. Overseas; 1 year $[30 \mathrm{~s}$ Od. (Canada and U.S.A.; \$7.50). 3 years $£ 713 \mathrm{~s}$ (0d. (Canada and U.S.A.; \$19.20). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notity a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5 GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017 Telephone: (212) 689-3250.

Chances are you'll find precisely
the industrial tube you want in the BRIMAR standard range without the expense of a special.

"Not without honour"

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:
H. W. BARNARD

Technical Editor:
T. E. IVALL.

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Editorial Assistant:
J, GREENBANK, B.A.

Drawing Office:

H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Advertisement Manager)

Telephone: 01-928 3333 Ext. 533 \& 246.
H.R.H. the Duke of Edinburgh, speaking at the dinner of the Institution of Electronic \& Radio Engineers at the Mansion House, London, in May said "The engineering professions are shirking their responsibilities if they only concern themselves with examinations and qualifications. They must take some part in the teaching process as well. Furthermore, it is quite useless merely laying down the rules for the engineering 'generals' and ignoring the qualifications for all the other ranks from 'private' upwards. The training and qualifications for each rank must be related to the requirements of the next rank up, and at each stage the vital factors of practical experience and performance in the job must be taken into account".

Under their present charters neither the I.E.E. nor the I.E.R.E. can embrace non-chartered engineers and technicians in their membership. However, both institutions have associated technician organizations (respectively the Institution of Electrical \& Electronics Technician Engineers and the Society of Electronic \& Radio Technicians) which they actively support. For some considerable time there has been a movement afoot to give greater recognition to the non-chartered engineer and it was, of course, primarily for this reason that these two technician organizations in our own field were established. It will be recalled that with the setting up of the Council of Engineering Institutions the title "chartered engineer" has been granted to all members of the 14 constituent institutions in the C.E.I. The C.E.I. has been planning for some time the compilation of a register of all chartered engineers-but what of the "non-commissioned officers and other ranks"?

Nearly three years ago an ad hoc committee, representative of 42 different organizations with members in the technician and technician-engineer grades, was set up to establish in consultation with the C.E.I. basic qualifications for registration. This committee, the Standing Conference for National Qualification and Title (known colloquially as SQUINT) was faced with the tremendous task of finding a common denominator for technicians in as diverse trades as boilermaking and radio, building and baking, brewing and electrical installation, etc. etc. After two years of preparatory work by this ad hoc committee a limited liability company entitled the Standing Conference for Technician Engineers and Technicians was established to expedite the procedure necessary to give legal status to the association of professional bodies representing technicians. On July lst an announcement was made stating that "today sees the first awards of the designation Registered Technician Engineer" under the authority of S.C.T.E.T. The designatory letters for the registered technician engineer are R.Tech.Eng. The statement goes on to say S.C.T.E.T. intends that these new registrants "shall form part of a single composite national register together with the chartered engineers and eventually with the registered technician. To this end S.C.T.E.T. is urgently pressing for constructive discussions with the Council of Engineering Institutions and other interested bodies".

It has been known for some time that there has been discontent among certain sectors of the technician fraternity at the way the C.E.I. had been dragging its feet and the move to "go it alone" did not come as a surprise. However, six days after the S.C.T.E.T. announcement the C.E.I. issued a statement saying that it was proposing changes in its charter and by-laws to enable it "to establish and maintain a composite register for the three sections of the engineering community . . . the chartered engineer, the non-chartered engineer, and the technician". The statement goes on to give the designatory letters "for those individuals nominated by their institutions or societies to the new sections of the C.E.I. register". They will be CEI.T.Eng. for non-chartered engineers and Tech.CEI for technicians.

The situation, therefore, is that the "n.c.os and other ranks" of the radio and electronics fraternity, who have been in something of a "no man's land" for far too long, now find that they are mentioned in despatches-or are they being offered terms for surrender?

Colour Electronic Video Recording

System providing vision and sound records which can be played into the domestic television set

by Peter C. Goldmark* and collaborators

Through a unique combination of photography, optics and electronics, Electronic Video Recording (EVR) allows recorded sound and vision programmes to be played through standard television receiverstruly a visual counterpart of the long-playing record. The nature of the recording medium lends itself to low cost, high volume production in monochrome or colour. The system, developed by CBS Laboratories, U.S.A., is compatible, in that a colour record can be reproduced on a monochrome player while a monochrome record will produce a black-and-white image on a colour receiver.
The recorded programme is contained in a cartridge, 7 inches in diameter, $\frac{1}{2}$ inch thick, with a large centre hole resembling that in a 45 r.p.m. gramophone record (Fig. 1). This cartridge contains 30 minutes of colour vision programme (25 minutes in the U.S.A.) with two sound tracks which may be used for stereophony or for two independent sound programmes. The video information is on a special photographic base, 8.75 mm wide and approximately

[^1]

Fig. 1. Prototype EVR colour player with cartridge in front. The machine is 22 in wide, 9 in high and 19 in deep.
0.003 in thick. The sound is recorded on two narrow magnetic stripes, one on each side of the photographic film.
The EVR player, which operates by flying-spot scanning, can have a number of forms. The one described here (Fig. 1) is a separate unit from which an r.f. signal carries the combined video and audio information to the aerial terminals of a colour or monochrome television receiver. For stereo sound reproduction a separate jack is available in the player. Push buttons control the threading, stopping, fast forward, and rewinding operations of the cartridge. Methods are available to find a particular part of a programme and then stop automatically or manually to display a still picture for any length of time. Also, slow forward or reverse manual "browsing" is provided for. Since each picture is extremely small- $0.130 \mathrm{in} . X$ 0.100 in .- the record has a large storage capacity with potential as a reference library of visual information. Picture quality is equivalent to the best seen on European and U.S. television receivers.

On a suitable closed-circuit monitor, the monochrome resolution of EVR can reach 500 television lines in a horizontal direction. On a closed-circuit set-up, where full video bandwidth can be utilized, the resolution limit is set by the phosphordot structure of the picture tube.

The wear qualities of the cartridges are extremely good. Many hundred playings are possible without noticeable deter ioration.
A major goal in the development of the system was to devise a film recording and duplication method that would permit large-quantity production of inexpensive film cartridges containing high quality programmes. After considerable study a special high resolution silver halide film was developed by Ifford Ltd. (a member of the EVR partnership in Europe). Stringent quality and size requirements resulted in the choice of direct electronography (exposing the film in a vacuum by finely focused electron beam) as the method of creating the master record. Modern films have a high capacity for information storage, and this applies particularly to those very fine grain films which are relatively insensitive to ordinary light but very responsive to the high energy present in an electron beam. The film used as the master for electron beam recording has a crystal size of less than one-tenth of a micron and the definition obtainable is of the order of 800 line pairs per millimetre. This master film too has been developed by Ilford.
With electronographic recording, modifications can be made to the original vision signal before the recording process so that the resolution and grey-scale produced on the film by the electron beam recorder are such as to give optimum overall performance. Thus, by adjusting the characteristics of the signals driving the electron beam it is possible to apply frequency pre-emphasis and to introduce grey-scale correction while restricting the density range to desired values. All these are not possible in a purely optical method of exposing the film.

The resulting picture on the film looks different from that on normal cinematography film, especially as colour pictures appear in monochrome and the colour information content is coded
(Fig. 2). An important further difference is in the number of pictures per second. In electron beam recording, and by the use of extremely fine grain print material, one is able to produce extremely small images. As a result it becomes economically possible to print 50 frames per second (60 in America). This leads to great simplification in the player machine and tends to provide a high degree of visual integration of spurious signals, such as grain or other imperfections.

The whole philosophy behind the EVR system has been to accept complexity in the recording system so as to obtain the maximum economy and simplicity in the play-back process.

Making the cartridge

There are three principal steps in making the cartridge record: preparing the original programme; making the master negative by electron beam photography; and prirting and slitting the films and loading the cartridges.

Preparing the original programme is a matter of electronically pre-correcting the video signal for any losses that will occur throughout the entire system, including the player. Thus compensation is

Fig. 2. Section of EVR film, showing luminance information in left-hand track, chrominance information in right-hand track, and small synchronizing windows (white rectangles) running down the middle.

provided for loss of resolution and divergence from the desired scale characteristic. The original programme material is converted into a colour television signal which is separated into its luminance and chrominance components. Both signals are enhanced by vertical and horizontal aperture equalization and both are gamma corrected to ensure that the entire system approaches unity gamma.

The format of the film can be seen in Fig. 2. There is a series of frames, each having a luminance-information area seen as a picture (left-hand strip) and a chrominance-information area recorded by its side (right-hand strip). Each area is 0.123 in . wide and 0.092 in . high. Between the frames are small rectangular "windows" (seen as white) spaced 0.100 in . apart. These are synchronizing marks indicating the start of each frame, and their purpose is to provide, in the player, a means of synchronization between the film transport and the flyingspot scanner. At the outer edges of the film are the magnetic stripes for sound.

It is essential to record the colour television signal in such a way that it can be reproduced independently of the recording and playback system's scanning linearity. In the chrominance-information areas there is recorded a colour carrier signal whose frequency is an integral multiple of the line scan frequency. In order to provide a reference carrier for the demodulation of the colour signal, an unmodulated pilot signal with a frequency exactly one half that of the colour carrier is also recorded in the chrominance-information areas of the film. Non linearity, raster size changes, film shrinkage, etc., thus will not interfere with the proper demodulation of the chrominance carrier, since the phase relationship between chrominance and pilot carriers is always maintained to the required accuracy.

The synchronizing signal generation is arranged so that the colour carrier signal is the overall system clock frequency. All synchronizing signals, as well as the pilot carrier signal, are counted down from this colour carrier signal. Because of the integral relationship between the chrominance and pilot carriers and the electron beam recorder horizontal scan frequency, the pilot and chrominance signals are recorded on the master film as a series of vertical bars.

Electron beam recorders for commercial production of master films have recently been completed for use in Europe and the U.S.A. For colour EVR the same type of machine will carry the two electron guns necessary for recording side by side the luminance and chrominance signals. A $40-\mathrm{mm}$ wide film is used for the master and $35-\mathrm{mm}$ film for the print. The $35-\mathrm{mm}$ format accommodates four $8.75-\mathrm{mm}$ cartridge films which can carry eight monochrome or four colour programmes. They are printed simultaneously and are subsequently slit. The steps in the whole process are as follows:

Editing. Although the recording system could operate with signals directly from television cameras, video tape or film, the advantages of editing and colour balancing can be obtained by first recording all programme material on video tape. A master tape thus produced can be easily corrected prior to transcription and the technique ensures that the signal input always meets the prescribed standards

Video processing. The commercial sysirm for making a master is shown in the simplified block diagram Fig. 4. First, the video signal from a video tape recorder is separated into luminance and chrominance components. The luminance signal is fed to a video amplifier, from which one output is a direct (undelayed) signal while
the other is passed through a one-field period delay line. The purpose of this delay line is to permit video sampling at a constant rate between two successive fields. As a result, during each EVR frame, information corresponding to all 625 (or 525) lines of a television picture is recorded. The output from the delay line and the direct luminance signal are applied to independent video processing circuits. These are vertical and horizontal aperture correctors, a gamma corrector and sync "window" adder. Next, the delayed and undelayed video signals are applied to a sampling gate operating at a rate such that both fields are recombined in an EVR frame so that it contains the full 625- (or 525-) line information during a $1 / 50$ th sec. (or $1 / 60$ th sec.) television field interval. The sampled luminance signal is then applied through a video amplifier to one gun of the electron beam recorder.

The chrominance part of the v.t.r. signal, extracted from the luminance information by a filter, is translated from the television signal standard to the EVR system values. Next the chrominance signal is processed in the same manner as the luminance signal and finally is fed to the chrominance video amplifier and the second electron gun of the electron beam recorder.

The method by which an American 60 frames $/ \mathrm{sec}$. film is produced from a 30 pictures/sec. American television signal is shown in Fig. 5. The intercalation occurs in two steps. Using film as the programme source (though it could be video tape), the 24 frames $/ \mathrm{sec}$. film in the projector is changed to 30 frames $/ \mathrm{sec}$. as in American television and from 30 frames $/ \mathrm{sec}$. to a 60 frames $/ \mathrm{sec}$. EVR master film (the rate required for playback in the U.S.A.). The
top row shows the film frames, each frame being assigned a letter of the alphabet. Below the film frames the numbers $1,2,3$, etc. represent successive television camera vertical scan intervals, each $1 / 60$ th second. The projector pull-down is such that alternate film frames are scanned by two and three television fields respectively.

The third row down shows the numbered fields together with the letter that represents the frame of film scanned by that numbered field. The corresponding video signal is available at the output of the "direct signal" channel in Fig. 4. The fourth row shows the field information that exists at the output of the delay line. Hence, with information from two successive fields transformed to become available simultaneously during a given $1 / 60$ th second interval, it is possible to sample synchronously the information between the successive fields at a rate well above maximum video frequency and so retain the integrity of a given television picture. The bottom row shows the sampled information that will be recorded in each frame of the EVR master.

Electron beam recording. Fig. 6 shows in essence how electron beam recording takes place in a vacuum chamber. As can be seen, the film is exposed by two modulated electron beams. Fig. 7 shows the vacuum chambers and film transport of the recorder. (The film magazine capacity is 1800 feet of 40 mm film.) The two electrostatically focused and deflected electron guns can be seen in a gun chamber above the film transport mechanism. The gun chamber is supported on two trunnions and can be indexed to four discrete horizontal positions, thus making it possible to sequentially

Fig. 5. Intercalation method for making an EVR film from a television (or cine film) prog̀ramme source.

Fig. 6. Essentials of electron beam recorder.
record four dual tracks across the width of the 40 mm film.

Vertical deflection of the modulated electron beam follows the direction of film motion with twice the film velocity. As shown in Fig. 8, the vertical scan starts at the top (A) of the film image and after $1 / 50$ th (or $1 / 60$ th) second reaches the bottom of the frame while the film has moved from position 1 to position 2. During vertical blanking the electron beam returns to start the process over again with film frame No. 2.
During recording the beam is deflected vertically, between two adjacent lines, at a 14 MHz rate. The phase of this wobble signal is adjusted so that the video information from the delayed signal is recorded along one horizontal line on the film while the video information from the direct (undelayed) signal is recorded on an adjacent line on the film. A peak white synchronizing window signal and a grey scale test signal are gated in with the video signal and are recorded at the start of each luminance field.

The film drive used in the electron beam recorder provides accurately controlled continuous motion at $5 \mathrm{in} / \mathrm{sec}$. for Europe and $6 \mathrm{in} / \mathrm{sec}$. for the U.S.A. An electronic servo causes the film to be driven at constant velocity while locked to the vertical scan and interlocked with the v.t.r. This servo has three closed loops. In one loop a 7 kHz signal from an optical tachometer on the drive motor shaft is fed to a discriminator circuit whose output controls the motor to compensate for speed variations. The same 7 kHz signal also provides one of the inputs to the second loop, in which the actual motor speed is set by comparing the tachometer output with a 7 kHz reference signal from a crystal controlled oscillator. The third loop establishes the spatial position of each frame on the film with respect to an associated perforation in the film. One edge of the film is perforated along its length at $0.1-\mathrm{in}$. intervals and is transported past an optical sensor which generates a pulse for each of the perforations. In the loop the phase of the vertical drive signal and a "perforation signal" from the film are compared in order to ensure accurate phase lock between the vertical scan and a given perforation.

Interlocking the electron beam recorder film drive with the v.t.r. is accomplished by
counting the vertical sync intervals on the magnetic tape and the perforations in the master film. The counts are compared, and the speed of the recorder drive is varied until they are equal. Interlocking between the two drives occurs within 12.5 seconds.

High speed duplication. For the production of EVR cartridges a special multi-head printer has been developed by Ilford Ltd. in the U.K. This equipment is capable of running at speeds of up to 200 feet per minute. The design minimizes light dispersion and protects the master film so that a large number of copies may be made.
Through the use of multiple heads, 16 colour programme reproductions, together with the sound, are obtained each time the master negative passes through the printing machine. Thus, the rate at which the printer produces EVR copies is approximately 125 times (in America 100 times) faster than the actual playing time of the original programme. If the programme is half an hour long it can be duplicated at the rate of one cartridge every 14.5 seconds.

The film is developed in black-and-white continuous film developing machines which will run at speeds of up to 200 feet per minute. The processed film then goes to a slitting machine which divides the 35 mm film into four 8.75 mm films. These are cleaned and wound directly on to EVR cartridges.
The sound is recorded on the two tracks during the printing process. Magnetic recording was chosen after careful consideration, the important factors being long life with high quality and low noise and the ability to change the sound track when required. The fact that magnetic reproduction in the player is less expensive than reproduction of optically recorded sound was another consideration. The sound recordings are made individually, and synchronizing marks are incorporated in the vision recording and the special sound recording so that when they are brought together in the printing machine the sound can be added in exact lip synchronism.

The player

Fig. 9 shows a laboratory prototype player with the cover removed, exposing
the cartridge deck, c.r.t. and associated circuitry, all of which are mounted on an internal metal frame independent of the cabinet. A cartridge is played by opening the door over the well, placing a cartridge on a hub and closing the top. To the right of the well are six pushbuttons for controlling deck functions. Pressing a "play" pushbutton causes the cartridge leader to thread through the deck. After the leader is securely fastened to a take-up reel (seen behind the cartridge) the machine automatically starts to play. Other controls on the top are a track selector and mains switch. The large knob on the front is for manual searching-to move the film backwards or forwards while viewing still pictures.

The 3 -in. diameter cathode-ray tube scans the film image through an optical system and the resulting modulated light is converted by photomultiplier tubes into luminance and colour signals. The c.r.t. scans each picture on the film once per television field. To accomplish this, a capstan and pressure roller pull the film past an optical gate at a constant velocity of 50 frames $/ \mathrm{sec}$. or $5 \mathrm{in} . / \mathrm{sec}$.

Optical scanning of the luminance track of the EVR film, shown in Fig. 10, employs a forward raster scanning technique. The colour track of the film is similarly scanned through a second objective lens by the same c.r.t. raster.

At the start of the field the light beam from the c.r.t. spot scans the head of the first picture (a). As the film moves at a constant speed of $5 \mathrm{in} / \mathrm{sec}$. the beam also moves in the same direction but at twice the velocity. Thus, by the time picture 1 has moved to the position shown at (b), the light beam has completely scanned it and now rests at the foot of picture 1. At this instant, a vertical sync pulse, derived from light flashing through the clear "window" in the film (Fig. 2), initiates vertical flyback of the c.r.t. electron beam. As a result the c.r.t. spot and light beam returns and comes to rest at the top of picture 2 ready to start the next scanning period, as shown at (c).

Since the timing of the c.r.t. scanning spot is controlled by the film velocity, the film speed can vary within a limited range

Fig. 7. Details of film transport and vacuum chambers of the electron beam recorder.

Fig. 8. How the electron beam scans the film in the electron beam recorder.
without affecting the vertical position of the reproduced television picture. Ultimately, of course, the television receiver sets the limit by losing vertical hold if the film departs too much from the nominal speed of 50 fields $/ \mathrm{sec}$. To prevent this from happening, the film drive is servo locked to the 50 Hz mains by a circuit that compares the recorded film field pulses with the mains frequency.

The sync "windows" in the film are illuminated by a miniature incandescent lamp coupled through a plastic light pipe to the film gate. Each time a sync "window" passes the end of the light pipe, there is a flash of light through the film into a photodiode, the output of which is clipped to generate constant amplitude sync pulses.
Optical system. The luminance and colour tracks of the film are scanned through a dual optical system. The imaging optics (Fig. 11) comprise two lenses, two rhomboidal prisms, a lens mount which provides both focus and position adjustments for the two lenses, and a film gate which holds the film in a cylindrically curved image plane. Each lens images the $1.48 \mathrm{in} . \times 2.08 \mathrm{in}$. raster of the c.r.t. onto an area in the image plane 11.3 times smaller, thus forming two identical side-by-side small rasters with centres 0.141 in . apart. The prisms permit separation of the two lenses and a resulting larger lens diameter sufficient to obtain an aperture of $\mathrm{f} / \mathrm{1} .8$ for each lens. The collector optics are two light pipes which transmit the modulated light from the luminance and chrominance images on the film to two photomultipliers.

Player circuit. Anyone versed in television engineering should be at ease with an EVR player because it resembles a television receiver. Basic elements of a colour player for working into an American television set are shown in Fig. 12. These include: c.r.t. deflection and high voltage supply; transport deck and gate; dual photomultipliers and video amplifiers; chrominance translator for converting EVR signals to N.T.S.C.; pulse generation for blanking and composite sync; sound magnetic head, audio amplifier and intercarrier sound generator; r.f. link video and sound
modulators and carrier generators; and the motor control circuit.

The 3 -in. c.r.t., which is $9 \frac{3}{4} \mathrm{in}$. long, has a flat faceplate. The P-16 screen phosphor is uniformly fine grained and glows a dull blue because much of its energy is in the invisible ultraviolet region. Magnetic focusing and deflection are employed. Horizontal deflection is provided by a 15.75 kHz oscillator, amplifier, and magnetic yoke. Vertical scanning is from a synchronized multivibrator and amplifier. Unregulated 20 kV e.h.t. for the c.r.t. is derived by rectifying the line flyback pulse. Regulation is unnecessary because the unmodulated electron gun is a constant load drawing a maximum of $100 \mu \mathrm{~A}$. The horizontal deflection circuit also generates -600 V for the photomultipliers and +1 kV for the g_{2} of the c.r.t. Since failure of either the horizontal or vertical deflection current might burn the phosphor screen, the circuit is protected by a scan fail device that cuts off the c.r.t. beam current before damage can occur.

The raster light output is kept constant throughout the life of the c.r.t. by an automatic brightness control. It is known that the P-16 phosphor, as it ages, has a decreasing light output, and the initial beam current of $10 \mu \mathrm{~A}$ has to be increased to about $80 \mu \mathrm{~A}$ after 1000 to 2000 hours to maintain constant brightness. The closed loop of the automatic brightness control includes a photo-resistor, positioned to view the raster, and a circuit for controlling the bias of the c.r.t.

The deck transport in the player is mechanically more complex than an ordinary tape deck because of the automatic cartridge handling functions. The film drive, applied through a smooth capstan and rubber pressure roller, is similar to that of a standard tape recorder. The film runs in a gate, curved to make the film more rigid and with lands to protect the film picture. The capstan drive motor also supplies forward torque to the take-up
reel through a friction clutch. For rewinding, the torque is transferred to the cartridge spindle.

Video circuits. Modulated light transmitted through each light collection pipe is converted by the corresponding photomultiplier to a video signal of about 0.1 volt. As a result the succeeding video amplifiers have little effect on the signal-to-noise ratio. Video signals are pulse clamped to remove hum components and sent through white compressors to linearize the "whitestretched" film transfer characteristic. This is also a simple and effective way to reduce the visibility of c.r.t. phosphor structure and film grain clusters in the television picture (the individual film grain is far smaller than the resolving power of the player). Phosphor grain noise is predominantly visible in the white portions of the picture since the grain modulation is proportional to light output.

A programme selector switch for the user has three positions: Colour, Track A, and Track B. For colour cartridges, the switch directs the clamped luminance video signal into the Y channel and the signal to the translator. When a monochrome cartridge is played, either Track \mathbf{A} or Track B can be switched into the Y channel.

Chrominance translator. As already explained, the colour track on the film carries the chrominance information together with the pilot signal. The chrominance is composed of two colour difference signals modulating a suppressed carrier in phase quadrature. The subcarrier frequency is 1.8 MHz and the bandwidth of the colour difference signal sidebands is $\pm 0.5 \mathrm{MHz}$.

No attempt is made to scan over the lines originally recorded on the film, and each picture is composed of 525 lines (625 in Europe). In order for the chrominance subcarrier to be a series of vertical bars

Fig. 9. The prototype player with cover removed and a cartridge inserted. The take-up reel can be seen behind the cartridge. The c.r.t. lies between them.
rather than interleaved dots the EVR subcarrier is made a multiple of the line scan frequency. The scanning width and linearity of the electron beam recorder, as well as of the flying spot scanner, cannot possibly be uniform enough to ensure constant frequency and phase for the chrominance subcarrier in all parts of the picture. Therefore, as already mentioned, a continuous pilot signal is added to the chrominance sidebands during recording to make the system self-correcting on playback.

The EVR chrominance colour difference signal bandwidth is the same as the Q bandwidth in the N.T.S.C. system: -6 dB at 0.5 MHz . In EVR, the I and Q bandwidths are made equal because nearly all colour television receivers are designed with equally narrow bandwidth colour difference demodulators.

The reproduced chrominance could be demodulated to the baseband colour difference signals and re-encoded to N.T.S.C., but it is appreciably simpler to convert EVR to N.T.S.C. directly by frequency translation. The translator section of the player can be seen in the lower middle part of Fig. 12. The combined signal from the film is first separated into chrominance and pilot signals by filters. The chrominance channel uses a $1-2.5 \mathrm{MHz}$ bandpass filter and the pilot channel a $1-2.5 \mathrm{MHz}$ band-reject filter. The 0.9 MHz pilot signal is doubled to 1.8 MHz and applied to mixer A together with a locally generated 3.58 MHz sinusoidal oscillation. The 5.38 MHz sum signal output of mixer A is selected by a bandpass filter and applied to mixer B together with the chrominance signal centred on 1.8 MHz . The difference frequency of 3.58 MHz from mixer B is extracted by a bandpass filter and becomes the N.T.S.C. chrominance signal.

An analysis shows that, regardless of a shift in EVR chrominance frequency, the frequency of the chrominance output of the translator will remain constant at 3.58 MHz . Furthermore, if the 3.58 MHz carrier is frequency interleaved by being an odd multiple of half the line scanning frequency then the resultant N.T.S.C. chrominance is equaily frequency interleaved.

Care is taken to keep the phase/frequency characteristics of the chrominance and pilot channels alike to prevent hue errors with scan velocity changes. If the chrominance and the doubled pilot signals undergo equal phase shifts, the errors cancel in the translator. Delay in the pilot channel is approximately $1.6 \mu \mathrm{~s}$ greater than in the chrominance channel, making it necessary to insert a delay line in the chrominance path.

The translator has a total delay of $2 \mu \mathrm{~s}$, thus requiring that the luminance channel be delayed an equal amount before the N.T.S.C. chrominance signal is added to the luminance signal. Following this, blanking, sync and burst signals are added to generate the composite N.T.S.C. signal. The colour burst is obtained by gating the 3.58 MHz locally generated signal with a pulse. Prior to this, the 3.58 MHz source

Fig. 10. Method of scanning the luminance track of the EVR film: (a), (b) and (c) are successive moments in time.
 the player.

channel. Double-sideband video modulation is employed for economy, but television receivers accept the signal as if it were a vestigial sideband signal from a broadcasting station.

An improved r.f. unit is employed in the colour EVR player to satisfy requirements for low phase and intermodulation distortion. An r.f. carrier from a crystal oscillator is applied to one input of an analogue four-quadrant multiplier while the N.T.S.C. video and the 4.5 MHz sound intercarrier are applied to the other input. Since the multiplier normally generates a suppressedcarrier signal, the multiplier is intentionally unbalanced to produce the desired carrier.

Power supplies and motor control. Regulated low voltage power supplies keep the player performance constant when the mains voltage varies over wide limits. The alltransistor circuit draws 100 watts with an additional 35 watts for the motor.

Locking the film velocity to the mains reduces the visibility of hum bars. Also, this ensures that the field scanning rate stays within the vertical hold range of the receiver. The vertical stability of the EVR picture is primarily a function of the vertical synchronizing signal derived from the film rather than being dependent on the motor lock. Therefore the motor must be frequency locked, but need not be phase locked, to the mains. During playback, the four pole, shaded-pole, induction motor is servo controlled by a thyristor.

APPENDIX

Characteristics of the EVR encoded colour signal

The EVR colour signal, E_{m}, consists of the linear sum of a pilot signal, E_{p}, a chrominance signal, E_{c}, and a colour difference video signal, E_{v} :
$E_{m}=E_{p}+E_{c}+E_{\text {V }}$.
The pilot carrier frequency, f_{p}, is the 56 th harmonic of the line scan frequency, f_{h} :

$$
f_{P}=n f_{h} . \quad n=56 .
$$

The chrominance carrier frequency, f_{c}, is the second harmonic of the pilot carrier frequency:
$f_{c}=2 f_{p}$.
The chrominance signal consists of the sidebands of two suppressed carriers in quadrature:
$E_{c}=E_{Q^{\prime}} \sin \left(2 \pi f_{d}\right)-E_{I^{\prime}} \cos \left(2 \pi f_{d}\right)$.
The amplitudes of the quadrature carriers are obtained by matrixing the red, green, and blue video signals:
$E_{i}=0.60 E_{R^{\prime}}=0.28 E_{G^{\prime}}-0.32 E_{B}{ }^{\prime}$
$E_{Q^{\prime}}=0.21 E_{R}^{\prime}-0.52 E_{G}^{\prime}+0.31 E_{B^{\prime}}$.
The pilot signal is given by:
$E_{p}=A_{p} \sin \left(2 \pi \int_{p} t\right)$
A bandwidth limited colour difference video signal, E_{w}, corresponding to $-E_{i}$ of amplitude k relative to E_{i} max is added to the pilot and chrominance signals to achieve minimum peak-to-peak excursion of the composite signal envelope:
$\boldsymbol{E}_{v}=-k E_{i}$.

Television Wobbulator

1. Principles

by W. T. Cocking*, FIIE.E.

Correct alignment of a wideband amplifier, such as a television i.f. amplifier, can rarely be carried out successfully merely by adjusting the various tuned circuits for maximum output at certain specified frequencies. It is usually necessary for the response curve of the amplifier to have a certain required shape, and the circuits must be adjusted to produce this shape. This means that it is necessary to measure the response curve. To do this with a signal generator and an output indicator is quite a laborious process and one which takes a consider able amount of time.

It is not unreasonable to do it once as a check that an amplifier is indeed functioning correctly. To do it frequently, while aligning the amplifier is another matter. Fortunately, it is not necessary to do so if one has the proper equipment. It is not difficult to arrange for the response curve to be displayed on the screen of a cathoderay tube. One can then see how the shape of the curve varies with the various amplifier adjustments as they are made.

The requirement is to have an oscillator which is modulated in frequency so that its frequency sweeps repetitively over the required range. The output of the detector of the i.f. amplifier is applied after amplification, to the Y-plates of the c.r. tube, and the voltage applied to the X -plates is arranged to vary with time in the same way as the oscillator frequency varies with time. The actual law of variation with time does not matter at all as long as both obey the same law.

The curve is displayed in the usual way with frequency for the horizontal scale, but the vertical scale is normally a linear one. Most curves which are plotted as the result of point-by-point measurements are plotted with a decibel scale, which is a logarithmic scale. It is not impossible to obtain such a scale on a c.r. tube, but it is much more difficult because it requires the use of an amplifier which has an output accurately proportional to the logarithm of its input.

For 625 -line television the present standard for an i.f. amplifier is to have the vision carrier at 39.5 MHz with the sound carrier at 33.5 MHz . The amplifier usually has trap circuits to give specially high rejection at frequencies of 31.5 MHz and 41.5 MHz . To give a little in hand, therefore, the

[^2]frequency sweep needed is from 30.5 MHz to 42.5 MHz which is a band of 12 MHz centred on 36.5 MHz . The total sweep is almost one-third of the mid-band frequency and is thus very considerable indeed.

A great many methods have been used in the past in wobbulators, as swept-frequency oscillators of this type are usually called. Most of them are useless for a sweep as great as one-third of the mid-band frequency, especially when that frequency is as high as 36.5 MHz , and especially when transistors are used. One method which has been employed is to have the oscillator at a much higher frequency, perhaps 500 $1,000 \mathrm{MHz}$, so that the sweep is a much smaller fraction of the mid-band frequency. The output is then mixed with the signal from another oscillator having a frequency which differs by the required intermediate frequency, so that the frequency range is obtained as the difference frequency. just as in the ordinary superheterodyne.

This had the advantage that the output can be brought to any required frequency merely by altering the frequency of the beating oscillator. However, it is rather complicated and there is a risk of spurious responses arising from harmonics.

If it can be done at all, it is much simpler to modulate directly an oscillator operating at the required output frequency. Recently a new way of achieving such modulation has made ifs appearance as a result of the development of a new semiconducting device, the varactor diode. This is a diode which is specially designed to
provide a capacitance which varies with the voltage applied to it. It can be used, therefore, as a tuning capacitor, tuning being effected by varying a voltage. It is, in fact, becoming increasingly used as a tuning capacitor in domestic receivers.

When reverse-biased to be non-conductive, all semiconductor junction diodes have a capacitance which varies with the applied voltage. To put it rather crudely, a non-conductive diode has internal charges of opposite sign on the two sides of the junction, and the capacitance results from the electric field between these charges. If the reverse bias is increased, the charges are forced further apart and the capacitance decreases. It is as though a parallelplate capacitor had the separation of its plates varied by some control voltage.

The ordinary diode exhibits the effect, but the magnitude of the capacitance is usually rather small, the range of capacitance variation is much too small, and the capacitance is accompanied by quite high losses. It is another matter with a diode specially designed for use in this way.

One example, and the one which is used in this equipment, is the Motorola 1N5145A. It is rated for a maximum reverse voltage of 60 V , and a capacitance of 27 pF at 4 V with a normal capacitance ratio between these voltages of $3.4: 1$ and a minimum ratio of $3.2: 1$, and with a Q of not less than 200. The frequency ratio required is $42.5 / 30.5=1.395$ and the capacitance ratio is thus 1.94 , which is almost 2:1.

Fig. 1. The heart of the wobbulator is shown here. Tr_{1} is a Colpitt's oscillator tuned by the varactor diode D_{1}. The control voltage for this is applied through R_{1} from the collector of Tr_{2}; this produces an output which is the exponential of its input, its base-emitter path acting as the diode of Fig. 3 (b).

The oscillator circuit itself must have a capacitance which can hardly be much under 12 pF and it is necessary to have a blocking capacitor in series with the varactor to permit the application to it of a control voltage. This cannof be very large without causing excessive phase shift in the control voltage, and 330 pF is a reasonable compromise. These two capacitances greatly reduce the total capacitance ratio available for a given control voltage swing.

It is, moreover, impracticable to swing the diode to 60 V , for this is a maximum rating and it is not possible to operate at this voltage and at the same time guarantee that it will never be exceeded. The varactor is an expensive component and it is necessary to limit the voltage applied to it. Referring to Fig. 1, this can be done by a diode D_{2} returned to a zener diode stabilized supply of -.51 V . The tolerance on the zener voltage is $\pm 5 \%$, so the voltage is anywhere between 53.55 V and 48.45 V . At full conduction the forward drop across D_{2} may be 0.8 V , so the maximum voltage which can be applied to the varactor D_{1} is 54.35 V , which leaves about 5 V factor of safety. The maximum control voltage which can be applied to the varactor with a low limit zener is 48.5 V .

At the other end, it is not necessary to limit the minimum control voltage to 4 V , but the minimum voltage must not be so low that the varactor can conduct appreciably on the peaks of the r.f. waveform. The normal amplitude of oscillation is about 1.5 V r.m.s. or some 2.1 V peak. Appreciable conduction in a silicon diode does not usually occur until the anode is more than about 0.25 V positive to the cathode. This means that a minimum reverse voltage of $2.1-0.25=1.85 \mathrm{~V}$ is possible. Calculation shows that with 12 pF oscillator capacitance and 330 pF in series with the varactor, the total capacitance at 1.85 V is 45 pF and to obtain 22.5 pF (2:1 ratio) 29 V bias is needed on the varactor. On the other hand, at 48.45 V the capacitance is 20.5 pF , and to obtain $41 \mathrm{pF}, 2.9 \mathrm{~V}$ is needed.

Thus, for the assumed capacitance values a $2: 1$ capacitance ratio is obtainable for a control voltage change of 1.85 V to 29 V , (27.15 V swing) or from 2.9 V to 48.5 V (45.6 V swing). The maximum possible capacitance swing is from 20.5 pF at 48.5 V to 45 pF at 1.85 V , or $2.2: 1$, with a voltage swing of 46.75 V . There is thus a reasonable latitude for component tolerances.

The swing required for the control voltage varies greatly for quite a small change of maximum capacitance, for 45 pF it is 27.15 V whereas for 41 pF it is 45.55 V . In practice, there are three variables involved, the coil inductance, the peak-to-peak control voltage of the varactor and a mean bias voltage. The latter two are adjusted to obtain the required frequency range, in conjunction with L and then finally L is adjusted in small steps, each time with readjustment of the other two variables for the proper frequency range, until linearity is secured.

By this is meant a linear relation between frequency and the displacement of the

Fig. 2. Measured oscillator frequency plotted against control voltage on the varactor diode. The points nearly all lie on a straight line, showing that the relation is almost perfectly logarithmic.

Fig. 3. The use of a resistor and diode to obtain an output voltage which is the logarithm of the input is shown at (a), while the arrangement to obtain an output which is the exponential of the input is shown at (b).
spot on the screen of the c.r.o. The law connecting oscillator frequency with control voltage on the varactor is apparently very complex, but it turns out experimentally to be very simple, at least over the range of interest. Fig. 2 shows a measured curve relating frequency and voltage and it can be seen that the frequency is almost exactly proportional to the logarithm of the voltage. This is very fortunate for a logarithmic relation is one of the easiest non-linear functions to generate.

There are two possible lines of attack. One is to use any convenient control voltage for the varactor and to produce from this voltage another voltage, for the sweep, which is the logarithm of the first. The other is to use any convenient voltage for the sweep and to generate from this another voltage which is the antilogarithm (or exponential) of the first for application to the varactor.
In both cases the waveform alteration can be effected by a junction diode. If the current is kept small, the current is proportional to the exponential of the voltage across the diode and conversely, the voltage across the diode is proportional to the logarithm of the current.

The relation between current I and voltage V is actually

$$
I=I_{s}\left(e^{k v}-1\right)
$$

where I_{s} is the reverse saturation current and K is a factor which is temperature dependent and has a value of about 40 reciprocal volts. The inverse relation is

$$
V=\frac{1}{K} \log _{e}\left(1+I / I_{s}\right)
$$

When the current exceeds a few milliamperes the voltage drop across the ohmic resistance of the semiconductor and its contacts starts to be comparable with the
voltage of the formulae and the law is consequently modified. At high currents the current-voltage relation tends to linearity.

Below a few milliamperes (the exact current depends on the particular type of diode) the exponential relation holds very accurately until the exponential term ceases to be large compared with unity. This is when the diode is approaching cut-off.

To produce a voltage which is the logarithm of another voltage the voltage is applied to the diode through a high series resistance and the output is the voltage developed across the diode, as in Fig. 3 (a). If the voltage drop across the resistance is very large compared with that across the diode, the current through the resistance and the diode is almost proportional to the applied voltage and so the output voltage is almost proportional to the logarithm of the applied voltage.

The practical difficulty is that the change of voltage across the diode is very small, probably no more than 0.2 V , and more likely some 0.05 V . The X -input of a typical oscilloscope is some 9 V peak-to-peak, so an amplifier of at least 45 times gain, and more likely 180 times, is required and must be highly linear.
With the second method an arbitrary sweep voltage is used and some small fraction of it is applied at low impedance to a diode. The diode current is then the exponential of the voltage. A very low resistance in series with the diode enables the current to produce a similar voltage, Fig. 3 (b), which can then be amplified to produce a voltage change of about 47 V to control the varactor.
This actually works out much better because the base-emitter path of a transistor can be used as the diode so that the diode current is the base current of the transistor and the collector current is the base current multiplied by the current amplification factor.
Suppose a transistor is used with a $200-\mathrm{k} \Omega$ collector load. A maximum change of some 47 V across this is wanted, so the change of collector current is $47 / 200$ $=0.235 \mathrm{~mA}$. If the current amplification factor is as small as 20, the change of base current is $0.235 / 20=0.01175 \mathrm{~mA}=$ $11.75 \mu \mathrm{~A}$. Since the output required is a voltage change of 47 V the collector supply voltage must be greater, say 70 V . This in turn rules out the possibility of using most transistors. However, there are types rated for 100 V and even more, notably types designed for operation in video output stages.

The use of a transistor immediately solves the problem of coupling the current output of a diode to an amplifier. The need for a low impedance voltage feed also turns out to be not too difficult. Because the base current is so small, the source impedance feeding the transistor need be no lower than about $2 \mathrm{k} \Omega$. It is not, of course, possible to stabilize the base bias against temperature changes, because the use of an emitter resistance is inadmissible. The input would no longer be applied between base and emitter, but to the input of a feedback amplifier and the desired expon-
ential relation between input and base current would be seriously affected. In theory one could by-pass the emitter resistance, since the input will be some form of repetitive voltage (actually 50 Hz sinewave). It is however, very difficult to do so adequately.
What happens in practice, is that a rise of temperature shifts the oscillator frequencies to lower values. The response curve displayed on the oscilloscope drifts to the left. The drift is quite slow and may amount to a few MHz in normal operation. It can be corrected manually by adjusting a bias control, which is needed in any case to set up the proper operating conditions.

The heart of the wobbulator thus comprises a frequency-modulated oscillator
and a wave-shaping stage to provide a linear scale of frequency on the display. The general form of this part of the circuit is shown in Fig. 1. The oscillator is Tr_{1} and is of the Colpitt's type; C_{2} is made 6.8 pF plus the coliector-emitter capacitance of the transistor, which is 1.5 pF . The other capacitor, C_{3}, is 82 pF plus the 20 pF baseemitter capacitance. The effective capacitance ratio is thus $102 / 8.3=12.3$ so that in effect the base is well tapped down the tuned circuit.
The base is earthed to r.f. through C_{4}. The inductance L is in the collector circuit and has in shunt with it the capacitance of C_{2}, C_{3} and C_{4} all in series. This amounts to 7.5 pF . Also in shunt with L is the varactor diode D_{1} in series with C_{1} of

Typical vision i.f. response curve with markers at 34.5 MHz and 39.5 MHz (a). These markers do not show well in the photograph but are easily seen on the c.r.o. because a beat effect gives them movement. The second photograph is identical but with the c.r:o. gain increased about 10 times and Y-shift applied to show the effect of the trap circuits. The markers at 33.5 MHz and 41.5 MHz are visible (b). There is a double trace on the skirts due partly to mains hum and partly to the input coupling time constant (0.25 s) of the oscilloscope.

Here the marker is at 36.5 MHz (a) and in (b) the phase control has been deliberately misadjusted to illustrate the effect.

These photographs were taken with outputs from the sound channel. At (a) the output was taken from the a.f. output point; at (b) it was taken via a rectifier probe from the collector of the last i.f. stage. The circuit was not returned to correct for the probe capacitance.

330 pF ; this capacitor is needed to prevent L from short-circuiting the frequency control voltage, which is applied through R_{1} and R_{2}. Its presence slightly reduces the capacitance available from the varactor. The amplitude of oscillation is controllable by the supply voltage to the stage, which is shown in Fig. 1 as a nominal 10 V , but it is also controllable by the base voltage, which means the values assigned to R_{4} and R_{5}. These resistors, with R_{6}, provide the usual stabilizing network for temperature effects in Tr_{1}. The emitter resistance R_{6} is, for r.f., effectively in shunt with the base-emitter path of the transistor. The transistor itself has a base input resistance of about $1.2 \mathrm{k} \Omega$. Taking R_{6} into account the effective base input resistance is about 550Ω only. This is one reason for the high ratio of C_{3} to C_{2}.
With a supply of 5.5 V the oscillator will produce about 0.8 V r.m.s. output, and with 10 V it gives some 1.5 V r.m.s. The output is taken off by a small coil coupled to L and not shown in Fig. 1; quite loose coupling is necessary and it is hard to secure more than 100 mV useful output. This is one limitation of the varactor. The minimum bias on the varactor restricts the voltage obtainable across the tuned circuit and so the maximum output of the whole wobbulator.
The wave-shaping stage is $T r_{2}$. This is simply a transistor with a high load resistor $R_{3}(220 \mathrm{k} \Omega)$ and its output is applied to the varactor through R_{1} and R_{2} of $330 \mathrm{k} \Omega$ each. Its base is fed by 50 Hz from a winding on the mains transformer and also with a d.c. bias. These are merely sketched in in Fig. 1. In practice more complex networks are used because the magnitudes of the voltages required are quite small. The a.c. needed is only around 60 mV , while the d.c. has to be variable only over a similar range.

One peculiarity of the circuit must be noted. Two supply voltages are needed, one of some 70 V and the other of some 17 V and they must have a common positive. This is very unusual for n -p-n transistors, and it arises because of the varactor. It is almost essential to use direct coupling between the wave-shaping transistor and the varactor, because otherwise the two elements would each need variable d.c. bias controls and their proper adjustment would be difficult. Also, an a.c. coupling would introduce appreciable phase shift which would probably be difficult to correct, because the waveform at this point is not sinusoidal.

While it is not necessarily impossible to arrange matters so that the negative supply lines are common, it is much easier to use common positive lines. There is, of course, no objection at all to this apart from the fact that most people are accustomed to thinking of the negati:e line as the earthy one.

With proper design and adjustment the arrangement of Fig. 1 produces a linear relation between the base voltage of Tr_{2} and the frequency generated by $T r_{1}$. In some measurements a frequency marker, of which more anon, was varied in steps of 0.5 MHz from 30.5 MHz to 42.5 MHz and the displacement of the marker on
the trace was measured using the calibrated X-shift control of the oscilloscope. The calibration of this control was not checked. There were also, of course, the usual setting and reading inaccuracies of the controls.

As one would expect, therefore, when the points were plotted on linear scales of frequency and marker displacement no straight line could be drawn through all of them. However, the maximum displacement of any point from a straight line drawn between 30.5 MHz and 42.5 MHz was 0.3% only. One would, in fact, be satisfied with an error of 1%, or even more.

A linear relation between frequency and displacement is one essential. Another is that the amplitude of oscillation should be the same at all frequencies. It does not matter at all if the amplitude varies slowly with time, temperature or voltage, but for an undistorted response curve it is necessary that the amplitude be independent of frequency. The basic oscillator of Fig. 1 does by many standards provide a fairly constant amplitude. The output varies by about 1 dB over the band, but this is not good enough.

In actual fact, it is not essential that the output be constant over the whole frequency range. Where constancy is important is over the range of frequencies lying between the $-6-\mathrm{dB}$ points of the passband of the amplifier under test. With television amplifiers these will never be more than 5.5 MHz apart and in practice, constancy of amplitude between 39.5 MHz and 34 MHz will suffice. The shape of the response within the pass-band will then be accurately depicted. Outside the passband the response falls rapidly and quickly reaches $-25-\mathrm{dB}$ to $-50-\mathrm{dB}$ levels, an odd dB or so extra variation due to the instrument is there trivial and probably quite undetectable on the display.

Nevertheless it has been thought desirable to include a measure of stabilization. The output of the oscillator is fed to a diode detector and the output of this is fed to a single-stage d.c. amplifier which controls the base voltage of the oscillator. There is thus a negative feedback loop. The loop gain is not high because the detector efficiency is low and the gain of a single stage d.c. amplifier is also low if it is stabilized against temperature changes. It is sufficient, however, to keep the amplitude reasonably constant.

It is essential to have at least one frequency marker. The usual procedure is to couple the output of a signal generator loosely to the oscillator. Its output then passes with the f.m. signal through the i.f. amplifier under test and a beat between the two signals is produced in the detector of this i.f. amplifier. Assume that the marker is set at mid-band, 36.5 MHz . The difference frequency is 6 MHz when the oscillator is at 30.5 MHz , but as this frequency is outside the passband of the i.f. amplifier it is not appreciably passed. When the oscillator reaches 34 MHz , however, this frequency will usually be passed appreciably and the beat produced in the detector will be 2.5 MHz . As the frequency increases, the beat frequency falls and its amplitude increases. At exactly the

The completed prototype, showing the layout of the controls.
marker frequency the frequency and amplitude drop to zero, but the beat frequency is produced again when the oscillator becomes higher than the marker frequency. Instead of the trace on the oscilloscope being a line drawing out the response curve, therefore, it is wobbled vertically about this line by the beat frequency.

A marker with a total width of some 5 MHz is much too wide, of course, and a simple $R C$ filter is included between the detector of the i.f. amplifier and the oscilloscope to restrict the bandwidth to about 0.5 MHz at most. The appearance of the marker is then of a narrow blip on the trace, the centre of which gives the true frequency. In practice, there is usually a gap in the centre. In some cases, the width of this gap can be considerable, and this is undesirable. It arises because when the frequencies are nearly alike one oscillator pulls the other into synchronism and the two move together at zero beat until the natural frequencies become too far apart for the lock to hold. If both forward and return traces are presented on the screen, which can be done with a sinusoidal sweep, and the two are phased so that the two traces of the response curve coincide, then when oscillator pulling is present the two marker blips will not usually coincide. This is because two oscillators, once they are locked, normally hold in synchronism over a wider range of frequencies than the band over which one can capture the other. This means that when a gap appears its mid-point is not at the actual frequency of the marker.

A certain amount of locking around zero beat is not uncommon but it is not important as long as the gap between the two halves of the blip is small.

A major disadvantage of this form of marker is that with a constant amplitude of signal from the marker generator it is possible to obtain a reasonable marker blip only between the $-6-\mathrm{dB}$ points of the amplifier. If it is desired to use a marker on the skirts of the curve, the marker disappears because its frequency is atten-
uated by the amplifier, and the signal from the marker generator must be greatly increased. It does have the advantage, however, that as the marker need be only one-tenth or so of the f.m. signal, its actual strength in the pass-band need be only a few millivolts.

In the equipment to be described in subsequent articles in this series, a somewhat different system is adopted. The marker signal is not passed through the i.f. amplifier. A buffer amplifier of roughly $12-\mathrm{MHz}$ bandwidth at $-3-\mathrm{dB}$ is used and is fed through a simple attenuator with the signal from the winding on the oscillator coil L of Fig. 1 which feeds the i.f. amplifier. The impedance level at this point is only 75Ω and the variations of the input impedance of the buffer stage over the band do not seriously affect the oscillator output. The collector load of the buffer is a heavily-damped single-tuned circuit to which a signal generator is loosely coupled for the marker. A diode detector then rectifies the mixture to provide the beat and a simple low-pass filter restricts the bandwidth. This signal is then mixed with the output of the detector of the i.f. amplifier under test in another simple filter.

The marker blip then appears on the trace as before, but with an amplitude which is substantially independent of frequency. What amplitude variations do occur are those caused by the variation of gain of the buffer amplifier and are trivial. The marker appears on the trace independently of the i.f. amplifier.

The deflection due to the marker is, of course, entirely vertical but it is drawn out by the X-deflection to have width. As a result the appearance of the marker is quite different on the sides of the curve from what it is on the near horizontal parts. The sides are nearly vertical and so the vertical movement due to the marker tends to get lost in the near vertical movement due to the response curve. The writing speed of the spot, too, is higher, and the
marker is drawn out over a greater length of trace. When one has become accustomed to it, the marker is quite readable on the sides of the curve, although not so easily as on the flat parts. Unfortunately, there is no simple remedy.

In practice, it is useful to have two markers, which can be set at the two required $6-\mathrm{dB}$ points. Alignment can then be carried out so that the two markers come at the half-height points on the two sides of the curve, the correct shape of the curve between them being judged by eye.

The equipment thus has a built-in marker oscillator. This is a transistor oscillator which is basically the same as that of Fig. 1, but having a variable capacitor for tuning. It is also coupled to the coil of the buffer stage. The second marker is provided by an external signal generator.

The internal marker has a second use in connection with the alignment of the intercarrier sound channel. For this purpose it is connected to feed into the output with the f.m. signal and it is set to 39.5 MHz . The f.m. signal has its total deviation reduced from the usual 12 MHz to about 300 kHz by the sweep amplitude control, and its mid-frequency is set to 33.5 MHz by the bias control of Tr_{2}, Fig. 1 . The f.m. signal then represents the sound channel and the marker oscillator the vision channel. The two signals pass together through the vision i.f. amplifier and a $6-\mathrm{MHz}$ beat between them is produced in the detector, and fed to the intercarrier sound i.f. amplifier. The signal generator can still be used to provide a single frequency marker, but it is probably better to have it around 6 MHz and inject its output into some point of the sound i.f. amplifier. What can be done in this way obviously depends greatly on the design of this amplifier.

The use of a $50-\mathrm{Hz}$ sine wave from the mains has been mentioned for the sweep. This is done for its convenience. Two supplies are needed, one for the input to Tr_{2} in Fig. 1 and the other for the Xdeflection of the oscilloscope. The latter must normally have one side earthed. The supply for Tr_{2}, however, must have one side at about -70 V . However, apart from this, two windings are really desirable since the phase of one may have to be reversed with respect to the other in order to obtain a trace in which movement to the right represents an increase of frequency.

On one half-cycle the spot moves to the right and the frequency increases; on the next half cycle it moves to the left and frequency decreases. Any phase shift in the complete chain from transformer through the wobbulator and i.f. amplifier under test to the Y-input of the oscilloscope, and any differential phase shift within the oscilloscope between the X - and Y-channels, will result in two traces of the response curve being produced displaced side by side. A simple phase-shifting circuit in the feed to the X-plates enables the two traces to be brought into coincidence. This has been found adequate, for any errors produce no more than a slight thickening of the trace along its near vertical sides.

An alternative would be to blank alternate half cycles, but some form of phase-shift control would still be needed to give a rough correction of phase and would be difficult to operate since its effect would visually be much the same as that of the d.c. bias control on Tr_{2}.

The use of both traces also has its advantages since it can give an indication of some amplifier faults. If non-linear circuits are involved, as they are in the detector, and will be if there is overloading, then the rise and fall times of the output signal may not be the same. When the oscilloscope spot is moving to the right on one half-cycle a rise time is operative on the left-hand side of the response curve and a fall time on the right, whereas on the other half cycle the rise time is operative on the right and the fall time on the left. Therefore any difference in the response to rising and falling outputs will make it impossible to obtain complete coincidence of the two traces.

Corrections

"Sinusoidal Oscillator for High Temperatures" (July 1970). Pin 1 of the 701C op.amp. should, in addition to the connections shown, be joined to the OV line.
"Integrated Circuit Stereo Pre-amplifier" (July 1970). In Fig. 3 there are three mistakes: the wiper of $S_{1 b}$ is in the wrong position relative to $S_{1 a} ; S_{2}$ should have the lower contact (M) joined to the wiper of $S_{1 b}: R_{12 b}$ should be $12 \mathrm{k} \Omega$ not $120 \mathrm{k} \Omega$. On p. 315 in the components list $V R_{3 a, b}$ and $V R_{4 a}, b$ are $100 \mathrm{k} \Omega+100 \mathrm{k} \Omega$ linear pots.

Communications Receiver (June issue). On page 310 the Racal RA1220 frequency stability should have read, one part in 10^{7} per day.

On page 303 (New Products) in the June issue, the illustration shown under the heading D.I.L. Reed Relay should haye appeared with the note on the Reed Microswitch (WW 329).

Souriau Lectropon
 Transistors

Souriau Lectropon Ltd. apologize to readers for the delay in supplying transistors, which has occurred because of problems in obtaining sufficient supplies from the manufacturers. The company say they undertake to deliver all transistors promptly as there are now sufficient stocks on their premises.

H. F. Predictions -August

The Greenwich sunspot number for June is 117, indicating a slight decline in the high level of solar activity since March of this year. This decline is not rapid and frequency usage over the next six months should be the same as for the corresponding months of 1968/69 and 1969/70.

Disturbances which have developed this year are expected to continue at the same level for the next twelve months. With regard to the charts the transequatorial routes have highest MUFs during equinox months and the values shown should be the highest for the next ten years.

The Video Dise

Vision programmes on 'gramophone' records

by J. C. G. Gilbert* F.I.E.R.E.

The 24th June 1970 will become another important date in the history of the development of television, for on this day the world's first television recording on a "gramophone" record was demonstrated in Berlin. Although the equipment will not reach the public for another 18 months, technical information was released this year as it coincides with the 80th anniversary of the invention by Emil Berliner of the first flat record. Perhaps one should not forget the early experiments of Baird, in which he recorded the B.B.C. 30 -line transmission on a standard 78 r.p.m. record and the sound on a separate record.

Teldec is a research and development organization jointly owned by Decca in the U.K. and AEG-Telefunken in Germany. Since 1965 four German scientists headed by Horst Redlich, in conjunction with Arthur Haddy, the chief engineer of Decca Records, Ltd., have patiently developed a video recording system that will make a considerable impact on the educational, advertising and domestic entertainment fields.

Research teams throughout the world are currently working on methods of recording video information, and some demonstrations and technical information have been given to the public. In the U.S.A. the Columbia Broadcasting System has developed the EVR system (see p.366) the RCA Corporation the Selectavision system, Ampex in the U.S.A. video recording on magnetic tape, and there are other methods using photographic films. The table indicates the performance of each type.

In comparing the various systems note that only video tape and Super- 8 mm film allow the user to record his own programmes, while EVR, Selectavision and Teldec video disc limit the user to purchasing or hiring already recorded programmes; and of these only the Teldec video disc enables one to quickly locate any particular section of a programme. Also, in some systems it is not possible to show a stationary picture or a slow-motion picture. In the Teldec system each complete television picture (two frames) can be shown separately, and by stopping and starting the mechanism one

[^3]can show a sequence of individual pictures.

In any form of storage system, whether it be film, gramophone record or handwriting, it is necessary to arrange for a transient flow of information to be recorded and at a later time for the information to be displayed or repro duced. In sound recording the flow of information is at a rate of approximately 3×10^{5} bits per second, and a normal $33 \frac{1}{3}$ r.p.m. gramophone record has a data storage capacity of about 5,000 bits $/ \mathrm{mm}^{2}$ while a magnetic tape has a data storage
capacity of about 1,000 bits $/ \mathrm{mm}^{2}$. To store electrical picture information it is necessary to accommodate the information at a density about 100 times that required for a sound recording, the information flow rate being of the order of 3×10^{7} bits per sec. The first problem therefore is to devise a storage system capable of handling a greater information density, and then to develop a method of reproducing that information.

The Teldec video disc will allow a recording density of upwards of 500,000 bits $/ \mathrm{mm}^{2}$, or about 100 times the storage capacity of an audio record, and this is equivalent to a signal frequency of 3-4 MHz .

Fig. 1 and the photographs show the principle of the reproducer. The disc is made from thin plastic foil and is rotated at a speed of 1,500 r.p.m. for a $50-\mathrm{Hz}$ mains supply and $1,800 \mathrm{~Hz}$ for a $60-\mathrm{Hz}$ supply. The disc is located on a very accurately machined boss and positioned by three pins. It will be seen from the photograph that the disc while stationary follows the contour of the fixed playing desk, and that this is curved and the apex of the curve is just under the reproducing stylus. Concentric with the rotating central boss is an annular slot through which air is forced and then exhausted at the periphery of the disc. Thus when the disc

	Video tape	EVR	Selectavision	8 mm film	Teldec video disc
Resolution	$\begin{aligned} & 250 \text { lines } \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 300 \text { lines } \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 250 \text { lines } \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 250 \text { lines } \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 250 \text { lines } \\ & 3 \mathrm{MHz} \end{aligned}$
Signal/noise ratio	$>40 \mathrm{~dB}$	$>40 \mathrm{~dB}$	$>40 \mathrm{~dB}$	$>40 \mathrm{~dB}$	>4048
Sound recording	Separate track	Separate track	Separate track	Separate track	Combined tracks
Playing time	approx. 60 m	$\begin{aligned} & 2 \times 25 m \\ & 25 m \text { colour } \end{aligned}$	approx. 60 m	approx 30 m	$\begin{aligned} & 9 \mathrm{in} .5 \mathrm{~m} \\ & 12 \mathrm{in} .12 \mathrm{~m} \end{aligned}$
Recording*media	Magnetic tape	Special film	Plastic tape	Super-8 film	Plastic foil
Playing time v. copying time	<50	<50	<50	<50	> 1.000
Material cost for one hour playing	approx. ¢ 12	approx. $£ 12$ colour £24	approx. $£ 25$ s	approx. ¢ 24	less than f1 2s 6d
Pickup device	Magnetic head	f. spot scanning	Láser and vidicon	f.spot scanning	Ceramic p.u.
Reproducer cost (approx.)	¢ 230	¢ 350	¢175	¢230	c60-£ 115

Fig. 1. Principle of the video disc reproducer mechanism.
rotates it floats on a very thin air cushion and follows the contour of the curved platter.

The boss and shaft are belt-driven from a small synchronous motor which also drives a reduction gearbox. Attached to the output of the gearbox is a pulley which drives an endless tensioned cable. The pickup head is mounted on two parallel bars, and it is smoothly drawn across the disc by the tensioned cable. The video disc is a remarkable development, for in order to have a playing time of 5 minutes on a 9 -inch disc, or 12 minutes on a 12 -inch disc, the groove spacing is minute, there being between $120-140$ grooves per millimetre, and each revolution of the disc represents one complete television picture. The recording method is hill-and-dale, and one photograph shows a comparison between a normal stereo audio recording groove (on the right) and the frequency modulated video disc grooves that occupy an equivalent space (on the left). The accompanying sound is recorded during the blanking interval, using a pulse position modulation system. It is of interest that the groove on a 9 -inch disc is about 3 km long.

The pickup head that is mounted on the linear tracking bars carries a very fine tube, at the end of which is a microscopic diamond stylus-Fig. 2. Directly connected to the diamond is a piezo electric ceramic transducer which has an

Fig. 2. Details of the pickup, showing stylus and transducer at the end of the fine support tube. The arrangement provides elastic suspension.

Fig. 3. Cross-sectional side view of the stylus (viewed along a radius of the disc), showing how the disc track is locally deformed where the disc is pushed up to the stylus by the air cushion. The stylus responds to the instantaneous load relief that occurs as the track passes the rear vertical face.

Reproducer mechanism, showing pickup carriage being drawn across disc by the tensioned cable. The convexity of the playing desk, taken up by the flexible disc, can just be seen.
output of about 2 mV , and the complete transducer can be seen suspended below the carrying head. The transducer is pressure operated, and, whereas in a normal audio system the record carries the weight of the pickup cartridge, in the Teldec machine the stylus is fixed in position and the video disc is floated up to it on the air cushion. A side view of the diamond stylus, Fig. 3, shows that it is gently radiused in front of the trailing vertical face, and as the disc glides below the stylus, the stylus purposely deforms the hill and dale track which, when it passes the stylus, immediately springs back to its original shape. Thus several bits of information are simultaneously presented to the pressure transducer. It is claimed that each disc can be played at least 1,000 times before the signal-to-noise ratio falls below 40 dB .

When one wishes to display a stationary picture a press button on the deck can be operated to disengage the pickup drive cable. As the groove is very shallow the stylus jumps the wall separating the grooves and repeats each complete picture as often as desired. Obviously during such a display there is no speech output as this is integral with each line. The wear of the disc is negligible and even after one has repeated a stationary picture for several hours there is no noticeable visual distortion. While slow motion is not possible in the true sense, it is possible to show complete pictures in slow sequence by operating the press button at regular intervals.

The obvious question is "how well does it perform?" Those fortunate enough to witness this world premiere were astonished at the fidelity of the pictures seen on a multiplicity of television monitors. At present the output from the reproducer is at video frequency, but for the domestic market the unit will embody a modulator so that the signal can be sent over cable to the aerial input of any domestic television receiver. The quality of the black-and-white signal is comparable in definition with the B.B.C./I.T.A. 405 -line system although the picture is transmitted on 625 lines. It is confidently expected that colour video discs will be

A single groove of a normal stereo gramophone record (right) compared in size with the closely packed grooves of the video disc (left) which register information by a frequency modulated carrier, hill-anddale, recording technique. The carrier wavelength on the video disc varies with the video signal amplitude.
available a few months after the release of the black-and-white discs. Demonstrations were given of a number of programmes of an educational and instructional nature, extracts from advertisements, etc. As an example of use, a travel agency might have a selection of discs giving short programmes of "a weekend in Paris", a holiday on the Costa Brava and so on. The possibilities seem endless and AEG-Telefunken even suggest that in the future the daily newspaper might include a disc of the highlights of the previous day's sporting events.

As the video disc is capable of storing information up to 3 MHz while rotating at 1500 r.p.m. one can visualize that a modified system using the same basic principles could be employed for sound recording. At a playing speed of $33 \frac{1}{3}$ r.p.m. it should be possible to record up to about 70 kHz , and possibly the almost forgotten $16 \frac{1}{3}$ r.p.m. speed might come into its own. Using a slow speed, several hours of recording could be achieved on a 9 in disc; turntable rumble and anti-skating devices would become a relic of the past. Perhaps the most exciting possibility is the recording of multi-channel stereo programmes-two, three, four or more channels being possible with the Teldec multiplexing system.

Electronic Morse Keyer

Employs m.o.s. integrated circuits to produce dot-dash and space waveforms with precise mark-space ratios

by C.I. B. Trusson *, m.Sc., G3Rvm, and M. R. Gleason*, B.Sc.

This article describes the design and construction of an electronic morse code keyer using four m.o.s. logic circuits. The dot and dash waveforms generated by the keyer are defined precisely by means of a two stage counter.

M.O.S. logic circuits

The circuit diagram of a p-channel m.o.s. inverter is shown in Fig. 1. Using the negative logic convention, with logic 0 input level less than the threshold voltage, the inverter m.o.s.t. is 'off' and only leakage current flows into the load m.o.s.t. The logic 1 output level is then a threshold voltage (plus an increment due to source-substrate bias) from the $V_{D D}$ supply. With a logic 1 input greater than the threshold voltage the inverter m.o.s.t. is 'on' and the output is pulled to a logic 0 level near 0 V . With a $V_{D D}$ supply of -24 V typical logic 0 and logic 1 levels are -2 V and -17 V . It should be noted that the output resistance in the logic 1 output state is very high and so this level can't be measured with a multimeter.

Where it is required to interface an m.o.s.t. inverter with a bipolar transistor the circuit of Fig. 2 may be used. In the logic 0 output state the inverter m.o.s.t. supplies base current to the $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor switching it 'on'. In the logic 1 output state the inverter m.o.s.t. is 'off' and the transistor is 'off' because of the base resistor to $V_{D D}$.

A NOR gate is simply obtained by connecting a number of inverter m.o.s.ts in parallel and a NAND gate by connecting them in series. The circuit diagram of a 3 -input NOR gate is shown in Fig. 3 and that of a 3 -input NAND gate in Fig. 4. Clearly, the NOR gate only gives a logic 1 output when all inputs are 0 and the NAND
*Plessey Microelectronics

Fig. 1. The circuit of an m.o.s. inverter.
gate only gives a logic 0 output when all inputs are 1. The two gate circuits used in the electronic keyer are the Plessey MP 104, a dual 3 -input NOR gate and the MP102, a dual 3 -input NAND gate. With these circuits, unused NOR gate inputs should be connected to $O \mathrm{~V}$ and unused NAND gate inputs should be connected to $V_{D D}$.

The keyer also uses two MP106 counter/register/bistable circuits. The MP106 logic diagram is shown in Fig. 5 and its modes of operation will now be outlined. In its synchronous mode \mathbf{S} is set at a 1 and data, D_{0}, is transferred to D_{1} and its inverse to D_{1} on the clock pulse transition $C P_{1} 0 \rightarrow 1$, assuming $C P_{2}$ is at 0 . In the steady state, with $C P_{1}$ at a 0 or a 1, the outputs D_{1} and D_{1} cannot be affected by any change in D_{0}. In this mode the element operates as a shift register. To obtain a binary counter function the D_{1} output is connected back to the D_{0} input with S held at 1 , causing the D_{1}, D_{1} output states to change every $C P 0 \rightarrow 1$ transition. Asynchronous bistable operation is achieved by setting S to 0 . The data on the F input is then transferred to $D_{\overline{1}}$ and its inverse to D_{1} irrespective of D_{0} and $C P$.

Design of the electronic keyer

A morse transmission consists of a series of dots, dashes and spaces. Within a morse character (the code for a letter, number or punctuation) a dot consists of a $1: 1$ markspace pulse and a dash a 3:1 mark-space pulse. The waveform of Fig. 6 shows a dot followed by a dash, the code for the letter A. The dot, being the highest frequency component of morse code, is the most difficult for an operator to send and severely limits the maximum speed attainable with a conventional morse key.

The m.o.s. electronic morse keyer allows an operator to send perfect morse characters up to very high speeds by controlling accurately, with a multivibrator, all the periods within a character, i.e. dot, dash and space. In addition, the dot and dash can be made self completing such that the paddle only has to be touched momentarily on the dot or dash side of the key and they are completed automatically, leaving more than the period of a space to move the paddle from side to side.

The dot and dash waveform of the electronic keyer are obtained by gating the outputs from a two-stage MP106 counter

Fig. 2. Connecting a mo.s. inverter to an $n-p-n$ transistor.

Fig. 3. A three-input NOR gate.

Fig. 4. A three-input NAND gate.

Fig. 5. Counter-register-bistable circuit type MP106.

Fig. 6. Morse code waveforms corresponding to dot dash.

Fig. 7. Dot dash waveform generation.
as shown in Fig. 7. For the dot waveform, the S input of the second counter is set at a 0 . This puts the second counter in its asynchronous mode with the data on F , a 1 , being transferred to D_{1} and its inverse, a 0 , being transferred to D_{1}. The first counter has its S input permanently at a 1 , and therefore counts with the $1: 1$ markspace ratio dot waveform. A 1 at the output corresponds to a space, a 0 , a dot.

The dot waveform is obtained from the output of a counter, rather than directly from a multivibrator so that the mark-space ratio is precisely $1: 1$ at all speeds. The multivibrator providing the clock to the counter does not need an accurate markspace ratio and, therefore, only a single gang potentiometer is required to vary its frequency. For the dash waveform, the S input to the second counter is set at a 1 . Now both counters are operating in the synchronous mode and the four output states at the two D outputs are $00,11,01$, 10. the NOR decoding gate decodes 00 to give a 1 output which corresponds to a space. In the remaining three states of the counter the NOR gate output is a 0 , giving the required $3: 1$ mark-space ratio dash.

The method of dot and dash waveform generation described above forms the basis of the electronic keyer. In addition a multivibrator is incorporated which is stopped
between characters so that dots and dashes commence immediately the paddle is operated at the start of/a new character. Other wise, with a free running multivibrator, there is always some uncertainty as to when the first dot or dash of a character is going to start. Logic to control the stopping of the multivibrator with the counter in the space state and to provide self completion of dots and dashes is also included.
The functioning of the keyer will now be described in detail. Its full logic/circuit diagram is shown in Fig. 8. Initially, at switch-on, the emitter coupled multivibrator provides clock pulses to the counters until the output of the decoding gate-1 is in the logic 1 space state and the output of the multivibrator has gone to a 0 . Gate-4 gives a 0 output which stops the multivibrator in its present state by clamping the 200Ω load to the -24 V supply with a saturated n-p-n transistor. When the paddle is pushed to the dot side the output of gate-3 goes to a 0 causing the output of gate- 4 to go to a 1. This releases the multivibrator whose output instantly goes from $0 \rightarrow 1$ clocking the first counter and producing a dot at the output of gate-1. The paddle may then be moved from the dot side since the multivibrator continues until the space state has been reached and the output of the multivibrator is back at a 0 . The

output of gate-4 will then return to a 0 stopping the multivibrator unless the paddle has been transferred to the dash side, in which case the output of gate-4 remains at a 1 and the multivibrator continues. With the paddle on the dash side the output of gate-2 is a 1 , setting the second counter in its synchronous mode. The dash waveform is, therefore, produced at the output of gate1. As for the dot, once the dash has started the paddle may be moved and it is self completing, the S input to the second counter remaining at a 1 until the output of gate-1 returns to a 1 , the space state. Strings of dots and dashes within a character are produced by holding the paddle on the relevant side until after the start of the last dot or dash.

Normally the morse l:y input to a transmitter is intendec to he driven by a mecharizal key. The cutput of gate-1,
therefore, is interfaced to a reed relay to drive the transmitter. The 100Ω resistor is included in series with the base of the n-p-n Darlington pair, since a logic voltage swing is required at the output of gate-1 to drive gates-2 and -4. The reliability and contact bounce of a reed relay are both likely to be very much better than that of a mechanical key. However, a preferable solution would be to modify the transmitter to be keyed directly from gate-I.

With an electronic keyer it is not possible to hold the transmitter 'on' continuously for tuning purposes. A 'tune' switch is, therefore, provided which, when operated, sets the output of gate-1 to a 0 , holding the reed relay 'on' until the switch is moved back to the 'operate' position. A push button may be more convenient than a toggle switch.

The keyer in use at G3RVM is built on
0.1 in . Veroboard and housed, complete with mains power supply in a $4.5 \times 7.25 \times 2$ inch die-cast box. The Veroboard layout is illustrated in Fig. 9.

The nominal -24 V power supply for the keyer does not need to be regulated, the tolerance being -20 to -26 V .

The MP100 range m.o.s. logic circuits used in the keyer are available from the Plessey microelectronics distributors: A.C. Farnell Ltd., Kirkstall Road, Leeds 3, or SDS (Portsmouth) Ltd., Hillsea Industrial Estate, Hillsea, Portsmouth, Hampshire.

REFERENCES

1. MP. 100 series Data Sheet.
2. Trusson, Ce. I. B., Foss, R. C. "Mosaic

Blocks for System Breadboarding".
(Both of these documents should be obtpined from the Plessey distributors.)

News of the Month

Space-probe to Jupiter

Man's first venture (Mariner) beyond the orbit of Mars into the outer solar system will begin with the launch of two spacecraft, Pioneers-F and -G, in 1972 and 1973 on missions which will last about two years each.

These spacecraft will be the first to penetrate the asteroid belt and will spend about a week orbiting Jupiter with the period of closest approach, and maximum scientific interest, covering about 100 hours. Closest approach is planned to be about 100,000 miles.

One goal of the mission is to assess hazards in deep space and to develop technology and operations experience for missions to the outer planets-Jupiter, Saturn, Uranus, Neptune and Pluto —planned for the late 1970s.

Pioneers-F and -G will be identical spacecraft weighing about 550 pounds apiece and carrying 60 pounds of scientific instruments. Each will be capable of performing 13 scientific experiments in space including photographing Jupiter.

The Pioneers will be powered by four radioisotope thermoelectric generators
producing a total of 120 W . The spacecraft will be stabilized in space by spinning at five revolutions-per-minute in the plane of the Earth's orbit so that a nine-foot-diameter directional radio aerial is pointed constantly at Earth.

The thirteen scientific experiments will make a broad study of a number of interplanetary phenomena, possible hazards of flying through the asteroid belt, the Sun's influence on interplanetary space and the penetration of galactic cosmic radiation into the solar system.

They will measure hydrogen atoms; electrons; nuclei of hydrogen, helium and other elements; and the interplanetary magnetic field.

They will gather data on the heliosphere, the region of the Sun's influence on the space environment; and they will look for the boundary where the heliosphere ends and space begins.

Both spacecraft will spend six months to a year passing through the asteroid belt which circles the Sun from 180 to 330 million miles out. The experiments will measure the intensity and polarization of sunlight reflected from asteroids and cosmic

The pictures show a portable aerial mast which can be erected without the use of tools and without having to worry about loose parts. The masts can be made in aluminium or stainless steel in three diameters from 15 to 25 inches. Packaged they are one-thirtieth of their deployed height which can be up to 100 -ft. The Astromast tower, as it is called, is manufactured by the Astro Research Group of California, U.S.A.

dust to allow calculations of overall quantities of cosmic debris.

Near Jupiter, the Pioneers will gather information on a number of mysteries surrounding the planet. In addition, scientists will perform a celestial mechanics experiment and a radiooccultation experiment by analysing the radio signals from the Pioneers just before and just after they pass behind the planet for about one hour as viewed from Earth. Earth-based studies of Jupiter have not yet revealed whether the surface of the giant planet is solid, liquid or gas.

Jupiter periodically emits huge surges of radio noise. It appears to have a magnetic field of its own, similar in shape to Earth but far stronger, and radiation belts an estimated one million times more intense than Earth's.

The planet is believed to be the only one in our solar system which radiates more energy than it absorbs from the Sun, current measurements indicating about twice as much. If these observations are correct, they show that Jupiter has a very dynamic interior and may have processes at work which are similar to a star's such as our Sun.

Much smoke at Which?

Which?, the journal of the Consumers' Association, recently carried out tests on battery eliminators for portable radios and tape recorders. The subsequent report, rather confusingly headed 'Mains Adaptors', told how the transformers of five of the nine units tested broke down when subjected to the tests laid down by British Standards and were labelled potentially dangerous. All five faulty units came from the far east and were the Aiwa $\mathrm{AC}-603$ and $\mathrm{AC}-606$, Eagle products LA-9P and LA-10S and the Sony AC-90E.

Of the four eliminators which were classed as safe, manufactured by Bang and Olufsen, Grundig, Philips and Radionette, the Philips N6502 was chosen as best value for money.

While on the subject of battery eliminators we would like to point out to readers the existence of even more dangerous examples than those tested by Which? The type we have in mind are usually very cheap and do not employ any isolating step-down transformer at all. The required voltage drop being obtained by capacitive or resistive means. These units could be lethal. Be warned!

In these eliminators a direct connection exists between the low battery-voltage output and one side of the mains-as in normal mains radio a.c. /d.c. practice. The low voltage equipment to be powered by battery eliminators (transistor radios, tape recorders, etc.) are not designed with mains voltages in mind so it is very possible that external metalwork and uninsulated sockets, etc., may be connected to some part of the internal circuitry-probably the common line.

A 4-metre transmitter powered by a single Mallory mercury cell is being implanted in the rhino's horn, the single-turn aerial will be accommodated in a groove cut around the horn. After implantation the damage is made good with glass fibre and quick-setting resin. The electronic equipment was designed by the Council of Scientific and Industrial Research, Pretoria, in order that they may keep track of individual animals.

This means that a direct conhection exists between this bare external metal and one side of the mains socket, an extremely dangerous situation. Also any external devices connected to the powered equipment, such as tape recorders, extension loudspeakers and earphones, are also likely to become live.

The moral? Do not try to save a few shillings, buy a reputable make at a fair price and satisfy yourself that the circuit arrangements are adequate.

Push-button telephone chips

In the April issue, in this section, the push-button touch-tone method of dialling was discussed. Pushing a button corresponding to a digit resulted in two tones being transmitted to the exchange for decoding. Push-button dialling is quicker and more convenient than the normal dial we use today, and with the touch-tone system it is possible to use the telephone to switch on equipment, from a remote point, merely by tapping out the required code after connection to the premises has been established.

A major disadvantage of the touch-tone system is the need for additional equipment at the telephone exchange to decode the tones.

The present method of dialling in this country is called the Strowger system. If the digit nine is dialled the telephone transmits nine pulses, one after the other, which are counted by the exchange equipment. A push-button telephone, to be compatible with the Strowger system and not demand any alteration in exchange equipment, must also transmit an identical serial pulse train.

It would indeed be difficult and expensive to design a push-button that, by mechanical means, caused nine pulses to be transmitted when it was pressed. But using digital methods such a task can easily be accomplished. The digit nine can be represented by four binary digits.

Pressing the button nine could result in the four bistables in a counter being set in the condition representing nine. A gating system could then allow pulses to the counter to cause it to count backwards: nine, eight, seven until zero is reached, the gating system could then be arranged to cut off the supply of pulses to the counter. Nine pulses would have been fed to the counter and these could also be transmitted to the exchange at a speed compatible with the equipment in use there.

Similar methods to these are now beng used in m.o.s. (metal-oxide-silicon) integrated circuits being produced by Marconi-Elliott and by T.M.C. These circuits store all the digits of a telephone number fed to them by push-buttons and transmit them in serial form to the Strowger exchange equipment.

The logic design for the Marconi-Elliott integrated circuit was carried out by the telephone division of G.E.C. and the chip design and layout was done by MarconiElliott Microelectronics.
T.M.C. adopted a different approach and designed the whole thing themselves including the structural details of the microcircuitry.

Both systems consist of two chips the difference being in the interconnections, the encapsulations, the logic design and the number of external discrete components required.

The Marconi-Elliott chips are mounted on the push-button unit to form an integral unit, whilst in the T.M.C. unit two circuit cards are employed in addition to the push-button unit.

The use of these m.o.s. dialling systems does not allow coded information from the push-buttons to be used to actuate external devices as is the case with the touch-tone system. It is said by exponents of the m.o.s. system that this does not matter much any way as any amount of data can be sent along the telephone lines by external equipment once connection has been established. An advantage of the m.o.s. system is that often used numbers could be stored in binary form in a small digital store
(an m.o.s. read/write memory chip) so that these numbers can be dialled automatically on pressing a single button.

Just recently T.M.C. have announced an order for $£ 0.5 \mathrm{M}$ worth of their m.o.s. equipment that will be used by operators in telephone exchanges.

Aerial for $1-3 \mathrm{~cm}$ communications

Radio communication in the 3 cm to 7 mm wavelength region, normally used only for radar, is one possibility to be investigated with an unusual steerable aerial mounted on the roof of Birmingham University's new Electrical Engineering building. This region, 10 GHz to 40 GHz , would accommodate 5,000 television or 7 million telephone channels, but, of course, the waves are subject to atmospheric absorption and propagation is dependent on the weather. Radio metereology is, in fact, another field of research for which the aerial will be used. Being sited in the environs of a large city, the aerial is surrounded by sources of man-made interference, but this was a deliberate choice, to permit study of communication in the presence of such interference. Apart from terrestrial communications, the aerial will allow research into the possibility of cities and smaller urban communities having their own satellite terminals. (Next year there will be geo-stationary satellites in orbit working in the $1-3 \mathrm{~cm}$ region.)

Built by Husband \& Co. and Markham \& Co. Ltd., the aerial is unusual because it has an offset Cassegrain configuration. The main parabolic reflector, which is 20 ft in diameter, can be considered as a piece cut out of the side of the reflector of a larger parabolic aerial. Hence the small hyperbolic sub-reflector is not within the beam of the main bowl. This means, for one thing, that the small reflector does not

The aerial on the roof of Birmingham University.

obstruct and scatter radiation passing into or out of the main bowl and, secondly, that it does not reflect local interference energy into the receiver.

The cabin can be rotated about the vertical axis to obtain azimuthal motion, while the main bowl support arm and small reflector can be turned about the slant axis, thereby rotating the aerial beam around a cone centred on the slant axis. In this way the beam, which has a width of 12 minutes of arc at lcm wavelength, can be aimed at any point above the horizon. An advantage of this design is that it reduces the length of waveguide required, and hence losses, from the aerial feed horn to the transmitter or receiver.

Digital position control is used, and for tracking communication satellites there will be an on-line digital computer with a "hill-climbing" optimising control programme.

At present no receiving or transmitting equipment is installed. The first experiments will use radiometers to map noise energy from natural and man-made sources.

The technology of music

Music is steadily becoming more closely linked with electronic engineering. Whenever a concert or other performance is broadcast or recorded a considerable burden of responsibility falls upon the sound engineer. Realizing this, the University of Surrey, is to start a "Tonmeister" course leading to B.Mus. (Tonmeister). For this course the music department will run in conjunction with the Department of Physics. The declared

A television remote controlled vehicle developed by the Communications
Division of America's National Aeronautics and Space Adm in istration. The vehicle simulates a lunar rover.

aim is to produce graduates who are fully competent in both the technical and artistic aspects of music reproduction. A Tonmeister must therefore be a musical, artistic personality having a well-trained musical ear as well as considerable technical knowledge, and he must be competent in handling microphones, mixers, recorders and other apparatus for sound reproduction. This course at the University of Surrey (Guildford) is due to begin in October of this year.

Experimental pacemaker

An experimental pacemaker which is powered by electrical energy generated by blood pressure now offers the hope that the thousands of people with pacemakers implanted in their bodies may avoid the need for periodic surgical battery changes. The new pacemaker was devised at Bell Laboratories and the New York Hospital-Cornell Medical Center. Much work remains to be done before the experimental pacemaker can be tested on humans. However, its feasibility has been demonstrated.

A pacemaker is an electronic "clock" about 2.5 inches in diameter which is usually implanted surgically beneath the skin below the shoulder. It produces about 70 electrical impulses a minute which travel down a long electrode wire inserted through a vein (such as the jugular vein) into the heart. These electrical impulses stimulate the heart.

The experimental pacemaker uses piezoelectric discs to convert variations in blood pressure into electricity. A small plastic tube is inserted through a vein into the right ventricle of the heart, following much the same path as the electrode in a conventional pacemaker. At the end of this tube inside the heart is a small 'balloon' filled with water. When the heart contracts and there is a change in blood pressure, the water is squeezed up the tube, producing a mechanical strain in the piezoelectric discs. The piezoelectric material converts the mechanical strain produced by the blood pressure into electricity, which is stored in a capacitor and used to run the pacemaker. Electrical impulses produced by the pacemaker travel down a pair of wires which are wrapped around the plastic tube.

Industrial information service

Information on the products, services and business structure of nearly 30,000 major U.K. companies is now offered by the Industrial Information Services conducted by Kompass Publishers Ltd., of R.A.C. House, Lansdowne Road, Croydon, RC9 2 HE . The source of this information is the computer memory bank used in the compilation of the 2 -volume U.K. Kompass Register. Any permutation from various categories of data stored in the

An historic moment of 50 years ago; Dame Nellie Melba making the first advertised broadcast in this country from an improved studio of the Marconi Works at Chelmsford. This event took place on the 15th June 1920 when Wireless World was about nine years old.
computer can be extracted and printed to customers' requirements, to provide a precise basis for marketing strategies or, in list or gummed label form, for direct mail operations. Cost of the service varies according to the amount of information required by the client.

Weather system for the Army

Under a $£ 3 \mathrm{M}$ Ministry of Defence contract GEC-Elliott Space and Weapons Division and Plessey are to manufacture an automated meteorological system for use by Army artillery sections. GEC-Elliott will be the prime contractor and will be responsible for the research and development required by the overall system and will supply all the data processing equipment. Plessey, as principal sub-contractors, will be the R\&D authority and supplier of the tracking radar and radiosonde subsystems.

The complete equipment is called AMETS (Automated METeorological System). It consists of an instrumentation vehicle containing the data processing equipment and a small trailer for the radar. Other vehicles would normally be employed as well to function as a command post, to carry stores and to carry out reconnaissance.

In operation a hydrogen filled balloon carrying a radar reflector and radiosonde, which transmits temperature measurements, is released. The computer, an Elliott 920 B , receives temperature measurements from the radiosonde, details of the balloon's position and rate of movement from the radar, a measurement of surface atmospheric pressure from the
instrumentation vehicle and average humidity figures from its own memory. These figures are fed into the memory prior to the operation and depend on the area in which the equipment is located.

From all this information the computer calculates and prints out the required meteorological message two minutes after the radiosonde balloon reaches the required height. Earlier methods needed far more equipment to be carried by the balloon and the subsequent calculations took about an hour.

I.E.E.T.E. have a good year

The Institution of Electrical and Electronics Technician Engineers report of the council and accounts for the year ended 31st March 1970 shows that the Institution made further progress and that membership had advanced to nearly 12,000 . With the setting up of the Northern Ireland Region in May, 1969, the Institution now has ten regional centres.

Radar network for Africa

An air traffic control and meteorological radar network, valued at more than $£ 1 \mathrm{M}$, has been ordered from Plessey Radar Limited by the Directorate of Civil Aviation for the East African Community. The network will cover most of East Africa and is part of the modernization programme currently being carried out to re-equip the airports and air traffic control system of Kenya, Tanzania and Uganda.

The hub of the new air traffic control system will be a central area control radar station equipped with an AR-5 long-range radar and an automatic secondary surveillance radar system. These radars will be used for surveillance and control between the three major airports of East Africa: Entebbe (Uganda), Nairobi (Kenya) and Dar-es-Salaam (Tanzania).

Under the contract Plessey will also supply three AR-1 medium-range terminal area radars for Entebbe, Dar-es-Salaam and the new Kilimanjaro international airport.

Audio Fair

An innovation at this year's London Audio \& Music Fair, which is again being held in Olympia (October 19-24), is the presentation of lecturedemonstrations and concerts in one of the halls four times each day. Full details are not yet available but Wireless World has undertaken to put on a series of lecture-demonstrations on the general theme of "what is fidelity in sound reproduction?" These will be given by well-known designers who have contributed to the journal. We hope, as far as possible, to use equipment described in Wireless World for the demonstrations. Further details of the lectures and the procedure for obtaining tickets will be announced as soon as they become available.

We understand from the organizers that over 75% of the available space in the exhibition has already been booked by 80 manufacturers and dealers. "Sound-proof" demonstration booths will again be constructed adjacent to the exhibition stands.

Computer talk

Bell Laboratories engineers in America have programmed a computer to convert printed English text into synthetic speech. Recent experiments take advantage of an improved understanding of speech patterns-the way people really use their language and tailor it to match their intended meaning. Bell researchers gave the computer mathematical approximations of the shapes and motions the human vocal tract assumes when uttering common sounds and sound sequences. They programmed the computer with a basic dictionary of word categories and definitions in digital form. Then they approximated, for computer storage, the complex rules of timing, pitch and stress which people use naturally in everyday conversation.

In the experiments passages are typed and sent to the computer from a

[^4]

Under a $£ 73.000$ contract International Aeradio has designed and built system control equipment for the control centre of Britain's military satellite system. Skynet, at Oakhanger, Hampshire. The photograph shows a module which forms part of the channel switching console.
keyboard. The computer analyses the sentence, assigns stress and timing to each word, and finds a phonetic description of each word from a dictionary stored in the computer's memory. Mathematical descriptions of vocal-tract motions are computed. These descriptions are used to generate electrical speech signals which may be heard over a loudspeaker or a telephone. The typed sentence also can be stored in the computer for later use.

An oscilloscope connected to the computer produces a line drawing of the model vocal tract, and displays the change in position of the throat, jaw, tongue, and lips as different sounds are produced. The oscilloscope display, though unnecessary for text-to-speech conversation, aids researchers in monitoring the performance of the system.

An exercise in circuit maximization

Do you use a sledgehammer to crack a walnut? A circuit recently released by Motorola appears to do just this. The circuit is intended to eliminate component damage in a flashing-lamp warning indicator due to current surges caused by the low cold resistance of lamps. It also prevents any damage due to short-circuits within the lamps.

The engineer who designed the circuit must have had his eyes on the sales figures for he used five transistors, two diodes, one zener diode, four two-input gates, twelve resistors and three capacitors. This did not include the two transistors, two capacitors and four resistors needed for a multivibrator to drive the circuit.

It may be that a single resistor could have been used to keep the lamps warm to offset the low cold resistance problem and a simple ring-of-two constant current circuit may have been enough to cope with lamp short-circuit problems. Never mind, perhaps the report was issued on April 1st.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Symmetry in class B

I have carefully read Mr. King's letter in the July issue (p.330), and I am sorry to have to say that I think his argument has gone astray.

The signal voltage V_{s} shown in Fig. 2 of my September 1969 letter (on earthed circuit) is not the same as Mr. King's V_{s}. As I thought I had made clear, V_{s} in my Fig. 2 is intended to represent the e.m.f. of the floating signal-voltage source, of internal resistance $R_{1}{ }^{*}$, connected between points P and Q in my Fig. 1. A further point is that though Mr. King descrioes his Fig. 1 circuit as a simplified version of my circuit, it omits the vital and fundamental detail of a connection via a large capacitor from point B to a tapping on the top resistor shown in his diagram.

Mr. King feels that I have lost sight of the wood for the trees, and suggests also that it is impossible to produce shunt

Fig. A.
feedback with one resistor earthed at one end. Consider. however, the accompanying Fig. A, ignoring for the moment the resistor shown in broken line. This circuit looks like an emitter follower, at first sight, but can hardly be properly regarded as such, since there is no negative feedback. The current source, I_{s}, feeding its current into R_{1}, produces a floating voltage source, of internal resistance R_{1}, connected directly between base and emitter, and the circuit functions as a simple common-emitter amplifier. Now consider the effect of connecting the broken-line resistor across the current source. As the value of the resistor is lowered, conditions tend more and more towards those of an ideal voltage-driven emitter follower, and feedback is thus increasingly introduced.

The same circuit as in Fig. A, redrawn with the transistor emitter earthed, is

[^5]

Fig. B.
shown in Fig. B, and it is now seen that the broken-line resistor can, indeed, be very properly regarded as a shunt feedback resistor.
Though circuit B is exactly equivalent to A, the circuits remain nearly enough equivalent, for many purposes, if the lower end of the current source, in circuit B , is earthed rather than taken to R_{L} as shown. I_{s} is so small, at least in the present context of audio output stages using transistor pairs, that it makes very little difference whether I_{s} itself is added to the much larger load current in R_{L} or not.

While attention has thus been focused on my letter of last September, I would like to take the opportunity to correct a genuine mistake, pointed out to me by Mr. I. J. Kampel, of Bournemouth. In the caption to my Fig. 5(b), curve 3 is said to apply to "Mr. Shaw's scheme". Unfortunately I had not noticed that, with the switch S in my Fig. 2 closed, putting a power diode in series with R_{3} does not exactly convert the circuit to Mr. Shaw's arrangement. To get the latter, one should add a 100 -ohm resistor (using my value) between the lower driver emitter and the junction of R_{2} and R_{3} (i.e. earth), the lower end of R_{1} also going to this latter point. With these matters attended to, the input current characteristic becomes more like curve 2, and is thus a good match to the curve for the upper, Darlington, pair. I must apologize to Mr. Shaw for any implication that his circuit has significantly inferior

Fig. C.
linearity to that given by my low-powerdiode scheme.

The connection of the 100 -ohm resistors to the junction of the 0.5 -ohm resistors, as Mr. Shaw does, is preferable, from the point of view of avoiding thermal runaway, to connecting them to the other ends of the $0.5-\mathrm{ohm}$ resistors, as in my circuit-though this consideration is of much reduced importance now that silicon power transistors have largely replaced germanium ones. Improved thermal stability can, however, also be obtained with the low-powerdiode type of circuit, by arranging it as in Fig. C. Note that, in either type of circuit, to preserve the utmost symmetry of behaviour, a third 0.5 -ohm resistor should be included at the bottom, as shown. Whether this small improvement is really worthwhile in practice, is, however, rather doubtful.
P. J. BaXANDALL,

Malvern,
Worcs.

Sonex '70 report criticized

It is always rather saddening to read opinionated drivel in a much-respected technical journal. Even more so, when it is factually inaccurate.

The author* of the smugly anonymous "report" on Sonex '70 in your June issue was either jaundiced by an outsize chip on his shoulder or otherwise coerced by commercial influences. I know of no other account of a technical exhibition which is opened with a discussion of the journey to the venue.

There follows a blistering attack on a handful of exhibitors and the remarks concerning the KEF demonstration imply a certain disregard of musical values. Now, it may interest you to know that the formula for that demonstration was evolved from a careful study of public preferences, following comments in the correspondence columns of a popular hi-fi magazine. As a result, KEF abandoned their previous demonstration format which used only two types of loudspeaker, and played a predominantly classical programme. Instead a very varied selection of shorter items was switched through all available speaker

[^6] Ed.
systems. The preparation of this demonstration took about 200 man-hours, and if your reviewer did not like the result, we are naturally sorry and he is, of course, entitled to say so. But he is not entitled to assume or imply thoughtlessness on our part.

The statements regarding acoustic isolation are seriously in error, because the transmission loss between adjacent rooms was more than 20 dB better than the hardboard cubicles used in Olympia in 1969. When annoyance was caused, it was usually attributable to abnormally loud playback and open casement windows which reflected the sound along the outside of the building. The shipbuilder surely cannot be blamed for a sinking if the skipper insists on sailing with the seacocks open.

In the closing stages of his article, your reviewer calls for standardized reproducing equipment. This is a wonderfully Utopian concept in which we look forward to a British standard amplifier prescribed by a newly formed Ministry of Home Entertainment. In practical terms, however, I very much doubt that such a development is either probable or even desirable.
RAYMOND E. COOKE,
Managing Director,
KEF Electronics Ltd.

Class AB amplifier

Mr. Linsley Hood is quite correct when he states that the operation of transistor output stages in class $A B$ can cause increased distortion, because of the change in the slope of the transfer characteristic around the crossover point. However, I fear that he is wrong in supposing that a low source impedance overcomes the problem.

Fig. 1 shows a test circuit which I constructed to measure the transfer characteristic of the output stage under various bias conditions and the results are shown in Fig. 2 for $200 \mathrm{~mA}, 20 \mathrm{~mA}$ and 0 mA . Note the prominent change in slope at 200 mA bias. In the test circuit the transistors are operated in the common emitter mode to enable the changes in the slope of the transfer characteristic to be seen more easily, but this does not alter the validity of the results since the effect of putting the load into the emitter circuit is only to provide local negative feedback. Under the same conditions a push-pull emitter follower using an output stage with the transfer characteristic of Fig. 2(b) will produce less distortion than a similar output stage with the transfer characteristic of Fig. 2(c).

To check this I constructed Mr. Linsley Hood's amplifier and measured the distortion at 200 mA and 20 mA bias current with a Marconi TF2330 wave analyser and TF2100/1M1 low-distortion oscillator. The results are shown in Fig. 3 and show clearly the improvement in distortion at intermediate output levels produced by the lower bias current. However, in spite of the excellent results obtained I would not advise constructors of this amplifier to use

a bias current as low as 20 mA as it tends to be rather unstable. A bias of 50 mA would be about the optimum and at this level there would still be a "hump" in the distortion curve but it would be smaller than at 200 mA bias and removed to a lower power level. I would also consider the use of a temperature compensating diode or transistor in the bias network strongly advisable, to minimize thermal variations.

Mr. Linsley Hood is also incorrect when he states that the emitter follower driver Tr_{3} presents the output transistors with a low source impedance. This would be true if it were not for the bootstrap capacitor which raises the effective value of the $6.8 \mathrm{k} \Omega$ load resistor in Tr_{2} collector to around $50 \mathrm{k} \Omega$. Thus the source impedance seen by the output transistors is about $1 \mathrm{k} \Omega$, i.e. about twice their input impedance with an 8Ω emitter load.

A further point concerns the current gain of the output transistors. The specified gain spread for the MJ481/MJ491 devices used is $30-200$ at 1 A . As only 40 mA is available from the driver stage the peak collector current with minimum gain devices is only 1.2 A . This corresponds to an output power of about 8 watts into 15Ω and 5 watts into 8Ω. To achieve the output power claimed by the author the output transistors need to have a minimum current gain of around 80 at 1 A . Perhaps the author could suggest alternative component values for those unfortunate enough to get low-gain transistors.

One last point. The author obviously attaches great importance to "squarewave transfer distortion" but he has not yet told us how he defines it. It is well known that any network, whether it be active or passive, that does not have a linear phase/ frequency characteristic will produce transient distortion of a square wave. Does the author consider that, for example,

Fig. 3.
Distortion
Versus output power for bias currents of 200 and 20 mA (load 8Ω, frequency 1 kHz).
an L-C filter with a sharp cut-off at 50 kHz would produce audible distortion? The ringing produced by such a filter would be very similar to that produced by an audio amplifier with a load of 15Ω and $2 \mu \mathrm{~F}$. D. S. GIBBS,

Bury,
Lancs
The author replies:
Mr. Gibbs' letter raises a number of interesting points, with some of which I concur. However, I regret that he has misunderstood the argument in some cases.

To take his points separately.

1. Optinlum quiescent current: The fact that there is an optimum value of quiescent current in a class B output stage for minimum harmonic distortion is well known and is not in dispute. This optimum current depends, among other things, on the current gain of the output transistors (or the product of the current gains if a Darlington pair or a similar output stage configuration is used) and, to a first approximation, the higher the effective current gain of the individual halves of the output stage the lower the optimum value of quiescent current. From the figures Mr. Gibbs quotes it would seem that the transistors he chose for this experiment had a high value of current gain.

However, this is not the point. I believe that the bulk of normal listening is done with output power levels which are of the order of only $50-250 \mathrm{~mW}$, only the very occasional transients demanding power levels in the 1-2 watt region. I also believe that it is advantageous for the amplifier to operate in true class A bias conditions for normal listening power levels, in that this avoids most of the ill-effects which can arise in class B, for example due to mismatched output .transistor characteristics. These ill-effects produce the bulk of the high order harmonic and intermodulation distortions which appear to be objectionable to the ear.

Therefore, the question is simply which output stage configuration will operate best overall, with a forward bias of say, 200 mA (this being chosen to allow class A operation up to 600 mW), 1.2 watts with 8-15 ohm loads. The simple complementary emitter follower combination appears to be the best one for this purpose.

The measurement of very low order harmonic distortion levels is difficult, and is influenced by such things as h.t. supply impedances, lead connections, etc. and I am grateful therefore to find that Mr. Gibbs' measurements confirm my own findings that such a design, with such an output stage and forward bias does not give rise to harmonic distortion levels in excess of 0.02%. My own subsequent measurements with a harmonic analyser show that the distortion produced in the 'hump' region is mainly 3rd harmonic, whereas the higher magnitude of distortion produced by a more conventional complementary Darlington pair biased to 200 mA , in a similar circuit, also contains more of these audibly objectionable higher order harmonics (see my Fig. A). Whether one has 0.015% or 0.005% t.h.d. is probably only of academic interest to the user.
2. Base-emitter impedance: For good high-frequency and transient performance it is desirable, I believe, that the impedance between base and emitter of the output transistors should be low. In the case of the class AB amplifier circuit, this condition is met by the 100Ω potentiometer, $400 \mu \mathrm{~F}$ combination connected between the bases of the two output stage transistors, since when one of these is cut-off the other is conducting and provides the necessary base-to-emitter return path. The use of a relatively high driver impedance is actually advantageous in minimizing harmonic distortion due to the transistor base impedance non-linearity.
3. Output power: The question of the range of current gains to be found with the MJ 481-491 series transistors has been raised before in different contexts in these columns. My own experience with quite a large number of these is that the lowest current gain encountered, at 1 A , is of the order of 75 , and most, in fact, lie in the 100-150 bracket. However, this is not really an important limitation under dynamic conditions, because the effect of the bootstrap connection to the emitter load of Tr_{3} allows adequate drive current even with low-gain transistors.
4. Audible effects of transient overshoots on reactive loads: My experimental findings are that there is an occasional audible difference between an amplifier whose

Fig. A.
Measurements of Class $A B$ amplifier with 200 mA quiescent current and 15 restive load. Second harmonic distortion below 0.01% was similar in both circuits.
stability under reactive load conditions is such that no overshoots are produced with a transient input and one which 'rings'. I do not think that this has anything to do with the nature of the h.f. response curve although it is evident that a 'ring' can be produced by a steep-cut low-pass filter. In the case of an audio amplifier driving a loudspeaker load, my own hypothesis is that some loudspeaker systems, under some dynamic conditions, can provide a negative reactive impedance, and this, however transitory, can exaggerate incipient reactive load instabilities present in the amplifier, and introduce spurious (and audible) waveform distortions.
I will take this opportunity of adding a personal note. In the original draft of my article, I walked into a philosophical boobytrap on the output power calculations, through overlooking the fact that current can flow both ways through the load. On subsequent consideration I became aware of this error, and the calculations shown in the Appendix 1 are correct. That part of the article relating to this-the last half of the third paragraph on page 322 -is however, in error. The values 1.2 W and 640 mW should be substituted for the 300 and 160 mW figures shown and the remaining 35 words of that paragraph deleted. I apologize to readers for this contradiction appearing in the text.

J. Linsley Hood.

Aerial noise

I wish to disagree with a statement made by your contributor P. G. Baker in the article "Aperiodic Loop Aerial" appearing in your May issue. He states, "The aerial output noise comes primarily from atmospheric and galactic sources hence the thermal noise introduced by the aerial radiation resistance is insignificant by comparison, provided the resistance is assumed to be at ambient temperature."

I suggest this conception is entirely erroneous. The noise temperature which can be allotted to a radiation resistance is that of the media to which it is coupled, the atmosphere and galaxy at the frequencies under discussion. Radiation resistance is not a physical resistance but a hypothetical one, generating no ohmic noise, but having a noise temperature due to its surrounding environment, which is usually considerably above earth ambient.

The only noise an aerial system can generate of itself, is that attributable to ohmic and dielectric losses in the aerial and feeder. As this noise contribution is of a considerably lower order than that resulting from external sources in the range up to approximately 30 MHz , it can usually be ignored for design purposes. Furthermore as external noise is of a higher order than receiver noise at these frequencies it will remain the limiting factor in signal resolution, even for aerials with relatively inefficient space coupling. H. F. Lewis,

Ealing.
London W.5.

WW-070 FOR FURTHER DETAILS

100 MHz Frequency Divider

Extend the range of your digital frequency meter to 100 MHz with this circuit which employs a tunnel diode and emitter-coupled logic

by D. R. Bowman, M.I.E.R.E.

A large number of digital frequency meters with a limited frequency range are in use in laboratories throughout the world and it is to extend the range of these instruments that the 100 MHz frequency divider described here has been developed.

The circuit consists of a wideband r.f. amplifier with gain extending from about 5 to 120 MHz followed by a very fast pulse squaring circuit which in turn feeds the logic divider stages as shown in Fig. 1.

At an early stage in the development it was decided to use integrated circuits wherever feasible. After a search of the literature it was decided to try the Motorola range of e.c.1.-2 (emitter coupled logic) for the frequency divider stages. To achieve the maximum toggle frequency from the JK flip flops the drive waveform must have rise and fall times each of equal to or less than 2 nsec . To achieve this performance it is necessary to use a tunnel diode in a waveform squaring circuit. The original intention was to divide the input frequency by ten (dotted Fig. 1) but this circuit was found to have a maximum frequency of operation of about 70 MHz . This frequency limiting is due to the low input impedance of the divide-by-five circuitry loading the first flip flop. The divide-by-ten instrument is somewhat cheaper than the 100 MHz divide-by- 100 design and may be constructed as an alternative. The maximum frequency of operation is obtained, and the maximum impedance is presented by the JK flip flops when they are connected as binary dividers. The 100 MHz , divide-by-100, design overcomes its frequency limiting problem by operating the first two stages as divide-by-two, followed by two divide-by-five sections.

Wideband amplifier

The tunnel diode pulse shaper requires a signal with an amplitude greater than 0.5 V to switch correctly. It was decided to design for a 10 mV sensitivity which dictates 40 dB of voltage gain for the amplifier. The use of voltage gain in this description can be justified as both the amplifier's input and output is terminated in 50Ω. The idea of using emitter coupled pairs with ferrite wideband coupling transformers originated from some earlier work carried out by the author*. The previous work demonstrated

[^7]the feasibility of u.h.f. amplifiers with very twide bandwidths. The requirement for the amplifier is a voltage gain of 40 dB with a bandwidth of 7 to 100 MHz .
Mullard manufacture a range of ferrite cores and it was decided to use type FX2249. These cores are small and exhibit very low losses up to at least 100 MHz . BFY90 transistors are used in the amplifier as they had been found to give repeatable results in this type of circuit. The minimum f_{T} value to be expected from BFY90 is in excess of $1,000 \mathrm{MHz}$. The emitter coupled circuit (Fig. 2) displays a very sharp limiting characteristic which gives the unit a very wide dynamic range.

The amplifier input is protected from damage that might be caused from large voltage swings by a silicon diode connected across the first emitter base junction. The
effect of this in conjunction with the base emitter diode of the first transistor is to limit the input signal to $\pm 0.5 \mathrm{~V}$. To maintain interstage stability it is essential to isolate each stage of amplification by using Filtercons to decouple the individual supply leads. Erie Filtercons consist of pi low-pass filter constructed by using two concentric ceramic capacitors separated by a ferrite bead threaded on the supply carrying wire. As the attenuation of these components is low at frequencies below 10 MHz it is necessary to bypass each one with a $0.1 \mu \mathrm{~F}$ dise ceramic capacitor. It is found that the emitter follower stages of each transistor pair, due to the high f_{T}, can under certain drive conditions generate spurious parasitic oscillations. This difficulty has been eliminated by reducing the Q factor of the collector stray inductance circuit. Connect-

Fig. 1. Block diagram of the divider. The section shown dotted will divide by a factor of ten and may be used instead of the full divide-by-100 circuitry, however the maximum operating frequency will be reduced to 70 MHz .

Fig. 2. Wideband amplifier circuit. The transformers are wound with 24 s.w.g. enamelled wire, primary three turns, secondary one turn.
ing small 10Ω resistors in series with the collector lead achieves this.

A second source of instability can occur in the stray inductance associated with the emitter circuit if the tail resistor has too high a resistance value.

The design of the ferrite transformers must take into account the performance at both ends of the frequency range. The l.f. performance depends upon the inductive reactance, stray effects only becoming important at the high frequency cut off of the transformer. These stray effects are mainly due to leakage inductance and lumped capacitance, both of which must be minimized to achieve the required h.f. performance. Leakage inductance is kept to a minimum by winding the primary and secondary of the transformer in very close proximity. The wire length per turn should also be as small as possible. The core used has two holes through which the primary and secondary should both be threaded. As each hole is common to both primary and secondary of the transformer, little increase in performance is gained by bifilar winding and, as this would be rather tricky, the author suggests that no attempt is made to twist the two windings together. The results achieved using a turns rario of $3: 1$ are shown in Fig. 3. It is seen that the frequency response of the terminated transformer is substantially constant over the range of 0.5 to 60 MHz rising to a peak at 125 MHz . This peak tends to compensate for the amplifier's reducing gain with frequency rise.

The amplifier's performance using two of these wideband transformers to interspace the two emitter coupled amplifier stages is shown in Fig. 4. The gain is constant within $\pm 3 \mathrm{~dB}$ over the range of 7 to 90 MHz . The graph shown in Fig. 5 indicates the instrument's performance and it can be seen that the signal required to drive the unit is never greater than 10 mV .

Pulse shaper

Following the amplifier is a common base connected stage (Fig. 6) whose purpose is to drive the tunnel diode pulse shaper

Fig. 3. Performance of the transformer wound on an FX2249 ferrite core.

Fig. 4. Wideband amplifier gain plotted against frequency.

Fig. 5. Minimum input signal plotted against frequency.

Fig. 6. Pulse amplifier. tunnel diode pulse shuper and first divide-by-fwo stage.

circuit. Tunnel diodes make very fast switches and can be expected to operate with rise times of anywhere from 100 to 2000 picoseconds. This time is mainly determined by the shunt capacitance of the diode together with the magnitude of the trigger pulse current. A pulse which raises the current through the tunnel diode to greater than the peak current will switch the device from its "on" to "off" state. If alternatively the pulse reduces the standing current to less than the valley current the diode will switch back to its "on" state. This process is clarified by studying the characteristic illustrated in Fig. 7. Diode switching time is defined as the period required for the voltage across the diode to rise from 10% to 90% of its maximum value.

This time t_{r} is derived as follows:

$$
t_{r}=\frac{\left(V_{p p}-V_{p}\right) C}{\left(I_{p}-I_{v}\right)} \sec
$$

where:
$C=$ the terminal valley-point capacitance. $V_{p p}=$ the positive voltage greater than V_{v} at which the static current I_{f} is equal to the peak-point forward current I_{p}
$V_{p}=$ peak-point voltage where $\mathrm{d} I_{\rho} / \mathrm{dV}=0$ for the first time.
$I_{p}=$ the peak-point current occurring with V_{p} above.
$I_{v}=$ valley-point current. The value of forward current I_{f} flowing at the second lowest positive voltage V at which $\mathrm{d} I_{f} / \mathrm{dV}=0$.
Therefore the rise time for the diode used
(R.C.A. type 40566) is as follows:

$$
\begin{aligned}
t_{r} & =\frac{(0.56-0.09) 15.10^{-12}}{(5-0.6) \cdot 10^{-3}} \mathrm{sec} \\
& =\frac{0.47 .15 .10^{-9}}{4.4} \approx 1.5 .10^{-9} \mathrm{sec} \\
t_{r} & =1.5 \mathrm{~ns}
\end{aligned}
$$

This time is well within the 2 ns required to drive the first logic stage.

Divider stages

Both the MCl 1013 and MCl 027 integrated circuits employed are from the Motorola high speed e.c.l.-2 family. The MCl 027 JK flip flop is guaranteed to toggle at frequencies up to 120 MHz although the author did experience some difficulty with this device above 100 MHz . The MC1013 toggled satisfactorily up to at least 85 MHz . These integrated circuits are intended for use with a negative 5.2 V supply and in the interest of maximum speed all unused input leads should be shorted to this line. A far simpler approach used by the author is to mount the dual-in-line devices on to copper laminated fibreglass board and by connecting the negative supply to earth all unused inputs can be simply soldered down to the earth plane. This does of course mean that $V_{c c}$ pin 14 must be used as the positive 5.2 V input terminal. This results in the logic input levels being referred to the $+5 \cdot 2 \mathrm{~V}$ line, but this difficulty is easily overcome by referring the tunnel diode pulse squaring network to the positive rail. It has been found that the integrated circuits
will operate quite satisfactorily with supply voltages anywhere between 3 and 6 V . The maximum toggle speed of 105 MHz is achieved by the author's unit with a +3.9 V supply.

The MC1027 and MCl013 devices are basically binary dividers and a form of feedback has to be employed to divide by five. The circuit of the counter is shown in Fig. 8. The output is taken from Q on IC_{7} giving a mark-space of $2: 3$ which will drive all digital frequency counters without any difficulty. A truth table for one divide-bytwo and one divide-by-five stage is given in table one. As the fanout of these logic blocks is adequate to drive a $2-\mathrm{ft}$ long coaxial cable leading to the associated counter the author
has not included a post divider amplifier The output pulse has an amplitude of at least 0.3 V peak-to-peak.

Performance

The top three traces shown in Fig. 9 are oscilloscope pictures depicting the tunnel diode switching waveforms appearing at the input to the first logic divide-by-two stage. The first trace has a frequency of 100 MHz (10 nsec per cycle). The switching time is very short, of the order of 2 nsec . The second and third traces show similar waveforms of 55 and 10 MHz respectively. These waveforms were displayed using a Tektronix sampling oscilloscope with an effective
bandwidth of 1 GHz . The lower three traces show the output waveforms associated with the previous logic drive traces. These were displayed on a Tektronix 545B oscilloscope. The unequal mark-to-space ratio of the output signal is evident in these last three photographs, but has no detrimental effect on the following counter.

The frequency divider has been used to extend the operating frequency range to 100 MHz of both a Racal SA535 and a Venner TSA6636/2 digital counter. The minimum frequency at which the unit will reliably divide is about 4 MHz . Over the design range of 10 to 100 MHz the sensitivity is never worse than 10 mV across a 50Ω input termination. As the total component

Table 1

state	IC	IC	IC	IC
0	1	2	3	4
1	0	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	1	1	0
6	0	1	1	0
7	1	0	0	1
8	0	0	0	1
9	1	0	0	0

Fig. 8. The logic circuit diagram. The first divide-by-two stage is on the pulse shaper circuit.

Fig. 9. Waveforms within the unit. The top waveforms are inputs to the divider and the lower traces are outputs.
cost of the instrument does not exceed $£ 20$ a considerable saving should be achieved as an equivalent performance commercial instrument is likely to cost upwards of $£ 120$.

Power supply

The power supply described here is a "universal" one based on a standard printed circuit board.* A version is described which will power the frequency divider, but the circuit can be used to supply any voltage from 3 to 30 V at up to 100 or 200 mA . If an "outboard" power transistor is employed the output current is increased to 3 A .
The basic circuit (Fig. 10a) consists of a differential transistor pair with one input tied to the stabilized supply output voltage with the other referred to a zener regulated reference voltage. The current flowing in the collector circuit of the zener diode stabilized transistor Tr_{2} is used to drive the series connected stabilizing device Tr_{1}. On no load I_{3} flows almost entirely through Tr_{3}, but as the load current increases I_{3} is divided between Tr_{2} and Tr_{3}. As the load is further increased I_{2} becomes progressively larger until $I_{2}=I_{3}$. At this point T_{3} refuses to supply any further current as its base voltage is tied by the zener diode Z and more current would mean an increase in the potential across R_{2}, thus further switching off Tr_{2}. At this point $V_{\text {out }}$ begins to drop and the zener diode loses control further reducing the output voltage until the supply finally switches off. The fold-back characteristic is shown by both Figs 11 and 12. The circuit's voltage stabilizing action can be explained as follows. Assume a small reduction in load voltage which will, though
*Available from A. C. Mansell, 46 Headley Rd, Woodley. Reading. Berks. Price 10s 6 d .
reduced in amplitude, be transferred to the base of $\boldsymbol{T r}_{3}$. This will produce a small reduction in the emitter current of $\boldsymbol{T r}_{3}$, and as R_{2} is common to both $T r_{2}$ and $T r_{3}$, the emitter current of the former will increase. This increment in I_{2} will produce a current β times as great in I_{1}, thus restoring the load voltage.

Performance

The prototype provided the following performance figures which are by no means the best that can be achieved: 0 to 100 mA regulation $>1 \%$; ripple voltage $<1 \mathrm{mV}$ r.m.s.; output impedance $<1 \Omega$. 0 to I A version, regulation $>1 \%$; ripple voltage $<3 \mathrm{mV}$ r.m.s.; output impedance $<0.2 \Omega$. The circuit of the power supply for the frequency divider is shown in Fig. 13 arid the layout is given in Fig. 14. It will be noticed that the common resistor R_{2} has been replaced by a potentiometer and a fixed resistor in series. Although not absolutely necessary it does allow the cut out current to be set accurately. The BD 123 power transistor can be expected to exhibit a current gain of at least two even at 30 MHz To avoid any suspicion of h.f. instability a limiting capacitor should be connected across the base to collector of $T r_{4}$. It will be found that the voltage control potentiometers R_{8} and R_{15} have an extended range which can be used to obtain best overall divider performance.

Design procedure for a power supply giving other voltages

If the power supply is to be used for other than the frequency divider then decide on the output voltage required and calculate the stabilizer input voltage (from trans-

Fig. 10. (a) power supply basic circuir, (b) modification to increase current outpur.

Fig. 11. Input and output characteristics of the power unit. $100 \mathrm{~mA}, 9 \mathrm{~V}$ version.

Fig. 12. Input output characteristics of 1 A output version.
former and full-wave rectifier) at no load and full load. Layout as in Fig. 15.

Example one

Full load current $I_{1}=100 \mathrm{~mA}$; cut-out current $=400 \mathrm{~mA}$.
Let $V_{\text {out }}=9 \mathrm{~V}$
Then choose $Z \simeq 2 / 3 V_{\text {out }}=6 \mathrm{~V}$
Assume $\operatorname{Tr}_{1} \beta=50$ (BFY50)
and $\operatorname{Tr}_{2}, \operatorname{Tr}_{3} \beta=100$ (2N3702)
Full load $I_{2}=I_{1} / T r_{1} \beta$

$$
=\left(100 \times 10^{-3}\right) / 50=2.10^{-3} \mathrm{~A}
$$

Maximum Tr_{2} base current

$$
\begin{aligned}
& =I_{2} / \operatorname{Tr}_{2} \beta \\
& =\left(2 \times 10^{-3}\right) / 100=0.02 .10^{-3} \mathrm{~A}
\end{aligned}
$$

The minimum zener current for good stabilization is about 1 mA :

Let zener current $I_{6}=2 \mathrm{~mA}$

$$
\begin{aligned}
R_{1} & =\left(V_{\text {out }}-V_{z}\right) / I_{6} \\
& =(9-6) / 2 \cdot 10^{-3}=1.5 \mathrm{k} \Omega
\end{aligned}
$$

Decide upon required cut out current:

$$
\begin{aligned}
I_{\max } & =400 \mathrm{~mA} \\
R_{2} & =\operatorname{Tr}_{1} \beta\left(V_{z}-0 \cdot 5\right) / I_{\max } \\
& =50(6-0 \cdot 5) / 0 \cdot 4=690 \Omega \\
I_{3} & =\left(V_{z}-0 \cdot 5\right) / R_{2} \\
& =(6-0 \cdot 5) / 690=8 \cdot 10^{-3} \mathrm{~A} \\
I_{4} & =I_{3} / T_{3} \beta \\
& =8 \cdot 10^{-3} / 100=80 \cdot 10^{-6} \mathrm{~A}
\end{aligned}
$$

If $\boldsymbol{T r}_{3}$ base voltage is to remain substantially constant then I_{5} must be at least twenty times I_{4}; let $I_{5}=2 \mathrm{~mA}$

$$
\begin{aligned}
& \text { Total divider } \\
& R V_{1}+R_{3}=V_{\text {out }} / I_{5} \\
& =9 / 2 \cdot 10^{-3}=4 \cdot 5 \mathrm{k} \Omega \\
& R V_{1}=2.5 \mathrm{k} \Omega \quad R_{3}=2.2 \mathrm{k} \Omega
\end{aligned}
$$

Under certain conditions this circuit will not switch on. To correct this deficiency R_{4} is connected across Tr_{1}. The value of R_{4} is dependent upon the load at the instant that the supply is switched on. If the value chosen is such that with Tr_{1} switched off the load is great enough to keep $V_{\text {out }}$ below about 1 V then the power supply will remain in a paralysed state. With $V_{\text {out }}$ less than $1 \vee T r_{2}$ and Tr_{3} will be cut off thereby starving Tr_{1} of base current and the only
 divider. i.e. 90Ω. Therefore assuming a linear related load at 1 V output:
Load current

$$
\begin{aligned}
& =1 V\left(R V_{1}+R_{3}\right)+\left(1 V . I_{1}\right) / V_{\text {out }} \\
& =1 / 2.10^{-3}+(1 \times 0.1) / 9=12.10^{-3} \mathrm{~A}
\end{aligned}
$$

Refer to Fig. II. For a load current of 12 mA the input unstabilized potential is 19 V
$R_{4}=\left(V_{\text {in }}-1\right) /$ Total load current
$=(19-1) / 12 \cdot 10^{-3}=1.5 \mathrm{k} \Omega$

Example two

Full load current $I_{1}=1$ A. Cut-out current $=2 \mathrm{~A}$.
$T r_{4}$ transistor type BD123, $\beta=20$
$R_{2}=\left[\left(V_{2}-0.5\right) T r_{1} \beta \times \operatorname{Tr}_{4} \beta\right] / I_{\text {max }}$

$$
=[(6-0.5) 50 \times 20] / 2=2.75 \mathrm{k} \Omega
$$

There is no need to alter the component values derived in the first example with the exception of removing R_{4} and installing R_{5} as shown in Fig. 10(b)

Full load current $=1 \mathrm{~A}$
At $V_{\text {out }}=1 \mathrm{~V}$
Load current

$$
\begin{aligned}
& =1 \mathrm{~V} /\left(R V_{1}+R_{3}\right)+\left(1 \mathrm{~V} \cdot I_{1}\right) / V_{\text {out }} \\
& =1 / 2.10^{-3}+(1+1) / 9=0.1115 \mathrm{~A}
\end{aligned}
$$

Refer to Fig. 12. Unstabilized input voltage is 17 V at a load current of 0.1 A .
$R_{5}(17-1) / T o t a l$ load current

$$
=16 / 0 \cdot 11=150 \Omega
$$

make $R_{5}=129 \Omega$

Note

$T r_{4}$ must be adequately heat sinked

REFERENCE

Bowman, D. R., " 600 MHz intermediate frequency amplifiers", Electronic Engineering, August 1970.

Fig. 14. Layout of power supply on standard board, frequency divider unit version.

Fig. 15. Layout of power supply for other purposes.

Transient Trinity

Walkabout with Fourier, Laplace and Cauchy

by Thomas Roddam

One of the oddest features of the world of electronics engineers is the reluctance of many of them to do any mathematics. In large companies this does not show up very much, because the jobs are carved up into neat segments and the basic analysis is done by men who never even look at a soldering iron. In small companies it is a very different story, and one hears tales of some very rum goings-on indeed. The great advantage of the theoretical approach is that it is so much easier and quicker. The problem is that more and more of the literature is devoted to the reporting of new and highly sophisticated techniques. Now you need to run as fast as you can and you still will not stay where you are. And if you weren't anywhere in particular to begin with you do not know which way to run.
In this group of articles I have tried to look at some of the basic ideas and to follow where they led me. By asking what a capacitor and an inductor actually do I found why we use sine waves and why the damped sine wave is the real basic signal in our world. This led on to the idea of roots, the set of labels which characterize every circuit. There remains one topic which must be explored. In an article on transient response I took what may be called a fundamentalist approach. Now it seems appropriate to see how the formal treatment of transient behaviour has evolved.

Fourier analysis is the basis for something we do every day. We test circuits with sine waves and we assume that the results are meaningful when applied to practical signals. Practical signals are rarely longsustained sine waves. The reasoning behind our behaviour is based on the Fourier series and on the principle of superposition. We start off by writing the series

$$
\begin{aligned}
& \frac{a_{0}}{2}+\left(a_{1} \cos x+b_{1} \sin x\right) \\
& \quad+\left(a_{2} \cos 2 x+b_{2} \sin 2 x\right)+\ldots \\
& \left(a_{n} \cos n x+b_{n} \sin n x\right)+\ldots
\end{aligned}
$$

It is assumed that the series converges uniformly when $0 \leqslant x \leqslant 2 \pi$. This amounts to saying that there are certain ground rules which must be obeyed, or the pure mathematicians will get you. What happens in a Cup Final, apart from a riot, if the ball bounces off a low-flying helicopter into the net? 1 haven't thought too much about this, but I do not think one can construct, with
real components, a non-convergent series signal. Strays will always save you. However, that's the rule, and if the function obeys it, it will converge uniformly for all values of x. It will also satisfy the equation:

$$
f(x)=f(x+2 \pi) .
$$

From this it follows that

$$
\begin{aligned}
& f(x+2 \pi)=f(x+4 \pi) \\
& f(x+4 \pi)=f(x+6 \pi)
\end{aligned}
$$

and so on. It is, in fact, a periodic function with a period of 2π. When we write $x=\omega t$, it is periodic in ω, and the period is $t=2 \pi / \omega$, or l / f.

In plain English, always dangerous in dealing with mathematical situations, a wave form which is periodic can be represented by a set of sine and cosine waves. The superposition principle says that if we have a linear system we can treat each of these separately and then add them up at the end. In a decent sound reproducing system you can take the signals from a number of instruments, apply them all to the input together, and you should still be able to tell the difference between a flute and a fiddle at the end. If the system is not linear each signal affects the progress of the others.

The mathematician shows us how to find the coefficients. We can write down $f(x)=a_{0} / 2+\left(a_{1} \cos x+b_{1} \sin x\right)$ etc., and multiply both sides by, say, $\cos n x$. This gives a rather long expression, containing terms of the forms

$$
\cos n x \sin m x, \cos n x \cos m x .
$$

Now either $m=n$ or $m \neq n$. If $m \neq n$ we can show that

$$
\begin{array}{r}
\quad \int_{0}^{2 \pi} \cos n x \sin m x d x=0 \\
\text { If } m=n, \quad \int_{0}^{2 \pi} \cos ^{2} n x=1 / \pi
\end{array}
$$

Applying this to the series we get, rather simply

$$
\int_{0}^{2 \pi} f(x) \cos n x d x=\pi a_{n}
$$

and a similar term with $\sin n x$ if we multiply through by $\sin n x$:

$$
\int_{0}^{2 \pi} f(x) \sin n x d x=\pi b_{n}
$$

Very often we can carry out the calcula-
tions using just a slide rule. One simple example is if we want to know how much third harmonic there is in a square wave. The function $f(x)$ is 1 for $0-\pi$ and -1 for $\pi-2 \pi$. The integral for the third harmonic is seen at once to be one-third of that for the fundamental.

What we said above was that we start with a series, and go on to call it $f(x)$. When we start with $f(x)$ we can write down a Fourier series. The rule is that $f(x)$ and $d f / d x$ must be, as they say, piecewise continuous. This does not mean it cannot have any jumps in either $f(x)$ or $d f / d x$. It really means it must not be all jumps. Anyone who has seen the news reports coming in by teleprinter knows the difference between the odd letter that went wrong and the whole paragraph of total confusion. At any jump it is assumed that as $f(x)$ jumps from f_{1} to f_{2} it touches down to make

$$
f\left(x_{0}\right)=\left(f_{1}+f_{2}\right) / 2
$$

The elegant form of Fourier is obtained by writing

$$
\cos n x+j \sin n x=\exp (j n x)
$$

Then

$$
f(x)=\sum_{n=-\infty}^{\infty} C_{n} \exp (j n x)
$$

with $C_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \exp (-j n x) d x$
Here n goes from $-\infty$ through 0 to $+\infty$. Suppose we have a non-periodic waveform of the kind shown by the heavy line in Fig. 1. We are, however, only interested in what happens during a limited time, evenly spaced round the mid-morning coffee-break at $t=0$. We begin to observe the function at $t=-\pi / \Omega$, and stop at $t=\pi / \Omega$. With a bland smile we say it could just be repeating the bit we have observed, for all we care. It could, in fact, be the wave-form $\delta(t)$. 1 am not going to write down the mathematics, which contains double integrals and is the sort of thing which discourages the reader. The thing is that by manipulating the solution one can arrive at a pair of equations:

$$
\begin{aligned}
& f(t)=\int_{-\infty}^{\infty} F(j \omega) \exp (j \omega t) d \omega \\
& F(j \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \exp (-j \omega t) d t
\end{aligned}
$$

This nicely balanced pair is called a pair of Fourier transforms, and it relates the whole time history of the waveform to an infinite range of frequency, both negative and positive frequencies, of course. We can get rid of the negative frequencies, which appear in order to fill in the phase angles, by writing

$$
\begin{aligned}
f_{1}(t) & =\frac{1}{2}[f(t)+f(-t)] \\
f_{2}(t) & =\frac{1}{2}[f(t)-f(-t)]
\end{aligned}
$$

and then

$$
\begin{aligned}
F(j \omega)= & \frac{1}{2 \pi} \int_{0}^{\infty} f_{1}(t) \cos \omega t d t \\
& -\frac{j}{2 \pi} \int_{0}^{\infty} f(t) \sin \omega t d t .
\end{aligned}
$$

There is a mate in which we find f_{1} and f_{2} with an integration of ω from 0 to ∞.

This continuous pattern is the Fourier Integral. To use it we assume that for the system with which we are concerned we know the frequency response in the form of the ratio of detected current to applied voltage for sinusoidal inputs at all frequencies: the frequency response, in fact. We write

$$
I(j \omega)=Y(j \omega) E(j \omega)
$$

Now we take some applied signal $f(t)$. We can find $E(j \omega)$ by means of the equation

$$
E(j \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \exp (-j \omega t) d t
$$

Multiply by $Y(j \omega)$ to get the solution $I(j \omega)$. Now write

$$
I(t)=\int_{-\infty}^{\infty} I(j \omega) \exp (j \omega t) d t
$$

and we know the time response to the input, expressed also as a time function.

It's a lot of work, it does not take account of initial conditions, and for a unit step there are convergence troubles. Heaviside did not worry about convergence, and although he usually got the right answer his contemporary mathematicians were so indignant about his informality that they refused to consider just why this was so. On the other hand he was not too fussy about the order in which he differentiated and integrated, which landed him in trouble with his initial conditions.
When we introduced the idea of complex frequency it became clear that the pure sine wave is really an oddity. Over the whole complex frequency plane there is just that one line on which there is neither damping nor growth. In a passive system there must be some loss: the frequencies must die away. Mathematical solutions are always easier if we can keep away from special situations:
reserve these for dealings on the Stock Exchange. The more elegant approach is the more realistic. First of all, we are in charge. Until we decide to switch on at $t=0$, the excitation $e(t)=0$. Secondly we write

$$
s=\alpha+j \omega
$$

We determine a function

$$
E(s)=\int_{0}^{\infty} e(t) \exp (-s t) d t .
$$

This is almost the same as we had before, but now we have put $\alpha+j \omega$ where he had $j \omega$, and we drop the integration from $-\infty$ to 0 because $e(t)$ is zero before $t=0$. Also the $1 / 2 \pi$ is omitted. This is written as

$$
E(s)=\mathscr{L}[e(t)]
$$

and is called the Laplace transform of $e(t)$. The use of the complex frequency makes it possible to control the convergence of the integral. Obviously one can work the other way round, and in quite a few reference books you will find tables of Laplace transforms. I have picked out a few only:

$$
\begin{array}{cc}
f(t) & \mathscr{L}[f(t)] \\
\varepsilon^{-a t} & \frac{1}{s+\alpha} \\
t \varepsilon^{-a t} & \frac{1}{(s+\alpha)^{2}} \\
\frac{1}{a-b}\left(\varepsilon^{-b t}-\varepsilon^{-a t}\right) & \frac{1}{(s+a)(s+b)} \\
\frac{1}{b} \varepsilon^{-a t} \sin b t & \frac{1}{(s+a)^{2}+b^{2}} \\
\sin \omega t & \frac{\omega}{s^{2}+\omega^{2}} \\
\cos \omega t & \frac{s}{s^{2}+\omega^{2}} \\
\text { Unit step } & \frac{1}{s} \\
\left(\varepsilon^{-a t} \text { as } \alpha \rightarrow 0\right) &
\end{array}
$$

Without going into too much detail, suppose that we apply a signal $e(t)$ to an $L C R$ circuit. We can write, and initial charge is neglected,

$$
\begin{aligned}
E(s) & =I(s)\left(s L+R+\frac{1}{s C}\right) \\
\text { and } \quad E(s) & =\mathscr{L}[e(t)]
\end{aligned}
$$

If $e(t)$ is, say, I volt of d.c. switched in at $t=0$

$$
\begin{aligned}
E(s) & =1 / s \quad \text { and so } \\
I(s) & =\frac{1}{s} \frac{s}{s^{2}+(R / L) s+1 / L C} \cdot \frac{1}{L C}
\end{aligned}
$$

Fig. 1. Non-periodic waveform (heavy line) of which part under observation, $-\pi / \Omega$ to π / Ω, could belong to a periodic waveform.

Fig. 2. Only on the ω axis is there a pure simusoid.

$$
=\frac{1}{L C} \cdot \frac{1}{s^{2}+(R / L) s+1 / L C}
$$

If we extract the roots of

$$
s^{2}+(R / L) s+1 / L C=0
$$

we find that we have either

$$
\frac{1}{(s+a)(s+b)} \text { or } \frac{1}{(s+a)^{2}+b^{2}}
$$

Now we transform back to get

$$
\begin{aligned}
i(t)= & \text { either } \kappa(\exp (-b t)-\exp (-a t)) \\
& \text { or } \kappa \exp (-a t) \sin b t
\end{aligned}
$$

Not much gained over a formal full analysis, you may think. But if there are a lot of roots it becomes rather easier this way. You find the roots and then break the whole thing up into separate functions which are transformable. This is simpler in practice because it is a routine and can be performed without thinking about decisions. There are many situations in which the advantages show up even more strongly. If you are studying the transient behaviour of filters you will have designed your filter in terms of its roots: you know the roots, not the frequency response, function-wise, that is. Of course your tables relate one to the other. But you are half-way towards this approach as soon as you decide between Tchebycheff and Butterworth. Active systems which are being handled by the root locus method are also easily studied to see how transient response changes as the roots are moved about.

Another important feature of the Laplace transform must be considered. We have seen that it enables us to dodge backwards and forwards between responses on the time axis and responses in the complex frequency plane. The mathematics is quite rigorous and has nothing to do with what we call the symbols. The reason for using rigorous mathematics is simply that it is easier, as you do not need to check up. Non-rigorous mathematics is like work ing out $2 \times 2=3.99$ on the slide-rule: you need to keep thinking. We can give the symbols different names, provided the basic equations are suitable. One such pair of names can be found in the design of aerial systems. I am not going into any detail, but a uniformly illuminated slot transforms, just as an ideal low-pass filter does, into a $(\sin x / x)$ response. Instead of the ringing of the time response we have the side-lobes of the space response. Just
as we can shape the frequency response to reduce ring, so we shape the illumination to reduce side-lobes. The advantages are tremendous. Measurements on a practical aerial must be carried out in the open on a wet and windy day. This is an observed fact, lacking theoretical justification. Mathematics is an indoor sport. It is also a set of general-purpose tools

The search for flexibility goes one stage further. At first it looks as though it took one step back. The Laplace transformation equation can be written as

$$
F(s)=\int_{0}^{\infty} f(t) \exp (-s t) d t
$$

and the rule is that $f(t)=0$ if $t<0$. It will not matter, therefore, if we change the integration limits and take

$$
F(s)=\int_{-\infty}^{\infty} f(t) \exp (-s t) d t
$$

Next we fix α at α_{1} into expression $s=\alpha+j \omega$, and we call this version of F

$$
\begin{gathered}
F^{\prime}(s)=\int_{-\infty}^{\infty}\left[f(t) \exp \left(-\alpha_{1} t\right)\right] \\
\exp (-j \omega t) d t
\end{gathered}
$$

Compare this with the Fourier form

$$
F(j \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \exp (-j \omega t) d t
$$

The $1 / 2 \pi$ factor is simply the result of the pure mathematician's taking over. The inverse equation gives us

$$
\begin{array}{r}
f(t) \exp \left(-\alpha_{1}{ }^{t}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F^{\prime}(j \omega) \\
\quad \exp (j \omega t) d \omega
\end{array}
$$

We are allowed to move the $\exp \left(-\alpha_{1} t\right)$ term, because we are integrating with $d w$, and so

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F^{\prime}(j \omega) \exp \left(\alpha_{1}+j \omega\right) t d \omega
$$

Finally we change variables, putting back $s=\alpha_{1}+j \omega$, and thus

$$
d s=j d \omega \quad d \omega=(1 / j) d s
$$

We emerge with

$$
f(t)=\frac{1}{2 \pi j} \int_{\alpha_{1}-j \infty}^{\alpha_{1}+j \infty} F(s) \exp (s t) d s
$$

Fig. 3. The integration path for

$$
f(t)=\frac{1}{2 \pi j} \int_{\alpha_{1}-j \infty}^{\alpha_{1}+j \infty} F(s) \exp (s) d s
$$

Fig. 4. At every point $f(z)=f(x+j y)$ is analytic and single-valued. Then $f(z) d z=0$ as you go round from P back to P.

Fig. 5. Three-dimensional view of a function which, even if you smooth out the steps, is not analytic.

A good many readers will have regarded all this as a pretty complicated ritual. The object of going through the formatity is to have this last expression to talk about, and to help to identify the fuller treatment you can find in the textbooks. In the expression above we integrate along the line shown in Fig. 3. For each value of s we work out $F(s) \exp (s t)$, multiply by $d s$ and sum. We choose α^{1} to have a value which makes this a meaningful procedure. But are we any better off.

At this point we introduce one of those odd bits of mathematics which crop up all over. This is Cauchy's Theorem. This says that if you integrate round a contour, and if, in formal language, the function is analytic and single-valued everywhere inside and on the contour,

$$
\int_{C} f(z) d z=0
$$

Another bare diagram, Fig. 4. If you walk to work and back by a different route, without falling through an open man-hole, you finish up at the same height above sealevel. If you cycle it does not feel like this, and if you find a function like Fig. 5 you know it can't be analytic, even if steps are replaced by a ramp.

Cauchy's theorem, simple as it looks, is tremendously important in the theory of the complex variable - in our case the theory of complex frequencies. In consequence it must be proved with the utmost vigour and the proof is not too easy. We shall not bother with it here. What we want is this result that if you walk round a perimeter and there is nothing odd going on inside it you get back to where you started.

We were integrating along the line $s=\alpha_{1}$. If we close the ends by a semi-circle joining ω_{1} to $-\omega_{1}$ and integrate round the
whole loop, Cauchy's theorem tells us that if there are no poles inside the area the integral will be zero. We choose α_{1} to make sure that this is true. This integration round the right-hand semi-circle is used for the response when $t \leqslant 0$. When the radius of the semi-circle is allowed to approach infinity, the integral along the semi-circle is also zero. This last statement is also true for integration along the semi-circle to the left, which we shall follow for $t \geqslant 0$. Now, however, the integral round the contour is no longer zero. Inside the contour there are poles, as we see in Fig. 7. Again the integral is zero round the semi-circle, when it is big enough, but the integral we really want is still left.

First of all, what can we do to make use of the properties of the contour integral? In Fig. 8 we see a pole, P, and a biggish circular contour round it. At $A B$ we snip the contour and go off from B down to C, round the small circle to D, and then back to A. The pole is no longer inside this new contour and so the integral round it must be zero. $B C$ and $D A$ are very close together, and the integrals along these bits cancel out. The integral round the full big circle must therefore equal the integral round the small circle. We can do this with each pole, and we finish up by having small circles round the poles and zero for the rest of the contour integral.

We need to know a specific contour integral,

$$
\int_{C} z^{m-1} d z
$$

Fig. 6. Closing the pait C_{1} with a semicircle C_{2}.

Fig. 7. Inside this contour are poles. Here be singularities.

Fig. 8. Isolating a pole.

For $m \neq 0$ this is zero, but if $m=0$,

$$
\begin{gathered}
\int_{c} \frac{d z}{z}=2 \pi j \\
\text { and equally } \int_{c} \frac{d z}{z-a}=2 \pi j
\end{gathered}
$$

We have embarked on what is called the calculus of residues. Suppose that we have a double pole at $s=-a$. This means that $F(s)$ contains a term $A /(s+a)^{2}$. The function we are integrating is then $\exp (s t) /(s+a)^{2}$, and we turn this into a series for values of $s \simeq a$:

$$
\begin{aligned}
\frac{\exp (s t)}{(s+a)^{2}}= & \frac{a_{-2}(t)}{(s+a)^{2}}+\frac{a_{-1}(t)}{s+a} \\
& +a_{0}(t)+\text { terms in }(s+a)^{n}
\end{aligned}
$$

The residue of the function at $s=-a$ is $a_{-1}(t)$. This means that

$$
\int_{C} A \exp (s t) /(s+a)^{2} \cdot d s=a_{-1}(t) \times 2 \pi j
$$

To make life easier, we have an expression for the residue:

$$
a_{-1}(t)=\frac{1}{n-1} \cdot \frac{d^{n-1}}{d s^{n-1}} \cdot \exp (s t)
$$

$$
\text { with } s=-a
$$

For $n=2 \quad a_{-1}(t)=t \exp (-a t)$.

$$
f(t)=A t \exp (-a t)
$$

The prospect of being hanged in a fortnight concentrates a man's mind wonderfully. This article is not a "how to fix your own operational calculus", but a "what's it all about". We begin with a network, a system, and we want to know how it behaves with real signals. The sine wave is a nice simple signal and so we try to build up our real signal with pure sine waves. On paper it is quite satisfactory. We call it Fourier analysis, and go gaily ahead until some awkward details appear. All the mathematics is based in eternity. We switched on yesterday and may not switch off tomorrow. If we get an infinite of circuit, a pole on the $j \omega$ axis, we can't be too sure what to do.

The mathematics is manipulated to make it more clearly defined, and to allow us to start up today, at $t=0$. The frequencies we use are still on a line, but we can move it sideways to dodge trouble. We hardly know we have done this, because we can choose any line to the right of a critical one, and our choice disappears anyway in the table of Laplace transforms.

To widen our scope we consider what happens with every possible complex frequency, varying both α and ω. Cauchy's theorem leads us on to the conclusion that now we need only look at the poles themselves. The broadest possible input signal concentrates attention on the minimum number of points. All we need is a table of residues:

Nyquist's criterion in feedback amplifier theory, especially when dealing with conditional stability. This leads on to the rules for dealing with negative resistance circuits. Like sodium glutenate, Cauchy's theorem seems to be in everything nowadays.

Some engineers seem to consider mathematics as too detached from real work. It is quite profitable, even for the so-called

$\exp s t / s$	$\exp s t / s^{2}$	$\exp s t /(s+a)$	$\exp s t /(s+a)^{2}$
Residue	1	t	$\exp (-a t)$
$t \exp (-a t)$			

and we can work out the transient response. The hard work comes in getting to grips with the procedure, once and for all. It is true to say that solving problems this way is cheaper by the dozen.

Cauchy's theorem can be extended to deal with contours which go round a given point several times, and which include poles and zeros. This is the theoretical basis for
practical man, to get some idea of these theoretical techniques. Even if you are going to look at the responses on an oscilloscope, a knowledge of the underlying theory will save an awful lot of wasted effort by suggesting which way to vary components to get the cut-and-try answer. Who knows, in the end you may realize that it's easier to do the job properly from the beginning.

Announcements

The Electrical Research Association's Circuit Design Department has initiated a return-of-post information service on techniques and components. A consultancy service is also available to clients who wish to discuss specific design and application problems. All enquiries should be addressed to Colin Ray, Design Information Engineer, E.R.A., Cleeve Road, Leatherhead, Surrey.

Centralab Lid, of Co. Antrim, Northern Ireland, jointly owned by Joseph Lucas (Industries) Lid and Globe Union Inc. of Milwaukee. U.S.A., has acquired the whole of the issued capital of Stability $\mathbf{R a d i o}$ Components Ltd and its subsidiary Stability Capacitors, of Basildon, Essex, at a price of approximately $£ 727,000$.

Pye have relinquished the Ferranti trade mark for radio and television products. and the right to use the name has been returned to Ferranti Ltd, of Manchester.

Tele-Nova Ltd, a company in the Shipton Automation Group, have signed a further agreement with Hasler Lid, in Berne, Switzerland, for the sale in the U.K. and Eire of Hasler radio staff location systems.

The Telephone Manufacturing Co. Ltd has been appointed sole marketing agent in the U.K. for the range of switch and light units manufactured by the Dialight Corporation, of America.

An agreement has been signed between Cossor Electronics Ltd, of Harlow, Essex, and the Raytheon Service Company, of Massachusetts, to market the full range of Cossor oscilloscopes in the United States.

Guest International Ltd announce that Best and Raynor have ceased to act as their distributors. Full stocks are still being held by the company's other distributors: GDS (Sales) Lid., G.S.P.K. Lid., and E.C.S. (Windsor) Ltd.

Daystrom Ltd, of Gloucester, manufacturers of the Heathkit range of products, have changed the name of the company to Heath (Gloucester) Ltd.

The former range of Dansette and Perdio record reproducers, radiograms and audio equipment is now being manufactured and marketed under the trade name of "Tonesta". Electro-Impex, of 4 Carlisle Avenue, London E.C.3, have been appointed by Tonesta Lid as the sole selling agents for the U.K. and all overseas markets.

The Electrotech Instrument Division of Coutant Electronics Ltd has been acquired by Instant Starter Engineering Co. Lid. The division has been formed into a new limited company, Exel Electronics Ltd, and becomes a wholly owned subsidiary of I.S.E.

EMI is to acquire all the shares of Recording Designs Lid, of Camberley, Surrey, who specialize in magnetic tape data storage equipment for military and commercial use.

Sprague factory in Scotland: Sprague Electric Company, of Massachusetts, U.S.A., is to build a factory in Galashiels, initially to produce aluminium electrolytic capacitors. The company hopes to have the factory ready for occupancy by the autumn.

Tektronix UK Ltd has opened regional offices and a repair and recalibration centre at Beaverton House, 181A Mauldeth Road, Manchester 19. (Tel: 06 1-224 0446.)

The U.K. sales office of EMI-Varian Ltd has moved from Walton-on-Thames to the head office and factory site at Blyth Road. Hayes, Middx. (Tel: 01-573 5555.)

Mullard Ltd are to build a second factory for the production of television picture tubes at Belmont, near Durham.

2. Delay tubes, storage devices, quartz thread, ceramic piezoelectric delay lines. . . .

by H. D. Harwood, b.Sc.

Last month's article on ways of producing time delays was devoted to all-pass electric circuits and ultrasonic methods. This month we start by looking at delay tubes.

Acoustic delay tubes

This is the oldest form of time delay but it still finds occasional use because of the large values possible. The velocity of sound in a tube is similar to that in free air, namely 340 metres per second at $20^{\circ} \mathrm{C}$. In narrow tubes a certain amount of dispersion takes place but attenuation at high frequencies usually limits the use of such a tube before dispersion becomes serious. The amplitude at a distance x is given by:

$$
A=A_{0}^{-a x}
$$

where A_{0} is the amplitude at the beginning of the tube,

$$
\alpha=\frac{\gamma^{\prime}}{R c} \quad \frac{\omega}{2 P}
$$

R is the radius of the tube in cm ,
c is the velocity of sound in cm / s,
$\omega=2 \pi f$,
$f=$ frequency in hertz
$P=$ density in $\mathrm{gm} / \mathrm{cm}^{3}$
$\gamma^{\prime}=1+1.58\left(\gamma^{\frac{4}{5}}-\gamma^{-\frac{1}{2}}\right)$,
and $\gamma=$ the ratio of specific heats.
The maximum level is dictated by nonlinearity effect in the air in the tube; distortion in a uniform tube is proportional to the length. The maximum length is determined by attenuation at high frequencies which leads to poor signal-to-noise ratio in the receiving microphone. As can be seen from the formula given above, attenuation is inversely proportional to the tube diameter but this cannot be increased beyond the point at which radial modes of resonance occur in the pipe with a consequent change in the characteristic impedance and production of serious echoes. The maximum diameter can be used is thus found in practice to be about 25 mm .

The termination of the tube is formed by means of graduated lengths of wool forming, in effect, a tapered absorber. Reflections are mainly troublesome in the middle frequency band as absorption at the bass is very good and air attenuation at high frequencies rapidly reduces any reflected wave. It is possible to improve the signal/
noise ratio at high frequencies by inserting the receiving microphone in the end of the tube and constructing the termination at right angles to it. At low and medium frequencies the sound turns the corner and is absorbed by the termination, whilst at high frequencies the inertance of the bend is too great and the sound is reflected from the microphone giving a rise in pressure of 6 dB . The reflected sound is heavily attenuated by the tube and does not cause any trouble from echoes.

In practice, the tube is usually coiled into a helix to conserve space. Delays of up to 100 ms are feasible over the audio band.

Applications are for artificial reverberation ${ }^{18}$ and for delaying the onset of added reverberation to give the impression of a larger echo room.

Storage devices

Storage devices differ from the preceding delay lines in that no inherent velocity of propagation is involved, the storage being a static effect. Various storage media have been proposed including homogeneous surfaces such as phosphors, magnetic tape, and electrostatic storage surfaces. However, the amount of energy associated with information stored by such means tends to be low with a result that the signal to noise ratio of the delayed signal is marginal by the best broadcasting standards. They share the advantage however that quite long delay times may be achieved, adequate for television field storage purposes. Discrete storage elements such as capacitors or inductors are able to store much larger quantities of energy and hence provide a better signal-to-noise ratio, but require individual switching and hence rather involved circuitry to handle the very large number of programme samples which would have to be stored for the delay period in any programme application. Furthermore, owing to the large number of picture elements it is not practicable to store a picture field and only a line store is convenient at present. A store of each type will now be described.

Storage on cathode ray tube phosphors: The storage of information on the phosphor of a cathode-ray tube dates back to the first computer stores. The total amount of information which could be stored by this
means, however, was small and the method is no longer used for this purpose.

It is however still useful for converting television pictures from one field rate to another. In this type of standards converter ${ }^{19}$ the usual procedure is to display the picture on tube and photgraph it using a television camera. Ideally in order to avoid a variation of picture brightness due to the difference in the number of fields per second the display tube should maintain constant brightness until one frame has been photographed and is replaced by the next. Unfortunately tubes of this type are unable to satisfy other requirements of standards conversion and phosphors with a finite decay time must be employed. A phosphor having an afterglow of about 9 ms gives the best compromise between the blurring of moving objects and gain due to the decay of picture brightness.

Magnetic recording devices: When a signal is recorded on a magnetic tape the record is permanent and can therefore be reproduced afterwards without any change of signal-tonoise ratio, reduction in bandwidth or echo due to the magnitude of the delay: long delays can therefore be obtained without any difficulty. The shortest absolute delays on a single track are determined by the minimum spacing between the recording and reproducing heads and by the tape speed. Shorter (relative) delays can be obtained by using two tracks and arranging the head spacing so that the difference between them corresponds to the desired delay. For very short delays however tape is not a very suitable medium as it is not sufficiently homogeneous; variations in thickness and elasticity causing variations in tape stretch and hence delay. The effects of wow and flutter also become important. For example, with a delay of $200 \mu \mathrm{~s}$ at a tape speed of $38.1 \mathrm{~cm} / \mathrm{s}(15 \mathrm{in} / \mathrm{s})$ the difference between the spacing of the reproduce heads, for an in-line record head, would be 0.075 mm (0.003 in) and this would have to be maintained to a high degree of precision. This is very difficult and for accurate short delays it is necessary to use a drum with magnetic coating instead of a tape. In this case the heads are used out of contact with the recording medium, and a frequency modulation system is employed to overcome the consequent loss in signal-to-noise ratio and the effects of wow and flutter.

In autocorrelation it is necessary to be able to vary a time delay continuously over a wide range and magnetic recording lends itself admirably to this purpose. As used in B.B.C. Research Department ${ }^{20}$, for example, in measuring the sound insulation between two rooms, a smooth variation in delay between 100 ms and 250μ s is required and this is obtained with a two track tape system.

Further applications are in ambiophony ${ }^{21}$ for delaying added reverberation to give the impression of a larger echo room and in an artificial reverberation machine ${ }^{18}$.

Line store using capacitors: In the capacitor line store the storage takes place in a group of capacitors which is approximately equal in number to that of the picture elements capable of existing in a line of the television picture. A different capacitor is connected to the incoming video signal during each picture element by a system of electronic switches and each capacitor is thus charged to a potential proportional to the amplitude of the input signal at the time of its connection. At the end of one line period all the capacitors have thus been charged and this information may be subsequently read out at any required time.

When used in a line store converter, the number of storage elements is theoretically twice the number of line harmonics which lie within the video bandwidth as phase and magnitude must each be taken into account.

After allowing for the fact that the position of the line occupied by blanking needs no storage, for practical filter design, the number used is 576 . A similar number of input and output switches are therefore required.

The requirements for the switches are quite stringent, timing errors and those due to a potential difference between switches can both cause visible defects in the picture and should be below 5 ns for the former and -49 dB in the latter case. In addition, crosstalk due to resistance coupling must be held below -45 dB and that due to capacitive coupling below -16 dB .

The time constant of capacitor plus switch should exceed 10 ms if leakage is not to be a serious factor at 3 MHz . It is evident from these considerations that the design of appropriate switching is a major problem.

The size of a capacitor store of this type is about that of an enclosed bay and with the associated switching the cost is necessarily high and is about $£ 10,000$.

The main use for a store of this kind is in standard converters from 625 to 405 -line and vice versa. A suggestion has also been made ${ }^{22}$ that it could be used to synchronize two pictures when the timing error is less than one line and also to remove timing errors from the output of a video tape recorder.

Although reflections are not present in this type of delay, other sources of defects have been indicated. In practice these are

$$
10 \mathrm{~ns} 100 \quad 1 \mu 5 \quad 10 \quad 100 \mu \mathrm{~s} \text { ims } 10 \mathrm{~ms} 100 \text { is } 10 \mathrm{~s} \text { Time scole }
$$

(a)	Cooxial cable $-\longmapsto$ O to 100 ns
(b)	L.C. circuits -5 nons to $10 \mu \mathrm{~s}$
(c)	Special delay cable - 0 to $50 \mu \mathrm{~s}$
(d)	Ceramic piezoelectric delay lines. Line store using capocitors \qquad 100 ns to $100 \mu \mathrm{~s}$
(e)	Mercury ultrosonic delay $-\longmapsto 10 \mu s$ to 1 ms
(t)	Glass and quartz Dlocks $-10 \mu \mathrm{~s}$ to 4 ms
(g)	Ulțrosonic wire - $10 \mu \mathrm{~s}$ to 10 ms
(h)	Phosphor on c.r.t. - $1 \mu \mathrm{~s}$ to 20 ms
(i)	Transverse vibrotlon of wire $-\downarrow 100 \mu s$ to 100 ms
(j)	Mognetic tope -r_ 100μ s to 25 or more
(k)	Storage devices $-\square 10 \mu$ to 2 s

Summary of time delays and performance. (a) Coaxial cable-0 to 100 ns -cheap, low echo level, bulky for longer delays. (b) $L C$ circuits- 50 ns to $10 \mu \mathrm{~s}$-medium price, low echo level, compact, can easily be made to exact delay, variable length available. (c) Special delay cable-0 to $50 \mu \mathrm{~s}$-cheap, echoes can be troublesome, matching amplifiers needed. (d) Ceramic piezoelectric delay lines- 100 ns to $100 \mu \mathrm{~s}$ cheap fixed delays. Line store using capacitors- 100 ns to $100 \mu s$-very expensive, delay fixed. (e) Mercury ultrasonic delay- $10 \mu \mathrm{~s}$ to 1 ms -expensive but easy method of obtaining variable delay over wide bandwidth, associated equipment needed, echoes fairly low. (f) Glass and quartz blocks $-10 \mu \mathrm{~s}$ to 4 ms -expensive but only means of oblaining long delays over wide bandwidth. Associated equipment needed, echoes low, generally fixed delay. (g) Ultrasonic wire $-10 \mu \mathrm{~s}$ to $10 \mathrm{~ms}-$ medium price, medium bandwidth, high echo level, adjustable. Greater delays and bandwidths may be possible using quartz thread. (h) Phosphor on c.r.t. - I $\mu \mathrm{s}$ to 20 ms -expensive as associated equipment required, no definite cut-off so blurring of moving images occurs.
(i) Transverse vibration of wire- $100 \mu \mathrm{~s}$ to 100 ms -cheap but would require development. Adjustable. (j) Magnetic tape- $100 \mu \mathrm{~s}$ to 2 s or more-medium price for af., expensive for TV. Adjustable delay. (k) Storage devices- $10 \mu \mathrm{~s}$ to $2 s$-theoretically infinite delay, expensive, no echoes; extensive associated equipment needed.
made so small as to be invisible in converting a 625 -line picture to 405 -line but are. just visible when conversion the other way round is effected.

Other possible developments

Quartz thread: This is an extension of the wire delay line already discussed. One of the limiting factors of wire delay lines is that, as the attenuation is proportional to f^{4}, the high frequency range is limited. It has been suggested by R. E. Davies and G. D. Monteath and others that the wire should be replaced by a quartz thread. With this material the losses are proportional to f^{2} as there are no crystal boundaries to reflect the torsional waves. A line would have to be only about 0.5 mm in diameter to pass 10 MHz without the appearance of high order modes of transmission and it would be difficult to use piezoelectric transducers or normal magneto-striction drives. There is the possibility of using a short length of nickel wire as a Wideman form of transducer or of using coils of the Scarratt and Naylor type. If difficulty is found in making the coils as short as indicated by the formula given last month, i.e up to half a wavelength long, it should be possible to use them in the range one wavelength to one and a half wavelengths. It appears that delays of up to 20 ms over a bandwidth of 10 MHz could be produced by this method.

Transverse mode in wires: The velocity of a transverse mode along a thin flexible wire or string is proportional to $\sqrt{T / m}$ where T is the tension and m the mass for unit length. It will be seen that the velocity is independent of frequency, and this mode of propagation is therefore suitable for a delay line. These is also the advantage that the delay can be easily adjusted by changing the tension.

One of the simplest methods of driving the wire is to place it between the poles of a magnet and to pass a current along the wire. Other methods include moving coil, moving iron and piezoelectric transducers. The wire must be terminated in a mechanically resistive medium at the far end and means for applying a tension provided. Electrostatic transducers can be employed for extracting the signal at any position along the line and delays of up to 100 ms should be feasible for a line 1.5 m long.

Some protection would be required against building vibrations but this should not prove unduly difficult.

Low velocity materials: There are a few materials in which the velocity of sound is lower than it is in air and it is of interest to see whether these differences are great enough to be worthwhile exploiting in delay tubes.

Liquid helium III: This liquid has the lowest velocity of any liquid known, the value being less than one tenth of that of water. At the triple point the velocity is about 130 ms and therefore the length of a delay tube could be reduced to about a third of one using air as the conducting medium. The diameter would have to be reduced in
the same ratio to avoid cross modes and would thus be about 0.3 in . A tube of this length and diameter could be coiled into quite a small volume but the necessary cryogenic apparatus would be very expensive.

Uranium hexafluoride: This is a substance which is produced in large quantities by the U.K.A.E.A. in the course of their activities and appears to have the largest atomic weight of any gas. The liquid boils at room temperature and the vapour is stable except that hydrogen fluoride is formed in the presence of water vapour; the radioactivity is quite low. The velocity of sound in the vapour is about 0.3 of that of air; the scaling factor with this medium would therefore be similar to that mentioned in the last section for liquid helium but the absence of cryogenic equipment would make the application much simpler. The high density would make the radiation impedance correspondingly large with a consequent increase in efficiency of the sound generators.

Variable LC delay lines: Reference was made last month to the Amtec $L C$ delay line in which the capacitors consist of backbiased diodes whose capacitance can be varied by changing the bias. The available range of $\pm 20 \%$ in the delay cannot be utilized in practice owing to the changes in the impedance of the line with the bias applied and the consequent mismatch of the termination. For example, for $\mathbf{a} \mu \mathrm{s}$ line the echoes from a matched line were about 40 dB below the main signal but when the delay was changed to 5μ s the echoes were about 10 dB worse; the frequency response was also appreciably degraded. These effects can be overcome by employing two variable resistors, such as the drain-to-source impedance of a field effect transistor, as the source and load impedances of the line. A portion of the bias supplied to the line diodes is applied to the gates in such a way as to keep the termination correct over the whole range of adjustment. Other variable resistors such as light sensitive devices or thermistors could also be used for this purpose, the choice depending on the speed of response required. The variation in gain brought about by the change in termination can be taken up in a variable gain amplifier stage controlled by the same voltage.

Ceramic piezoelectric delay lines: It is possible to make the mechanical equivalent of the electrical lumped-constant low-pass filter type of delay line. In one form ${ }^{23}$, using a rotational mode, it consists of a series of spaced coaxial discs joined axially by a corresponding number of rods as shown in Fig. 8. The discs are the mechanical equivalent of the inductances and the rods of the capacitors in the electrical circuit and the velocity of propagation and the image im-

Fig. 8. Mechanical torsional delay tine.

pedance are given by corresponding expressions. Recently, however, the elements of such a line have been made of ceramic piezoelectric materials so that the device contains its own input and output transducers. At least one firm is experimenting with such a line for use in PAL colour television receivers but no details are available yet as to the performance achieved.

Magnetic memory stores: The use of these for delays can be regarded as an alternative to the capacitor store method. Unlike the capacitor store, however, the magnetic type is fully magnetised in one direction or the other and thus has the advantage of holding the recorded information indefinitely. On the other hand to use the magnetic type of store it is necessary first of all to digitize the signal and this appreciably increases the complexity of the auxiliary apparatus. Increased delay can be obtained by simply adding to the size of the store and this can be done without any of the difficulties such as attenuation, change in frequency response, signal-to-noise ratio or echo levels associated with other types of delay.

There are several types of magnetic store in production and developments in this field are so rapid that any survey is liable to be out of date by the time it is published. One type extensively used in computers consists of a series of minute ferrite rings about 450 microns in diameter with conductors threaded through a centre hole. Stores of this type can be made large enough to store a whole television field but in practice the read/write cycle time of 500 ns is too great for this application. On the other hand, a store of 36,000 -bits would enable 100 ms of audio frequency programme to be handled and this would be adequate for some applications. Such a store would cost about £250.

A faster design has been brought out employing two cores per bit. This has a cycle time of about 300 ns but because of the added complication costs appreciably more than its simpler counterpart.

A second type of store was introduced by the Sperry Rand Corp. ${ }^{24}$ It consists of a number of wires plated with an anisotropic magnetic medium with the hard direction of magnetization along the wire. On either side at right angles to the direction of the wires is a strip of conductor. The passage of current along the conductor causes the magnetic field in the wire to change direction. The strips are about 0.1 mm wide and are spaced about 1.5 mm between centres so the packing is about 80 -bits to the square cm . The store, with a cycle time of about 150 ns , is fast enough for some television purposes. Very large stores, $16,000,000$ bits, of this type are being developed; the cost per bit is expected to be less than ferrite by 1972.

Active stores: Metal oxide silicon transistors, (m.o.s.t.) and metal nitride silicon transistors (m.n.s.t.) have an insulated input electrode and this gives them an exceedingly high input resistance. The input capacitance is several picofarads and any charge deposited on this will therefore be held for a considerable time. The presence or absence of this charge can be determined by an examination of the current flowing in the output electrode and thus a nondestructive readout is possible. These stores are being developed by most of the semiconductor firms. The cost is expected to come down to about $1 d$ or 2 d per bit.

Another variety is the bipolar flip flop type. This is faster than the static capacitor type and clock rates of 50 MHz are feasible.

Active networks: One type of active delay system which seems to offer some promise is the resistance-capacitance all pass network. Sections of these networks are separated by operational amplifiers with a very high input impedance, a very low output impedance and unity voltage gain. A line of this type has been built by Standard Telephone Laboratories for the Admiralty to give a 700μ s delay over a bandwidth up to 6 kHz and occupies a space of only $200 \mathrm{~cm}^{3}$. The line consists of 14 stages and uses thin
film circuits, the components being made to a 1% tolerance. The system will deliver a signal level of 22 V into 2Ω and has a noise level over the operational bandwidth of $15 \mu \mathrm{~V}$ r.m.s.; the attenuation over the whole line is only 0.4 dB . The price at the moment is high but it is expected that it will come down to $£ 1$ per section for the thin film circuits, with extra for the operational amplifiers. It is calculated that this line occupies only one tenth of the volume of a line made of conventional components.

Multiplication of delay times by recirculation: Although long delay times can sometimes be achieved by the simple process of adding delays in series a more elegant method, which can be used where the bandwidth of the line is sufficient, is that of recirculation.

In this process the signal is converted into pulses with a small mark to space ratio and applied to the line. The pulses are received
at the end of the delay line, further delayed by a fraction of cycle as shown in Fig. 9 and retransmitted down the line again. The number of times this process can be repeated obviously depends on the pulse repetition rate of the original signal and the maximum pulse repetition rate the line will transmit.
In one example an audio frequency signal was digitized and converted into pulses at a rate of 100 k pulses per second. Using an ultrasonic delay line of 10 ms having a maximum pulse repetition rate of 1 MHz the pulses were recirculated eight times giving a total delay of 90 ms . The form of circuit used is illustrated in Fig. 9.

Conclusions: A description has been given of the various types of time delay used in the B.B.C. and of others which are potentially useful. Owing to the wide variety of requirements there is no one method which can be recommended above the others.

REFERENCES

18. Axon, P. E., Gilford, C. L. S. and Shorter, D. E. L. "Artificial Reverberation", Proc. IEE Vol. 102 Part B, No. 5, Sept. 1955.
19. Rout, E. R. and Vigurs, R. F. "A wide range standards converter". Jour. Tel. Soc. October-December 1961. Vol. 9. No. 12.
20. Burd, A. N. "Correlation Techniques in Studio Testing", Radio and Electronic Engineer, Vol. 27. No. 5, May 1964, pp. 387-395.
21. Kleiss, D. "Modern Acoustical Engineering", Philips Technical Report, Vol. 20, No. 11, pp. 309-326, 1958/59 and Vol. 21, No. 2, pp. 52-72, 1959-60.
22. Rainger, P. and Rout, E. R. "Television standards converter using a line store", Proc. IEE, Vol. 113, No. 9, Sept. 1966, pp. 1437-1455.
23. Mason, W. P. "Electromechanical Transducers and Wave Filters", Van Nostrand, 1942, p. 92.
24. Fedde G. A. "Plated Wire Memories; Univac's bet to replace toroidal ferrite cores". Electronics, May 15 th 1967.

B.B.C. Band-two Broadcasting Stations

	Frequencies (MHz)			Maximum ERP	Orkney	89.3	91.5	93.7	20 kW*
	Radio 2	Radio 3	Radio 4	(Each Prog)	Oxford (Midland)	89.5	$91.7{ }^{\text {S }}$	93.9	$22 \mathrm{kW*}$
Ashkirk	89.1	91.3	93.5	$18 \mathrm{kW*}$	(South and West)			95.85	22 kW *
Ballachulish	88.1	90.3	92.5	15 W*	Penifiler	89.5	91.7	93.9	6 W*
Bally castle	89.0	91.2	93.4	40 W *	Perth	89.3	91.5	93.7	15 W*
Barnstaple	88.5	90.7	92.9	150 W*	Peterborough	90.1	92.3	94.5	20 kW *
Bath	88.8	91.0	93.2	35 W*	Pitlochry	89.2	91.4	93.6	200 W*
Belmont	88.8	90.9	93.1	$8 \mathrm{kW*}$	Pontop Pike	88.5	90.7	92.9	60 kW
Betws-y-Coed	88.2	90.4	92.6	10 W*	Redruth	89.7	91.9	94.1	9 kW
Blaenplwyf	88.7	90.9	93.1	60 kW	Rosemarkie	89.6	91.8	94.0	12 kW *
Brecon	88.9	91.1	93.3	10 W *	Rowridge	88.5	90.7	92.9	60 kW
Bressay	88.3	90.5	92.7	$10 \mathrm{kW*}$	Sandale (Scottish)	88.1	90.3	92.5	120 kW
Brighton	90.1	$92.3{ }^{\text {S }}$	94.5	150 W*	(North)			94.7	120 kW
Brougher Mountain	88.9	91.1	93.3	2.5 kW	Scarborough	89.9	$92.1{ }^{\text {s }}$	94.3	25 W*
Cambridge	88.9	91.1	93.3	20 W *	Sheffield	89.9	$92.1{ }^{\text {s }}$	94.3	60 W
Campbeliown	88.2	90.4	92.6	35 W*	Skriaig	88.5	90.7	92.9	$10 \mathrm{kW*}$
Carmarthen	88.5	90.7	92.9	10 W	Sutton Coldfield	88.3	$90.5{ }^{\text {s }}$	92.7	120 kW
Churchdown Hill	89.0	91.2	93.4	25 W*	\dagger Swaledale	89.6	91.8	94.0	35 W*
Divis	90.1	92.3	94.5	60 kW	Swingate	90.0	$92.4{ }^{\text {S }}$	94.4	7 kW *
Dolgellau	90.1	92.3	94.5	15 W *	Tacolneston	89.7	91.9	94.1	120 kW
Douglas	88.4	90.6	92.8	$6 \mathrm{kW*}$	Thrumster	90.1	92.3	94.5	$10 \mathrm{kW*}$
Ffestiniog	88.1	90.3	92.5	$50 \mathrm{~W} *$	Toward	88.5	90.7	92.9	250 W*
Forfar	88.3	90.5	92.7	10 kW	Ventnor	89.4	91.6	93.8	20 W*
Fort William	89.3	91.5	93.7	1.5 kW	Weardale	89.7	91.9	94.1	100 W*
Grantown	89.8	92.0	94.2	350 W*	Wensleydale	88.3	90.5	92.7	25 W *
Haverfordwest	89.3	91.5	93.7	$10 \mathrm{kW*}$	Wenvoe (Welsh)	89.95	96.8	94.3	120 kW
Hereford	89.7	91.9	94.1	25 W *	(South and West)			92.125	120 kW
Holme Moss	89.3	91.58	93.7	120 kW	Whitby	89.6	91.8	94.0	40 W*
Isles of Scilly	88.8	91.0	93.2	20 W*	\dagger Windermere	88.6	90.8	93.0	20 W*
Kendal	88.7	$90.9{ }^{\text {s }}$	93.1	25 W*	Wrotham	89.1	$91.3{ }^{\text {s }}$	93.5	120 kW
Kilkeel	88.8	91.0	93.2	25 W*	Local radio stations				
Kingussie	89.1	91.3	93.5	35 W *	\dagger Birmingham		95.6		5.5 kW*
Kinlochleven	89.7	91.9	94.1	2 W	†Blackburn		96.4		$1.5 \mathrm{kW*}$
Kirk o'Shotts	89.9	92.1	94.3	120 kW	Brighton		88.1		75 W *
Larne	89.1	91.3	93.5	15 W*	\dagger Bristol		95.4		$5 \mathrm{kW*}$
Les Platons	91.1	94.75	97.1	1.5 kW*	\dagger Derby		96.5		5.5 kW*
Llanddona	89.6	91.8	94.0	12 kW *	Durham		96.8		2.6 kW*
Llandrindod Wells	89.1	91.3	93.5	1.5 kW	\dagger Humberside		95.3		$4.5 \mathrm{kW*}$
Llangollen	88.85	91.05	93.25	$10 \mathrm{kW*}$	Leeds		94.6		140 W
Llanidloes	88.1	90.3	92.5	5 W	Leicester		95.05		140 W
Lochgilphead	88.3	90.5	92.7	10.W*	†London		95.3		16.5 kW*
Londonderry	88.3	90.55	92.7	$13 \mathrm{kW*}$	\dagger Manchester		95.1		$4 \mathrm{kW*}$
Machynlieth	89.4	91.6	93.8	60 W*	\dagger Medway		97.0		5.5 kW*
Maddybenny More	88.7	90.9	93.1	30 W*	Merseyside		95.85		2.5 kW*
Meldrum	88.7	90.9	93.1	60 kW	\dagger Newcastle		95.4		3.5 kW
Melvaig	89.1	91.3	93.5	22 kW *	Nottingham		94.8		140 W
Morecambe Bay	90.0	$92.2{ }^{\text {S }}$	94.4	$4 \mathrm{~kW} *$	†Oxford		95.0		4.5 kW
Newry	88.6	90.8	93.0	30 W*	Sheffield		88.6		30 W
Northampton	88.9	91.15	93.3	60 W *	Sheffield (Rotherham)		95.05		$9 \mathrm{~W}^{*}$
North Hessary Tor	88.1	90.3	92.5	60 kW	\dagger Solent		96.1		5 kW
Oban	88.9	91.1	93.3	1.5 kW	Stoke-on-Trent		94.9		2.5 kW*
Okehampton	88.7	90.9	93.1	15 W*	\dagger Teesside		96.6		5 kW *

*Directional aerial

Circuit Ideas

Sine-wave power oscillator

This form of oscillator can give a considerable increase in power output compared with conventional oscillator circuits when using low-power transistors. A typical example is that of an OC72 type transistor giving a sine wave output at 50 kHz with a power output of IW . The circuit uses three separate inductors, there being no inductive coupling between them. The collector inductor L_{1} is tuned by C_{1}. The emitter inductor L_{2} forms part of the tuned circuit when the transistor is conducting and is in saturation. The third inductor L_{3} provides a drive current that is in phase with the collector current. C_{2} is a d.c. blocking capacitor. C_{3} in conjunction with D_{1} provides bias. D_{1} also prevents a large voltage appearing across the base /emitter junction during cut off as well as providing a path between L_{1} and L_{2} via

$13-W 20-\mathrm{kHz}$ power oscillator.

the collector/base diode as the output voltage is falling from positive to zero and cut off. The successful operation of the circuit is due to the fact that it is possible to control the collector current by the base current whilst the transistor is in saturation and that large currents can flow without exceeding the dissipation limit of the transistor. A typical saturation voltage is about 0.5 V , and using an OC72 transistor it is possible to obtain a current of 125 mA ; and using an AD162, 2A. From the circuit it will be seen that L_{1} and L_{2} are in series to d.c. but in parallel to a.c., as the a.c. voltage appearing at the collector and emitter are nearly the same voltage when the transistor is in
saturation. The other ends of L_{1} and L_{2} are at the same potential a.c.-wise, both being earthy. The transistor is not tied to either positive or negative and can swing virtually unlimited above and below earth provided the transistor limits are not exceeded during cut off. Short circuiting the output stops oscillation and the current drops to zero until the short is removed.
H. L. Armer

Mastertape (Magnetic) Co. Lid., Slough.
Bucks.

1000: 1 attenuator

Three thumb-wheel switches can be connected as a 1000: 1 attenuator with 1000 positions. The combination employs two 10 -way 2 -pole switches and one 10 -way single pole switch. In the circuit
diagram the output has been set to 0.768 of the applied input voltage.
L. UNSWORTH

Southport, Lancs.

Unijunction square-pulse generator

The unijunction square-pulse generator circuit submitted by Mr. Paul (Circuit Ideas, March 1970) is rather unpredictable in its operation. In the circuit below, the timing capacitor charges via $R_{3} R_{4}$ and the forward biased D_{1} from the supply. When the capacitor reaches the trigger voltage the unijunction goes into conduction. Whenthis occurs, the positive end of C becomes

Unijunction pulse circuit.
referred to the negative of the supply and therefore D_{1} becomes reversed biased. The capacitor C can then only discharge via R_{1}, R_{2}, the emitter-base junction and R_{6}.
P. J. Granger

Sevenoaks, Kent.

Thumb-wheel switch attenuator.

The Unijunction Transistor

2. Using the unijunction

by O. Greiter

Last month I discussed the properties of the double base diode, the unijunction transistor, with particular reference toits use in a very simple relaxation oscillator circuit. There are two reasons for treating this device in this way. First of all, this is how unijunctions are generally used-in one or other variation of the trigger and reset mode: secondly it brings out the character defects of the device-its dependence on temperature and supply voltage. Readers who have been around for twenty years will remember how we all began with common base class-A amplifiers when transistors came our way, and how we struggled to bias the first germanium junction transistors so that we could get the same answer two days running.
The discussion was limited, because it did not consider how we could extract the signal. There is our pulse, or our sawtooth, on the oscilloscope, but we want it to do some work - to be, as we say, at a prescribed power level. Taking out a pulse can be easy. If you are using the unijunction to control a thyristor (which is a very common way of designing controlled rectifier circuits) you simply set up the arrangement of Fig. 1(a). If you need to keep the two circuits isolated you can use a pulse transformer, as shown in Fig. 1(b). The value needed for R_{1} depends on the characteristics of the thyristor on the voltage available for $V_{B B}$, and on the capacitance. For G.E. thyristors the information is easily available in both their Transistor Manual and their SCR Manual.

Fig. 1. (a) Unijunction triggering a thyristor with a common negative supply. (b) A pulse transformer may be used to separate the two circuits.

(a)

(b)

(c)

(d)

Fig. 2. Pulses are available in any of these five ways.

Curves show that when the capacitance is less than $0.1 \mu \mathrm{~F}$ for the smaller thyristors and $1 \mu \mathrm{~F}$ for the bigger ones, the necessary voltage gets squeezed between the limits of what the unijunction will stand and the minimum needed to get the extreme limit thyristor to turn on when it is really cold.

Pulse points

Since we have started to consider pulse circuits, we may as well continue along the same line, but without the restriction of applying the pulses to a thyristor. Fig. 2 shows a number of possible outlet points, and indicates the corresponding pulse polarities. In (a, 1), (b), (c) and (d) the source impedance is relatively low, because it is essentially the capacitor discharge current which is presented at the output. In $(a, 2)$ we have only the increase in base-two current, but the actual voltage may be higher. This is a relatively high impedance.
Whichever circuit is used there may be the need to buffer the unijunction system from what we may call the working load. The various low impedance circuits will offer us a pulse of about 2 V across 20Ω in circuits using $0.1 \mu \mathrm{~F}$, rising to 4 V in circuits using $1 \cdot 0 \mu \mathrm{~F}$. We can feed this into a buffer transistor to get a very large output. The more powerful transistors in the TO-3 size, for example, can be driven to saturation at 100 mA with a drive of only 5 mA , which implies that we can put 200Ω in series between the trigger point and the transistor base. By keeping the amplifier input impedance well above the source impedance we reduce the chance that the transistor will affect the stability of the oscillator circuit. It is also possible to use this impedance section, if that is the right expression, to do some pulse shaping. Inevitably this implies

Fig. 3. The leading edge of the puise at B (c) depends mainly on the speed with which the unijunction switches into the conducting state, and on the speed of the transistor. The trailing edge is determined by the transition of the LC "ring" across the base characteristic of the transistor. For a supply voltage of 10 V we should have $V_{A \max } \approx 5 \mathrm{~V}$ and $V_{B E} \approx 0.25 \mathrm{~V}$. This would make the ratio of on-time to fall time about $90^{\circ} / 3^{\circ} \approx 30$.
pulse lengthening. To get pulses shorter than the natural unijunction transistor falltime it is necessary to differentiate or to use an edge-sensitive triggered circuit. One interesting form which gives a pulse with fast rise and fall times is shown in Fig. 3. In this circuit R_{1} is replaced by an inductor,
and for a particular example the rise and fall times were $0.3 \mu \mathrm{~s}$ with a pulse length of $11-12 \mu \mathrm{~s}$. Replacing the inductor by a 47Ω resistor gave a pulse rising in $0.3 \mu \mathrm{~s}$ but then falling in $3 \mu \mathrm{~s}$. The pulse length is roughly one-quarter cycle of the natural frequency of the $L C$ network, so that if we write

$$
\begin{aligned}
\omega^{2} L C & =1 \\
4 \pi^{2} f^{2} L C & =1 \\
t & =\frac{1}{4} f \\
\text { and } \quad \frac{4 \pi^{2}}{16 t^{2}} L C & =1 \\
L & =0 \cdot 4 t^{2} / C .
\end{aligned}
$$

The rapid fall time is the result of the clipping action in the transistor. You cannot use an emitter follower.

A low frequency circuit in a hot environment is very awkward when, for some reason, short pulses are needed. To get the low frequency we use, we really must use, a fairly large value of capacitance. At high temperatures the fall time with a $1 \mu \mathrm{~F}$ capacitor is $30 \mu \mathrm{~s}$, so that we must be prepared for a current pulse lasting 50μ s or more. There are situations in which this is not tolerable. One such situation is when the pulse is to drive units which are also used at higher frequencies and which are thus designed for short pulses. To avoid redesigning these parts of the system, and losing all the advantages of standardization, we must convert the long pulse into a short one.
The regenerative unijunction amplifier shown in Fig 4 will do this quite simply.

Fig. 4. Unijunction used as pulse repeater.

The capacitance here is small, so that the fall time is correspondingly low. The emitter is held by the voltage divider at just below the voltage $\eta V_{B B}$ which will trigger the circuit.

Pulling a sawtooth

Although one might reasonably describe the output of a multivibrator as a pulse train it seems to me to be carrying classification too far. I propose, therefore, to leave the long-pulse unijunction circuits and turn to the immediate extraction topic, although now it will be a matter of extracting the sawtooth. Two very simple ways of doing this are shown in Fig. 5. The direct connection here is almost invariably safe because V_{E} drops only to around the valley points which is high enough to keep the n -p-n transistor in conduction and the $\mathrm{p}-\mathrm{n}$-p transistor clear of saturation. The input impedance of the emitter follower is the first disturbing factor to consider. It has a value

(a)

(b)

Fig. 5. The use of an emitter follower as sawtooth buffer amplifier.
of about $h_{F E} R_{L}$, and R_{L} must not be too large, because we want to do something with the sawtooth. In the circuit of Fig. 5(a) the term βR_{L} is part of a voltage divider with R_{T}, and if

$$
\frac{\beta R_{\mathrm{L}}}{R_{T}}<\frac{\eta}{1-\eta}
$$

the emitter voltage will never reach the trigger point. Long before this condition is reached, however, the effect on the operating frequency and on the waveform will have been devastating. I find it easiest to make the rough calculations in the following way. Let us take a 20 V supply, and $R_{T}=30 \mathrm{k} \Omega$. V_{E} will have an average value of about 5 V , so that the average current in R_{T} is $500 \mu \mathrm{~A}$. Suppose the transistor has an $h_{F E}$ of 100 . For $R_{L}=1000 \Omega$ the base current will be $50 \mu \mathrm{~A}$: for $R_{L}=10 \mathrm{k} \Omega$ the base current will be $5 \mu \mathrm{~A}$. It does not really matter all that much whether this current is added to the charging current through R_{T}, as it is with the p-n-p transistor, or subtracted, as it is with the $n-p-n$ transistor. It is still a rather large proportion if we are concerned with good frequency stability. However, we must not overlook the unijunction emitter current in the region below the peak point. This is of the same order of magnitude, but of the opposite sign, and has about the same temperature coefficient. There is some possibility of matching these two currents, but I think that it will be much easier to use a really high value of R_{L}, the lowest possible value of R_{T}, and a second stage of amplification.

It is difficult to think of situations in which very high frequency stability is needed for a sawtooth which is not particularly linear. And if one has more than half an exponential rise it really is not the sort of linearity we are usually needing. A number of circuits have been devised to give better linearity: some of them I rather dislike. Four circuits are given in Fig. 6. The constant current circuit in Fig. 6(a) does not
provide a buffer output, but uses the transistor simply to charge the capacitance with a current of

$$
\left(V_{Z}-V_{B E}\right) / R_{T}
$$

The frequency is not given by the expression roughly approximated as $1 / R_{T} C_{T}$, but is readily calculated from the linear charging characteristic. Notice that it now depends sharply on the supply voltage, because the charging current is constant while the trigger point, V_{p}, is still $\eta V_{B B}$.
The two bootstrap circuits give a buffered output and use the output sawtooth to lift the charging voltage, keeping the voltage across the timing resistance nearly constant. With the zener diode we introduce a voltage which does not depend on the supply, $V_{B B}$, and the result is that variations in supply cause inverse variations in frequency. This does not happen with the capacitor bootstrap. The final circuit, Fig. 6(d), uses an integrating $R C$ network fed from the emitter follower to add a concave-upwards voltage across $C_{T 2}$ to the normally concave-downwards voltage at the emitter of the unijunction.

The problem with these three circuits is that the need for a good big output at the emitter means a low value of emitter load resistance, and thus a rather heavy drain at the base. The relatively low cost of the circuits is a factor which must not be overlooked. The oscillator can easily be synchronized to a more stable source. Operational amplifiers can be used to give a really linear sawtooth. These are cheap bread-and-butter circuits which show the swings and roundabouts trade-off which is normally encountered with this class of circuit.

Triggering with the unijunction

Pulse generators (and we have seen that the unijunction transistor is an excellent choice for the active element in a pulse generator) are widely needed to trigger binary counter stages. The use as a regeneration amplifier is fairly obvious, and this is an area of interest in slow counting problems. Binaries are also used as square wave generators. The advantages of using an independent trigger and a resistance coupled pair rather than a multivibrator are the ease with which the frequency can be varied and the exact equality of the two halves of the waveform. Unless the highest stability is needed the triggering arrangements can be very simple. Fig. 7 shows the two versions, for $n-p-n$ and $p-n-p$ transistors. It is important in the design of this

Fig. 6. Linearization circuits for sawtooth generator: (a) constant current; (b) zener bootstrap; (c) capacitor bootstrap; (d) integrator feedback.
type of circuit to ensure that the transistors are not oversaturated-so that the trigger pulse can lift the emitters to cut-off-and to ensure that there is enough drive - that is a big enough timing capacitor. It is not very difficult to get this system to work at around the 50 mA level

If the timing resistance is returned to one of the transistor collectors rather than to one positive line, either of the circuits in Fig. 7 can be used as a single-shot timer. The initiating pulse is fed to the other transistor and must be such that it drives the end of the timing resistor positive. This rather involved wording covers both the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ systems. After a time of about $C_{T} R_{T}$ (about meaning the η-dependent factor) the unijunction will trigger

Fig. 7. Triggering a simple bistable pair from a unijunction transistor. Small
"memory" capacitors are needed across the two collector-base feedhack resistors. The emitter current pulse in R must knock the "on" Iransistor off.
and the system will return to its original state. If precautions are taken to fix the low level of the unijunction emitter this arrangement has virtually no memory and the shot time does not change significantly with the duty cycle.

Frequency division, low-level current detection, and long-term timing

The simplicity of the unijunction relaxation oscillator circuit, the fairly high stability of its frequency and the fact that it is a non-linear system combine to make it a very attractive frequency divider. If we consider one basic relaxation oscillator, in its simplest form of Fig. 2(a), we know that the emitter voltage rises exponentially towards the supply voltage until it reaches a value

Fig. 8. Triggering a divider.
of $\eta V_{B B}$. In order to have some numbers to talk about. let us take $V_{B B}=20 \mathrm{~V}$ and $\eta=0 \cdot 5$. Then, forgetting the need for a fraction of a volt to get the peak current through, the emitter will trigger at 10 V . Let us take the value of the resistance from base 2 to the positive supply as 100Ω. We inject into this resistance an extra 10 mA , so that $V_{B B}$ looks like 19 V . If the emitter has reached 9.5 V it will trigger. The pattern is shown in Fig. 8. Once the circuit triggers it is completely re-set and the whole process repeats itself

Although it is not too difficult to make the calculation an exact one, an approximate approach gives a reasonably reliable answer and shows the solvent features more easily. If the run-up were linear, it would be at the rate of $\eta V_{B B} f$ volts per second, where f is the natural frequency of the divider. For a division ratio of n, the critical moment is $1 / n f$ seconds before the natural trigger point, when the emitter voltage will be $\eta V_{B B} / n$ below triggering. The pulse applied to $B 2$ must be less than $V_{B B} / n$ if it is not to trigger the oscillator. If the pulse is a bit bigger than this, the triggering will take place after $n-1$ pulses instead of after n. If the pulse is more than twice this size

Fig. 9. Triggering derails for pulse, squarewave, and sine-wave locking. If the square wave is roughly differentiared we can even (as shown on the right) get an improvement over pulse hehaviour.
we shall divide by $n-2$, or even worse.
This is an order of magnitude calculation for dividing with a trigger pulse. If we are triggering from a square wave we must avoid the trailing edge of the triggering signal. With a sine wave the ideal, which is not shown in Fig. 9, is that the slope of the sine wave should equal the slope of the emitter voltage. For a sine wave of $A \sin 2 \pi n f t$ the slope is, at its maximum,

A. $2 \pi n f$

and thus $A=V_{B B} / 2 \pi n$, provided that the locking signal is applied at $B 2$. The least critical situation of all is to use a square wave with capacitance coupling to get a pulse top running parallel to V_{E}.

One source of a negative locking pulse is, of course the emitter of a preceding unijunction oscillator. The capacitor needed to couple this point to the base 2 of the

Fig. 10. Diode-pump divider.
following stage then forms part of the timing circuit. With transistors at their present prices the simplicity of a buffer amplifier is almost certainly worth the extra couple of shillings.
Any detailed design nust take into account the stability of the locked oscillator itself. If this is taken as 1%, and if the supply voltage is also held to 1% in order to stabilize the size of the locking pulse it is plausible to talk about division ratios of $50: 1$, and realistic to think about $20: 1$.
This type of frequency divider is essentially a constant frequency type (Fig. 10). One application is for use with a crystal oscillator, to obtain a low frequency of very high stability. The unijunction is also useful for dividers of the diode-pump type. Each input pulse raises the emitter voltage by $V_{s} C_{1} /\left(C_{1}+C_{2}\right)$, until the emitter reaches ηV_{s}. The unijunction triggers, and discharges C_{2} to re-set the pattern. The drive pulse must be long enough for C_{1} to be cleared out through D_{1} and the transistor, and the space between the pulses must allow C_{1} and C_{2} to reach equilibrium through R and D_{2}. The loss of charge by C_{2} due to diode and unijunction leakage is the limitation on the low frequency end, but within the limits set in this way the circuit will be independent of frequency. A more complicated version, obtained by adding a bootstrap amplifier, gives equal steps in place of the steadily diminishing ones familiar to all diode-pump users.

Closely related to the frequency divider circuits are some circuits which have very high sensitivity and can be triggered by very small input currents. The peak point current
of a unijunction is somewhere in the range $2-20 \mu \mathrm{~A}$, depending on the price you pay and on your luck. Confining our attention to a unit with $\eta=0.5$ operated at 20 V we see that in a relaxation oscillator designed for very low frequencies a resistance of $5 \cdot 1 \mathrm{M} \Omega$ in the emitter supply will never be able to get the emitter junction quite over the top. As it is not too convenient to use timing capacitances much above $1 \mu \mathrm{~F}$, timing circuits are limited to the odd second or two. It is therefore necessary to separate out the circuit which supplies the peak point current from the $C R$ circuit which does the timing, so that the timing resistance does nothing but charge the capacitance.

Fig. 11. (a) Heart of long period tiner, and (b) steady state unijunction characteristic.

The essential features are shown in Fig. 11. The resistor R_{2} is of the order of $10-20 \mathrm{M} \Omega$, if the expensive low-leakage type of unijunction transistor is used. This is chosen to hold the emitter at its peak point, as shown in Fig. 11 (b). Typically the current, I_{p}, will be $1 \mu \mathbf{A}$. As it stands this is a perfectly stable situation. The timing capacitance C_{1} is charged through R_{1}, and for most of the time the diode D is reverse biased. Obviously D must be a very good diode. If C_{1} is $1 \mu \mathrm{~F}$ and R_{1} is $1000 \mathrm{M} \Omega$ the time constant will be 1000 s, about a quarter of an hour. C_{1} must have a leakage resistance of at least $10,000 \mathrm{M} \Omega$ for this situation to make sense.

As it stands, this circuit will not work. When the voltage across the capacitance equals ηV_{s} the diode will be ready to come into conduction, but the net load line in Fig. 11(b) will shift only slightly as R_{1} appears in parallel with R_{2}.

At this stage one frequency divider technique comes into play. When a pulse is injected, in the way shown in Fig. 8, the emitter voltage remains at its original value, while the unijunction peak voltage is moved down. The only stable intersections for $V_{E}>V_{B B}$ is away on the rising part of the characteristic where the current is tens, or

Fig. 12. Very sensitive current detector.
hundreds, of mA . The main timing circuit triggers in the ordinary way. It might be feared that one could get a marginal situation in which each quick test of the circuit just took away enough leakage to hold the C_{1} voltage on the threshold. The look lasts only the odd $\mu \mathrm{s}$, however, and if we are timing 1000 s we should hardly look more often than once a second. The wastage duty cycle is too small to worry about. The test pulses are, of course, produced by another unijunction oscillator, using a cheap unijunction. Time delay circuits of this kind are normally used to trigger a thyristor, either directly from base one or through a trigger transformer. There is no reason why the pulses, at one a minute or one an hour, should not operate a binary, or a ring counter, to produce a sequence which switches regularly at these intervals.

The technique used to detect a very small current is similar to the long period timer. The circuit, this time with the test pulse generator included, is shown in Fig. 12. Both capacitors charge quickly to a voltage set by the potentiometer. This must not be high enough for the circuit to trigger. If current is fed in through the $100 \mathrm{M} \Omega$ resistor at the top of the diagram it will lift the emitter voltage and at the next test pulse the circuit will trigger. As soon as the $0.01 \mu \mathrm{~F}$ capacitor has supplied the full peak point current and the trigger operation is under way, the $0.1 \mu \mathrm{~F}$ capacitor will be able to discharge and provide a healthy pulse at base 1 .

All the circuits discussed so far have been designed to have one stable state. The action of the circuit consists of moving the working points into an unstable region, whereupon the triggering is followed by a resetting operation. Like all negative resistance systems the unijunction circuit provides a negative resistance only in a limited current range and unlike some negative resistance circuits can be safely operated outside these margins. An example of a negátive resistance which is not safe is a power transistor up in the avalanche or second breakdown area. This is bounded on the upper side by the small positive resistance of a total loss. With the unijunction we can construct a bistable element. The distorted-in-scale unijunction characteristic is shown in Fig. 13(a) and the circuit which goes with it in Fig. 13(b). The load line for R_{1} and V_{1} intersects this characteristic in three points, so long as $V_{1}<\eta V_{E}$, and neglecting the effect of R_{2} and R_{3}. The intersection in the negative resistance region, at B, is not stable, but the other two intersections, at A and C, will be stable. Notice that C is to the right of the valley point. We have

$$
\begin{aligned}
& V_{1}<\eta V_{E} \\
& I_{C}>I_{V}
\end{aligned}
$$

Rather roughly, since $V_{\text {valtey }}$ is small

$$
R_{1}<\eta V_{E} / I_{V}
$$

A typical value of R_{1} would be $1-2 \mathrm{k} \Omega$. This gives a safe dissipation level at C. The transition from one state to the other is easy. If we are at A, a positive pulse applied to the emitter, or a negative pulse applied to B2, will unlatch the system, leaving only an intersection in the region of C. If the circuit

Fig. 13. (a) Bistable load line. (b) Bistable circuit.
is at C, a negative pulse at the emitter will drain off current to leave only one intersection, somewhere below A. By using Thevenin's theorem in reverse we can establish the emitter conditions for a bistable in the way shown in Fig. 14. R_{4} is small and is there to detect the changeover. Suppose that R_{3} is a $1-\Omega$ resistor and that the effective value of V_{1} is just 1 V below the peak point. The current through R_{3} will be in the region of 5 mA . Let us use R_{3} also as the return path for another piece of equipment which shares the negative line, but not necessarily

Fig. 14. Single supply bistable.
the positive line, with the circuit of Fig. 14. Should this outside system pass more than about 1.5 A , the emitter will be lifted up to above V_{p} and the circuit will trigger. A capacitor connected to the emitter can be added to give some extra current when triggering first takes place, although this will slow down the detection process. If the capacitance is across R_{2} a sharp rise in $I_{R 3}$ will get straight through to the emitter. The pulse at R_{4} triggers the shut-down device. Just how delicate you care to make this arrangement is a matter of detailed design. A $1-V$ margin is very robust indeed.

To monitor for the absence of a signal $R_{2} R_{3}$ can be replaced by a transistor. So long as the base is held positive the circuit stays at point A. Loss of the voltage at the base will cut off the transistor and trigger the circuit.

The uses of this bistable in ring counters, and one or two other applications of the unijunction, will be taken up in a later article, which will also describe the programmable unijunction transistor. This is an attractive variant, which has many advantages and, unfortunately, some disadvantages when compared with the ordinary unijunction transistor

Electronic Building Bricks

3. The electron and how it moves

by James Franklin

So far we have talked about electrical energy (Part 2) and about the electron (Part 1). The connection, if the reader has not already realized it, is that electrons are the "stuff" by which electrical energy becomes evident as such. Electrical energy can be understood intuitively because it can be experienced and seen in action -but what exactly is the electron?

The sad truth is, that although a multi-million-pound industry is built on what you can do with the electron, nobody really knows what it is. We only infer that the electron exists from certain natural phenomena which have been observed and measured.

Basically the concept is that the electron is the smallest unit of what we call electricity, and is also one of the constituents of all atoms. A familiar, simplified picture of electrons in an atom is shown in

Fig. 1. Simplified diagram of an atom of silicon, an element used to make transistors. (The orbits of the electrons round the nucleus are not actually in the same plane and concentric as shown.)

Fig. 1. As such the electron is represented as a particle. But a particle of what material? According to our theory of the structure of matter, all materials are made up of atoms and the atom is the smallest possible unit of any element. Something which is only a constituent of the atom cannot therefore be a particle of recognizable substance. If it is not a thing, perhaps it is an event. At any rate we will agree that it is an entity. Whatever its real nature, the electron has mass-the same familiar property as possessed by a cricket

[^8]

Fig. 2. Atom with "free" electron travelling in large, outer orbit. (For simplicity the inner electrons and mucleus are shown as a solid sphere.)
ball. (And, in fact, the electron can be made to behave in much the same way as a cricket ball-propelled, accelerated, decelerated, brought into collision, deflected and stopped.)

When we say "the smallest unit" we mean the electron is the smallest unit that can be used as a measure of quantity of electricity. (Analogy: in a quantity of ball bearings the smallest unit into which the total weight or volume could be divided is a single ball bearing.) Quantity of electricity is called charge, so the electron is the basic unit of electric charge. A larger and more practical unit by which charge can be measured is the coulombt, which is 6.24×10^{18} electrons. A stationary charge is one form of electrical energy -potential energy. As such it can be used to represent static information (Part 2).

A more easily understood property of electricity is the electric current-one thinks analogously of a current of water. An electric current is, in fact, a general

Named after the French physicist and engineer Charies Augustin de Coulomb (1736-1806).
movement of many electrons - a process known as conduction. It takes place freely through certain materials, such as copper, less freely through others such as water, and hardly at all through others such as nylon. This brings us back to the dual role of the electron as a small quantity of electricity and as a constituent particle of atoms. The atoms of good electrical conductors, such as copper, have "free" electrons travelling in large, outer orbits, as shown in Fig.2; these are not fully engaged in holding together the atoms of the material, and so are available to take part in the process of electrical conduction. In a cubic centimetre of copper there are about 10^{23} such "free" electrons.

Considered in detail the process of conduction is extremely complicated. It is something like what happens in a tightly packed crowd of people in a room with a door at each end (Fig.3) if fresh people keep pushing in at one door. As each fresh person pushes in all the people already in the room are forced to change position slightly-in random directions according to where little spaces open up around them-but the net result of all this movement is that people nearest the far door are pushed out of the room.

In a piece of material in which conduction is occurring, each free electron of an atom moves into the nearest "space" in an adjoining atom (made available by a free electron moving elsewhere). The pattern of movement in a small volume is random, but over the whole material there is an aggregate of movement in a given direction. This movement of electrons is another form of electrical energy-kinetic energy-and, as we saw in Part 2, can be used to represent dynamic information.

When we speak of the "speed of electricity" we mean the speed of the aggregate movement-that is, the speed at which a disturbance (e.g. "switch-on", the start of electron movement) travels through the material. This speed varies slightly with different materials but is about 3×10^{8} metres per second.

When we speak of "current" we mean the rate of aggregate movement-that is the total number of electrons moving in a given direction past a certain point in a given period of time. Since, then, electric current is really electron flow rate, it could be measured in electrons per-second, but in practice coulombs-persecond are more convenient. A current of one coulomb (6.24×10^{18} electrons) per second is called an ampere, \ddagger or "amp".

[^9]Room full of people
(conductor with "free" electrons)

Fig. 3. Human-cum-mechanical analogy of the movement of electrons in a material.

Letter from America

The alleged TV radiation hazard is still provoking arguments here and set-makers are all claiming that their sets are harmless anyway . . . As I said before, it's not the radiation that worries me-it's the programmes! Sylvania recently announced details of a high-voltage multiplier device which is said to significantly reduce radiation in colour sets. As a bonus they also say it reduces the chance of fire! The device consists of diodes and capacitors housed in an epoxy enclosure and it replaces the high-voltage rectifier and shunt regulator. Many readers will note the similarity to the EY52 ladder network which supplied the high-voltage potential (25 kV , if my memory serves me right) to the old Mullard TV projection tubes. I still have one of the original Schmidt lens systems which I brought across the Atlantic 'in case I could use it for something'. But there it sits gathering dust in the basement-occasionally to be shown to an American unbeliever.

Talking about tubes reminds me of the fantastic new camera tube from RCA. This uses the Silicon Intensifier Target (SIT) with a built-in electronic light amplifier. Basically, it consists of a vidicon-type scanning electron gun and image intensifier separated by a special silicon target with an integrated circuit consisting of no less than $600,000 \mathrm{p}-\mathrm{n}$ junction diodes. A brightness magnification of 150,000 is easily achieved enabling a bright television picture to be produced from very low ambient lighting. In fact, it is claimed that useful pictures can be picked up from a scene that is illuminated by a light level equivalent to that supplied by a 100 -watt bulb two miles away! Obviously, such a tube will have many industrial and military applications but could be used for ordinary broadcast purposes where the reduction in studio lighting would be very much worth while. Fig. 1 shows a cross-section through one of the diodes. Three types of tube are available at the moment- 16,25 and 40 mm .

Morgan Electronics, of Chicago, have released details of an interesting automatic telephone answering system suitable for high-speed voice and data transmission. The recorder/transcriber is a modified Uher U-5000 and the idea is to record at a very low speed ($15 / 16$ i.p.s.) transmitting and receiving at a high speed and then playing back at the original speed. Thus,

(A) Sylvania's voltage multiplier which

 reduces radiation in colour television sets.transmission time and telephone charges are reduced considerably. Reproduction is said to be better than normal 'phone conversation as connections are made direct to the 'phone circuits, by-passing the hand receiver. Features include automatic level control, a three-digit index counter, full remote control of tape motion and a single button on the microphone for selection of replay and rewind functions so that information can be added or errors corrected.

Quadraphonic sound is still the big topic in audio circles and I suppose at least 70\% of the exhibitors at the July Consumer Electronic Show in New York's Americana
and Hilton hotels will be demonstrating some kind of 4 -channel sound. Among the contending systems are Harman-Kardon's 'Orban' synthetic idea which uses reverberation and phase-shifting networks, the Hafler which is a fairly simple matrix system, and the Dorren and Feldman systems-both multiplex. Several disc systems are being developed but so far the only one to leave the lab. is the Scheiber which has been demonstrated to various groups including the Audio Engineering Society. Like the Harman-Kardon, it is a synthetic or psycho-acoustic system. In other words, although it definitely produces four discrete channels the sound may not be an accurate reproduction of the original performance. RCA are backing the 8 track cartridge for their first venture into the quadraphonic market and they say at least 30 tapes will be on sale in August. Complete systems (tape player, radio and four speakers) were demonstrated back in May. Motorola and Lear-Jet are also putting their faith in the 8-track (Quad-8) format, but Wollensak have just announced a 4-channel cassette recorder! Almost every maker of reel-to-reel machines-Sony, Teac, Telex, Crown, etc-have 4-channel models, although, as yet, few tapes are available apart from Vanguard's series of 14. Fisher will be demonstrating a new 4-channel receiver at the Consumer Show. This is model 701 which is rated at 40 watts (genuine r.m.s. watts) per channel.

While all this flurry and excitement over quadrasonics has been going on, news has come from Mexico of - wait for it - stereo on a.m. in the medium waveband. It seems that station XTRA down in Tijuana, just across the border, has been broadcasting real, genuine two-channel stereo on 690 kHz using a new system with one sideband handling the left channel and the other carrying the right. The only snag is that two receivers are needed, one tuned higher than normal, and the other lower. (I'd hate to ask my wife to do that!) The result, according to L. R. Kahn, XTRA president, is "true stereo performance."
G. W. Tillett

Fig. 1. Target cross-section through one diode of the RCA silicon intensifier tube.

Offer off the shelf deliveries of all types of neons at more than competitive prices

TYPE	POLYCARBONATE
PC/A	6" leads, red dome cap. I' diamerer.
PC/E	6" leads. amber dome cap. ${ }^{\text {a }}$ " diameter.
PC/C	6^{*} leads, clear dome cap. $\mathbf{f}^{\prime \prime}$ diameter.
PC/O	6^{*} lesds, red top hat cap. $1^{\prime \prime}$ diameter.
PC/E	$6^{\prime \prime}$ leads. amber top hat cap. $\mathbf{I}^{\prime \prime}$ diameter.
PC/F	6" leads, clear top hat cap. $\mathbf{i c}^{\prime \prime}$ diameter.
PC / G	6" leads, red square cap. ${ }^{\prime \prime}$ diameter.
PC/M	
PC/I	6" leads. clear square cap. I" diameter.
	POLYPROPYLENE
PP/A	6" leads. red dome cap. $\frac{1}{2}$ " diameter.
PP/B	6 6" leads. white dome cap. $\frac{1}{2}^{\prime \prime}$ diameter.
PRICE: All the above are 10 (3/-, 50 @ $2 / 10$. 100 (1) 2/8, 500 @ 2/6, 1000 2/4, 10.000 e $2 / 3$ each. Variations are available with 110 volt or 500 volt and 30° leads. Also spare caps and bodies.	
N	$\begin{aligned} & \text { neon only: } 10 @ 1 / 500 @ 10 \mathrm{~d}, 100 @ 9 \mathrm{~d}, 500 @ 8 \mathrm{~d}, 1000 @ 7 \mathrm{~d} . \\ & 10,000 @ 6 \frac{1}{2} \mathrm{~d} . \end{aligned}$
M	$\text { neon resistor assembly for } 230 \mathrm{v} \text { (} 10 @ 1 /-, 50 @ 11 \mathrm{~d}, 100 @ 10 \mathrm{~d} .$
M110	$\text { neon resistor assembly for } 110 \mathrm{v} .\} 500 @ 9 \mathrm{~d}, 1000 @ 9 \mathrm{~d}, 10,000 \text { 9d. }$
Neon	Oscillator-rume neons from 6v to 24v DC 25/.

Neon illuminated push buttons:
Single Microswitch 1 @ 12/6, 10 @ 11/-, 1,000 9/-
Double Microswitch 1 @ 14/6, $10 @ 13 / 3,1.000 @ 11 / 3$.
Single MSW. No neon $1 @ 8 / 6,10 @ 7 / 6,1.000$ @ 8 Ex Stock. Return of post. Send for dotalls.
Brightlife" neons, being of the high intensity iype, give greater brightness and 25,000 hours average life. All can operate at $120^{\circ} \mathrm{C}$ at panel and $75^{\circ} \mathrm{C}$ at leads. Versions operating at even higher temperatures are available. The $\frac{1^{\prime \prime}}{2}$ dia neons are moulded in polypropylene which diffuses the light and the $\mathbf{3}^{\mathbf{\prime}}$ dia. types are moulded in polycarbonate which gives higher light transmission. Both types give a glow behind the panel to warn maintenance staff. One hole fixing $\frac{1}{2}$ " and $3^{\prime \prime}$ dia. D.C. breakdown- 135 v . maximum A.C. breakdown 95 v . maximum. Light output. .15 lumens per mA.

World of Amateur Radio

International prefixes

Until recently, the national prefix, used compulsorily by all amateur stations since 1928, has had as its primary purpose the immediate identification of the country from which the station is transmitting. Lately, however, this seems to play a şecondary role to that of attracting special attention as a result of novelty. The Canadians used 3C, instead of VE, to mark their centenary, now AX and ZM respectively replace VK and ZL to celebrate the discovery of Australia and New Zealand by Captain Cook. European "liberation" anniversaries have been marked by $3 Z$ (Poland), OM (Czechoslovakia) and YT (Yugoslavia). Russian club stations have all been allocated new call signs, all having the prefix UK but with a country identification concealed in the number or call-letters. Many amateurs must by now be saying "enough" to this form of organized chaos, and hanker after the days when a prefix was a prefix was a prefix!

Encouraging c.w. operation

Despite the increased use in recent years of s.s.b. on the h.f. bands and the domination of the various telephony modes on v.h.f., hand Morse remains a basic and popular element of amateur radio communication. Because of the possibility of extreme narrow-band reception (of the order of 25 to 50 Hz bandwidth) which is becoming more practicable with the better stability of transmitters and receivers. c.w. continues to offer considerably more scope for weak signal operation than any alternative mode, as well as largely overcoming the language barriers to international communication. But increasingly, apart from maritime and some military communications, the pool of professionally experienced operators is shrinking.

A group of c.w. enthusiasts which, for over 30 years, has aimed at encouraging the use of Morse, and raising the standards of operating (though not without running into some controversy in so doing) has been the "First Class C.W. Operators' Club". Membership of this club is limited to 500 . Currently there are members in more than 50 countries. The club imposes a rigorous system of
nominations for membership-every new member has to be recommended by at least five sponsors from at least two continents. Members are expected to be able to operate at speeds of not less than 25 words per minute and to be able to operate on at least two bands. Members are encouraged to work between 25 and 35 kHz from the low-frequency limits of the bands. Secretary of the club since 1967 has been W. H. Windle (G8VG), 121 Laburnum Avenue, Dartford, Kent.

R.S.G.B. "Radiocom 70"

With the amateur radio exhibition this year moving forward in the calendar to August 19th-22nd (Royal Horticultural Society's New Hall, Greycoat Street, London S.W.1) several new features are being introduced, in addition to the normal trade and club exhibits. Vouchers totalling up to $£ 50$ are to be awarded for outstanding mobile and portable station performance as judged by contacts with the exhibition stations which will be active on $3.5,70$ and 144 MHz . This contest, under the jurisdiction of Phil Thorogood (G4KD), the exhibition organizer, requires application forms to be obtained in advance from R.S.G.B., 35 Doughty Street, London WCIN 2AE. There is also to be a competition for the best club-constructed equipment. Small "ministands" are being introduced both for the trade and to allow non-trade members to exhibit or sell equipment. The traditional "draw" will be for a Hammarlund HQ2 15 transistor communications receiver.

Band activities

During a sporadic E opening associated with a severe solar storm on June 12th-13th TF3VHF, the 2.5 W Icelandic beacon station on 70 MHz , was heard for the first time by many British stations. A $144-\mathrm{MHz}$ 'first' established during this period was a link between Scotland (GM3EOJ) and the Faeroes (OY2BS). The solar storm introduced a signal black-out on some h.f. bands (reported particularly from the United States), and conditions on h.f. continued patchy for most of the remainder of the month,
though this may have been due to the normal summer increase in signal attenuation in the D layer. The $144.950-\mathrm{MHz}$ beacon station near Dundee, GB3ANG, is again operational. The first new Nigerian licence for five years has been issued to Kaduna Polytechnic (5 N 2 KPT). One of the most active amateur television groups in the United States is the Indiana Amateur TV and UHF Club whose members are now operating some 15 amateur television stations, with pictures regularly received over distances of 50 to 200 miles. This group includes W9NTP who (apart from his slow-scan work described in the March issue) operates a 300 -watt u.h.f. transmitter with a 64 -element collinear aerial array mounted at a height of 50 ft . There now appear to be only two countries (Cambodia and Vietnam) that retain their objections lodged with I.T.U. to international amateur radio operation by their citizens; but for many years there seems to have been little or no amateur licensing by China.

Mobile rallies

With British mobile licences now reported as past the 3000 mark, good attendances are expected at the August mobile rallies. These include: R.S.G.B. National Mobile Rally (9th) at Woburn Abbey (talk-in stations GB2VHF, G3VHF and GB3RS on 144, 70 and 1.8 MHz); Derby (16 th) at Rykneld School, Bedfort Street; Swindon (23rd) at No 15 M.U., and R.A.F. Wroughton, near Swindon; Preston (30th) at Kimberley Barracks, Deepdale (talk-in stations on 1.8 and 144 MHz). Firms interested in exhibiting at the Wroughton rally should get in touch with G. Windsor, 26 St. Gregory's Road, Deepdale, Preston.

In brief: A. C. Morris, G3SWT, recently became honorary treasurer of the R.S.G.B. following the resignation, due to ill-health, of Norman Caws, G3BVG. One of his immediate concerns will be an "extraordinary general meeting" of the Society in August. called to authorize an increase in subscriptions. . . The annual convention of the International Amateur Radio Club will be held in Geneva from September 16 th to 18 th (I.A.R.C., P.O. Box 6. 1211 Geneva 20. Switzerland). ... As a result of the recent appeal seven Cheshire Homes now have amateur-band receivers. The Homes Amateur Radio Network Fund would welcome the offer of amateur equipment in reasonable working order (offers to W. M. Clarke, G3VUC, 66 Fillace Park, Horrabridge, Yelverton, Devon). What must surely be an exceptionally amateur radio conscious family has been noted rečently by A.R.R.L.: comprising grandfather (W8BU), grandmother (WA8EBS), son (WA8ZOD), son-in-law (W8WJC), daughter-in-law (WA8ZOC) and two grandsons (K8TND and WA8ZOA).

Pat Hawker, G3VA

Personalities

W. E. Hobbs has been appointed manager of the Marconi ElectroOptical Systems Division, at Basildon, of which he was formerly technical manager. He succeeds J. E. H. Brace who has resigned. Mr. Hobbs joined Marconi in 1952, working in the Research Department on colour television. In 1954 he moved to the Broadcasting Division and in 1957 to what was then the Closed Circuit Television Division. In 1962 he became development group leader responsible for the development of the vidicon colour camera and the large screen colour projector. A year later he was made deputy development manager, and since 1965 has been technical manager of the Electro-Optical Systems Division where for the past two years he has been responsible for the development and production of the Martel missile system. M. B. House succeeds him as technical manager of the Division. Educated at Queen Mary College, London University, Mr Howe joined Marconi in 1951 as a development engineer. He worked in the Broadcasting Division, first on film scanners and television film recorders, and later on vidicon cameras until he joined Closed Circuit Television Division in 1959. He was appointed development manager in 1968.

Colin Yendell has been appointed product sales manager of the Semiconductor Division of Auriema Ltd, representatives of several American semiconductor manufacturers, the main one being Philco-Ford. Prior to joining Auriema Mr. Yendell was with Marconi-Elliott Microelectronics at Witham as commercial manager of the bipolar i.c. product group.

Alexander M. Poniatoff, founder and chairman of the board of directors of Ampex Corporation, is to retire as chairman on August 25 th. He will continue to direct the Alexander M. Poniatoff Laboratory, a specialized research and development organization within Ampex. Mr. Poniatoff founded Ampex (originally Ampex Electric and Manufacturing Company) in
1944. Ampex, which takes its name from his initials plus EX for excellence, was originally formed to produce electric motors and generators for World War II navy radar systems. In 1946, Mr. Poniatoff decided to devote the small company's efforts to development work in the experimental field of magnetic recording. Born in Russia in 1892 Mr . Poniatoff studied mechanical engineering and received an M.E. degree at the technical college, Karlsruhe, Germany.

Henri Busignies, senior vicepresident and chief scientist of International Telephone and Telegraph Corporation, has received the Award in International Communication of the I.E.E.E. "for his outstanding leadership and technical contributions in the fields of electronic technology and communication techniques". An authority on radio navigation and radio direction finding, Dr. Busignies has been associated with I.T.T. for more than 40 years. The annual award consists of a plaque, certificate and $\$ 1,000$. Dr. Busignies developed the high-frequency radio directionfinding system, known as "huff-duff", used in World War II against enemy submarines. He also invented moving target-indicator (MTI) radar.

James Redmond. F.I.E.E., director of engineering of the B.B.C., has been elected president of the Society of Electronic \& Radio Technicians. Mr. Redmond joined the Council of the Society in 1965 and was elected vice-president in 1968. He succeeds Sir lan Orr-Ewing. Bt. O.B.E., M.A.
H. G. Maguire, general manager of the Marconi International Marine Co. Led., since January 1962, has been appointed a director of the company. He began his career with Marconi when he joined as a seagoing radio officer in 1927. He served at sea until 1936, when he won promotion to the shore technical staff at the Glasgow depot. In 1943 he was promoted to
inspector and transferred to Montevideo, returning to Glasgow in 1946. He became Liverpool depot manager in 1951, and moved to the company's head office at Cheimsford in 1955 to take over as manager of the newly formed export sales division. Mr. Maguire is also a director of Norsk Marconikompani, A/S, Oslo, and of Coastal Radio Lid.
T. B. McCrirrick, F.I.E.E., F.I.E.R.E., is to be the new chief engineer, radio broadcasting, in the B.B.C. on the retirement of A. P. Monson who joined the Corporation in 1933 as an engineer in the London Control Room. Mr. Monson's appointments have included those of head of the transcription recording unit, superintendent engineer (recording), superintendent engineer (radio broadcasting), and since 1963, chief engineer, radio broadcasting. Mr. McCrirrick joined the B.B.C. in 1943 and after serving in studios in Edinburgh, Glasgow and London, he transferred in 1949 to the Television Service where he was latterly engineer-in-charge, television studios, and head of engineering, television recording. He left the Television Service in 1969 on his appointment as head of studio planning and installation department. C. R. Longman, F.I.E.R.E., Mr. McCrirrick's successor, joined the B.B.C. in 1943 and has been with the Televison Service since 1950. Since 1967 he has been head of enginecring, television studios, in which position he is succeeded by R. B. Mobsby who has been with the B.B.C. since 1943 initially at the Tatsfield Receiving Station and for the past 15 years in the Television Service. He has been head of engineering, television network, since 1967.
R. Monger, who was until recently in charge of digital voltmeter development in Dynamco, has joined Racal Instruments Lid as chief engineer, d.c. measurements. Racal also announce the appointment of three other senior engineers-all of whom have been with Racal several years. They are P. Sample, chief engineer (r.f. measurements); G. Taylor, chief engineer (pulse and digital instruments); and E. W. Parker, group leader, product engineering group.
E. Ribchester, B.Sc., F.1.E.E., who joined British Communications Corporation Ltd (now one of the Racal group of companies) in 1966 and became chief engineer two years ago, has become technical manager. Mr. Ribchester was previously with the G.E.C. where he was at one time associated with the team working on colour television.

BIRTHDAY HONOURS

Among those upon whom honours were conferred on H.M. The Queen's birthday were:

Knights Bachelor

David C. Martin, C.B.E., executive secretary, the Royal Society.
Arnold Weinstock, managing director, General Electric and English Electric Companies.

C.B.

'E. V. D. Glazier, Ph.D.(Eng.), B.S.c., M.I.E.E., director, Royal Radar Establishment.

C.B.E.

W. D. H. Gregson, assistant general manager, Ferranti (Scotland) Lid.

O.B.E

D. J. Harris, B.Sc., Ph.D., M.I.E.E., lately professor and head of electrical engineering, Ahmadu Bello University, Zaria, Nigeria.
A. P. Monson, chief engineer, radio broadcasting, B.B.C.
T. S. Robson, M.B.E., assistant director of engineering, I.T.A.
J. Sieger, chairman and managing director, J. \& S. Sieger Lid.
Wing Cdr. R. H. Smith, M.I.E.R.E., R.A.F.
F. N. L. Williams, head of school radio broadcasting, B.B.C.

M.B.E.

D. R. Cockbaine, M.I.E.R.E., British Technical Asst. Officer, Turkey.
Major J. Drennan, M.I.E.R.E., Corps of R.E.M.E.
M. Johnston, engineer-in-charge, Post Office Radio Station, Baldock.
G. D'A. Prichard, manager, information services, HIrst Research Centre.
E. A.' Rust-D'Eye, telecoms technical officer, Ministry of Defence.
D. H. A. Scholey, F.I.E.R.E., lately engineer-in-chief, East African Posts \& Telegraphs Corp. T. Shepherd, formerly project leader, C. \& W. Bahrain Earth Station.
J. W. N. Yeomans, chief engineer, Redifon Air Trainers Lid.

OBITUARY

Kenneth Joseph Ayres, managing director of International Aeradio Ltd, died on 4th June aged 48. He served as a navigator in the R.A.F. Bomber Command from 1942 to 1945 when he transferred to air traffic control becoming senior air traffic control officer at the R.A.F. Elementary Flying School, Hullavington, and subsequently at Flying Training Command Headquarters. In 1947 Mr . Ayres joined International Aeradio as an air traffic control officer and after serving at a number of stations overseas became air traffic services manager at the company's headquarters. He was appointed deputy general manager, and then general manager, technical services, and in June 1968 was elected to the board of directors. He had been managing director since August last year.

New Products

Trimmer Capacitor Range

Two ranges of trimmer capacitors manufactured in the U.S.A. by the JFD Electronics Corporation are now available in the U.K. from ITT Components Group Europe. These are the DV-5 and MVM series of capacitors. The DV-5 series of subminiature ceramic-disc variable capacitors employs special ceramic materials in a monolithic structure. The capacitors occupy about 1 mm of printed circuit board space. Six models are available covering a minimum of 2.5 pF to 9 pF capacitance up to a maximum of 5 pF to 30 pF . Working voltages are 100 V d.c. from -55 to $+85^{\circ} \mathrm{C}$ and 50 V d.c. up to $+125^{\circ} \mathrm{C}$, with an insulation resistance of $10^{10} \Omega$ at $25^{\circ} \mathrm{C}$ at the rated voltage. The MVM series of microminiature air variable capacitors is designed for high frequency applications that demand extreme stability, small size and a high Q factor. The working volt age for each of the four models is 250 V d.c. with an insulation resistance of $10^{12} \Omega$ at 500 V d.c. and $25^{\circ} \mathrm{C}$. ITT Components Group Europe, Capacitor Product Division, Brixham Road, Paignton, Devon.
WW324 for further details

Low Input-current Op.Amp.

An encapsulated amplifier, type E75, has been added to the ' E ' range of compatible amplifiers by Comtec. Fitted with an f.e.t. differential input stage. it has an input impedance of $10^{13} \Omega$ and an input bias current of 1 pA . Common mode rejection is 66 dB with a voltage range of $\pm 10 \mathrm{~V}$. The open loop gain is $5 \times$ $10^{5} \mathrm{~dB}$, and the output level $\pm 10 \mathrm{~V}$

at $\pm 10 \mathrm{~mA}$ from $\pm 15 \mathrm{~V}$ supplies up to 20 kHz . Using silicon devices throughout, the amplifier is encapsulated in epoxy resin and is housed in a plastic case 38 mm square and 15 mm thick. It is fully protected against short circuits from output to ground and input to supply rails. Computing Techniques Ltd, Westminster Bank Chambers, Bridge Street, Leat herhead, Surrey.
WW326 for further details

Low-noise S-band Transistor Amplifier

Watkins-Johnson has developed an S -band transistor amplifier with a noise figure of 7dB. Designated WJ-5004-4, the amplifier delivers a power output (for 1 dB gain compression) of +5 dBm and small

signal gain of 25 dB . The overall design is consistent with the environmental requirements of MIL-E-16400F, and MIL-E-5400K, class 2. Watkins Johnson International, Shirley Avenue, Windsor, Berks.
WW320 for further details

Electroluminescent Diodes

Latest additions to Plessey's range of electroluminescent diodes are two red light emitting types, designated GPL \mid and GPL 2. Both types are based on single crystal gallium phosphide which gives particularly good performance at 'low operating bias- (ypically brightnesses at 10 mA of $765 \mathrm{~cd} / \mathrm{m}^{2}$ (GPL 2) and 306 $\mathrm{cd} / \mathrm{m}^{2}$ (GPL 1). corresponding to a luminous flux of 3 and 1.2 millilumens respectively. Guaranteed optical powers
are 120 and 40 microwatts for the two types. Continuous operation is possible up to 25 mA with increased brightness, and pulsed operation of the diodes is possible up to 1 A subject to a mean dissipation of 50 mW . The response time is 300 ns. The Plessey Company Ltd, Microelectronics Division, Optoelectronic and Microwave Unit, Wood Burcote Way, Towcester, Northants NNI2 7JN.
WW327 for further details

V.H.F./U.H.F. Power Transistors

Three power transistors for v.h.f. /u.h.f. class \mathbf{C} amplifiers have been introduced by RCA. Two of the devices, designated the 2N5914 and 2N5915, are incorporated in a radial-lead stud package and are designed for stripline or lumped-constant circuits. The third device, designated the 2N5913, is built into a three-lead TO-39

type package. All three devices are epitaxial silicon n-p-n planar transistors with an overlay emitter electrode construction. Typical ratings of the 2 N 5913 device at 12.5 V is 2 W at $250 \mathrm{MHz}(9 \mathrm{~dB}$ gain) and at 8 V is 1.5 W at 250 MHz (7 dB gain). These devices are available from Electronic Components Division, RCA Ltd, Sunbury-on-Thames, Middlesex, and from RCA's distributors in the UK: Semicomps Northern Ltd, ECS Lid and REL Equipment and Components Ltd.
WW319 for further details

Triple Output Power Supply

A triple output, stabilized power supply is announced by Oltronix. The unit-designated B60-IT-has output ranges of $0-6 \mathrm{~V}, 0-30 \mathrm{~V}$ and $0-60 \mathrm{~V}$ at 4,2 and 1 A respectively. Stability is 0.005% or 1 mV for 10% line change. Noise is 0.05 mV r.m.s. Recovery time from 100% overload is $50 \mu \mathrm{~s}$. Environmental temperature coefficient is less than $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Adjustment is provided by a 10 -turn potentiometer which gives a dial reading of the chosen output voltage to an accuracy of $\pm 250 \mathrm{mV}$ on the 30 V and 60 V ranges and $\pm 25 \mathrm{mV}$ on the 6 V ranges. Range selection is by front panel switch which simultaneously indicates selected voltage and current, potentiometer scale factor and full scale value for the output monitoring meter. This is a
dual meter which shows voltage and current on separate scales. Also on the front panel are constant-voltage and current-limit indicators, monitoring-meter range expansion push buttons, a control for setting the current limit between 10 and 110% of rated output and graphs of voltage/current characteristics. A new overvoltage protection circuit is incorporated on the six-volt range which clamps the output at 7 V and automatically resets to the chosen output after an overvoltage condition is cleared. A sensor lights a "hot" lamp on the front panel and switches the supply off if a long high voltage condition occurs. Input can be $110,117,220$ and 235 V a.c. $\pm 10 \%$, 50.60 Hz . Dimensions are 165 mm long X 133 mm high $\times 228 \mathrm{~mm}$ deep. Oltronix UK Ld, Hunting Gate, Hitchin, Herts. WW323 for further details

$5 \mathrm{~W}, 7$ to 12.5 GHz Pulsed Gunn-effect Diode

An X-band high power pulsed Gunn-effect diode, Type TEPO 1, has been introduced by Plessey to their range of pulsed and c.w. Gunn diodes. Power outputs are available in the frequency range 7 to 12.5 GHZ . Typical operating conditions are bias voltages from 25 to 40 V , and currents in the range 2 to 5 A and an efficiency of about 5%. The maximum pulse repetition frequency is dependent on the pulse length-e.g. for a $0.5 \mu \mathrm{~s}$ pulse the maximum p.r.f. is 10 kHz . Fast switch-on of the device is possible if the full supply voltage can be fed to the Gunn diode in about lns. The device is suitable for operation in a waveguide or coaxial cavity, and is available in a standard S4 package. The Plessey Company Ltd, Microelectronics Division, Optoelectronic and Microwave Unit, Wood Burcote Way, Towcester, Northants NN 12 7JN.
WW325 for further details

Potentiometer for P.C. Boards

An addition to Plessey's MP range of moulded carbon-track potentiometers, designated type MP WT, has been specifically designed for use with 0.1 in (2.54 mm) grid printed circuit boards, and its 3.175 mm long pins conform to this configuration. This potentiometer offers $0.25-\mathrm{W}$ rating at $70^{\circ} \mathrm{C}$, with standard resistance values from $1 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \cap$. A wide range of non-standard values is also

available. The Plessey Company Ltd, Resistor Division, Cheney Manor, Swindon, Wilts.
WW 322 for further details

Mobile Radio Test Set

Marconi Instruments have introduced a versatile mobile radio test set which combines in one unit, many functions normally only found in a number of different instruments. This compact instrument, type T F 2950, is operated from rechargeable internal batteries. It can be used to check, service and calibrate a.m./ f.m. mobile radio equipment designed for the frequency ranges $65-180 \mathrm{MHz}$ and $420-$ 470 MHz , with maximum transmitter powers of 15 W continuous or $15-25 \mathrm{~W}$ short term. The $65-180 \mathrm{MHz}$ range is covered in three steps.

The instrument is composed of a signal generator, an audio-frequency voltmeter,

a modulation monitor, a power meter and an audio-frequency oscillator. The voltmeter measures between 0 and 300 mV in four ranges and $0-10 \mathrm{~V}$ in three ranges. The modulation monitor measures amplitude and frequency modulation over the same ranges as the signal generator but in two bands instead of four. The amplitude modulation depth measurement range is $0-80 \%$ and $\mathrm{f} . \mathrm{m}$. deviation is measured in two ranges with maximum readings of 5 kHz and 25 kHz . The power meter measures both forward and reflected power up to 15 W continuously, and up to 25 W for short periods. The audiofrequency oscillator generates a 1 kHz signal variable by $\pm 1 \%$ and its output can be chosen from one of four ranges between $0-3 \mathrm{~V}$ and is indicated on the main meter. Battery state is also shown on the main meter. Price of the T F 2950 is $\mathbf{£ 8 0 0}$ f.o.b. U.K. It weighs 16 kg and measures $315 \times 420 \times 230 \mathrm{~mm}$. Marconi Instruments Ltd, St. Albans, Herts.
WW336 for further details

U.H.F. and I.F.
 TV Transistors

Four new transistors from SGS cover the requirements of the u.h.f. converter and i.f. amplifier stages of single- or dual-standard TV receivers. All are encapsulated in TO- 72 packages. The two u.h.f. types, the BF272 and BF316 are intended for grounded base operation and have standard connections. These two devices, by using a p-n-p configuration, are
claimed to give a performance not previously equalled by silicon transistors. The main advantage is the low noise figure-typically 3.5 dB at 800 MHZ added to very low reverse transfer capacitance ($C_{r b}=0.09 \mathrm{pFmax}$) giving a high power gain (13 dB typical at 800 MHz) with adequate stability. The two v.h.f. devices-BF270 and BF271are intended for grounded emitter operation and have the base and emitter connections reversed, resulting in reduced feedback capacitance and isolation of input from output circuits, giving improved stage gain. The BF270 is for use as an a.g.c. i.f. amplifier giving a stability limited gain of 28 dB at 36 MHz and an a.g.c. control range of 60 dB with low base-current drive requirements. The BF271 is designed for the final i.f. amplifier stage. Its power dissipation (240 mW at $25^{\circ} \mathrm{C}$ ambient) allows more than adequate output without excessive temperature rise and nonlinearity. It has a gain of 28 dB at 36 MHz . SGS (United Kingdom) Ltd, Planar House, Walton Street, Aylesbury, Bucks.
WW32I for further details

Gain-tracking T.W.T.

Latest addition to the series of ITT gaintracking, low-noise travelling wave tubes is type $\mathrm{W} 3 \mathrm{MT} / 4 \mathrm{~A}$. Tubes already available cover the frequency ranges 2-4 and 4-7.5 GHz , and the W3MT/4A now extends this range from 7.5 to 12 GHz . Gain varies over the operating frequency band from 30 to 36 dB and all tubes follow a mean gain-with-frequency curve to within $\pm 1.5 \mathrm{~dB}$. A fixed input voltage of $+1,300 \mathrm{~V}$ with respect to earth is required, plus 6.5 V d.c. supply for the cathode heater. Saturated output power is +7 to +17 dBm and noise less than 15 dB . ITT Components Group Europe, Valve Product Division, Brixham Road, Paignton, Devon.
WW332 for further details

Reversible Decade Counters

A reversible, or up/down, counter module type DCM1711, announced by Quarndon Electronics, incorporates t.t.l. logic i.cs and a numerical indicator tube to provide readout. It is intended for industrial control and counting applications at up to 15 MHz in either direction. A carry/borrow circuit provides a zero-sense output for signchange purposes. Another decade counter, model DCM1709, will operate up to 10 MHz and an alternative version of this module,

the DCM1708, is wired with a discrete component display decoder to improve the clarity. Quarndon Electronics (Semiconductors) Ltd, Slack Lane, Derby DE3 3ED.
WW334 for further details

R, C and L Boxes

A wide range of resistance, capacity and inductance boxes are available from Lionmount \& Co. Ltd, having one to five decades. Resistance boxes cover the range 0.1Ω to $11 \mathrm{M} \Omega$ with an accuracy of 0.1% :

capacitor boxes span the range 8 pF to $111 \mu \mathrm{~F}$ and inductance boxes using ferrite materials are available up to 11 H . Lionmount \& Co. Ltd, Bellevue Road, New Southgate, London N. 11.
WW339 for further details

Miniature Zener Diodes

Latest additions to the Mullard range of miniature components are some zener diodes with voltages of 5.6 to 12 V . Called type BZX84, the new diodes are intended for use with thick and thin film circuits, but they can also be used with advantage in many other applications. The BZX84 diodes have a voltage tolerance of $\pm 5 \%$ and a dissipation rating of 150 mW at an ambient temperature of $25^{\circ} \mathrm{C}$ when mounted on a ceramic substrate $5 \times 5 \times 1 \mathrm{~mm}$. The maximum permissible forward current is 100 mA , and the thermal resistance $0.5^{\circ} \mathrm{C} / \mathrm{mW}$. Mullard Ltd, Mullard House, Torrington Place, London, W.C.1. WW333 for further details.

M.O.S. Shift Registers

Two new m.o.s. static shift registers are available from Plessey. The MP220B can be programmed on a package pin to be either 80 bits or 56 bits long. Data-stream select logic is incorporated on the input to the register, thus facilitating recirculation of data. The device also features an equivalence gate enabling data in the final bit to be compared with external data, and an appropriate output derived. The device is available in either flat pack or did. packages. The MP225B is a 100 -bit static shift register which also incorporates data-stream select logic on the input. The device is available in a TO-5 package. Both devices operate from d.c. to 1 MHz over the temperature range
-20 to $+70^{\circ} \mathrm{C}$, and interfacing with t.t.l. can be achieved with a few discrete components. The shift registers are completely compatible with the MP100 series m.o.s. logic. Microelectronics Division, Plessey Components Group, Cheney Manor, Swindon, Wilts.
WW330 for further details.

Reference Voltage Cell

A robust miniature reference cell which can be soldered to a printed circuit board has been introduced by Muirhead. Designated type K-391-A, this new cell is claimed to have performance characteristics equal to those of the best reference cells available. It measures only $70 \mathrm{~mm} \times$ 11 mm , and can be mounted or transported in any position. The e.m.f. is 1.019 to 1.0193 V at $25^{\circ} \mathrm{C}$ and the temperature coefficient (10 to $40^{\circ} \mathrm{C}$) is less than $-3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Each cell is supplied with a certificate of test with e.m.f. stated to the nearest $10 \mu \mathrm{~V}$. This value is traceable to the National Physical Laboratory Volt with an estimated uncertainty not exceeding $10 \mu \mathrm{~V}$ (0.001%). Muirhead Ltd, Beckenham, Kent.
WW335 for further details

Digital Probe

A pocket-size digital probe has been announced by Aircraft Supplies. It is suitable for on-the-spot checking of electronic equipment and it replaces the oscilloscope where this instrument is unavailable or inconvenient to use. The probe is light and easy to handle and is powered by rechargeable nickel cadmium cells. There are two modes of operation: as an indicator of static logic levels (0 and 1 corresponding to lamp on and off respectively); and as an indicator of pulse trains. Retail price is $£ 19$ 15s. Aircraft Supplies Ltd, 506 Wallisdown Road, Bournemouth, Hants.

WW338 for further details

Miniature Tape Recorder

The Nagra SN miniature tape recorder, available from Hayden Laboratories, will fit into a coat pocket, has a signal-tonoise ratio (relative to $2 \% 3$ rd harmonic

distortion) of 60 dB , and a frequency response of $80-16000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$ at 3.75 i.p.s. Average speed stability is $\pm 0.5 \%$, and wow and flutter $\pm 0.1 \%$ at 3.75 i.p.s. The recorder uses $3.81 \mathrm{~mm}(0.15 \mathrm{in})$ tape and will play for 52 minutes at 1.875 and 26 min at 3.75 i.p.s. Power can be supplied from manganese batteries, alkaline sealed accumulators, or from an optional mains operated power supply. An omnidirectional capacitor microphone $(48 \times 18 \times$ 10 mm) is also available as an extra. Price of basic recorder is $£ 365$. Hayden Laboratories Ltd, East House, Chiltern Avenue, Bucks.
WW337 for further details

Watchkeeping Receiver'

A new watchkeeping receiver for use on the international $2182 \mathrm{kHz} \mathrm{R} / \mathrm{T}$ distress frequency is available from Redifon. Designated R.492, the receiver is crystal controlled, simple to operate, and compact. It is completely independent of other radio

equipment and can be preset to a volume low enough to avoid annoyance, while still producing full volume whenever a twotone alarm signal is received. A receiving range control provides adjustment of the receiver to suit the particular aerial in use. Protection against damage to the receiver input circuits from powerful signals is provided by a fast-acting muting system. An external speaker output is provided. The receiver operates from a ship's main a.c. supply or from a 24 V d.c. source. Redfon Ltd, Broomhill Road, Wandsworth, London, S.W. 18.
WW329 for further details

High-level Gate-turnoff S.C.Rs

Transitron has introduced a series of highlevel gate-turnoff thyristors. Design features of the new devices-designated RTGD02 -include pulse turnoff up to 5 A ; typical 5A turnoff gain of $10-15$; typical turnoff time under $5 \mu \mathrm{~s}$; and operating temperatures up to $125^{\circ} \mathrm{C}$. Repetitive peak-off-state voltages and repetitive peak reverse voltages for the five devices in the range are: RT GD0206,60V; RTGD$0210,100 \mathrm{~V}$; RTGD0220, 200V; RTGD-
$0230,300 \mathrm{~V}$; and RTGD0240, 400 V . Absolute maximum ratings include (at $80^{\circ} \mathrm{C}$) average on-state current, (A; r.m.s. on-state current, 1.6 A ; peak one-cycle surge current $(60 \mathrm{~Hz}), 10 \mathrm{~A}$: peak reverse gate voltage, 5 V ; peak gate power, 500 mW ; and average gate power, 100 mW . Packaging is in standard TOS cans. Transitron Electronics Lid, Gardner Road, Maidenhead, Berks.
WW331 for further details.

64-pole P.C.B. Connector

A sixty-four-pole electrical connector for the indirect connection of printed circuit boards has been introduced by ITT Components Group Europe. The GO7 connector is designed for use with the ITT Standard Equipment Practice (ISEP)

system and complements the existing ISEP connector range. Within the connector's overall length of 94 mm (3.7in), sixty-four contacts are arranged in two rows of thirty-two with a contact pitch of $2.54 \mathrm{~mm}(0.1 \mathrm{in})$. By the use of external coding pins, polarization without loss of contact is possible. The connector is available to special order equipped with only thirty-two poles, either in line on one side or staggered. ITT Components Group Europe, ITT Manufacturing Services Division, Equipment Practice Sales Office, Edinburgh Way, Harlow, Essex.
WW311 for further details

$\mathbf{2 - G H z}$ Transistor

TRW Semiconductors Inc. has added another member to its GHz transistor family-the PT8610. This provides 10W output at 2 GHz , with 7 dB gain and 15% bandwidth. It is a single chip device in a low parasitic package. Companion transistors are the PT8611, at the 5 W level, the PT8612, at 2.5 W , and the PT8613, at 1 W . These devices are designed for use in common-base circuils. MCP Electronics Lid, Alperton, Wembley, Middlesex, HAO 4 PE.
WW3 10 for further details

Low Phase-distortion Audio Transformers

Gardners Transformers have announced a new standard range of low phase-shift audio transformers capable of handling steep-sided transient signals. The transformers employ toroidal winding and nickel-iron ribbon of extremely high permeability. Phase-shift over the audiofrequency band is less than five degrees
from 20 Hz to 20 kHz , and frequency response is within 0.5 dB from 10 Hz to 80 kHz (13 octaves). A steep-sided transient signal can be handled without generation of overshoot up to +12 dBm at 20 Hz and +20 dBm at 50 Hz . One type in particular, the MU7590, which is designed for $600-\Omega$ line-bridging applications, will handle voltage levels up to +24 dBm at 20 Hz . The transformers are electrostatically and magnetically shielded, and are assembled in a cylindrical mumetal case 60.5 mm in diameter and 71 mm high and mounted on an infernational octal plug-in base. Gardners Transformers Ltd, Christchurch, Hants.
WW318 for further details

50A Complementary

 Transistors

 Transistors}Two pairs of complementary silicon power transistors, p-n-p types 2N5683 and 2N5684 and n-p-n types 2N5685 and 2 N 5686 , introduced by Motorola, lare each rated at a maximum collector current of 50 A . Together with a collector breakdown voltage of 60 to 80 V , this high current rating makes the transistors suitable for high-power amplifying applications. Minimum current gains of 15 at 25 A and 5 at 50 A are exhibited. The devices can also be used in switching circuits such as 1 kW inverters and converters, motor controllers and lamp drivers, a maximum collector-to-emitter saturation voltage of only IV at 25A ensuring low-loss operation in saturated switching circuits. Transition frequency is 2 MHz (max.) at 5 A . Housed in a TO-3 case, each device dissipates a total of 300 W at a case temperature of $25^{\circ} \mathrm{C}$. Motorola Semiconductors Lid, York House, Empire Way, Wembley, Middx.
WW313 for further details

Microphone Amplifier

I.C. type TAA970 from Mullard can be used with piezoelectric and dynamic microphones as an amplifier for telephone circuits. The gain of the amplifier is independent of the polarity of the supply. Typical voltage gain and output impedance is either 180 dB and 115Ω or 130 dB and 80Ω depending on pin interconnections. The encapsulation is TO-74. Mullard Lid, Mullard House, Torrington Place, London W.C.I. WW 304 for further details

High C.M.R. Differential Amplifier

A new differential amplifier type E71, by Computing Techniques, has an input bias current of 10 pA , common mode rejection of 100 dB and a common mode voltage range of $\pm 10 \mathrm{~V}$. It has an overload recovery time of $1 \mu \mathrm{~s}$. slew rate of $2.5 \mathrm{~V}_{u} \mathrm{~s}$, open loop gain of 10^{5} and will drive a $2 \mathrm{k} \Omega$ load to $\pm 10 \mathrm{~V}$ from $\pm 15 \mathrm{~V}$ supplies without limiting. Using silicon
transistors throughout, the E71 is protected against damage by short circuits from output to earth. It is especially suitable for applications requiring an f.e.t. input stage with good common mode performance and fast overload recovery time. Computing Techniques Ltd, Westminster Bank Chambers, Bridge Street, Leatherhead, Surrey.
WW317 for further details

V.H.F. Communications Aerial

An addition to the Panorama range of v.h.f. communications aerials is the FX helical spring which is only one-hird the length of a comparable quarter-wave rod. Its flexibility, ruggedness and low profile provide considerable protection against rough handling and accidental 'breakage,

especially when used with portable equipment. Available with 4B.A. end stud as standard or fitted with customer designated connector, the FX aerial is supplied to specified frequencies within the range $70-240 \mathrm{MHz}$. Panorama Radio Co. Ltd, 73 Wadham Road, London S.W. 15.

WW312 for further details

Reflex Klystron

English Electric has added a low-voltage, rugged reflex klystron (type K3078) to their range of oscillator klystrons. A direct equivalent to the VA203B/6975, this tube has improved vibration f.m. performance and will operate under severe environmental conditions. The frequency range is 8.5 GHz to 9.6 GHz , mechanically tuned by a single screw. Output power (typical) is 35 mW . English Electric Valve Co. Lid, Chelmsford, Essex.

WW315 for further details

Dual-in-line Sockets

A range of 14 -pin dual-in-line sockets is now available from EF Electronics, Tovil, Maidstone, Kent. The new socket features a generous lead-in for easy loading and a large central channel for easy removal of i.cs. The body is glass-filled nylon. Contacts are beryllium or phosphor bronze, both with 1 micron of hard gold over a nickel flash, or phosphor bronze with no finish. Contact resistances are $15 \mathrm{~m} \Omega, 25 \mathrm{~m} \Omega$ or $50 \mathrm{~m} \Omega$ maximum according to contact finish and measured after 1000 insertions. Insulation is
$10^{3} \mathrm{M} \Omega$ at 500 V and capacitance is 2 pF maximum measured between any two adjacent contacts. Cost varies from 2s 9d to 6 s 0 d according to quantity. EF Electronics, Church Road, Tovil, Maidstone, Kent.
WW3 14 for further details

High Noise-immunity I.Cs

Two t.t.l. integrated circuits announced by Mullard have a noise immunity figure of not less than $\pm 6 \mathrm{~V}$. The integrated circuits, types GRL111 and GRL101 are intended to provide interface connections with a balanced pair cable, the GRLl11 acting as the transmitter and the GRLIO1 as the receiver. They can be used to complete a compatible link between two independent logic systems. Although designed for use with the Mullard FJ family of integrated circuits, they can be used with almost all saturated logic families. Typical propagation delay for GRLII1 is 14 ns , and 25 ns for GRLIO1. Mullard Ltd, Mullard House, Torrington Place, London W.C. 1 . WW3 16 for further details

High Current Thyristors

Two new series of 10A and 20A silicon controlled rectifiers, for power switching, voltage regulation and control applications, are available from RCA. Thel0A s.c.rs, designated 40737 to 40748 , are intended for 120 V line, 240 V line and high voltage operation and are incorporated in metal packages of press fit, stud, or isolated stud design. The 20A s.c.rs, designated 40749 to 40760 are also available in press fit, stud and isolated package designs. $V_{\text {drom }}$ (repetitive peak off-state voltage) is $100 \mathrm{~V}, 200 \mathrm{~V}, 400 \mathrm{~V}$, and 600 V for both series which are available from RCA's distributors: Semicomps Northern Lid, of Kelso; E.C.S. Ltd, of Windsor; and R.E.L. Equipment and Components Ltd, of Bancroft, Herts.
WW $\mathbf{3 0 3}$ for further details

X-Y Display Oscilloscope

Marconi Instruments have produced an $X-Y$ display monitor with a screen area of $170 \times 220 \mathrm{~mm}$. The unit, TF 2212 , complements the existing range of the
company's sweep generators. Vertical sensitivities are calibrated $5 \mathrm{mV} / \mathrm{cm}$ and $50 \mathrm{mV} / \mathrm{cm}$ positions with continuously variable control. The vertical bandwidth is from d.c. 1010 kHz . Horizontal sensitivity is $100 \mathrm{mV} / \mathrm{cm}$ (approx.) with continuously variable control. The horizontal bandwidth is d.c. to 1 kHz . Price about $£ 180$ in U.K. Marconi Instruments Ltd, St. Albans, Herts.
W W 302 for further details

Power Microcircuits

The PM range of power hybrid microcircuits from WEL is designed for low-cost power control applications. They are particularly suited for stepless speed control of universal motors and variable power supplies. Various combinations of thyristors and/or diodes are encapsulated in epoxy resin mounted on a heat sink with connections made by spade tags. Due to the high thermal conductivity of the heat sink, currents of up to 12 A may be handled by the circuits. Three types of circuit are in production: the PM5, a thyristor and diode combination with current load capability up to 12 A , for use as a half-wave motor speed control system; PM7, a full-wave rectifier bridge; and PM6, diode pairs. From these two latter types a variety of d.c. power supplies can be produced with outputs up to 9 A . They can also be combined to form three-phase bridges, solid state a.c./d.c. switches and high voltage stacks. All three microcircuits are available with a variety of operating voltages-PM5 from $200-800 \mathrm{~V}$, PM6 and 7 from $200-1400 \mathrm{~V}$. The price of a 5 A 400 V universal motor controller type PM7, output 9 amps, is 16s 9d (100 pieces). WEL Components Ltd, 5 Loverock Road, Reading, Berks.
WW 301 for further details

Broadband Suppressors

A range of interference suppressors-the Ammonite range-is available from Birch-Stolec. Although designs are possible for cur-off frequencies as low as 2 kHz , it is expected, by the manufacturers, that the most frequent applications will be in the $20-100 \mathrm{kHz}$ region. The range has a voltage rating up to 250 V a.c. 50 Hz , rated current of 0.5 to 15 A and a cut-off frequency from 5 kHz to 50 kHz . In the discoidal (grommet) Ammonite, interference energy is converted to heat. Birch-Stolec Ltd, Ponswood Industrial Estate, Windmill Road, Hastings, Sussex.
W W $\mathbf{3 0 7}$ for further details

8-track Magnetic Recording Head

Multi-track operation in small computers is now made possible, claim Phi Magnetronics, by their new $8 / 8$ magnetic head. Gap scatter is claimed to be better than $25 \mu \mathrm{~s}$ at $7 \frac{1}{2}$ i.p.s. Designed for use with quarter-inch tape, the new head, type

DHM / 030 , has a track width of 0.5 mm and track spacing of 0.81 mm . Inductance at 1 kHz is $30 \mathrm{mH} \pm 20 \%$. Playback full level is $85 \mu \mathrm{~V} \pm 1.5 \mathrm{~dB}$. Crosstalk from a tape recorded to saturation level on seven tracks, measured on the unrecorded track, is better than -20 dB . Signal current is $300 \mu \mathrm{~A}$ r.m.s. and peak bias ${ }^{1} 1.7 \mathrm{~mA}$ at 50 kHz . Phi Magnetronics (Sales) Ltd, Penwerris Lane, Falmouth, Cornwall.

WW 305 for further details

M.O.S. Random Access Memory

A low-cost 64-bit semiconductor random access memory constructed with m.o.s. transistors (type MC1170L) has been introduced by Motorola. Access time is 400 ns . Organized as 16 words of four-bits each, it uses a four-input binary address and contains full decoding circuitry. An ENABLE input is provided for easy address expansion. Read/write buffer circuits on the output bit lines, which allow as many as 20 -bit lines to be "wired ORed", simplify the design of larger memory systems using this unit. Further simplification is afforded by the single-phase clock used by the device. Designed for use in memory systems with access times of less than 500 ns , the MC1170 L is intended primarily for small buffer memories but, because the stored data is read nondestructively, it can find application in systems where destructivereadout delay-line memories are used. Motorola Semiconductors Lid, York House, Empire Way, Wembley, Middx. WW 309 for further details

F.E.T. Op. Amp

A low-cost f.e.t.-input differential amplifier, the Fairchild Controls ADO-84/10, announced by G.D.S. (Sales) has 50 pA maximum initial bias current, 25 pA offset current and $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum offset drift. Open-loop gain is 100 dB with a sinall-signal bandwidth of 1 MHz . Full output bandwidth is 75 kHz at $\pm 10 \mathrm{~V}$ and $\pm 5 \mathrm{~mA}$, slew rate being $4 \mathrm{~V} / \mu \mathrm{s}$. Full short circuit protection is built in. Both common-mode and differential input impedances are $10^{12} \Omega$ with 60 dB commonmode rejection. The amplifier is suitable for operation over the temperature range $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and needs $\pm 15 \mathrm{~V}$, 10 mA supply. A mating socket (ASO-2) is also available. Price $£ 7 \mathrm{ss} 10 \mathrm{~d}$. G.D.S. (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks. WW 306 for further details

Literature Received

For further information on any item include the WW number on the reader reply card

ACTIVE DEVICES

We have received two pocket books from Newmarket Transistors Ltd, Exning Rd, Newmarket, Suffodk.
Custom hybrid microcircuitsWW401
Products mini portfolio WW402

A frequency-sensitive switch microcircuit type FX101 is described in leaflet D/026 from Consumer Microcircuits Ltd, 142/146 Old St, London, E.C.l.

WW403
The phase-locked-loop microcircuit type NE560B and NE561B manufactured by Signetics is described in a leaflet from LST Electronic Components Ltd, 7 Coptfold Rd, Brentwood, Essex.

WW404
National Semiconductor, 2900 Semiconductor Drive, Santa Clara, California 95051 , U.S.A., have produced an interesting brochure called "Reliability report-m.o.s. integrated circuits". The data is compiled from $1,479,000$ life test device hours

WW405
A 36-page publication giving data on the AEG range of thyristors, triacs and diodes may be obtained from Electronic Component Services (Worcester) Lid, Victoria House, 63-66 Foregate St, WorcesterWW406

Over 200 c.r.t. types are covered in the new brochure from Brimar (Thorn Radio Valves and Tubes Ltd, 7 Soho Square, London, W.1.). The brochure is called "Brimar industrial cathode ray tubes" and consists of 30 pages WW407

Application note No. 3 from Hivac Ltd, Stonefield Way, Ruislip, Middlesex, discusses a glow diode for photocell switching, describes flash tubes and gives details on calculating the operating conditions of neon lamps WW408

Full circuit diagrams and component lists with relevant constructional information for a complete multi-channel proportional radio control system is given in the publication "A six-channel digital proportional radio control system" which costs 3s 6d from Ferranti Lid, Gem Mill, Chadderton, Oldham, Lancs.

A new application note from Mullard (TP1149) describes a high input impedance f.e.t. input stage for an operational amplifier. I.E.D., Mullard Ltd, Mullard House, Torrington Place, London, W.C.I. WW409
"A novel shaper circuit for d.t.l. and t.t.l. input interfacing" is the title of an application note produced by ITT Semiconductors,

Footscray, Sidcup, Kent

\qquad WW4 10

We have received a variety of application notes from RCA Electronic Components, Harrison, New Jersey 07029, U.S.A.

AN4124. "Handling and mounting RCA moulded plastic transistors and thyristors"WW411
ICAN6218. "Gate-oxide protection circuit in RCA cos/m.o.s. digital integrated circuits"WW412
AN4242. "A review of thyristor characteristics and applications" WW413
ICAN6267. "Astable and monostable oscillators using RCA cos/m.os. digital integrated circuits"WW414 AN4277. "Description and application of RAC Numitrons"WW4 15 We have also recieved from RCA their "Receiving Tube manual" (RC27) consisting of 672 pages devoted to entertainment valves and tubes. Price $\$ 2$.

Filing Instruction No. 16 is available for the AEI Semiconductors Technical Data Hand book. AEI Semiconductors Ltd, Carholme Rd, LincolnWW416

Ferranti, Gem Mill, Chadderton, Oldham, Lancs, have sent us a good deal of literature on their 7400 series t.t.l. for industrial temperature rangesWW4 17
"Electronic component selector guide" from Celdis Lid, 37-39 Loverock Rd, Reading, Berks RG3 IED, lists a wide range of products, mostly semiconductor, from a large number of manufacturers

WW4 18

PASSIVE COMPONENTS

Rank-Bush-Murphy have produced their first catalogue of electronic components. The catalogue, which is not a catalogue of replacement parts for $\mathrm{R}-\mathrm{B}-\mathrm{M}$ receivers, lists 1,800 components. Rank-Bush-Murphy Ltd, Drayton Rd, Boreham Wood, Herts .. WW4 19

The current ITT Electronic Services (Edinburgh Way, Harlow, Essex) stock catalogue has been enlarged to 1168 pages and lists a vast range of electronic components .. WW420
"Advance Data-No.18" from AMP of Great Britain Ltd, Terminal House, Stanmore, Middlesex, is devoted mainly to the "Termitwist" connection system WW428

We have received the following literature from
F. C. Lane Electronics Ltd, Slinfold Lodge, Horsham, Sussex.

Short-form catalogue (plugs and sockets) WW421
Rendar price list WW422
Ether price list
WW423
A smart set of cards in a cardboard wallet describes the expanded range of Amphenol min-rac 17 plug and socket connectors. Amphenol Ltd, Thanet Way, Whitstable, Kent WW424

A 26-page catalogue containing details of a variety of switches is available from Carlingswitch Ltd, Victoria Works, Water Lane, Watford, Herts. WW425

Heat sinks, racks, printed cards and reed and mercury relays are listed in a catalogue, in French, available from S.E.E.M., 8, rue Boutard, 92-Neuilly, France . .WW426

West Hyde Developments Ltd, Ryefield Cres., Northwood Hills, Northwood, Middlesex, have produced a range of illuminated pushbutton switches which are described in a leaflet
. WW427

EQUIPMENT

"Dana-A world of measurement capability" is the short-form catalogue of Dana Electronics Ltd, Bilton Way, Dallow Rd, Luton, Beds. It lists a variety of test equipment WW429

The latest short-form catalogue from the Croydon Precision Instrun.ent Company, Hampton Rd, Croydon CR9 2RU, lists ranges of bridges, precision potentiometers, resistance boxes and standards, supply units, voltage ratio boxes, etc
. . WW430
Spectrum analysers, noise and field intensity meters, a.c.-d.c. standards and precision measuring equipment, syncro test equipment, voltmeters, frequency meters and generation equipment are featured in the new short-form catalogue from Singer Instrumentation which is available from Roberts Electronics, 17 Hermitage Rd, Hitchin, Herts
"Keithley engineering notes" Vol.18, No.1, describes a d.c. current source $\mathbf{(0 . 0 0 5 \%}$ regulation, 0.02% resolution and 500 V capability), a picoampere source $\left(10^{-14}\right.$ to $10^{-4} \mathrm{~A}$, accuracy 0.25%) and a unity gain isolating amplifier ($10^{12} \Omega$ input isolation, $\pm 0.3 \%$ gain linearity). It is available from Keithley Instruments Inc., 28775 Aurora Rd, Cleveland, Ohio 44139, U.S.A.

WW432
A logic tutor, Computakit- 1 , is described in a leaflet from Limrose Electronics, Lymm, Cheshire WW433

GENERAL INFORMATION

A directory of the laboratories approved by the British Calibration Service can be obtained from: The British Calibration Service, Stuart House, 23-25 Soho Square, London, W.1.

WW434
Anyone interested in joining the British Amateur Electronics Club should send for the latest copy of the B.A.E.C. Newsletter to C. Bogod, "Dickens", 26 Forest Rd, Penarth, Glamorgan.

SINCLAIR IC-10

MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

Output: Frequency response Total harmonic distortion: Load impedance:
ver gain:
Supply voltage Size:
Sensitivity:
Sensitivity:
Input impedance: Adjustable externally up to 2.5 M ohms

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies. oscillators. e1c. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors

SINCLAIR

vatts R.M.S. continuous 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Less than 1% at full output.
3 to 15 ohms.
$110 \mathrm{~dB}(100.000 .000,000$ times $)$ total. 8 to 18 volts.

Project 60

laboratory-standard high fidelity modules

Sinclair Project 60 comprises a range of modules which connect together simply to form a compact stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.
The modules are: 1. The Z-30 and Z-50 high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 pre-amplifier and control unit. 3. The Active Filter unit with both high and low audio frequency cut-offs. 4. The PZ-5 and PZ-6 power supplies. A complete system could comprise, for example, two Z-30's, one Stereo-60, and a PZ-5. The P-Z6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may be added as required. In a normal domestic application, there will be no significant difference between using a PZ-5 or PZ-6 unless loudspeakers of very low efficiency are being used, in which case the PZ-6 will be required. For assemblies using two Z-50's there is the new PZ-8 stabilised supply unit to ensure maximum performance from these more powerful amplifiers.

All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled into the wood of the plinth to mount the control unit and the A.F.U. Any slight slip here will be covered by the aluminium front panels of these iwo units.
The Project 60 manual gives all the building and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe, Project 60 prices are remarkably low

The Z.30, together with the higher powered 2.50 are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the $\mathrm{Z.30}$ or Z .50 power amplifiers in your Project 60 system will depend on personal preference. But they are both the same physical size and may be used with other units in the Project 60 range equally well. The $\mathbf{Z} .30$ is unlque in that it may be used with any power source between 8 and 35 volts without need for adjustment and may thus be driven from a car battery for example. For operating from mains, for the $\mathbf{Z .} 30$ use PZ. 5 power supply unit for most domestic requirements, or P.Z. 6 if you have very low efficiency loudspeakers. For Z.50, use the PZ.5, PZ. 6 or PZ. 8 described below

specifications

Power Outputs 2.3015 watts R.M.S. into 8 ohms, using 35 v . 20 watts R.N.S into 3 Ohms using 30 voits
2.5040 watts R.M.S. Into 3 ohms: 30 watts R.M.S. Into 8 ohms both continuous, operating on 50 v .
Frequency response- 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distortion 0.02\% into 8 ohms
SIgnal to nolse ratio better than 70 dB unwelghted
Input sensitivity 250 mV into 100 K ohms
For speakers from 3 to 15 ohms Impedance
Size 3 tin. $\times 2 \mathrm{tin} . x$ tin.
2.30 and 2.50 power amplifiers are interchan

STEREO 60 Pre-amp Control Unit

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

ACTIVE FILTER UNIT

The purpose of the filter unit is to reject frequencies above (scratch) or below (rumble) specific cut off frequencies when they contain unwanted interference. The Sinclair A.F.U. is unique in that the cut off frequency is continuously variable for both the scratch and rumble units and, as the attenuation in the rejection band is rapid (12 dB per octave). the removal of interference can be achieved with less loss of the wanted signal than has previously been possible. Each channel has an overall gain of unity and the unit may be connected between the pre-amplifier and power amplifier sections of any system. Both amplitude and phase distortion have been made quite negligible by careful design and generous negative feedback employed.

SPECIFICATIONS

Employs two Sallen \& Koy type active fliter stages, one rumble (high pass) and one sciatch (low pass)
The two stages use complementary transistors to minimise distortion.
Supply voltage 15 to 35 V Current 3 mA max
Galn at 1 kHz , filters flat $0.98(-0.2 \mathrm{~dB})$
H.F. cut off (-3 dB) varlable from 28 kHz to 5 kHz at 12 dB /octave L.F. cut off (-3 dB) varlable from 25 Hz to 100 Hz at $12 \mathrm{~dB} /$ octave Distortion at 1 kHz (35 V supply) 0.02% at rated outpuz

Built, fested and guaranteed

Power versus distortion curve for $Z .30$ and $Z .50$

$Z .30$
Bullt, tested and
guaranteed, with manual
2.50
(
109/6

89/6
2.50

Bult, tested and

SPECIFICATIONS FOR STEREO 60 - Inpur sensitivitlas-Radio-up to 3 mV Magnetic P.U.3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} ; 20$ to $25,000 \mathrm{~Hz}$ Ceramic P.U. -up to 3 mV . Aux.-up 103 mV Output- 250 mV .
Slignal-io-noise ratio-better than 70 dB
Channel matching-within 1 dB .
Tons Controls-TREBLE+15 to - 15 dB , of 10 kHz - Front panel-brushed 100 Hz . with black knobs and controls.

- Size Bf $\times 1 \frac{1}{\frac{1}{2}} \times 4 \mathrm{ins}$
.-. -
BUILDING A PROJECT 60 ASSEMBLY

The illustration here shows quite clearly how easily Project 60 can be contained in one of today's silm, modern Project 60 can be contained in one of today's silm, modern Sinclair units, and wlithin the space of the motor olinth. Sinclair units, and wlitin the space of the motor plinth. quality. If, for example you have already put together an assembly as illustrated here, adding the Actlve Fllter Unit would be very easy.

GUARANTEE

SINCLAIR POWER SUPPLY UNITS

PZ-5 30 volts unstabilised-sufficient to drive two 2.30 's and a Stereo 60 for the majority of domestic applications PZ
PZ- 635 volts stabllised-ideal for driving two Z.30's and a Stereo 60 when
very low efficiency speakers are employed PZ. 845 volts stabillsed power supply unit for use with \mathbf{Z} - 50 amplifiers (less
 PZ-8 Mains Transformer

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them. we will refund your money at once. Each normal use we will service lit at once and without any cost to you whatsoeve provided that it is relurned to us within 2 years of the purchase date. There will be a small charge for servicas thereafter. No charge for postage by surface mail. Alt-mail charged at cost.

PHOTOCONDUCTIVE CELLS

Cadmium Sulphide Cells (Cds)
Inerpensive likht rensitive reeistort whlch renuire only simple

 With A.C. or D.C. Spectral responise covern whole risible lizht range.

MEY71

PHOTOGENERATIVE CELLS
Seienium eells in wioh lisht enerry is convetied into elecetrioity
 exporure metert, colorimeters, etc. spectrai remponse covert risible lifbl ranke.

Type 1-14 $\times 1$ A in. Output 1 mA at 0.6

REED SWITCH COILS aND Capsules

 extremely sinall qpace. They eliminate the bulk and upen contact
 with solid-equte components on printed circult boarde. Ideal tor Witching matricee, Ditary kite, control syotemn, etc. These were removed litact from highly expensivg computer mechanismn and
are guaranted to be in perieet working order. Each capsule consister
 former with one

R/C2 Twir reed switchea, contacts normally open. Blize overall:

RCA TRIAC-CA40432

45/- past free

suitable for lisht dimming end motor coatrol circuits

VARIABLE SPEED

MOOD MIXER ASSEMBLY P. ${ }^{25 /-}$
Exceptionally robast. brusb-type, zeries
 detachable miser blader, Open trume con-
 shaft at one end and die-cane, encloaet gear.
box with twin shaft outpat toto rightangled
 owteh selectlon of ant of three apeed.
gwitch not supplied. Bize overall:
Sil in.

LOW VOLTAGE

SOLENOIDS
SPECIAL OFFER
PRICE: 2 FOR 12/6

Exceplioanly powertal pulltype wolenoid tor $4 \frac{1}{2}-8$ volt, D.C operation. Compact, hirouded construction with tapped holes ai

QUARTZ HALOGEN
 5x, 5 FLOODLAMPS

Type 1. 1

CONTROL THERMISTOR

Type 123 by grc retuined on 1×11 ith. pazolin toard with solder tags and mounting lug with
caplive screw. Bean type thermistor is contained
 and in particularly rult bule for amplitude conirol.

 Usual price $15 / 9$ each. Brand nem. Special barkin

POWER TRANSISTOR HEAT SINKS

Heavy gauge alumindum extrushonit with
nitment for one pair of powertransistora siae overall: palix $3 p \times 1 z$ in. hikh Baase is in. thick and ready punched
to acept sil atandard typen. Seven
(noling fin surfaces ensure adequate heat disalpalion. Brand new. Special
olfer: two tor $18 / 8$ pont offer: two for $12 / 6$ port free

INFRA-RED TRANSMITTERS RECEIVERS Unique derices in a brand new electronio tield that can be erploited tatate circolt detikn is combined mith outitandinz modulation and awitebing capabilities to provide inficite possibilititem at abort distance speeoh and dasa inke. remote relay controla, mety devices, burghe

MOA 100
30 - pont free
$85 /-\frac{\text { MSP }}{} 33$
gallivi arsenide hogt source-mga 100 Filmmentiean infra-red emititer in a robust, aenled cylinder conaxin

Porwand current IF max. - D.C.: 400 mA . Forward peak current IF max. © (pk): 6 A . Power dicsipat inn: Gion mw. Derating factor

1. When mounted on an aluminium beat sink 1 in . $\times t$ in. $\times t$ in. INPRA-RED PBOTO RECEIVER MSP3
Urran senailiva detector/amplifier for Infra-rell (Gallium Arsenide)
 Opticial aliknment and beat alnking. Max Ratties:
Total dinalpation (in free alr. T $\mathrm{amh}=25^{\circ} \mathrm{C}$.): 100 rnW . Dermiting factor: $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output current intenality: 1000 omA . Voltage
 application sheet, inoludimat line of sight ppeech lionk.

INDUCTION
MOTOR
Bigh grase unit with Hetime lubrichted bearing and in in. long x
 EXTRACTOR FANS

 made ap from dimple sheet metel wrap ping to natit any particular inotaliation Make anide alextractor fan for Kitchen
and other domeatc and light induatrium and other domente and light induhtria

high grade miniature
 Top quality, all. British manufacture, 12 .volt D.C. permanent
magne: motors. Wave-wound armasure has 5-segment machined copper commutator contucted by spring-1oaded, long-life carbon
bruhes in heavy brans hoiders. Eteel rotor shatt runs in lifetive brusher in heavy brans holders. Steel rotor whatt rung in lifetiwe

ELECTRIC BLANKET

HEATER CABLE

Min. order 20 yds. of one type, plus $2 / 6 \mathrm{P}$. yard
Nickel alloy ribbon splrally wound onto a fibre core and tosulated by and outer cover of clear, siliconized plastic. Originally intended as
heating elements for hirb-grade electrio blealeks but auitable also for undersoil heatiog in propagating trays and many other low temperature applications. Cable diamo. 2.5 umm. Avallabie in variour renistance rages an follows: $14.5,15.9,21.5,28.9,41,48,151$ and 177 ohine

STANDARD CRADLE TYPE TELEPHONES Two for 35/:

Blandand type complete with dial and approz. 10 fl . cond. Not new, bat guaran-

FIBRE OPTICS

Hirhly flexible light evides that trassmit light to inacceadible olacen as easily an olectricity is conducted by copper wires. Fibre optics make one source to many places at once and to operato photo derices, logic ircaits, or ithumiaste is whys nerer before possible. Proops ofter both siass tbre optics or inexpensive Crofon plastic fíbres for
hundreds of experiments or serious applicutions in a facinating new

Rank Taylor-Hobson Engineers' Kirs

auic fibre optle romponente hat demonatrate new waye of
mploying light in rerious applistions. Two sita sre avallable: thre light guides consistlug of hourandm of fibres fighty rundled to Hexlble shesths with ugraled, optically polilathed ends. ht mource componenta. Each is uppled conplete with card ppllention data. $f 16$ post free Kit I ght guides, plue 241 n . long $\times 2$ exit component for punched cari
 "Y" mdaptof wth non- random neparation and $3 \mathrm{~mm} / 3 \mathrm{~mm}$. and Kit 2.628 post free Contains: $3 \mathrm{~mm} \times 18 \mathrm{~lm}, 6 \mathrm{mml}, \times 12 \mathrm{~mm}$. light guides; 1.5 mm . "Y
guide with two 12 ln . long talle; 24 in . long 12 exit component for oding or punched card applicationn. 24 in. Iengtha of Croton 64 consisting of 25 mm . diam. Aeld flattening lens, 6 mm . $\times 12 \mathrm{in}$. huage condult with pollwhed end $0,4 \mathrm{tmm}$. $\times 28 \mathrm{~mm}$. image invertor Complete with 2 -way adaptur, Abre optic torch and batteries 3 mm . and 3 mm .1 .5 mm . connectors.

SPECIAL OFFER OF

IMAGE FIBRESCOPES $\quad 5$ post free Botween 50,000 and 60,000 cohereatly arranged, 15 mieron glaks ibres that provide (with appropriate optics) pertect visund inspectios Hoboon for use in indontrinal and medical Abrescopes at 272 each. these have Alight, superticially tmperceptible fander and are assembled la traspareat, lay-fint tubing instead of opeque, Ierible condif, for demonstration fa achoois and technical collefes and for many other applications that require highly sophisticated means of access to enclosed. dimeult to set at places. Lencth overall: 3 H . Crose

LOW COST CROFON FLEXIBLE LIGHT GUIDES

mitting m he used for both berious protects cand inexpensive prototype work. End
 thmugh bendlag. 12 pase Dasa end applications orde
Types available:
Multi-strand - 64 special plantic tribrea, tightiy bundied together in $7 /=\mathbf{P}$. \& $\mathbf{P} .1 / 6$. Monotilameat- ingle 0.040 ln . platic abre which is npecially uneful for light indicatlon in confred spacsa. $4 /-$ per foot. Iimimum
order three feot. 12/-P. iP. $1 /$.

SIXTEENTH H.P
MAINS MOTOR
35/- Carr. 7/6
 cradle with resilient mounte and starting relay. Plain in . diam.
 speed. 1,0 dip.

GENERAL PURPOSE PUMP

 Brtihh continaonaly rated motor to easure lonk operatine life under rigorous ontdoor and marine
use. Maximum head 10 ft , Output in excess of use. Maximum head 10 ft . Output in excess of
$300 \mathrm{~g} . \mathrm{p}$.h. Ideal for une an blige pump in ernull boati, caravan ohowors. dratuage, fuel t ranafer.
elc. size overali only 12 in long $x 21$ in. diam. Complete with atand-off mounting bracket.
Standarit moxtel. 12 V. D.C. 30 watte, 24 V. model avaliable. Quaranteed 12 months.

High-grade British munutaclure complete with high temperature ceratic base fited with flying leadi, Sutable for projector. car
spothamp adaptation. or high litensity lighting applications. New spotharnp adaptation.
and fully guaranteed.

COMPACT LOW GEAR MOTOR 11/6 Post and packing $2 / 6$

Totally eaclosed eyuchronous motor haa buill-in gearbox providing output epeed of $1 \frac{1}{2}$ r.p.m. Drive in 28 -tooth, 1 in. diam. Wearwheel,
removable to leave ip. diam. uplined shatt. Size: 1 if in. dimm. x I in. deep, plus drive and mounting lugs. Counter clock wise rotation. Iin. deep, plus drive and

"SEW' CLEAR PLASTIC METERS

Type MR.52P. 2iln. iquare tronte	
$\mathrm{s} 0 \mu \mathrm{~A}^{\text {. 82/. }}$	10v. D.C. 40 .
	20V. D.C. 40
100нA 52%	s0v. D.C. 40
100-0-100 AA .. 47/6	300 V . D.C. ... 40/
500μ A $451 \cdot$	15V. A.C. $40{ }^{\text {- }}$
$\operatorname{lm} 44$ 40/-	
SmA 40/-	8 Meter lm A .. 42/-
$10 \mathrm{~mA} \mathrm{.......}$.	VU Meter...... 62/-
50 mA $401 \cdot$	$1 \mathrm{amp} .4 . \mathrm{C} .{ }^{*}$.. 40/-
100 mA 40 /-	B amp A.c.* . $40 /$ -
	10 mmp A.C.*. . $40 /-$
1 amp. 40/-	20 mp . A.C.* . . 40%
8 artp. 40 /-	30 amp . A.C.* . . 40/-
${ }^{50 \mu} \mathbf{A}$. $67 / 6$	20V. D.C. 42-
50-0-60 A A $\quad . . .555 \%$	\$0V. D.C...... 42
	150V. D.C.
60014	15v. A.C. 48
$500-0-500 \mu \mathrm{~A} \mathrm{}. \mathrm{}. \mathrm{}$.	50V. A.C. 42
1 mA 42%	150V. A.C. 42
mA 42	300 V . A.C. . . . 48
10 mA 48/	
50 mA . ${ }^{\text {co.... } 48 / .}$	8 meter 1 mA .. 47/8
	VU meter. . . . $67 / 6$
500 max $42{ }^{42}$	
	100 mA A.C.* . $42 /$.
$10 \mathrm{mpp}, \ldots . . .$.	$500 \mathrm{~mA} \mathrm{AC}$. - . $42 /$.
15 amp. 42	1 mmp A.C.- . $42 /$ -
$20 \mathrm{amp}4$ 42/-	5 mmp. A.C.* .. 42/.
${ }_{80}^{30 \mathrm{amp}}$ amp. \cdots. $42 /$.	

*MOVING IRON -

all others moving coil.
Please add postage

'SEW"' BAKELITE PANEL METERS

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL METERS - DISCOUNTS FOR QUANTITIES

U.K. DISTRIBUTORS OF
 TMK mutimeters

This range of Multimeters, manufactured by Tachikawa Radio Instrument Co. of Japan, - IMMEDIATE DELIVERY DISCOUNTS FOR QUANTITIES - TRADE ENQUIRIES INVITED

MD. 120

500

5025

EDGWISE METERS

 Type PE.70. $317 / 32 \mathrm{in} . \times 115 / 38 \mathrm{in} . \times 21 \mathrm{in}$.deep. deep.

LAB TESTER
TW. 50k
\star All models fitted overload protection and supplied with batteries, prods and instructions.

MODEL S-260 General Purpose Bench Mounting
1 Amp
2.5 Amp

5 Amp
8 Amp
10 Amp $12 \mathrm{Amp} \quad £ 21.0 .0$ Please add postage.
20 Amp 〔37.0.0 Special discounts for quantity
"YAMABISHI"
VARIABLE VOLTAGE TRANSFORMERS

- Excellent quality - Low price - Immediate delivery

ALL MODELS
INPUT 230 VOLTS, $50 / 60$ CYCLES. OUTPUT VARIABLE $0-260$ VOLTS

Wilkinsons F O R R R E L A Y S		
\%--9		
5mm		
Wabuma		
$2 \square=2=$		
-vas		
+3:		

ELECTROVILUE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS

 BARGAINS IN NEW SEMI-CONDUCTORS

RESISTORS

De BANKS ELECTRONICS CHURCH SQUARE，TRING，HERTS．

We like discussing supplies of valves to all kinds of people．For example we have an excellent service to the Independent Retailer who is looking for small quantities of everything with personal attention and in most areas a call from our representative．And an advance stock as well－THINK OF THE CAPITAL SAVING！

As well as this our dependable service is spreading throughout the world．We will quote you for the supply of valves in 1 or 1，000 quantities．Our stocks extend to industrial users and colleges etc．

In addition to our vast stocks of valves we can offer：－
CATHODE RAY TUBES SEMICONDUCTORS
STYLII
CARTRIDGES
MAGNETIC RECORDING TAPE，ETC．
WHY DON＇T YOU CONTACT US FIRST？TRING 2777

LJQUID LEVEL DETECTOR．Detects even mildly con ductive liquids，I．e．ether．etc．N．O．／N．C．contacts．Falls to safe．E10 ea．S．a．e．Hiterature．
MODULAR POWER SUPPLIES．FUlly stabillsed 8.5 to 9.5 volt 10 amp ．（ $12 \times 6 \times 4 \mathrm{in}$ ．）Brand new． Individual spec．whith each unit．f70 ea．

RADIATION MONITORING EQUIPMENT．POIT able and bench models（brand new）S．a．e literature KLYSTRON POWER SUPPLY（Solbrtron AS562） E40．Casf．50／－．
KLYSTRON POWER SUPPLY（Ellolt PKU1）． 5100
120 AMP．AUTO TRANSFORMERS．190－270v． $50 \mathrm{c} / \mathrm{s}$（tapped every 5 volts）．f80 ea．（Carr．by arrangement．）

801A SIGNAL GENERATOR． $10-300 \mathrm{mc} / \mathrm{s}$ in 4 bands．Ext． $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ ．Output $200 \mathrm{~m} / \mathrm{v}$ C50 ea．P．P．25／．

SPEAKERS

＂E．M．I．＂ $19 \times 14 \mathrm{ln} .50$ watts． 8 ohm（14A／600A．）Fou iweaters mounted across maln axis．Separate＂X－over＂ unit balances both bass and h．f．sections． 20 Hz ． 1020,000 Hz ．Bass unit flux 16,500 gss．A truly magnificent system E25．P．P．50／
E．M．I． 13×8 in． 10 walt with integral iweeter． 15 ohm ．
E5／－－ea．P．P． 61 in 10 watl woofers． 8 ohm 30% ea P．M． $2 / 6$
＂FANE＂ 12 in． 20 watt 15 ohm（122／10A）With integral IWeater． $\mathrm{I6}$ e日．P．P． $7 / 6$
SPEAKER SYSTEM $(20 \times 10 \times 10 \mathrm{in}$ ．）Made 10 Spec from $\frac{3}{3} \mathrm{in}$ ．board．Finished in black leathercloth． 13×8 in speaker with iwin tweeters complete wlth＂X－over＂ 50 Hz ． $1020,000 \mathrm{~Hz} £ 710 \mathrm{~s}$ ．P．P．10／e．
SPEAKER CABINET KIT．Above mentioned cablinet only． In kit form which you may assemble and cover to your own cholce．40／PP YOU
EXTRACTOR FANS／BLOWERS

＂PLANNAIR＂Bt In．FAN．（Type 5 PL 121－122．）Diecast housing． 240 v ．Brand new．E6．P．P． $10 /$－
＂SOLARTRON＂TANGENTIAL BLOWERS．Overall size $16 \times 5 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$ ．Alr outlet $12 \times 1 \frac{1}{\mathrm{i}} \mathrm{in}$ ． 240 v ．Brand new． 60／－ea，P．P．7／6．
BULK COMPONENT OFFER．Resistors／capachors．All types and values．All new modern components．Over 500 pleces，£2．（Trial order 100 pleces $10 /-$ ．）We are confident you will re－order．

HIGH SPEEDMAGNETIC COUNTERS（ $4 \times 1 \times 1 \mathrm{In}$ ） 4 diglt． 24／48v．（state which），6／6 es．P．P． i／＝

LEVEL METERS（ $1 \frac{1}{2} \times \frac{1}{y}$ In．）． 200 micro－amp．Made in Germany．15／．each
SILICON PHOTOVOLTIC CELLS（MS28E） $550 \mathrm{~m} . \mathrm{V}$ ． $35 \mathrm{~m} .8 .30 / \cdot$ อe
RELAYS H．D． 2 pole 3 way 10 amp．contacts． $12 \mathrm{v} . \mathrm{w} .7 / 6$ ea． LIGHTWEIGHT RELAYS（with dust－proof covers） $4 \mathrm{c} / \mathrm{o}$ contacts．24v． $500 \mathrm{ohm} 7 / 6 \mathrm{ea}$ ．
PRECISION CAPACITANCE JIGS．Beautfully made with Moore \＆Wright Micrometer Gauge．Type 1.18 .5 pt 1,220 pf．f10 ев．Type $29.5 \mathrm{pt}-11.5 \mathrm{pt}$ ．f． 6 ea ． POT CORES LA1／LA2／LA3．10／－ea．
71 WAY PLUG \＆SOCKET（Painton Series 159）Gold plated contects with hood \＆retalning clips． 30% palf． plated contects with hood \＆retaining clips．30／－palf． 50 WAY PLUG \＆SOCKET（U．C．L．minlatute）
contacts $20 /$－palr． 34 way verslon $15 /-$ palf．
CO－AX RELAYS（magnetic devices） 1 change－over $12 \mathrm{v} . \mathrm{w}$ 201．ea．
COMPUTER BOAROS
4－OC23；4－2N1091：4－2G302；4－OA10．20／－es．
8－OC42（long leads）；16－0A47．7／6 6 Ba
Bargain pack of 5 boards．
Bargain pack boards．Components 100 varied to enumerate．At least 100 transistors and diodes．£2 lot．

TRANSFORMERS

L．T．TRANSFORMERS（shrouded）．Prim．200／250v L．T．TRANSFORMERS（shrouded）． Sec．20／40／60v． 2 amp．62／6．P．P．7／6．
L．T．TRANSFORMERS．Prim．200／250v．Soc 20／40v． 1.6 amp ． $30 /$ ．．P．P． $8 /-$ ．
＂ADVANCE＂CONSTANT VOLTAGE．PIIm．190／250v $\pm 15 \%$ ．Sec． 115 v ． 2,250 watts．$£ 1$ ea．P．P． $50 /-$ L．T．TRANSFORMER 20 v .1 .5 amp ． 1 5／．，P．P． $2 / 6$. ISOLATION TRANSFORMERS． 250 walts．45／． P．P．10／－
P．P．TRANSFORMER PrIm 240v Sec 33－0－33v 5 amp．45／－．P．P．10／－
STEP－DOWN TRANSFORMERS Prim．200／250v．Sec． STEP－DOWN TRANSFORMER
115v．TRANSFORMERS Prim 240 v S $8 / 12 / 20 / 25 \mathrm{v}$ 3.5 amp models $20 /-: 5 \mathrm{amp}$ model $\mathbf{2 5 / -}$ ．P．P． $5 / 6$ ． L．t．TRANSFORMERS Prim．240v．Sec 14v． 1 amp 10／． ea．P．P．2／6．

ELECTRIC SLOTMETERS（ $1 / \cdot$ ） 25 amp ．L．R． 240 v ．A．C． 88／－日e．P．P．5／－． 88／－日B．P．P．5／ 240 v ．AC．20／－ea．P．P．5／－
＂LONG LIFE＂ELECTROLYTICS（ScIew terminal）． 25,000 u．f． 40 v ．$\left(4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}\right.$ ．）．20／－ea．P．P． $2 / 6$ ．
0,000 u．f． 76 vv ．（ $4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$ ．） $17 / 6 \mathrm{ea}$ ．P．P． $2 / 6$
3.150 u．f． 40 V ．（ $4 \frac{1}{2} \times 1 \frac{1}{2} \ln$ ．） $15 /-$ ea．P．P． $2 / 6$

EXECUTIVE＂SIXTY＂AMPLIFIER．（ 60 w．I．m．s．Into 8 ohm．）Brltish designed and bullt．True hi－fi performance． Bulth－in filters to protect speakers．Three Independently Magnetic Carifidge，or aux．equipment．E55．P．P．50／－ Sagnelic Carridge S．a．e．Itierature

TELEPHONE DIALS（New）20／－ea RELAYS（G．P．O．＇3000＇）．All types．Brand new from $7 / 6$ each． 10 up quotations only． EXTENSION TELEPHONE（Type 706） Black of 2 tone Grey，65／－．P．P．5／．
UNISELECTORS（Brand new）25－way 75 ohm .8 bank $\frac{1}{3}$ wipe $65 /-, 10$ bank
$\frac{1}{1}$ wipe $75 / \%$ ．Oiher iypes from $45 /$.

REED RELAYS 4 make $9 / 12 \mathrm{v}$ ．（ 1,000 ohm．） $12 / \mathrm{c}$ ea． 2 make 7／6 ea． 1 make 8／－eд．Reed Switches（ $1 \frac{1}{2} \mathrm{In}$ ．）2／－ ea．E1 per doz．
SUB－MINIATURE REED RELAYS（ $1 \mathrm{ln} . \times \frac{1}{2} \mathrm{in}$ ．）．Welght toz．Type 1． $960 \mathrm{ohm}, 3 / 9 \mathrm{v}, 1$ make．12／6 ea．Type 2. 1800 ohm，3／12v． 1 make．18／० өa．

H．T．TRANSFORMERS．Prim，200／240v．Sec，300－0－300v． $80 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} . \quad$ С．T． 2 a ． $6.3 \mathrm{v} .2 \mathrm{a} .30 /$ ea．P．P． $7 / 8$. $350-0-350 \mathrm{v} .60 \mathrm{~m} / \mathrm{s} . \quad 6.3 \mathrm{v}$ ．С．т． $2 \mathrm{a}, 20 /-$ ea，P．P．5／－．

Bl-PRE-PAK LIMITED

FULLY TESTED AND MARKED

F
 R

PACK
THE VALUE OF $10 /$ WITH ORDERS OVER I_{4}
THE VALUE OF

ANOTHER SCOOP FOR BI-PRE-PAK
just released from stock
These are brand inew puaranteed to full makers specification and not remerked rejects.

NEBOBA Single 8 I/P Nand Gate TTL NE816A Dual 4 I/P Nand Gate TTL Ne825A D.C. Clocked J.K Flip-Flop TTL NE840A Dual 4 1/P Exclusive OR Ga NE855A Dual 4 Power Gate TTL NE880 Triple 3 I/P Nand TIL NE880A Quad 2 Nand TTL
$\begin{array}{ll}\text { SP616A } & \text { Dual } 4 \text { Nand Gate DTL } \\ \text { SP631A } & \text { Quad } 2 \mathrm{l} / \mathrm{P} \text { Gate Expander DTL }\end{array}$
$\begin{array}{ll}\text { SP631A } & \text { Quad } 2 \text { I/P Gate Expander DTL } \\ \text { SP670A } & \text { Triple } 3 \text { Nand Gate DTI }\end{array}$
SP806A Dual V/P Expander TTL
SP808A Single B UP Nand Gate π
SP816A Dual 4 I/P Nand Gate TL
SP825A D.C. Clocked J-K Flip-Flop π
SP840A Dual 4 I/P Exclusive OR Gete TTL
SP855A Dual 4 Power Gate TTL
SP870A Triple 3 I/P Nand TTL
SP880A Quad 2 VP Nand TTL
NE500K Video Amplifier
NE501K Video Amplifier 40 MHz
NE806J Dual 4 I/P Expander TTL
$\begin{array}{ll}\text { NE808J } & \text { Single } 8 \text { I/P Nand Gate } \\ \text { NE816J } & \text { Dual V/P Nand Gate TTL }\end{array}$
$\begin{array}{ll}\text { NE816J } & \text { Dual I/P Nand Gate TTL } \\ \text { NE825J } & \text { D.C. Clocked J.K Flip. Flop }\end{array}$
NE840J Dual 4 I/P Exclusive OR Gate TTL
NE855J Dual 4 Power Driver TL
NEBBOS Quad 2 UP Nand TL
ST620A J-K Flip-Flop DTL.
ST659A Dual 4 Buffer/Driver DTL
$K=10$ lead T0. 5
$J=$ Flat Pack

LOOK! TRANSISTORS ONLY 6d EACH

TYPE A
PNP SILICON ALLOY to-5 CAN Spec:-

ICER AT VCE $=20 \mathrm{~V}$ 1 mA MAX. HFE, 15.100
These are of the 25300 type which
is a direct equivalent to the

TYPE B
PNP SILICON
PLASTIC ENCAPSULATION
${ }^{\text {Spec:- }}$ ICER AT VCE $=10 \mathrm{~V}$ 1 ma MAX HFE. $10-200$
These are of the $2 N 3702 / 3$ end

TYPE E
PNP GERMANIUM
FULLY MARKED AND TESTED. STATE R.F. OR A.F WHEN ORDERING.

NEW UNMARKED UNTESTED PAKS
INTEGRATED CIRCUITS, DATA

$$
\begin{aligned}
& \text { INTEGRATED CIRCUITS, DATA } \\
& \text { \& CIRCUTTS OF TYPES. }
\end{aligned}
$$

| $878 \quad 12$ SUPPLIED WITH ORDERS $10 /-$ |
| :---: | :---: |
| DUAL TRANS. MATCHED O/P |

| | |
| :--- | :--- | :--- |
| B8O 8 | DUAL TRANS. MATCHED O/P |

B82	10	OC45. OC810 \& OC81 TRANS
MULLARD GLASS TYPE	$10 /-$	

B83 $200 \begin{aligned} & \text { REJECTS. NPN-PNP. SIL. \& } \\ & \text { GERM. } \\ & \text { Bill }\end{aligned}$

B84 100 | SILICON DIODES DO 7 GLASS |
| :--- |
| EQUIV TO OA2OO, OA202 |

| 150 |
| :--- | :--- | :--- |
| B66 OIODES MIN. GLASS TYPE $10 /-$ |

88650 SIL DIODES SUB. MIN.
B9
IN914 \& IN916 TYPES

B87 100 TO OC44, OC45, OC81. ETC. 10/-
$-\frac{\text { TO OC44, OC45, OC81. ETC }}{\text { SILTRANS.NPN. PNP EOUIV }}$

B88 50	TO OC200/. 2N706A. BSY95A, ETC.

B60	$10 \quad$7 WATT ZENER DIODES, MIXED VOLTAGES	$10 /-$

H5 161 AMP. PLASTIC DIODES
(40 250mW. ZENER DIODES
40
DO. 7 MIN. GLASS TYPE
10/-

NEW TESTED \& GUARANTEED PAKS 879 4 1N4007 SiL Rec. Oiodes. 1.000 PRY 10/

881	10	REED SW TCHES MIXED TYPES LARGE \& SMALL	10/-
B89	2	5 SP5 Light SENSitive cells LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$	10/-
B92	4	NPN SIL. TRANS. AO6 $=8 S \times 2 \mathrm{U}$. 2N2369, 500 MHz .360 mW .	10/-
893	5	GET113 TRANS. EQUIV. TO ACY17-21 PNP GERM.	0/-
896	5	2N3136 PNP SIL. TRANS. TO-18 HPE $100-300 \mathrm{IC}, 600 \mathrm{~mA}$. 200 MHz	10/-
B98	10	X8112 \& X8102 EOUIV. TO AC126 AC156. OC81/2, OC71/2. NKT271. ETC.	10/-
899	200	CAPACITORS. ELECTROLYTICS. PAPER. SILVER MICA, ETC. POSTAGE ON THIS PAK 2/6	10/-
H4	250	MIXED RESISTORS POST \& PACKING 2/-	10/-
H7	40	WIREWOUND RESISTORS MIXED TYPES \& VALUES. POSTAGE $1 / 6$	10/-
H8	4	EYY127 Silicon Recs. 1000 P.I.V. 1 amp Plastic. Replaces the 8 Y 100	10/-
H9	2	OCP71 LIGHT SENSITIVE PHOTOTRANSISTORS	10/-

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components. approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only
 10/-

 2/- P \& P on this Pak.Make a Rev. Counter for your Car. The TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev counter for any car.

20/-each
FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$ - post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

P.O. RELAYS

VARIOUS CONTACTS AND
8 for
COIL RESISTANCES.
NO INDIVIDUAL SELECTION
POST \& PACKING $5 /$ -

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

BELCO AF-SA SOLID STATE SINE SQUARE WAVEC.R.OSCILLATOR sine $\$ 18-200,000$ Ez: Square $18-50.000 \mathrm{~Hz}$.

10 K oams). Opera
con tinterman batherife
Altractive 2 2tone cana

TE-20RF SIGNAL GENERATOR
 courake wide rang
 calllibrted.
R. F. attenuat cration $200 / 240$ Brond new

PEAK SOUND PRODUCTS

 all ranke of Ampllfers, kith, Bpenkera in atociTE22 SINE SQUARE WAVE AUDIO GENERATORS
 Bquare Output tumpedance 8,000 ohme, 200 250 r. A.c. opera
tion. Bupplied brand
 Clon man mat
lead in, E18.10.0.

LAFAYETTE TE-A6 RESISTANCE
 pl. 2.000 mid. thine. Also checks fatlo Insulation.

TY75 AUDIO SIGNAL GENERATOR
ine Wave $20 \mathrm{CPs}-200 \mathrm{Ke} / \mathrm{s}$. Suare Ware 20 CPs- 30 output. Outpat varlable up to Brand new with thatructione. 818. Carr. 7/6.

TE-20D RF SIGNAL GENERATOR
 Accurale wide ranke aig$120 \mathrm{Ke} / \mathrm{m}-\mathrm{AHO} \mathrm{Mc} / \mathrm{s}$ on 6 bands. Directly call-
brated. brated. Variable R. athenutor, eudio output.
Xtal socket for callis.
tion. $220 / 240 \mathrm{~V}$. A.C. tlon. $220 / 246$ tions. 815 . Carr. $7 / 6$.
Slze 140 I 218 I 170 mm .
ADVANCE TEST EQUIPMENT JB AUDIO SIGNAL GENERATOR JIB. AUDIO SIGNAL GENERATOR or 5 obme. 230.0.0.
VM79. UHF MILLIVOLT METER $100 \mathrm{Kc} / \mathrm{s}$ to $1.000 \mathrm{Mc} / \mathrm{g}$. A.C. 10 mV to 3 v . D. nce 1 ohm to 10 megohen. 2125.0.0. TIS. TRANSISTOR TESTER Full range nf facilites for teatigg PN P Garriage 10 f - per Item.
SOLARTRON CD 71152 DOUBLE D.C. to $9 \mathrm{Mo/b}$. Perrect order. £65. Car

AVO CT. 38 ELECTRONIC MULTIMETERS High qually 97 range instrument which meanure A.C. and D.C. Vottage. Current, Resistance and (10 meg $0-110$ meg 0 laput). D.C. current $10 ; \mathrm{A} A-20$ mipe. Ohms. O-1,000 meera A.C. volt 100 mv 250 V (with R.P. measiring head up to $250 \mathrm{Mc} / \mathrm{s}$)
A.C. current $10 \mathrm{~mA}-25$ snops. Power output 50 A.C. curretat $10 \mu A-25$ sinps. Power output
 clecuit lead and R SOLID STATE VARIABLE A.C.

AVO CTA7IA MULTIMETER Battery operated, fully tranglaturised. Benoitivity
100 M 0 Nv . Meanures A.C./D.C. voltages 12 za V. to 00 MONF . Meanires A.C./D.C. voltages 12 zo V. to
1.200 V . A.C./D.C. current 12 A . to 1.2 Amp. 1.200 V . A.C./D.C. current 12 uA . to 1.2 Armp.
Reaistance 12 ohm 10120 mR H.F., V.H.F..
U.E.P. No. Voltage with multiptier $4 V$. to 400 Mc up orfered in perfect condition. $\& 55$ emeh. Carr. $10 /$ -

SINCLAIR EQUIPMENT

Project 60. Package Offers
 power iupply, 18.0 .0 . Carr. 7/6. Or with PZ6
power supply, 0 P10.0. Carr. $7 / 6.2 \times 280$ amplifier, stereo 60 pre-amp. PZ8 power supply,
£21.10.0. Carr. $7 / 6$. Tranformer 4 PZR, $59 / 6$ £21.10.0. Carr. 7/6. Tranaformer ${ }^{4}$ PZR, $59 / 6$
 All other Glocialr producta in itock: 2,000 ampli
der, $£ 23.0 .0$. Carr. 7:6. Neoteric amplaer der, £23.0.0. Carr. 7!6. Neoteric ampllaer
£46.0.0. Carr. 7/6.

B.C. 221 FREQUENCY METERS Latent releane $125 \mathrm{KHz}-20 \mathrm{MHz}$. Brcellent con dition Fully tested and checked and complete
$270^{\circ} 500$ MICROAMP METER Incorporaked in Radio Altitude Indicator 11 B -

TRANSISTORISED TWO.WAY TELEPHONE INTERCOM Operative over amaziugly long
diotances. separate call and press to talk buttons. $2-$ wre
 oatione. Benutiruly enished
tn tbong. Suppled complete c6/19/6 pair. P. P. $3 / 6$.

$+10+20+30+$ Pre $20200 \mathrm{KHZ}(-2 \mathrm{db})$.
Accurncy: 0.05 db . + indleation $\mathrm{db}(0)$ Accurncy: 0.05 db. + indication db x 0.01. Bull it 600 O tond renistance with internal/
axternal awlich. Brand new $£ 27 / 10 /-$. P. \& P. B/a RECORDING HEADS
 Martiott $\frac{1}{2}$ track heads. Poat extre Record/PLaybeck, high Imp. $201=$

AMERICAN RECORDING TAPES
Firat grade $\quad 3 \neq \mathrm{in} .600 \mathrm{tt}$. T.P. Mclarto $3 / 6$

 | paid. | $7 \mathrm{in} 2,.400 \mathrm{ft}$. D.P. Mylar | $\mathbf{2 5}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{7 i n} .3,600 \mathrm{ft}$. | | |

TAPE CASSETTES

Top quality in plastie library boze
C50-60 min. $8.6 ; 3$ for $24 / 6$. C1 $20-120$ tolin. 15/-: 3 for $43 / 8$

3, LISLE STREET, LONDON, W.C. 2
Tel: 01-437.8204 34, LISLE STREET, LONDON, W.C. 2

Tel: 01-437 9155 311, EDGWARE ROAD, LONDON, W. 2 Tel: 01-262 0387 open 9-6 monday to saturday (edgware road $1 / 2$ day thursday)

$1=$
 ELECTRONIC BROKERS LTD

NEW 6-CHANNEL TIME AND EVENT RECORDER

A self-contained instrument, specifically for recording events without the need for a combined recorder.
There is a separate and independent paper drive, with a monitor lamp indicating when it is in operation. The pens are displaced $1 / 16^{\circ}$, activated by a close contact system. Each of the 6 channels works independently of each other, with the pens writing at 72 hours per filling at a maximum speed of 10 pulses per second.
The recorder is supplied elther in a portable cabinet or with rack mounting adaptions and the size is $15^{\prime \prime} \times 9^{\prime \prime} \times 91^{\prime \prime}$ deep. It weighs 10 lb . and is avallable in $220-240$ volt A.C. (50 cycles) or $110-115$ volt A.C. (60 cycles). The 6 -channel time and event recorder is avallable at the following speeds: 30, 20, 10, 5, 1 per minute. 18, 12, 9, 6 per hour. Width of paper roll is 6° maximum diameter of roll is 3^{\prime}, length on standard $3^{\prime \prime}$ diameter paper roll is $2^{\circ} 00^{\prime}$. Price of the event marker is $£ 79-10-0$, plus $£ 5-0-0$ for the special vinyl-treated portable case.
The instrument is guaranteed for one year, and is available with a complete range of acces sories, Including teledotos paper, graphic paper, plain paper, pens, pen containers and time bases. Prices of these ltems are avaliable on application.

HIGH GRADE COMPONENTS
DOUBLE AUDIO FADERS

AVO TRANSISTOR ANALYSER CT 446 A portable direct-reading Instrument
capable of giving accurate trannietor meakurementr in the grounded emitter
configuration. Ratiery power unit 1.5 VV to 10.5 V in B stepe. Base eurrent 0.1 mA , $1-40 \mathrm{~mA}$. Collector current 250 mA .
size: $15 \mathrm{~m} \times 9 \| \times 5$ inn. Weight with
batterien: 15 ibs. Price 242.10 .0 .

MINIRACK MULTICHANNEL
OSCILLOGRAPH. MUR 12
 Price and full detalle on application.
OSCILLOSCOPE CAMERAS
Consor. Model 1431 and Model 1428 . Complete with motor anto tranformer and capacitor unit. Price E49.10.0 pluy carringe.
Langham Thompen 200 Typd B. Price $\mathbf{E 5 5 . 0} 0$ plua carriage.
 Viewing hedil to outte Type A ' carmern. Pricn £25.10.0 pluscarriage. VOLSTATS

GENERATORS

AYO SIGNAL
GENERATOR CT 378 $2-225 \mathrm{M} \mathrm{Hz}$ in 7 ranger on Funda-
mentala up to 450 M Hz on Harnonics. scale calibrution accuracy 1%. Output 1 micro volt to 25 mV
 1 micro volt to 12.5 mV into. Mo ohm
using fixed attentuator pad. Modula. tion facilities. A/F o/p facility. O/p
level meter. Fonce o/p facillty. Size level meter. Fonce o/p facillty. Bize
151 in. $\times 9 / \ln . \times 11 \%$ in. Weight

HYSTERESIS REVERSIBLE MOTOR
Incorporating two coila. Pach coll when energlaed will prodnce
opponite rotation of out put shaff. 240 V B0 Hz .

SYNCHRONOUS MOTORS

models in r.p.b. and $1 / 60 \mathrm{rap}$.h. 8alf atiarting complete with geartog Equipment. $40 /=$ P. $\& P$. $3 /$.

DATA TRANSMISSION-SYNCHROS
Naker Votrage Hz Price
Torque Receiver $11 T \mathrm{RE}$ Aperry $90 / 115 \mathrm{y} 40$
Torque Receiver Torque Recelver 11 TR ta Pul Control Tranaformer 11CT4A Control Traneformer IICT4 Control Transformer 11 CX \& Control Tranaformer ILCX 4 Torque Tranamitter ACS/AF
Torque Tranamiter 11 MD 3 Tompue Tranasiliter 15, M1B1 Smith
Pullin
Muirhead Muirhea
$\begin{aligned} & \text { Sperry } \\ & \text { Pullin }\end{aligned}$
Vetivn Perry
Pullin
Ketay
Smath
\qquad Mulrhead
Mulrhemd 96112.3
$90 / 115 \mathrm{v}$ $20 / 115$
26 v
90 v
26 v
$1119 / 9$
$115 / 9$
264 v
OSCILLATORS \& SIGNAL GENERATORS I CRYSTAL CONTROLLED OSCILLATOR STC. 16-LXU-52A Mk $11.0-20 \mathrm{M}$ Ha. 8 weep fachltien. $0 / \mathrm{p}$ attentuation 0 -70rlb.
Complete
 Range 5Hz-5K Hz. 8weep mode 1 Clr/min. O/P. 0-10V. Maink 108 LOW FREQUENCY DECADE OSCILLATOR D-63B-A
 I 109 DECADE O8CILLATOR D-650-B. Range 1 Hz- $111 K$ Hz.
 15 K Hz. Viewing ORT. AOTOMATIC FREQUENCY MONTTOR- PTIS

 I 83 . SIONAL OENERATOR. CT 480 SANDERS. Range 7 K Hz $12 \mathrm{~K} \mathrm{~Hz} . \mathrm{O} / \mathrm{p} .0 \cdot \pm 50 \mathrm{~V}$. Attenuation range -10 to +100 db price 179 WOBULATOR GM $887 / 02$ PHILLIPS.
42
NOISE OENERATOR CT 410 WAYNE KERE Price
£65 I 42 NOISE OENERATOR CT 410 WAYNE KERR. Prequency.
Range. 15
$\mathrm{H}_{2-1} 160 \mathrm{M}$ Mg. Timer 0.8 mins. Dioile Cursent $0 . d \mathrm{~b}$ at 3 mA to ${ }^{+} 1 \mathrm{ddb}$ at 100 mA . FM/AM SIONAL GENERATOR. TVpe SO. B3D. ADVANCE. Range
 40 M Hz . O/P 0-10V R.F. O/p and attentuation 0 to -00 db in stepn..

MOTORS

HIGH TORQUE INDUCTION MOTOR

HIGH PRECISION MAINS
MOTOR 3 Phase-I Phase 230 V s0 Hz $1 / 8 \mathrm{~h} . \mathrm{p}$. enntinuoasly rated.
3000 r.p.m. Made by Croydon Engineering. Model KA 60 JFB, Suitable for capitan motor, 8 ize 8 in . Jong, 41 in . diameter with 6 in . dianeter thange and
4 Ax ing holes. $84 / 10 / 0$ each. \mathbf{P}. $\mathbb{P} \cdot 25 /$.

LOW TORQUE HYSTERESIS MOTOR MAZ3 Ideal for instrument chart drives. Extremely quibt. useful in areas where ambleal nolse levels are low. high taring torque enable the following speed and ranges: 240 V 50 H. 4 r.p.m., 28 r.p.m.
 $1 / 12$ r.p.m. $1 / 20$ r.p.m., $1 / 40$ r.p.m., $1 / 60$ r.p.m.t. $1 / 7 \mathrm{~s}$ r.p.m., $1 / 120$
r.p.m., $1 / 360$
r.p.

A.C. MOTOR GENERATOR
A.C. MOTOR GENERATOR THPe G1003 Motor 8pec. 8000 r.p.m. Torque $25 \mathrm{gm} / \mathrm{cra}$. CoDtro
 Ref. Winding $26 \mathrm{v} ., 400 \mathrm{~Hz}$. O/PO iv 1000 r .p.m. Length 2 in ., dia. 1 is Price $£ 7 / 10 / 0$ p. \& p. $5 /$
D.C. TACHOGENERATOR Type $9 c / 10616 \mathrm{~F}$. at 1000 r.p.m. Drive shaft dia. ${ }^{3 / 8 / 10 / 0 \text {. }}$

SYNCHRONOUS MOTOR WITH GEARBOX Motor 11 M83 zearbox type 11 H 21 . Thi untrin an $8000 \mathrm{r} . \mathrm{p}, \mathrm{m} ., 115 \mathrm{v}$. 000 Hz motor nited with concentric epleycle reduction gearbox of 9.92/1. Mo.
diarneter.

AAGONOT MOTOR

220V 3.phase $30 \mathrm{~Hz} 1 / 20 \mathrm{HP}, 1500$ RPM. Prectsion Ex-COMPUTERTAPE DRIVES. Rotor move I in. arially on
switch on" to take up drive and on "Swith on" to take up drive and on
"Bwitch off" is spring retumed todinengagedrive. 45/-each. P. P. $10 /{ }^{\circ}$

FRACMO

EVERSHED \& VIGNOLES

Type FB6A-A1/B | in, keyed shatt. Price 212/10/0 each.

MEASURING INSTRUMENTS AND RECORDERS

PORTABLE AC/DC PEN RECORDER

 A most veraatile pen recorder. Producesa trace on a curvi-linear 3i, in. strip
chart. Two apeeds 1 In. and 6 in, /hr. chart. Two speeds 1 In . and 6 in /hr.
Limiting contacts to give alarm, and
limite the current when it exceeds the high and/or low preset values. Range: 0.1 MA D.C. Meter Renietance 400 ohms: 0 - 1 MA A.C. Meter Reilstance
1800 at $50 \mathrm{~Hz} ;-10$ to +5 dB into 1800 at 50 Hz; -10 to +5 dB into 1 in and 8 in. fhr. Chart wdith: 3% in cory-llinear. Power gupply: 230 V

49-53 PANCRAS ROAD, LONDON, N.W.I. Tel: 0l-837 778I/2. Cables: SELELECTRO

METERS

A.C.-D.C. CONVERTERS TYPE $2 \mid 40 / A 1-B I$ and A thexible modulor syatem for ute with a DVM for sccurate mean
(RMB) or true (MMM) Valtage measurement. Module Al tF Amplifier X 0.1 to X 1000 . Module A3 LF Amplifier X 0.1 to X 100

$2140 / \mathrm{A}$
2150.
DIGITAL VOLTMETERS
Type LM902-2.4digit £75. LM902-2R. 4 digit 875. LM1010. 4diglt D.7. All the above units have been cadibrated.
 1K. V. Input impedance 10000 MQ C.M.R. 154 dB . Outputa paralle. B.C.D. £245. Carriage iree.
DM20i0. Bcale $109994 . D . C$. Accuracy 0.001 per cent. D.C. Range
10 micro volts w 1.1 KV . $1 / \mathrm{P} Z$ greater than 25000 Megohma. Outputa Paratlel BCD. Price 2500
 microvole to $2 \mathrm{KV} 1 / \mathrm{P}$ impedance greater than $10,000 \mathrm{M}$ ohn
Parallel BCD Output or Decimal (not leulated). Price $£ 235$.
MICOVAC ELECTRONIC TEST METER
By E.il. Lad. Mosiel 228 B tht in a procivion portable linatrument

 Probe increasea range from 10 K Hz -200 MHz . Reniatance Range O-1 K, $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ ohm and 10 M ohms. Fitted with mains
P.s.U. adaptor. Mptal cane. Price f40. Corriage extra. 190 Valve VOLTMETER Type 6 Marconi. Rapge 0-1B0V.
Mains operated.ice \&5.10 150 A.C./D.C. Meter Model 44 E.I.L. Ranges. Voltagen $0-200 \mathrm{~V}$ AW: -10 Ro +19 db 0-1000 Ma Current lmA-10A. Power $\operatorname{lm} W$
 1514 pH METER CAMBRIDAE.
 ${ }_{96} \mathrm{B08}$.12 FLUX METER Type $15 \mathrm{M} / \mathrm{AP}$. T.L.G. ELECTRIC. Range 1 504 vERYER POTEMTIOMETER. Type 4389 A FIME 1304 VERNIER POTENTIOMETER. TYDE 4383. A. TINSLEY,
Accuracy \times. 00001 I 513 WATTMETER. S 87 . SANOAMO WESTON. Range $0.15 W$ 117 wideband millivoltmeter. tr 1371 mabconi

 I 122 POTENTIOMETZR \& GALVO. Type P.3.-CBOYDON PRE 123 sLide wire potentiometer. cambridge. Voltare range
0.1 .7 V in is
sitp I 132 decade miductometer. Type 230a. dawe. range I 114 MILLIVOLTMETER. Tpe 284, AIRMEC. Range 0 . 3 Mi mV Complete with anplifiera and 75Ω probe............ Price $£ 20$
 ${ }^{1} 119$ AbSORBTION WATTMETER A.F. No. 1 Mr 4. Power Rangep. 200 micro $W \cdot-6 \mathrm{~W}$. Bcaled in witt and dB. Impedance i 112 gtandard frequency chanaer. Typo 203, alrmec ${ }_{1} \mathrm{M} \mathrm{Hz}_{2} 30 \mathrm{3} \mathrm{M} \mathrm{Hz}^{2}$. 194 DYNOMETER. TyDe 3206. TINSLEYPTICe $\mathbf{E A 5}^{4}$ I 95 A.C./D.C. VOLTMETER Mod. 32. TURNER. Range Voltage
 invert and direct sitentris. I 92 PHASE METER. TyDE IT. 1-3. MCMICEAEL RADIO. 0 . 0° Fith GB MICROAMMETER. CA 13s. Range O-RO mieroA..... Price £10 181 FREQUENCY METER 1178-A. GEMERAL CAMBRIDOE 80 A.C.D.C. VOLTMETER. S72.16. SANGAMO WESTON. Range
Voltaze 0 P-300
 I 72 TUNING FORK FREQ. METER. 4 volto. 2Ts. 3877 . SMITHS Fitted with check 1.12 hra. Preq. 80 cyeles. Price $£ 25$ 151 MILLIAMMETER. CAMBRIDGE. Renge $0-200 \mathrm{~mA}$. Freq. error 1519 PRECISION PHASEMETER. Model 901 -maxsON. Farilitiea
 I 6 DYMAMOMETER. M.I.P. Voltage range $0- \pm 4 \mathbf{4}$: $0-200 \mathrm{~V}$
 12 \& \& Q METER. Type 299 XTE. SMITH. Reforence and quad

SPECTRUM ANALYSERS Masconi. OA. 109A. Spectrum Analynera Rpectrum scan time pariable from 0.1 to 30 mect. Cong peraitebre Complete with tumbley and power Complete with tmile supplies. Price $£ 750$.

FENLOW LOW FREQUENCY ANALYSER 0.3 Hz to 1 K Hz. Power renenity 0.10 Band width switching range. EVERSHED \& VIGNOLES
2 Chunhel Mki Pen recorder. F.B.D. $\pm 10 \pi \mathrm{~V}$. Theve Inotrument o producec a ont inuoun 3 channel imoving coll recorder. Price $£ 28.10$

INKWELL OPERATION
20 and ta channel Muitipen (Projecet thg
Pattern) Recurder. Driven from at 24 V Patem) Requider. Driven from Nivat magnet
Price
$£ 65.5$

VIBRATION EQUIPMENT Goodmans Vibration Control Amplifer E501 foodmans Power Omcll

Price 265

Price 889 Savake ' ${ }^{-}$- Amplitita \begin{tabular}{l}
Price $£ 59.10$

- Price $£ 45$

\hline
\end{tabular} vage Acceleration Control Unit. acici mpedance 1M ת. Output impedance 600 D 10K ye Liag. Power Amplifer. 60 V .A......... Rrice $£ 45$ ENVIRONMENTAL TEST GEAR

 MHOF CABINETS
arlous nizes a valiable, ranglog in price from $£ 12.10$
A UTOMATIC CRYSTAL THICKNESS SORTING MACHINE

Price $£ 490$

PLATINUM RESISTANCE THERMOMETER
PROBES colartro
betalalesanteel ce NT $1198 / \mathrm{c}$ and NT 1687. Accuracy $\pm 1^{\circ} \mathrm{C}$. Probee

BOURNS KNOB POT

consinting of potentiometer, knob and eadout dial in one extremely compact alshed in A very attractive uolit A cailable in look plastic wish white dial. Reslintatice tolernvee 5%, $1 \mathrm{~K} .1 \nmid \mathrm{~W}$. correlation of dial reading to $0 / 1 \mathbf{P} 0.5 \%$ lameter : in. New price 47.15 .0 each.

NUMICATORS
Cold cathode gas-tilled, in-line 0-9 digital dinplay tubes. Long life expectancy. Mtolmum atriking roltshe 1800. Side reading iype

MERCU

RELAYS
Type HO4B1007 relay Is capuble of an operatiag time as short as 8 mill-
geconds. A BILLION OPERATIONSI 8 matl chasnia space repulred. Con venlent mounting. Environment-free Tamper-proof. Eigh senaltivit

Type	Cotl Resistance	Controd Rating	Cumbat
H028 1004	5000 ohm	5 mmp .	2 PDT
H02b 1006	1300 ohm	5 amp.	2 PDT
HG2b 1010	1300 ohm	5 amp.	2 PDT
H04B 1005	1300 ohm	5 amp .	4 PDT
H04B 1007	13000 ohn	5 amp .	4 PDT

PHOTOMULTIPLIER VMPII/44 (CV 2317)
by 20th Century Electronics
Cathode seusitlvity $40 \mathrm{MA} / \mathrm{L}$. Operating voll for $10 \mathrm{~A} / \mathrm{L} 1100$ volts. DARK currnt $0.009 \mu \mathrm{~A}$. E E $0 / 10 / \mathrm{O}$.

ANIMAL SONARAY

ANIMAL SONARAY Type 1803 B by Dawes
 Type 1803 B by Dawes

An inatrument for mpasurirg the thickultrueonicauning the puiseecho prinelpal.
 thickneas for use under feld condition Pully portable wetghing only 26
w ith handtook, price: $\mathbf{8 1 4 9 / 1 0 / 0}$.

CRYSTAL OVENS
Redifon Pitred Bi-Metal Btrip 75°
$5^{\circ} \mathrm{C}$. Octal Base 6V ACand 12 V ACor DC. Proce $\mathrm{EA} / \mathrm{IO} / \mathrm{C}$
 Price $£ 4 / 10 / 0$ Marconl Type F 3006-0
ع12/10 O. P. \& P. 2/6.

VARIABLE VOLTAGE TRANSFORMERS
Various typee avallable, including ningle- and three-phane manua
or motor drive. Contact us by phone or letter for the or motor drive. Contact us by phon
and delivery. SYNCHRONOUS CHOPPERS tion of time contacta $50-60$ Hes. Propo Alon avaliable 100 Hz and 400 Hz . Price.
$\mathbf{E 6 / 1 0 / 0 . ~ P . ~ \& ~ P . ~ B / . ~}$

NEW COMPLETE TELE-
PHONE DIAL ASSEMBLIES Clear Perrper diais-no markinge
$20 /-$ each. P. \& P. $5 / \%$
 LINEAR THYRISTER CON 600w: modure IGCally suithble fo photoflood or ppeed controller, etc. Wh
mount into ntandard socket boxes.

AUTOMATIC CRYSTAL THICKNESS SORTING
MACHINE Fully automatic dice gauging and sorting system, eliminates a
nuanual operations. This instrument in of extreme interest to manuufacturers of semiconductora. It is offered in good condition
at a quarter of tis original ilst price. It at a quarter of tis original list price. It i
aultable for the morting of gernantum and silicon dices. The unit can sort up to 2,400 pieces an hour. Our price 8450 . Purther Information available on req.
plete with manual and opares.

All orders accepted subject to our trading conditions a copy our premises during trading houre or will be sent on applica. tion through the post.

CURAENT RANGE OF BRAND NEW L.T. TRANS
FORMERS. FULLYSHROUDED (
EXCEDTE $)$ TERMINAL
 Example: No. Nained 7-e-10-15-17-25-33-40-50w. $4-12-16-20-24-32 v$
$3-6-9-12-15-18$ 240v.-llov, or AUTO TRANSFOAMEAS 100 v . Completely Shrouded fitted with
Two-pin American Sockets or terminmi blocks. please seate which eype required state which type required. Weigh
Type
Wots Approx. We

Type	Wotts	Approx. Weighe	Price		Corr.
1	80	$2+16$	(1) 19	6	$5 / 6$
2	150	4 lb	6.12	6	616
3	300	61 lb	${ }_{6} 12$	6	$6 / 6$
4	500	$8{ }^{\text {i }} \mathrm{lb}$	452	6	816
5	1000	15 ib	C7 2	6	916
$6{ }^{\circ}$	1500	25 lb	4915	0	1016
$7{ }^{\circ}$	1750	28 lb	61415	0	1216
$8{ }^{\circ}$	2250	30 lb	61717	6	15/-

HEAVY DUTY L.T. TRANSFORMERS
 $18.10 .0 \mathrm{carr} .20 / \mathrm{F}$. tapped $14-15 \cdot 2-28-31 \mathrm{v}$. 20a. Open type
Pri. 220-240v. Sec. Pri. 220-240v. Sec. tapped $14-15 \cdot 2-28-31$
tabie top connections. $\$ 12.10 .0 \mathrm{carr}$. $15 /-$ Pri. capped $110-220-240 \mathrm{v}$, Sec. 55 v . 24 a . 14 v . $10 \mathrm{a}, 60 \mathrm{v}$, 2 a . All windings conservatively rated. Tropically finished. Ter-
minal connections. Size $9 \times 7 \mid \times 7$ ins. Weighe 65 lbs .
615 carr. $77 / 6$. $615 \mathrm{carr} .17 / \mathrm{s}$. 110 vole primary only. Sec. 46 v . 29a. Very conservatively
rated. Size $11 x \times 7$ ins. Weight 75 lbs. By Partridge
Transformer Co. $f 10$ carr. IS/..

Sameson's
 (ELECTRONICS) LTD.

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723.7851

01-262-512

A.C. 220-240v. SHADED POLE MOTORS

, 500 r.p.m. Double spindle. Length 0.9 in . and 0.6 in Overall size $3 \times 3 \frac{1}{2} \times 2 \mathrm{ins}$. New and Boxed. $10 / 6$. P. \& P. $3 / 6$.

LONDEX PLUG-IN RELAYS

Sealed cype, 28 v . D.C. Three heavy ducy silver contacts.

> W.D. TELEPHONE CABLE

Single D.3. One-third of a mile drums, Ideal for ourside tele-
phone systems. Fraction of maker's price. $57 / 6$. Carriage $10 /$ -

SMITH'S SYNCHRONOUS MOTOR

A.C. 200-240y. I R.P.M. 3in. dia. Length of spindle 1 in . A.C. $200-240 \mathrm{v} . ~ I$
$22 / 6 . ~ P . ~ \& ~ P . ~$
$2 / 6$.
G.P.O. L.T. SUPPLY UNIT

Type 19. A.C. input, tapped $200-250 \mathrm{v}, 100-120 \mathrm{v}$. O.C. Output,

12 or 24 volts, very conservatively rated at 3 amps. Can be 12 or 24 voliss, very conservatively rated at 3 amps. Can be | conneeted |
| :--- |
| case size $19 \times 7 \times 12$ volss 6 amps. Built into strong metal |

ZENITH DOUBLE-WOUND VARIABLE
Input 240v... outpue $0-80 \mathrm{v} ., 15 \mathrm{amps}$ or $0-40 \mathrm{v}$. 30 amps . Opencype slider control.
47.10.0. Carriage $\mathbf{2 5}$
i-.

OIL-FILLED BLOCK CAPACITORS

T.C.C. \& mid. 2500 v , wkg. at $70^{\circ} \mathrm{C} .37 / 5$, P. \& P. $8 / 6.0 .5 \mathrm{mid}$. $10,000 \mathrm{v}$. wkg. at $70^{\circ} \mathrm{C}$. $37 / 6$, P. \& P. 8/6. Dubllier 4 mid. 2500 v $25 / \mathrm{F}, \mathrm{P}$, \& P. $7 / 6,0.25 \mathrm{mid} .7500 \mathrm{v}$. whg. $17 / 6$, P. \& P. $4 / 6$

 $60^{\circ} \mathrm{C}$. $12 / 6$, P. \& P. $2 / 6.0 .1$ mid. 8000 v . wkg. as $60^{\circ} \mathrm{C}, 10 / 6$ P. \& P. $2 /-0.1 \mathrm{mfd} .5000 \mathrm{v}$. whg. as $60^{\circ} \mathrm{C}$. $7 / 6$, P. \& P. $2 /-\mathrm{F}$
$0.05 \mathrm{mid} .10,000 \mathrm{v}$. Wkg. a\& $80^{\circ} \mathrm{C}$, $8 / 6$, P. \& P. $2 /-$.

AMERICAN WILLARD MINIATURE LEAD ACID ACCUMULATORS. $6 v .1 .2$ a.h. Size $7 \times 1 \% \times 4$
ins. Weighe 4 ozs. $7 / 6$. P. $\&$ P. $1 / 6$.

SPECIAL OFFER OF PARMEKO
NEPTUNE SERIES TRANSFORMERS
6.3v, CT 5a. 6.3 v, CT 3a. 6.3v, CT 2a. 37/6 P.

 Sec. 6.3 v . 1.8 a . 6.3 vv . 1 a .2 a .3 v . 1 va . 1.2 a . $17 / 6 \mathrm{P}$. \& P. P. $3 / 6$ P. 5

 5 v .2 .5 a . $30 / \mathrm{F}$ P. \& P. $7 / 6$.

GARDNERS HT TRANSFORMERS

$5 \mathrm{Sec} .500 .0-500 \mathrm{v} .250 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .4 \mathrm{a} .6 .3 \mathrm{v}, 4 \mathrm{a} .6 .3 \mathrm{v}, 3 \mathrm{a} .5 \mathrm{v}, 3.5 \mathrm{a}$.

 $\mathrm{Sec} .350-0-350 \mathrm{v}, 60 \mathrm{~m} / \mathrm{a} .4-6.3 \mathrm{v} .4 \mathrm{a} .4-5 \mathrm{v} .2 \cdot 5 \mathrm{a}$. Fully shrouded. See. $500-0.500 \mathrm{v} .80 \mathrm{~m} / \mathrm{a} .5 .3 \mathrm{v} .2 \mathrm{a}$. 6.3v. 2a. 5 v 2 a . Fully Sec. 63v. 1.62 a $24 v_{\mathrm{p}} 0.8 \mathrm{a} .6 .3 \mathrm{v}$. Ia. Open type. Table top

 Sec. 12 v . 6a and 15.6 v . 1.5 a . Fully shrouded. 57/6. P. \& P. $7 / 6$
Sec. rapped $20-40.700-760 \mathrm{v}$. $50 \mathrm{~m} / \mathrm{a}$. 6.3 v . 1.5 a . Fully shrouded
 Sec. $19 / 6$. P. \& P. $4 / 6 / 2$. 600 Watts auto rapped $200-210-220-230-240-250 \mathrm{v}$. Open
type. T.T. connections. $4 \$ /=$ P. \& P. $5 / /=$.

PARMEKO C CORE TRANSFORMERS
$\begin{aligned} & \text { Pri. tapped } 110-200-240 \mathrm{v} \text {. Sec. } 1250 \mathrm{v} \text {. } 197 \mathrm{~m} / \mathrm{a} \text {. Sec. } \\ & 161 \mathrm{v} \text {. } 110 \mathrm{~m} / \mathrm{a} .5 \mathrm{Sec} .31152 \mathrm{v} .76 \mathrm{~m} / \mathrm{a} \text {. Sec. } 4124 \mathrm{v} \text {. } 25 \mathrm{~m} . \mathrm{a}\end{aligned}$

ADVANCE C/V TRANSFORMERS
 Type MT140. Input 190-260v. Output 230v. 150w. 85.15.0.
Carr. 10/-. Type 500 . Input $190-260 \mathrm{v}$. Output 240 v . 500 watts. 1210.0
Carr. 15\%.

Efuver for Components

SILICON TRANSISTORS FOR HIGH QUALITY EQUIPMENT

BC107	3/3	BD123	24/3	TIP32A	23/.	2N3055	15/9
BC108	$3 /$.	BDY20	24/3	TIS44	1/9	2N3702	3/3
BC109	3/3	BF184	7/6	TIS49	2/6	2N3703	3/3
BC158	7/6	BF194	7/.	TIS50	3/9	2N3704	3/9
BC182L	3/-	BFX29	9/6	2N896	4/6	2N3705	3/4
BCib3L	2/5	BFX84	6/8	2N697	5/-	2N3707	3/9
BC184L	3/.	BFX85	8/8	2N706	3/-	2N3708	2/6
BC212L	3/9	BFY50	4/6	2N1132	10/9	2N3819	7/9
BC213L	3/9	BFY51	4/2	2N2906	13/-	2N3820	15/9
BC214L	$4 /$.	BFY52	$6 \cdot$	2N2924	4/4	2N3826	5/11
BCY70	4/9	BSY95A	3/9	2N2925	5/3	2N4058	4/6
BCY71	8/6	M.J481	27\%	2N2926	2/6	2N4059	3/5
BCY72	4/0	MJ491	29/8	2N3053	6/8	2N5467	9/9
BD121	17/3	TIP31A	17/.				

1 WATT AMPLIFIER MOOULE TYPE PCM 1

This amplifier unit is a printed circuit module incorporating the popular and well-tried PA234 i.c. amplifier. The unit is a complete AUDIO AMPLIFIER and requires no externa components. you simply connect an 18 -volt power supply and a 15 or 16 -ohm speaker or The overall dlmensions, including capacitors are $2 \frac{1}{2}^{\prime \prime} \times 3^{\prime \prime} \times 8^{-\prime}$. The Input for γ^{\prime} watl outpur t 1 kHz is typically 300 mV into 100 Wohms
This unit is available
Send for free leaflet.

ELECTRONIC COMPONENTS IN THE WEST MIOLANOS

wide range of components are available from stock for CALLERS, including the following: RESISTORS lincludes $5 \% \frac{1}{2}$ watt. High stabs at only 2 d each in $100+$ quantlies of MIXED values of your choice in the E12 series from 10 ohm to 10 M /ohm).

WE ARE AN INTERNATIONAL RECTIFIER SEMICONDUCTOR CENTRE
Mail order, $1 / 6$ p. \& p. per order inland. Overseas at cost, min. 10/-. Open 9.00 a.m o 12.50 p.m., 2.00 p.m. 105.00 p.m. Weekdavs. 9.00 a.m. to 12.50 p.m. Saturdays silver micas). SEMICONDUCTORS (includes integrated circuits. transistors. diodes. rectifiers). PLUS ALL the usual components such as plugs and sockets. pots. Verotoard. etc.
R.S.C. SENSATIONAL HIGH FIDELITY STEREO 'PACKAGE' OFFERS

Matching as recommended for optimum per-
formance. Compare prices with equlpment and formance. Compare prices with equets purchased individually.

* Super 30Amplifier ($15+15 \mathrm{~W}$ att) in veneered housing. \star Goldring Transsription Turntable on Plinth. \star Shure or Goldring Magnetic Pick-up Cartridge. - Pair of Stanway II Loudspeaker Units. Special total price. Four fully
wired units ready or onlug ind
Really superb performanco. $\mathbf{8 6}$ GnS. Send S.A.E. for leaflet. Carr. 30 AUDIOTRINE HIGH FI
LOUDSPEAKERS LOUDSPEAKERS Herfy ome:
 tea Tweter Cone providing
ded frequency range up to 1,000
Exceptional performance at 10 w
\qquad

\star Super 30 Amplifies ($15+15$ Watt) in veneered housing. - Garrard SP25 Mk. II Turntable on Plinth. * Goldring CS90 Ceramic diamond tipped Cartridge. \& Pair of Stanway II Loudspeaker Units.

Extremely
Attractive Plinths Atractive Plinths

Tinted
Plastic

76 Gns. Carr. 30\%

TA12 MK II $6.5+6.5 \mathrm{~W}$ STEREO AMPLIFIER

 brushed silver tinish Facis and Knobs. Output ratling I.H.P.M. Complete kit of parts with full wining dingramy and instructions. 13 GNS. Carr. $7 / 9$.

R.S.C. BATTERY/MAINS CONVERSION UNITS
 $\frac{\text { READY POR USE, } 3 \text { ONS. }}{\text { SELENIUM RECTIFIERS }}$ R.S.C. MAINS TRANSFORMERS
 MIDGRT CLAMPED TYPE $21 \times 21 \times 24 \mathrm{~m}$.
 18/11

R.S.C. A10 30 WATT ULTRA LINEAR

tweeter. quecy fuction $$
\begin{tabular}{l} action. \\ OENI \\ \hline \end{tabular}
$$
 IIOR 15 WA
 ATT inc. er $86 / 15$.
 $$
\begin{tabular}{|c|c|} \hline \[20 \] & HI-FI LOUDSPEAKER ENCLOSURE Teak or Alrormonia veneer finiub. Modern dealgn Acouatcaly hined. Alinize approx. Car Oives pleasing resulte with may Blin. \(\{4.14 .6\) SEB For optimum perfornance with \(\mathcal{E}\).15.0 \\ \hline & apeaker. \(22 \times 15 \times 9\) itm. Ported 25.15 .0 \\ \hline & 65.19 .9 \\ \hline & \\ \hline \end{tabular}
$$ $$
\begin{tabular}{|c|c|} \hline \multicolumn{2}{|l|}{\multirow{8}{*}{\begin{tabular}{l} Moderate size (approx. \(25 \times 14 \times 10 \mathrm{in}\).). Runge \(30-20,000\). Complete Ell \\ is watt Basn unit with cant chassis, Roll rubber cone surnound for \end{tabular}
$$

}
\hline \&

\hline \&

\hline
\end{tabular}

TERMS: Deposit 8.3 .0 and 8 montuly paymenha of $34 /$ - (Total $821 / 9 / 0$.) Bend 8.A.E. for leibet.
INTEREST CHARGES REFUNDED On Credit Sales settled in 3 months 7 Gns.

R.S.C. COLUMN SPEAKERS

RSC AllT traniftorisod version of iliore complete kit 9 Gan. (Assembied i3 gne.) HIGH QUALITY
LOUDSPEAKERS

IFANE ULTRA
IHIGH POWER

RSS. SUPER 3OMKIHIGH FIDELITYSTEREO AMPUIFIFR
BYOR GRADE COMPONENTS.
BPELFICATIONS COMPARABLE WITR UNITS COSTING CONSIDERABLY MORE
 OUTPUT (Per chanpel): 10 Watta R.M.B. contlau-
ous into $10 \Omega 15$ Watta R. M. B. continuoua ioto 3Ω
 FREqUENCY RESPONSE: $\pm 2 \mathrm{~dB}$. $10-20$ FREQUENCY RESPONSE: $\pm 2 \mathrm{~dB} .10-20,000 \mathrm{c.p} . \mathrm{s}$
TREBLE CONTROL: +17 dB to $l+\mathrm{dB}$ תt $10 \mathrm{Kc} / \mathrm{m}$. BASS CONTROL: +17 dB to -16 dB at $30 \mathrm{c} / \mathrm{s}$.
EUM LEVEL: -80 dB . GARMONIC DISTORTION 1.000 e.p.E.
CROSS TALK: 52 dB at 1,000 c.p.s.

BRADFORD BLACKPOOL (Agens) 8 \& Elestrais 227 Cis BIRMINGHAM $30 / 31$ Ge. Western Arcade.

DERBY 26 Osmaston Rd. The Spoe (Halliday Wed.)
DARLINGTON 18 Priestgace (Hall-day Wed.). Tel. 68043
EDINBURGH 133 Leich Se. (Hall-day Wed.).
GLASGOW ${ }^{326}$ Argyle Sc.(Hall-day Tues.). Tel.CITy 4158
HULL 91 Paragon Street (Hall-day Thurs.). Tel. 20505

CONTROLS: 5-position Input selector, Ba 3) Radio (4) Mc. or Tape Head. (Operation CEMAS selector Rasures appropriate equallastion.) 12 $\times{ }^{3} \times 8 \mathrm{inn}$. Atractive design in rigid
"ACIA PLATE: At

 EMINENTLY SUITABLE YOR USE WITH ANYMAKE OP PICK-UP OR MIC. (Cemamic or Magnetle, Moviug Coli, Ribbon of Cryatal.) CURRENTLY AVAILABLE. SUPERB SOUND OUTPUT QUALITY CAN BE OBTAINED BY
USE WITH FIRST-RATE ANCILLARY EQUIPMENT. FIRST-RATE ANCILLARY COMPLETE KIT OF PARTS, point to 1
 Deposit XN/5/-sACTORY BUILT 29 Gns. or total $£ 33 / \mathbf{1 3 / 8}$) or in Teak or Afrormoela reneer housing 32 gns. Carr. 15\%. Terms:
Deponit $£ 7 / 3 / 6$ and 9 mibly. paymenta $68 / 6$

Solid state. Approx. as Super 30 bui as Super 30 but

 single channel. Com-plete kit with plete kit with full tails and noint to Ons. Cart. 12/6. Terma: meponthly fayment. $31 / 1$
(Total $218 / 3 / 9$)

LEICESTER 32 High Screet (Halif-day Thurs.). Tel. 56420 LEEDS 5-7 County (Mecca) Arcade, Briggate $\begin{gathered}\text { (Hall-day Wed.) Tel. } 28252\end{gathered}$ LIVERPOOL 73 Dale St. (Half-day Wed.). CENtral 3573 LONDON 238 Edgware Road, W. 2 (Halfoday Thurs.). MANCHESTER 60A Oldham Street (Half-day Wed.) MIDDLESBROUGH 106 Newport Rd. (Half-day NEWCASTLE UPON 41 Blackett Street (opp. Fenwicks SHEFFIELD ${ }^{13}$
R.S.C. SUPER
HIGH FIDELITY AMPLIFIER
$300-0,300 \mathrm{~V}$. $30 \mathrm{~mA}, 6.3 \mathrm{vv}$. 4s
For Mullard 610 Amplifer
$350-0.350 \mathrm{v}$. INOmA .
$\begin{array}{lll}450-0.450 \mathrm{v}, 200 \mathrm{~mA}, ~ 6.3 v .4 \mathrm{a}, 6.3 \mathrm{v} .3 \mathrm{~s}, 5 \mathrm{v} .3 \mathrm{a} & 89 / 9 \\ 93 / 9\end{array}$
TOP SKROUDED DROP. THROUGR TYPE

 | $300-0-300 \mathrm{v}, 130 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{za}, 0-5-6.3 \mathrm{v} .3 \mathrm{ai}$ | $39 / 9$ |
| :--- | :--- | :--- |
| $39 / 0$ | |

 150 matta. $33 / 8$. 250 watis $49 / 8: 500$ watis $105 /-$
10UTPUT TRANSFORMERS

 wound ELSA, GLA. KT
SMOOTHING CEOEES

12/9; 100 mA . $10 \mathrm{H}, 200 \mathrm{O}$ 10/8: $\frac{n m \mathrm{~m} .10 \mathrm{H}, 4 \mathrm{mon} 411}{\mathrm{RSC}}$ R.S.C. PLINTHS tor

 Tranaparent plasele 6 Gns.
Coveroct
Record Playing Units MON
Read
RP2 esso burntable atted II Goldring Lereo/mono complimence cerambic dian inond
plinth.

RP5C
$\mathbf{5 2 4} \cdot 12 \cdot 6$
CCN23 stereo
Cartifdee with dismond tip.
Plinth and Cover am
RP2C.
Gns.
various other types

FANE 'POP' 30C
LOUDSPEAKER
Post
Free
\&

TEOHNIGAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs - they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful
NEW SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments. incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 222, Intertext House, Stewarts Road, London, S.W. 8 Please send me the ICS prospectus-free and without obligation. (state Subject or Exam.)

R.S.T. VALVE MAIL ORDER co.
bLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16

SERVICE TRADING CO

INPUT 230 V. A.C. $50 / 60$ OUTPUT YARIABLE 0/260 v. A.C. BRAND NEW. Keenest prices in the country. All types (and spares) from $0-260 \mathrm{v.at}$ I amp....... Cs 10 $0-260 \mathrm{v}$ at $2.5 \mathrm{mmps} . .$. C6 150 $0-260 \mathrm{v}$. at 5 amps...... 19 is 0 $0-260 \mathrm{v} .2 \mathrm{at} 8 \mathrm{amps} \ldots \ldots \ll 1410$ $0-260 \mathrm{v} .2 \mathrm{t} 10 \mathrm{amps} \quad \leq 1810 \quad 0$ $0-260 \mathrm{r}$. at 12 amps . 0.260 v at 15 amps $0-260 \mathrm{v}$ as 20 amps . 0.260 v . at 37.5 mps $0-260 \mathrm{v}$, af 50 mps 20 Different types a

INSULATED TERMINAL8 Available in black, red, white, yellow, b
$2 /-$ each.

 rower RHEOSTATS
 (ALW) Ceramic construction, windEnamet, heavy duty brush assembly designed STOCK IN THE FOLLOWING II VALUES: 100 WATT 1 ohm $10 \mathrm{a} ., 5$ ohm 4.7 a ., 10 ohm 3a., 25 ohm 2a., 50 ohm l. $4 \mathrm{a} ., 100 \mathrm{ohm}$ la., 250 ohm $.7 \mathrm{a} ., 500 \mathrm{ohm} \cdot 45 \mathrm{a}$. . 1 k ohm 280 mA . 5.5 k ohm 230 mA ., 2.5 k ohm -2 a ., 5 k ohm 140 mA ., Diameter 3 tin. Shaft length lin, dia. dinn., 27/6, P. \& P. $1 / 6$. 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} /$ 5 K ohm. All at $21 / \mathrm{P}, \mathrm{P}, \&$ P. $1 / 6$. 25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1$ All at $14 / 6$, P. \& P. $1 / 6$.
 Black Silver Skirted knob calibrated in Nos. 1-9, II in. dla. brass bush. Ideal for above Rheostats, $3 / 6$ each.

RECHARGEABLE NICKEL CAD. BUTTON CELLS.
connected to give 2.4 v.as 25 milliamp/lio hou
rate, complete with 2001250 . A C rate, complese with $200 / 250$ milliamp/ 10 hou
unused. Price $9 / 6$ each plus $1 / 6$ D. onarger unused. Price $9 / 6$ each
units for $\& 1$ post paid.

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 8 AMP

Now available EX STOCK supplied complete with full

 data and applications sheet. Price 21/-plus 1/6 P. \& P. T.M.C. ILLUMINATEDLATCHING PUSH BUTTON KEY SWITCH No. S525594 LOCK $4 \mathrm{c} / \mathrm{o}$

Complete with mounting (GREEN, AMBER, RED or CLEAR

- state colour preference). PRICE

RICE 14

 bulb, post Paid. Discount for quantitios each excluding SRROESSRODEESTROE

COMPLETE NI. CAD. BATTERYOUT.

 FIT (EX W.D.) 2 metal carrying cases each containing 10×1.2volt $7 \mathrm{AH}(12 \mathrm{v})$ batteries,
also $10 \times 1.2 \mathrm{v} 22 \mathrm{AH}$ also $10 \times 1.2 \mathrm{v} 22 \mathrm{AH}$
(12 v) batteries ($40 \mathrm{bat-}$ eries in all). I Dual hyristor controlled
 charging unit. Designed or charging the 7AH and 22AH batteries slmul. taneously. Input voltage can be adjusted between
$100-250 \mathrm{v}$
AC . Buils to ministry specfication. Ideal power supply for field work. Offered at fraction of makers price. 2 sets of batterles, I charging unit. The

230 v. A.C. SOLENOID, Heavy duty type. Approx 230 V. A.C. SOLENOID, Heavy duty type. Approx
31 b pull. $17 / 6$ plus $2 / 6$ P. \&P, 12 V, D.C. SOLENOID Approx 116 pull 1016 50 V . D.C. SOLENOID. 116. Pull. $10 / 6$, P. \& P. $1 / 6$.
50 V . D.C. SOLENOID. 2/b. pull. 12/6, P. \& P. 1/6.

NEW MODEL

HIGH FREQUENCY

 TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coil speaker also earpiece forsonal monitoring. Complete with morse key. 45/- plus 3/6d. p. \& p.
$\overline{\text { ARVAI }} \overline{\text { TYPESDI9 }} 2301250 \bar{T}$ ac REVERSIBLE GEARED MOTORS
30 r.p.m. 40 Ib . ins. Positio drive spindle adjustable different angles. Mounted on base. Ex-equipment. Tested and in first-class running order. A fraction of maker's price. 6 gns. P. \& P.
SANGAMO WESTON SYNCHRONOUS GEARED MOTOR New. Two Types. I Revper hour. 12 Rev per hour. All at $17 / 6$ each, p. \& p. $2 / 6$.

A WIDE SELECTION OF SERVOMOTORS NOW AVAILABLE INCLUDES THE FOLLOWING TYPES: Mil size $11-400 \mathrm{~Hz}$ versions for 26 and 115 v , operation with
$10 / 20$, $13 / 26$ and $57.5 / 15 \mathrm{v}$. control phase windings. Mil sixe $08,10,11,15$ and 18 motor generators for 400 Hz operation with 26 and 115 v . energised eacho generators.
Mil size 08,10 , 15 and 18 two phase servomotors also availMil size 08,10 , 15 and 18 two phase servomotors also ayail-
able with 400 Hz windings and a limited range in 50 Hz types. able with 400 Hz Windings and a timited ranke in so hz types. 15 and 18 with supply voltages from 6 to 50 v . D.C. Mil Tachogenerators Size 08 and 10 for 400 Hz supply. Mil sixe 11 Servomotor gearheads available in various
ratios from $10: 1801000: 1$. All items available ex stock and at extremely compecitive prices.
Evershed and Vignoles' Servomotors and Servomotor-generators-we hold stocks of this well known manufacenquiry stating your broad design considerations will bring a repiy by return indicating ex stock availability of the mosor most nearly meeting your requirements.
Write for our Data Sheats A 131 onwards for details of avallable servomotore
MIL SYNCHROS available ex stock in sizes $08,11,15$, Synchro 23 for 50,60 and 400 Hz operation.

Synchro Control Transmlters
Synchro Control Differential Transmitters
Synchro Torque Transmitters and Receivers
Synchro Resolyers Equivalent MAGSLIP ELEMENTS more suitable for educational ute also in stock.
Write for our Data Sheete A OOI onwarde for Synchro and Magslip information.

PRECISION POTENTIOMETERS
Numerous instrument types. Continuous rotation potentiometers for control application and HELIPOTS in stock. List on application.
PLUGS, SOCKETS CONNECTORS. Over 150,000 irems in ssock including Plessey Mk 4, 6, 7, 104, U.K.A.N. Transradio, etc. Enquiries for specific izems to Orpingtonor Lydd.
Gertsch COMPLEX RATIO BRIDGE Model CRB2B

DRY REED RELAYS AND COILS FOR TRANSISTOR OPERATION DRY REED RELAYS AND COILS FOR TRANSISTOR OPERAIION
Stocks of these Relays and Coils are now available for use as
vitages Stocks of these Relays and Coils are now available for 4 se 22
voltages from $1-48 v$ and as operate powers from 2.5 to 30 mW .
Their characteristics render them ideal for transistor operaTheir characteristics render them ideal for transistor opera

Coil	Res	Typical	Break	Coil		with freeds
		volts	volts	only	2	${ }^{4}$
37992 D	190 ohms	2.3 V	$1.8 V$	4/-		9

DRY REED INSERTS

Overall length 1.85° (Body length 1.1°) Diameter 0.14° to Owitch up to 500 mA at up to 250 D D.C. Gold clad contacts.
12 d . per doz. $75 / \mathrm{p}$ per 100 ; 27.10 .0 per 1.000 ; 850 per $12 / 6 \mathrm{~d}$. per doz. $75 /-$ per 100; 27.10 .0 per 1,000 ; 250 per
10,00 . All carriage pald. 10,000 . All carriage paid.
 Packs. SWITCHING LOGIC DIODES BAY 38 (CV86IT) E24 per 1,000 (posz paid).
TANTALUM CAPACITORS We hold large scocks by 5.T.C., T.C.C., Dubilier. Kemer. Plessey, G.E., ere., send for stock list with lowest prices for immediake delivery,
SEALED RELAYS by G.E.C., S.T.C., Ericsson, Plessey esc. ex stock.
WEEMEGGRS Evershed in leather case 14.0 .0 (Carr. Pd.)
RECORD MINOR INSULATION TESTER $250 V 50$ M E 10.10 (Carr. Pd.) UNISELECTORS G.E.C. 4 BANK 25 WAY full nonshorking wipers $65 /$ Carriage Paid

Servo and Electronic Sales Ltd

Electrical and Servo Control Engineers. Electrical Suppliers - Engineering Stockists. Aeronautical Suppliers Post orders to 43 HIGH STREET, ORPINGTON. KENT. Phone: Orpington $31066 / 33976 / 33221$

19 MILL ROAD, LYDD, KENT (Works). Phone: Lydd 252
67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs). Phone: 0l-688-1512 (Croydon)

ETHER.ELECTROMETHODS LOW INERTIA INTE. GRATING MOTORS
PRESSURE TRANSDUCERS G291S up to 350 p.s.i., IOOPFsensitivity IPF/20 p.s.i. 45/- post paid FULL PRACK (t" TAPE) ERASE, RECORD REPLAY HEADS set of 3 I $5 /{ }^{\circ}$ (post paid).
SINE-COSINETERS Types SCPI. SCP4-SCPS, CLR96, CLR66 in stock.
SOURNE TRIMPOTS. Wide range available at attractive Prices niformers 220/110v Hz 50VA Double wound Redcliffe. In steel case 5 5/- (post paid).
CLASS D WAVEMETERS No. 2 i.2-19 Mc with charts.

C22 N NEL METERS by with charts. c25 (carriage 25/-).

 CÄMBRIDGE DY ONAKMOMETER VOLTMETERS in as new condition. to ranges up to 150 v , in as new condition 44 GLOSTER DIGITAL VOLTMETERS 20.999 V D.C. \& MAR SCON for pamphlet. C92. 50 MHz sine-square wave outputs tmV-31.6V in 11 ranges mecered output E35 (carriage 30f) fully serviced.
MARCONI SIGNAL GENERATOR TFBOIA $10-300$ MHz in 4 bands. E45 (carriage 30/-). new with spares (carriage 30/-).
MARCONI A.F. WATTMETER TF956 1μ watt to 6 MARCONI A.F. WATTMETER TR956 μ watt to 6
wasts into switched loads. K20 (carriage pald).
HIGH SPEED OSCILLOSCOPE TYPE CT90 PO. A. HIGHSPEED OSCILLOSCOPE TYPE CTOO P.O.A. OSCILLOSCOPES SOLARTRON COTIIS52 D.C-9MHz SOLARTRON COS68 E27.10.0 (Carr, 30/-).
LOW PRICED OSCILLOSCOPES for secondary school $\begin{array}{ll}\text { use or for production testing. } \\ \text { Cossor } 1035 \mathrm{MK} \text { DB } \mathrm{C25} & 1049 \mathrm{MK} \text { IIIA DB } \mathrm{C35}\end{array}$
 All instruments are full serviced at our Croydon work byops bofore sal and customers are invited to attend pesarechecked on our Toktronix oscilloscopecallbrator. SANGAMO-WESTON PORTABLE sub-standard FREPOst $7 / 6$. special price $69,10.0$ (postage $10 /-$). A MPS 2 contact S.B.C. $85 V$ D.C. $30 /$ - dozen. ${ }^{\text {E4. } 12.6 \text {, box }}$ of 50 (carriage paid).
24 V O.5 AMP SOLID STATE STABILISED POWER 24UPPLYMains Input housed in inserument case 65 P (paid).
com TER TAPE CARRYING CASES 131° squar 21 deep. 30/- (carriage paid). R.F. VARIABLE INDUCTANCE UNITS camprising 6 zurns silyer clad wire on $2 \mathbf{t}^{\circ}$ dia, low loss former $t^{\prime \prime}$ drive R.FF, SWITCH with heavy silver contacts 2 way with
off io pole make in each direction $15 /=$ (postage paid).

LATEST RELEASE OF RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. $£ 2$.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES : new, £3/10/- a set, post 7/6; SPEAKERS: new, £3 each, post 10/-. *HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24 ;$ and 27 and 28. Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K. 98034 -1, $3 \times 0.05 \mathrm{mfd}$. and M.980344, 3×0.01 mfd., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of 3, 10/-, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd} ., 600 \mathrm{v}$., £2 each, 4/- post. Output transformers 901666-501 27/6 each, 4/-post.

- Available with Receiver only.

If wishing ta call at Stores, please telephone
for oppointment.

3-b TRULOCK ROAD, LONDON, N17 OPG
Phone: O1-808-9213
MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms . Internal Modulation: 400c/s sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $191 \times$ $12 \downarrow \times 10 \mathrm{in}$. Secondhand condition. $£ 25$ each, carr. 30/-

LAVOIE PORTABLE ABSORPTION FREQUENCY METER TYPE TS-127/U: Freq. $375-725 \mathrm{Mc} / \mathrm{s}$. Circuit: Piston-capacitor type tuning Resonator working direct into a 957 detector valve, R.C. coupled to a 2 stage amplifier (1S5 \& 3S4): Microammeter Resonance Indicator: Time switch to select operating time up to 15 mins. Average ' Q ' 3000 : Power Requirements: 1.5 V dry batteries and 45 V . Price $£ 20$ each, 10/- post.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: Freq. range $450 \mathrm{c} / \mathrm{s}-22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply 1.5V-22V d.c. £12.10.0 each, 15/-carr.

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Complete HRO 5 T SET (Receiver, Set of 5 Coils \& Power Unit) for $£ 27 / 10 /$-, carr. $30 /$ -
COMMAND RECEIVERS; Model 6-9 Mc/s., as new, price $55 / 10 /$ each, post
COMMAND TRANSMITTERS, $\mathrm{BC}^{2}-458$: $5.3-7 \mathrm{Mc} / \mathrm{s}$, , approx. 25 W output, directly calibrated. Valves 2×1625 PA; 1×1626 osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $\mathbf{E 3 / 1 0 /}$. each, $10 /$ -
post.
(Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by
R. C. Evenson and O. R. Beach.)
AIRCRAFT RECEIVER ARR.
AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6 A K 5$; and $1 \times$ 12A6. Swirch runed $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $£ 3$ each, $7 / 6$ post; or Rec. with 24 v . power unit and mounting tray $£ 3 / 10 /-$ each, $10 /$ - post.
RECEIVERS: Type BC-348, operates from 24 v D.C., freq. range 200-500 $\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc} / \mathrm{s}$. (New) 235.0 .0 each; (second hand) $£ 20.0 .0$ each, good
condition, carr. 15/- both types.

MARCONI RECEIVER 1475 type 88: $1.5-20 \mathrm{Mc} /$ s, second-hand condition £10.0.0 each. New condition £25.0.0 each, carr. 15/-,
RACAL EQUIPMENT: Frequency Meter type SA20: $\mathbf{8 3 5}$ each, earr. $£ 1$. Frequency Counter type SA21: £65 each, carr. $30 /$. Converter Frequency Electronic VHF Type S.A. 80 (for use with the SA. 20): $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}$, $£ 40$
eact each, carr. £1.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $£ 6 / 10 /-$ each, $8 /-$ post. 24 v D.C. input, 175 v D.C. (3) 40 mA output, 25/- each, post $2 /$ -
CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $£ 7 / 10 /-$ each, carr. $15 /-.40 \mathrm{mfd}, 440$ y A.C. wkg. 85 each, $10 /-$ post. $30 \mathrm{mfd}, 500 \mathrm{v}$ wkg. D.C., $83 / 10 /-$ each, post $10 /-$ $15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. wkg., $15 /-$ each, post $5 /-10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$. $10 \mathrm{mfd} 600 \mathrm{v}, 8 / 6$ each, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-8 \mathrm{mfd}, 600 \mathrm{v}$ $8 / 6$ each, post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., $£ 3$ each, post $7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v} \mathrm{wkg}$, $£ 2$ each, post $7 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /-$ each, $1 / 6$ post. 0.01 mfd . MICA 2.5 Kv . Price £1 for 5. Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$ wkg. $£ 3.15 .0$ each, $10 /-$ post.
OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, £22/10/- each, $30 /$ carr.
COSSOR 1035 OSCILLOSCOPE, £30 each, 30/- carr.
COSSOR 1049 Mk .111 , £45 each, $30 /$ - carr.
RELAYS: GPO Type 600 , 10 relays (a) 300 ohms with 2 M and 10 relays (a) 50 ohms with 1 M ., $£ 2$ each, $6 /-$ post.
12 Small American Relays, mixed types $\mathbf{£ 2}$, post 4/-.
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach;
etc. Prices and further details on request 6 d .

> GEARED MOTORS : 24 v. D.C., current 150 mA , output 1 r.p.m. $30 /-$ each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., $£ 2$ each, $5 /-$ post.
> SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6 d .

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /-$, post $5 /$-.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $£ 2 / 10 /-$ each CONTROL PANEL: 230 v. A.C., 24 v. D.C.@ $2 \mathrm{amps} ., £ 2 / 10 /-$ each, carr. $12 / 6$.

OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{} \mathrm{amps}$; or 2.6 ohms at 4 amps . Price (either type) 22 each, $4 / 6$ post each.
TX DRIVER UNTT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v. A.C. Mounted in 19 in . panel, $\& 4 / 10 /-$ each, $15 /$ cerr.
POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors? 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and 5 V @ 6 Amp and 4 V @ 0.25 Amp . Mounted on steel base $19^{* W} \mathrm{~W} 11^{\prime \prime} \mathrm{Hx} 14^{*} \mathrm{D}$. (All connections at the rear). Excellent condition
c6.10.0. each, Carr. £1.

AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong
 Carr. 10/-.

POWER UNIT: 110 v. or 230 v . input switched; 28 v . (a) 45 amps. D.C. output. Wr. approx. 100 tbs., £i7/10/- each, $30 /$ carr. SMOOTHING UNITS suitable
for above £ $7 / 10 /$ each, $15 /-$ carr.

CORPORAL ROCKET ELECTRONIC GUIDANCE EQUIPMENT: Beacon Radio DRN.7. Rec/Trans. Assembly MX.2048DPW-8. Electronic Control Amplifier AM1510/DJW3. Transmitter C-1493/MRQ.1. Power Units and mis-

MODUL.ATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. \&7/10/- each, 15/- carr.
NIFE BATTERIES: 4 v .160 amps , new, in cases, $£ 20$ each, $£ 110 /$ - carr.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3in. diameter case. Price ALL GOODS OFFERED WHILST STOCKS LAST IN

FREQUENCY METERS: BC-221, meter only £30 each, BC-221 complete with stabilised power supply £35 each, carr. $15 /-$. LM13, $125-20,000 \mathrm{Kc} / \mathrm{s}$., $£ 25$ each carr. 15/-. TS.175/U, £75 each, carr. £1.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100 n , with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition. Price 35/= each, post 5/-.
AUDIO OSCILLATOR 382/F: Input 115 v. A.C., $50 \mathrm{c} / \mathrm{s}, 20-200,000 \mathrm{c} / \mathrm{s}$ per sec in 4 ranges. Cont, wave. Output $0-10 \mathrm{v}$. in 7 ranges. Power output 100 mW Output impedance $1,000 \Omega$. £ $27 / 10 /-$ each, £1 carr.

RACK CABINETS (totally enclosed) for std. 19in. panels. Size: 6 ft . high x 21 in . Wide $\times 16 \mathrm{in}$. deep. With rear door. £12 each, $£ 2 / 10 /-$ carr. OR 4 ft . high \times 23 in . wide $\times 19 \mathrm{in}$. deep. With rear door. $£ 8 / 10 /=$ each, $£ 2$ carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, £3/10/- each, post $7 / 6$. APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., com plete with all valves 28 v. D.C. 3 relays, 11 valves, price $\& 3$ each, carr. 10%.

APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. 25/- each, 5/-post.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps , 21 in . scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in . rack. £15 each, $30 /=$ cars.
AIRCRAFT SOLENOID UNIT D.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}$, $£ 2$ each, $5 /-$ post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector, (24 in. diameter), meters, suppressors, etc. $£ 35$ each, £ 2 carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, $5 /$ - post. 90 ohms per step. 10 positions total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% £ 3 / 10 /$-each, $5 /$-post.
TELESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft Closed measures 6 ft . Diameter 2 in . tapering to 1 in . $£ 5$ each $+10 /$ carr. O

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " N " female connectors fitted to receive UG-21/U series plugs. New in ctns., £6/10/- each, post 7/6. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) $66 / 10 /-$ eac
Type M1460-4. (New) £6/i0/- each, $4 / 6$ post.

PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, $0.250-1.0 \mathrm{KMC} / \mathrm{SEC}$. (New) $£ 75$ cach, post 12/6. FIXED ATTENUATOR Type $130 \mathrm{c}, 2.0-10.0 \mathrm{KMC/SEC}$. (New) 55 each, post $4 /-$. FIXED ATTENU
ATOR: Type $1157 \mathrm{~S}-1$, (new) 6 each, post $5 / \mathrm{c}$.

FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC. 19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 W atts, Output $12 / 24 \mathrm{~V}$ d.c operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter system, with antennae. W.S. Type 88, Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type $\mathrm{HF}-156$, Mk. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62, tunable, $1.5-12$ Mc/s. C. 44 , Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}$, 50 watts, output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc/s}$,
50 watt, narrow band width. A.C. input 115 V . BC 640 Tx , $100-156 \mathrm{Mc} / \mathrm{s} 50$ watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T.14; and R.19; FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx. 19 , SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A. Collins Tx/Rx Type ARC-27, 200-400 Mc/s, 28 V d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rz. BC- 375 ; $433 G ; 348 ; 718 ; 458$; 455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Telephone Installation type XY, (U.S.A.), 600 Line Automatic Telephone Exchange. Complete system with full set of Manuals. Mobile Communications Installation mounted in a trailer with $4 \times$ pneumatic tyres. Consisting of 3xARC-27 Tx/Rx with all associated equipment (as new)

VITAVOX

FOR HIGH QUALITY
MICROPHONES LOUDSPEAKERS and ancillary equipment

Further information from:
VITAVOX LTD., Westmoreland Rd., London, N.W. 9
(Tel: 01-204 4234)

TRANSFORMERS
COILS
CHOKES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS
VACUUM IMPREGNATION TO APPROVED STANDARDS
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., L.E.B., B.B.C.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01-6532261 CR48LZ

EST. 1933

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION

FOR RECEIVER MANUFACTURERS

P. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

Solve your communication problems with this new 4-8tation Transistor Intercom system (1 mastor and 3 subs), in de luxe plastic (1 mastor and 3 subs), in de luxe plastic
cabinets for desk or wall mounting. Call/talk/ cabinets for desk or wall mounting. Call/talk/
listen from Master to 8ubs and Bubs to Master. listen from Master to Subs and Bubs to Master.
Operates on one 9 v . battery. On/off switch. Operates on one 9 v. battery. On/off switch. Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

MAINS INTERCOM

No wires-no batteries. Just plug in and it is ready to use. Lock button. Light indicator. Also useful as baby alarm. Price per pair $\mathbf{1 1 1 . 1 9 . 6}$. P. \& P. 8/6.

Why not increase efficiency of Office, Shop Why not increase efficiency of Office, shop Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long FIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add $2 / 6$ for Battery.
Full price refunded if returned in 7 days.

KENSINGTON HIGH STREET, LONDON,

TELEPHONES. Two-tone grey. Brand new bozed. G.M. TUBES. Brand new. G24/G38/G60 at 27/6 ea G.M. ThBES. Brand ne

MULLARD MX 115 GM TUBE with holder.
Plat app 300 volts. $30 /-$ ea. P. \& P. $3 / 6$.
PHOTOMULTIPLIERS. EMI 6097X at $68 / 10 /-$ ea.
TRANSISTOR OSCILLATOR. Variable frequency
$40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{lr} / \mathrm{s}$. 5 volt groure wave o/p. for 6 to 12 v DC input. Size if $\times 1 \frac{1}{} \times 1 \mathrm{ftin}$. Not encapsulated. Brand new, Boxed. II/6 ea.
RACAL Diversity unit. $f 10$ each. Carrlage £1.
CRAMER TIMER 28V DC Swoep $1 / 100$ hit sec \& sweep
60 secs. 4° dial. Remote control stop/start reset 86.10 .0 .
Omron/Schrack octal bekla YS
Omron/Schrack octal baged pling. In relays. 2 pole c/o
$5 A, 6 \%$ only. Brand new. Boxed. $7 / 6$ each.
G.E.C. 4 pole c/o $6 / 12 \mathrm{y}$ operstion 180 eh.
contacts. Brand new. Boxed. $10 /=$ each. ohms. Platinum
Miniature STC Pluz in relays Plastic dust cover, 4 pole c/0 7.5-18 v. operation. 185 Ohms 8/- each. 6/- each per 100.
S.T.C. sealed 2 pole c/o. 2.500 ohms. (okay 24 v) $2 / 6$ ea.

CARPENTERS polarised Bingle pole c/o 20 and 65 ohm coil as new. complete with bass $7 / 6$ eas. Single pole c/o 680, 1.110 and 1.570 ohm coil. As new $6 / 6$ eas. coll $b / 6$ ea. 14 ohm coil $6 / 6$ eat.: Single pole c/o 45 ohm Brand New. Sligle Pole c/o (trpe 5A2), 2×1200 ohms. E/6 ea.
E.M.I.

I each. P. \& P. ${ }^{2 / \beta}$.
COLVERN Brand new. 5: 10; 50: 100: 250: 500 new MORGANITE 250 K all in. sealed. Normal price 9/-, our price 3/6 ea.
INSTRUMENT 3° Colvern. 5: 25: 100 ohms. T/- ea. TRIM POTS. Paimenton-molder lugs 5,10 \& 25 K a 3/- each: Pins 10: $20 ; 50: 100: 200$: $250 ; 500$ ohms ALMA prectsion rexistons $100 \mathrm{~K}: 400 \mathrm{~K}: 497 \mathrm{~K} ; 998 \mathrm{~K}$ $0.05 \% \mathrm{~T} / \mathrm{L} \% 5 / 6$ each; $3.25 \mathrm{~K}-0.1 \% 4 /$ e each: 1 mexDALE heat sink reaistors, non-inductive 50 watt. Brand
new. 15 ohme- $6 / 6$ ea. $: 8.2 \mathrm{~K} ~$
joxal.

Wheatatone Bridge by TINSLEY type 1138 660. CAPACITORS
ERIE feed through cersmicons $1000 \mathrm{pf} \rightarrow \mathrm{d}$. e
ub-min. TRIMMER i squise. 8, Spf. Brand new $2 / 6$ ea Concentric TRIMMER $3 / 30 \mathrm{nf}$. Brand new $1 / 6$ ea
$2000 \mathrm{mfd} 16 \mathrm{~V} 9 / \mathrm{en}$. Brand new. 250 mfl 70 V $4 / 6 \mathrm{ea}$.
EHT 2 mfd 5 KV. Brand new $\mathbf{6} 2$ each.
VISCONOL EHT. Brand new 0.0005 $25 \mathrm{kV}, 16 / \mathrm{e}$ es.
E.H.T. $0.02 \mathrm{mtd} 8 \mathrm{KV} \cdot 6 /-$ ea.: $0.5 \mathrm{mfd} 5 \mathrm{KV}-11 /-$ ea.
$0.5 \mathrm{mfd} 2.5 \mathrm{KV} 7 /$. ea.

DECADE OIAL UP SWITCH. Finger-tip.
$2 t^{\circ}$ deed 0/9. Gold plated contacts. Slze 21° high. $2 t^{\circ}$ deep
piates etc. $2 t^{\circ}$ hish 27° deep, $2 t^{\circ}$ wide. ES . DIODES 1 N914. Brand new $1 / 3$ ea.; $12 /-$ doz. : $44-100$: 225-1.000
PHOTOCELL equivalent OCP $712 / 6$ ea
PURGEESS Micro Clare 703. (TOS Cage) io/- each. aULGIN panel mounting Lamp holders. Red. Brand new $2 / 3$ ea.
Cintel transistorised Decade boards. Clrcult bupplies 50/- each; 62 each 3 or more.
TRANSISTORS BC $114-N P N$ nowe high galn audio, etc.: BC 116 - PNP General purnoe 200 mals mis Ex brand new equipment. Guaranteed perfect. Good
BRANO NEW BCII4 TRANSISTORS. 5/-
each; $4 / 3$ each per 100: $3 / 6$ each per 1.000 .
MINIATURE SPEAKERS 15 ohm 2° dlameter
$\frac{\text { Brand new, } 7 / \text { each, } P \text {, \& } P, 2 / 6 \text { each. }}{\text { NUCLEONIC INSTRUMENTS }}$
SCALER type 1000 by Dynatron. Sultable Betal garmma counts. Bullt in test sixnal. Callbrated adjustable discriminator. Read out 2 decade neons and
4 disit counter. Supplled in as new condltion at $£ 5$ eas.
carr. $30{ }^{\circ}$
As above but with resettable counter Co eas Few only RATEMETER type 1181B Complete with built in EHT supply. Separate metering EHT and Count. EHT available for external equipment 0 to 3 kv . As new 235 . Carr, $30 /$-.
Portable Gelger Counter in havensack, complete 100 CHANNEL
100 CHANNEL PULSE HEIGHT analyger type
1968 . As new 75 . As sbove but ECKO PUISE HEIGHT ANALYSER tTDe N101 ECKO PULSE HEIGHT ANALYSER type N101 CINTEL Tra
CINTEL Tranalatorised Nucleonic scaler with count of 10 to the 5 . New Condition. Now ONLY \& 18 . Carr. $15 /$ -
PULSE Generator type 1147A. 66. Carr, 30/-
SPECIAL. SGS Fairchild Silicon Epitaxial Tran-
sistor. NPN. Oomplementary to BCl16. Gusranteed
Brand New. Full Jength leads. NOT rejects. Perfect.
Spec. Sheet supplied. 1/- each. minimum order f1.
P. \& P. 2\%-.

TEST GEAR

E.M.I. OSCILLOSCOPES

 HARTLEY 13A DB. $\& 18 / 10 /-$
All carefully checked and tested. Carriage 30/. extra. d and tested. Ca
MARCONI

TF 958 (CT44) Audio Freq. Wattmeter 1 (5. Carr. 10/
TF 886 Magnifleation Meter C45 Carr. \&1
TF 369 N. 5 Impedance Bridge $\mathbb{5 5}$ Carr. $30 /$.
In exceptional condition $\mathrm{E25}$. Sarr. 30/- 1
TF 885 Video Oscillator Sine/Square 635 Carr. $30 /$. TF 195M 8ine wave oecillator 0/40ke El2 Carr. E1 TF $4288 / 1$ Valve voltmeter 44 Carr. 10/
Fye 801 Sig Gen 635, Carr 30arr $10 /$
TF 984/2 FM Deviation Meter ©25. Carr. 30/SOLARTRON
Pulse generator POS $100 C 50 \mathrm{c} / \mathrm{A}-1 \mathrm{mc} / \mathrm{c}$ ¢18 Carr. \&1

Stabilised P.U. AS 516 \& AS 517 E3, and 66 Carr. 10/Calibration Unit type AT203. 225 . Carr. $30 /$.
Proceman Responie Analyser. Fline Conditlon $£ 250$ Oscillator type 08101 . C30. Carr. 30/-.
D.C. Amplifier type AA900. ©30. Carr. $£ 1$.
AVO TRANSISTO AVO
AVO TRANSISTOR ANALYSER-c75 only
Electronic Teatmeter CT 38. Complete 118 Carr, 11
TWO only TELEQUIPMENT DB Osclllo.
scopes type D33R. 670 each. Garr. \&1. CINTEL
Whide Range Capacitor Bridge 125 Carr. 15/.
Stoe and Pulse Generator type 1873 E25 Carr. 15/AIRMEC
Valve Millivoltmeter tyte 264. 3MV.1V 220 Carr. $£ 1$ Counter type 885. 6 decades. Bright Vertical display gate faclilitien. Very rood condition $\mathbf{2 5 5}$. Carr. 30/Klystron Power Supply 698B 225 Carr. $£ 1$
Slgnal Generator type 701. ©35. Carr. 30/-

OSCILLOSCOPE CAMERA. Shackman 25fl. Exp 270 frames. Times from $1 / 250$ to 1 beca auto. Dalmere Fi. 9 Focal $1 \frac{14}{}$. with atandard $4 \ln$. to $51 n$. Hitting. 630.日RADLEY ATTENUATORS 0/500 meg cycles.
$0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}$ - 25 per palr. BECKMAN MODEL A. Ten turn pot complete BECKMAN MODEL A. Ten turn not complete
with dlau. $100 \mathrm{k} 3 \%$ Tol $0.1 \%-$ only $52 / 6 \mathrm{ea}$. E.H.T. Bage B9A in Polyatyrene holder with cover Brand new. $2 / 6$ ea
ZENITH E.H.T. Tester, with Probes. Metered 0-3.5 kv
OVM \& RATIOMETER BIE 2116 by Blackburn 660 each.
DENCO 5 band low nolse travelling Wave amplifler
sIGNAL Generator CT 53, Complete with leads. Good condition. $£ 10$ Carr. 15/-. With copy of charts.
FREQUENCY Meter LM 14. Modulsted version of BC 221 with charts and covers. Brand new ©30. Carr. 30/-. SPECIAL FURZEHILL V200A Valve millivolt meter. 10 mv to 1 kv , c25. Carr. E ,
FURZEHILL Valve Voitmeter type 378 B/2. Range $11 \times 81 \times 7^{\circ} 510$ milivolts to 100 Volts in 5 ranges. Size Low Ohm SAFETYY METER 12 ma 5 obms. E7.10.0 each. \mathbb{P}, \& $P, 10 \%$
MIC.O-VAC type 22 (CT54) Volta; Current: Ohms.
DC to $200 \mathrm{mc} / \mathrm{s}$ with probe, feads etc. As new EB/Io/0 DC to 200 m
P. \& P. 10%.
HEWLETT PACKARD 5° osclloscope tube with bulted $\& 12$ each. Carr 10 cm . Length $16 \mathrm{I}^{\circ}$. Brand new

3 CM Wave Guide. some dex; Sanders Attenuators:
Deca Waveguide Switches: Delay unes, etc. Phone
Decca Wavegulde Switches: Delay lines, etc. Phone or call
DISTRIBUTED AMPLIFIER Type $2 \mathrm{C} / \mathrm{s} 50 \mathrm{c} / \mathrm{s} 100 \mathrm{mc} / \mathrm{s}$
Gain 300.630 each.
Type 2C $50 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s} \subset 16$ each.
DAWE Wide Range oeclllator type 400 A . 20 cs to $20 \mathrm{kc} / \mathrm{s}$
gine wave. 500.600 and 8000 ohin. Fine condition. $\mathbf{6 0}$.
Carr. $30 /-$.

PAIGNTON ATTENUATORS 0.1 db , to 100 db , in 3 decades, 600 ohm. $10^{\prime \prime}$ rack mounting. 120 ea. Carr. $15 /{ }^{\circ}$ PISTON ATTENUATOR in carrying case. 30-140 me/s callbrated $0 / 70 \mathrm{db}$. 10 ea . Carr. il
Prectsion THERMISTOR by YSI. 100 k . at $25^{\circ} \mathrm{C}$. Range: $40^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. Supplied with charta giving ohms CLAUDE LYONS Main Stabilizer Type 70000 input 212.252 volts $47 / 65 \mathrm{c} / \mathrm{s}$. Output 298 voits 0.5% 33 amps. C40. Carriage at cost.
SERYOMEX Maing Stablizer. Type AC7 Mr. 11. $200 / 250$ volts 0.1%. $45 / 85 \mathrm{c} / \mathrm{B} \cdot 60$ ampe. New Condition. 75. Carriage at cost.

ROBAND P.U. Type M39A. Stabilized 900 volts
2 amps. 622 inc. carriage. ampand
HOLGATE 6 channel Event recorder, 1 ln . or 10 in . inches per second. size if $\times 5 \times 8$ in. Excellent condition. 620.

HEWLETT PACKARD Regonder and Decoder type 20610. As new. Write or phone for further details.

KELVIN \& HUGHES \& channel recorder with
SMITHS twin channel reconder. Transistorised. E65. arous other single and twin track recorders from 220. VENEER Tranststorlsed Digital Printer. Fine condltion. 660.
191m. Rach Mounting CABINETS oft. high 2 ft . deed. Side and rear doors. Fully tapped. complete with base Double Bay complete with doors. Fine condition. 625. ge at cort.
MULLARD Transistorised Analogue to Digital ConSUNVIC DC Amplifler type DCAl. Thermo-couple. SUNVIC DC Amplifle
etc. E22.10.0. Cart. 20/.
CINTEL Universal Counter \& 30 . Carr. 30/-
PROCESS TIMERS 8 individual timer circuits.
each with $0-100$ sec callbrated dials. Ideal digplays,
processes. etc. Standard malns input 20 Carr. $25 / \mathrm{F}$. ISOLATING TRANSFORMERS 240V in 240 V out. As new. 225 es. Carr. $82 / 10 /$.
DIECAST ALLOY hoxes. Size $4 \times 21 \times 11 \mathrm{in}$. Drilled ends for Be/ting Coax socket. ${ }^{3}$,
CONVERTOR $50 \mathrm{c} / \mathrm{s}$ single ph, to $400 \mathrm{c} / \mathrm{s} 3 \mathrm{ph} .250 \mathrm{w}$ in 6 ft . enclosed 19° rack cabinet. $\$ 35$ ea. Carr. at coet. AMPEX FR400 with Benson-Lagner 'XY' Plotter.
Large vacuum table. Auto paper feed. 5000 .

4 DIGIT RESETTABLE COUNTERS. 1000 ohm . coll. Size $1 \frac{1}{1} \times 1 \times 4$ in. As new, by sodeco of Geneva. $62 / 10 / 0$ each.
As above but 350 ohm. $\mathrm{C3} / 10 / 0$ ea.
METERS-Model $8705.25-0-25$ microamp. Scaled.
$.100-0 .+100.5 t^{\circ} \times 4^{\circ}$. 4 ea. MOO TRANSFORMERS
TRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trans. Standard 240 F AC to 120 tapped $80-0-60700 \mathrm{w}$. Brand new. 66 ea. 75 WATT Constant voltage transformer. 195 to 255 volte-240v out. $30 /$ each. P. E. P. $5 /$
AMERICAN Auto gted-down tranformer 2 kW Built-in Lead and Socket. Brand new. Bored. 620 Transformer $0-215-250120 \mathrm{MA} ; 6.3 \mathrm{~V} 4 \mathrm{CT} \times 2: 2 \times 6.3 \mathrm{v}$
0.5 A and separate $90 \mathrm{r} 100 \mathrm{MA} 25 /-$ each P . \& $\mathrm{P} .4 / . \mathrm{l}$ $0.5 A$ and separate $90 \mathrm{r} 100 \mathrm{MA} 25 /-$ each P . \& P . $4 /$
Matching contact cooled bridge rectifier $7 / 6$ each.
Gardners 6.3v 2A; $6.3 \mathrm{y} 1.5 \mathrm{~A} ; 6.3 \mathrm{v} 0.1 \mathrm{~A}$. Size $\mathrm{S} \times 18 \times 41 \mathrm{in}$. As new. 9/6 ев. P. \& P. 3/. ea.
Parmeko/Gardiners. Potted. $\mathbf{4 7 5 \cdot 6 0 \cdot 0 - 6 0 - 4 7 5}$ at 160 mA : geparate whding 215.0215 at 45 mA : 0.3 v 5A: 8.3 v $0.75 \mathrm{~A}: 5 \mathrm{v}$ 3A. As new. 63 ea.
Gardners/Grexham. Potted $450-400-0-400-450180 \mathrm{ma}$ 0-4-6.3 3A $\leq 2 ; 0 \cdot 4-6.34 \mathrm{~A}: 0-4-5 \mathrm{Y}$ 3A. In ortrinal boxe Parneto 6 3v 2
Gard/Parni/Part. $450-400-0-400-450$. 180 MA. $2 \times 6.3 \mathrm{v}$. $E 3$ ea.
ADVANCE Constant Voltage 'Irans, 1 kW .20. ADVANCE Constant Voltage Trans. 6 volts 50 watt,
Gardners 5v 30amp. Brand new $\mathbf{1} 1 / 10$ each incl. wostare. CHOKES. $5 \mathrm{H}: 10 \mathrm{H} ; 15 \mathrm{H}$; up to $120 \mathrm{~mA}, \mathrm{~B} / 6 \mathrm{ea}$. Up to $250 \mathrm{~mA} 12 / 6$ ea. H . H , EHT transformers. Your Large quantity LT,
Panel switches DPDT ex eq. $2 / 6$ eas: DPST Brand new 3/6 ea.: DPDT twice. brand new 6/-; heavy duty DPST brand new 6/- ea.
SPECIAL. 813 vaiver. Brand new, bored $\mathbb{2} / 10 / 0$. MOTOR DRIVEN SWITCHES. 4 to 24 volt. 6 pole.
24 way. Brand new. 66 ea, P, \& P. $5 /-$. PRECISION continually rotarable atud switches single pole. 80 way. can be stacked if renulred. 63 ea. PRECISION rotary stud swiltchea 2 pole 12 W size 2^{*} aq. $\frac{t}{2}^{\prime}$ shaft. $62 / 10 / 0$ ea.
Min. SEALED 4 pole 3 way, and 3 pole 4 way rotary
switches. ${ }^{\circ}$ ghaft if dla. \times fo $10 /-$ es. Must no-American Preasure Gsuges. Scaled $0-200 /$
$0-2900$. KSC/PSI: 270
dial 5°. $10 /-$ each. P. \& P. 5/-. Solartion Storage. Oscllloscope type QD 910. MUB'T GO.

FOR CALERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd unlts, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

valves				
		$11 / 1 / 3$		
DF\％96 11／6		10／6		
069\％		\％9\％		
		191／6		
－		127 78 $7 / 8$	（1）	
	¢	776	${ }^{\text {PL509 }}$	${ }_{\text {ckec }}$
	ETE80	596		
	${ }^{\text {Grsoi }}$	14／6	${ }_{\text {PY33 }}$	
	${ }_{623}{ }^{213 / 3}$	11.9		
		$\underset{ }{251 / 6}$	Pre\％${ }_{\text {PY83 }}$	$\xrightarrow{35 \mathrm{~W}} \mathbf{}$
		1586	Pr988 ${ }^{\text {PY500 }}$	
cex		${ }^{20,}$		${ }_{\text {cke }}$
	${ }^{\text {Prosis }}$			
		${ }^{8 / 8} 8$	（e）	
		${ }^{8 / 6}$		
ECHE1 10，	${ }^{\text {PCCCOP9 }}$	${ }^{12} 123$		
		1008		cock
cecter		${ }^{121 / 8}$		旡
		${ }_{\substack{163 \\ 127 \\ 129}}$		
		12， 12	U484／4	${ }^{305}$
cker	${ }^{\text {Pecter }}$	${ }^{131} 12$		
		${ }^{131 / 6}$		
			－	
		${ }^{1016}$	－${ }^{4901}$	为
		${ }^{1013}$		年30943
Semiconductors				
		$\begin{aligned} & 8 / 10 \\ & 7, \\ & 70 \end{aligned}$		（1）
		年1／80		
	¢	（ 54.8	（	（1）
${ }^{\text {A Cly }}$		516	OC44	2N379
		\％ 518	OC4，	
		50，	$\bigcirc{ }^{\circ} \mathrm{C} 7275$	
		716	${ }^{\circ} \mathrm{C78}$	
	eremis	${ }_{9 / 6}^{5 / 6}$		
	¢	$\xrightarrow{7 / 1}$		
		$\xrightarrow{71}$	Ocill	
	－		－	
		¢		OAAP ${ }_{\text {OAB }}$
		5／		－
（ectiole		8	$2 \mathrm{N697} 510$	
${ }_{\text {BCLI }}$	85224		N1132	（SERIES） $6 / 6$
New and Budget tubes made by the leading British manufacturers．Guaranteed for New and．In the event of failure under guarantee，replacement is made without the usual				
（ty Now Budzer				
			：$\because \quad \because$	6.120 6.120
		．	：．\quad.	
			\％．	
$\begin{aligned} & A W 43.88 \\ & A W H-90 \\ & A 47.90 \\ & A 47.14 W \end{aligned}$	1460			
				7．1．3．4 5．7．7．6
	${ }^{903}$		：．	7．1．1．4 5．${ }^{\text {5．} 7.6}$
	1906		：．\quad.	
	${ }^{1905}$		\％．\quad ．	8.17 .3
	2013		．\quad.	
	io	．	：．\quad ．	（e．18．8
A459．9\％			．．．．	9．11．8 7． 4.0
${ }^{\text {Aspor }}$				
	${ }^{2306}$	．	：\because	${ }_{\substack{13.13 .0 \\ 13.0}}^{13.0}$
${ }_{\text {A }}{ }_{\text {A }}$	2305			
Asozawir met tubes ．．．．．．．．．． 12.120 10．10．0				
				Siso
CME1602 10% is also ziven for the purchäse of 3 or more New tubes at any one time				
ADD SU．PER ITEM FOR POST AND PACKING			TERMS：CASM WITH ORDER PAYABLE ON ORRDERS UP THPT c．h．tis．	

EXCOMPUTER PRINTED CIRCUIT minimum or SPECIAL BARGAIN PACK． 25 boards PANELS with 2 power eransistors sim． 8 oo OOA5， 3 OA 10,3 Pot Cores， 26 Resisfors， 	BUMPER BARGAIN PARCEL We guarantee that zhis parcel contains at least 1,750 components．Short－leaded on panels，including a minimum of 350 tran sistors（mainly NPN and PNP germanium audio and switching types－adata supplied）， Resistors 5% or better（including some ｜\％）mainly metal oxide，carbon fifm，and diodes，mintature silleon types OA90． including cantalum，electrotytics，ceramies values．．also the odd transformer，trim＂ up to date，professional，top quality com－ ponents．Don＇t miss this，one of our best offers yeel Price， $65 / \mathrm{m} . \mathrm{P}$ ．\＆P． $6 / 6$－U．K． New Zealand $20 /-P .8$ ．Limited stocks
EX COMPUTER＂MEMORY＂ CORE STORE PLANES 140 BITS \＆I P．\＆P．2／－	
MIXED RESISTOR $\frac{1}{1}$ and $\frac{1}{2}$ Watt	
	$0 \begin{aligned} & \text { Hith Stabs t．A and I Watt，} \\ & 5 \% \text { and Beter } \\ & 12 / 6\end{aligned}$
	LARGE CAPACITY ELECTROLYTICS RIPple current oa
EXTRACTOR／BLOWER FANS（Papst） $100 \mathrm{c.f.m} .4 \frac{1}{2}^{\circ} \times 41^{\circ} x$ 2＊ 2800 r．p．m． 50／－each．P．\＆P，5／－．	$0.0 \text { doz. Р. \& }$
	EXTENSION TELEPHONES $19 / 6 \mathrm{ea}{ }^{\mathrm{P} . \mathrm{a}_{5 / \mathrm{p}} \mathrm{p}}$ 35／－for 2 These phones are extensions and do not contain bells．
RELA Y	
single pole Chanzeover silver 	
KEYTRONICS MAILING ADDRESS 44 EARLS COURT ROAD．LONN WAREHOUSE AND DISPATCH 014788499	

BI-PAN=100W 000

	sim.	Hon
		Input Nand gate
	7401N	Quad 2-Input NA COLLECTOR
PP04	7404N	hex interter
BP10	10 N	Triple 3-Input Nand gate
BP20	7420N	Dual 4-Input nand gate
BP30	7430N	Bitggle 8 -Input NaND GATE
+0	7440 N	Dual + -Input buFper oa
41	741	BCD to decimal decoder and Driver
BP42	7442N	BCD to dectral deende (TTL
BP50	7450 N	
BP53	33N	$\begin{aligned} & \text { Single } \\ & \text { OATE - Input AND/OR } \\ & \text { ANDIS } \end{aligned}$
BP60	7460 N	Dual 4 -Input-expandab
BP70	7470 N	Single JK Flip-Fiop- edgo tr
$\mathrm{Br}_{7} 2$	2N	Single Master mlaro J
${ }_{\text {BP73 }}$	73N	Dual Master Blase JK Flip-Flop
BP74	7474N	Dual D Plip-Plop
${ }_{\text {BP7 }}$	7475 N	Quad Biatable Latch
BP76	747	Dual Mauter slave Flip-Flop presel and elear
83	7483 N	Four Bit Binary Adder
BP90	901	BCD Decade Counter
${ }_{\text {BP92 }}$	7492N	Divide by 124 Bit bin
${ }^{\text {BP93 }}$	7493N	Divide by $16 \$$ Bit binary count
BP94	749	Doal Entry a Bit Bhift Register
95	7495 N	+ Bit Up-Down ghirt Regiter

$8 / 6$ $6 / 8$

 \begin{tabular}{lll|l} \& $5 / 6$ \& $4 / 6$ \& 4

$1 / 6$ \& $5 / 6$ \& $4 / 6$ \& 2

6 \& $5 / 6$ \& $4 / 6$
\end{tabular}

$\begin{array}{lll}\text { BP04 } & 7400 \mathrm{~N} & \text { HEA } \\ \text { BP10 } & \text { 7410N } & \text { Triple } 3 \text {-Input NAND GATE }\end{array}$
6/6

$6 / 6$	$5 / 6$	$4 / 6$
$6 / 6$	$5 / 6$	$4 / 6$
$8 / 6$		

-

$\begin{array}{lll}22 / 6 & 20 /- & 17 / 6 \\ 22 / 6 & 20 / & 176\end{array}$

Matched Trass. OC44/45/81/8ID Red Spot AF Trans. PNP...

6 White Spot RP Trans. PNP.
5 Blificon Recth. $3 \Delta 100-400$ PIV
2 OCl 140 Trans. NPN Switching 12 A BCE 100 PIV
1 sil. Trane 28303 PNP.
3200 Me/s 811 . Trans. NPN BgYeb/ $3200 \mathrm{Mc} / \mathrm{s}$ sil. Trans. NPN Be
9 Zener Diodes 1 W 33 V 5\% To 4 High Current Trans. OC42 EqVt.
2 Power Tranishors 100261 OC35
Silieon Rects. 400 PIV 250 mA Silteon Rects. 400 PIV 250 m
4 OC75 Trangistors. 1 Power Trank. OC20 100V
0 OA202 sil. Diodes Sub
 80 A81 Diodea. $4{ }^{0} 0672$ Transistora
 5 GET884 Tras. Eqvi. OCA
5 GET88 Trana. Eqvit OCA5. 2 2N708 sif. Trans, 300Mc/s NPN.
3 GT31 LF Low Noise Germ Trans. 6 IN914 Sil. Diodos 75 PIV 75 mA
80 OAFS Germ. Diodes Sub-min. IN 68 3 NPN Germ. Trans. NKT773 Eq 20022 Power Trana. Germ. 4 ACl28 Trans. PNP High Gain. AC127/128 Comp. puir PNPN
3 2N1307 PNP Bwitching Trans. 7 CG62H Germ. Dtodea EqV. OA.
3 AF110 TYpe Trankiodes Marked.
12 Asoorted Germ. Diode - ACl26 Germ. PNP Trans.....
\& Blicon Rects. 100 PIV 750 mA

$$
\begin{aligned}
& 3 \text { AF117 Trans...... } \\
& 7 \text { OC81 Type Trana. } \\
& \text { \& M }
\end{aligned}
$$

3 OC17 Trane..............
5 2N2g26 Bil. Epoxy Trame
5 2N2926 Bil. Epoxy Trabu.
7 oc71 Type Trane........
228701 sil. Trans. Texan.
 1 2N910 NPN Bil. Trans. VCB 100.
2000 PIV 811 . Bect. 1.5 A Rb3310 3 B8Y95A sil. Tra
3 OC200881, Trans. 2 OETM. Trans. 2 GET880 Low Noise Germ. Trans..
1 AF139 PNP High Freq. Tran....
3 NPN Trang. 1 ST141 and 2 ST140. 14 Madt 22 MATI00 and 2 MAT12
3 Madt'a 2 MAT101 and 1 MAT121. 3 Madt'a 2 MAT101 and 1 M
4 Ocd4 Gern. Trans. AF.
3 AC127 NPN Germ. Trans.
Manufacturera" --Pall outm"-out of apec. devices including functional unita and part functional but classed an out of spec. From the manufacturers' very rigid
apecificatione. Ideal for learniug about I.Oe and expertmental work, on testing

\qquad
KING OF THE PAKS Unequalled Value and Quality

Satisfaction GUARANTEED in Every Pak, or money back.

02	60 Mixed Germanium Tran	
U3	75 Germanium Gold Bonded Diodes sim. OA5, OA47.	
U4	40 Germanium Transistors like OC81, AC128........	
U5	60200 max Subomin. sil. Diodes	
U6	30 slllcon Planar Transistory NPN stm. B8Y954	
U7	16 silicon Rectiters Top-Hat 750 mA	
U8	50 BlI . Pianar Dlodes 250 ma OA/200/202.	
U9	20 Mlxed Voits 1 watt Zener Dlodes.	
U11	25 PNP Sillicon Planar Transistors TO-5 alm. 2N1132...	
U12	12 silion Rectifera EPOXY BY126/127.	-
U13	30 PNP-NPN Sll. Transintars 0 O200 \& 28104	-
U14	150 Mixed silicon and Germanium Diodes.	
$\overline{0} 5$	25 NPN Blilicon Planar Transistors To-5 ilm 2N69	
016	10 3-Amp silleon Rectiflers Etud Type up to 1000 PIV	
17	30 Gerpandium PNP AF Transigtorm TO-5 like ACY 17-22.	
18	86 -Amp 8 tilcon Rectifere BYZ13 Type up to 600 PIV	
U19	25 silicon NPN Transistors like	
U20	12 1.3-amp Sllicon Rectifers Top-Hat up to 1.000	
U21	30 A.P. Germantum niloy Transiotors 20300 Bertes \& 0 C71	
U23	30 Madt's like MAT Serles PNP Transistors.........	
U24	20 Oermanium I-amp Rectifiers GJM up to 300 PIV.	
U25	$2530 \mathrm{Mc} / \mathrm{M}$ NPN Silicon Transistors 2N708, B8Y27.	
U	30 Fuat 8witching Bilicon Diodes like IN914 Mcromm.	
U28	Experimenters Asportment of Integrated Clicuils, untented Gates, Flip-Flops, Registerso etc., 8 Assorted Pieces....	
U29	101 amp BCEs's TO-5 can up to 600 PIV ORSI/25-600.	
U30	15 Plastic Bilicon Planar trans. NPN 2N2924-2N2926.	
031	20 Bll. Planar NPN trans. low nolse Amp 2N3707	
U32	25 Zener diodes 400mW D07 case mixed Volts, 3-18.	
U33	18 Plastic case 1 amp Blicon rectiflern in 4000 series....	
U34	30 SIL. PNP alloy trans. T0-B BCY26, $28302 / 4$.	
U35	25 sill Planar trans, PNP TO-18 $2 \mathrm{~N} 2006 . .$.	
U3	25 sil. Planar NPN trins. TO-5 BFY $50 / \mathrm{S} / / 5$	
037		
038	20 Fant 8 witehing 8il. trans. NPN, $400 \mathrm{Mc} / \mathrm{s} 2 \mathrm{~N} 3011 . . .$.	
U39	30 RP Germ, PNP trans, 2N1303/5 T0-b.............	
Ü 40	10 Dual trans. 6 lead T0-5 2N2060.....................	
U41		

U42 10 VEP Germ. PNP trans. T0-1 NKT667 AF117....... 10/:
Code Nos. mentioned above are given as a gulde to the type of device in
the Pak. The devices themselves are nonnally unmarked. UIC02 $=5 \times 7412 \mathrm{~N}$
UICOU
U1C
2N697 Epitaxlal Planar Trasar, git

DTL DIGITAL I.C's

MDTL dual ln-line package.

 Type MCs45P Clocked Filp-Flop SUPPLIED WITE UNITSFULL DATA BUPL

BRAND NEW. FULL TO MANUFACTURERS'

BP709 Operational
 This ls a high performance opera
inputs und low imperance output.

$\underset{\text { RTL Micrologic ctrenits }}{\text { FAIRCHILD (U.S.A.) I.C's RTL }}$

integrated

\section*{BI-PAK MONOLITHIC | (TO-5 8 lead) |
| :---: |
| P70BC, 0 peralo |} BP700C

plitier
BP701C plifier (with Zener out-
 plifier (with direct out-
put. $11 / 6$ each
BP501, Whe band mmpliRer. 18/-each
BP521, Wormithumic wide
band smp.... $14 /$ - each
BP201C, General purpoee

ALL THE WAY

FREE	One 10/- Pack of your own cholce free with orders valued $£ 4$ or over.	FREE	$\begin{aligned} & \text { AD161 NRN } \\ & \text { AD162 } \end{aligned}$

COMPUTER SALES AND SERVICES

49-53 PANCRAS RD., LONDON, N.W.1. Tel: 01-278 5571 (low cost computers and peripherals)

ICT HOLLERITH
Type 029.80 column Punch
A well-proven electro-mechanical card punch, with duplicating, spacing and skipping facilities. Two types of keyboard are avallable for this model Alpha/Numeric and, Alphabetic.
The alphabetic largely resembles a typewriter keyboard, enables alpha punching by the operation of one key.
of one key.
Supplies 110 v. D C. mains for card feed motor. SEATURES: Motor cut-out swltch for ciearing FEATURES: Motor cut-out switch for clearing
card jams. Siop Lever for stopping card at the 80 th card jams.
column.

[^10]ELLIOTT TRM 250 PAPER TAPE READER
A medium apeed taput derice
for use tm daus procesaling nad for $\mathbf{u s e}$ LI date procesesing Rnd
antornation yystems. Reado 5,6, ${ }_{7}$ 7, or 8 -hole perforiter tape, si apeedi
seocnd

IBM 151 NUMERICAL VERIFIER Has been deeigned for une on 2
table. It can be uaed in conjunctoon with the 011 Elejurical Punch. Unes an electric Keyboard, card beting fed, apad
removed manually.
 contwol akipping over card areas Which need no veriacation.
Aphabetic and special chancter
infornation can be rerifod uaing information can be rerficd using
andiple punch procedure.
Verifler set, consisting of keyboard comparitor, tape reader 92 , tape punch 25,5 -hole or 8 -hole system.

HAND PUNCHES - 80 COLUMN The Punch
It n table mounted moded punch.
For the Berinal Punching of atpha:
numeric Data Alpha or
numeric Data, Alpha or Multi
Boie Punching io made by
Hoie Punching it made by
depreating two or more kesto
aluultaneuals.
eltrultaneous 15 .
Function Keys
Revenene key tor completing the
leftiband movement of
 rack when punching end betore
column 40 . column so.
Bpace key io
unused columns.
SkIp Key for akipplug
unused areas of Carid an deman.
ded by the Forraat arranged by
an iuterchangrable Ekip Bar.

PART USED COMPUTERS AVAILABLE SHORTLY

ICL 1500; PDP 8F; IBM 1440; IBM 1401; SDS 930; ELLIOTT 803; EMIDEK 1100; HONEYWELL. 200: NCR 400.

PEAK SOUND BAXANDALL LOUDSPEAKER

Saves you
money as
no other
hi-fi
speaker
can

This is the loudspazker designed and described by Peter J. Baxandoll lof tone control fame) in "Wreeless World" which proved beyond usston that excellent reproduction tould be obtained for very modes outlay. Great saving is achieved by using the approved Peak Sound esigns for building the Baxandall Spaaker, and the simple, ingenious method of assembly assures professional standards in every way. Special abinet in atromosia teak finish is $18 \times 12 \times 10$ ins: impedance 150 hms ndies 10 watis R.M.S. with ease; frequency response 60.16 .000 Hz \pm 3 d8, $100 \cdot 10,000 \mathrm{~Hz})$. This speaker was one of the talking points Sonex 70 . Send us the coupon and we will send you full derails by return A/so avalleble cesdy ouith

OTHER PEAK SOUND PRODUCTS include the Englefield Amplifier and Englefield Stereo FM Tuner, high fidelity modules. etc. all of which can save you money when you know about them

PEAK SOUNO (HABROWI LTO., ST. JUOE'S RD., ENGLEFIELD GRN.. EGHAM; SURREY. Phone 5316
To Peak Sound, Englefield Green, Egham, Surrey
Details of Peak Sound products, please, to
NAME

Hxirs monnex

LOOK AT THE SPECIFICATIONS!

25 WATT \& 50 WATT RMS SILICON AMPLIFIERS

NEWI
Seli-powered Stereo Preamplifiers every facility. lim modern designs, push-button selections, silicon transistors, FET and IC's.
+FETIS4 Stereo
HC stereo $\quad 16.10 .0$
HC Stereo

- Ae full power-ldB $1 / \mathrm{c} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$
- Response- $1 \mathrm{~dB} / 1 \mathrm{e} / \mathrm{s}$ to $100 \mathrm{ke} / \mathrm{s}$.

PA 2510 transistor all sillcon differential inpur 400 mV sensitivity 25 watts Rms into 8 ohms. Supplied with edge connector harness PA 5012 transistor version 50 watts Rms into 3 to 4 ohms. Size $5^{\prime \prime} \times 3^{\prime \prime} \times 4^{\prime \prime}$.
MU 442. Power supply for one or two PA 25 or one PA 50 PA 25 £7.10.0. PA 50 E9.10.0. MU 44266 No soldering-just edge connectors!

SINCLAIR Z30 75/-, projece 60 amp E8.10.0, Pz5 79/6, EQUIPMENT Pz6 ©6.19.6, $\mathbf{2} 50$ 65.9.6, Pz8 ©5.19.6. *Two Z30 Pz5 up 60 pre-amp (usually 23.10 .0) $£ \mid 9$
(or with Pz6 in place of $\mathrm{P}_{25} \mathrm{E21}$)
 For hesirekiv Supplied complote with instructions haversack, cables and Our price. now.
tosted. complete terted, complete
with coll H.T. Eliminator Dosimetars 0-50r 12/6. 0-150r 10\%.

ONLY ㅍ⒎10.0

Complete system comprising Control Unit, headphones, etc., 12 V D.C. operation. Low battery drain. 8 wates power output. meetings, sports days, factories. karden fotes, etc. Speakers can be spaced effectivaly over hundreds of yards. Also has talk back
facility. Guaranteed Brand New in sealed AILABLE FOR EXPORT OUNTIT AMALABLE EXPORT HENRY'S STOCK EVERY TYPE AF COMPONENT YOU NEED

TEST EQUIPMENT

For Educational, Professional and Home Constructors
special phices for quantities

AFIO5 $50 \mathrm{k} / \mathrm{vol}$ mulci meter (illus.). Price 88.10 .0 PP. $3 / 6$ Leather case 28/6.

200 H 20k/role
Price 63.17 .6 p.p. 3μ Case 12/6.

THL $33 \mathrm{~A} 2 \mathrm{k} /$ vole.
Price
E4.2.6

TE65 Valve voltmeter (illus.). \&17.10.0 p.p. 7/6.

VMSI Transistorised AF/RF multimeter.

TE20D RF generator (illus.). Price $\&$ is p.p. $7 / 6$

TE22D Matching audio generator.
Price Elf p.p. 7/6
TEIS Grid dip meter
TO3 Scop (illus.). 3" sube

PANEL METERS
COMPLETE RANG
SPECIAL PRICES
FOR QUANTITIES
*FULL RANGE IN THE LATEST CATALOGUE SEE FOR YOURSELF

NEW $\frac{1}{4}$-TRACK TAPE DECK

Bricish made, takes 7^{*} spools, operates horizontally or vertically, piano key XRPSIT and XES II heads. Size: $13 \times 10 \times 51$ in Price $\{13.19 .6$ p.p. $7 / 6$

E.A.C. DIGIVISOR mk. II

Iprice Lishe beam lons onerated. Metor. Movement $500 \mu \mathrm{~A}$. Also lamp for decimal point. Overall size: $41 \times x$

STC TIME DELAY MODUL

GRAVINER FIRE DETECTOR UNIT Fire Detector Unic photo multiplier and cold cathode sube.
Shock and fire proof. Shock and fire proof.
Orizinally made for E74. Price complese with data

HENRY'S LATEST
CATALOGUE SEND
NOW, 350 pages fully detailed and illustrated. All audio and electronics complete with $10 /-$ value discount voucher for use wish purchases. Price $7 / 6$ p.p. $2 /$:
a must for the
FREE

COMPLETE STEREO SYSTEM

 (usually £50) Price $£ 39.10 .0$British made $5-5$ amplifler input for ceramic cartridge cuner/aux ete. Full controls. output for 8 to 15 ohm speakers fitced headphone socket. Complete system uses above amplifier, Garrard model or 3000 with coveer. cover.

BUILD THIS VHF FM TUNER

YOU CAN SAVE 25\%
BRAND NEW FULLY GUARANTEED
SP25 mkII E11.19.6. AP75 €16.19.6. SL65 B E14.19.6. SL72 B 625. SL75 B 631 . SL95 B 639. A70 mkll E 11.19 .6.
 SPECIAL OFFER. Above supplied with cartridge GARRARD TURNTARIFS 9 TAH/C diam. add $£ 2$, magnecic 940 add $£ 3.10 .0$, with $G 800$ FREE COMPLETE LIST add $\mathbf{\text { f8.10.0. De-luxe plinths and covers for above (except }}$ FREE COMPLETE LIST
ON REQUEST NO. $16 / 17$. Goldring GL69 deck only. 22 p.p. 2/6. With G800 $£ 30$ p.p. 7/6. With G800 plinth and cover E39.10.0 p.p. $10 /$
Garrard Model 50 £8.10.0. $30001 \mathrm{~m} £ 9.15 .0$ (ficted 9TAHC diam. carts.) p.p. 7/6. Plinths/ covers $99 / 6$ p.p. $8 /-$

ELECTRONIC ORGANS

*MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READ BUILT
+VENEERED CABINETS FOR ALL MODELS太 49 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE *KITS AVAILABLE IN SECTIONS AS REQUIRED *HP and CREDIT SALE FACILITIES
When in London call in and try for yourself.
FREE! 16 PAGE ORGAN BROCHURE COVER ING ORGANSINKIT FORM AND READY BUILTWRITE OR PHONE TO ORGAN DEPT. ASK FOR

CI-FI equipment to suit EVERYPOCKIT

*Complete systems and individual units at special low prices-choose from 100 selected stereo systems. Call in for a demonstration when in London.
*Free 10-page stock/systems List No. 16/17. LOW CASH AND CREDIT/HP PRICES
(Credit terms for purchases from c30-caller only.)

MINIATURE "LATCH. MASTER"' RELAY 6, 12, or 24v. D.C. operation. One make one break, contacts rated 5 amps. at 30v. Once current is applied, relay remains latched until input polarlty is reversed. Manufactured for high acceleration requirements by Sperry Gyroscope Co. Size: Length 1 ". dia. $9 / 16^{\prime \prime}$ (including mount). Please state vertical or horizoncal mount and voltage. $\mathbf{Q} .5 .0$ each. Carr. Paid.
SPECIAL OFFER. Enclosed Relay, complete with base. Brand New. Type MQ308 600 @ $24 \mathrm{v} .4 \mathrm{c} / \mathrm{o}$. Size $14^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times \frac{1}{2}^{7 \prime}$, 65 per dozen. 12/- each.
Type MQ508 $10,000 \Omega$ 100v. $4 \mathrm{c} / 0.65$ per dozen. 12/- each. Type MQIO8 $40 \Omega 6 \mathrm{v}, 4 \mathrm{c} / \mathrm{o}$. te per dozen, $13 / 6$ each. Type MQ208 $150 \Omega 12 \mathrm{v} .4 \mathrm{c} / \mathrm{o}$. 66 per dozen. $13 / 6$ each. Carr. Pald.
NEW "F.I.R.E." PLUG-IN RELAY,-II5v. Coil $50 / 60$ c.p.s. 3 heavy ducy silver change-over coneaces. Very robuse. IT/6. Carr. Paid.
SCHRACK ROTARY STEPPING RELAY RT304 48v. coil (280 ohm). The relay has 48 basic segments shorted in step by the 4 sweep contacts to 4 poleplates (banks of 12). There are 2 secondary switches: (1) one do H/Dusy concace set which changes over and back with each step; (2) two H/Duty changeovers which change over on each 12th step and return on the following pulse. Size: Base $3 \frac{1}{}^{\prime \prime} \times 17^{\prime \prime} \times 4 f^{\prime \prime}$ high. New in maker's packing. also, as above, but 110 v . (1,290 ohm coil). 64.15.0. each. Carriage paid.

NEW DIAMOND "H" 240v. A.C. RELAY. - 3 heavy ducy silver changeover contacts. 17/6. Carr. Paid.

SYLVANIA MAGNETIC SWITCH-a magnetically accivated switch operating in a vacuum. Swisch speed-4ms. cemperature -54 to + 200° C. Silver contacts normally closed rated 3 amps . at 120 v . 1.5 amp . at 240 v . $10 / \mathrm{F}$ each. $80 /$ - per dozen. Special quotasions for 100 Carr. Paid.

PERSONAL CALLERS WELCOME.

Send an S.A.E. for New Comprehensive I.C. and Semiconductor price lists. INTEGRATED CIRCUITS NEW LOW PRICES . FULLY GUARANTEED
rca
CA3000

ca		MOTOROL		1-9	$10+$	$25+$	mullar	rar
A3000	39/8	MC724P		1718	15\%	13/8	TAA241	32/6
3005	$28 / 6$	MC788P		19/8	17/6	18/-	242	88/0
7	$57 / 6$	MC789P		17/6	15/-	13/6	243	
11	166	MC790P		97/6	4/6	23/-	243	301-
12	18/6	MC792P		17/6	15/-	13/6	263	18/6
18	2/-	MC799P		17/6	18/-	13/6	293	18/6
14	971-	MC1303P		57/8				
18	19/6	MC1304P		78/6			300	35/*
18A	25/-	MC708P		59/6	-	-	310	25/-
19	19/-	MC7490P		$89 / 6$			380	14/6
20	27/-	MC788P		19/6	-		350	35/-
20A	37/-	MC838P		139/-		118\%.	435	
21	34/-			$\begin{aligned} & 89 / 6 \\ & 8 K / 6 \end{aligned}$	-	$\begin{aligned} & 79 / 6 \\ & 50 / 6 \end{aligned}$	438	28/8
22	27/6	MCl 4 BP		60\% ${ }^{-}$	-	50/6	521	28/6
23	26/-						538	72\%
26	21/-	Tancmil	1-5	6-11	12+	$80+$	530	89/-
28 A	18/6	L900	9/8	9/6	$81 /$		811	88/\%
28B	24/-	L914	9/9	8/-	8/-	-	TAB101	19/6
29	10/6	$L 923$	12/8	11/9	11/-	-	TAD100	39/4
29 A	38/6	L702C	39/6	${ }^{32 / 6}$	29/8		TAD110	39/6
30	31/-	L700C L7100	81/*	18/8	18/\%	17%	mollar	
35	27/-	L7110	21/-	1818	18/\%	17%		
36	10/6	L716C	58/-					
39	19/6							
41	25/-	TEXAS TT		MULL	ARD TT		Plessey	
42	25/-	8N7400N	18/-	PJHi		17/8	8L 402 A	42/6
43	29/-	8N7401N	18/-	FJH1		17/8	Slaba	42/6
14	27/-	8N7402N	18/-	FJH1		1718	8L7010	29/6
45	271-	SN7403N	18/\%	FJH1		17/8	8L702C	29/6
46	19/6	8N7404N	19/3	PJH17		$18 / 8$ $17 / 8$	8L702C	296
47	29/-	SN7410N	18/\%	FJJ10		27/8		
48	45/-	8N7413N	29\%	PJJ 12		37/8		
49	35/-	8N7420N	18/-	FJJ14		82/8		
50	39/6	SN7430N	18/0	FJJ19		37/8	cenera	
51	28/-	gNi4t0N	18\%	FJJ25		82/8	Electr	
52	38/6			FJYio		16\%-	PA222	87/8
53	12/-						PA230	22/6
54	80/-	Date Sheet	${ }_{\text {all }}$	- per typ	excepl	L900/	Pa234	21/8
85	24/-	8 Plu To-5	Plea	ders, 101			PA237	38/-
59	27/-	14 Plm Dua	In-Lh	I.C. Ho	dera, 11/		PA246	57/8
64	35/-	18 Pia Dua	\|n-Lin	1.C. Ho	ders. $12 /$		PA424	51/-

 ม. 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 CALLERS WELCOME 9.5.30 SATURDAY 9.5 SEE OUR MAIN ADYERTISEMENT ON PAEE 78 FOR SEMICONDUCTORS

ENAMELLED

 COPPER WIRES.W.G.
$\frac{1}{2}$ lb. Reel
1 lb. Reel
18-22
11 s .3 d.
16s. 6d.
23-30
11 s .9 d.
17s. 6d.
31-35
12s. 3d.
18s. 6d.
36-40
15s.
24 s.
41-44
17s. 9d.
29s. 6d.

Orders despatched by return of post.
Please add $1 /$ - per item P. and P.

Supplied by:

BANNER TRANSFORMERS

(Dept. WW), 84 Old Lansdowne Rd. West Didshury, Manchester M2O 8WX

THE BIG CLEAR OUT IS ON!

Audio Visual equipment can now be part exchanged for 1970 Models at Dixons

Up to date training equipment gets your message home faster and more effectively. Modern ease of operation lets you concentrate on the real job of education - operating clumsy equipment can now be a thing of the past. It's time you traded in obsolescent projectors etc for the latest models - Dixons offer more than a fair price. More important you can move into the Seventies properly equipped - Dixons supply all makes.

Write or phone today for quota tions and specifications. Full leas-

Dixons Audiovisual

A Division of Dixons Technical Ltd
27 OXFORD STREET LONDON W.1. Tel: 014378871 wW-084 FOR FURTHER DETAILS

STEPHENS
 SEND S.A.E. FOR LISTS GUARANTEE Satisfaction or money refunded.

TRANSISTORISED UHF TUNER UNITS NEW AND GUARANTEED FOR 3 MONTHS

Complete with Aerial Socket and wires for Radio and Allied TV sets but can be used for most makes. Continuous Tuning, 90/-; Push Button, 100/-

STYLI

TC8, GC2, GP59, CG8, DC284, Stereo 105, 106, 208, 2/- each (individually boxed): ST3/5, ST8/9, 9TA, 9TA/HC, CP91, 8/Diamond. Post and packing 5d. per item for orders under 24.

TAPES (Polyester PVC)

4 in. L.P., 8/6; 3 in. L.P., 5/6.
Standard play: 600 ft. 5 in ., 8/6; 900 ft. $5 \frac{3}{8} \mathrm{in} ., 10 / 6 ; 1,200 \mathrm{ft} .7 \mathrm{in}$. 12/6.
Long Play: $900 \mathrm{ft} .5 \mathrm{in} ., 11 /-; 1,200 \mathrm{ft} .5 \mathrm{in} ., 13 /-; 1,800 \mathrm{ft} .7 \mathrm{in}$., 18/-.
Double Play: I, $200 \mathrm{ft} .5 \mathrm{in} ., 16 /-$; $1,800 \mathrm{ft} .5$ in in., 19/-; 2,400 ft. 7 in., 28/-.
Phllips type Cassettes (in plastic library pack): C60, 10/6; C90, 12/6; C1 20, 19/6.
Post and packing $1 / 6$ on all orders.

ACOS CARTRIDGES

GP9I-I-Medium output Mono Crystal, 21/- inc. P. Tax. GP9I-3sc-High output Mono Crystal (TC8H, TC8M, BSR, X3H, X3M), 21/- inc. P. Tax
GP93-I-Stereophonic Crystal, 24/9 inc. P. Tax.
GP94-I-Stereophonic Ceramic, 31/- inc. P. Tax.
GP95-1-Stereophonic Crystal, $24 / 9$ inc. P. Tax.
GP96/I-Sterophonic Ceramic, 31/6 inc. P. Tax.
9TA HC Cartridge 37/6.

Double Leaf Coneact

 Very allght presoure closes both
contacts. $1 / 3$ sach. $12 /=$ doz Plastic push-rod aultable for operatiny 1/- each, $8 /$ - doz

PAPST MOTORS

 Est. $1 / 20$ th h.p. Made for $110-120$ volt together or our standard 240 volt axtremely quiet running and revertble. 30/- each. Portage one 4/6, two 6/6.230v. B0Hs. Capaclior atart. Reversible. Normal conitruetlon. Bize: 3in. din. $\times 2$ in. deep. Approx. 1/40th h.p.
$32 / 8$ with Condenser, plus $4 / 6$ post and insurance.

INSTRUMENT KNOBS

 MIDGET OUTPUT MIDGET OUTPU
Ratio $140: 1$. size approx. $1 \ln , \times \frac{t i n}{} \times$ tin., prtunty lmpedance 4500 . Connec
Lon by flytig leads. $4 / 8$ each. $48 /$-doz MIDGET OUTPUT TRANSFORMER
 THE 5×5 WATT STEREO AMPLIFIER player. This amplider hast a quality of ofers roduction de-luye betier than sverage. Using a Lotal 16 transintore and a
geverously alzed malns power pack. Controls include bass, generously sized malns power pack. Controls include basa,
treble, balance and volume. Suitable for 8-18 ohma impedtreble, spankere and volumsovern for tweeter mildorange and bass thus giving option of 1,2 or 3 speakers per channei.
OMered at ubout one-third of ite original price, only 88.10.6 phus $6 / 6$ pont and infurance.

CHART RECORDER MOTOR Bmall (2ln, diameter approz.) instrument twotor with fixing
fango and apindle (tin. long. tin. diameter); Integral gear hox gives 1 rev, per 24 hours. 19/6.

IGNITION (E.H.T.) TRANSFORMER Made by Parmelo Le. Primary 240 v, so o.p.s. Secondary

Ideal TOR FAN BY DELCO foas. 6-bleded sin. diameter tan insidde heavy duty cyllnder with 3 -point fixing
Hange. bin. diameter Axing hole.
 -PUSH SWITCH
Ideal to control fan heater, etc. 3 on awitchea and 1 off. 48i- dozen.
MAINS TRANSISTOR POWER PACK

 PP1, PP3, PP4. PP6, PR7, PP9, and others. Kit comprisee: mains trankformer rectilerer, emoothing and lond realstor condensers and
pluê $3 / 6$ postage.

DIGIT COUNTER

Por Tape Reconder or other application.
reesettable by depreasing bution. Price 5/6.
ISOLATION SWITCH 20 Amp D.P. 250 Volts. Ideal to control Neou findicator showia when current i on. 4/6; 48/- per dozen.

LIGHT CELL
Almost zero resimtant in munllght
Ancreases to 10 K . Ohms in dispk or dull

SA 3-PIN SWITCHED SOCKETS An excellent opportunity to make that bench dis board you have
needed or to stock up for future jobs. This needed or to stock up for future jobs. This
month we offer B Brtish made (Hicraft) bakelte flush mounting shuttered awitch sackete for only $10 /$-plus $3 / 6$ pont and
ingurance. (20 bo

MOTOR WITH GEARBOX Very powertul 7 r.p.tn., operstes from

230 VOLT
SOLENOID
fin. strake. 81ze $24 \mathrm{in} . \times 2 \mathrm{in}$.
$\times 1 \mathrm{ln}$. $14 / 6$, postage $2 / 9$.

TRANSDUCER
Made by Acon, reference No. 1.D.1001. For measuring vibration, etc., to be used in
confunction with "(i" Meter. Regular prlce \&5. Our price 49/6. Brand new and SCREWS
100 asworted 4 BA and 6 BA . Warloup lengths, 4/6. 100
asourted selli-tappers, $5 / 6$. Screw users plesae send for

PRINCESS AUTO CHANGER FINAL OFFER AT 49/6

The moet amazing bargain ever! A brand new Auto change record player for lenis than the price of a single
player... due to a frustrated export order we are abie player. due to a frustrated export order we are able to offer the Balfour Princeas speed Autochanger, a
really fine machlne at about one-third of its regular
 price. Aalfour has two unlque features (1) A patented
The Bhe syitem which automaticnlly clenie atylus aftor
 eachude plek-up hetrith and atylue presaure adjustmenta, and motor sultabie for our $230 / 240$
or for 115 y , continental mains. Beautifully atyled -thls is a high class expenaive isotrument but you can purchase one to Prance and hack and the vibrations of the Journey, otc., may have loosened screwe or otherwise put them out of adjustment. However, with each we supply a 16 page sericice nuanual and tault finding chart which lis so detalied that if necessary you could completely re-build the changer. Bo t
offer closes Aurust 30 th .

I HOUR MINUTE TIMER

Made by famoun Smithe company, these have a large elear dial, size 4 in. $\times 3$ in., which can be get in ralnutea up to
1 hour. Aftior preset perlod the bell rings. Ideal for procesaing. I hour. Aftar preset perlod the bell rings. Ideal for procesalng. a memory logser or,
micro-s witch. $22 / 8$.

VARIAC CONTROLLERS

With these you can vary the voltage upplied to your circult from zero to ful malns without generating undue heat. One obvlous
application therefore is to dim Hghting. We of ar a ange of these. expequipment hul littre used and in every way an good as new:

DISTRIBUTION PANELS

Just what you need for work banch or lab, 4×13 mmp
mockets in metal box to take standard 13 amp funed

pluge and on/of antich with neon warming light. Gupplled complete with 7 foet of hear cable. Wired up ready to work, $38 / 6$ lesp plug ; 45/- with fitted 13 amp pluk $; 47 / 6$ with atted

8tandard sure $1 t$ water-milver-plated Boamp contact.

24 HOUR TIME SWITCH

Matas operated. Adjustable Contacts glve on/off per 24 hours. Contacts rated 15 amps. repeating mechaalam so ideal for shop window
control. or to switch hall $\|$ hhts (anti-burgiar precaution) while you control. or to switch hall ughts (anti-burglar precaution) whille you
are on holday. Made by the famoua 8 mplitha Coimpauy. Thls month are on holiday. Made by the famous 8 mitha Company. Thls month
oniy $39 / 6$ complete with perpex cover, new and unused. plus $3 / 6$ onir $39 / 8$ complete with perapex corer, new and unused. plus
postage and mourance. a real entp which ahould not be molssed. INTEGRATED CIRCUITS
A parcel of integrated circults made by the famoue Plensey Corppany. A once in a lifetime
offer of Mleronelectronic devicea well below cost of raanufacture. The parcel contains 5 ICs aner new and perfect, Arat grade derice defintely not sub-atandard or seconds. The IC are
all
all elingle silicon chip General Purpose Amplifers. Regular price of whleh is well over \&l

RE-CHARGEABLE TORCH
Neat hat torch. fte unobtrunively In your poeket, containk
2 Nicad cells and buith-io charger. Plugo into ahaver ada poar 2 Nicad cells and buith-in charger. Pluge into ahaver adaptor
and charges from our standard $200 / 240$ volt mains. American made, eold orighally at orer 4 dollars. Our price ouly

VARYLITE

WATT AMPLIFIER \& PRE-AMP
transintore-blighly efficient made for use wilth tape and of but equally sultable for microphone or pick up.
Amited, quantity $29 / 6$. F'ull circuit diag. almo ohow ape controls $5 /-$.

OUT OF SEASON BARGAIN
 TANGENTIAL HEATER UNIT Thin hester unlt is the very latest type, most etticlent, and quict running. It an fitted in Hoover
and blower beatera conting flo and mote. We have and blower heatera cont ing e1d and more. We have elempent and 1 kW , element mallowing switchlng 1 .
2 and 3 W . and with thermal safety cutout. Can 2 and 3kW. and with thermal safety cut-out. Can
be atted fato any metal line case or cabinet. Only be atted into any metal line chse or cabinet. Only
need control kulth. $59 / 6$. 2 kW . Model an Ahove ercept 2 kilowath $39 / 6$. Postage and insurance
$6 / 6$. Don't mise this.

TOGGLE SWITCH
amp 250v, with axing ring. $1 / 6$ each

MICRO SWITCH
5 mmp . changeover contacts. $1 / 9$ each
$18 /-$ doz. $15 \mathrm{ampmodel} \mathrm{g} /-\mathrm{ea}$. or $21 /$-doz. MINIATURE EAR PIECE
As used with tmported pocket radlos. 1/6 each 15/-doz.

IJ AMP FUSED SWITCH Made by G.E.C. For connecting Water type $3 / 6$ each $30 /-$ doa. Metal boxes for surface mountiog $1 / 6$ each $15 /=$ dos. 13 AMP SPUR UNIT
By G.E.C. for connecting clock, ot., to ring main. Pull-

> SUPPRESSOR CONDENSER TCC
mifd. 260v. A.C. working metal cased

REED RELAY

Glans encapeulated reed switch in 24 -volt eolenold, neatily encloned in neat metal cane, size $2 t \ln , ~ x ~ t i n . ~$ tin. $3 / 6$ ectifer, restrotor and condenser ($3 / 6$ extra)

SHEET PAXOLIN

Ideal for transistor projects, panela 12 tn . X oln., $1 / 8$ each
G.E.C. MULTIPLE SWITCHES Metal boxer (with cable kneckouta) sprayed
silser with corer and witch mounting grld.
For 8 , 10 and 12 \&witches $8 /-.6$ switches $5 /$.

4
G.E.C. Clipper switches

For the sbove boxes, 8 amp. A.C. rating, one-
ay $1 / 62$-way $2 / \%$, bell push $8 /$, intermedt
2/6. secret $8 / 6$. 15 armp one way $8 / 6$.

THERMOSTAT

Contlouously variable $30^{\circ}-90^{\circ} \mathrm{C}$. Hza sensor bulb connected by 33in. of tiezible tubing. On operation
a 15 amp 250 volt switch la opened and in addition
 a plunger moves through approx. tin.
This could he used to open valve on
Tent

HI FI BARGAIN
TULI P1 12-INCE LOUDSPEAKER. This is undoubtedly one of the flaest.
loudspenkers that we have ever offered.
produced by one of the country's mont produced by one of the country's moot
famous makers. It has a die-caat metal
 for H1. Fil load and Ehythm Guitar and public addrese.
Flur Density 11.000 gruse-Tolal Plux
44.000 Marwelle-Power Handling 15 +4.000 Marwelli-Power Handling 15
watts R.M.

- Cone monlded fibre
Freq. response $30-10,000$ a p.s. - apecify $12 \mathrm{in} .-121$ over mounting lugs- Ba me hole 11 han . Diam.

DRILL CONTROLLER Electronlcalif ohanges apeed
from approximately 10 revs.
to maximuma Full power at ali

 nsurance. Made up model also
mallable $37 / 6$ pluas $2 / 6 \mathrm{p}$. at p.

MAINS MOTOR

preciaion made-as used in record decks snd tape recorders In Ideal aliso for extractor fans, blower, heater, atc.
Now and perfect. Snip at $9 / 6$. Postage 3ow for first one then 1 - for euch one
ordered. 12 and over post free. MINIATURE WAFER SWITCHES (1) 4 atid
2 pole, 2 way- 4 pole, 2 way- 3 pole, 3 way-
4 pole, 3 way- 2 pole, 4 way- 3 pole, 4 way-
2 pole, 6 way- 1 pole, 12 way. All at $3 / 6$ 2 poie, 6 way-1 pole, 12 way. All
each, $36 /$-dozen, your assorthoent.

MINIATURE SLIDE SWITCH 3 pole change-over. 3/- each 30/- doz.

ELECTRIC CLOCK WITH 25 AMP SWITCH
Made by Smith's, these ualts are an
atted to many top quallty cookers to
control the oven. The clock is maina
driven and frequency controlled so it
is extremely accursta. The fwo nmall
diale enable switch on and of timen to
be accurately set. Ideal for switching
on tape recorders. Offered at only
raction of the regular price-new and

fraction of the regular price-new and unused only, $38 / 9$
lean than the salue of the clock alone-pont and insuraice $2 / 9$

Dept. Ww, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

[81 = BETTER OUALITY, SERVICE, PRICES \& LARGEST STOCKS

BC107/8/9 2/9
NPN Planar transistors
$0 C 1076925+2 / 5100+2 / 2$
$6 C 108 \quad 25+2 / 3100+21$.
Motorola unijunction $25+5 / 8100+4 / 9$

2N3819 7/Texas FET $25+6 /-100+5 / 3$

MGAIOO 35/31F2 28/6 Infra-RedEmitter\& Detector

 $\begin{array}{llll}215 & \text { N3055 } & 15 /- & \text { OCP } 71 \\ 71 & 19 / 6\end{array}$

2N2926 2/-

 NPN Planar transistors$25+1 / 8 \quad 100+1 / 6$ BY 127 4/Mullard Plasictc HV rectivior
800 piv 1 amp
(simliar $25+3 / 3100+31-$

Mullard Phototransisfor
$25+17 / 3 \quad 100+14 / 9$

SILICON RECTIFIERS

	Rectintora			
	P.ı.v.	1-24	25-99	$100+$
IN4001	50	1/6	1/5	1/4
IN4002	100	2/-	1/10	1/8
IN4003	200	2/6	2/4	2/2
IN4004	400	$2 / 9$	2/8	27
IN4005	600	1/-	$2 / 11$	2/9
IN4006	800	3/6	3/3	3/-
iN4007	1000	3/9	3/4	3/-

DISCOUNT: Quantities of different
IN 4000 series may be combined to qualify for the quantity discount prices
quoted. Example: $10 / 1 \mathrm{~N} 4001$ 10/I N4002 1/10; 5/1 N4007 4/9 (25 total pieces). (In the svent of any IN 4000 series going right to send higher voltage types at no extra eharge.)
\qquad

OTM
$10 / 6$ BAY31
$1 / 6 /$ BAY 2

Bominlete Sterea Srstem End

This superb stereo system is a real price breakthrough. \& comprises the VISCOUNT F.E.T. Mk I amplifier on which full deta Is are given below. the famous Garrard SP 25 Mk II (including teak Jeneer base and transparent cover) with diamond cartridge or 2025 TC and the very successful DUO type 2 speakers.

Measuring $17 \frac{1}{2}^{\prime \prime} \times 10_{4}^{3 \prime \prime} \times 6 \frac{3}{4}^{3 \prime}$ the Duo type 2 speakers are beauti ully finished in teak veneer with matching vynair grills. They incorporate a $10 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{4}{ }^{\prime \prime}$ drive unit and high frequency speaker, both of which are of 3 ohms impedance. The Duo speaker system is also available separately at $\{6.6 .0$. each plus $15 /-P \& P$.

High fidelit, transistor stereo amplifier emploving field effect transistors. With this feature \& accompanying guaranteed specifications below, the Viscount F.E.T. vastly Whe Discount 5.E.T. MK | E14.5S. plus 7/6 P. \& P. surdasses amplifiers costing far more.

Size: $12 \frac{1^{\prime \prime}}{2} \times 6^{\prime \prime} \times 2 \frac{3^{\prime \prime}}{}$ in teak-finished case

Specification: Output per channel 10 watts r.m.s. Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \pm 1 \mathrm{~dB}$ (1) 1 watt.

Total distortion: © 1 kHz © 9 watt 0.5%.
Input sensitivities: CER. P.U. 100 mV into 3 meg ohms
Tuner 100 mV into 100 K ohms.
Tape 100 mV into 100 K ohms.

Overload Factor: Better than 26 dB .
Signal to noise ratio: 70 dB on all inputs (with vol. max) Controls: 6 position selector swich (3 pos. stereo 8 3 pos. mono). Separate Vol. controls for left 8 right channels. Bass $\pm 14 \mathrm{~dB} 60 \mathrm{~Hz}$. Treble fwith D.P.S. on/off) $\pm 12 \mathrm{~dB}$ © 10 kHz . Tape Recording output sockets on each channel.

BUILT \& TESTED Mk II (MAG. P.U.) £15.15.0 plus $10 /-p \& \rho$ Specification same as Mk. I, but with the following Specific
inputs. inputs. Mag . PU. CER P U Tuner Spec on Mag P U 3 mV e Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3 mV @
1 kHz input impedance 47 K . Fully equalised to within $\pm 1 \mathrm{~dB}$ RIAA. Signal to noise ratio-65 dB (vol.

Elegant Seven Mk $\mathbf{3} \mathbf{(3 5 0 m W})$ 7 transistor fully-runable M.W.L.W. superhet port-
able Set of pans. Complete with all components. able Set of pars. Complete with all components.
including ready etched and drilled printed circuit board-back Jrinted for foolproof
MAINS POWEF PACK KIT: $9 / 6$ extra. Price $£ 5.5 .0$ plus $7 / 6 \mathrm{P}$. \& P.
 The Dorset (600 mW) 7-transistor fully tunabla M.W. LLW. superhet portable-vith baby alarm facility. Set of parts. Tha
latest modulised and pre-alignment techniques latest modulised and pre-alignment techniqu.
makes this simple to build. Sizes: $12 \times 8 \times 3 \mathrm{in}$. MAINS POVER PACK KIT: $9 / 6$ extra. Price $£ 5.5 .0$ plus $7 / 6$ P. \& P.

LIQUIDATED 1MSTHE

STOCK TOURISTE MK3 CAR RADIO Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3

watts. Fre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size 7 " $\times 2$ " $\times 4 \frac{1}{2}{ }^{\text {" }}$ deep.

ORIGINALLY SOLD COMPLETE FOR £15.4.6.
str of pants $£ 6.6 .0$.
Speaker, baffle and fixing kit 25/- extra plus 4/-
P. \& P. (Postage free when ordered with parts.)

Circuit diagram $2 / 6$. Free with parts. Plus 7/6 P. \& P

50 WATT AMPLIFIER

£28 10s. £2810s. plus 20\% p. \& p
An extremely reluble general puppose valve amplifien Its rugged construction vel space aga styling and design makes in ty tat the dest value for monay.
techmical specifications
3 olectonicalify mixud channels with 2 inputs ort chamal. ensbles the ese of 6 separate instriments
ot the same dime The volume contuls for each channel are locsied directly sbove the corresponding input sockets. SENSITIVITIES ANO INPUT IMPEOANCES Channels $18 \& 24 \mathrm{mV}$ at 470 K These 2 channeis 14 inpurs) ara suirable lo microphone or guitars Channels 3 \& $4 \quad 300 \mathrm{mV}$ at 1 m . Suitable for most high outpur
instruments tgram, tunet, organ, efc). Input sensitiviv instruments $\begin{aligned} & \text { Igram. Tunser, olgan, elce). Input sensitivity } \\ & \text { telative to } 10 \mathrm{w} \text { OUtpuf. TONE CONTROIS ARE }\end{aligned}$ telatye to TOw outpur COMMON TO ALL INPUTS. Bass Boas1 +120 dt
of 60 Hz . Bass Cut-13dB at 80 Hz Treble Boost of
+11 dB of 15 kHz Tiable Cut -12 de of 15 kHz. With bass and ueble controls cenntral - 348 points We 30 Hz and 20 KHz POWER OUTPUT: For speech ond music 50 watts ma 100 watts penk. For sustained music 45 walts ims. 90 warts peak For sinc wave 38.5 waits ms Neark 80 waths peat Total distorition at ated output 3.2% at 1 KHz Total dissorion at 20 waths 015\% at iKhz NEGATIVE FEEOBACK 20d8 VOLTAGES Idjusiable from 200-250V. AC $50-80 \mathrm{~Hz}$ A protective fuse is located of the rear of unit Outpul A protective tuse is located
imperance 3.8 and 15 ohms

RADID \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.
Also 323 Edgware Road, London, W.2. ALL ORDERS BY POST to Acton Goods not disparched outside U.K. Terms C.W.O. All enquiries S.A.E.

INTEGRATED CIRCUIT AMPLIFIERS

SL403A 3 watte Audio Ampliner

ZENER DIODES

BZY8, teries, from 3.3V to $0.1 \mathrm{~V} \pm 8 \% 400 \mathrm{~mW}$ BZY 94 series. from 10.0 V to $12.0 \mathrm{~V} \pm 5 \% 400 \mathrm{~mW}$ D81s serlea, frotu 4.7 V to $18,0 \mathrm{~V} \pm 10 \% 8$ Watts D816 series, from 22V to $47 \mathrm{~V} \pm \mathbf{1 0 \%} 5 \mathrm{Watt}$ D817 eeries, from 58 V to $100 \mathrm{~V} \pm 10 \%$ of Wette
$3 / 6$ each
$4 / 1$ each
$3 /-$ each 3/- each
$7 / 6$ ench $7 / 6$ ench
$7 / 6$ each Outlines: BZY serfer-mininture-wire ended D814-"Top Eat' type
D816-Da17-atad mounted, supplied complete with
hardware
Pleape pta

TRANSISTORS

TWO NEW OSCILLOSCOPES FROM RUSSIA

CI-5 SINGLE BEAM OSCILLOSCOPE $10 \mathrm{me} / \mathrm{s}$ passband, triggered sweep from 1μ sec. to 3 millifrom $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Bulit-ln time marker and amplitude tube with telescopic Fiewing

CI-16 DOUBLE BEAM me/s pasbond Sepurate 51 me/s passband. Separate
 brated triggered sweep from $0.2 \mu \mathrm{sec}$. to 100 mill sec. per cm . Free running lime base ton and amplltude call brator Full details on request Full servicing facilities and spares available.

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN $\&$ FOR HANDLING AND POSTAGE. ALL MAL
OFFICE AND NOT TO RETAIL SHOP.

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF UK. ORIG

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2
A.R.B. Approved for inspection and release of electronic valves, subes, klystrons, etc.

WE WANT TO BUY
SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

APPOINTMENTS •VACANT

[^11]
BROADCAST RELAY ENGINEERS

are required for the ISLAND OF MASIRAH
(Off the coast of Muscat and Oman)
Applications for contract employment for a one year unaccompanied tour of duty are invited from engineers with experience of the operation and maintenance of high power radio transmitters and who are of third year City and Guilds Telecommunications Technicians Certificate or equivalent standard.
Salary $\mathrm{E} 4,000$ per annum plus a tax free allowance of $£ 350$ per annum for single, or $£ 865$ for married unaccompanied officers
Free furnished accommodation and passages are provided.
Further details and application forms can be obtained from

The Personnel Officer.
Diplomatic Wireless Service
Foreign \& Commonwealth Office.
Hanslope Park.
Wolverton, BUCKS.

UNIVERSITY OF BRISTOL

 Audio-Visual Aids UnitThe Unit provides a central service in Film and Television and other new media production for the teaching service of the University. Facilities include 4 plumbiconcamer as, television studio, Ampex 1 " V.T.R.s, 16 mm telerecording, 16 mm and 35 mm film shooting, editing, dubbing and telecine.
The two new posts in an expanding environment will provide experience over the whole spectrum of Broadcast Engineering.

SENIOR TECHNICIAN

Preferably with experience with a broadcasting authority. To undertake operation, maintenance and developmentoftelevision equipment.
Salary: $£ 1,248-£ 1,556$, plus $£ 30 / 80$ for approved higher qualifications.

TECHNICIAN

Operation of videotape and sound record. ing equipment, issuing and checking equipment and film and tape. Day release for further relevant education will be considered.
Salary: £905-£1,273, plus $£ 30 / 80$ supplement for recognised qualifications.
Applications, including the names and addresses of two referees, to be sent to the undermentioned by 31 st July, 1970.
Both posts become tenable on 1st August, 1970.
A.P.W. Makepeace, Director, Audio-Visual Aids Unit,
University of Bristol, 29 Park Row, BRISTOL BS1 5LT.

Aveley Electrics Ltd., who are one of the leading manufacturers and suppliers of language laboratories and educational aids, now offer, due to continued expansion, an opportunity for an experienced Test Engineer to join the educational aids division of this company. Applicants should be in the age range $20-35$ and fully conversant with the techniques of test and quality assurance

> Apply: MANAGING DIRECTOR AVELEY ELECTRIC LTD. SOUTH OCKENDON,ESSEX TEL.SOUTH OCKENDON 3444

cha-mamenil tertronios

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON QUALIFIED OR NOT!

VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits.
RE-LOCATION EXPENSES available in many instances. CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$-hour, 5 -day, office-hours week.
WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required, quoting WW 6

FIIGHI SIMULATOR SERVCE EGGNEEPS

Redifon Flight Simulator Division are designers and manufacturers of highly sophisticated simulators of current civil and military aircraft and linked products for use in the U.K. and world wide export markets.
We need skilled Service Engineers to keep this complex and hard worked equipment in continuous first class condition.
You should have a minimum of O.N.C. or City and Guilds Certificate, theoretical and practical experience of digital computing, hardware, software and computer peripherals. Knowledge of analogue computing and hydraulics would be advantageous. We will train those who have good experience in transistorised and integrated circuits.
The job is varied and interesting and in an expanding business. Promotion prospects are good. But you must expect to travel anywhere in U.K. and overseas at short notice, perhaps for extended periods.
Excellent welfare benefits include contributory pension and free life assurance. Our Sussex factory is only 25 miles from Brighton.

Send brief details or ring now:
H. C. Hall, Personnel Manager, REDIFON LIMITED
Flight Simulator Division Gatwick Road, Crawley, Sussex Tel: Crawley 28811

If yourre a telecommunications man and match up to the qualifications below cut yourself into a slice of Britain's future

Become a

in the fast-growing world of Air Traffic Control
Please send me an application form and details of how I can join the fascinating world of Air Traffic Control Telecommunications.

Nam

Address.

Not applicable to residents outside the United Kingdom
WWT/EI
To: A J Edwards, C Eng. MIEE.
The Adelphi, Room 705, John Adam Street, London WC2 marking your envelope 'Recruitment'

Sending this coupon could be your first step to a job that's growing in importance every year.

The National Air Traffic Control Service needs Radio Technicians to install and maintain the vital electronic aids that help control Britain's ever-increasing air traffic.

This is the kind of work that requires not only highly specialised technical skills but also a well developed sense of responsibility, and candidates must be prepared to undergo a rigorous selection process. Those who succeed are assured a steadily developing career of unusual interest and challenge. Starting salary varies from $£ 1044$ (at 19) to $£ 1373$ (at 25 or over) : scale maximum $£ 1590$ (higher rates at Heathrow). There is a good annual leave allowance and a non-contributory pension for established staff.

You must be 19 or over, with at least one year's practical experience in telecommunications,
('ONC' or 'C and G' qualifications preferred).

National Air Traffic Control Service

HIGHBRTECNICAL Oficirs SWAZILAND

* Salary £1,450 - £2,277 according to experience
* Low taxation
* 25\% gratuity
* Contract 24-36 months
* Subsidised accommodation
* Education allowances

Required by the Department of Posts and Telecommunications to assist in the development and maıntenance of the national trunk circuit network.
Candidates, 25-45, should preferably possess City and Guilds Certificates in Radio and Line Transmission and must have had at least five years experience in the installation of multi-channel carrier and voice frequency telegraph systems. A knowledge of VHF radio systems would be an added advantage.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/700375/WF

RANK WHARFEDALE LIMITED require

tester/ troubleshooters

The Company, who are leading producers of quality $\mathrm{Hi}-\mathrm{Fi}$ equipment, require suitably qualified staff for production line testing of transistorised electronic equipment.
Applicants should preferably possess either a formal qualification in radio servicing or testing, or have obtained equivalent experience in similar work. Location-Bradford, Yorkshire.
The positions carry staff status, and good salaries will be paid to the successful candidates.
There is a contributory pension scheme and free life assurance benefit. Assistance with removal expenses will be paid if applicable.
Applications to:

> The Personnel Manager, Rank Wharfedale Limited, Bradford Road,
> Idle, Bradford BD10 8SQ Yorkshire.
> Tel: Bradford 612552 .

Laboratory Equipment ENGINEER

Rediffusiar require a first class engineer. His job will be to administer and maintain a laboratory concerned with television distribution systems. This includes both laboratory and field test equipment. Qualificat ons required are either H.N.C. or equivalent C\&G exams. He must be familiar with H.F. measuring techniques, oscilloscopes ard sweep oscillators. Salary uf to $£ 1,700$ per annum, depending on age and experience. Three we 3 s' annual holiday after the compdetion of twelve months' service. F ve day week, 9-5.30. Applicaticns in writing should be addressec to: D. E. Street, Head of Operational Services Dept., Rediffusion Engineering Ltd., 187 Coombe Lane West, Kingston-onThames, Sırrey.

Worthwhile Vacancies

There are vacancies for Electro-Mechanical and Electronic Equipment Servicing Technicians in West London.
The duties are for corrective and preventive maintenance of remote control equipment in substations and generating stations. The work includes on-site testing of equipment involving Post Office type relays, uniselectors and solid state switching logic. Also workshop testing, adjustments and repair of relays and electronic equipment associated with remote control equipment.
Salary $£ 1.523$ 10s. Od. Valuable free travel facilities, sick pay and superannuation.

Suitably qualified applicants should apply to

The Superintendent of Recruitment,
London Transport, 280 Old Marylebone Road,
London N.W. 1.
stating qualifications and experience.

ELECTRONIC TEST ENGINEER

Vacancies currently exlst for engineers with experience of production test work who have a technical background equivalent to that of inter Clity \& Guilds (Telecoms) or radio and television servicing.
Interesting and varied work on U.H.F. V.H.F. and audio projects. Staff appointment. Free transport from approximately 13 mile radius.

Apply: Personnel Officer,

AIRTECH LIMITED,
haddenham, Nr. AYLESBURY, BUCKS. Tel: Haddenham 422

RADIOLOGICAL PROTECTION SERVICE

(Department of Health and Social Security and Medical Research Councli) Clifton Avenue, Belmont, Sutton, Surrey

Junior Technical Officers/ Technical Officers

required for work in the design and development of instruments and systems concerned with radiation measurements. Experience on systems, digital and pulse techniques desirable.

> Qualifications: HNC or equivalent.
> Salary range: J.T.O. £669-1418 plus London Weighting
> T.O. £1499-2192 plus London Weighting
(If this post is filled by a J.T.O. there are excellent prospects for eventual promotion to the T.O. grade.)

Applications with the names and addresses of two referees to the Administrative Officer at the above address, quoting reference 70/2/16. Closing date: August 7th.

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress, are held at intervals. Applications are now invited for the course starting in January, 1971.

During training a salary will be paid on the following scale:

Age 21	£848 per annum	
22	$\underline{5906}$,.
23	¢943	.
24	£981	"
. 25 and over	[1,023	"

Free accommodation will be provided at the Training School.

After successful completion of the course, operators will be paid on the Grade 1 scale:

Age 21	$£ 1,023$ per annum	
". 22	$£ 1,087$	"
" 23	$£ 1,150$	$"$
" 24	$£ 1,214$	$"$
" 25 (highest		
age point)	$£ 1,288$	$"$

then by six annual increases to maximum of £1.749 per annum.
Excellent conditions and good prospects of promotion. Opportunities for service abroad.
Applicants must normally be under 35 years of age at start of training course and must have at least two years' operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970.
Application forms and further particulars from: Recruitment Officer, Government Com: munications Headquarters, Oakley, Priors Road, CHELTENHAM. Glos., GL52 5AJ Telephone No. Cheltenham 21491. Ext. 2270

UNIVERSITY COLLEEE CARDIFF
 Departments of Physics and Music TECHNICIAN

Applications are invited for a post of technician to assist with the inter-disciplinary Music/ Physics project. The technician will be based in the Physics Department and most of his time will be spent in building and maintaining an electronic music studio. A basic practical knowledge of electronics is required and an interest in one or more of the following would be an advantage:

Contemporary music,
Computer sound synthesis and control,
Sound recording and reproduction.
Salary will be within the scale £905-£1273 and the starting point will depend on qualifications, experience and age and additional allowances are payable for approved qualifications.
Applicants who should be over 21 should write to the Registrar, University College, P.O. Box 78 , Cardiff, not later than the 31st August, and quoting Reference No. REG. 8251, giving (1) age (2) full details of any qualifications (3) full details of previous experience (4) the names and addresses of fwo persons (one of whom should have first-hand knowledge of work or training) 10 whom reference may be made.

RADIO ENCNEZRS CIVIL AVIATION-ZAMBIA

* Salary $£ 2310$ to $£ 2590$ according to experience.

* Low Taxation.

 * Contract of 36 months. * 25\% Tax-free Gratuity. * Educational Allowances. * Subsidised HousingDuties will involve the maintenance, overhaul and installation of ground terminal radio communication equipment and navigational aid at Airports and Flight Information Centres.
The equipment includes radar systems, H.F. and V.H.F. transmitters and receivers, I.L.S. and D.F. systems and tape recorders. Candidates, who should be under 55 years of age, should have practical experience and a knowledge of theoretical principles within this field. In addition they should have attained one of the following:-
i) completion of a 5 year apprentlceship,
ii) a service trade certificate,
iii) an I.C.A.O. certificate,
or iv) equivalent

Apply to CROWN AGENTS, 'M' Division, 4, Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference No. M2Z/690315/WF

Work as a RADIO TECHNICIAN attached to Scotland Yard

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment, which the Metropolitan Police must use to do their work efficiently.

We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.

Salary scale: $£ 1,161$ (age 21), rising by increases to $£ 1,590$ plus a London Weighting Allowance. Promotion to Telecommunication Technical Officer will bring you more.

For full details of this worthwhile and unusual job, write to: Metropolitan Police, Room 733 (RT), New Scotland Yard, Broadway, London, S.W.1.

Network ENGINEER

Barbados Rediffusion Services LImited, require the services of a Network Engineer -o be responsible to their Chief Engineer for the construction and maintenance of a relay sound programme distribution system and the supervisio of maintenance staff.
Applications for the position are invited fro n Sarbadian Nationals who are In possession of the City and Guilds Technicias Certiflcate (Intermediate), or its equivalent, and who have at least flve years experience of line transmission
The salary will be commensurate with qualiffcations and experience.
Applications in writing stating age, experience and present salary should be addressed to:- D. E. Street Esq., Head ol Ciperational Services Department, Red fusion Engineering Limited, 187, Coombe Lane West, Kingston-upon-Tha nes, Surrey.
REDIFFUSION

SIGNALS ENGINEERING LABORATORY
Ministry of Defence (Air)

RAF Northolt

ELECTRONIC ENGINEERS

(Graded Experimental Officer/Assistant Experimental Officer) to undertake circuit design, laboratory measurements and field investigations concerning either:
(a) Radar and Navigation Aids, Air Traffic Control and Blind Landing Systems;
(b) Telecommunications, Navigation Aids, Telemetry and Data Processing Systems.
Some short term duty at RAF Stations, both in this country and overseas, will be involved. An ability to establish and maintain good relations with Service personnel at all levels is necessary.
Qualifications: Degree, HNC or equivalent in an appropriate subject. In addition it is essential that candidates for post (a) have experience of microwave measurements and pulse techniques, and for post (b) a knowledge of digital techniques and experience of HF, VHF, UHF and line communications. Familiarity with integrated circuit techniques is desirable.
Candidates must be natural born British subjects.
Age: normatly 26-30 AEO under 28.
Salary: (Outer London EO $£ 1800-£ 2252$; AEO $£ 1095$ (at 22) — $£ 1386$ (at 26 or over) © 1653 .
Prospects of permanent pensionable appointments. Prospects of promotion to Senior Experimental Officer (salary rising to 63174).
APPLICATION FORMS from Head of Signals Engineering Laboratory, RAF
Northolt, Ruislip, Middlesex.
Closing date IIth August 1970.

SENIOR TEST ENGINEERS

The leading U.K. Manufacturers of high grade T.V. monitors and ancillary T.V. srudio equipment require a Senior Test Engineer for their rapidly expanding test department. Situated in the Berkshire town of MAIDENHEAD the company offers pleasant working conditions, good salaries, and a friendly environment.

Duties will cover the testing and troubleshooting of our complete range of equipment.
Previous experience on television equipment is not essential but candidates must have a thorough knowledge of electronics and testing procedures. Reply to:

PROWEST ELECTRONICS LTD.,

Boyn Valley Road, Maidenhead, Berks.
Telephone: Maidenhead 29612

BOARD OF TRADE
 Vacancy for an unestablished information officer (technical) IN THE COMMONWEALTH AIR TRANSPORT COUNCIL SECRETARIAT

The Commonwealth Air Transport Council normally meets every three years. Apart from the duties associated with the conduct of those major conferences the Secretariat provides a comprehensive information service for Commonwealth Governments and serves as a medium for exchange of information of general interest on any aspect of air transport or civil aviation. In particular the main functions of the Information Officer, between Council meetings, consist of writing the CATC Newsletter (an illustrated magazine on Clvil Aviation topics, of approximately 35 pages) published quarterly. The work alsolnvolves obtaining suitable material and illustrations from Commonwealth Civil Aviation Departments, airlines, industry, exhibitions etc. ; preparation of MSS and Illustrations for printers and block makers and other detailed production work.

He will also assist in the preparation of CATC Electronic News which is published quarterly, particularly in the writing of the sections on new equipment, responsibility for the art work and a contribution of some ten per cent of the technical articles.

In addition the Information Officer will be responsible for the preparation of the Abstracts of Technical Publications which are published quarterly and involves obtaining reports, papers and journals for preparation and classification of abstract material by sub-editing of author's abstracts and occasionally writlng Original abstracts. He will also assist in publishing quarterly a Bibliography of Radio Technical Reports involving extraction of details from existing sources and obtaining additional ones.
Opportunity will be offered to the successful candidate to become an established officer at a later date.
Inner London salary scale according to age and experience is $£ 2,107$ rising by five annual increments to £2,517 per annum.
Applications forms can be obtained from the Board of Trade (Mr. J. P. Collins), Establishment Division, Room 137, 1 Victoria Street, London SW1 (tel: 01-222 7877, extension 3388) and returned to that address after completion quoting reference E 27206/G. Only persons selected for interview will be advised of the result.

UNIVERSITY of SURREY

department of electronic and ELECTRICAL ENGINEERING

Senior Technician

for

Electronic Servicing

A Senior Technician is required in the Department of Electronic and Electrical Engineering to service a range of electronic equipment and to build specialised electronic research apparatus. Applicants should have had sufficient experience in the electronics field to enable them to work with the minimum of supervision.
The successful applicant will be entitled to 3 weeks annual holiday (rising to 4 weeks after 5 years service) plus generous leave at Christmas and Easter. Every encouragement is given to further study and day release courses are available. The post is superannuated.
Salary scale $£ 1,278-£ 1,586$ per annum plus $£ 50$ Qualification Allowance.
Applications should be sent to:
The Staff Officer, University of Surrey, Guildford, Surrey.

687

STIRLING \& CLACKMANNAN POLICE FORCE

Application is invited for the post of wireless technician in the wireless workshops at Police Headquarters, Randolphfield, Stirling, 10 work on maintenance, installation of VHF/UHF fixed and mobile radio telephones, and other electronic equipment. Applicants should have completed a recognised apprenticeship and have some recent experience in radio telephone maintenance. Formal qualificalions an advantage.
Salary scale will be N.J.I.C. Technical Grade IV - $£ 1,130$ per annum, rising by annual increments $£ 1,300$ ($12 \frac{1}{2} \%$ increase pending). N.J.I.C. conditions of service will apply
Applications detailing experience and qualifications, together with copies of recent references, should be lodged with the Chief Constable, Police Headquarters, Randolphfield, Stirling, not later than 3rd Augusi, 1970.

671

VHF/UHF DESIGN AND development engineers

Vacancies exist for Senior and Junior Development Engineers.
Applicants should have suitable qualifications, and experience in the field of solid state VHF TX and RX for use in Marine and/or Land Based Equipments.
Successful applicants will be offeredanexcellent salary, holiday and pension. Pleasant location on the South Coast.
Apply in writing to
Chief Engineer
DERRITRON ELECTRONICS LIMITED
Sedlescombe Road North
Hastings, Sussex

CONTINUOUS
 EXPANSION wave and Line Division based at Basildon

Installation Engineers Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.
Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to The Personnel Officer, STC Chester Hall Lane, Basildon, Essex.
are growing fast. In order to keep pace with this consistent growth rate we require

Test Technicians

Ref. 27221
The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

conimputer cugincering

Senior Equipment ENGINEER

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1.350$ per anŋum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London, NW2
quoting publication and month of issue.

Rediffusion (Nigeria) Limited require the services of a Senior Equipment Engineer to be responsible to the Chief Engineer for the malntenance of equipment including high power amplifiers and F.M. ard A.M. transmitters. A knowledge of Television receivers would be an asset.
Applicants who must hold a Final City and Guilds Technicians Certificate must be prepared to work a minimum contract of 18 months.
A car will be provided. A starting salary of not less than $£ N 1,000$ will be paid depending on age and experience.
All transportation costs of applicant's immediate family to Nigeria will be paid by the company.
Applications in writing stating age, experience and present salary should be addressed to: D. E. Street, Esq., Head of Operational Services Department, Rediffusion Engineering Limited, 187, Coombe Lane West, Kingston-upon-Thames, Surrey.
REDIFFUSION

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 54II

Ministry of Defence (Air Force Department) require CIVILIAN INSTRUCTORS (male) in the following trades and at the Units stated:-

RADAR
RAF Newton, Nottingham RAF Sealand, Flintshire
COMMUNICATIONS RAF Watton, Thetford, Norfolk BOTH TRADES RAF Cosford, Wolverhampton RAF Locking, Somerset

Candidates must be BRITISH SUBJECTS. Training in the appropriate subject, practical experience and ability to teach essential. Salary $£ 1,061$ rising to $£ 1,634$. Five-day week and 3 weeks and 3 days annual leave. Appointments unestablished but prospects of becoming pensionable. Write (preferably on postcard) for application forms to Ministry of Defence CE3g(Air), London, W.C.1, quoting (Civ Inst RC/B) and stating which trade. Completed application forms must be returned by 15 August, 1970.

West Sussex County Council
INDUSTRIAL TRAINING CENTRE, CRAWLEY

Applications are Invited for a TRAINING INSTRUCTOR quallifed to instruct Electrleal Craft and Technician Engineer apprentices during first two years of apprenticeship. Good qualifications and experience in electronics are essential.
Salary scale $£ 1,362 ; \mathbf{£ 9 0 2 - £ 2 , 0 5 2 .}$
Further particulars and application form from Head of Centre, Industrial Training Centre, College Road, Crawley. Completed form to that address within 14 days of the appearance of this advertisement.

657

TELECOMMUNICATIONS ENGINEERS WEST AFRICA

Qualified Telecommunlcations Englnears are required for servicing and maintenance of redotelephene equlpment and associated items in tropical West Africa.
Qualifications: HNC or higher.
Contract, One year pius leave extenslble.
Salary: According to ago, experlance and qualifications. Commencing at not less than equlvalent $£ 2000$ sterling. Free accommodation and passages. Preference for bachalors with tropical experience but not assential.
Interestad? Apply for applleation form tor
C.O.D.E.C.O.

2b-Sussex Road New Malden Surrey

University of Birmingham

Applications are Invited for the post in biomedical - lectronics in the Department of Anatomy. The work involves the design of specialized instrumentation under the diraction of experienced anginears, and will provide opportunities for galning experience Candidates should be of approximately H.N.C. Scandard with experience of transistor circuit design. Salary up to $£ 1,586$.
Ref.: 401/5/418.
Apply: Assistant Secratary (Personnel), Parsonnal Office, University of Birmingham, P.O. Box 363, Birmingham, 15.

619

SENIOR TECHNICIAN (GRADE III)

with electrical and preferably some mechanical experience to malntain Cobalt and Caesium and Therapeutic X-ray equipment at the Royal Marsden Hospital, Fulham Road, London, S.W.3. The successful candidate will also have the opportunity to develop new equipment.
Minimum qualifications, O.N.C. In Electrical Engineering. Salary scale £1270-£1590 per annum.
Applications with detalls of experience and names of two referees to the Deputy Administrator, The Royal Marsden Hospital, Downs Road, Sutton, Surrey. Further detalls may be obtained from Mr. E. Hawkins, Chlef Technician, telephone 01-642 6011, Ext. 278.

567

UNIVERSITY OF STIRLING Department of Psychology

TECHNICIAN/SENIOR TECHNICIAN

Applicants should have completed a recog* nised apprenticeship, or other appropriate training, and have interests in A.F. techniques and instrumentation, including use of digital and linear integrated circuits. Formal qualifications an advantage, day release facilities if required. Salary: Technician 6935- 61,303 ; Senior Technician (1,278-61,586. Applications, with names of two referees, should be received by the Deputy Secretary (WW), University of Stirling, Stirling, by 10 August, 1970.

600

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K. Electronics and Industrial Operations of E.M.I Lid.. at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to $£ 1,500$ per annum will be paid and staff conditions include contributory pension scheme and free life assurance.

Please apply in writing giving brief personal and career details to:
G. W. Fox, Personnel Department, U.K. Electronics \& Industrial Dperations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex.
Tel: 01.573 3888, Ext. 411.

The University of Manchester Institute of Science and Technology SPECIAL RESEARCH ASSISTANT Department of Mechanical Engineering The above vacant post is in the Thermodynamics and Fluld Mechanics Division of the Department and should appeal to the Mechanical Engineer financed by an S.R.C. award for a minimum financed by an S.R.C. award
The successful applicant, who should hold an Honours degree and preferably have some previous experience in a related subject, will work on problems assoclated with research Into heat transfer and heat release In internal combustlon engines. Beside actual particlpation, the successful candidate should also have the necessary initiative and ability to co-ordinate and control the research programme. Salary, in the range $£ 1,500-£ 1,800$ per annum, will be determined according to qualifications Requests for app Requests for application forms, quoling Refer.
ence Number ME/165/AG should be made to the Registrar. U.M.I.S.T., Sackville St., Manchester. M60 1 QD . Closing date for return. 31 st August. 1970.

ELECTRONIC TEST ENGINEERS

Required for work on Digital Measuring Equipment using Silicon Transistors and Microcircuits. Fully qualified applicants preferred, although proven experience in electronics would be considered. Prospects for advancement are good. Weekly staff status and salary commensurate with qualifications and experience. We would welcome applications from ex-service personnel or personnel about to leave the services. Please apply to: The Personnel Manager

VENNER LIMITED - KINGSTON BY-PASS
NEW MALDEN • SURREY • TEL: 01-942 2442

DIPLOMATIC WIRELESS SERVICE requires TELECOMMUNICATIONS TECHNICIANS

Vacancies exist in LONDON and the HOME COUNTIES for men with experience in the following fields:-
(a) Radio Communications transmitters and receivers.
(b) High power radio broadcast relay transmitters and associated equipment.
(c) A variety of telephone and teleprinter systems and associated electro-mechanical and electronic equipment.
Qualifications Required: City and Guilds Intermediate Telecommunications Technician Certificate or an equivalent or higher technical qualification.
Salary: $£ 1,498$ (at age 25) to $£ 1,715$ per annum in London. $£ 1,373$ to $£ 1,590$ per annum in Home Counties. Plus additional allowances for shift duties.
Prospects: of promotion and permanent pensionable employment.
The appointments carry a liability for overseas service.
Candidates and both parents must have been British subjects at all times since birth. Applications, giving details of qualifications and experience to:-

The Personnel Officer,

Diplomatic Wireless Service,
Hanslope Park, Wolverton, BUCKS.

AIR FORCE DEPARTMENT RADIO TECHNICIANS

Starting pay according to age, up to $£ 1,373$ p.a (at age 25) rising to $£ 1,590$ p.a. with prospects of promotion.

Vacancies at RAF Sealand, Near Chester and RAF Henlow, Bedfordshire

Interesting and vital work on RAF radar and radio equipment.
Minimum qualification, 3 years' training and practical experience in electronics.
5-day week-good holidays-help with further studies-opportunities for pensionable employment.

Write for further details to :-
Ministry of Defence, CE3h(Air),
Sentinel House,
Southampton Row.
London, W.C.I.
Applicants must be UK residents.

Electro-Medical Work

Young man required for interesting work in the medical field in connection with electrical recording of eye movements. Knowledge of electronics an advantage. Starting salary $£ 990$ per annum with annual increments to $\mathbb{£ 1 , 2 5 0}$.

Please apply in writing to:
Geoffrey A. Robinson, Secretary to the Board of Governors,
The National Hospital, Queen Square, W.C.I.

TECHNICAL OFFICER

required for the Electronics Department.
Duties include design and construction of nucleonic equipment.
Qualifications, Degree, HND or HNC.
Experience in the field of medical electronics desirable. Salary according to age and experience in the range of $£ 879$.
£2192 plus London Weighting. Please send applications to
The Director, Medical Research
Council Neuropsychiatry Unit Woodmansterne Road, Carshalton, Surrey. Please quote reference 262/4. 643

SITUATIONS VACANT

A FULL-TIME technical experlenced salesman reprevious experfence. salary required to-The Manager Henry's. Radio. Ltd.. 303 Edgware Rd.. London. W.2.

A RE YOU INTERESTED IN HI FI? If so, and you A have some experience of selling in the Retall Radio Trade, an excellent opportunity awalts you at Telesonic Ltd.1 92 Tottenham Court Road, London, W.1. Tel.
01-387 $7467 / 8$.

A SENIOR Transformer/Rectifer design Engineer 1 clated with equipment up to $150 / \mathrm{kVA} / \mathrm{KW}$. We are an expanding Company of Manufacturing Electrical Engineers located in South Herts. Box W.W. 97 WIreless World.

A SSISTANT LECTURER IN MARINE RADIO required A by COLLEGE OF I.M.R. COMMNS., Brooks Bar, MANCHESTER M16 7WT for Sept. 1970 or soonest thereafter. P.M.G. or M.P.T. Certincate and up-to-date
knowledge of technical syliabus for same essential B.O.T. Radar Cert. and Teaching expertence an advantage. Placing on Burnham Scale £1.030-£1.720 per annum depends on quallifations, etc. Write Principal, giving in contidence full detalls of experience
education, present salary, etc.

A YouNG quallfied electronic engineer required by A a rapidly expanding company producing temperature in the London Area. Box No. 654

CIRCUIT details, service sheet. or manual wanted for the Elsec or Decco pulse induction metal detector.
Types 684 B and 693 A . Box W.W. 677, Wireless World

D EPARTMENT of Nuclear Physics, University of Doxtord, has a vacancy at Technician or Sentor Technician level for a steward to take charge of the day-to-day running of an undergraduate teaching laboratory. Background experlence in electronics is needed, and a qualification in Physics or Elctronics or
Electrical Engineering would be an advantage. The successful candidate will be expected to learn to run a 1 MeV Van de Graaff generator. Salary within the range £797-£1.592 p.a. Day, release may be avallable. Approximately six weeks' paid leave per year. Write
as fully as possible to T . L. Green, Nuclear Physics Laboratory. Keble Road, Oxford, mentioning reference A131. [617

DEPARTMENT OF NUCLEAR PHYSICS, University Dof Orford, has a vacancy for a technician to work with a group engaged on development and maintenance
of a dual computer system. Duties of the post are: (a) to assist with the development of circults and systems for the computer, (b) to assist with the mainExance of an effecient service to the computer user
Experience of electronic or telephone exchange equipment would be an advantage. It is expected that the candidate would be working towards the BNC and day release is avallable. The appolntment would be at etther
techniclan ($£ 797-£ 1,310$) or senior techniclan (£797-£ 1,310) or senior technician
$(£ 1,185-£ 1.592)$ level depending on age, quallifations ($£ 1,185-£ 1.592$) level depending on age, qualifications Laboratory, Keble Road, Oxford, mentioning reference Al32.

ELECTRONICS ENOINEER, H.N.C. or equivalent. Eentirely self-reliant, to start from cold on the engineering (from existing bread-board dlagrams) and few off assembly of miniaturised equipment: followed by a continuous increase in series or varled practical
answers to fresh problems as they arise. Experience needed of development and assembly in radio or allied gelds. Able to contribute to further developments in conjunction with user branch. Access avallable to latest components information. Attractive prospects with bullding up of really interesting speciallst industry. £1,735- $£ 2,394$ according to age and ability with annua H. R. Thomas, Level Developments, 7 and 10 Hudreth Mews, London, S.w.12.

CLECTRONICS TECHNICIAN and JUNIOR TECHE NICIAN (16-20) required for Pyschology Department to assist in development, construction and maintenance of electronic equipment for use in teaching and research
laboratorles. Little routine work; good opportunities to exercise initiative; excellent holldays. Salary scales: Technician: £1,060-£1,482+supplementary allowance for approved higher qualifications. Junlor Technician. §581-£869 (with pald day release for further study). Apply, stating age. qualifications, experience and present College, Malet Street, London. WC1E THX. Blab [630

CAREERS in SCIENCE and ENGINEERING

Exciting and rewarding opportunities in these fields are almost unlimited Write now for details of the following courses offered by:-

BOURNEMOUHH COLIEAE OF TECHNOLOY

UNIVERSITY OF LONDON EXTERNAL DEGREES

B.Sc. General (Hons.)Mathematics, Physics. Chemistry. Botany, Zoology, Statistics.
B. Sc. (Eng.) (Hons.) - Electrical (including Electronics).

These courses are suitable for both men and women.
Study by the Sea in Britain's foremost international and cultural resort.
For prospectus apply to: The Principal, Room 67. College of Technology, Lansdowne, Bournemouth, BR 1 3JJ. Tel. B. 20844.

Buckinghamshire Education Committee

SLOUGH COLLEGE OF TECHNOLOGY

Principal : W. Bosley, M.Sc., Ph.D., F.Inst.P.

DEPARTMENT OF ENGINEERING

LECTURER GRADE I IN ELECTRONIC ENGINEERING (EN/2/70)

To teach electronic subjects in Electrical Technicians and Radio, TV \& Electronic Servicing Courses, C. \& G. Full Technolosical C.N.C. or and must have recent TV development or servicing experience. Teaching experience desirable but not essential
Salary on Burnham Technical Scale, viz.
Lecturer I $£ 1,230-62,075$ plus additions for qualifications and training.
Removal expenses up to C 100 may be paid in approved cases.
Further particulars and application forms (please quote reference number) can be obtained from the Vice-Principal, Slough College of Technology, William Street, Slough, Bucks, to whom completed forms should be returned wishin 14 days of the appearance of she adversisement.

Scnior Electronics Engineer

Speytec, the expanding division of Burroughs Machines, require a Senior Electronics Engineer.

The Engineer we are looking for will be self propelled with at least three years' experience with a development team and holding a Degree. HND. or HNC with endorsementsprobably in the age range $25-35$. But the man is more important than the qualifications and the right mixture of practical and theoretical experience will influence us further. The work will cover a variety of fields involving linear integrated circuits and logic. We would be particularly interested in someone with experience in digital magnetics. In the future, the Engineer can expect to be involved in development work utilising large-scale integration in the computer field.

We can offer good prospects to those who join us now. What can you offer us?

Linda Scales, Speytec Ltd., Dept.WW/AUG. 512 Purley Way, Croydon, Surrey. Telephone : 01-6866431

Burroughs

 Speytec Division
ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

BRISTOL POLYTECHNIC

SENIOR TECHNICIAN

required in the Department of Navigation, Marine Radlo \& Radar, duties to commence I September 1970.

Applicants should be over 21 and hold Intermediate City and Gullds in Electronics or Radio Communicainclude servicing and maintenance of electronic and electrical equipment as used in Merchant Ships and Civil Aireraft.
38-hour, 5-day week with generous holiday and sick pay schemes. Permanent post with superannuation under Local Government conditions of service. (under review) Starting salary dependent upon (under review). Starting salary dependent upon age, qualifications and experience. An addiwith appropriate National Certificate or w. \& G. qualifications.

Further particulars and application forms (to be returned within fourteen days of this advertisement) from Chief Administrative Officer, Bristol Polytechnic, Ashley Down, Bristol BS7 98U. Please quote post relerence number T66/62/2 in all communications.

Buckinghamshire County Council SLOUGH COLLEGE OF TECHNOLOGY Closed circuit television

Applicants are sought for she operation and maintenance of equipmens in the College television studio. Experience in televislon in graphical art would be an advantage. Basic 5 -day week with adjustment for some evening and/or weekend work. Salary on scale $£ 965-\mathrm{f} \mid, 130$ (subject to revision).

Application forms and further details from the Vice Principal, Slough College of Tech nology, William Sereet, Slough, Bucks.

UNIVERSITY OF STIRLING
 Department of Psychology technician/senlor technician

Applicants should have completed a recognised apprenticeship, or other appropriate training, and have interests in A.F. techniques and instrumentation, including use of digital and linear integrated facilitles if required.
Salary: Technician $\{935-\{1,303$;
Senior Technician $\mathbb{\{ 1 , 2 7 8 - £ 1 , 5 8 6 .}$
Applications, with names of two referees should be received by the Deputy Secretary (W.W.), University of Stirling, Stirling, by 10 August, 1970.

Poole General Hospital Poole, Dorset

Applications are invited from qualified candidates for the following post in the Electronics Department at Poole General Hospital:

ELECTRONICS TECHNICIAN III

Qualifications: O.N.C., H.N.C., City \& Guilds Salary: $\mathrm{fl}, 180 \times 8$ increments to $\mathrm{El}, 500$ p.a. The Department will be primarily concerned with the installation, testing and maintenance of an extensive range of diagnostic/therapeutic and allied electronic equipment, and ultimately with research and development of biomedical equipment in consultation with medical staff.
The position offers adequate scope for initiative and career progression, including the posstbillty of assistance with further tralining.
Applications, giving full detalls, including qualifications, experience, and the names and addresses of two referces to the Hospital Secrecary, POOLE GENERAL HOSPITAL, Poole.

623

IMMEDIATE REQUIREMENT

for junior television engineer or selevision sechnician with test room or development experience in 625 line equipmene. Telecine experience desirable. HNC or equivalene desired. Challenging new field with opportunities for foreign travel. Prestige offices in Central London. Pension Fund. Salary dependent on quailfications- $\$ 1,950$ minimum. Please apply in writing to: The Technical Director, The EVR Partnership, Vogue House, I Hanover Square, London, WIR, OJH.

University of Cambridge SCOTT POLAR RESEARCH INSTITUTE

There is a vacancy for a technical assistant to work on electronic instrumentation and to assist with field work in the Antarctic on tours of about four months duration. Salary on University Assistant scale, recently increased 21%. ONC would be suitable qualification. Apply in writing to, Director, Scott Polar Research Institute, Cambridge, stating date of birth, qualifications and experience. 642

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous uruining.
Write for details to: The Secretary, London Electronica College, 20 Penywern Write for details to: The Secretary, London Electronica College, 20 Penywerm
Road, Earls Court, London, S.W.5. Tel.: $01-373$ 8721.

INSTALLATION ENGINEER required for the servicing, testing and installation of audio, projection and lighting control equlpment. An excellent opportunity
for applicant with initlative and a sound knowledge of basle electronics. Starting salary $£ 1,250$. The post
 Apply to: The Personnnel Director, Electrosonlc Limlted,
47 Old Woolwleh Road, Greenwleh, S.E.10.

PROTOTYPE electronics wiremen required for a small Pbut rapldly expanding company manufacturtng "one off" systems to customers' specifications. The work covers the field of Analogue, Digital and Industrial
electronics. Five years experience on prototype wiring. electronks, Five years experience on prototype wiring, is required. Ability to teach tralnees would be useful, Salary up to $£ 1.500$ depending on experience. Applications in writing to: Parametric Ltd., Highteld Works,
Canal Street, Runcorn, Cheshire.
$[669$

REDIFON LTD, require fully experieaced TELER.COMMUNICATIONS TEST ENGINEERS and ELECTRONICS INSPECTORS, Good commencing
salaries. We would particularly welcome enquirles salaries. We would particularly welcome enquirles
from ex-Service personnel or personnel about to leave the Services. Please write giving full detalls toThe Personnel Manager, Redifon Ltd., Broomhill Road,
Wandsworth, S.W.18. Wandsworth, 8.W.18.

SENIOR TECHNTCIAN (Instrument/Electronics) required to assist in the running of a well-equlpped electrical workshop. Duties include servicing sad construction of modern electronlc equipment. Knowledge of workshop and circuit wiring essentlal and without supervision. HNC or equivalent qualification necessary. Salary in the range $\mathcal{\& 1 , 4 0 3 - £ 1 , 7 6 1}$ per annum according to age, quallfcations and experience. Apply in writing to the Departmental Superintendent, Department of Chemistry, Imperial College. South

SENIOR technician/Techniclan required to work in a well-equ!pped modern workshop, designing, constructIng and maintaining a wide variety of laboratory apparatus. Although primarily the work will concern electrical and electronic equipment, some experience in
general workshop practice would be an advantage. Salary according to age, qualifications and experience in the Whitley Council scales for Medical Laboratory Technictans (Senior technician $£ 1,448-£ 1,841$, Technictan £ 1,219-£1,533). Apply Secretary, Institute of Psychiatry, De Cresplgny Park, London, S.E.5. (Ref. CR).

TRANSFORMER DESIGNER urgently required for keen and enthusiastic man. Replies in confidence to Managing Director, Belclere \& Co. Ltd., 385/387 Cowley Road, Oxford.
[628

UNIVERSITY OF SHEFFIELD - TECHNICIAN or UNAOR TECHNICIAN required in Department of Physics for Electronic Section dealing with designing, maintenance and production of electronic equipment for workshop practicearch parposes. Salary: Junior Technician \&456 p.a. (age 16) £ £ 704 p.a. (age 20). Technician £ $935-$ \& 1,303 p.a. with basic quallfication. Supplement for approved higher quallincation. Write to the Bursar

SITUATIONS WANTED

YOUNG TV Engineer, studying for C.E.1. In spare - time, requires interesting work compatible with educational standard. Manchester area. Box W.W. 641

Wireless World.

PRINCIPAL ENGINEER

seeks appointment

to lead a team in signal processing in space and time domains using analogue and digital methods. The aim is to further the knowledge of radar resolution in a dense signal environment, and continuously to follow theoretical results with system engineering to prove principles where necessary
Considerable experience in this and communications field and currently leading a team as outlined above. Now seeks salary compatible with results achieved. Southern England or overseas. BOX W.W. 670 WIRELESS WORLD

badIO COMMUNICATIONS TEST ENGINEERS
 We still need you at Redifon

The Company is engaged in the design and manufacture of a wide range of radio communications and allied equipment, from military pack-sets to broadcast transmitters, including communications receivers, M.F. Beacons, Teleprinter Terminals, complete Radio Office installations for the Merchant Navies of the world and mobile H.F. and S.S.B. Stations. If you have sound technical knowledge coupled with good practical experience in the alignment and test of H.F. and V.H.F. Communications equipment, we would invite you to visit us to talk about a position with Redifon which would offer excellent opportunities for you to broaden your experience in semi-conductors, S.S.B. and Frequency Synthesis. If you are the man we're looking for, you should be worth at least £24 a week to us and opportunities above this are readily available for the right men with prospects of monthly staff appointments at salaries commencing at
$\mathbf{~} 1,500$ per annum.
Please phone or write to The Personnel Officer. REDIFON LIMITED.
Broomhill Road, Wandswo Tel: 8747281.
REDIFON*

Computicket

wants

 MAINTENANCE TECHNICIANS[^12]

ARTICLESTEOR SALE

WITWORTH TRANSFORMERS LTD.
 Dept. WW., 26 All Saints Road, North Kensington, W.II
 Telephone: $01-2299071$. 9 a.m. till 5 p.m.
 TELEVISION LINE OUTPUT TRANSFORMERS
 PRACTICALLY ANY MAKE OR MODEL SUPPLIED OR REWOUND
 EKCO, FERRANTI, DYNATRON
 Replacement cases $16 /$ - each, please state model.
 S.A.E. for return of post quotation. 4s. for postage.
 C.O.D. orders will be charged 65
 Transiormers fully guaranteed.
 516

A MERICAN DYNAMOTOR input 27 volts output 285 I volts at $75 \mathrm{M} / \mathrm{A}$ 27/6, D.p. 7/6. Alrcraft Lamps $12 / 24$ colts 239 Watts $4 /-$ p.p.1/6. G.P.O. Type 3000 Relays from
ohms to 30,000 ohms with any build up to suit your requirements. We hold huge stocks of relays. Miniature Motors $1-3$ volts, r.p.m. at 2 volts $6,500-8,5006 /=$ each p.p. $1 / 6$. Phlllps Tape Cassette Recorder Motors 25/p.p. 1/6. Assorted Wire-Wound Resistors (some short ends) 50 for $6 / 6100$ for $12 /$ - Post free. Write. call or phone for detalls of other bargains. Elekon Enterprises, 01-580-7391.
BRAND NEW ELECTROLYTICS, $15 / 16$ volt, $0.5,1,2$. $\begin{array}{ll}85,8,10,20,30, & 40,50,100 \mathrm{mfds} ., \\ 25 & 8 / 5 \mathrm{~d} \text {. Mullard } \\ \text { volt } 6.4,12 \cdot 5,25,50,80 \mathrm{mfds}, 10 \mathrm{~d} . & 5 \% \\ \mathrm{E} .12 \text { serles }\end{array}$ 25 volt $6 \cdot 4,12.3,25,50,80 \mathrm{mids}, 10 \mathrm{~d} .5 \%$ E. 12 serles Postare $1 /-\quad$ per order. The C.R. Supply Co., 127
Chesterfeld Rosd, Shemeld, S8.
B_{2} Uild in, \times in a DEWBOX quallity plastics cabinet.
21
in. x any length. D.E.W. Led. (W), $\mathrm{B} 2 \mathrm{in}, \times 2 \frac{1}{2}$ in. \times any length. D.E.W. Ltd. (W),
Ringwood Rd. FERNDOWN, Dorset. S.A.E. for leaflet,
Write now-Right now.
[76
Cor sale. KO-Lectric coll winder with mardrive motor, clutch and pedal. Table mounted avo tensloning device winding spacing . 001 to 020 Cost over
$£ 400 . £ 70$ o.n.0. Phone Welwyn Garden 24972.

AMAZING VALUE
 NEW BRANDED FULL SPECIFICATION SEMICONDUCTOR DEVICES

best for performance and reliability
G.E. D4OC1 4W. Darlington Amplifier $\begin{array}{lll}\text { Very High Gain } 10,000 \text { minimum anp } & 13 / 6 \\ \text { Signetics Ns709A Type } 709 \text { Op. Amp. } 13 / 6\end{array}$ ITT 1amp Plastic Rectiliers
$\begin{array}{lll}\text { IN4001, } 50 \mathrm{~V} 1 / 9 & \text { 1N4004, } 400 \mathrm{~V} 2 / 5 \\ \text { IN } 4002,100 \mathrm{~V} 2 / \mathrm{l} & 1 \mathrm{~N} 4005,600 \mathrm{~V} 2 / 9\end{array}$ $\begin{array}{ll}\text { IN4002, } 100 \mathrm{~V} 2 /- & \text { IN4005, } 600 \mathrm{~V} 2 / 9 \\ \text { IN4003, } 200 \mathrm{~V} 2 / 2 & \text { IN4006, 800V } 3 / \mathrm{s}\end{array}$
P. \& P. 1/. per order. Overseas $7 / 6$

Cash with order. Mall Order Only
JEF ELECTRONICS (W.W.8)
YORK HOUSE, 12 YORK DRIVE, GRAPPENHALL
WARRINGTON, LANCS. Money back if nol salislied

M AGNETIC AMPLIFIER, demonstration unit. shows Characteristics of series and parallel connected amplifler. Characteristics of series and parallel connected amplifter.
P.C.B. construction in wood irame with instructions.

Miniature Transistorised Modules. Only six exMonostables can also be readly constructed using miniMonostables can also be readily constructed using mini
mum of extra components. Price: only 26/- each (post
free in U.K. only). Terms: strictly c.w.O. Gorlan free in U.K. only). Terms: strictly c.w. 0 , Gorlan
Modules, 261 Wardour Street, Atherton, Lancashire. [675
M Cyical Miracles. Send S.A.E. for detalls of bass pedal unit for organs, pianos or solo, musical bass pedal unit for organs, pianos or solo, musical
novelties, waa-waa kits $(49 /-)$. Also bargain componovelties, was list reed $8 w i t c h e s$ etc. D.E.W. Ltd., 254 Ring-
nents
[95 wood Road, Ferndown, Dorset.
New catalogue No. 18 , containing credit voucher Nalue $10 /-$, now avallable. Manulacturers' new and surplus electric and mechanical components, price
post iree. Arthur Sallis Radio Control Ltd., 28 Gardner
Street. Brighton, Sussex.
[94,
S.S.B. Recelver HQ170 1.8-54 MHZ, £90 o.n.o., 6 Caly-
stane Hill, Edinburgh. 031-445-2608.
$[612$ $2^{50,000}$ bit storage capacity magnetic drum made by
Nelson Laboratorles. This unit has never been put
Into use and is in perfect condition. $£ 300$. Ring $01-340-$ Into use and is ln perfect condition. $£ 300$. Ring 01-340-
7217 for details.
UHF, COLOUR and TV SERVICE SPARES. Leading time base units incl. EHT cransformer, \& 5, carriage time base units
10% Incl. EHT
Integrated $U H F / V H F$
6 tuner, 4 transistors, knobs, circult data. Easlly odjusted for use as 6 position UHF tuner, $£ 4 / 10 /-$ P/P $4 / 6$ MURPHY 600/700 series complete UHF conversion kits Incl. tuner, drive assy, 625 IF ampliffer, 7 valves accessories, housed in spectal cabinet plinth assembly
$£ 7 / 10 /-$ or less tuner $£ 2 / 18 / 6, \mathrm{P} / \mathrm{P}$ 10/-. SOBELL/GEC £ $7 / 10 /-$ or less tuner $£ 2 / 18 / 6$, P/P $10 /-$. Sobellu/GEC
$405 / 625$ switchable $I F$ amplifer and output chassis $32 / 6, P / P$ witchsbe $1 F$. Untra 625 IF $A M P$ chassis and chascuit, $\begin{array}{lll}\text { 25/, } & P / P & \text { 4/6. Philips } 625 \text { IF AMP panel and circult } \\ 30 /-, & P / P & 4 / 6 \text {. UHF tuners, transistorised, slow motion }\end{array}$
 Decca, Ekco, Ferranti, Cossor, 38/6, Cyldon C $20 /-$ AB
miniature with UHF injection 25/-, Ekco $283 / 330$, ministure with UHF injection 25/-, Ekco 283/330,
Ferranti $1001 / 6$
$25 / \%$. New fireball tuners. Ferguson, Ferranti 1001/6 $25 /=$ Nem tireball tuners. Ferguston
HMV, Marconi type $37 / 6$, Plessey 4 position push bution HMV, Marconi type $37 / 6$, Plessey 4 position push button
tuners with UHF injection, incl. vaives. $58 / 6$. Many tuners with UHF injection, incl. vaiven. 58/6. Many
others available. \mathbf{P} / \mathbf{P} all tuners $4 / 6$. Large selection others available. Puppas all tuners a/ Murarge selection channel colls. Surplus Pye, Ultra, Murphy, 110° scan
colls $30 /=$ Sobell 110° Frame O/P transformers $17 / 6$, P/P 4/6. Transistorised time base panel for Ferguson portable $50 /-, \mathrm{P} / \mathrm{P}$ 4/6. LOPTs, Scan Colls, FOPT: avallable for most popular makes. PYE/LABGEAR transistorlsed booster units B1/B3 or UHF, battery
operated $75 /-$ UHF Masthead $£ 5 / 5 /-$, post free. COD operated $5 /-$, UHF Masthead
despatch avallable. MANOR SUPPLIES, 172 WEST despatch avalable. MANOR SUPPLBE, 172 WEST stead Tube Station), MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON, N.W.11. Tel. 01-794 8751
Staff holidays August 17 to 31.
$60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{kc} / \mathrm{s}$ HBG Neuchatel Radio Re OU ceivers. Signal and Audio outputs. Small compact

CAPACITOR DISCHARGE IGNITION

(W.W. JAN.)

Invertor transformer 30VA 15: 1 ratio. CWO $32 /-+5 /-$ p.\&p. Also available with $30: 1$ ratio for 6 V systems, cost as above. magTor LTD., 68 Dale Street, MANCHESTER

BUSINESS OPPORTUNITIES
 $\mathbf{R}_{\text {Aitted. }}^{\text {ADIO }}$ Wormaily A.R.B. approved. Tel: $01-953-2692$
 (Day), 01-953-3421 (Night).

TEST EQUIRMENT - SURFLUS ANDSECONOMANO
 SIGNAL generators, oscllloscopes, output meters, wave etc., etc., In stock.-R. T. \& I. Electronics, Lid., Asho ville Old Hall, Ashvilie Rd., London, E.11. Ley. 4986 .

RECEIVERS AND AMPLIFIERS-
 SURPLUS AND SECONDHAND

HRO Rz8s, etc., AR88, CR100. BRT400. G209, S640, Ashville Old Hall. Ashville Rd.. London, E.11. Ley,
[65
4986.

NEW GRAM AND SOUND EQUIPMENT

CONSULT first our 76-page illustrated equlpment C catalogue on Hi-Fi (6/6). Advisory service, generous terms to members. Membership $7 / 6$ p.a.-Aucto Supply Assoclation, 18 Blenheim Road, London, W.4.
$01-995$ 1661.
GLASGOW.-Recorders bought, sold, exchanged: Cameras, etc., exchanged for recorders or vice-
versa.-Vlctor Morrls, 343 Argyle St., Glasgow, C.2.

SHURE GOLDRING cartridges post free, G800 \& 7.17.6. $\mathbf{N}_{\mathrm{M} 3 \mathrm{D}} £ 5.5 .0$ M44/5/7 £7.10.0. M44E £8.19.6. M55E £9.19.6. M75E/2 £16. Ultimate Electronles, 38 Achilles

F. TAPERECOROINGETC

COMPACT VIDEO SYSTEMS LTD. offer a $\frac{1}{}{ }^{\prime \prime}$ video C tape service. Equipment and operators to your requirement. ${ }_{[686}$

F quality, durablity matter, consult Britain's oldest transfer service. Quality records irom your sultable tapes. (Excellent tax-free fund raisers for schools, Churches.) Modern studio facilities with Steinway $01-9951661$.
YOUR TAPES TO DISC-£ 6.000 Lathe, From $25 /=$ Studio/Location Unit. S.A.E. Leaflet. Deroy Studios,
HIgh Bank, Hawk St., Carniorth, Lancs.

FOR HIRE

FOR HIRE CCTV equipment, Including cameras monitors, video tape recorders and tape-any perlod.

VALVES

for all samples and list.-J. \& A. Boxmakers, 75a

ARTICLESWANTED

R EQUIRED, Kllodyne Four, or other prewar Eddypenham, Wiltshire.
[665
Can anyone offer a circuit for a $1 \frac{1}{2}$ volt to 3 volt subminiature F.M. low range transmitter

BOX No. W.W. 679

SINGLE PHASE to Three Phase Changers, D.C. to S.C. Rotary Converters. and D.C. Motors any size. Universal Electric,
London, E.C.2.

Valves and transistors reguired in new condition. Any quantity purchased. Quotations by return.
S.W.16.
$01-769-0199$.${ }^{\text {Langrex, }}{ }^{16 \mathrm{~A}}$ Wellfeld Road, Streatham,

W anded, all types of communtcations recelvers Electrond test equipment.-Detall. Lo R. Ashville Old Eall, Ashvilie Rd. Lon.
[63
don; E.11. Ley. 4986 .
$W_{\text {new }}^{\text {nem }}$, televisions, tape recorders, radiograms,

VALVES WANTED

$\mathbf{W}^{\text {E }}$ bug new valves. transistors and clean new comWonents,
quotation by
large or small, quantities.
return.-Walton's $\begin{array}{ll}\text { quotation by } \\ \text { Worcester } & \text { return,-Walton's } \\ \text { St., Wireless } \\ \text { Wolverhampton. }\end{array}$

SERVICE \& REPAIRS

$\mathbf{S}_{\text {MALL }}$ servicing and repalr contracts undertaken. $\boldsymbol{S}_{\text {Field }}$ service any distance. Best possible rates for top-quallty work. Cambrian Electronics, 96 a High St.
Frtmley, Surrey.
[474

CAPACITY AVAILABLE

A IRTRONicS LTD, for Coll Winding-large or small production runs. Also PC Boards Assemblies. Suppliers to P.O. M.O.D.. etc. Export enquirles welcomed.
3a Walerand Road, London, s.E.13. Tel. $01-852$ 1706 [61 E Reports, application notes, manuals, hand-outs, EReports. application notes, manuals, hand-outs, Written to specitad length. Send sull detais pettive quote. Fast
SERVICES, 18 arange Road, Bournemouth, BM6
3NY
$\mathrm{M}_{\text {etc. }}^{\text {ETALWORK. all types cablnots. chassis, racks }}$ city avaliab

S WEDISH-ENGLISH Translations by M.Sc. specialising in Electronics, Telecommunicatio

TECHNHCAL TRAINING

$B^{\text {ECOME "Technically Quallded" in your spare time. }}$ th radio. TV, servicing and maintenance. R.T.E.B. City \& arulids. etc., highly informative, Roo-pako Guide- free.-Chambers College (Dept. 837K), College
House, $29-31$ Wrights Lane, Kensington, London. W. (18
CITY \& GUILDS (Electrical, etc.), on "Satisfaction Cor Refund of Fee" terms. Thousands of passes For detalls of modern courses in all branches of elec-
trical engineering. electronica. radio, T.V., automation.

TECHNICAL TRAINING IN Radio. IV and Electronica through world-famous ICS. For detalls of proven home-study courses w T certs., etc., on satisfaction or refund of fee terms thousands of passes; for full detalls of exams and home trainlng courses (including practical equipment) in al branches of radio. TV, electronics, etc., write for 132 page handbook-iree; please state subject.- British
Institute of Englieering Technology (Dept. 150K),
Aldermaston Court, Aldermaston, Berks.
[15

TUITION

CNGINEERS.-A Technical Certificate or quallifaEtion will bring you security and much better pay Elem. and adv. private postal courses for C.Eng. Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams.
Dfploms courses in all branches of Engineering Mech., Elec. Auto, Electronics. Radio, Computers Draughts, Bullding, etc.-For fun details write fo FREE Technology (Dept. 15iK), Aldermaston Court,

KINGSTON-UPON-HULL Education Committee. K College of Technology. Princtpal: E. Jones, M.Sc. FULL-TIME courses for P.M.G. certificates and the Radar Maintenance of Technology, Queen's Gardens, Kingston-upon-

BOOKS, INSTRUCTIONS; ETC.

 R.E.ETIEess equipment and instruments irom orikinal

Sea-going Radio Officers can now make sure of a shore job and good pay.

CLASSIFIED ADVERTISEMENTS
 Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 8/- PER LINE. Average seven words per line.

- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus $1 /=$
- Charges etc., payable to "Wireless World" and crossed " \& Co."
- Press Day 6th August for September 1970 issue.
[-

-

is the actual depth of information you get when you have ...THIS

Kompass Publishers Limited have produced British Exports '70, which is now arriving on the desks
of 12,500 overseas buyers, mainly by request. Beautifully bound, this book is printed in French, Spanish German and English and contains details of more than 10,000 UK exporters-their products/services, and lists over 70,000 overseas agents. It is presented in a simple, easy to read style, so that overseas buyers can find British exporters, their products and the nearest source of supply.

British Exports '70 is the second edition of this work, and the third edition, British Exports ' 71 is now being compiled. Distribution by demand will be increased to 15,000 . If you export anything: complete plant, a product or service, even just 'know-how' and are in doubt whether you are listed in this work, please contact:
G. E. Mason

British Exports '71
Kompass Publishers Ltd., RAC House, Lansdowne Raad, Croydon CR9 2HE. Tel: 01-686 2262
COMPILATION OF BRITISH EXPORTS IS IN ASSOCIATION WITH THE BRITISH NATIONAL EXPORT COUNCIL

TRAIN TODAY FOR TOMORROW

Stant training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include

- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY
- COLOUR TV SERVICING
- ELECTRONICS-
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND CONTROL SYSTEMS
- NUMERICAL CONTROL ELECTRONICS
- COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for

- C. 8 G. Telecom. Techns' Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/TV Servicing Cert.
- Radio Amateur's Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education

LINSLEY HOOD PRE-AMPLIFIER

Components as specified in May issue WW

 PCB (Designer approved) $8 \times 4 \frac{1}{4}$ 25 Hi-stab resistors and 2 pre-sets 2 pexas BC109 and I Amelco 2N4302 3 pots (Mono)4 pots (Stereo)
2 Radiospares sw's (Mono)
2 Radiospares sw's (Stereo)
Complete kit (Mono)
Complete kit (Skereo)
Matched 10 Tr's (Bailey 30W) with Pcb Matched 4 Tr's (Hood IOW) aith M1480 Matched 4 Tr's (Hood low) wirh M1481
Postage $1 /$ on orders below C10.0.
Postage $1 /-$ on orders below $£ 1.0 .0$
Send S.A.E. for decailed lises including Linsley Hood 15-20W Class AB Amplifier.
GUARANTEED DESPATCH BY FIRST CLASS RETURN A.I FACTORS. 72 BLAKE ROAD, STAPLEFORD.NOTTS.

SA VE ON COMPACT CASSETTES!

AUDEMAC COMPACT CASSETTES
are Guaranteed Top Quality. Sonic welded noncases with unique giant $6^{\prime \prime} \times 4^{\prime}$ label giving DOUBLE the normal writing area,

	One	Three	SlX
C60	$7 / 6$	$21 /-$	$40 /-$
C90	$10 / 6$	$30 /-$	$57 / 6$
C120	$13 / 6$	$37 / 1$	$72 / 6$
(2/6 P \&	P on all orders under $£ 3$)		

CASSETTE Headcleaner in plastic Library box $10 / 6$ Post Free. Absolutely FREE with allorders $£ 5$ and over.

For a Square Deal and ALL Round Service.
MUSIC TAPES MAIL ORDER 36 High Street • Salisbury • Wilts.

ENTHUSIASTS
for tape recording subscribe to the only Magazine devoted exclusively to the ubject
25/- (U.S A.) $\$ 3.75$ yrly. incl. postage.
YY ON REQUEST
ALVERSTONE AVENUE, EAST BARNET, HERTS.

SURPLUS HANDBOOKS

we buy

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

WANTED-

Redundant or Surpius stocks of Transformer materials (Laminations, C. cores, Copper wire, etc., Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite shect, etc., etc. Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. 4 Tel. $01-203$ i855 and 3033

WE PURCHASE

COMPUTERS. TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS. MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIOmeters, relays transformers etc. ELECTRONIC BROKERS LTD
49 Pancras Road, London, N.W.1. 01-837 7781

WE PURCHASE ALE FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHELTMEAD LTB.
7, 9, 11 Arthur Road, Reading, Berks.

Tel: 582605

QUARTZ CRYSTAL UNITS

Manufactured to your requiremente
Fast Delivery
Freq. range 1.4-20 MHz
Phone Hythe 8961 for Leaflet AT-1
McKNIGHT CRYSTAL COMPANY
SHIPYARD ESTRTE, HYTHE, SOUTHAMPTON

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. $2 / 6$ for 48 page booklet providing all necessary information on Record Care.

CECIL E. WATTS UMITED Darby House
Sunbury-on. Thames, Middx

LOWEST PRICE DESPITE RECENT INCREASES

LATEST NEW \& IMPROVED "JULIETTE" NASO18A COMMUNICATIONS RECEIVER
(with AFC)
5 BANO MAINS/BATTERY
SOLIO STATE PORTABLE
heceiver
our 36
OPTIONAL EXTRA (cast BFO + 35/-

- AM BAND: 540-1600 KC's Full Medium wave cover - MARINE BANO: 1.6-4.6 MC's Shipping. Hams. S. W. itc.

FM/NHF: 88-108 MC's Radios 2, 3. 4: TV Sound. Public Services. etc.

- AIRCRAFT (im: proved sensitivityl 108-134 MC's Airlines and Ground
Control
- PB (high VHF Band): $\quad 148.174$ MC's. TV Sound. Fire. Ambulance. etc.. Taxis. Shipping Fuel Boards, Oil Rigs, Gas and
Electric Boards, Local Hams Industrial and Commercial Mobiles. Military Aircraft, etc. (DEPENDING ON LOCALITY)
FEATURES-4" Dynamic PM Speaker. Directional telescopic VHF aerial. Intemal Ferrite rod aerlal. Hluminated Dial, size $9 \frac{1}{2}^{\prime \prime} \times 5 \frac{4^{\prime \prime}}{} \times 4^{\prime \prime}$. Weight $5 \frac{1}{\frac{1}{2}} \mathrm{lbs}$. Impressive and sturdy design in Chrome and Black Leather. Ultra sensitive transistor circuit. Earpiece and Socket Leather carrying and shoulder straps. Batteries incl. (Standard Ever-Ready Type)

AETAIL TRADERS SUPPLIED
Enquiries to wholesale dept.
STOCKTON PARTNERS (DEPT. WW)
BRIGHOWGATE, GRIMSBY, LINCS. Tel: 0472 58815/64196
Imports. Wholesale Electronic Equipment Distributors.

R H
 Electronic
 Components

RCA Semiconductors from stack
 Cat \& Price List by returín Hams-free QSL cards 8 'Ham Tips' with every order

This month's suggestion:

A 2-metre Transistor/Nuvistor
Transceiver comprising-
Transistors
$2 \mathrm{~N} 1632(2) \quad 6 /-$ each
2 N 372
$2 N 372 \quad 12 / 6$ each
2N 217 (2) 6/3 each
2N 2869/2N 301 (3) $\quad 15 / 9$ each
$2 \mathrm{~N} 384 \quad 17 / 3$ each
2 N 1397 22- each
2N $585(2) \quad 9 / 9$ each

$1 N 4458$	$11 /-$ each
40250	$10 / 9$ each

Nuvistors
 6CW4 (2)
 11/9 each

7587 (3)
7587 (3) 50/- each
(Send for Ham Tips Vol.25. No.2. Parts I \& II for circult details. price $2 /-$ cash.)
A wide range of semiconductors always in and QSL card, both free with order, by placing your order with us NOW.
Send for catalogue to
 EQUIPMENT AND
COMPONENTS LTD. Croft House, Bancroft. Hitchin. Herts Telephons: Hitchin 50551/2/3 and 52202

WW-086 FOR FURTHER DETALS

COMPONENT PARTS EX STOCK FOR FOLLOWING HI FI DESIGNS BAILEY, LINSLEY-HOOD, TEXAS INSTRUMENTS
For list of parts and other information send S.A.E. zo: TELERADIO ELECTRONICS
325 FORE STREET, N. 9 8073719

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC. GENERAL SCIENTIFIC EQUIPMENT ETC., GENERAL SCIENTIFIC EQUIPMENT r. f. heaters. free catalogue.
V. N. BARRETT \& CO. LTD. I MAYO ROAD, CROYDON, CRO 2QP. 01-684 9917

Thanks to a bulk purchase we can offer
BRAND NEW P.Y.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polychene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are mportes faulty and are not to be conlused wioh despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.

	3 in .	160ft.	2/-	5 in .	600ft.	$6 /$
	\{ 5 i in .	900 ft	81/	7 in .	1,200ft.	
	$\{3 \mathrm{in}$.	225 ft .	2/6	Sin.	$500 f$ e.	
	Stain.	1,200ft.	101-	7in.	1,800fe.	13
	3in.	350f	4/6	Sin.	1,200ft.	12
	$\left\{\begin{array}{l} \text { sin. } \\ \text { p } \end{array}\right.$	1,800ft. ostage	$16 / \%$		$2,400 \mathrm{ft}$	20
	C	$\text { ACT }{ }_{\text {HA }}$	E	SET	TES AT	

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD MIODX. Ashford 53020

WW-087 FOR FURTHER DETAILS

LAWSDN BRAND NEW TELEVISION TUBES

$14^{\prime} \quad \mathbf{4 . 1 9 . 0}$
$17^{\prime \prime} \mathrm{ES.19.0}$
$19^{\prime \prime}$ 〔6.19.0
21" 48 . 5.0
23° 49.15.0
19^{\prime} Panorama £8.10.0
23* Panorarna Ell.10.0 19° Twin Panel $\mathbf{6 9 . 1 7 . 6}$ 23° Twin Panel $\{13.10 .0$

Carriage and insurance

 $12^{\prime \prime}-19^{\prime \prime}-1216$ $21^{\prime \prime}-23^{\prime \prime}-1510$The consinually increasing demand for subes of the very highest performance and reliability is now being met by the new Lawson "Century 99" range of C.R.T.s.
"Century 99 " are absolutely brand new tube throughout manufactured by Britain's largest C.R.T manufacturers. They are guaranteed to give absolutely superb performance with needle shart definution. Screens of the very latest type giving maximum Contrast and Light output; tagether with high reliability and very long life.
"Century $49^{\prime \prime}$ are a complete range of rubes in all sizes for all British sets manufactured 1947-1970.
Complete fitting instructions are supplled with every tube.

2 YEARS FULL REPLACEMENT GUARANTEE
WW-085 FOR FURTHER DETAILS

LAWSON TUBES

18 CHURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium or any redundancies for spot cash.
Buyer will call to inspect anywhere. Concord Instrument Co.

28 Cricklewood Broadway London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables:
CONIST LONDON

GLASS FIBRE OPTIC
FLEXIBLE LIGHT PIPE, now available in any length
$150+$ flass fibres with three times lower loss ehan
 Plastic fibre. P.V.C. sheath 0.080 in, dia. inaccessible positions for inspection. panal indlcators, photo-electric and orher asplications. Prices. per fi. (p, se fre
S.A.E.

SYSTEM 696 \& CO.

15 BELL ROAD - EAST MOLESEY - SURREY

PRINTED CIRCUITS

PROTOTYPE ANO BATCH PROOUCTIONS
instrument panels and dials in Metal and Perspex

- SCREEN PROCESS PRINTERS \star
Brooklands Plating Co. Ltd. Spica's Yard, south End, Croydon CRO Isf 01-68i-2121

SIILCON TRANSISTTORS 1,000,000 FOR SALE

Clearance of pnp Silicon Alloy Transistors from the $2 S 300$ (TO-5) and $2 S 320$ (SO-2) range and similar to the OC200205 and BCY $30-34$ series. Available only from us at a fraction of the manufacturing cost. All these deyices would normally be subject to re-selection for industrial use but owing to company policy change have beén made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i.e., TO-5 25300 or SO-2 25320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off- il 15 s . (plus p. \& p. 3s.)
500 off- CL 10s. (plus p. \& p. 3s. 6d.)
1,000 off- $\mathbf{4}$ (plus p. \& p. 5s.)
10,000 off- C 35 (plus p. \& p. Ils.)
Large quantlties quoted for on request. EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES

P.O. BOX 5

63a High Street, Ware, Herts. Tel: WARE 342

BAILEY PRE-AMPLIFIER

High quality pre-amplifier circuit described by Dr. A. R. Bailey in the December, 1966, "Wireless versallity with a maximum output of 2 voltes making it suitable for driving Bailoy 20 W and 30 W Amplifiers. Linsley Hood Class A Amplifier and many others. All normal pre-amplifier facilities and controls, are Incorporated. A new Princed Circuit Board containing latest modifications 7 in . by 3 3in. features edge connector mounting, roller tinned finish and silk screened material or fibreglass and the complate Kit for the material or hareglass and
unle contains gain graded BC. 109 transistors, polyester eapacitors and metal oxide resistors where specified.

BAILEY 3OW AMPLIFIER
All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed a new Prinked Circuit intended for edge connector
mounting. This has the component locations marked and is roller cinned for ease of assembly. Size is also smaller at 41 in . by 2 in in. Price in SRBP material $11 / 6 \mathrm{~d}$. in Fibreglass 14/6d.
BAILEY 2OW AMPLIFIER
All parts in stock for this Amplifer including specially designed Printed Circuit Boards for pro-amp and power amp. Mains Transformer for mono or stereo
with bifiar wound socondary and special 2i8V with bifilar wound socondary and special 218 V
primary for use with CZ Thermistor, $35 / 6 \mathrm{~d}$, post prima
Triflar wound Driver Transiormer, 22/6d., post I/h Power Amp. PC Board, 12/6d., post' 9 d. Reprint of "Wireless Worid "articles, 5/6d. pose free.

DINSDALE IOW AMPLIFIER
All parts still svailable for this design Reprint of articles $5 / 6 \mathrm{~d}$, post free.
LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special mate black anodised Metalwork and all power supply componants.

HART ELECTRONICS

32 I Great Western St., Manchester 14 The firm for quality.
Personal callers welcome, but please note we are closed all day Saturday.

NEW! HANDY! TIDY!

 multi-drawerI-N-T-E-R-L-O-C-K-I-N-G
storage
units
A PLACE FOR EVERYTHING

EVERYTHING IN ITS
PLACE!

Newest. neatest. system ever devised for storing small parts and components: resistors. capacitors. diodes.
transistors. etc. Rigid plastic units. interlock together in vertical and horizontal combinations. Transparent plastlo drawers have label slots/handles on front. Build up any size cabinet for wall. bench or table top.
BUY AT TRADE PRICES! SINGLE UNITS (5 ins $\times 2$ tins $\times 2$ tins)
OUR PRICES: $24 /$ DOZEN
Usually $2 / 6$ each.
 PLUS QUANTITY DISCOUNTS!

Orders $\mathbb{C 5}$ and over DEDUCT $1 /$ in the \mathcal{E}
Orders $£ 10$ and over DEDUCT $1 / 6$ in the
Orders $\mathbf{E} \mathbf{2 O}$ and over DEDUCT $2 /$ in the \mathbf{f}
PACKING/POSTAGE/CARRIAGE: Add 6/ to all orders
under £3. Orders £3 and over, packing/postrage/carriage
quotations for Larger quantities
(Depl. WWI), 31, ALBERT ROAO.
HENDON, LONDON, N.W. 4 .

EXCLUSIVE OFFERS
AMPEX
Précision Instrumentation and Data TAPE DECKS

 400 cyc les. Rack mountigg.
 per second, ind it track, easelily
changed to t° or 1° and of lianter and more modern con-
struction than Type $P R 100 \mathrm{~A}$. PRICE 2280 for deek and servo control for either type Electronics (direct recond and diroct reproduce ampliters)

HIGHEST QUALITY RACK MOUNTING CABINETS Totally Enclosed

TYPE B Dounches, that it Theck and troat tand are dribed nid tapped all the way down every if for thls purpose. Thay are ftted with "lostantit"" patent fully adjuntable rack mounts which are vericaliy and horizontaly mdustable fitted with projecting components and it is desired to encluse thern by doora.
*Other fealures include-all cornera and edges rouarled. Interlor Attings troplcalised. Removable built in cable Insect proofed tops. Detachable side panele. Full lengin instantly dotachabis doors fitted expanding botts 18 ordered with eablects, Made in U.S.A.- cost the American
Ooverament iloz before devaluation. Finished in grey primer and lo new condtion.

PRICE E26.10.0 each (Carriaze oztrs) Doors are not oeeded if pauels are mounted hack and front and they are not required to be encloned. TYPE C: 80° high $\times 27^{\circ}$ doep $\times 22^{\circ}$ wide. American panet mounting cablinets., made by Dukane, U.8.A. Way down every 1^{\prime}. Vall length rear door with hateh. Finahed in grey these cablinctio have been used but are th sood condition bat is decoration is of importance it is recommended they are re-sprayed belore ase.
PRICE $£ 15.0 .0$ ench (Carriafe entra)
TYPE D: 76° high $\times 18^{\circ}$ dnep $\times 22^{\circ}$ wide. These are alightis smakler nod findshed in blinck otherwiee they are Made by R.C.A. of U.B.A.

PRICE 812.10.0 each (Carriare extra)
Pull detaila of anl above available on requeat. TRANSPORT: We have madeapecial econotnicaltransport arrangements for these cabineln to ensure they arrive
undamaged and to avoid expensive crating. Full dotails on sequent.

WW- 089 FOR FURTHER DETAILS

Using the article as published in the January 1970 issue of Wreless World. a universal printed-circuit board has been designed, incorporating the author's approved modification. This is suitable for both positive and negative earth ignition systems, thus enabling simple conversion to opposite polarity if the vehicie is subsequently changed.
The printed-circuit board incorporates Cinch printed-circuit mounted screw terminal blocks for the input and output connections, logether with a printed-circuit mounted fuse carrier with fuse.
A complete complement of components and semiconductors are supplied together with a ready drilled and fluxed printed. circuit board, drilled heatsink. hardware and suitable transformer
Although wiring details are supplied for both positive and negative earth versions. customers must state which version they requirs so that the correct semiconductors can be supplied.

Price E9-5-0 plus 10/- carriage. Trade Enquiries Invited. Mail Order Only.

DABAR ELECTRONIC PRODUCTS 98a, Lichfield Straet. Walsall, Staffs.

DIOTRAN
SALES
P.O. BOX 5 WARE, HERTS TEL. WARE 3442

SEMICONDUCTORS FORIW.W. CAPGDIS IGNITION SYSTEM	TOP HAT SILICON RECTIFIERS. All good. No short or opencircult devices. Voltage range 24-400 PiV
2N3525 15/=	750 mA . 63 por $100,612.10^{\circ}$
2N3055 12/-	
2N3702.. $\quad . \quad . .3$ 3/.	
2N3704 3/-	PLASTIC PNPSILICON
\|N4001 $1 / 6$	TRANSISTORS. Manufac-
IN4005 4/-	turer't seconds from
New and fully guaranteed.	2N3702-3 family. Ideal cheap trans. for manufacturing etc. 68 500, © 11.10 1,000 pieces.
S.C.R's 16 AMP (unplated)	PLASTIC NPN SILI-
$100 \text { PIV } \begin{array}{ccc} 1.24 \\ 9 / 6 & 25.99 \\ 7 / 6 \end{array} 100 \mathrm{up}$	Manulacturers' seconds from 2N3707-3711 family. Ideal
400 PIV 14/ 12/ 10\%	cheap trans. for manufactur-
All tested perfect function	ing etc. 67.10 500, $E 12.10$
devices guaranteed.	1,000 pieces.

TRANSISTOR EQVT, BOOK
2,500 cross refarences of transistors-British, European, American and Japanese. A must for every eransistor user.
Exclusively distributed by DIOTRAN SALES. $15 / \mathrm{EACH}$.

Vat mixad lot of subminiature slase dlodes. Comprising of silicon, Germ, Point Contact and Gold
Bonded typas plus some 2 oners. 500,000 avaitable as Bonded typai plus some Zaners. 500,000 avaifable at 1,000 pleces $\mathbf{3 3 . 0 . 0}$. 5,000 pieces \&13.10.0. 10,000 pieces $\mathbf{2 2 3}$.

BRAND NEW FULLY TESTED EPOXY CASE UNIJUNCTION TRANSISTORS. Type TIS43 and BEN 3000 and replacement for 2N2646. Full data available.
LOWEST PRICE AVAILABLE ANYWHERE. 100 off 4 . each $=620 ; 500$ off $3 / 6$ each $=287,10 ; 1,000$ off $3 /-$ each ach on reques.

HIGH QUALITY SILICON PLANAR DIODES. for OA200. OA202, BAY 38 , ISI ${ }^{\top} 0$, IS 940 . 200,000 to clear at E4 per 1,000 pieces. GUARANTEED 80% GOOD.

FULLY TESTED DEVICES AND QUALITY OA 202 Silicon Diode. Fully Coded.
150 PIV 250 mA Otr. Price 230 per 1,000 pieces.
O A 200 Silicon Diode. Fully Coded.
50 PIV 250 mA . Qty. Price 625 per i, 000
BYIO SIL. RECTS 800 PIV 550 mk
BYI0 SIL. RECTS 800 PIV 550 mA
$1-492 / 6$ each: $50-992 / 3$ each; $100-9992$.
$1 / 10$ each. Fully Coded. First Quality.
Post and Packing costs are consinually rising. Please add 1/- towards same. CASH WITH ORDER, PLEASE.

OVERSEAS QUOTATIONS BY RETURN. SHIP-
OVERSEAS QUOTATIONS BY RETURN. SHIP-
MENTS TO ANYWHERE IN THE WORLD.

Private enquiries, send two $5 d$ stamps for brochure THE QUARTZ CRYSTAL CO. LTD

New Malden. Surrey (01-942 0334\& 2988)

AMERICAN

test and communications equipment * General Catalogue an/104 1/6 * manuals offered for most U.S. equipments
SUTTON ELEGTRONICS Salthouse, Nr. Holt, Norfolk. Cley 289

TACHOMETERS TACHOGENERATORS

ڤ Very accurate-linearity • 1\%

* Bidirectional output to $\frac{1}{4}$ of 1% tolerance
* Brush life $100,000 \mathrm{hrs}$. or 10 years continuous operation
* Low driving torque
* Temperature compensated
* Ideal as speed transducers

NECO ELECTRONICS (EUROPE) LIMITED
 WALTON ROAD, EASTERN ROAD COSHAM PO6 1SZ, HANTS.

Tel: COSHAM 71711/5. Telex. 86149
WW-091 FOR FURTHER DETAILS
\star ALL PURPOSE TRANSISTOR PRE-AMPLIFIER \star -12. ENCA

 BAKER 12 in. MAJOR E9
 $30-14,500$ c.p.s., 12 in . double cone, woofer and tweeter cone together
with a BAKER ceramic magnet assembly having a flux density of $14,000 \mathrm{ganss}$ and total flux of 145,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 wats. Voice coll Module kle, $30.17,000$ c.p.s. Size 19x12yin. with tweeter, crossover batie and instructions. Ideal for H

Post Free $\mathbb{L I I} 10.0$
LOUDSPEAKER CABINET WADDING 18 In. wide, 3/- per ft. run. Post 2/6 per order. ELECTRIC MOTORS
(120v. or $240 \mathrm{v} . \mathrm{A} . \mathrm{C}$) Clockwise 1,200 R.P.M. off load Heavy duty 4 pole 50 mA . slize $2 \frac{1}{} \times 2 \frac{5}{} \times$ it in. $\begin{array}{lll}\text { BaRgain } \\ \text { PRICE } & 17 / 6 & \text { Post } \\ 2 / 6\end{array}$

TRANSISTOR AMPLIFIER

 WITH LOUDSPEAKER A minif-contained portable nini-porelosy Baby Alarm, Intercomp talephoneiforRecord Attractive rexine covered cabinet aize $12 \times 9 \times 4$ in., with powerfui 7×4 in.

 Now in Makar's carton with full maker's guarante

THE INSTANT BULK TAP ERASER AND RECORDING HEAD DEMAGNETISER $\begin{array}{lll}\text { 200/250 A.C. } & 42 / 6 & \begin{array}{ll}\text { Post } \\ \text { Leaflot S.A.E. }\end{array}\end{array}$
RETURN OF POST OESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES-SERVICE - SPARES RADIO GOMPONENT SPECIALSTS 337 WHITEHORSE ROAO, CROYOON. Tel: $01-6841665$

from Poland

electronic components receiving valves for radio and TV receivers picture tubes guns for TV getters

HIGHLY STABLE PARAMETERS LONG OPERATIONAL LIFE

are offered by

Foreign Trade Enterprise [U] Nロ[V[名 [i? SS A [Warszawa, A1.Jerozolimskie 44, Poland P.O. Box Warszawa 1 No 370

Telex No 81437

OSMABET LTD.

WE MAKE TRANBFORMERS AMONGBT OTHER TBINGB
 $75 \mathrm{w} 418 ; 100 \mathrm{w} 48 /-150=80 /=; 200=78 /-; 300 \mathrm{w} 97 / 8$
 MAINS TRANSFORMERS. Prlzn 200/240 v a.0. TX1. 425-0.425

 y $60 \mathrm{Ma}, 0.3$ v 2 a CT, 6.3 v in $60 /$ - TXS $300-0.300$ v 120 Ma
 MOLTIVOLT TRANEFORMERS. PHIL 200/240 v a.c. OMT $4 / 1$ One tapped sec, $8.20 \cdot 30-40-60$ r giving $8 \cdot 10 \cdot 18-20 \cdot 25 \cdot 30 \cdot 35-40$ $2 \mathrm{mmp} 0 \mathrm{MT} 4 / 2,87 / 6: 0 \mathrm{MT} 5 / 1$ One tapped $2 \mathrm{amp} 0 \mathrm{MT} 4 / 2,87 / 8 ;$ OMTS/1 One tapped sec, 40-50-60-80-90-$20-0-20,30-0)-80,40-0-40,50-0.50$ v. a.c. 1 amp . $87 / 8$; OMT $0 / \mathrm{s}$ DUOVOLT TRANGFORMERS.
DUOVOLT TRANSFORMERS. Prim 200/240 F a.c. "D12V"
 LT AUTO TRANSPORMERS. Prien 200/240 va,c. output 24 v

aize if $\times \frac{2}{2} \times$ lifins., Prim 200/240 v a.c. Foutput PPTI

 OUTPUT TRANSF

 tran, 10 watt $3-1 R-15$ ohm np or down $285 /-$; auto matching W.W. IGMITON CIRCUIT tran to opec $50 /-$ plus $4 / 6$ p.p.
W.W. COLOUR TELE. Choke L1, $80 /=i$ Tran Ti 57/B; Yieli O/P BO/ BULE TAPE ERASERS. $200 / 280 \mathrm{v}$ n.c Immediate erwiure

FLUORESCENT LOW VOLTAGE LIGHTING

 Filted peraper difuners $12 \mathrm{d.c}$ ind 13 with, $88 / \mathrm{F}$; loas diturer, is lns. 18 wati 701 ln Tranalator invertera for 40 watt or twla 20 wati tubes st $150 /=$ for single 20 wistt tube $100 /=$ pluspontage. New nand gunranteed. CONDENBERS. Electrolytics, $1000 \mathrm{mid} 25 \quad \vee .4 / 6 ; 2500 \mathrm{mid}$
 LOUDSPEAKERS. New boxed, famoun maken, 25 . 85 watt $130-; 50$ watt $180 /-; 60$ whtt $215 /-; 100$ watt $350 /$ LOUDSPEAKER. Ex.equip, iterlect Elac eto oronover 70/-10/- plus 3/-min. carriage. perioct Elac eto
S.A.E. ALL ENOUIRIES PLEASE, MAIL OROER ONLY 46 KENILWORTH ROAD, EDGWARE, MIDDX HA8 8 YG. Tel:01-9589314

WW-091 FOR FURTHER DETALS

SOURCEBOOK OF ELECTRONIC CIRCUITS

A virtual desk-top retrleval centre for engineers, designers and techniclans, contains over 3,000 electronic circults by John Markus
49.10 .0

Post free
THE RADIO AMATEUR'S HAND. BOOK by A.R.R.L., 1970. 48/-. Postage 4/6.
BASIC THEORY AND APPLICA. TION OF TRANSISTORS. 17%. Postage $1 / 6$.
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. 30/Postage I/
THE HI-FI AND TAPE RECORDER HANDBOOK by Gordon J. King. 40/-. Postage 2/-.
TRANSISTOR SWITCHING AND SEQUENTIAL CIRCUITS by John J. Sparkes. 25/-. Postage 1/-.

COLOUR TELEVISION, PAL SYSTEM by G. N. Patchett. 50/-. Postage $1 /$-. RADAR AND ELECTRONIC NAVIGATION by G. J. Sonnenberg. 96/-. Postage 3/-.
PRINCIPLES OF PULSE CODE MODULATION by K. W. Cattermole. 95/-. Postage 3/-

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of Brltish and American Technical Books
19-21 PRAED STREET,

LONDON, W. 2

Phone PADdington 4185
Closed Sat. 1 p.m.

We can't wait to expand your laboratory

in $\mathbf{2 4}$ hours you can hire some of the World's top instruments at competitive prices

Southern Office: Station Approach, Bourne End, Bucks. Northern Office: Shearer House, Dunham Road, Altrincham, Cheshire.

INIDEX TD ADVERTISERS Appointments Vacant Advertisements appear on pages 81-94

Al Factors. 97
Acoustical Mfg. Co., Ltd 24
Adcola Products, Ltd. Cover 111
Amplivox Ltd.
28, 34
Anders Electronics, Lid 100
ANTEX Id 43
Associated Electronic Engineers Lid. 8
Ates Electronics Lid 28
Audix, B. B., Ltd. 10
Banner Transformer 75
Barnet Factors Lid. 51
Barrett, V. N. 98
Batey, W., \& Co 16
Bauch, F. W. O., Ltd 33
Bentley Acoustical Corporation Ltd. 52
B.I.E.T 13
Bi-Pak Semiconductors 70
Bi-Pre-Pak, Ltd. 55
Black, J. 97, 100
Bowthorpe-Hellerman Ltd. 6, 17
Brooklands Plating Co. Lid. 98
Butterworth \& Co. (Pub.) Lid. 72
Carston Electronics Ltd. 10
Cesar Products Lid. (Yukan) 97
Chandos International.
Chandos International. 97
Chilmead Lid. 797
69
Colomor (Electronics Lid.)
Colomor (Electronics Lid.) 69
71
Concord Instrument Co. 98
Dabar Electronic Prods. 100
Dana Electronic 38
De Banks Electronics.
98, 100
Diotran Ltd.
75
75
Dixons Technical Lid.
Dixons Technical Lid. 97
E.B. Instrument 99
Electrical Who's Who 1970/1971 28
Eleciro-Tech. Sales 74
Electronic Brokers 8, 59, 97
Electronics (Croydon) Lid. 76
44
Electrosil Ltd 53
Electro-Winds Lid 66
English Electric Valve Co. Lid. 3,4,5
Eric Electronics Lid. 28
Farnell Instruments Ltd. 6
Firnor-Misilon Lid. 25
Gardners Transformers Lid. 31
Grampian Reproducers Ltd.8
25
Page Page
H.H. Electronic 16
Harmsworth Townley \& Co. 23
Harris Electronics (London) Ltd
Harris, P.
Her22
99
Hatfield Instruments Lid. 28
Heath (Gloucester) Lid.
73
73
Henson, R , 7
.C.S. Ltd. 62, 97
M.O. (Electronics) Ltd 35
Instructional Handbook Supplies 97
Ivoryet Ltd. 99
Jackson Bros. (London) Ltd. 32
Keytronics.-
Kinver Electronics Lid 60
Kompass Publishers Lid. 96
Labhire Lid 102
Lasky's Radio Ltd. 60
Lawson Tubes 98
Ledon Instruments Lid 9
Lexor Dis-boards Lid.
Light Soldering Developments Ltd.22
Lind-Air Optronics (Industrial) Lid12
LInear Products Ltd.. 20
.S.T. Components Lid.
Magnetic Tapes Ltd 25
Marshall, A., \& Sons (London) Lid
Marshall, A., \& Sons (London) Lid 75,78
97
Mills, W. 64, 65
Modern Book Co. 101
Morganite Resistors Ltd 29
Mullard Ltd.
Mullard Ltd. 1, 36, 37
Multicore Solders Lid. Cover iv
Neco Electronics (Europe) Lid 101
Nombrex Lid. 12
Omron Precision Controls 35
Osmabet Lid 1
Oxley Developments Ltd. 26
Parker, A. B. 68
Pattrick \& Kinnie 54
Peak Sound (Harrow) Ltd 6
P.C. Radio Lid.
50
50
Quality Electronics Lid. 68
Quarndon Electronics Ltd 39
Quartz Crystal Co. Ltd 100
Radford Audio Ltd. 14
Radford Laboratory Insts. Lid 20
Radio \& TV Components Lid.
Radio Components Specialists Lid. asa
Radio Exchange Co. Ltd... 101
Radiospares Ltd 72
Rank Audio Visual Ltd. 18
E.L. Equipment \& Components Led 98
R.S.C. Hi-Fi Centres Lid. 61
R.S.T. Vaives Lid. 62
Rola Celestion Ltd. 35
Rolex Products Lid. 97
Salford Electrical Instruments Ltd. 30
Samsons (Electronics) Lid. 60
Service Trading Co. 63
Servo \& Electronic Sales Ltd. 64
Shure Electronics Ltd. 27
Sinclair Radionics Ltd. 47, 48, 49
S.M.E. Ltd. 46
Smith, G. W. (Radio), Ltd. 6, 57
Special Products Ltd. 26
Starman Tapes. 98
Stephens Electronics 63, 75
Stockton Partners. 98
Strumech Eng. Lid. 38
Sugden, J. E., Lid. 22
Sutton Electronics Ltd.
98
System 696 \& Co..
97
Tape Recording Magazine ii
Tektronix U.K. Ltd.40
Telequiment Lid
98
98
Teonex Lid. 14
Thorn Radio Valves \& Tubes Lid. 42
Tinsley, H., \& Co. Ltd 22
Trio Corporation Ltd..

ADCOLA PRECISION SOLDERING EQUIPMENT

offers you the right quality at the right cost for every requirement from home output to full scale industry.

- Extensive range to choose - Interchangeable bits-ex stock. from.
- Precision quality for increased efficiency.
- Speedy after-sales service.
- Special temperatures available at no extra cost.
- Designed and developed to lower your production costs.

Almays choose ADCOLA for sound soldering!

ADCOLA

 ADCOLA PRODUCTS LTD. Adcola House, Gauden Rd. London S.W. 4 Tel:01-622 0291/3 Telegrams: Soljoint, London Telex. Telex: Adcola London 21851POST COUPOO NOW FOROETALLSO OO OPEETENSNE RANGE

MELTING POINT SOLDERS FOR SOLDERING Gold plated surfaces Flexible printed circuits Silver plated surfaces High working temperature components

H.M.P.

HIGH MELTING POINT

For service at high temperature, or service at very low temperatures. Outstanding creep strength. Melting range $296^{\circ} \mathrm{C}-301 \mathrm{C}(565 \mathrm{~F}-574 \mathrm{~F}$)

Applications

A useful application of H.M.P. is the soldering of joints close to each other in such a way that the connections made first are not re-melted while later joints are made, with for example, a standard $60 / 40$ alloy. melting point 188 C . Essential for use where high operating temperatures are experienced, for instance. electrical motors, car radiators, high temperature lamps. H.M.P. is also ideal for equipment, which is being operated in low temperatures, as it reduces the chance of the joint becoming brittle.

Specification

Multicore H.M.P. alloy complies with BS. 219 Grade 5S. Supplied in a form of Ersin Multicore 5 core solder wire on 11b. or 71 b . reels, incorporating Ersin 362 rosin based flux. This non-corrosive flux-cored solder wire complies with BS. 441 and is available from 10 to 26 s.w.g., and in Multicore Solder Preforms. Ask for Technical Bulletin No. 1369.

L.M.P.

LOW MELTING POINT

A low melting point solder for soldering silver plated and gold plated surfaces. Melting point $179 \mathrm{C}\left(354^{\circ} \mathrm{F}\right)$.

Applications

L.M.P. reduces the absorption of silver or gold into the solder alloy whilst soldering, and therefore, preserving the silver or gold plated surfaces. Also reduces the chance of a brittle joint being made.

NOTE

a) The solution of gold into tin rises rapidly with temperature and so the use of L.M.P. Low Melting Point Solder is preferable. b) The solution rate of gold into tin is also reduced because L.M.P. is a ternary alloy comprising tin, lead and silver.

Specifications

L.M.P. is normally supplied in the form of Ersin Multicore 5 core solder wire, incorporating Ersin 362 rosin based flux, which complies with Min. Tech: specification D.T.D. 599A. It is available from 10 to 34 s.w.g. in 11 b . or 7 lb . reels and Multicore Solder Preforms. Ask for
Technical Bulletin 1469.

T.L.C.

EXTRA LOW MELTING POINT

Extralow melting point solder. Melting point $145{ }^{\circ} \mathrm{C}\left(293^{\circ} \mathrm{F}\right)$.

Applications

T.L.C. alloy can be used whenever a soldered joint should be made with the minimum heat input. This would include heat sensitive transistors, flexible printed circuits and gold plated surfaces. The melting point of T.L.C. alloy is 38 C lower than any tin/lead alloy. Because of its low temperature application it is considered completely non-toxic in use unlike the high temperature cadmium-bearing brazing alloys.

Specification

T.L.C. alloy is normally supplied in the form of Ersin Multicore 5 core solder wire, incorporating Ersin 362 rosin based flux, which complies with Min. Tech. Specification D.T.D.599A. T.L.C. alloy can also be supplied in the form of Multicore precision made solid solder wire. Extrusol extruded solid solder bars for solderbaths and Multicore Solder Preforms. Available from 10 to 34 s.w.g. on 11b. or 71 lb . reels. Ask for Technical Bulletin No. 1569.

[^0]: Mullard Limited
 Consumer Electronics Division
 Mullard House Torrington Place London WCl

[^1]: *President, CBS Laboratories, U.S.A.

[^2]: -Editor-in-chief, Wireless World

[^3]: * Head of Department of Electronic and Communications Engineering, Northern Polyiechnic.

[^4]: A new Ampex video tape duplicating centre at Boeblingen, West Germany. A master tape is played on a VR-1 200 and duplicated on eight VR-7003 videotape recorders. Present capacity of the centre is $1000 \mathrm{hrs} /$ month.

[^5]: $\cdot R_{f}$ in Fig. 1, that is, not Fig. 2.

[^6]: *It is a widely accepted convention in journalism that unsigned material is a statement by the journal.

[^7]: * University College, London

[^8]: * The idea of the electron was conceived by the Scots physicist Sir Joseph Thomson. He announced it at the Royal Institution, London, in April 1897.

[^9]: Named after André Marie Ampère (1775-1836), French physicist and mathematician.

[^10]: FRIDEN FLEXOWRITERS
 Flexowriter programmatic automatic writing machlne for automatic letter writing, Data preparation work, invoice format paper work, edge punching cards, cutting continuous cards, preparing unit cards, preparing stub cards, reading edge punched cards, reading/copying punched tape.

 ## Choice of:

 Single case, four bank, three bank, double case, keyboards for various uses.
 keyboards ourpul uses. Punch tape output, punch and verify, 115 v . or with transformer for 230 v . operation. A variety of codes to order.

[^11]: DISPLAYED SITUATIONS VACANT AND WANTED: $£ 7$ per single col. inch.
 LINE advertisements (run-on): 8/- per line (approx, 7 words), minlmum two lines.
 Where an advertisement includes a box number (count as 2 words) there is an additional charge of $5 / 0$ SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract
 is placed in advance.
 BOX NUMBERS: Replies should be addressed to the Bux number in the advertisement, c/o
 BOX NUMBERS: Replies should be addressed to the Bux
 Wireless World, Dorset House, Stamford Street, London, S.E. 1
 Wireless World, Dorset House, Stam

[^12]: Computicket is now implementing its entertainment seat-booking system. This service, which operates in real-time, will ultimately involve hundreds of on-line CRT Terminals, sited In a wide variety of public places.
 Computicket is now recruiting Maintenance Technicians based in the London Area to perform a vital role in. this exclting new service.
 Applicants should have had experience in the maintenance of Electro-mechanical and Electronic equipment situated in the field and should be happy to find themselves part of a technically advancing but nevertheless consumet orientated team.
 Salaries up to $£ 1,700$ are being paid. There are also posts vacant at senlor level for ElectroEngineers with a broad design experience and leadership potential. Write for an application form to:-
 Colin Roberts, Chief Engineer, Computicket Limited
 247 Tottenham Court Road, London W1P 9AD

