

To keepthem intouch.

Chauffeurs. Drivers of taxis, ambulances, Iorries and tankers. Firemen and policemen. Builders. Dockers. Doctors and nurses.

ITT's Star range of vehicle and pocket radiotelephones. For people on the move who need to communicate.

Star mobile radiotelephone. For faultless, fade-free communication in vehicles. Wherever you are, however fast you're travelling. It has excellent range and signal
penetration in built-up areas. Its noise cancelling microphone gives crystal clear speech reception whatever background noise there might be.

Then there's Starphone, ITT's truly pocket-sized radiotelephone, with no external aerial rod or wires. Yet despite its diminutive size Starphone gives amazingly clear communication over a wide area. There's a version approved by the Ministry of Technology for safe use wherever a fire hazard exists.

There's also the Briefcase Portable, a complete
communication system in a briefcase Installed and operational in seconds.
ITT Mobile Communications Ltd., New Southgate, London, N. 11 . Telephone: 01-368 1200 Telex: 261912

7V r.m.s. Sine or Square from 1 Hz to 1 MHz

FREQUENCY:
SINE WAVE OUTPUT:
DISTORTION:
AMPLITUDE STABILITY:
SQUARE WAVE OUTPUT:
SYNC. OUTPUT:
SYNC. INPUT:
SIZE \& WEIGHT:
f42
type type
TG200D TG200

Prices include batteries with 400 hour life. Mains power units are $£ 10$ extra.

Types TG200 and TG200M generate only sine waves. Types TG200M and TG200DM have a meter calibrated $0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V}$ and $-14 /+6 \mathrm{dBm}$.
Types TG200 and TG200D have a calibrated control in stead of a meter.

LEVELL R.C. OSCILLATORS
PORTABLE INSTRUMENTS

This is a high fidelity amplifier 0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fullỳ protected against overload and com-
 pletely free from radio breakthrough.

The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s

 This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1 -low mic. balanced and 1 auxiliary input.

Multimeter motivation!

There are seven good reasons for choosing an Advance DMM2 Multimeter-
1 Price—only $£ 99$ for one off—less for bulk orders.
2 Clear non-ambiguous digital reading of AC and DC voltage (100 V V resolution), resistance and current-with optional shunts, type SP2.
3 L.S.I. reliability from a purpose designed package which performs the counting and storage functions.
4 Push button range selection. Maximum reading 1999 with decimal point.
5 Overrange and reverse polarity indication.
6 Lightweight ($3 \frac{1}{2} \mathrm{lbs}$.) portability in an attractive ergonomically designed high impact plastic case.
7 Operation from AC supply, external 12V DC or optional rechargeable battery pack, BP2.
Write for data-or call Bishop's Stortford (0279) 55155 for up to date delivery information-availability may be an eighth reason for choosing the DMM2!

DMM2 DIGITAL MULTIMETER
 from ADVANCE

The best pick-up arm in the world

SME precision pick-up arms offer a standard of design and engineering which has earned them many distinctions. Throughout the world thousands are used daily by enthusiasts, professionals, and broadcasting and recording companies, who appreciate a specification that is eminently suited to the needs of modern high-quality sound reproduction.
 to mail any in which you are interested if you will post us this coupon.

GARDNERS TRANSFORMERS LIMITED

Christchurch, Hampshire, BH23 3PN, England
Tel: Christchurch 2284 (STD 02015 2284) Telex: 41276 GARDNERS XCH

'TRIO's CS-1554 Passes The Most Rigid Testing Requirements

Waveform analysis and other electrical equipment and electronic installation testing is performed at the highest possible peak of efficiency with TRIO's CS-1554. This wide-band dual trace triggering oscilloscope operates at ultra-high sensitivity while also offering an over-all expansive range of test capabilities. Lightweight because of its all-solid state construction, this completely dependable instrument is remarkably versatile. For example, dual trace waveform analysis with very wide synchronization capabilities is possible from $D C-10 \mathrm{MHz}$. It has no equal for speedy analysis efficiency.

Let's cut the crackle! Telefunken 204 TS

You don't want a load of waffle about the brilliance of the Telefunken 204TS allstereo tape recorder. It speaks for itself! Whatever you put in, comes out unmolested. No irritating hums, buzzes or crackles find their way on to the track.

But what you want is facts not words.

It complies with the very, very stringent German tape recorder standards.

Separate controls for recording and playback, including sound level meters. Single selector switch for all operating functions.

Three speeds.
Signal to noise ratio $\geqq 50 \mathrm{db}$ at $7 \frac{1}{2} \mathrm{ips}$. And it can be used as a straight-through stereo amplifier as well!

Another fine example of the Telefunken philosophy: dedication to faithful reproduction.

Get the full story from your dealer or write direct.

AEG/Telefunken
AEG House
Chichester Rents
Chancery Lane
London WC2 A1NH
01-242 9944

Hall Electric Limited
Haltron House, Anglers Lane
London, N.W. 5 .
Telephone : 01-485 8531 (10 lines) Telex: 2-2573
Cables: Hallectric, London, N.W.5.

Slide-rule L C R Bridge has ten overlapping ranges for rapid 1% measurements of any component, also tolerance and phase angle. Switch selects 1 kHz or $100 / 120 \mathrm{~Hz}$ operation. 2. 3 and 4 -terminal connections. Adjustable overall sensitivity, special search' facility. and automatic increase of detector gain as balance is approached.

Autobalance Universal Bridge for continuous 0.1\% readout of in-phase and quadrature terms, with analog outputs of both. Backing-off facilities. DVM connections, optional BCD outputs. Push-buttons for optimum discrimination up to five figures. Illuminated readout.

Universal Bridge for 0.1\% measurements of any LCR combination from 2 micro-ohms to 500 gigohms. Source/ detector (1592 Hz) operate from a.c. or internal rechargeable battery. Sockets for external $200 \mathrm{~Hz}-20 \mathrm{kHz}$. Display gives units, zeroes and decimal point. Four-terminal connections for accurate low impedance measurements.

Autobalance Component Bridge for immediate readout of resistance. capacitance and shunt loss, inductance and series loss. C and R comparisons from -25% to $+25 \%$. Electrolytics tested with d.c. Accuracy 0.25% ($R \& C$). 2% (L). Internal 1 kHz source/ detector.

Autobalance Universal Bridge gives four-figure readout on all ten ranges covering every practical value of L, C. R \& G. Sensitivity increases automatically when decade back-off controls are used but can be selected manually. External Standards sockets permit comparative measurements and increase discrimination to 5 or 6 figures. Accuracy 0.1\%.

Wide range A.F. Bridges

Wayne Kerr Bridges provide accurate measurement of L, C and R values over an unusually wide range. They employ a minimum number of fixed stable Standards in association with precision tapped transformers giving voltage and current ratios. Speed and ease of operation are assured by functional styling.

WAYNE KERR

THE WAYNE KERR COMPANY LIMITED
Roebuck Road, Chessington. Surrev. Tel: 01-3971131. Cables: Waynkerr, Chessington. Telex 262333

With a range of thick film hybrid microcircuits off the shelf, Newmarket brings alive for you the old Scottish Proverb quoted above-"Good things come in small packages".

NMC 409

Slow Speed Eccles-Jordan "Divide-by-two"

This RST flip-flop is designed specifically for slow speed switching in industrial controls where standard monolithic TTLDTL finds it difficult to cope with the large voltage transients arising and where the precise stabilised $5.1 \mathrm{Vd.c}$ supply needed for TTL/DTL is difficult to provide (and costly). The NMC 409 can work on any unregulated supply of $6-24 \mathrm{~V}$, and is immune to fast voltage spikes because it is designed not to switch faster than 10 kHz .

Size: $1.1^{\prime \prime} \times 0.7^{\prime \prime} \times 0.23^{\prime \prime}$. One-off price $\mathbf{£ 2 . 5 0}$.

NMC 396

Precision 6V Regulator D.C. Supply
This self-contained d.c. voltage regulator provides a precise $6 \mathrm{~V}, 150 \mathrm{~mA}$ d.c. output from a $7-15 \mathrm{~V}$ d.c. input. The hybrid assembly
technique allows the output voltage to be set during manufacture typically to within 25 mV of 6 V (in contrast to the wider absolute tolerances unavoidable in monolithics). The NMC 396 has all the electrical robustness and stability of a discrete-component assembly and incorporates overload protection. Ideal for deriving a precise 6 V from a 9 or 12 V battery, it can also be fed from a standard d.c. power pack such as the NKT PC 101 Size: $0.60^{\prime \prime} \times 0.60^{\prime \prime} \times 0.25^{\prime \prime}$. One-off price $\mathbf{f 2 . 5 0}$.

NMC 426

Optoelectronic Solid State Logic Indicator
This microcircuit is designed primarily to indicate visually the state of a binary logic circuit but can be used in any circuit calling for a visual indication of the existence or absence of a d.c. voltage at a test point. Completely self contained it only requires three connections to a nominal 5 V d.c. supply, to earth and to the test point. The light display is a gallium arsenide phosphide solid state diode lamp with virtually unlimited life. The NMC 426 incorporates an internal d.c. amplifier enabling the light to
switch on with an input drive of only $1 \mu \mathrm{~A}$ or 2 V , and it takes a current of only a few $\mu \mathrm{A}$ from standard TL/DTL logic gates.
Size: $0.42^{\prime \prime} \times 0.31^{\prime \prime} \times 0.13^{\prime \prime}$. One-off price $£ 2.83$.

NMC 809A

Wide Band Amplifier
This wide band amplifier is a self contained d.c. feedback pair (with output buffer stage) with access to the internal feedback loop for response tailoring. The hybrid assembly technique enables the low frequency gain to be set in manufacture to precisely 22 dB and gives a narrow gain spread difficult to achieve by monolithic techniques. Usable for bandwidths up to 50 MHz , the NMC 809A employs the easily handleable standard dual-in-line package. Its thick film hybrid assembly eliminates the parasitic stray capacitances to earth unavoidable with monolithics and gives it the electrical stability and robustness of discrete component designs.
Size: $0.71^{\prime \prime} \times 0.28^{\prime \prime} \times 0.15^{\prime \prime}$. One-off price $£ 3.34$.

For further details contact one of the distributors listed below. (In the case of large scale requirements you can save time by referring direct to Newmarket.

distributors

```
Coventry Factors Ltd.
Coronet House.
Upper Well Street,
Coventry CV1 4AF. Warwickshire.
Tel: 0203-21051/5
Telex: 311243
Eastern Aero Electrical Services Lid.
8uilding 202.
Enfield Road.
Hounslow., Middlesex
Tel:01-7591314
Coventry Factors Ltd.
Cone House.
Coventry CV1 4AF. Warwickshire Tel: 0203-21051/5
Eastern Aero Electrical Services Lid. Enfield Road.
Tel: 01-759 1314
```

```
G.S.P.K. (Sales) Ltd
Hookstone Park.
Harrogate.
Yorkshire.
Tel: Harrogate }8625
Telex:57962
Hird-Brown Electronics Ltd.
Lever Street,
8olton BL3 6BJ.
Lancashire.
Tel: Bolton 27311
Telex:63478
```

I.T.T. Electronic Services Lid. Edinburgh Way.
Hation Essex.
Tel: $122796 / 26777$
Telex: 81146
S.D.S. (Portsmouth) Ltd. Hilsea Industrial Estate
Portsmouth PO3 5 JW Tel: 0715/65311 Telex: 86114
S. T. Electronic Components Lid. 7 Coptfold Road. Brentwood.
Essex.
Telex: 99443

NKT - Nowmarket Transistors Lid Exning Road.
Newmarket, Suffolk Tel: Newmarket (0638) 3381 Telex: 81358

DC300

DUAL-CHANNEL POWER AMPLIFIER

\star DC-Coupled throughout!
\star Short Circuit proof!

* 500 Watts RMS Mono.
$\star 70$ Volt Balanced line out!
* UNEQUALLED QUALITY!
$\star 3$ YEAR PARTS WARRANTY!
* only f320 inc. DUTY!

CARSTON ELECTRONICS LTD.

SHIRLEY HOUSE
27 CAMDEN ROAD
LONDON, N.W. 1 9LN
01-267 2748

SPEEDY DELIVERYIS OUR AIM

CLOSED CIRCUIT TELEVISION

SYSTEMS ENGINEERINGANDINSPECTIONSERVICE

We manufacture a range of industrial and educational television equipment and undertake the construction of complete systems for special purposes. We also inspect pipework, industrial plant etc. by television and fibre optics, and are able to retrieve lost objects from difficult locations

J.D.Jackson Electronics

EGGLESTON WORKS, LOMBARD STREET, NEWARK, NOTTS. TELEPHONE: NEWARK 5718

In just 2 minutes,find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

\longrightarrow Mechanicat
 Mechanical

A.M.S.E. (Mech.) Inst. of Engineers Mechanical Eng. Maintenance Eng. Welding General Diesel Eng. Sheet Metal Work Eng. Inspection Eng. Metallurgy C. \& G. Eng. Crafts C. \& G. Fabrication

Draughtsmanship A.M.I.E.D

Gen. Draughtsmanship Dic \& Press Tools Elec. Draughtsmanshi Jig \& Tool Design Design of Elec. Machines Technical Drawing Building

Electrical \& Electronic A.M.S.E. (Elec.)
C. \& G. Elec. Eng C. \& G. Elec. Eng. General Elec. Eng. Electrical Maths. Electrical Science Computer Electronics Electronic Eng.

Radio\& Telecomms C. \& G. Telecomms C. \& G. Radio Scrvicing Radio Amateurs' Exam Radio Operators' Cert. Radio \& TV Enginẹering Radio Servicing Practical Television TV Servicing Colour TV
Practiçal Radio \&
Electronics (with kit)

Auto \& Aero
A.M.I.M.I

MAA/IMI Diploma
C. \& G. Auto Eng. General Auto Eng. Motor Mechanics A.R.B. Certs. Gen. Acro Eng.

Management \&
Production Computer Programming Inst. of Marketing A.C.W.A.

Works Management Work Study l'roduction Eng Storekecping Storekecpin
Istimating I'stimating Personnel Mana Quality Control
Electronic Data Processing Numerical Control Planning Engincering Materials Handling Operational Rescarch Metrication
Constructional A.M.S.E. (Civ.) C. \& G. Structural Road Engincering Civil Engineering Building Air Conditioning Heating \& Ventilating Carpentry \& Joinery Clerk of Works Building Drawing Surveying Jainting and Decorating. Architecture Builders' Quantitics

General
C.E.I.

Petroleum Tech
Practical Maths
Refrigerator
Scrvicing.
Rubber Technology
Sales Engineer
Timber Trade
Farm Science
Agricultural Eng.
General Plastics
General Certificate of Education Choose from 13 ' O ' and ' A ' Level subjects including Enghish
English
Chemustry
General Science
Gentral
Geolog.
Geology
Phusics
Muthematics
Mathematics
Technical Drawing
French
German
Russian
Spanish
Biolug
B.I.E.T. and its
ussociated schools
hitee recorded well over 10,000 G.C.E successes at ' O ' and 'A' lezel. WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL EXAMINATIONS

Over 3,000 of our Siudents have obtained City \& Guilds Certificates. Thousands of other exam successes.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured."-Case History H/493.
"Completing your Course meant going irom a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters-and there are many more on file at Aldermaston Court-speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

cinflam: 1

Dept B7, Aldermaston Court, Reading RG7 4PF. POST THIS COUPON TODAY

(Write if you prefer not to cut this page)

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

Special Codes Prepared
TELEGRAPH AUTOMATION AND COMPUTER PERIPHERALACCESSORIES DATELMODEM TERMINALS, TELEPRINTER SWITCHBOARDS
Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse,
 Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment;

Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches, Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gelety Works, Akeman Street, Tring, Herts
Tel : Tring 3476 (STD 0442 82) Cablas: RAHNO TRING
Telex: 82362, A/B BATEY TRING
WW- 021 FOR FURTHER DETAILS

STRMVEM

目号, 5논ㄱNStrumech Engineering Limited Portland House, Coppice Side. Brownhills, Walsall. Staffs, England. Telephone: Brownhills 365 ?
*Screw adjustment range $200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$.

* Heat settings accurate to $\pm 2 \%$.
*One tip for all temperatures.
*Temperature adjustable whilst iron is on.
* Cool, comfortable handle.
*Standard tip - long life iron coated.
* Choice of 11 tip sizes.
* Built-in indicator lamp - thermostat controlled.
*Rated at 50 watts.
*12, $24,50,115$ or $210 / 250 v$. a.c. models.

TYPICAL CURVE OF THE ORYX 50

Price
with long life tip. £3.75
STAND:
£1-25

controlled

soldering iron. temperafure

Send for Technical Literature to
W. GREENWOOD ELECTRONIC LIMITED 21 Germain St. Chesham, Bucks, England. Tel: Chesham 4808/9. Telex 83647. Cables: Greenelec. Chesham.

* SEND FOR LEAFLETS 175/2049 and 175/2047

D.C. NULL DETECTOR,

 TYPE 6042 *Portable detector for use with d.c. bridges and potentiometers. Sensitivity $10 \mu \mathrm{~V}$ full scale. Input impedance 14.000 Is. Fully transistorised. 4 ranges. Resolution 1,2 in $10.000!$ source resistance. Noise less than 0.15 a V peak to peak.

NULL DETECTOR AMPLIFIER, TYPE 6040米

Similar to above but with increased sensitivity $-1 \mu \mathrm{~V}$ full scale.
Resolution 0.1 LV. 7 ranges.

ACCURACY $\pm 0.1 \%$
HIGH RESOLUTION WITH ELECTRONIC NULL DETECTOR

PRICE $£ 78.50$ DELIVERY EX-STOCK

A robust general purpose bridge for D.C. resistance measurements with a practical measuring range of from 1 ohm to 10 Megohms when used with its own built in supply and null detector. It has been designed to work under adverse factory or field conditions and the control functions are logically arranged and will be quickly understood by personnel not familiar with this type of measurement.

Request full details from:

CROYOON PRECISIONINSTRUMENT COMPANY

Hampton Road, CROYDON (Postal Code : CR9 2RU)
Telephone 01-6844025 and 4094
WW-025 FOR FURTHER DETALLS

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $\mathbf{£ 3 5 . 0 0}$

Si 452 \qquad . $\mathbf{\$ 3 0 . 0 0}$
Distortion Measuring Unit. $15 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}-.01 \%$

Si 453
. . . $\mathbf{£ 4 0 . 0 0}$
Low distortion Oscillator.
Sine - Square - RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501

BRADFORD ROAD, CLECKHEATON, YORKSHIRE
WW-028 FOR FURTHER DETALLS

MDDEL U-50 DN

USED THROUGHOUT THE WORLD, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY, RELIABILITY, VERSATILITY, UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA.

Model P-2B	$\mathrm{f4}_{4} 87$	Model F-80TRO	£13.75
Model Jp-50	55.87	Model 380 -CE	¢16.00
Model l-500N	¢8.00	Model N -101	¢18.50
Model $360-\mathrm{TTR}$	c8.25	Model 460.ED	£21.75
Modela-303TR0	£11. 100	Modelem-700	¢45.00
Modelat-1	£11.37	Modelf 1000CB	¢60.00
Model K-30THO	£12.60		

OI really had two problems. I not only wanted something quite exceptional in signal generatorsbut also a sweeper with performance to match. 9

Marconi Instruments came up with both-in a single unit!

The M.I. TF2008 brings together two first-class analytical tools. Ey providing an exceptional signal generator with the facility to sweep its output signal at any frequency setting, in one integrated unit, M.I. have produced an instrument which is unrivalled by any competitor.
The instrument - which is fully solid state - covers the incredibly wide frequency range of 10 kHz to 510 MHz and, in addition to all usual signal generator functions, it can be operated in a frequency swept mode with a sweep width adjustable up to the entire cover of each frequency band. Frequency stability is of a very high order and spurious signal and microphony are kept to a very low level.
Other saluen features are:
R.F. output: $0.2 \mu \mathrm{~V}$ to 200 mV e.m.f.

Incremental tuning: directly calibrated panel controls

Swept frequency markers: derived from the crystal calibrator Internal mod. frequency: 300 Hz to 3 kHz
Frequency Modulation: up to 300 kHz deviation
Amplitude Modulation: 0 to 80%

M.I. - Europe's largest single source of signal generators. TV, Narrow Band, FM, PCM - whatever the purpose or the frequency to be covered, Marconi is the company most likely to have the precise instrument you need. Behind it: brainpower and experience unique in the business.

MARCONI INSTRUMENTS LIMITED

A GEC-Marconı Electronics Company

Wonders of the modern world

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now - neons and indicators too ... all performing superbly in many climates . . . all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciffcations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.II, England. Cables: Tosuply London W.ll.

WW-038 FOR FURTHER DETALLS

We are a Polish company exporting high stability electronic components which have good mechanical characteristics and long life expectancy.

Valves

Electron Guns

Sub-assemblies

Tape Recorder Heads

We can offer production capacity and the ability to produce tape recorder heads to meet our customers' own specifications.

EXPORTER:
Elektrim

Polish Foreign Trade Company for Electrical Equipment Ltd. Warszawa 1, Czackiego 15/17, Poland.
Telegrams: ELEKTRIM-WARSZAWA,
Phone: 26-62-71, Telex: 814351 P.O. Box: 638

If you are interested, please send for catalogues and quotations.

WW-039 FOR FURTHER DETALLS

Vary the strength of your lighting with a U D NAGE
 COLOUR TELEVISION PICTURE FAULTS

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. The bright chrome control knob activates an on-off switch and controls $40-600$ watts of all lights except fluorescents at mains voltages from 200-250 V, 50 Hz . The DIMMASWITCH has built-in radio interference suppression. Price: $£ 3.20$ plus $10 p$ post and packing Kit Form: $£ 2.70$ plus $10 p$ post and packing Please send C.W.O. to :-
DEXTER \& COMPANY
4 ULVER HOUSE, 19 KING STREET, CHESTER CH1 2AH. Tel: 0244-25883. As supplied to H.M. Government Departments, Hospitals, Local Authorities, etc. $\overline{\text { WW- }} 040$ FOR FURTHER DETAILS
K. J. Bohlman $\quad \mathbf{2} .50 \quad$ Postage 6p There are over 120 illustrations, including 88 colour photographs.

TELEVISION SERVICING HANDBOOK by Gordon J. King. $£ 3.80$. Postage 12p.
RCA SOLID STATE HOBBY CIRCUITS MANUAL by R.C.A. £I.05. Postage 10p.
THE RADIO AMATEUR'S HANDBOOK by A.R.R.L. E2.60. Postage 20p.
TRANSISTOR AUDIO \& RADIO CIRCUITS by Mullard. $\mathbf{1 1} \cdot 50$. Postage 60p
TRANSISTOR CIRCUITS IN ELEC. TRONICS by S. S. Haykin \& R. Barrett. 42.50. Postage 15p.
COLOUR TELEVISION WITH PARTICULAR REFERENCE TO THE PAL SYSTEM by G. N. Patchett. 62.50. Postage 6p.

RADIO VALVE \& TRANSISTOR DATA by A. M. Ball. 75p. Postage 10p.

THE MODERN BOOK CO.

Closed Sat. 1 p.m,

now meet the familly

1109

1100

1100/1109

1100 twins

1110

Being a snappy little 1100 rocker who is getting around fast, I am often asked about my family. Now, having managed to persuade them to have their photograph taken with me, I have much pleasure in introducing them.
1109 -often seen around with me, is a most illuminating little pilot light with a variety of colour lenses. At times we are very close and can often be seen working together very harmoniously on a wide range of appliances and equipment.

The 1100 twins are going to be very popular and you can expect to see them on many companies' panels soon.

1110, the fat one, is double pole and the clever member of the family, he can operate two circuits at a time.

Like to know more about us? Give us a ring at 01-574 2442, we would certainly like to meet YOU some time. P.S. I have just been awarded my BS. 3955 approval certificate.

ARROW ELECTRIC SWITCHES LTD.

Terminate your wiring problems

Use Hellermann-GKN Compression Terminal Kits They're ideal for general maintenance work on electrical and electronic equipment - domestic or industrial - and one of the Kits is specially made for automobile electronics.

Take your pick from three different Kits, each one containing 12 of the most popular compression terminals. With or without a hand crimping tool. The terminal packets are re-sealable, and fit into the pockets of the plastic wallet that can either be hung on a wall or folded neatly into a tool bag.

UNIVERSAL with pre-insulated terminals for general electrical maintenance and domestic appliances.
Kit No. 1. - without tool:f6.15 Kit No. 1-CT-including tool :
£8.30
MAINTENANCE with pre-insulated terminals for factory and general maintenance.
Kit No. 2 - without tool: $£ 6.15$ Kit No. 2-CT -including tool £8.30
GARAGE with non-insulated terminals and covers used on most automobiles.
Kit. No. 3 -without tool : $£ 3.25$ Kit No. 3-CT-including tool : $£ 5.40$

All prices are subject to quantity terms. Each of these Kits can be made up to customers' requirements, subject to quantity.

Write for descriptive leaflet to.

NETTLEFOLD \& MOSER LTD

170-194, Borough High Street, London, SE1 1 LA Tel: 01-407 7111.

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-042 FOR FURTHER DETAILS
XENON STROBOSCOPE

A Stroboscope designed primarily for laboratory, industrial and educational applications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation, robust construction, exceptionally low price and built in reliability.
The instrument is of modern appearance. small. light in weight. convenient to use and portable. A wide range of flashing rates is covered by the large accurately calibrated dial. allowing operation at low frequencies for strobo photographic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.

The external triggering facility permits single shot operation by an external closing contact and also provides a synchronising input for high and low speed repetitive phenomena which might otherwise be difficult to maintain in exact phase.

Light source.
Flashing rate.
Frequency accuracy.
Triggering.
High intensity Xenon tube mounted in a parabolic reflector.
1-250 flashes/second in 3 ranges
Typically $\pm 2 \%$ of each full scale.
(a) by internal oscillator
(b) by external closing contacts.

Price: $£ 38.50$
Edwards Scientific International Ltd.
Knowle Road, Mirfield, Yorkshire. Tel: 0924844242
 radio microphones only Reslo match mobility with perfect studio performance.

This is the new TX 100 by Reslo. Manufacturers of high quality sound
reproduction equipment.
Star Performer
RESLOSOUND LTD, SPRING GARDENS, LONDON ROAD. ROMFORD, ESSEX, TEL: ROMFORD 61926.

Litestat

TEM PERATURE CONTROLLED SOLDERING INSTRUMENTS

- 2 Models, 55 and 70 watts
- Control within $\pm 2 \frac{1}{2}^{\circ} \mathrm{C}$
- Temperature infinitely adjustable $200 / 400^{\circ} \mathrm{C}$
- Available for all voltages
- Built-in indicator lamp
- Cool, comfortable unbreakable Nylon handle
- Range of bit sizes, Copper or Philips ironcoated.
- Prices from £3.84

Please ask for New Leaflets 5/1009/11

LIGHT SOLDERING

 DEVELOPMENTS LTD28 Sydenham Road, Croydon, CR9 2LL Tel: 01-688 2589 and 4559

T.B.TECHNICALLTD.

CONSULTANCY • INSTALLATION MAINTENANCE

Our service covers:

Broadcast, Recording, Film, Audio and Video Electronics, also ElectroAcoustic Design.
Experienced Technicians available for installation, wiring, routine and emergency maintenance.
Test equipment hire and contract service.

T. B. TECHNICAL LTD.

38 HEREFORD ROAD, LONDON, W. 2
Telephone: 01-229 8054

WW-046 FOR FURTHER DETAILS

Send for Heathkit - and send for the best

The best in hi-fi; the best in short-wave; the best in domestic, marine and auto equipment; the best in everything electronic.

Heathkit comes direct from the world's leading suppliers of top-quality electronic equipment. You assemble your components using the unique Heathkit 'step-and-check' method and there's a team of experts ready to help and advise you on any problem. But you won't need them. Hardly anyone does!

AUDIO MIXER TYpe mxt/8oo

 * Overload margins, noise levals, distortion figure and frequency response mele levels, distortion figures and frequency response, are equal to those of large

- A single plu
components. in board per module includes all active
Microphone channels (2 \& 4 group working): Line Channels: Group Microphone channels (2 \& 4 group working): Line Channels: Group
modules (including V.U \& P.P.M metering): Monitor module: Talkback module: Power supply module: Echo channel: Tone generator module: Limiter compressor module Line equaliser

 AUDIX B.B.LIMITED STANSTED ESSEX Tel:STANSTED $3132 / 3437$ (STD 027-971)

WW-0.49 FOR FURTHER DETALS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

Anders means meters

Nombrex accuracy!

in the palm of your hand
tRANSISTORISED-COMPACT-MDDERN STYLING

Standard Model 29-S

- $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals - Eight clear scales. Total length 40° - Smooth vernier tuning-ratio $7 \frac{1}{2}$: 1 - Magnifier cursor-precision tuning - Overall accuracy. better than 1.5% - Modulation, variable depth and frequuency

Price $£ 20.00$

Xtal Check Model 29-X

- All the features of the Model 29-S ANO
- Integral Crystal Oscillator providing calibration check points throughout all ranges. For adjustment of scale accuracy to $\pm 0.02 \%$

Illustrated: R. F. SIGNAL GeNerator model 29 , Spin Wheel Tuning $£ 1.00$ extra Trade \& Export enquiries welcome. Send for full technical leaflets. Post and Packing $32 \frac{1}{2} p$ extra

1
NOMBREX (1969) LTD. EXMOUTH DEVON Tel. 03-952 3515

It has been suggested that a perfect amplifier would be equivalent to a piece of wire with gain.

wireless

A piece of wire? First of all it would hum, so we'd have to screen it. This would increase the input capacity so we'd have to make the screening large or the conductor small. Then we would have outcut resistance and, if of appreciable length, we'd have inductance and termination problems as well. Allin all a 303 power amplifier would be much easier.

The funny thing is; even if we had our perfect piece of wire with gain and compared it with a 303, the two would sound exactly the same no matter how carefully we listened.

QUAD

for the closest approach to the original sound

Gatering to your particular service and production requirements

Speciprod

Our range includes:
Aerosol Aids: From Kontakt, Antistatik spray-cold spray-Fluid spray-Graphit spray-Oil spray-Plastik spray-Soldering Lacquer-Switch and contact cleaners -Video spray for cleaning tape heads.
Allen \& Bristol Keys: L Type. Standard and Long Arm. Contact Cleaners: Diacrom Diamonded Spatulas and Kontakt aero sols.
Nutdrivers: Hex-A.F.-Metric. Solid and hollow shaft and Palnut.
Pliers Seizers \& Nippers: Quality Precision made hand tools from Xcelite, and other leading producers of special tools.

For catalogues and other information on the above write.

Screwdrivers: Allen-Ball head-Bristol-Clutch head -Hold-e-Zee-Phillips and slotted.
Soldering Equipment: Resistance and heat controlled units. Also thermal wire stripping equipment from American Beauty and Waseco.
Tweezers: Quality Swiss made electronic tweezers. Ultrasonic Cleaners: Bench models and accessories from American Beauty.
Work Positioners: The versatile Panavise 300 series for modern precision and allied industries.
Work Viewers: Distortion free Ednalite viewers and optical glass lenses for single and group viewing.

Special Products Distributors Ltd
81 Piccadilly, London W1V OHL
Tel:01-6299556 Cables: Speciprod London W1

WW- 053 FOR FURTHER DETAILS

Hatfield are on the level...

with the new Hatfield

 Selective Level Measuring Set comprising Level Meter 1001 and Level Oscillator 1003 you can measure cross talk attenuation to 115 dBm .Two light weight units provide level measurements at any audio frequency in 140 and 600 systems, even in the presence of other signals.
Measurements range: $\quad+25 \mathrm{dBm}$ to $-\mathbf{1 1 5} \mathrm{dBm}$
Frequency range: $\quad 30 \mathrm{MHz}$. to 30 KHz . Oscillator ou tput range: +21 dBm to -105 dBm

Send for full details of
Hatfield Selective Level Measuring Set and a copy of our Short Form Catalogue.

HATFIELD

forward thinking in electronics

[^0]

REPAIR SERVICE 7-14 DAYS
We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.; 01-692 2689
G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

Plessey CT80 at the BBC and I.T.A., A.T.V. Radio Luxembourg Scottish Television Ulster Television and Nederlandse Omroep Stichting

The Plessey CT80 Cartridge Recorders shown here are installed in the World Service Continuity Studio of the B.B.C. External Services Studio Centre at Bush House, London. From this centre broadcasts originate to all English speaking regions of the world including South-East Asia and Australia.

Sales and Service - Hayden Laboratories Limited East House Chiltern Avenue Amersham Bucks Service Department 12 Poland Street London WIY3DE Telephone 01.734 3748-9 - or the manufacturer Plessey Electronics Pty Limited Equipment Unit The Boulevard Richmand Australia 3121 Telex 30383 Cables ROLA Melbourne

JACRSONS
Radio and Electronic Components
(Made in England)

Accelerator

 Spinwheelfor that Extra Long Scale

* Smooth nylon to brass gears
* Rapid travel over a long scale
* No need for larger or heavier Flywheel
* One hole ($\left(\frac{3}{8}{ }^{\prime \prime}\right.$ dia.) fixing
\star Complete with nut and lock washer

The latest addition to the JACKSON range of

P.T.F.E. Dielectric Tubular Trimmers

* Several models available
\star UHF Tuning
* Panel mounting. Vertical P.C. Buard

Mounting or Horizontal P.C. Board Mounting

* Varic's capacities: from $1 / 4 \mathrm{pF}-8 \mathrm{pF}$ $102 \mathrm{pF}-30 \mathrm{pF}$
* Power factor less than 0005 at 1 MHz
* High Test Voltage

Style 330 H.P.C.
PT.F.E. Trimmer 30 pF Cat. No. $4252 / \mathrm{HPC}$

Heavy Duty Epicyclic Drive
 for the Really Heavy Job

* The main housing of this powerful friction drive is only $1 \frac{1}{2}$ "diameter and $\frac{1}{2}$ "deep yet it delivers an output torque of 100 oz . ins (6 lb . ins.).
* The reduction ratio is $6: 1$
* The complete assembly weighs only 3 or.
* Essential parts are hardened and ground to provide long life.

It's reliable if it's
 made by Jackson!

Write for literature

 JACKSON BROTHERS (London) LTD.DEPT. W. W. KINGSWAY, WADDON CROYDON, CR9 4DG
Phone: 01-688 2754-5 Grams: Walfilco, Croydon U.S. office : M. Swedgal, 258 Broadway, N. York, N.Y. 10007

\section*{| 1 | 1 | 1 | L | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | | | | | | |}

OVER A QUARTER OF A MILLION COPIES SOLD SINCE 1948

LOUDSPEAKERS

Fifth edition-336 pages, 230 illustrations
Cloth bound.
PRICE £1.50 (£1.63 post free).
A standard work on the subject of
loudspeakers, now in its 24th impression.

CABINET HANDBOOK

112 pages, 90 illustrations. PRICE 38p
(46p post free). Semi-stiff cover.
Cloth bound 75p (85p post free).
Practical information about woodworking,
veneering, polishing, etc., plus 22 pages on loudspeaker cabinet design.

AERIAL HANDBOOK

(Second Edition)
176 pages, 144 illustrations.
PRICE (Semi-stiff cover) 75p (83p post free).

Cloth bound $\mathbf{£ 1 . 1 3}$ ($\mathbf{£ 1 . 2 3}$ post free).
This revised edition includes explanations and requirements relating to colour TV and Multiplex stereo.

MUSICAL INSTRUMENTS AND

 AUDIO240 pages, 212 illustrations. Cloth bound. PRICE $\mathbf{f 1} 63$ ($\mathbf{£ 1} \mathbf{7 6}$ post free).
Intended to appeal to both the concert-goer and the audiophile.

ABOUT YOUR HEARING

132 pages, 112 illustrations.
PRICE (semi-stiff cover) 78p (86p post free) Cloth bound $\mathbf{£ 1} 13$ ($\mathbf{£ 1} \mathbf{2 3}$ post free). Many aspects of audiology, age and noise effects are expertly covered, with guidance for the hard of hearing.

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio. 112 illustrations. Cloth bound. PRICE $\mathbf{£ 1} \mathbf{1 - 2 5}$ ($\mathbf{~} \mathbf{1} .38$ post free).
Vital information on the development of radio, audio, hi fi, etc., from the early days up to 1961 .

A TO Z IN AUDIO

224 pages, 160 illustrations. Cloth bound.
PRICE 78p (88p post free).

38

PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth bound. PRICE 92p (£1 post free).

All the above books contain the usual touches of humour associated with this writer.

Please serd orders and enquiries to:
RANK WHARFEDALE BOOK DEPT. B.W.S. 13 WELLS ROAD ILKLEY YORKS LS29 9AZ
Telephone: ILKLEY 4246
Published by:
RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKS.

VARIABLE TRANSFORMERS ARE ALWAYS AVAILABLE FROM STOCK AT THE LOWEST PRICES

Fully shrouded variable transformers-input 250VAC output 0-260VAC

1 amp $£ 6.50 \quad 10$ amp $£ 21.35$
$2.5 \mathrm{amp} £ 7.80 \quad 12 \mathrm{amp} £ 24.25$
$5 \mathrm{amp} £ 11.30 \quad 20 \mathrm{amp} £ 45.00$ 8 amp $£ 16.75$

Constant voltage transformer stabilises mains voltage to $\pm 1 \%$ output $240 \mathrm{VAC} \pm 1 \%$ input $240 \mathrm{VAC} \pm 20 \%$ capacity 250 Watts
price $£ 12.50$ with quantity discounts

New solid state variable voltage control input 240 VAC output $25-240 \mathrm{VAC}$
$5 \mathrm{amp} £ 9.50$
10 amp £15.15

We're sensitive to everyone's needs.

Different people have very different requirements in $\mathrm{Hi}-\mathrm{Fi}$, so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistic in price.

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget, the Goldring range offers unsurpassed quality and value.

Your request will bring full details of these and other Goldring products.
Goldring Manufacturing Company (GB) Limited, 10 Bayford Street, Hackney, London E83SE.
Tel:01-985 1152.
Goldring@Series 800
Stereo Magnetic Cartridges.

All these current items and many more! Design and quality from forty years of experience in equipment for sound systems.

AUDIOI SUPPLIES SLASH PRICES up to $\mathbf{6 0 \%}$

Recommended retail prices: R50Loudspeaker £98, R40 Loudspeaker £65; P100 Amplifier £145, P50 Amplifier £88

In 1969 Telequipment introduced the D53S which was universally acclaimed as the world's first realistically-priced true dual-beam shorage ossilloscope. Now Telequipment announce the DM53A - with all the features of the D53S and the added advantages of variable enhancement and the remote contiol of Erase and single shot time base Reset.

The tube circuitry provides five alternative conditions of operation:
(a) Normal: P31 characteristics as in a conventional non-storage oscilloscope.
(b) Variable Persistence: Provides continuous control from 0.2 second to more than 1 minute,
(c) Storage (without enhancement): As a storage oscilloscope, it is capable of storing traces-for periods of up to 10 minutes.
(d) Store (with variable enhancement): The writing speed may be increased up to about ten times.
(e) Hold: Retention time of image written in the store condition is prolonged up to one hour.

A choice of differential, ultra high gain, or wide band with Signal Delay plug-in Y amplifiers, makes the DM53A capable of meeting almost any measurement requirement.
Send for full details now and see just how great is the value offered in the Telequipment DM53A. U.K. Prices: $£ 430-\mathrm{f556}$.
depending on choice of amplifiers.

Telequipment <<>

Telequipment, 313 Chase Road, Southgate, London, N. 14 6JJ. Telephone: 01-882 1166 WW- 066 FOR FURTHER DETALIS A division of Tektronix U.K. Ltd.

Wireless World

Electronics, Television, Radio, Audio

The rotating $11-\mathrm{dB}$ helical aerial, shown on the front cover, forms a major part of receiving equipment for picture transmission from weather satellites. It was designed and manufactured by Rohde \& Schwarz, of Munich, whose U.K. agents are Aveley Electric.

IN OUR NEXT ISSUE

Constructional details of a helical aerial of unusual design covering the $88-170 \mathrm{MHz}$ band.
Swept-frequency audio oscillator in which two decades are covered in one band using a beat-frequency technique

ibpa

Preess Associties
I.P.C. Electrical-Electronic Press Lid

Managing Director: George Fowkes
Publishing \& Development Director George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SE 1
© I.P.C. Business Press Ltd, 1971
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Contents

361 Wasted R\&D?
362 Double-trace Oscilloscope Unit-1 by W. T. Cocking
365 Announcements
366 Ten Practical Source-follower Circuits by J. O. M. Jenkins
Square-root Circuit by B. L. Hart \& A. Cheetham
News of the Month
Letters to the Editor
Phase-locked-loop Stereo Decoder I.C.
Ceramic Pickup Equalization-2 by B. J. C. Burrows
The Diagnosis of Logical Faults (concluded) by R. G. Bennetts
Circuit Ideas
Electro-optical Gearbox by Jack Dinsdale
H.F. Predictions
Touch-switch Controller by R. Kreuzer
Electronic Building Bricks-14 by James Franklin
Charging by 'Cathode Ray'
Single-sideband Experimental Broadcasts
Telephone Exchanges of the Future
Elements of Linear Microcircuits-10 by T. D. Towers
Conferences and Exhibitions
Complementary Darlington Output Transistors in Audio Amplifiers
Automatic Titration Potentiometer by D. R. Bowman
Sixty Years Ago
World of Amateur Radio
Personalities
Literature Received
New Products
Feal \& Imaginary by 'Vector'
APPOINTMENTS VACANT
INDEX TO ADVERTISERS

Published monthly on 3 rd Monday of preceding month, $17 \frac{1}{2} \mathrm{p}$ (3 s 6 d).
Editorial \& Advertising offices: Dorset House, Stamford Street, London S.E.1. Telephone 01-928 3333
Telegrams / Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E. 1. "
Subscription \& Distribution offices: 40 Bowling Green Lane, London E.C.1. Telephone 01-837 3636
Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

Subscription rates: Home, $£ 4.00$ a year. Overseas, 1 year $£ 4.00 ; 3$ years $£ 10.20$ (U.S.A. \& Canada 1 year $\$ 10$, 3 years $\$ 25.50$).

Shure Model 444
Controlled magnetic microphone. Specially designed for radio communications applications.

Please send me full information on Shure Communications Microphones.
Name

Address

$3 \Rightarrow 1+1 \ln \Rightarrow$

Shure Electronics Lid.
84 Blackfriars Rd., London SE1. Tel: 0f-928 3424

Wireless World

Editor-in-chief:
w. T. COCKING, F.I.E.E.

Editor:
H. W. BARNARD

Technical Editor:
T. E. IVALL, M.I.E.R.E.

Deputy Editor:
B. S. CRANK

Assistant Editors:
J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:
L. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
B. STOREY (Classified Advertisement Supervisor) Telephone: 01-928 3333 Ext. 533 \& 246.
G. DONOVAN (Classified Advertisements)

Wasted R \& D

One aspect of research and development costs which we did not consider in our discussion on value for money in $R \& D$ in the June issue is highlighted in a report just issued by the Centre for the Study of Industrial Innovation*. It is called 'On the Shelf and surveys industrial R \& D abandoned for non-technical reasons. The main conclusion of the survey, which analyses 53 shelved projects belonging to 20 companies in the UK, is that the failure to make an adequate market assessment before research and development is the most common reason for firms having to abandon technically viable projects. Eight of the companies or divisions (mostly unnamed) are classified as 'electrical and electronics' and, in fact, a third of the 53 abandoned projects were electronic. Incidentally, the nationality of five of the eight companies is given as U.S., one European and two U.K. Together they employ about 1,500 graduate R \& D staff and about the same number of technicians and support staff. Details are given of case studies (some under disguised names) and together they raise important questions central to the management of R \& D. With hindsight, some projects should never have been started; in others development resources were exhausted beyond the point of economic justification.

There are apparently three main points of project rejection, which can occur for technical or non-technical reasons. Projects can fail first to measure up to initial selection criteria for development expenditure; secondly, to measure up to citeria of satisfactory development at a periodic progress review; and thirdly, a fully developed prototype can fail to measure up to the conditions required for marketing. Probably most of the projects described in the report were rightly shelved, although we question the attitude of one research director interviewed who stated that the onus is on the individual at the bench to force his own project through; 'He must know how to sell, what to sell, when to sell and who to sell to'. This attitude which, according to the survey is not untypical of research directors and other senior personnel interviewed, lays a tremendous burden on the initiators of a project and may well inhibit progressive thinking.

One of the aims of the study was to assess what steps firms took after the 'shelving' decision to gain some commercial return from the accummulated, but abandoned, know-how. It is this aspect of shelving which we consider is of paramount importance, for it can turn to good effect what would otherwise be wasted R \& D. Of the 53 shelved projects reviewed only six were subsequently economically exploited by three of the 20 companies. Sometimes the resurrection occurred as a result of changed circumstances but only one firm, incidentally Rolls-Royce, had a regular system of project reappraisal. While this aspect of research should not be overlooked by individual companies, it is of paramount importance to organizations undertaking research on behalf of others. In this regard we were particularly interested to learn during a recent visit to the Cranfield Unit for Precision Engineering (see 'Electro-optical Gearbox' in this issue) that written into all its research contracts is a clause permitting the use in any field not competing with the originating company's activities of know-how resulting from research projects.
While it can be said that all R \& D efforts contained an element of fruitless endeavour, there must come a point when this proportion is no longer acceptable as inevitable and it is seen that avoidable wastage has begun to occur.
*The Centre for the Study of Industrial Innovation, of 162 Regent St, London W1R 6DD, was set up last year, with industrial backing, to study the economics of innovation and $\mathrm{R} \& \mathrm{D}$ in industry. 'On the Shelf' is its first report.

by W. T. Cocking*, F.I.E.E.

In this series of articles the development of a unit which enables two signals to be observed simultaneously on almost any cath-ode-ray oscilloscope will be described and the series will conclude with full details of the final design. In all design work there is compromise and it is necessary to obtain a good balance between conflicting requirements. Sometimes there are several different ways of obtaining a required performance and a designer naturally starts by considering the one which he thinks most likely to be satisfactory. Sometimes, his first choice is a good one; at others, he ends up with something entirely different.

Usually, he says little or nothing about his unsuccessful attempts and only his successful design is presented for all to see. It occurred to the writer that a detailed account of the development, including the unsuccessful arrangements, would be of general interest and might be of some educational value. It is usually true that one learns more from one's mistakes than from one's successes. It might be true that one could learn more from other people's mistakes than from their successes, if one knew about them!

Int the course of the development, a great variety of problems was met and some were a little unusual. For example, a continuous control of gain was considered desirable and provided by far the most difficult of all problems. In fact, the final choice of circuit was made almost entirely to suit the requirements of gain control.

Requirements

The first step in design is always to formulate the requirements clearly. The designer does this in the light of his experience of what is practicable. He knows, for instance, that it will probably be difficult to obtain a voltage amplification of 100 times with a bandwidth of 25 MHz from two transistors, He knows, too, that it will probably be easy to obtain a gain of 4 times with a bandwidth of 10 MHz from only one transistor and that it might not be too hard to get a gain of 10 times. The designer has this sort of information available from his past experience but there are always gaps in his knowledge, and then he has to carry out some experiments to see what can be done,

[^1]or else a theoretical analysis. This usually takes longer, but is generally more valuable.

Coming now to the particular (that is, to the dual-trace unit), the first thing is to decide what it must do. Its purpose is to enable two different signals to be displayed so that they can be viewed simultaneously on the screen of the c.r.o. They cannot, of course, be actually present simultaneously, for the tube has only one electron beam. There must be two separate signal channels and an electronic switch to switch the input of the c.r.o. from one to the other and back again repeatedly at an adequately high speed. Persistence of vision coupled with the persistence of the c.r.t. screen makes the traces appear to be present simultaneously.

Both traces are, of course, displayed by the same horizontal deflection of the beam, and so the two signals must be of the same frequency or harmonically related. Also, if the two traces are separated to appear one above the other, the maximum input to the oscilloscope for each signal can only be one half of the normal. The screen cannot be stretched to accommodate two normal size traces!

Experiment

It is not necessary for the switching frequency to be synchronized to either the signals or to the oscilloscope timebase. Here, for brevity, we are anticipating a little. In reality, at this stage we did not know what would happen, so we rigged up an electronic switch and fed the same sinewave signal to both sides to find out what did happen. This is what we did find. For signals from about 200 Hz to perhaps 1 MHz the best results are obtained and the operation is easiest when the electronic switch is triggered by the oscilloscope timebase. No spurious effects are then observable, the two signals are displayed alternately on successive sweeps and the switching occurs during flyback. It was found, however, that for the display of higher frequencies, the timebase frequency became too high for the electronic switch to operate properly. It was found, too, that at lower frequencies flicker quickly became intolerable. The cure for both is the same, to use an unsynchronized switch. At low frequencies, the switching frequency is made much higher than the signal frequency. Switching occurs 100
times or more during each signal cycle. If, by accident, the frequencies are integrally related, or there is some unintentional synchronizing action by stray coupling, the traces appear dotted. Flicker is not now any worse than in a normal oscilloscope display. At high frequencies, the switching frequency is made much lower than the signal frequency. One signal is then displayed for ten or more sweeps before the other is switched on, but as long as the switching frequency is above a few hundred Hz one does not notice this.

Unsynchronized operation can be used for all signal frequencies, but peculiar effects occur at certain relations between the signal and switching frequencies. They are in the nature of stroboscopic effects and can be most disturbing. To minimize them the ratio of the frequencies must be very large or small and a fine control of switching frequency is necessary.
In the light of these early experiments it was decided that synchronized operation would be used for most signals, but that an alternative pulse generator would be provided for low- and high-frequency signals. It should be noted also that synchronized operation demands that the oscilloscope has a pulse or sawtooth output available from its timebase.
It was noticed, too, in the experiments that it is impossible to use the internal synchronization of the oscilloscope. With unsynchronized operation of the switch, the timebase invariably locks to the switch frequency and not to the signal.
On its most sensitive range the average oscilloscope needs no more than 1 V peak-to-peak of signal for full screen deflection. Many oscilloscopes need less. It was decided that the dual-trace unit should have an overall gain of unity, with a maximum signal output of 1 V . The oscilloscope used in the development was the Marconi Instruments TF 1330. This is now an oldish model but its performance is quite adequate for most general purposes. It has a $3-\mathrm{dB}$ bandwidth up to 15 MHz and an input impedance of $1 \mathrm{M} \Omega$ shunted by 30 pF .
When using the dual-trace unit, the input attenuator of the oscilloscope cannot be employed unless the unit is made capable of handling large signal amplitudes. In any case, the two signals to be observed may have very different amplitudes. It follows that each channel must have its own input

Fig. 1. A passive probe designed to give attenuations of $3 \cdot 33: 1$ and $10: 1$ according to the position of the switch and to reduce the capacitance of the cable and oscilloscope in the same ratios.
attenuator. If it were not for one thing, amplification of the signals would be unnecessary. This thing is cable capacitance. A minimum of 3 ft of coaxial cable is needed for the input. If this is ordinary $75-\Omega$ cable its capacitance will be about 60 pF . Special low-capacitance cable can be used, but is less readily available, and even then its capacitance is unlikely to be under 30 pF . The usual practice is to use a passive probe which attenuates the signal to $\frac{1}{10}$ of the input and at the same time reduces the capacitance by the same amount. This is eminently practical, but necessitates an amplifier with a gain of 10 times to make up for the loss.

At this stage we did not know what gain and bandwidth would be practicable. We felt that the minimum requirement was a $3-\mathrm{dB}$ bandwidth of 5 MHz and that it should be as much greater as proved reasonably practicable. We felt it might be hard to get a gain of 10 times with a bandwidth of more than this, and decided that a compromise was desirable. What we initially decided was this. There would be an input probe with an attenuation of $1 / 3 \cdot 33$. With a total cable plus unit input capacitance of 70 pF , this would give a probe input capacitance of $70 / 3 \cdot 33=21 \mathrm{pF}$ about. For the next range, a resistance would be switched in series to give an attenuation of $1 / 10$, making the capacitance 7 pF .

The arrangement is sketched in Fig. 1, where R_{0} and C_{0} are the input resistance and capacitance of the dual-trace unit. The attenuation is

$$
\frac{1}{\alpha}=\frac{R_{0}}{R_{0}+R_{1}}
$$

when the switch is closed and

$$
\frac{1}{\alpha}=\frac{R_{0}}{R_{0}+R_{1}+R_{2}}
$$

when it is open. If $\alpha=3.33$ and $R_{0}=100$ $\mathrm{k} \Omega, R_{1}=233 \mathrm{k} \Omega$ and if $\alpha=10, R_{1}+R_{2}$ $=900 \mathrm{k} \Omega$, whence $R_{2}=667 \mathrm{k} \Omega$. These are non-standard values, but can be obtained from the combination of two or three preferred values. With an amplifier gain of 3.33 times, a $1-\mathrm{V}$ input with S closed will give $1-\mathrm{V}$ output. A $3-\mathrm{V}$ input with the switch open will give $(3 / 10) \times 3.33=0.99 \mathrm{~V}$ $=1 \mathrm{~V}$ output.
The combination of this with one $10: 1$ attenuator in the unit would provide ranges of $1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}$ and 30 V , which would suffice for many, if not most requirements. The input resistance would be $333 \mathrm{k} \Omega$ on
the 1 V and 10 V ranges and $1 \mathrm{M} \Omega$ on the 3 V and 30 V ranges.
Frequency compensation of the potential divider requires that all time constants be alike. If the cable capacitance is C_{c}, this means

$$
\left(C_{0}+C_{c}\right) R_{0}=C_{1} R_{1}=C_{2} R_{2}
$$

and there must be trimmers C_{1} and C_{2} in the probe to enable these capacitances to be adjusted precisely. Easy adjustment requires a square-wave signal of suitable repetition frequency. Adjustment is carried out for a square corner to the signal. If C_{1} or C_{2} in Fig. 1 is too small the square-wave has rounded corners as shown at (a) in Fig. 2, whereas if it is too large there is overshoot as at (c). The correct adjustment gives the square corners (b). If the input signal is a good one, the adjustment is remarkably easy to carry out.

A square-wave generator is not always available, of course, but the switching circuits of the dual-trace unit will, in fact, be operated by a square-wave generator and it was felt that this could be arranged to provide the signal for adjusting the attenuator. At this stage, this was merely noted as a possibility.

At this point it may be advisable to say why $100 \mathrm{k} \Omega$ was selected for R_{0}. It is usual for an oscilloscope to have an input resistance of $1 \mathrm{M} \Omega$. This arose originally because this was about the highest stable value which could readily be provided with valve circuits. It is actually on the low side when the c.r.o. is used to investigate valve circuits, and a $10: 1$ probe is often used to

Fig. 2. With the capacitors C_{1} and C_{2} properly adjusted a square wave is correctly reproduced (b). Too small capaciaance gives rounded corners (a) while too much capacitance gives overshoot (c).
bring it up to $10 \mathrm{M} \Omega$ when the signal is large enough.

Most transistor circuits are of a good deal lower impedance and $1 \mathrm{M} \Omega$ is ample for them. It is more important to reduce capacitance than to increase resistance. The use of high value resistors is to be avoided as far as possible because they are more likely to be unstable than lower values and are certainly more affected by surface leakage in damp weather.

It is important that the input resistance R_{0} be substantially defined by a resistor and not by a semiconductor. If R_{0} is $100 \mathrm{k} \Omega$, this means that the input resistance of the first stage should not be less than $5 \mathrm{M} \Omega$ if its effect is to be small. This input resistance is usually highly variable. Of course, if a field-effect transistor is used a much higher input resistance is obtainable, but at this stage we had not decided which would be used and we initially chose values which would suit a bipolar transistor.

Signal Control

It will be noted at this point that we had tentatively decided on an amplifier gain of 3.33 times because we thought that this should be easy to obtain. We note that the scheme worked out has two disadvantages. One is that, as already mentioned, the input impedance varies with the range. The other is the practical difficulty of including a switch, two resistors and two trimmers in a probe head without making it unwieldy. Further, with one range control on the probe and the other in the instrument, one must remember to note the setting of both to determine the actual range employed.

It would clearly be more convenient for the probe to give constant attenuation for then it need contain only one resistor and capacitor and the input impedance would be the same on all ranges viz. $1 \mathrm{M} \Omega$ and 7 pF . Two attenuators in the instrument would singly and in combination provide ranges of $1,3,10,30 \mathrm{~V}$; the attenuators having ratios of $3 \cdot 33: 1$ and $10: 1$, under the control of a range switch. The possibility of this depends on being able to obtain a stable gain of 10 times from the amplifier with an adequate bandwidth, and at the start we did not know whether this was reasonably practicable. The gain control range required is, of course, unaltered and remains at about $3 \cdot 5: 1$, for it has only to fill in the gaps in the attenuator steps.

Whatever the input stage, protection against overloading is required. Few transistors are rated for more than 6 V reverse base bias and there is always the possibility that the probe will be connected inadvertently to the 240 V supply mains of 340 V peak value or 360 V if 6% high. Protection is obtained by connecting two diodes back to back across R_{0}, as shown in Fig. 3. On the lowest range R_{1} is always in circuit and limits the current to $360 / 233: 1.54 \mathrm{~mA}$. This is the maximum diode current and few diodes will drop more than 1 V at this current.
The signal amplitude is $0.3 \mathrm{~V} \mathrm{p}-\mathrm{p}$ and we hope that, even without bias, silicon diodes will not conduct on it. The circuit

Fig. 3. This diagram shows the probe of Fig. 1 connected via the cable to a further attenuator of $10: 1$ ratio and diodes arranged to protect the amplifier against overloads.
has now grown to the form of Fig. 3.
One other decision had to be made. This was whether to make provision for a d.c. input. In any case, a series capacitor would be provided for a.c. only. The writer's experience is that a d.c. input is used only rarely and that when it is wanted it often cannot be used, because the same input range cannot be used for d.c. and a.c. together unless the two are comparable in magnitude. The input circuits become complicated if a bipolar transistor is used because of the base supply voltage. It was decided, therefore, to make provision for a.c. inputs only.

The capacitor can be inserted in series with the cable at the output end and the effective resistance is $333 \mathrm{k} \Omega$ on the 1 V and 10 V ranges and $1 \mathrm{M} \Omega$ on the 3 V and 30 V ranges. The drop in response (i.e., the sag) at a time t after the application of a unit step is simply $t / C R$. For a $50-\mathrm{Hz}$ square wave, $t=10 \mathrm{msec}$. If $C=0.5 \mu \mathrm{~F}$ and $R=$ $333 \mathrm{k} \Omega$, the sag is $10^{-2} /\left(5 \times 10^{-7} \times 3.33 \times\right.$ $\left.10^{5}\right)=1 / 16 \cdot 65=0.06=6 \%$. This is as much as should be tolerated and $0.5 \mu \mathrm{~F}$ is the minimum capacitance to be used. For a $1 \mathrm{M} \Omega$ input resistance, a $0.22 \mu \mathrm{~F}$ capacitor can be used to give a sag of 4.5%.

For the initial experiments we did not build the full arrangement of Fig. 3 but used only the simplified system of Fig. 4. The probe must always be screened, of course, and for bench work it proved essential to screen the capacitor to prevent hum pick-up.

At this stage of the proceedings we had solved in principle the input circuit problems and could define the amplifier requirements more closely, which were:

1. To operate into an output load of $1 \mathrm{M} \Omega$ shunted by 55 pF (30 pF oscilloscope input capacitance plus 20 pF for 1 ft cable plus 5 pF strays)
2. To provide an output of at least 1 V p-p 3. To give a voltage amplification of 3.33 times (N.B. It was noted that if it should prove possible to obtain an amplification of 10 times this might be adopted and the attenuator system altered).
3. To have a continuous gain control of at least 3-33:1.
4. To be able to handle an input of up to 1 V p-p (so that full output could be obtained with the gain control at minimum). 6. To include a shift control so that the traces could be moved vertically and independently on the screen. A range of $\pm 0.5 \mathrm{~V}$ at the output would be sufficient.
5. The gain and shift controls to have no interaction.
6. The whole amplifier to be stable and easy to set up.
With regard to the last item, it was considered that as this is a piece of test equipment, which will normally be used under laboratory conditions, it would suffice to take the temperature range as $\pm 12 \cdot 5^{\circ} \mathrm{C}=$ $\pm 22 \cdot 5^{\circ} \mathrm{F}$ about a mean of $65^{\circ} \mathrm{F}$. This covers room temperatures of $42 \cdot 5-87 \cdot 5^{\circ} \mathrm{F}$.

The mean room temperature is thus $18.3^{\circ} \mathrm{C}$. The internal case temperature, which is the ambient of the transistors, is higher than this by what is at present a completely unknown amount, but it will vary with the room temperature and by the same amount. Transistor junctions will be higher than the ambient by an amount depending on their dissipation. Most small transistors have a thermal resistance between junction and case of about $0.5^{\circ} \mathrm{C} / \mathrm{mW}$. Anticipating a little, few, if any, transistors will dissipate more than 20 mW and so their junctions will not be more than $10^{\circ} \mathrm{C}$ above the ambient. No great attention need thus be paid to temperature.
In what follows, we shall assume at first that all junctions are at $25^{\circ} \mathrm{C}$ because this is the figure for which transistor characteristics are usually quoted. Corrections can be applied later. Because of the low power needed in this case, no dangerously high dissipation will occur, and the only important thing to watch is that the case is adequately ventilated. Apart from this the only effect of choosing the wrong design temperature is to change slightly the required bias voltages and as they may in any case have to be adjustable to allow for other

Fig. 4. Simplified probe used in experimental work, and input coupling capacitor to remove d.c.
variations, the result is likely to be trivial.
Before concluding this part, it will be well to say something about the output stage which is controlled by the electronic switch. The arrangement referred to earlier, which was used for some experimental tests, is shown in Fig. 5. The transistors Tr_{1} are the output transistors of the two signal channels, and they are switched by $T r_{2}$ which have square waves applied in opposite phase to their bases; when $T r_{2 a}$ conducts $T r_{2 b}$ is cut off and vice versa.
When a $T r_{2}$ is cut off the $T r_{1}$ to which it is connected operates as a normal amplifier with collector load R_{c} and emitter resistor R_{E}. When a $T r_{2}$ is conductive it drains sufficient current through R_{E} to cut off the $T r_{1}$ to which it is connected. $T r_{1 a}$ and $T r_{1 b}$ have a common load resistor R_{c} and in this way the signals from the two channels are alternatively routed to the oscilloscope.

The oscilloscope input capacitance is about 30 pF and 1 ft of coaxial cable adds 20 pF . With 5 pF for strays, the total capacitance is 55 pF . If R_{c} is 330Ω, then at 5 MHz , the response is $-20 \log \left[1+\omega^{2} C^{2} R^{2}\right]$

$$
=-10 \log \left[1+0.57^{2}\right]=-1.22 \mathrm{~dB}
$$

At 10 MHz , it is -3.61 dB . This is very reasonable as a starting point.

If $R_{E}=R_{C}$ the gain will be unity, or nearly so.

With a minimum supply of 10.5 V , maximum output demands that $V_{C E}$ be one-half of the supply voltage and so $I_{C}=5.25 /$ $0.66=7.95 \mathrm{~mA}$. The emitter is then 2.625 V above earth and the base about 0.65 V higher, or about 3.3 V . The maximum signal output will then approach 5.2 V p-p. The collector dissipation will be 5.25×7.95 $=41.8 \mathrm{~mW}$. Each transistor Tr_{1} operates for only 50% of the time, however, so each has a mean current of 4 mA and a mean dissipation of 21 mW in round figures.
Experimentally, it was found unnecessary to operate at quite such a high current and the decision was made to set V_{B} at 2.7 V ,

Fig. 5. This diagram shows the two output stages Tr_{1} of the two signal channels. These are turned on and off alternately by transistors Tr_{2} which are in turn driven on and off by push-pull square waves on their bases.
making $V_{E}=2.05 \mathrm{~V}$, and $I_{C}=6.21 \mathrm{~mA}$. Consequently, $V_{C E}=10.5-4.1=6.4 \mathrm{~V}$ and the dissipation is 39.9 mW . With $V_{c c}=$ 13.5 V , if V_{B} is unaltered the current is unchanged and so $V_{C E}$ rises by 3 V to 9.4 V and the dissipation to 58.4 mW . The maximum mean dissipation is thus $29 \cdot 2 \mathrm{~mW}$.

Typically, the thermal resistance is $0.5^{\circ} \mathrm{C} /$ mW , and $V_{B E}$ changes by $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Thus $V_{B E}$ falls by $1 \mathrm{mV} / \mathrm{mW}$ for a constant ambient temperature. The change of mean dissipation with $V_{c c}$ is $29.2-21=8.2 \mathrm{~mW}$ and so $V_{B E}$ decreases by 8.2 mV when $V_{c c}$ is at its maximum, and V_{E} rises by the same amount and $V_{C E}$ drops by twice this, or 16.4 mV . The current rise is $0.0082 / 0.33=$ 0.0249 mA . At $V_{c c}=13.5 \mathrm{~V}$, therefore, $I_{C}=$ 6.235 mA and $V_{c E}^{c c}=9.4-0.0164=9.384 \mathrm{~V}$, making $P_{c}=58.5 \mathrm{~mW}$. The change is quite negligible.

The normal output is 1 V p-p maximum. It is desirable to design for twice this to ensure a factor of safety; this is $1 \mathrm{~V}_{\mathrm{p}}$. The base of $T r_{1}$ swings from 1.7 V to 3.7 V with respect to earth, since the bias is set at 2.7 V . To cut-off $T r_{1}$, therefore, $T r_{2}$ must draw sufficient current through R_{E} to bring the emitter of $T r_{1}$ at least 3.7 V above earth. The current must thus be at least $3 \cdot 7 / 0 \cdot 33=11.2 \mathrm{~mA}$. The BC 107 transistor has a $V_{E B}$ rating of 6 V maximum. Thus, V_{E} must not exceed $6+1 \cdot 7=7.7 \mathrm{~V}$ and so $I_{c 2}$ must be under $7 \cdot 7 / 0 \cdot 33=23 \cdot 3 \mathrm{~mA}$.

If $T r_{2}$ is saturated with a high supply voltage (13.5 V), $V_{C E 2} \approx 0.2 \mathrm{~V}$, and the total resistance must be greater than $13 \cdot 3$ / $23.3=0.57 \mathrm{k} \Omega$. A resistance of more than $570-330=240 \Omega$ must be included in the collector circuit to limit the current. If the current is to exceed 11.2 mA on low supply voltage $(10.5 \mathrm{~V})$, the resistance must not be greater than $10 \cdot 3 / 11.2=916 \Omega$, so the collector resistance must be under $916-330$ $=586 \Omega$. This assumes that the base current is negligible, which may not be true under saturated conditions. We thus see that the collector resistance of Tr_{2} must lie between 240Ω and 586Ω, and 470Ω would seem a suitable choice.

With a conventional bistable driving Tr_{2} at its base, the bistable output will vary from

Fig. 6. The circuit of Fig. 5 redrawn with component values and protective resistors in the base and collector circuits of the switching transistors.
about 0.2 V to perhaps 2 V below $\boldsymbol{V}_{c c}$. It may be less than this, but taking this figure, the maximum will be 11.5 V . The emitter voltage of Tr_{2} will be at least 3.7 V , so the effective base-emitter drive will be $11.5-$ $3.7=4.8 \mathrm{~V}$. If we arbitrarily limit the base current to 0.5 mA , a series resistor of $9.6 \mathrm{k} \Omega$ $\approx 10 \mathrm{k} \Omega$ must be placed in series with the base of $T r_{2}$. The resistor can, in fact, be a little less than this because the above figure includes the output resistance of the bistable which is likely to be $1.5-2.5 \mathrm{k} \Omega$.

The output stages and their switching transistors are shown in Fig. 6 with the above calculated circuit values. A final decision, of course, depends on a trial. We might find, for example, that $10 \mathrm{k} \Omega$ base resistors make the switching speed too low and we may have to think again.

So far the supply voltage has been considered but little. It is, however, obvious that with the low signal voltage no high voltage supply is needed. The output stage could, in fact, be designed for a 6-V supply. As will appear later, the amplifier really demands more and the decision was made quite early to adopt a nominal 12 V supply. It was desired to avoid a stabilized supply and so a tolerance of $\pm 1.5 \mathrm{~V}$ on the supply was allowed. It was thought that this would be sufficient to cover a $\pm 6 \%$ mains voltage and component tolerances.

High-speed cassette duplicator

A tape speed of $1.9 \mathrm{~m} / \mathrm{s}(75 \mathrm{i} . \mathrm{p} . \mathrm{s}$.) is used in a new cassette duplicating system, intended for schools, libraries and the like which is being produced by Ampex. The equipment consists of a master unit which plays back the master tape to five slave duplicating units. Each duplicating unit will handle 45, sixty-minute playing time cassettes, in one hour; all tracks are duplicated at the same time. The sequence of events goes something like this: With a cassette in position a slave unit will carry out the recording in 45 seconds; it then takes 17 seconds to rewind the tape which is done at $3.8 \mathrm{~m} / \mathrm{s}$ ($150 \mathrm{i} . \mathrm{p} . \mathrm{s}$); finally the cassette is ejected and a new one is automatically loaded, accounting for a further five seconds. The system, which has five slave units, will therefore produce five duplicated cassettes every 67 seconds.

The tape transports employ vacuum servo columns. The tape is pulled out of the cassette into vacuum chambers and against the heads. The result is close tape-to-head contact and precise and gentle tape handling despite the very high tape speed. The bandwidth of the electronics is 320 kHz .

Announcements

An S-band air surveillance radar, the AR-15, has been introduced by Plessey which replaces the AR-1 introduced in 1965, of which over 100 (valued at approximately $£ 10 \mathrm{M}$) are now in service throughout the world. The AR-15 is available in both static and air transportable versions. It uses fully variable polarization, low noise parametric amplifiers, tunable magnetrons, digital moving target indication, background averaging techniques for clutter suppression, and multi p.r.f. integration for best target response.

Ericsson Marine, the newly formed marine communications department of the Ericsson Group, has set up a marine training school for ships' radio officers at the Norway Trade Centre in Pall Mall London. The first three-week course, for Cunard officers, began on 5th July. Initially, courses will be confined to experienced ships' radio officers and electronic technicians to familiarize them with the company's équipment.

A new collective call sign, GZXV, has been allocated to Ericsson Marine. It will be principally used to facilitate 'all ships' calls in the operation of the Ericsson Marine service to shipowners.

A course of eight evening lectures on video recording systems starts at Norwood Technical College, Knight's Hill, London, SE27. OTX. On 19th October. Fee $£ 2$.

The Service Division of Marconi Instruments Ltd has been appointed as an approved repair and calibration centre for the Salford Electrical Instruments range of multirange test instruments. Both companies are in the GEC Group.
Eight of Canada's major civil airports are to have Marconi 'bright' radar displays, type S3006, incorporated into their air traffic control systems. The value of the order is in excess of $£ 100,000$.

The Carrier Corporation, of California, has announced an agreement in principle for the acquisition of Reliance Controls Ltd, of Swindon, Wiltshire, formed in the 1930s. Bowmar Instrument Corp., of Fort Wayne, Indiana. at present own 55\% of the Reliance share capital and Booker McConnell Ltd of London, 45%. The transaction will involve approximately $£ 0.25 \mathrm{M}$.

Hamlin Electronics Inc., reed switch manufacturers of Wisconsin, U.S.A., have acquired Inter-Market Services Ltd, and re-formed it as Hamlin Electronics Ltd. The new company will market the complete range of Hamlin reed switches and power packs in the U.K. and Scandinavia, as did Inter-Market Services.

Servicing of test gear of all types is offered by a new service introduced by S. C. Murison, 9 Leas Road, Warlingham, Surrey CR3 9LN. (Tel.: 01-820 3830.)

Pye Telecommunications Ltd has appointed the Hallicrafters Company, of Illinois, exclusive U.S.A. distributor of its land mobile radio equipment.

UK Solenoid LAd, rotary switch and contractor manufacturers, are moving from Hungerford, Berkshire, to 115 London Road, Newbury, Berkshire. (Tel: Newbury 5991.)
T.E.M. Sales Ltd, of Crawley, Sussex, have been appointed distributors for R.E.M. Inc., of California.

Ten Practical F.E.T. Source-follower Circuits

by J. O. M. Jenkins*, m.Sc.

Virtually every source-follower configuration can be covered from ten basic circuits, and by considering the related parameters a designer can obtain consistent performance despite inherent device variations. It is true to say that insufficient knowledge and a paucity of written matter has rather inhibited the use of f.e.ts in circuit design. This is regrettable, as the high input impedance and low output impedance of the field-effect device suits it to impedance transformations with bipolars.
There are two basic connections for source followers-with gate feedback and without gate feedback, and for simplicity these are taken separately.

Biasing without feedback

1. A self-bias arrangement in which the voltage drop across R_{S} biases the gate through R_{G} Since no gate-to-source voltage ($V_{G S}$) can be developed when $I_{D}=0$, the self-bias load line will pass through the origin. Using the 2 N 4339 as a standard for this and the other configurations. the quiescent drain current lies between 0.25 and 0.55 mA when $R_{S}=1 \mathrm{k}_{\Omega}$. Hence the quiescent output voltage lies between 0.25 and 0.55 V .
2. A similar arrangement to the above with a negative supply ($-V_{S S}$) added. This provides an advantage over the first arrangement: namely that the signal voltage can now swing negatively to approximately $-V_{S S}$. The two bias lines shown are for $V_{S S}=-15 \mathrm{~V}$ and $V_{S S}=-1.6 \mathrm{~V}$. In the first case the quiescent output voltage lies between +0.18 and +0.74 V ; in the second between +0.3 V and +0.82 V .
3. Here a current source improves drain-current $\left(I_{D}\right)$ stability, hence the bias load line will be horizontal when $I_{D}=$ constant current. For I_{n} $=0.3 \mathrm{~mA}$ the quiescent output voltage is between +0.15 and 0.7 V .
4. This is similar to 3 , except that the current source is now f.e.t. A which allows constant current, the value of which corresponds to a $V_{G S}=0$ volts. It will be seen that f.e.t. A loses current linearity as its $V_{D S}$ approaches zero, so that this technique can only be used to bias f.e.ts which have a significantly higher pinch-off voltage than the f.e.t. forming the current source.
5. By using a pair of matched f.e.ts, one as a source follower and the other as a current source, the operating drain current ($I_{D Q}$) is set by $R_{S 2}$. In this case ($1.5 \mathrm{k}_{\Omega}$) the drain current can be in the range 0.2 to 0.42 mA (as shown by the intercepts). However, as the f.e.ts are matched $V_{G S I}$ $=V_{G S 2}$; and since $I_{D I}=I_{D 2}$, by making $R_{S I}=R_{S 2}$ the voltage across A-B will equal the voltage across C-D, which in this case is zero. This arrangement exhibits zero or near-zero offset, and if the f.e.ts are temperature matched at the operating I_{D}, the arrangement will provide zero or near-zero temperature drift.

Biasing with feedback

The following circuits appear in the same sequence as before for comparative purposes. In each case R_{G} is returned to a point such that almost unity feedback is provided to the lower end of R_{G} If the value of R_{S} is selected so that R_{G} is returned to zero d.c. volts (except for 6), then the input/output offset is zero. R_{I} is usually much larger than R_{S}.
6. This arrangement is suitable for a.c.-coupled circuits, and with $R_{S} \ll R_{I}$ provides near unity feedback. The bias load line is set by the value of R_{S}. The output load line, however, is the sum of $R_{S}+R_{I}$. The feedback voltage ($V_{F B}$) at the junction of R_{S} / R_{I} is determined by the intercept of this $R_{S}+R_{I}$ load line with the $V_{G S}$ axis. Quiescent output voltage is $V_{F B}-V_{G S}$.
7. Here R_{S} can be trimmed to provide zero offset. Reference to the graph shows that R_{S} will be between $670_{S 2}$ and $2.5 \mathrm{k}_{\Omega 2}$ (and very much less than R_{l}). The source load line intercepts the $V_{G S}$ axis at $V_{S S}=-V_{G G}=-15 \mathrm{~V}$. Note that this load line is not perfectly flat; it has a slope of $-1 / 50 \mathrm{k}$ because the current source is not perfect, having a finite impedance however high.
8. Here R_{l} is replaced by the ideal current source, and as this has theoretical infinite impedance, the load line is now perfectly flat.
9. By taking the output from the top of R_{S}, output impedance is reduced, and R_{S} must be trimmed if the circuit is to operate effectively. The constant-current load line ($I_{S}=0.3 \mathrm{~mA}$) and the effect of a $1 \mathrm{k}_{S 2}$ source resistor is shown to provide an offset voltage between 0.2 and 0.75 V . The intercept of the R_{S} load line and the $V_{G S}$ axis sets the voltage ($V_{F B}$) at the junction of R_{S} and the current source. For $R_{S}=1 \mathrm{k}_{\Omega}$, $V_{F B}$ will lie between -0.1 V and -0.45 V . Since $V_{F B}$ appears at the gate, it must be zero if the d.c. input impedance of the circuit is to be preserved. This can be done by trimming R_{S} (dotted line) the biasing, then reverting to that of circuit 8 .
10. This is identical to circuit 5 except that feedback is added to raise the input impedance,

[^2]

Summary

Circuits 1,4 and 6 can accept only positive and small negative signals, as the source resistors are to ground. All other circuits can handle large positive and negative signals inhibited only by the available supply voltages and device breakdown voltage. Circuits $3,4,5,8,9$ and 10 employ current sources to improve I_{D} stability and improve gain. Of these 4,5 and 10 employ f.e.ts as current sources. Circuits 5, 7 and 10 employ a source resistor, R_{S}, which may be selected to provide a quiescent output voltage equal to zero. Circuits 5 and 10 use matched f.e.ts. R_{S} is selected to set I_{D} near the specified low-drift operating current. The input-output offset voltage is zero.

Simple Crosshatch and Dot Generator

A generator developed from the circuit published in the September 1968 issue which is cheap enough to install permanently in a colour television receiver

by A. W. Critchley*

The crosshatch pattern of white lines has proved to be the best type of pattern to carry out the convergence adjustments on a television receiver, although white dots are sometimes used. Either pattern is possible with the circuit described by means of a changeover switch or link.

The generator has four disadvantages as can be expected with such a simple device: the receiver has to be synchronized by a transmitted programme; the pattern position on the screen depends on the type of pulses feeding the generator; the pattern can occur during some of the
*Television Equipment Division of E.M.I. Electronics Ltd.
flyback time causing a foldover; and the horizontal lines may not be evenly spaced. The latter three disadvantages are not very serious provided that the pattern is stationary and the lines are fewer in number than the normal crosshatch pattern of some twenty-six in each direction.

Waveforms

The waveform required from the generator consists of two independent sets of pulses representing the vertical and horizontal lines of the crosshatch. Vertical lines are some 200 ns wide with a repetition every $5 u$ s or so, but occurring only during the active, or scanning, line time, of the pic-
ture which is approximately $52 u$ s for 625 line systems). Horizontal line pulses last for one such active line and recur once every thirty-two lines or so, also only during the active line-times of the picture. The repetition rates of these horizontal pattern lines are not important provided that they occur only during the picture time and they are steady. The actual number of crosshatch lines is continuously variable in both directions over a three to one range.

Vertical lines: These are generated by a multivibrator which is permitted to run only during the active lines of the picture

Fig. 1. Block diagram of the crosshatch generator.
as both line and field blanking are applied to prevent any pattern during flyback time. This blanking depends on the widths of the timebase pulses used and varies from receiver to receiver. It is likely that the blanking will not be perfect and some foldover of the pattern is to be expected depending on the receiver.

Horizontal lines: The basic oscillator is a multivibrator which is driven by field flyback pulses. The output square wave is differentiated to form a pulse of about 64 is duration and is used to open a gate which is also fed with narrow linefrequency pulses. The output of this gate will consist of one narrow line pulse for every period of oscillation which is given the timing of the trailing-edge of the line-flyback driving pulse by differentiation before the gate. This timing is also the start of the active-line-as near as can be obtained by simple means. An R-S bistable is triggered by this single pulse and is thereby turned 'on' at the start of the active line. The 'off' input of the bistable is fed with continuous line driving pulses which start at the end of the active line and finish before the 'on' pulse. The net result is an output from the bistable of one active line once per period of oscillation of the multivibrator.

The effect of varying the oscillator frequency is to cause a 'shuffling' of the horizontal lines as the optimum frequencies are passed through with a relatively
smooth variation in the number of horizontal lines obtained. These lines are always of the correct length.

Circuit description (Fig. 1)

C_{1}, D_{1}, D_{2} and R_{1} form an excess-voltage protection circuit for the negative-going line-scan input pulses. Integrated circuit 1a amplifies and clips this signal to give clean rectangular positive-going pulses into i.c. lb. This pulse is also fed to an attentuating network consisting of R_{3} and R_{4} which together form one timing resistor for the vertical line multivibrator i.c. 3 a and 3 c .
R_{3} and R_{4} are virtually in parallel when the input to the network is low during the picture time and the multivibrator then oscillates normally. When the input from i.c. 1a is high the multivator is prevented from oscillating because the potential at the input of i.c. 3 a is such as to turn it off. R_{3} is really an isolating resistor to remove the shunting effect of the low-impedance output of i.c. la from the timing resistor R_{4}, but since the parallel combination of R_{3} and R_{4} is low, then the value of C_{2} is correspondingly higher than C_{3}. By this means the oscillator always has the same conditions at the start of every picture line. C_{2} and C_{3}, with R_{5} and R_{16} form the rest of the multivibrator.

The output from i.c. 16 is also used to help to control the starting and stopping of the multivibrator and in fact improves the

Fig. 2 (Upper) Photograph of the printed circuit board shown actual size (101 mm in length). (Below) Drawing of the component side of the board.
linearity of the first space in the crosshatch'pattern. There is a feed of field scan pulses to i.c. 3 a to inhibit the multivibrator during the field flyback time.
The field-scan negative-going pulse is used to drive the horizontal line multivibrator i.c. le and 2 c in the same manner as for the vertical oscillator except that the value of C_{8} has to be kept low because of its physical size. Therefore the input resistor is replaced by a diode to provide automatic isolation of the timing resistor from the gate output.

Both the multivibrators generate approximately square waves and both of them feed differentiating networks. The vertical line network of C_{4} and R_{6} provides a positive-going pulse of some 200 ns width at the input to i.c. 3 b - the negativegoing pulses being ignored by this gate because they merely turn the gate 'on' harder than it already is whereas the positive-edges turn it 'off' as required.

A similar network of C_{10} and R_{14} with R_{17} generates the positive-going $64 \mu \mathrm{~s}$ pulse at the input to i.c. 2 a. The other input to i.c. 2 a is the positive-going pulse with the timing of the line-scan drive pulse trailing-edge, which is obtained by yet another differentiating network C_{6} and R_{9}.

The negative-going output of i.c. 2 a , which is one narrow line pulse for every cycle of oscillation of the multivibrator, feeds the bistable input of i.c. 2 d . The other side of the bistable is fed from i.c. 1 b with cleaned-up negative-going line-scan flyback pulses. Integrated circuit 2 d provides the output of positive-going single active lines, or horizontal lines of the pattern, and these are combined with the vertical lines in i.c. 3d, via i.c. 1f, to form a crosshatch of 4 V peak-to-peak positivegoing pulses at i.c. 3d. output. To enable a single-pole switch to be used-or a simple link-for switching to dots-the invertor If has to be used in the feed to i.c. 3d and its inptat has a low value resistor R, to earth so that when dots are selected the input of i.c. If is virtually earthed and so its output is 'high' and permits i.c. 3d to act as an invertor for the dot signal from i.c. 3b.

The simple multivibrators used in this generator have the very poor stability factor of some 30% change in the period of oscillation per volt of supply.

Construction and testing

Construction should present little difficulty if the printed circuit board illustrated in Fig. 2, is employed. Normally the amount of testing required for such a unit is very small especially with integrated circuit construction since the unit either works or it doesn't. However in the case of this crosshatch generator the supply arrangement and the various connections need to be optimized.
The value of R_{15}, the zener series resistance should be chosen to allow some 20 mA through the zener diode whilst the complete generator takes 40 mA making a total of 60 mA at 5.1 V .

Next the line pulse resistor R_{1} should be chosen to give between 2.5 and 4 V
peak-to-peak at C_{1}. When this is so there should be an output from the generator. with the switch set to crosshatch. which can be fed into the luminance amplifier. R_{10} can then be adjusted to give a suitable number of vertical lines.

For optimum results on the receiver, the colour should be turned off. the brightness increased and the contrast decreased. so that the receiver remains synchronized and the crosshatch appears on top of the pieture.

For the best results the output signal should be fed into the luminance amplifier after the detector output amplifier stage. where the video is positive-going for white. R_{8} determines the crosshatch amplitude. Feeding into the amplifier before the sync. separator does cause a slight problem with vertical sync. if the horizontal lines occur just before the field sync. pulse. However adjustment of the number of horizontal lines should prevent trouble in which the receiver 'chases its own tail'.

The field input resistor R_{10} is chosen to give a peak-to-peak reading of 2.5 to 4 V at C_{7}. The polarity of C_{7} depends on the inpul source. If the line \& field pulse sources do not exceed the i.c. supply voltages--at any time--then the protection diodes are not necessary and should be omitted. This should be observed by means of an oscilloscope.

When the field input pulses are correct the output should contain horizontal lines as well as vertical lines, but they will probably be jittering about and R_{18} should therefore be adjusted. On turning this control clockwise the lines will be observed to get wider apart, and fewer in number, in reasonably smooth steps with certain positions of vertical jitter. It should be a simple matter to find several positions where the pattern is stationary.
R_{17} can now be set so that the horizontal lines are not of double thickness, but at the same time none are omitted. The optimum setting may vary slightly with different settings of R_{18}. The setting of R_{16} may also slightly affect the jitter.

If the generator output resistor R_{8} is sufficiently high then the removal of the generator's supply should cause no noticeable effects on the normal picture in which case this is a simple means of switching the crosshatch pattern off. Otherwise the output feed will have to be removed instead of switching off the supply.

The input and output connections may be made with ordinary insulated wire as all feeds are of relatively low impedance. but care should be taken with the run of the output lead due to stray capacitance reducing the amplitude of the vertical

Fig. 3. The prototype.
lines. If this happens then C^{+}should be increased in value slightly.

Appendix
 Operation of crosshatch generator with B.R.C. $\mathbf{3 0 0 0}$ series colour receivers

R_{1} should be $3.3 \mathrm{k} \Omega, R_{10}$ should be $8.2 \mathrm{k} \Omega, R_{8}$ should be $12 \mathrm{k} \Omega, R_{15}$ the zener resistor, is $470 \Omega, 3 W$-stood away from the board and C_{5} should be 150 nF .
Line pulse: Chrominance board, Junction of C_{337}, R_{354} and R_{362}. Solder the lead to the end of R_{362} nearest the back of the receiver.
Field pulse: Field Scan board. Solder the wire to the top pin of the R_{+27} (field hold potentiometer).
Output: I.F. Board. L_{117} / R_{127}. Solder the wire to the end of this combination nearest to the front of the receiver (above $V T_{105}$)-keep the length fairly short.
Earth: Convenient point on the i.f. board. $+30 V$. P.U. board. Solder the lead to the 50 resistor on the top of the lower boardthe end which goes to the positive end, of W_{621}. This lead should be taken via a suitably placed on/off switch to the generator.

Method of operation

Turn off the colour, turn down the contrast, and turn up the brightness a little. The potentionmeters should be adjusted for optimum results. Note that the horizontal lines upset the field timebase at certain settings because the crosshatch signal is put into the video chain before the sync. separator and the field timebase tends to chase 'its own tail'.

The Line and Field pulses should be 2.5 to 3.5 V p.p. at the inputs to the i.c's when the generator is switched on and about 2 V when off.

Both these waveforms are fairly wide and thus there is no visible fold-over or flyback.

The pattern is still visible under notransmission conditions but the video noise masks the crosshatch and renders it unusable.

A worthwhile modification to the receiver would be to replace R_{423} on the field scan board by a 470Ω potentiometer (from earth) with a $1.8 \mathrm{k} \Omega$ resistor in series. The potentiometer slider is then the field output point. The voltage at this point should be set to be less than $5 \vee$ p.p. The input capacitor and diodes on the generator field input can be deleted if this is done. The series resistor should be retained but changed in value to 220 ? or so, to protect the i.c.-otherwise D_{5} could be retained instead.

A further improvement would be a series-regulator in the supply to the generator instead of the zener arrangement in order to reduce the supply impedance and thereby eliminate the slight tilting of the vertical lines at the right-hand-side of the picture which occurs when the zener supply is used. Each vertical section bet ween horizontal lines is tilted by about a line thickness and whilst the effect does not affect the observation of convergence errors, the pattern does not look good.

Square-root Circuit

Using dual silicon-gate m.o.s.f.e.t. to give 1% accuracy

B. L. Hart*, B.Sc., M.I.E.R.E., M.I.E.E.E., and A. Cheetham*, M.Sc., M.I.E.R.E.

There are various ways of achieving the square-root operation-for instance the biased diode and multiplier techniques. \dagger However, a simple low-cost approach is made possible by the capability to make an f.e.t with an accurate square-law transfer characteristic, and of making pairs with their electrical parameters almost identical.

Consider the circuit arrangement shown below, in which the direct-coupled differential amplifier has a d.c. and lowfrequency small-signal voltage gain A_{v}, and $T r_{1}$ constitutes two matched p-channel enhancement-mode devices of a dual m.o.s.f.e.t. unit. One of the devices - $T r_{1 a}$ is in the feedback network of the amplifier and passes the input current I; the other$T r_{1 b}$-is connected in series with the output of the amplifier and passes a small constant current derived from the interconnection of the integrated bipolar transistor pair Tr_{2}. Transistor $\operatorname{Tr}_{1 b}$ cancels out part of the amplifier output voltage.

As $T r_{1}$ operate with drain-gate straps, each has a voltage-current relationship of the form

$$
I_{S D}=\Psi\left(V_{S G}-V_{T}\right)^{2}
$$

where $I_{S D}$ is the source-drain current, $V_{S G}$ is the source-gate voltage, V_{T} is the threshold voltage, and Ψ is the device constant (a function of material type, doping, geometry). (The order of the subscripts for I, V corresponds to positive values of these quantities for a p-channel enhancement device.).

For simplicity in a first-order approximation assume that $T r_{1}$ have identical V_{T} 's and identical values of Ψ. Assuming $A_{v} \gg 1$ and ignoring the input current, feedback action ensures that

$$
\begin{align*}
& I_{S D 1}=I=V_{I} / R=\Psi\left(V_{S G 1}-V_{T}\right)^{2} \tag{1}\\
& \text { If } \sqrt{I_{S D 2} / \Psi} \ll V_{T} \text { then } V_{S G 2} \approx V_{T} \tag{2}
\end{align*}
$$

But,

$$
\begin{equation*}
V_{O}=\left(V_{S G 1}-V_{S G 2}\right) \tag{3}
\end{equation*}
$$

Using equations (1) and (2) in (3)

$$
\begin{equation*}
V_{O}=\sqrt{V_{1} / \Psi R} \tag{4}
\end{equation*}
$$

For the special case $\Psi R=1$ volt,

$$
\begin{equation*}
V_{o}=\sqrt{V_{I}} \tag{5}
\end{equation*}
$$

*North East London Polytechnic
\dagger C. A. A. Wass. "An introduction to clectronic analogue computers". Pergamon: 1956

The successful practical realization of equation (4) depends on the choice of $T r_{1}$.
Now for $V_{I} \approx 0$, the amplifier output voltage is approximately V_{T}; thus for maximum range in V_{o} m.o.s.f.e.ts with a low V_{T} are required. This suggests the use of devices made by the silicon gate process. Preliminary measurements indicated a V_{T} $<1.5 \mathrm{~V}$ and a V_{T} matching of a few millivolts for the two devices of the recent silicon-gate dual m.os.f.e.t type ME1202 (Marconi-Elliott Microelectronics) so this was used. The amplifier can be any good quality operational amplifier: a Burr-Brown type 3057/01 was used. Values for $V_{E E}$ and R_{B} were chosen so that $T r_{2}$ (SL301-A, Plessey) in the "current mirror" configuration supply a current $I_{S D 2} \approx V_{E} / R_{E} \approx 5 \mu \mathrm{~A}$.

A convenient way of operating the circuit, and the one used for the tests reported here, is to set V_{I} at a point $V_{I}{ }^{*}$ in the middle of the desired input operating range, then adjust R so that a precision digital voltmeter indicates $V_{O}=V_{o}^{*}=\sqrt{V_{I}^{*}}$. This ensures $\Psi R=1$ in equation (4) and hence the validity of equation (5) at the "set" point

A selection of the results obtained with one of the units is given in the table, in which the fourth column records the error ε calculated from

$$
\varepsilon=\left|\left(V_{O}-\sqrt{V_{I}}\right) / \sqrt{V_{I}}\right| \times 100 \% .
$$

To obtain the readings shown the circuit was set up at $-V_{I}=-4000 \mathrm{~V}$. For a $20-\mathrm{V}$ input range the maximum departure from

Using a m.os.f.fe.t. with an accurate squarelaw characteristic in a feedback loop is the basis of this simple square-root circuit.
square-root law behaviour is less than 1%. Other readings (not given) show this to be true also when the circuit is set up at $-V_{i}=-9.000 \mathrm{~V}$.

Test results showing accuracy of square-root circuit

$-V_{1}$	$\sqrt{V_{1}}$	V_{o}	ε
-0.5000	0.7071	0.6960	1.6%
-0.7500	0.8660	0.8692	\uparrow
-1.000	1.000	1.009	
-2.000	1.414	1.424	$<1 \%$
-4.000	2.000	2.000	
-9.000	3.000	2.998	
-1600	4.000	4.009	\downarrow
-20.00	4.472	4.492	1.4%
-2500	5.000	5.073	

'Set-up point

Throughout V_{I} has been taken as a positive quantity-the circuit extracts the square root of the magnitude of an applied negative signal. To find the root of the magnitude of a positive voltage the circuit must be preceded with a unity-gain inverting amplifier.

Correction

Audio sweep generator

F. H. Trist has asked us to make some additions to the circuit of his suggested sweep generator (page 337 , July issue). In the v.c.o., a $10-\mathrm{k} \Omega$ resistor should be connected at the junction of the $10-\mu \mathrm{F}$ coupling capacitor with the following resistor and to earth. In the output level amplifier, a $470-\Omega$ resistor should be connected between the negative input of the i.c. and earth. The three level-control resistors in the feedback loop should be reduced by three orders of magnitude. In the frequency-to-voltage converter, a $10-\mathrm{k} \Omega$ resistor should be connected between the negative input of the second i.c. and earth. In this circuit, we apologise for showing the X -output incorrectly connected. It should be taken from the wiper of switch S_{e}, and the common connection of the capacitors earthed.

News of the Month

Scientific fellowship for authors

A scientific fellowship, worth over $£ 750$, is to be awarded by the Butterworth Group to commemorate 25 years of scientific publishing. The Fellowship, to be presented annually from October, 1972, is designed to allow would-be authors to take time off from their work to write a book. By this means, each year, Butterworths hope to encourage a work on some aspect of a physical or biological science, or its application. Proposals will be judged both on academic merit and relevance to current research.

Candidates should work in a British university or institute or in an industrial laboratory of similar standing. Depending on the amount of work involved, the fellowship will be tenable for a period of three to twelve months, and during this time advances against royalties will be made to cover the loss of normal income. In addition an award of $£ 750$ will be made on acceptance of the manuscript.

The fellowship will be awarded by Butterworth's Scientific Advisory Board whose members are: Professor Sir Harold Thompson, C.B.E., F.R.S., (Department of Physical Chemistry, University of Oxford); Professor D. H. R. Barton, F.R.S., (Department of Chemistry, Imperial College, London); J. A. Charles
(Department of Physics, University of Bristol) and Professor J: L. Harley, F.R.S., (Department of Forestry Science, University of Oxford).

Applications must be submitted by 1st October, 1971 and must be backed by a head of department. It is expected that the fellow will be selected in the same month. Applicants should write for more information and entry forms to The Scientific Publisher, Butterworth Group, 88 Kingsway, London WC2B 6AB.

Atlantic air traffic control by satellite

Further steps towards using satellite communication links for air traffic control are being taken with the award of a study contract to the Marconi Company by the Department of Trade and Industry. Under the contract Marconi's Radio and Space Communications Division will prepare a detailed analysis of the ground-based parts of a possible aeronautical satellite system for the North Atlantic. This will entail a detailed study of the ground equipment
necessary to relay several different types of information between aircraft and ground via satellite and to determine the best way of putting the study into practice.

Aircraft over the North Atlantic are under the control of oceanic air traffic control centres and the present system is under the jurisdiction of several centres including Gander in Newfoundland, Prestwick in Scotland, New York and Santa Maria (Azores). Aircraft report to these stations using normal h.f. radio, to give position information derived from their own on-board navigational instruments.

Improvements to the system are made continuously to cope with the demand of increasing transatlantic air traffic and it is in anticipation of the time when current methods are no longer effective, that consideration of satellite systems is being undertaken on both sides of the Atlantic.

Computer telegram system

The Post Office has placed a $£ 3.25 \mathrm{M}$ order with Pye/T.M.C. for a computercontrolled telegram routing system which will replace electro-mechanical systems in 1973 at Cardinal House, Farringdon St, London. It will be the largest system of its type in the world and will be controlling the receipt and dispatch of the 21 million international telegrams handled in Britain every year.

Initially the equipment will receive telegrams for transmission abroad from international area offices throughout the country and will perform all the necessary switching and routing automatically. The same process will apply to telegrams received from abroad which will be automatically routed to the appropriate area office. Eventually the system will convert addresses on incoming telegrams to the telex address (if there is one) so that the message can be immediately sent over the telex network.

Radar at Heathrow

Marconi Radar Systems has received an order from the Ministry of Defence (Aviation Supply), on behalf of the Department of Trade and Industry, to supply a high-power, 50 cm transmitter/receiver to replace radar equipment at Heathrow Airport which has been in service for twelve years. The new transmitter/receiver (type S2020) is a self-contained 500 kW 50 cm equipment designed for use in coherent moving target indication systems and will be installed towards the end of the year. The power amplifier stage is a three-cavity klystron valve, with a typical life of 30,000 hours.

Surveillance system for Southampton docks

An extensive surveillance system is to be installed to provide increased safety to shipping using the port of Southampton. The scheme is being carried out by the British Transport Docks Board. Decca Radar and Marconi Communications Systems have been awarded contracts totalling over $£ 0.25 \mathrm{M}$.

Decca Radar are to equip two unmanned radar stations, at Hythe and Calshot, from which data will be transmitted by microwave link to six 400 mm displays in the operations room at the port communications centre. At Calshot and Hythe the radar stations will consist of 7.6 m scanners mounted at a height of 33 m . Remote control of both stations will be effected by microwave link to the port communications centre. The six displays to be installed by Decca in the operations room will be able to receive data from either unmanned station (two normally being fed from Hythe and four from Calshot). The Decca computerassisted measurement system will be provided for all six displays, and a Deccaspot system will be available on all pictures received from Calshot. The former system uses a small Honeywell computer to enable rapid and accurate measurements to be made of any point, such as a ship's position, relative to any other point on the display. Deccaspot, a method employing a series of bright spots on the display to depict with great accuracy any permanent feature required, will be used to delineate the centre of the navigation channel from Southampton Docks.

Desk-top optical mark reader

Interscan Data Systems (U.K.) Ltd. normally associated with complex and expensive, optical character recognition machines, have announced a new low-cost relatively simple document reader. The new reader-there are two versions-can be operated by a company for as little as $£ 2,000$ per year. Once loaded the reader will continue to operate all day without attention.

The machine, called o.m.r. (optical mark reader) reads characters on special forms and gives an output in computer compatible code. As long as the characters are put in the correct position on the form they can be machine or hand printed.

The reading head, which is made to mechanically scan the rows of characters, consists of two photodiodes which simultaneously read the upper and lower halves of the characters. Only vertical sections of the characters are sensed, horizontal marks being redundant. The reading head also contains two magnetic proximity sensors which provide clock

Submarine cable repeaters being manufactured in an S.T.C. plant under clinical conditions. Repeaters of this sort will be used on a new $£ 22 M$ transatlantic cable (CANTAT-2) which will run from Widemouth Bay in Cornwall to Halifax in Nova Scotia. The 14 MHz coaxial cable will carry 1840 simultaneous telephone conversations: Repeaters will be fitted at intervals of about six nautical miles. S.T.C. have been awarded the contract by the Post Office and it is calculated that the cost is about $\mathrm{f6}$ per circuit per mile.

pulses, when a character is under the reading head, from castellations machined into a piece of metal mounted parallel to the moving reading head.

Document size can vary from $50 \times$ 100 mm to $216 \times 280 \mathrm{~mm}$ and the reading speed is up to 20 characters per second. The makers say that the equipment costs less than a paper tape station to hire and has ten times the throughput. To another piece of equipment the machines electronically look like a Teletype machine and therefore can be easily interfaced with other data processing equipment or the output can be recorded on a casette tape recorder.

Motorists' laser warning system

Scientifica and Cook Electronics are working hard to find new applications for the laser. Recently they described a system, which could be used on small airfields, employing a laser to provide a visible glide path to assist landing aircraft.

A nother idea, and apparently a good one, entailed fitting photocell detectors on the nose of aircraft and connecting them to the aircraft's intercom system. The idea being that the control tower staff could contact an aircraft on the airfield very quickly in an emergency using a modulated laser beam regardless of the channel selected on the aircraft's radio.

An extension of this idea has resulted in photocells being fitted to a motor car, the
cells being connected directly to the a.f. stage of the car's radio so that it is possible to transmit warning messages to motorists by using a diffused laser beam directed down the centre of the carriageway. Trials have shown that this idea works well in practice.

One-plus-one equals party line privacy

One-plus-one is the name given to a new piece of equipment which is to be installed on an experimental basis at 10.000 locations up and down the country by the Post Office. It enables two subscribers to share a line to a telephone exchange with complete privacy and if desired both subscribers can use their telephones at the same time.

A filter is fitted at the point where the line from the exchange divides to go to the individual telephones. One of the telephones operates in the normal manner at audio frequencies and does not require any additional equipment. Two carrier frequencies are used for the second telephone, 40 kHz for send and 64 kHz for receive. Equipment at the exchange and at the subscriber's premises carries out the necessary modulation and demodulation functions. Electronic equipment at the subscriber's end is powered by a small nickel-cadmium battery which is trickle charged over the line from the exchange. The system was designed by G.E.C's Telephone division laboratories at Aycliffe.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Ceramic pickup equalization

Without reflecting on other parts of Mr. Burrows' article in the July issue I am appalled at his ability to read out of context.

His quotation from my book 'Pick-ups: Key to $\mathrm{Hi}-\mathrm{Fi}$ ' is given as a myth about 'electrical loading affecting the mechanical operation' of a pickup.
But the quotation clearly mentions correction by electrical means (via element capacity), of a mechanically accomplished equalization. It has nothing to do with damping mechanical resonances at all. It seems this myth belongs to Mr. Burrows. John Walton,
Windsor,
Berks.
I was interested in the excellent article by Mr. Burrows (July issue) basing the mechanical/electro independence of pickups on low energy conversion. This is the first time that I have seen this direction of approach.

However, it is only fair to point out that hosts of manufacturers other than Leak imply by instruction booklet or text or input circuit design that an approximation to velocity characteristics is achieved by connecting a piezo pickup across the relatively low value load of an R.I.A.A.-equalized input.

Surely the point of the exercise is that all quality amplifiers are deliberately equipped with R.I.A.A. low-level inputs so that the advantage can be taken of the optimum performance at the present state of the art provided by the magnetic cartridge?

The lack of simple solid-state, high resistance inputs prior to the f.e.t. obviously made it necessary for manufacturers to suggest a simple artifice to accommodate the minority of 'lower-fi' piezo users. Since the f.e.t. has become more commonplace and less costly, manufacturers who consider that the piezo cartridge is being treated unfairly are yielding designs with an f.e.t. input solely for piezo cartridges or in addition to the usual R.I.A.A.-equalized input The piezo input is typically $2 \mathrm{M} \Omega$, and with this kind of cartridge mild bass roll-off is not always amiss.

In my judgment it is debatable whether manufacturers would have very much
call for an amplifier with a specifically engineered piezo input possibly requiring adjustment to suit the cartridge used. The hi-fi enthusiast is a magnetic man for various reasons, and now that magnetic species of surprisingly high quality (in terms of the three main parameters of tracking performance, frequency response and crosstalk) are available for a few pounds the man hitherto piezo prone is turning towards electromagnetic energy for this programme source.

Apart from the obvious lack of true velocity coincidence by running a typical piezo across $47 \mathrm{k} \Omega$ into an R.I.A.A. equalized circuit, the major offence is pre-amplifier overload, since this partnership is not uncommonly practised without input attenuation. Bearing in mind the poor overload margin of such pre-amplifiers it is possible that this rates higher in the poor-piezo-quality stakes than lack of absolute equalizing.
Gordon J. King,
Brixham,
Devon.

Transformer phase reversal

I am most grateful to your eminent contributor 'Cathode Ray' for throwing his very considerable professional weight behind the campaign for the truth about the transformer (June p.285). Although, as he explained, he had to argue the matter on paper without practical demonstration, I take it that your readers can and will check the experimental fact as to the phase relations between terminal voltages and currents in primary and secondary for themselves (see circuit); or perhaps not, since during the past seven years of teaching the experimental fact (preceded by two years of teaching orthodox phase reversa!!) I have invariably found that lecturers will argue heatedly for an hour among themselves but when invited to make a five-minute measurement say they haven't got the time.

Electronics is above all (apart from instrument transformers, where on!y the direction of a wattmeter deflection is at stake) the field where phase cannot be fumbled. A power engineer, paralleling two 10 MVA transformers and assuming a
phase reversal in both, will come to no harm, being protected no doubt by the same Divinity which looks after children and drunks. But an audio amplifier designer getting his transformer polarities wrong in a feedback amplifier is going to produce fierce oscillations and a damaged loudspeaker. It would be helpful therefore, if manufacturers of interstage transformers who do mark winding starts and finishes,

If the starts and finishes of the windings are not marked they can be quickly established by measuring the inductance of the two windings in series. The connection giving the larger inductance is that in which the finish of one winding is connected to the start of the other winding.
and some others who don't, would tell us what the phase relations in their transformers are, and if manufacturers of feedback amplifiers using interstage transformers and output transformers would say what phase relations they assumed in designing their amplifiers and getting them to work so very satisfactorily. Victor Mayes,
Gloucester Technical College, Gloucester.

Audio sweep generators

While Mr. F. H. Trist is to be congratulated for answering the long-felt need for an audio sweep generator, we feel that his design (July issue) falls short of engineering requirements on several counts.

1. Sweep frequency range. The $10: 1$ frequency change satisfies only a small proportion of the possible uses; in fact only those for investigating narrow-band filters. A $1,000: 1$ change, from 20 Hz to 20 kHz seems a minimum specification for ampli-
fiers, tone controls and filters, and this sort of range is normally offered by commercial designs.
2. An amplitude accuracy of 1 dB is marginally adequate for transducer measurements, and not good enough for amplifier and filter work.
3. A sweep time of four seconds is only suitable for oscilloscopes with c.r.t. phosphors which most users are unlikely to have.
4. Logarithmic scaling of both frequency and amplitude axes in all graphical representation in audio engineering is normal and necessary. To give one example, it is not possible to differentiate between a 26 dB and a 40 dB notch filter on an oscilloscope, if the system responds linearly to amplitude. (A fast enough sweep time to make the use of a normal oscilloscope possible can be achieved only if the sweep is logarithmic.)

It seems to us that most of the drawbacks in Trist's design result from the wrong choice of oscillator. Any bridge-type oscillator is far too "sensitive" (in the sense that Bode gives the term ${ }^{1}$) to achieve a wide frequency change without unreasonably close matching of components. The design considered demands 5% matching of f.e.t. drain-source resistances for only a 10:1 frequency range, and even then an a.g.c. network is needed to compensate for the varying losses in the bridge. Furthermore this a.g.c. system introduces another time constant into the oscillator, which is too long to allow for amplitude correction during the sweep.

Two alternatives to the bridge oscillator suggest themselves, if only to eliminate component selection and complex settingup procedures (Trist's calibrator alone contains fifteen pre-sets); these are the non sinusoidal oscillator ${ }^{2}$ and the two-integrator loop ${ }^{3}$. A switched Miller integrator, of which Trist's ramp generator is an example, can itself be frequency controlled by another ramp generator, producing a swept triangular wave with its amplitude independent of component matching and fixed only by the reference level of the comparator. Provided this triangular waveform is equilateral, a pure sinusoid can be obtained with a simple function generator. A diode network will produce better than 3% harmonic distortion ${ }^{2}$ and other methods easily better this ${ }^{4}$. Alternatively the two-integrator loop generates sine waves with amplitude fixed by a limiter and tracking errors between the two frequency varying elements produce proportionate errors in frequency only, none in amplitude. Frequency ratios of $1,000: 1$ are easily obtainable, in practice with both the above oscillator types.

We are working on a sweep generator using a two-integrator loop, which we hope to submit for publication shortly. Although our design requires a greater number of i.c. operational amplifiers, it does satisfy requirements 1-4 above namely a $1,000: 1$ sweep range, good amplitude accuracy, fast sweep rate and logarithmic frequency and amplitude axes. We feel therefore that alternative oscillators to the Wien bridge should be considered by those interested in sweep oscillator design.
A. Falla, R. S. Snell, University of Sussex, Brighton.

1. H. W. Bode: Network analysis and feedback amplifier design (p52), D. Van Nostrand, NJ. 1945. 2. P. J. Kindlman: 'Sound synthesis: a flexible modular approach with i.cs', I.E.E.E. Transactions on Audio, Vol. AU-16 no. 4. Dec. 1968.
2. E. F. Good: 'A two-phase low-frequency oscillator', Electronic Engineering, Apr. 19, '57. 4. 'Triangular-to-sine convertor', Electronics, Vol. 38, no. 5, p96.

The author replies:

It was with considerable interest that I read Messrs Falla and Snell's comments on my sweep generator. Before answering each point in turn, may I say that all of them occurred to me (unceasingly!) during design stages.
(1). Perhaps I did not state sufficiently clearly that there are four frequency ranges available at the flick of a switch, thus enabling $10-10^{5} \mathrm{~Hz}$ to be covered. This seems to me to be of greater use than squeezing the entire spectrum into some 4 in of c.r.o. display. I do not consider the range quoted by Falla and Snell as adequate; my ṣystem allows break points to be studied in detail-you don't gaze at the stars whilst tying your shoelace!
(2). It is doubtful whether a linearity of better than 1 dB is necessary in any audio system. In any case, displaying the input to the network under study will reveal where and by how much the amplitude varies during a sweep.
(3). I should point out that:
(a) Only the lowest range is limited to a 4 second sweep.
(b) Ideally, for normal c.r.o. work, a sweep rate in excess of $25 / \mathrm{sec}$. is required, in order to fool the eye. My system would generate garbage at this speed, even if the a.g.c. could respond fast enough, as there is no control over the starting phase of the oscillator. I assume that the two-lag system proposed will control this function, but sweeping at any rate faster than 0.1 of the minimum oscillator frequency will give little indication of response as frequency will change faster than phase.
(4). The prototype contained a logarithmic operator to provide the display timebase; this was of little practical use, due to the non-linearity of the voltage-resistance characteristic of the tuning devices. At the price- $£ 20$ including case-I don't apologize. As my unit does not attempt to process the signal from the observed network, how could it possibly be expected to provide a logarithmic amplitude display? Perhaps the writers would have me compress the signal to the network!

I do not follow the last sentence of (4). Only an antilogarithmic timebase function could permit faster sweep rates at low frequencies; this would diminish the phase problems detailed above; a logarithmic function must accentuate them.

I do not feel that 5% matching of two devices is too much to ask for. Falla and Snell mentioned diode shaping an equilateral triangular waveform to produce a low- 3% is low?-distortion sinusoid. If they were to use the switched Miller
integrator proposed, they would require to match a pair of current defining resistors to better than 5%.

It is simply not true that amplitude correction is not applied during a sweep. The sweep frequency is much lower than the minimum oscillator frequency on each range; while the smoothing time-constant all but eliminates ripple from the oscillator, it is small enough to respond to the rampgenerator frequency-the fundamental frequency at which the amplitude attempts to change. I could scarcely claim a maximum deviation of $\pm 0.5 \mathrm{~dB}$ unless this were so.

Non-linear shaping of a triangular waveform can, by definition, never achieve the low-distortion of the Wien bridge. My instrument produced less than 1% distortion at 10 Hz ; on the upper three ranges no reliable reading could be made using a Marconi distortion factor meter.
F. H. TRist,

Stoke-on-Trent,
Staffs.

Karnaugh map display

Fig. 5 in the article (published in April) showing the 'equivalent' circuit for the ladder network on Fig. 4 demands some clarification. It may have been tempting to suggest that for a 00 -input (Fig. 5(a)) the value of the equivalent series resistor does not matter very much (its value is not mentioned) as the operational amplifier, with this network connected to its inverting input and with the non-inverting input at ground, will have an 0 V -output whatever the input resistance. However, this resistance together with the feedback resistance determines the amplification of the signal applied to the non-inverting input. The right value is $10 / 3 \mathrm{k} \Omega$. In the same way Fig. 5(d) for an 11-input is in error: the fact that no current flows through the two paralleled $10 \mathrm{k} \Omega$ resistors with unloaded ladder doesn't imply that the left hand resistors can be neglected when determining the equivalent circuit; the two remaining $10 \mathrm{k} \Omega$ resistors would give an equivalent resistance of $5 \mathrm{k} \Omega$ whereas in reality it should again become $10 / 3 \mathrm{k} \Omega$.

A first inspection of the ladder network shows that if the terminating resistor had not been returned to ground but instead used to feed the operational amplifier, where it sees a virtual earth, then the two voltage sources feeding the ladder would have seen exactly the same load ($15 \mathrm{k} \Omega$) but this doesn't seem to be a necessary requirement. A second inspection shows

that the terminating resistor could have been dispensed with, even when the ladder output had not been connected to a virtual earth, without upsetting the digital-to-analogue conversion: for an unloaded ladder this would have given a 50% increase in voltage output. The third inspection reveals that two (or three) resistors instead of five (or six) would have done an even better job (Fig.1).

The clamping circuit shown gives considerable voltage loss; if necessary this can be improved upon by replacing the two silicon diodes by one low-voltage zener diode (about 3.3 V). With a 4 V swing even an oscilloscope having an X-sensitivity as low as $1 \mathrm{~cm} /$ volt would still give a readable image. What happens exactly when one doesn't use a clamping network? From Mr. Crank's observations we may infer that only the clock pulse can be responsible for a double image but this is easier to remedy by using an asymmetric clock signal (small ON/OFF ratio); all other waveform distortions of the type shown will cause some of the 16 centre positions of the Karnaugh map to be shifted only slightly from 'an 'ideal' orthogonal raster in a reproducible way without provoking a double image. As these shifts are very small their effect will hardly be noticeable. A clamping network is therefore unnecessary!

The output swing being much larger now than in the original version the two operational amplifiers are redundant and the output to drive the 'scope can be taken direct from the digital-to-analogue converter. This results in considerable savings as the major part of the power supply can be dispensed with as well.

Having now only 5 or 6 V available for driving the phase-shift oscillator, its output amplitude is reduced. The two output resistances may thus have to be reduced as well. The larger resistance is required at the collector output and it is therefore this output upon which the $1 / 0$ switch should act in order to minimize the effect of the switching action upon the X -amplitude. It is also preferable to connect the switching transistor in the "inverted mode" in series with a capacitor.

The total savings are impressive: no operational amplifiers instead of two; one battery supply instead of three; a one-pole switch instead of a three-pole one; one electrolytic instead of three; no need for diode/resistor clamping; two transistors instead of four.

The final conclusion is that, without doing any difficult exercise and while retaining some of Mr. Crank's ideas and statements, his simplified logic display aid could have been further simplified.
G. J. NAAIJER,

Limeil-Brevannes,
France.

The author replies:

Perhaps Mr. Naaijer misunderstood the purpose of my equivalent circuits for the ladder networks. The object was to provide a simple explanation of how the square wave outputs of the counter became a stair-
case and to have considered the operational amplifier as well would have only confused the issue. If in my quest for simplicity I have offended the purists I apologize. Perhaps if the offending diagram had been labelled 'simplified circuit' instead of equivalent circuit (with all that this implies), the confusion would not have arisen. I would recommend that readers adopt Mr. Naaijer's digital-to-analogue converter circuit because of the component saving it affords.

I can assure Mr. Naaijer that some form of counter output waveform correction is essential to achieve a 'respectable' display. The zener diode idea was considered during the design but rejected on the grounds that two general-purpose silicon diodes can be purchased at a lower cost than one lowvoltage zener diode. By far the best solution was that proposed by A. W. Critchley in the May issue (p. 257). He suggested using four 'pull-up' resistors connected to the counter outputs.

The question of dispensing with the two operational amplifiers is debatable and depends on the use to which the unit is to be put. The original intention was that the device should be used in schools, I could not see many private constructors building it. In this application the device would very often be required to operate with long leads to the oscilloscope, or perhaps several oscilloscopes might be used, situated at strategic points around the classroom. In these circumstances the low output impedance afforded by the operational amplifier is essential as the visual effects of hum pick-up are particularly unpleasant with this type of display.

No trouble was experienced in the prototype with the $1 / 0$ switch loading the phase-shift oscillator and I can therefore see no point in altering the $1 / 0$ switch if the rest of the circuit is built as published (with the recommended alterations). If Mr. Naaijer's suggestion is adopted it would probably be necessary to redesign the phase-shift oscillator to run on 6 V .

Most of the component savings claimed mean putting up with a high output impedance with the attendant hazard of hum pick-up. Mr. Naaijer's reference to two, instead of four, transistors refers to using the unused exclusive-OR gates as a multivibrator. (This was described in A. W. Critchley's letter already published and, therefore, the print was removed from Mr. Naaijer's letter to avoid duplication.) Brian Crank

Stereo mixer

For readers who wish to build the designs published in the May and June issues, here are some details of suitable components. Capacitors used in equalization, tonecontrol and filter networks should be 5% components, polystyrene types for values less than $0.01 \mu \mathrm{~F}$, and polycarbonate (e.g. Siemens B32540) above $0.01 \mu \mathrm{~F}$. The 4.7 pF high-frequency compensation capacitors, connected from collector to base of the second transistor in Figs. 3, 8(a) and (b) are not critical and could be
increased to 10 pF so that polystyrene types can be used. Electrolytic capacitors are from the Mullard C426 and C437 ranges, and non-polarized coupling capacitors are from the Mullard C280 range. Fixed resistors are $5 \% \frac{1}{4} \mathrm{~W}$ carbon film, unless stated otherwise.

The apparently blank statements cocerning residual noise and mixing level made in part 1 (May issue) require explanation as this point was given theoretical treatment in an unpublished part of the manuscript. A noise analysis of the virtualearth mixer Fig. 10, shows the signal to residual noise to be $v_{i} \sqrt{4 . k . T . \Delta f . R . n}$ where v_{i} is the maximum nominal signal at the slider of the channel fader, R is the resistance level of the mixer (i.e. the value of the channel fader or summing resistor) and n is the number of channels. As the maximum output of the pre-mixing circuits is between 8 and 9 V r.m.s. an overload margin of 30 dB requires v_{i} to be around 120 mV after allowing for a 6 dB loss in the channel balance control. If R is $20 \mathrm{k} \Omega$ and n is 5 , then the residual noise level is -84.5 dB on a 30 kHz noise bandwidth. The expression indicates that the residual noise level deteriorates as the number of channels is increased but is improved by a reduction in the resistance level R, and by an increase in the signal level at mixing. Both the latter effects also reduce the overload margin, so a compromise has to be found. Alternatively the preset sensitivity control can be moved, for example to the feedback loop, though this presents its own problems of stability.
Hugh Walker,
South Queensferry,
Scotland.

F.M. stereo tuner

I have found that there have been a small number of tuners produced to my design* which have given signs of instability, and I have been able to reproduce this effect in my own tuners. The trouble is not instability in the normal sense, but gives the impression that it is. The trouble is 'squegging' of the local oscillator, and the cure is the standard one-reduce the base time-constant. I have found that the base capacitor, now 47 pF , is best reduced to 15 or 22 pF , which cures the problem; the only side effect being due to the slight lessening of oscillator amplitude, with a slight reduction in sensitivity. This is of little consequence because of the very high sensitivity and is largely offset by a slight reduction in background noise. After changing the base capacitor to 15 pF in two tuners both of which exhibited the apparent instability, there was no trace of any effects nor could they be provoked by any setting of the tuning or trimming controls. In both tuners the background between stations was very quiet despite a sensitivity for 3 dB limiting below $1 \mu \mathrm{~V}$. L. NELSON-JONES, Bournemouth, Hants.

[^3]
Phase-locked-loop Stereo Decoder I.C.

Build a high-performance decoder with the minimum number of components

It is possible to make a high-performance phase-locked-loop stereo decoder with just sixteen components and a printed circuit board. Only one coil is required and only one adjustment is necessary. The major component in the decoder is an integrated circuit (CA3090Q), containing 126 transistors, which has just been introduced by R.C.A.

A block diagram of the i.c. is given in Fig. 1. The composite butput signal from the discriminator of an f.m. receiver is applied to pin 1 of the i.c. where it is amplified for distribution to other parts of the chip. The phase-locked-loop consists of a voltage controlled oscillator (v.c.o.), two divide-by-two stages and a phase comparator (phase-lock detector). An inductor and a capacitor connected to pins 15 and 16 give the v.c.o. a natural centre frequency of 76 kHz . This 76 kHz signal is divided by four in two cascaded divide-by-two stages to provide a 19 kHz
reference for the phase-lock detector. The phase-lock detector compares the locally generated 19 kHz signal with the incoming 19 kHz pilot tone and provides an output to alter the operating frequency of the v.c.o. if there is any difference. The bandwidth of this loop-which may be likened to a servo system-is determined by an $R C$ network connected to pin 14.

The whole purpose of the loop is to regenerate the 38 kHz sub-carrier which is suppressed at the transmitter before the signal is transmitted. The 38 kHz subcarrier is necessary to demodulate the composite stereo signal and the action of the loop ensures that the regenerated sub-carrier is very closely related in phase to the transmitted 19 kHz pilot tone.

When the v.c.o. is running at exactly the right frequency the output from the phase-lock detector is zero so it is necessary to provide a second detector, to sense the presence of the pilot tone, in order

(A) Composite signal (B) stereo enable signal (C) stereo gating signal (D) Difference signal

Fig. 1. Block diagram of the CA3090 integrated circuit which forms the major part of a phase-locked-loop stereo decoder.
that the chip can distinguish between a stereo and a mono signal-the pilot tone is not present on a mono signal.

This detector is called the pilot presence detector and it is driven by a second divide-by-two stage operating from the chip's 38 kHz line. The resulting 19 kHz signal is compared with the composite input signal and if a pilot tone is present the pilot presence detector trips a Schmitt trigger. The sensitivity of the pilot presence detector is set by a resistor connected between pins 7 and 8 . With the value shown in Fig. 2, a 4 mV input signal (pin 1) will be sufficient to operate the Schmitt trigger. If greater sensitivity is required the resistor can be replaced with a 4.7 mH coil in series with 15 nF capacitor across pins 7 and 8. The Schmitt trigger will then operate at 3.3 mV (off at 2 mV) and an improved overload characteristic is obtained as a by-product. An $R C$ combination connected to pin 6 is a filter for the pilot presence detector.

When the Schmitt trigger operates it lights the stereo indicator lamp via an integral driver amplifier and informs the left/right channel detector that a stereo signal is being received and switches the whole chip to stereo operation.

The left/right channel detector uses the 38 kHz sub-carrier (stereo gating signal), generated by the phase-lockedloop, and the composite input signal to produce a stereo difference signal which drives the matrixing circuits. The matrix extracts the left and right channel outputs from the composite input signal in the normal way and after amplification the left and right channel outputs appear at pins 9 and 10.

Practical notes

The complete circuit diagram is given in Fig. 2 and little need be said about it as the purposes of most of the components have already been described. The capacitors C_{1} and C_{2} provide the necessary deemphasis and the two $10 \mathrm{k} \Omega$ resistors are the collector loads of the 'open ended' channel amplifier output transistors.

The stereo indicator lamp can be a light-emitting diode as shown or a normal filament lamp which may be connected in place of the light emitting diode and $680 Q$ series resistor provided that the lamp does

Fig. 2. Additional components required to complete the decoder. For operation in the UK (50us de-emphasis) change the value of the $7.5 n S$ capacitors to $5 n S$.
not consume more than 14 mA at 12 V . If a higher current lamp is used an outboard driver transistor must be added. The inset shows circuits using either a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ or an n-p-n transistor. The transistor type is not critical provided that it can handle the lamp current. For instance, a $40 \mathrm{~mA}, 12 \mathrm{~V}$, lamp could be used if it were driven by a BC 108 (use the $\mathrm{n}-\mathrm{p}-\mathrm{n}$ circuit in this case). However, the maximum lamp current-whatever the transistor used-should not exceed 100 mA because the drive is limited to 14 mA . Anyway who wants to use a searchlight to indicate that a stereo signal is being received!

The decoder can be built on the printed circuit board shown in Fig. 3 full size, or 'pin-board' construction can be employed. The 2 mH coil can be obtained from Harrogate Radio Ltd., $2 / 3$ Sykes Grove, Harrogate, Yorks., price 15 p including postage, etc. Ask for type 87BN135BX2. The prototype used a coil of American origin. The type we have specified in fact contains two coils so for this application use coil pins 3 and 4 only. A slight alteration to the printed circuit board may be necessary. Alternatively use any 2 mH coil which allows a $\pm 25 \%$ adjustment.

When connecting the decoder to the discriminator output of a receiver care should be taken to ensure that the receiver's de-emphasis network is disconnected. The decoder will accept inputs between 40 and 400 mV . If the discriminator
of your receiver provides an output higher than this use a potentiometer of about 100 k to reduce the signal. Make sure your receiver has enough bandwidth for stereo operation.

Two methods may be employed to set-up the decoder both of which are extremely simple. If you have access to a digital frequency meter connect it to pin 15 of the i.c. and adjust the core of the 2 mH coil to give 76 kHz . This adjustment is done when there is no input to pin 1 .

The second method of adjustment does not require the use of any test equipment. Connect the decoder to a receiver via a $100 \mathrm{k} \Omega$ potentiometer and tune in a stereo broadcast. Start with the core of the 2 mH coil fully out and the potentiometer set to give maximum input to the decoder. Screw in the core of the 2 mH coil until the stereo indicator lamp lights; continue turning the core in the same direction,
counting the turns, until the stereo indicator lamp goes out. Set the core at a point midway between the points where the lamp came on and went off.

Alter the potentiometer setting so as to reduce the input to the decoder and extinguish the stereo indicator lamp. Rock the core of the 2 mH coil about its centre position to see if the indicator lamp lights. If not, slightly increase the potentiometer setting and rock the core again. The correct position for the coil's core is the one that lights the lamp with the minimum input signal.
R.C.A. manufacture two versions of the decoder i.c. One is in a staggered 16 -pin dual-in-line package which is used in the illustrated printed circuit board and is called type CA 3090 Q , the second-type CA3090E- is electrically identical and is housed in a conventional 16 -pin dual-inline package. The i.c. is available from R.C.A. distributors, price $£ 3.46$.

Typical Decoder Specification

Input impedance	$50 \mathrm{k} \Omega$
Channel separation	40dB
Channel balance (mono)	0.3 dB
Mono gain	6 dB
Stereo/mono gain	0.3 dB
Indicator lamp turn-on voltage *	4 mV
Capture range (deviation from 76 kHz centre frequency)	$\pm 10 \%$
Distortion	
2nd harmonic	0.35\%
3rd. 4th and 5th harmonic	0.1\%
19 kHz rejection	35dB
38 kHz rejection	25 dB
Input voltage range	40 to 400 mV
Supply voltage	12 V
Supply current (Iamp off)	22 mA
Operating temperature range	-40 to $+85^{\circ} \mathrm{C}$
- For improved pilot sensitiv characteristics replace the 150 tween pins 7 and 8 with a coil with a capacitor of $0.015 \mu \mathrm{~F}$.	y and overload 0 O) resistor be 4.7 mH in series

Fig. 4. Photograph of the prototype. Because this is a demonstration model built by R.C.A. some of the components shown in Fig. 2 are not included.

Ceramic Pickup Equalization

2-Practical low-impedance circuits

by B. J. C. Burrows, B.Sc.

This article gives full circuit details of an economy and a high-performance preamplifier which use a new design principle to provide optimum performance from stereo and mono ceramic cartridges.

Many ceramic cartridges are capable of a very high standard of performance-but this is seldom realized in practice. This is because conventional pre-amplifiers cannot cope satisfactorily with the wide range of electrical parameters encountered in different makes of ceramic cartridge.

The two factors that cause the problems in pre-amplifiers for piezo-electric cartridges are (i), self capacitance, and (ii), the degree of built-in mechanical equalization. In conventionally designed circuits using high-value load resistances ($1-2 \mathrm{M} \Omega$), the pickup self-capacitance has a profound effect on low-frequency performance and hence on the rumble performance. Fig. 1 shows curves of output voltage against frequency for two well known pickups when operated into a conventional preamplifier with $2 \mathrm{M} \Omega$ input impedance. These show that the overall frequency response is far from flat.

Typical pickups vary in capacitance from 200 pF to greater than 1500 pF , and with manufacturing tolerances plus the uncertain nature of the lead capacitance an overail variation of 180 pF to $>2000 \mathrm{pF}$ is possible. To obtain good l.f. performance with 180 pF needs a loading resistance of $18 \mathrm{M} \Omega$ (not $1-\mathrm{MS}$ as commonly provided). If $18 \mathrm{M} \Omega$ were used with a pickup of 2000 pF the bass turnover frequency would be 4.5 Hz ! This of course would result in very objectionable rumble and l.f.
(a) gTAHC into $2 M \Omega$ and 100 pF load (b) SCUI into $2 M \Omega$ load

Fig. I. Voltage/frequency curves of two well-known ceramic cartridges when used with a conventionally-designed pre-amp with $R_{i n}=2 M \Omega$, and a flat frequency response.
arm resonance \dagger problems.
Conventional pre-amplifier designs do not allow for built-in mechanical equalization which varies from one pickup to another, and unfortunately the usual type of tone controls are not suitable for providing the necessary correction.

We can draw up a list of performance characteristics which an ideal pre-amplifier should possess:
(1) l.f. performance independent of cartridge capacitance;
(2) accurate rumble filtering independent of cartridge capacitance;
(3) means of correcting for variability in mechanical equalization (i.e. some form of 'tone balance' control).
(4) ability to cope with pickups of widely differing output voltages.
To these may be added: low noise, low distortion, good overload capability, builtin tone controls, etc.
Economy pre-amplifier
The complete circuit of the economy design is given in Fig. 2 for a positive h.t.
\dagger See Appendix II.

Table of values for $C_{1}, C_{2} \& R_{1}$ in economy circuit.

Cartridge type	C_{1}	C_{2}	$\begin{gathered} R_{1} \\ \text { (optimum value) } \end{gathered}$	Comment
$\left.\begin{array}{l}\text { Decca Deram } \\ \text { Goldring CS91E }\end{array}\right\}$	3.3 nF	$0.1 \mu \mathrm{~F}$	$\begin{gathered} 18-27 \mathrm{k} \Omega \\ 56 \mathrm{k} \Omega \end{gathered}$	low output
Goldring CS90	3.3 nF	$0.1 \mu \mathrm{~F}$	$56 \mathrm{k} \Omega$	medium output
Sonotone 9TAHC			$22 \mathrm{k} \Omega$	
Connoisseur SCU 1	$3.3 n F$	$0.1 \mu \mathrm{~F}$	0	medium output
$\left.\begin{array}{l}\text { B.S.R. SC5M } \\ \text { Acos GP94/1 } \\ \text { Garrard KS40A }\end{array}\right\}$	10 nF	6.8 nF	22-56k Ω	high output

Fig. 3. First-stage design of equalization circuit.

Fig. 4 Operation of tone-balance control, R_{A} in Fig. 3.

$$
\begin{aligned}
& \text { (1) Chosige formulae for } Q=1 \\
& \text { (2) Make } R_{C} \text { several times } R_{C} \\
& \text { (3) } C_{B}=\frac{1}{2 \pi f_{1} R_{B}} \\
& \text { (4) } C_{C}=\frac{1}{2 \pi R_{C}}\left(\frac{1}{f_{0}}-\frac{1}{f_{1}}\right) \\
& \text { (5) } R_{D}=R_{B}\left(\frac{\left(C_{C} R_{C}+C_{B} R_{B}\right)^{2}}{C_{C} R_{C} C_{B} R_{B}}-1\right)
\end{aligned}
$$

Fig, 5. Baxandall bass lift-and-cut circuit.
rail system. A negative h.t. rail version is given in Appendix I. For normaluse connect A to A^{\prime} and B to B^{\prime} and use full circuit. For ultra-economy operation with any of the pickups except the Deram or CS91E, the second stage may be omitted by connecting A direct to B^{\prime} and omitting the intervening circuitry associated with $T r_{2}$. Thus a very good, yet simple, gramophone amplifier may be built by using only $T r_{1}$ and $T r_{3}$ directly connected into an amplifier with 100 mV sensitivity for full output.

Design principles of equalization stage

Last month the merits of the shunt feedback (or virtual earth) amplifier were mentioned as being very suitable for ceramic pickup equalization. Further, it was shown that loading the pickup with a low impedance had no effect on its internal e.m.f. In the present design, then, the effects of the variability in capacitance have been eliminated by swamping the pickup in every case with a shunting capacitor of 3.3 nF or more. An input resistor of $75 \mathrm{k} \Omega$ then gives an input time constant of $318 \mu \mathrm{~s}$ (equivalent to 500 Hz); to match this, the feedback circuit has a time constant of 318μ s also (see Fig. 3); the complete circuit has aflat frequency response:

$$
\frac{V_{O}}{E}=\text { constant }=\frac{R_{B}}{R_{A}}=\frac{C_{P}+C_{A}}{C_{B}}
$$

If any one of the components suffixed A or B is made variable, a 'tone balance' type of control is achieved in a much simpler manner than circuits described previously ${ }^{1}$. R_{A} is the best one to vary and provides
performance variation as in Fig. 4. The value of R_{A} to give an overall flat frequency response is termed R_{0}. In practice only values of R_{A} between R_{0} and $R_{0} / 4$ are needed to fully correct all ceramic pickups for their lack of complete mechanical equalization, e.g. the Sonotone 9TAHC pickup needs $R_{A}=R_{0} / 1.8$ and the Connoisseur SCUI needs $R_{A}=R_{0} / 4$.

With an infinite gain amplier in Fig. 3, overall gain is flat down to d.c. theoretically. This is no use in audio work because of rumble and the L.f. arm resonance. Some form of rumble filtering is essential and may be built into the equalization stage by using the circuit due to P. J. Baxandall ${ }^{2}$. The essence of this circuit is in Fig. 5, and its performance in Fig. 6.

Economy pre-amplifier specification	
rated output	500 mV r.m.s.
distortion (1 KHz)	0.1% at maximum re. corded level
noise	below audibility at normal listening level
hum	depends on layout and h.t. decoupling
overload capacity	$>6 \mathrm{~dB}$ above maximum recorded level
sensitivity	full output for pickup with $50 \mathrm{mVcm} / \mathrm{sec}$
'sensitivity is reduced b	raising C_{1} and lowering C_{2} to keep $C_{1} C_{2} /\left(C_{1}=C_{1}\right) \approx$ 4000 pF
input impedance	not applicable
	(68k! for aux input connected as shown)
disc equalization	in conjunction with the better ceramic pickups can be adjusted to flat $\pm 1.5 \mathrm{~dB} \quad 30 \mathrm{~Hz}-10 \mathrm{KHz}$. Low-frequency performance independent of pickup capacitance.
rumble filter	$18 \mathrm{~dB} / \mathrm{oct}, f_{0}=50 \mathrm{~Hz}$ independent of pick-up capacitance
low-pass filter	fixed, $\mathrm{C}_{3}=100 \mathrm{pF}$ gives $f_{3 \mathrm{~dB}}=12 \mathrm{KHz}$ Scale C_{3} up in proportion for low -3 dB
tone controls	$\begin{aligned} & \text { h.f. about } \pm 14 \mathrm{~dB} \\ & \text { I.f. about } \pm 14 \mathrm{~dB} \end{aligned}$
current consumption	$\approx 2.5 \mathrm{~mA}$.

Fig. 6. Performance of circuit of Fig. 5 with $f_{0}=50 \mathrm{~Hz}$ and $f_{1}=500 \mathrm{~Hz}$.

If a further high-pass $R C$ filter is added,

$$
f_{0}=\frac{1}{2 \pi R_{C}}
$$

where a flat response to nearly 50 Hz is achieved with a rapid turnover to a slope of $18 \mathrm{~dB} /$ octave to attenuate rumble. Finally, with $\boldsymbol{R}_{\boldsymbol{A}}$ adjustable, the tone balance facility is still retained as with the basic circuit of Fig. 3. It is common to design rumble filters with cut-off frequencies much lower than 50 Hz ; but, to achieve adequate attenuation at 25 Hz -a common frequency of the I.f. arm resonance-a high value of f_{0} is required. The actual circuit of Fig. 2 achieves -28 dB at 15 Hz and -15 dB at 25 Hz . In practice this is very satisfactory.

The economy-design pre-amplifier closely matches the theoretical performance of Figs. 4 and 6 and provides excellent bass, good balance and excellent freedom from rumble. As shown in the table relating to the main circuit, the only circuit changes needed to accommodate different pickups are for curbing those with a very high output voltage with a capacitive divider. In connection with the table of values given for the input capacitors it is very important to stress that the values given must be used as specified and that the manufacturers' recommendations regarding load impedance and equalization must be totally ignored. This circuit has been specifically designed to take care of all the loading, matching and equalization factors and no further components are needed.

High-performance pre-amplifier specification
rated output
harmonic distortion noise
hum
overload capacity
sensitivity
input impedance
disc equalization
tape equalization
rumble filter
low-pass filter
tone controls
current consumption

500 mV r.m.s.
0.02% at rated output
-60 dB all inputs
-80 dB for tuner and aux inputs
negligible with good layout 23dB over whole audio range, infinite for tuner and aux
tuner 250 mV
aux 250 mV
disc magnetic 3 mV
disc ceramic 20 mV
tape 4 mV
mic 10 mV
tuner, aux 60-100K Ω
disc magnetic 47 KK
disc ceramic frequency dependent
tape. mic $47 \mathrm{~K} \Omega$
magnetic-RIAA to within
$\pm 1 \mathrm{~dB}$ ceramic-can be
adjusted to give flat response $\pm 1 \frac{1}{2} \mathrm{~dB}$ I.f. response independent of cartridge capacitance
$7 \frac{1}{2}$ i.p.s. with $R_{F B}=39 \mathrm{~K} \Omega$ 1 5i.p.s. with $R_{F B}=18 \mathrm{~K} \Omega$
3 3 i i. p. s. with $R_{F B}=82 \mathrm{~K} \Omega$
modified design giving
higher cut off frequency: response at 25 Hz is $-15 \mathrm{~dB}$
switched, flat or cut off at any frequency from 4 to 11 KHz (see Ref. 7)
Baxandall type
treble $\pm 16 \mathrm{~dB}$ at extreme
bass $\pm 20 \mathrm{~dB}$ at extreme
7 mA

Fig. 8. Measured voltage/frequency curve for a 9TAHC operating into an 'economy design' circuit with $R_{A}=R_{0} / 1.8$. The curve for the SCU1 would be just as flat, but with $R_{4}=R_{0} / 4$.

The economy circuit as described fulfils all the design criteria enumerated earlier except for the slight inconvenience of changing two capacitors if pickups of widely differing output voltages are exchanged. The noise performance is very good with all the cartridges listed apart from two (the CS91E and Deram) with which it is satisfactory for everything but the most exacting requirements.

High performance pre-amplifier

This is based on the Bailey ${ }^{3}$ design of 1966 but with all the subsequent modifications to improve the filter ${ }^{4}$ and tone control ${ }^{5}$ circuits, plus the addition of a complete ceramic-pickup equalizing circuit achieving the same performance with ceramic cartridges as the economy pre-amplifier. The complete circuit is given in Fig. 7, which also incorporates one further modification to raise the cut-off frequency of the rumble filter in accordance with the design philosophy discussed in Appendix II. Equalization for magnetic pickups has been retained and is selected by the input selector switch. The 'set level' control needs a mention. To avoid overloading the input stage, adjust the set level control with any particular

\dagger Metal oxide or low noise type

* 5% or better

Fig. 9. Economy circuit arranged for negative h.t. rail. For values of C_{1}, C_{2}, and R_{1}, see table earlier.
cartridge to give comfortable listening level with the main volume control at about half of its maximum rotation. This control need be only a preset with screwdriver slot adjustable from the back of the preamplifier. The tone balance could be the same, or it could be brought out as a front panel control, or as a skeleton pot mounted internally or even a 'select-on-test' fixed resistor.

On paper, the specification of the high performance pre-amplifier looks most impressive, but subjectively the economy version is very good indeed, and both represent a considerable improvement on conventional designs in that reproducible low-frequency performance, effective rumble filtering independent of pickup capacitance, and a simple means of correcting for partial mechanical equalization have been incorporated. Fig. 8 in conjunction with Fig. 1 gives a comparison of the performance of the Sonotone 9TAHC and Connoisseur SCU1 using conventional loading ($2 \mathrm{M} \Omega$ plus flat amplifier), compared with the measured results on the author's 9TAHC using the economy circuit.

The calculated performance of the Connoisseur SCUI with $R_{A}=R_{0} / 4$ is a straight line coincident with the 0 dB line on Fig. 8, although in practice there would be a variation of up to $\pm 1 \mathrm{~dB}$ about the 0 dB line.

Modifications to provide a similar standard of performance with the Dinsdale Mark I and Mark II pre-amplifier circuits were incorporated in a previous article ${ }^{6}$.

Appendix I

Alteration of economy circuit for negative h.t. rail operation, e.g. from a germaniumtransistor amplifier like the Dinsdale Mark I or II, is basically to return all elec-
trolytic capacitors to the positive potential rail, viz. the earth line (see Fig. 9). There are no modifications to circuit values apart from the voltage rating of the electrolytics.

Appendix II

Arm resonance (l.f.) is the tendency toward damped oscillation at a low frequency and is exhibited by most pickup arms. It has the effect of greatly increasing the cartridge output voltage at or near the resonant frequency. The frequency, $f_{l f}$, is normally in the range $10-25 \mathrm{~Hz}$, so its effect is to greatly increase rumble. The frequency of the oscillation is:

$$
f_{l f}=\frac{1}{2 \pi \sqrt{\mathrm{MC}}} \mathrm{~Hz}
$$

M is the mass of cartridge plus effective mass of arm measured at cartridge. C is the compliance of stylus cantilever suspension. With M in grams, C is in $\mathrm{cm} /$ dyne.
With modern high compliance cartridges it is desirable to keep M very low-hence lightweight headshells-to make $f_{l f}$ as high as possible. Generally speaking the lower the frequency of resonance the higher the Q, and vice versa. But a higher resonant frequency is more trouble electrically. A low-frequency high- Q resonance causes mechanical difficulties-the pickup tends to leave the record surface when excited. A resonance at 25 Hz is acceptable mechanically if the Q is low enough and its electrical effects can be removed with a steep slope filter. Below this resonant frequency the cartridge output voltage falls off very sharply indeed ($24 \mathrm{~dB} /$ octave) thus providing the required severe attenuation of sub-audio frequencies.

With regard to pre-amplifier design, the point to note is that the highest amplitude rumble components will, be at, or near, the
1.f. arm resonance. A filter in the preamplifier should ideally provide 12 dB or more of attenuation at 25 Hz , yet not interfere with l.f. audio response. A cut off frequency of 50 Hz with slope approaching $18 \mathrm{~dB} /$ octave is a very good compromise since it causes very little error inthe R.I.A.A. equalization, yet gives -15 dB at 25 Hz and -25 dB at 15 Hz .

References

1. Ambler R., 'Tone Balance Control', Wireless World, March 1970. pp. 124-6.
Hutchinson P.B., 'Tone Control Circuit', Wireless World, November 1970. pp. 538-40.
2. Baxandall P.J., 'Gramophone and Microphone Pre-amplifier', Wireless World January 1955. pp. 8-14.
3. Bailey A.R., 'High Performance Transistor Amplifier', Wireless World, December 1966. pp. 598-602.
4. Bailey A.R. 'Modified Treble Filter for Bailey Pre-amplifier', Wireless World, June 1969. p. 275.
5. Quilter P.M., Letter to the editor, Wireless World, April 1970. pp. 172/3.
6. Burrows B.J.C., 'Ceramic Pickups and Transistor Pre-amplifiers', Wireless World, February 1970. pp. 56-60.

The Diagnosis of Logical Faults

Conclusion

by R. G. Bennetts*, B.Sc., M.Sc.

One of the problems that the designer and user of logical systems is confronted with is that of testing the logical functioning of the circuits within the system. The procedure is usually split into two main processes-namely a simple go/no go test followed by, in the event of a no go decision, a more thorough analysis to determine the location of the fault. The former is known as fault detection whereas the full detection and location process is termed diagnosis. It is the purpose of this series of two articles to illustrate, through the use of examples, some of the techniques that have been developed to assist in determining the necessary tests and to comment on their advantages and disadvantages. The first part of this article appeared last month and concludes this month with a discussion of Boolean difference and partitioning techniques.

3: Boolean difference

Before describing how the Boolean difference can be used to determine a detection test set, it is instructive to define the term "Boolean difference" and show how it may be derived.

Consider a Boolean function z given by:

$$
\begin{aligned}
z & =f\left(x_{1} x_{2} \ldots x_{i} \ldots x_{n}\right) \\
x_{1} & \rightarrow x_{n}=\text { primary inputs }
\end{aligned}
$$

If x_{i} is in error, then a new function $z_{x_{i}}$ is defined by

$$
z_{x_{i}}=g\left(x_{1} x_{2} \ldots \bar{x}_{i} \ldots x_{n}\right)
$$

i.e.. $z_{x_{i}}$ is formed by replacing $x_{i}\left(\bar{x}_{i}\right)$ in z with $\bar{x}_{i}\left(x_{i}\right)$. The Boolean difference,

$$
\frac{d z}{d x_{i}}
$$

is defined

$$
\begin{aligned}
\frac{d z}{d x_{i}} & =Z \oplus Z_{x_{i}} \\
& =h\left(x_{1} x_{2} \ldots x_{n}\right)
\end{aligned}
$$

*Department of Electronics. University of Southampion

where \oplus denotes the Boolean exclusive-OR operator.

As an example, we will derive the Boolean difference expression for the example circuit with primary input " C_{3} " as " x_{i} ". (This was given in Fig. 4 last month and is repeated here.)

From Fig. 4,

$$
z=\bar{a} \bar{b}+\bar{a} \bar{c}+a b
$$

$$
=\overline{C_{1}} \overline{C_{2}}+\overline{C_{1}} \overline{C_{3}}+C_{1} C_{2}
$$

$Z_{C 3}=\overline{C_{1}} \overline{C_{2}}+\overline{C_{1}} C_{3}+C_{1} C_{2}$

$$
\begin{aligned}
\frac{d z}{d C_{3}}= & \left(\overline{C_{1}} \overline{C_{2}}+\overline{C_{1}} \overline{C_{3}}+C_{1} C_{2} j \oplus\right. \\
& \left.\overline{C_{1}} \overline{C_{2}}+\overline{C_{1}} C_{3}+C_{1} C_{2}\right)
\end{aligned}
$$

There are mathematical rules for manipulating such expressions but for a small number of input variables, the Karnaugh map (K -map) can be used quite easily and also serves toillustrate very clearly the actual exclusive-OR operation. The procedure is to map Z into one K-map, $Z_{C 3}$ into another and by comparing similar locations to derive the mapping of $\frac{d z}{d C_{3}}$ by inserting a 1 if there is a difference in the values at the two locations otherwise blank. The method is illustrated in Fig. 8.

Returning to the theory, let us examine the significance of the Boolean difference expression. If there is a fault in the value of
x_{i}, then the function that the faulty network will realize will be that defined by $Z_{x_{i}}$. Under these conditions. the faulty output will differ from the true output only for those terms that make $\frac{d z}{d x_{i}}=1$, i.e. $\frac{d z}{d x_{i}}$ defines the full set of inputs (tests) that will cause an incorrect and hence observable output if there is a fault in the logical value of x_{i}. Note that so far we have not defined whether x_{i} is $s-a-1$ or $s-a-0$ only that it is logically incorrect. It therefore remains to partition the set of tests defined by $\frac{d z}{d x_{i}}$ into those pertaining to $x_{i} s-a-1$ and $x_{i} s-a-0$. This is achieved by splitting the list of all tests into those containing x_{i} and those containing \bar{x}_{i}. The former will demand a 1 on x_{i} and therefore test for $x_{i} s-a-0$ and the latter conversely will test for $x_{i} \mathrm{~s}-\mathrm{a}-1$.

Thus, for $\frac{d z}{d C_{3}}$ in Fig. 8 :

$$
\frac{d z}{d C_{3}}=\overline{C_{1}} C_{2} C_{3}+\overline{C_{1}} C_{2} \overline{C_{3}}
$$

and the $\overline{C_{1}} C_{2} C_{3}\left(t_{3}\right)$ term defines the test for $C_{3} / 0\left(f_{5}\right)$ and $\overline{C_{1}} C_{2} C_{3}\left(t_{2}\right)$ defines the test $C_{3} / 1\left(f_{6}\right)$. These can be confirmed from the detection matrix G_{D} of Fig. 6 (last month). Note that for each fault, there is only one test and hence t_{2} and t_{3} are both essential.

As another example, we will consider how the Boolean difference can be used to determine the tests for a fault on one of the lines that is not a primary input, C_{4} say.

As above we have
$Z=\overline{C_{1}} \overline{C_{2}}+\overline{C_{1}} \overline{C_{3}}+C_{1} C_{2}$ and $C_{4}=C_{1}+C_{2}$
$=\overline{\overline{C_{1}}} \overline{C_{2}}$ (by De Morgan's theorem)
by substitution $Z=\overline{C_{4}}+\overline{C_{1}} \overline{C_{3}}+C_{1} C_{2}$

Fig. 4. The circuit example; reproduced from last month's issue.

$$
\text { and } Z_{C 4}=C^{4}+\overline{C_{1}} \overline{C_{3}}+C_{1} C_{2}
$$

By using four variable K-maps, the Boolean difference $\frac{d z}{d C_{4}}$ is found to be given by :

$$
\begin{aligned}
& \frac{d z}{d C_{4}}=C_{1} \overline{C_{2}} C_{3}+C_{1} \overline{C_{2}} \overline{C_{3}}+\overline{C_{1}} C_{2} C_{3}+ \\
& \overline{C_{1}} \overline{C_{2}} C_{3}
\end{aligned}
$$

Now, since $C_{4}=C_{1}+C_{2}$, the only time it will be 0 will be when both C_{1} and C_{2} are 0 . Thus in order to detect for $C_{4} / 1$, the input must contain the terms $\bar{C}_{1} \bar{C}_{2}$. All other combinations of $C_{1} C_{2}$ will detect $C_{4} / 0$. From this we see that only $\overline{C_{1}} \bar{C}_{2} C_{3}\left(t_{1}\right)$ will detect $C_{4} / 1$ whereas $C_{1} \overline{C_{2}} C_{3}\left(t_{5}\right), C_{1} \overline{C_{2}} \overline{C_{3}}\left(t_{4}\right)$ or $\overline{C_{1}} C_{2} C_{3}\left(t_{3}\right)$ will serve for $C_{4} / 0$, and again the fault matrix G_{D} confirms this.

The Boolean difference tends to be limited to circuits having a relatively small number of input variables, but it can be expressed as a fairly rigid algorithm and would seem quite suitable for implementation in a computer program. Its main advantage is in spotting essential tests and once these are known, the path sensitizing procedure (discussed last month) for evaluating all other faults detected by that test can be used. Using these two techniques together can result in an efficient pro-cedure-for deriving an optimal test sequence.

At present, the technique is restricted to combinational networks, but successful excursions into the area of sequential networks have been reported though this aspect is still very much in its infancy.

4: Partitioning

As has been indicated previously, the partitioning technique is more applicable to multi-flow testing procedures and this calls for certain criteria to be used. Before considering these criteria in detail, let us consider the basic technique itself.

The circuit under test is usually simulated in order to arrive at the test set for detection and/or location and the simulated model can be converted from its no-fault version f_{0} to any of n previously defined faulty versions $f_{1} \rightarrow f_{n}$ (In the case of our example, $f_{1} \rightarrow f_{16}$). A test is then applied to all versions of the circuit and this will effect a partition based on the value at the output. The members of each equivalence class, as it is called, indicate that the output is the same and further tests are required to increase the degree of resolution until either f_{0} is identified alone (fault detection) or all versions are isolated (fault location).

The value of this procedure lies in its ability to try different tests and ascertain which one is best for the job in hand. This implies the use of criteria and we will consider initially the use of the checkout criterion for fault detection only. Again, we will illustrate this through use of the circuit example.

Fault detection using the checkout criterion: The initial equivalence class for the example circuit is $f_{0} \rightarrow f_{16}$ inclusive and we require to isolate f_{0} as quickly as possible by means of a set of test inputs. This amounts to determining which test separates the largest

Test	No. of faulty circuits detected					
		N_{1}	N_{2}	N_{3}		

Fig. 9. Assignment of checkout weighting and selection of best tests.
number of faulty circuits from the good circuit-this being the checkout criterion. If we look at the detection matrix G_{D} of Fig. 6 (last month) we can list the number of detectable circuits for each test and this is shown in column N_{1} of Fig. 9.

Obviously, t_{3} is first choice and this will create a partition P_{1} defined by the two equivalence classes $P_{1}{ }^{1}$ and $P_{1}{ }^{2}$ where:

$$
\begin{aligned}
& P_{1}{ }^{1}=\left\{f_{0} f_{1} f_{4} f_{6} f_{8} f_{10} f_{11} f_{13} f_{15}\right\} \\
& P_{1}{ }^{2}=\left\{f_{2} f_{3} f_{5} f_{7} f_{9} f_{12} f_{14} f_{16}\right\}
\end{aligned}
$$

The exercise must now be repeated on the equivalence class containing f_{0} and the test weightings are shown in column N_{2} of Fig. 9. This can be derived from the detection matrix G_{D} by removing all those columns in $P_{1}{ }^{2}$ and then counting the number of detectable faults on the remaining columns. When this is completed, there is a choice between t_{1} and t_{2} and we shall arbitrarily choose t_{1}. This creates the partition P_{2} given by:

$$
\begin{aligned}
& P_{2}{ }^{1}=\left\{f_{0} f_{1} f_{6} f_{10} f_{11}\right\} \\
& P_{2}^{2}=\left\{f_{4} f_{8} f_{13} f_{15}\right\}
\end{aligned}
$$

The procedure is again repeated until eventually at partition P_{i} (in this case $i=4$), f_{0} is isolated from all other versions and the full detection set can be defined. The remainder of the calculation are shown in columns N_{3} and N_{4} and the partition sequence is shown pictorially in Fig. 10.

Fault location using the information gain or distinguishability criteria: The prime object for fault location is to continue partitioning of every equivalence class until each version $f_{0} \rightarrow f_{16}$ has been completely isolated as
far as possible (obviously indistinguishable fault-sets are not subject to any further partitioning). To assist this process, two criteria have been proposed-information gain and distinguishability.

The information gain criterion is similar in concept to the entropy function used in information theory. Initially there is uncertainty as to which of the $f_{0} \rightarrow f_{16}$ versions of the circuit exists and the application of a particular test will remove some of this uncertainty, i.e. will result in a gain in information. This can be expressed mathematically as a function of the particular test and again a table similar to that of Fig. 9 would be created enabling the correct test selection to be made.

The alternative criterion is the distinguishability criterion. This is derived in the following manner: for a particular equivalence class, one wishes to select the test that distinguishes between the greatest number of circuits. This amounts to determining how many pairs of circuits within the same class are distinguishable using test t_{i}, $0 \gtrless i \gtrless n$ for n tests. This criterion is more applicable to multi-output circuits in which the partitioning is to some other radix rather than two (binary) and it too can be expressed mathematically. Since the example circuit has only one output, the partition is simple binary as shown in Fig. 10.

Both criteria are somewhat complex in their evaluation and the usual process is to derive the full detection partition using the relatively simple checkout criterion; determine the degree of diagnostic resolution that is already available and then use the more complex criteria to increase the resolution to its maximum. If this is applied to the partition of Fig. 10, it is found that only one further test need be specified in order to achieve maximum diagnostic resolution. The full partition is shown in Fig. 11 and the addition of t_{4} enables partitioning of $\left\{f_{1}, f_{11}\right\},\left\{f_{4} f_{8}\right\}$ and $\left\{f_{5} f_{7} f_{9} f_{12} f_{14} f_{16}\right\}$. The remaining classes of $\left\{f_{7} f_{9} f_{12} f_{14} f_{16}\right\}$ and $\left\{f_{6} f_{10}\right\}$ are indistinguishable fault sets and consequently cannot be further partitioned without the use of extra access such as test points.

The sequence of test dictated by the partition is $t_{3} t_{1} t_{2} t_{7} t_{4}$ and one aspect of this approach is that not only can the fault be located by analysis of the output sequence corresponding to the test set, but that it is now possible to specify a test for a particular fault. This is a common requirement when trouble-shooting new designs.

Fig. 10. Partition showing detection test set.

Concluding remarks

I have introduced the general problems associated with the diagnosis of faults in logical systems and described four of the techniques that have been developed to assist in determining a satisfactory diagnostic test sequence. The techniques themselves tend to be restrictive but it has been indicated how they may be combined in an attempt to broaden their overall coverage. The real problem however has been shown to be in diagnosing faults occurring in sequential circuits, and although some of the techniques can be applied, they are not really satisfactory. Other approaches are currently being studied, the most important of which is based on an analysis of the state table for a sequential circuit. (The state table is used to formally describe the behaviour of a sequential circuit-much in the same way as a truth table does for a combinational circuit. Every configuration of the sequential circuit is defined by a state variable and there are procedural techniques for deriving the actual circuit, in terms of its connections and gates, from the initial state table description).

One major advantage with state table analysis is that a check can be made on the table at the initial design phase to ascertain the diagnosability of the sequential circuit it describes and if necessary, apply modifications to make it fully diagnosable. This is a departure from previous diagnostic philosophy in that it is now possible to make the diagnosis requirement an initial design restraint and not something that is determined after the circuit has been designed. State table analysis does rely however on being able to formulate the state table for the sequential circuit and in the case of the intuitive design, this represents quite a problem. If however a switching theory approach has been adopted in designing the circuit, then the state table is already known and this in itself is sufficient justification for using switching theory in logical design.

In this paper, we have confined ourselves only to considering faults that can occur in logical circuits. The successful diagnosis of faults at full system level, a digital computer say, is a much greater problem and the "diagnosis is a design restraint" requirement becomes even more important The current approach is to devise a hierarchical set of tests such that if an overall system fault is detected, a more detailed set of tests can be applied that will theoretically converge onto the fault. This can sometimes be somewhat haphazard and really what is required is a fundamentally new approach to the system design process such that diagnostic capability is a design parameteri not only at circuit level, but also at full system level.

One final comment. The advent of m.s.i. and l.s.i. has caused a shift in emphasis in diagnosis requirements in that in general one only requires fault location to the smallest replaceable unit and if this is a full circuit or a sub-system itself, i.e. an 1.s.i. chip, this tends to ease the locational extensions of detection techniques, such as the fault matrix, since the faults on the same chip can be grouped together and treated

Fig. 11. Partition showing detection and location test set.
"en bloc". It does however bring us back to the overall system test problems and serves to reinforce the comments about system check-out techniques.

References

Since 1960, there has been a profusion of papers dealing with fault detection and location and the most recent bibliography (86 referenced papers) is including in the review ${ }^{1}$ written by myself and D. W. Lewin. This paper also summarizes the main techniques and has pertinent comments on the effect of diagnosis requirements on computer system engineering, the requirements of digital systems in terms of diagnosis and functional testing and diagnosis of 1.s.i.

We have recently seen the publication of the first book ${ }^{2}$ to be entirely devoted to this problem and this in itself is indicative of the importance that is now attached to fault diagnosis.

In terms of the actual techniques, the paper by Kautz ${ }^{3}$ is a well written and lucid account of the fault matrix approach and similar comments may be made about the paper by Sellers et al ${ }^{4}$ dealing with the Boolean difference.

The most famous implementations of path sensitization is the D-algorithm of Roth ${ }^{5}$ and its subsequent modification ${ }^{6}$. Both papers are somewhat heavy going due to the "calculus of D-cubes" that he defines and uses to implement the concept and the contents of the first paper is well covered in ${ }^{2}$ The basic D -algorithm and its extensions have been employed by IBM to prepare diagnostic routines for their System/360
range of computers.
The technique of partitioning has been programmed by Seshu ${ }^{7,8}$ and the suite of programs, known as the Sequential Analyser, has been in use for many years now.

1. Bennetts, R. G. and Lewin, D. W. "Fault Diagnosis of digital systems--a review'. To be published in The Computer Journal.
2. Chang. H. Y., Manning. E. G. and Metze, G. "Fault diagnosis of digital systems". Wiley Interscience 1970
3. Kautz, W. H. "Fault testing and diagnosis in combinational digital circuits". I.E.E.E. Trans on Computers, Vol. C-17, 1968, pp. 352-366
4. Sellers, F. F. Jnr., Hsiao, M. Y. and Bearnson, L. W. "Analysing errors with the Boolean difference" I.E.E.E. Trans. on Computers, Vol. C-17, 1968, pp. 676-683.
5. Roth, J. P. "Diagnosis of automata failure : a calculus and a method". IBM Journal R \& D, Vol. 10, 1966, pp. 278-291.
6. Roth. J. P., Bouricius, W. G. and Schneider, P. R. "Programmed algorithms to compute tests to detect and distinguish between failures in logic circuits". IEE.E.E. Trans. on Electronic Computers, Vol. EC-16, 1967, pp. 567-580.
7. Seshu, S. and Freeman. D. N. "The diagnosis of asynchronous sequential switching systems". I.R.E. Trans. on Electronic Computers, Vol. EC-11, 1962, pp. 459-465.
8. Seshu. S. "On an improved diagnosis program". I.E.E.E. Trans. on Electronic Computers, Vol. EC-14, 1965, p. 69-76.
9. Hennie, F. C. "Fault detecting experiments for sequential circuits". 1964, Proc. of the 5th Annual Switching Theory and Logical Design Symposium, S-164, pp. 95-110.

Circuit Ideas

F.E.T. voltage regulator

The regulator described here provides fairly good performance with a minimum number of components. The basic circuit is shown below (top). Any change in output voltage caused by a change in load resistance alters the gate-source voltage of the f.e.t. via R_{1} and R_{2}. This causes a compensating change in drain current. The stabilization ratio is excellent (≈ 1000) but the output resistance is very high $R_{O}>1 / Y_{F S}>500 \Omega$) and the output current is low. To overcome these defects, the lower circuit can be used. The output resistance is greatly reduced and the stabilization ratio is still high. The maximum output current is limited by the allowable dissipation in the final transistor. Resistor R_{3} is chosen to produce a quiescent current of a few mA in Tr_{3}. An experimental set-up using the values shown produced a change of less than 0.1 V when the load current was altered from 0 to 60 mA at 5 V output. The effect of temperature on the output voltage has not been investigated but it could probably be minimized by appropriate choice of the drain current of the f.e.t.
C.R.MASSON,

Edinburgh.

transistor to detector. The effective loading imposed by the detector on the resonator (which should be six times the impedance at the 'ring') can be taken as one quarter of the net d.c. load resistance.
G. W. SHORT,

South Croydon.

D.C. motor controller

Fine control of a d.c. motor can be obtained using an op-amp and a tachogenerator. The op-amp is used as a voltage sensitive switch. In the circuit shown, when the output of the generator is less than the preset reference voltage the switching transistor will bottom and full power will be delivered to the motor. Switching will take place within one or two millivolts

Reversed operation of 'Transfilter'

Piezo-electric overtone resonators (e.g. Brush Clevite "Transfilters") are normally used as interstage couplingsini.f. amplifiers. where the requirement is to match the relatively high output impedance at the collector of one stage to the relatively low base input impedance of the next. This is accomplished by connecting the 'dot' of the resonator to the collector and the 'ring' to the base. In the final i.f. stage shown above the impedances run the other way, and the resonator is used 'backwards' to couple the transistor to a high-impedance detector. This arrangement gives a useful voltage step-up (about 2.5 times) from
of the reference voltage. A dual power supply is required, but need only be zener stabilized. This system allows for infinitely variable drive without mechanical complication. For a record deck, for example, the speeds can be set by the simple switching of a voltage divider. The op-amp switches to within a volt or two of the supply rails, and by using a double emitter follower large motors can be controlled. The reference voltage may be set by thermistors, light-dependent resistors etc. The experimental arrangement shown used an RCA 3047 A op-amp, and a 0.25 W 6 V motor as generator giving about 4 V at 13000 r.p.m.
N. G. A. Boreham, Newton Abbot, Devon.

Electro-optical Gearbox

using moire fringe technique

by J. Dinsdale*, м.A.

Mechanical gearboxes are generally used either for transmitting rotary power from one shaft to another, where the emphasis is on the torque ratio, or for controlling the angular velocity of one shaft with respect to another, where the emphasis is on the velocity ratio. In both cases the performance of practical gearboxes falls short of the ideal due to variable friction losses, backlash, and non-uniform velocity transmission caused by errors in the form and pitch of individual gears.

Backlash and friction effects are to some extent interdependent; in general, attempts to reduce backlash generally lead to significant increases in friction losses and the degree of backlash may be critically dependent on the working temperature of the gearbox, itself a function of friction losses.

The accuracy with which motion may be transmitted clearly depends on the precision of the form of each tooth of the gears within the gearbox. A continuous linear transmission is desirable first to maintain linearity of motion of the member being controlled by the gearbox, and second, to minimize vibrations which can be set up by a non-linear transmission. The high-frequency vibrations caused by a typical geartrain can lead to rapid deterioration of bearings and, more seriously, to the early onset of fatigue failure. This latter effect is of particular significance in aero engines, a and much work has been devoted in recent years to improving the accuracy of gears used in aero engines and machine tools.

In the light of these deficiencies, the design of a "gearless" transmission system for controlling the angular velocity of a shaft with respect to another was investigated, the system to possess the following properties

- variable speed ratio from 1:999 to 999:1, numerator and denominator to be integral
- minimum backlash-less than 20 arc seconds over full working range
- input shaft speed range from zero to $2000 \mathrm{rev} / \mathrm{min}$ (nominal)
- output shaft speed range from zero to $200 \mathrm{rev} / \mathrm{min}$ (nominal)
- bi-directional motion
- output shaft power to be $\frac{1}{4}$ h.p.

[^4](nominal) approx. 200 watts

- transmission errors not to exceed 20 arc seconds at any speed or load up to the specified maxima.
The system \dagger developed consists essentially of two shafts: an input or driven shaft, and an output or driver shaft on which is mounted an electric motor (Fig. 1). Both of the shafts are fitted with incremental shaft encoders of very high resolution. Each encoder consists of a glass disc on which has been photographed or etched a uniform pattern or grating of alternate opaque and transparent radial lines. It would not be possible to detect individual lines at this spacing by normal electro-optical means, but if such a grating is mounted in close proximity to a further small piece of similar grating (the reference grating) and the pair illuminated by white light, moiré fringes appear as a series of broad light and dark bands normal to the grating lines.

The breadth and pitch of the fringes depend on the angle between the lines on the main grating and the reference. Because each moire fringe is formed over

+ Patents applied for
a relatively large area (say one sq. cm) by the integration of a large number of lines on the grating, any small pitch errors or blemishes on the grating tend to average out to give an extremely accurate fringe spacing. In fact, a grating will still give observable fringes even when 95% of its lines have been mutilated or even obliterated.

When the main grating is moved with respect to the reference, the fringes move at an equivalent rate; i.e. if the movement of the main grating with respect to the reference is at a rate of 1000 lines per second, then the fringes will move at 1000 fringes per second. The fringes are of such a size that they can easily be detected by a suitable photo-detector arrangement to give a sinusoidal signal whose frequency is proportional to the rate of angular rotation of the grating, and the number of lines on the grating. Typical gratings may have from 10,800 lines to 72,000 lines, giving angular resolutions of 2 arc minutes and 18 arc seconds respectively.

The reading head for moire fringes normally consists of a number of photo-sensitive devices and a light source

Fig. 1. In the electro-optical gearbox sinusoidal signals whose frequency is proportional to the rate of angular rotation of input and output shafts are fed to separate batch counters to set the gearbox ratio. A phase comparator provides an error signal proportional to their phase difference which controls the torque-motor driving the output shaft.
placed on either side of the small reference grating (Fig. 2). By incorporating multiple photo-sensitive devices, two signals at phase quadrature can be produced, and subsequent circuitry can determine the direction of movement of the grating.

Two diametrically opposed reading heads are normally used at each grating, and the reference and quadrature signals fed to "eccentricity logic" circuits which combine the signals in such a way as to reduce the effects of any eccentricity in mounting of the grating. In addition the signals may be interpolated electronically by a factor of up to 20 times, to increase the resolution of the system. By this means, a 72,000 -line grating can give an effective resolution of 0.9 are second.

Fig. 2. In practice the encoder gratings are too fine to read directly, and a stationary reference grating is used to produce moire fringes which move at the same rate as the shaft but are formed over a larger area. In practice two signals-in quadrature-are needed to establish direction of rotation and to reduce the effects of any eccentricity in the mounting.

The signals from each eccentricity logic or pulse multiplier circuit are squared to give a train of pulses whose frequency is exactly proportional to the speed of rotation of the shaft, with every small fluctuation shown immediately as a corresponding variation in pulse frequency.

These pulse trains are now fed to manually set batch counting circuits, which may be arranged to give an integral batch size from 1 to 999 (or higher if need be). It is by means of these batch counters that the gearbox ratio is set, a ratio which may be altered manually at any time, even while the shafts are rotating. The outputs from the batch counters are input to a pulse-phase comparator, which
produces an error signal proportional to the instantaneous phase difference between the two pulse trains, and the phase error signal is converted to analogue form, amplified and used to feed the torque-motor driving the output shaft, thus closing the negative feedback loop.

The system is so arranged that the output shaft tries to rotate at a speed which gives pulse trains of equal frequency at the comparator. In this condition the output of the comparator appears as a square wave of unity mark/space ratio, which when integrated gives zero error. Any deviation from the correct shaft speed is detected initially as a small change in the mark/space ratio at the comparator output, equivalent to a fraction of a fringe spacing. This means that the maximum error in the transmission can be reduced to a fraction of a fringe over a speed range from zero to several hundred revolutions per minute. It must be emphasized that this is a "phase servo"-not a velocity servo.

In addition to the basic system as described some additional features ensure that the specification is maintained. Local tacho-generator feed-back around the torque motor ensures system stability at very low speeds. "Direction logic" ensures that the direction of rotation of the output shaft is always the same as that of the input shaft. (Of course, a switch can be used to reverse this direction if desired.) A counting system built into the comparator ensures that any gross errors built up during vicious acceleration and deceleration will ultimately be corrected by the system and not lost.

Velocity lag error, an inherent characteristic of position servos, is eliminated. It is explained simply by saying that if the output shaft were running at, say, $100 \mathrm{rev} / \mathrm{min}$ and providing, say, 100 watts to an external load, there will be zero signal output from the comparator when the system operates with zero error, zero current either into or out of the power amplifier and hence no power to drive the load. In other words, some inherent error must exist to drive the system. Velocity lag error is reduced by feeding forward part of the demand signal directly to the power amplifier via a frequency-to-voltage conversion circuit.
The principal motor-driving signal is always supplied by the input demand, and the error circuit is used solely to correct any deviations from the ideal performance.

The electronic gearbox has many obvious applications, wherever a precise drive between two shafts is required with the absolute minimum of backlash and transmission errors. The technique is already being applied in the machine tool industry, and it is expected that many more situations will arise where the extreme precision and smooth transmission properties of this system, and especially its potentially high reliability and freedom from wear, will make it more attractive than its mechanical counterpart.

H.F. Predictions -August

The charts show median standard MUF. optimum traffic frequency (FOT) and lowest usable frequency for reception in the UK.

LUFs are calculated by Cable and Wireless Ltd. for point-to-point telegraph circuits. Curves for domestic broadcast reception would be almost identical but for the amateur service would be typically 5 MHz higher at mid-day. The variable effectiveness of low-power services is caused by day-to day changes in the ionosphare which are on the increase at this time of the year.

Touch-switch Controller

by R. Kreuzer

This article describes the operation and construction of three units, a touch switch, a variable d.c. memory and a thyristor power control unit. These units can be used separately in other equipment or together as described here for controlling a.c. power. If used as a lamp dimmer the longer one keeps a finger on the touch switch the brighter the lamps will become.

Touch switch

The touch switch is a simple high-gain, high input impedance non-linear amplifier. The f.e.t., $T r_{1}$, provides a high input impedance and some voltage gain. The potentiometer R_{2} in the f.e.t's source is the sensitivity control which sets the bias for $T r_{2}$. It should be adjusted so that $T r_{2}$ is just turned on with no input signal to $T r_{1}$. When a finger is placed on the touch plate a minute a.c. voltage appears across R_{1} via C_{1} because of the capacitive coupling between the mains cable and the operator. This voltage is amplified by $T r_{1}$ and $T r_{2}$ and a 50 Hz square wave appears across R_{4}.

Memory unit

The square waves across R_{4} charge the capacitor C_{3} via R_{5} and $T r_{3}$ so that $T r_{5}$ (connected as a source follower) provides an output voltage across R_{8}. A transistor, $T r_{3}$, is used instead of a diode to prevent C_{3} discharging because its base-to-collector reverse resistance is much higher than that of an ordinary silicon diode. However, if the 'diode' is too perfect C_{3} may charge up slowly due to leakage current from $\operatorname{Tr}_{5} \& 6$. This is unlikely to occur in practice but if it
does a 'less perfect diode' must be used since it is essential that C_{3} should be able to discharge very slowly. The unijunction transistor Tr_{4} discharges C_{3} when the voltage across C_{3} reaches the emitter trigger voltage of $T r_{4}$, thus enabling the switch to be turned off. The zener diode D_{1} is used to bias $T r_{5}$ so that with approximately 0.5 V on its gate the voltage across the resistor R_{8} is approximately $2 \mathrm{~V}\left(R_{8}=2.5 \mathrm{k}(\Omega)\right.$. This voltage can be varied by adjusting R_{8}. It is essential that when C_{3} has been discharged by $T r_{4}$ the voltage across R_{8} should not be more than 2 V . If this can be achieved only by using very low values of R_{s} then a different voltage zener diode should be used.

Thyristor power controiler

The voltage across R_{8} charges C_{4} via R_{9}. At 10 ms intervals C_{4} is discharged by $T r_{6}$ because this transistor is operated directly from the rectified mains and, therefore, its emitter junction becomes forward biased when the mains voltage falls to zero. When an input signal is applied the voltage across R_{8} increases, C_{4} charges to the emitter trigger voltage of $T r_{6}$ and $T r_{6}$ produces an output pulse; the thyristor is triggered on. With a high voltage across R_{8}, say 4 V , the thyristor is triggered on early in the mains cycle and maximum power is supplied to the load.

The power taken by the touch switch and
the memory is supplied by R_{12}, D_{3} and C_{5} running from the rectified mains. The maximum current taken by the two units is 5.5 mA at 10 V . Diodes D_{4} to D_{7} ensure that control is provided over both positive and negative half cycles of the mains supply High-frequency noise generated by the thyristor is suppressed by C_{6}.

Construction

The method of construction used is up to the individual since it is not particularly critical. The prototype switch was assembled on two $50 \times 50 \mathrm{~mm}$ printed circuit boards one being mounted on top of the other behind the faceplate. The touch plate was a piece of copper foil $25 \times 12 \mathrm{~mm}$ glued to the front of the faceplate and covered by a thin sheet of plastic. The following points should be noted:

The wiring from the touch plate to the gate of $T r$, should not be longer than 50 mm otherwise feedback from the power supply and cabling to the switch may occur.

All wiring to C_{3} and R_{5} should be as short as possible and must be self-supporting to minimize leakage current.

Resistor R_{12} should be adequately ventilated as it runs hot.

The mains on/off switch should not be omitted. The circuits can then be isolated from the mains for safety reasons.

To test the unit connect a 200Ω resistor across R_{12}, a $4.7 \mathrm{k} / 2$ resistor across R_{11}, connect a 12 V a.c. supply to the input of the diode bridge D_{4} to D_{7} and use a 12 V lamp as a load. The unit can then be set up without the danger of getting an electric shock. Remember to remove these additional components before connecting the unit directly to the mains supply. Apart from the diodes D_{1} and D_{2} and $T r_{3}$ the other component values are not critical. Although the prototype employed a 1.5 A thyristor higher current devices may be used. The complete device can be used for dimming lights, controlling heaters or other electrically operated equipment.

Electronic Building Bricks

14. The comparator and subtractor

by James Franklin

In processing information in electronic systems we sometimes wish to compare the value of one electrical quantity with another, decide which is the bigger and which is the smaller, and perhaps measure the difference between the two. This may be needed, for example, in self-adjusting systems-say a power supply stabilizer or an electronic temperature controlleror for the control of switching operations.

Measuring the difference between two quantities is another way of saying subtraction. As such it is an arithmetical process which can be performed electronically by analogue or digital computing methods.

A familiar mechanical analogue of the comparator is the kitchen scales or the laboratory balance. One weight is compared with another and if there is any difference between them the balance arm

Fig. 1. Two batteries connected in series opposition give an overall voltage that is the difference between the individual battery voltages.

Fig. 2. The subtraction principle of Fig. 1 applied to two voltages which are varying with time.
swings one way or the other (though there is no measurement of the actual difference). The essential principle of the balance, that one weight offsets the effect of the other, can be applied to electrical quantities. We utilize the adding methods shown in Figs 1 and 3 of Part 12*, but reverse one of the e.m.f. or signal sources so that it opposes, instead of assists, the other. This gives the effect of adding a minus quantity-which of course is the same as subtraction.

For example if we use the method of adding voltages by series connection (shown in Part 12 as Fig. 1 (a)), to adapt this for subtraction we reverse the connections of one of the batteries-say the 6 -volt one, as at Fig. 1. The 6 -volt battery now opposes the effect of the 9 -volt battery because, as an e.m.f. source, it is acting to move electrons in the opposite direction to that in which the 9 -volt e.m.f. source is moving them. The e.m.f. of the 9 -volt battery is offset to the extent of 6 volts and so the net e.m.f. is 3 volts. Thus the subtraction $9-6=3$ has been performed.

This principle can be applied to the subtraction of one continuously varying e.m.f.-a signal-from another. The connections of one of the signal sources are reversed-shown symbolically in Fig. 2 by "Signal source B" being printed upside-down-and then the varying e.m.f. of source B, instead of assisting that of source A opposes it. At each instant the effect of the e.m.f. of source B on electron movement is subtracted from the effect of the e.m.f. of source A. This is illustrated graphically in Fig. 3, where the voltage scale for v_{A} is drawn upwards from zero (as in Fig. 2 of Part 12) but the scale for v_{B} is drawn downwards from zero, by convention, so that graph v_{B} becomes a "mirror image" of what it was in Part 12. Values of v_{B}, are subtracted from corresponding values of v_{A}, giving a set of difference values which are plotted as the graph $v_{A}-v_{B}$ So $v_{A}-v_{B}$ is the varying voltage, or signal, formed by continuously subtracting v_{B} from v_{A}.
For subtraction of signals represented by varying currents, again the principle is to use the adding circuit of Part 12 (Fig. 3) but reverse the connections of one of the signal sources so that its e.m.f. acts to move electrons in the opposite direction.

Fig. 4 illustrates this for subtracting i_{C} from i_{A} and i_{B} instead of adding it to them. Electron flow in the common path is the result of the combined e.mfs of the three sources. In this path there is an aggregate movement of free electrons in one direction resulting from sources A and B assisting each other, but also an aggregate free-electron movement in the opposite direction resulting from the oppositely acting source C. Since number of electrons moved in a given time is electron flow rate, which is current, the net current in the common path is i_{A} plus i_{B} diminished by i_{C} or $i_{A}+i_{B}-i_{C}$. Thus the signal i_{C} is subtracted from the signals i_{A} and i_{B}.

Digital subtraction can be performed by for example, a binary computing method or by an incremental system such as a reversible counter. In the last-mentioned, one sequence of events (e.g. electrical pulses). accumulates a total count in the normal way, while another sequence of events causes the counter to work backwards and so diminish (subtract from) this total count.
*Correction. The Electronic Building Bricks article in the May issue, "Adding quantities and numbers", should have been shown as Part 12.

Fig. 3. Graphical illustration of what happens in Fig. 2 over a period of time. At any instant the voltage in the solid-line graph is the result of subtracting v_{B} from v_{A}.

Fig. 4. Principle of subtraction with currents. Current in the common flow path due to source C is flowing in the opposite direction from that due to sources A and B.

Charging

A further look at the CR coupling

by Cathode Ray

In reviewing basic theory since 1911 for the 60th birthday issue of Wireless World I mentioned that during the second World War I was shocked to find radar instructors teaching that when (say) a positive-going input signal was applied to a CR coupling the output also went positive because of the charging of C. In actual fact (as I went on to say) any charging or discharging of C appears only as distortion of the signal at the output. I included also the words 'of course', by way of apology to readers for wasting their time by explaining where the quoted teaching was wrong. Wasn't it too obvious in these enlightened days?

Apparently not, for I soon got a letter to say that it was I, not the instructors, who was wrong. Touched though I was by this loyalty to a fine body of men, I felt that this evidence that my own experience of them was not unique called for some more detailed exposition of the point in question, in case the fallacy lingered on in a bigger way than I had suspected. I admit that some trainees might have misunderstood what their instructors taught about this. I will go farther and declare that many trainees did misunderstand what their instructors taught about this and about many other things. So not all that they taught in 1941 should be judged by what their trainees thought they said. And even if some of them were wrong on this point of circuit theory, we won the war so what the hell?

No one is likely to argue that uncertainty on the part of some radar mechs about the precise mode of functioning of interstage couplings in pulse amplifiers was responsible for a major loss of effectiveness in Britain's wartime radar defences, but I will and do hold that anybody who wants to be clever with electronic circuits ought not to have a fundamental misconception about how capacitors function in such circuits. So let's make sure.

The vital fact to be remembered is that the potential difference between the ${ }^{\wedge}$ piates of a capacitor cannot change instantaneously, but only as a gradual process due to current flowing in or out.

This follows from the basic equation for capacitance, as important for it as 'Ohm's law' for resistance:

$$
\begin{equation*}
V=\frac{Q}{C} \tag{1}
\end{equation*}
$$

in which C is any capacitance (in farads), Q the electric charge stored in it (in coulombs) and V the p.d. between its plates (in volts). We usually think in terms of current (amps) rather than coulombs, so we also have to remember that

$$
\begin{equation*}
Q=I t \tag{2}
\end{equation*}
$$

which means that the charge Q in equation (1) is equal to the amount of current I (in amps) that has been flowing into C, and t is the time in seconds during which it has been flowing. (To make things simple we are assuming I is constant.) Putting (1) and (2) together, therefore, we see that the voltage across a capacitor cannot change unless the capacitor receives a proportionate charge, and that takes time. If time were not allowed, t would be zero, so for any charge at all I would have to be infinitely large, which is impossible.

Fig. I shows the classic capacitorcharging experiment. Before the switch is closed the capacitor C is uncharged, so in the basic equation (1) $Q=0$, so $V=0$. The moment the switch is closed the voltage E is applied across \mathbf{C} and \mathbf{R} in series. No time has elapsed since it was closed, so $t=0$, so $Q=0$, so $V=0$ still. So the whole of E appears across R. That

Fig. 1 The familiar circuit used to study the charging of a capacitor.

Fig. 2 The familiar (exponential) charging curve; a graph of voltage against time.
means that a current (call it I) is flowing through R, and 'Ohm's law' tells us it is equal to E / R. That same current is flowing into C , charging it. After one second, $t=1$, so equation (2) tells us that $Q=I$. And we already know that $I=E / R$, so $Q=E / R$, so $V=E / C R$. The capacitor voltage is rising at the rate of $E / C R$ volts per second.

But not quite. By the end of the first second the voltage across R is no longer E; it is $E-V$. So the charging current is less than it was, so the rate of charging is less. The nearer the capacitor voltage gets to E, the less voltage is left to drive current through \mathbf{R} and the slower the charging continues. This is shown by the familiar rate-of-charging curve, Fig. 2. Theoretically the capacitor never quite gets charged to the full voltage applied, E, but the deficiency soon becomes negligible.

To continue this lesson in elementary theory we draw the dotted line sloping upwards in Fig. 2 to show how the capacitor would charge if the starting rate could somehow be maintained. The instant at which C would be charged to the applied voltage E is indicated by the point at which the sloping line reaches the E level. Dropping a vertical dotted line from there to the time scale shows (or would do if the scale were graduated in seconds) how long this would take. As our scale is not graduated we will call the answer T.

From what we already know we can find a general formula for T. Combining equations (1) and (2) by substituting It for Q in (1) we get

$$
V=\frac{I t}{C}
$$

At the end of our imaginary uniform-rate charge, $V=E, t=T$, and $I=E / R$. So

$$
E=\frac{E T}{C R}
$$

and for that to be true

$$
T=C R
$$

I'm quite sure that all the radar instructors included this result in their repertoire, whether or not they proved it in the above or any other way. T, the time a capacitance C would take to charge to the applied voltage through a resistance R if the starting rate could be maintained, is called the time constant of the series combination of C and R . If they are in farads and ohms (or more conveniently in microfarads and megohms) T will be in seconds.

Because it refers to a mode of charging that doesn't exist in normal practice you might consider all this a waste of time. But as we noted earlier one cannot say how long a capacitor takes to charge in the real practical Fig. 1 way, because theoretically it always takes an infinitely long time, and that is not a very helpful piece of information. The only thing left, then, is to decide on how charged is 'charged'; 99%, say?
The mere suggestion may bring before you a vision of endless committee meetings all over the world trying to agree on a percentage to use as an international standard. Happily, there is no need for this. It turns out that the actual charging curve in Fig. 2 has a fixed shape, so that the time taken to charge to any given percentage of
'full' is an easily calculated factor of T, which is so simply equal to $C R$. The simplest possible factor is of course 1 , and it happens that $C R$ is the time taken to charge to 63.2% of 'full', as shown in Fig. 2. That looks like rather short measure. 99% requires an odd factor, so I suggest a choice of either 4CR (for 98.17%) or $5 C R$ (for 99.33%).

The radar instructors probably mentioned the name of the curve of this particular shape (the exponential curve) but they may well have decided it was unnecessary (for the purpose of fitting people to keep radar equipment working) to go into the mathematics of the thing. I too am saying it is unnecessary for our present purpose, and anyone who really wants to know can find it in almost any of the textbooks on electricity (with or without magnetism). The only vital point to carry away just now is that some idea of how long in seconds $C \mu \mathrm{~F}$ takes to charge through $R \mathrm{M} \Omega$ is given by multiplying C by R, and that charging is practically complete in 4 or 5 times $C R$.

Now we have got the basic principles straight we can apply them to a circuit of the type which might have given rise to the lecture on CR time constants. It is a circuit in which a square wave developed in the output of one stage has to be passed on to the input of another stage for amplifying, blanking, gating or whatever. Fig. 3(a) shows the relevant part of such a system. Valves are shown, because they were used in wartime radar and because in many cases the input of the second stage had such a high resistance that R was not appreciably shunted by it. Fig. 3(b) is a transistor equivalent for the benefit of those to whom valves are devices that used to be used, too long ago to be worth trying to understand. But an allowance will have to be made for the shunting of R.

The square input waveform is shown in Fig. 3(a), and the object is to reproduce it, with as little distortion as possible, at the

(b)

Fig. 3 The part of a circuit in which the theory developed in Figs. 1 and 2 is useful: (a) the valve version considered, and (b) its transistor equivalent.

Fig. 4 The solid-line square wave is the input to $C R$ (shown in Fig. 3), less any continuous voltage bias, and the dotted line is the output at the junction of C and R.
input to the next stage-i.e., the junction of C and R . Of course if direct coupling is used C and R are not needed and distortion does not arise, but with valve circuits especially it is usually necessary to maintain a fixed p.d. between the two stages by means of C , to keep the electrode working voltages right. When considering signal voltages this fixed p.d. can be ignored. So in the signal-voltage/ time graph (Fig. 4) we can assume both the input voltage (applied across C and R) and the resulting output voltage (across R) start from zero level.
Up to the point on the time scale marked a the input signal voltage remains at zero, and so does the output, so there is no voltage across the capacitor, so (as equation (1) tells us) it must be totally uncharged. But at a the input suddenly goes E volts positive. (Of course it can't do this absolutely instantaneously, but let us suppose that compared with the time ad the rise time is negligible.) This is the point at which I have heard instructors go on to say 'so C charges, making the output (which is the input to the next stage) positive'. But I have, I hope, by now convinced even the most instructorloving reader that it just isn't possible for C to charge appreciably during the rise time, and the fact that the output follows the input and goes positive to the same extent is actually evidence of it. In other words, C does this part of its job by not charging. For as long as it stays uncharged, both sides of it are at the same potential and the output is an exact undistorted copy of the input waveform. The ideal, then, is for C never to be charged, at all.

Let us now consider the state of affairs from b to c. Because the input, E volts, is applied across C and R , and the voltage across C alone (at b) is zero, the whole E comes across R , causing a current to flow through it. Assuming (as we did) that the second valve takes no grid current, all the current has to go into C , beginning to charge it at a rate of $E / C R$ volts per second. The voltage now rising across C is no longer available for R as output voltage. So the output voltage falls. How much it falls in the period $b c$ depends on the time constant, $C R$. If the output is to be undistorted, it mustn't fall at all; which means that $C R$ must be infinite. It can be made very nearly
so by removing R altogether, leaving a gap. But then the grid potential would be at the mercy of stray circuit leakages. To ensure that it starts definitely from zero (or any other designed voltage) R must be used, but its resistance should be made not lower that is needed to anchor the grid to zero volts. Provided that C also is made large enough, the drop in output signal voltage, represented in Fig. 4 by $c c^{\prime}$, can be kept small, as shown. Incidentally, because the voltage across R is nearly constant, the rate of charge is nearly constant and $b c^{\prime}$ is nearly a straight line.

At c the input returns abruptly to zero volts (d), and as the p.d. across C cannot change so quickly the grid side of C drops by the same voltage (E). As it started from c^{\prime}, less than $+E$ volts, it now goes slightly negative, d^{\prime}. This negative voltage, $d d^{\prime}$, to which C became charged during the period $b c^{\prime}$, is now applied to R , through which the charge leaks away during the period $d^{\prime} e^{\prime}$. Because the voltage is so small the rate of discharge is very small and $d^{\prime} e^{\prime}$ is practically horizontal. So when the input goes positive again, from e to f, the output at f^{\prime} is practically the same as at c^{\prime}. It therefore starts its decline during the next positive half-cycle from a lower voltage than it did in the first.

Effect of d.c. barrier

So long then as the output half-cycles continue to be more positive than negative, the different rates of charge and discharge bring them gradually more nearly equal, as shown by the dotted waveform in Fig. 5. In the end, whatever the input waveform, the output will arrange itself so that the time \times voltage area below the line is equal to that above the line. The line, of course, represents the level to which the output is anchored by R ; in this case zero volts. This phenomenon, which we have been examining in detail, results inevitably from the fact that a capacitor is a barrier to d.c. So a signal that starts (as in Fig. 4) all above the line, or more one side of the line than the other, inevitably adjusts itself so that this d.c. component disappears and the output is wholly alternating. The less the time constant $C R$ the faster it adjusts-and the more distortion it introduces.

If the signal frequency is very low, so that C has a long time in which to discharge during each half-cycle, a very long time constant is needed to avoid appreciably distorting a square wave. And the system takes a very long time to readjust to a change of input amplitude. This problem arises in oscilloscopes where capacitance couplings are used in the deflection ampli-

Fig. 5 How the voltage/time graph started in Fig. 4 continues.

Fig. 6 Here for comparison with Fig. 4 is what happens when the time constant is only a fraction of one half cycle.
fiers. It is so tedious waiting for them to settle down that nowadays designers almost always provide direct-coupled amplifiers.

The d.c.-losing effect can be prevented by suitably connecting a rectifier in the circuit, creating a 'd.c. restorer'-but that is another story.

The only other thing I think I need mention-and it will be familiar to radar trainees past and present-is that a CR coupling is often used not to pass on the original undistorted form but to introduce deliberate distortion. The commonest application is for changing square waves into brief pulses. For this purpose the time constant is made much less, so that instead of a gradual charge such as $b c^{\prime}$ in Fig. 4 the capacitor charges practically completely within the half-cycle, as in Fig. 6. When the end of the square-wave half-cycle comes (cd) the output going negativewards by the same amount ($c^{\prime} d^{\prime}$) yields equal negative and positive half-cycles from the start. The negative ones can then be removed by a rectifier and the positive ones clipped by another, to give a train of pulses.

Note that (whatever the instructor said) C charges from b to c^{\prime} and discharges from d^{\prime} to e^{\prime}, in Fig. 4 and in Fig. 6.

I used to find that even fellows who could state Kirchhoff's voltage law quite correctly when asked for it seemed to forget all about it when considering the CR type of circuit. One form of the law says that the sum of the voltages across the components in a series circuit is equal to the voltage applied. Now in Figs. 4 and 6 the voltage applied is represented by the height above zero of the 'input' waveform: alternately E and O. The Voltage across R ('output') is represented by the height of the dotted line, so the voltage across C (due to its charge) must, by Kirchhoff's law, be the vertical difference between the two. Looking at the matter this way, one can be in no doubt about when and how much the capacitor is charging and discharging.

The essential thing is to grasp the message of Figs. 1 and 2. Then a correct view of the action of any CR circuit is (to coin a phrase) a piece of cake.

Single-sideband Experimental Broadcasts

For some years there have been discussions on the possibility of utilizing the medium-wave sound broadcasting band more effectively by means of single-sideband transmissions. At first sight it seems attractive in view of the fact that s.s.b. is now so well established in h.f. communications. But there are complications in reception, the main one being that the simple envelope detector found in conventional sound receivers inevitably leads to excessive distortion and must be replaced by a product detector, in which case. for tuning, a local oscillator of high stability, among other things, is required. In Britain the broadcasting authorities don't seem very enthusiastic about s.s.b. but in Germany there is considerable interest-measured by the fact that the Deutschlandfunk broadcasting organization has been putting out experimental s.s.b. transmissions from its station at Mainflingen, near Frankfurt.

The broadcasts took place in the early hours of the morning. after close-down of normal broadcasting. on 1475 kHz . At least one group of British radio research people was willing to stay up in order to study and listen to the transmissions. This was a radio section of the Department of Electrical and Electronic Engineering at University College Swansea. headed by Dr. R. C. V. Macario (author of an article on an s.s.b. receiver module in the July

- issue). Some results of their monitoring are shown in the accompanying frequency spectra. Fig. 1 is a 200 kHz wide part of the m.f. spectrum showing the s.s.b. transmission at 1475 kHz , in relation to the permanent a.m. transmission from the Mainflingen broadcasting station on 1538 kHz and to Radio Luxembourg on 1439 kHz . More detail can be seen in Fig. 3, which is 50 kHz wide. The upper sideband of the s.s.b. transmission can be seen as an asymmetrical distribution of energy in contrast to the symmetrical distributions. like church spires. of the a.m. stations on each side of it. In Fig. 4 the frequency scale is 20 kHz wide and shows the upper sideband in even greater detail.

The carrier alone of the s.s.b. transmission was suppressed 20 dB below the peak sideband levels, and is shown in Fig. 2, on a frequency scale 20 kHz wide.

The spectra were displayed on a HewlettPackard spectrum analyser, model $8552 \mathrm{~A} /$ 8553L, with a stored display. A simple roof wire aerial was used. Recordings of the transmissions were made via various receiving systems, but it is interesting to note that direct conversion was possible since the lower sideband of the transmission was relatively free of interference.

Telephone Exchanges

of the Future

Abstract

A new type of telephone exchange is in operation at a GEC-Marconi establishment (at Writtle in Essex) which does not use any electromechanical switches or in fact any moving parts. The system is called Martex and is typical of the sort of exchange which is to be built in the future.

The system is a modular range of equipment which covers all aspects of switching and transmitting telephone traffic, and some types of data communications. The complete system is based on the use of digital switching and computer techniques to switch information in digital form.

Equipment employing pulse code modulation, a particular form of digital speech transmission, is now being used increasingly by the Post Office, to increase the capacity of existing telephone lines. Each telephone channel is converted into a stream of digital pulses which provide a complete representation of the original voice signals. These signals can be reconstituted into normal speech with rather less loss of quality and fidelity than would be experienced by a conventional telephone transmission line.

The great advantage of the digital network of transmission is that the spaces between consecutive pulse groups from a single voice input are arranged to be sufficiently large for a number of other pulse streams, from other telephone circuits, to be fitted into these spaces. If this is done in an ordered fashion, then a number of separate telephone inputs can be fed simultaneously along the same transmission line, and separated at the far end into the original voice signals.

This method of combining channels is known as time division multiplexing, t.d.m. It has the advantage that signals in this form make better use of the digital switching equipment.

At the start of a call, the first event in the complete sequence will be the lifting of the receiver, which will initiate a demand for a signal path into the exchange system. This will be established through a local concentrator system, which will allocate a particular time slot in one of the digital input circuits of the exchange. In the exchange system, a register will be connected to the appropriate line, through the digital switch returning 'dial tone' to the calling subscriber. The subscriber will
then dial a code, using either a conventional rotary dial, or push-buttons. When the register has accepted the complete information, the control computer in the exchange will examine the contents of this register. Using information from a magnetic drum store, it will generate control signals to produce the appropriate switching functions in the exchange, together with additional switching instruction codes for onward transmission to a subsequent exchange, depending on the routing of the call. These latter will be assembled in the memory of the 'sender', and transmitted through the system when the switching operation is complete.

On arrival at the exchange, each speech channel will have been converted into digital form by its relevant p.c.m. terminal, allocated on a demand basis in a local exchange system. The digital signals are multiplexed into groups of 30 speech channels to form a single time division multiplex signal. Two additional channels (or time slots) provide control and supervisory information. This format uses a total of 32 time slots in each signal 'frame', with a frame repetition rate of 8 kHz . Each slot contains eight digital bits which define the polarity and amplitude of the speech sample being transmitted. Each incoming speech channel is thus sampled at a rate of eight thousand per second. These groups of channels enter the exchange switching system over digital transmission paths linked directly with the digital switch and its associated control system.
Concentrators will be employed which will enable large numbers of subscribers economically to be connected to a central digital exchange. The concentrators will replace small local exchanges, and will normally be connected to the main exchange through three digital links. providing for up to 90 subscribers to be connected simultaneously to the main exchange. With normal circuit usage, this would cater for 1,000 subscribers per
concentrator. Twenty five or more concentrators may be connected to the Martex switch to deal with up to 25,000 subscribers.

Each digital input circuit consists of thirty speech channels with an additional two supervisory and control signal circuits. This produces a stream of digital pulses in which every 32nd group of pulses, or time slots, relates to a particular speech channel.

Switching will require connection of input and output circuits in either the same time slot or in a different time slot. In the first case connection is by a relatively simple switching action, but in the second, time delays have to be introduced into both directions of transmission to match up the input and output circuits. This process is in addition to the normal switching process, and is also carried out under the direction of the central computer.

In both cases, any incoming signal, on a given digital input circuit, will need to be connected with another digital output. This part of the switching is carried out by providing physical connections between the appropriate wires on a matrix of crossed wires. The connection is made through solid-state digital switches which are pulsed at the 8 kHz repetition frequency of the appropriate pulse group in one of the 32 time slots in each multiplexed input.

However, in general, a second type of switching, incorporating a time delay, will have to be introduced to each switched circuit, in order that it will match up with the appropriate time slot in the output circuit.

If, for example, in order to establish a particular connection, it is necessary to connect the third time slot in one multiplexed input signal to the twelfth time slot of another multiplexed output channel (i.e. nine time slots later), it is necessary to delay the input signals by the equivalent of nine time slots in the forward direction of $35.2 \mu \mathrm{~s}$, and 23 time slots or $89.9 \mu \mathrm{~s}$ in the reverse direction. This is achieved by the use of 'junctor' units, which use shift registers, controlled by the central control computer, to provide the appropriate time delay.

The program control unit contains a number of processors in a fully triplicated system. Fixed program, read-only stores, provide the basic programming for the computer control system, while drum stores are used for channel routing instructions and other semi-permanent control data. Magnetic tape units are used to record call charge data and accounting information.

All critical parts of the system are fully triplicated, with a constant comparison of the data passing any point in the system. A majority voting technique is employed to ensure that a fault in one of the three systems will not introduce errors. In the event of two failures at parallel points in the system, the third channel can be switched to provide a continuous service. All three systems work in synchronism under the control of the exchange clock, to ensure that comparable data arrive at the voting point simultaneously.

Elements of Linear Microcircuits

10: Amplitude modulated radio receivers

by T. D. Towers*, M.B.E.

Despite the increasing number of f.m. sets in use most domestic and car radio receivers are still a.m. only, usually covering the m.w. band, 540 to 1640 kHz , and sometimes also the l.w. band, 155 to 280 kHz . In this article, we will take a look at the application of linear microcircuits in this field.

When off-the-shelf linears first began to come into the hands of set designers in the mid 1960 s, they offered a possible alternative to the use of six to ten separate transistors in a conventional superhet circuit, which had by then become almost a way of living. This market presented a tempting large-scale outlet to semiconductor manufacturers, and as a result a lot of effort has gone into trying to develop microcircuits for a.m. receivers.

The ideal microcircuit design for this purpose would be a device with all active and passive circuit components incorporated with the exception of the aerial, tuning control and indicator, volume control, loudspeaker and power supply. This may come some day, but for the present we must be satisfied with microcircuits which do not go as far, as this.

Most approaches to the problem started from the conventional superhet circuit arrangement and were aimed at producing monolithic silicon chips containing as many of the transistors, resistors and capacitors of the discrete designs as pos sible. However, one school of design (using phase-locked-loop techniques to be described later) has abandoned the conventional superhet.

Partitioning superhets

If you cannot reach the ideal solution of the single chip, then you are faced with the problem of how to break the superhet down into sections. Receiver designs using i.cs have followed three main paths:

Discrete approach, in which only the active components are integrated. This fails to make use of the full potential of the monolithic circuit art because separate passive component counts are not reduced.
Functional approach, in which single functions of the receiver are fabricated in separate monolithic circuits and are

[^5]assembled with additional discrete components to form a complete radio.
System approach, in which multiple receiver functions (e.g. the mixer, oscillator and i.f. amplifier) are fabricated on the monolithic circuit chip.

The discrete approach soon proved to have no advantages over discrete assembly, and is of historical interest only. The functional approach, 100 . proved uncompetitive with discrete assembly but although it has now been abandoned, we
will take a look at one example of it as a significant step towards current practice.

Single i.f. stage

Fig. 1 (a) shows the internal circuitry of the Motorola MC1550G, a versatile common-emitter, common-base cascodecircuit high-frequency amplifier capable of 30 dB gain at 60 MHz but which can be used for a 470 kHz i.f. amplifier in the circuit of Fig. 1 (b).

It will be seen that all the resistors and

Fig. 1. Example of single-stage integration; (a) internal circuit of Motorola MC1550G r.f./i.f. amplifier; (b) MC1550G in single i.f. stage.

Fig. 2. Internal circuitry of Mullard TAD100 a.m. radio receiver microcircuit handling signal from local oscillator via mixer up to audio driver stage.
semiconductors for the single stage have been integrated, and apart from the $L C$ bandpass circuits, only three external capacitors are required.

One chip, r.f. in to a.f. out

The Mullard TAD 100, whose circuit diagram is shown in Fig. 2, was one of the first i.cs designed specifically for a.m. radios. The design aim was a low-cost integrated circuit (not too expensive for economic
service replacement), with performance not worse than that of conventional discrete-component receivers, and in standard 14-lead dual-in-line package. It incorporates no fewer than 11 transistors and three diodes, together with many of the passive components from the mixer to the audio pre-amplifier.
$T r_{1}$ and $T r_{2}$ form a long-tail pair mixer stage, and $T r_{3}$ is the local oscillator. Tr_{4}, , and $T r_{6}$ comprise a high-

Fig. 3. Broadcast-band a.m. receiver design (9V) utilizing TA D100 microcircuit.
gain wideband amplifier for i.f. amplification, and $T r_{7}$ is a transistor detector. $T r_{8}$ and 9 are a long-tail pair audio preamplifiers and $\operatorname{Tr}_{10} . \operatorname{Tr}_{11}$ a Darlington common collector audio driver stage. Diodes D_{1}, D_{2} in parallel, back to back, across the oscillator transistor collector coil terminals, serve to stabilize the local oscillator. D_{3} is a level shifting d.c. coupling diode to the input of the driver stage.

Typically the TAD100 takes about 20 mA quiescent current in a 9 V circuit. Its sensitivity for a 26 dB signal-to-noise ratio (a standard index) is typically $25 \mu \mathrm{~V}$ at input terminal (1). Its a.g.c. range controlled by feedback from (8) to (1) is typically 62 dB change in r.f. input voltage for only 10 dB expansion in audio output. For 10 mV audio at the detector load, less than $6 \mu \mathrm{~V}$ r.f. input is required at the input.

You can see how the TAD 100 is used in practice in the 9 V broadcast-band receiver arrangement of Fig. 3. A $180 / 280$ pF gang capacitor tunes the rod aerial coil L_{1} and the oscillator coil L_{3}. The r.f. input is connected across (1) and (13), and the local oscillator drive feeds into (13); a.g.c. is fed back from (8) into (1) via a decoupling network and L_{2}. From (3) a 560Ω resistor to the negative supply (shunted by a series 56Ω resistor in series with $0.047 \mu \mathrm{~F}$) forms the tail of the input long-tail pair. The mixer output from (14) feeds into the input (a) of the 470 kHz LP 1175 block filter. which is a combination of two tuned $L C$ circuits with a ceramic resonator as shown separately inset in Fig. 3. The LP1175 gives the typical normal 6 dB bandwidth of 7 to 8 kHz and a significant improvement in skirt selectivity over conventional fixedtuned i.f. transformers.

From the filter output (b), the i.f. signal passes into (10) and is amplified and detected to reappear from (8) to provide the audio drive to the top end of the volume control and the a.g.c. signal to be

Fig. 4. internal circuitry of S.G.S. TBA651 a.m. radio receiver microcircuit handling
signal from r_{t}. amplifier up to i.f. output.

Fig. 5. $12 v$ broadcast band a.m. car radio receiver utilizing TBA651 microcircuit.
fed back to (1). From the volume control slider the audio is fed into (4) and reap pears amplified at (6) to drive the output stage. In this design the output transistors are a discrete n-p-n/p-n-p pair in single ended push-pull, capacitor-coupled to a 4Ω loudspeaker to give over IW output.

At first sight there seems still to be a very large number of components outside the microcircuit, but it should be noted that most of them are passive and of wide tolerance, and unlikely to give trouble in assembly. Also the use of a block i.f. filter requiring no 'adjustment' simplifies set assembly.

One chip, r.f. in to i.f. out

The TAD 100 was designed to integrate as much of the a.m. receiver as practicable. The a.f. output stage was left out because of dissipation limitations in the package used. A different partitioning was adopted by S. G. S. in their TBA651 linear integrated circuit that processes the whole high-frequency signal in a.m. receivers. It consists of five stages: r.f. amplifier, mixer, oscillator, i.f. amplifier, and a.g.c. control and voltage regulator and was designed primarily for high quality domestic and car radios. This explains the inclusion of a separate r.f. amplifier stage, and also the ability to work from voltage rails of 4.5 to 18 V . The circuit is packaged on a 'split' (staggered pins) 16-lead dual-in-line.

In Fig. 4 you will find details of the internal circuitry of the TBA651. Tr_{1} is an r.f. amplifier; $T r_{6}$ and $T r_{7}$ the mixer; $T r_{5}$ (with $T r_{4}$) the local oscillator; Tr_{2} and $T r_{3}$ the a.g.c. control on the r.f. amplifier; Tr_{8} and $T r_{9}$ (with $T r_{10}$ tail current source). $T r_{11}, \operatorname{Tr}_{12}, \operatorname{Tr}_{13}$ the i.f. amplifier; and $T r_{14}, T r_{15}, T r_{16}, T r_{17}$ a voltage regulator circuit providing three output voltages to set the d.c. bias conditions of the various transistors.

An a.m. car radio circuit using the TBA651 is given in Fig. 5. A three-ganged permeability unit tunes the aerial input. r.f. amplifier and local oscillator circuits. A double-tuned i.f. bandpass circuit L_{4} and L_{5} connected between (5) and (13) in series with the input to the i.f. amplifier section provides part of the required i.f. selectivity and the balance is provided by the single-tuned circuit L_{6} at the i.f. output (10). The input $L C$ filter can be replaced by a ceramic-plus- $L C$ filter similar to the LP1175 for greater skirt selectivity.

In Fig. 5 it will be seen that a conven tional a.m. diode detector is used exter nally to the TBA651; unlike the TAD 100 where a transistor detector is included in the microcircuit. After the volume control, a number of arrangements are possible. In Fig. 5 the monolithic TAA611/B is used to drive a pair of output transistors (medium power. with a current gain at 3 A of greater than 20) to give 5 W output. A number of completely integrated $5 \mathrm{~W}, 12 \mathrm{~V}$ audio amplifiers are coming on the market with sufficient gain to be driven direct from the volume control in applications such as these. and ultimately we should see two chip complete radio receivers.

Phase-locked-loop alternative to the superhet

The difficulty of microminiaturizing frequency selective circuits has shown the lack of adaptability of the conventional superheterodyne system to an integrated radio receiver, particularly in the lower frequency bands. Because of this, designers are exploring systems that do not call for such fixed-tuned frequency selective circuits.

One area where there is much activity is the p.l.l. (phase locked loop) receiver. This has been around as an idea since the early

1930s, when H. de Bellescize published an article on 'La Reception Syuchrone' in e'Onde Electrique, Vol. 11, pp. 230-240, June. 1932. Nothing came of this, but in Electronic Engineering, pp. 75-76, March. 1947, D. G. Tucker raised the matter again in 'The Synchrodyne'. The p.l.I. receiver also goes variously under the names of 'Homodyne', 'Synchronous Detector', 'PL' (phase locked) and 'PC' (phase colierent).

Fig. 6 (a) shows the principle of the phase locked loop. A carrier of amplitude A_{c} frequency f_{c}, and phase ϕ_{c}. with modulation S is applied to a phase detector which compares this input with the unmodulated output from a local oscillator of amplitude A_{O}. frequency f_{O}, phase ϕ_{o}. If the local oscillator frequency is adjusted to equal the carrier frequency, the phase detector gives an output proportional to the phase difference $\theta=\phi_{c} \phi_{o}$ between the input and oscillator phases. This output is then passed through a low-pass filter and an amplifier and fed back to vary the control voltage on the local oscillator in such a way as to reduce the phase difference between the two signals. The end result is that the local oscillator phase advances or retards until it is in phase with the carrier phase. The local oscillator need not be tuned exactly to the carrier frequency for the phase locked loop to operate. There is a capture effect, in that the local oscillator need be brought only roughly to the carrier frequency and the system then pulls into frequency and phase synchronism with the carrier.

The most elementary p.1.1. receiver can consist of a voltage-controlled local oscillator, a mixer (phase detector) and an audio amplifier with the audio signal fed back to control the local oscillator. In the mixer the signal carrier is converted to a

(a)

Fig. 6. The phase-locked-loop receiver alternative to the superhet; (a) basic phase-locked-loop; (b) system layout for phase-locked-loop a.m. receiver capable of implementation in microcircuit form.
zero-frequency intermediate frequency. the output from the mixer containing only demodulated information from the sidebands.
There are now indications from theoretical and experimental investigations that p.l.I. receivers are performance and costwise competitive with (even perhaps better than) conventional superhets. And the important thing is that the fixed-tuned $L C$ bandpass circuits of the superhet are avoided.

The p.II. receiver has some distinctive advantages over the superhet, apart from the lack of i.f. coils. Any interference will not be synchronous with the local oscillator, so that the mixer output resulting from an interference signal will be a beat note suppressed by the audio filtering. Also there is no image response in the system because the intermediate frequency is zero. These nearly ideal selectivity characteristics and the lower possible thresholds of reception have led to the wide use of p.I.I. receivers in difficult signal environments such as reception from artificial satellites where low signal level, doppler shift and oscillator drift present problems. In the more mundane field of a.m. receivers, p.I.I. techniques have hitherto been prohibitively expensive, but now monolithics are appearing which would seem to make the p.l.l. domestic receiver a strong contender.

The National Semiconductor LM565
phase-locked-loop (although essentially a high quality professional microcircuit) is indicative of the sort of circuit that will soon become available to set designers. It contains a stable, highly linear voltage controlled oscillator and a double balanced phase detector. The v.c.o. (voltage controlled oscillator) frequency is set with an external resistor and capacitor. and a tuning range of $10: 1$ can be obtained with the one capacitor.
Fig. 6 (b) shows the outline of an a.m. p.l.l. receiver system that could be put together with currently available monolithic microcircuits. The r.f. input from the aerial is passed through a tunable r.f. amplifier. Unfortunately this still involves some form of inductance. The main purpose of the r.f. amplifier is to reject harmonics of the signal frequency to which the mixer might respond. The bulk of the receiver gain will still be at audio frequencies.

From the r.f. amplifier the input signal passes to the in-phase mixer (which can be a simple diode bridge) where it is mixed with the output from the v.c.o.-not directly but with a 445° phase-shift. The frequency of the v.c.o. will have been adjusted to approximately the right value from the tuning control. The in-phase mixer acts as a phase (and frequency) detector. The output then passes through the low pass amplifier and back via the
second phase detector, the a.p.c. (automatic phase control) filter to lock the v.c.o. to the frequency and phase of the r.f. input.
The output from the r.f. amplifier is also fed into the quadrature mixer where it is mixed with a -45° phase shifted output from the v.c.o. Through the second loop amplifier and the path phase detectora.p.c. filter it also helps to lock the v.c.o. on signal. The quadrature signal channel can be used to drive a visual tuning indicator.

A difficulty with p.l.1. receivers is that an annoying beat note 'heterodyne whistle' is heard as the receiver is tuned between stations. This can be eliminated by a threshold detector and a.f. squelch gate. When the receiver is off-tune. there is a significant output from the quadrature channel which activates the threshold detector and holds the squelch gate closed thus suppressing audio output. On tune, the quadrature channel output falls to virtually zero, the squelch gate is opened and audio output passes to the a.f. amp and the louspeaker.

Finally, an a.g.c. signal is taken from the in-phase channel via the a.g.c. amplifier to control the gain levels of both the r.f. amplifier and the local oscillator.

You can find a fuller discussion of the p.l.I. receiver described above in L.P. Chu 'A phase-locked a.m. radio receiver' in Trans. I.E.E.E. Vol. BTR 15, No. 3. pp 300-308, Oct, 1969. For the whole subject of phase-locked-loops an excellent standard reference is 'Phaselock Techniques' by F.M. Gardner, John Wiley and Sons, 1966.
(to be continued)

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

OVERSEAS

Aug. 11-13
Automatic Control
(Jerusalem Conf. on Information Technology, 75 Grosvenor St., London WIX ODT)

Aug. 17-19

H.F. Generation and Amplification
(Prof. L. Eastman, Cornell School of E. Eng., Phillips Hall, Ithaca, N.Y. 14850)
Aug. 18-26
Budapest Acoustics Congress
Aug. 23-28

Stockholm

Microwave Conference
(Dr. H. Steyskal, Fack 23, 104 50, Stockholm 80) Aug. 24-27

San Francisco
Western Electronic Show \& Convention
(WESCON, 3600 Wilshire Blvd, Los Angeles, Calif. 90005)
Aug. 25-27
Geoscience Electronics
rk, N.Y. 10017)
(I.E.E.E., 275 E. 47 th St., New York, N.Y. 10017)
Berlin

International Radio \& TV Show
(A.M.K., Messedamm 22, 1 Berlin 19)

Complementary Darlington Output Transistors in Audio Amplifiers

Product application note

Circuit shown right is designed around integrated Darlington power transistors, made by Motorola. With these, external bias components are not needed and their high gains limit the gain and power dissipation requirements of driver transistors, thus simplifying amplifier designs. Design is suitable for power outputs from 15 to 60 W working into a loudspeaker of 4 or 8Ω-see table. This and a direct-coupled version are contained in Motorola application note AN-483A.

Circuit gives harmonic distortion of less than 0.2% at rated output from 50 Hz to 20 kHz and 0.1% at 100 mW output from 200 Hz to 20 kHz , rising to 0.25% at 20 Hz for both power levels. Intermodulation distortion is 0.2% at half power with 1 kHz and 10 kHz signals in 4:1 ratio. Resistor R_{11} sets bias current-20mA-to minimize crossover distortion. As an alternative to bootstrapping, Tr_{5} base is connected to a constantcurrent source- $\boldsymbol{T r}_{4}$ and diodes D_{1}. (Resistors marked with an asterisk should be 5% tolerance, others 10%.)
Several short-circuit protection techniques can be used. The short-term one shown (left) allows a short-circuit to be driven for a few minutes-average power dissipation increasing by four times-using heat dissipators with thermal resistance specified in the table and at $25^{\circ} \mathrm{C}$ ambient temperature.

Components for 15 to 60 watt amplifier not specified in circuit

Rated power W	$\begin{aligned} & \text { load } \\ & 2 \\ & S \end{aligned}$	$\begin{aligned} & R_{12} \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{c c} \\ & \Omega \end{aligned}$	$\begin{aligned} & R_{5} \\ & \Omega \end{aligned}$	$\begin{aligned} & R_{7} \\ & \mathrm{k} \Omega \end{aligned}$	Tr 1.4	$T r_{2}$	Tr ${ }_{3}$	$T r_{5}$	$T r_{6}$	$\begin{aligned} & c_{1} \\ & \text { rating } \\ & v \end{aligned}$	$\begin{aligned} & c_{2,3}{ }^{3} \\ & \text { rating } \end{aligned}$ v	$\begin{aligned} & C_{4} \\ & \text { rating } \\ & v \end{aligned}$	heat sink ${ }^{\dagger}$
					33	MPSA05	MPSA55	MPSU01	MJE1100	MJE1090	35	20	40	9.5
15	4	330	32	620	33	MPSAO5	MPSA55	MPSUO1	MJE 1100	MJE 1090	40	25	45	9.5
	8	150	38	510	39	MPSA05	MPSA55	MPSU01	MJE 1100	MJE1090	40	25	45	7.0
20	4	470	36	560	39 47	MPSA05 MPSA05	MPSA55	MPSU01	MJE 1100	MJE1090	50	30	55	7.0
	8	180	46	470	47 39	MPSA05	MPSA55	MPSU01	MJE 1102	MJE1092	40	25	45	5.0
25	4	510	38	560 390	39 47	MPSA05	MPSA55	MPSU0 1	MJE1100	MJE1090	50	30	55	5.0
35	8	220 750	48 44	390 470	47	MPSA05	MPSA55	MJE520	MJ3000	MJ2500	45	25	50 65	6.0
35	8	390	56	330	56	MPSAO6	MPSA56	MPSUO1	MJ1001	MJ901	60	35 30	65 60	5.5 4.0
50	4	910	50	390	47	MPSAO5	MPSA55	MJE520	MJ3000	MJ2500	50	30 35	75	4.0
	8	560	65	270	68	MPSAO6	MPSA56	MJE520 MJE520	MJ3001	MJ2501	60	35	65	3.0
60	4	lk	56	330	56 68	MPSA06 MPSA06	MPSA56 MPSA56	MJE520 MJE520	MJ3001	MJ2501	75	40	80	3.0

[^6] p. 22 of January 1971 issue (instruction 5).

Automatic Titration Potentiometer

by D. R. Bowman, m.I.E.R.E.

Abstract

The instrument described employs dual-gate m.o.s.f.e.ts and was originally intended to monitor a chemical process known as titration. However the measuring circuit can be used for other applications in which an electrometer is required.

A measuring circuit was required that would link the output of a very high internal impedance probe with an indicating apparatus such as a chart recorder. The probe in question had an internal impedance in the kilo-megohm region and an output of between 100 and 400 mV . One of the various thermionic electrometer valves available would have performed well but with the disadvantage of requiring h.t. and I.t. power supplies. Investigation of the various semiconductor amplifying devices available revealed that only the m.o.s.f.e.t. approached the input resistance requirement. Previous experience with these transistors has taught the author to be wary, for although the gate to-source breakdown rating may be 20 or 30 V the high inherent resistance inevitably means that even the smallest charge cannot leak away and is liable to accumulate until the gate insulation is destroyed.

A number of transistor manufacturers
being alive to this problem have introduced devices with zener diodes internally connected across the gate electrode. The diodes exhibit a very high shunt resist ance until the potential across them exceeds about $\pm 6 \mathrm{~V}$. At this potential their resistance drops to a low value and so protects the transistor's gate insulation.

The basic circuit, which is shown in Fig. 1, is a differential amplifier. The d.c. level drift with temperature, an always present problem in electrometer amplifiers, is not so serious here because the drifts in the two transistors are in opposition and therefore tend to cancel each other.

To maintain the maximum input resistance a gate leak resistor has not been included, however, the probe's series resistance provides an earth return for the gate electrode. The first device operates as a source follower, the inherent negative feedback tending to maintain the high input resistance. The second stage is connected as a common gate amplifier.

The overall power gain provided by the amplifier is of the order of 70 dB .
The second gate electrodes of the cascade devices are connected together and biased to about 0.6 of the drain potential. The two source electrodes are taken via a potentiometer to earth. This couple is adjusted for minimum thermal drift. The output potentiometer alters the gain slightly, but is primarily intended for setting the output to zero when there is no no input signal. The exact amplitude of the output signal is unimportant when the instrument is used in titration so this deficiency has not proved to be a great disadvantage. No attempt has been made to match the m.o.s.ts and yet the temperature stability has proved to be adequate.

Two transistor types are suitable, the 40673 and the 3 N 187. Of these the 40673 seems to be the best choice; it is identical in performance with the 3 N187, but is considerably cheaper.

Power supply

The circuit shown in Fig. 2 exhibits a very low output ripple together with automatic overload protection. As the series regulating transistor is capable of supplying at least 200 mA other auxiliary equipment can be connected to the supply if required. In the diagram an unearthed 9 V unit is shown whose polarity can be altered by earthing either the positive lead to produce -9 V or the negative lead for +9 V . This instrument requires two such supplies, one of each polarity. The mains transformer used is a Radiospares miniature type with two 12 V secondaries, but any other transformer with two independent secondaries will do as the current requirement is only 10 mA . The two power supply circuits should be adjusted to provide about 9 V .
The setting up of the amplifier is extremely simple; the only point needing description being the minimum thermal drift adjustment. The dual gate m.o.s.ts are mounted in an electrically insulated dual heat sink. A hot soldering iron should be brought into thermal contact with this heat sink and the potentiometer adjusted

Fig. 2. Power supply circuit. Two of these are required.
for minimum drift as shown by the recorder. The gain potentiometer should be used to set the amplifier for zero signal out with the input short circuited.

Titration

Many quantitative chemical analyses are made by adding measured amounts of acid to the unknown alkali solution until the two cancel one another out to leave a neutral solution. The stage at which balance occurs, the end-point, has to be determined very accurately and is normally done using one of the coloured chemical indicators of which Litmus is an example.

If two electrodes are dipped into the solution during the titration process the voltage across these electrodes will change as the solution goes through the neutral point. It was to detect this change that this instrument was designed.

The probe employed was a 'Silver billet combination electrode' (Cat. No. 39187). During the titration process the mixture was stirred using a magnetic stirrer and a piston burette was used to add one liquid to the other. The piston burette is driven by a motor and adds liquid at an accurately known rate. As this motor is synchronous the chart recorder and the piston burettes will automatically keep in step.

The titration probe and amplifier tend to be sensitive to noise generated by the

Fig. 3. Chart recorder A is set for 50 mV f.s.d. and is the potentiometric titration recorder. Chart recorder B is set for 5 mV f.s.d. and is the differential potentiometric titration recorder.
magnetic stirring system and for this reason a switched filter has been included in the input circuit of the amplifier. This filter should be used with care, only enough smoothing being used to reduce the noise or the response of the whole system may become excessively damped. Fig. 3 shows a basic differentiating circuit which if applied to the output of the amplifier and used in turn to drive the recorder makes the titration end point on the graph more easy to discern. With this simple circuit it will be necessary to increase the sensitivity of the chart recorder.

Sixty Years Ago

August 1911. Two reports in this issue were concerned with mobile communications. An article 'Wireless Telegraphy and Aeroplanes' described an experimental installation as follows:
"In a lecture before the Royal Institution, Mr. T. Thorne Baker passed in review some of the work already accomplished in the application of wireless telegraphy to aerial navigation and referred to some satisfactory results obtained by Mr: Farman by using two trailing aerials, each consisting of rather thin wire about one hundred metres in length. Those experiments were carried out. some time after Mr. Baker had adapted a similar arrangement to a Bristol
biplane in this country. In the latter case no loose wires were used, and thus he had been limited to the amount of aerial that could be attached to the machine itself-about 50 ft . Instead. however, of using balanced aerials, he coupled them to each end of an inductance coil, and increased their effective length to the greatest extent possible without sacrificing efficiency. In the latest form of the apparatus he was using a $6-\mathrm{in}$. induction coil with a $\frac{5}{8}$ in. spark gap, fixed at a considerable distance from the apparatus. so as to be away from the petrol tank. Two light brass rods extended from the coil well into the space between the two main planes of the machine, and to one side of the tank, and two $\frac{3}{8}$-in. brass rods sliding over these and $\frac{5}{8}$-in. apart formed the spark gap terminals. Shunted across the spark gap was a condenṣer of the Leyden jar type, and an inductance coil consisting of seven turns of No. 14 copper wire wound on a light ebonite drum. This inductance had sliding contacts so that the number of turns used could be varied in the usual manner, in order to tune the two circuits. The two aerial wires were connected to the two ends of the inductance in use, and the aerial circuit was brought into tune with the shunt circuit. A secondary battery of eight or ten volts supplied the primary energy, about 50 or 60 watts being required.
"Two new arrangements have since been adopted, which should greatly enhance the efficiency of the plant. The chief of these is a long light brass tube attached to, but insulated from, one side of the tail of the aeroplane. This acts as a counter capacity, or 'earth', to a long aerial wire on the other side. This aerial starts from the nose of the machine, is carried thence to the extreme outer edge of the main plane, thence back to the tail, and thence to a loose extension, a length of 60 ft . of copper wire trailing behind."

Coming down to earth, another article, 'At the Royal Investiture', described how two Marconi portable wireless telegraph sets were used at the Investiture at Carnarvon of the Prince of Wales. These particular sets were normally employed by the Cumberland Yeomanry and as can be seen from the photograph, consisted of a motor generator and the wireless set itself. It is pictures like this which emphasize the tremendous advances that have taken place in just sixity years.

World of Amateur Radio

Morse outmoded?

Since the earliest days of amateur radio, the imminent demise of c.w. operation has been regularly forecast-yet dits and dahs still retain the interest of many amateur operators and account for a significant proportion of all activity. But c.w. has its critics. The notes in this column in May on the possible effects of the proposed F.C.C. changes to U.S. phone allocations brought a strongly contrary opinion from Dr John Irwin, (K6SE/5), of Louisiana State University. He feels that my notes showed a "negative attitude" towards "the switch from c.w. to s.s.b." This, he suggests, is happening all over the world and should be encouraged. "Phone is so much more efficient and interesting and satisfying than code that I have not used c.w. at all for the past two years", he writes. In that time he has worked over 900 different Japanese amateurs on s.s.b., many of them using less than 20 watts. "These Japanese are forced to use and speak English and I think this is a great thing for international fellowship and understanding, and they deserve to be commended for overcoming the severe language barrier. I only wish more Russians used s.s.b. . . . It is a complete misconception to believe that non-U.S.A. amateurs cannot work, do not want to work and do not work in the U.S. phone bands. ... Widening U.S. phone bands will thin out the interference, benefiting all amateurs, the world over.... Single-sideband equipment is now so satisfactory, so potent and so cheap that the present trend from code to voice cannot help but continue; and I'm all for it", he stresses.

Those of us who continue to believe there should be a future for c.w. will disagree with several of Dr Irwin's arguments, but must respect his right to express them-the more so since it now seems pretty certain that there will be an extension of the U.S. phone allocations. But two amateurs chatting on s.s.b. occupy as much frequency space as perhaps 30 or 40 would need for c.w. Where frequencies are under extreme pressure (e.g. 7 and 14 MHz), surely narrow-band c.w. should be given reasonable priority? On other bands, the decision to opt for c.w. or phone is rightly one for individual amateurs to make.

It is worth noting that c.w. users retain an above average interest in the hobby. A breakdown of 100 British stations worked from G3VA on c.w. (3.5, 7 and 14 MHz) in recent months showed that about 25% had been licensed during the past 5 years; about 13% from 5 to 10 years; 16% from 10 to 20 years; 18% from 20 to 25 years; and 28% over 30 years!

Beyond question s.s.b. is effective-but, because of the peaky nature and wide bandwidth of voice waveforms, c.w. of equivalent power is still a far more effective means of communication, provided that appropriate narrow-band filters are used in the receiver. Essential information can be passed as quickly, and more accurately. So most of us want to see both modes continuing in general use.

Amateur finds radio "bug"

The recent disclosure, as the result of an Old Bailey trial, that W. H. Borland (G3EFS) of Bromley, Kent, had been responsible for first discovering and then tracking down illegal "bugging" equipment installed about half-a-mile from his home, highlights the continued interest in amateur direction-finding. For almost 20 years, each summer, a series of D / F hunts is organized, culminating in the annual R.S.G.B. National Final. The contests usually take the form of hunting down, over distances up to ten miles, in the course of a single afternoon, two concealed 1.8 MHz transmitters.

Space communications and amateurs

Amateurs who have been following the progress of the I.T.U. World Administrative Radio Conference on Space Matters in Geneva are concerned at the long-term implications of the extremely strong pressure for microwave frequencies for all forms of space communications. No longer are there any "unwanted" frequencies in this part of the radio spectrum. Amateurs have been disappointed at the apparent lack of liaison between the national amateur radio societies of a number of European countries and their official delegations, who often appear to be virtually unaware
of the amateur service. While it is still expected that some extensions will be granted to amateur space facilities (at present confined to 144 MHz), a number of proposals, supported by the official U.K. delegation, are unlikely to be approved. The position taken up by the delegations from such countries as France, Norway. Sweden and the U.S.S.R. is contrasted with that of the U.K. where Minpostel invited the R.S.G.B. to nominate a member of its Council (Roy Stevens, G2BVN) to attend the meetings as an official adviser to the U.K. delegation.

V.H.F. activities

Several notable tropospheric and sporadic E "openings" were noted during June. TF3VHF, the 70 MHz beacon station in Iceland, was heard in the U.K. on several days. In just over two hours on June 13th, 9HIBL (Malta) worked 13 British stations cross-band $70 / 28 \mathrm{MHz}$ (70 MHz is not available in Malta). In a long series of observations on the London 70 cm beacon GB3GEC, two Ditch amateurs, PA0VZL and PA0GDV, have been hearing the station consistently, almost regardless of band conditions. A recent 144 MHz portable contest was won by G. W. Tibbetts, GW3NUE/P, who made 331 contacts. Peter Blair, G3LTF, has resumed 1296 MHz "moonbounce" contacts with W2NFA.

In brief

The R.S.G.B. National Mobile Rally is at Woburn Abbey on Sunday, August 8th with talk-in stations GB2VHF, G3VHF and GB3RS on 14,70 and 144 MHz . Events will include a trade exhibition, demonstrations of amateur TV, bring-and-buy sale, etc. ... A special station, GB3ESP, will be operated by members of the International League of Esperantist Radio Amateurs during the 56th Universal Esperanto Congress in London from July 31st to August 7th. ...F.C.C. regional offices in America have been asking a number of "Technician" licensees to submit to re-examination; about half turn in their licences without trying. . . . F.C.C. have issued a Notice of Inquiry seeking to determine what improvement (including TV receiver design) could be made to achieve interference-free TV reception; the American Consumers Union intends to report more fully on the susceptibility of TV and hi-fi gear to interference from h.f. transmitters. . . . An American amateur, WOWYX, has his home station located at a height of $11,500 \mathrm{ft}$ on Squaw Mountain, Colorado. ... Increased subscriptions and the afternath of the postal strike appear to have hit severely recruitment of new R.S.G.B. members; in the three months March to May only 165 new members were elected compared with 545 in the same period in 1970

Pat Hawker, G3VA

Personalities

T. A. Duerden, B.Sc.. Ph.D.. who joined Plessey as manufacturing facilities planning executive just over a year ago. has been appointed general manager (Pentex). Dr. Duerden. who will be primarily responsible for the Pentex electronic telephone exchange business. will be based at the Group's Beeston. Nottingham. factory. A graduate of Manchester University, where he read physics and later received his doctorate, he was head of management services at the Preston Division of British Aircraft Corporation prior to joining Plessey.
G. C. F. Whitaker, F.I.E.E.. F.I.E.R.E. . who was for two years on the staff of Yorkshire Television as senior planning engineer followed by a further two years as engineering consultant. has retired. Mr. Whitaker. who is 66. was educated at the Royal Naval Colleges Osborne and Dartmouth. He retired from the Navy in 1928. Re-joining the Navy at the outbreak of war. he was, initially engaged on global. long-range h.f. direction finding. followed by a period in the Radio Ptysics Laboratory of the University of Sydney. where he studied radio location. At the close of hostilities he was rerinstated on the Active List and after appointments in the Department of Naval Ordnance and. on two occasions as deputy superintendent of the Admiralty Signals and Radar Establishment. he was promoted to the rank of Captain. His final Naval appointment was on loan to the Australian Commonwealth Government as director of electrical engineering in the Department of The Navy. Melbourne. Victoria. Retiring in 1959. he was employed by Central Rediffusion Services Ltd, and from 1960 to 1967 was chief engineer of Rediffusion television operating the London weekday contract of the I.T.A.

Derek Stanners is appointed U.K sales manager of Racal Instru ments Ltd, of Windsor. Previouslv on the board of the B \& K Group. with overall marketing control of their instrumentation products
company. Mr. Stanners has also worked for the Plessey Group at Northampton. He is an enthusiastic radio amateur. His call sign is G3HEJ.

John R. Brinkley, F.I.E.R.E.. A.M.I.E.E.. international manager of mobile radio for the I. T. \& T. Corporation since 1969. has joined Redifon Lid as an exccutive director of the company. The Communications and Marine Division of Redifon is to be formed into a subsidiary company and it is intended that Mr. Brinkley should

John R. Brinkley

be its managing director. Mr. Brinkley received his early training with the Post Office. He transferred to the Home Office Communications Directorate in 1942 and six years later joined Pye. He was managing director of Pve Telecommunications Ltd from 1956 until 1966 when he joined Standard Telephones and Cables where he was executive director until his transfer to I.T.T.. the parent company.

Air Chief Marshal Sïr Donald Evans, K.B.E.. C.B.. D.F.C.. R.A.F. (Ret'd). has joined Ferranti Ltd in Edinburgh. as a consultant on military aviation matters but will be based at Ferranti's London Office. Millbank Tower. S.W.1. Air Chief Marshal Evans. who is 59. commanded a night fighter trials unit during the war and later the Roval Radar Establishment's Flying Unit. His Air Force service included his appointment as Air Officer Commanding-in-Chief. Technical Training Command (1964-66): as Air Secretary
(1966-67): and as Commandant of the Imperial Defence College (1968-69).
C. J. Kent has joined A.P.T. Electronic Industries Ltd. of Byfleet. Surrey. as sales manager Mr. Kent joins the company from Advance Electronics Lid where he was employed for four years as senior sales engineer. He served his apprenticeship with A.E.1. at Trafford Park. Manchester.
J. E. Everitt, M.A.. M.I.E.E.. joins the board ol Rank Bush Murphy Ltd in the newly created post of director of overseas operations. Mr. Everitt. who is 35 and took his degree in mechanical sciences at Cambridge. joins Rank Bush Murphy from Ultra Electronic Holdings Ltd. of which he was marketing director.
G. Boris Townsend, B.Sc.. Ph.D.. F.I.E.E.. F.Inst.P.. for the past six years head of engineering research at Thames Television, has joined the I.T.A. as deputy head of the Engineering Information Service. Dr. Townsend. a graduate of King`s College, London. began his career at the General Electric Company where he worked on the development of colour television receivers. He is co-author with P. S. Carnt of the two volumes on colour television published by Butterworth and received his doctorate from London University for a thesis on colour television. In 1963 he joined Rank Cintel as technical manager of the Professional Television Equipment Division. Dr. Townsend was president of the British Amateur Television Club from 1960 to 1965.
A. R. Wilkinson, M.A.. M.I.E.E. has been appointed technical director of Radiatron Ltd and Radiatron Components Ltd. of Twickenham. Middx. He will be chiefly engaged on development work and market research. Mr. Wilkinson-was formerly principal test equipment engineer with G.E.C. at Aycliffe. Co. Durham.

Ates Electronics Ltd have announced the appointment of Howard Prescott, who will have responsibilities for product marketing and technical liaison on the company`s application circuits. Mr. Prescott. started his career with Ultra Electronics Ltd as a student apprentice, and moved to R \& D before joining Air-Tech Ltd as proiects engineer. Immediatelv prior to joining Ates, he was applications engineer with S.G.S. Ltd, where he specialized in linear i.cs.

C. Rhodes Oliver, B.Sc.

 M.I.E.R.E.. has joined Semi conductor Production Equipment Co. Ltd. of West Byfleet. Surrey. as technical director. He will be responsible for all technical aspectsand development of the Centronic product range which includes diffusion furnaces. laminar flow cabinets. profilers, semiconductor ovens and lighting intensity controllers. After the Second World War. which was spent in the New Zealand Air Force working on radar and navigational aids. Mr. Oliver was with Pve Radio and Newmarket Transistors for several years before joining Standard Telephones \& Cables in 1958. This was followed by a period with A.E.I.. Brimsdown. as development manager and with R.C.A. at Catania. Sicily.

BIRTHDAY HONOURS

Iell men in the world of electronics were included in the Queen's Birthday Honours List. Among those receiving homours are:

Knights Bachelor

John Allen Clark, Companion I.E.E., chairman \& chief executive. Plessey.
John Henry Davis, chairman and chief executive. Rank Organisation.

C.B.E.

H. Barker, director. net work planning. Post Office Telecommunications.
Rear Admiral B. J. Castles, F.I.E.R.E., R. Australian Navy. H. W. French, chief inspector. Dept. of Education \& Science.
L. S. Yoxall, chairman, FoxboroYoxall Co.

O.B.E.

R. E. Burnett, M:A., F.I.E.E., managing director. Marconi Instruments.
R. W. P. Cockburn, controller (admin.) external broadcasting. B.B.C.
W. Nethercot, chairman. Min. Posts \& Telecoms advisory technical sub-committee on wireless interference from industrial apparatus.
L. A. Samson, sales \& service director. Guided Weapons Div.. Brit. Aircrafts Corp.
Wing Commander W. E. Satterthwaite, M.I.F.R.F.. R.A.F.

M.B.E.

H. Ledger, senior engineer. Plessey Telecommunications Ltd. Beeston. M. R. Neville for services to the Electrical \& Electronics Industries Benevolent Assoc.
H. J. Plater, asst. manager. studio operations. B.B.C. Television.

OBITUARY

Lord Reith, under whose guidance broadcasting was started in this country in 1922 by the British Broadcasting Company, of which he was general manager. died in Edinburgh on June 16th. He was 81. John Charles Walsham Reith. a mechanical engineer by profession. became the first director-general of the B.B.C. when in 1927 it became a public corporation. Although he resigned from the B.B.C. in 1938 he has left his mark indelibly on British broadcasting.

Literature Received

For further information on any item include the appropriate WW number on the reader reply card

ACTIVE DEVICES

A new c.r.t. brochure has been produced by Brimar, Thorn Radio Valves and Tubes Ltd, 7 Soho Square, London WIV 6DE. Its 34 pages cover all of the Brimar range of 238 types, not counting 'specials'. The sections are printed in English, French, German, Spanish and Italian. As well as details on the various types of phosphors and an equivalents list, a list is given of obsolete tubes, including those not made by Brimar. WW401
A catalogue produced by The National Semiconductor Corp., 2900 Semiconductor Drive, Santa Clara, California 95051 , U.S.A., lists, and gives details of, all the low-power transistor-transistor logic, integrated circuits manufactured by the company WW402
Data on germanium and silicon transistors, thyristors, and integrated circuits is given in a new catalogue, which also includes application information, published by Ates Electronics Ltd, Mercury House, Park Royal, London W.5.
We have received the following literature from Hewlett Packard Ltd., 224 Bath Rd, Slough SL1 4DS: 'Optoelectronics catalogue'. Gives details of a number of solid-state displays using 5×7 dot, and 7 -segment formats. The catalogue also includes light-emitting and photo diodes and gives details of a digital panel meter WW404 Separate data sheets give additional information including circuitry:
4×7 dot array
WW405
7 -segment display
WW 406
A leaflet gives details of a range of hot carrier diodes which may be obtained for $£ 4.65$ complete with dataWW447
Diode and microwave product catalogue . WW407
Solid-state devices and components price list WW408 'Large scale integration (1.s.i.) products guide,' produced by the Intel Corp., 365 Middlefield Rd, Mountain View, California 94040, U.S.A., lists m.o.s. and bipolar random access memories, read-only memories, shift registers, decoders, drivers, level shifters, gates and latches. One of the read-only memories is a 2,048 -bit electrically programmed typeWW409
Erie Electronics Ltd, of South Denes, Great Yarmouth, Norfolk, now distribute semiconductor devices manufactured in Japan by Toshiba. Erie have the following literature available:
TH9013P. 20W amplifier hybrid i.c. . . WW4 410 TA7055P Pre-amplifier i.c. Literature describes the use of this i.c. in several applications and it may be used to drive the 20 W power amplifier mentioned aboveWW411
Toshiba semiconductor catalogue including germanium and silicon transistors and diodes and various other semiconductor devices ...WW448
Transitron Electronics Ltd, Gardner Rd, Maidenhead, Berks, have produced a catalogue called 'Transitron Rangefinder' which is a short-form guide to the semiconductor products manufactured by the company
We have received a 'Medium scale integration (m.s.i.) product guide' from GEC Semiconductors Ltd, Witham, Essex

A 14-page catalogue of silicon rectifiers manufactured by the Semtech Corp., is available from Bourns (Trimpot) Ltd, Hodford House. 17/27 High St, Hounslow, Middx.WW414
Over voltage protection units in hybrid thick-film microcircuit form are the subject of a leaflet available from Coutant Electronics Ltd, 3 Trafford Rd, Reading RG1 8JR

WW415

PASSIVE COMPONENTS

East Grinstead Electronic Components Ltd, Imberhorn Industrial Estate, East Grinstead, Sussex, have available a massive catalogue devoted entirely to potentiometers manufactured by Radiohm. Various types are included: presets, slider, wirewound etc. Some have switchesWW416
Mecanorma Electronic, a French company, produce a range of printed circuit drafting aids. The range, whici is being marketed in this country by the D.T.V. Group Ltd, 126 Hamilton Rd, West Norwood, London S.E.27, is described in a catalogueWW417 The r.f. components division of Sealectro Ltd, Farlington, Portsmouth, Hants., has produced an updated version of the 'Conhex r.f. connector catalogue'. It incorporates a new section covering a series of microminiature connectors called 'Nanohex'. WW418
Playback and record heads manufactured in Germany by Woelke Magnetbandtechnik are described in a catalogue available from Lennard Development Ltd, Lockfield Ave, Brimsdown, Enfield, Middx. . WW419
Banbury Products, 84/85 Bancroft, Hitchin, Herts., have produced a catalogue which lists aluminium, battery clips, boxes, brackets, nuts and screws, cable accessories, clips, and many other items of electronics hardware, including such things as plugs, sockets and knobs
A Japanese company, called Toyo Musen Co. Ltd, manufacture multicolour miniature indicator gas discharge lamps, indicator tubes and a range of small moving-coil meters. Toyo Musen's distributors in this country are Ataka \& Co Ltd, Roman House, Wood St, London EC2Y 5BS, who have a catalogue available

WW421
A range of hermetically sealed nickel-cadmium accumulators are the subject of a catalogue from Deac (Great Britain) Ltd, Hermitage Street, Crewkerne, Somerset.WW422
Bulletin 111A from Berg Electronic Inc., York Expressway, New Cumberland, Pa. 17070, U.S.A., describes an interconnection system consisting of crimp-to-wire connectors, wire wrapping posts and multiple contact housings for various spacingsWW423

APPLICATION NOTES

Investigation report No L141 produced by the application laboratories of Thorn Radio Valves and Tubes Ltd, Brimsdown, Enfield, Middx, describes an oscilloscope circuit built round the Brimar $100 \times 80 \mathrm{~mm}$ rectangular cathode-ray tube type D14-170GH. All the circuitry and comprehensive component lists are included. Layout information is not givenWW424

A company called VG Micromass, Nat Lane, Winsford, Cheshire, have produced a publication, which is known as 01.642 , giving a simple explanation of the basis of mass spectrometryWW425
Microsystems International Ltd, 1 Great Cumberland Place, London WIH 7AL, have produced a booklet called 'The operational amplifier as a relaxation oscillator:WW426
ITT Components Group Europe, Standard Telephone and Cables Ltd, Thermistors Division, Edinburgh Way, Harlow, Essex, have produced the following application notes:
1559A/71. 'Thermistors' by V.H.R. Hole. WW429
$1159 \mathrm{~A} / 71$. 'A 0 to $50^{\circ} \mathrm{C}$ electronic thermometer'. WW430
1359A/71. 'Projector lamp surge suppression'

WW431

EQUIPMENT

We have received the following two wall charts from GDS Sales Ltd, Michaelmas House, Slough, Bucks:
3. 'Plessey Potentiometers' WW427
6. 'I.C. Test Clips', also includes two i.c.
breadboards. WW428
The 'Transipack logic trainer' is the subject of a leaflet from Industrial Instrument Ltd, Stanely Rd, Bromley, Kent.

WW432
Another logic trainer 'Compukit 2' is the subject of a leaflet from Limrose Electronics, Lymm, Cheshire. WW433
An interesting educational item from Feedback Instrument Ltd, Park Rd, Crowborough, Sussex, is the subject of leaflet No. D327. The equipment is a process control simulator which may be used to simulate a large number of different industrial process control situations.
A wall chart has been produced in English, French and German describing the large number of loudspeakers which are manufactured by Rola Celestion Ltd, Ditton Works, Foxhall Road, Ipswich, Suffolk IP3 8JP.
Digital panel meters manufactured by Daystrom Schlumberger are the subject of a leaflet which may be obtained from Daystrom Industrial Products, Bristol Rd, Glos. G12 IBR.
A leaflet describing a range of modular power units with outputs from $2 \times 15 \mathrm{~V}$ to 5 V at currents between 1 and 10A is issued by Fenlow Electronics Ltd, Whittets Eyot, Jessamy Rd, Weybridge, SurreyWW438
P. W. Allen \& Co, 253 Liverpool Rd, London N1 INA, manufacture optical magnifiers, some with illumination, for use in inspecting electronic circuitry. The range is described in a leaflet. WW439 We have received a leaflet which describes a machine for testing bond strength of i.c. leads. Precima Ltd, 7-8 Stepfield, Witham, Essex
Voltmeters, counters, data amplifiers and frequency synthesizers are all described in a new 12 -page shortform catalogue which has been produced by Dana Electronics Ltd, Bilton Way, Dallow Road, Luton, Beds.

WW441 Various power supplies and voltage reference sources, some of which are encapsulated, encapsualted pulse generators, an oscilloscope, digital voltmeter, phase angle meter, and various other digital meters are featured in a catalogue available from Roband Electronics Ltd, Charlwood Works, Charlwood, Horley, Surrey.
.. WW442
We have received three catalogues from Marconi Communication Systems Ltd, Specialized Components Division, Chelmsford, Essex. These are: SP219. 'Quartz crystal oscillators, ovens and filters’WW443
SP223. 'Microwave devices' WW444
SP189. 'Quartz crystals' WW445

GENERAL INFORMATION

A leaflet is available from the Mullard Educational Service, Mullard House, Torrington Place, London WC1E 7HD, which lists the publications and films available.

WW446

New from Ferrograph

For the maintenance of professional recording equipment.

Now, for the first time, all the major parameters of a magnetic recorcing system can be measured on a single, inexpensive instrument. The Ferrograph RTS1 Recorder Test Set.

Consisting of 4 basic sections-variable frequency audic generator, millivoltmeter with associated attenuator, peak-to-peak wow and flutter meter, and distortion measuring network-this instrument will measure frequency response, distortion, crosstalk, erasure, input sensitivity, output power and signal/noise ratio.

Completely solid state and lightweight, it may be used in the field as well as the laboratory,
operating on voltages of 100-120, 200-250 volts at 50 or 60 hz .

It is developed specially for those people who have to operate, maintain or service all types of tape recorders, sound-on-film equipment and audio apparatus.

The Ferrograph RTS1.
Made to stand the test.
Why not write for further details?

FERROGRAPH SOUNDS GOOD

EEV know how many nano-

seconds make 10,000 hours.

In nuclear physics you need absolute accuracy and long-term reliability from your electronic tubes. Especially thyratrons. EEV thyratrons can be fired with nano-second precision, with repetition rates of up to 50 kHz due to very rapid deionisation characteristics. Long life - 10,000 hours can be achieved - enables EEV ceramic thyratrons to be bolted into the circuit as with passive components.

EEV thyratrons meet the demands of major nuclear physics applications
In linear accelerators they can withstand peak inverse voltages up to 20 kV following a pulse, and they give trouble-free operation in oil-filled equipment.

In particle accelerator work missed pulses are rare. Annular current-flow means rapid peak-current switching, too, without risk of arc extinction.

In spark chambers EEV thyratrons will eliminate spurious firing, and jitter can be kept as low as 1 ns . The CX1 154 for example operates over a wide range of H.T. voltages at currents up to 10 kA without significant change in characteristics, so drive units can be used with different chambers - and the low trigger voltage means that simple firing circuits are possible.

So, whether you're concerned about nano-seconds or thousands of hours, specify EEV thyratrons. And remember that EEV also make ignitrons, photo tubes, storage tubes, image intensifiers, vacuum capacitors, spark gaps, RF tubes (like tetrodes for driving RF separators) and magnetrons especially for linear accelerators. Send for details

EEV know how.

WW-070 FOR FURTHER DETAILS
group I of 40 kHz and an intermediate band of 20 kHz at 60 i.p.s. The record and reproduce heads, made of a wear-resistant material, have an edge voice channel for use with the optional voice logging accessory. An optional automatic tape-threading device is also available Power requirements are $115 / 230 \mathrm{~V}$ a.c. ($\pm 10 \%$), 48 to 420 Hz single phase Maximum consumption is approximately 200VA. Bell \& Howell Ltd, Electronics \& Instruments Group, Lennox Road, Basingstoke, Hants.
WW322 for further details

$\mathbf{5 0 M H z}$ counter

Model FC50 from Wayne Kerr is a six-digit readout instrument with automatic location of the decimal point. The effective resolution can be increased, in some instances up to eleven digits, by under-ranging. The ranges are 0.1 Hz to 50 MHz and $1 \mu \mathrm{~s}$ to 10^{5} seconds, with a count facility to 999,999 . Start and stop can be manual or electrical (or a mixture of the two) and facilities are provided for inhibit, gating, storage and varying the up-dating rate. Clock signals are available for external use and there is an option of

b.c.d. outputs from the six number tubes. The display can be switched to show a 'non-blink' series of completed counts of the run as it proceeds. Acceptable input levels range from 20 mV (r.m.s.) to 100 V , and provision is made for correctly terminating 50Ω or 75 lines. The Wayne Kerr Co. Ltd, Roebuck Rd, Chessington, Surrey.
W W328 for further details

Battery-operated soldering iron

The Antex MES 12 soldering iron operates from a 12 volt d.c. supply. Two large crocodile clips on 4.50 m of 2 -core cable provide connection to the battery terminals. The recommended U.K. price is $£ 1.95$. Anglo-Netherlands Technical Exchange Ltd, Mayflower House, Plymouth, Devon. WW 308 for further details

Gunn oscillator

A Gunn oscillator made by Mullard gives an output of 35 mW at 10.525 GHz $\pm 20 \mathrm{MHz}$. Type CL8631, it operates at a
fixed frequency over the temperature range -20 to $+50^{\circ} \mathrm{C}$ and can be used satisfactorily with any phase or load mismatch up to a v.s.w.r. of 1.3. It requires a power supply of 8 V , totax consumption being less than 2 W . A square flange output mates directly with waveguide size RG-52 (WR90/WG16). The device can replace a klystron oscillator in many applications. Mullard Ltd, Mullard House, Torrington Place, London W.C.I.
WW323 for further details

Shift registers

The MA86S/87S silicon gate 100/128-bit dual independent shift registers, from GEC Semiconductors, operate from a single t.t.l. level clock and the t.t.l. system noise immunity specification is preserved. The registers can be clocked from zero frequency to more than 3 MHz . All inputs and outputs (including the clock input) are t.t.t. compatible and the device operates from standard voltage levels. Since the registers are completely independent they may be clocked separately. The device is available in a TO-5 style package. GEC Semiconductors Ltd, Freebourne Rd, Witham, Essex.
WW 304 for further details

Intensifier vidicon

A vidicon camera tube with more than 250 times the sensitivity of a conventional 26 mm vidicon is being produced by the Electron Tube Division of EMI-Electronics. The tube, which employs an intensifier and is designated the Ebitron type 9777 vidicon, is claimed to produce television pictures when illumination is equivalent to half moonlight. The vidicon employs electron-bombardment induced conductivity in the zinc sulphide target with a high sensitivity photocathode. The image section is all electrostatic and the scanning portion similar to a conventional 13 mm magnetic vidicon. The Ebitron can replace existing 26 mm vidicons in c.c.t.v. cameras, the 9777 tube and its coils being no bigger. The 18.2 mm photocathode makes it suitable for use with standard 26 mm vidicon lenses. The weight is 230 g potted,

100 g unpotted.
Typical operating conditions:
image section
overall e.h.t.
$14,000 \mathrm{~V}$
scanning section
cathode 0 V
g_{1} modulator
$-30 \mathrm{~V}$
g_{2} limiter
300 V
g_{3} beam focus $\quad 290$ to 330 V
g_{4} vidicon mesh
500 V
axial magnetic focus field 550 V
output signal $\quad 0.15 \mu \mathrm{~A}$ peak white
overall sensitivity $\quad 50 \mathrm{~mA} / 1 \mathrm{~m}$
The heater requires 90 mA at 6.3 V . EMI
Electronics Ltd, Hayes, Middlesex.
WW 310 for further details

Thermally controlled soldering iron

A range of lightweight, thermally controlled, soldering instruments has been introduced by Adcola. Known as the Invader, the new models incorporate a proven element combined with a new 'pencil-slim' handle. The rectangular centre heat-shield allows the instruments to be placed on any surface without rolling, and the tool is balanced to keep the working bit clear of the surface. A hanging hook is moulded into the handle. Noryl plastic, used for the handle, does

not readily transmit heat - the company claim the 25 W and 27 W tools are the slimmest available in these powers. The plug-in element can be replaced in 90 seconds. The collet can also accommodate

the complete range of 70 standard and special-purpose bits. Standard Invader models are available for seven voltages$6,12,24,50 / 55,110,220$ and $230 / 250 \mathrm{~V}$. Three collet sizes $-\frac{1}{8} \mathrm{in}, \frac{3}{16}$ in and $\frac{1}{4}$ in-are available, and the recommended price for the largest tool is $£ 1.95$. Elements with bit temperatures between 250 and $410^{\circ} \mathrm{C}$ can be supplied at no extra charge. The temperature of the standard-bit face is $360^{\circ} \mathrm{C}$ controlled to $\pm 10^{\circ} \mathrm{C}$. Adcola Products Ltd, Adcola House, Gauden Rd, London S.W.4.
WW 307 for further details

Rotary-action switches

A range of low-torque, rotary-action, miniature switches, with a mechanical life in excess of ten million operations. has been introduced by Honeywell. The 900 Series 'V4' switches can operate in clockwise or anti-clockwise direction with no change in operating characteristics, and alternative shaft positions are possible.

Both s.p.c.o. and s.p.d.t. versions are available with 0.187 in quick-connect or solder termination. They are rated at 5 A and 125 or 250 V a.c. Inrush current values should not exceed 10A. Operating temperature range extends from - 40 to $+100^{\circ} \mathrm{C}$. Honeywell Ltd, Charles Square, Bracknell, Berkshire.
WW327 for further details

Inexpensive $X Y$ plotter

The $X Y$ plotter type PL 100 from J. J. Lloyd Instruments. is suitable for applications where extreme accuracy and high speed are not essential. It is sold as a basic potentiometric assembly with a sensitivity which may be adjusted from 150 to $300 \mathrm{~mm} / \mathrm{V}$. The response speed is approximately $200 \mathrm{~mm} / \mathrm{s}$ and adjustable damping is provided for the servos on both X and Y axes. The amplifiers for both axes are independent, with floating inputs, and a suppressed-zero facility is incorporated which enables the instrument to plot small changes in voltage or current about a given reference level. Calibrated plug-in amplifiers are available to extend the range and enable the instrument to
plot either voltage or current. Each amplifier has a calibrated reference, stepped attenuator and vernier sensitivity control, allowing the gain to be adjusted between $0.5 \mathrm{mV} / \mathrm{cm}$ and $40 \mathrm{~V} / \mathrm{cm}$ or $0.5 \mu \mathrm{~A} / \mathrm{cm}$ and $40 \mathrm{~mA} / \mathrm{cm}$. The accuracy

and repeatability is $\pm 1 \% \pm 1 \mathrm{~mm}$ and the maximum paper size is $254 \times$ 330 mm . Price of plotter only is $£ 124$. The plug in amplifier costs £30. J. J. Lloyd Instruments Ltd, Brook Avenue, Warsash, Southampton SO3 6HP
WW314 for further details

Soldering pencil

A soldering pencil, the MCP from Weiler Electric, can be fitted with any of seven iron-plated tips ranging from 0.0 lin 'micropoint' to 0.125 in double flat. Overall

reach is $2 \frac{1}{2} \mathrm{in}$. The element operates at 24 V supplied from its own power pack operating from the 240 V mains. The power unit carries a spring pencil holder, and a cleaning sponge. Price $£ 14.95$; tips 45 p each. Weller Electric Ltd, Redkiln Way, Horsham, Sussex.
WW326 for further details

Encapsulated regulators

The Roband Limpet range of encapsulated series regulators for stabilized power supply systems achieves high dissipation by providing an isolated metal heat transfer surface in one face of each module. The modules, which operate from a single unstabilized d.c. rail or from a battery, give well stabilized outputs up to 55 V or 20A and have full over-current protection. The output voltage and protection levels
are each preset externally by a fixed resistor, or they can be remotely programmed. The modules fit a standard heat sink extrusion, but can be mounted on any conventional metal surface. A typical 2A unit which measures $47 \times 30 \times 22 \mathrm{~mm}$ can give a stabilized rail set anywhere between 6 V and 24 V with a maximum internal dissipation of 25 W . The cost of

such a unit is $£ 15.50$. Roband Electronics Ltd, Charlwood Works, Charlwood, Horley, Surrey.
WW 306 for further details

Coaxial connectors

Sealectro have introduced a new range of r.f. coaxial front panel connectors. The 'Kwick Konnect' range provides locking and exhibits a v.s.w.r. of better than I.30:1 at frequencies up to 18 GHz . Assembly to cables is by crimp or clamp of the outer conductor, and by crimp or solder to the inner conductor. Once mated, it is virtually impossible to break the connection by pulling on the connecting cable. To disconnect a knurled ring is pulled back and the connectors disengage. Sealectro Ltd, Walton Road, Farlington, Portsmouth, Hants.
WW $\mathbf{3 0 9}$ for further details

T line connectors

Pressac have developed a new system of T line connectors. They are designed to allow electrical accessories to be connected into main wiring harnesses without cutting

the conductors. They can be applied directly to insulated wire without stripping. Each connector has an insulating sleeve which is threaded over the accessory lead
and a brass contact is crimped to the conductor. The brass connector cuts through the insulation to make an electrical connection. The insulation sleeve is then wrapped around the contact and fixed by an integral latch. The connectors can be supplied either on reels, for machine assembly or loose. Pressac Ltd, Leopold Street, Long Eaton, Nottingham. WW 311 for further details

Power transistors

A range of hometaxial silicon power transistors from Ates, suitable for highpower amplifier circuits, employs a structure in which the base region exhibits homogeneous resistivity in the axial direction-i.e. emitter-to-collector-eliminating secondary voltage breakdown within the maximum ratings of the device. The 2 N 3771 of this TO- 3 range provides 150 W output, with $30 \mathrm{~A}\left(I_{C}\right)$ at $50 \mathrm{~V}\left(V_{C B O}\right)$. For 100 V operation, the 2 N 3772 gives 20 A , and the 2 N 377316 A at 160 V . Ates Electronics Ltd, Mercury House, Park Royal, London W. 5.
WW $\mathbf{3 0 3}$ for further details

Reed switch

Reed switch type DRA-291 from F.R. Electronics is capable of switching up to 5 A at 50 VA and up to 1 A at 100 VA . It is

standard size, and has rhodium contacts with low contact resistance. F. R. Electronics Ltd, Wimborne, Dorset, BH21 2BJ.
WW 312 for further details

Logic level pulse generator

From Grange Electronics (Production) we have received details of a wide-range pulse generator which covers repetition frequencies from 1 Hz to 5 MHz in seven overlapping ranges. Delay and output pulse widths are variable between 100 ns and 100 ms in six overlapping ranges. Additional features include manual and external triggering, a pre-pulse output and simultaneous complementary outputs at t.t.l. levels. The price is $£ 66$. Grange Electronics (Production) Ltd, Stone Lane, Wimborne, Dorset, BH2I IHD.
WW318 for further details

Oven for TO- 5 devices

Jermyn's 4ST2 self-regulating oven is designed for devices in TO-5 size packages when lead lengths are restricted to 12.5 mm . Devices having up to eight leads may be accommodated and can be installed without the use of special tools. Ovens having control temperatures of 65 , 80 and $115^{\circ} \mathrm{C}$ are available and will operate in ambient temperatures from -50 up to 50,60 and $100^{\circ} \mathrm{C}$ respectively.

The ovens have no moving parts or electronic circuitry but incorporate a semiconductor heater to provide a self-regulating proportional temperature control. Power requirements are 24 V $(\pm 4 \mathrm{~V})$ a.c. $/$ d.c. 0.6 W (at $25^{\circ} \mathrm{C}$ ambient). Maximum warm-up time from $-55^{\circ} \mathrm{C}$ is 3 minutes. Jermyn Industries, Manufacturing Division, Vestry Estate, Sevenoaks, Kent.
WW319 for further details

Transient voltmeter

Model 3206 voltmeter from Sintrom Electronics will measure and hold the peak value of a single pulse which has a 10 ms duration or longer. The instrument has a

four-figure digital readout and an accuracy of 1% of full scale. There are four switched ranges with full-scale values ranging from 10 mV to 19 V . The input impedance is 1 $\mathrm{M} \Omega$. The peak value is held in store until reset. Automatic reset for driving a printer or recorder is provided. The input is floating and is double screened to reject radiated transients. Other models in this range include instruments capable of measuring
pulses up to 30 kV and as short as 50 nanoseconds. Analogue and digital readouts are available. Prices range from $£ 580$. Sintrom Electronics Ltd, 2 Castle Hill Terrace, Maidenhead, Berks.
WW 302 for further details

Sub-miniature chokes

Cambion's 550-339 sub-miniature radio frequency choke is available in a wide range of inductance values- 0.1 through to $1,000 \mu \mathrm{H}$ in 49 steps. Each choke has a small moulded body 6 mm long and 24 mm in diameter. Cambion Electronic Products Ltd, Castleton, near Sheffield, S30 3WR.
WW313 for further details

Axial-lead electrolytic capacitors

A series of axial-lead miniature aluminium electrolytic capacitors, type EN 12.12 , has been added to the range of ITT single ended miniature capacitors type EN 12.35.

The axial-lead versions are available from $1 \mu \mathrm{~F}$ to $4,700 \mu \mathrm{~F}$ rated up to 500 V (dependent on capacitance value). These capacitors have an operating temperature range of -25 to $+70^{\circ} \mathrm{C}$. Plastic sleeves are employed for case insulation. ITT Components Group Europe, Standard Telephones and Cables Ltd, Edinburgh Way, Harlow, Essex.
WW316 for further details

High-frequency counters

Series 7900 counters from Dana
Electronics are seven-digit units with an Electronics are seven-digit units with an optional eighth digit, and all have optional systems interface units. Sensitivity is 1 mV up to 500 MHz . Three counters typical of the range are the 7910 (to 150 MHz) at
$£ 595$ (illustrated), the 7920 (to 550 MHz) at $£ 750$, and the 7960 (to 3 GHz) at £1395. Dana Electronics Ltd. Bilton Way, Dallow Road, Luton, Beds.
WW324 for further details

Panel drilling bit

A Bradrad (Type A), from West Hyde Developments, provides panel holes of different sizes, drilling and deburring in a single operation. Two versions are available providing holes of $1 \frac{1}{2}$ to $2 \frac{1}{2}$ inches in $\frac{1}{8}$ in steps, or 36 mm to 60 mm in 3 mm steps.

The bit is made of cobalt 'high speed' steel and has a 12.5 mm diameter shank. Price $£ 23$ plus 35 p postage and packing. West Hyde Developments Ltd, Ryefield Crescent, Northwood Hills, Northwood, Mddx.
WW321 for further details

Voltage-dependent resistors

A new range of silicon carbide and diffused junction silicon voltage-dependent resistors (varistors) is available from ITT. Silicon carbide voltage-dependent resistors are available in rod or dise form, and can be supplied with leads for direct wiring into position or without leads for direct mounting. These devices have a wide range of applications for voltage control and component protection. Silicon diffused junction varistors are particularly suitable for a very wide range of currents at low

voltage levels. A particular application of this type is for temperature compensation

in semiconductor circuits. ITT Components Group Europe, Resistor Products Sales, Edinburgh Way, Harlow, Essex.
WW 301 for further details

Variable transformers

Variable transformers from the Zenith Electric Company, in the Variac-Setavolt range, are fully encapsulated for 200-250 volt operation, covering the current ranges 0.75 to 4 A in 5 sizes. The frequency range is $50-400 \mathrm{~Hz}$. Motorized two-gang and three-gang units are also available. The Zenith Electric Co. Ltd, Wavendon, Bletchley, Bucks.
WW3 17 for further details

Tantalum capacitors

The MT series of moulded tantalum capacitors, available from General Instrument (UK) Ltd, are dry sintered anode units, moulded in epoxy resin and not subject to gassing or electrolyte

leakage. Capacitance range is from 0.068 to $47 \mu \mathrm{~F}$ rated up to 50 V . The working temperature can be as high as $85^{\circ} \mathrm{C}$. General Instrument Ltd, Stonefield Way, Ruislip, Middx.
WW 325 for further details

Improved recording tape

A new family of recording tapes which exhibit increased output and a 4 dB improvement in signal-to-noise ratio with no modification to existing equipment has been developed by the 3M Company. Known as High Energy tapes, they are based on a cobalt-modified ferric oxide formulation. Unlike chromium-dioxide tape, which requires separate circuitry to be switched in, High Energy tape can be used on existing cassette machines without any modification to the standard low-noise bias and equalization levels to give greater undistorted output and an increase in dynamic range from 2 dB at low frequencies to 6 dB at the upper end of the scale. Circuitry designed around the potential performance characteristics of the new tapes could improve reproduction still further. It is expected that the new tapes will be marketed in the U.K. later this year in helical-scan video form, and that broadcast video and audio cassettes will follow. 3M Company, 3M House, Wigmore Street, London W 1A IET.

Miniature trimmer pot

The $\mathrm{T}-200-\mathrm{K}$ single-turn wirewound potentiometer in the Contelec range of trimmers has a knurled plastic-moulded knob, with bifurcated

shaft that pushes into the pot and interlocks with the keyway. It can equally easily be turned by a screwdriver. Power rating is 2 W at $40^{\circ} \mathrm{C}$. Resistance range is 10Ω to $50 \mathrm{k} \Omega$. Size is $20 \times$ 10 mm . Operating temperature is -25 to $125^{\circ} \mathrm{C}$. The T-200 series is available in eight standard versions, in either bush mounting or printed circuit types. Kynmore Engineering Co. Ltd, 19 Buckingham Street, London WC2. WW $\mathbf{3 3 1}$ for further details

Zero-voltage switch for thyristors

A low-cost version of the RCA zero-voltage switch for thyristor gate triggering is the CA3079. It has the same temperature range as the earlier CA3059 (-40 to $85^{\circ} \mathrm{C}$) but the fail-safe, inhibit and over-ride functions are not included. The economy type includes a power supply, allowing operation from an a.c. line of 24 to 277 V at 50 to 400 Hz , a differential sensing amplifier; a zero-crossing detector and a triac gating circuit. The zero-crossing detector, of course, allows thyristor switching at the voltage zeros of the a.c. line, eliminating r.f. interference when used with resistive loads. The circuit is packaged in a 14-lead dual in-line
plastic case. Price is 79 p for 1-24 and 59 p for 100 up. RCA Ltd, Solid State Division, Sunbury-on-Thames, Middx.
WW 320 for further details

Stylus balance

The BIB stylus balance model 32 is produced specifically for determining the 'pressure' of modern cartridges and is calibrated in 0.25 g

divisions. It has a non-magnetic base mounted on foam plastic. The cross-bar of the beam has recesses which are mounted on a pair of low. friction pivot points. Price £1.80. BIB Division, Multicore Solders Ltd, Hemel Hempstead, Herts.
WW 330 for further details

Printed circuit elements

Conducting elements for wiring semiconductor devices to printed circuits are made by Circuit-Stik Inc. of California. With an adhesive backing, the 1000 and 2000 series of

elements are designed to suit most types of TO-5 and TO-18 packages. The former are drilled to match a 0.1 in grid and the latter undrilled to save space. Available in the U.K. from Bourns (Trimpot) Ltd, 17 High Street, Hounslow, Middx.
WW 329 for further details

Press-button switches

The Arrow Adapt-a-Switch range of illuminated and non-illuminated press-button switches is based on a small number of components that fit together simply. The actuator can be chosen for momentary or alternate action. Press-in lenses give a range of three shapes-round, square and oblong-in six colours. The standard duty ratings are 5 A at 125 V a.c., 2 A at 250 V a.c., and 5 A at 28 V d.c. Electrical and mechanical life is 100,000 cycles minimum at full rating. Arrow Electric Switches Ltd, Brent Road, Southall, Middlesex.
WW 332 for further details

Real \& Imaginary

by "Vector"

On Stopping the Home Fires Burning

I wonder whether you've ever thought of the domestic 'telly' as a lethal instrument? I must confess I hadn't until I read a study of statistics relating to fires in television sets. This paper was written by a member of the Joint Fire Research Organization and the figures quoted give food for thought.

For in 1968 (the last year for which figures were presumably available) 1244 fires occurred in Britain which were directly attributable to the magic box. In 1960, the figure stood at 528 and rose significantly in every subsequent year.

You may well say 'Ah yes, but the number of sets in use increases every year'. True. But other figures given show that the number of fires increased at a considerably higher rate than licences did. In 1965 the incidence of fires to licences was 61.8 per million; three years later it was up to 82.4 per million and after another three years I wouldn't be surprised to find that it had taken another comparable jump. The older the set, the greater the risk, is a logical conclusion and possibly, with the cost of living steadily rising, people are hanging on to their sets longer.

One rather less sombre side is that (taking the 1968 statistics) about 83% of these fires occurred between 3 p.m. and midnight when someone is likely to be able to initiate prompt action. Only 5% of the total-roughly 4.5 per million licencesoccurred between 1 and 2 a.m. Compared with the annual incidence of fires from all causes between these hours, which amounted to some 500 per million dwellings, the number of television fires are chickfeed; but they are nonetheless dangerous, since at that time most people are asleep in bed and totally unprepared for disaster. You may remember that recent fire in a hotel, in which eleven people died. That was attributed to a television receiver.

What effect has the advent of colour, with its higher operating voltages, had on the figures? No significant alteration up to 1968, but that doesn't mean much because colour hadn't got going, and even today colour sets are not in wide enough use to make much difference.

How were these fires caused? It was no part of the report's aim to specify and so we don't know. Component breakdown must have played a pat but, to be fair on the manufacturers, by no means all TV receiver fires are started in this way. All
dealers know the old lady who drapes a blanket over the top of the set to let her cat sleep on, and how, by drooping over the back, this (the blanket I mean, not the cat!) can block all ventilation. Tatty do-ityourself flex wiring (often using bare staples) with the lead to the set permanently 'live' is another well-known phenomenon. And again, smoke pouring from the cabinet may panic the householder into calling the fire brigade when in fact no fire, as such, exists. The statistics given seem to indicate the presence of this last factor, for of the 1244 fires quoted for 1968, 612 were 'confined to the set' and might therefore have been smoke only-or does a fire brigade have to see flames to record the incident as a fire? As to the remainder, a further 560 were 'confined to the room', while 72 spread to other areas. These 632 were, without doubt, genuine no-nonsense fires, but it would be instructive to know whether outbreaks originating in the mains lead to the set or in its feed wire along the skirting (where this exists) are classified as television fires, or whether the outbreak must originate in the set in order to qualify.

In the U.S.A. the incidence of fires in TV sets is causing considerable concern. In August 1969 the Federal Government's National Commission began to put the whole question under the microscope and in due course came up with the pronouncement that more than 10,000 such fires occurred annually. Predictably, this was hotly denied (no pun intended!) by the Electronic Industries' Association, which put up a rival figure of 2600 over a fiveyear period. Subsequently, other reports were produced from various sources with figures that fell somewhere between the two extremes.
One such (the 'Jitco') was especially enlightening. This was in essence a tabulation of data supplied by set manufacturers concerning fires reported for each of their models. It did far more than tabulate, however; it also pinpointed the components that were responsible. One startling fact that emerged was that colour sets were forty times more likely to cause fires than black-and-white models. Forty times. That's a fantastic jump.

In the list of delinquent components the line output transformer emerges as the worst offender by a considerable margin (29.26% of the total fire/smoke cases, rising
to 40% in colour sets). Then come highvoltage components (18.1%), the receiver on-off switch (12.7%), the yoke (7.4%), controls (5.9%) and so on through seven more groupings, ending with fuses at 0.4%. Nothing much to surprise the British service engineer here, I fancy. Understandably, fires occurred in chassis runs-that is, if a given component was fitted which subsequently proved to be unequal to its job, an epidemic of fires would be experienced with the particular model that embodied the component.

Now, to judge from a comprehensive report on the subject in Electronics, the United States can scarcely be set up as a pattern upon which to model future British procedure. The bible in the matter of standards seems to be the Underwriters' Laboratories UL492, which runs to 402 paragraphs and which is continuously being updated. But apparently there is no legal obligation to conform to it and it is left to individual cities to decide whether sets used within their boundaries should carry the U.L. stamp. Only three cities insisted on this at the time of the survey (August 1970) and so many manufacturers just don't bother with it. The U.L. standards, it is stated, are not so much those which ensure public safety as ones which the manufacturers can conveniently work to. One example cited is the permissible leakage between case and earth which is 5 mA sufficient to pack a nasty wallop; efforts are now being made to reduce this to 0.5 mA . Again, the permitted level of X-ray radiation from TV sets has been set at 0.5 milliröntgen/hour at 5 cm , but not because this gives a good margin of safety; it is merely a level that manufacturers can conveniently meet. Recently, however, some improvement has been effected; from January 1st, 1971 , all sets have had to conform to this level even if all controls are maladjusted to 'worst case' and component failure increases emission.

Signs are not wanting, in fact, to indicate that American television manufacturers are at last treating the fire hazard much more seriously than formerly. This may reflect an improved sense of social conscience. On the other hand the more cynical might think that it stems from a test case in the U.S. Courts concerning a man who died in a TV-originating fire. The receiver manufacturers were ordered to pay $\$ 212,000$ dollars compensation to the man's family. If this establishes a precedent as to where responsibility lies, it could make for an expensive future for television manufacturers.

Returning now to the British scene, one benefit from our delayed entry into colour is that we have a breathing space before colour receivers become the rule rather than the exception. This gives us opportunity to benefit from American mistakes.

For the information contained in the above I am indebted to:- 'Fires in television sets', S. E. Chandler, Fire, Sept. 1970. 'Customer hazards: why they happen', and 'Customer hazards: how they can be fixed', Electronics, Aug. 3, 1970.

Super IC-12

Highfidelity Monolithic Integrated Circuit Amplifier

Two years ago Sinclair Radionics announced the World's first monolithic integrated circuit $\mathrm{Hi}-\mathrm{Fi}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor, the Super IC. 12. This 22 transistor unit has all the virtues of the original IC. 10 plus the following advantages:

1. Higher power.
2. Fewer external components.
3. Lower quiescent consumption.
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink. No other heat sink-needed.
6. Full output into $3,4.5$ or 8 ohms.
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

Output power 6 watts RMS continuous (12 watts peak).
Frequency Response 5 Hz to $100 \mathrm{KHz} \pm$ 1 dB .
Total Harmonic Distortion Less than 1%. (Typical 0.1%) at all output powers and all frequencies in the audio band.
Load Impedance 3 to 15 ohms.
Power Gain 90dB (1,000.000.000 times) after feedback.
Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supplies ideal).
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.

Input Impedance 250 Kohms nominal.
Quiescent current 8 mA at 28 volts.

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for use with pick-up. F.M. tuner etc. Alternatively, for more elaborate systems. modules in the Project-60 range such as the Stereo 60 and A.F.U may be added. The comprehensive manual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quiescent consumption makes the Super IC. 12 ideal for battery operation.

Price, inc. FREE printed circuit board for mounting.
$\mathrm{f} 2.98_{\text {free }}^{\text {Post }}$

Sinclair Radionics Ltd, London Rd. St. Ives Huntingdonshire PE174HJ
Telephone St Ives (048 06) 4311

Sinclair Project 60

The World's leading range of high fidelity modules

Sinclair Radionics Limited, London Road St. Ives. Huntingdonshire PE 174 HJ Tel: St. Ives (04806) 4311

Project 60 offers more advantage to the constructor and user of high fideiity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size.
Project 60 modules are more versatile-using them you can have anything from a simple record player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier Either power amplifier can be used in a wide variety of applications as well as high fidelity The Stereo 60 pre-amplifier control unit may also be used with any other power amplifier system. as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of sensitivity and audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with alf Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world, yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of e eliability and satisfaction.

Typical Project 60 applications

System	The Units to use	together with	Cost of Units
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control	£4.48
Mains powered record player	Z.30.PZ.5	Crystal or ceramic P.U. volume control etc.	£9.45
$\begin{aligned} & 20+20 \mathrm{~W} \text {. stereo } \\ & \text { amplifier for mosi needs } \end{aligned}$	$\begin{aligned} & 2 \times Z .30 \text { s, Stereo } 60, \\ & \text { PZ. } 5 \end{aligned}$	Crystal. ceramic or mag. PU.. FM Tuner, etc.	£23.90
$20+20 \mathrm{~W}$. stereo amplifier with high performance spkrs	$\begin{aligned} & 2 \times 2.30 \text { s. Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner. Tape Deck.etc.	£26.90
$40+40$ W. R.M S de-fuxe stereo amplifier	$2 \times$ Z.50s, Stereo 60 PZ.8, mainstrsfrmr	As above	£34.88
Indoor P A.	Z.50, PZ.8, mains transformer	Mic. guitar, speakers, etc. controls	£19.43

from a. simple amplifier to a complete stereo tuner amplifier with Project 60 modules

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02\% at full output and all lower outputs. Whether you use Z.30 or Z.50 amplifiers in your Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well. SPECIFICATIONS ($Z .50$ units are interchangeable with $Z .30 \mathrm{~s}$ in all applications).
Power Outputs
Power
Z. 3015 watts R.M.S. into 8 ohms using 35 volts 2. 3015 watts R.M.S. into 8 ohms using
20 watts R.M.S. into 3 ohms using 30 volts.

20 watts R.M.S. into $30 h m s u s i n g ~$
$Z .50$
40
watts R.M.S. into
3 30 watts R.M.S. into 8 ohms using 50 volts.
Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distartion: 0.02% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms.
For speakers from 3 to 15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~mm}$.
2.30

Built, tested and guaranteed with circuits and instructions manual.
£4.48
2.50

Built, tested and guaranteed with circuits and instructions manual.

Power Supply Units

Designed special for use with the Project 60 system of your choice. Use PZ. 5 for normal Z. 30 assemblies and PZ. 6 where a stabilised supply is essential.
PZ. 530 volts unstabilised $£ 4.98$ PZ. 635 volts stabilised $£ 7.98$ PZ. 845 volts stabilised
(less mains transformer) $£ 7.98$
PZ.8 mains transformer $£ 5.98$

The Sinclair Guarantee

If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 vears of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Alr-mail charged at cost.

Project 60 Stereo F.M. Tuner

First in the world to use the phase lock loop principle

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. $t _n e r$ with fantastically good results. Other original features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Good reception is possible in difficult areas. and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automaticaliy as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system
SPECIFICATIONS-Number of transistors: 16 plus 20 in I.C. Tuning range: 87.5 to 108 MHz . Capture ratio: 1.5 dB . Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting : $7 \mu \vee$ for full limiting. Squelch level: $20 \mu \mathrm{~V}$. A.F.C. range : $\pm 200 \mathrm{KHz}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response : $10 \mathrm{~Hz}-15 \mathrm{KHz}(\pm 1 \mathrm{~dB})$. Total harmonic distortion : 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk; 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. Cperating voltage: 25-30 VDC. Indicators: Mains on: Stereo on ; tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Built and tested. Post free.

Stereo 60 Pre-amp/control unit

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS-Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to RI.A.A curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u. - up to 3 mV : Aux-up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +15 to -15 dB at 10 KHz : BASS +15 to -15 dB at 100 Hz . Front panel: brushed aluminium with black knobs and controls. Size : $66 \times 40 \times 207 \mathrm{~mm}$. Built tested and guaranteed.
£9.98

A.F.U. High \& Low Pass Filter Unit

 (10)For use between Stereo 60 unit and two Z.30s or $Z .50$ s, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current -3 mA . H.F. cut-off $(-3 \mathrm{~dB})$ variable from 28 KHz to 5 KHz . L. F. cut off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply (0.02% at rated
£5.98 output. Size: $66 \times 40 \times 90 \mathrm{~mm}$. Built tested and guaranteed.

| To: SINCLAIR RADIONICS LTD LONDON ROAD | ST. IVES HUNTINGDONSHIRE PE17 | 4HJ |
| :--- | :--- | :--- | :--- |
| Please send | Name | |
| | Address | |
| Ienclose cash/cheque/money order. | | wws |

E WESTH HYDE WC1 contacts and fuse. Suitable for up to 13 amps. A neon indicatoo

lights when mains is on the outter
sockers. 1 at $£ 1.35$ P 8 P 1 .
sockets. 1 at $£ 1.35$. P\&P 15 p. SEND FOR FREE LEAFLETS \& PRICE LIST
WEST HYDE DEVELOPMENTS LTD., RYEFIELD CRESCENT, NORTHWOOD HILLS, MIDDX., HAG INN Telephone: Northwood $24941 / 26732$ Telex: 923231 WEST HYDE NTHWD WW- 076 FOR FURTHER DETAILS

WEST HYDE DEVELDPMENTS UMITED, RYEFIELD CRESCENT, NORTHWOOD H:LLS, NORTHWODD, MIODX. HAS INN. Telephone: Northwood 24941/26732 Telex: 923231 WW- 075 FOR FURTHER DETAILS

	*	\checkmark	2	l off	P\& P		x	V	2	1 OH	P\&P
A	4.5	3	6.5	1.90	15p	N	4.5	1	13	3.05	28p
B	4.5	7	6.5	2.20	$28 p$	0	4.5	10	13	4.00	35p
c	4.5	10	8.5	275	$28 p$	P	9	3	13	3.05	28p
0	9	3	6.5	2.75	$28 p$	0	9	7	13	4.00	35p
E	9	1	6.5	3.05	28p	R	9	10	13	4.90	35p
F	9	10	6.5	3.60	${ }^{28}{ }^{\text {p }}$	S	13	3	13	4.00	35p
G	13	3	6.5	3.05	28 p	I	13	7	13	4.90	35p
H	13	7	8.5	3.60	$28 p$	\square	13	10	13	6.00	45p
1	13	10	6.5	4.00	35p	v	18	3	13	4.90	35p
J	18	3	6.5	3.60	${ }^{28 p}$	W	18	7	13	8.00	45p
K	14	7	6.5	4.50	35p	x	18	10	13	7.60	45p
L	18	10	6.5	6.00	45p	G	Woodgrain			400	28p
M	45	3	13	220	28p			res ini			

Kit of Simclais hardware inc. capacitors, plu
fuse, tuse holder, atc. $£ 3.40 \mathrm{P} \& \mathrm{P} 22 \mathrm{p}$.
tuse, tuse holder. atc. $£ 3.40 \mathrm{P} \& \mathrm{P} 22 \mathrm{p}$.
Sinclair punched case and chassis Mod 2 type G in wood grain, $\mathbf{£ 4 . 2 5}$
for production. Made there is coated materials scratch, the surface is scuff resistant and easy to clean. Coated aluminium front and back panels and easy cutting with rigidity easy cutting with rigidity and coated steel top, bottom and sides gives
strength and ease of strength and ease of assembly. Three heights of cases, four widths and ferent cases. 48 dif. means cases. Mod-2 means modern design. Type G is now available in simulated in wood grain finish the shelf delivery. for domestic equipment Also with or without A.F.U. It is available with a set of fitting plugs, sockets, fuses, etc.

WEST HYDE DEVELOPMENTS LIMITED, RYEFIELD CRESCENT, NORTHWOOD HILLS, NDRTHWOOD, MIDDX., HAG 1NN. Telephone: Northwood 24941/26732. Telex: 923231 WW-077 FOR FURTHER DETAILS

EXCLUSIVE OFFER of COMMUNICATION RECEIVERS RC410/R and RC411/R and H.F. SYNTHESIZERS RC460/S

- MANUFACTURED BY WORLD RENOWNED BRITISH COMPANY
- ALL TRANSISTOR/I.C. CIRCUITRY
- COVERAGE RC4 10/R 2-31 MHz in 29 BANDS RC411/R $15 \mathrm{KHz}-31 \mathrm{MHz}$ in 31 BANDS
- DIGITAL DISPLAY INDICATING TUNED FREQUENCY GENERATED BY INTEGRAL SYNTHESIZER
- LOCAL OSCILLATOR DRIFT LESS THAN 1 PART IN 10^{8} PER DAY - OVERALL FREQUENCY STABILITY BETTER THAN 5 PARTS IN 10^{7}

OTHER CHARACTERISTICS INCLUDE:-
Aerial input impedance 50 ohms unbalanced
Maximum Sensitivity: $-0.5 \mu \mathrm{~V}$ for $12 \mathrm{~dB} \frac{(\mathrm{~S}+\mathrm{N})}{\mathrm{N}}$
at standard output (Odbm into 600 ohm balanced load) Intermediate Frequencies 1.6 MHz and 100 KHz
I.F. Selectivities:-3dB Bandwidths of $\pm 3.5 \mathrm{KHz}, \pm 1.5 \mathrm{KHz}$, $\pm 0.6 \mathrm{KHz}, \pm 0.15 \mathrm{KHz}$.
Notch Filter $\pm 4 \mathrm{KHz}$ about a centre frequency of 100 KHz . A.G.C. 3 switched attack/decay times of 10/600, 20/800 and $30 / 2000 \mathrm{mS}$.
Audio Output 1 watt into 3 ohms or 10 mW into 600 ohms. Noise Limiter
'S' Meter.
Mains Input $100 / 125$ or $200 / 250 \mathrm{v} .50 / 60 \mathrm{~Hz} 70 \mathrm{~W}$.
Dimensions $9^{\prime \prime}$ high, $19 \cdot 2^{\prime \prime}$ wide, $18 \cdot 75^{\prime \prime}$ deep, suitable for $19^{\prime \prime}$ rack mounting.

THE SYNTHESIZERS TYPE RC460/S have the following main characteristics:-

- FREQUENCY COVERAGE 1 MHz to $29 \cdot 9999 \mathrm{MHz}$ in 100 Hz steps
- FACILITY FOR USING EXTERNAL FREQUENCY STANDARDS OF $5 \mathrm{MHz}, 1 \mathrm{MHz}, 200 \mathrm{KHz}$ or 100 KHz AS WELL AS THE INTERNAL STANDARD of 5 MHz
- FREQUENCY STABILITY OF BETTER THAN 1 PART IN 10^{6} PER 100 DAYS, 3 PARTS IN 10^{8} PER DAY
(OUTPUT 0.3-Iv r.m.s. INTO 50 OHMS (metered) The Mains supply to the unit is $100 / 125$ or $200 / 250 \mathrm{v} .50 / 60 \mathrm{~Hz} 60 \mathrm{~W}$. The dimensions $7^{\prime \prime}$ high, $19 \cdot 2^{\prime \prime}$ wide, $18^{\prime \prime}$ deep, suitable for rack mounting.

PRICES OF THE ABOVE INSTRUMENTS ARE:-

RC410/R $£ 300$, $\mathbf{R C 4 1 1 / R} £ 350$ (List $£ 1,500$ approx.) RC460/S (Bench or Rack Mounting version) $\mathbf{E} 150$
All instruments supplied complete with handbooks.
Carriage extra at cost but we would recommend customers to arrange to collect from any of the addresses below by appointment at all of which the equipments can be demonstrated. Alternatively, delivery to U.K. Mainland can be arranged by special carrier at a cost of $£ 5$ per item (England) or $£ 10$ per item (Scotland). (Plus insurance £1.) TERMS : Strictly C.W.O. or supply against official order from approved customers.
these receivers and synthesizers have become available owing To rationalisation of range FOLLOWING AN AMALGAMATION OF COMMERCIAL INTERESTS

DONT DELAY OUR STOCKS ARE STRICTL Y LIMITED!
Demonstration equipments are held at the following points:-
S. and S.W. London : Servo and Electronic Sales Ltd., 67 London Road, Croydon, Surrey. Tel. 01-688-1512. S.E. London and N.W. Kent: Servo and Electronic Sales Lid., 43 High Street, Orpington, Kent. Tel. 31066. Sussex and Southern England: G.W.M. Radio Ltd., Portland Road, Worthing, Sussex. Tel. 34897. E. Kent: Servo and Electronic Sales Ltd., Mill Road, Lydd (STD 06792), Kent. Tel. Lydd 252. Overseas enquiries and home orders to our Lydd address please.

FREE: A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS
BSR McDONALD MP60 High precision, low-mass, counterbalanced pick-up arm,
heavy balanced turntable. viscous cueing device, slide in cartridge, 4 pole motor
LASKYS PRICE f12.50
POST
$35 p$
BSR McDonald units and packages
A. Chassis onty. B. Complete with Lasky's plinth and cover. C. Complete with
Lasky's plinth. cover and AD76K cart. D. comp. wired on BSR plinth with cover E. AS D plus AD76K cartridge.

Model		A	B	C	D
610	$£ 15.45$	$£ 18.75$	$£ 22.50$	$£ 24.50$	E 28.50
510	$£ 13.45$	$£ 16.95$	$£ 20.75$	$£ 22.00$	$£ 26.00$
310	$£ 9.95$	$£ 13.45$	$£ 17.25$	$£ 21.00$	$£ 23.50$
MPDO	$£ 12.50$	$£ 15.75$	$£ 19.50$	$£ 21.50$	$£ 25.50$

SR-1A $\mathbf{£ 3 . 3 5}$ SR-3A $\mathbf{f 1 1 . 0 0 ~ D R - 7} \mathbf{£ 9 . 7 5}$

GARRARD DECKS

GARRARD SL55B

he speed autochanger that accepts up ro 8 LP's. Has all With lifting dis that Garrard SL rurntables are famous for all discs and perfect cueing facilities for singles. Wired for mono and stereo. Size $14 i n(W) \times 113$ (D) 4 in above and
LASKY'S PRIC
RICE $\mathbf{f 1 0 . 5 0}$
POST
35p.
300 C with 9TA £10.50
9JA
 GARRARD PACKAGES POST FOR ALL. PACKAGES 50p.
Garrard AP 76 with AD76K carn. and Lasky s plint and cover £35.00 £40.00 $\mathbf{f} 20.00$
DENSHI BOARD KITS
arsuits of increasing sophistication-without solderino or the use of DENSHI KIT SR-1A
It capaciors pary 28 A transisto earphones; various bridge and connecting pieces. This kit permits the building of 16 basic circuits.
DENSHIKITSR-3A
parts inc 3 transistors and 2 did. in extension baffle housing. cadmium sulphide crystal mic. earpiece, test probes. morse key extensio
and por with ternal auxiliary equipment. Comprises 3in loudspeaker per sonal earpiece, 7 transistors, diode, thermistor, volume contro externai project terminal blocks. shoulder carrying strap battery. etc. PLUS 36 page manual of theory and schematics. High impact resistant case Will house any of the radio
receiver circuits thus making an excellent portable radio

[^7]
TRANSFORMERS

Primary 200-250 Volts SOLATING SERIES 240 Volts Centre
 $\begin{array}{lllll}\text { VA } \\ \text { (Watts) Weight } & \text { Size } \mathrm{cm} & \text { Qty } & \text { Qty. P.P. } \\ 25-99 & \text { each }\end{array}$

 AUTO SERIES (NOT ISOLATED)
VA Weight Size cm. Auto Tops

PRIMARY LOW VOLTAGE SERIES (ISOLATED) Amps Weight Size cm. Secondary Windings

\qquad

PRIMARY 200-250 VOLT FOR CHARGING 6 OR 12 VOLT BATTERIES
 * CARRIAGE VIA B.R.S.

All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order VARIABLE VOLTAGE TRANSFORMERS (ENCLOSED) Input $230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Output variable from $0-260 \mathrm{~V}$
\qquad
1
2.5 Amp.
5
8
8
Higher
cur
ALS $\begin{array}{ll}5.50 & 10 \\ 6.75 & 12 \\ 9.75 & 20 \\ 4.50 & \end{array}$ 10 Amp
120
20 POSTAGE EXTRA 18
18.50
21.00
37.00 ALSO AVAILABLE: Open construction variable voltage transformers, suitable for panel mounting. $\underset{0}{0.5} \mathbf{~ A m p . 9 3}$ 1 Amp. 65.50 2.5 Amp. 66.63

* Custom production winding service. * Ex stock items same day service.

Also stocked: SEMICONDUCTORS : VALVES MULTIMETERS • MAINS KEYNECTOR SEE PAGE 93

BARRIE ELEGTRONIGS
11 MOSCOW ROAD : QUEENSWAY
LONDON, W. 2
Telephone:
31/2 or 580 1128
Nearest Tube Stations i
$01-2296681 / 2$ or 580 1128
Bayswater, Queenswoy

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION

 FOR RECEIVER MANUFACTURERSP. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

28watts, r.m.s. 40 Hz to $4 \mathrm{OkHz} \div 3 \mathrm{~dB}$

Viscount III Audio Suite complete

PRICES SYSTEM 1
Viscount III RT101 amplifier $£ 22.00+90 \mathrm{p}$ p\& $2 \times$ Duo Typell speakers, $\quad £ 14.00+£ 2 \mathrm{p} £ \mathrm{p}$ Garrard SP25 Mk. Ill with
MAG. cartridge, plinth and cover

Total

$\frac{£ 23.00}{£ 59.00}+£ 1 p \varepsilon p$

Available complete for only $\mathbf{£ 5 2 . 0 0}+\mathbf{£ 2 . 6 0}$

SPECIFICATION

14 watts per channel into 3 to 4 ohms. Total distortion @ 10 W @ $1 \mathrm{kHz} 0.1 \%$ PU. 1150 mV into 3 Me @. U. 24 mV @ 1 kHz into 47 K . equalised within $\pm 1 \mathrm{~dB}$ R.I.A.A. Radio 150 mV into 220 K . (Sensitivities given at full power.) Tape out facilities; headphone socket power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12 dB to $-17 \cdot \mathrm{~dB}$ @ 60 HZ . Bass filter: 6 dB per octave cut. Treble control: treble +12 dB to $-12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filter: 12 dB per octave. Signal to noise ratio: (all controls at max) RT101-P.U.1. \& radio - 65 dB. P.U. $2-58 \mathrm{~dB}$. RT100 same as RT101 but P.U. 2.450 mV into 3 Meg . Cross talk better than -35dB on all inputs. Overload charecteristics 26 dB on all inputs.
Size $13 \frac{3}{4}^{\prime \prime} \times 9^{\prime \prime} \times 3 \frac{3}{4}^{\prime \prime}$

 \& SPEAKER SYSTEM

Outpur Power. 45 watts R.M.S. (Sine wave drive). Frequency response: -3 db points 30 Hz at 18 KHz . Total distortion: less than 2% at rated output. Signal to noise ratio: better than 60 db Spesker /mpedance: 3. 8 or 15 ohms. Bass Control Range: $\pm 13 \mathrm{db}$ at 60 Hz . Trebie Control Range: $\pm 12 \mathrm{db}$ at 10 KHz . Inpuls: 4 inpuls at 5 mV into 470 K . Each pair of inputs controled by sepsate volume conirol. 2 inputs at 200 mV into 470 K . To protect the output vabes, the incorporated fail safe circuit will enable the amplifier to be used at half power. SPEAKERS: Size $20^{\prime \prime} \times 20^{\circ} \times 10^{\prime \prime}$ incorporating 12^{-}heavy duty 25 watt high flux, quality loudspeaker with cast frame. f.atinets attractively finished in two tone colour scheme-Black and grey. COMPLETE
SYSTEM
SSTM SYSTEM LS. Speaker: 12.50 each plus f 1.75 P .8 P .

ELEGANT SEVEN Mk 3 $(350 \mathrm{~mW})$
7 transistor fullytunable M.W.-L.W. superhet portable Set of parts. Complete with all components. including ready etched and driled printed circuit boar
construction
MAINS POWER PACK KIT 75p extra
Price $\mathbf{£ 5 . 2 5}$ plus 50p P. \& P
Circuit 13p FREE WITH PARTS

The DDRSET (600 mW)
7 transistor fully tunabie M.W.-L.W.
superhet portable -with baby alarm
facility. Set of parts. The latest modulised and pre-alignment techniques makes this simple to build. Sizes $12^{\prime \prime} \times 8^{\prime \prime} \times 3$

Price $\mathbf{5 5 . 2 5}$ plus 50 p P. \& P Circuit 13 p FREE WITH PARTS

SYSTEM 2

As System 1 , but with $2 \times$ Duo Type III speakers at pair $£ 32.00+£ 3$ p\&p Available complete for $\mathbf{£ 6 9 + \mathbf { £ 4 } \mathbf { p } \mathbf { f p } \text { p }}$ SYSTEM 3
Viscount III Amplifier RT100 £17.00 $+90 p$ p\&p $2 \times$ Duo Type II speakers, pair $£ 14.00+£ 2 p \& p$ Garrard SP25 Mk. III with CER. diamond cartridge, plinth and cover $£ 21.00+£ 1 \mathrm{p} \& p$ Total $\overline{\mathbf{f} 52.00}$
Available complete for only $\mathbf{£ 4 9 . 0 0}+\mathbf{£ 2 . 5 0}$

SPEAKERS Duo Type II

Size $17^{\prime \prime} \times 10 \frac{z^{\prime \prime}}{} \times 6 \frac{7}{2}^{\prime \prime}$. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter. Max. power 10 watts. 3 ohms. Teak veneer cabinet. $\mathbf{£ 1 4}$ pair $+£ 2$ p\&p. Duo Type III Size $23 \frac{t}{2}^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime}$. Drive unit $13 \frac{1}{2}^{\prime \prime} \times 8 t^{\prime \prime}$ with H.F. speaker. Max. power 20 watts at 3 ohms. Freq range 20 Hz to 20 kHz Teak vencer cabinet. $£ \mathbf{~} \mathbf{3 2}$ pair $+£ 3$ p $£ p$.

MARK 3 ALLTRANSISTOR CAR RADIO

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking. Sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success $\begin{aligned} & \text { earth Size } 7 \times 2^{\prime \prime} \times 41^{\prime \prime} \text { deep }\end{aligned}$

Stock clearance

STC GH. 206
Data console complete with tally reader BRP Punch $£ 500$

Analex	
Line Printers. Printer Only.	From $\mathbf{£ 5 5 0}$
Line Printers. With EMI Buffered Control	. $£ 500$
Spares Available at 60% off list.	
Fridon	
Paper Tape To Card Converter Only	50
Model SPD Writers BCD Coded	£480
Rack Mounted Punch Verifier Sets With Fast	
Entry, Keyboard ISO Coded	f220
Fridon Punches \& Readers.	rom £49.50
Flexowriters 8 Hole................	From $\mathbf{f 7 5}$
NCR	
400/208 Machine	From $£ \mathbf{3 , 5 0 0}$
ICT/ICL	
2980 col card Punch	From £149
129 Verifier.	From £149
103 Verifier	f89.50
Keyboards Alpha \& Numeric	.From $£ 25$
665 Line Printers.	¢550
34 Punch Verifiers	£175
Hand Punches..	¢95
IBM	
029 Card Punches	f980
026	£1,095
024	£650
7330 Mag Transports (Read Only)	f600
151 Card Verifiers	£49.50
1401/C3 Central Processor	£2,200
English Electric. KDF8	
1040 Line Printer	£300
Card Reader	£200

RING 01-278 5571 NOW!

Computer Sales \& Services (Equipment) Ltd
49-53 Pancras Road London NW1
Telephone 01-2785571
Telex 267307

FREE
Catalogue given FREE to Industry or any Organisation. including Schools. Colleges etc.
Apply on official heading to
Henry's Radio Ltd.
303 Edgware Road.
London, W. 2
MORE OF EVERYTHING ATLOW PRICES - ALWA YS AT HENRY'S

To Henry's Radio Ltd., (Dept W.W.)
3 Albemarle Way,
London, E.C. 1.

RHODE \& SCHWARZ POWER SIGNAL GENERATOR TYPE SMLR (BN4100I)
 A.M. Modulation to 91%. This is a high , muaitity latorator

DYNAMCO 2010 DIGITAL VOLTMETER (EI MODULE)
Fully overhauled, Calibrated (Certifled) and Guaranteed.
Specification
Scale: 109999. D.C. Accuracy: 0.001° F.S.D. Range: 10 micro $\cdot 1 \cdot 1 \mathrm{kr} ; \mathrm{I} / \mathrm{P}$?
 B.C.D. Inductive potentiometric sustenl for excellent stability: Price: $£ 850$ (new orice over £1

DIGITAL VOLTMETER DYNAMCO 2006

Scale 999. $1, \mathrm{C}$. Trange. 10 micro.volt- -kV I/P.

7-TRACK DIGITAL MAGNETIC TAPE These machines, oEriginally ex-computer
(Ref. 13) are multe--rrack recording units, ideal for
 extia. Weight 90 lh . Price $\mathbf{2 6 5}$. Carriage

RRAND NEW COMPUTER TAPES AND EMPTY SPOOLS \qquad
in bert wed know manuacuirers

in. 10, to. glad spool and cassette
in. 8 tio. disas spool and cassete
in. 8y in. dian spool aud cassette
in. Metall $10+$ in. dia. spool and cassette
In. N.A.B. centres IUs in. sponl only
HONEYWELL MODEL G200 INCREMENTA DIGITAL RECORDER
 0.005 in, with a packing density ot exceltent condition. This recorter
 applications involing date. log.
ging. one orly availalle. Price:
£750.
texas ball bonder. Overhauled. $£ 250$.

hauled. £250.

50 MHz. 8 DIGIT FREQUENCY COUNTER SYSTRON-DONNER Model 1037

EYELET BONDER PLANER BBOI
G. condition. C/W' stand. OVerhauled. $£ 750$.

5 KV IONISATION
TESTER AIRMEC 732

 Mains 1/P. £35.

WELMEC 5-8 CHANNEL TAPE PUNCHES

FACSIMILE RECORDERS
 Ref. C3..........rice 8350 . Conpletely. overhaw. scanning rate

X Y PLOTTERS

We are nuw able to offer the following Recordery in an overhauled 1. MOSELEY AUTOGRAF MODEL 2A

 2. HOUSTON INSTRUMENTS MODEL HR 934 Wt. 30 ib. P. in. $X 10$, th. Binensions: W. 14 in. H. H. 8 in, D. 116 in.

DIGITAL INDICATORS KGM Type M3 A neat compact indicator providing selective diaplay midget flange lamps supplied with ing. 6 inm. tubular matt black anodizel. w. 1 in H. 2 in whit Finghet £3 25. P. \& P. Free

TRANSISTORISED TIMER

Ekco M5220

An extrenely
high stability
high stability versalile tinuer for use with
TRANSISTORISED SCALER M5200
E45. Carriage extra.
This unit can be usell to power the Timer

SOLARTRON OSCILLATOR CO546
${ }_{855}^{25 \mathrm{H} \text {-500 } \text { (carriage extra). Attuator and } 0 / \mathrm{P} \text { meter. Very good condition. }}$

ELEGTRONC

SIGNAL GENERATOR "X" BAND
SANDERSMODELCT 480 ($8 G 480$) and CT 478 (BG 478). Apecifica
 high grade generators comprise a klystron oscillator in a
co-axial cavity fed from a co-axial cavity fed from a stable power
gource. Provision for avplication aquare wave or pulse modulation internal or external sources. Attenuator cesli-
brated from 0.100 db lelow $1 / \mathrm{P} 110-250$ w. $50-500 \mathrm{~Hz}$ z. 200 w . Rack
mounting. W. 14 . Wt. 74 ib. Supplied complete with copy of handhook. Tested before despatch £275. Carriage extra.

NUMICATORS End Reading $0-9$ Displa
$(16$ ram Fig. Ht .) (16 ram Fig. Ht.)
GRIOM/U (Clear)
GR1OM (A) griom (Amber filter)
Side Reading ($14 \mathrm{~m} / \mathrm{m}$ Fig. Ht.) $\begin{gathered}10-250 \\ 26-100\end{gathered}$
 $\begin{array}{ll}\mathrm{XN} 3 / \mathrm{FA} & \left.\begin{array}{ll}38 \mathrm{~m} / \mathrm{m} \text { lead } \\ \mathrm{XN} 3 \mathrm{~A} / \mathrm{F} & 6 \mathrm{~m} / \mathrm{m} \text { lead } \\ 6 \mathrm{~m}\end{array}\right)\end{array}$
 $\begin{array}{lll}\mathrm{XN} 11 / \mathrm{F} & 38 \mathrm{~m} / \mathrm{m} \text { lead } \\ \mathbf{X N} 23 / \mathrm{FA} & 38 \mathrm{~m} \text { lear }\end{array}$

PEECIAL DISPLAYE
XN9 $38 \mathrm{~m} / \mathrm{m}$ leads (Clear filter) Displays Fig.

RCA U.H.F. SIGNAL GENERATOR Type 710A
Frequency range 370-560 MHz. Modulation tacility. 1/P 117 w. $50 / 60$
Hz 50w. Overhauled and supplied complete with auto transformer for 230/250 w. 1/P. $\mathbf{x} 85$ (carriage extra).

VIBRON ELECTROMETER

 MODEL 33BAn exceptinaliy stable laboratory instruimpedance source. The Vibron Electroneter has input ranges of $10 \mathrm{mV}, 30 \mathrm{nv}, 100 \mathrm{mV}$, ocale or all minges. e75 (carriage inA

UNIT A33B

 small currents and high insulation resistances. $£ 15$.
WIDE BAND DIFFERENTIAL DC AMPLIFIER

 Astrodata Model $885-235$. High performance, solid state, fast setting fer. liw drin and hose. Whe banduidit and high reliability use $\pm 0.01 \%$ for 40 houra $t 0.050$. Fg O/P from DC to $1 \mathrm{KHZI} / \mathrm{P} \mathrm{Z}$ greater than lem Mohma $\pm 0 \cdot 02^{\circ}{ }^{\circ}$ of ance less than 500 picoforula. Full spec. on renuest. These ampliflers are BRAND NEW. Offered at fraction of new price. $£ 595$.

KENT CHROMALOG I
DIGITAL INTEGRATOR
For use with gas chromatography apparatus or anything with 27 output expressed as a sarying direct voltage. Antoruatic print out and ti-lima ofP to dirive recorder. of hanibuok. $£ 325$. Catriage extra

DECADE VOLTAGE AND CURRENT

 GENERATOREkco Type -482A. Provides ačcurate test voltagea and currents
 0.10 v . in $8 t \rightarrow \mathrm{ps}$ of 0.001 F . Current $0 / \mathrm{P}$ I v. range. 10^{-5} to
10^{-13} ampa 3110 v . Range $10^{-4} 10^{-12}$ amps. Mains I / P. 19 iu. Rack Monnting C/w Mamual. $£ 45$.

GRESHAM INSULATION FLASH-TESTER Mk 6 $0-5-2.5 \mathrm{kV}$. Mains I/P. O-verhaule.t $£ 35$. Carriage extra.
R.C. POWER OSCILLATOR (Associated Electronic Eng. A1302)
Frequenry rar-qe: 21 Hz to 200 KHz , in 4 ranges. Output pourer:
 0.6 phms. Omput ferminationat. Hightimpedance, earthed; low
 inapedance output.
O/H. Very gond condition. £95. Carriage extra.

NUCLEONIC INSTRUMENTS
High Arcurac; Metal Wall Guge Ekco
transistorisell gatmnu back scatter gauge

 A Tyje Nisisa. £25. Carriage extrit.

BRAND NEW CAPACITOR REVERSIBLE SINGLE PHASE PARVALUX MOTORS

BRAND NEW NIMTEC AMPLIFIER 151 £30 DISCRIMINATOR 95/2127-1/6

TEKTRONIX 5:7A. Sixule Beam. C/W P'ouer Supply Unit sud type
B170-Al70 ohnl. attenuawr. Riae Time TnSec. Sensitivity Y Amp

shait
free.

POWER SUPPLIES

DUAL STAEILISED VARIABLEDC POWER SUPPLY ADVANCE PP3 0-30 v, in 3 ratges at 1 amp. Voltmeter and ammetcr
Overioad protecton. Maing I/P. Overhauled V.G. conditon. Overioad protecton.
\&55. Carriage extra.

We specialise in th kinds of JOWER SUPPLIES. Curren stuck inclu
mains
Yoult

dis	Curreat	Make	$T_{\text {ype }}$	ice
6	A	Roband	T. 98	£10.00
6	,	Rohand	T. 98	81200
12	15			£15.00
15	5	Adrance	P.M7	215.00
17	${ }^{6}$	Farnell	SSU ${ }^{17 / 6}$	E18.00
28	1	Roband	T109	£25.00
32	2	APT	10459/14	225 00
150	200 ma	Farnell	SPU 150	214.00
56/64	1 A	Robaud		222 00
$7 \mathrm{~T}-9 \mathrm{U}$	111 A	I.E.		21950
7.94	10A	Farnel]		£25.00

MULTI OUTPUT UNITS AND SPECIALS $0 / P V$
33.5
6.3 A.C.

$\begin{array}{llll}0-10 v . & 240 & 218.00\end{array}$
$0-10 v$
Unstabilised
Variable
Variable
160300
$\begin{array}{llll}\text { Variable } \\ \text { Voltineter and Alemeter) } & 240 & \text { I.E. } & \text { £35.00 }\end{array}$
30 AC C. \quad (ROMAA $2+11 \quad £ 36.00$
400 Hz adjustable ${ }^{\text {EKOnIA }} \quad 2+11$

Universal Labpack Radiord $£ 20.00$
HT \& LTT Supply
ble
EX-COMPUTER HIGHLY STABILISED TRANSISTORISED LOW VOLTAGE POWER SUFPLIES
These modular units incorporate, Over oad
proteection on toth
NPVT and OJTNPUT and OJT-
PUT. L LOAD regala-
tion of 1% or beter. Low Ripple and a fast triponse time. All
units checked and O/H before deapaich.
I/P VOLTAGE $123-130$ w. 50 Hz available in the follou ing

49-53 PANCRAS ROAD; LONDON, NW.W. Tel:01-837 7781/2. Cables: SELELECTRO Telex: 267307 (Open Mon-Fri. 9 a.m. -6 p.m.)

SINE COSINE POTENTIOMETER 47K

LF SPECTRUM ANALYSER FENLOW S.A.2.
FENLOW S.A.2.
$0.3 \mathrm{Hzz-1} \mathrm{KHz}$ in 5 ranges. Bandwidth $0 \cdot 166$ -
3.75 MHz in 5 steps. £350.
L.F. OSCILLATOR. EDISWAN R666.

PORTABLE FREQUENCY METERS

TFlowef. A direct resding absorption meter, employing a con-
centric line closed at thie enc and turned by variable capacitor at the other end of the line. giving a irequency range: 2800 MHz- 500
$\mathrm{MH} \%$ on an alnost linear scale appros. 9 in. in length. Complete MHz , on an almost linear acale appros. 9 in. in length. Complete
in polished woonden case. Price $£ 17.50$. Carriage extra.
E.M.I. INSTRUMENT L.F. TAPE RECORDER

OSCILLOSCOPES
SOLARTRON STORAGE OSCLLLOSCOPE QU $1 / 1 /$ Double Beam
 5 in dia. Memotron CrT. Tirne Base 1 micro-sec. sm . Cm . to $10 \mathrm{sec} . / \mathrm{cmin}$. hanithok ElB0. Beam. Time Bage $0 \cdot 3$ micri-sec. to 10 sec . in 16 ranges. Y Amp
Frequency Response. Low Gruln 4 MHz . Med. dain 2 Mzz High
 Adiustable Digplay, Thue 15.120 miris. in a stepls. Sapiahle per Sisterice 1 ape.-2 Mins. 10 stens at 30 micro-sec. min, ntervals. Inclusive price $£ 225$.
SOLARTRON CD1400. Double Beanh. DC-15 MHz. CX $14+1$ ani
 18 ranges. 19 ing. Rack Mounting. Overhauled. $V .(4$. conditun. Hand-
hook. 2185 . hook. 2165 .

MARCONI SIGNAL
GENERATOR I4HHS.

 Opportunities Unlimited in RADIO,TELEVISION, EEECTRONCS

C \& G Telecommunication Techns' Certificate C \& G Electronic Servicing Certificate
R.T.E.B. Radio/T.V. Servicing Certificate
Radio Amateurs' Examination General Certificate of Education, etc.

Which one would qualify you for higher pay?

International Correspondence Schools provide specialized training courses for all these certificates, and with the help of the Schools' experienced tutors you can be sure of early success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential for success in electronics.
And the result? You'll soon be qualified in your field of electronics, and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

NOW-CGLOUR TV SERVICING COURSES

As the demand for colour TV increases, so does today's demand for trained servicing engineers. You can learn the techniques of servicing colour and monochrome TV sets through new home study courses specially prepared for the practical TV engineer.

SELF-BUILD RADIO COURSES

We'll teach you both the theory and practice of valve and transistor circuits, as well as how to service them, while you build your own 5 valve receiver, transistor portable and high grade test instruments. You build equipment of real practical use!

W.W. AMPLIFIER KITS

100 W AMPLIFIER (OVERLOAD PROTECTION INCLUDED)
Designer, Texas Instruments Approved.
Matched Set 22 guaranteed Texas transistors, diode, 13 caps, 32 resistors, 3 pots, choke, $2 \mathrm{~h} /$ sinks $4 \mathrm{in} . \times 4.6 \mathrm{in} . \times 1.3 \mathrm{in}$. drilled $2 \times$ TO3, fibreglass P.C.B., construction notes 18.00
 F/glass P.C.B. $\quad . \quad 0.95$ Mains transformer $\quad . . \quad 6.00$ $\begin{array}{lllll}4700 \mathrm{mfd} .63 \mathrm{v} . & . & \quad 1.70 \quad 1000 \mathrm{mfd} .64 \mathrm{v} . & \cdots & 0.70 \\ \text { Power supply; } 42 \mathrm{v} .+50 \mathrm{v} \text {. transformer, all cpts., } \mathrm{h} / \mathrm{sink} & \cdots & 15.00\end{array}$ Power supply; 42v. + 50v. transformer, all cpts., h/sink 2 power supply kits
30W BLOMLEY (New äpproach to class B)
Semiconductor set $\quad .6 .00$ Resistors, caps, pots .. 1.95
30W BAILEY (SINGLE POWER RAIL)
10 transistors $\because \mathbf{5 . 3 0}$ Resistors, caps, pot .. 1.30
LINSLEY HOOD CLASS AB Resistors, caps, p
MJ48I, MJ491, MJE521, BCIB2L, BC212L, Zener 3.35

LINSLEY HOOD CLASS A (DEC., 1970, CIRCUIT
4 transistors
REGULATED 60v. POẄ I. 55 Resistors, caps, pot $2 \cdot 20$

A desion, suitable for a pair of Bailey or Blomley amplifiers, ing very effective for a pair of Bailey or Blomley amplifiers, featurparts, effective S / C prote
parts, heat sink, fuses, etc.
Transistate 8Ω or 15Ω for L.H. amps.
Resistors, except power types, $\frac{1}{2} W 5 \%$. Low noise carbon film.

SEMICONDUCTORS

 MANY PRICES DOWN| 2NI613 | 0.20 | 2N3904 | 0.27 | BFY50 | 0.20 | IB40K20 | 1.40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2NI711 | 0.25 | 2N3906 | 0.27 | 40361 | 0.50 | IN916 | 0.07 |
| 2N3053 | 0.20 | 2N4058 | 0.13 | 40362 | 0.60 | 1544 | 0.05 |
| 2N3055 | 0.60 | 2N4062 | 0.12 | MJ481 | 1.20 | 15920 | 0.10 |
| 2N3707 | 0.11 | BCl07 | 0.10 | MJ491 | 1-30 | 153062 | 0.25 |
| 2N3708 | 0.07 | BCl09 | 0.10 | MJE52I | 0.72 | TIP29A | 0.50 |
| 2N3709 | 0.09 | BCI25 | 0.15 | MPSA05 | 0.30 | TIP30A | 0.60 |
| 2N3710 | 0.09 | BCI26 | 0.22 | MPSA55 | 0.35 | TIP3IA | 0.60 |
| 2N3711 | 0.09 | BC182L | $0 \cdot 10$ | MPSU05 | 0.60 | TIP32A | 0.74 |
| 2N3716 | 2.85 | BCI84L | 0.11 | MPSU55 | 0.70 | TIP33A | 1.05 |
| 2N3819 | 0.23 | BC212L | 0.12 | MPSH05 | $0 \cdot 10$ | TIP34A | 2.00 |
| 2N3820 | 0.55 | BFX84 | 0.25 | 1808T20 | 0.50 | TIP3055 | 0.60 |
| BRAND | NEW | TOP | LITY
 OR
 POS | COMPON
 ER ONL FREE | NTS, | FAST SE | ICE |

WW-080 FOR FURTHER DETAILS

FM TUNER

NELSON-JONES
Approved parts for this outstanding design (w.w. April (971).
Featuring $0.75 \mu \mathrm{~V}$ sensitivity. Mosfet front end. Ceramic I.F. strip. Triple gang tuning. $\frac{1}{2} \mathrm{~V}$ r.m.s. output level, suitable for phase locked decoder, as below.
Designer's own P.C.B.
All parts including P.C.B. S.A.E. please lists.

PHASE LOCKED STEREO DECODER

PORTUS AND HAYWOOD

Approved kit for this superb decoder (W.W. Sept. I970).
Featuring 40dB separation up to 10 kHz . Low distortion. Negligible spurious tones (birdies). Simple setting up. Suitable for wide variety of tuners including the NELSON-JONES TUNER as above.
Complete kit £8.97, p.p. \& ins. 15p plus stabilised P.S.U. kit for decoder plus tuner.
£3.55, p.p. \& ins. 18p
INTEGREX LIMITED
P.O. BOX 45 DERBY DE1 1TW

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER NEW "SEW" DESIGNS:

CLEAR PLASTIC METERS

TYPE SW. 100 $100 \times 80 \mathrm{~mm}$.

2nV. D.C. $£ 287 \frac{1}{2}$ | OV. D.C. |
| :--- |
| O2.87 |
| OV. D.C. |
| $£ 2.97$ | 5 amp. D.C. $£ 2.971$

BAKELITE PANEL METERS TYPE S-80 80 mm . square fronts

$50 \mu \mathrm{~A}$	£3.121		
$50-0-50 \mu \mathrm{~A}$	E2.97	503. D.C.	£2.47!
$100 \mu \mathrm{~A}$	£2971	31005. D.C	22.471
100.0-1000. A	22.871	1 amp. D.C.	£2471
$500 \mu \mathrm{~A}$	1262	5 amp. D.C.	£2 47\%
1 mA	22471	3100 V A.C.	£2.62t
20 V . D.C.	¢247\%	VU Meter	23 371

SEW" CLEAR PLASTIC METERS
Tye mR S5P M CLE

'SEW' BAKELITE PANEL METERS

EDGWISE METERS
 $50 \mu \mathrm{~A}$
$50-0.50 \mu \mathrm{~A}$
$100 \mu_{\mathrm{A}} \mathrm{A}$ $100 \mu \mathrm{~A}$
$100-0-100 \mu$ $200 \mu \mathrm{~A}$

Send for illustrated brochure and further details on all Sew Pane Meters-Discounts for quantities

GEMI－CONDUCTORE／VALVES

Abstract

Ni＂ 2 G 303 2 G 306 2 G 308 2 G 309 2 G 371 2 G 371 $2 \mathrm{G374}$ 26381 2 N 388 A $2 \mathrm{~N}+04$ NN ＊ สสส そそ幺幺 むสむむ

N

\section*{2 N 3606 2 N 34 F 7 2 N
 } |

 |
| :---: |
| | |
| | | ST2 DIACS 18 p

TRANSISTORS

T05 And TO18 Finned 5p

TRANSISTOR DISCOUNTS：－
$2+10 \% ; 25+15 \%$ ； $100+20 \%$ ANY ONE TYPE POSTAGE ON ALL SEMI－CONDUCTORS 7p EXTRA

S．A．E．FOR FULL．LISTS

INTEGRATED CIRCUITS					
CA3000	£1－80	FCY101	¢1．02	SN7413	p
CA3005	\＆1－17	FJH101	25p	SN7420	25 D
CA3007	£2．62	FJHill	70p	SNit30	25 p
CA3011	75p	F．JH121	25p	8 N －4．40	255
CA3012	88 p	FJHi：31	25p	SN744IAN	
－CA3013	£1．05	FJH141	25p		11．00
C．A3014	£1．24	FJH151	25p	8N7442	¢1．00
CA3018	84p	FJHi61	70p	SN744	¢1．25
CA3018A	£1．10	FJH171	25p	8N－447	¢1．10
CA3019	84p	FJHi81	25p	8N7448	¢1．00
CA3320	£1．28	F．JH221	25p	8N：450	25 p
CA3020A	21．60	FJH231	25p	SN7431	25 p
CA3121	£1．58	F．JH241	25p	8N7453	25 p
CA3 3122	£1．30	FJH251	25p	8N7454	25 p
CA3023	21．26	FJJ101	50p	8N7460	25 p
CA3029	$\underline{1.00}$	FJJ111	50p	8N：472	40p
CA31228A	74p	FJJ121	80 p	8N7473	45p
CA3028B	21．05	FJJ1：31	60p	SNit74	45p
CA3024	87p	FJJl4	£1．25	8N7475	1.00
CA30129A	£1－65	FJ．J181	75p	SN7476	45p
CA3030	21.37	FJJ191	85p	8N：483	． 00
CA3035	21－22	EJJ241	£1．25	9NT48i	50p
Cas3ist	72p	FJJ251	£1．25	8N7490	81．00
CA：3039	82 p	FJLi01	£1－25	8N7492	21.00
CA 3041	£1－09	FJYi01	25p	SN7493	¢1－00
CA 3042	£1－09	JC10	£2．50	SN7495	¢1．00
CA：3043	81.37	${ }_{1} \mathrm{C} 12$	£2．50	8N7496	£1．00
CA3044	21.20	L^{1900}	40 p	SN74107	45p
CA3045	\＆1．22	L：14	40p	SNT＋15：	£1－90
CA3046	81p	L． 423	40p	SN74154	22.20
CA．3047	£1．37	MC724 ${ }^{\text {P }}$	66 p	8N74160	$81-80$
CA304	£2． 04	MC＇80P	82－47	AN74161	81.80
CA $30+4$	£1．60	MC788P	82p	SN74164	£2－20
CA 3050	21． 84	MС790P	¢124	8N74165	e2．25
CA3051	21.34	MC792P	86p	sN74192	¢2．25
C． 30052	11．65	MC799P	86p	8N74193	£2．25
CA3053	46p	MC1 303 L	£2．62	TAA241	ع1．62
CA：31054	21.09	MC1304P	¢2－75	TAA242	84－25
CA 3055	22.40	MCl 3051	1 $3^{3} .86$	TAA243	£1．50
C．43059	$\underline{11.85}$	MC838 ${ }^{\text {P }}$	¢5．49	TAA2F3	75p
CA 15064	£1．20	MC1435	¢ $3^{4} 45$	TAA293	97p
FCHIt，	85p	MC1552G	［84－61	taa300	£1．75
FCHH11	21． 05	MC170！\％	Ce 94p	TAA 310	\＆1．25
FCHI21	\＆1． 05	MFC4000		TAA330	2 p
FCH131	50p		\＆1．12	TAA350	£1．75
FCHI41	£1．05	Pa222	8437	TAA435	¢1．47
FCH151	£1．05	PA230	21．00	TAA521	\＆1．32
FCH1；	50p	PA2：4	21.00	TAA522	\＆3．60
FCH171	¢1． 05	PA237	\＆1．85	TaA530	24.95
FCH181	£1． 05	PA24	$\underline{22} 45$	TAA811	
FCH19！	$\underline{11.05}$	PA424	£2．35	TAB101	97p
FCH201	8130	PA264	¢4．47	Tadjuo	${ }^{11.97}$
FCH21t	${ }^{1} 130$	Pazis	£4．97	TADIIO	81.97
FCH221	£1－30	8Nitiol	25D	SL403A	22．25
FCH231	£1．50	8N7401	25p	8L702C	21.47
FCJ10！	£1．60	SN7462	25D	UA702A	£2．80
FCJ111	$\underline{12} 50$	8N7403	25p	UA702C	77 p
FCJ121	22.75	8N7404	25p	UAT03C	¢1．37
FCJ131	22.75	8N7405	25p	UA709C	£1．25
FCJ14	25.25	8N7406	80p	UVA710C	£1．25
FCJ201	21.80	8N7408	25p	UA716	£1．87
FCJ211	22．75	8×7409	25p	Ua723C	21.62
FCK101	¢4．30	8N7410	25p	UA730C	£1．80
FCLI01	¢2－80	8N7411	25p	UA741C	87p
BRIDGE RECTIFIERS PLASTIC ENCAPSULATED					
600 PLV		50p	200 PI	V 4	75p
50 PIV	2 A	55p	400 PI	V 4A	80p
100 PIV	2 A	${ }^{60 p}$	50 PI	V 6A	${ }^{62 p}$
200 PIV	2A	87p	100 PI	$V 64$	75 p
400 PIV		80 p	200 PI	v 6i	5p
50 PIV	4 A		400 PI	$V 6 \mathrm{~A}$	1－10
100 PIV	4A	70 p			
SILICON RECTIFIERS MINIATURE WIRE ENDED PLASTIC IN Series PL Series CL Series $1 \mathrm{amp} \quad 1.5 \mathrm{amp} 3 \mathrm{amp}$					
400150 PI				10p	19p
4002100 P			9 p	11p	20p
4003200 P			Op	12 p	22 p
4004.400 P			0p	12 p	25p
4005600 P			2p	15 p	$26 p$
40156800 P			5p	170	27 p
50＋lese 15\％			0p	20 p	30 p
			$100+$ less	20\％	

SILICON RECTIFIERS STUD MOUNTING					
100PIV			45p	50 p	£1．22
200 PIV			50p	55p	£1．42
400 PIV		30p	55p	62p	£1．77
660PIV		32 p	60p	72p	£2．12
800 PI		35p	75p	87p	£2．47
1000PIV		40p	85p	－1．05	£2．77
$50+$ less 15\％；100＋leas 20%					
DIODES AND RECTIFIERS					
1N34A	10p	BA154	12p	G．J7M	37p
1，1414	7 p	BAXI3	12p	OA5	17p
1 N 916	7 p	BAX10	12D	oat	12p
AA119	7p	bay 31	7 p	oalo	22p
AA129	10p	BAY38	25p	OA9	10p
AAZ13	310 p	BYiue	15p	OA47	7p
AAZ15	512 p	BY103	22p	oaio	7 p
AA217	612 p	BY122	37p	OA73	10p
BA100	15p	BY124	15p	OA79	9 p
13A102	22p	BY126	15p	OA81	7 p
BAllo	32p	BY127	17p	0 O485	7 p
BAlli	27 D	BY164	57p	OA90	7
BA112	70 p	B $\times 210$	35p	OA91	7 p
BA115	7p	BYZ11	32p	OA95	7p
BAl4I	32p	BYZ12	30p	OA200	10p
13A142	32p	BYZ13	25p	OA202	10p
BA144	4 12p	BYZ16	40p	OA210	17p
BA145		FsT3／4	22p		
THYRISTORS					
PIV	50	100	200	300	400
14	25p	27p	370	40p	470
4A		47p	55p	57p	77 p
5A		55p	85p		75 D
7 A		55p	65p	－	97p

STUD MOUNTING

－

SAME UP TO $33 \frac{1}{3} \%$ OR MOR SEND S.A.E. FOR. DISCOUNT PRICE LISTS AND PACKAGE OFFERS!

 DECKS $\xrightarrow[\text { Mini Mono }]{\text { B.S. }}$ Mini Mo
C129 ${ }_{\mathbf{C l}}^{\mathrm{Cl} 29^{\circ}}$ 610
510
310 MP6o T.P.D. MTP5о T.P.D ${ }_{510} 610$ T.P.P.D. 1 210 Package ${ }^{*}$ H.T. 70 Packa THORENS $\begin{array}{ll}\text { TD125 } & \text { TV4.95 } \\ \text { TD125AB } & \text { £99.97 }\end{array}$ TX25
TD
T 50 A TD150A
TV150A
TX11

GARRARD
 ${ }_{\text {AP25 }} \mathrm{III}$ A 7011
BLP 5 B
AP 76 B SLT2
8L75B
8195 GOLDRIN ${ }_{\text {GLL69P/2 }}$ GL69P/2
GL75
 LDDis/i
G99 PIONEER

Mono Stereo Cartridge
All other modelis less Cartildge
Carrisge 50p extra aly model

RECORD DECK

PACKAGES
Decks supplied ready
wired
in plinth and over fitted with cart.
Garrard 2025 T/C with

$£ 1500$

 B8R MP60 with Audio Technics AT. 55 £21.00 Gollring GL69/2 with Goiliring G8110 $£ 38.00$ Goldring GL75 with Golliring G8+0E

SINCLAIR EQUIPMENT Project 60. Package Offers

$0 \theta 0006$

 power supply, $£ 18.85$. Carr. $37 \nmid \mathrm{p} .2 \times \mathrm{Z} 50$ ampli Carr. 37 p. Transformer 4 PZ8, $22 \cdot 971$ extra Add to any of the above $£ 4.87 \%$ for active filter
unit and £18 for a pair of Q16 speakers. PRON ECT
 ampliffer $£ 25.00$. Carr. 37tp. 3, ©N0 AInplifle Carr. 00 . Carr. $\mathbf{3 7 4}$ p. Neoteric amplifier $£ 45.87$

New 6th edition giving full details of comprehensive range of HI-FI EQUIPMENT
COMPONENTS. TEST EOUIPMENT COMMUNICATIONS EQUIPMENT. FREE DISCOUNT COUPONS VALUE 50p 27.2 pages, fully illustrated and detailing

[^8]

TELETON SAQ-206 STEREO

Latest exciting release. Brand yew model. teautifully styled with walnut case. $6+6$ watts r.mus
switched inputs for mag, xtal, mux, tape. Incorporates volume, baas, treble anil sliding ballance control, scrateh Hiter and ioudness control.
Rec. List $\pm 22 . \overline{\mathrm{J} .}$ Our Price $£ 18.87$. Carr. 37 p
Suggested systen.
 Carr. $\mathbb{L}^{1} \cdot \overline{50}$.
TELETON F. 2000 AMPLIFIER STEREO TUNER/

Probably the most pupular buiget Tuner
Amp. and now offered at a ridiculous low price

F.2000, Garrard 2025 T/C Changer fitted stereo cartridge. with whinth and cover and pair of GW8
3-way speakers. Total Rec. Price $k: 77-73$. Our Price $259 \cdot 45$. Carr. 41 .
 built reas iy for use. Fantastic value for money, STEREO MULTIPLEX ADAPTORS, £4.97t.

MARCONI CT44 TF956 AF
ABSORPTION WATTMETER
$1 \mu /$ watt to 6 watts

BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

MARCONI TF.I42E DISTORTION $\frac{\text { Excellent condition. Fully testell } £ 20 \text {. Carr. } 75 \mathrm{p} \text {. }}{\text { TE-2ORF SIGNAL GENERATOR }}$

BELCO AF-5A SOLID STATE SINE SQUARE WAVEC.R. OSCILLATOR

leavy quality ceramic construction. Windings embedded ln vitreous ensmel. leavy duty lirush wiper. Continuous rating. Wide range availabte ex-stock
tilele hoie Axing, in. dia. shafte. Bulk quantities arailable. 25 WATT. $10 / 25 / / 50 / 1100 / 250 / 500 / 1000 / 150 / 2500$ or 5000 ohms. 721 D . P. \& P' 21 D

TRANSISTORISED L.C.R. A.C MEASURING

110 MFD. 6 Rang
$\pm \underset{\text { Ranges }}{\mathbf{2} \%} \mathbf{t} \mathbf{1} \%$. Bridge voltage at $1,000 \mathrm{CP}$ Ranges $\pm 1 \%$. Brige voltage at $1,000 \mathrm{CPB}$
perated from 9 volta. $100 \mu \mathrm{~A}$. Meter Indication Altractlve 2 tone metal case. Size $7 f^{\prime \prime} \times 5^{\circ} \times 2^{\circ}$
TE-I6A TRANSISTORISED
SIGNAL GENERATOR

TEIII DECADE RESISTANCE ATTENUATOR

0 dth. Frequency: 1 CO to $2 \mathrm{bO} \mathrm{KHZ}(-3 \mathrm{dbl}$

exteral awitch. Brand new £27.50 P. \& P. 25p
dial, level meter, precision attenuator $l \mu v=100 \mathrm{Mv}$ Operation frora, precision solt D.C. or $0 / 110 / 200 / 250 \mathrm{v}$ onditize $12 \times 8 \times 9 \mathrm{in}$. Supplied In brand new ondition complete with aill connectors, fully

UNR 30 RECEIVER
4 Bands covering $550 \mathrm{kc} / \mathrm{s} \cdot 30 \mathrm{mc} / \mathrm{s}$. B.F.O. Built g 550kc/s
\qquad
WS62 TRAN SCEIVERS
Largequantity available for EXPORT Excellent condition. Enquiries invited LAFAYETTE HA-600 RECEIVER

variable B.F.O., noise linuter. \& Meter Band
 Carriage 50p.
FULL RANGE TRIOEQUIPMENT

CRYSTAL
ALIBRATO
NO. 10

230 VOLT A.C. 50 CYCLES RELAYS $\begin{gathered}\text { Brand new. } 3 \text { set } \\ \text { of changeover }\end{gathered}$ contacts at 5 amp rating. 50 p each
$P_{\text {\& }} P$. 10 p (100 lots 840) Quain

LARGE STOCKS OF TEST EQUIPMENT AND RECEIVERS-MARCONI ETC., FOR CALLERS

POWER RHEOSTATS

YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS Excellent quality Low price Immediate delivery

QUALITY PARTS

FOR THE DISCERNING BUILDER
BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material to choice. Highest quality parts including gain graded transistors. BAILEY 30w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material size $41^{\prime \prime} \times 23^{\prime \prime}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly.
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalwork, which also has edge connector mounting. Available in Fibreglass material only BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circuits and all parts available for this design.
LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December 1970, Wireless World.
FULL KITS OF PARTS including Edge Connector Mounting Printed Circuit now available for Linsley Hood AB Design. This unit is fully compatible with our Metalwork Assembly.
SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design All parts are in stock except the Metalwork
WADDINGTON STEREO DECODER. Printed circuits now available in fibreglass and paxolin material.
J. R. STUART TAPE CIRCUITS. We will be designing Printed Circuit Boards and supplying parts for this interesting design.
Full details are given in our Free lists. Please send foolscap s.a.e.

HART ELECTRONICS

PENYLAN MILL, MORDA, OSWESTRY, SY10 9AF SALOP Tel: Oswestry 2894
Personal callers are always welcome at our retail shop, but please note we are closed on Saturdays.

	BUMPER BARGAIN PARCEL We guarantee that this parcel contains as least 1,750 components. Short-leasded on panels, including a minimum of 350 tran- sistors (mainy NPN and PNP germanium, Sis audio and switching rypes - data supplied). The rest of the parcel is made up with: Resistors 5° or or betret (inclucuing some 1 0) mainly metal oxide carbon film, and composition Eypes. Mainly t and t watt \ldots, diodes, miniature silicon cypes OAgo, OA91, OA95, ISI 30. etc. Cit capaciors' and polyesters...inductors, a selection of pot. etc., etc. The These are all miniature. \qquad EX-COMPUTER POWER SUPPLIES Recondisioned, fully zested and guaranteed. These very compact units arefuly moothed with a ripple becter than 10 mv . and regulation better than 10. Over voltage pro- tection on all except $24 v$. units. $120 v .-$ $130 v$. a.c. $50 c / s$ input. Mains transformer to suit $E 3$ extra if reauired. We offer rhe foll 150Hig 5° igh Stabs and I Watt, LARGE CAPACITY ELECTROLYTICS\qquad 50 P each P. \& P. I2p each EXTENSION TELEPHONES 99p ea. E1.75 for $2^{2 p}$
I2V 4A POWER SUPPLY Extremely well made by FRAKO GmbH in transformer, tapped input from $115 V$ to 240 V . Full wave rectification and capacito Theothing. Size $9 \times 6 \times 5$, weight guaranteed. Maker's price believed to be around $£ 80$. Our Price $£ 9.50$. Carr. 50 p	
251 and $\frac{1}{2}$ Watt 62p	
QUARTZ HALOGEN BULBS with long leads 12 V 55 W for car spotlights and projectors etc. 50p	
RELAYOFFER Single Pole Changeover Silver Contacts 25 to 50 V . 8 for 50 p . P. \& P. 8p.	
KEYTRONICS MAILING ADDRESS 44 EARLS COURTROAD, LONDON W. WAREHOUSE AND DISPATCH 01.4788499	

MARSHALL'S INTEGRATED CIRCUITS NEW LOW PRICES • LARGEST RANGE • BRAND NEW • FULLY GUARANTEED SPECIAL OFFER: 5% DISCOUNT TO ALL SATURDAY CALLERS (JULY AND AUGUST ONLY)

A. MARSHALL \& SON LTD

See our Ad. on opposite page for Transistors, Diodes, Passive Components and P. \& P. charges. Many more types in stock and arriving daily. PLEASE ENQUIRE.

LARGEST STOCK
 WIDEST SELECTION
 LOW PRICES AND RETURN OF POST SERVICE

DIODES AND RECTIFIERS

IN914
IN916
IN400
IS44
1113
15120
15121
15130
15131
15132
159
S940
AA119
AAA29
AAZ
AAZ

MAINS TRANSFORMERS
$\begin{array}{llll}1 \text { amp Charger. Sec. } 0-3 \cdot 5-9-18 v & \text { Post and packing } & 0.22 t & 0.97 t \\ 2 \text { amp Charger. Sec. } 0-3.5-9-18 v & \text { Post and packing } & 0.221 & 1.271\end{array}$ 1 amp (Douglas) MT103 Sec. tappings from $6 v$ to 50 v .. 1.70 2 amp (Douzlas) MT104 Sec. tappings from 6 v to 50
6 amp (Douglas) MT107 Sec. tappings from $6 v$ to 50
Post ond pocking 0.37t.

TRIACS
SC35D

THYRISTOR

$21^{*} \times 17^{*}$ (Plain)
Vero Pins (Bag of 36) $\ddot{\text { E }} \mathbf{0 . 2 0 .}$
0.85
0.47

Vero Cutter 60-45. Pin Insertion Tools ($\cdot 1$ and $\cdot 15$ matrix) at $\mathbf{1 0 . 5 5}$.

RESISTORS $\ddagger W \& \frac{1}{\ddagger} W$ E24 Series.

CAPACITORS. Polyester, ceramics, Polystyrene, silver mica, Electrolytics

D.	\checkmark.	E	MFD.	\checkmark.	\pm	MFD.		6
1	18	$0.07 \pm$	25	50	0.071	40	i6	0.14
	25	0.07	32	40	0.071	500	25	0.19
2	350	0.10	32	450	0.27 ¢	500 640	50	0.24
$2 \cdot 5$	16 10	-0.07\%	40	16	0.074	6400	16	0.17
4	40	0.071	50	12	0.071	1000	25	0.25
4	350	$0 \cdot 11$	50	25	0.071	1000	50	$0 \cdot 371$
5	18	0.071	50	50	0.10	2000	25	0.371
	50	0.071	64	25	0.07 +	2000	50	0.521
${ }_{8}^{6 \cdot 4}$	6.4	$0.07 \pm$	80	16	0.071	2500	25	0.421
8	40	0.071 0.15	80 100	25.4	0.07	2500	50	. 571
10	12	0.071	100	12	0.071	2500	64	0.80
10	25	0.07	100	25	0.10	3000	25	0.45
12.5	25	$0.07 \pm$	100	50	$0 \cdot 121$	3600	100	1.70
16	10	0.071 0.072	125	10	$0.07 \frac{1}{2}$	4000	40	0.80
16	15 450	${ }_{0}^{0.076}$	200	10	0.071	4500	64	2.25
16	65.4	$0.07 \pm$	250	25	0.14	5000	25	0.571
25	10	$0.07 \frac{1}{1}$	250	50	0.19	5000	50	0.97
25	25	$0.07 \frac{1}{1}$	320	10	0.071	5000	85	1.75

THERMISTORS (MULLARD)

SEND I/-(5 nD) FOR NEW COMPRE:HENSIVE SEMI CONDUCTORPRICE LIST. (24 口ages) Hours: $9 \mathbf{9 . 3 0} \mathrm{pm}$ Mon-Fri $9-1 \mathrm{pm}$ Thurs

BEST BUY IN TTL!!

SIEmens quality plus bargain prices plus lst service
A full design range of high quallty TTL aval

ELHIO

Quadruple 2-input
III Triple 3-input NaND
121 Dual 4input NAND

151 Expantidable dual
AND-OR-INVERT
61 Duate $\begin{gathered}\text { a-wide } \\ \text { AND-OR-INVERT } \\ \text { 2-input }\end{gathered}$ Expandab
Expandable 4wide
2input AND-
INVERT INVERT gate
181 4-wide 2-inpur
191 Quadre
NOR gate
Quadruple 2-input
NAND gate with with open
collector
Hexi inverter
Gated full adder
231 Gated full adder
$241 \begin{aligned} & \text { Fourbitial binary } \\ & \text { full adder }\end{aligned}$

7400 20p 16p 14p 7410 20p 16p 14p $\begin{array}{llll}7420 & 20 \mathrm{p} & 16 \mathrm{p} & 14 \mathrm{p} \\ 7430 & 20 \mathrm{p} & 16 \mathrm{p} & 14 \mathrm{p}\end{array}$ 7440 24p 20p $\quad 17 p$ 7450 20p 16p 14p

7451 20p 16p 14p
7453 20p 16p 14p 7454 20p 16p 14p 7402 20p 16p 14p $7401 \quad 20 \mathrm{p} \quad 16 \mathrm{p} \quad 14 \mathrm{p}$ $\begin{array}{llll}7480 & 67_{p} & 21 p & 18 \mathrm{p} \\ 7482 & 87 p & 73 p & 48 p \\ 7410 & 62 p\end{array}$ $7483<1.32 \quad 61.16 \quad 51.00$
ex inverter wit
open collector
281 BCD output decimal decoder TTL
291 Quadruple 2-input
$\begin{array}{llll}\text { NAND gate with } \\ \text { opencollector output } 7403 & \text { 20p } & \text { 16p } & \text { 14p }\end{array}$
$341 \begin{gathered}\text { open collector } \\ \text { Quadruple 2-input } \\ \text { exclusive-OR }\end{gathered}$
exclusive-OR
element
351 Schirit Trigger
371 Execess 3 gray to
$\begin{array}{lllll}371 & \text { Exesss } 3 \text { gray to } \\ \text { decimal decoder }\end{array} \quad 7444 \quad £ 1.45 \quad £ 1.20 \quad £ 1.08$
AND gate Totem
391 Quad 2-input positive
FLYIOI $\begin{gathered}\text { collector } \\ \text { Dual 4input }\end{gathered}$
FLJ 101 expander
111 J -K master-slave
121 Dual J-K C master
131 Dual J-K master
slave flip-flop with
preset and clear
$\begin{array}{llll}7486 & 33 p & 27 p & 23 p \\ 7413 & 35 p & 29 p & 25 p\end{array}$ $7443 \leqslant 1.45 \leqslant 1.20 \leqslant 1.08$

7409 25p 21p 18p $\begin{array}{llll}7460 & 20 \mathrm{p} & 16 \mathrm{p} & 14 \mathrm{p} \\ 7470 & 45 \mathrm{p} & 37 \mathrm{p} & 32 \mathrm{p}\end{array}$ 7472 32p 27p \quad 23p 7473 45p 40p 35p

No. Equal $1-24 \quad 25-99 \quad 100 \mathrm{up}$

141 Dual D-type edge
151 Quad bistable latch
151 Quad bistable latch
161 Decade counter
171 Divide-by- 12 counter
181 4-bit binary counter
1814 -bit binary counter
191
4-bit shift register $\begin{array}{ll}7474 & 46 p \\ 745 & 45 p \\ 7490 & 80 p \\ 7492 & 85 p \\ 7493 & 80 p \\ 7495 & 87 p\end{array}$ Synchronous up
4-bit decade
counter with one
line mode control
211 Synchronous up down $\quad 7190 \quad £ 1.80 \quad £ 1.48 \quad \mathbf{\& 1 . 2 7}$ with one line

231 4-bit shift register $7494 \quad \mathrm{fl} 13 \mathrm{O4p} \quad 81 \mathrm{p}$ 4 -bit decade
251 (As counter) binary $74192 \quad £ 1.74 \quad \AA 1.45 \quad £ 1.25$
251 (As above)-binary $74193 \quad £ 1.74 \quad £ 1.45 £ 1.25$ 261- 5-bit shift register
 301 Dual quadruple
 FLL 101 BCD to decimal decoder and nixie

74121 48p 40p 34p 74121 48p 40p 34p

CONTRACT ORDER PRICES AND BULK QUANTITY PRICES QUDTED DN REQUEST

NOW ONE OF THE LEADING FRANCHISED SEMICONDUCTOR DISTRIBUTORS OFFERS NEW BRANDED DEVICES AT INDUSTRIAL TRADE PRICES
 MULLARD, INTERNATIONAL RECTIFIER, SENSITRON, S.G.S., NATIONAL SEMICONDUCTOR
 THIS IS THE FIRST TIME D.T.V. GROUP LTD. HAVE EXTENDED SALES OF THIS RANGE TO PRIVATE READERS OF WIRELESS WORLD BULK QUANTITY PRICES ON REQUEST

WE HOLD ONE OF THE LARGEST SEMICONDUCTOR STOCKS IN THE U.K.

LOW COST DIGITAL TTL 7400 RANGE FROM FRANCHISED DISTRIBUTOR STOCK

$\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)					
Compare these prices!		Silicone Moulded Package			
			$\begin{gathered} 1-24 \\ \epsilon p \end{gathered}$	$\begin{gathered} 25-99 \\ \epsilon p \end{gathered}$	$\underset{\epsilon p}{100+}$
$\begin{aligned} & \text { DM7400N } \\ & \text { DM7401N } \end{aligned}$	(SN7400N)	Quad Two-Input Gate	0.250	0.200	0.167
	(SN7401N)	Quad Two-Input Gate (Open			
		Collector)	0.250	0.20	0.167
DM7402N	(SN7402N)	Quad Two-Input NOR Gate.	0.250	0.200	0.167
DM7403N	(SN7403N)	Quad Two-Input Gate (Open			
		Collector)	0.250	0.200	. 16
DM7404N	(SN7404N)	Hex Inverter	0.2	0.225	0.188
DM7405N	(SN7405N)	Hex Inverter (Open Collector)	0.2	0.2	. 188
DM7410N	(SN7410N)	Triple Three-Input Gate	0.2	0.2	0.1
DM7420N	(SN7420N)	Dual Four-Input Gate	0.250	0.200	0.167
DM7430N	(SN7430N)	Eight-Input Gate	0.250	0.200	0.167
DM7440N	(SN7440N)	Dual Four-Input Buffer	0.250	0.200	0.16
DM7450N	(SN7450N)	Expandable Dual AND-OR-			
		INVERT Gate	0.250	0.200	0.167
DM745IN	(SN745IN)	Dual AND-OR-INVERT Gate	0.250	0.200	0.16
DM7453N	(SN7453N)	Expandable AND-OR-INVERT	0.2	0.2	0.16
DM7454N	(SN7454N)	AND-OR-INVERT Gate	0.250	0.200	0.167
DM7460N	(SN7460N)	Dual Four-Input Expander	0.250	0.200	0.167
DM7472N	(SN7472N)	J-K Master Slave Flip Flop	0.325	0.263	0.221
DM7473N	(SN7473N)	Dual J-K Flip Flop	0.525	0.417	0.350
DM7474N	(SN7474N)	Dual D Flip Flop	0.450	0.363	0.300
DM7476N	(SN7476N)	Dual J-K Flip Flop with Preset			
		and Clear Inputs	0.563	0.450	0.375
DM7486N	(SN7486N)	Quad Exclusive-OR Gate	0.575	0.488	0.42
DM74107N	(SN74107N)	Dual J-K Flip Flop with Vec and			
		GND on Corners	0.525	0.417	0.350

TRANSISTORS
LARGE QUANTITY-PRICES ON APPLICATION

2 N 1132
2N1303
2N1304
2 N 1305
2 N 1613
2N2193
2N2218
2N2219
2N2221
2N2222
2N2369
2N2369A
2N2484
2N2904
2N2907
2N2924
2N2925
2N2926
2N3011
2N3053
2N3055
2 N 3133
2N3134
2N3135
2N3136
2N3390
2N3391
2N3391A
2N3392
2 N 3393
2N3414
2N3415
2N3643
2N3646
2N4392
2N4393

POWER DEVICES, SENSITRON GUARANTEED. INDUSTRIAL STOCK ITEMS

ZENER DIODES BZY95 Series $\begin{array}{cccc}1-19 & 20-99 & 100+ \\ \text { 32p } & & \text { 28p }\end{array}$ 1.5 Wart
 15% 10 Volt- 75 Volt
 BZX70 Series 24 $\frac{1}{2}$ p 20p $\quad 17 \frac{1}{2} p$ 2.5 W
 t.5\% 7.5 Volt-
 75 Volt
 IZMTIO 3.3 Volt- 8.2
 $3 \cdot 3$ Volt $-8 \cdot 2$ Volt 1 Watt $+10 \%$
 $\frac{1 \text { Watt } \pm 10 \%}{\text { 1ZMT5 }} \frac{1.3 \text { Volt- } 8.2 \text { Volt }}{}$
 3.3 Volt-8.2 Vo 1 Watt $+5 \%$
 IZMTIO
 IZMT5

$1-99$	100-999				$1-99$	100-999
467	362	IN5171			-171	- 121
629	525	IN5172			-183	- 129
417	375	IN5173	\cdots	.	. 237	. 167
667	467	IN5174		.	. 300	212
925	800	IN5400	.		162	. 112
61.700	C1.375	IN5401	.	\cdots	-183	- 129
61.467	¢1.300	IN5402	.	.	-204	. 146
¢1.637	C1.375	IN5403	-	\cdots	-221	$\cdot 154$
C1.700	¢1.400	IN5404		.	-267	187
C1.800	C1.500	INII99	-	.	. 392	308
62.875	¢2.475	\|N1202		\ldots	. 775	633
E1. 050	. 875	INII83		\cdots	. 667	533
¢1.625	CI. 375	\|N1186		.	El-108	. 887
¢2.950	E2.525	Quantity Prices are Available on				
$\cdot 133$. 096	Request				

YOUR SMALL AUDIO AMPLIFIER PROBLEMS SOLVED WITH S.G.S. INTEGRATED CIRCUITS
Audio Amplifier TAA 621
Designed for use in mains operated T.V. sets and record players as an audio amplifier. The supply voltage range is from 6 to 24 V and the device can deliver up to 4 W output power.

Max. Supply Voltage (no signal): 27 V ; Power dissipation ($\mathrm{TA}=60^{\circ} \mathrm{C}$) 1.06 W ; Input Voltage: - 0.5 to 1.5 Vp ; Peak Output Current: 0.8 A ; Storage Temperature: -25 to $100^{\circ} \mathrm{C}$; Junction Temperature: $125^{\circ} \mathrm{C}$. 1-24 £2.025; 25-99 £I.755.

EA 1000

NEW COMPLETE MODULE
3 Watts min. output power; $50 \mathrm{~Hz}-25 \mathrm{~Hz}$ bandwidth. Signal to noise ratio-86dB.
Complete with Capacitors and Resistors on $76 \times 65 \mathrm{~mm}$ printed board: 1-24 E2.625; 24-99 £2.275.
Supplied with data sheet and application report.

SILICON RECTIFIERS, 1 AMP WIRE-ENDED PLASTIC

Type							P.I.V.	1.100	$100+$	$1000+$
1 N 4001	.	.	.,	.	.	.	50	7p	6p	4p
IN4002	.	\cdots	.	\cdots	\cdots	\ldots	100	8p	7p	41p
IN4003	\cdots	200	10 p	9 p	5p
IN4004	-	.	.	.	\cdots	.	400	10 p	9p	5p
IN4005	.	\cdots	\ldots	\cdots	\cdots	\cdots	600	12p	10p	$7 p$
IN4006	\cdots	\cdots	\cdots	\cdots	\ldots	.	800	14p	12p	9 p
IN4007	.	\cdots	.	\cdots	.	.	1000	16 p	13p	10p

TRIACS
SENSITRON AT NEW LOW PRICES

	Current Amps	P.I. Volts	$1-99$	$\underset{\underset{E}{100-999}}{ }$
SSC41B	6	200	0.865	0.693
*SSC40B	6	200	1.016	0.814
SSC410	6	400	1.146	0.915
*SSC40D	- 6	400	1.302	1.050
SSC46B	10	200	1.167	0.932
*SSC45B	10	200	1.318	1.050
SSC46D	10	400	1.520	1.218
*SSC45D	10	400	1.675	1.398
SSC51B	15	200	1.201	0.966
*SSC50B	15	200	1.352	1.075
SSC5ID5	15	400	1.806	0.882
*SSC50D	15	400	1.953	$1 \cdot 562$
*SSC61B	25	200	2.108	1.701
*SSC60B	25	200	2.297	1.822
*SSC6ID	25	400	3.008	$2 \cdot 402$
*SSC60D	25	400	3-192	2.541
All $\frac{1}{2}$ in. Press Fit.		* $\frac{1}{2}$ in. Press Fit Stud		

FOR INDUSTRIAL TRADE "SWIFT SERVICE" 60 PAGE CATALOGUE. SEND 35p. TERMS C.W.O. OR C.O.D. EXCEPT FOR EST. ACCOUNTS, GOVERNMENT DEPTS., ETC. PLEASE ADD $10 p$ P. \& P. (U.K.), 50p OVERSEAS
As these are trade prices it is regretted that we have to impose a minimum order value of $£ 2 \cdot 50 \mathrm{U} . \mathrm{K}$., £5 overseas. Orders to:
D.T.V. GROUP LTD (Dept. m/OI), 126 hamilton road, London se27 9 sG

Tel: 01-6706166 Telex 262145

BENTLEY ACOUSTIC CORPORATION LTD.
 38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 Telephone 0i-722.9090 THE VALVE SPECIALISTS Telephone 01-722-9090 GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Littlehampton 6743 Please forward all mail orders to Littlehampton

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental : $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times$ $124 \times 10 \mathrm{in}$. New condition. $£ 45$ each, Second hand condition £27.50 each, Carr. £1.50.
MARCONI SIGNAL GENERATOR TYPE TF-144H/S: Frequency Range $10 \mathrm{Kc} / \mathrm{s}-72 \mathrm{Mc} / \mathrm{s}$. RF Output $2 \mu \mathrm{~V}-2 \mathrm{~V}$ at 50Ω. Int. Mod. 400 and $1000 \mathrm{c} / \mathrm{s}$. Excellent condition with Manuals. £200.00 each. Carr. £2.
TELEPRINTER CREED TYPE 7B: "as new" condition, in original packing case, $£ 25.00$ each. Second-hand condition (excellent order), no parts broken, $£ 15 \cdot 00$ each. Carriage both types $£ 2$.
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with original calibration charts. Checked out, working order $£ 18.50$ $+£ 1$ carr.; OR BC-221 (as received from Ministry), good condition, less charts, $£ 8 \cdot 50+£ 1$ carr.

FOR EXPORT ONLY

BRITISH \& AMERICAN

 COMMUNICATION EQUIPMENTVRC. 19 X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts, Output $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter system, with antennae. W.S. Type 88, Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type
$\mathrm{HF}-156$, Mk. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, 1.5-12 Mc / s. C. $44, \mathrm{Mk}$. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}$, 50 watts,
 50 watt, narrow band width. A.C. input $115 V$. BC-640 Tx, $100-156$ MC/s, 50 TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T. 14 and R.19, FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx/Rx, SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A. Collins Tx/Rx Type ARC-27, $200-400 \mathrm{Mc} / \mathrm{s}, 28 \mathrm{~V}$ d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458; 455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete
Sets available and spares. Complete system with full set of Manuals.

RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21 \mathrm{in}$. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, $£ 2.50$ Carr. OR 4 ft . high $\times 23 \mathrm{in}$. wide $\times 19 \mathrm{in}$. deep, with rear door. $£ 8.50$ each, £2 Carr.

RECEIVER BC-348: Operates from 24V d.c. Freq. Range 200$500 \mathrm{Kc} / \mathrm{s}, 1 \cdot 5-18 \mathrm{Mc} / \mathrm{s}$. Secondhand $£ 20$ each, $£ 1$ Carr.

APR-9 SEARCH RECEIVER: Complete with two Tuning Units TN128, $1000-2600 \mathrm{Mc} / \mathrm{s}$, and TN129 2300-4450 Mc/s. £250.00 each.
APR-5 UHF RECEIVER: $1000-6000 \mathrm{Mc} / \mathrm{s}, 115 \mathrm{~V}$ a.c. Circuit. Oscillator, 6 IF Stages, Detector, Video Amplifier and Audio Amplifier. £120.00 each, Carr. £2.

RCA COMMUNICATION RECEIVER AR88: A.C. mains input. 110V. or 250 V . Freq. in 6 bands, $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2 \cdot 5-600 \Omega$. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Good second hand condition (guaranteed working) $£ 45$ to $£ 65$ each. Carr. $£ 2 \cdot 00$

SOLARTRON PULSE GENERATOR GP1 101.2: Period- 2 microsecs to 100 msec ; Pulse Duration- 1 microsec to 100 msec ; Delay time- 1 microsec to 10 msec. All continuously variable in 5 ranges with fine control. Accuracy $\pm 10 \%$. Pulse Amplitude $-0.5 \mathrm{~V}-100 \mathrm{~V}$. Accuracy $\pm 10 \%$ continuously variable in 4 ranges with fine control. Double Pulses; Pre-Pulse; Triggering; Square
Wave $\mathrm{O} / \mathrm{put} ; S$ Suaring Amplifier. Input- $100-250 \mathrm{~V}, 50-60 \mathrm{c/s}$. New condition Wave O/put; Squaring Amplifier. Input-100-
with Manual. Price: 885 each $+£ 1.25$ carr.

USM-24C OSCILLOSCOPE: 3 in . oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv . $\mathrm{rms} /$ inch. Triggered sweep, built-in trigger pulses and markers. Mains input
$115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Complete with all leads, probes and circuit diagram. £42. 50 $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s} . \mathrm{C}$
each, carr. $£ 2$.
OS-46/U OSCILLOSCOPE: A general purpose oscilloscope suitable for measuring signals from $0-1000 \mathrm{~V}$ d.c. to over $50,000 \mathrm{c}$ c.p.s. (Furcher details on request, S.A.E.) $£ 35$ each, carr. $£ 1 \cdot 50$.
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment desigred for use A portable, self-contained, general-purpose
with radio and radar receivers and for other applications requiring small with radio and radar receivers and
amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{cis}$. Freq.-$1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse-40-4000 pulses per sec. Pulse Width $-0.5-10$ microsecs. Timing-Undelayed or delayed from $3-300$ microsecs from external or internal pulse. O/put-1 milliwatt max., 0 to
variable. O/put Impedance- 50 . Price: $£ 120$ each $+£ 2$ carr.
SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm. The frequency daly $115 \mathrm{~V}, \pm 10 \% \mathrm{~A} . \mathrm{C} ., 50 \mathrm{c} / \mathrm{s}$. Freq. $-3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal TransmissionCWF, Pulse, FM. External Transmission-Square Wave, Pulse. Power O/put-
0.2 milliwatts. O/put Attenuator: -7 to -127 dbm . Load- 50Ω. Price: 0.2 milliwatts. O/put

TEST SET TS-147C: Combined signal generator, frequency meter and TEST SET TS-147C: Combined signal generator, frequency meter and or measurement of same. Signal Generator: O/put -7 to -85 dbm . Trans$40 \mathrm{Mc} / \mathrm{s}$ per sec . Phase Range- $3-50$ microsec. Pulse Recetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep- 5 -500 watts peak. ${ }_{0.2-6}$ microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration at 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Me} / \mathrm{s}$. Accuracy$+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec . for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec. at $9310 \mathrm{Mc} / \mathrm{s} \mathrm{per} \mathrm{sec}$. point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Pover Meter: inp
to +30 dbm . Output 7 to -85 dbm . Price: $£ 75$ each $+£ 1$ carr.

SIGNAL GENERATOR TS-418/URM49: Covers $400-1000 \mathrm{Mc} / \mathrm{s}$ range. $C W$, Pulse or AM emission. Power Range- $0-120 \mathrm{dbm}$. Price: $£ 105$ each + £ 1.25 carr.
SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$, O/put Voltage $0.1-100,000$ microvolts cont. variable. Impedance 50Ω. Price: $\mathbf{\Sigma 8 5}$ each $+£ 1 \cdot 50$ carr.
FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. $20-280 \mathrm{Mc} / \mathrm{s}$. Accuracy 05%. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} / \mathrm{s}$. Power Supply-batteries 6 V and 135 V . Complete with calibration

CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges, 1Ω to $10 \mathrm{Meg} \Omega$ in 5 Ranges. Indicated on 4in. scale meter. Complete with probe, excellent condition. £12-50, carr. 75p.
CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New Condition. $£ 1.75$ each, post 25 p.
HEADSET ASSEMBLY TYPE No. 10: Moving coil headphones and microphone. (Similar to above) new cond. $\mathbf{£ 1} \cdot \mathbf{7 5}$, post 25 p ; or second-hand cond. ${ }^{2} 1 \cdot 25$, post 25 p .
HEADSET ASSEMBLY: with lightweight boom microphone. Good secondhand condition. $\mathbf{\text { E } 2 . 5 0 , ~ p o s t ~} 75 \mathrm{p}$.
DLR HEADPHONES: $2 \times$ balanced armature earpieces. Low resistance. 11-25 a pair, 25p post.
POWER UNITS AVAILABLE FOR FOLLOWING SETS: 52 set-mains input, $150 \mathrm{~V} @ 60 \mathrm{~mA}$ and $12 \mathrm{~V} @ 3$ amps, new cond. $£ 3 \cdot 50$. Receiver type 88 (1475)-mains input, $250 \mathrm{~V} @ 80 \mathrm{~mA}$ and $6.3 \mathrm{~V} @ 4 \mathrm{amps}$, new cond. $\mathbf{£ 3} .50$ STABILISED BENCH POWER SUPPLY: fully smooth, dual output, positi or negative, $2-6 \mathrm{~V} ; 6-9 \mathrm{~V} ; 9-12 \mathrm{~V}$ and $12-16 \mathrm{~V}$ all at 2 amps d.c. from mains input. £ $25+£ 2$ carr.
DIGITAL VOLTMETER \& RATIOMETER Model BIE. 2116, £65, carr. £2. DIGITAL VOLTMETER Model BIE. 2114, £55, carr. £2. (Mnftrs. Blackburn Instruments).
MARKA SWEEP GENERATOR MODEL VIDEO (Kay Electric, USA) £65, carr. £2.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, ROTARY CONVERTERS: Type 80, 24 v D.C. input, 175 v D.C. @ 40 mA . 400 c/s 3 phase, $66 \cdot 50$ each,
output, $£ 1 \cdot 25$ each, post 20 .
CONDENSERS: $40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg. $\mathbf{~} 55 \mathrm{each}, 50 \mathrm{p}$ post. 30 mfd 600 v wkg . d.c., $£ 3.50$ each, post 50 p . 15 mfd 330 v a.c., wkg., 75 p each, post 25 p .10 mtd 1000 v. 63 p each, post 13 p .10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . 55

 ${ }_{\AA 1}$ mor 5 , post 10 p . Capacitor $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$. wkg. $£ 3.75 \mathrm{each}$, 50 p post. TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $£ 1 \cdot 25$, post 25 p.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $\mathbf{x 2} \mathbf{5 0}$ each. post 30p.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps , $\mathbf{£ 2 . 5 0}$ each, carr. 75 p. OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2}$ amps; or 40 ohms at 2.6 amps . Price (either type) £2 each, 25p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19in. panel, $\mathbf{£ 4} \cdot 50$ each, carr. 75 p . POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230V a.c. input. 4 Rectifying Valves type $5 Z 3$. on steel base $19^{\prime \prime} \mathrm{W} \times 11^{\prime} \mathrm{Hx} \times 4^{\circ} \mathrm{D}$. (All connections at the rear.) Excellent condition £6.50 each, carr. $£ 1$.
AUTO TRANSFORMER: 230-115V, $50-60 \mathrm{c} / \mathrm{s}$, 1000 watts. mounted in a strong
 $50-60 \mathrm{c} / \mathrm{s}, 5$
Carr. 50 p.
LT TRANSFORMER: PRI 230 V . Output 4×6.3 at 3 amps each winding, $3_{\frac{1}{2}}{ }^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$. Fully shrouded $£ 1 \cdot 50$ post 50 p.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $£ 7.50$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3 in. tube, Type 3EGl (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{£ 3} \cdot \mathbf{5 0}$ each, post 37 p. APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$. , complete with all valves 28 v . D.C. 3 relays, 11 valves, price $£ 3$ each, carr. 50 p. ANTENNA WIRE: 100 ft . long. $\mathbf{7 5 p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. E1.25, post 25 p.
VARIABLE POWER UNIT: Complete with Zenith variac $0-230 \mathrm{~V}$. , 9 amps.; $2 \frac{1}{2} \mathrm{in}$. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in . rack. E 15 each,
AIRCRAFT SOLENOID UNIT D.P.S.T.: 24V, 200 Amps, $\mathbf{£ 2}$ each, 25 p post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic
reflector (24 in. diameter), motors, suppressors, etc. $\mathbf{£} 35$ each, $£ 2$ carr. reflector (24 in . diameter), motors, suppressors, etc. $\downarrow 3 \mathrm{c}^{\mathrm{cach}}, \mathrm{L} 2$ carr
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each
 total value 900 ohms. $\frac{1}{3}$ Gang. Tolerance $\pm 1 \% ~ £ 3.50$ each, post 25 p.
MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}-1$ - $15 \mathrm{Kc} / \mathrm{s} .100 / 250 \mathrm{~V}$ a.c. $£ 45$ each, $£ 1.50$ carr. $15 \mathrm{Kc} / \mathrm{s}$. $100 / 250 \mathrm{~V}$. a.c. £45 each, £ 1.50 carr.
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains 230 V , $50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in conjunction with a freq. meter. $£ 12 \cdot 50$ each, $£ 1$ carr.
LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. $£ 4$ each, 50p post.

GEARED MOTOR: 24c. D.C., current 150mA, output 1 rpm, $\mathbf{f 1} \cdot 50$ each, 25p post. ASSEMBLY $\mathbf{~} \mathbf{~} \mathbf{2}$ each 25 p post. SYNCHROS: and other special purpose motors available. List 3p.
DALMOTORS: $24-28 \mathrm{~V}$ d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp) $12,000 \mathrm{rpm}$. £5 each, 50 p post.
GEARED MOTOR: 28 V d.c. 150 rpm (suitable for opening garage doors). £ 4 each, 50 p post.
SMALL GEARED MOTOR: 24V d.c., output 200 rpm . Meas'm'ts $1 \frac{1}{\mathrm{z}} \mathrm{in}$.

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3in. diameter case. Price £2 each, 25 p post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch. 75 ohms, type " N " female connectors fitted to receive UG-21/U series plugs. New in ctns., 86.50 each, M1460-22, 2 pole, 2 throw. (New) $\mathbf{6} 6.50$ each, post 25 p. 1 pole, 4 throw, Type M1460-4. (New) $\mathbf{~ E 6 - 5 0}$ each, post 25 p .
PRD Electronic Inc. Equipment: FIXED ATTENUATOR; Type 130c, $2 \cdot 0.10 \cdot 0 \mathrm{KMC} / \mathrm{SEC}$. (New) 25 each, post 25 p . FIXED ATTENTUATOR: Type $1157 \mathrm{~S}-1$ (New) $\mathrm{e6}$ each, post 25 p .

MOVING COIL INSERT: Ideal for small speakers or microphones. Box of 3 £1, post 23p.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. £2, post 23p.
MICROLINE IMPEDANCE METER MODEL 201: $5300-8100 \mathrm{Mc} / \mathrm{s}$. £75
MICROLINE DIRECTIONAL COUPLER MODEL 209: $5260-8100 \mathrm{Mc} / \mathrm{s}$. 24DB. £12.50 each, post 35p.

8 WAVEBANDS. The most exciting radio ever!
Picks up ALL THE USUAL BBC Programmes. \star All the new local radio stations. * Continental \star World-wide transmissions. \star Pop Pirates \star Radio Hams. \star Aircraft. \star Shipping. \star Police. \star Taxis. \star R.A.C. \star A.A. \star Fire Brigades. \star T.V. Sound. Ambulances and 1000s more. THE BEST PORTABLE RADIO EVER MADE! We think so What radio priced at under f 120 gives you such a varied choice of transmissions? As well as the standard long and medium wavebands it has three shortwave bands fincluding the Marine and Trawler Band) AND NO LESS THAN THREE V.H.F. BANDS truly a comple WDRID-WIDE COM WHE tions Receiver Hours and hours of eniovab listening JUST tions Recever. Hours and hours of enjoyable listening.JUST THINK! one minute you can be listening to your favourite B.B.C. programme and then-at the llick of a switch-you can tune into the control tower and hear a crippled airliner being talked down to safety. Or listen to the trawlers and Ocean-going liners! Eavesdrop on the taxi-cabs, fire brigades, ambulances, A.A..; R.A.C. and 100 s of other R.T. mobiles-even your local police!! Extensive shortwave coverage can give you Australia. Pakistan, Luxembourg. North America, Far East, etc., etc. you name itit gets it! Manufactured by one of the world's leading specialists in communications and T.V. equipment, each set carries a FULL 3-YEAR WRITTEN GUARANTEE. Beautifully finished in black leather and stainless steel-will add distinction to any living room. Completely portable. 12 in . x 9 in . x 4 in . using standard batteries-or can be plugged directly into mains. 17 transistors, 8 diodes, 1 thermister, internal ferrite rod aarial PLUS two external telescopic antennae-with sockets for additional aerials or car aerials Complete with Beat Frequency Dscillator for the real enthisiast। Automatic Frequency Control Dacksonto lor the real end isure Austic station and ensures Dift-Fres reception. Tone control. Fine squelch control. Hi-Fidelity earphone which automatically cuts out the main speaker when in use, local DX switch. FREQUENCIES: Long W 150-350 Kcs. Medium W 540-1650 Kcs. Marine 1.6-4 Mcs. Short W

1.3-7 Mcs. Shot Wave 2 9-22 Mcs. F.M. (V.H.F.) 8-108 Mcs Aircraft (V..F.F) $108-136$ Mcs Public Service (V.H.F.) 148 174 Mcs.
he ULTIMAT on communications Amaten-used by protessionals and ANSTANT CASH REFIUND if not over helmod by tha superb tone clariver performance range.

CASH PRICE
 £47.50

Plus 50p post \& packing or semifor

 f12.50 deposit and 6 monthly payments of $\mathbf{5 7}$. (Total Credit Price $\mathbf{f 5 4 . 4 0}+50 \mathrm{p}$ p\&pl. Refund g'te

 WW- 081 FOR FURTHER DETAILS

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. $£ 0 \cdot 40$ in U.K.

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER" or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations, effective range 300 ft . Unsurpassed in QUALITY AND PERFORMANCE. Complete with 66 ft . connecting lead. Battery $£ 0.12$ extra. P. \& P. £0.25. Price Refund if nőt satisfied in 7 days.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v battery which lasts for months. Ready to operate. P. \& P. £0. 18 in U.K. Add $£ 0 \cdot 12$ for Battery.
Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.) 169 KENSINGTON HIGH STREET, LONDON, W. 8

IN 15 MINUTES YOU COULD HAVE CAPACITIVE DISCHARGE ELECTRONIC IGNITION FITTED TO YOUR CAR.
Capacitive Di will give you -

- CONTINUAL PEAK PERFORMANCE
- UP TO 20\% REDUCED FUEL CONSUMPTION - easier all-weather starting - increased acceleration \& top speed - LONGER SPARK PLUG LIFE - INCREASED BATTERY LIFE - CONTACT BURN ELIMINATED - PURER EXHAUST GAS EMISSION
- RADIO INTERFERENCE SUPPRESSED

VITAVOX

FOR HICH QUALITY
MICROPHONES
LOUDSPEAKERS
and ancillary equipment
Further information from:
VITAVOX LTD., Westmoreland Rd., London, NW9 5YB
(Tel: 01-204 4234)

THIS MONTH'S NEW BARGAINS TO a Heat Bink. suitable for most power tranaistors OC26,
ete. This is alumintum, anodised black for maximum heat disajpation. Suppiied complete with mica diac and insula 21×34 ins. now available, price 55p ench or 10 for 25
iCore Flez. Yow Colourt. (Brown for live ellow/green for earth.) This is completely P.V.C. covered machines (without heatera) and all portable tor washing lawi nowers, etc. Conductor aize 23/36. \&1 per dozen yarda o E10 per 101 -yard coil. truction-made by most famous company. Price each ${ }_{370}$ Blanged
 $\begin{array}{ll}\text { B7G } & \text { Printed } \\ \text { B9A } & \text { Flanged } \\ \text { B6i }\end{array}$

 tandard A. Mains. A well-made enclosed motor mor with
 maker' type NO. FEX $25-$ CG30-this is a capacitor start
motor for 110 V A.C. working, double-ended shaft. $\mathbf{8 3 . 5 0}$ Cut and Prepared 3 Core Lezd. 2 yards long. P. V.C. covered nd ribbed virtually non-kinkable $23 / 36$ conductors. Old colour scheme. 8 p each, 10 for 70 p . New colour scheme
15 p each or 10 for 81.35.
Hoaring Ald Amplitiors. (Ex behind ear deaf aids.) 3 trannators on ting P.C. board with volume control-whole
 sub-miniature microphone and L.S. atiached $\mathbf{2 3} 50.50$.
Totally Enclosed Madas Transformers. With Primary
 ransformer, totally enclosed in metal case. size well-made in x in. $\times{ }^{64} \mathrm{in}$. high. Made to be mounted above chastis 8 Amp Variscs 0-26av-panel mountlig type-ex-unused equipment, fully guaranteed. 810 each. Corriage : England,
E1; Walea and Scotland, $\& 1.50$. Witer 8witohes. Standard Size (1) wafer) buit to Post Office spec., good contacts and generally very rellable.
9 pole, 3 way on 3 wafers. 45 ; 10 for 24 . Ditto 2 pole, 3 way 20 P- 10 for 21.80 .
 Black with white line down pointer. Orub screw fixing.
$5 p$ each- 10 for 45 p . ize panel mounting jack, with two leaf contact circuit Our price 30 por 10 for $82 \cdot 70$. pindle and is therefore suitable ony yor mounting through $2{ }^{2}$ metal panel. Price 18\% or 10 for 81 Rotary 8 . 08 . 20 ; double pole,
 malne voltage and up to 10 amps. 15 p or 10 for \&1 35 . p.a.). Mono tape recordings of popular long playing
records. Fach tape plays for approximately 15 minutes per track. These are on 5 in. spools but can easily be joined
together to make a long tape for background music. We are offering these at leass than one-third of the regular price. Clamieal Recordings offer. 32 recordings all popular piecees, Pomp and Circumstance Marches, ". Nutcracker suite" recordings (giving a playing time of approx. 16 hours). Price 220 .
Popalar Reoordinge Otior. 36 recordinge of popuiar music
by Frank Sinatra, Dean Martin, Clift Richards, Nat King Cole, etc. (giving a total time of approx. 18 houra). Price Eat. Model, Balfour Auto-ohanger. As maina model not returned export. Less cartridge $£ 6$ each pius 50 p post and insurance.

BREAK GLASS FIRE ALARM PUSH

 Made hy ApA and used all over the countryMade from heavy caat ateel. Drop front opened with Allen key for teat. Bwitch normally closed, opent when glass is broken Diameter spprox. 5 ins. $£ 1.25$ or with cas
steelmounting box 81.75 . Post and ins. 20 p

CAR ELECTRIC PLUG
Fits in place of cigarette lighter. Useful meth for making a quick connection into the car
electrical system. 38 pach or 10 for $£ 3.48$.

ROCKER SWITCF

13 amp self-fixing into an oblong hole. gize
approximately $1 \times t$ ins. 6 p each, 10 for 54 s .
MAINS RELAY BARGAIN

Special this month are some single, double raded at 15 ampps. Operaver relays. Compacts
240 V . A.C. Good British Make. Unuger for

PUSH BUTTON CHANGE OVER SWITCHES

This is a Honeywell micro switch looded plunger to operate. Panel fixing by single 1 in. bole. Single Changeover
awitch 25 each or ten for 29.25 , 2 switch 26 each or ten for $28.25 .{ }^{2}$
changeover switch operated by ingle changeover switch operated by single
plunger 35 p each or ten for 2315

MAINS TRANSISTOR POWER PACK
Designed to operate transistor sets and amplifers. Adjue working). Takent ${ }^{\text {gr., }} 12$ volts for up to 500 mA (clasas B PP1, PP3, PP4, PP6, PP7, PP9, and othera. Kit comprisee: onams transtormer rectifier, amoothing and load resistor,
sondensers and inatructions. Keal snip at only $88 p_{1}$
plus 18p postage.

HORSTMANN "TIME \& SET" SWITCH (A 30 Amp Switch.) Juat the thing if you want to come home to a
warm house without it costing you a fortune. You can delay the which on time of your electric tires, etc., up to 14 hours from setting time or you can use the switch to give a boost on period of up to
3 hours. Equally suitable to control procesaing. Regular price 3 hours. Equally suitable to control processing. Regular price
probably around 85 . Special snip price $\mathrm{E1} 50$ Post and ins. 23p.

ERGOTROL UNITS

OUT OF SEASON BARGAIN

TANGENTIAL HEATERS

Once again we are able to make a special bargain
offer of these very popular heating units.
Tangential heatera although bont Tangential heatera although brought out a few nothing has yet been made which could be unit is still the only one used in good quality
heaters made by Hoover, G.E.C. and all the famous name
unning AC induction motor with special bearings, the tangential impeller and a 2 section heater element which allows awitching half and full heat in the case of the $2 \mathrm{k} w$ and one-third-two-thirds and full heat in the case of the 3 kw . These heaters are alao fitted mpeded. They are free standing and need only the simpleat of cases, even a wooden cabinet is suitable (or the plinth of the zitchen cabinet). Lotit of customers missed our apecial summer offer of these heaters last year so order early. $200 / 2402 \mathrm{kw}$ model $\mathbf{2 8 \cdot 5 0}$
$200 / 2403 \mathrm{kw}$ model $23-50$. Control switch heaters only 25 por or two-heat, cold-blow and off 35 p . Postage and insurance 33 p on heaters.

AMPLIFIER MAINS TRANSFORMER
$50 \mathrm{~V} 1 \%$ amp. Upright mounting with fixing brackets and metal shrouds to contain magnetic field, 50 c/a primary, tapped $110 \mathrm{~V}, 117 \mathrm{~V}, 210 \mathrm{~V}$
230 V and 250 V .2 secondaries, one 50 V it amp, other 6 V 1 amp for t pilot light, etc. $\mathbf{E 1} \cdot \mathbf{8 5}$, postage 30 p.

THIS MONTH'S SNIP

LIGHT DIMMER

For any lamp up to 200 watt. Mounted on switch plate to ft in place of standard switch. Vi.
e1 88 plus 20 p post and ins.

CAPACITOR DISCHARGE CAR IGNITION

This aystem which has proved to be amazingly efficient and
ago. We can supply kit of parte for improved and even moare

3 STAGE PERMEABILITY TUNER

This Tuner is a precision instrument made for the famous Rediomoblle Car
Radio. It is a medium wave tuner but set of long wave coila available as an Radio. if is a medium wave tuner (but set of long wave coils available as an
extra if required) with irequency coverge $1620 \mathrm{Kc} / \mathrm{b}-525 \mathrm{Kc} / \mathrm{s}$ and intended to operate with an I.F. value of $470 \mathrm{Kc} / \mathrm{s}$. Eixtremely compact (aize only $2 t \times$ $2 \times+$ in thick) with reduction gear for fine tuning. 65p, with circuit of trout
end suitable for car radio or as a general purpose tuner for use with Amplitler

ELECTRIC CLOCK WITH 20 AMP. SWITCH

Made by Smith's these units are as fitted to many top quality cookers to control the oven. The clock is mains driven and small disls ensble switch on and oft times to be accurately get in minu on the up to is another time or blarm- this may be
set the end of the period a bell
will sound. Ottered at only a fraction of the regular price Exd.50, iess

DISTRIBUTION PANELS

sockets in metal box to take standard 13 amp fused plugs and on/off switch with neon warning light. Supplied complete with 7 feet of heavy
cable. Wired up ready to work, 28.25 less plug; $8:-50$ with fitted 13 amp plug: $£ 8.65$

4if
MAINS OPERATED SOLENOIDS
 Bod diel $400 / 11^{\prime}$ pul. Bzze $2 t \times 2 \times 14^{*}$
75 .

DOOR INTERCOM
 Know who is calling and speak to them without leaving bed, or chair. Outfit comprises microphone with call push com. Bimply pluga together. Originally sold at $£ 10$. Bpecial snip price $£ 2.50$ sold at $£ 10$. Appecial anip price $£ 2 \cdot 50$

 MAINS CONNECTOR A quick way to conneet equipment to the mains astely and finmlydisconnection by plugs prevente accicental switching on; has gockety which

MINIATURE WAFER pole, 2 was 4 WitchEs
 ach, $£ 1$ ' 80 dozen, your aseortment.

WATRRPROOF EEATIMG 26 yards length 70 W . Sell-reguiating temperature control. 50p post tree.

INVERTER UNITS

Transiitorised for working fuoreacent lighting from 12 V or 24V car batteries. For carayan lighting, mobile displays
tc. we have 7 tspes all made by the tamous Philips Com many all available at about halt list price. Typo Mo. 128123. This is for working 33 mlnlature 6 watt $2 \dagger^{*} \times 2^{*}$ with connection diagram. Price e4.25.
Type Mo. 1283888 for working one $2^{2}{ }^{20}$ wat wat tube fom 12 V hold the tube (using Terry clips). Price 23.50 be used Trpe No. 128461 same as 126328 except that tit works off 24 V bstery. Price 84.50 .
Type No. 128345 same as 126328 except that it is for 21° tube

 Ponnection d digram. Price $28-50$.
True Mo. 58801 Ior working one 2.

ype Io. YB. This is a very blg 24 V unt . We present, but it weighs about 601b and mensuree $24 \times \times$ It uses Muprax. Generally it looks big enough to light a bus.

COMPUTER TAPES

BALANCED ARMATURE UNITS

These Capsules are $1 \mathbf{P}$ in. .iameter and f in. thick. They Wile operate as a morophone or loud speaker so can be
used in intercom and similar circuits. 33p. Ten for $£ 3$.

MULTI-SPEED MOTOR
Replacement in many well-known food
850 and $1,100 \mathrm{r} . \mathrm{p} . \mathrm{mu}$. trom either or both of the nylon sockets (where the beaters of the food mixers normally go) and
$8,000,12,000$ \& $15,500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. (ideal polishing speeds) froun the main drive
shaft. This drive shati to t in. dtameter

and approximately 1 in. long. A further point about this motor is that being $230 / 240 \mathrm{v}$. AC-DC series
wound its speed may be further controlled with the une of our Thyrister controller. This Is a very powerful and
uneful motor aize approx $230 / 240 \mathrm{v}$. Price 88 p plue 23 p postage and ingurance. 12 or

MAINS OPERATED

CONTACTOR
$220 / 240 \mathrm{v}$. 50 eycle bolenoid with
laminated core bo very silent in laminated core so very silent in
operation Closes 4 circuits ench
rated at 10 amps. Extremely well rated at 10 omps. Extremely well
made by a German Electrical
Company, Overall size $24 \times 2 \times$

QUICK CUPPA

 Mini Imtnersion Heater, 350W, 200/240VBoily fuil cup tin about two minutes. Use any
anct mocket or lamp holder. Have at bedaide for tea, babl's food. etc. 81 25, post and
insurance 14 p . 12 v car model alno available. Bame price. Jug model aleo a vailable $£ 1-50$
plus P. \& 14 p .

A Now Service to Readera, a bulletin bringing hews of new hines, special snips and "too few to advertige" lines will be
posted to aubscribers during frst week of each month. The bulletin will be called "Advance Advert Newas" and
the Subscription to Bop per year. Bubscribers will also the subscription to 80 p per year. Bubscribers will also
receive our completed 1971 catalogue when this is published.

J. BULL (ELECTRICAL) LTD.
Dept. W.W.7. Park Street, Croydon, CRO 1 YD

Modern TELEPHONES type 706. Two-tone grey and two-tone green. 6350 ea. P. \& P. 25 p ta. Brand new C6 ea. P. NP. $25 p$ ea.
STANDARD GPO DIAL TELEPHONES (black) with internal
SURVEY METER RADIAC No. 3. Hand portable size $9 \frac{1}{2} 5 \times 54$ ins. 3 ranges (scale changes) 0.03; $0.3: 3 \mathrm{R} / \mathrm{H}$. Internal Ion Chamber. Nice condition
63 ea. P . 50 p .

PHOTOMULTIPLIERS. EMI 6097X at 68.50 ea 6097 B - ES ea. Type 931 A - $\mathbf{2} 25 \mathrm{ea}$. SPECIAL OFFER
5 in. Photomultiplier type. PDP84G by 20th
Century. $£ 3$ ea. P. \& P. 30p.
TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s} .5$ volt gquare wave o/p, for 6 to 12 v new. Boxed. 57p ea.
CRAMER TIMER 28 V DC Sween $1 / 100$ th sec \& sweep RELAYS
G.E.C. Sealed Relarg High Speed 24 V . $2 \mathrm{~mm} 2 \mathrm{~b}-23 \mathrm{p}$ ea
S.T.C. sealed 2 pole c/o. 2.500 ohmas. (okay 24 v) 13 p ea:

12y 35p ea.
Coil as new. complete with base 37p ea
coings new. complete with base 37p ea. single pole c/o 14 ohn coil 33p ea, Single pole c/a 45 oh Varley VP4 Plastic covers 4 pole c/o $5 \mathrm{~K}-30 \mathrm{p}$ ea.
33p ei
POTENTIOMETERS
COLYERN 3 watt. Brand new. $5: 10 ; 25$: $50 ; 100$ M50: 500 Ohms: $1: 25: 5: 10: 25$: 50 k all at 13 p ea M51; $500 \mathrm{~K} ; 25$ meg. 1 in. sealed. 17p ea.
BERCO SQ. Brand new. 5; $10 ; 50: 250: 500$ ohms 1; 25: 5 ; $10: 25 ; 50 \mathrm{~K}$ at 25p ea.
STANDARD 2 meg. log pots. (urrent type 15p ea STANDARD 2 meg. log pots. (urrent type 15p ea
INSTRUMENT 3 in . Colvern 5 ohn 35p ea; 50 k and 100K SOP EA, 500 ohms; $1 ; 2.5 ; 5 ; 25 \mathrm{~K}$ at 35 p ea.
ALMA precision resistor $100 \mathrm{~K}: 400 \mathrm{~K}: 497 \mathrm{~K}: 998 \mathrm{~K}$: 1 nieg- $0 \cdot 1 \% 27 \mathrm{p}$ ea.: $3 \cdot 25 \mathrm{k}$. $13 \mathrm{~K}-1 \cdot 1 \%$ 20p ea.
DALE heat sink resistors. non-inductive 50 watt. Brand new 8.2K at 13p ea.
SILVER ZINC Non-spill. Brand new. Single cell
 CAPACITORS
ERIE feed throurh ceramicons $2200 \mathrm{pf}-4 \mathrm{p}$ ea.
Sub-min. TRIMMER Bq .
(3pare. 8 . 5 pf . Brand new Sub-min. TRIMMER ${ }^{\text {a }}$ sulure. 8. 5pi. Brand new
Concentric TRIMMER 3/30 pf. Brand new 7p ea.
ELECTROLYTICS. Brand new. 250 mfd . 70V 23p ea

MULLARD ELECTROLYTICS. Brand new 2200 mfd 100 VCW . Siz
Reduction for quantity.
VISCONOL EHT Capacitors. Brand New.
VISCONOL EHT CAPACITORS

Size $1 \times 2 \mathrm{l}$ ins.			Size $1 \frac{1}{2} \times 5 \frac{1}{2}$ ins				
			0.01 mfd				
0.001 mfd	5kV	40p ea	0.002 mld	18 kV			
i. 001 mfi	10 kV	50d ea.	0.05 mff	15 kV			
			0.01 mfd	15 k	80		
			$0 \cdot 00051041$	20 k			
Size $24 \times 61 \mathrm{ins}$.			01 mf d	7 kV			
$0 \cdot 05 \mathrm{mfd}$ 8kV 50			$0 \cdot 1 \mathrm{mid}$	5 k			
Brand new 0.25 nfd 5 KV . Dubilier 50p ea. P. \& P.							
Rapid discharge 1 mfd 5.6 KV ¢ 1 ea. P. \& P. 15 p .							
DUBILIER, Brand new. 1 mfd 15 KVW 30 KVT .. E_{F} e Carr. fl.							
DECADE DIAL UP SWITCH. Finger-ti							
Engraved 0/9. Cold whated contacts. Size $2 \frac{1}{2}$ " high. 24^{*} dee, $\frac{1}{2}^{\prime \prime}$ wide. 75p ea. Bank of 4 with escutcheon							
plates,	to	hirh.	deon				

PHOTOCELL equivalent OCP 71 13p ea.
Photo-resist type Clare 703. (TO5 Case). Two for 50p Bhow-resist type ciare 703 . V3 5930 . Brand new $13 p$ e HONEYWELL, Sub-min. Microswitches type 11SM3-T. Brand hew. 17p ea.
PANEL molmting
lamp holders. Red or green. 9p ea
GRAND NEW PLUGS AND SOCKETS CAFANON
El per pair. 25 way 50 p ea. plug: $35 p$ ea. socket: 750

 to B.N.C. phug $\in 1$ ea. ; B.N.C. Right angle $f 1$ ea. Min. Standard B.N.C. round 35p ea. Many others too numerous to list. All prices quoted for one off.

TRANSFORMERS. All standard inputs
DOWN ISOLATING
STEP DOWN ISOLATING trans. Standard 240 v
AC to 120 V tapped $60-0-60$ 700 AC to 120 V tapped $60-0-60700 \mathrm{~W}$. Brand new. 65 ea.

 Multi 6.3 Volts to give 48 V 3.5 Ampk ete $\mathbf{6 3} 50$ incl. post.
Tranformer $0-215-250120 \mathrm{MA}: 6.3 \mathrm{~V} 4 \mathrm{~A} \mathrm{CT} \times 2 ; 2 \times 6.3 \mathrm{v}$ 0.5 A and separate $90 \mathrm{v} 100 \mathrm{MA} \in 1.25$ ea. P. \& P. 20 p . Matchinir contact cooled bridge rectifter 37p ea.
4.5 Y 40 amp (180 Va) $£ 1.75$ ea. incl. postage or 3 for $£ 4.50$ incl. postage. Designed to lo Series paralleled.
 Gard/I

Transformer $250-80 \mathrm{MA}: 13 \mathrm{~V}-1.2 \mathrm{~A}$ and 6.3 V 5 A . 6150 P. \& P. 25p.

MARCONI Wide Range Oscillator TF1370's and

TEST GEAR

E.M.I. OSCILLOSCOPES

 SOLARTRON CD1014 DB. DC-6 megs. 655. SOLARTRON 711 S .2 D.B. DC- $9 \mathrm{me} / \mathrm{s}$. In fine SOLARTRON $\begin{aligned} & \text { condition } \\ & 643 \mathrm{DC}-15 \mathrm{mc} / \mathrm{s} \text { Brand new } 68 .\end{aligned}$
 SOLARTRON Storage scone QD910 $£ 150$. $\begin{array}{ll}\text { COSSOR } & 1049 \mathrm{Mk} .3 . \mathrm{DB} . \operatorname{E25} \\ \text { HARTLEY } & 13 \mathrm{~A} \text { DB. } £ 25 .\end{array}$ All carefully checked and tested. Carriage $£ 1 \cdot 50$ extra. MARCONI
Noise gen. TF1301. $£ 40$. Carr. $£ 1 \cdot 50$.
Vacuum tube Voltmeter TF1041A, $£ 35 ; 1041 \mathrm{~B}, ~ £ 45$. Vacuum tube foltmeter TF1041A. ©35: 1041B, $£ 45$.
Deviation Meter TF934/2, 650 ea. Carr. $£ 1.50$. Deviation type 719 , 630 ea. Carr. 75 p .
TF 888 A M Portable Test Set 70 kc/s-70 m/cs. TF888 A M Portable Test Set $70 \mathrm{kc} / \mathrm{s}-70 \mathrm{~m} / \mathrm{cs}$.
Brand new crated, $£ 40$ ea. Car. $£ 1 \cdot 25$.
TF 1026 Frequency Meter $£ 12 \cdot 50$. Carr. 75 n . TF 1026 Frequency Meter $£ 12 \cdot 50$. Carr. 750. TF 195 Audio Generator $£ 10$. Catr. $£ 1.50$. TF $\mathbf{8 0 1 A}$ A Signal generator $£ 35$. Carr. $£ 1 \cdot 50$. Hetter grade $£ 55$ ea. Carr. ± 1. 50 . 150 .
TF801B Sig Gen $10.500 \mathrm{mc} / \mathrm{s}$ from $£ 150$.
 ${ }^{£ 1} 50.144 \mathrm{G}$ Simal Generator. Serviceable. Clean $\mathcal{C} 15$. In exceptional condition E25. Carr. £1 50 . Talve voltmeter type Cr208, $£ 17.50$ ea. Carr. 75 p . TF 885 Video Oscillator Sine/Square $£ 35$ Carr. £1-50. TF $885 / 1$ E55. Carr. £154.
TF $1343 / 2$
. SOLARTRON
Laboratory amplifler AWS51A. $15 \mathrm{c} / \mathrm{s}-350 \mathrm{kc} / 8 \mathbf{8 5}$ Stabilised P.U. SRS 151A £20. Carr. £1.50
Precision Millivoltmeter VPי252. E25. Carr. $£ 1$. Process Response Analyger. Fine Condition $£ 250$ Oscillator type OS 101 . $£ 30$. Carr. $£ 1-50$.
D.C. Amplifter type AA 900 . $£ 30$. Carr $£ 1$.
D.C. Ampliner ty AVO

Testmeter No. $1 \notin 12$ ea. Carr. 75n.
Electronic Testmeter CT 38. Complete $£ 20$ Carr. $£ 11$ CINTEL
Square and Pulse gen. PW 005 to 0.3 micro secs. 5 mV to 50 V ; rep rate 5 hz to 250 kz £20. Carr, $£ 1$ AIRMEC
Signai Generator type 701 . $£ 25$. Carr. $£ 1 \cdot 50$
AIRMEC Generator type $210 £ 120$. Carr. $£ 150$.
MARCONI TF 1277. Colour studio scope, will line melect. In superb condition. $\boldsymbol{E l 2 0}$
E.M.I. Oscilloscope type WM16. Main frame $\boldsymbol{\ell 1 2 5}$ Choice of Plug in $7 / 2 \mathrm{DC}-24 \mathrm{mc} / \mathrm{s} \times 2 \mathrm{E}$ 红: 7/1 DCE.M.I. WM8. 1 C to $15 \mathrm{mc} / \mathrm{s}$. Complete with plug E. M... Wre-amp. from E 40 .

BRADLEY ATTENUATORS 0!500 meg cycles $0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}-\mathbb{2 0}$ per pair.

\section*{| BECKMAN MODEL A. Ten turn pot complete |
| :--- |
| with dial. $100 \mathrm{k} 3 \%$ Tol 0.25%-only $\mathrm{ER} \cdot \mathbf{1 3}$ ea. |}

E.H.T. Base B9A in Polystyrene holder with cover DYM's BIE 2114650 ea.; BIE 2110 E50 ea. Carr. $£ 1-50$ BC22I-Brend new $£ 35$ ea. Carr. $£ 1$
NAGARD Double pulse gen type 5002 650. Carr. 1150

MARCONI SPECTRUM ANALYSERS type OA 1094 , from $£ 325$.

FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single side $\frac{1}{2} p$ per sq. in. Double sided Ip per sq. in BERCO miniature variac type 31C. $0-250 \mathrm{~V}$ (lamp pointer. As new \&3. P. \& P. 37p.
SEQUENTIAL TIMERS 240 V synchronous motor $\frac{1}{2} \mathrm{rpm} .12$ cam operated 2 pole micro switches. Individually adjustable fron 0° to 180°. . 6 ea
Standard 240 V MOTORS by CITENCO reduction gearbox to $19 \mathrm{r} . \mathrm{p} . \mathrm{m}$. reversible. $\mathbf{£ 5}$ ea
Single pole 3-way 250 V AC 15 amp switch. 8p ea Modern replacement for VCR 138 tube. Flat face 3 in M1.63. P. \& P. 25p. Bases 17 p
FERRITE rods complete with LW, MW and coupling coils. Brand new. 25p ea. P. \& P. 7p.
Squirrel cage BLOWER ASSEMBLY conmplete with rtandard maxins input motor. Size $7^{*} \times 22^{\frac{1}{*}}$ dia. only 80p ea. P. P. 25p ea
DUNFOSS-solenoid valves. $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. Type EVJ 2

CLAUDE LYONS Main Stabilizer. Type TS-1L-5S0 ${ }_{16}$ Input 119 amps. 635 . Carr. $£ 2$.
SERYOMEX. Stab. Transistor P.U. 0-15V 25 anps. SERVOMEX. Stab. Transistor P.U. $0-15 V$
Volt and Current meters, overload- trip. E15 ean. Carr. E.H.T. Unit by Brandenburg model S.0530/10. 655.
E.H.T. Unit by Brandenburg model S.0530/10. 255.

MAGNETR

KELVIN \& HUGHES 4-channel multi-speed recorder conplete with amplifiers. $£ 60$ ea
EVERSHED \& VIGNOLES Recording paper. Brand new boxed. L618H4 $7^{\prime \prime}$ wide, $11^{\prime \prime}$ dia. 17p roll: θ^{*} dia. $€$ roll. JL900H4 7^{*} wide, 11^{*} dia. 25p roli.
19in. Rack Mounting CABINETS 6ft. high 19in. deep. side and rear doons. Fully tapped, 2 2:50. Cartiage atcos. Double Bay complete with doors. Fine condition. $\mathbf{E 2 5}$ Carriage at cost.
ADVANCE Sig. gen type DI. $£ 15$ ea. Carr $£ 1 \cdot 50$ Calibration mit type CT155. 66 ea. Carr. 50p
Signal Generator CT53. Complete with charts $£ 15$ Carr. $£ 150$.
TIME CAL
TIME CALIBRATOR unit by Cawkell any or all time intervals from 0.5 microsecond to 1.000 microsecond. WAYNE Kerr Universal Bridge type CT375 $\mathbf{6 4 5}$ ea Carr. 11.50 .
MUIRHEAD Swept Audio Oscillator $\mathbf{£ 5 0}$ ea. Carr, $£ 1 \cdot 50$ EMI Swept Audio Oscillator type SRO 2 E40 ea. Carr. £1-50.
Travelling WAVE oscilloscopes-Sweep speed from 10 Travelling WAVE oscilloscopes-
micr secs to 10 nano secs. $£ 150$ ea.

```
4 DIGIT RESETTABLE COUNTERS. 1000 ohm.
coil. Size \(1 t \times i \times 4 t i n\). As new, by Sordeco of
Geneva. 6250 ea
```

As above but 350 ohm. 6350 ea.

METERS-Model 3705, ${ }^{\mathbf{2 5 - 0 - 2 5}}$ micro amp. Scaled. $-100-0-+100.5 \frac{1}{2} \times 4.23$ ea. SANGO 50 micro amp 4^{*} round. Brand new boxed EA38. P. \& P. 38p.
SANGO 50 micro anmp rectangular meter. Size $2!\times 3^{\circ}$ with 4 senarate scales, lever operated, $0 / 6$ white, $0 / 60$ blue, 0/600 red and set zero. \&1-75. P. \& P. 17p.
SANGO 50 micro amp $3^{\prime \prime}$ round meters. Ex brand

SEEING IS BELIEVING!

STILL AVAILABLE. BCO21 complete with correct charts, circuit diakrams. in flne condition tor ONLY €13.34. Carr. t1.
C.R.T's 5^{*} type CV1385/AC
C.R.T.'s $5^{\prime \prime}$ type CV'1385/ACR13. Brand new with
spec. sheet. 63p ea. $\&$ P 35 p MARCONI Valve Voltmeter 428B/1 65 ea. Carr. £1. RESISTORS by PIHER. Carbon Filin. 1 and watt. All 5% Brand new Perfect. Mis.
Only 50 p per i-lb. weight. P. \& P. 2 p ,
COSSOR D.B. Scopes some models from $£ 15$. MARCONI Absorption Wattmeter 1 micro watt to 6 watts. Type TF956. FANTASTIC at $£ 7$ ea
SOLARTRON Stab. PU AS516 \& AS517. Circuits supplied. Fantastic value at $t 2$ and 64 each.
SUPERB BUYS. Furzehill V'200A Valve millivolt meter 10 my to 1 kv . $\notin \mathrm{lo}$ ea.
Genuine MULLARD Transistors/Diodes. Tested at 3p ea. OC23-10p ea.
MAINS MOTORS Standard voltage. Size up on R/P tape recorders. Extremely quiet. Snip at 40p ea. P. \& P. ISN ea. 2 amp push on/otf switches; 4 pots 1 double $1-8 m a t t$ double pole vols. Fintroi: 250 resistors t and $\frac{1}{2}$ watt
many high stabs. Fine value at 50p per pack. P . 17 p .0
3000
series relays- -15 mixed
values (new and as \& P. 37 p .
STUART TURNER No. 12 Water pump ©PH720/ 19FT.HD or GPH150/45FT.HD. Complete with
 Carriage extra

TRANSISTOR EHT INVERTORS. 12 volt in, o/p
 supplied. Brand new at $£ 6.50$ ea. P. $\&$ P. 25p.
Also, as above but 1.5 KV AC $20 \mathrm{kc} / \mathrm{s}$. $63 \cdot 50$. P. \& P. 25p. Panel switches DPDT ex eq. 13p ea.: DPsT Brand new. 17p ea.; DPST twice. brand new 25p ea.
WAFER Switches. 4 pole. 2 way. 13p ea
Brand new heads for TR50 and TR51 Tape Recorders GYROS Large clear plastic tomped. Type A 65 ea GYROS ${ }^{\text {G. }}$ F
ALBRIGHT Heavy Duty Contactor. Single make.

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605/65916

SERVICE TRADING CO

issue an eatalogue or list.
VARIABLE VOLTAGE TRANSFORMERS
 INPUT 230 v. A.C. $50 / 60$
OUTPUT VARIABLE O/260 v. A.C. BRAND NEW. Keenest prices in the country. All types (and spares) from $\frac{1}{2}$ to 50 amp . avail
$0-260 \mathrm{r}$. ac 1 amp. $0-260$ v. at 2.5 amps $0-260 \mathrm{v}$. at 5 amps. $0-260 \mathrm{v}$ at 10 amps.
$0-260 \mathrm{v}$ as 15 amps. $0-260 \mathrm{v}$. as 2 Lmps .
$0-260 \mathrm{v}$ at 20 amps. -260 v at 25 amps . $0-260 \mathrm{v}$. at 37.5 amps.
$0-260 \mathrm{v}$. at 50 mpps . carriage extra

PPEN TYPE (Panel mounting). $\frac{1}{2}$ amp. 63.93

Functional Versatile Educationa

 H.T. or L.T. Transformer, by simply hand wind
 ing the required number of turns through the centre opening.
E.g. Using the RT. 100 V . A. Model the output could be wound

RTHK 15 Urmaer

L.T. TRANSFORMERS

All primaries $220-240$ volts.
Type No. \quad Sec. Taps

4.6.24, 32 v at $\frac{12 \text { amps. }}{\text { ALARM }}$ BELL

Size 3^{n} diameter $\times 3$
Price $£ 2.00$ post paid.

2Exat
(NEW) embeded in vicreous lor continuous dury. AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES 100 WATT I ohm 10a., 5 ohm 4.7a., 10 ohm 3a., 25 ohm $2 \mathrm{a} ., 50$ ohm 1.4 a ., 100 ohm la., 250 ohm -7a., 50 C ohm 45 a ., I k ohm 280 mA .. 1.5 k ohm
 3 in. Shaft length in dia. Kin., E1.50. P. \& P. 15p
50 WATT : $12 / 10 / 25 / 50 / 100 / 250 / 500 / \mathrm{K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ $5 K$ ohm. All at $£ 1 \cdot 12$, P. \& P. I 1 P .
$25 \mathrm{~W} / \mathrm{WATT} 10 / 25 / 50 / 100 / 250 / 500 / \mathrm{K} / 1-5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ ohm All at 78p P \& P .
Black Silver Skirted knob calibrated in Nos. 1-9. I
UNISELECTOR SWITCHES - NEW
4 BANK 25 WAY FULL WIPER
25 ohm coil, 24 v. D.C. operation 8588 . plus 22p P. \& P
6 BANK 25 WAY FULL WIPER
25 ohm coil, 24 V. D.C.
8 BANK 25 WAY FULL WIPER
8 BANK 25 WAY FULL WIPER
24 v. D.C. operation. $£ 7 \cdot 63$, plu
24 v. D.C. operation. 67.63, plus 22p P. \& P.
12-28 VOLT D.C. BLOWER UNIT
made Blower Unit. 5,000 RPM, 54 amps.

VERY SPECIAL OFFER

Cannot be repeated. 500 v .50 Meg Record insulation

LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light source n with adjustable lens assembly and
 ventilated lamp housing to take
MBC bulb. Separate photo cell mounting assembly fo ORP. 12 or similar cell with optic wind \mathbf{W}. Both units are single hole fixing. Price per pair Kit of parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and
Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 volt operations. Price $£ 1-25$, plus 12 p P. \& P.
ORP. 12 and Circuit 63 p post paid. 220/240 A.C. MAINS MODEL

 incorporates mains transiormer rectifier and special circuit £2•38, plus 20 p P, \&

200-2NV.ACATOR
INDICA Available in RED or AMBER at 20p
each, or in GREEN at 32 p . Min.
order 3 units. P. $\&$ P. 5 p .

MOTOROLA MACTI/6 PLASTIC

 TRIAC 400 PIV 8 AMPNow available EX STOCK supplied complete with full data and applications sheet,
Suitable diac 30 p (RCA40583)
ELECTRONIC ORGAN KIT

stase. Two full octaves (less sharps and flats). Fitted hardwood case, lite $1 \frac{1}{2} \mathrm{v}$. batteries.
Complete set of parts including speaker, etc., cogethe

50 in T Electrónic project kit

50 easy to build Projects. No soldering, no special tools,

 required. The Kit includes Speaker, meter, Relay Transformer, plus a host of other components 50 possible Projects are: Sound level Meter 2 Transistor Radio Amplifier etc., etc. Price $£ 7.75$. P. \& P. 30p. CRYSTAL RADIO KITComplete set of parts including: crystal diode, ferrite aerial, drilled chassis and personal ear-piece. No soldering, easy to build, full step-by-step instructions

TIME SWITCH
200/250 velt. ExGGPO. Tested, perfect

Portage and Carriage abown below are inland only.
Overseas please asi. overseas

INSULATED TERMINAL\& Available in black, red, white yellow, blue and g.
lop each. Post paid.

RELAYS
NEW SIEMENS PLESSEY, miniture relays at competitive prices.

RECHARGEABLE NICKEL CAD. BUTTON CELLS. connected to give 2.4 V , at
are
are complere with $200 / 2$ unused. Price 48 p each
units for $\mathrm{fl} 1-00$ post paid. \qquad

- NICKEL CADMIUM BATTERY
1.2 v. 35 AH. Size $80 \mathrm{high} \times 3 \times 10$. $\mathbf{£ 1 . 5 0 \text { each, plus } 2 0 \text { p }}$ P. \& P.
Sintered
Cadmium Type
1.2 V . 7AH. Size: height $3 \frac{1}{2}$ in.
Th. width Tested 63p
230 VOLT AC SOLENOID EXTREMELY POWERFUL SOLENOID with approximately 141 b . pull, I Inch eravel. Fitted with
mounting feet. Size 4 inches long. 28 inches wide and 3 inches high
Price $£ 2.00$ including post \& pkg
 230-250 VOLT A.C. SOLENOID (Similar in appearance to above illustration.) Approx. It 16.

36 volt 30 amp. A.C. or D.C Variable L.T. Supply Unit

$230 V / 240 V$ COMPACT SYNCHRONOUS GEARED MOTORS
Manufactured by either Sangamo, Ha
or Smith. Built-in gearbox.
I rev, per hour. Clockwise rotation.
rev, per hour. Clockwise rotation.
1 rev. per hour. Anti-clockwise rotation
2 revs, per hour. Clockwise rotation
2 revs. per hour. Clockwise rotation.
3 revs. per hour. Antl-clockwise rotation
S revs. per hour. Anti-clockwise rotation
15 revs. Der hour. Anti-clockwise rotation
12 VOLT DC MOTOR
Powerful 12 volr I amp REVERSIBLE
motor. Speed $3,750 \mathrm{rpm}$. Complete
with external gear train (removable)
giving final speed of 125 RPM. Size
PARVALUX TYPES DI9 $230 / 250$ VOLT AC REVERSIBLE GEARED MOTORS 30 r.p.m. 40 lb . ins. Position
drive spindle adjustable different angles. Mounted of substantial cast aluminium base. Ex-equipment. Tested and in first-class running order. A

fraction of maker's price. $£ 6 \cdot 30$, P. \& P. 50p
BODINE TYPE N.C. 1 GEARED MOTOR
(Type I) 71 r.p.m. torque 10 lb . in
Reversible $/ 70 \mathrm{th}$ h.p. 50 cyele 3 Rmp. (Type 2) 28 r.p.m. torque 20

$$
\begin{aligned}
& \text { amp. (Type 2) } 28 \text { r.p.m. torque } 20 \\
& \text { lb, in. Reversible } 1 / 80 \mathrm{th} \text { h.p. } 50 \text { eycle. } 28 \text { amp. } \\
& \text { The above two precision made U.S.A. mo }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ib. in. Reversible } 1 / 80 \text { th h.p. } 50 \text { cycle. } 28 \text { amp. } \\
& \text { The above two precision made U.S.A. motors are } \\
& \text { offered in "as new' condition. Input voltage of motor }
\end{aligned}
$$ offered in 'as new' condition. Input voltage of motor $230 / \mathbf{2 4 0 v}$ A.C. input complete with transiormer for Price, either type $£ 3.15$ plus

former $£ 2.13$ plus 27 p p P
former $\mathbf{E 2 . 1 3}$ plus 27p P. \& P

Special offer of AMPEX professional tape heads mu-metal shrouded. (Designed for model AG20). Ful
track record, or playback, $£ 3.00$. Erase head $\mathbf{E 2} \mathbf{0 0}$. Set of 3 with mounting bracket and cover $£ 7 \cdot 50$. Half track

OXLEY P.T.F.E. BARB TERMINALS. Stand off t^{2} " or $\frac{1}{2}$. $\mathbf{C 2} .75$ box of 100 .
HARWIN. Tapped (6 Ba) high voltage "stand off" insulators, length $\frac{1}{n}^{n}$ tapped (8 Ba) $i^{\prime \prime}$ long. $\mathbf{E 2} \mathbf{0}$ "BENSON BROS." $12 v$. D.C. HEAVY DUTY SOLENOID. Size: $3^{\prime \prime}$ overalt $\times 1 t^{\prime \prime} \times$ "DECCO" MAINS SOLENOID. Compact and very powerful. 16 lb . pull.
8° travel which can be increased to ${ }^{\prime \prime}$ by removing captive-end-plate. Overall size
$2^{n} \times 22^{n} \times 2 \frac{3_{1}^{n}}{}$ high. EI.50. P. \& P. 25p.
 WEBBER MAINS SOLENOID. Robust and strong. On this item the plunger travel is $13^{\prime \prime}$. Performance:
6 lb . pull at $\mathrm{I}_{\frac{1}{2} " ; ~}^{8} \mathrm{lb}$. at $\mathrm{l}^{\prime \prime} ; 10 \mathrm{lb}$. at $\frac{1}{2}^{\prime \prime}$. The non-captive

SPECIAL OFFER
MAINS SOLENOID BY MAGNE
MAINS SOLENOID BY MAGNETIC DEVICES LTD. A beautifully constructed solenoid at half normal
 thot. Plunger non-captive. New in original makers
boxes. $75 p$ each, plus $25 p$. \& P. Large number available boxes. 75 p each, plus $25 p$ P.
special price for quantity.

RELAYS

Perspex enclosed, plug in, with base. Size $11^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times \frac{3^{n}}{1 "}$ MQ $308600 \Omega 24 \mathrm{v}$. $4 \mathrm{c} / \mathrm{o}$. 60p ea., $65 \cdot 00$ per doz.
MQ $50810000 \Omega 100 \mathrm{v}$. $4 \mathrm{c} / \mathrm{o}$. 50 p ez. 64.50 per S.T.C. Midget Field Relay type 4109 EC I2v. 40 mA 170Ω. single H.D. make. 53 p each.
"B. \& R." $3 \mathrm{c} / \mathrm{o} .10 \mathrm{mmp}$. contacts (silver) operates on 2 voles D.C. Draws approx. 1 amp. Size: $2^{*} \times 1 \frac{1^{\prime \prime}}{} \times 11^{*}$.
"OMRON" OCTAL BASE. A.C. mains. $2 \times 5 \mathrm{amp}$. O contacts. Perspex enclosed. 88p
A.E. Perspex enclosed, plug in, 50Ω 6v. $2 \mathrm{c} / \mathrm{o} .63 \mathrm{p}$ a. 470Ω 12v. 4 c/0. 73 p e2. 2,780 $\Omega 48 \mathrm{v} .4 \mathrm{c} / 0.73 \mathrm{p}$

MAGNET DEVICES. 12 v . $3 \times$ H.D. c/o Contaces

NEW "'FII.R.E." PLUG-IN 3 RelAY.-ll5v. Coil $50 / 60$ c.p.s. contacts. Very robust. 63 p.

NEW ""ISKRA" 240v. A.C RELAY: $-3 \times 6 \mathrm{amp}$ Changeover contacts. 63p.

SIEMENS HIGH SPEED RELAY, Type 89L. $1,700 \Omega+1,700 \Omega$

MINIATURE "LATCHMASTER RELAY 6, 12, or one break, contacts rated 5 amps. 30 v . Once current is applied, relay remains latched until input polarity is reversed. Manufac-
tured for high acceleration reuirements by Sperry Gyrasco dia "" (including mount) Ple Co. Size: Length i. dia. $\frac{1}{10}$ (including mount). Please state
horizontal mount and voltage. I 1.63 each.

ELECTROLYTIC CAPACITORS MULLARD. 900μ F 100v. heavy ripple screw terminals $1 \frac{7}{16}$ dia. $\times 3 \frac{12}{2}$ 70 p eac., 66.00 per doz. $1,600 \mu \mathrm{~F} 64 \mathrm{v}$. If" dia. \times
 38p ea., 63.50 per do
50 p ea., E 4.50 per doz.
HUNTS $1,000 \mu$ F 50v. $17^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 25 p$ ea., $10,000 \mu \mathrm{~F}$ 6 v . $1 \frac{3^{\prime \prime}}{8}$ dia. $\times 2^{\prime \prime}, 30 \mathrm{p}$ ez. 63.00 per doz. $16 \mu \mathrm{~F} 350 \mathrm{v}$, $\frac{7^{\prime \prime}}{} \times 1 \frac{1}{n}^{\prime \prime}$ wire ends, 62.00 per doz. $1,000 \mu \mathrm{~F} 50 \mathrm{v}$. $\mathrm{I}^{\prime \prime}$ dia. $\times{ }^{3}, 30 \mathrm{p}$ ea., 53.00 per doz. $32-32 \mu \mathrm{~F} 275 \mathrm{v}$. $1^{\prime \prime}$ dia
$\times 2^{\prime \prime} 38 \mathrm{p}$ ea. $100 \mu \mathrm{~F} 100 \mathrm{v}$. $1^{\prime \prime}$ dia. $\times 2^{\prime \prime} 25 \mathrm{p}$ ea. ERIE Ceramicon Capacitor Type CHV4IP ERIE, Ceramicon capacitor. Type CHV41IP. 500 P.F. HIGH CAPACITY ELECTROLYTICS. Cylinder type with screw terminals on top. Average size $3^{\prime \prime}$ dia. X 4t" high. "Mallory"' 20,000 1 F 30v. D.C. 45v. D.C. surge. "Mallory $25,000 \mu$ F 25v. D.C., 40 v . D.C. surge. Mallory $\begin{array}{lllll}35,000 \mu \mathrm{~F} & 15 \mathrm{v} . & \text { D.C., 20v. D.C. surge. "Mallory } \\ 40,000 \mu \mathrm{~F} & 10 \mathrm{v} . & \text { D.C., } & 12 \mathrm{v} \text {. D.C. surge. "Sprague }\end{array}$ $40,000 \mu \mathrm{~F}$ 10v. D.C.i 12v. D.C. surge. "Sprague 46,500 $\mu \mathrm{F}$ 25v. D.C., 30 v . D.C. surge. "General Electric 55,000 F 15v. D.C., 20v. D.C. surge. 50 p each. Minimum order $\mathbb{E} 100$ on these items. P. \& P. 10p each

MOTORS
AMPEX 7.5v. D.C. MOTOR. This is an ultra-precision tape motor designed for use in the AMPEX model AG20 portable recorder. Torque 450GM/CM. Stall load at 500 ma . Draws 60 ma on run: $600 \mathrm{rpm} \pm 5 \%$
speed adjustment, internal $\mathrm{AF} / \mathrm{RF}$ speed adjustment, internal AF/RF motor 3^{*} dia. $\times 1$ in. Original cost £ 16.50 . Our price $\mathbf{4 4}$ 25. P. \& \& P. 25p. Large quantity available (special quotations). Mu-metal enclosure avail-

SPECIAL SUMMER OFFER

LIMITED PERIOD ONLY FROM NOW UNTIL 31st AUG. 1971 A DISCOUNT OF 20% WILL BE DEDUCTED ON ALL ORDERS OF E7-50 AND OVER

We welcome orders from established companies,

DEAC. RECHARGEABLE PERMA-SEAL Nickel-Cadmium mA ($10-\mathrm{hr}$. rate). Size 90 v at 900 13.5 mm . Weight 40 gr . Unused 63 p ea. P. \& P. 12p. Stack now running low.

"TEDDINGTON" CONTROLS

 THERMOSTAT. Adiustable between 75° and $100^{\circ} \mathrm{C}$. A further internal adjuster takes the maximum up to $120^{\circ} \mathrm{C}$. Circuit cuts in again at 3° below cut-aut setting. $42^{\prime \prime}$ capillary and sensor probe. The thermostat A second single pole on/off switch is incorporated in the adjustment mechanism. 88p.
"GOYEN" PRESSURE SWITCH. -Incorporating differential adjustment of approx. $\frac{1}{\frac{1}{2}}$ p.s.i.). A single pole change-over swisch rated single pole 15 amps. 250 v . is actuated. Air inlet tube then dia. Projection $\mathrm{H}^{\prime \prime}$. Overall size: dia. $35^{\prime \prime}$. depth $2^{\prime \prime}$ plus $H^{\prime \prime}$ (air tube).

YINKOR POT CORE ASS. TYPE LA. 2103 (core LA.2100). Normal price $\mathrm{fl} \cdot 48$. Our price 75 p each. Special quote for quantity.
Special quote for quantity.
UNISELECTORS. 8 Bank 25 -way 24 v . Double swee. Brand new in maker's boxes. $\mathbf{6 5 \cdot 2 5}$. P. \& P. 25p HEAVY DUTY PORTABLE BATTERIES. ex WD. 12v. 75 AH . Built in stout metal cases with
 L.T. TRANSFORMER. Prim. 0-llo-240v. Sec. $4.5 \mathrm{v},-0-4.5 \mathrm{v}$, at 2 A . Size $17^{\prime \prime} \times 1 t^{\prime \prime} \times 1$ 甼" 60 p . P. \&.P. 15p.

GEARED MOTORS
Parvalux" Reversible 100 S.D.14, $230 / 250 \mathrm{v}$. A.C. 22 Thpe $Z^{\prime \prime}$ spindle. Ist class condision. E7.50 each. P. \& P. 50p. Also
 limited number only as above.
Brand New. E12.50 each P. \& P. 50p
ELECTRO CONTROL (CHICAGO) shaded pol $240 \mathrm{v} .50 \mathrm{~Hz} .200 \mathrm{rpm} 10 \mathrm{lb} . / \mathrm{in} . \mathrm{E2} 50$. P. \& P. 25 p MYCALEX. Open frame, shaded pole motors. 240 V $50 \mathrm{~Hz}, 7 \mathrm{rpm} .28 \mathrm{lb} . / \mathrm{in} .80 \mathrm{rpm} .12 \mathrm{lb} . / \mathrm{in} . ~ £ 2.25 \mathrm{each}$
$\mathrm{P} . \& \mathrm{P} .25 \mathrm{p}$.
"CROUZET", TYPE 965. 115/ 240 v .50 Hz . $47 / 68$ watts. 50 rpm .
Stourly constructed. Size: $2 \mathrm{H}^{+}$dia. $\times 34^{*}$ long, plus spindle $1^{\prime \prime} \times 4^{\prime \prime}$ dia. Anti-clock. E2.75. P. \& P. 25 p.

MYCALEX MAINS. Shaded pole, 1425 rpm . spindle. 2 for E|-25. Carriage Paid MAINS INDUCTION MOTOR. Open frame It spindle, weight ${ }^{2}$ ib. Powerful. 88p each. P. \& P. 12p E.M.I. PROFESSIONAL TAPE MOTOR. $110 / 240 \mathrm{v}$

 "FIBRE GLASS" COPPER CLAD. Top grade. One
 "SRBP" COPP.

SYLVANIAMAGNETICSWITCH amagnetically activated switch operating in a to $+200^{\circ} \mathrm{C}$. Silyer contacts normally closed rated 3 amps. at 120 v . 1.5 amp. at 240 v . Price 4 for $\mathrm{E1}$; 82.50 per doz. P. \& P. 10 p . Special quotations for 100 or over. Reference magnets available 8 p each.
'HONEYWELL" TYPE BACTHEAB 23AC.NE.-15 amp. change-over micro switch is fitted on angled metal mount with spring-loaded
rod operating cam. 50p each.

PLUNGER SWITCHES. Spring return. 3 P.D.T. I amp. Single action. Size: $?^{\prime \prime} \times$

SLIDER SWITCHES. 3 amp. typ
 doz. Either type or mixed as required Carr. Paid. type or mixed as required

'MALLORY"'LONG LIFE $1-35 \mathrm{v} .3,600 \mathrm{ma} / \mathrm{H}$. CAP. $250 / 300 \mathrm{ma}$ cont. current. Size: $2^{\prime \prime} \times$ in $^{\prime \prime} .5$ for EI.00 or $\in 2.00$ per doz. Carr. Paid. Type B. Comprises $8 \times$ RM 625 cells. Nom. volss. 1.35 each 10.5 v . Overall. $350 \mathrm{ma} / \mathrm{H}$

A.C./D.C. M/IRON AMMETERS 0-5 amps or 0-8 amps (suitable battery chargers etc.). Perspex front. Size:

CURRENT FLOW INDICATOR Ideal for all types of battery operated equipment (partable machines, tape recorders etc.). Four white segments appear when current flows. Coil is function. Neat in appearance. Size

BIO-CHEMISTRY AND CHEMISTRY LABORATORIES PLEASE NOTE WE HAVE PURCHASED A NUMBER OF THE GRIFFIN AND GEORGE BIOANALYST CHEMISTRY MODULE G. \& G. CAT. NO. \$54-320. COMPLETE AUTOMATED SYSTEM. BRAND NEW IN ORIGINAL MAKER'S PACKING. CURRENTLY LISTED AT E925. WE OFFER THESE AT 4425 NETT. CARRIAGE EXTRA.

ELECTRONIC COMPONENTS

Wholesale/Retail :

TRANSISTOR EQUIVALENT BOOK. LATEST EDITION.
Mikes, Low impedance, dynamic stick type with on/off switch
Crystal, hand
Crystal, Inserts with bracket
Lockable car aerials
Dee-Gee 25 watt pencil bit soldering irons
Speakers, $2 \frac{1}{2}$ in, 8 ohms
Speakers, $2 \frac{1}{2}$ in, 8 ohms
Insulating Tape, $\frac{1}{2}$ in wide, 10 yard rolis
Insulating Tape, $\frac{1}{2}$ in wide, 10 yar
Miniature Output Transformers
$\cdots \quad \cdots \quad 98 \mathrm{p}$

Rotary Switches, 4 pole 3 way or 2 pole 6 way 15 p
Switch clearer, aerosol cans
Transistorised Modules,
BM I Phono pre-amp BM 2 Tape pre-amp BM 3 Mike pre-amp BM21 F.M. Transmitter BM22 F.M. Wireless Guitar BM3I Electric Organ BM41 Code Oscillator
BM42 Wireless Oscillator

Electrolytic Capacitors
E1-25 $\quad 2,000 \mu f 25$ volt Rev.
$\begin{array}{ll}\text { E1-25 } & 1,000 \mu f 70 \text { volt } \\ \text { E1.25 } & 10,000 \mu f 35 \text { volt }\end{array}$
$10,000 \mu f 35$ volt
$10,000 \mu f 25$ volt
2,000 $\mu \mathrm{f} 18$ volt
$400 \mu \mathrm{f} 275$ volt
$10 \mu \mathrm{f} 6$ volt
$10 \mu \mathrm{f} 6$ volt
$10 \mu \mathrm{f} 25$ volt
$16 \mu \mathrm{f} 250$ volt
$16 \mu \mathrm{f} 250$ volt
$32 \mu \mathrm{f} 275$ volt

ASY22	10p	OC45	10p	2N709	50p	2N3703	$13 p$
ASY29	25p	OC46	15p	2N1302	15p	2N3704	18p
ASZ17		OC141	22p	2NI309	23p	2N3707	$15 p$
(OC35)	25p	OC139	22p	2N1613	25p	2N3877A	40p
BC167	15p	OC74	20p	2N1711	25p	7401	$40 p$
BCY70	18p	OC204	25p	2N2646	58p	7410	$40 p$
BFX 12	20p	2G345	10p	2N2926	15p	7430	$40 p$
OC41	20p	2G371	10p	2N3053	25p	7472	55p
0 C 42	23p	2G378	10p	2N3055	75p	7473	$90 p$
OC43	20p			2N3702	18p	7475	61.15
$0 \mathrm{C4} 4$	15p						

4,000,000 DIODES
 SILICON, GERMANIUM OR ZENER (State choice)
 LOTS OF 100,000-£150
 10,000-£20
 1,000-£3
 500-£2
 100-50p

$1,000,000$ GERMANIUM TRANSISTORS

LOTS OF 100,000-£250
10,000-£30
1,000-£3.50
500-£2
100-50p

VEROBOARD

$2 \frac{1}{2}$ in $\times \operatorname{lin} \times 0.15$ in $\quad \mathbf{6 p} \quad 5$ in $\times 3 \frac{3}{4}$ in $\times 0.15$ in 28p $\quad 3 \frac{3}{2}$ in $\times 3 \frac{3}{3}$ in $\times 0.1$ in 24p

 Spot Face Cutter
18 p . Special Offer Pack consisting of $52 \frac{1}{2}$ in \times lin boards and a Spot Face Cutter-50p.

RECORD PLAYER CARTRIDGES. Well below normal prices! G90 Magnetic Stereo Cartridzes, Diamond Needle, 6 mV output, E4. ACOS GP 67/2 (Mono, Crystal) 75p. ACOS GP $91 / 3$ (Compatible, Crystal) E1. ACOS GP 67/2 (Mono, Crystastal, Sapphire) E1-25. ACOS GP 93/ID (Stereo, Crystal, Diamond) 61.63. ACOS GP 94/I (Stereo, Ceramic, Sapphire) \&1.50, ACOS GP 94/ID (Stereo, Ceramic, Diamond) $£ 188$. ACOS GP $95 / 1$ (Stereo, Grystal with two L.P./Stereo needles) $\mathrm{fl} \cdot \mathbf{2 5}$.

TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reverse polarity protection. 8 watt type with reflector, suitable for rents, etc., 63. Postage/Packing 25p. 15 watt type, batten firting for caravans 64 . Postage/Packing 25p. 13 watt type, batten with switch. 22 in $\times 2$ in \times lin . Postage/pack
THESE CAN BE SENT ON APPROVAL AGAINST FULL PAYMENT.

MULLARD POLYESTER CONDENSERS
1,000 pf, $1,200 \mathrm{pf}, 1,500 \mathrm{pf}$, 1,800 pf, 2,200 pf, 15 p per dozen (all 400 V working)
 of 100 of any one type.

RESISTORS

$\frac{1}{2}$ and $\frac{1}{2}$ watt Most values in stock. 50 p per 100 . 10 p per dozen of any one value WIRE WOUND MAINS DROPPERS. Hundreds of values from 0.7 ohm upwar for I watt to 50 watts. A large percentage of these are only be offered "assorted" at 50 p per dozen.

SILYER MICA/CERAMIC/POLYSTYRENE CONDENSERS
SILYER MICA
RECORDING TAPE BARGAIN! The very best British Made low-noise high-quality Tape! 5 in Standard 38p. Long-play 45p. 5sin Standard 45p. Lonk play 60p. 7in Standard 60p. Long-play 82p. We are gercing a still have a good stock at these low prices?

STOCKTAKING CLEARANCE! IMPOSSIBLE TO REPEAT!
 individually. In order to "clear the decks" we have made up parcels containing a mixture of carbon and wire-wound resistors, electrolytic and paper condensers, controls, transistors, diodes ete., for a tiny fraction of normal price. It is emphasised that these are mixed parcels onlycontents cannot be stipulated! Sold only by weight.

Gross weight 2 lb . $\quad . \quad . \quad$. 2 (postage 20p)

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner. Light sensitive aerosol spray .. Developer spray

SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE

AN EXTRA ONE FREE I I! !
RESISTORS, $\frac{1}{2} / \frac{1}{2}$ watt
assorted

5 to 7 w
10 watts
PAPER CÓNDENSERS
Tv types
100 50p50p
50p
50 p
50 p

TRANSISTORS

N.P. Untested but mainly

N.P.K. Untested but mainly

OCP. 7 il equivalent
Light-sensitive Diodes
These produce up to Ima from $10 \quad 50 \mathrm{p}$
These produce up to 1 ma from light)
OC44 Mullard ist grade
OC45 Mullard Boxed
2G378 Output, Marked
G37I Driver, Marked
ASY 22, Marked
BY 127 Rectifiers
(1200V peak)
STC $3 / 4$ Rectifiers
$\begin{array}{lrl}4 & 50 p \\ \text { DIODES (0A 81 \& OA 91) } & 6 & 50 p \\ & 40 & 50 p\end{array}$
WIRE
Solid Core. Insulated 100 yds . 50 p Stranded ditto
SOLAR CELLS
SOLAR CELLS
Large Selenium
Small
(6 cells will power a Micromatic
radio)
CO-AXIAL CABLE
Semi Air-spaced 15yds. 50p
CRYSTAL TAPE RECORDER
MIKES
CRYSTAL EARPIECES

CRYSTAL EARPIECES	
3.5 mm Plug	I 50

TRANSISTORISED Signal
IRANSISO Kit
Injector KOR Signal
Tracer Kit
TRANSISTORISED CAR REV.
meter as indicator)

OSCILLOSCOPE PROBE TM8II9 High impedance lool resistive attenuated probe foraccurace display or whort rise cime pulse signals offerms or short rise cime pulse signals, offered
brand new with all accessories and brand new with all accessories and
instruction manual. Lise price $£ 17$. Our price $£ 7 \cdot 50$ including earth bayonet
 WAVE ANALYSER MARCONI TFASSE 20 Hz to 16 K
to 500 MHz.
MARCONI RF WATTMETERS TYPE TF912/Al. Input impedance 50 ohms dual
scale 0-5 and $0-2.5$ watts. In good used condition. Price.
Also MARCONI TF IO20A RF POWERER METER. Range $0-100$ watts 75 ohms. We have in stock watt meters and RF loads BARGAIN OFFER 6V DC TAPE RECORDER MOTORS TYpe DMI48.I. peed ${ }^{\text {a }}$ specially designed for Portable Recorders * Price only \&1 P.P. 10 p

20KV ELECTROSTATIC
VOLTMETER UNIT
5 in. scale Ernesc Turner Model 32 contained in polished wood case with MARCONI 12 KHz QUARTZ CRYSTAL contained in B7G envelope with flying lead connections. Brand new only $62 \frac{1}{2} p$ each

TEKTRONIX TYPE 3IO. PORT- ABLE OSCILLOSCOPE. PERFECT
 CONDITION. PRICE $£ 150$.

MARCONI TF930
H.F. field strength measuring equip ment. $18-125 \mathrm{mHz}$. 665 .

LEVELL SPECIAL OFFER These small portable instruments measure
AC RMS volts from 500 V to 100 microvolts. The meter is also sealed in dB . In perfect condition. Price only
MARCONI DUAL TRACE OSCILLO. SCOPE TYPE TF I31I. Offered in littl used cond
guarantee.

IMPEDANCE BRIDGES
AVO Type I with slide rule scale as new
Bradley Type 131 LC/R bridge $£ 30$
Cossor Model 1446 with C.R.T. phase
Wayne Kerr Model B221 0.1% accuracy
Wayne Kerr Model B52I LC/r Bridge $£ 40$ Solartron Model MM906 I to 300 pf \& Marconi Madel
80 Hz | \& 10 kHz
RECEIVERS COMMUNICATIONS
Eddystone 770 U range 150 to 500 MH
Marconi CRI50/2 Range 2 to 60 mHz
double conversion
full set coils.. range 5 to 30 mHz full set coils.
slow motion drive model with super PR/4 Search Receiver range 38 to $1,000 \mathrm{mHz}$
4-INCH G.E.C. DOUBLE GUN C.R. Tubes Spiral P.D.A. type 1046 F
Brand new. Boxed. Price $£ 10.50$. MARCONI TF.IO4IE ELECTRONIC VOLTMETER. Frequency response 20 Hz
to $1,500 \mathrm{MHx}$ AC volts 25 M to 330 volts .
DC volts 10 My to 1,000 volts. Resistance 0.02 ohm to 500 M ohms. Offered in good cali-
brated condition. Price only $£ 50 \mathrm{P}$. \& P. 50 p . PHILLIPS MODEL GM 6010. DC low level electronic voltmeter measurements
from 1 mV for full scale deflection to 300 vdc
in in twelve ranges. Indication on 5 inch mirror scale. A first-class instrument at an economi-
cal price. Only $£ 40$ plus battery. P. \& P. 75 p.
BOLTMETER. AC 2409 ELECTRONIC made ar Average. Peak or RMS from 0.01
for FSD to $1,000 \mathrm{~V}$ frequency response 2 H or FSD to
to 200 KHz in eleven ranges. Mirror seale
indication is also scaled in oB from 60
to 40 dB . Function can be either VÚdamping or slow response. As new condition A 75
P . 50 p . ADVANCE TYPE 78A ELECTRONIC
VOLTMETER. Range I mV for FSD to 1.000 volts. RMS frequency response 1 Hz to 1 MHz .
Also scaled in $\mathrm{Bm}-60$ to +50 . As new. WE HAVE IN STOCKK MANY OTHER
TYPES, LET US KNOW YOUR REQUIREMENTS

EVERSHED R VIGNOLES CIRCUIT TESTING OHMMETER. DUAI sCale from 0.1 to 1.000 and 100 to 200 K ohms in 000 d

 25 P. \& P. 25P Crompton Parkinson direct reading 4 inch flush panel mounting for 250 v single phase operation 50 HZ with external resistancePYE Electrostatic Voltmeter model I|310 scalamp type Voltage range 18 KV mains operated in good used condition .. $£ 22$

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. II METROHM by amous British manufacturer. All solid state. No handles to crank Runs of 9 volt transistor battery. Simply press bucton for function Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 Small size modern inscrument, complece with carrying strap and mall size modern instrument, complete with carrying strap and For 250 volt pressure only. List Price $£ 19.50$. Our Price $£ 6.00$ plu 22 $\frac{1}{2}$ p post/packing

EVERSHED QUICK RESPONSE RECORDER (DUPLEX) Type QU
CRD 10 with amplifier $10 . \mathrm{M} / \mathrm{G} / 2$ with amplifier unit cype PA new condition, these small portable recorders are very popular and are o current manufacture offered at less than half price.

Honervell Brown Electronic

 Recorder. Porentiometrict type, Miniature solenoid driven wafer switches, type-Ledex offered as new perfect order for any type. Solenoid voltage, 12 or 24 V . Brand new
E225 E 1.50 each, p.p. 12 ft .

AIRMEC PORTABLE RF SIGNAL GENERATOR AM/FM Type CT212. Snecially designed for fleld use for mains or 12 v oneration. Frequency range 85 kHz to
30 MHz . Accurate scale calibration. Variable output from 1 micro 100 mV 0 to 80 db . Offered in excellent

MUIRHEAD PHASE METER Type 29-AM with associated power supply .. 227

CROSSHATCH \& DOT GENERA$\begin{array}{llll}\text { TOR OL2I for } 625 & \text { or } 405 & \text { lines. Brand } \\ \text { hew } & \ldots & \ldots & \ldots 40 \text { P. \& P. } 50 \mathrm{p}\end{array}$

0 P. \& P. 50 p

TEKTRONIX 55

WITH TWO PLUGINS
PERFECT CONDITION
PERFECTCONDITION

> MARCONI 80ID A.M. SIGNAL MHz OUR $10-4$ $0.1 \mu \mathrm{~V}$ to IV

MARCONI TF867 Standard RF Signal Generator, range 15 kHz to 30 MHz . Variable output from 4 micro V to 4 Volts, Extremely accurate attenuator, high output suitable for prectsion measurements on networks and tilters. Morduation up to 100% may be applied at 400 or 1000 Hz . Bulit in crystai calibrator. Offered in first class condition. Price $£ 175$.

MAGNIFICATION METERS

Marconi Q Meter Model TF329G perfect condition $\mathbf{6 5 0}$ Marconi HF Q Meter TF886A perfect condition. . $£ 40$ Advance Q Meter Model T. 2 perfect condition. . . . $£ 40$ Dawe Production Q Meter Model 620 C brand new $£ 55$

TEKTRONIX 5I5A

TEKTRONIX 524AD AVAILABLE NOW

GOOD QUALITY TEST EQUIPMENT ALWAYS - REQUIRED, QUOTATION BY RETURN.

LF OSCILLATORS \& GENERATORS

Solartron constant output generator model DO905 range $50 \mathrm{kHz}-50 \mathrm{Mhz}$ OP
between $10 \mathrm{~m} \downarrow$ \& 10 vols as new $100 \% \mathrm{~Hz}_{2}$
AIRMEC Model 257 LF signal generator, Range $0.003-30 \mathrm{HZ}$
AIRMEC Model- 858 range $30-1,000 \mathrm{kHz} \& 1-30 \mathrm{MHz}$ in 7 ranges
Wayne Kerr video Osc model 0.22 B 10 Hz to 10 MHz
 TS-47APR O.p. 364 to 31.6 volt
operated small portable unit
The above instruments are in
ADVANCE J2 Osc' 15 Hz to 50 KOHz operation unless stated.
CANNON XLR AUDIO SERIES
PLUGS \& SOCKETS
XL 3-31 3-Pole Socket
XL 3-12 3-Pole Plug
XL 3-11
150p
XL 3-12 3-Pole Plug
XL 3-11 3-Pole Plug
XL 3-32 3-Pole Socke
XL 6-11
X 6-Pole Plug
6-32
6-Pole Sock
Offered Brand New.

MULLARD HIGH SPEED VALVE
TESTERS. We have a small quantity of these very popular testers available late model. Complete with cards and in good working order. Price $£ 45$

LOW YOLTAGE POWER SUPPLY

 To supply $12-15$ UNITSTo supply 12-15-20-24 and 30 volts at continuous 5 amps with current control and ammeter employs silicon heavy dury very suitable for light duty plating and charing duties. 240 v . AC supply, fully charing duties. 240 v . AC supply, fully Offered brand new units. Price $£ \mathbf{1 2 . 5 0}$.

LEEDS \& NORTHRUP Integ:a, Slow speed chart recorder and Temperature conples/temperature range $0-1000^{\circ}$ AL incorporates POTENTIOMETRIC RECORDER \& Sensitive Concroller Series 60. Offered in good used condition $£ 105$

Phone 01-723 8753

Cossor Electronic Invertors type producing a $\mid 15 v 400 \mathrm{HZ}$ single for output. Incorporating the following output. Incorporating the followin Full overload protection.
Sine wave outpu

- Remote control facilities.

Completely Solid State (Silicon
transistors).

* Built to Aircraft specification
- I80VA of output continuous.

May be run in series operation for
3 phase requirements. Offered brand 3 phase requirements. Offered brand Carriage 50p units. Price $£ 17.50$

Constant Voitage DC Power Supplies
A stabilised unit upplying 48 ydc at 4 amps input 200-245vac stabilised to within $+1 \%$ at full load. Supplied new..$€ 22$

VARIAC TRANSFORMERS 8 amp type fully shrouded with scale plate $\&$ conerol knob. Good used condiAlso 3 amp type as above 64.50

KIENZLE ELECTRONIC PRINTER model DH-E as new condition Videcon Tubes Cathodeon type C9138A brand new at surplus price...... $£ 15$
Cambridge model D.E. Potentiometric Recorder. Single point type. Range 0-10 mVs . Chart speed 30 in . $/ \mathrm{Hr}$. Slide wire accuracy 0.3% offered brand new with
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and into your equipment, the Catalogue Nos. into your equipment, the Catalogue Nos. 250 ohms. Complete with base, and che price is $£ 5$. Limited quancity only Also: 2203A, 2200A, 2202A.

SEARCH RECEIVERS AN/APR/4 Range $38-1000 \mathrm{mHz}$ with 3 RF cuning heads, eireuit diagrams, etc. $£ 95$

AERIAL CHANGE/OVER RELAYS

of current manufacture designed espec ally for mobile equipments, coil voltage 12 v ., frequency up to 250 MHz at 50 watts Srnall size only, 2 in. $\times \frac{7}{8}$ in. Offere

COAXIAL SWITCHES American Manufacture

Suitable for aerial changeover and high frequency switching up to $1,000 \mathrm{MHz}$ miniature Vacuum drawn type 110 y dc operation connections BNC and N types.
Offered brand new, boxed. Price $\mathbf{E 3 . 2 5}$.
x. equipment. 2 for $50 p$, inc. p.p.

NIFE' traction Batteries Nickel Iron $1.2 V$ per cell rated at 180 A.H. Sold in f4 per cell Guaranteed best buy cells.
4 per cell. Guaranteed best buy
500 PIV Max rect. Current 16 amps
Guaranteed perfect. Price $\in J \cdot 25$ each

	COLV	HELICAL
	ohms	
	ohms	ALL TEN TURN
	ohms	PRICE 61.75

ELECTRONICS VOLTMETERS for YY High Impedance
PYE High Impedance DC Amplifier for measurements better than 20 uv to 10
PHILIPS GM 60101 mV FSD to 300 V
in 12 ranges. Price $£ 45$ in 12 ranges. Price $£ 45$
PHILIPS PM 25201 mV FSD to 300 V in 12 ranges RMS voltmeter 10 Hz to MHz . Price $£ 45$
SOLARTRON VF-252. AC millivolt meter 1.5 mV for FSD to 15 V 30 M ohms mpedance. Price 665
> H. W. SULLIVAN STANDARD AIR SPACED CONDENSERS Capacitance range 0 to 100 pf fully screened with engraved vernier sub with vernier index and original manu facturers seal offered brand new, a facturers seal
only $£ 25$ each.

EIEGTROMLUE Electronic Component Specialists

E	SPEC							
SIEMENS	BARGAINS IN NEW SEMI-CONDUCTORS many at new reduced prices - all power trpes with free insulating sets							
TTL INTEGRATED CIRCUITS								
	many at new reduced prices - all power types with free insulating sets							
			127	coictio			5	隹
		con		coick		cip	${ }_{\substack{\text { B5x } 20 \\ \text { C40 }}}$	${ }^{169}$
				$\substack{120 \\ 120 \\ 120}$		12p		- 120
	2 N 1302 2 N $\substack{1303 \\ \hline}$		${ }^{\text {A Acr }}$ A2	-		(10)	${ }_{\text {M MPS6s }}$	${ }_{\text {cos }}$
		${ }_{2}^{2} 2{ }^{2} 3$		cois		,	NKT2	-
	咝1308	-			cick			$\substack{239 \\ 180}$
		coin				119	$\underset{\sim}{\text { N }}$ NTT403	(189
								\%
								¢
\star SIEMENS 5\% TOLERANCE POLYCARBONATE CAPACITORS		2N4059 2NT060					${ }_{\substack{\text { IT }}}^{\substack{\text { ¢ }}}$	
			(109	(12p				(in
		condit		(120			2Tx501	$\underset{\substack{189 \\ 218}}{ }$
(e.en 0	2 N 243 $2 \mathrm{~N}^{2494}$	cc	(8C126	$\xrightarrow[\substack{150 \\ \text { 20p }}]{\substack{10}}$		$\underset{\substack{1159 \\ \text { 319 }}}{\text { 319 }}$		cisp

NEW PEAK SOUND SPECIAL OFFER

Fantastic new Englefield 840 amplifier with add-in facilities for stereo tuner, advertised at $£ 45$. Special Electrovalue offer, plus choice of ease finish in black, red, blue or green simulated learer.
In makers sealed carton and guaranteed.
NETT

MISCELLANEOUS ITEMS

PLESSEY INTEGRATED CIRCUIT
$\begin{array}{lllll}\text { SL40]D } & 62.10 & \text { nett } \\ \text { Application data } & \ddots & \cdots & 10 p\end{array}$
30W BAILEY AMP. PARTS Transistors Rs and PCB for one channel
R_{s} and $C s$, and $P C B$ for Rs and Cs, and
one channe!

MAIN LINE AMPLIFIERS 70 watt kit. . . $\mathbf{f 1 2 \cdot 6 0 \text { nett }}$

INDICATOR LAMPS

 NEON chrome bezel, round red NR/R, 24 p; chrome bezel, roundamber NR/A, $24 p ; c h r o m e ~ b e z e l ~$ amber NR/A, 24p; chrome bezel, round clear
square
red amber type LSSC/A, 18p; clear
type Ls5C/C, 18p. All above are For 240v, mains operation.0.04A square red eype LS5C/R-6v., 30p;

 DIN CONNECTORS

POSTAGE \& PACKING

FREE on orders over C2. Please add 10 p if orders under $£ 2$. Overseas orders welcome: carriage and insurance charged at cost.

ENAMELLED COPPER WIRE
Even No. SWG only: 2 ox reels:
$16-22 \mathrm{SWG} 25 \mathrm{p} ; 24-30 \mathrm{SWG} 30 \mathrm{P}$ 32, 34 SWG $33 \mathrm{p} ; 36-40$ SWG 35 p
4 oz. reels: $16-22$ SWG only 41 p.

S-DECS
Components just plug
ponents. 5-Dec (70 points), $\$ 1-00$ T-Dec. may be temperature-
cyled 208 points), 5.50 . Also cycled (208 points), 62.50. Also

TYGAN SPEAKER MATERIAL
7 designs. $36 \times 27 \mathrm{in}$. sheets,
THERMISTORS
VA 1039, VA1040,
VA106, VA 1077, CZ.
VA1055,
K $151-1 K, ~$
LIGHT DEPENDENT
RESISTORS
Cadmium Sulphide type TPMD
BRIDGE RECTIFIERS
*Reduce rating
contact cooled.

RESISTORS—10\%, 5\%, 2\%

Code	Power	Tolerance	Range	Volues available	$\begin{gathered} \text { to } 9 \\ \text { (see } \end{gathered}$	$\begin{gathered} 10 \text { to } 99 \\ \text { ce below). } \end{gathered}$	100 up
C	1/20W	5%	82 $\Omega-220 \mathrm{~K} \Omega$	E12	9	8	7
C	1/8W	5\%	$4.7 \Omega-470 \mathrm{~K} \Omega$	E24	1	0.8	0.7
c	1/4W	10\%	$4.7 \Omega-10 \mathrm{M} \Omega$	E12	,	0.8	0.7
C	1/2W	5\%	$4.7 \Omega-10 \mathrm{M} \Omega$	E24	1.2		0.9
C	iw	10\%	$4.7 \Omega-10 \mathrm{M} \Omega$	E12	2.5	2	1.8
MO	1/2W	2\%	$10 \Omega-1 \mathrm{M} \Omega$	E24	4	$3 \cdot 5$	3
wW	iw	10\%	0.22 $28-3.9 \Omega$	E12	7	7	6
WW	$3 W$	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	E12	7	7	6
WW	7W	5\%	12ת-10K	El2	9	9	8

Codes: $C=$ carbon film, high stability, low noise. MO = metal oxide, Electrosil TR5, ultra low noise. WW = wire wound, Plessey

Values:
El 2 denotes series: $10,12,15,18,22,27,33,39$, $47,56,68,82$ and their decades.
$E 24$ denotes series: as E12 plus $11,13,16,20,24$, $\left.\begin{array}{l}\text { E24 denotes series: as } \\ 30,36,43,51,62,75,91\end{array}\right)$ and their decades.

[^9]Prices are in pence each for quantities
of the same ohmic value and power of the same ohmic value and power
rating. NOT mixed values. (Ignore fractions on total value of resistor order.)

CAPACITORS

MULLARD polyester C280 series
$250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.047$ 3p ach; $250 V 20 \%=0.01,0.022,0.033,0.0473 p$ ach; $0.33,7 \mathrm{p} ; 0.47,8 \mathrm{p} ; 0.68$, ilp; $1 \mu \mathrm{~F}, \mathrm{I4p}$; $1.5 \mu \mathrm{~F}$, $21 p ; 2 \cdot 2 \mu \mathrm{~F}, 24$ p.
MULLARD SUB-MIN ELECTROLYTICS C426 range, axial lead
Values $(\mu \mathrm{F} / \mathrm{V}): 0.64 / 64 ; 1 / 40 ; 1.6 / 25 ; 2.5 / 16 ; 2.5 / 64 ;$ Values ($\mu F / V$): $0.64 / 64 ; 1 / 40 ; 1 \cdot 6 / 25 ; 2.5 / 16 ; 2.5 / 64 ;$
$4 / 10 ; 4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2.5 ;$ 10/16; 10/64; 12.5/25; $16 / 10 ; 16 / 40 ; 20 / 16 ; 20 / 64$; 25/6.4; $25 / 25 ; 32 / 4 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ;$ 40/2.5; 50/6.4; 50/25; 50/40; 64/4; 64/10; 80/2.5; 80/16; $80 / 25 ; 100 / 6 \cdot 4 ; 125 / 4 ; 125 / 10 ; 125 / 16 ;$ $160 / 2 \cdot 5 ; 200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 4$; 400/4; 500/2. 5 .
LaRGE CAPACITORS
High ripple current types: 1000/25, 28p; 1000/50, 41 p ; $1000 / 100,82 \mathrm{p} ; 2000 / 25,37 \mathrm{p}$; 2000/50, 57 p ; 2000/100, \&1.44; 2500/64; 77p; 2500/70, 98p; 5000/25, 62p; $5000 / 50$, \&i 10 ; $5000 / 100$, £2.91; $10000 / 50,22.40$.

HANDBOOKOFTRANSISTOR EQUIVAordered alone.)

COMPONENT DISCOUNTS

10% on orders for components for 25
10% on more.
| 5\% on orders for components for 115 15\% or more.
Prices subject to alteration without prior notice.

T．E．C．240－110v．ISOLATION TRANSFORMERS

 Pri Tapped 10．0．200． 220.240 v ．sec．Tapped $110-112.5-115 \mathrm{v}$ ． Conservatively rated at 9 amps．Tropicalised open frame type．Terminal Board connections．Size $9 \times 9 \times 7$ ins．Weight 60 lbs． terminal Board co
$\boldsymbol{E} 15.00$ ．Carr． 90 p ．

GARDNERS HEAVY V DUTY HT TRANSFORMERS GARONERS
Pri． $110-220-240$ y．Sec． $255-0-60$ ．Conservatively rated．＇C＇core
Table top connections．Size $10 \times 8 \times 7$ in． 612.75 ．Carr． fl 50 ．

PARMEKO TIRANSFORMERS

Jupiter Series．Pri． 110 l ．，200－220－240v．Sec． $24-0-24 \mathrm{v}$ ．， $470 \mathrm{~m} / \mathrm{a}$ ． Neptune Series．Pri． $110-200-220-240 \mathrm{v}$ ．Sec．250－0－250v． 70 ． 25 p ．

 $5 v$ ．3a． 62 －50．P．P． 45 p ．

Pri．205－225－240vNERS EHT TRANSFORMERS

 E．S．Sec． $3500 \mathrm{v}, 25 \mathrm{~m} / \mathrm{a}$ ． $\mathbf{E 3 . 5 0 \text { ．P．P．} 4 0 \text { p．Parmeko．}} \mathrm{Sec} 2000 \mathrm{v} .5 \mathrm{~m} / \mathrm{a} .4 \mathrm{~V}$ ． 1 a ．， 4 v ． 0.5 a ． $\mathbf{~} 2.50$ ．P．P． 35 p ．

ENGLISH ELECTRIC TRANSFORMERS Pri． $220-240 \mathrm{v}$ ．Sec．tapped $30-57.5-115 \mathrm{v}$ ． 0.5 a ．and 3 v ． 4 a ． ${ }^{\circ} \mathrm{C}$＇core． 11 75．P．P．30p．Pri． 23 ． 6．5－6．6v．27a．＇C＇core $\mathbf{6 2}$ ．50．P．P．30p．

GARDNERS LT TRANSFORMERS
Pri．200－220－240v．Sec．2．0－2v．Ila．Twice 8Kv．D．C．wkg． 63.
 W．C．wkg． 65.50 ．Carr． 75 p ．

BY FAMOTRANSFORMERS
Pri．240v．Sec． $10.3 v, 5 \mathrm{a}$ ．Twice Conservatively rated．Table
 2.5 a ．and 13 v ．6a．T．T．Connections conservatively rated
E2．50．P．P． 50 p ．Pri． $100110-200-220-240 \mathrm{v}$ ．Sec． $24-5-0-24.5 \mathrm{v}$ ．

REDCLIFFE＇C＇CORE TRANSFORMERS All Primaries rapped $200-220-240 \mathrm{~V}$ ．Table rop connetion $\mathrm{Sec} 130 \mathrm{v} . .450 \mathrm{~m} / \mathrm{a}$ ．Three times． $\mathbf{5 4 . 2 5}$ ．P．\＆P． $40 \mathrm{p} .11-0-11 \mathrm{v}$ ．

 LOW TENSION SMOOTHING CHOKES By Redclife． 100 MH ． 2 amps． 12.50 P ．\＆P． 45 p ．Swinging Types．
10 MH ． 6.5 amp－50MH． 2 amps． $\mathbf{2} 2.25 \mathrm{P}$ ．\＆P．45p．Both types By
lomH． 6.5 amp－50MH． 2 amps． $12 \cdot 25$ P．\＆P． 45 ．Both types
less than tohm res．Hermetically sealed．Oil filled．Brand new．
In makers cartons．

9 \＆ 10 CHAPEL．ST．，LONDON，N．W．I 01－723－7851

01－262－5I25

 Note：By using the in

Example：No． $1 .$. 7－8－10－15－17－25－33－40－50v． $\begin{array}{lll}\text { No．} 2 & \cdots & 4-8-12-16-20-24 \\ \text { No．} 5 & \cdots & 3-6-9-12-15-18 v\end{array}$

240v． 110 v ．or 100 v ．Completely Shrouded fitted with Two－pin American Sockets or terminal blocks．Please

\begin{abstract}
state which＝ype required．Weight
Type
Watts ADProx．
it

Type	Warts	Apdrox．	Weight	Price
，	$\begin{array}{r}80 \\ 150 \\ \hline\end{array}$	$2 \frac{1}{4}$	16.	E2．75
3	300	$6+1$	lb．	E3．75
4	500	$8 \stackrel{1}{2}$	lb．	65.25
5	1000	15	lb．	67.25
6	1500	25	lb．	69.75
7＊	1750	28	lb．	¢ 14.75
$8 *$	2250	30	lb．	¢17．85

with two 2－pin American sockets，neon indicator，on／off switch，
$20,000 \mathrm{mfd}$ ． 35 v ．wkg． $10,000 \mathrm{mfd} .70 \mathrm{v}$ ．wkg．Size $4 \frac{1}{2} \mathrm{in}$ ．$\times 2 \frac{1}{2} \mathrm{in}$ ． dia． 74 p each．P．P $10 \mathrm{p} .25,000 \mathrm{mfd}$ ． 12 v ．wkg． $16,000 \mathrm{mfd} .25 \mathrm{v}$ ．
wkg． $1,250 \mathrm{mfd} ., 180 \mathrm{v}$ ．wkg． 60 p ．P．P．i0p．T．C．C．Block type
 P．P．I5p． G．PO．4－WAY TELEPHONE CORDS Non kink coil type．Length closed 10 N ．Fully expanded， 4 ft ． $\frac{\text { Red only．40p．inc．post．}}{\text { DIAMOND H RELAYS }}$
Type BR 115 BIT－9C 4 CO Contacts， 150 ohms．26v．，250v． 15 a ． Enclosed in metal case．Size $1 \frac{1}{2} \times 1$ in．dia．75p inc．po OMRON SUB MINIATURE RELAYS
Type 105 N． 22 ．D．C．I C．O． 5 amp contact overall．Size
$1 \times x$ in x in．New and boxed with mounting screws．45p． MAGNETIC DEVICES SEALED RELAYS $5,000 \Omega .3$ C．O．contacts．Overalisize $2 \times 2 \times 1 \ddagger \mathrm{in}$ ．New boxed． 57⿳亠丷厂彡
ELECTRO METHODS 2.3 v ．A．C．CONTACTORS
 50p．P．P． $10_{\text {p }}$ ． Sealed type．28v．D．C．Three heavy duty silver contacts．Size MAGNETIC DEVICES orv．D．C． MAGNETIC OES 3 Heavy Makes contacts．Size

35 G．P．O．RELAYS 3000 TYPE
 C．IM．30p．250 I heavy Type 100D G．P．O．MAGNETIC COUNTERS
Type 1000 ． 4 digits．Operating voltage $3-6 v$ ．D．C．Size $3 \frac{2}{2} x$ $\frac{1 \mathrm{in} \text { ．S0p．P．P．5p．}}{\text { HONEYWEL MICRO SWITCHES }}$
Type YZ RW 84－N88．Lever operated．Make or break（3 tags）． Three for 70p inc．post． BURGESS MICRO SWITCHES
Type MK 3BR／74．Norm closed or Norm open．$\frac{1}{2}$ in．raised $\frac{\text { Press Button，three for 60p．P．P．5p．}}{\text { ADVANCE C／V TRANSFORMERS }}$
Type CV 15／95．Inpui 95－130v．，190－260v．Output 4v．rms + or－ 1% ． 3 watts．Open frame type．El－25．P．P．35p． Type A 10 ． $100-250 \mathrm{v}$ ．A．C．$\frac{1}{2}$ h．p． 75 p ．P．P．P． 10 p ．Teddington type QEWMARK SYNCHRONOUS

VENNER SYNCHRONOUS BIO
ENNER SYNCHRONOUS B

220－240v． 50 cycles 40 r．p．m．automatically reverses wherever spindle stop is placed．Overall size $2 \frac{1}{2} \times 2 \times 1$ in．Spindle
length length $\frac{1}{2}$ in．dia． $1 / 16$ th．An ideal motor
forward and reverse motion． 60 p．P．P．15p

Would You Believe

 that an aircraft can cut costs andimprove your company＇s EFFICIENCY？

Come and find out－at CRANFIELD
Bedfordshire，England

SPONSORED BY

TICKET DISCOUNT COUPON

Worth $£ 1$ on a single－day ticket（normal price $£ 2$ ）

Please send the following tickets to the address below：
Single－day ticket at $£ 1$ each．Number required
Remittance enclosed £
I Please write（block capitals）in the space below the name and address to which the tickets should be sent：
I

NAME ．
 ADDRESS
 \qquad

AIRMAX"* $7 \frac{1}{2}$ in. FANS. Aluminium diecast housing (in.) 240 v. a.c. New. £5. P.P. 50p.
'KLAXON" GEARED MOTORS (8 ib-in.) 112 r.p.m.
BRIDGE MEGGERS (500v. series 2) $\mathbf{f 1 8}$ ea. in good wotking order

BRIDGE RECTIFIERS (Mulard GEX 54INBIPIF) Output 74 voit. at 18 amps. $\mathbf{£ 2}$ ea. (brand new).

BULK COMPONENT OFFER. Resistors/Capacitors. All eypes and values. All new modern components. Over 500 pleces £2. (Trial order 100pcs. 50p.) We are confident

BERCO WIRE-WOUND POTS. New individually boxed. 200 ohm 25 watt 50p: 725 ohm 50 watt 75p: 300 ohm
100 watt $f 1$ ea.

LEVEL METERS ($1 \frac{1}{2} \times \frac{1}{2}$ in.) 200 micro amp. Made Germany 75p ea. $2 \times 1 \frac{1}{2} \mathrm{in}$. (Japan) $£ 1$ ea. MICROAMMETERS (4 in. sq. Weston) 25-0-25 micro PRECISION CAPACITANCE JIOS.

Mige. Beautifully made 1220pf. £10 Wright Micrometer Gauge. Type 1. 18.5pf to POT CORES LA1/LA2/LA3. 50p ea.

LIGHTDIMMERS (2000
in. $£ 5.75$ ea. P.P. 25 p.

COMPUTER TAPES. 2400 ft . $\frac{3}{1} \mathrm{in}$. On N.A.B. Hubs com plete with transparent cassette case. $£ 2$ ea. P.P. 50 p.

LIQUID LEVEL SWITCH. Detects even mildly conductive liquids i.e. ether etc. N/O-N/C contacts fails to safe. $£ 10$ ea. S.a.e. literature.
'LONG LIFE" ELECTROLYTICS (screw terminal). 25,000 u.f. 40 v . $\left(4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}\right.$.) $\mathbf{£ 1}$ P.P. 10 p .
10,000 u.f. $75 \mathrm{v} .\left(4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}\right.$) $87 \frac{1}{2}$ p. P.P. 10 p
7,100 u.f. 40 v . $(4 \times 2$ in. $) 75 \mathrm{p}$. P.P. P.P. 10 p .
3.150 u.f. 40 v . $\left(4 \times 1 \frac{1}{2}\right.$ in.) 75 p. P.P. 10 p

RELAYS

SIEMENS/VARLEY PLUG-IN, Complete with transparent dust covers and bases. 2 pole c/o contacts 35 p ea; 6 make types in stock.

12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$) with 10 amp . silver
contacts 2 pole c/o 40 p ea.; 2 pole 3 way 40 p . P.P. 5 p . 24 VOLT H.D. RELAYS $\left(2 \times 2 \times \frac{3}{2} \mathrm{in}\right.$.) 10 amp. contacts. 4 pole c/o. 40p ea. P.P. 5 p.

240 VOLT A.C. RELAYS ($1 \frac{3}{4} \times 1 \frac{3}{4} \times 1 \mathrm{in}$.) G.P. contacts make $2 \mathrm{c} / \mathrm{o} .60 \mathrm{p}$ ea. P.P. 5 p .
REED RELAYS 4 make $9 / 12 \mathrm{v}$. (1,000 ohm.) 62 $\frac{1}{1} \mathrm{p}$ ea. 2 make $37 \frac{1}{2} \mathrm{p}$ ea. 1 make 25p ea. Reed Switches ($1 \frac{3}{4} \mathrm{in}$.)

SUB-MINIATURE REED RELAYS ($1 \mathrm{in} . \times \frac{1}{4}$ in.). Weigh $\frac{1}{1}$ oz. Type 1,960 ohm, $3 / 9 \mathrm{v}$. 1 make. $62 \frac{1}{2} \mathrm{p}$ ea. Type 2. 1800 ohm, $3 / 12 \mathrm{v} .1$ make. 75p ea.
E.H.T. GENERATOR MODULE (Mullard VM1049) input 12 volt, output 1800 volt 1 m.a. £4 ea. P.P. 25 p SILICON BRIDGES 100 p.i.v. 1 amp ($5 \times \frac{8}{8} \times \frac{3}{6} \mathrm{in}$) 45 p 100 p.i.v. $2 \mathrm{amp}\left(1 \frac{1}{6} \times 1 \frac{1}{4} \times \frac{1}{2} \frac{1}{2}\right.$ in. $) 75 \mathrm{p}$.

PATTRICK \& KINNIE
191 LONDON ROAD - ROMFORD - ESSEX
ROMFORD 44473
RM79DD

 $00000000000000000000000000 \mathrm{H000000000000004}$ N000

VALVE YOLTMETER TYPE TF 958
 range to 1.5 kV . Balanced input and centre-
zero scale for DC . $A C$ up to 100 MHz . zero sca
$\mathbf{E 3 2} .50$.
VIDEO OSCILLATOR TF 885A \&
 tively. fine and square wave output up to
$3 / v$. and 885 resp. Carriage $f 1.50$.

MARCONI VHF OSCILLATOR TYPETF 924/I. Complete with power
unit Type TM 4230 . Frequency range unit Type TM 4230 . Frequency range
$2,100 \mathrm{MHz}$ to $3,750 \mathrm{MHz}$, output power 10 to 50 mW , Klystron Osc with automatic tracking. Facilicies $\neq 125$. Carriage $£ 2$.

MARCONI VHF ALIGNMENT OSCILLOSCOPE TF IIO4-Combined sweep generator and RF ranges $41-216 \mathrm{kHz}$. IF range $10-40 \mathrm{MHz}$. VF range 5 kHz to 10 MHz . Output louv to 250 MV continuous at 50 ohms. Sweep
500 kHz to 10 MHz . $£ 89.50$. Carr. $£ 1$. 500 kHz to MARCONI R/C OSCILLATOR MAPE TF Ilol. Frequency range 20 Hz to 200 kHz . Accuracy $\frac{1 .}{1 \%}$ distortion less than 0.5%. Stabilised Oscillator, no zero setting required £72.50. Carriage $\mathbf{£ 1} \cdot 50$.

HEWLITT PACKARD AUDIO SIGNAL GENERATOR il-50. Full specification for S.A.E.

REMSCOPE TYPE 741 STORAGE OSCILLOSCOPE. On trolley, com plete with plug-in trace shifter and two
plug-in Y amplifiers. Price on application.

INTEGRATED CIRCUITS

MANY OTHERS IN STOCK
RCA
RCA 3005 wide band R.F. Ampl.
CA
300 mW
diss $\ldots ~$ CA 3012 wide band ampl. 150 mW . $\mathbf{6 0 . 9 0}$ CA 3020 Audio power ampl. $\mathbf{E 1 . 3 7}$ General Electric
PA 230 El $40 ;$ PA 234 EI; PA 237 62.10 $\begin{array}{ll}\text { Mullard } \\ \text { TAA } 300 \text { 61.75; TAA } 320 ~ & 60.73\end{array}$

REDIFON
Twinplex combiner type AFS 13 £65 Twinplex converter type AFS 12 with
PS.W. $£ 85$ F.S.K. unit type GKI85A 658-50.

VALVES \& TRANSISTORS PHONE 0I-743 4946

 MAVY OTHERS IV S TOCK include Eathone Ray Tubes an

2
0.17
0.30
0.48
0.40
0.13
0.25
0.25
0.48
0.28
0.12
0.12
0.25
0.38
0.15
0.25
0.30
0.20
0.23
0.38
0.45
0.47
0.25
1.80
0.25
0.83
0
 005000000050000000
 M荷
 COMMR the valive with a gUARANTEE

 $\begin{array}{r} \\ 2 \\ 0.50 \\ 0 \\ 0.50 \\ 0.45 \\ 0.85 \\ 1.37 \\ 1.50 \\ 2.25 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.15 \\ 0.15 \\ \\ \\ \hline\end{array}$
 PLEASE NOTE Unctas.ateses ALL EQUIPMENT
ordered from us is completely over-
hauled mechanically and electrically in our own laboratories

MARCONI TEST EQUIPMENT
clear I44G SIGNAL GENERATOR. To clear. In very good "as seen" condition.
Complete with mains and battery cables,

SOLARTRON EQUIPMENT

Regulated and stabilised P.S.U. SRS
$151 \mathrm{~A}, 20$ to 500 V positive at 300 mA in two ranges. Variable and fixed 170 V negative output, $£ 35$. Carriage $£ 1$. CD 711 S .2 . Double beam, DC
7 MHz 'scope, $£ 85$. Carriage $£ 1.50$. 7 MHz scope, $£ 85$. Carriage $£ 1 \cdot 50$.
CD 643.2 . Single beam Laboratory application.

SIGNAL GENERATOR TYPE CT 480. $7-12 \mathrm{kMHz}$ in one range, square an pulse modulation and C.W. E65
SIGNAL GENERATOR TYPE CT 478. As ab
ranges $£ 55$.
$1 \frac{1}{2}$ in. DIA, PANEL METERS. $7 \frac{1}{2}-15 \mathrm{y}$ ideal for "Battery
BOONTON Q METER TYPE 160A. req. range 50 kHz to 75 MHz , main capaci C85 plus carriage.
VALVE CHARACTERISTIC METER complete with manual E57:50. Carriag MULLARD PRECISION
15 pF to 336 pF . Supplied with individual calibration certificate. Brand new in
original packing. Ei7.
Carriage
75 p SUSPENSION GALVANOMETERS
 Open 9-12.30, 1.30-5.30 p.m. except Thursday $9-1$ p.m.

AM/FM SIGNAL GENERATOR TF 937 (CT 218) Frequency range 85 kHz 30 mHz 8 bands. Main dial total 56 foot. 2mHz. RF output $1 \mu \mathrm{~V}$ to . IV. Four internal
mod. frea. FM deviation up to 9 kHz . El 15 . C.M. DEVIATION METER TYPE TF934. Frequency range $2.5-100 \mathrm{MHz}$. Can be used up to $0.75 \mathrm{kHz} £ 67 \cdot 50$. Carriage $£ 1.50$.

HARNESS "A" \& "B" control units, junction boxes, headphones, micro phones, etc.

29/4IFT. AERIALS each consisting of ten 3ft., $\frac{\text { inn. dia. tubular screw-in }}{}$ sections. Ilft. (6 -section) whip aerial with adaptor to fit the 7 in . rod, insu-
lated base, stay plate and stay assemblies. lated base, stay, plate and stay assemblutely brand new and complete ready to erect in canvas bag 64 P. \& P $f 0 \cdot 50$

COLOMOR (Electronics)
170 Goldhawk Rd., London, W. 12
Tel. 01 - 7430899

NEW ${ }^{\text {TW.C. }}$ A. MULTIMETERS FROM RUSSIA TYPE 4312 -low sensitivenueral electrical inse. D.C. ranges: $0.3 .1 .5-7.5-30$ $60-150-300-6019-900 \mathrm{~V}$ and
$75 \mathrm{my} ; \quad 300 \mu \mathrm{a}-1.5-6-15$ 60-150'-600mA $1.5-6 \mathrm{~A}$. A.C. raiges: $0.8 \cdot 1.5 \cdot 7.5-30$
$60-150-300-600-900 \mathrm{~V}$. $60-150-300-600-9015$
$1.5-6-15-60-1.50-600 \mathrm{~mA}$ 1.0.-6A.
Resistance: $0.2 \cdot 3.30 \mathrm{k} \Omega$.
Accuracy:

Accuracy: D.C. 1% A.C
PRICE, with carrying cab ${ }_{\text {Prd leads }}$ P9:75 eral electronic anlil TV -ralio

2.C. ronges:

Capacity and Traniminesiou level geales.
Accuracy: 1.5%. D.C. i 20. A.C.
PRICE, with carrying case and leads $\varepsilon 10.50$.
Both instruments have knife edge pointers and mirrow scales
WHEN ORDERING BY POST PLEASE ADD $£ 0 \cdot 12 \frac{1}{2}$ (2/6) IN F FOR HANDLING AND POSTAGE
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP

NEW TRANSISTORS ADDED SILICON PNP PLANAR EPITAXIAL LOCK-FIT

MINIATURE WIRE ENDED SILICON

MVIOB LIGHT EMITTING DIODE To 18 outline. Brightness 500 Ft.L at 50 mA . For ward voltage
1.65 to $2 \mathbf{V}$. spectral leugth 8300 to 7000 A (red light). Lerie 1.65 to $2 V$. Spect
diameter 0.10 fin. PRICE 81.05 plus 0.10 P. P.

INTEGRATED MONOLITHIC DUAL

 Two intentical almplitifrs in 14 -pin dinal-in-line epoxy packa different tial input
$1 \mathrm{mc} / \mathrm{s}$.
$\& 2 \cdot 00$.

TWO NEW OSCILLOSCOPES FROM RUSSIA

CI-5 SINGLE BEAN OSCILLOSCOPE $10 \mathrm{mc} / \mathrm{s}$ passband, triggered sec. Free running time base from $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Built-in time marker and amplitude calibrator, $3 \cdot 1 \mathrm{l}$. cathode ray

CI-16 DOUBLE BEAM
OSCILLOSCOPE OSCILLOSCOPE
5 me/s passband. Separa 5 nic/s passband. Separate ectangular 5 in. $\times 4$ in. thode ray tube. Calibrated triggered 8 weep
from 0.2μ see. to 100 millirom 0.2μ sec. to 100 militime base $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{mc} / \mathrm{s}$. Built-in time base calibration and amplitude calibrator Full details on request. Full servicing facilities and

OUR 1970/1971 CATALOGUE, is AVAlLABLE. PLEASE
SEND SA.E. FOR YOUR FREE COPF.

FULLY GUARANTEED

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2
Tel.: $7275641 / 2 / 3$
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD.
LONDON W.2. Tel: 5808403
A.R.B. Approved for inspection and release of electronic valves, tubes,

WE WANT TO BUY:

SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 8$ per single col. inch.
LINE advertisements (run-on): 45 p per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25 p.
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

Imperial College of Science \& Technology
DEPARTMENT OF AERONAUTICS

There is a vacancy in this Department for an

ELECTRONICS TECHNICIAN

or

SENIOR TECHNICIAN

to work primarily on a general purpose instrumentation project. Salary ranges are \& $1,136-\mathrm{f} \mid, 535$ p.a. and $\mathrm{f} 1,493-\mathrm{fl}, 832$ p.a. respectively. Superannuation scheme, four weeks holiday and canteen facilities.

Apply in writing giving details of experience and qualifications to the Assistant Director, Department of Aeronautics, Imperial College, Prince Consort Road, London, S.W.7.

UNIVERSITY OF SHEFFIELD

SENIOR TECHNICIAN AND TECHNICIAN

required for University Television Service from September 1971

One post requires appropriate qualifications and experience in field of electronics, particularly T.V.: for the other, training in electrical and/or laboratory
techniques. Familiarity with wood and metal work an advantage.

Training given in T.V. operations to enable appointees to become members of a team working on educationa T.V. productions.

Applicants for Senior Technician should be at teast Applicants for Senior Technician should be at east
25 years old and have C. \& G. Final Certificate or
equivalent: Technician, minimum age 20, with C. \& G. Intermediare Certificate in a suitable subject.

Salary: Senior Technician $£ 1,398-£ 1,707$ p.a.
Technician $£ 1,041-£ 1,410$ p.a. each with basic Technician E/, © qualification. Superannuation Scheme.

Write immediately to the Bursar (Ref. B.854), The University, Sheffield S10 2TN.

EXPANDING COMPANY IN SAUDI ARABIA REQUIRES EXPERIENCED CERTIFICATED ENGINEERS

FOR THE FOLLOWING POSTS

CHIEF ENGINEER

B.Sc. or equivalent with 10 or more years experience in Operation and Maintenance of Transmission and Broadcasting Equipment.

ENGINEERS TECHNICIANS

Experience in Operation and Maintenance of Broadcasting Equipment, Studio Equipment and Teleprinters.

Please submit a complete resume and state availability and salary required. Box WW 1270

Service Technicians

Move to Harlow and enjoy the benefits of a good job with a successful company in the pleasant surroundings of our New Town.

Your job will be to service and repair products from our wide range of Airborne Instruments, Scopes and Test Gear. You will be working in our Harlow base workshop with the opportunity for occasional field trips. We will give you product training but we'll expect a good basic knowledge of Electronics preferably backed up with fault finding experience on transistorised and solid state devices.

Your slarting salary would be from $£ 1,310$ per annum with excellent opportunities of promotion to Section Leader grades. In many cases we can assist with local New Town housing and help with your removal costs.

If you want to find out how to secure your position then 'phone or write now to:

LONDON BOROUGH OF HILLINGDON

EDUCATION DEPARTMENT

Two suitably qualified and experienced technicians are required to undertake the maintenance and repair of visual and aural aids equipment in all parts of the Borough schools and other educational establishments. These are new posts.

POST ONE

$£ 1,505-£ 1,866$ incl. LW. Additional responsibility for planning and operating the maintenance and repair programme.

POST TWO
£1,179-£1,362 incl. LW.
8 cwt . van and tools provided for each post. Work base in Uxbridge. Current clean driving licence essential.
Application form and further particulars from the Establishment Officer, Ref. E/186/30, Manor House, Church Road, Hayes, Mx. Closing date August 2

APPOINTMENTS

Opportunities with Redifito in Radio Communications

Experienced Test Engineers are invited to write to Redifon with regard to vacancies in our Test Department at Wandsworth. The salary range for these positions is $£ 1,248$ $£ 1,749$ plus. The Company is engaged in the design and manufacture of a wide range of radio communications and allied equipment from military pack-set to broadcast transmitter, including communications receivers, M.F. beacons, teleprinter terminals, complete radio office installations for the Merchant Marine and mobile H.F. S.S.B. stations. Our Test Engineers have sound technical knowledge coupled with good practical experience in the alignment and test of H.F. and V.H.F. Communications equipment.
The v/ork is varied and interesting and offers excellent opportunity to broaden experience in semiconductors S.S.B. and Frequency Synthesis.
Please write in the first instance to Norman Manion,
The Recruitment Officer, Redifon Limited
Broomhill Road, Wandsworth, S.W. 18

Telecommunications Engineers

required for the installation, maintenance and supervision of modern electronic systems used in our offshore oilfield complex at Das island in the Arabian Gulf. These are bachelor postings but carry generous home leave and allowances.
Candidates, aged 23 to 40 , should possess a minimum of HNC or equivalent, and have several years' practical experience with radio systems ranging from MF to Microwave multi-channel, with a good working knowledge of digital telemetry and automatic telephone systems.

- Please write, quoting reference R.943/ZH and giving relevant information about yourself to: G. I. Andrews, External Recruitment, The British Petroleum Company Limited, Britannic House, Moor Lane, London. EC2Y 9BU, or ring 01-920 6522 for an application form.

POOLE GENERAL HOSPITAL, POOLE, DORSET

Applications are invited from qualified candidates for the following post in the Electronics Department at Poole General Hospital:

ELECTRONICS
 TECHNICIAN III

Qualifications: ONC. HNC, City \& Guilds or equivalent.
Salary: $\quad \mathrm{f} 1.356 \times 8$ increments to £1.764 p:a.
The Department will be primarily concerned with the installation, testing and maintenance of an extensive range of diagnostic/therapeutic and allied electronic equipment, and ultimately with research and development of bio-medical equipment in consultation with medical staff
The position offers adequate scope for initiative and career progression. including the possibility of assistance with further training.
Applications, giving full details. including qualifications, experience and the names and addresses of two referees, to the Hospital Secretary, Poole General Hospital, Poole, Dorset.

1266

EDINBURGH CITY POLICE REQUIRE A WIRELESS TECHNICIAN

for Servicing and Maintenance of fixed and mobile broadcasting receiving system.
Salary scale $\{1,413$ rising by annual incremenes to
Applico
Applicants will be required to have a knowledge mobile stations, and aparas used on fixed and repair faults
They would be expected to have attained the City and Guilds Telecommunications Technicians Certificate or an equivalent qualification.
A Current Driving Licence is essential.
Applications to:
EDINBURGH CITY POLICE
7 CHAMBERS ST., EDINBURGH, EHI IHR [1269

THE UNIVERSITY OF SUSSEX

 ELECTRONICS TECHNICIANAn interesting post is available in a small growing department for a technician with experience of transistor circuits. Formal qualifications are not essential but applicants should be capable of designing and constructing simple apparatus for a variety of experiments.
Salary scale: (a) £1,011-£1,380 or (b) $£ 1,041-£ 1,410$. Salary scale (a) is applicable to those not holding an approved basic qualification.

Further particulars and forms of application can be obtained from the Secretary (Establishment). Office of Arts and Social Studies, Arts Building, University of Sussex, Falmer, Brighton, BN1 GON to whom applications should be sent not later than 31st July or by telephoning Mr. Crook, Brighton, 66755, ext. 339.

1276

ST. BARTHOLOMEW'S HOSPITAL LONDON, E.C. 1

Applications are invited for two TECHNICIAN posts in the DEPARTMENT OF MEDICAL ELECTRONICS. The work involves routine servicing of electronic apparatus and the construction of new equipment for special purposes.
Applicants must have an O.N.C. or the final City and Guilds certificate, or two 'A' level passes in science subjects and at least four years relevant technical experience. Experience of hospital work is not essential. Salary will be on the Technician III and IV scales. $£ 1,446$ rising to $£ 1,854$ and $£ 1,296$ rising to $£ 1,590$ respectively. Applications in writing with the names of two referees should be sent to the Clerk to the Governors.

SECTIONAL ENGINEER GRADE II

EAST AFRICAN COMMUNITY

\star Up to $£ 2,718$

* 25\% gratuity
\star Low taxation
\star Contract 21-27 months
\star Subsidised accommodation
\star Education allowances
\star Appointments Grant payable in certain circumstances

Required by the Meteorological Department for the installation, operation and maintenance of their radio telecommunications, radio sounding and radar equipment.
Candidates, up to age 45, must possess O.N.C. or the City and Guilds Final Certificate (Telecommunications) plus 7 years relevant experience or have equivalent experience in one of the armed services. They should have a good theoretical and practical knowledge of FSK, ISB and SSB receivers and transmitters, Mufax and facsimile transmitters and recorders. A good working knowledge of radar systems is essential.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference number M2K/6904 I3/WF.

up to f 1741 p.a. and all the variety you want as a RadioTechnician

Variety is the keyword. As a Radio Technician with the National Air Traffic Services, you would be installing and maintaining a wide range of sophisticated electronic systems and highly specialised equipment. You would be involved with RT, radar, data transmission links, navigation aids, landing systems, closed circuit T.V. and computer installations. All custom-built to meet the stringent operational requirements of air traffic control throughout the U.K.

If you're aged 19 or over and have at
least one year's electronics experience, preferably with O.N.C. or C. \& G. (Telecoms.), you could qualify for entry to our training course. Your starting salary would be $£ 1,143$ (af 19) to $£ 1,503$ (at 25 and over), scale max. $£ 1,741$ - shift duty allowances. Good career prospects.

Write NOW for full details to: A. J. Edwards, C.Eng., MIEE, Room 705, The Adelphi, John Adam Street, London WC2N 6BQ, marking your envelope
'Recruitment - $8 / w w / 27$ '.
Not applicable to residents outside the United Kingdom.

The INDEPENDENT TELEVISION AUTHORITY is seeking to fill a new post of Aerial Engineer in its Station Operations and Maintenance Department. Although this post will be based in Leeds, the person selected will be required to travel extensively throughout the United Kingdom.

The work will involve the execution and direction of maintenance projects on aerial and combining systems in liaison with the Senior Engineer-Ariel Maintenance. It is essential that applicants have had thorough experience of the techniques used in assessing the performance of aerial and combining systems and they must be prepared to climb and work on tall structures. A recognised qualification at graduate level in the field of R.F. Engineering would be an advantage.

Salary according to qualifications and experience will be in the range quoted above. Those interested should write or telephone for an application form quoting Ref. WW 1685 to:

The Personnel Officer, INDEPENDENT TELEVISION AUTHORITY. 70 Brompton Road, London, S.W. 3 .
Tel:01-5847011 Ext. 482
Completed application forms to be returned by 2nd August 1971.

1303

ELECTRONIC ENGINEERS required

for newTechnical Service Centre to be established at Hemel Hempstead by British Manufacturers and Servicing Group of a wide range of Business Equipment Products. Ideally suited for engineers experienced in Radio/T.V. H.M. Forces, Industrial electronics.
Please write to: Mr. D. D. Davies, Technical Services Manager,
Control Systems Ltd.,
Technical Services Centre,
1 Frogmore Road, Apsley, Hemel Hempstead, Herts.

Closed Circuit Television Engineer

This interesting and responsible position involves all aspects of the installation and service of a wide range of monochrome C.C.T.V. for use with medical X-ray apparatus. The equipment would include vidocon, orthicon, plumbicon and isacon tubes, light intensifying systems and 35 mm . video tape recording apparatus.
The position would ideally suit an engineer experienced in C.C.T.V. systems preferably with ONC/HNC, looking for a responsible position and a secure future in a progressive firm.
A good salary and several fringe benefits including a Company car will be offered to the successful applicant.
Please apply for an application form to:
The Personnel Officer, G.E.C. Medical Equipment Ltd., East Lane, Wembley, Middx. Tel. 904 I288

WESSEX REGIONAL HOSPITAL BOARD and WESSEX HOSPITAL MANAGEMENT COMMITTEES REGIONAL ELECTRONICS SERVICE
Suitably qualjified Engineers and Technicians are required for the Board's new Regional Department of Electronics and Bio Medical Engineering and in similar departments in Hospitals located in Hampshire and Dorset.

1. ELECTRONICS ENGINEER

Qualifications: Chartered Member I.E.E., I.E.R.E.

2. ELECTRONICS TECHNICIAN I

Qualifications: H.N.C.-H.N.D. Full Technological Certificate C. \& G.

3. ELECTRONICS TECHNICIAN III

Qualifications: O.N.C.-H.N.C.-C. \& G.

4. ELECTRONICS TECHNICIANS V

Qualifications: O.N.C. or A.2.
Salary Scales:

1. $£ 2,088$, rising by nine annual increments to $£ 2,868$ per annum
2. $£ 1,877$ rising by five annual increments to £2,346 per annum.
3. $£ 1,800$ rising by eight annual increments to £2,500 per annum.
4. $£ 900$, rising by seven annual increments to £1,160 per annum
Point of entry to the scale dependent on qualifications and/or experience
Posts (1) and (2) will be based at the Board's Headquarters in Winchester; Posts (3) and (4) in various centres in the Region.
Departments will be concerned with all aspects of design-installation-testing and commissioning of a wide range of diagnostic/therapeutic and allied electronic equipment and data transmission systems.

Research and Development in conjunction with Medical Staff will be undertaken in the short term future.
Application forms available from the Personne Depärtment, Highcroft, Romsey Road, Win chester, to which they should be returned by 2nd August, 1971

1291

UNIQUE OPPORTUNITY

Electronic engineer to join the management team of a small but fast expanding company supplying a wide range of advanced projection, sound and lighting control systems.

We want an experienced inventive engineer fully capable of designing and developing, relay and solid state sequence control equipment sound amplifiers, lighting control equipment, etc
Salary by negotiation.
Apply: Technical Director, Audlo Visual Equlpment Ltd 73 Surblton Road, Kingston, Surrey 01.546-4565

TECHNICIAN REQUIRED

September for electronics workshop. Salary according to qualifications,

Senior technician H.N.C. £1,305-£1,712
Technician O.N.C. £902-£1,415
Junior technician ' O ' level maths \& science £525-£803

Day release possible for technicians and juniors. Written applications stating age, qualifications and experience, and names of two referees to Administrator, University Laboratory of Physiology, Parks Road, Oxford.

Sea-going Radio Officers can now make sure of a shore job and good pay.

SENIOR TELECOMMUNICATIONS TECHNICIAN GILBERT \& ELLICE ISLANDS

\star Up to $E 2942$

* 25\% gratuity
\star Low taxation
\star Appointments Grant payable in certain circumstances.

> Required by the Posts and Telecommunications Department to be responsible for the implementation of the planning, the installation and maintenance of all telecommunications facilities, the control of stores and the technical training of local staff.
> Candidates should possess the City and Guilds Full Technological Certificate (Telecomms.) or H.N.C. They should have at least 10 years relevant experience in the provisioning, installation and maintenance of HF, MF, and VHF communications installations in the AM, CW and SSB modes; both valve type and transistorised solid state radio beacons; radio teleprinter using both tone on/off and two tone keying; multi channel VHF equipment and manual CB telephone exchanges.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference number M2K/7008100/WF1305.

RADIO OPERATORS

DO YOU HOLD

PMG II OR PMG I OR NEW GENERAL CERTIFICATE OR HAD TWO YEARS' RADIO OPERATING EXPERIENCE? LOOKING FOR A SECURE JOB WITH GOOD PAY AND CONDITIONS?

Then apply for a post with the Composite Signals Organisation-these are Civil Service posts, with opportunities for service abroad, and of becoming established, i.e. non-contributory pension scheme.

Specialist training courses (free accommodation) starting January, April and September, 1972.
If you are British born and resident in the United Kingdom write NOW for full details and application form from

Recruitment Officer, Government Communications Headquarters,
 Oakley, Priors Road, CHELTENHAM, Glos. GL52 5AJ.

(Telephone: Cheltenham 21491, Ext. 2270)

LABORATORY TECHNICIANS ELECTRONICS

(£1,056-£1,88.1 p.a. inc.)

The Central Electricity Research Laboratories, Kelvin Avenue, Leatherhead, Surrey, wish to recruit Laboratory Technicians for the construction and testing of a varied range of electronic and electro-mechanical apparatus and equipment, mostly prototypes, including chassis construction and layout, working from circuit diagrams, sketches and verbal instructions.

Applicants must be at least 25, have served a craft apprenticeship or recognised period of training with several years' practical experience and possess ONC or equivalent. A radio and television engineer with suitable practical experience in this field would also be considered.

Write or phone for application form to the Personnel Officer at above address (L'head 4488, ext. 363) as soon as possible. Full details of the work and conditions of employment will be discussed with short-listed applicants during interview. Ref. WW/193.

1308

UNIVERSITY OF ESSEX
DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNICIAN

 VISUAL SYSTEMS RESEARCH LABORATORY Applicants should have an interest and preferably some experience in television. The position offers interesting work on cameras and CRT displays, both colour and monochrome, for use in video telephone experiments being carried out under research contact with the British Post Office.Salary scale (with approved basic qualifications) E1,041- $£ 1,410$ plus E 51 higher qualification allow ance where appropriate.

Applications, giving age, technical qualification and details of experience to the Registrar, Uni versity of Essex. Wivenhoe Park, Colchester, Essex.

1294

ROYAL HOLLOWAY COLLEGE

 (UNIVERSITY OF LONDON) Englefield Green, Surrey
AUDIO-VISUAL AIDS TECHNICIAN

Based in new Chemistry Department, the successful applicant will be required to operate a system of audio-visual aids including television and photography. Good wages and conditions of service. Applications, together with the names and addresses of two referees should be sent to the Personnel
Officer not later then 3lst August 1971. 1299

THE UNIVERSITY OF SUSSEX
SCHOOL OF MOLECULAR SCIENCES

ENGINEER

required to work on Electronies and nstrumentation in the Chemical Labora ory. Candidates should be skilled in fault learing in modern electronic equipment.

Salary scale: £1398-£1707. Three weeks paid holiday. Protective clothing pro benefit schemes.

Applications and/or enquiries for further information should be addressed to: the Laboratory superintendent, 5chool of Molecular Sciences, University of Sussex Brighton, BN1 9QJ.

1286

BRUNEL TECHNICAL COLLEGE, BRISTOL Department of
MARINE AND AERO-ELECTRONICS
Applications invited for following post. Duties to commence 1st September, or as soon as possible thereafter.

LECTURER GRADE II in AERO-ELECTRONICS

Applicants must hold current Aircraft Radio Maintenance Engineers Licences, with Radar Ratings. Additional qualifications such as ' X ' Electrics, ' X ' Instruments, etc., an advantage.
Further particulars and application form from: Registrar(S) Brunel Technical College, Ashley Down, BRISTOL BS7 9BU. Please quote reference number 71/33. Closing date 30th July.

EXPERIMENTAL OFFICER IN MECHANICAL ENGINEERING

Required to assist in development and research activities and provide technical support for maintaining laboratory equipment. Experience in designing experimental engineering equipment and in using electronic instrumentation are considered essential and some practical know ledge of pneumatic and/or hydraulic control systems would be desirable

Candidates should hold a B.Sc. degree, H.N.D or an H.N.C. with considerable industrial ex perience, and would be expected to organise the work of a small technical force as necessary. It is unlikely that candidates under 25 years of age would be considered.
Salary Scale $£ 1,902$ to $£ 2,592$ per annum.
Applications should be sent to the Staff Officer, University of Surrey, Guildford, Surrey.

SITUATIONS VACANT

O.E.M. require

ELECTRONIC ENGINEERS

to service a range of desk calculators and/or visible record computers. If you have experience in this field or in servicing digital equipment employing bipolar or M.O.S. semiconductors and are looking for a change, why not ring 01-407 3191 or write to:
E. J. LANDON, OFFICE AND ELECTRONIC MACHINES LTD.

140/148 Borough High Street, London S.E.I,

BUSINESS OPPORTUNITY

Earn a substantial extra income through a fascinating with your wife ond operate from your own home Thisis an outstanding business opportunity with rewards
exceeding f 5000 per annum at the higher levels. We are looking for organisational and managerial ability. VISTA MARKETING MAIDENHEAD 28754

A FULL-TIME technical experienced salesman required for retall sales; write glving detalls of age Henry's Radio, Ltd., 303 Edgware Rd., London, W.2.

D RAUGHTSMEN. Mechanical and Electrical required by expanding electronics company specialising. in lighting control and audio visual products. This posi tion is salaried and gives ample opportunity for advancement. Please apply Electrosonics Ltd., 47 Old Woolwich
Road. Greenwich. London, S.E.10. Tel. 8584784 Road, Greenich. London, S.E.10. Lel. 8 INSTALLATION ENGINEER required for the servicing 1 testing and installation of audio projection and lighting control equipment. An excellent opportunity for applicant with initiative and a sound knowledge of basic electronics. Starting salary £ 1,250 . The post ofers opportumities for travel in England and overseas. Apply Woolwich Road, Greenwich, S.E.10. [1298 TRANSMITTER Technician (34) seeks new position giving test and maintenance experience on (a) VHF Transmitters, or (b) professional quality Audio equipmen for Broadcasting, Sound Recording, or Public
Addresses, etc.), anywhere in U.K. Box W.W. 1311 Addresses, etc.)
Wanted: Ambitious young man with good elec tronics knowledge for salis.

[^10]
17" BBC/ITV TELEVISIONS £5 plus p. \& P. E1.00 C.W.O. SUITABLE FOR ANY AREA

3 Channel $19^{\prime \prime} \mathrm{D} / \mathrm{S}$ TVs. ITV, BBC 1, BBC 2, $£ 25$ inc. carriage. 17" 13 Channel, complete but untested, $\mathbf{£ 1 . 5 0}$ each, plus $£ 1$ P. \& P.,

C.W.O.

SPEAKERS

$6^{\prime \prime} \times 4^{\prime \prime}, 7^{\prime \prime} \times 4^{\prime \prime} 30 \mathrm{HM}$
20p plus 8p P. \& P. each, C.W.O
regular deliveries throughout england
TRADE TV's
407 Thornton Road, Girlington, Bradford 8. Yorks.

TV's TV's TV's

SPECIAL OFFER-LIMITED PERIOD ONLY
Thorn 800 Chassis 13 Channel Blim TVs. Good
working order. Polished cabinets. Only $£ 9.50$ PI.US £1-50 carr.

EX-RENTAL TVs
Complete with 13 channel tumers. Good cabinets Carriage fl 50 extra. 52.50 - $17^{\prime \prime} / 21^{\prime \prime}$ Simem (11 tube) $£ 4.50 ; 19^{\prime \prime}$ Nimline $£ 6 \cdot 50$: $\because 3^{\prime \prime}$ Slimline $£ 8 \cdot 50$ 19^{*} BBC 2 Sets $£ 14.50$.

PERFECT SPEAKERS EX TV
Phi 3 ohm (minimmm order two) 5 in. round. 8 in . hy 2 in. rectangular, $12 \frac{1}{} \mathrm{p}$ each. Add $7 \frac{1}{2}$ y p er speatier p. and p .

VALVES EX EQUIPMENT

91		30) 4		1'L36	
EBF89	121 p	PC97	17	81	
ECY 82	12	PCF8	171	PY81	15
EC1 80	71 p	PC8	719	$\mathrm{P}^{\prime} 80$	
EF80	12 p	PCF'80	71	P182	
EF85	1210	PCC89	1218	PY83	22
EF183	1210	1PCL85	2210	${ }_{\text {[}} 191$	17
E15184	1210	PCI 85	171 ${ }^{\text {d }}$ D	$6 \mathrm{H}^{2} 23$	17
EY86	1710	PCL8	171	30 PL 1	22
		PCL8	17	30 P 1	20
30 L 15	$12 \frac{1}{2}$	PCL83	12	30 F	
Add $2 \ddagger p$ per valve p, and p. Orters over \& $1 p$ and p. free					
HF TUNERS					
SLOT METERS-SPECIAL OFFER					
costs $35{ }^{\prime}$) $£ 1$ each incl. post ind packing or 10 for f 5 incl. post and packink.					
Please write with SAE for dnotations on any spares,					
TRADE DISPOSALS (Dept. T.S.), Thornbury Roundabout, Leeds Road, Bradford, Yorks (Tel. 665670)					
0 W					

FERRIC CHLORIDE

Anhydrous, Technical Quality
Packed in steel drums containing $100 \times 1 \mathrm{lb}$. bags
Guaranteed High Quality-Low Price
S. J. BRANSON

111 Park Road, Peterborough PE1 2TR
Marconi T.F. 144 G. £10
Wavemonitor G. 302 £6
Signal Injector A/S 85 £2
C.T. 54 V.V.M. with P.S.U. $\mathbf{£ 1 0}$

8 M.F.D., 2,500 volt capacitors $£ 3$
GREENWELD ELECTRONICS
24 Goodhart Way, West WIckham, Kent
Phone: 01-777 2001

COMPUTER PERIPHERALS

Closure of computer site makes available the

CREED M 175 equipment
CREED Model 75 Teleprinter with soundproof cover, desk and auto transmitter, choice of two
at $£ 300$ each. CREED Verifyer with Model 92 reader and Model 25 punch at EIS .
CREED Teleprinter, type 54 also keyboard perforators (in Ferranti) Pegasus Code) at 25 Teletype punches BRPE
proof box at $E 155$ also BRPE 1,5 hole converted to phonic wheel sync, choice of two at $E 40$ each. ELLIOTT T.2/94. 250 c.p.s. 8 hole Oprical Tape readers, choice of four at 1150 each.

Business Engineering Services,
Gt. Bentley, Colchester, Essex.
Telephone: 0473 (Ipswich)/77197 or 0206 (Gt.
Bentley) $25 / 550$.

MARTIN ASSOCIATES
TELEPHONE: ARBORFIELD CROSS 610
Oscilloscope H.P. 175A 0-50M Hz c/w 178IB $£ 350$
Oscilloscofe Tektronix 545 A ons $0-33 \mathrm{MHz}$
Oscilloscope Tektronix Plug-in Type CA..
Freq/Timer Counter HP 5233L $0-2 \mathrm{MHz}$
Freq/Timer Counter HP 3734 A O 0.5 MHz 5 digit $\quad \cdots \quad$ CSA $53 / \mathrm{HP}$ $0-10 \mathrm{KHz} 6$ digit
AS 1410 - 30 V IA
Freq/Timer Counter Venner TSA $53 / \mathrm{HP}$
PSU Solartron AS 1410 0-30V IA
PSU Advance PP6 Twin 0-30V 3A.
Recorder Record $3^{\prime \prime}$ Graphic 0-ImA $I^{\prime \prime}$ and
Recorder HP 7035 B X-Y Plotter. Almost
Recorder Cambridge Type L Potentio metric 4 point - $100-0+100^{\circ} \mathrm{C}$ Chart width $8^{\prime \prime}$. Chart speed $1^{\prime \prime}, 2^{\prime \prime}$ and $4^{\prime \prime} / \mathrm{hr}$ HF Ans
Wave Analyser Airmec 853 HF Analyser
$30 \mathrm{KHz}-30 \mathrm{MHz}$
Signal Generator Airmec 210 HF
Generator $30 \mathrm{KHz}-30 \mathrm{MHz}$. Stability 005%
Signal Generator Marconi TFI446
$\begin{array}{llr}\text { Millivoltmeter Advance VM 78 } & & \ldots \\ \text { Digital Voltmeter Dynamco DM } 2006 & \ldots & £ 22.50 \\ & & \end{array}$
Digital Voltmeter Dynamco DM 2020 © 6250
10001 b Thrust Vibration Systems Consisting of
Shaker and Amplifier. Also available 2501b
Thrust. Please ring for fuller details.
We are always in need of Good Test Equipment.
Contace us if you are considering disposal.

COLOUR, UHF and TV SERVICE SPARES. SPECIAL Panels designed to BBC standards. Pal filter an delay $£ 6$. chrominance $£ 6$, luminance $£ 4 \cdot 50$. encoded video input
35 p). Also $2 \cdot 50 \mathrm{P} / \mathrm{P}$
quantity
Colour
25 (or set of 4 £ $17 \cdot 50 \mathrm{P} / \mathrm{P}$ 35p). Also quantity Colour TV Camera Panels.
Plessey colour scan coils $£ 575 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$, convergence Plessey colour scan coils
coils $\mathrm{f} 3 \cdot 80 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. Blue lateral $£ 1-25 \mathrm{P} / \mathrm{P} 10 \mathrm{p}$ (or complete set £ $10 \mathrm{P} / \mathrm{P}$ 50p). Latest type colour scan and convergence coils, with electrical control of static conver-
gence $£ 6.25 \mathrm{P} / \mathrm{P} 35$. Colour LOPT assembly incl. EHT
 chrominance panel $£ 1 \mathrm{P} / \mathrm{P} .25 \mathrm{p}$. Integrated transistd decoder unit incl. circuits
OFFER, leading Brit. maker's surplus 625
single OFFER, leading Brit maker's surplus 625 single
standard TV chassis, latest design. almost complete, includes transistd IF stages, frame and line time
bases, transformers, etc., incl. circuit, 88.65 P/P 50 p. bases, transformers, etc., incl. circuit, \& $8.65 \mathrm{P} / \mathrm{P}$ 50p.
B9D valve bases for colour valves and PL500 series B9D valve bases for colour valves and PL500 series
$12 \frac{1}{2} \mathrm{p}$ P/P 5 p . UHF tuners transistorised, rotary slow motion drive or push bited UHF/VHF 6 position push button transistorised tuner easily adjusted as 6 position UHF tuner, incl.
 £4.75 (or salvaged £2.50) P/P 25p. MURPHY 600/
700 series complete UHF conversion kits incl. tuner, drive assy., 625 IF amplifie less tuner $£ 3 \mathrm{P} / \mathrm{P}$ 50p. SOBELL/GEC $405 / 625$ switch
 Ultra 625 IF AMP chassis and circuit $£ 1.50$ P/P 30p
Philips 625 IF AMP panel and circuit, $£ 1$ P/P 30p SOBELL/GEC 2015 series $405 / 625$ printed circuit IF
I $1.95 \mathrm{P} / \mathrm{P} \quad 30 \mathrm{p}$. UHF list available on request. VHF tuners AB miniature with UHF
injection suitable K.B., Baird, Ferguson 75 p P/P injection suitable K.B., Baird, Ferguson ${ }^{75 \mathrm{p}} \mathrm{P} / \mathrm{P}$
$30 \mathrm{p}, \mathrm{Cyldon} \mathrm{C}$ £ $\mathrm{P} / \mathbf{P} 30 \mathrm{p}$, Pye 13 ch . incremental £ $1.25 \mathrm{P} / \mathrm{P}$ 30p. Ekco. Fertanti, Plessey push button
tuner with UHF injection $£ 1.50 \mathrm{P} / \mathrm{P}$ 30p. New fre30p. Philips export continental turret tuners 75p P/P 30p. Many others available. Large selection
channel coils, LopTs, Scan Coils. FOPTs available channel coils, LOPTs, Scan Coiks. FOPTs available
for most popular makes. Surplus Ultra, Murphy 110° for most popular makes. Surplus ultra, Murphy 110°
Scan coils 75 p P/P 30 p . Sobell frame o/p transiormers Fop P / P 30p. Transistorlsed time base panel for $\begin{array}{lllll}\text { Ferguson portable } & £ 2.50 & P / P & 30 \text { p. } & \text { Pye/Labgear } \\ \text { Fransistd. masthead } & \text { UHF } & \text { booster } & £ 4 \cdot 25 \text {, UHF/VHF/ }\end{array}$ FM set back booster, mains operated £5.90 Wolsey masthead \quad amplifier power unit
Surplus BBC2
Belling
Lee "Skyline" amplifiers £3 (Callers only).-MANOR SUPPLIES ${ }_{172}$ WEST END LANE, LONDON. N.W. 6 (No. 28 Bus or W. Hampstead Tube Station). MAIL ORDER: 64 01-794 8751
COLOUR TELEVISION components for the home constructor, all parts listed in new specialist catà logue, including delay lines, scan parts L.O.P.T.'s,
Xtals. etc. S.A.E. to Forgestone components. Ketteringham, Wymondham, Norfolk. [125
FOR sale over 450 Diodes, transistors and thyristors
including high power types. All items are new and including high power types. All items a
unused. Write for lists to Box W.W. 1272 .
LOWREY Model K Electronic Organ complete working Less Keyboards, contains 13 rhythm generator Leslie 4 dividers on each, etc. Reverb, Carriage arranged. PB 4 dividers on each, etc. ${ }^{\text {E }} 75$. Carriage arranged PB
[130 Mini MAINS Transformer for 9 V dc power packs $0-230-250 \mathrm{~V}$ to $7-0.7 \mathrm{~V}$. 120 mA . Oniy $£ 0.70$. UK post 5 p Amatronix Ltd, 396 Selsdon Road, S. Croydon, Surrey
CR2 0DE.
New catalogue No. 18, containing credit voucher Nalue 50p, now avaitable. Manufacturers' new and surplus electric and mechanical components, price $22 \frac{2}{2} \mathrm{p}$ post free. Arthur Sallis Radio Control Ltd., 28 Gardner
Street, Brighton. Sussex.
O NE Slee R.K. Welding Machine complete with Thyratron Synchronous Timer, suitable for welding phone. The Administrative Officer, Brooke Bond Liebig Resęarch Centre, 073-52b 2411 [1295
$\mathrm{O}_{40}^{\mathrm{NE}}$ Collins type 30J Radio Transmitter. Frequencies vandervell Products Ltd., Majdenhead, Berks. [130

SERVICE Sheets (1925-1971) for TV's, Radios, Tran8,000 models pvailable S A E enquiries Hamilton Radio 54 London Road, Bexhill. Tel. Bexhill $7097 . \quad[1281$
VACUUM pumps, coating plant, pyrometers, recorders Brett 1 May Road Croydon, CRO 2QP Surrey Barret, $1-684-9917$.
Phone $01-6050$
1056
VHF. ${ }^{80-180} \mathrm{mHZ}$ Receiver, Tuner, Converter Kit, complete or S.A.E. for free literature. Johnsons
(Radio), Worcester WR1 2DT. WIRELESS WORLD Jan. 1913-Dec. 1950 (1920-1942 6 MM Tubular Flanged Bulbs. $6 \mathrm{~V} 0 \cdot 2 \mathrm{~A}, 5 \mathrm{p}$ each in

QQIPMENT - SURPLUS
 QND SECONDHAND

SIGNAL generators, oscilloscopes, output meters, wave S voltmeters, frequency meters, multi-range meters, ville Oid Hall. Ashville Rd. London, E.11. Ley. 4986

RECEIVERS AND AMPLIFIERS

SURRLUS AND SECONDHAND

$H_{\text {etc Rx5s, etc., AR88, CR100, BRT400. G209, S } 640 \text {, }}$ Ashville Old Hall. Ashville Rd., London, E.11. Ley,
[655

NEW GRAM AND SOUND EQUIPMENT
 GLASGOW.-Recorders bought, sold, exchanged;

TAPE RECORDING ETC

YOUR TAPES TO DISC- - $£ 6,000$ Lathe. From $£ 1 \cdot 50$, Ltudio/Location Unit. S.A.E. Leaftet. Deroy Studios,
High Bank, Hawk St., Carnforth, Lancs.

GOR MIRE

FOR HIRE CCTV equipment, including cameras, monitors, video tape recorders and tape-any period.
[75

ARTICLESWANTED

HIGHEST CASH PRICES for Revox, Ferrograph, SPEAKERSET STENTORIAN WHITELEY HF1012, T816, CX1500. Box No. W.W. 1268
SERVICEABLE CRT for Tektronix 555 double beam not and circuit manual. Ring Oxshott (Surrey) $\begin{array}{r}3311 . \\ {[1310}\end{array}$

Wanted, all types of communications receivers Electronics, Ltd. Ashville old Hall, Ashville Rd., LonWANTED, televisions, tape recorders, radiograms, new valves, transistors, etc.-Stan Willetts, 37

VALVES WANTED

W^{E} buy new valves, transistors and clean new components, large or small quantities, all detalls,
quotation by return.-Walton's Wireless
Stores,
Worcester
St. Wolverhampton.

CAPACITYAVATLABLE

A irtronics LTD., for Cotl Winding-large or small pliers to P.O.. M.O.D., etc. Export enquiries welcomed a Walerand Road, London, S.E.13. Tel. 01-852 1706 [61
Coll winding capacity. Transformers, chokes R.F. coils, etc., to your specification. Sweetnam \& Bradley Ltd., Bristol Road, Malmesbury, Wilts., or Tel.
[905
Malmesbury 3491.
D duction of electronic equipment, low rates. YOUNG ELECTRONICS, 54 Lawford Rd., London, N.W.5. 01-267 0201.
METALWORK, all types cabinets, chassis, racks, or to your own specification, capacity available PHILPOT'S METALWORKS, Ltd., Chapman St. Loughborough
W^{E} undertake the manufacture of transformers singly or in quantities to any specification. All Co. Ltd. 820 a Harrow Road, Kensal Rise, N.W. 10. W^{E} can assist you by manufacturing p.c.bs, control tronic Allied Components Ltd, BCA Estate, Measham.

TECHNICAL TRAINXNC

A M.S.E. (ELEC.); City \& Guilds, R.TE.B. Cert., Refund" terms. Wide range of Courses in Elec. Engineering, Design, Installation, Repairs, Refrigeration, Electronics, Radio \& TV, etc. Send for full details and ENGINEERING TECHNOLOGY, Dept. 152 K , Alder-
$\mathrm{B}^{\text {ECOME "Technically Quallfied" in your spare time, }}$ B guaranteed diploma and exam. homestudy courses in radio, TV servicing and maintenance. R.T.E.B., City \& -Chambers College (Dept. 837K), Aldermaston Court Reading RG7 4PF. [16

TECHNICAL TRAINING in Radio, TV and Electronics through world-famous ICS. For details of proven home-study courses write: ICS, Dept. 443, Intertext
House, London, S.W.8. 4 UJ .

TUITION

COLOUR TV SERVICING. Be ready for the coming Colour TV boom. Learn the techniques of serneecially colour TV sets through new home-study courses approved by leading manufacturer. Full detalls from ICS, (D 558), Intertext House, London, S.W. 8 4UJ. [1263

HUNDREDS of top paid jobs in Engineering await 1 qualified men. Get a certificate through B.I.E.T. Home Study-Mech., Elec., Auto, Radio, TV, Draughts., FREE book.-B.I.E.T., Dept. 151K, Aldermaston Court, Reading RG7 4PF.

COURSES

3-year full-time course for students with 2 'A' levels to become-

CHARTERED
 PROFESSIONAL ELECTRONIC AND RADIO ENGINEERS

This modern course in solid-state electronics, starting in Sept. 1971, prepares students for entry into the Institution of Electronic and Radio Engineers and the Institution of Electrical Engineers.
For further information return the slip below.
 Department of Electronic and Communications Engineering, The Polytechnic of North London, Holloway Road, London N.7. 80B
Please send further details of your electronic engineering courses to:

NAME
ADDRESS

Electronics at The Open University

Catch up in your spare time by studying at home a new, introductory university course in Electromagnetics and Electronics which the Open University is offering in 1972.

Accepted students each receive an oscilloscope, and other equipment, to aug ment tuition by text, tutor. TV and radio. Whilst applicants are expected to have a scientific or technical background, no formal qualifications are needed
Further information can be obtained by writing to

TELEVISION AND RADIO TRAINING

(DAY ATTENDANCE COURSES)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of one year's duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Radar and Radio Transmission are also available following the TV course. Write for prospectus to: London Electronics College, Dept. B/5, 20 Penywern Road, Earls Court, London, S.W 5. Tel. 01-373 8721.

LAWSON
 NEW TUBES
 Lawson "Century 99" are brand new tubes. Using silver activated screens, micro fine aluminizing, high definition electron guns. resulting in superb performance and very tong life.
 LAWSON TUBES I8CHURCHDOWNRD. MALVERN, WORCS. Telephone: MALVERN 2100
 TELEVISION TUBES REBUILT TUBES
 Lawson "Red Label" rebuilt crts are particularly useful where cost is a vital factor such as in older sets or rental use. Red Label are completely rebuilt from REBUILT selected glass and are exact TUBES replacements.
 2 Years Guarantee both new and rebuilt FULL TUBE FITTINGS INSTRUCTIONS SUPPLIED CARR.INS.BYEXPRESS PASSENGER 14-19" 62 p 21-23" 75p

WW--084 FOR FURTHER DETAILS

INSTRUMENT CASES

WE BELIEVE THE FINEST INSTRUMENT CASE IN THE COUNTRY. BEATS ALL COMPETITORS FOR PRICE AND STRENGTH.

fibreglass press moulded in grey. and blue. supplied with 4 rubber FEET, 18 SWG ALLOY CHASSIS, 16 SWG ALLOY FRONT PANEL. FRONT PANEL HAS PROTECTIVE FILM FOR MARKING OUT AND PROTECTION. CHROMED DIE CAST HANDLE. THE CASE HAS TWO SETS OF RUNNERS MOULDED IN WHICH WILL TAKE ALLOY OR P.C. BOARD CHASSIS. SAME DAY OFF-THE-SHELF DELIVERY. THIS SIZE OF CASE CAN BE TURNED ON END TO MAKE $4^{\prime \prime} \mathrm{W} \times 6^{\prime \prime} \mathrm{H} \times 4^{\prime \prime} \mathrm{D}$. PLEASE ADVISE IF HANDLE \& FEET TO BE SUPPLIED LOOSE. PANEL PUNCHING AVAILABLE ON 100 UP. TRADE AND QUANTITY DISCOUNTS ON REQUEST.
FULL LIST OF ACCESSORIES AVAILABLE, SENT WITH EACH ORDER, ie SWITCHES, PANEL LAMPS, AMPLIFIERS, FUSES, ETC. NEXT SIZE OF CASE READY END OF JULY. $9^{\prime \prime} W \times 4^{\prime \prime} H \times 3^{\prime \prime} D$

E. R. NICHOLLS,

46 Lowfield Road, Stockport, Cheshire. Tel: 061-480 2179

ANDOR ELECTRONICS LTD.

for new
Mullard, Ferranti, R.C.A. Motorola semiconductors

Mullard-resistors-capacitors ZTX108 12p MPF102 42 $\frac{1}{2}$ p AF117 25p ZTX300 15p MPF105 40p BC107 19p ZTX500 15p 2N3053 27p BC109 19p P. \& P. 10p

Visit our new retail shop
45 LOWER HILLGATE STOCKPORT 061-480-9791

EXCLUSIVE OFFERS

AMPEX

Precision Instrumentation and Data TAPE RECORDER-REPRODUCERS

TYPE FR 100A: gix speeds
per second, 5 tracks, \ddagger^{*} tape
(easily changed to $t^{\prime \prime}$ or 1^{*} by changing rollers and heads), control. Precision servo contro
 1 per cent. Accuracy 10^{5} per 404 cycles.
 4 speeds, ${ }^{\text {per sechat, and } 4 \text { track, easily }}$ changed to or 1 , and of
lighter and more modern conlighter and more modern con-
struction than Type FR 100 A PRICE £380 for fither type. The above comprise complete units with electronics in

HIGHEST QUALITY 19" RACK MOUNTING CABINETS

Totally Enclosed
TYPE A: 84° high $\times 24^{0^{\circ}}$ deep $\times 24^{*}$ wide
DOUBLE SIDED. These cabinets will take rack panel both sides, that is hack and front and are drilled and are fitted with "Instantit" patent fully adjustable rack mounts which are vertically and horizontally adjustable

- these allow the panels to be recessed when they are -these allow the panels to be recessed when they are enclose thern by donrs.
\star Other fatures include-all corners and edges roumied. Interior fittings tropicalised. Remorable thilt in cable ducts. Removable built in blower ducts. Ventilated and Instantly detachabie doors fitted expanding bolts if ordered wlth cabinels. Made in U.B. A.- Coast the American Government $£ 107$ before devaluation. Finlshed in grey primer and in new condition.
Full length taor $£ 5$ each extra)
Doors are not needed if pavels are mounted' hack and front and they are not required to be enclosed.

TYPE C: 80° high $\times 27^{\circ}$ deep $\times 22^{\circ}$ wide. American Standard Pirst Grade totilly enclosed venliated $19{ }^{\circ}$ rack Open front itted rack mounts drilled and tapped all the way down every t°. Full length rear door with latch. Finlshed in grey these cabincts have been used but are in recommended thes are re-spraved before use.
TYPE D: 76° high $\times 18^{\prime \prime}$ (Carriage extra) $\times 22^{* \prime}$ wide. These are gilghtly smaller nnd finished In black otherwise they are Made by IR.C.A. of U.S.A.
PRICE $£ 12.50$ each (Carriage extra) ALSO OTHER TYPES 80° TO 88° HIGH AVAILABLE

Full detalls of all above avallable on request.
TRAFSPORT: We have made iepecial economlcalt ransport undamaged and to svold expensive crating. Full details on request.

40-page list of aver 1,000 different items in atock available-keep one by you.

[^11]
DESIGNER-APPROVED "W.W." HI-FIKITS

\star LINSLEY HOOD MODULAR PRE-AMP July 1969 no-compromise design for the purist. Compactly built on Lektrokit, Layout details Dec 1970 mods. for pre-amp \& low amp available.

\star LINSLEY HOOD SIMPLE PRE-AMP

Designer-approved PCB (marked component locations) gives excellent results with ceramic pick-up. Kit includes alo parts as in May 1970 article plus
front panel. Mono $\mathbf{E 6} 35$. Stereo $\leqslant 11.50$ inc. p.p.
\& BAILEY 30W AMPLIFJER (Nov. '68)
Mk. IV PCB has extra pre-set for quiescent current. Output capacitor and PCB mount directly and compactly on specially designed generous heat-sink * LINSLEY HOOD $15-20 \mathrm{~W}$ AMPLIFIER

July 1970 latest and ultimate design. O/P capacitor, $\mathrm{PCB}, \mathrm{Tr} 3,4$ \& 5 mount compactly onto heat-sink. Our kit personally tested and approved by the designer. Gain of O/P TR's >100.
POWER SUPPLIES (simple and stab'd) available.
HIGH QUALITY components inc'g Mullard, Hunts, TCC capacitors, Plessey moulded pre-sets O/P Tr's matched $\pm 10 \%$ @ lc=1 amp.

AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any one article at 30p
DETAILED PRICE LISTS at 5p inc. p.p.
PERSONAL CALLERS WELCOME-BY
APPOINTMENT. DESPATCH BY RETURN

A. 1 FACTORS

72 Blake Road, Stapleford, Nottingham

Tel. Nottingham 46051 Giro No. 4876008 (8 a.m.-10 p.m. 7 days/week)

Will dim ug to $\mathbf{4 0 0}$ eatts of Incandaserat lightias frem zere to full trilllanct. This ualt simaly realaces the nermal light switeli, and is filted in a matter of minutes. An MX mantligg frame is suppliet, for use when more depth is roculicel.

PRICE Complete Kit $£ 2.80$ Built and tested $£ 3.20$ as supplied to Industry. Schools. Hospitals.

Diathane Ltd.

111 Sheffield Road. Wymondham, NORFOLK
Please add $£ 0.10$ postage and packing

BETTER GET 'SET'

BEST OFFER YETI Famous BC. 221 Frequency Meter $125 \mathrm{KHZ}-20 \mathrm{MHz}$. Complete with valves, crystal and charts. Only 613.50 . Carr. 51.50 Limited number.
Order Now
Marconi 801 A Signal Genara tor, $10-310$ MHZ. In original
transit case. ©45. Carr. $\{2.50$.
Crystal Calibrator No. Io. Crystal controlled $\begin{aligned} & \text { heterodyne } \\ & \text { covering } 500 \mathrm{KHz} \text { - } 10 \mathrm{MHz} \text { (Harmemeter }\end{aligned}$ (Harmics

Test equipment for $62 T \mathrm{M}$
Only 44.25 . P \& P. 50

10 MHz . 17 . 50 . Carr. $\mathrm{E2}$.

No. 19 TM/RC Rebuilt. Complete station with PSU, Cables, Mic, Aerial etc. $622 \cdot 50$. Carr. 63 No. 19 SET 500uA Meters. Scaled $0-600$ and $0-15 v$. Brand New, Boxed
E125. Post paid. (Quantity prices on request.)
All No. 19 spares in stock. Complete instruction book equipment. $37 \pm$ p. Post paid R.F. Amplifier. To increase

output of No. 19 set. Oni Instruction book for RF Amp 63.75. Carr, $11 \cdot 25$
 Heavy Duty Batteries. New
in metal cases with carrying
 6v. 85 . Carr. $\mathrm{El} \cdot 25^{13^{\circ}} \times 94^{\circ} \times 7$
63.

Surplus Electronic Trading

Drivers End Lane, Codicote, Hitchin, Herts,

INTERCONTINENTAL COMPONENTS for:

Electrolytic Capacitors

from 6 V to 500 V DC wkg
5 mfd to $10,000 \mathrm{mfd}$

Available from stock

INTERCONTINENTAL COMPONENTS

Electric House, 18 KingSt., Maidenhead, Berks. 5L6 IEG

Tel: MAIDENHEAD 32466

CASH LMMEDIATELY AVAILABLE for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12. Telephone: 014452713014450749 Evenings: 019587624

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.

MULTICORE CABLE IN STOCK

 CONNECTING WIRESLarge quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W.4. 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

CUT THECOST Of SEFVICLING WITH LOMGLIIE
 $\underset{J}{\text { Oshiba }}$

LOOK AT THESE PRICES AND MAKE YOURSELF POUNDS MORE PROFIT

Type	Goods	P.Tax	Total
EB. 91	131/2p	51/2p	19p
ECC. 82	21p	9 p	30p
EF. 80	$19 p$	$8 p$	27p
EF. 183	26p	11p	37p
EF. 184	26p	11p	37p
PCC. 189	29p	12p	$41 p$
PC.F. 80	24p	10p	34p
PCFF. 86	28p	111/2p	391/2p
PCF. 801	30p	121/2p	421/2p
PCF. 802	29p	12p	4 \% ${ }^{\text {p }}$
PCL 82	24p	10p	34p
PCL. 84	24p	10p	34p
PCL. 85	26p	11p	37p
PCL. 86	27p	11p	38p
PFL. 200	37p	16p	53p
PL. 36	38p	16p	54 p
PL. 84	191/2p	8 p	271/2p
PL. 504	39p	16p	55p
PL. 508	44p	18p	62p
PL. 509	67p	28p	95p
PY.500A	44p	18p	62p
PY. 800	201/2	81/2p	29p
Subject to settlement discount 5% of Goods content 7 days and $2 \frac{1}{2} \%$ monthly.			
Toshiba valves are being used extensively by major national companies. Here is you opportunity to take odvantage of the sovings to be made.			

COMBINED PRECISION COMPONENTS, (PRESTON) LTD.
3, Maor Park Avenue, Preston, PR1 6AS, Loncoshire
Tel. Home Sales Division. Preston 077256347
Expopt Division. Preston 077254157

JOHN SAYS

 AUTO RHYTHM from Dewtron modules. Simple Anit for walrz, foxtrot etc., costs $\kappa 16.55$ in modules ORGAN, PERCUSSION and other fascinating 254 Ringwood Road, Forndown, Dorsee

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD

Send P.O. 15 p for 48 page booklet providing all necessary information on Record Care

CECIL E. WATTS LIMITED
Darby House
Sunbury-on-Thames, Middx.

Private enquiries, send 50 in stamps for brochure
THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works, Wellington Crescent New Malden, Surrey
101.9420334 \& 29881

LOWE EEECTRONICS

119 Cavendish Road, Matlock, Derbyshire Tel: Matlock 2817

SSB Communications Equipment, Test Gear, etc. Importers of Yaesu Musen, F E \& Inoue Equipment.

In addition to our wide range of new equipment, we offer the following second-hand receivers and test gear.

Receivers:

R.C.A. $8516 \mathrm{~L}, £ 150$.

Collins URR $39.1, £ 250$
Collins 51 J3, £150.
Collins 51J4, £275.
Collins URR 390A, $£ 350$.
Collins URR 388, £225
Test Gear:
Valve tester TV-2C/U, £35
Frequency shift converters CV-116/URR, £75: CV-89A/URA-8A, £60.
Signal generators CT212 (85 kHz to 32 $\mathrm{MHz} A M / F M)$. $£ 29.50$
BC221‘s, £15-£25, according to condition and linearity.

Mikes, keys, keyers, monitors, mobile antennas (Tavasu), headsets, intercomms. VTVM's, low voltage regulated p.s.u.'s, SWR bridges, components, etc., etc.
Have you equipment to sell? May pay you to get our quote.
Send a large s.a.e. and we will fill it with lists of equipment, components, sundries, etc., etc.

OSMABET LTD.

We make transformers amongat other things.
AUTO TRANBFORMERS. $0-110-200-220-240 \mathrm{v}$ a.c. up or

 MAINS TRANSFORMERS. Prim 200/240 a.c. TX2 250-0 250 v 150 Ma , 6.3 v 4 A CT, $0-5-6.3 \mathrm{v} 3 \mathrm{~A}$. $£ 4 \cdot 05$; TX

MOLTIVOLT TRANSFORMERS. Prim $200 / 240 \mathrm{y}$ a.c $25-30-35-40-56-60, \quad 10-0-10, \quad 20-0-20,30-0.30 \mathrm{v}$ a.c. £2.25; OMT4/2 2 A £3.45; OMTS/1 One tapped sec $40-50-60-80-90-100-110 \mathrm{~F}$ giving $10-20-30-40-50-60-70-80$ $1 \mathrm{~A} £ 3.45$: Duo $12 \mathrm{v} 4 \mathrm{~A}-12 \mathrm{v} 4 \mathrm{~A}$ £ $3 \cdot 60$; Duo 0 -10-20-25 $2_{2 \mathrm{~A} \cdot 0 \cdot 10-20^{-}-25 \mathrm{v}} 2 \mathrm{~A} £ 3 \cdot 60$.
24v AUTO TRANSFORMERS. Input 200/240v a.c., output
24 V 160w $\mathrm{EA} 40 ; 250 \mathrm{~W}$ \&8. 75 ; for quartz lodine lamps LOW VOLTAGE TRANSFORMERS. Prim $200 / 240 \mathrm{v}$ a.c.

 MIDGET RECTIFIRR TRANSFORMERS. Prim 200/240v a.c. size $1 \% \times 2 \times 14$ in. PPT1 $9.0-9 \mathrm{y}$ 03A; PPT 2 12.0.12 MT9v $9-0-9 \mathrm{v}$ 1A 98p; MT12v 12-0-12v 1A; MT20 $20-0.20 \mathrm{v}$ $0.75 £ 1.13$ each.
WORM CAPACITOR DISCHARGE TGNITION TRANS O/P TRANSFORMERS FOR POWER AMPLIFIERS 30 watt, A-A load $3 \mathrm{~K}, ~ £ 6 \cdot 75 ; 100$ watt A-A load $3 \mathrm{~K}, ~ £ 11 \cdot 40$;
up to 400 watt to order.

MATS TRANGFORMERS FOR POWER AMPLIFIERS TX 6 Prim $200 / 240 \mathrm{a}$ a.c. $\sec , 420-0.425 \mathrm{v} ~ 500 ~ M a, ~ 6-3 \mathrm{v} 6 \mathrm{~A}$
 LOUDSPEAKERS FOR POWER AMPLIFIERS. New bozed, tamous makes for public address aystenis, bass
guitars, electronic organs, Hi Fi , ete. 12 in . 15 W W/Tweeter 24.05; $12 \mathrm{in} .25 \mathrm{~W} 25 \cdot 60 ; 12 \mathrm{in}$. $35 \mathrm{~W}, 27 \cdot 20 ; 12 \mathrm{in} .50 \mathrm{~W}$ E8.45: $15 \mathrm{~min} .60 \mathrm{~W} £ 11 \cdot 30 ; 18 \mathrm{in}$. $100 \mathrm{~W} £ 18 \cdot 80 ;$ E.M.I.
 3,8 and 15 ohms, $£ 4$ each. Horn tweeters $2-16 \mathrm{KHz} 8$, 16 ohms, $£ 1.50$ each
 £1.90 3, 8 or 15 ohms.
BULK TAPE ERAsER. Instant erasure of any size spool magnetic tape, Casgettes, demagnetizing of tape heads,
$200 / 240$ a.c. $£ 2 \cdot 40$ P. \& P. 20p. Leafiet S.A.E.
12v LT FLUORESCENT LIGHTING. Complete 8 watt 12 in. ${ }^{\mathrm{f}} \mathrm{E} 5 \cdot 75$.

PRINTED CIRCUIT ETCHING KITS. Comprehensive factory pack, with anl polutions, and equipment to make your own P.C.
S.A.E. ENC
S.A.E. ENQUIRIES LISTS. MAIL ORDER ONLT Carriage extra on all orders. Tel: $01-8589314$

Thanks to a bulk purchase we can offer
BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the marker, n way are imported used or sub-standard cos 24 -hour imported, despatch service.
Should goods not m price and postage will be refunded
S.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{ft} & 10 \mathrm{p} & 5 \mathrm{in} . & 600 \mathrm{ft} & 30 \mathrm{p} \\ 52 \mathrm{in} & & 900 \mathrm{ft} & 40 \mathrm{p} & 7 \mathrm{in} & 200 \mathrm{f}\end{array}\right.$ L.P. $\left\{\begin{array}{lrrrrr}5 \frac{2}{2} \mathrm{in} . & 900 \mathrm{ft} & \text { 40p } & 7 \mathrm{in}, & 1,200 \mathrm{ft} & \text { 45p } \\ 3 \mathrm{in} . & 225 \mathrm{ft} & 121 \mathrm{p} & 5 \mathrm{in}, & 500 \mathrm{ft}, & 42 \frac{1}{2} \mathrm{p} \\ 57 \mathrm{in} . & 1,200 \mathrm{ft} . & 50 \mathrm{p} & 7 \mathrm{in} . & 1,800 \mathrm{ft} & 65 \mathrm{p}\end{array}\right.$
 Postage on all orders $7 \frac{1}{2} \mathrm{p}$
COMPACT TAPE CASSETTES AT HALF PRICE
60, 90 , and 120 minutes playing time, in original
MC 6045 p each. MC $9062 \frac{1}{2}$ p each. MC 120 92p each
STARMAN TAPES
$2 B$ LINKSCROFT AVENUE, ASHFORD, MIDDX.

Ashford 53020

7400	210	7410	21 p	7474	40p
7486	43p	709	40p	741	73p
DALO PC MARKER			80 p	2N3055	60p
ME0402	21 p	ME0412	20D	ME0413	17p
ME1002	120	ME4101	$11 p$	ME4102	12p
ME6001	15p	ME6101	15p	MEL11	35p
MEF104	$51 口$	MP8111	35p	1N4001	7p
JEF ELECTRONICS (WW7)					
York House, 12 York Drive, Grappenhall, Warrington, Lancs. Mail Order Only- C.W.O. P. \& P. 51 per order. Overseas 37p Money back if not satisfed.					

PRINTED CRICUITS
 E ELECTRONIC EOUIPMENT
 DLARGE \& SMALL QUANTITIES
 CFULL DESIGN \& P.T.H
 PROTOTYPE SERVICE
 ASSEMBLIES AT REASONABLE PRICES for tull dotais contact

 K.J.BENTLEY \& PARTMERS 18 greenacres ROAD OLDHAM Tel 0616240939

QUARTZ CRYSTAL
UNITS from
• 1.4-20 MHZ
•FAST DELIVERY

- HIGH STABILITY
- IO DEF 5271-A
TEL. HYTHE B961

WE PURCHASE ALL FORMS
 OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.

7, 9, 11 Arthur Road, Reading,
Berks.
Tel: 582605

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.

Buyer will call to inspect anywhere.
Concorde Instrument Co.
28 Cricklewood Broadway London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables: CONIST LONDON

KEYNEGTOB

The safe quick way to connect electrical equipment to the mains

Comnects anything alectrical in seconds. No plugs, sockets or bare wirgs I Takes multi paraltel connections to 13 amps. Send

 to 13 amps. Senfor leallet
EB INSTRUMENTS

49-53 PANCRAS ROAD LONDON NW.1 Tel:01-8377781

WW-087 FOR FURTHER DETAILS

DOUGLAS
 auto-transformers

Steel Case with Flexible Input Lead \& American 15 Amp. Two-Pole Outlet Socket(s) ; 1 Socket up to 400 VA.

2 Sockets above 400 VA

All sizes tapped:-115-220-240 Volts. 50 100 HZ
20 VA. Code XMT 1131 G. Price f1.87. P. \& P. 24p. 500 VA. Code XMT 671 G. Price $\mathbf{f 6 . 7 5}$ P. \& P. 50p. TRANSFORMERS for all purposes available.
Over 200 types IN STOCK; and from agents. Please send for lists.
DOUGLAS ELECTRONIC INDUSTRIES LTD., Dept. MO.12, Thames St., LOUTH, Lincs.

TELERADIO ELECTRONICS SPECIAL

Hi Fi Amplifier Kits by Linsley Hood Bailey, Nigon Jones with P.C. Board Radio Control Kit Systems. Details gladly sent on request.

325/7, Fore St., Edmonton, N.9. 01.807.3719

WW DESIGNS BUILT \& TESTED

Nelson Jones FM Tuner £16
Phased locked stereo decoder $£ 13$
YOUNG ELECTRONICS
54 Lawford Road, London NW5 2LN. 01-267 0201

Newest, neatest system ever devised for storing small parts and components: resistors, capacitors. diodes. transistors. etc. Rigid plastic units, interlock together in vertical and horizonta combinations. Transparent plastic drawers have label slots/handles on front. Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!

Single units (1D) $£ 1.35$ per dozen size approx $\left(2 \frac{1^{\prime \prime}}{4}\right.$ high $2 \frac{1}{4}^{\prime \prime}$ wide $5^{\prime \prime}$ deep) 2D $£ 2.25$ per dozen. 3D $£ 2.35$ for 8 units. 6D2 $\mathbf{f 3 . 6 5}$ for 8 units (2 3D's in 1 outer) 6D1 £3.30 for 8 units. Postage/Carriage 35 p for orders under $£ 5$. Carriage paid for orders over $£ 5$.

PLUS QUANTITY DISCOUNTS!

Orders $£ 5$ and over DEDUCT 5% in the $£$ Orders $£ 10$ and over DEDUCT $7 \frac{1}{2} \%$ in the $£$ Orders $£ 20$ and over DEDUCT 10% in the $£$

QUOTATIONS FOR LARGER OUANTITIES

(Dept. WW8), 124 CRICklewood BROADWAY, LONODN, N.W. 2 TEL. 01-450 4844

ALL PURPOSE TRANSISTOR PRE-AMPLIFIER \star FOR MIKE TAPE P GUITA
 Response 25 c .p.s. .to $25 \mathrm{Kc/s}, 26$ db gain. For use with valve
or transistor equipment. Full instructions. 90 P Post
Free Brand new. British made. Details S.A.E. 0 free

BAKER 12 in. MAJOR $£ 9$
 30-14,500 c.p.s., 12 in . double cone, woofer and tweeter cone together with a BAKER ceramic magnet 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Rated 20 watts. Voice coils a vailable 3 or 8 or 15 ohms. Post Free. Module kit, 30-17,000 c.p.s. Size $19 \times 12 \frac{1}{2}$ in, with tweeter, crossover. baffle, instructions. $\leq| | .50$ Ideal for Hi fi or P.A. LOUDSPEAKER CABINE ft . run. 18 in. wide, 15 p per ft. run.

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER 200/250 A.C.
Leaflet S.A.E.
$\left.£ 2 \cdot 35 \begin{array}{l}\text { Post } \\ 15 p\end{array}\right)=1$
RETURN OF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE - SPARES RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD. CROYDON. TEI: 01-684-1665

STOP PRESS

KIENZLE ELECTRONIC PRINTERS
Type D1 14 print positions $\mathbf{£ 1 6 0}$.
Type D1 13 print positions $£ 150$.
Type D1-SW 14 print positions, programmable carriage $£ 200$.
Type D11-E 14 print positions $£ 150$.
Stands for above $\mathbf{£ 1 0}$.
These printers are fully refurbished and are sold with a 3 months warranty.

TEKTRONIX OSCILLOSCOPE
TYPE 517A
This is a wide band high voltage single beam oscilloscope designed for observing waveforms having extremely short rise times. Transient response-rise time 7 nanoseconds. Sensitivity- $0.05 \mathrm{v} / \mathrm{cm}$; with probe $0.1 \mathrm{v} / \mathrm{cm}$. Price $£ 295$ with 3 months warranty.

HILGER \& WATTS ULTRASCAN

 TYPE H999 Mk. IIA simple to operate recording spectrophotometer for rapid routine analysis in the range 200-750 millimicron to an accuracy of $\pm 1 \%$ or better. This instrument is ideal for laboratories where a great deal of spectrophotometric work is done.
This instrument is in excellent condition and is offered at $£ 500$ complete with accessories and instruction manual.

ELECTRONIC BROKERS LIMITED
49-53 Pancras Road, London, N.W. 1 Telephone 01-837 7781

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 45p (9/\%) PER LINE. Average seven words per
line. Minimum two lines.

- Name and address to be included in charge if used in advertisement.
Box No. Allow two words plus 25p (5/-).
- Cheques etc., payable to "Wireless World" and crossed " \& Co."
- Press Day 12 th August for September 1971 issue.

NAME...
ADDRESS \qquad
\qquad
\qquad

Please write in block letters with ball pen or pencil.

We can't wait to expand your laboratory

in $\mathbf{2 4}$ hours you can hire some of the World's top instruments at competitive prices

Southern Office: Cores End Road, Bourne End, Bucks. SL8 5AS. Northern Office: Shearer House, Dunham Road, Altrincham, Cheshire

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 85-92

	Page		Page		Page
Al Factors	94	Hall Electric Ltd.	8	Quality Electronics Ltd	16
Acoustical Mfg. Co., Ltd	29	Harris Electronics (London) Ltd	24	Quartz Crystal Co., Ltd..	95
Adcola Products Letd.	Cover iii	Harris, P.	93		
Advance Electronics Ltd	3	Hart Electronics.	64		
A.E.G. (G.B.) Ltd.	7	Hatfield Instruments Ltd.	30		
Anders Electronics Ltd	28, 34	Heath (Gloucester) Ltd.	${ }^{27}$	Radio \& TV Components Ltd.	54
Andor Electronics Ltd.	93	Henry's Radio Ltd. . .	56, 57		54
A.N.T.E.X. Ltd.	$\begin{array}{r}44 \\ 23 \\ \hline\end{array}$	Henson, R., Ltd.	. 94	Radio, Pomponents Specialists L	97 78
Arrow Electric Switches Lid	36			Rank Wharfedale Lrd.	32
	28			R.C.S. Electronics .	20
Audix, B. B. Lid.		I.C.S. Ltd.	60	Reslosound Ltd.	
		I.M.O. Precision Controls Ltd.		R.S.C. Hi-Fi Centres Ltd.	
		Instructional Handbook Supplies	. 96	R.S.T. Valves Ltd.	54
Barrie Electronics.	53, 93	Integrex Ltd. .	60		
Batey, W., \& Co.	14	Intercontinental Components.	. 94		
Bentley, K. J., \& Partners.		I.T.T. Mobile Communications	Cover ii		
Bentley Acoustical Corporation Ltd	- 68	Ivoryet Ltd.	. 97		
B.I.E.T................	13			Samson Electronics Led. .	81
Bi-Pak Semiconductors.	80				75
Bi-Pre-Pak Ltd.	52 95			Servo \& Electronic Sales Litd.	75 51
Black, J.	- 95	Jackson Bros. (London) Lit	32	Shure Electronics Led.	40
Bowthorpe Hellerman Ltd Bull, J. (Electrical) Ltd. .	- 7^{9}	Jackson Bros. (London) Lt	- 12	Sinclair Radionics Ltd.	47, 48,49
Bull, J. (Electrical) Ltd.	- 72	Jermyn Industries	. 16	S.M.E. Ltd.	$\cdots{ }^{1} \times 1$
					61, 62, 63
Cambridge Audio Laboratories Led.				Special Product Distributors Lid	30
Carston Electronics Led........	12	Keytronics.	64	Starman Tapes............	95
Cesar Products Ltd. (Yukan)	- 94			Steed, John, Research	
Chiltmead Letd...	73, 96			Stephens Electronics.	74
Colomor (Electronics Ltd.)	83			Sugdech E, Ltd.	14
Combined Precision Components	- 95	Labhire Ltd.	98	Surplus Electronic Tradi	${ }_{94}^{16}$
Computer Sales and Service Lid	- 57	Lasky's Radio Led.	53	Sutton Electronics Ltd.....	94
Co Croydon Precision Inst. Co	- 16	Lawson Tubes.	93		94
		Leda Tapes.	96		
		Ledon Instruments Ltd	30		
Dewtron.		Light Soldering Developments Ltd	26	T.B. Technical Ltd.	
Dexter \& Co	22	Lowe Electronics.	95	Telequipment Ltd.	
Diathane Ltd	94	L.S.T. Components Ltd	66	Teleradio, The (Edmonton), Ltd	96
Diotran Ltd..	. 82			Teonex Ltd. . ${ }^{\text {Tinsley, }}$	22
Dixons Technical (CCTV) Lid.	- ${ }_{96}$			Trio Corporation Led.	15 6
Douglas Electronic Industries Lto		Marconi Instruments		Trio Corporation Lid.	
D.T.V. Group Ltd. 67				
Dumet Products.	96	McKnight Crystal Co.			
		Mills, W..........	68,69		
		Milward, G. F.	77	Valradio Ltd.	
E.B. Instruments.		Modern Book Co.	C.. ${ }^{22}$	Vitavox Ltd...	70
Edwards Scientific Int. Ltd.	- 24	Multicore Solders Ltd.	Cover iv	Vortexion Lid.	
Electronic Brokers.....	58, 59, 97				
Electronics Design Associates	. 70				
Electro-Tech Sales.	. 76	Newmarket Transistors Ltd.			
Electrovalue.	. 79	Nettlefold \& Moser Ltd. (GKN)		Watts, Cecil E., Ltd..	95
Elektrim....	- ${ }_{4} 22$	Nicholls, E. R................	93	Wayne Kerr, The, Co	10
English Electric Valve Co., Ltd.	42, 43	Nombrex Ltd.	28	Webber, R. A., Ltd. . . .	
Enthoven Solders Ltd.	... 18				50
				West London Direct Supplies	70
				Wilkinson, L. (Croydon), Ltd.	54 70
Farnell Instruments Lid.	18	Oxley Developments Co., Litd.	20		
Ferrograph, The, Co., Ltd. 41				
				ng Electronics	96
Gardners Transformers Led.		Parker, A. A M	.. ${ }^{36}$		
Goldring Mfg. Co., Ltd.	. 33, 35	P.C. Radio Ltd.	83		
Grampian Reproducers L	36	Plessey Electronics	31		
Greenwood, W., Electronic Ltd. .	.. 15	Powertran Electronics.	60	Z. \& I. Aero Services Ltd.	84

[^12]

When soldering fine copper wire, ordinary tin/lead solder alloys will absorb some of the copper, so that the diameter of the wire will be reduced.
Ersin Multicore Savbit Type 1 solder contains a small percentage of copper so that the solder is already 'saturated' with copper and will not absorb it from copper wire or copper laminate.
Savbit will also prolong the life of copper soldering iron bits by 10 times, thus eliminating the need for frequent resurfacing of copper bits and by keeping
the copper bits in good condition, the soldering speed and efficiency are increased.
Savbit Type 1 alloy contains 5 cores of noncorrosive extra fast rosin based Ersin Flux. Melting point is 215° C. Recommended bit temperature is $275^{\circ} \mathrm{C}$.
Savbit Type 1 alloy with Type 362 Ersin Flux has received Ministry approval under number DTD.900/ 4535. It may be used for soldering processes on equipment for Services use in lieu of solder to BS.219.

7 lb . REELS
Available in standard wire gauges from $10-22 \mathrm{swg}$., on strong plastic reels.

1 lb . REELS
Available in all standard wire gauges from 10-34 swg., on unbreakable plastic reels. (From 24-34 swg. only $\frac{1}{2} \mathrm{lb}$. is wound on one reel.)

FOR

MAINTENANCE | SIZE 1 CARTONS |
| :---: |
| In 14,16 and 18 swg. |
| Packed in a coil, so it |
| can be drawn out |
| ANrough the top of |
| the carton. |

ENGINEERS

HOLLAND

Ersin Multicore Savbit Alloy is used by Bull Nederland of Amsterdam. Holland for the assembly of administration and statistics machines.

NEW ZEALAND Ersin Multicore Savbit Alloy is seen being used at the factory of Bell Radio Television Corpn. Ltd., Auckland, New Zealand.

[^13]
[^0]: HATFIELD INSTRUMENTS LIMITED
 Burrington Way. Plymouth PL5 3LZ, Devon.
 Burrington Way. Plymouth PL5 3LZ, Devon.
 Tel. Plymouth (0752) 72773/4 Grams: Sigjen, Plymouth. Telex: 45592 South-East Asia: for prompt service and deliveries. contact

[^1]: *Editor in Chief, Wireless World

[^2]: * Siliconix Ltd.

[^3]: *W.W., April \& May 1971.

[^4]: - Principal Research Engineer, Cranfield Unit for Precision Engineering

[^5]: Newmarket Transistors Ltd.

[^6]: +Maximum thermal resis:ance in deg. C/watt at $55^{\circ} \mathrm{C}$ ambient temperature and 10%-high supply voltage. Heat sink area can be found from J . Johnstone somograph on

[^7]: 207 EDGWARE ROAD. LONDON, W. 2
 33 TOTTENHAM CT. RD, LONDON, WIP EBB, 109 FLEET STREET, LONDON, E.C. 4
 152/3 FLEET STREET, LONDONBE.C.4.
 HIGH FIDELITY AUDIO CENTRE'
 42-45 TOTTENHAMET. RD, LONDON, WIP SRD
 MAIL DRDERS AND CORRESPONDENCETA 3-15 CAVELL STREET. LONDON. ET 2BJI

[^8]: NOTE: All shops and offices closed for annual holidays August 2nd to during this period-pleass order early.

[^9]: CARBON TRACK POTENTIOMETERS, long spindles. Double wiper ensures minimum
 noise level. ganglog, 4.7 KQ to 2.2 MQ , 12 p ; Dual gang linear 4.7 kg to $2.2 \mathrm{Ma}, 42 \mathrm{p}$; Dual gang log, 4.7 Ka to $2.2 \mathrm{MO}, 42 \mathrm{p}$; Log/antifog, $10 \mathrm{~K}, 47 \mathrm{~K}$, IMO only 42p; Dual antilog. IoK only, 42p. Any type with tA D.P. mains switch, 12ρ extra.

 Only decades of 10,22 \& 47 available in ranges quoted.
 CARBON SKELETON PRE-SETS
 Small high quality, type PR, linear only: 100Ω, 2 K 24 K 7 lok, $22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$, $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, 5p each.

 COLVERN 3 watt Wire-wound Potentiometers. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega$.

 ZENER DIODES 5% full range E24 values: ZENER DIODES 5% full range E24 values:
 $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 30 V , 15 p each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$, to 82 V , 27p each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 60 \mathrm{p}$ each.
 Clip to increase 1.5 W rating to 3 watts (type 266F), 4p.

 Appointed Distributors for
 Appointed Distribut
 SIEMEN5 (UK) LTD.
 Appointed Stockist for
 NEWMARKET TRANSISTORS
 RADIOHM POTENTIOMETERS

[^10]: ## ARTICLESAOR SALE

 A MERICAN 2N3055 transistors new, boxed, at 55 p mondham, Norfolk. Components, Ketteringham, [1255 A ERIAL BOOSTERS, we make three types, L45 U.H.F. T.V., L.12 V.H.F. T.V., L11 Radio, Price £2.95. Ramsbottom. Bury, Lancs.
 $\mathbf{B}^{\text {UILD }}$ IT in a DEWBOX quality plastics cabinet 2 in . $X 2 \frac{1}{2} \mathrm{in} . X$ any length. D.E.W. Ltd. (W), Ringwood Rd., FERNDOWN, Dorset. S.A.E. for leaffet, Write now-Right now
 BARGAINS P.S.U."s, test gear, etc. Lists S.A.E. Don B Smith, $^{\text {AR }} 12$ Channel Heights, Weston-Super-Mare, phone Bleadon 672.

 Mare,
 COLOUR TV CAMERAS complete with lenses, tubes C and cables. Can be seen working. 01-229-0898 day or 01-907-0548 evening.
 CREED 75, reader and fitted punch $£ 40$. IMB model C'B' $1 / \mathrm{O}$ typewriter $£ 30$. 01-262 6058 after 10 p.m.

[^11]: *Sorensen 3KVA Stabilised Power Supplies 190/280 \downarrow........................

 \# Marcon TFF-867 Standard Signal Generators
 太 Airmec 701 Signal Generatorr $30 \mathrm{~K} / \mathrm{cs} / 30 \mathrm{~m} / \mathrm{cs}$
 \& Rhode and Schwarz E.S.M. $85 / 300 \mathrm{~m} / \mathrm{ca}$
 §Video Tape Recorder in shibaden, excellent

 *All Power Regulated Power Supplies 500 ;
 $500 \mathrm{~m} / \mathrm{e}$.
 Marconi 825 lines BD-971 C.C.T.V. Camera,
 Control Unit, 14 in.; Monitor with
 Cables complote ctanuators $4 / 12 \mathrm{G} / \mathrm{mc}$
 \$ Portable Tape Deck Tester
 夫CR-150/2 Marconi Communications Re-
 ceivers. 1.5 to 2.0 m/es...............
 *E.E.T. 40 KV Transformers and associated

 Mast Sections with mating lags for joining
 \star Collins to 200 feet. New condition.

 - E.M.I. Tape Recorders BTR-1
 tWeston $2 \mathrm{t}-\mathrm{D} . \mathrm{B}$. Meters $-10 \mathrm{t}+$
 *Commercial \& Broadcasting type Lattice
 lightweight steel triangular Aerial Masts According
 12 to 30 inch sides up to 200 tt. high
 WANTED C.C.T.V. EQUIPMENT Good price paid
 $\star 54$ inch. dis. Meteorological Balloons...... $£ 1.50$
 t E.M.I. (USA) 3600 It on N.A.B. Spools.... $£ 5.50$

 * Uniselectors 10 bank 25 way full wipe ex.
 \& Precision Mains Filter Units new.
 53
 51.50
 5%
 Carriage extra at cost on all a bove.
 All goods are ex-Government stores.
 We have a large quantity of "bits and piecen" we cannot list-please send us your requirements
 we can probahly help-all enquiries answered.

 ## P. HARRIS
 ORGANFORD - DORSET
 BOURNEMOUTH 65051

[^12]: Gordon SUPPLY: Thls periodical is sold subject to the following conditions, namely that it shall not, without the written consent of the publishers first given, be lent, ressold, hired out or otherwise disposed of by way of Trade at a price in excess of the recommended maximum price shown on the cover; and that it shall not be leut, re-sold, hired out or otherwise disposed of in a mutilated condition or in any unsuthorised cover by way of Trade
 or affred to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^13]: 2. to uriher , tails, p iase apply o y ur Company's notpapar to

 Telex 82363
