wireless

world

SEPTEMBER 1976 35p

Citizens' Band radio

QS Variomatrix

It's the sign to bank on for cost savings in the quality inspection of completed printed circuit boards.

Marconi Instruments Automatic Electrical Inspection system pays the dividends. If you produce say 1,000 boards per week of thirty different designs with 12 new designs each year, then you will break even in a year and save twice the cost of the equipment within three. Even with a much lower throughput of more varleties the savings are great. And the resultant increase in reliability of your product can save you even more in the field.

Requiring only unskilled labour to

operate, Autotest locates, identifies and prints out all faults diagnosed at an early stage, thereby saving on functional test costs.
All in a matter of seconds.
The system is well proven, with more than 40 in constant use at major production companies throughout the world.
A ne:w booklet, illustrating the advantages of Autotest with graphics, pictures, diagrams and case histories, will be sent to you when you check our number on the reply service card.

For further details, just ring the Autotest Division on St. Albans 59292.

mi: THE PRODUCTION COST SAVERS

MARCON I INSTRUMENTS LIMITED

"SEE US AT E.P.G. EXHIBITION, BLOOMSBURY CENTRE, LONDON, WC1. 21 st- 23 rd Sept. 1976".

RELIABLE

120 BASIC RANGES

$A C V, 1 \& d B$
$D C \vee, 1 \&$ NULL
RESISTANCE
LEAKAGE at 3V
VOLT DROP at 10 mA
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $R=100 \mathrm{M} \Omega$ on volts.
$150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity reversible. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V} \& 500 \mathrm{pA}$. Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zero lin / \log scale covering ± 4 decades. $0.2 \Omega / 10 G \Omega$ in 7 ranges, polarity reversible. Low test voltage for solid state circuits. Uses 3 V source with current ranges to test capacitors, diodes and resistance up to $100 \mathrm{G} \Omega$.
Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

30 OPTIONAL RANGES

RF VOLTS
HIGH VOLTS
HIGH CURRENT
TEMPERATURE
$0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 20+\mathrm{VAT}$.
$1.5 \mathrm{kV} / 50 \mathrm{kV}$ fsd, $A C / D C$, using HV Probe. Price $£ 14+V A T$.
1.5A/50A fsd, AC/DC, using Current Shunt. Price $£ 14+$ VAT.
$-150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C}$ fsd in 7 ranges using Temperature Probe. Price $£ 36+$ VAT.

The instrument operates from a 9 volt battery, life 1000 hrs ., or, AC mains when optional Power Supply Unit is fitted.
Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is 140 mm . Leather case is available at $£ 12+$ VAT.

WW - 07, FOR FURTHER DETAILS

$3009+$ SL120

This turntable by Technics offers the mechanical excellence
of the SL110 in a more compact form.
Ideally suited to our precision pick-up arms,
its use is detailed in information sheet No. 15, a copy of which will be sent to you on request.

Write to Dept 0638A•SME Limited•Steyning • Sussex • England

The best pick-up arm in the world
WW - 068 FOR FURTHER DETAILS

ISOPHON

How do you advertise a Horn Tweeter?

We had thought of showing a picture

 of a French Horn-aesthetically more pleasing than a Horn Tweeter-but instead decided just to proudly include a photograph of our NEW HORN TWEETER

We are excited about this new addition to the product line and feel sure that you will be too, when you examine the specification and listen to the sound.
We are confident it will not be long before this Horn Tweeter joins our other successful products like the Dome Tweeters KK7, KK8 and KKIO. There are, of course, many other drive units to choose from in the lsophon range including bass units, dome midrange units and assembly kits.
Why not send for the Isophon catalogue containing 28 pages of useful information which we will be happy to send you, free of charge, on receipt of the cut-out coupon.

Hayden Laboratories Ltd

Churchfield Road,
Chalfont St. Peter, Bucks. SL9 9EW
Tel: Gerrards Cross (02813) 88447
ENGLAND

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited.
Electron House.
Cray Avenue. St. Mary Cray,
Orpington, Kent BR5 30J.
Telephone : Orpington 27099
Telex: 896141

LOOK WHAT HAPPENED WHEN ALICE AND PETE GOT TOGETHER . . .

They produced the Alice-Keeley Q.A.M. 3 Quality Assessment Monitor Loudspeaker. A development of the I.B.A. approved A. 701

It is fitted with an integral 100 watt 'Current Dumping'* amplifier need we say more?

For professional use the Q.A.M.3-P is available with balanced input and thermal power limiting

The four unit, acoustically loaded bass reflex speaker is the result of countless hours of development time, aimed at producing a unit to complement the superb quality of the amplifier.

IT DOES!

The Q.A.M. 3 is the first in a new Alice range of Hi-Fi equipment, with professional facilities and performance

Soon you will be hearing about the P.S.C. 1 stereo pre-amplifier and P. 200 stereo power amplifier

For up-to-date information, contact Barry Porter,
ALICE (STANCOILLTD.), ALEXANDRA ROAD, WINDSOR, BERKSHIRE
TEL: 07535-51056. TELEX: 849323
The amplifier fitted to the Q.A.M 3 incorporates output circuit techniques patented by the Acoustical Manufacturing Co . Lid., manufactured under licence by Stancoil Lid

transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured in production quantities to customers individual requirements

Prompt Prototype
Service available

MICRÓPHONE TRANSFORMER IN MUMETAL CAN

TRANSFORMER
WITH UNIVERSAL
ENO FRAMES AND
turret lug connections

Drake Transformers Limited

Telephone:
Billericay 51155

Kennel Lane Billericay, Essex.

COLOURFUL A choice of colour combinations for maximum eye appeal and visibility.
TOUGH Indefinite indoor life.
1-3 years outdoor life.
SELF-ADHESIVE No screws to fix, no holes to drill.
ECONOMICAL Labels cost about 2½p per square inch.
QUICK Easy, three stage process
takes 5-15 minutes. No darkroom,
no waiting for outsiders.

FREE DEMONSTRATION

Return coupon to arrange a free demonstration on your premises. And discover for yourself why corporations. like British Rail, BAC and the RAF are making their marks with 'Scotchcal' Photolabels from 3M

Complete the coupon for your
 FREE
 DEMONSTRATION or for your NTRODUCTORY KIT

£2 INTRODUCTORY KIT

If you prefer, send £2 with the coupon for a complete introductory kit. All you need is an ultra-violet light source. Your $£ 2$ kit contains everything else for your first set of photolabels.

To D. Graddon. Decorative Products Group 3M United Kingdom Limited, FREEPOST 181 London WIE YYZ. I should like to know more about your Photolabel System. \square Please arrange a free demonstration. Please send me your introductory kit. I enclose cheque/PO for $£ 2$, made payable to 3 M United Kingdom Limited. I Please send further literature.
name
TITLE
company
INOUSTRY
ADDRESS
1 _
WW 9/76

TEL.NO.

FAST RESPONSE STRIP CHART RECORDERS

Made in USSR

Type H3O20-1
Single pen

Specification

Basic error.	2.5\%
Sensitivity	8mA F.S.D.
Response	. 0.2 sec .
Width of each channel	. 80 mm
Chart speeds, selected by push butions	0.1-0.2-0.5-1-2.5-
	-5-12.5-25mm/sec.
Chart drive	.200-250v 50Hz

Type H3020-3
Three-pen

Recording:
Syphon pen directly attached to moving coil frame. curvilinear co-ordinates

Equipment: Marker pen, Timerpen, Paper footage indicator, 10 rolls of paper, connectors. etc.

Dimensions: \quad H32O-1: $285 \times 384 \times 16.5 \mathrm{~mm}$ H320-3: $475 \times 384 \times 16.5 \mathrm{~mm}$ PRICE: H320-1 E108.00

H320-3 £160.00
Exclusive of VAT

Z \& I AERO SERVICES LTD.

44A WESTBOURNE GROVE, LONDON W2 5SF
Tel. 01-7275641
Telex: 261306
WW-057 FOR FURTHER DETAILS

ELECTRONIC
 INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery, etc., etc. Just plug-in the Probe and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $1 \frac{1}{2}$ volt standard size battery.
Model "Mini-Z $1^{\prime \prime}$ measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Model "Mini-2 2"' measures from-5 $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Model "Mini-on Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$ PRICE $£ 20.00$ each [VAT 8% EXTRA]

Write for further details to

HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON. WC1X 8AX
('Phone 01-837 7937)

WW - 044 FOR FURTHER DETAILS

Gardners TheBest of British

ENCAPSULATED POWER SUPPLIES
DC Input - NV Converter Series

- Fully stabilized
- Input/output isolation
- Short circuit protection
- Fully shielded, low radiation
- Commutation spikes less than 20 mV P.P

AC Input - Minimod Series

- P.C. mounting interchangeable with most American types
- Linear stabilization
- Foldback current limiting
- Wide temperature range
- Modules available for U.K. (210.250v), European (200

240v) and American (106-121v) requirements

- Supply Frequency 50.400 Hz

Type number	OUTPUT		Shart Circuit Current mA (Typical)	\% Regulation line \& load (Typical)
	Volrage *	Amps		
PU01	5	0.5	370	0.3
P U02	5	1.0	770	0.5
Pu03	15015	0.10	37	0.1
PU04	15015	0.20	84	0.1
Pu05	12012	0.12	45	01
P Y 06	12012	0.24	120	0.2
pull	18.018	0.15	50	01
Pulo	15	0.10	37	01
PU12	12	010	45	0.1
PU13	18	0.065	23	0.1

- voltage tolerance 5 v models $\pm 0.1 \mathrm{v}$. All
Nickel-Cadmium Cell Charger Units

Constant current outputs permitting up to 10 cells to be charged in series. DC INPUT NV7304 AC INPUT PU07
ALL UNITS DESCRIBED ARE NORMALLY AVAILABLE FROM STOCK. SPECIAL DESIGN SERVICE CUSTOM
RUILT UNITS FOR APPLICATIONS REQUIRING
DIFFERENT SPECIFICATIONS ARE PRODUCED AS PART OF OUR STANDARD SERVICE. TRY US FIRST

Gardners

Gardners Transformers Limited Christchurch. Dorset BH23 3PN Telephone 020152284 Telex 41276 Gudne's $\times \mathrm{CH}$ Aporoved manufacturers of electronic eransformers, modular power supplies, inverters and converters to Detence Standard 05.21

The easy woy to P PCB... $^{\prime}$

the Seno 35 system!
 $\rightarrow \infty$

Seno33The Laboratory in abox

From vour usual comporient supplier or direct from DECON LABORATORIES LTD Ellen Steet. Portstade. Brighton BNA IEQ Telephone : (O273) 414371 lelex: IDACON BRIGHION 87443

MODEL 8 MK. V

REPAIRS measuring INSTRUMENTS Industrial and Precision Grade TO SOLVE YOUR INSTRUMENT PROBLEMS

 CONTACT
GI45 INLAND MOTOR amplifiers and motors

NEW! DC SERVO AMPLIFIER

EM-1800 SERJES 25-300 WATT MIL SPEC DESIGN

Features:

Small size for package
flexibility
Wide band-width for fast servo response
Voltage or current feedback to provide low or high impedance output.
Adjustable gain for maximum flexibility.
Current limiting to prevent demagnetization of a DC torque motor and for short circuit protection.

DIRECT DRIVE
TORQUE MOTORS TACHOGENERATORS
BRUSHLESS MOTORS
SERVO MOTORS
for
Aerospace/Military applications.

Applications: DC Torque Motors Other DC Servo Motors Deflection Coils
Servo Valves
Low Inertia Motors.

Inland UK Representatives 219 Kings Road, Reading RG1 4LS Berkshire Telephone: Reading (0734) 68980/65929 Telex: 847032

WW - 045 FOR FURTHER DETAILS

CWO. PULSE ELECTRONICS LTD. (W2) 202 SHEFFORD ROAD. CLIFTON. SHEFFORD. BEDS. Tel. Hilchin (0462) 814477

Sweet sixteen

The Quad 405 is only the sixteenth product to carry the Quad name each of which, has made a significant contribution to the development of sound reproduction and acquired a following of loyal and satisfied customers

The Quad 405 current dumping amplifier represents another step forward in amplifier technology. executed with the attention to engineering and aesthetic detail,
and manufactured with the concern
for reliability which have been the hallmarks of Quad equipment for twenty - five years
For further detals on current dumping and other Quad products write to

Dept. WW
The Acoustical Manutacturing Co
Ltd., HUNTINGDON, Cambs
PE187DB Telephone (0480) 52561

QUAD

for the closest approach to the original sound for twenty-five years
QUAD is a Registered Trade Mark

WW - 013 FOR FURTHER DETAILS

AMCRON POWER AMPLIFIERS

The AMCRON range of DC-coupled power amplifiers are used by Government, and University Research Departments as well as by Industry for a variety of applications ranging from Shaker, and Vibrator driving, to driving both $A C$ and $D C$ Motors, providing variable frequency power supply, or high voltage material testing. All models are DC-coupled throughout, with Intermodulation, and Harmonic Distortion below 0.05%, damping factor of at least 400 from DC to 1 kHz , and the ability to operate into load impedances from 1 ohm to infinity even into highly reactive loads

RMS power out
Power bandwidth Phase response Slew rate Hum \& noise Dimensions

750 watts into 8 ohms 1,350 watts into 4 ohms $D C 10=20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0^{\prime}-15^{\prime} \mathrm{DC}-20 \mathrm{kHz}$ $16 \mathrm{~V} / \mathrm{usecond}$
120 db below 600 Watts $19^{\prime \prime}$ std rack, $83 / 4^{\prime \prime}$ H. $161 / 2^{\prime \prime}$ Deep

DC 300A

500 watts rms into 2.5 ohms (1 chan) $D C-20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0 .-15^{\prime}$ DC to 20 kHz 8 volts per microsecond At least 110 db below 150 watts $19^{\prime \prime}$ Rackmount, $7^{\prime \prime} \mathrm{High}, 93 / 4^{\prime \prime}$ Deep

D150A

200 watts into 2.5 ohms (1 chan) $\mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0^{\prime},-15^{\prime} \mathrm{DC}$ to 20 kHz 6 volts per microsecond At least 115 db below 90 watts 19 $9^{\prime \prime}$ Rackmount, $5 \frac{1 / 4^{\prime \prime}}{}$ H. $8^{3 / 4^{\prime \prime}}$ D

MAGINNES LABOBATORIES LTD.
Macinnes House, Cariton Park Industrial Estate Saxmundham, Suffolk IP17 2NL. Tel: (0728) 22622615

macinnes france

45 Rue Fessart
Paris 75019, France
Tel: 203-30-01

WW- 026 FOR FURTHER DETAILS

fault finding no fiddle

With the AVO TT 169 in-circuit transistor tester. Go/NO CO tests almost any transistor, diode or thyrlstor without de-soldering, without damage. Find out how it can save you time, save you money.
You'll find the price is no fiddle either.

WW-040 FOR FURTHER DETAILS

[^0]
JES AUDIO INSTRUMENTATION

Illustrated the Si452 Distortion Measuring Unit-low cost distortion measurement down $10.01 \% \quad £ 48.00$

Si453
£60.00
Si451 E60.00
Comprehensive Millivoltmeter
Low distortion Oscillator 350μ Volts 20 ranges sine - square - RIAA
prices plus VAT
J. E. SUGDEN \& CD. LTD. Tel. Cleckheaton (0274) 872501 CARR STREET. CLECKHEATON, W. YORKSHIRE B 19 5LA

Howeveryhi-fidealercan increase his sales and improve his service

The Ferrograph RTS 2 is a complete. single-unit audio analyzer. Used by leading manufacturers and dealers throughout the world. it is the only single equipment available that can run exhaustive checks on hi-fiincluding amplifiers, tape recorders. equalisers and mixers-making it an invaluable aid to sales and service.

Increase your sales!

By using the RTS 2 in your hi-fi store. your salesman can quickly prove to customers that the hi-fi system he is demonstrating is as good as it sounds. In a matter of seconds. up to ten different tests can be carried out, using just one pair of leads. (The push-button operation is so simple even

Ferrograph RTS 2

unskilled staff can make accurate measurements.)

Result? The customer is reassured. confident he is getting value for money. So you sell more. more easily.

Improve your service!

But the RTS 2 is much more than a cost-effective sales aid. Used in your service department. it quickly identifies faults, making your after-sales back-up more efficient And more profitable. You don't need a variety of incompatible test gear-so there are fewer connections. no hum-loops. no time-consuming frustrations. All of which means you save money.

The RTS 2 \& an unbeatable cemonstrator It's so simpe! And as test equipment. there's nothing raster.

Photograp by courtesy of Sewards
in Readmg.

Wilmot Breeden Electronics

Ferrograph Rendar
Wayne Kerr

Send me more information about the RTS 2 audio test set. I would like a demonstration. Phone me to arrange an appointment.

Name
Address
Company

NEW! Sine-square oscillators

- 10 Hz to 1 MHz

- Up to 12 V p-p
- $3 W$ into $3 \Omega-$ LFP1
- Low audio distortion
- Low bounce
- Mains/battery operation, meter
and TTL output - LFM4

finmell

FARNELL INSTRUMENTS LIMITED
SANDBECK WAY, WETHERBY, WEST YORKSHIRE LS22 4DH TELEPHONE 0937-3541 TELEX 557294

LONDON OFFICE : TELEPHONE 01-864 7433 and 7434

FREQUENCY COUNTERS

Higher performance instruments from $1 / 10 \mathrm{~Hz}$ to 1.2 GHz . measuring frequency. period, time, freq./ratio and calibrated output facility. Fas delivery.
A selection of our products will be displayed at the MIPEL Exhibition in Budapest on the stand of Avionic Systems (Heathrow) Ltd.

CRYSTAL OVEN
OPERATING MANUAL
TWO TONE BLUE CASE
ع670 1.2 GHz
Sensitivity 10 mV . Stability 5 parts 10 . 10

Type 101 1MHz 100KHz 10 KHz Crystal Standard $£ 85$ Type 103 Off/Air Standard $£ 85$
SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Dept., Grystal Manufacturers and Electronic Laboratories world-wide

WW - 023 FOR FURTHER DETAIL

DECADE RESISTANCE BOXES

ACCURACY
0.1% at full rated current
Suitable for use in d.c. and a.c. Circuits

4, 5 or 6
Decades
$0.0001 \Omega-10 \mathrm{M} \Omega$

for reliable and repeatable values At A REALISTIC PRICE

RELIABLE

REPEATABLE
because all components are manufactured in our own factory under our strict supervision and stringent quality control procedures.
values because all decades use the Cropico SP1 switch which is renowned for its low and constant contact resistance. The resistance coils are wound from specially selected high quality Manganin wire.

CROYDON PRECISION INSTRUMENT CO., Hampton Road, Croydon CR9 2RU
Tel. 01-684 4025 and 4094
WW-098 FOR FURTHER DETAILS

It's the cat's whiskers!

(ค) WIRELESS SPECIALISTS

10000000000 $\square 0000000000$

fm tuner number two
The New FM Tuner from Ambit
1.2 uV for 30 dB SN, adjustable output voltage, ultrasonic suppression better than 70 dB. 6 presets, geared manual drive. Double IC stabilizers. Supplied with prealigned Larsholt RF/IF and decoder module. Com plete with black woodgrain cabinet, and solid aluminium front panel Kit $£ 55.50$ ($£ 62.43$ inc. VAT)
Built and tested $£ 79.75$ ($£ 89.71$ inc. VAT)
(Carriage $£ 3.00$ extra)
modules for rf, if,mpx: (12v) audio and general components
NEW 7020

Dual ceramic filters, 2 stage preamp into the improved CA3089E (HA1137W), with mute, AFC to suit ANY varactor tunerhead, meter output and edge terminations. kit $£ 5.25$ built $£ 6.55$
NEW 92310 The MC1310 mpx decoder, with twin audio preamps, and BLR3107 ultrasonic block filter. kit $£ 5.35$ built $\mathbf{£} 6.65$

NEW 71197 A new varicap tuner for MW/LW, with ceramic filter, $80 d B$ AGC, low noise and distortion. kit with ferrite rod $£ 9.65$ built $£ 11.35$
NEW 5800

TDA2020 kit varicap tuned circuits, 2 MOSFET AGC controllable RF stages, double tuned IF output stage. kit $£ 11.35$ built $£ 14.00$
RN:S 0.1\% THD IC from SGS.
$£ 7.85$. (Speciat extruded heatsinks $75 p$ each).

LINEAR ICs	(* at 8\%)		DISCRETE DEVICES	
CA3089E 1.94	LS8038	3.10°	ZT×107/8/9n	0.14
CA3090AO 3.75	NE560	2.50	ZT $\times 212 / 3 / 4 p$	0.16
$\begin{array}{ll}\text { MC1310 } & 2.20\end{array}$	NE561	2.50	ZTX551/451pn	0.18
SN76660 0.75	NE562	2.50	BF256	0.34
TBA120AS 1.00	NE565	2.50	40673/MEM6 16	0.50
TBA651 1.81	NE566	$2.55{ }^{*}$	40822/MEM615	0.38
$\begin{array}{ll}\text { UA720 } & 1.40\end{array}$	7805UC	$1.55{ }^{\prime \prime}$	BD535n (60v-50w)	0.52
LM380 1.00	TDA1412	0.95*	BD536p(60v-50w)	0.53
LM381 1.81	78M20UC	1.20*	BD609n (80v. 90 w)	0.70
TBA810 1.09	UA723	0.80*	BD610p(80 - 90w)	1.20
TCA940 $\quad 1.80$	NE550	0.80 *	$\mathrm{n}=$ NPN type	
TDA2020 2.99	NE567	$2.50{ }^{*}$	$\mathrm{p}=$ PN P type	
VARACTORS	FOIL TRIMMERS		POTS	
$\begin{array}{ll}\text { MVAM2 } & 1.05\end{array}$	3-12pF	0.18	100k+100k LIN	0.60
MV104/BB104 0.45	4-30pF	0.23	$100 k+100 k$ with .	
BA102 0.30	6-45pF	0.26	50\% tap	0.65
$\begin{array}{ll}\text { BA121 } & 0.30\end{array}$	(7.5 diamet	types)	20 turn 100k	
			diode taw	0.35

TOKO COILS, FILTERS, TUNERS FOR AM/FM AND MPX.
Full details of standard types in lists:
10 mm IFTs for $455-470 \mathrm{kHz} \quad 27 \mathrm{p} \quad$ Linear Phase filter for $10.7 \mathrm{MHz} \quad 2.25$ 10 mm IF Ts for $10.7 \mathrm{MHz} \quad 30 \mathrm{p} \quad$ MFH41/71T mechanicals for 455 Ceramic fitters for $10.7 \mathrm{MHz} \quad 50 \mathrm{p} \quad$ SFD 470 new Murata ceramic block $\begin{array}{lll}\text { Ceramic filters for } 6.0 \mathrm{MHz} & 80 \mathrm{p} & \text { BLR } 310719 / 38 \mathrm{kHz} \text { notch (stereo) } \\ \text { Ceramic } 455 \mathrm{kHz}\end{array}$ Ceramic 455 kHz type CF $\times 104$ CFT455B/C, CFT470C ceramic 60 Variable chokes $\uparrow \uparrow, 23 \& 36 \mathrm{mH}$ 60 EC3302 low cost varicap FM tuner 5.50 CFU050D 470 kHz ceramic 65p EF5600 5 stage varicap FM head 12.50
Send an SAE for a free price list and stock list. There is a new Larsholt
Signalmaster FM tuner and more details on our range of wireless products. PP 22p per order, VAT is generally at $121 / 2 \%$. and the min. CWO charge is $£ 1$. Min. invoice $£ 7.50$, Catalogue 40 p. (* 8% VAT).
37 HIGH STREET,
BRENTWOOD, ESSEX.
CMI4 4RH
tel 216029

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW - 031 FOR FURTHER DETAILS

WW - 007 FOR FURTHER DETAILS

ELECTRONORGTECHNICA

carbon film RESISTORS

$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12 EX-STOCK

£4.50 PER 1,000
 PLUS
 V.A.T

Contact John Gingell

IDATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet 30. 300 \& 1200 (30 and 120 cps)
Teleterm 1132 and 1200 series (portable / fixed 30 cps)
with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.)

* Spares, repairs, overhauls and maintenance

* Other types and models available * Refurbished units also available
* Short and long period rentals
* Minicomputer interfaces
* Quantity discounts * Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET,

TRING, HERTS., U.K.

Telephone 0442-82-4011
Cables RAHNO Tring
Telex 82362
A/B Batelcom Tring

Jointhe Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $1134^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

plus 80 p packing and surtace post anywhere in the world
Payments may be made in foreign currencies.
Quantity discounts available on request VAT zero rated.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic
Digital Computer Logic and Electronics.
in 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

$£ 4.20$

plus 80 p P. \& P.
Offer Order both courses for the bargain price $£ 9.70$, plus 80 p P. \& P.

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

```
To Cambridge Learning Enterprises, Dept COM
FREEPOST. St. Ives,Huntingdon. Cambs. PE }1748\textrm{BR
    'Please send me .... set(s) of Design of Digital̈ S'ystems at £. 7.00 each
    p & p included
    "or ......set(s) of Digital Computer Logic and Electronics at £5.00 each,
p & p included
*or . . . . . combined set(s) at £10.50 each. p & p included
Name
Address
delete as applicable
No need to use a stamp - just print FREEPOST on the envelope
L


WW- 010 FOR FURTHER DETAILS

\section*{Switching problems? Rely on Zettler.}

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energiziny current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range comprises:
Low profile (flatform) Timing - Miniature - Low contact capacity . Hermetically sealed • Stepping Mains switching - Latching Contact stacks • Solenoids


Hybrid Relays AZ1435... 1441
AZ 1435 Voltage monitor ( \(9 . . .30 \mathrm{~V}\) ) AZ 1436 Pick-up retarder ( \(1 . . .30\) s) AZ 1437. Drop-out retarder ( \(1 . .30 \mathrm{~s}\) ) AZ 1438 Pulse time limiter
( \(50 \ldots .1500 \mathrm{~ms}\) )
AZ 1439 Pulse shaper (monoflop) ( \(50 . . .1500 \mathrm{~ms}\) )
AZ 1440 Pulse generator (multiflop) ( \(0.1 \ldots 30 \mathrm{~s}\) )
AZ 1441 Pulse-operated relay (flip-flop)
\((24 V+10 \%-15 \%\),
approx. 30 mA max.)
We resolve your switching problems rapidly and expertly. Please contact us for further details.

Stand No. 3314

\section*{'Phone-in Programme}


\section*{When you can reach them. And theycan reach you. Any time.You've got a Dymar system.}

Computer controlled VHF radiotelephone network Sounds great The coming thing. At Dymar it's come! And that's the Dymar difference
Dymar designs systems that take all the local conditions into account. Terrain. Geographical distribution of the labour and
the customers available to the user. Emergency situation
control. Channel congestion. The lot.
Dymar does it with common frequency coverage using quasisynchronous transmitters. With a CCIR compatible selective calling system. With automatic signal level selection. With computer control of signal routing.
Tomorrow's systems today. It's what you'd expect from a com.
pany \(100 \%\) devoted to the radiotelephone business ... and
nothing else.
Discover the Dymar difference. Make contacting Dymar part
of today's programme.

\section*{DTMAS}
the name in radiotelephone systems
Dymar Electronics Limited Colonial Way. Radlett Road Wattord. Herts WD2 4LA. Tel: Wattord 37321 Telex: 923035 Cables: Dymar Watford


\title{
Better Performance than any Graphic Equaliser on the market
}
 Summerfield Kidderminster DY11 7RE Tel Kidderminster 64027

\section*{Problem}

Where to obtain a low-cost device to use as a linear output stage for mobile and marine radio under SSB conditions.

\section*{Solution}

M-OV long-life beam tetrodes. A single TT21/22 gives 100 W PEP at 1200 V H.T. and one TT100 delivers 180W PEP at 850 V H.T.

\section*{EEVand M-OV know how.}

Lap \(\frac{1}{}\)


\footnotetext{
THE M-O VALVE CO LTD, Hammersmith, London, England W6 7PE
Tel: 01-603 3431. Telex: 23435. Grams: Thermionic London. S\&C WW-055 FOR FURTHER DETAILS
}

- A new and ideal wiring system for proto. types, Breadhoards; and limited production.
- Achieves a permanent interconnection of components, at high speed, on a very high density.
- Based on the use of Verowire(R) wiring pen with unique spring wire clamp for wire retention, advancement and retraction.
- Moulded wiring combs fitted to board route the wire from point to point neatly holding and stabilising the wiring layout.
- By using a specially designed tool, I.C. legs are deformed and positively held in the board enabling the wire to be easily wrapped around them.
- Using a self-fluxing polyurethane coated wire no pre-stripping is required. Connec tions are completed by soldering, melting the insulation and at the same time making a permanent soldered joint.
- A complete introductory Verowire kit is available consisting of a wiring pell, spools of wire, terminal pins and all tools necessary. You only require a temperature contralled soldering iron to Verowire a board. A sample board from the Vero high density D.I.P. board range is also included in the introductory kit.

Available world wide through 3 subsidiary companies and 25 agents.

Vero Electronics Ltd.
Industrial Estate, Chandler's Ford, Eastleigh, Hampshire SO5 3ZR.
Telephone: Chandler's Ford 2956


\section*{WOALD LERDERS in PRCHMCIIC TECHOLOF}

\section*{TELFORD COMMUNICATIONS} TC14 DITIGAL
CAPACITANCE METER


Measures 1 pf to 1 uf accurately to \(\pm 0.5 \% \pm 1\) digit, instantly displaying the value on a 4 Digit L.E.D \(0.3^{\prime \prime}\) display having leading zero suppression. Stabilized and Protected P.S.U for Mains or D.C. (Neg earth) operation.
Attractively styled and finished in dark grey hammer stove enamel, wth white front panel, contemporary style push button-controls and test terminals. Chrome plated tilt bail. 12 months' guarantee

Price: \(£ 108.00+8 \%\) VAT
For further information on the TC14 and our TC12 200 MHz FREQUENCY COUNTER contact -

TELFORD COMMUNICATIONS, 78B HIGH STREET, BRIDGNORTH
SALOP WV16 4DS. Tel. 074624082


WW - 014 FOR FURTHER DETAILS

\section*{Precision Measurement of A.C.}



VALRADIO TRANSVERTORS ARE BEING USED ALL OVER THE WORLD FOR MANY APPLICATIONS, INCLUDING: VIDEO TAPE RECORDERS, SOUND TAPE RECORDERS, ALARMS LABORATORY EQUIPMENT, TELEVISIONS AND MANY OTHER TYPES OF EQUIPMENT

> SOME TYPICAL TYPES ARE: D24/500S 24 v DC input 500 watts sine wave output 230 v AC \(\quad \mathrm{E} 217.20\) D1 \(/ 150 \mathrm{~T} 12 \mathrm{v}\) DC input 150 watts square wave 230 v output D24/60S 24 v DC input 60 watts sine wave 230 e output \(\mathbf{£ 6 6 . 9 5}\)

We also manufacture Frequency Changers. Power Supplies and Standby Systems, and we are always happy to quote for your special requirements. All prices plus VAT

Please send for full details to
VALRADIO LIMITED, BROWELLS LANE, FELTHAM, MIDDLESEX, TW13 TEN
Tel. 01-8904242/4837
WW - 082 FOR FURTHER DETAILS

 figures from 4 mm up to 152 mm high, or complete legends up to 250 mm . wide. That's the capability that M Range displays offer. You may not have met them yet . . . more complex systems tend to steal the headlines. But \(M\) Range can do more for you, because its simplicity makes it so much more versatile. More dependable, too. Engraved characters are edge-lit from low-voltage bulbs ... no delicate electronics, no specialist maintenance or circuitry. If you could use a display system that fits in flexibly with your control rieeds, you'll find it all simply explained in our new folder.

> Read about unique Mrange edge-lit display freedom!

Clock Tower Road, Isleworth, Middlesex TW7 6DU, England.
Tel: 01-5680151 Telex 934120

\section*{I RADFORD}

\section*{Amplifier Specifications}

Almost all audio amplifiers are used for the reproduction of speech and music through loudspeakers. It is thus very difficult to specify objective tests which have some relevance to the end use. Arbitrary performance parameters have evolved which are obtained by standardised universal measurement techniques, which by familiarity, have come to be accepted as valid criteria -- for the want of something more meaningful.
Discriminating listeners, professional and others, have always been aware of the disparity between promotional specifications and practical performance of amplifiers. Subjective tests have been carried out by music societies, audio groups and hi-fi magazines which reveal the poor listening performance of popular present-day conventional transistor amplifiers when compared with valve amplifiers of 10-15 years ago, such as the Radford STA25 and STA100. (For example, see Hi-Fi for Pleasure Magazine December' 75 and subsequent correspondence.)
A common weakness of the present-day popular transistor amplifier is its inability to maintain its rated output voltage into loads much below 8 ohms and supply current to a reactive load. Loudspeakers present a complex load to an amplifier and some nominal 8 ohm systems have an impedance of less than 4 ohms at some frequencies together with a stressing phase characteristic. This combination produces listening fatigue and a sense of unease, due to transients produced by the switching operation of the protection circuits, and the crossover switching of the quasi-complementary output stages when driving practical dynamic loudspeakers near the rated level. Published tests have shown that some transistor power amplifiers rated at 100 watts output cannot provide as high an effective sound pressure level as a good valve amplifier rated as 25 watts output.

The HD250 is an integrated transistor amplifier with true complementary symmetry output able to drive practical loudspeakers without distortion. Reviewers have called it a 'musical' amplifier. It is rated at 50 watts per channel and is the present-day equivalent of the SC22/STA25 valve separates.
The ZD100 is a power amplifier only, rated at 100 watts per channel. It uses true complementary symmetry output with additional circuitry for neutralizing crossover switching transients at high current drive. It maintains its maximum output voltage before clipping into loads down to 2.8 ohms before protection circuit operation, providing 90 watts into 8 ohms, 150 watts into 4 ohms and 200 watts into 2.8 ohms per channel with plenty of current reserve for nominal 8 ohm and 4 ohm loudspeakers - and at virtually zero total harmonic distortion!
The ZD22 Stereo Pre-amplifier Control Centre and the ZD100 Stereo Power Amplifier represents the best audio system of 'separates' available today.

Why not learn more about Radford amplifiers by requesting descriptive leaflets, or visiting your dealer for a demonstration?

\section*{Radford Audio Ltd.}

Ashton Vale Road, Bristol BS3 2 HZ Avon
Tel. 0272662301

\section*{E5PCapacitance measuring}


\section*{Esp}

Electronic Services and Products Limited Cross Lane, Braunston, Near Daventiy, Northamptonshire NN 11 7HH Telephone : Rugby (0788) 890672

capacitance bridge
\[
£ 185.00+\text { V. A.T }
\]

ESP 200 A 1 pF to \(50 \mu \mathrm{~F}\)

Wide scale laboratory model \(£ 82.00+\) V. A. T


A complete range of British-made instruments designed to simplify capacitance measuring
- Accurate and sensitive
- Requires no manuat balancing
- Takes less than a second to
measure a capacitor
- Updates changes in capacitance automatically
- Wide range of applications

Send for technical literature and free booklet: "Modern methods of capacitance measuring"
Suppliers 10: Ministry of Defence, Post Office, B.B.C. Government departments and Electronic Laboratories world-wide.

\section*{New low cost microcomputer for learning the how of microprocessors ...}

limrose electronics limited
241-243 Manchester Road, Northwich, CW9 7NE

Now, there is a new Microcomputer to provide "hands on" experience to master and apply microprocessors - the Limrose MPT8080

It comes ready to use. Nothing else to buy, debug or assemble. Just plug it in and you have a powerful microcomfuter ready to use No need for a Teletype, but if you have one, it can be hooked on using a plug-in card.

The comprehensive instruction manual is so straight-forward that even a person with limited rechnical knowledge can rapidly learn how microprocessors work.

The Microtutor MPT 8080 is not just a learning module - it's a full 8-bit, parallel microcomputer with an \(8080 \mathrm{CPU}, 1 \mathrm{~K}\) RAM, and various input and output ports. It can be single-stepped or run continuously to facilitate a thorough understanding of hardware/software interaction and programming of microprocessors

The MPT 8080 con also be used as a prototyping computer and expanded with additional memory and ports.

\section*{prices
from
\(£ 249\)}
NFW Instrument
Technique
Performance


FILTER OSCILLATOR 631 £98 +f2p\& 631 LF £104 + VAT
\(631-0 \mathrm{IHz}\) to \(100 \mathrm{KHz} \quad 631 \mathrm{LF}-0.01 \mathrm{~Hz}\) to 10 KHz
Defivery is normally ex-stock - telephone for confirmation Prices correct at lime of going to press. subject to change without notice
DMB \({ }_{\text {electronics, Riverside, Eynsford, Kent. Tel } 0322863567}\) WW-041 FOR FURTHER DETAILS

\section*{PRECISION PETITE LTD.}

119 H HIGH STREET, TEDDINGTON, MIDDX. TEL. 01-977 0878

Now with the:
-NEW MK. IIDRILL•

\section*{10,000 r.p.m., 120 cmg}

\section*{"MORE POWER MORE TORQUE" \\ \(12 v .-14 v\). DC} DRILL ONLY £8.00
(P.P. 35p)

STAND £4.00
(P.P. 35p)

Incl. VAT
(Together 50p P.P.)
SAE for illustrated leaflet and order form


The main difference between our new low price multimeter and most multimeters is that ours is an AVO. Through anc through. It starts with some innovations-most of them unique at the price: real overload protection, sensitivity of \(20,000 \Omega^{\prime}\) VDC a really useful set of ranges including AC current. If you try to measure the 240 V mains on the \(75 \mu \mathrm{~A} \mathrm{DC}\) range, it's only the instrument fuse that blows. Then there's the case-really rugged enough to take the toughest knocks. And in this case, beauty's more than skin deep-inside you'll find it orderly and well laid out That means that, if servicing is ever necessary, it'll be worth doing. Because when AVO make an instrument, they make one that's worth keeping.

In short, the new AVO Model 73 is much more muitimeter for 'your money-and that's what makes it an AVO.


UK Trade Price \(£ 33\). VAT from Distributors
AVO Limited, Archcliffe Road, Dover Kent Telephone: Dover (O304) 202620
a Tncrn Measurement Controi and Automation Division

\section*{THIS IS IT!}

Fully built and tested for immediate use in ANY tuner using Vari-cap control

\section*{NOW IS THE TIME TO BUY!}

Our prices were reduced in April. Now VAT has been halved. Will things ever be quite this good again? Make use of your credit card and buy now with confidence.
We give full after-sales service and guarantee with all parts and kits.

6 channels plus manual.
llluminated touch buttons
20 volts supply
Full instructions for use
Fully built and tested
Available now, post free.
Introductory price £ 16.71 inc . V.A.T.
See May's advertisement for full lists and prices, or write to


33 Restrop View Purton, WILTS. SN5 9DG



Features include:-
\(\star 1 \mathrm{GHz}\) count rate with 1 Hz resolution
* 30 mv sensitivity with high overload capability
* 8 digit 'SPERRY' display

Also: Model CF-710 giving 0.001 Hz resolution up to
10 k Hz

\section*{aspen \\ electronics limited \\ 2 KILDARE CLOSE,_EASTCOTE} MIDDLESEX HA4 9UW TELEPHONE: 01-868 1188 TELEX NO. 8812727

WW-043 FOR FURTHER DETAILS


\section*{3½ Digit Voltmeter Module}

MODULAR DESIGN IN KIT FORM WITH FULL ASSEMBLY INSTRUCTIONS.
*Accuracy \(0.1 \% \pm 1\) digit
*Range \(\pm 1.999 \mathrm{~V} \pm 199.9 \mathrm{mV}\) option
* Automatic Polarity selection
*Input impedance 1000 Meg . ohm
*Signal Current 100pA

*Displays \(\frac{1}{2}\) inch l.e.d.
*Supply voltage \(\pm 15 \mathrm{v}\) to 19 v d.c.
*Positive Supply current 100 mA approx.
*Negative Supply current 20 mA approx.
*P/C Board sizes: Process board \(98 \mathrm{~mm} \times 75 \mathrm{~mm}\) Display board \(42 \mathrm{~mm} \times 75 \mathrm{~mm}\)

Price: £28. 89 inc. VAT (inc. postage \& packing).

Del: Allow 14 days
Send cheque or postal order to:-

ECM (EUROPE) ELECTRONICS LTD.,


Graphic House, Pangbourne, Berks.
Tel: 07357:4611
Telex: 847544


\section*{The name that means a wider range of electrical instruments.}

With P.I.L. fast becoming the most comprehensive instrument stockist in the U.K., offering instruments manufactured by over 60 established world-wide companies, and the expertise of I.E.C. in the repair of virtually any type of electrical as well as many types of electronic measuring instrument, you will. see why you are dealing with companies that are experts in the field of electrical measurement.

So remember, the next time you need our kind of help - take a generous measure of P.I.L. or I.E.C., you can rely on it - always.


\section*{Test Equipment}


\section*{Multimeters}

The Eagle range of multimeters covers every possible need of the electrical or electronic engineer. They cost from about \(£ 6\) to \(£ 58\) (inc V.A.T.). There's at least one which suits your job precisely.


WW - 035 FOR FURTHER DETAILS



\section*{hrerr||}

PROFESSIONAL
TAPE TRANSPORTS
and multi-channel electronics for studio and industrial use

* Tapewidths up to 25 mm
* Speeds: \(3 \mathrm{~mm} / \mathrm{s}\) minimum up to \(152 \mathrm{~cm} / \mathrm{s}\) max

Finance
available 2 and 4 speed models
* Reel Capacity up to 29 cm
* Remote Control Facility
* Tape Tension Control
* Automatic Interlock against misuse
* Special models to customer requirements

BRENELL ENGINEERING CO LTD
Pambroke House,
Tel: 01-340 3291
Telex: Batiste Ldn 267727

\section*{EIMEDAFD}

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New BIMBDARD
The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins
Incorporates Bus Strips For Vcc And Ground
Includes A Component Support Bracket
Has Over 500 Individual Sockets
And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors


Only \(£ 9.72\) (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors

Higys Industrial Estate, 2 Herne Hill Road, London, SE24 OAU, England. Telephone 01-737 2383 Telex 919693

\section*{nombrex}


MODEL 41
R.F.SIGNAL GENERATOR

Price £54.85
- 150 KHz - 220 MHz on fundamentals.
plus vat.
* 8 clear scales - Total length 130 mm
* Spin-Wheal Slow Motion Drive 11-1 ratio.
- Overall Accuracy - \(2 \frac{1}{2} \%\).
* Modutation, Variable depth and frequency.
* Internal Crystal Oscillator providing calibration checks throughout all ranges.
- Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator.
* Powered by 9V Batter

> Trade and Export enquiries welcome
> Send for full technical leaflets.
> Post and Packing £1.00 extra

NOMBREX LTD., POUND PLACE, WOLBOROUGH STREET,
Tel. Newton Abbot 68297
WW-050 FOR FURTHER DETAILS

\section*{\(17 /\) \\ UK's Leading}

Tape Equipment Specialists

 10 measuring ranges and a null suppression control permit accurate
detailed analysis. £507.00


\section*{EMT 422 \\ Flutter Meter}

A sophisticated compact flutter meter conforming to DIN
specifications for portable and stationary service applications. Ranges 0.1, 0.3, 1,3 and 10\%

Featuring a threshold monitor circuit for simplified quality control in
production lines. \(£ 453.00\)
(* prices correct at time of going to press)


\title{
There's more scope inscopex
}

The Scopex 4 D 25 is a portable 25 MHz . dual-trace instrument suitable for all laboratory and field applications. It features a guarantecd measuring accuracy of \(3 \%\)-and yet at \(£ 225^{*}\) is in a price bracket berg v ary comparable instrument. Check ihese features and sce why the 4 D 25 is a must for the discerning buyer.

* DC-25 MHz, full screen
* \(3 \%\) accuracy
*Signal delay (both channels)
* One control for Trig I evel and Polarity
*Timebase 200ms to 200ns
\(\times 5\) expansion
*Sensitivity \(50 \mathrm{~V} / \mathrm{cm}\) to \(10 \mathrm{mV} / \mathrm{cm}\)
๑ゆ
Scopex Instruments Ltd., Pixmore Industrial Estate.
Letchworth, Herts. Tel: Letchworth (04626) 72771
UK List ex VAT


\section*{TPA 50-D Specification}

Power Output
100 watts rms into 4 ohms 65 watts rms into 15 ohms
Freq Response \(\quad \pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}\) to 20 KHz into 15 ohms. -1 dB at 150 KHz
Total harmonic distortion
Input sensitivity
Noise
Rise time Less than \(0.04 \%\) at all levels up to 50 watts rms into 15 ohms OdBm \(-100 \mathrm{~dB}\) 2 u seconds E77 plus V.A.T.
100 V Line (C.T.) and balanced inputs available.
For full technical information contact:

\section*{H|HELECTRONIC}

CAMBRIDGE ROAD, MILTON, CAMBS
TELEPHONE CAMBRIDGE 65945/6/7

\section*{The tenorel range of cartridges from Condor}


> Manufactured in Holland to an exceedingly hgh specification, the Tenorel range of cartridges are designed to enhance your listening pleasure - giv ng real 'on the scene' audio sensations. Whether it be Verdi or Floyd, the Tenorel cartridge offers a faitt ful representation of your choice of music. Nothing mcre. and certainly nothing less than the original recording. Tenorel T2001 R.R.P. \(£ 5.45\) ExCl. VAT.
> Tenorel T2001ED R.R.P. \(£ 10.50\) Excl. VAT
> Tenorel T2001SD R.R.P. \(£ 17.50\) Excl. VAT
> Ask your local dealer for more details

Distributed bv:- Condor Electronics Lid.,
100 Coombe Lane, London SW20 0AY. Tel: 01-946 0033

\section*{Over \(\mathbf{5 0 , 0 0 0}\) cusfomers REGULARLY SERVICED}

DORAM'S NEW CATALOGUE HAS BEEN SPECIFICALLY DESIGNED FOR THE AMATEUR RADIO, ELECTRONICS \& HI. FI ENTHUSIAST.

DORAMS SERVICE ALSO INCLUDES-

MANY PRICE REDUCTIONS QUANTITY DISCOUNTS ON CAPACITOR, RESISTOR OR SEMICONDUCTOR ORDERS
* FREE - UP.DATE PRODUCT information service during LIFE SPAN OF CATALOGUE

ALL ORDERS SENT BY RETURN-OFPOST
no-quibble replacement part SERVICE
POST \& PACKING FREE FOR ORDERS OVER \(£ 1\) (Only applies for Great Britain N. Ireland and B.F.P.O. Nos.- Overseas orders F.O.B.)

\section*{SEND FOR YOUR NEW CATALOGUE AND/OR KIT BROCHURE NOW!}

\section*{ \\ catalocue} Edition 3


\section*{DATEST 1: THE NEW TIME SAVER}

\section*{Automatic device tester and identifier}

DATEST 1 saves valuable repart time by automatically testing drodes, transistors. and all types of FETs, both in and out-ot-circunt, plus common op. amp ics out-ot-circuit
To carry out a test simply connect the device and switch on If the display flashes its "No Go" If you get a steady pattern it's G0. No prior knowledge is required of device polarity or whether it is bipolar or FET
On the contrary, the clear SIx-LEL display tells you at a glance the polarity of the device (NPN. PNP N-channel. P-charinel) and for out-of-circuit tests whether it is bipolar. depletion FET. or enhancement FET
If you then flick the test current switch you can instantly place limits on current gain. leakage current, and FET parameters DATEST 1 wh is ich io DAll and in expensive mistakes avoided. For complete user conticence DATEST 1 even stops working abruptly and gives a special DATEST 1 is bltery voltage has dropped to too low a value
Write for full detals or nend and comes complete yith battery, easy-to-use probes for in-circuit tests. and detaled handbook

\section*{DATONG ELECTRONICS LIMITED}

WW-049 FOR FURTHER DETAILS
\begin{tabular}{|c|c|c|}
\hline  & \multirow[t]{2}{*}{\begin{tabular}{l}
LCD MODEL TLC4 \\
CONTINUOUS READOUT
UTILISING LIQUID CRYSTAL bISPLAY
WITH BACKLIGHT FOR NIGHT
READING
\end{tabular}} & LED MODEL TLE5 \\
\hline ELECTRONIC DIGITAL ALARM CLOCK MODEL EC3 & &  \\
\hline THE "MISTRAL" I DIGITAL CLOCK & \[
\begin{gathered}
\text { Rнооим } £ 39.95 \\
\text { Gooo } £ 41.50 \text { mc Vat }
\end{gathered}
\] &  \\
\hline \[
15: 15
\] & \multicolumn{2}{|l|}{ availabie in the UK so Wh not} \\
\hline  & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
ELECTROTIME, DEPT. 1/9, 11 SHEPLEY'S YARD CHESTERFIELD, DERBYSHIRE. TEL, (0246) 35804 PLEASE SUPPLY \\
NAME \\
ADDRESS
\end{tabular}}} \\
\hline \[
\begin{aligned}
& \text { complete kit paice } £ 11.07 \text { nc vat } \\
& \text { вuilt clock paice } £ 14.95
\end{aligned}
\] & & \\
\hline
\end{tabular}



TYPICAL TRANSIPACK NO-BREAK POWER SUPPLY AS DELIVERED TO C.E.G.B.


TYPICAL
TRANSIPACK U.P.S.
FOR COMPUTER
APPLICATIONS


\title{
The easy to use, easy to buy, general purpose scope~ the D61a
}


\section*{D61adualtrace Lightweight Oscilloscope}



 combination of dhateso higher pertarmance

 the bumatom. the daramomand the I'S' scrice departmem.






 poscoltation






Telequipment


Versatile~that's our scope

\section*{wireless world}

\section*{Electronics, Television, Radio, Audio}

\section*{SEPTEMBER 1976 Vol 82 No 1489}

\section*{Contents}

News of the month
New l.e.d.
Components crisis
A.m. stereo proposed

47 Projection television by Angus Robertson
52 H. F. predictions
53 Surround-sound decoders - 4 by David Heller
56 Sixty years ago. Literature received
57 Communications '76
59 Indla's satellite broadcasting by Jack Dinsdale
Audio '76 exhibitors
Self-setting time-code clock - 2 by N. C. Helsby
Letter from America by G. W. Tillett
71 Circuit Ideas
Programmable ratio frequency divider
Hard action centre-tapped zener
Amplifier blown-fuse indicator
74 Characteristics and load lines - 2 by S. W. Amos
77 Protectionlsm endorsed
78 Letters to the editor
Wireless across space
Phase - Moir and Harwood
Citizens' Band in the UK?
81 Magnetic pickup preamplifier by B. S. Wolfenden
82 "Sticky time" for disc
85 Earthing, shielding and filtering problems -2 by R.C. Marshall
87 An audible voltmeter and bridge indicator by R. A. Hoare
90 World of amateur radio
91 New products
132 APPOINTMENTS VACANT
144 INDEX TO ADVERTISERS

\footnotetext{


Telephones: ISditorial 01 261 8620: Adertining 01 26183.39 .
Telegrams Telex. Wiworld Bincenpres 251.37 London. Cables, "Fihaworld, London SE.I."
 UK and overseas (\$9.10 USA and C"anada).
Distribution: 40 Bowling Green Lane. London EECIR ONE. Telephone 0| 8.37.36.36.
Subseriptions: Oakfied House. Perrymount Rd. Haywards Heath. Sussex RHIG 3Dhl. Telephons ()444591sx. Subacribers ate requested to not fy a change of adders.

C I.P.C. Business Press Ltd, 1976
}


Front cover shows liquid crystal molecular textures photographed by John Varney, Paisley College of Technology, in polarized light with analyzer and polarizer crossed.

\section*{IN OUR NEXT ISSUE}

Digital wristwatch. Constructional design for low cost watch using liquid crystal display and only one integrated circuit and one p.c. board.

Electric power from the sun. Microwave and semiconductor systems used in experiments to harness solar energy. Physical limits of powser and legal aspects.

Load lines. Basic principle of the load line and how it is applied in electronic circuit design.

\section*{ibpa}

ABC
-10ncoision

\section*{CV3 Colour Projection Television has the flexibility you require SUPERSCREEN}

Ceiling (as well as floor) projector mounting


Wide viewing angles give up to \(50 \%\) more viewing space than can be obtained with a curved screen


The big \(8^{\prime} \times 6^{\prime}\) screen is ideal for audiences up to 300
The price is competifive with all other comparable equipment available on the market
The set is easy to maintain and adjust
The 3 projection fubes generate in excess of 200 lumens highlight brightness with better than 500 lines resolution
Power Input: \(220-240 \mathrm{v} / 50 \mathrm{~Hz}\)
250 watts
External Video Input: PAL or
SECAM
Rear (as well as front) projection
capability


Variable picture sizes


An optional motorised rollable screen makes space for other activities

\title{
wireless world
}

\section*{Man and machine}

Editor:
TOM IVALL, M.I.E.R.E.

\section*{Deputy Editor:}

PHILIP DARRINGTON
Phone 01-26I 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043

Production:
D. R. BRAY

\section*{Advertisements:}
G. BENTON ROWELL (Manager)

NIGEL LITTERICK
Phone 01-261 8037
LEO KEMBERY
Phone 01-261 8515
O. BAILEY (Classified Advertisements)

Phone 01-261 8508 or 01-261 8423
JOHN GIBBON (Make-up and copy) Phone 01-261 8353

Püblishing Director: GORDON HENDERSON

According to Alan Godfrey, general manager of Plessey Resistors, the British components industry must adopt more automation, to achieve economies of scale, if it is to survive against foreign competition. His own firm provides a good example: an automated production system which turns out potentiometers for consumer electronics at a rate of 1000 per hour, to sell at approximately 8 p per unit. Apparently production costs have been halved in relation to traditional manual assembly methods. This is good news. But what does automation mean to the production workers themselves? How does it affect the attempts to increase "job satisfaction" that are being made in the more enlightened parts of industry nowadays?

In the first place automation means fewer workers. Those that remain are enmeshed even more tightly in the process of mechanization that has been going on since the Industrial Revolution. The alienation of people from their work first noted by Karl Marx in the 19th century was the result of the division of labour. Each person performed a repetitive, highly specialized operation and became isolated from the final product and from human contact with the customer. Later, the rate at which he performed his work was paced by machines - conveyor belts and the like. The relationship between the person and the machine was such that he saw himself as part of the machine, as a thing rather than a human being. Inevitably the psychological effects on the worker were that he felt his job to be meaningless, trivial and monotonous; it required no skill or responsibility. And we all know the results: absenteeism, strikes and general demoralisation.
Attempts to increase job satisfaction have concentrated on making the worker more involved with and responsible for the final product. In some electronics factories, such as at Bang \& Olufsen's television set plant at Struer, Denmark, small autonomous groups of people are made responsible for producing particular modules and are identified with them by means of a marking system. The members of a group sit close together, to aid communication about faults to be rectified and so on. Then each \(B \& O\) television set is assembled complete from the modules by a single worker. This is certainly getting back towards the ideal of pride in individual craftmanship, but the method applies essentially to the assembly of electronic equipment, not to the manufacture of components.
With automatic production machinery, at least the worker has the opportunity to become more of a supervisor, to be challenged by the unexpected rather than bear the misery of the totally predictable. A small reward, but perhaps the best that can be expected until man is taken out of the machine completely, in the computer controlled factories of the future.

\section*{Citizens' Band in America}


In early March as I (WRS) was driving down the road in the flat land of north-central Kansas, I was looking forward to a visit with my friend, George Stein. George owns a farmstead of about 1500 acres in Smith Center, located in north-central Kansas. It was a warm sunny day when I started out, and the frozen dirt road in the country soon turned into a slippery quagmire. Then, as I was rounding a corner near my destination, the heavily loaded station wagon suddenly slipped off the road into a ditch, and was irrevocably stuck.

Two years ago I would have struck out through the mud to the nearest farmhouse. But today I reached for my Citizens' Band radio microphone.
"Breaker 11 for a Smith Center base station."
"You got one buddy, come on."

Growth of the newest and potentially most democratic development in radio communications so far

\author{
by W. R. Stone and Harry G. Samuels E. F. Johnson Company, Waseca, Minnesota
}
"This is the Jayhawker, KHT0538. I've got a four-wheeler stuck up to the axle in this Kansas mud, and I need help.'
"What's your 10-20, Jayhawker?"
"Just north of the cemetery and two miles west. Do you know George Stein?' "10-4, I sure do."
"Since he's expecting me, will you give him a jingle and tell him my location. Also tell him to bring a four-wheel drive to drag this wagon out of the mud."
"I0-4 Jayhawker. You got the Inkblot here. I'm glad to be of help."
The preceding CB radio jargon could be translated into an approximation of the Queen's English as follows:
"Calling for a Smith Center CB radio base station monitoring channel II.
"I hear you friend, go ahead with your message."
"This is the Jayhawker (CB radio
nickname), KHT0538 (CB radio call sign issued by the Federal Communications Commission). I've got a four-wheeler ( \(a\) passenger vehicle) stuck up to the axle in this Kansas mud and I need help."
"What's your 10-20 (designated as location using the CB 10 code) Jayhawker?"
"Just north of the cemetery and two miles west. Do you know George Stein?"
"10-4 (yes), I sure do."
"Since he's expecting me, will you give him a jingle (call him on the telephone) and tell him my location. Also tell him to bring a four-wheel drive to drag this wagon out of the mud."
"10-4 (I will honour your request) Jayhawker. You got the Inkblot (CB nadio nickname) here. I'm glad to be of help."

Within fifteen minutes, help arrived and the four-wheel drive truck quickly jerked the station wagon out of the mud and set it on the solid road.
In that particular part of the United States, the population is about six and one-half people per square mile, and this makes Citizens' Band radio communication especially valuable. Without a doubt, CB radio is an electronic marvel for the American consumer, and it's entertaining as well as useful. With a variety of English accents ranging from the Texas drawl to the Maine and Vermont twang, it's entertaining to chat with the truckers, the drivers of the big 18-wheelers operating coast-tocoast, to Canada and Mexico. It is also entertaining and informative to exchange the latest information concerning good fishing lakes or the facilities of a nearby campground with passing recreational vehicles. When searching for a particular spot, a quick request for information will bring an equally quick answer from someone knowledgeable about streets, business and industry locations. In most of the cities across America, there is a vast number of \(C B\) radio operators ready to provide information to each trucker (lorry driver) or traveller who is seeking a good restaurant, a reasonable place to sleep for the night, or the location of a particular facility.

A prime example of CB's value is the Midwest blizzard in February of 1975, still described as the blizzard of the century. During this potentially disastrous period, \(C B\) radio played an important role in communicating road conditions and latest advice from the state highway patrol to the travellers and truckers.
But CB radio has also proved attractive to vandals and thieves. The Dallas, Texas, Police Department recently estimated that more than \(10,000 \mathrm{CB}\) radios are reported stolen each month, more than half as many again as the number last year.
Just how important is this social phenomenon? What has it cost us and where is it likely to lead? There will soon be as many sociological theories explaining why people buy CB radios as


The 1958 Johnson Viking Messenger, a five channel valve CB radio transceiver.


The Johnson Messenger III, shown with power supply and external speaker.

Johnson Messenger 19123 channel transceiver.

there are sociologists and, generally speaking, they can be summed up by saying that man desires to communicate with man, especially if he can do so while still retaining an element of privacy. Hence the handle or nickname which is his identity when using CB radio. He reveals some of himself in his choice of handle and in the content of his conversation with total strangers but he retains a certain private personal image of himself.
From a technical perspective, CB could lead to a much more sophisticated nationwide communications network Since the giants of the communications industry such as American Telephone and Telegraph, General Telephone and Electronics, and Motorola have the capability of introducing state-of-the-art CB transceivers, a major radio network of sophisticated equipment could overlay the American highway system. Such a radio network is possible with mobile radio transceivers operating full duplex and using digital control as they move between different communication zones. The technology is available, but technological advances become a reality only with the allocation of economic resources. Although statistics show that a trucker is willing to pay between \(\$ 350\) to \(\$ 400\) for a sophisticated single-sideband CB radio transceiver with a range of 7 to 10 miles, will he be willing to pay \(\$ 800\) to \(\$ 1,000\) for a unit enabling him to communicate nationwide? Perhaps if the product employed frequency rather than amplitude modulation, operated at

220 MHz where the effects of the sunspot cycle are not felt, then the value to the user would justify the price differential.
On the other hand, it's conceivable that, given the realities of our political system, the Federal Communications Commission could decide that the interest of the public is best served with a form of service other than personal mobile communications. Under those circumstances, probably only a small group of CB hobbyists would survive as users of the service. Making predictions on political economic matters is risky enough for the politician - more so for the businessman. Yet common sense (if it can be applied to politics) indicates that the wishes of so many consumers who have a direct interest in decisions from Washington can hardly be ignored by their elected representatives. When consumer desires and technological possibilities come together as they seem to do for \(C B\) radios, they can create an extremely bright future for an industry.

\section*{CB radio background}

The original Citizens' Radio Service (Class A, B and C) was established in 1945, but owing to a lack of low cost equipment, only about 40,000 licences were granted up to 1958 .

Then, Class D of the citizens' radio service (commonly referred to as Citizens' Band or CB radio) was established by the Federal Communications Commission (FCC) in 1958 to fill the communication needs of private citi-
zens. As a result, any citizen of the United States over 18 years of age may hold a citizens' radio licence. (A four dollar licence fee along with a properly filled-out licence application form is all that is required - no test is necessary. and the licence is good for five years.)

With the exception of setting aside channel 9 exclusively for emergency calls in 1970, the rules and regulations covering the Class \(D\) citizens' radio service remained relatively unchanged until September 1975. At that time, several significant changes included the following:
- Hobby restrictions were removed. (The only restricted traffic is profanity, playing music, transmissions pertaining to illegal activities, and selling merchandise. The discussion of equipment, radio checks and idle conversation is now permissible.)
- Omnidirectional antennas can be mounted 60 feet above ground on an antenna support. Originally, the tip of the antenna could not exceed 20 feet above the supporting structure. (Tripling the antenna height produces the same effect as multiplying the transmitter power by a factor of six.)
- Channel 11 was established as the national calling channel. (This allows an operator to make contact and then switch to an unused channel to complete the communication.)
The silence period between station calls was changed from five minutes to one minute. (The maximum communication period of five minutes remains the same.)

An operator is required only to identify his station by call sign and it is not necessary to use the call sign of the party contacted. ("Handles" or names can be used in addition to giving call signs.)
- The elimination of the distinction between intra and inter-station calling channels. (Now, any licensee can call any other licensee on any channel other than 9.)
"It took 16 years, 1958 to 1974, for us to get the first million licensees in Class D," said Richard Everett, assistant chief of the FCC's amateur and citizens' division. "Then it took eight months to get the second million, and three months to get the third."

1976: 2,000,000 (first two months only)
1975: 2,300,000
1974: 475,759
1973: 246,002
1972: 183,593
1971: 200,388
1970: 234,074
yearly totals*
*. Editor's note: Reports from the Chicago Consumer Electronics Show indicate that sales of CB units are running at around half a million a month. It would perhaps be fair to assume that licence applications are running at a similar rate.


The Hy-Gain Hy-Range III transceiver.


Motorola's 2020 CB transceiver. The top of a range of four models, it has digital phase lock loop synthesiser, dual gate FET front end dimmable l.e.d. digital channel readout.

Undoubtedly, the reduced fee, coupled with increased enforcement efforts by the FCC on illegal operators, resulted in a surge of new applications during the early months of 1975 . (The licence fee was reduced from \(\$ 20\) to \(\$ 4\), effective March 1, 1975.)

In January 1976, more than half a million licence applications were received by the FCC. Today, more than five million licensed operators (it is estimated that at least another million operators are operating without a licence) crowd the 23 channels allocated by the FCC.

With all the operators who own more than one unit, an estimated 13 to 15 million \(C B\) radios are in use. This explosive growth in CB radio is so great that the manufacturers are unable to meet the demand.

In April 1976, the FCC introduced a temporary permit at point of sale to alleviate the backlog of applications. These permits are good for 60 days. Yet the demand continues. It is estimated that half the trucks (lorries) in the United States are equipped with CB units, as well as 1 of every 7 recreational vehicles and 1 of 20 automobiles. Also, many thousands of homes are equipped with Citizens' Band radio to chat with family members, neighbours and highway traffic.

The beginning of the boom coincided with the petrol shortage of 1973-1974, when long-haul truck drivers bought units to keep each other informed of
the whereabouts of gas supplies. Then when the highway speed limit was nationally cut to 55 miles per hour, CB radio was used to warn about speed traps manned by highway troopers.

During the truckers' strike against the high price (50c per US gallon) of diesel fuel and the lowered speed limit, truckers appeared on television and demonstrated how they used CB radios to communicate and organize their forces. For the first time in its history, the citizens' radio service received mass public exposure.

Although the long-haul trucking market (estimated to be \(65 \%\) of \(C B\) sales) is nearly saturated, automobile and light truck drivers are only beginning to contribute to sales. The Electronics Industries Association predicts there will be more than 20 million \(C B\) radios in use in the United States by the end of the year. The FCC estimates that as many as six million licence applications may be processed in 1976 (nearly three times the number in 1975). This would bring the number of licensed stations to over nine million.

\section*{Frequency spectrum management}

Class D citizens' band occupies the portion of the radio frequency spectrum between 26.96 and 27.26 MHz , which is divided into 23 channels. Transmitter output power is limited to 4 watts for amplitude-modulation and 12 watts peak envelope power for single-sideband transmission. Transmitted frequency must be within \(0.005 \%\) of nominal channel frequency and modulation must not exceed 100 per cent.

With the recent explosion in CB radio interest, a critical problem for the FCC (besides dealing with the hundreds of thousands of licence applications) has been to find a way to relieve channel congestion. Several proposals at present being considered are listed as follows.

FCC docket 20120 proposes an expansion of the allocated channels from 23 to 70 , with emphasis on s.s.b. and eventual elimination of ampli-tude-modulation. Single-sideband (s.s.b.) transceivers at present use 23 lower sideband channels and 23 upper sideband channels. Since most s.s.b. transceivers transmit standard ampli-tude-modulation as well, this makes a total of 69 channels on which to communicate.

However, s.s.b. does have two drawbacks compared with a.m. First, it contains more complex circuitry, which increases the cost. Secondly, s.s.b. requires the use of an added fine tuning control, commonly called a clarifier, which makes it slightly more difficult to operate.

Although an announcement of channel expansion was expected to coincide with the Personal Communications show of the Electronic Industries Association on March 30, 1976, a snag was encountered and the announcement has been delayed. Just two weeks
before authorization of 50 -channel usage FCC engineers discovered a serious technical problem. The proposed extra channels were to be added onto the present 23 channels in the 27 MHz range. However, the engineers discovered that strong CB stations transmitting on the proposed channels 1 to 10 and 41 to 50 produced intermodulation distortion. This occurs when two signals of different frequencies mix to create an interference signal. Charles Higginbotham, Chief of the FCC's safety and special services bureau, reports that FCC officials expect to find a solution in a few months.
FCC docket 19759 proposes the creation of a new \(C B\) radio service in the 220 MHz f.m. region, designated as Class E. Owing to strong opposition from the armed forces (which uses this frequency band for radar installations) and the Amateur Radio Relay League (this proposed frequency range is currently shared by -amateurs), no commission action is expected before 1977.

FCC docket 20351 proposes that all CB transmitters have a digitally coded identification system, designated as the automatic transmitter identification system (ATIS). ATIS could be designed so that encoded transmissions would only activate similarly equipped receivers. At the moment, it seems that this proposal will not be acted on for some time.
A major concern of the FCC is interference, whether both man-made or natural. Examples are noise from cars caused by high efficiency alternator diodes and electronic systems, noise caused by adjacent channel signals, and by solar storms. Sunspot cycles peak every 11 years. These peaks cause CB radio transmissions at 27 MHz to "skip" thousands of miles with little attenuation. Many manufacturers believe that the resulting signal-to-noise degradation contributed to a decline in CB radio popularity during the last sunspot cycle peak in 1969. Transmissions in the 220 MHz region proposed in docket 19759 would not be subject to "skip" as a result of solar storm activity.

\section*{Product technology}

CB radio design has changed considerably since the valve transceiver was first introduced in 1958. An important step was taken when the E. F. Johnson Company introduced the first 5 W solid state CB radio transceiver, the Messenger III, in early 1963. Since then, high-performance transistors, printed circuits, integrated circuits and mass production techniques have become commonplace in the CB radio industry.

Early CB radios used a separate receive and transmit crystal for each of the 23 allocated channels. Later, 14 crystal frequency synthesizer circuitry, with six in a common bank and four each for receive and transmit, was used to generate the 23 channel frequencies. Today, with the acute shortage of the necessary crystals and the proposed
increase in the number of allocated channels, digital frequency synthesizer circuitry using phase locked-loop techniques appears to be the answer. This scheme uses only one to three crystals and has an added advantage in not requiring additional crystals to generate 50 to 70 channel frequencies; the 14 crystal heterodyne frequency synthesizer circuitry can generate 24 channels, but would require additional crystals for a 50 channel capability.
Since several manufacturers have been busy developing phase-lockedloop technology, a one-chip LSI with all necessary functions, such as channel programming, and a diode converter which directly drives a digital readout is now possible.
Single conversion was used on earlier receivers. Later, more expensive models began to use double conversion for improved image-frequency rejection. However, the trend is back to singleconversion with a higher i.f. which allows effective noise blanking. It is very difficult to achieve the required coincidence between noise pulses and series gate noise blanking pulse at the lower frequencies.
A US semiconductor manufacturer, Signetics, recently developed a monolithic i.c. for \(C B\) applications which included an r.f. amplifier with a.g.c. a balanced mixer, separate oscillator, and i.f. amplifier with a.g.c.
As CB radio moves into the largely untapped automobile market, more units will be designed for the dashboard. In fact, some manufacturers offer dashboard units which include a 23 channel transceiver, cassette stereo player and an a.m./f.m. broadcast receiver
New channel selection techniques are also being explored. The standard 23 position rotary switch is presently used, but complete rotation is time consuming. A continuous automatic incrementing with channel selection memory is being evaluated. Another possibility is keyboard entry, similar to touchtone telephone keyboards. As a general rule, product technology in the next few years will depend on how the FCC decides to relieve channel crowding.

\section*{References}
1. FCC Part 95 Citizens Radio Service Rules and Regulations (as amended 9-15-75).
2. CB Yearbook (1976) published annually by Davis Publications, Inc.

\section*{VINTAGE CRYSTAL SETS}

Crystal sets, with their polished mahogany cases, brass terminals and general aura of the "hand-made" are very collectable pieces. The difficulty, of course, has been the identification of these old receivers, since references to them appeared in
advertisements from
long-defunct companies which are often not bound in volumes of old magazines. This 128-page book is intended, therefore, as an aid to collectors and contains lists of 400 tradenames, 600 companies and 200 receivers, with brief descriptions. One suspects that it will also be read by many people whose first contact with radio was in the twenties and who may even want to build a receiver to re-live the experience. If so, the circuit diagrams in the book will be of assistance, although the lack of selectivity will probably be disappointing. "Vintage
Crystal Sets 1922-1927" by G.
J. Bussey is on sale in bookshops at \(\mathbf{£ 2 . 5 0}\) or from General Sales Department,
Room 11, Dorset House,
Stamford Street, London SE1
\(9 L U\) at \(£ 2.80\), inc. postage and packing.

\section*{Books Received}

Data books have published the second edition of Opto Electronics. Entries are listed in sections called emitters, sensors, photocouplers, and opto-isolators, displays and special devices. Supplementary sections deal with U.S. military specifications, schematic drawings, outline drawings, and manufacturers local offices. Other Data books in the series include linear integrated circuits and discontinued thyristors. London Information (Rowse Muir) Ltd, Index House, Ascot SL5 7EU.

Tab Books have recently published the following paperbacks; Built-It Book of Miniature Test and Measurement Instruments (No. 792), Mosfet Circuits Guidebook (No. 796), Microprocessor/microprogramming Handbook (No. 785), Digital/Logic Electronics Handbook (No. 774), Aviation Electronics Handbook (No. 631), Introduction to Medical Electronics (No. 830), Switching Regulators \& Power Supplies (No. 828), and Modern Applications of Linear i.c.s (No. 708). Tab Books, Blue Ridge Summit, Pa.17214, U.S.A.

\section*{New I.e.d. ten times better than any other, say authors}

A paper published in the IEEE Journal of Quantum Electronics on June 6 describes an l.e.d. with a radiance of \(1000 \mathrm{~W} / \mathrm{cm}^{2}\), an order of magnitude higher than any previous l.e.d. According to the abstract, "the l.e.d. is an (AlGa) As double-heterojunction edge-emitting structure. This structure acts as a waveguide for the internally generated light, and with appropriate Al concentration difference at the heterojunctions ( \(\triangle x \approx 0.3\) ) and active region width ( \(\sim 50 \mathrm{~nm}\) ), the radiation pattern perpendicular to the junction can be less than \(30^{\circ}\) (FWHM). For fibre optic communications this l.e.d. is capable of coupling \(850 \mu \mathrm{~W}\), at a coupling loss of only -10 dB into a 0.14 numerical aperture (NA), \(90 \mu \mathrm{~m}\) diameter low-loss fibre. The l.e.d. is capable of being directly modulated at 250 MHz and has a spectral width of less than 30nm."

The paper was written by Michael Ettenberg, Henry Kressel, and James Wittke of RCA.

\section*{Components crisis?}

The Massachusetts headquarters of the Sprague Electric Company has issued a newsletter warning that some components, particularly tantalum capacitors, are in increasingly short supply. The tantalum shortage will arise because demand in 1977 will be about a third above this year's level and over half as much again as the 1975 figure, and because supplies of tantalite ore will be restricted for reasons outside their control. Thailand supplies \(28 \%\) of the world's tantalite ore, which is a by-product of tin mining, but world demand for tin has dropped and for the past four months the production of tin has declined. The supply of tantalite ore
has also dropped. Zaire produces \(24 \%\) of the world's tantalite ore, Canada \(18 \%\), Mozambique \(12 \%\) and Malaysia \(9 \%\), the rest coming from other African and South American countries. "In a normal year, "says Sprague, "the free world uses two million pounds of pure tantalum powder. In 1975 utilization was down to about 1.1 million pounds . . ." a result, they say, of multiple ordering and the recession. The capacitor industry can supply the forseeable need this year, they say, but by early 1977 demand will rise and total needs during that year will exceed those of the previous peak year, 1974.
- "Later this year we face a shortage of some critical components," Mr Akiya Imura, managing director of Natıonal Panasonic (UK) said at a recent press launch. This was a sign, he said, that industry, and particularly the electronics industry, was recovering from the recession. The hi-fi market had remained at \(£ 45\) million in the UK since 1974, and would probably be the same this year, he said. "That means the market has got a lot smaller. \(£ 45\) million buys a lot less hi-fi than it did in 1974."

\section*{Norsat link opened}

Since July 7, the Ekofisk oil field has been connected to voice, teletype and computer services in Norway via the Intelsat IV satellite; previously, the only communications were by single-sideband radio and helicopter mail services. According to Phillips petroleum, which is operating the field, this is the first
time that satellite communication services have been available to offshore - operations in the Norwegian sector. The satellite system is operated by the Norwegian government's Telecommunications Administration, from whom Phillips has leased five of the 130 available communications channels, one of them an emergency-only line. The ground station for the communications is at Eik, Norway, which is connected via leased lines with Phillips operations headquarters in Stavanger and their computer installation in Oslo, which will process daily production data.

The company's communications system will eventually cover more of the North Sea and petroleum installations. It says it expects to spend \(\$ 1\) million of its total communications investment of \(\$ 16\) million on the satellite system. It has already spent \(\$ 12\) million on communication links, all of which are private networks not connected with public 'phone systems in Britain or Norway. Work is expected to finish soon on the tropospheric-scatter radio links between Ekofisk, the pipeline terminals at Emden and Teesside, the four pipeline booster stations, and the Cod field, 50 miles to the north-east of Ekofisk. A station has been erected on Eston Nab, five miles from the Teesside terminal, where a 40 foot dish aerial transmits to Ekofisk in one hop. This, the first link, became operational two months ago. Three hops are needed between Ekofisk and Emden and Phillips says the link will be finished in October.
The signals reaching Eston Nab are in the 2,000 to \(2,500 \mathrm{MHz}\) range. They are re-transmitted in the \(1,500 \mathrm{MHz}\) range

\section*{Eston Nab} tropospheric scatter station's two 40 ft aerials linking the Teesside oil terminal with the Ekofisk field.

to a microwave receiver at the Teesside terminal. Links between platforms are by line of sight microwave.
- Radio teleprinter links worth \(£ 100,000\) are being used in the search for oil in the Celtic sea. The Post Office has provided extra equipment at its coast radio station near Ilfracombe, Devon, to provide these facilities for oil rigs and the first to use the service was a semi-submersible exploration rig which is drilling for Amoco about 40 miles south-west of Milford Haven. The rig has its own links to the base office in Pembroke Dock and a shared radio telephone service connects it with the public telephone network. The Post Office say up to 15 rigs will be able to have their own exclusive radio teleprinter links with the mainland.

\section*{Tannoy leave West Norwood}

As has been expected for some time, Tannoy is to close its West Norwood factory. Both it and the offices at Knight's Hill are on short term leases and will be shut by the end of the year. The Tannoy premises at Canterbury Grove, of which Tannoy own the freehold, will carry on some specialist manufacturing and administration. The main manufacturing plant will be in Harman's new Scottish factory, and the headquarters will be at High Wycombe.

Mr Norman Crocker, managing director, said that Tannoy had applied for permission to build a three-storey block in Canterbury Grove in 1963 but had been turned down, preventing any further expansion in West Norwood. In 1970 the company's fortunes turned down, he said, and by the time Harman took them over they were bankrupt and "could not have gone on another week".
"Since they took over," he told the South London Press, "we invested \(£ 50,000\) between Scotland and here between 1974 and 1975. Between 1975 and 1976 we invested \(£ 180,000\) and by the end of September next year we shall have invested \(£ 300,000\).'

\section*{A.m. stereo proposal}

Leonard Kahn, president of Kahan Communications of New York, has filed a petition with the FCC to change the rules which prevent a.m. broadcasters from transmitting in stereo. Kahn has patented a system which he says took 16 years to develop and which is "completely compatible with standard a.m. broadcasting . . . and will allow radio listeners to enjoy stereophonic reception with little or no additional investment in receiving equipment." Two stations had used the system experimentally. Two conventional sets are used, Mr Kahn told Wireless World, one

The Miranda mobile microwave interception and analysis system. The signals intercepted are the pulsed radar control signals to foreign, possibly hostile guided missiles.

tuned above and the other below the nominal tuning point. Although dependent to some extent on the selectivity of the set, the slight off-tune caused little or no deterioration in the sound quality. Mr Kahn explained that the system he had devised using ordinary receivers was one of two systems, the other requiring a specially built set, but which gave better results, notably a 30 dB stereo separation with single tuning. The stereo adapter could be installed in a conventional a.m. transmitter in a few hours.

\section*{Viewdata trial}

The post Office says that more than 70 organisations are now taking part in the pilot trial of the Viewdata system which started at the beginning of the year. All four branches of the Post Office are taking part as well as television firms, news organisations, consumer groups, travel organisations and educational establishments. Post Office Telecommunications, as well as providing the technical requirements of the service, is also supplying telephone, telex and data transmission information

The tv manufacturers, GEC, ITT, Mullard, Philips Electrical, Pye, Rank Radio International and Thorn, are participating to see if viewdata receiver terminals can be made relatively easily on existing production lines at reasonable cost. By the beginning of the year
most of them were able to produce prototype decoders for both viewdata and teletext, much of the circuitry for which is common to both systems. The information providers also have to assess the costs of and the return on providing the service and whether or not it will be necessary to charge customers for it.

Although decoders are available, editing terminals are not, and information providers, who include the Financial Times, Reuter, Extel, British Publishing Corporation, the International Publishing Corporation, the Consumers' Association, the Department of Prices and Consumer Protection, the English Tourist Board, British Rail, London Transport, the Road Research Laboratory, the University Central Council for Admissions, the Open University, the Careers and Occupational Information Office, the Central Office of Information, the Central Statistical Office and Aslib, have to give the information to the Post Office who put it into the "data base" on their behalf. Towards the end of July there were still only two editing terminals, both in the possession of the Post Office, but the Post Office expected delivery of 40 before long. Editing terminals would be rented to users, who would then be able to insert their information without the intercession of the Post Office.

Only a few of the 70 organisations listed by the Post Office are now contributing to the service, the rest are
preparing to do so. If the service starts, as it could do within three years, the Post Office says, subscribers will have access to a number of computer centres all over the country. For the pilot trial, all the Viewdata information is stored at the Post Office research centre near Ipswich.

\section*{Surround-sound broadcast}

After Radio Clyde's experimental sur-round-sound broadcasts, believed to be the first live surround broadcasts in Europe, chief engineer John Lumsden told Wireless World that the mono compatibility had been "better than the compatibility with normal stereo broadcasts." The reasons for this remained unclear, he said, but his view had been endorsed by independent consultant Angus McKenzie, who had heard tapes of the broadcasts.
Clyde had broadcast two concerts on June 26 and July 2 from a series of promenade concerts given by the Scottish National Orchestra at the Kelvin Hall, Glasgow. Engineers used a cluster of four AKG 414 microphones whose signals went into an Alice mixer in the outside broadcast caravan, through a Post Office line to Clyde's main music studio control room to another Alice desk and thence to the transmitter. This arrangement was used, Lumsden said, because the OB van was stereo and they wanted to get the best listening environment they could, so it was best to monitor the encode and decode signal and the off-air signal at the studio. Commentary was from a lip microphone at Kelvin Hall via an auxiliary line.
The experiment differs from that carried out by Piccadilly radio in April in that Piccadilly had encoded all their output using the Sansui QS system, which was mostly from two-channel sources apart from some QS-encoded records. Clyde were providing live material from four microphones which were then matrixed down to two, again using the Sansui system.

\section*{ITV stereo experiment}

On July 16 London Weekend and Capital Radio collaborated in the first "simulcast" on commercial television. LWT's pictures were matched by stereo sound broadcast by Capital. The programme, transmitted at 23.30 h , featured Jethro Tull performing their latest album, "Too old to Rock 'n' Roll, too young to die." Although the BBC have broadcast many simultaneous television and stereo radio programmes, the difficulty for the commercial companies has always been that they are wholly
independent of one another financially and organisationally, and the co-ordination of advertising slots has seemed the biggest stumbling block. In this case the co-ordination seems to have been taken over by Television International, Ltd who provided the technical facilities and co-ordinated the production of the final tape. According to TVI, a TVI OB unit with three LDK5 colour cameras and a hand-held camera recorded the "concert" in mono sound. Other microphone feeds were recorded separately on one-inch, eight-track tape. EBU time code was recorded synchronously on v.t.r. and audio tape, after which the videotape was edited. The master eight-track tapes were then mixed down to stereo and a separate eighttrack master was used to synchronize sound and picture. LWT transmitted both sound and vision, sending stereo sound by PO lines to Capital for their stereo f.m. service.

\section*{Alternative to microstrip}

Microwave Associates are now using an air dielectric alternative to microstrip called suspended substrate, which they say is less bulky for some applications than microstrip. Although microstrip assemblies taken by themselves are smaller, by the time the interconnections between strips and coaxial links or waveguides have been made any advantage in size reduction on the strip itself has been lost.

The dielectric is formed by mirrorimage channels in two metal plates, between which is fixed a glass-loaded substrate with copper tracks on each side. The two copper tracks are so close that, at r.f., the gap between them is negligible. The transmission mode is TEM.

Connections to suspended-substrate microwave assemblies are simple, say Microwave Associates, and the technique is also less lossy than microstrip enabling a smaller magnetron to be used. Microwave systems division manager Ian Williamson said in a statement: "For ferrite isolators we can achieve a 0.2 dB loss per pass compared with 0.7 dB minimum with the garnet used in microstrip. Functions such as switches and limiters can be made from packaged 50 ohm structures and tested prior to assembly, in contrast to microstrip, which needs unpackaged diodes, testable only when positioned in the final circuit." Because of their greater size, airstrip circuits were easy to manufacture and test. Ferrite pucks and other modules could be introduced into the holes in the plates and were easily exchanged when faulty. Another advantage was the strength of the assembly.
Microwave Associates first developed the system for an airborne X-band transponder for the Navy Lynx heli-
copter and Maritime Harrier. The U.S. parent company had already developed suspended-substrate technology and, although they had not made the fact public, they had built up a library of designs for different suspended substrate components.
The transponder gives two power levels from one of two transmit and receive antennae, and is self testing. Even with a large number of isolators in the design, say Microwave, the unit measures only 6 by 7 by 3 inches.
Having found an application that might use the technique to advantage, the assistant manager of the British semiconductor division went to the United States to learn more about it. Two teams at Dunstable then built transponder r.f. units, one using conventional microstrip techniques and the other using suspended substrate. Ian Williamson told Wireless World: "We evaluated the two systems in all sorts of respects. Losses, weight, size and so on, and suspended substrate was the more suitable for this application. Other companies may have used these techniques but as far as I know they do not have an extensive library of building blocks."
- Using an air dielectric in microwave devices, particularly directional couplers, has been widely known since the 'fifties. But the use of the technique has usually been confined to a small number of devices, and the size of the devices that did exist was somewhat greater.

\section*{Voice controlled computer terminal.}

EMI are using microprocessors in a new data terminal, the Threshold 500 , which can recognize at least 32 words or short phrases spoken into it in any language irrespective of vocabulary, accent, dialect, speech impediment, or background noise. Although EMI have already developed a voice recognition for their VIP 100 general purpose minicomputer system, the Threshold 500 is half the size and, at \(£ 6,500\), half the price of its predecessor.

The selected vocabulary is put into the machine and users of the system then "train" the equipment to understand their individual pronunciation of the words by repeating each five or ten times into a noise cancelling microphone. The terminal then averages the voice patterns out for each word and stores it with the others in an r.o.m. memory. When the terminal is used, the operator calls up his own voice pattern, which is identified by a reference number on the control unit used for speaker selection and voice training. If the operator's voice alters for any reason he can call words up for retraining.

\title{
Projection television
}

\section*{A review of current practice in large-screen projectors}

\author{
by Angus Robertson
}

In the early days of television, it was not easy to manufacture cathode-ray tubes larger than 30 cm diameter. To obtain larger pictures, manufacturers used a lens in front of a small, high-intensity c.r.t. and projected the raster onto a screen contained within the cabinet. Mirrors were usually used to fold the light path and enable smaller cabinets to be used. During the fifties, larger and brighter c.r.ts were manufactured and projection TV faded out. Although larger tubes have been produced for special applications, sizes have levelled off with diagonals of 66 cm : larger pictures require special techniques.
The first large-screen television projector was invented by Professor Fischer at the Swiss Federal Institute of Technology in 1939. At that time, Prof. Fischer thought that the growth of television would come from the development of networks of neighbourhood "television theatres" and he invented the Eidophor with the capability of projecting TV pictures onto cinemasized screens. The earliest Eidophors

Although projection television has been around since television was originally developed, it is only in recent years that considerable research has been directed towards developing new techniques for producing large-screen television projectors. Several TV projectors have been produced specifically for the consumer market, although at present their prices are far higher than directviewing receivers.
were cumbersone machines, which could project only black and white pictures in a darkened or semi-darkened room. They were not the most reliable of machines and for a number of years the Eidophor system was little known or used.
Later the American space programme called for a reliable, high-performance, large-screen projection system capable of working for long periods of time, to provide data displays
in NASA flight control centres. Gretag AG, Zurich, a subsidiary of Ciba Geigy and patent holders and manufacturers of the Eidophor, successfully developed the projector's capability to meet NASA specifications. The latest Eidophors are able to project full-colour television pictures onto screens 18 m wide. The Eidophor is still the only commercially-available projector able to project cinema-sized pictures, but colour versions cost over \(£ 100,000\). Cheaper techniques have therefore been developed to provide projectors for industry, education and the home.

Three basic projection techniques are used. Eidophor, General Electric, Hughes, Westinghouse, IBM and Titus (Philips) use light-valve projectors, in which varied techniques are employed to modulate a light source, which is then projected onto the screen. The second method is to use Schmidt optics (like the telescopes) to magnify and project the image from a small, highintensity c.r.t. Advent, Pye (Mullard/Philips), Image Magnification, Ikegami, Kalart Victor and Pro-


Fig. 1. Light path in Schmidt optical system.

Fig. 2. Magna Image 111 H colour Schmidt projector.



Fig. 3. CV3 Superscreen Schmidt projector.
jection Systems all use this technique. Finally, the refractive technique is the cheapest method, in which a glass or acry.i. cils is placed in front of an ordinary c.r.t., usually a 33 cm colour Trinitron, and the picture is projected onto a high-gain screen. We can expect to see lenses available separately soon to enable the handyman to modify his own TV set for projection.

\section*{Screens}

Most video projectors, except possibly Eidophor, have low light outputs when compared with cine projectors. For instance, refractive projectors have an output well below 50 lumens, Schmidt projectors emit between 200 and 500 lumens and the high power Eidophor produces 7,000 lumens. An ordinary 16 mm ciné projector, with a \(250 \mathrm{~W}, 24 \mathrm{~V}\) lamp, provides around 650 lumens while in motion and an overhead projector is usually rated at between 1,500 and 2,500 lumens.
To increase the apparent brightness of the projected image, it is common practice to use special screens which have "gain". Since no more light may be reflected from the screen than falls on it, the screen is made directional so that available light is concentrated into a small angle.

Projectors such as the Advent use an Ektalite-foil screen material, developed by Kodak. The material provides an on-axis gain of between eight and ten, with a \(40^{\circ}\) viewing angle but, to eliminate hot spots, the screen must be compound curved (both horizontally and vertically) and this necessitates a solid screen frame, usually fibreglass. Zygma Electronics use a specially-developed, solid, compound-curved screen that uses a highly-reflective spray-on paint instead of the more usual foil. Gain is 4.7 times with a horizontal viewing angle of \(90^{\circ}\). While these are fine for permanent installations, they usually need a van for transportation and may only be concealed with difficulty, unlike a roll-up screen. A matt screen surface has a unity gain, while a beaded screen usually has a gain of 1.8 . Projection Systems Inc. market a silver lenticule screen with a 2.5 gain and the exceptional viewing angle of \(170^{\circ}\). This screen material, which is rollable, also
has excellent ambient light rejection characteristics, this light being reflected sideways away from the viewers ideal for hire work where the locations used rarely seem to have adequate black-out.
Mechanische Weberei, in West Germany, manufacture a projection screen with a gain of 3.5. This is also roll-up but it does not have the same ambient characteristics as the previous screen. It is however perfect for use where adequate black-out is provided. Ideal Image Inc. has produced a plastic lenticular screen with a gain of five but the lenticule (lens) size is such that minimum viewing distance is 6 m and it must be compound curved. The company is presently developing a new plastic material similar to the Ektalite foil but which requires only horizontal curving rather than the compound curve. Single curves are used for large cinema screens and only require a curved frame lattice rather than the solid frame required for Ektalite. Although the screens being presently manufactured are 25 m by 7.5 m for wide-screen (and why not?) television projection, smaller sizes are available to order.


Fig. 4. Videobeam 1000A from Advent.

Rear projection. Although front projection is common there are certain applications where rear projection is preferred. For instance the Eidophors installed at the NASA flight control centre are rear projected for convenience; it would be impractical in that particular location to project the image onto the front of the screen. Screens used for rear projection are usually of high density and low gain in order to minimize "hot spots". To obtain the projected image the correct way round, current to the horizontal scanning coils is reversed. On some projectors scan reversal is achieved by a switch, on others, it is a case of resoldering two wires on each scanning yoke.

Although not yet commercially available, a rear projection screen has been developed in the USA with a gain of about eight. No further details are known nor do I know of any other rear projection screens with a gain greater than unity.

Screen brightness. Projector light output is usually quoted in lumens, which have the advantage of being identical in imperial and metric units. The illumination falling on the screen is meaşured in lumens \(/ \mathrm{m}^{2}\) (lux) but since most screens provide some gain, luminance in candelas \(/ \mathrm{m}^{2}\) (nits) is the unit used (except by the Americans who still use ft lamberts). Example: A projector light output is 500 lumens. Screen size is 3 mx \(4 \mathrm{~m}=12 \mathrm{~m}^{\circ}\). Screen illumination is
\[
\frac{500}{12}=41.7 \operatorname{lux}
\]

If the screen gain is two, screen luminance is
\[
\frac{41.7 \times 2}{\pi}=26.53 \mathrm{~cd} / \mathrm{m}^{2}
\]

Resolution. A 625-line, 50 -field television signal has a bandwidth of 5.5 MHz and a horizontal resolution of 570 lines. The resolution of colour c.r.ts is limited by the number of phosphor dots or stripes; therefore, the larger the screen, the higher the possible resolution. Since most colour projectors project each colour separately, resolution is usually only limited by the electronics associated with each channel. For the display of computer-generated data and command applications, higher definition is often required and the use of 1,029 lines per frame and viden bandwidths of up to 40 MHz enables a horizontal resolution of over 1,000 lines to be achieved. Digital techniques are sometimes used to obtain accuracy in the corners of the picture. When displaying characters which combine more than one colour, registration accuracy is critical; otherwise double characters will be displayed.

\section*{Schmidt projectors}

Fig. 1 shows the principle of the external Schmidt c.r.t. projector, in which tube diameter can vary between 75 mm and

150 mm for different projectors. The reflector needs to be two or three times the raster size, which precludes the use of large colour tubes on purely physical grounds. The centre of the mirror is removed to prevent light being reflected directly back towards the c.r.t. faceplate and a fan is inserted in the hole to cool the high-intensity faceplate.
Light output from Schmidt projectors depends upon tube and reflector size. RCA quote a light output of 450 lumens from a 125 mm c.r.t. when operating with 45 kV and \(500 \mu \mathrm{~A}\). Tubes operating with more than about \(30 \mathrm{k}^{*}\). produce X-rays and care is required in the construction of such projectors to provide adequate shielding. Some projectors include interlock circuits which remove e.h.t. when the protection covers are removed for maintenance.
For colour projection, three optical systems are used with green, red and blue c.r.ts. Usually, these are mounted in-line, but one manufacturer uses a triangle formation. Complex analogue circuits are included to enable registration of the three images in much the same way as a shadow mask tube - a process which is made easier by the in-line layout. Projectors usually have a built-in cross-hatch generator and basic registration controls are often mounted on a separate control unit for convenience.
Another facility usually included is keystone correction. When a projector is mounted on the ceiling (out of the way), the projected image is angled down at the screen giving a picture wider at the bottom than the top. Keystone correction enables the verticals to be electronically corrected, usually to correct for angles of \(\pm 15^{\circ}\). An optical keystone corrector may be provided which adjusts the c.r.t. position to provide equal focus over the screen. The tube is usually mounted on a carriage which enables it to be moved in relation to the reflector to provide optical focus for differing projection distances. The corrector plate is designed to compensate for deficiencies in the optical system and is optimized for a particular projection throw. Although most Schmidt projectors allow focusing at variable distances, often the corrector plates must also be changed if a wide range of projection distances is to be accommodated.

Image Magnification Inc. The Magna Image \(I\) is a monochrome projector which uses a 125 mm c.r.t. Picture width is variable between 1.2 m and 6 m with a resolution of 600 lines in the centre. Price: \(£ 3,500\). The Magna Image IIIH, shown in Fig. 2, is a colour projector using three heads in-line. Picture widths between 2.4 m and 6 m with a resolution of 500 lines. Price: \(£ 12,750\).

Kalart Victor Corp. The Telebeam II projects a monochrome picture between 1.8 m and 3.6 m wide (specified


Fig. 5. Advent Lightguide tube, with complete Schmidt system inside envelope.


Fig. 6. Zygma Teleprojector.
when ordered) with a resolution of 550 lines. Light output is 384 to 576 lumens from a 125 mm tube. Price: \(£ 3,810\).

Projection Systems Inc. The CV3 Superscreen, Fig. 3, projects a colour picture with widths between 1.8 m and 2.4 m from 75 mm tubes. Light output is about 200 lumens. Price: \(£ 4,490\). Model 270 A is a monochrome projector with a light output of 800 lumens for screen widths between 1.8 m and 6 m . Resolution is 1,000 lines in the centre. Price is \(\$ 11,800\). Model 560 is a colour projector
with a light output of 600 lumens for a screen width of 3.6 m . Price: \(\$ 14,750\). Amphicolor 1000 uses three 150 mm tubes for colour projection with 4800 lumens. Screen widths of either 2.4 m or 4.2 m . Price: \(\$ 29,500\).

Pye TVT. The Mammoth is a colour projector with a claimed light outpuit of 800 lumens onto a 4 m wide screen. Centre resolution is 600 lines and price is on application.

Ikegami. The TPP-2C is a colour projector with a light output of 360 lumens, intended for a maximum 4 m by 3 m screen. Price: \(£ 16,000\).

Advent Corp. The Videobeam 1000A in Fig. 4 uses the Schmidt technique, but instead of having separate tube, reflector and corrector plate, all are vacuum sealed in the same envelope, as seen in Fig. 5. The electron beam scans a 75 mm phosphor coated target (red, green or blue). Emitted light is then reflected onto the spherical mirror and back through the corrector plate to the screen. Although this approach has manufacturing advantages, the projection distance is fixed at 2.54 m exactly, and light output is low since all parts are sealed within the tube and it is not possible to cool the target. Although not specified by Advent, working backwards from the screen brightness gives about 60 lumens light output. Thus a bulky, high gain screen is required to. obtain an adequate screen brightness. Screen dimensions are 1.32 m by 1.75 m . Advent has however, recently announced a set of lenses which may be attached externally to the sealed tubes enabling a \(2.4 \mathrm{~m} \times 1.8 \mathrm{~m}\) picture on a flat screen. The screen brightness thus obtained would necessitate a well darkened room.
Advent are intending to introduce a new, cheaper projector on the American market this summer. No further details are available nor has a British launch date been announced.


Fig. 7. General Electric light-valve projector.

Zygma Electronics manufacture a projector which has characteristics which are very similar to the Advent Videobeam. The Type 2001 Teleprojector shown in Fig. 6, uses internal Schmidt optics tubes with a fixed projection distance of 2.54 m onto a high gain screen \(1.75 \times 1.32 \mathrm{~m}\). Screen brightness is \(140 \mathrm{~cd} / \mathrm{m}\) and the price is \(£ 4,950\).

\section*{Light valves}

General Electric use transmission light valves in monochrome and colour projectors. Colour pictures are produced from a single projection tube using a diffraction grating to separate the colours. The projector, seen in Fig. 7 , uses a separate xenon light source, a fluid control layer in the light valve, and a projection lens. Optically it is similar to a slide or ciné projector.
Miniature grooves are created on the deformable surface of the fluid control layer by electrostatic forces from the charge deposited by the electron beam, which is modulated with video information. These groove patterns are made visible by use of a "dark field" or schlieren optical system consisting of a set of input slots and output bars. The resulting television picture is imaged on the screen by the projection lens.

Cross sections of the light body, colour filters and input and output slots are shown below the light valve in Fig. 7. Green light is passed through the horizontal slots and is controlled by modulating the width of the raster lines themselves, by means of a high-frequency carrier applied to the vertical deflection plates and modulated by the green video signal. Magenta (red and blue) light is passed through the vertical slots and is modulated by the diffraction


Fig. 8. General Electric PJ6000.
gratings created at right angles to the raster lines by velocity modulating the electron spot in the horizontal direction. This is done by applying a 16 MHz ( 12 MHz for blue) signal to the horizontal deflection plates and modulating it with the red signal. The grooves created have the proper spacing to diffract the red portion of the spectrum through the output slots while the blue portion is blocked. For the 12 MHz carrier the blue light is passed and the red blocked. Thus, simultaneous and superimposed primary colour pictures are written with the same electron beam and projected to the screen as a complete-ly-registered full-colour picture.
Because of problems of heat dissipation, and the avoidance of frequent repairs (the light valve costs
about \(\$ 12,000\) ), the xenon lamp is limited in power to 650 W . The PJ7000 monochrome projector has a light output of 750 lumens and is suitable for picture widths between 0.75 m and 3.6 m , with a typical horizontal resolution of 1,000 lines. Three lenses are available to accommodate different throw/width distances. The PJ6000, Fig. 8, and PJ5000 colour projectors have a light output of about 280 lumens, a resolution of 600 lines and the same focusing ability, although a 2.4 m screen width is optimum for colour. Light output of the colour projectors is less than the monochrome projectors since light is lost in the diffraction process. Life of the light valve is usually over 3,000 hours but 7,000 hours has been achieved in the laboratory. Price of the PJ7000 is \(\$ 46,000\), and the PJ6000 and PJ5000 cost \(\$ 52,500\).

Titus light valve. Developed by the Laboratoires d'Electronique et de Physique Appliquée (LEP), part of the Philips organisation, the Titus projector uses the Pockels effect in a refractive light valve. This works on the principle that certain crystals, in this case potassium di-hydrogen phosphate, rotate the plane of polarization of a beam of incident light through an angle proportional to modulation by the accelerating voltage of a constant-current electron beam. Fig. 9 shows a tube using these principles in a monochrome projector. A peltier cooler is required to keep the temperature of the plate just above its Curie temperature of about \(-50^{\circ} \mathrm{C}\).
The target is bombarded by an electron beam whose accelerating voltage lies between 500 and \(1,000 \mathrm{~V}\), a grid

being placed in front of the target at a distance of about \(40 \mu \mathrm{~m}\). The electron beam, of constant intensity, functions as a flying-spot short circuit between this main grid and the point of impact of the target, which thus reaches a potential close to that of the grid. The video signal is applied between the transparent conductive layer and the grid, to ensure that the various points of the target are charged to the corresponding video voltage when they are hit by the electron beam, irrespective of their previous potential. Erasure and writing are therefore simultaneous and this, coupled with the long discharge time-constant of the target, results in flicker-free operation. In addition, since the voltage pattern stored on the target does not depend on the intensity of the electron beam, it is found that no line structure is apparent on the picture. The absence of line structure, however, is not accompanied by loss of vertical resolution.

Twin ellipsoidal mirrors are used to provide high collection efficiency from the 2.5 kW xenon lamp. A calcite polarizing beam splitter which transmits only light whose electric vector is parallel to the plane of Fig. 9 is used to transmit light to the Titus tube. The projection lens is placed between this polarizer and the tube and acts as a collimating lens so that the luminous beam incident on the plate has a mean directional normal to the latter. When the light beam is reflected at the dielectric mirror and passes through the lens and beam splitter again, only the light component with its electrical vector perpendicular to the plane of Fig. 9 is transmitted to the screen. In practice, light output from the monochrome projector is about 2,500 lumens, with a horizontal resolution reaching 750 lines. A 4 kV xenon lamp may be used to increase this output.

A colour projector using Titus tubes is shown in Fig 10, in which two dichroic mirrors are used to split away blue and red beams. Ellipsoidal mirrors similar to those of the monochrome projectors are used but not shown here. Using a 4 kW xenon lamp, 3,200 lumens output have been obtained from an experimental prototype.

The Titus is the only television projector that has an output capability comparable to the Eidophor. Efficiency is about half that of the Eidophor since half the light is lost in the original polarization.

Hughes liquid crystal. This projector uses a liquid-crystal reflective light valve which is addressed by a c.r.t. Fig. 11 shows the various layers which make up the liquid-crystal light valve. In operation the cadmium sulphide photoconductor acts as a high-resolution, light-controlled voltage gate for the liquid-crystal layer. The dielectric layer serves to reflect the projection light while the cadmium telluride lightblocking layer prevents residual pro-


Fig. 10. Three Titus tubes used for colour projection.


Fig. 11. Sectional view of a liquid-crystal light valve.


Fig. 12. Colour projector designed to display symbols.


Fig. 13. Hughes light valve projector.
jection light reaching the photoconductor. Because of the high d.c. resistivity of the dielectric mirror, the device is operated with an alternating voltage impressed across the sandwich structure. This has the added benefit of extending the life of the liquid crystal. The device is used in the optical system shown in Fig. 12. Light from the projection lamp is collimated, polarized and directed to the cell. The light passes through the liquid crystal and is reflected from the dielectric mirror.
The second polarizer, which is crossed with respect to the first, is placed in the projection beam that is reflected from the light valve. The display operates in the following manner. The liquid crystal is aligned with its, optical axis nearly perpendicular to the device electrodes so that, in the off state, no phase retardation occurs and the projection light is blocked from the screen by the crossed polarizers. With imaging light incident on the photoconductor, a voltage above the field effect threshold is switched onto the liauid crystal layer. The liquid crystal has negative dielectric anistropy, so that the molecules tend to align normally to an applied electric field. Thus the applied voltage rotates the molecules from their initial state parallel to the field and introduces a phase retardation between ordinary and extraordinary rays in proportion to the spatial intensity variation of the imaging light. This phase retardation changes the polarization of the projection light and, due to the dispersion effect, allows selected colours to pass the crossed polarizers.
In the display of symbols, the colour of a selected character in the projected
image may be selected by the level of intensity of the input imaging light. Low imaging light intensity (low voltage switched to the liquid crystal) leads to a white (all colours present) on black image, while higher imaging intensity increases the alternating voltage on the liquid crystal and leads to the selection of certain colours; blue, green, yellow and magenta. These colours have only one luminance and are thus suitable only for displaying coloured characters or symbols superimposed upon a black and white grey-scale picture
So far, images of 350 lumens have been projected, using a 150 W lamp, by the equipment shown in Fig. 13. This projector was developed by Hughes in co-operation with the US Navy, and in its present form is intended for symbol displays.

To be continued next month with a look at refractive projectors

\section*{75 MHz counter}

A set of p.c.bs is now available for the 75 MHz counter which was published in the 1976 Wireless World Annual. The set comprises six boards to accommodate the count-store-display circuitry, divider, crystal clock. function select. input amplifier, and power supply. Wire links are used where necessary to avoid the expense of double-sided boards. The set is priced at \(£ 12.00\) inclusive of v.a.t. and postage and is available from M. R. Sagin at II Villiers Road, London N.W. 2

\section*{HF predictions}

Long periods of subnormal days are unlikely to occur as duration and intensity of magnetic disturbances have decreased rapidly over the past two months. Coupling this with the general seasonal trend toward higher frequencies becoming available should produce a noticable improvement in daytime working particularly on the North Atlantic path.



\title{
Surround-sound decoders-4
}

\title{
QS Variomatrix circuit - construction and setting up
}

\author{
by David Heller, B.Sc.(Eng.)
}

In the circuit of Fig. 5, transistors \(\mathrm{Tr}_{1}\) and \(\mathrm{Tr}_{2}\) act as buffer amplifiers with collector loads \(\mathrm{C}_{3}, \mathrm{R}_{7}\) and \(\mathrm{C}_{6}, \mathrm{R}_{13}\) providing some roll-off in the high frequency response of the system. The signals are attenuated by \(R_{14} \& R_{17}\) and \(R_{15} \& R_{16}\), to keep distortion low, the HA1328 having a gain of 14 dB to make up for this. Resistors \(R_{18}\) to \(R_{21}\) supply d.c. negative feedback.

The Variomatrix control points, pins 9 to 12 , are connected to resistors \(\mathrm{R}_{30}\) to \(\mathrm{R}_{33}\) which determine a fixed gain for the control amplifiers. In addition these points are a.c. coupled to the drains of the f.e.ts inside the HD3103P, whose constantly varying impedences change the gains of the control amplifiers about their fixed positions. The control terminals are also provided with phasecompensating circuits \(\mathrm{R}_{26}\) to \(\mathrm{R}_{29}\) and \(\mathrm{C}_{14}\) to \(C_{17}\) to ensure stability.

Pins 3 to 6 supply the various outputs: resistors \(R_{35}\) and \(R_{36}\) are inserted between pins 5 and 6 and pins 3 and 4 to cancel crosstalk between \(\mathrm{L}_{\mathrm{F}}\) \& \(\mathrm{R}_{\mathrm{F}}\) and \(\mathrm{L}_{B}\) \& \(\mathrm{R}_{\mathrm{B}}\) outputs.

The circuitry has been designed so that its variable matrix is affected by the frequency of the input signals as well as the control signals. Low frequencies are prevented from entering the phase discriminator i.cs and thus influencing the control signals; they would otherwise superpose ripples with long timeconstants on the control signals feeding the f.ets.

The output signals pass through criss-cross circuits made up of \(\mathrm{R}_{37}\) to \(\mathrm{R}_{42}\) and \(C_{28}\) to \(C_{31}\), situated between the front left and front right outputs to give the appropriate matrix coefficients in the low frequency range. The crisscross circuits in the rear channel outputs perform the same function. The signals finally pass through the phase shifters \(\mathrm{Tr}_{3}\) to \(\mathrm{Tr}_{6}\) and emitter followers \(\mathrm{Tr}_{7}\) to \(\mathrm{Tr}_{10}\).

\section*{Control circuitry}

The Variomatrix control circuitry comprises of two HA1327 phase discrimina-- tors and one HD3103P consisting of five p-channel m.o.s.f.e.ts. The \(L_{T}\) and

In agreeing to reveal the OS Variomatrix circuit in Wireless World, Sansui give constructors the chance to evaluate the OS system for much lower cost than has hitherto been possible. Kits for this decoder design are available from the address given in the article. A previous instalment in this series (August) gave details of operation.
\(\mathrm{R}_{\mathrm{T}}\) signals pass through high-pass filters made up of \(\mathrm{C}_{48}, \mathrm{R}_{72}\) and \(\mathrm{C}_{49}, \mathrm{R}_{71}\) so that 100 Hz signals are attenuated by 40 dB . The processed signals pass into the buffer amplifiers of each of the HA1327 i.cs (pin 1) and produce in-phase and out-of-phase outputs at pins 2 and 3 which are then fed to the input terminals of the front/back control phase discriminator \(\mathrm{IC}_{2}\) and also to phase shifting networks \(\mathrm{R}_{106}\) to \(\mathrm{R}_{109}, \mathrm{C}_{74}\) to \(\mathrm{C}_{77}\) and \(\mathrm{R}_{77}\) to \(\mathrm{R}_{79}, \mathrm{C}_{54}\) to \(\mathrm{C}_{56}\), so that \(\mathrm{L}_{\mathrm{T}}\) and \(\mathrm{R}_{\mathrm{T}}\) are given a \(45^{\circ}\) phase difference. These last-mentioned signals are then applied to pins \(6,7,14\) and 15 of the left/right control phase discriminator \(\mathrm{IC}_{4}\), which derives \(\mathrm{L}_{\mathrm{T}}+\mathrm{R}_{\mathrm{T}} \angle-45^{\circ}\) and \(\mathrm{L}_{\mathrm{T}}-\mathrm{R}_{\mathrm{T}} \angle-45^{\circ}\) and passes both through limiters to the phase discriminator to provide an output dependent on phase difference. Outputs appearing at pins 9 and 10 are rectified and low-pass filtered by \(\mathrm{C}_{87}, \mathrm{R}_{131}, \mathrm{R}_{122}, \mathrm{C}_{90}\) and \(\mathrm{C}_{91}\) to eliminate any ripple components. The resultant control signals are then applied via the potentiometers \(\mathrm{R}_{127}\) and \(\mathrm{R}_{128}\) to the gates of respective f.e.ts inside \(\mathrm{IC}_{3}\). In a similar way, \(\mathrm{IC}_{2}\) derives a control signal dependent on the phase difference of \(L_{T}\) and \(\mathrm{R}_{\mathrm{T}}\).

The output signals of the two phase discriminators are added through \(\mathrm{R}_{87}\), \(\mathrm{R}_{88}, \mathrm{R}_{119}\) and \(\mathrm{R}_{120}\) and produce the 16 V direct voltage that determines the operating point for the f.e.ts. The networks connected between the gate and drain of each f.e.t. (e.g. \(\mathrm{C}_{94}\) and \(\mathrm{R}_{134}\) ) form the negative feedback circuit for reducing the distortion created by the
f.e.ts. The drains are coupled to the control pins of \(\mathrm{IC}_{1}\) and control the gains of the \(F, B, R\) and \(L\) amplifiers.

\section*{Characteristics}

Fig. 6 shows the separation characteristics of the QS Variomatrix decoder for a left-front encoded signal. Low frequency separation is 3 to 6 dB as l.f. signals do not pass through the control circuitry; this is not a serious drawback because the ear has some difficulty in determining the location of low frequency sound sources.
A right-front encoded signal produces similar results, while left and right back encoded signals produce slightly worse separation ( 10 dB instead of 12 dB ) at 10 kHz . Fig. 7 shows the separation characteristics for a centre front encoded signal.

The decoder has a gain of just over unity and will operate with input levels of 5 mV to 3 V r.m.s. However, the HA1328 i.c. has very little power supply ripple rejection and any ripple passes through the decoder as if it was an input signal. For this season it is best to ensure that the minimum signal entering the decoder is 100 mV r.m.s. and the volume control should therefore appear after the decoder. Distortion is typically \(0.04 \%\) from 500 Hz to 20 kHz and worsens to around \(0.2 \%\) at about 50 Hz .

\section*{Construction}

To conserve space, the module is designed to be constructed on two boards, one stacked upon the other with the aid of Varelco "vertical plus" pins. The lower board houses the basic decoder chip HA1328. The upper board houses both phase discriminator i.cs (HA1327) and the m.o.s. i.c. which together form the control circuitry.

Insert the resistors before the capacitors. The capacitors are mostly of the Siemens B32540 polycarbonate type, with a distance of 7 mm between pins. If the mounting holes vary from this, the legs of the capacitors are prone to break off, so, if the capacitors do not fit exactly into the positions, do not force them in. Rather, widen the holes or support each lead with a pliers and bend

them gently in the direction required. Do not apply too much heat to the polystyrene capacitors; they are of the low voltage type and too much heat causes shorting of the layers.
Once all the components have been soldered into position insert the horizontal Varelco pins into the lower board. These are used to mate with similar pins in the master switchboard. The pins are mounted in plastics strips in groups of four. Three strips are supplied and should be inserted and soldered in the first four holes, the middle four holes and the last four holes. The other holes are not used.

The upper board has certain circular marks silk-screened on its top side. Take the Varelco vertical pins one at a time and insert these through the copper side of the board into the marked positions. With the tail protruding about \(1 / 8 i n\). through the top side of the board, solder the pin in position. Solder each of the pins individually before inserting the next pin. Try to ensure that these pins are soldered perpendicular to the board. Once they are soldered into position, they should not be subjected to any twisting or force.

After inserting and soldering all the vertical pins in the upper board, insert

\section*{Components}

Resistors \(1 / 4\) W \(10 \%\), except those marked "which are \(5 \%\)
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}_{1}\) & 5.6 k & \(\mathrm{R}_{78}\) & 33k \\
\hline \({ }_{\text {R }}^{1}{ }_{2}{ }_{8}\) & 47k & \(\mathrm{R}_{80} \mathrm{R}_{83}{ }^{\text {P8 }}\) & \(270 k\) \\
\hline \(\mathrm{R}_{3}{ }^{8}\) & 100k & R \(\mathrm{R}_{81}, 84\) & 120k \\
\hline \(\mathrm{R}_{4,10}\) & 1 k & \(\mathrm{R}_{82} \mathrm{R}^{\prime \prime} 85\) & 390k \\
\hline \(\mathrm{R}_{5}{ }^{\text {, }}{ }_{6}\). & 2.2k & \(\mathrm{R}_{86}{ }^{82 \prime}\) & 680k \\
\hline \(\mathrm{R}_{7}{ }^{\prime}{ }^{6}\) & 3.3k & \(\mathrm{R}_{87} 868{ }^{\text {c }}\) & 120 k \\
\hline \(\mathrm{R}_{9}\) & 100k & \(\mathrm{R}_{89} 87,90\) & 56k \\
\hline \(\mathrm{R}_{11,12}{ }^{\text {. }}\) & 2.2 k & \(\mathrm{R}_{91} \mathrm{l}^{92}\) & 1.5 M \\
\hline \(\mathrm{R}_{13}\) & 3.3 k & \(\mathrm{R}_{93}{ }^{\text {, } 94}\) & 470k \\
\hline \(\mathrm{R}_{14,15}{ }^{\text {, }}\) & 68k & R \(\mathrm{R}_{95}, 96\) & 1 M preset \\
\hline \(\mathrm{R}_{16-21}\). & 22k & R \({ }_{97}{ }^{\text {, }} 98\) & 1 M \\
\hline \(\mathrm{R}_{22-25}\) * & 15k & \(\mathrm{R}_{\mathbf{9 9}, 100}\) & 100k \\
\hline \(\mathrm{R}_{26-29}\) & 47 & \(\mathrm{R}_{101}\) & 4.7 k \\
\hline \(\mathrm{R}_{30-33}{ }^{\text {. }}\) & 1.2k & \(\mathrm{R}_{102}{ }^{\text {* }}\) & \(2.7 k\) \\
\hline \(\mathrm{R}_{34}\) & 680 & R \(\mathrm{R}_{102} 104\) & 12k \\
\hline \(\mathrm{R}_{35}{ }^{\text {\% }} 36\) & 120k & \(\mathrm{R}_{105}\) & 470 \\
\hline \(\mathrm{R}_{37}{ }^{\text {, }}\) 38. & 27k & \(\mathrm{R}_{106-109}{ }^{*}\) & 68k \\
\hline \(\mathrm{R}_{39-42}\) & 220k & \(\mathrm{R}_{110}\) & 680k \\
\hline \(\mathrm{R}_{43}{ }^{\text {, 44 }}\). & 27k & \(\mathrm{R}_{111}, 112\) & 330k \\
\hline \(\mathrm{R}_{45-48}\) & 220k & R113, 114 & 120k \\
\hline \(\mathrm{R}_{49-56}\) & 2.7 k & \(\mathrm{R}_{115} \mathrm{R}^{116}\) & 330k \\
\hline \(\mathrm{R}_{\text {57-60 }}\) & 33k & \(\mathrm{R}_{117 \text {-120 }}{ }^{\text {a }}\) & 120 k \\
\hline \(\mathrm{R}_{61}, 63\) & 4.7k & \(\mathrm{R}_{121-124}\) & 56 k \\
\hline \(\mathrm{R}_{62}\), 64 & 100k & \(\mathrm{R}_{125} \mathrm{R}^{126}\) & 2.2 M \\
\hline \(\mathrm{R}_{65} \mathrm{R}^{67}\) & 4.7k & \(\mathrm{R}_{127} \mathrm{R}^{2} 128\) & 1 M preset \\
\hline \(\mathrm{R}_{66}\). 68 & 100k & \(\mathrm{R}_{129} \mathrm{R}^{130}\) & 330 k \\
\hline \(\mathrm{R}_{69,70}\) & 1.8k & \(\mathrm{R}_{131} \mathrm{R}^{132}\) & 1M \\
\hline \(\mathrm{R}_{71} \mathrm{R}^{\text {, }}\) 72** & 220k & \(\mathrm{R}_{133}\) & 100k \\
\hline \(\mathrm{R}_{73} \mathrm{R}^{75}\) & \(680 k\) & \(\mathrm{R}_{134}{ }_{13} 135\) & 100k \\
\hline \(\mathrm{R}_{74} \mathrm{R}_{76}\) & 330 k & \(\mathrm{R}_{136} \mathrm{R}^{1369}\) & 560 \\
\hline \(\mathrm{R}_{77}{ }^{\text {79 }}\). & 6.8 k & \(\mathrm{R}_{137}, 138\) & 15 k \\
\hline
\end{tabular}

\section*{Capacitors}

Types E are electrolytic, PC Siemens B32540 polycarbonate, PS 30V polystyrene. Those marked should be \(5 \%\) tolerance.
\begin{tabular}{|c|c|c|c|c|c|}
\hline PS 30V & 10 styren & E & \(\mathrm{C}_{63}\) be & & \\
\hline \(\mathrm{C}_{1} \mathrm{C}_{2,5}\) & \(10 \mu\)
\(3.3 \mu\) & E & \begin{tabular}{l}
\[
\mathrm{C}_{63}
\] \\
C 64 , 65
\end{tabular} & \[
\begin{aligned}
& 6.8 n \\
& 5.6 n
\end{aligned}
\] & PC \\
\hline \(\mathrm{C}_{2}^{2,5}\) & 6.8 n & PC & C64, 65 & 10 n & PC \\
\hline \(\mathrm{C}_{4}, 7\) & \(1 \mu\) & E & \(\mathrm{C}_{68} \mathbf{6 9}\) & \(2.2 n\) & PC \\
\hline \(\mathrm{C}_{8} \cdot 12\) & \(100 \mu\) & \(E(10 \mathrm{~V})\) & \(\mathrm{C}_{70} \mathrm{C}^{71}\) & \(33 \mu\) & E \\
\hline \(\mathrm{C}_{9} \cdot 10\) & 100p & PS & \(\mathrm{C}_{72}\) & \(10 \mu\) & E \\
\hline \(\mathrm{C}_{11,13}\) & \(47 \mu\) & \(\mathrm{E}(10 \mathrm{v})\) & \({ }^{\text {C }}\) & \(2.2 n\) & PC \\
\hline \(\mathrm{C}_{14-17}\) & \(3.3 n\) & PC & \(\mathrm{C}_{74.75}{ }^{\text {a }}\) & \(6.8 n\) & P \\
\hline \({ }^{\text {C }} 18\) & \(47 \mu\) & E(10V) & \({ }^{\mathrm{C}} \mathrm{Cb}^{\text {, } 77^{\circ}}\) & \(470 p\) & PS \\
\hline \(\mathrm{C}_{19-22}\) & \(10 \mu\) & E(10V) & \(\mathrm{C}_{78}\) & \(33 \mu\) & E \\
\hline \(\mathrm{C}_{23}\) & \(15 n\) & PC & \(\mathrm{C}_{79}{ }^{\text {80 }}\) & \(4.7 \mu\) & E \\
\hline \(\mathrm{C}_{24-27}\) & \(470 p\) & PS & \(\mathrm{C}_{81-84}{ }^{\circ}\) & 1 n & PC \\
\hline \(\mathrm{C}_{28}{ }^{29}\) & \(33 n\) & PC & \(\mathrm{C}_{85}{ }^{86}\) & \(4.7 \mu\) & E \\
\hline \(\mathrm{C}_{30}{ }^{19}\) & \(10 n\) & PC & \(\mathrm{C}_{87}\) & \(6.8 n\) & P \\
\hline \(\mathrm{C}_{32} \cdot 33\) & \(33 n\) & PC & \(\mathrm{C}_{88} 89\) & \(1 \mu\) & E \\
\hline \(\mathrm{C}^{\text {c }}\) - 35 & 10 n & PC & \(\mathrm{C}_{\mathbf{9 0}} 91\) & \(5.6 n\) & \\
\hline \(\mathrm{C}_{36} \mathbf{3 7}\) & \(39 n\) & PC & C92:93 & \(33 n\) & \\
\hline \(\mathrm{C}_{38}\) & \(560 p\) & PS & C94; 95 & \(2.2 n\) & P \\
\hline \({ }^{\text {C }}\) & \(2.7 n\) & PS & C96.97 & 18 n & P \\
\hline \(\mathrm{C}_{40-43}\) & \(1 \mu\) & E & & & \\
\hline \(\mathrm{C}_{44-47}\) & \(3.3 \mu\) & E & & & \\
\hline \(\mathrm{C}_{48} \mathrm{Ca}^{\text {a }}\) & 1 n & PC & Semico & actor & vic \\
\hline \(\mathrm{C}_{50}{ }^{\text {c }}\) & \(10 \mu\)
\(330 p\) & \({ }_{\text {P }}^{\text {P }}\) & IC, & HA13 & \\
\hline  & 3.9 n & PS & \(\mathrm{IC}_{2}\) & HA 13 & \\
\hline \(\mathrm{C}_{54}{ }^{\text {a }}\) & \(470 p\) & PS & \(\mathrm{IC}_{3}\) & HD31 & P \\
\hline \(\mathrm{C}_{55}{ }^{\text {56 }}\). & \(3.3 n\) & PC & \(\mathrm{Tr}_{1}, \mathrm{Tr}_{2}\) & BC21 & \\
\hline \(\mathrm{C}_{58-61}\) & \(4.7 \mu\) & E & \(\mathrm{Tr}_{3}-\mathrm{T}\) & BC20 & \\
\hline \(\mathrm{C}_{62}\) & \(33 \mu\) & E & \(\mathrm{D}_{1}-\mathrm{D}_{4}\) & 1N41 & \\
\hline
\end{tabular}
the mating pins into the pins already soldered. Each pin should have its mate. Once all the pins are in position, insert the tails of the mating pins into the lower board, ensuring that no components touch the bottom of the upper board, and solder in position. When soldered, it should be possible to unplug the two boards from one another and to plug them together again. Mate the two boards together gently as excessive and rough handling may either bend the pins or lift the copper track from the board.

\section*{Setting-up}

Apply a .well-stabilized 25 V supply ( 130 mA ) to the decoder. Construct an encoder for testing the QS module as in Fig. 8. This consists of a simple transistor buffer stage fed from a 1 kHz oscillator and gives three outputs \(\mathrm{a}, \mathrm{b}\), and \(\mathrm{c}(300 \mathrm{mV}\) and -120 mV ). A combination of any two of these gives the necessary decoder inputs.
Set \(R_{1}\) to give 300 mV output at point a. Set \(R_{2}, R_{3}\) to give outputs of 120 mV at points \(b\) and \(c\).

Adjustments of f and l . Set pre-set potentiometers \(\mathrm{R}_{95}, \quad \mathrm{R}_{96}, \quad \mathrm{R}_{127}, \quad \mathrm{R}_{128}\) to mid-position. Next, feeding a \(300 \mathrm{mV}, 1 \mathrm{kHz}\) signal to the encoder input and using the \(L_{F}\) outputs, adjust \(R_{96}\) to set the \(L_{F}\) to \(R_{F}\) separation at 18 dB . Similarly, with the same encoder outputs, adjust \(\mathrm{R}_{128}\) to set the \(L_{F}\) to \(L_{B}\) separation at 17 dB .

Adjustments of b and r . Feeding a \(300 \mathrm{mV}, 1 \mathrm{kHz}\) signal to the encoder and using the \(R_{B}\) outputs, adjust \(R_{95}\) to set the \(R_{B}\) to \(L_{B}\) separation at 18 dB . Similarly, with the same encoder outputs, adjust \(\mathrm{R}_{127}\) to set the \(\mathrm{R}_{\mathrm{B}}\) to \(\mathrm{R}_{\mathrm{F}}\) separation at 17 dB .

Confirmation. Feeding a 300 mV ,


Fig. 6. Variomatrix decoder output levels for a left-front encoded signal ( \(L_{T}\) input 300 mV . \(R_{T}\) input \(124 m V\).)


Fig. 7. Decoder output levels for a centre-froni encoded signal. ( \(L_{T}\) and \(R_{T}\) inputs 424 mV .)


Fig. 8. Simple encoder used for ,setting up decoder. \(L_{\mathrm{t}}\) and \(R_{\mathrm{t}}\) signals are simulated by combining pairs of outputs from \(a, b\) and \(c\).


Connections for integrated circuits HA1327 (top) and HD3101 (bottom). Connections for the HA1328 appear in Fig. 2, August issue.

1 kHz signal to the encoder, use the \(\mathrm{R}_{\mathrm{F}}\) outputs to confirm that the \(\mathrm{R}_{\mathrm{F}}\) to \(\mathrm{L}_{\mathrm{F}}\) : separation is not less than 14 dB and that , its \(R_{F}\) to \(R_{B}\) separation is not less than 12 dB . Similarly, with a \(300 \mathrm{mV}, 1 \mathrm{kHz}\) signal fed to the encoder and choosing the \(L_{B}\) outputs, confirm that the \(L_{B}\) to \(R_{B}\) separation is not less than \(1 \dot{4} \mathrm{~dB}\) and that its \(L_{B}\) to \(L_{F}\) separation is not less
than 12 dB . If this procedure produces unsatisfactory results, repeat the above adjustments, aiming for greater separation values, such as 20 to 24 dB , than those originally specified \((18 \mathrm{~dB}\) and 17 dB ). Then repeat the confirmation procedure. Differences in separation values between the channels are often due to performance variations of the i.cs and resistors used but the preceding adjustments should eventually create the separation values indicated.

\section*{Switching arrangements}

For QS decoding, \(S_{1}\) and \(S_{2}\) should be open-circuit. For the surround synthesizer function \(S_{1}\) should be closed (points identified by SU on the p.c. board supplied with the kit) and for the hall mode, \(\mathrm{S}_{2}\) should be closed (points identified by H on the board). In this last-mentioned mode, the two front channels are fed directly from the \(\mathrm{L}_{\mathrm{T}}, \mathrm{R}_{\mathrm{T}}\) signals and the back signals are obtained from the \(L_{B}\) and \(R_{B}\) decoder outputs.

Acknowledgement. Thanks to M. Ishikawa of Sansui Audio Europe SA (London showroom) for help and encouragement with this project.
Correction. We regret a transposition of copy that occured in the August article. In column three of page 57 , the sentence starting line 16 should have appeared as the last, sentence in the following paragraph.
Kits are available for the decoder described - full details from Compcor Electronics Ltd, 9 Dell Way, London Wl3 8JH.

\section*{Sixty Years Ago}

Admiralty regulation 37 B was printed in our issue for September, 1916. It states that all vessels of greater than 5000 tons would be required to take out a licence for a wireless installation. The difference that "wireless" made to life at sea is illustrated by the fact that regulation 37A enforced ships over 500 tons to carry signalling flags for use by day and flash lamps for use on clear nights.

We have remarked before on the decidedly snooty approach adopted by our predecessors when answering readers' queries. The following example is, we feel, approaching the limit.
"Now we have answered all your questions, we would point out to you that if you intend to take up wireless operating, you will have to pay much greater attention to your spelling and grammar that you have done in the letter under reply. We find in it no less than nine bad spelling errors, the frequent use of "has" for "as", and many other bad mistakes in grammar. Before worrying yourself as to whether a wireless operator in the Navy can rise to the position of an Admiral, don't you think you had better consider whether you can rise to become an operator?"

\section*{Literafure Received}

A catalogue from Telonic fully describes a range of r.f. filters of low-pass, band-pass and band-stop types for use in the range 30 MHz to 12 GHz . A range of wavemeters is also described and mention is made of diplexers, multiplexers and microwave assemblies. Telonic Altair UK Ltd. 2 Castle Hill Terrace. Maidenhead, Berks

WW401
A leaflet from INSPEC. which is the information service of the I.E.E., describes the new series of 24-page monthly Key Abstracts - single-discipline periodicals. Inspec, Savoy Place, London WC2R 0BL

WW402
asonics
We have receivèd the latest chromasonics the experimenter. In addition to a comprehensive list of semiconductors. including integrated circuits, there are passive components and hardware, together with r.f. and audio modules. Chromasonics Electronics, 56 Fortis Green Road. London N10 3HN

WW403
Miniature switching power supplies from Advance are described in a new leaflet. Type MMG \(5-5\) provides 5 V at 5 A and is accompanied by MMG 12-2.5, 15-2.0 and 24-1.4. The units will accept 110 V or 240 V inputs and an optocoupler provides 5.7 kV peak isolation between input and output. Gould Advance Ltd, Raynham Road, Bishops Stortford, Herts

WW404 Four types of video filters for band limitation. low-pass gaussian filters, colour sub-carrier pass and rejection types and I.p. sections for " 1 " and " \(Q\) " band limitation are covered in a catalogue from Matthey. Both electrical and mechanical information is provided. Matthey Printed Products Ltd. William Clowes Street, Burslem, Stoke-on-Trent, Staffs ST6 3AT
Staff ST6 3AT ........................ WW405
The range of resolvers by Moore Reed is the subject of a new leaflet. The types described include computing, feedback, data transmission, brushless, phase-shift, slab and multipole resolvers and 3 -phase to 2 -phase transolvers. Single-output pick offs are also covered. Moore Reed Co. Ltd, Walworth, Andover, Hampshire SP10 5AB WW406 Counters made by Hewlett Packard are briefly described in a new leaflet. The instruments cover the range from the low-cost \(5381 \mathrm{~A}(80 \mathrm{MHz})\) to an automatic microwave counter, the 5340 A 23 GHz type. Hewlett-Packard Ltd, King Street Lane, Winnersh, Wokingham, Berks RG115AR. WW407 A range of flow-meters, designed to cope with high temperatures \(\left(130^{\circ} \mathrm{C}\right)\), high pressures ( 2000 p.s.i.) and low rates of flow (two drops per second) has been produced by Litre Meter and is fully described. together with the associated electronics and application information, in a new brochure, available from Ryefield Crescent. Northwood. Middx HA6 INN

WW408
Full information on racks and consoles in the Imhof-Bedco range is contained in a new catalogue from Imhof-Bedco Standard Products Ltd. Ashley Road, Uxbridge, Middx

WW409
Thyristors and triacs are comprehensively treated in a new book from RCA. "The RCA Thyristor and Rectifier Manual, TRM-445". Theoretical and practical information is provided in 376 pages and there are performance figures for all devices, together with a circuit section, RCA Ltd. Solid State - Europe. Sunbury-on-Thames, Middx. Price is £2.80, by post.
Electronic timers, type ETA, are specified briefly in a new leaflet. The units are available for a.c. or d.c. working. are adjustable or fixed and can be either surface mounted or plugged into a 11 -pin socket. Timing periods are from 1 second to 20 minutes. Appliance Controls Ltd. Cordwallis Street, Maidenhead, Berks SL6 7BQ

WW410
British Library R and D report 5257 is a study of principles, practice and prospects for facsimile transmission in the UK. The 43 -page book is obtainable, at a cost of \(£ 2.50\) by post. from Publications section, British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ.
Strain gauge applications and specifications are given in a catalogue from Tinsley Telcon, which includes dešcriptions of several new gauges. Tinsley Telcon Ltd. Werndee Hall, South Norwood, London SE25 4BR

\section*{Communications 76}

\section*{Topics from the Brighton conference}

\section*{The Communications 76 conference attracted 100 contributions, given in three concurrent sessions to an audience of \(\mathbf{6 6 0}\) delegates from \(\mathbf{3 2}\) countries. Organized this time by the IEE, the biennial conference was held in June at Brighton.}

Increased demand in all areas of mobile radio use, bringing with it allocation problems, interference, propagation and other social and legal considerations, had many delegates pursuing and participating in the mobile radio presentations with concern and determination, in the hope that they would find the answer to some of their own particular problems.

Further interest came from the mobile radio research consortium formed between the universities of Bath, Birmingham and Bradford, and the advances announced by the Bath team in producing the "sideband diversity radio system" aimed at reducing

\section*{IS FURTHER REDUCTION IN V.H.F. CHANNEL SPACING POSSIBLE?}

The implications of amplitude modulation in a channel spacing of 6.25 kHz , which is the next logical step from the present 12.5 kHz , has been. studied by Pinches and King of Marconi Communications Systems. Factors considered were transmission and reception bandwidths, frequency stability, receiver selectivity and radiated and impulse interference. Experiments showed that, for an audio cut-off frequency of 2 kHz , an increased rate of attenuation above the cut-off frequency was experienced, as compared with the same conditions in a 12.5 kHz -spacing system. Quality was found to be improved by introducing a fall-off in response at the lower frequencies to provide a balanced effect Synchronous detection, using tracking i.f., was considered by the authors to be useful because it permitted reduced i.f filter bandwidth while at the same time improving the receiver selectivity. To remain within the Home Office requirements for frequency stability, temperature compensation or frequency synthesis would be necessary in the 150 MHz region only; in the lower frequency regions the tolerances could be readily achievable

Adjacent-channel protection ratio was up to 10 dB worse for the proposed 6.25 kHz system, increasing interference radius by up to three times. Initıal trials indicated that there was little or no extra degradation due to impulse noise and that intermodulation is not a problem where doubling of the number of channels is coupled with halving of channel loading. Frequency modulation would be less satisfactory than a.m.., in terms of transmitted sidebands; receiver filtering would introduce 5-10\% distortion at 1.5 kHz .
mobile fading (see News, August issue, and block diagram). Ideas regarding the implications of a Citizens Band in the UK, not least being the choice of a spectrum allocation, were undoubtedly in the minds of some of the delegates pursuing the mobile radio theme.

In discussing the future of civil mobile radio systems W. P. Nicol of the Home Office directorate of telecommunications commented that, bearing in mind that mobile communications is concerned with people and vehicles in motion under the sea, on the sea, under the land, on the land, in the air and in space, only \(3 \%\) of the hard-worked \(30-1000 \mathrm{MHz}\) radio spectrum is allocated for mobile use. Of the rest of this spectrum, \(60 \%\) is for broadcasting, \(30 \%\) is for defence and \(7 \%\) is for everything else in the field of radio communications. "Now that would scarcely reflect very strong interest or a fair share of the frequency spectrum for mobile radio," he said.

He added that although no communication system will develop in isolation from the society or organisations which it serves, mobile radio, which should have developed accordingly, is still in its infancy, often providing speech com-


Antenna unit of the Arion shipborne satellite communication terminal from Marconi. Arion, which is the first British commercial marine satellite terminal. made its debut at Communications 76 and is designed to work into the Marisat satellite system. The terminal provides duplex real-time telephony and telex and is capable of carrying facsimile and up to 4,800 bits/s twoway data.
munications in simple, nevertheless limited-range, networks little different from those of the early days. However, over the past 20 years modifications in the channel spacings from 100 kHz to 12.5 kHz have taken place in the v.h.f. band and, despite equipment repercussions, are seen to be successful demonstrations of how to get a quart into a pint pot

Continuing, he said that users and manufacturers alike might be excused - as they constantly battle within the channel-space constraints and pick up the financial tab - if they are increasingly prompted to question the basic restrictive framework governing the work. Although there has been a succession of commissions of enquiry and parliamentary committees considering evitence and making recom-

\section*{AQUEOUS AUDIO}

At frequencies normally used for radio. energy is largely reflected from the surface of the ocean and any refracted into the water is rapidly absorbed. The magnitude of this effect is proportional to frequency and at around 1 kHz , radio. waves can penetrate to a reasonable depth, but the size of the transmitting aerials and the power needed at this frequency mean that radio communication is limited to one direction. On the other harnd, compression waves travel well through water and can be used, as was described in a paper by D. W. Watson, of Marconi.

The base signal (speech or data) is modulated onto a carrier in the 10 kHz to 100 kHz range, depending on the range required ilong range - low frequency), and the bandwidth needed. For very long range communication, 1 kHz is used, but the bandwidth is only a few hundred hertz and such a channel can only be used for "digital" tones. Problems include multipath propagation, which is more common in sonar than in radio: reverberation due to scattering in the water or from the sea bed (not a serious problem) and Doppler effect, which can result in a \(2 \%\) shift in frequency and which can badly affect reception without automatic frequency correction. Selective fading is counteracted by frequency diversity switching and deep fading or active-somar interference can be overcome by time-diversity operation.

The electronics used are well-known, although the load presented by the transducer is considerably more complex and varialle than that seen by a normal audio power amplifier.
mendations on financial viability, efficiency and social service in sound broadcasting, television, postal, telegraph and telephone services, so far land-mobile radio had not featured in public evaluation. "I believe one answer lies in a lack of organisation of users and manufacturers alike; a second lies in the fact that so far there has been little attempt to create public interest or demand," he said. "Indeed I would say that there have been positive indications of action to smother such demand on the extremely negative basis that

\section*{MICROPROCESSOR IN MARISAT SHIP TERMINAL}

Marisat, the ship-to-shore satellite communication system, is to employ a microprocessor and associated logic in its antenna terminal. The microprocessor, which is described in a paper by J. H. Hollom of Marconi, uses a p.r.o.m. for the programme and a r.w.m. for the data, teleprinter interface and radio transmit and receive interfaces. A microprocessor was chosen because it was considered doubtful that discrete logic could handle the many tasks it would be expected to perform, and a mini-computer would have been too expensive. Marisat has a t.d.m. (time division multiplexed) communication system and the ship terminal itself will have available one voice or data channel and one telegraph channel, the voice channel being independent of the t.d.m. carrier. The received signal is divided into frames, each subdivided into three parts, providing both calling and signalling information. There are also 22 telegraph channel slots. Tasks-of the microprocessor include detection, decoding, channel selection, transmitter and receiver control, error checking and testing, monitoring and other control operations.
there are enough fixed land-line telephone problems already without creating more by introducing mobile-radio telephones."

Mr Nicol could see a clear necessity for a massive structure of transmitter and receiver stations to provide coverage linked to terminals within the fixed service distribution networks. Civil maritime and civil aviation have limited systems already but they have had a great deal of direct spin off from military research and development which civil land-mobile has not enjoyed because of distinctly different user problems involved in military landmobile communications systems.

Civil land-mobile radio, he believed, would dominate the development of systems for vehicles and associated equipment in the next decade and could provide the vast, as yet, untapped markets. Secondly, he believed that advantages can be obtained from joint project co-operation between marine, air, space and land-mobile users; this was almost non-existent and must be improved upon. Attention should also be given to universities and other institutions, and to obtaining public opinion such as can be obtained from conferences and exhibitions like Communications 76. "Governments and men in corridors of power must be properly informed by the evidence derived from all levels of the business and this evidence must be published to develop public opinion," he said.
"The time is ripe for such an examination to assist clear policy and to properly exploit radio in the mobile environment. This time is already overdue." One of the greatest problems, was not that of knowing what should be
done but of convincing other people that something is practical, economical, necessary, maintainable and not too progressive for use in a conservative organisation advancing at its own pace. We must lift our eyes from the circuit board and get on with the job. It should be done now, it should done well, and it should be to the advantage of all the people.

\section*{DIRECTION FINDING IN THE H.F. BAND}

Plessey, in collaboration with the Ministry of Defence, have succeeded in extending the bandwidth of their multibeam direction-finding (d.f.) system to cover the band 1.5 to 30 MHz . The previous system was suitable for use from only 1.5 to 10 MHz . J. T. Starbuck of Plessey described in his paper how the system, which uses a circular arrangement antennae, is extended in range by the addition of a smaller circle of antennae and a corresponding beam-forming network. The outer antennae provide coverage from 1.5 to 15 MHz and the inner ones from 6 to 30 MHz . A goniometer, consisting of a stator having 24 equally-spaced combs, each fed from an antenna, and a rotor (revolving at \(500 \mathrm{rev} / \mathrm{min}\) and having 24 combs capacitively coupled to the stator combs but only covering a third of the circumference) enables groups of eight adjacent antennae to be scanned sequentially. Hybrid networks vectorially add and subtract the received signals and generate beams containing the required d.f. data. Although the d.f. system is subject to errors caused by time-dependent propagation and fading, in trials measuring the bearings of Berne-listed transmitters overall accuracies varying between 1 and \(2^{\circ}\) r.m.s. were obtained; ground-wave tests gave accuracies as good as \(0.6^{\circ}\) r.m.s.


\section*{Sideband diversity system} s.s.b. form and data, in either f.s.k. or d.p.s.k. form, is a d.s.b.s.c. modulated onto a carrier offset from the channel centre.

\title{
India's satellite broadcasting
}

\title{
Interim report on SITE, the television broadcasting experiment using the ATS-6 satellite
}

\author{
by Jack Dinsdale, M.A., M.Sc. Cranfield Unit for Precision Engineering
}

Regular readers of Wireless World will be aware of the Indian SITE (Satellite Instructional Television Experiment) project, in which a geo-stationary satellite has been used for the twelve-month period from August 1, 1975, to beam monochrome television programmes to receiving stations in villages in selected areas of rural India. This has been an attempt to promulgate adult knowledge and accelerate learning in the general areas of agriculture, health and hygiene, domestic science and current affairs, in addition to giving children the broader view of geography, science and the arts that can only be gained from television. The initial experiment was completed on July 31, 1976, when the satellite was moved to a new location.
During a recent trip to India, the author visited a number of establishments concerned with the SITE programme, and spoke to some of the scientists and sociologists responsible for the project. Although a detailed study of the experiment will not be completed for several years, some of the early results are already becoming available, and they are proving to be of great interest. To assist in the analysis of these results, this article provides some background information about India and places the project in its sociological context, illustrating some of the problems facing the organising team in the matters of population, language, accessibility and communication.

\section*{Audience}

The Indian subcontinent extends over 1,269 million sq. miles ( 13 times the area of the British Isles) and has a population of over 600 million ( 11 times that of the UK). Of this population, 80 per cent live in the 570,000 villages which. are situated mainly in outlying positions away from the towns and have very little day-to-day contact with the rest of India or even with neighbouring villages. Because of the lack of transport and communication facilities, each of the 27 states in India has developed independently from earliest times, and
still retains its own individual language; thus there are still currently spoken within India at least 16 major languages with a further 60 intermediate languages and over 700 dialects. Although 35 per cent of the population now speak Hindi, which is being strongly sponsored by the government as the official national language, and a smaller percentage, principally the well-educated, speak English, the great majority of Indians can only converse with those living within the close vicinity and hence speaking the same dialect. An additional factor, which may seem amazing to Europeans, is that 80 per cent of Indian women are illiterate; when one considers the important role played by women in birth control, hygiene, and food preparation, i.e. in those very areas that SITE is trying to cover, some idea begins to emerge of the difficulties facing the SITE team.

\section*{Communication}

In spite of the overwhelming problems posed by geography and the multiplicity of languages, India has for many years made serious and realistic attempts at mass-communication. The printing process was introduced to India by western missionaries at the time of the Mogul Empire during the 16th century, and India is one of the leading producers of newspapers, journals and technical books. During the last century, at the time of the British Raj, India adopted the movie film as an obvious and essential adjunct to the process of mass communication, especially among the semi-illiterate, and today India leads the world in this field, producing over 500 full-length movies each year. The majority of these use the Hindi language, and they aim to teach by way of a simple "plot" the elements of technology, agriculture and the social and domestic sciences.
Early this century a regular sound radio transmission service was introduced, but this medium did not generate any widespread interest until the 1939-45 war years, when its great potential became apparent. Today there are some 15 million licensed radio
receivers in India (plus perhaps a further 10 million unlicensed sets) but this represents only 20 per cent of the total number of "family units", and whereas 90 per cent of the licensed radio sets are in the cities, 80 per cent of the population live in the villages. During the mid-1950s the government made a serious attempt to generate an interest in radio cornmunication in the villages through a "Radio Rural Forum" scheme. Unfortunately, this has not achieved any real success, partly because radio sets are very rare outside the cities, and since the experience of sound radie is no longer a novelty it often fails to make an impact. The programmes which are planned and presented by All India Radio (AIR), are generally urban-orientated and thus they often have little relevance or interest to village-dwellers. Furthermore, the programme producers themselves have been trained either in the cities or overseas, and they have virtually no concept of the mentality or requirements of the villages. Many observers now feel that the planning of programmes for rural areas should start with the local needs, and that only then will the local centre approach achieve any significant success.

\section*{Message}

Television, as understood in the UK, could be regarded strictly as a luxury which India cannot afford at present. However, the government considers it essential for their social programme, and after starting an experimental transmission in Delhi in 1954 All India Television (AIT) provides a mono chrome service in seven major cities. At present there are only 350,000 receiving sets in the whole of India, to serve over 600 million people, but the Indian Government is proposing to augment the present transrnitters in Delhi, Bombay, Calcutta and Madras with additional transmitting centres in Jaipur, Hyderabad, Raipur and Cuttack by March, 1971, and with further centres at Muzaffarpur, Gulbarga, and Kanpur later that year. The same criticisms could be levelled at the TV programme


Map showing the clusters of villages which received the SITE broadcasts; also the major technical and programme centres.
producers, that they are urban-orientated; but as it is not possible to receive the AIT transmissions outside the cities, this criticism is at present hardly relevant. However, serious problems have arisen when using these same production staff to prepare programmes for SITE, which is specifically directed at the villages.
The SITE project originally stemmed from an agreement between the Indian Government and NASA in 1969 to make available a maximum of four hours per day of the Applications Technology Satellite 6 (ATS-6) which would be positioned over the Indian Ocean from August 1, 1975, until July 31, 1976. It was
decided to utilise this transmission time for
(a) A programme for school children aged from 6 to 11 , transmitted from 10 to 10.30 a.m., using a common video channel but with a number of audio channels to cater for different language groups.
(b) A series of evening programmes for adults, covering the broad areas of: technology, largely devoted to agriculture, i.e. pesticides, seeds, fertilisers and new techniques; family planning; health and hygiene; and nutrition.

Each evening the transmission started with the common National Integra-
tion programme from 7 to 7.30 p.m. in the Hindi language, produced in Delhi, and this was followed by three 40-minute local-dialect programmes until close-down at 9.30 p.m.

The children's programmes were nbt curriculum-orientated; rather, they attempted to provide a broad-based back-up to local teaching effort in: science, including physics, chemisțry and elementary technology; social science, including georgraphy, history and traditions; and arts and crafts.
In addition there were a number of specialist seminars conducted "over the air" to help in the training of local teachers. Recently it was reported that

24,000 primary school science teachers had been trained in the content and methodology of the teaching of elementary science by means of a 12-day course organised by the National Council of Educational Research and Training (NCERT). The course used SITE, radio and printed material, and was aimed at helping the science teachers to handle their job more effectively. Ninety-four per cent of the teachers felt that they had learned a lot, and 83 per cent considered television to be the best medium for this type of training.

The SITE satellite was geo-stationary over the Indian Ocean, and beamed at Nagpur. It served six clusters of villages, as shown on the map: Rajasthan, Bihar, Madhya Pradesh, Orissa, Karnataka, and Andhra Pradesh. Each of the states, in which these clusters lie has its own language; for example the natives of Andhra Pradesh speak Telegu, while those in Karnataka (formerly Mysore). speak Kannada or one of its many dialects. The village clusters were selected to form three groups with closely-related tongues so that the audio channels of the SITE could be limited to three (plus of course the transmission on all three channels using the national Hindi language).

\section*{Reception}

The receivers were 23 -inch sets developed in India by ECIL at Hyderabad. Attempts to establish a small number of primary receiving stations linked to the villages by microwave links proved difficult due to the moun: tainous and in many cases forested nature of the terrain. However, direct reception in the villages themselves, using a 13 ft diameter chicken-mesh antenna and a front-end converter proved very effective, and in general gave excellent quality of reception. As reported in the July issue of Wireless World, Arthur C. Clarke (of 2001 Space Odyssey fame) obtained excellent reception at his home in Sri Lanka (formerly Ceylon) which is a considerable distance from the beam centre. Unfortunately, only 2,400 receiving sets were available for the project, equally divided among the six clusters, thus limiting still further the number of individuals actually able to participate in the experiment. The receivers were generally set up in a local school, hospital or village centre, and the size of the rooms available, together with the screen size, limited the maximum number of viewers to about 30 at any one time. There was also the prime requirement of a reliable domestic mains electricity supply, which is very difficult to provide continuously in many of the more distant villages, and of course the sets themselves had to be maintained in operation by a few small teams of technicians, who often were not able to repair sets until many weeks after a fault had been reported. In order
to alleviate the problem of an uncertain electricity supply, NASA sent to India last May two solar cell arrays, each capable of supplying 260 watt-hours per day under Indian sunlight conditions and hence capable of running two of the SITE receivers.

The preparation of suitable programmes has been a great learning experience for the production, scriptwriting and camera staff. In many cases, the research personnel allocated to the SITE project had no experience of camera techniques, and have had to learn as they go. The cameras do not function above \(110^{\circ} \mathrm{F}\), the temperature obtaining in much of Southern India for the greater part of the year, and at one of the three major production centres (Hyderabad, Cuttack and Delhi) there were only two cameras available for the SITE project.

\section*{Audience reaction}

The reactions of the villages presented with the SITE programmes have been varied. It has of course to be appreciated that many of the rural population have never seen a picture before, let alone a moving one with sound as well, and for these the experience has been traumatic. In the evening programmes for adults, it was found that straight talks and interveiws did not hold the rural population. What they preferred were features and documentaries, especially those produced "on location". The majority of villagers work in the fields from 5 a.m. to 7 p.m., and they were not interested in serious instructional agricultural items at the end of a hard day's toil; what they liked best was pure unadulterated entertain-: ment. They generally went to bed around 8 p.m. and since in the north, the winter nights are cold, the incentive offered by television had to be extremely strong. In general they were willing to watch the National Integration programme in Hindi from 7 to 7.30 p.m. but on several occasions observers found the entire audience sound asleep in front of the receiver during the local dialect programmes from 7.30 to 9.30 p.m. It was also found that villagers had as many evening commitments as their urban cousins, and were certainly not in a position to sacrifice seven evenings a week to SITE. For this reason, it is now felt that programmes on alternate nights are likely to get a better attendance. In many villages the receiver was installed in a small room which became hot and stuffy during the crowded evening viewing period. Consequently, the women often refused to come, and unfortunately much of the information directed at the women had little impact.

The problem occasionally arose (as already mentioned) that some of the urban-orientated programmes did not hold the interest of a rural audience, to whom the concept of stainless steel utensils and pressure cookers for example was quite alien. The opposite
situation also applied: a control group of city children watching in an auditorium in Bangalore lost all interest in a programme on snakes, and some of them even went out to play. This was probably because the programme was rural-orientated, and the urban children had no liking for it.

Nevertheless, the SITE project already has a number of "success stories" to its credit. For example, in Bijapur, a far-flung district of Karnataka, the SITE programmes have helped the villagers to adopt more advanced techniques in agriculture and even prompted the women folk to go to the nearby town to buy vegetables. On the other hand, the villagers of Hirekasbi, although keen to improve their lot with advanced techniques conveyed to them via television, have found themselves unable to adopt better sanitary conditions, use better seeds or eat more nutritious forod because of their lack of money.

\section*{Some success}

In conclusion, the SITE hardware can be regarded as a qualified success. The programming on the other hand seems to indicate a lack of sufficiently detailed planning, in terms of the budget, available trained manpower, and time, to exploit the full capability of the medium. There has to be a clear understanding not only of the instructional objectives of SITE, but of how to make best use of the social scientists and communication researchers working on the project. However, the organising team have been pleased to see clear signs of success in many areas. They accept that one year is clearly far too short a period for the development and optimisation of the major exercise presented by SITE, not only for the researchers and programme producers but also for the village audiences, and the Indian Government has recently announced that six terrestrial transmitters will be set up for television transmission to SITE areas after the withdrawal of the NASA satellite. These transmitters will cover about 40 per cent of SITE villages - about 1,000 out of the 2,400 covered by the SITE project. This will enable the programme techniques and timings to be perfected, and hence give a greater chance of success for the experiment. Thus it appears that the valuable work started last year will be able to continue in the future, to the growing benefit of a great nation working successfully to bring to all of her people the human dignity and freedom from poverty, hunger and disease which is surely their birthright.

The author wishes to acknowledge the assistance in the preparation of this article readily given by the Indian engineers, scientists and sociologists concerned with the SITE project. However, responsibility for opinions expressed must rest firmly with the author.

\section*{Audio 76, Harrogate}

Traditionally the dudio show at Harrogate has been the event at which manufacturers introduce their new products to the UK. This year is no exception, and on this page are listed the trade names that will be represented. Audio 76 will be at the Hotels Majestic and Cairn, Harrogate, Yorkshire, September 2-5. It opens at 11 a.m. each day. Trade visitors only on 2nd and 3rd till 6 p.m. Public and trade on 3rd, from 6 to 9 p.m.; on 4th till 9 p.m.; and on 5th till 7 p.m.


The capability of playing CD-4 records is claimed for this Shure M24H four-channel cartridge. The stylus tip is hyperbolic and the low stylus mass of 0.39 mg enables the tracking force to be as little as 1 to 1.5 g .


Stepped mounting of drive units in this Leak 3080, largest of the new 3000 range, is to provide time-delay compensation, which is said to provide an improved stereo image and a greater impression of depth in a single speaker.

\section*{Accuphase}

Acoustic Research
ADC
Aiwa
AKG Acoustics
Alba
Alpha
Altec Lansing
Armstrong
Arnold Electronics
Atron
Audiomaster
Audio Packs
Audio Reflex
Audio'Technica
Autocar Accessories
BASF
Beyer Dynamic
BIC
Bose
BSR McDonald
BWG
Castle Acoustics
Celestion
Collaro
Condor
Connoisseur
Curb
DBX
Doram Electronics
Direct (Design)
Disc O Vac
DSC (Consumer Products)
Dual
Empire
Falcon / Badger
A. C. Farnell

Farnell KF
Federation of British Audio
Ferrograph
Fisher
Fons International
Fuji
Garrard
Goldring
Harman Kardon
Howland-West
Infinity
Isophon
Janorhurst Ltd
Jecklin Float
JVC
KEF
Keesonic
KLH
Koss

Lecson Systems
Leak
Lentek
Loewe Opta
Lowther Onlife Developments
Lux
3M United Kingdom
Marantz
Maxell
Metrosound
Micro Acoustics
Mordaunt-Short
NAD
Nakamichi
National Panasonic
NEAL
Ortofon
Peerless
Pickering
Pioneer
Poly Planer
Pyral Magnetics
Quad
Record Housing
Richard Allan
Ross Electronics
Ross Unison
C. Rogers (Trade name to be announced)

Jim Rogers
Rotel
Sansui
Sanyo
Scan Dyna
Sennheiser
Shure
Sony
Stanton
Stax
Strathearn Audio
Studiocraft
J. E. Sugden

Superex
Tandberg
Tannoy
TDK
Teac
Technics
Tenorel
Thorens
Toshiba
Trio
Uher
Vac O Rec.
Wharfedale
Yamaha
Zerostat

\title{
Self-setting time code clock
}

\section*{2 - Construction}

\author{
by N. C. Helsby, M.A., University of Essex
}

The time code arrives in serial form which facilitates the process of parity checking. The first shift register output QA in Fig. 4 represents the signal as received by the decoder whilst the 555 timer is running. This clock signal is taken to the input of \(\mathrm{IC}_{17 b}\) in Fig. 6. The clock itself is delayed a few micro-seconds by \(\mathrm{R}_{15}, \mathrm{C}_{7}\) and \(\mathrm{Tr}_{9}\). The delayed clock is taken to the other input of \(\mathrm{IC}_{17 \mathrm{~b}}\). Therefore, if QA is high the delayed clock pulse causes \(\mathrm{IC}_{17 \mathrm{~b}}\) output to go low and clock \(\mathrm{IC}_{22 \mathrm{~b}}\) via the inverter. If, however, QA is low no clock pulse is received by \(\mathrm{IC}_{22 \mathrm{~b}}\) and the \(\widetilde{\mathrm{Q}}\) output is returned to the \(D\) input so that \(\mathrm{IC}_{22 \mathrm{~b}}\) changes state for every positive clock edge received. The flip-flop is cleared just before the first negative-going edge (waveform E, Fig. 5) when \(\mathrm{IC}_{8 \mathrm{a}} \mathrm{Q}\) is low. Therefore, \(\mathrm{IC}_{22 \mathrm{~b}}\).commences with its \(\bar{Q}\) output high and changes state for every high present in the received signal including the marker and parity bit. Because the marker bit is included in

This second article describes the remaining circuitry and details the construction and alignment procedure using the specified printed circuit boards.
the parity check on reception, \(\mathrm{IC}_{22 \mathrm{~b}}\) should always receive an even number of clock pulses which leave it with its \(\bar{Q}\) output low if parity is achieved. If one of the transmitted bits is incorrectly received the Q output ends high causing an l.e.d. to turn on. Alternatively, incorrect parity could be arranged to blank the display. The output of the flip-flop has been buffered by a spare NAND gate to reduce the effects of wiring to the front panel. This indicator compliments the out-of-lock indicator also on the front panel.

\section*{GMT to BST converter}

Because the transmitted time code corresponds to GMT, one hour must be

added when British summer time is in force. A static code converter (requires no clock pulses) which can be switched in or out is shown in Fig. 9. The six input lines of the hours and tens-of-hours display decoders are fed, without the converter, from the shift register outputs. These outputs have been lettered \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{A} 2, \mathrm{~B} 2\) and connect to the converter circuitry which is made up of \(\mathrm{IC}_{23}, \mathrm{IC}_{24}, \mathrm{IC}_{25}, \mathrm{IC}_{26}\) and \(\mathrm{IC}_{27}\). They also connect to the data selectors \(\mathrm{IC}_{28}\) and \(\mathrm{IC}_{29}\). When the switch is in the GMT position the data selectors route the shift register outputs to the display decoders as before. In the BST position the outputs of the converter circuitry, lettered \(A^{\prime}, \mathbb{B}^{\prime}\). . . are selected and fed to the display decoders. The data selectors function as a six pole two way. switch and provide an additional facili-* ty. The circuitry for addition of 1 to the hours uses the standard half-adder configuration as shown in Fig. 10. This works for the four bits \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and D comprising the hours up to 9 (1001). At this point the output code becomes 10 in binary (1010) but is required to be 0 \((0000)\) for b.c.d. with a 1 carried to the tens of hours. Thus B' and \(\mathrm{D}^{\prime}\) are both high when lows are required. With \(\mathrm{IC}_{24 \mathrm{c}}\) added the output goes high when the input code is 9 and provides a carry for the tens of hours. It is also fed to \(\mathrm{IC}_{25 \mathrm{a}}\) and \(b\) which cause lows on \(\mathrm{B}^{\prime}\) and \(\mathrm{D}^{\prime}\) respectively. The same circuitry is effective at 19 and the only remaining difficulty is 23 hours GMT which is required to be 00 BST . This is achieved


Fig. 10. Conventional half-adder configuratian.

Fig. 9. GMT to BST converter.


Fig. 11. Hours and minute display. If a seconds display is not used the pulses can drive a decimal point as shown. The 4.7V zener blocks 5 V which is always present because the displays are powered from 10 V .


\section*{Power supply}

A single regulated supply is used throughout. The unregulated side of the supply is used to feed 10 V to the receiver, and also to the display anodes. A 9 V r.m.s. supply is required which may be obtained from a 20 VA transformer, \(0-4.5 \mathrm{~V}, 0 .-4.5 \mathrm{~V}, A \quad 1 \mu \mathrm{~F}\) capacitor is wired across the secondary to reduce noise radiated from the transformer, due to the action of the bridge rectifier, which may be picked up by the ferrite rod aerial.

Fig. 13. Side view of board assembly. An aluminium screen separates the receiver and seconds counter. The last mentioned and the remaining three boards are all connected via links along edges of the boards. These form hinges so the assembly can be opened out for access.

by detecting 23 when BST is selected by means of \(\mathrm{IC}_{27 \mathrm{a}}\) which, via \(\mathrm{IC}_{27 \mathrm{~b}}\) operates the strobe lines of \(\mathrm{IC}_{28}\) and \(\mathrm{IC}_{29}\). This causes the selector outputs to go low irrespective of their other input states.
The GMT/BST circuitry is applicable to conventional digital clocks in which the time is available in b.c.d. form.

\section*{Construction}

Five printed circuit board assemblies plus a simple power supply make up the complete design. Connections between these boards are by links which simplify the wiring and assembly, but still allow access to the components by forming hinges along the edges of the boards. The bottom board is the GMT to BST converter onto which is mounted the display board by a row of 26 links as shown in Fig. 13. The decoder board is connected to the converter via 25 links along its front edge. Access to the decoder pre-set controls is through four holes in the converter board. Above the decoder is the seconds' counter board which is connected to the decoder with 17 links along the right hand edge. The seconds' counter board is mounted component-side down, and opens out with the component side uppermost when access is required. Pre-set controls on this board are mounted vertically along its rear edge. The receiver board mounts on top of the seconds' counter, with a metal screen between the two, and its output is connected to the decoder by conventional wiring. The complete assembly of five boards can be mounted in a simple metal case with a power supply and external ferrite rod aerial as shown in Fig. 14. The seconds counter and the GMT to BST converter boards may initially be omitted and added as required; in this case the display board must be wired to the outputs on the decoder.
The receiver uses a single-sided board and wiring is provided to allow singlesupply operation. If this is not required the zener diode and \(\mathrm{R}_{17}\) are omitted and the existing five-volt logic supply is used instead. Resistors \(\mathrm{R}_{19}\) and \(\mathrm{R}_{20}\) must have low or well-matched temperature coefficients. Metal film types with coefficients of 50 p.p.m. \(/ \mathrm{deg} \mathrm{C}\) or better are preferred. Metal oxide types are not suitable unless they have matched temperature coefficients. Two alternative cores are suggested for \(\mathrm{T}_{1}\). The 10 mm core is smaller but more difficult to wind and gives a lower unloaded \(Q\) Thus, the RM6 core is recommended and winding details are given using this type. The turns ratio has been adjusted to give the same loaded \(Q\) value as the 10 mm core. The ferrite rod is a 7.5 in by \%/in diameter Neosid F14 type. A former of thin card is made and scramble wound with 380 turns, over 2 in length, to form the primary. Over the top of this is wound 16 turns for the secondary. The ends of the primary are connected to the trimmer capacitor which is mounted on one of the aerial support


Fig. 14. Recommended layout for clock and power supply.
brackets. Across this trimmer is connected the main tuning capacitor. The ends of the secondary winding are twisted together and taken to the receiver input. Because of the difficulty in obtaining special types of wire the possibility of using a ferrite rod complete with a long wave coil was investigated. A drawback of this scheme is that the inductance of the coil is lower so a higher value of tuning capacitor is required, which means that a suitable trimmer capacitor cannot be obtained. It was found however, that by sliding the coil along the rod, satisfactory tuning could be accomplished. Fig. 15 shows the resonant frequency of the


Fig. 15. Tuning aerial by sliding the coil along the ferrite rod.
aerial plotted against coil position. The design position for the coil is 1.7 in from the centre of the rod, corresponding to \(2 X / l=0.45\) which allows about \(\pm 12 \%\) adjustment of resonant frequency to cater for variations in permeability. The above measurements were made on the Denco FRAI aerial which has a \(1 / 2 \mathrm{in}\)-wide coil of 180 turns fitted on a \(5 / 16\) in diameter by \(73 / \mathrm{in}\) long F14-grade ferrite rod, shortened to \(7 \frac{1}{2} / \mathrm{in}\). A tuning capacitance of \(2,500 \mathrm{pF}\) is required which gives an unloaded \(Q\) of 140 at 60 kHz . The wire from the discarded medium-wave coil was used to wind the secondary. Optimum matching into a \(1 \mathrm{k} \Omega\) requires a 12 -turn secondary but higher signal levels at both low and high receiver gains were measured with 16 turns. Small polystyrene tuning capacitors are most suitable as they may be fixed to. the coil itself leaving only the secondary winding to be connected to the receiver as a twisted pair.

The decoder board is double-sided and wire links must be soldered in position to make connection between tracks on the top and bottom of the board. Note that no links are made via the legs of integrated circuits. Before fitting the four skeleton pre-set poteniometers, holes should be drilled in the board so that these controls may be adjusted from the underside.

To reduce the number of interconnections the display board incorporates the b.c.d. to seven-segment decoders and segment drive resistors, the last mentioned being mounted vertically. The 0.6 in displays should be mounted in sockets which can'be constructed from 14 pin di.i.l. sockets cut in half. Current for the display comes from the unregulated side of the power supply. This transfers power dissipation to the segment drive resistors. The display board also carries two l.e.ds which give indication of a parity error and loss of lock in the seconds' counter.

The seconds counting board is dou-ble-sided and links are made between top and bottom tracks as for the decoder board. The pre-set controls are mounted vertically along the rear edge and may be adjusted from the back of the completed clock. This board links directly to the decoder board by vertical wire links along one edge. The board is first mounted in position, component side down, on four pillars attached to the decoder board. The links are then made and soldered in position. If subsequent access is required the board may be hinged on the links.
Construction of the double-sided GMT to BST converter board is straightforward. Before commencing construction, holes for access to the pre-set potentiometers on the decoder board should be drilled.

\section*{Don't forget . .}

On the p.c.bs several links through the boards have to be soldered both sides.

Plastics supporting pillars should be used between boards rather than metal types which may cause shorts.

In Fig. 6 the \(47 \mu \mathrm{~F}\) tantalum capacitor should be a \(10 \%\) type. If \(\mathrm{R}_{18}\) cannot be adjusted satisfactorily the \(18 \mathrm{k} \Omega\) resistor 'in series can be altered to suit the capacitor.
- Limitation in clock sensitivity is due to the pick up of self-generated interference. For operation in difficult areas screening, or better still a remote aerial, will improve sensitivity.

\section*{(To be continued)}

\section*{Printed circuit boards}

Wireless Wiorld has arranged a supply of glass fibre boards for the time code clock. The p.c.bs are available as a set which comprises three double-sided and two single-sided boards for the receiver. GMT/BST converter, decoder, seconds counter, and display. The boards mount on top of each other (see photo) to form a compact module which can be housed in a case approximately \(8 \times 5 \times 3 \mathrm{in}\). The set of boards is priced at \(£ 13.50\) inclusive or \(£ 11.00\) undrilled.

A set of special components is also available which comprises an aerial assembly, receiver coil assembly (LA4 145), N5596K multiplier, MPS HO5 transistor, two \(1.5 \mathrm{k} \Omega\) metal-film resistors, and the NE567 tone decoder. This set is priced at \(£ 7.50\) inclusive

Available from M, R. Sagin at 11 Villiers Road. London NW2.

\section*{Winding details for \(\mathrm{T}_{1}\)}


Strip enamel insulation from the wire end and carefully solder to the pin marked start primary. Wind 59 turns clockwise (with pins pointing away) and
attach to the finish primary pin. Cover winding with \(1 / 4 i n\) wide tape. Starting with wire in slot 1 leave about \(11 / 2 i n\) of flying lead, identified as start and wind on 7 turns also clockwise. Form a loop about 11/2in. long, twist the loop together and leave this as a flying lead (centre tap) also in slot 1 . Continue to wind a further 7 turns exactly, and take the remaining end across to slot 1 . Wind a turn of \(1 / 1 \mathrm{in}\) tape. Repeat the procedure as shown using slot 2. The bobbin now has six flying leads which are in two groups of three, each of which has a start, centre tape and finish. Wire these to the printed circuit board as indicated on the circuit.


\title{
Letter from America
}

There were 650 exhibitors at this year's Consumer Electronics Show which was held as usual in the huge exhibition hall at Chicago's McCormick Place. This was a record number and it was calculated that if a visitor saw every stand and display he would have travelled a distance of \(31 / 2\) miles! I can well believe it, but another 100 or so exhibitors were dispersed in hotels all over the town - and this proved even more exhausting to the determined dealers who did not want to miss anything.
A good deal of space was given over to Citizens' Band radio, video games and calculators and although most of these products were segregated in the lower hall with digital watches, telephone answering machines and accessories, there was a strong feeling for a separate audio show or combined audio-television affair. The tremendous boom in CB radio has undoubtedly helped the industry even though a high percentage of these products are imported from the Far East. However, this has resulted in a shortage of certain items and a dealer who said "CB? It sounds like a man talking with his mouth full of granola while using an electric razor" could have been a little biased. . Be that as it may, CB licence applications are pouring in at a rate of 500,000 a month and industry experts are happily forecasting 15 million sets in operation within a year - and that's a conservative figure. As you might expect, the 27 MHz band is rather crowded and the FCC is considering the possibility of granting more channels. This could only be a temporary palliative and an EIA committee has proposed the use of frequencies in the \(220-225 \mathrm{MHz}\) band. They also recommended that the 900 MHz band should not be used, at least at the present time, because equipment would be too expensive and the range limited. At one of the CB seminars, Richard Wiley, the FCC chairman, was asked "why doesn't the government ban housewives and others using the airwaves for idle chit-chat?" He replied that it was not the government's job to censor com-
munications and, for that matter, many TV programmes could be objected to on the grounds of trivial content - which brought forth a cheer.

The average CB mobile transceiver has 23 channels selected by a rotary switch and it would most likely use four crystals in a synthesis circuit. A small meter would read signal strength and double as a modulation indicator, and there would be a switched noise suppressor with possibly a squelch control. The price would be between \(\$ 100\) and \(\$ 150\) and for another \(\$ 50\) it would boast such refinements as a power amplifier switch, better noise reduction and a "delta" tuning control (another name for a fine tuning adjustment) Power output (r.f.) would be four to five watts - the maximum allowed but \(\$ 300\) would buy a s.s.b. model that could radiate an effective power of over 12 watts. Base stations are usually larger than mobile units and some have digital readouts, speech compressors, s.w.r. meters and power microphones (a microphone combined with a built-in preamplifier). Mobile aerials come in all sizes, quarter-wave, eighth- or sixteenthwave, usually with loading coils. Some are made to clip to the trunk (boot) lid; others use a magnetic attachment and

Citizens' Band base station transceiver made by Royce. The middle meter is for s.w.r.
at least one is electrically operated to disappear into the car entrails. The reason is to disguise the fact that a CB radio is installed because thieves are finding a ready market for these units!
One of the few departures from standard CB design was announced by Tennelec who are about to introduce two models with automatic scanning called "Channelfinder." There are three modes: sample, which stops at each channel for three seconds; clear, when the Channelfinder will seek out a clear channel; and in the third mode the scanner will stop at the first first active channel. Other features include a l.e.d. readout and switchable noise blanker. One model has s.s.b. facilities with 1.e.d. indication of the sideband in use.
Although the trend towards elaborate, high power, expensive amplifiers and receivers continues, the "budget" market has not been neglected and almost every manufacturer was showing new "bottom of the line" products. For example, Advent introduced an a.m./f.m. receiver at \(\$ 250\) - their first entry into this field. Power rating is 15 watts per channel, and similar receivers were announced by Pioneer, Sansui, Sherwood and many others. Yamaha were demonstrating a sophisticated pre-amplifier which uses two f.e.ts in a bootstrap cascode input circuit. Sig\(\mathrm{nal} /\) noise ratio is said to be near the theoretical limit and a further refinement is the employment of double ganged level controls, one section being at the input stage. Connected to the B2 power amplifier (which also has a f.e.t. cascode input stage) the noise level was almost inaudible with the controls wide open! Other features of this pre-amplifier - which incidentally is Model C2 is a sub-sonic filter, two independent phono sockets plus another input stage for low-level moving coil pickups. The B2 amplifier uses f.e.ts in the output stage and power output is rated at 100 watts per channel at less than \(0.004 \%\) distortion.

The new Nakamichi 620 power amplifier has some interesting features too: instead of employing multiple parallel output transistors, this amplifier has a single pair of high power transistors. Because bias diodes are not


used, it is claimed that crossover distortion has been eliminated. Rated power is 100 watts per chąnnel at less than \(0.005 \%\) distortion over the audio spectrum. Very little feedback is used and the open-loop distortion is only \(0.1 \%\) or less. Styling is rather unusual as the heat sinks are mounted at the front, and built into the fins are peak power indicating l.e.ds. These can be set to indicate two levels, a red light for 25 watts and a green for 50 watts, for example.
Nakamichi were also demonstrating their suppressor which is a complex device that cancels out some of the distortion due to tape saturation on a cassette recorder. It is not a peak limiter but a dynamic non-linear circuit that is used on playback only and it actually increases the dynamic range. Obviously, it cannot correct gross distortion but it is astonishing what it can do.
The big news in the tape world was the introduction of the "Elcaset" \(33 / 4\) i.p.s. cassette by Sony. Not only is the speed faster but it uses full size quarter-inch tape so the frequency range and signal to noise are considerably better than conventional cassettes. They are somewhat larger too, being roughly \(21 / 2\) times the size. Sony were showing two recorders using Elcasets, Model EL-5 and EL-7; the latter having a d.c. servo motor with two reel motors, logic controls, a Dolby system and provision for FeCr tapes. It is expected that the price will be between \(\$ 850\) and \(\$ 900\). The EL- 5 has only one motor and it lacks some of the refinements like the built-in 400 Hz calibrator, but the price will be \(\$ 200\) less. Panasonic were showing a prototype model and there were rumours that Akai are working on Elcaset designs, but no details are available.
Another interesting and even more expensive cassette deck was introduced by Teac. This is the well-named Esoteric 860 which is the first deck to have a built-in DBX noise reduction system. The specifications are most impressive: over 30 dB of noise reduction over the audio range, an expanded dynamic range up to 85 dB and a gain in headroom of 10 dB ! There are three motors, including a d.c. servo type, and

Sony type EL-7 stereo cassette deck intended for the new Elcaset \(33 / 4\) i.p.s. cassettes using \(\frac{1 / 4}{4}\)-inch tape
the wow and flutter is claimed to be less than \(0.04 \%\) r.m.s. Among the other features are a four-in, two-out mixer, three heads with signal/source monitoring, full logic control, tape inching facility and a variable speed control. And there is a built-in Dolby system too!
As far as, well, ordinary cassette decks are concerned, the trend towards front loading now seems firmly established and there is now a wide choice of models in all price ranges. Many use servo motors and wow and flutter figures are well below \(0.1 \%\). Even so the tape transmission depends on the mechanics of the actual cassette which is not the case (sorry!) with the new Elcaset.
There was a great number of loudspeakers at the Show and space does not permit a description of more than a few. One of the most interesting was the Infinity "Quantum" line source column which stands 66 inches high. The bass speaker is a 12 -inch model and it uses a Watkins twin speech coil (see W.W. April 1975, p.182) crossing over to a four-inch cone unit at 200 Hz . Mid-range frequencies are handled by a vertical array of six \(1 / 2\)-inch domes, and eight planar units take over the high frequencies. ESS released three new models using the Heil "air motion transformer" and Dr Heil told me that he has developed more efficient units using different magnet materials. It would seem that matching these to dynamic bass speakers could cause problems: meanwhile Dr Heil is still experimenting with a full range model employing the air transformer principle. Both Dayton-Wright and Accustat were demonstrating full-range electrostatic loudspeakers; the last-mentioned incorporates quarter- and eighth-wave equalisers to compensate for wall reflections (it is, of course, a dipole). The phase distortion syndrome seems to have crossed the Atlantic (although I am not certain where it originated). A company called Sonic Energy were
demonstrating a three-speaker system with the mid and high frequency units set back from the bass speaker: unlike the B \& W system, these two are in the same plane. Overall sound was well balanced and clean. Another system with low colouration was the Dahlquist, which is a dipole radiator styled like the Quad. B \& W's John Bowers was demonstrating the DM6 monitor, which sounded most impressive. I missed the KEF demonstration but I was told that Raymond Cooke and his colleagues put on a good show.
There was not a great number of television set manufacturers at the Show although several took space at nearby hotels. GE receivers, or some of them, will soon be using a system of automatic colour control called VIR, which stands for Vertical Interval Reference, and the circuit uses a coded reference signal transmitted on a vertical blanking interval line to control colour intensity and tint. Zenith have a number of new 23 -inch models with full remote control and the close up "zoom" feature introduced last year. All the new models use a picture control that adjusts contrast, brightness and colour level all at the same time.

Admiral introduced an optional remote control that can be installed by the user "in a matter of seconds". It consists of a hand held transmitter which duplicates the electronic tuning panel on the set. All the owner has to do is to remove a small cover plate on the front of the set, insert a plug-in amplifier unit and he can go back to his easy chair! Many of the new models from Motorola, Panasonic, JVC, RCA and Zenith use photo-cell circuits to adjust the brightness to suit the ambient light. Magnavox are using time and channel digital displays on many of the newer models which also feature electronic tuning. All in all the TV set market looks very healthy and sales forecasts indicate more than 7 million receivers this year.
But the surprising thing is not the increased sales of TV but the sudden boom in video games. Some of these are complete, others are designed to be attached to the set, usually via the aerial terminals. Some models like the "Pong" feature digital scoring and most offer a variety of games complete with sound effects. For example, the Unisonic 200 gives a choice of table tennis, hockey, squash, skeet shooting, and pop-up target shooting. A similar model without some of the refinements is offered by Federal at a retail price of under \(\$ 80\).
Digital watches were well in evidence but manufacturers (already disturbed by \(\$ 6.95\) calculators) were further shaken by the release of two models supposed to sell for \(\$ 19.95\). As for me, I was saddened by the introduction of a digital grandfather clock: I did not investigate too closely but I would not be surprised if the chimes were generated by an i.c. with an amplifier!
G. W. Tillett

\section*{Suddenly, other 2 -head cassette decks look like toys.}

Takea look at the new Nakenichi DT60) above.
Such an astc̄nishing cassete recordet, that it makes the comeetitionlook like no compst tion at all.

For a start, compare itsdpronic range
W th the 600 you can rec 1 I up to +7 BB without disto tizn. This isunprecedented by any of er cassette decle. because mother nodel has helntarmoduation Distortion Suppresor that makes it possibe.

Sezordly, ta re the freq ec cy zesponse
Ot ex cassette deck makes ray be proul of reaching 15,000 / z Guara teed minimare siecification of the 600 is \(40-18030 \mathrm{HZ} \pm 3 \mathrm{BB}\). As for won-and-fluter, at \(0.08 \%\), you can virtue ly forget it.

Ir doesn't top thare. Here is a combination of other Ceatures you won't find on any other 2 -head deck.

Nakamichi's exclusive fecused-gap erystal permalloy head.
Euilt-in test toneand recerd level calibration controls.
User adjustable Ľas.
Peak reading mesers from -40 to +7 dB .
\& memors tape czunter.
Master recordinglevel control.
Even a system fozunattended reco-ding or playback.
We could go on.
Only Nakamic ic coult have made the DT600.
For the first time 3 -head performance in a 2 -head machine.


\section*{Does your present radio test equipment measure up to this?}

\section*{The Solartron Schlumberger 4010A/4011}

Time was when radio testing meant a clutter of space-consuming instruments, complex inter-connections, and out-of-phase calibrations.

We've changed all that. We've built a complete range of radio test equipment into a single compact unit - the Solartron/Schlumberger Manual Radio Test Set. It comes in two models: 4010A and 4011

Features include a synthesizer covering the range 0.01 to 480 MHz , depending on model, with decade manual and remote control facilities; FM, ФM, and AM modulation: frequency counter: RF power meter; AF millivoltmeter; AF generator; and a distortion meter and filter for noise weighting

The Solartron/Schlumberger 4010A/4011. The compact unit that measures everything in manual radio testing. Simply. Reliably. Quickly.


The SolartronElectronic Group Ltd. Farnborough, Hants. England.

Telephone:(0252)44433. Telex:858245.

\section*{Cirucuit Ideas}

\section*{Programmable ratio frequency divider}

This programmable frequency divider has the advantage of low cost, simple design and expandability. The circuit is basically an eight-bit ripple counter with a programmable binary 1 detector. Whenever the programmed sequence appears at the counter outputs, it is reset by the monostable multivibrator which prevents latch up by only allowing a short pulse to the reset line. The desired division ratio is addressed to the inputs, \(A_{0}\) to \(A_{7}\), as a binary number.

When all inputs are at 0 V there is no output. When all inputs are at 5 V the output is \(1 / 255\) of the input frequency.

If both remote and local programming is required, the local switches must all be set to 5 V when remote is in use. Inputs and outputs should be buffered with inverters. The counter was tested from 10 Hz to 100 kHz and the limiting factor appeared to be the value of \(C_{1}\). With \(\ln F\) the counter should divide accurately up to about 200 kHz . M. F. Smith,

University College Galway, Ireland.


\section*{Tuning indicator}

This circuit can be used with many quadrature detector systems or ratio detectors, by taking the reference to an appropriate d.c. point. If used with a CA3089E, the meter output can be used to suppress illumination between stations. Non linear l.e.d. characteristics make the brightness vary with signal strength. and a high input impedance causes very little loading on detector systems in current use.
W. Poel,

Ambit International,
Essex.


\section*{Logic probe}

This logic probe will indicate the t.t.l. states high, low, open circuit and pulse train by using the voltage drop of a l.e.d. in a Schmitt trigger circuit. Transistor \(\mathrm{Tr}_{1}\) is saturated by a high, and cuts off \(\mathrm{Tr}_{2}\) which turns on the red l.e.d. in the dual package (Monsanto MV5491). When \(\mathrm{Tr}_{1}\) is cut off by a low, the reverse occurs. Adjustment of the base bias resistor will turn \(\mathrm{Tr}_{1}\) sufficiently on to bring its collector below the l.e.d. forward voltage threshold and extinguish both l.e.ds. Thus, both l.e.ds. will be off for high impedances.
Rectangular waves up to about 1 MHz will turn on both l.e.ds and some indication of the mark/space ratio can be seen by the relative brightness of the two light sources. The circuit draws 90 mA from a 5 V supply.
J. C. Flower,

\section*{Madrid,}

Spain.

\(\qquad\)

\section*{Hard action centretapped zener}

A conventional zener arrangement is not an ideal voltage regulation element because the voltage across it is dependent on the series resistor and the load. By using a feedback pair ( \(\mathrm{Tr}_{1}\) and \(\mathrm{Tr}_{2}\) or \(\mathrm{Tr}_{3}\) and \(\mathrm{Tr}_{4}\) ) the voltage is self correcting and the action can be defined as hard. The four transistors shown form a centre tapped version which can be used to obtain a dual shunt-regulated supply from a single floating source, or a stable dual reference voltage for a dual series-regulated power supply. Voltage

adjustment is continuously variable by a potentiometer and loading one half of the circuit will not affect the other half.
In the practical circuit shown, the two dropping resistors are equal. Maximum unregulated voltage is 72 V , and the 741 's provide short-circuit protection. The transformer secondary need not be centre tapped.
C. R. Cathles,

Gt Bookham,
Surrey.

\section*{Sample and hold}

The offset voltage and tracking error in J. Kilvington's clever follow and hold circuit, Wireless World, June 1972, page 275 , may be greatly reduced by balancing the currents flowing in the two branches of the compound emitter follower. In the modified circuit shown, the lksl potentiometer reduces offset error for the most important input voltage. This error is now in the order of \(0.1 \%\) for a 10 V input swing. The \(120 \Omega\) resistor has been added to ensure that the BCl 84 is cut off in the hold state. All diodes should be silicon types.
J. H. J. Dawson,

Amsterdam,
Holland.

\section*{Amplifier blown-fuse indicator}

This circuit was designed for use in a high power audio amplifier using a split power supply. It was decided to provide overload and short-circuit protection by using quick-blow fuses in the h.t. rails instead of the more usual current limiting networks. While the fuses are intact the transistors are biased off. However, if a fuse blows the transistor is turned on and supplies current to the indicator lamp.

The circuit is independent of amplifier load impedance and the maximum current it can pass in the fuse-blown condition is limited by the transistor base resistors, in this case less than one milliamp. Component values are not critical but the h.t. leads should not be diverted from their most direct route.
I. Flindell,

Northfleet,
Kent.



\section*{Constant amplitude light modulator}

A pen motor carrying a Polaroid vane is a device used to modulate the intensity of a light beam. Unfortunately, the amplitude is not constant with change in frequency so the amplitude has to be adjusted for changes between 10 Hz and 100 Hz . The beam of light is sampled by a
silicon photodiode which is linearized by \(\mathrm{IC}_{1}\). The input signal and feedback signal are mixed in the summing amplifier \(\mathbb{I C}_{2}\) which drives a non inverting power amplifier. The last mentioned consists of a 741 op-amp driving two OC28 power transistors in a closed feedback loop with a gain of five. R. F. Cartwright,

Telford,
Shropshire.


\title{
Characteristics and load lines
}

\section*{2-Non-linear characteristics}

\author{
by S. W. Amos, B.Sc., M.I.E.E.
}

Part 1 (concluded in this issue) was devoted to applications of linear characteristics and to methods of effectively linearising non-linear characteristics. However, input-output characteristics are not always required to be linear: there are circuits which require nonlinearity for their action and where performance is improved by increasing the degree of non-linearity of the input-output curve. Such circuits are described in this article.

\section*{A.m. detectors}

We saw in Part 1 that one of the properties of a device with a non-linear input-output characteristic is that it generates new signals with frequencies equal to the sum and difference of those of the input signals. One circuit application where the difference-frequency component is required is in an a.m. detector. An r.f. carrier of frequency \(f_{1}\) amplitude modulated by an audio tone of frequency \(f_{2}\) gives rise to two sidebands, an upper one of frequency \(\left(f_{1}+f_{2}\right)\) and a lower sideband of frequency ( \(f_{1}-f_{2}\) ): these sidebands, together with the carrier frequency \(f_{1}\), constitute three components which are presented to the input of an a.m. detector for each audio-frequency tone in the modulating signal. As a result of non-linearity of the detector characteristic, the output contains signals with a frequency equal to the difference between the upper-sideband and carrier frequencies and to the difference between the'carrier and lower-sideband frequencies. Both these difference-frequency components are at the wanted audio frequency \(f_{2}\). Another difference-frequency component produced is due to inter-action between the upper and lower sidebands and is at \(2 f_{2}\). This is the second harmonic of the wanted audio signal and represents distortion.
This sideband approach to the process of a.m. detection is useful because it shows that both sidebands are not strictly necessary: either one, with the carrier, enables the required a.f. signal to be obtained.
Fig. 1 shows how detection occurs.

Because of the curvature of the characteristic the current swings due to positive half cycles of r.f. input are larger than those due to negative half-cycles. If the r.f. component is removed from the output current what is left is the a.f. waveform shown in dashed lines in Fig. 1. Any characteristic which is not linear will detect a.m.


Fig. 1. Detection of a.m. signals by a non-linear input-output characteristic.


Fig. 2. Suppression of negative r.f. peaks by biasing to cut-off point \(O\).

Fig. 3. Basic diode detector circuit.

signals in this way. This is the reason why some a.f. amplifiers operating near high-power a.m. transmitters reproduce the radiated programme even though there is no tuning or detector stage. The non-linearity of the early stages, though slight, is sufficient in the high field strength area of the transmitter to provide the later stages with an adequate audio signal.

To give a good a.f. output from the detector the non-linearity of the characteristic should be more pronounced than that shown in Fig. 1. In fact the ideal characteristic is one which does not respond to negative half-cycles at all. This can be achieved by biasing the detecting device so that it is cut off by negative half-cycles as illustrated in Fig. 2. The effective characteristic is now AOB. The horizontal section AO represents inputs for which the device is cut off and OB represents inputs for which the device conducts. OB could be straight, in which case the overall characteristic would consist of two linear sections intersecting at \(O\). \(O\), the point of discontinuity, is important in detection because it represents the voltage at which the device should be biased for most efficient detection. If a detector were made to operate on this principle it would give considerable distortion because OB, which should ideally be straight to give a faithful rendering of the a.f. envelope, is in practical devices far from linear.

In practical detector circuits this distortion is avoided by including an RC circuit which fundamentally changes the mode of operation of the detector. Such a network is \(R_{1} C_{1}\) in the diode detector circuit of Fig. 3. Positive half-cycles of r.f. from \(\mathrm{L}_{1} \mathrm{C}_{2}\) drive the diode into conduction and the resulting current charges \(C_{1}\) to the peak value of the r.f. signal. Negative half-cycles of r.f. input cut the diode off and \(C_{1}\) loses very little of its charge during negative half-cycles - only sufficient, in fact, to enable the voltage across \(\mathrm{C}_{1}\) to follow the most rapid falls in the a.f. modulation envelope. The small loss in voltage across \(C_{1}\) during negative half-cycles is made up when the diode is driven into
conduction by the succeeding positive half-cycle. This period of conduction is brief - less than \(180^{\circ}\) - because with good design only a small amount of energy is needed to restore the voltage across \(C_{1}\) to the peak value of the r.f. input to the diode. Thus the voltage generated across \(C_{1}\) is at all times slightly less than the peak r.f. input to the diode and so follows the a.f. modulation envelope. This voltage is the output of the detector. Superimposed on this a.f. waveform is a carrier-frequency ripple caused by the succession of partial discharges of \(\mathrm{C}_{1}\) and the subsequent recharges but this can easily be removed by a simple RC filter.

The fact that the voltage across \(\mathrm{C}_{1}\) never reverses in polarity shows that there is also a d.c. component in the detector output: this is commonly used for a.g.c. The polarity of the voltage across \(C_{1}\) is such as to reverse-bias the diode and the input to the diode consists of this voltage together with the r.f. voltage from \(L_{1} C_{2}\). Because the voltage across \(C_{1}\) is slightly less than the peak voltage from \(L_{1} \mathrm{C}_{2}\) there is only small net positive voltage to drive the diode into conduction. Consequently only a small length of the characteristic \(O B\) is used in the detection process and, as mentioned in Part 1, this means that distortion is small despite the non-linearity of the characteristic. This is illustrated in Fig. 4 and comparison of this with Fig. 2 shows how little of the characteristic is used when \(R_{1} C_{1}\) are present. The effect of \(R_{1} C_{1}\) in providing bias for the diode is similar to that of the biasing circuit used in the Hartley oscillator circuit of Fig. 13 in Part 1.

\section*{Mixers}

There is another circuit familiar 'in electronics where the difference-frequency component is wanted: this is in the mixer stage of superhet receivers where the intermediate-frequency output is at the difference of the signal-frequency and oscillator inputs. Here again non-linearity in the input-output characteristic is essential and operation of the mixing device is arranged to achieve this. The usual technique is to choose the bias and oscillator amplitude so that the operating point sweeps over the non-linear part of the characteristic.


The signal-frequency input is very small (when weak signals are being received) and movement of the operating point by this input is too restricted to achieve any significant difference-frequency output. The useful part of a mixer characteristic is the non-linear section and one device which can be used as a mixer is a diode.
A good example of a diode so used is in the inter-carrier method of sound detection used in television receivers. The input to the vision detector consists of an a.m. vision signal at an i.f. (carrier frequency) of 39.5 MHz and an f.m. sound signal at an i.f. of 33.5 MHz . As a result of the non-linearity of the diode characteristic the sound signal emerges as an f.m. signal at a difference frequency of 6 MHz .
An a.m. detector and a mixer are both required to produce an output at the difference of the two input frequencies and it is not'surprising therefore that the mixer stage in early superhet receivers was known as a "first detector," the "second detector" being at the end of the i.f. amplifier.
It should not be assumed that nonlinearity is an essential feature of a mixer. This is quite untrue. Mixers can operate on two quite different processes. The first type is that just described and for which non-linearity is necessary: this is the additive type of mixer and one of its properties is that the two signals to be mixed are applied to a single input terminal. Thus a diode can be used as an additive mixer.
The second type of mixer has two input terminals and an essential property of them is that either can be used to reduce the output current to zero. The two inputs to be mixed are connected to the two inputs and in effect are multiplied together in the device, the output current therefore containing multiplication products. These products include outputs at the sum and difference of the two input frequencies as shown by the trigonometrical identity
\[
\begin{aligned}
2 \sin \omega_{1} t \sin & \omega_{2} t \\
& =\sin \left(\omega_{1}+\omega_{2}\right) t+\sin \left(\omega_{1}-\omega_{2}\right) t
\end{aligned}
\]

The significant feature of this process is that the sum and difference components are produced entirely without non-linearity: the input-output characteristic for either input can be accura-

Fig. 4. Operation of diode detector.

Fig. 5. Waveform of sound waves for acoustic beats.
tely linear. Mixers operating on this principle are termed multiplicative and examples are pentodes (using control grid and suppressor grid), hexodes, heptodes, octodes and dual-gate mosfets.

The process of applying two signals to an electronic device to obtain an output at the difference frequency, which we have called mixing, is sometimes termed beating. For example the oscillator used in a communications receiver for reception of c.w. signals is known as a beat frequency oscillator. The term beat is also used to describe the effect heard when two sound waves of nearly equal frequency are heard simultaneously. It is unfortunate that the same term should be used for both processes because the mechanism of acoustic beat production is quite different from that of an electronic mixer. This is shown in the following account of the production of acoustic beats.

\section*{Acoustic beats}

Suppose two sinusoidal sound waves of nearly-equal amplitude and nearlyequal frequency are generated. The ear responds to the sum of the two signals and this has the form shown in Fig. 5. The combined wave has a large amplitude where the original waves are in phase and a low amplitude where they are in phase opposition. It is the rhythmic rise and fall in amplitude of the combined wave which gives rise to the changes in volume which we describe as beats. Mathematically the waveform of the combined signal can be obtained from the trigonometrical identity
\(\sin \omega_{1} t+\sin \omega_{2} t\)
\[
=2 \sin \frac{\omega_{1}-\omega_{2}}{2} t \cos \frac{\omega_{1}+\omega_{2}}{2} t
\]
in which for simplicity the original waves are both assumed to have an amplitude of unity. This expression shows that the combined wave has a frequency equal to half the sum (i.e. the average) of the two original frequencies and an amplitude equal to half the difference of the original frequencies. Thus the envelope of the combined wave, shown in dashed lines in Fig. 5 , is also sinusoidal but, is at half the difference frequency. The ear cannot distinguish positive envelope peaks from negative envelope peaks and thus hears two beats per cycle. The beat frequency is thus equal to the difference of the original frequencies.

This process differs from the generation of sum and difference frequencies in a non-linear device in the following respects:

(a) non-linearity is not necessary to produce acoustic beats which arise as a result of simple addition of two sine waves;
(b) the new frequencies which arise in the generation of acoustic beats are equal to half the sum and half the difference of the two input frequencies.

\section*{Frequency multipliers}

A device with a non-linear characteristic gives an output at multiples of the frequency of an input signal. By placing an LC circuit at the output of the device and by tuning this to one of the harmonic frequencies it is possible to produce a frequency multiplier. Clearly for successful results a large harmonic content is required in the output current and this requires marked non-linearity in the characteristic. The best way of achieving this is to operate the device in class C so that it is cut off for more than half of each cycle of input and the output current flows in the form of pulses at the input frequency. The amplitude of the harmonics falls off with increasing frequency and the efficiency of the multiplier is therefore low for high multiplication factors. For example to obtain a factor of 8 , it is better to use three frequency doublers in cascade than to attempt the 8 -fold frequency increase in a single stage. Even harmonics cancel in a push-pull stage and thus by designing a multiplier to operate in class-C push-pull it is possible to favour the generation of odd multiples of the input frequency.

\section*{Slope of non-linear characteristics} So far we have discussed applications of non-linear characteristics based on their ability to produce harmonics of one input signal or difference-frequency components from two inputs. There are other circuits which depend on non-linearity and where the circuit operation is best explained in terms of the slope of the characteristic. In general the slope is a measure of the gain of the device voltage gain if input voltage is plotted against output voltage and current gain if input current is plotted against output current. For many devices the characteristic relates output current to input voltage and the slope of the characteristic then measures the mutual conductance of the device.
For a linear characteristic the slope is constant and independent of the point at which it is measured. For a non-linear characteristic the value of the slope depends on the point of measurement, that is to say the gain depends on the bias. For example the mutual conductance of an f.e.t. or valve depends on the gate, or grid; bias. Thus one property of such a non-linear characteristic is that it permits the gain of the device to be controlled by adjustment of the bias. This is illustrated in Fig. 6 which shows the shape of a suitable characteristic. If the bias is set to point A the gain is low but the device can accept a large-amplitude signal without appreciable distortion. When, however, the device is biased to point \(B\) the gain is high but the signal-handling capacity of the device is low. This technique is useful particular-
ly for remote control of gain because it requires only the adjustment of a voltage to effect it and there are no signals in the control lead.

For effective control of gain the slope of the characteristic should vary smoothly as the bias is altered and an ideal form of curve for this purpose would be exponential: this is difficult to achieve in practice. Variable-mu valves (at one time extensively used as auto-matic-gain-controlled i.f: amplifiers in superhet receivers) had characteristics which approximated to this ideal.
Since a device with a characteristic such as that illustrated in Fig. 6 enables gain to be controlled by a voltage it can also be used as an amplitude modulator by arranging for the r.f. gain to be controlled by the modulating signal. To do this the input can consist of a mixture of the modulating signal and the r.f. carrier voltage. The amplitudes of these two components are adjusted, as shown in Fig. 7, so that the gain to which the r.f. carrier is subjected depends on the instantaneous value of the modulating signal, being a maximum for positive peaks and a minimum for negative peaks. In this way the output of the device consists of an audio component (distorted by the non-linearity of the characteristic) and, superimposed on it, the r.f. signal amplitude modulated by the audio component. By including at the output of the device an LC circuit resonant at the carrier frequency the audio component can be suppressed leaving the wanted modulated r.f. signal. This technique is used
with thermionic valves (grid modulation) but the quality of modulation is not high, deviations from the ideal characteristic causing distortion of the modulation envelope. Nevertheless grid modulation is a simple and effective method of achieving amplitude modulation.

\section*{Negative-resistance kink}

Fig. 8 shows the shape of a non-linear characteristic familiar to most electronic engineers. It was first encountered many years ago in the \(I_{a}-V_{1}\) curves of a tetrode valve. The region BC is unusual in that it has a negative slope: all the other characteristics encountered in this series have a positive slope throughout their length although, if the characteristic, is non-linear, the slope is clearly not constant. If a device is biased to the region \(B C\) an increase in voltage results in a decrease in current. For this region, therefore, the device has a negative a.c. resistance (slope resistance, incremental resistance or differential resistance - not a negative absolute resistance).

The negative-resistance kink is a nuisance if the device is required for use with large-amplitude signals. If load lines cross this region, severe distortion results and if the kink is to be avoided the signal amplitude must be severely limited. It was to avoid these limitations that the additional grid (suppressor) was introduced into the tetrode, so producing the pentode: this had the smoother characteristic (of positive slope throughout) shown in the dashed line in Fig. 8 and permitted the successful amplification of large-amplitude signals.

The kink has, however, one interesting application. If an LC circuit of suitable dynamic resistance is connected to the device, assumed biased to the mid-point of the kink, oscillation results at the resonance frequency of the circuit. The amplitude of oscillation grows until it is limited by the regions of positive slope which begin at \(B\) and \(C\). Thus the peak-to-peak amplitude of oscillation so generated is equal to the horizontal distance between B and C probably about 50 V for a tetrode with a screen potential of 80 V .

The negative-resistance kink has reappeared recently in the \(I_{a}-V_{a}\) characteristics of the Esaki or tunnel diode but at a smaller voltage than for the tetrode: in fact the kink may extend only from an anode voltage of 0.1 V to 0.3 V . Nevertheless by biasing the diode to 0.2 V and by adding a suitable LC circuit a negative-resistance oscillator can be produced. These have been used as the basis of low-power d.c. converters, generating, for example, 15 V from a 1.5 V input. The circuit of such a converter is shown in Fig. 9: it is extremely simple and the converters can be made very compact.
* Load lines will be dealt with in Part 3 of this sernies

\title{
British electronics giants endorse protectionism
}

\author{
'Free enterprise claptrap': Mullard chief
}
"Unless we stop the flood of imports, in three or four years there will not be an electronics industry in the UK," the managing director of Mullard, Mr Jack Akerman, said at a recent press lunch. His fear, which, he said, was already being realised, was that once the Japanese had achieved a monopoly they would put their prices up, and the cheapness they had been able to sustain by hidden government subsidies would disappear. They had already put up the prices of some tv picture tubes by \(25 \%\), having forced the closure of Thorn's Skelmersdale plant, with the loss of 1400 jobs. Despite agreements to reduce the scale of tube imports, "in the first five months of this year the Japanese continued to put tubes into the UK at the same rate as in the previous three or four years." Import controls should be introduced to protect the industry.
He drew attention to Mullard's new pride in the "Philip's connection" and, with what some might regard as a distasteful reference to "the yellow peril", asserted that the Philips group represented "the last chance for Europe". Asked if his desire for import controls, already called for by the TUC, meant abandoning the principle of free enterprise he said: "Free enterprise is claptrap. I have now abandoned free enterprise, because free enterprise to me has got us into the mess we are in."
Mr Akerman's remarks are just one shot in a campaign by certain sections of the consumer electronics industry for some form of government help. Those who advocate import controls do so partly because they feel it is a last resort. The government, they say, persists in investing either in industries like motors which already have gross world overcapacity or in those which the developing countries, the biggest potential market, can create for themselves.
Although his after-lunch remarks seemed impromptu, journalists were handed figures for the sales of colour tv sets in the UK and West Germany in tabular and graph form. The figures, supplied by BREMA, were an appendix to a report on the UK industry prepared by Mullard, Philips, GEC and Thorn. The report, which may appear at any time, will contain two sections. The first of about 40 pages will contain all the data available from the UK and Japanese sources on the state of the market and an outline of the consequences if action is not taken. The second section of five pages will consist of recommen-
dations, notably that for import controls.

The big objection to import controls has always been that the Japanese would retaliate, not necessarily in the electronics industry. Arthur Banford of Fidelity, whose call for import controls we reported last month, seemed unafraid of retaliation. He told Wireless World: "We have the undeveloped countries and the whole of Europe to sell to, and if we can't make a go of it in those markets we may as well give up."

Another difficulty about import controls, however, is that it runs against the General Agreements on Tariffs and Trade and the general tendency, to which the government is committed, to removing trade barriers. Under GATT legislation you can only bring in import controls if you can prove dumping, and investigation in Japan has shown that picture tube prices there are little different from here.

Under GATT agreements, specific industry import controls can be introduced but it must also be demonstrated that imports are increasing. This has not been the case since, as the figures Mullard handed out show, the total UK market has been shrinking and the 'Japanese have only to hold their sales in order to claim a greater market share. In addition, such controls can only be brought for specific industries if they are non-discriminatory; they must apply to other countries as well as Japan.

Some sections of the industry think that the television makers are putting too much blame on the Japanese simply because of their own failure to compete. (Neither BREMA nor RIC, though sympathetic, has associated itself officially with the campaign, although Mullard says that had they done so it would have meant "another layer of negotiations".) As Minister of State for Industry Alan Williams pointed out in his reply to Edward Lyons. much of the trouble stemmed from the sudden releasing of credit controls in 1971, when British manufacturers themselves imported Japanese tubes to meet demand, and their equally sudden reimposition at the end of 1973. The market slumped, but the Japanese tubes kept coming. Also, the hiatus of two weeks between the announcement of 25\% VAT in April 1975 and its imposition on May 1 caused another rush with which only the Japanese seemed equipped to deal. After the deadline the market oncemore went dead.
continued on page 86


EQUAL TEMPERED PITCHES

Referring to the article "Generation of Equal Tempered Pitches" in the June issue of Wireless World, I would suggest that in order to save cost on components, the master oscillator frequency could be derived from a standard frequency crystal ( 1 MHz or 10 MHz ). There seems to be no need to have master oscillator frequencies such as were given: crystals for these frequencies would have to be specially ordered, which could delay completion of the unit.
For a 1 MHz master oscillator frequency ( \(\times 2, \times 4, \times 8, \times 16\) ) the divisors would be as follows: ( \(3 \times\) SN74193 would cope).
\begin{tabular}{lcccc} 
Pitch & Frequency & Divicnr & \begin{tabular}{c} 
Resultant \\
Frequency
\end{tabular} & \% error \\
C & 261.6256 & 3822 & 261.643 & +.007 \\
C= & 277.1826 & 3608 & 277.162 & -.007 \\
D & 293.6648 & 3405 & 293.686 & +.007 \\
E & 311.1270 & 3214 & 311.139 & +.003 \\
E & 329.2282 & 3034 & 329.598 & -.009 \\
F & 349.2282 & 2864 & 349.162 & -.019 \\
& or & 2863 & 349.284 & +.016 \\
F: & 369.9944 & 2703 & 369.959 & -.009 \\
G & 391.9954 & 2551 & 392.003 & +.002 \\
G: & 415.3046 & 2408 & 415.282 & -.005 \\
A & 440.0000 & 2273 & 439.947 & -.012 \\
B, & 466.1637 & 2145 & 466.200 & +.008 \\
B & 493.8833 & 2025 & 493.827 & -.011
\end{tabular}

\section*{WIRELESS ACROSS SPACE}

With reference to Mr Tang's article (June 1976) on interstellar communication, may I suggest that any natural frequency, such as that of the hydrogen line, is likely to be noisy. Hence a hypothetical transmitter, designed to attract the attention of distant radio-telescopes, might use a frequency related to a natural line.
I suggest that a frequency of \(\pi \times 1.42 \mathrm{GHz}\), \(2.7183 \times 1.42 \mathrm{GHz}\), or some simple combination of these would identify a signal as emanating from an artificial transmitter. Precise measurement of the frequency over a period of time would allow the identification of the star involved from its line of sight
motion, as well as the location of the transmitter on planet, or natural or artificial satellite.
W. T. Gartland,

Hollingbourne,
Kent.

\section*{Mr Tang replies.}

Gartland is of course right in pointing out that natural frequencies such as those of OH and Hl (hydrogen one, i.e. neutral atomic hydrogen), which exist in interstellar dust clouds, will be noisy. However, using \(\pi\) or e times the Hl frequency does not appear to me as more anti-cryptographic or "obvious" than using its second harmonics. A multiplication by two is at least as good as, if not numerically simpler than, a multiplication by one of the many (all equally important) mathematical constants. His second point is also correct. If the extraterrestrial station has not corrected its transmitting frequency for Doppler shifts on its side, then we can deduce its orbital data from the periodic variations of the received signal frequency, the only disadvantage being that to detect such signals in the first place may be more difficult.
T. B. Tang,

Cavendish Laboratory,
Cambridge.

\section*{PHASE - MOIR \\ AND HARWOOD}

James Moir, in his article, "Phase and sound quality," Wireless World, March 1976) quotes the paper "On Aural Phase Detection" (JAES, Jan/Feb 1974) by E. Rorbaek Madsen and the undersigned, I would like to correct a couple of points which he appears to have misunderstood.
The use of passive phase-shifting networks was not rejected, but as it was not the purpose of the experiment to study the effect of amplitude changes, the use of such filters was considered outside the scope of the work. Concentrating on the effect of phase without corresponding changes in amplitude, one could of course use separate generators and phasing networks, but this is equivalent to the use of excess phase networks. Thus, the paper suggests that the use of minimum phase shifting networks, which alter amplitude ratios simultaneously with phase, does not have any relevance to the primary aim of investigating the audibility of phase shifts, but that the use of excess phase networks is necessary. In either case the phase shifting networks may be simply passive or active, without affecting the results.
The technique requiring "four recordings and replays of a square wave" also called the time inversion method, is acknowledged in the paper as causing repetitive addition of amplitude errors, while removing phase errors. If the amplitude characteristics in the two cases are identical, this test can give meaningful results. However, the results were included in the paper as documentation of preliminary results, which justified proceeding with further investigation. It is therefore relevant to add that the test quoted by Mr Moir is only a small section of the first
part of the paper, Part 11 (JAES Dec. 1974) of which gives results showing the amount of phase shift detectable by the human ear. Villy Hansen,
Bang \& Olufsen,
Denmark.

It pains me to perpetuate the controversy generated by H. D. Harwood's January article on the audibility of phase effects in loudspeakers \({ }^{1}\). However, seeing a report of mine \({ }^{3}\) quoted by both Mr Harwood and Mr Gerzon in support of their respective viewpoints (March issue, p.60-62), has moved me to try and clarify the issue.

Briefly summarizing, Mr Harwood maintains that gross phase anomalies in a single monophonic sound channel have little if any subjective consequences (at any rate, if programme material as opposed to a specially devised test signal is used). There seems little doubt that this is true for the vast majority of listeners. He then cites results'* showing that high frequency phase anomalies, above 2 khz , have little effect on stereophonic image localization. Whilst the evidence of my report substantially confirms this, it is not wholly correct to conclude, as he does, that phase has little apparent effect about \(2 k h z\). The report indicates that, for the example of equal amplitude but antiphase stereo signals cited, the tonal quality of the resulting sound image is degraded. Some people, myself included, found the quality to be nasal, forced, and tinny. However, the effect was qualitatively different from the "phasiness" shown by out-of-phase lower frequencies. The evidence thus seems to indicate that high frequency phase disturbances do not manifest themselves by causing localization errors, but that they may cause sound quality changes. This appears to support Mr Gerzon's observation that a poor pickup phase response can cause a shrieky top-end colouration, despite a flat amplitude response. However, the evidence for this is not conclusive, since it appears that gross interchannel phase differences would be necessary to cause such disturbances.
I would like to point out that I am no longer working under the auspices of the BBC and that the views expressed here are therefore purely personal. I also have no connection with Mr Bowers of B\&W Loudspeakers.
J. S. Bower,

15 Samantha Close,
Markhouse Rd.,
London, El7.

\section*{References:}

1 Harwood, H. D. "Audibility of phase effects in loudspeakers". Wireless World, Jan. '76 2 Shorter, Harwood \& Manson "Stereophony: The effect of interchannel differences in the phase/frequency and amplitude/frequency response". BBC Engineering Monograph No. 56, 1964
3 Bower, J. S. "The subjective effects of interchannel phase shifts on the stereophonic image localisation of narrowband audio signals". BBC Research Dept. Report No. 1975/28

James Moir's article "Phase and Sound Quality" contains much interesting material, but it is not good enough, in an article described as a review of this subject, to leave unresolved the problem of defining simultaneously the phases of a number of sine-waves of different frequencies. Indeed
he even suggests that the idea of phase is inappropriate to discussions involving signals whose frequencies are not all multiples if a common fundamental! To provide the required definition one begins by specifying a particular "synchronizing time," and then determines the phase of each sine-wave component of the waveform under consideration (which may itself be non-periodic) with respect to a sine-wave of the same frequency which crosses the zero axis in an upwardgoing direction at the synchronizing time. If one had chosen instead a synchronizing time \(T_{d}\) later than the first, then the phase determined for a component of frequency \(f\) would change by an amount \(2 \pi T_{\mathrm{d}}\) which is independent of the shape of the particular waveform under consideration, and any two components whose frequencies differed by a small amount \(\Delta f\) would have their relative phases altered by \(2 \pi \Delta f T\). Thus if a device such as an amplifier or loudspeaker produces a relative phase shift over this frequency range of \(\Delta \phi\) it will cause these components to recombine as if the original waveform had been delayed by a time \(\Delta \phi / 2 \pi \Delta f\), the "group delay." Only if the phase shift produced by the device changes linearly with frequency will the group delay be independent of frequency, and the waveform unaltered by transmission through it.

As a rule each particular choice of synchronising time will give rise to a distinct set of phases for the components, but if they are all harmonics of a common fundamental, the phases determined for synchronising times separated by a whole number of periods will differ only by multiples of \(2 \pi\) radians.

Mr Moir invites us to believe that, because a periodic square wave applied to a high quality loudspeaker gives rise to waveforms in a normally lively room which vary with position in the room, and from which all evidence of the steep rising and falling edges has disappeared, it is unnecessary for a loudspeaker to preserve wave-shapes. In fact no feature of a periodic waveform observed in such a room can be a transient, since each period of the observed waveform contains reflected contributions from all preceding periods of the driving signal, and these reflections will rarely arrive in synchronism with either the direct wave or each other. True transients, such as cymbal clashes, the attack of harpsichord and pizzicato string notes, etc., can be heard only during the brief interval between the arrival of the direct wave at the ear and the arrival of the first reflection, typically two or three milliseconds. As Michael Gerzon remarks in your March letters, differences in these true transients may allow one to distinguish between linear phase speakers and speakers which introduce phase shifts which are not linear functions of frequency into the components of the radiated waveform. Such differences are more likely to be detected by players thoroughly familiar with their own instruments than by listeners accustomed to hearing those instruments at more respectful distance.
Some years ago I. \({ }^{-}\)C. Whitfield \({ }^{1}\) demonstrated that a mechanism exists by which the ear informs the brain of waveform details which would definitely be affected by changes in the relative phases of the components, a fact which Mr Moir fails to mention. It is admittedly hard to reconcile the existence of this mechanism with the observations of Mr Moir and others, including Mr. P. Taylor (March Letters), that one has great difficulty in distinguishing periodic waveforms which differ only in the relative
phases of their components. However, it would clearly be rather awkward if we all associated the phase and amplitude changes which arise from listening to periodic sounds at different places in the same room with significant changes in the quality of the speech or music and it is possible that in such circumstances we have trained ourselves to ignore this information. On the other hand Dr Hodgkinson \({ }^{2}\) has shown that when a waveform is synthesized from harmonics of a single fundamental, but the fundamental itself and some of the lower order harmonics are missing the ear does interpret changes in the relative phases of the remaining harmonics in terms of changes in tone quality, and points out that the lower register of the bassoon shows just such a distribution of harmonic amplitudes.

Mr Taylor's March article on the synthesis of frequency-modulated waveforms contains a nice demonstration of the way in which the sine-wave components combine to generate a constant-amplitude variable frequency resultant. It would be interesting to see what emerges when a synthesized waveform is applied to a band-pass filter whose centre frequency lies within the range swept out by the 'instaneous frequency' if the frequency deviation is kept constant, but the number of sidebands falling within the filter pass-band is reduced by increasing the modulating frequency. The changes in the sharpness of the signal bursts emerging from the filter might serve to bring home the significance of the acoustical uncertainty limit. If one considers a 10 kHz signal frequency-modulated at a frequency of 0.5 Hz with a frequency deviation of \(\pm 1 \mathrm{kHz}\), and applied to a filter with a bandwidth of 100 Hz and a centre frequency of 10 kHz , one expects the output to be a succession of bursts of approximately 70 msec duration repeating at intervals of 1 sec . However the sidebands of the input signal which lie within the pass band are present in the output at all times, but for \(90 \%\) of the time are busy almost cancelling one another out. Does anyone seriously doubt that by suitable changes in the phases of the components passed by the filter the output could be turned into a continuously audible, if rather noisy and erratic, 10 kHz tone?
C. F. Coleman,

Wantage,
Oxon.

\section*{References}

1 I. C. Whitfield in 'Frequency Analysis and Periodicity Detection in Hearing' (Ed. Plomp and Smoorenberg) A. W. Suithoff, Leiden, (1970)

2 K. Hodgkinson, 'The Psycho-Acoustics of Phase', Hi-Fi News and Record Review Annual, p23 (1976)

\section*{RC CIRCUIT CALCULATIONS}

In part 5 of his generally excellent series "Electronic circuit calculations simplified," l fear Mr Amos has missed a trick and also made a mistake. He presents a table of the frequency response of an \(R C\) circuit without pointing out the useful property that the discrepancies between the true curve and the straight line approximation are symmetrical about the cut-off ( -3 dB ) frequency; indeed, his table contains an error which conceals the symmetry.

For a top-cut circuit (Fig. 3 of Mr Amos's article) the response in decibels is
\[
\begin{aligned}
& 20 \log _{10} \frac{1}{\sqrt{1+(2 \pi f C R)^{2}}} \\
& \text { or } 20 \log _{10} \frac{1}{\sqrt{1+\left(f / f_{0}\right)^{2}}}
\end{aligned}
\]
where \(f\) is the frequency at which the response is being considered and \(f_{0}\) is the cut-off frequency.

Up to the cut-off frequency, the straight line approximation indicates that there is no loss. The difference \(\Delta_{1}\) between the true loss and the appreximation is therefore
\[
20 \log _{10} \frac{1}{\sqrt{1+\left(f / f_{0}\right)^{2}}}
\]

Above the cut-off frequency, the straight line approximation shows a 6 dB per octave fall, i.e. a response \(20 \log _{10} f_{0} / f\). The difference \(\nu_{2}\) between the true and approximate losses is thus
\[
\begin{aligned}
J_{2}= & 20 \log _{10} \frac{1}{\sqrt{1+\left(f / f_{0}\right)^{2}}}-20 \log _{10} f_{0} / f \\
& 20 \log _{10}\left[\frac{1}{\sqrt{1+\left(f / f_{0}\right)^{2}}} \div f / f_{0}\right] \\
& 20 \log _{\mathrm{w} 1} \frac{1}{\sqrt{1+\left(f_{0} / f\right)^{2}}}
\end{aligned}
\]

These expressions for \(\Delta_{1}\) and \(\Delta_{2}\) are very similar and tell us that the discrepancy between the true and approximate curves is the same at for example a quarter of the cut-off frequency as at four times it.
Hence Mr Amos's table could be written

\section*{Frequency response of RC circuit}
\begin{tabular}{|c|c|c|}
\hline Freq. for top-cut cet. & Freq. for bass-cut cct. & Extra loss rel. straight line approx. \\
\hline 1/4 & 41 & 0.25 dB \\
\hline f/2 & 21 & 1 \\
\hline \({ }^{\prime}\) & \({ }^{\prime}\) & 3 \\
\hline \(2 f\) & f/2 & 1 \\
\hline \(4 f\) & f/4 & 0.25 \\
\hline \(8 f\) & f/8 & 0 \\
\hline \(16 f\) & 1/16 & 0 \\
\hline 32 f & f/32 & 0 \\
\hline
\end{tabular}
- \(f\) is the fre-
quency far
which the reac-
tance \(C\) equals
R.

In practice only two numbers have to be remembered, 1 and 0.25 dB . The mistake in the published table becomes apparent as well; \(2 f_{0}\) the straight line approximation would give a loss of 6 dB (one octave above cut-off at a rate of 6 dB /octave), so the truth must be \(6+1 \mathrm{~dB}\), not the published 7.5 dB (a more accurate calculation gives 6.99 dB ).
K. J. Gundry,

Teddington,
Middlesex.
The author replies:
I am grateful io Mr Gundry for pointing out the error in my article and, more particularly, for drawing attention to the symmetry of the response curve which the error concealed. As he says, this symmetry makes calculations on the frequency response of RC circuits even simpler than I tried to show in my article.

\section*{CITIZENS' BAND}

IN UK

Recent correspondence on the possibility of a Citizens' Band radio network in the UK ranges from the naive to the downright selfish. A typical example of the latter is Mr D. J. Martin's letter in your May issue. He states that there are between 70 and 80,000 users of the 27 MHz band and then spoils it by saying that not all (how many \(-40,000\) ?) are licenced. He attempts to gloss over this by saying that all the equipment used is legitimate (!) whatever that means. A rather sweeping statement I might say.
I think this about sums up the current situation in the 27 MHz band which appears to be regarded by Mr Martin and his friends as their special preserve. I wonder why the "bulk of (their) equipment would not be compatible with the operation of CB systems". Would it perhaps be because of wide receiver bandwidths and spurious transmitter frequencies? Are such matters as safety of life and the day to day convenience of the citizens of this country to be subordinated to the childish activities of playing with toy boats and aeroplanes? Indeed, the image conjured up by Mr Inwood's description of a runaway model helicopter weighing 11 lbs makes one wonder whether such activities should be allowed at all.

Your correspondents have been talking about the 27 MHz band as if a full megahertz of bandwidth was required. They may not be aware that there are many thousands of base and mobile radio stations in this country operating quite satisfactorily within 12.5 kHz r.f. bandwidths. I am sure many such channels could be made available for \(C B\) use in the 27 MHz band or elsewhere for that matter. Also, the equipment operated by Mr Martin and his friends would have to conform to much tighter specifications and why not?

Comparison with the United States is completely irrelevant to the discussion. For better or worse, the Home Office has a very tight hold on the radio frequency spectrum in the UK and is well equipped to deal with transgressors. I am quite sure they would be capable of enforcing the strict regulations necessary for the successful operation of CB systems.
I fear, however, that approved \(C B\) equipment would not be cheap. I would put the cost at between \(£ 200\) and \(£ 300\) per transmitter/receiver plus a licence fee of around £l0/annum. Added to this, of course, would be the cost of maintenance which nowadays is not cheap.
I cannot see why anyone can assume that making the 27 MHz band available for CB systems will automatically result in chaos. After all, there is nothing except the laws of the country stopping anyone from using whatever part of the radio spectrum they want.
Citizens Band in the UK would provide thousands of people who have no means of getting a frequency allocation from the Home Office, with much needed radio communication facilities. I am thinking particularly of doctors, vets, nurses and people like Mr Leeves who live in remote parts of the country. There are many such places in the Highlands of Scotland.
J. G. Kelly,

Edinburgh.

There has been a large number of letters in your columns recently supporting the idea of a Citizens' Band in the UK. I would like to comment from a radio amateur's point of view.

Firstly, there seems to exist the mistaken belief that amateur radio is a difficult and expensive hobby. Many people seem daunted by the prospect of taking an examination. The radio amateur's examination requires a certain amount of technical knowledge certainly, but it is not particularly difficult for those who are assiduous enough and many people from all walks of life are successful. In any case it cannot be a bad thing to ensure that radio operators have some idea of how radio works since even low power transmitters can cause havoc if maladjusted. It is unreasonable to assume that a perfectly adjusted transmitter straight from the manufacturer will remain so throughout its lifetime and the effect is a lot less parochial than, say, a television set which is out of adjustment.

The other useful part of the R.A.E. tests the candidate's knowledge of licence regulations. I find it disturbing that, presumably, operators of CB wold not be required to observe standard operating protocols.

As for the expense of amateur radio, it is certainly true that high power multiband operation costs a lot of money. However, for low power single band operation (which is presumably what CB would be) it is not too expensive to buy one of the 'black-boxes' which proliferate on the amateur market nowadays.
Secondly, there is unfortunately a minority of amateurs who indulge in pirate operation with disregard for the licence regulations. Even though the number is small they are capable of causing widespread chaos and in some cases prove difficult to stop or even detect. In my opinion it would be no more easy to track down illegal CB operators thus stretching the resources of the authorities even further. The problems of \(C B\) regulations enforcement in the US are numerous and the job is becoming more hazardous as mentioned in the Amateur Radio section of the May edition of this magazine. We surely do not want this to happen in this country.
Thirdly, there is the 1979 World Conference on the use of the frequency spectrum and all frequency usage will have to be justified. It is important, therefore, that all users ensure that good operating practices are adhered to.

In conclusion my amateur radio colleagues and I do not regard ourselves in a privileged club but rather as belonging to a movement, into which anyone is welcome, to encourage the sensible use of radio communication. C. D. Friel, G4AUF

Harrow,

In reply to the letters in the May issue of Wireless World, I would like to add my own views and suggestions on the subject of a Citizen's Band in the UK.

The first assumption of all those who oppose a CB in the UK is that it would be in the 10 metre band, with its obvious pitfalls of TVI and intrusion into the amateur part of the band. The use of a much higher frequency in the public service band - 155 to 175 MHZ - would ensure a much smaller distance cover per watt of output leading to smaller frequency allocation being required. The GPO already has monitoring facilities on these frequencies and un-licensed use is easily spotted. Additionally, second-hand
and new equipment is already available and conforms to the GPO and ITU requirements as to stability, power out, etc. An extra point in its favour is that its use by untrained, unlicensed, non-technical personnel in the above band, eg mini-cab drivers, bricklayers on building sites, etc, has not led to an increase in TVI, BCI or any public outcry.

The license fee for CB work could be made high, increasing the Post Office revenue: this would also lessen the chance of uninterested people trying it out for fun. As a final point to deter anyone who has not paid his or her high licence fee from getting a CB set it would be easy to insist on the buyer showing his or her licence or quoting the serial number before the retailer is permitted to sell the set.
C. Knowles,

Chingwood,
London, E4.

Since my first letter to Wireless World, which was published in the January issue, a veritable hornet's nest of pro- and con-CBers has been stirred up. All of the letters published by Wireless World have contained interesting points, but there are two facts. which have so far gone unremarked:

Firstly, why do the anti-CB brigade always mention the USA as a country where CB has run rife? It's true enough that the interest in the last two years in CB has caused a vast. increase in the number of illegal users - but the percentage of illegal users, which sounds very impressive in round numbers, is still roughly the same percentage as it was five years ago. And for that matter, it is a little unfair to pick on the USA at all; why no mention of West Germany, where there has been a substantial increase in CBers over the last few years with little illegal use, few conflicts with radio-control fans, and many proven examples of the usefulness of a well regulated and supervised Citizen's Band?
Secondly, why is it assumed that providing a Citizen's Band in the UK would cause an immense increase in workload for the Post Office/Home Office department involved in supervising the licensing of such a band? Would it not be possible to establish a self-regulating Citizen's Band organisation, similar to the RSGB, with powers of licence revoking and report-back to the Post Office?
I really cannot see why the Home Office has adopted such a peculiar attitude to the CBers; on the one hand we have the model radio-control fans and other users of the 11-metre band who can easily obtain licences; and on the other hand we have the CBers who are for some reason regarded as socially unacceptable Hertzian intruders. Surely the time is ready for an unbiased study by the Home Office of countries.where CB is allowed - perhaps the USA, BRD, Sweden and Denmark would provide useful data followed by a published report and, hopefully, a trial period on a limited basis? I, as a licenced and legal West German CBer, would welcome any such action by the Home Office.
Robin A. Flood,
Darmstadt,
West Germany.

\title{
Magnetic pick-up preamplifier
}

\section*{A design with an equalization method to reduce amplifier noise}

\author{
by B. S. Wolfenden, B.Sc.
}

The most common method of producing the equalization for a magnetic pickup is to apply frequency-dependent feedback around the first stage of the amplifier, which also provides the necessary amplification to bring the pickup output to a reasonable level. As any noise generated inside the amplifier is not completely attenuated by the feedback when the frequency correction is applied the high frequency part of the signal will be attenuated slightly more than the noise. In the following design this process is split into two. The signal is first amplified flat, and then the correction is applied with the result that the signal and noise from the first stage are both subjected to the equalization. The high frequency noise is thus also attenuated, resulting in what could be called "brown" noise and an improved signal-to-noise ratio.

The circuit is built around a dual op-amp type 747. This is effectively a dual version of the 741 and there is no reason why a pair of these should not be used as an alternative.

In the circuit of Fig. 1 the first op-amp is used as a flat amplifier and is adjusted to have a gain of 13. The pickup impedance will be low compared to the input impedance of the amplifier and so series feedback is chosen to keep the noise as low as possible.*

The output from this amplifier is then fed to the second op-amp which has frequency-dependent series feedback to give the RIAA compensation required. The gain of this stage is unity at 1 kHz . No coupling capacitor is used between amplifiers as the gain of the stage is relatively low at d.c. and hence no significant shift of the output level will be caused by any offset voltages, due to the op-amps.

The overall gain of the amplifier is such as to give an output of 65 to 70 mV with most modern pickups which give an output of about 5 mV at \(5 \mathrm{~cm} / \mathrm{s}\). The gain of the first stage of the amplifier can be adjusted for other sensitivities with the proviso that the bandwidth will be reduced as the gain is increased due


Fig. 1. Circuit of the preamplifier.


Fig. 2. Measured RIAA equalization curve.

\footnotetext{
* Walker, H. P., Low-noise audio amplifiers, Wireless World May 1972.
}

\author{
Specification of the prototype \\ Output \\ 70 mV \\ Signal-to-noise ratio \(\quad>65 \mathrm{~dB}\) Overload capacity \(<40 \mathrm{~dB}\) for a 24 V supply \\ Equalization correct to within \(1 / 2 \mathrm{~dB}\) (RIAA)
}
to the fixed internal compensation of the 741-type op-amp.

Squaring takes place practically symmetrically at an output of just over 7 V r.m.s. for a 24 V supply. This gives an overload capacity greater than 40 dB . If a low-noise i.c. (e.g. MFC8040) were used as the first stage of the pre-amplifier intead of the 741 type a better noise figure could probably be obtained. This has not been tried within the proto typp.

The R.I.A.A. equalization of the prototype is correct to within \(1 / 2 \mathrm{~dB}\).

\section*{Improvement in noise}

In order to determine the improvement in signal to noise ratio, the more traditional circuit in Fig. 4 having essentially the same gain and fre-


Fig. 3. Pin connections of the 747 14-pin d.i.l. package.


Fig. 4. Traditional circuit for noise figure comparison with the prototype preamplifier.
quency response as the prototype circuit, was constructed.
Both circuits used the same batteries for power, and the output of each was amplified by the same amount by the same amplifier. The noise due to the above circuit, after amplification, was measured as 2.7 mV while that from the prototype design was only 0.7 mV . Theimprovement in signal to noise ratio is thus approximately 12 dB over the traditional method using the same basic amplifier.

\section*{New Eurovision control centre}

Solid-state digital control techniques are to be used throughout a new broadcasting control centre in Brussels. The Eurovision Control Centre, known as the EVC, is an operational control room established by the Eurovision Broadcasting Union (EBU) to co-ordinate, and supervise the routing of, television signals transmitted into the system by members of the EBU. Most of the television broadcasting authorities in Europe, and many of those in Middle East and North African countries, are full members of the EBU and participate in Eurovision transmissions. Many more authorities in countries remote from Europe or North Africa are associate members of the EBU and are also able to link into the system in certain circumstances. The network is in continual use for international distribution of television news and programme material; spectacular Eurovision events, such as international sport, forming only a part of the total activity. During normal services there are usually about ten members on the network, and during big events there can be as many as 35 .
At present the EVC is located in the Palais de Justice in Brussels, and operates in conjunction with Belgium's national broadcasting organizations RTB and BRT. The new EVC will occupy a wing of the new production centre, Cite Radio-TV in the Boulevard Reyers.
The contract for engineering, installation and commissioning of the entire television monitoring, audio switching and associated control systems in the centre has been awarded to Crow of Reading Ltd. This contract, which will take about two years to complete, is worth approximately \(£ 300,000\).

\title{
"'Sticky time"' for disc
}

Plessey are clearly hoping that charge coupled device memories and magnetic bubble memories will prove to have complementary rather than competing uses. This emerged from two papers presented on the first day of the IERE Golden Jubilee conference on video and data recording held at Birmingham University on July 20 to 22. In the first John Dickson of Plessey's Allen Clark Research Centre said that Plessey were evaluating a prototpye 16 kbit c.c.d. memory chip and that sample quantities would be available by the end of 1976. The device should operate, he said, up to 5 MHz with a mean access time of \(400 \mu \mathrm{~s}\).
In the second, David Hunter of Plessey Memories Ltd, described the design and performance of a 256 k bit magnetic bubble memory system composed of sixteen 16 kbit chips each in a dual in line package complete with drive coils and permanent magnet circuits.
Mr Dickson showed that if access time were plotted against system cost per bit both bubbles and c.c.d. memories compared well with the fixed head disc. "The fixed head disc is in for a pretty sticky time of it unless it can be. improved," he said. Mechanically addressed storage systems tended to be fairly cheap but had access times between \(1 / 100 \mathrm{~s}\) and 100 s . Electrically addressed random access memories such as the m.o.s. r.a.m. and the core store were more expensive with a cost per bit of around lc . The bipolar r.a.m. cost around 40c but this group of devices had access times around \(10^{-8}\) and \(10^{-6}\) s. The fixed head disc cost around the same as c.c.d. or bubble devices at ten bits per cent, but while a c.c.d. device had a best access time of \(10^{-5} \mathrm{~s}\) and the magnetic bubble device could manage \(10^{-4} \mathrm{~s}\) the fixed head disc achieved less than \(10^{-3} \mathrm{~s}\). Another advantage of c.c.ds was that, being semiconductor devices they remained cost effective even for small amounts of serial storage.
C.c.ds now also appeared to have an inherent complexity advantage over m.o.s. r.a.m. "Initially the complexity doubles every year, mainly due to design improvements. In the case of m.o.s. r.a.m. this is typified by the transition from latches to the one transistor cell. In the second phase most of the design improvements have been exhausted, and further improvements must rely heavily on improvements in technology such as reduced photoengraving tolerances and reduced chip size. In this second phase, the rate of progress is reduced to doubling the chip complexity every two years. It appears that this has already happened with m.o.s. r.a.m.s. . ."

- Easiest and quickest way of punching holes in sheet metal (up to 1.625 mm ).
- Simple operation \(100 \%\) British
- Burr-free holes - no jagged edges

57 Metric and Linear sizes \(\qquad\)
Used all over the world by: Government services - Atomic, Military, Naval, Air, G.P.O. and Ministry of Works; Radio, Motor and Industrial manufacturers, Plumbing and Sheet Metal Trades, Garages, etc.
Obtainable from leading tool factors
Wholesale \& Export enquiries to:

\footnotetext{
"Q.MAX" (ELECTRONICS)LTD 44 PENTON STREET LONDON N19QA Tel: 012782500
}

\section*{You know the name but did you know that we supply electronic components from stock?}

\section*{24 hour turn round.}

\section*{No minimum} order charge. No post or packing charges
in the UK.

For priced stock catalogue and terms of business, contact:

\section*{, Mumin PLESSEY
DISTRIBUTORS}

Vicarage Lane Ilford Essex 1G1 4AO Telephone: (01) 4783040 Extn 3391
Telex: 23766
WW-025 FOR FURTHER DE I AILS

\section*{Dont tellus.}

\section*{Tell your 'copemaker}

\section*{Write faster. \\ Store longer. With EEV's new E725 storage tube.}

Storage oscilloscopes employing solid state storage are limited to approximately 500 KHz storage frequency.

But if you want a faster writing 'scope, you can have one.

EEV's E7:5 3-mesh transfer storage tube operates on a new principle.

It has a writing speed of more than 200 div \(\mu \mathrm{S}\). It will operate at frequencies up to \(\quad=5 \mathrm{MHz}\), with storage times of at least five minutes.

If you'd like full details contact us at Chelmsford.

But even better, talk to your'scopemaker.

\title{
Earthing, shielding and filtering problems
}

\section*{2 - Stray capacitance and feedback}

\author{
by R. C. Marschall, M.A., M.I.E.E. Rank Xerox Ltd
}

\begin{abstract}
Grounding and shielding problems often occur only when systems are coupled together, and then may appear only spasmodically. This makes them difficult to locate, and underlines the importance of dealing with them at the design stage. This short series of articles considers the basic effects, setting the scene with first-order numbers, and the cures that can be achieved by changing magnitudes and circuit configurations. The August article dealt with unwanted series impedance. This second article considers some of the unwanted effects due to stray capacitance between two parts of an electronic circuit, how these can be eliminated. by adding shields, and how these shields themselves can introduce further problems.
\end{abstract}

Very small capacitances are sufficient to cause trouble if the frequency and circuit impedance are high enough. Design calculations of stray effects can use approximate figures: 15 pF has a reactance of 10 kilohms at 1 MHz . This corresponds to 6 in of shielded or coaxial cable or 3 ft of parallel 0.015 in wide 10 z copper strips, printed 0.03 in apart.

\section*{Case 4}

Situation: Subassembly amplifier or digital buffer with high source impedance and large gain-band-width product, see Fig. 4(a).

Symptoms: Oscillation, or unexpected gain or phase characteristic or rise time.

Problem: stray capacitance from output to input, often called Miller capacitance. Ungrounded metalwork, even labels, can substantially increase this capacitance.

Cures: Reduce source resistance, increase source capacitance, or reduce amplifier bandwidth. In digital systems increase response time.
Rearrange physical layout to reduce capacitance.
Interpose a grounded shield between input and output, either as a box or shielded wiring. This substitutes larger capacitances \(\mathrm{C}_{3}\) and \(\mathrm{C}_{4}\) to ground for the original feed back capacitance as shown in Fig. 4(b).
If there is a significant impedance between shield and amplifier ground, shown in Fig. 4(b) as R though it may be inductive, then instability will return, together with increased susceptibility to outside interference. Further, the shield return should be amplifier ground to avoid common-impedance coupling with the input (c.f. case 1)
The loading effects of shields can be reduced by driving them to the signal potential with a near unity-gain amplifier, i.e. boot-strapping them as shown in Fig. 4(c). The amplifier with gain A in this figure has feedback arranged so that its closed-loop gain is \((1-1 / A)\). An emitter follower can provide such a configuration. The e.m.f. across the stray capacitance and leakage resistance of the input cable is then reduced to \(1 / A\) of the input signal. Consequently , the effect of these strays is reduced by the factor A. A second shield is usually added over the driven shield. This technique is commonplace in digital voltmeters.
In case 3 , the second and fourth cures raise the impedance to earth of parts of the circuit, and required cables with earth potentials developed along their outer shields. This brings the likelihood of stray capacitance coupling of ground potentials, discussed in case 5 . The two cases together illustrate the general

problem of interconnecting boxes, and the cures can be carefully extended to greater numbers. Remember that d.c. power supplies, if decoupled at both ends, effectively parallel the ground connection.

\section*{Case 5}

As in case 3, fourth cure (amplifier 2 grounded at amplifier 1 box), but with significant ground capacitance effects. These are probably enhanced by shields added in accord with case 4.

Symptom: Inter-box ground potentials, particularly switching noise, appears at amplifier 2 output.

Problem: Relative to amplifier 2 input, the e.m.f. JK appears on box 2 , and so is coupled in via \(C_{1}\) and \(C_{2}\), as shown in Fig. 5(a).
Cures: Lower circuit impedance or reduce bandwidth.
Make impedances and voltage sensitivity of the two input wires equal as shown in Fig. 5(b). To do this, use a balanced push-pull input to amplifier 2 together with balanced twin cable. and balanced output from amplifier 1. Thus \(C\) balances \(C_{2}\), and \(\mathrm{C}_{3}\) balances \(\mathrm{C}_{4}\). This is the standard method for connection of low impedance microphones, which can be visualized as replacing Al and its transformer.
Lower capacitances, either by increased separation or by interposing a second shield around amplifier 2 and using triaxial cable, as in Fig. 5(c).
NOTE: This last cure is imperfect because the capacitance between the shields is large and couples part of the JK.e.m.f. onto the inner shield despite its low impedance. Balanced twin inside 2 shields would be better . . .!
Some of the merit of triaxial cable can be obtained by coaxial cable with an adjacent substantial ground conductor. Another major reason for using shields is the elimination of signal pickup from the environment. This general problem will be considered next month.

\section*{continued from page 77}

The market the British manufacturers were going for was the large-screen colour tv market which was dominated by the rental companies. These wanted sets which would not need to be changed very often and the market was soon saturated. In other areas, the British manufacturers also. grossly over-estimated the frequency with which users would want to change sets. As the BBC is now finding to its cost, the market for colour sets has saturated quicker than was thought at first, as disposable income has been squeezed between inflation and pay restraint. Combining all this with the effects of the Barber budget and the imposition of \(25 \%\) VAT, the British firms soon found themselves with a huge overcapacity in large screen colour tv production at a time when overheads were going through the roof.

Investment is a sensitive issue. Jack Akerman chose to make his remarks at a press visit to Mullard's new \(£ 3\) million clean room for the production of m.o.s.n. channel i.c.s. He pointed out that Philips/Mullard was spending a great deal in this country and expected the government to help them in return.

Ironically it was a former chairman and managing director of Mullard, Dr Francis Elgar Jones, now a director of Philips Industries, who has pointed out just what some of the crucial differences between Japanese and British industry are. Since last year he has been


Fig. 5(c)


Further reading
Grounding and Shielding Techniques in Instrumentation, Ralph Morrison. Wiley 1967. Practical treatment, with emphasis on basic physics and multiple shields.
leading what The Times called a crusade to get industry to analyse its performance in terms of added value - the difference between the cost of raw materials and energy at one end and the sale price of the finished products at the other - per employee.
He has analysed over 1,000 company accounts both here and in Japan and among those he studied were Plessey, GEC, Philips, Hitachi and Sony; added value per Sony employee was nearly four times that of his counterpart at Plessey. But then each Sony employee had \(£ 34,470\) worth of assets behind him compared with the \(£ 2,457\) provided by Plessey. The Plessey employee, in other words, manages to produce a quarter of the added value with less than a fourteenth of the total assets. The Philips employee added nearly \(£ 6,000\) of value (compared with the Sony employee's \(£ 10,402\) ) backed by total assets of \(£ 12,483\).

Jones's figures also showed that the money kept in the company for depreciation was much greater in Japan, and that the amount of added value per employee taken up in wages and salaries was much higher in the UK. Yet in evidence to the Commons Select Committee on Science and Technology in February he noted that the average salary in Japanese engineering industry was \(£ 4,000\), more for graduates, but that GEC paid an average of \(£ 2,136\) and Thorn \(£ 2,180\).

Again, last January the National Economic Development Council com-
missioned reports from each of the industrial sector working parties as a preliminary to the second part of the government's industrial strategy. The sector working party on electronic components recommended that the imports of colour tv tubes and the prices at which they entered the UK should be watched, but added that "recent marked increases in the price of Japanese colour tubes should ease the immediate problem and strengthen the financial position of the one remaining UK colour tube manufacturer." Far from considering the rise of \(25 \%\) in the price of the Japanese tubes a threat, the working party considered it a blessing. More important perhaps is that the working party gave more prominence to a recommendation that the quality of the goods should be improved. The radio industries council is investigating the reliability of UK electronic components and the Department of industry is thinking of giving help in the approval of civil components to BS9000.
A rather different. and perhaps more positive attitude to the Japanese threat was shown by Garrard, a reluctant subsidiary of Plessey, at a recent product launch. Admitting that Garrard had been in a mess only 18 months ago, the marketing manager, Ron Fone, said "We aren't going to allow the Japanese competition to take markets away from us any more. We must export better ... It isn't easy at the moment, but the only way to is to develop products which are better than the competition's."

\title{
An audible voltmeter and bridge-indicator
}

\author{
"Bellbird" - an aid for the blind
}

\author{
by R. A. Hoare, B.Sc. Manurewa High School, New Zealand
}

Most of us will realise how much we owe to our eyes in the pursuit of our electronics profession or hobby. We may feel that blindness would completely end our participation in such activities, but this is wrong, as many blind radio amateurs have proved. However, there are many difficulties and a major one is the making of measurements. Various methods have been devised to enable the blind to read moving-pointer instruments, and most of these use photocells and buzzers. There are also null-type instruments with large dials labelled in Braille, but these are slow and inconvenient. Modern digital methods seem to offer the answer.

Clive is a seventh-form physics siudent who has been blind from birth. His hobby is electronics and he builds all sorts of things, relying on written descriptions of the circuits. Sometimes he is helped by having an integrated circuit mounted on a larger printed circuit board as a sub-mount, but apart from that he is self-reliant. It was with Clive in mind that a rather old digital voltmeter (using r.t. logic) was bought with the idea that it could be used to give an audible output. The meter could be used not only in his hobby activities but also in his 7th form physics experiments and later in his university studies.
The voltmeter is conventional in that it has three digits with an over-range 1 and an automatic polarity indication. Overloading results in blanking and an X display on a Nixie tube. It seemed that the problem was that of converting the parallel display, where all the digits are seen at once, to a serial presentation, where only one figure is seen at a time. I believe that a device which announces the digits orally is available, but this is expensive and difficult for the lone worker to make. The information inside the voltmeter is, of course, in binary form and there seemed to be no reason why this should not be suitable for direct communication with the user, if translated into suitable sound and presented bit by bit. There are several possibilities: changing note length, note pitch, or note quality. The first method is used in Morse code but would
possibly be confusing in this new application, unless the five-bit Morse numerals themselves were used. These are rather cumbersome and would present difficulties in decoding. The translation of a binary 1 into a high pitched note and a 0 into a low pitched note seems natural and has proved acceptable in practice. If the \(X,+,-\) and over-range 1 can be combined into one digit then we have four 4 -bit digits to convey, in addition to the decimal point, which suits the capability of a 16 to 1 multiplexer very well. This, as many will know, is an i.c. with an output which can take up the state of any one of sixteen inputs, as selected by the binary number on four address pins. It was found possible to invent a simple code for the prefix digit, thus:
\begin{tabular}{rrrrr}
+0 & 1 & 1 & 0 & 0 \\
-0 & 1 & 0 & 1 & 0 \\
+1 & 1 & 1 & 0 & 1 \\
-1 & 1 & 0 & 1 & 1 \\
X & 1 & 1 & 1 & 1
\end{tabular}

Measuring instrument being used by Clive, an electronics hobbyist who has been blind from birth.

All of these are binary numbers greater than 9 , so there is no possibility of confusion with other digits.

The multiplexer is made to select each of its 16 inputs in turn by means of a binary counter connected to its address pins. The counter is operated by a multivibrator (two monostables) working continuously.

We now come to a point where two distinct design approaches are possible. There must be pauses between the digits, a long pause at the end of each reading, and extra pauses to enable a brief "decimal point" pulse to be inserted at the correct point between digits. These delays can be provided either by monostables, whicn switch off the counter for a period, or they can be arranged to span a given number of counter pulses. The latter method uses a fully digital system. There are advantages and disadvantages to each system, but I was attracted by the simplicity and flexibility of the monostable method because it was difficult to know in advance the exact time intervals required, and monostables offer simple and almost infinite adjustment.

The tone frequencies are provided by an LM566 voltage-controlled oscillator, the output from which is amplified by

an LM380 \(21 / 2\) watt amplifier. The frequencies generated by this device depend upon the input direct voltage and the value of a capacitor connected to the i.c. It seemed to be wasteful merely to use this versatile component to give two pitches, and a circuit was devised so that the instrument could also be used for an entirely different purpose, as a bridge null-detector. In the latter application the suitably amplified out-of-balance voltage from almost any bridge circuit is used to alter the frequency. (A bridge rectifier circuit gives a rise in pitch for both positive and negative input voltages.) In the digital application a fixed voltage is switched in and the multiplexer is used to change the capacitor values.
Clive had no difficulty in learning the code. A speed control was fitted, and it was not long before new timing capaci-
tors had to be provided to allow him to work faster. The rather strange warbling note gave rise to the name "Bellbird," bearing some resemblance to the song of that New Zealand bird.
I consider that sighted workers may have a use for such a machine, as it enables one to concentrate on the

Fig. 1. Digital circuits for translating a measured voltage, represented by the digits within the digital voltmeter, into a series binary code suitable for triggering a circuit (see Fig. 2) to produce audible low/high pitches. Spaces between numbers and readings are also produced by these circuits, together with a decimal point when required.
circuit under test instead of dividing attention between that and a meter reading.

\section*{Circuit description}

For clarity, the digital circuit diagram (Fig. 1) omits power supplies, irrelevant connections, and timing resistors and capacitors. The various delay i.c.s are all type 74121, though dual devices could be used. Doubtless improvements could be made, not least of which would be the avoidance of "glitches" caused by race conditions, which are the reason for small capacitors on the A inputs.

Monostables X and Y , operating as a multivibrator, cause the binary counter 7493 to select each of the voltmeter digits in turn to be presented at gate G. The OR gates A provide the prefix code. already discussed. The action of the multivibrator is interrupted by gate \(D\),


which operates whenever the "decimal space" "decimal pip" or "normal delay" monostables fire. Gates B control these in the following way: with \(S_{1}\), the decimal point switch inside the voltmeter, in the position shown, the wired-OR output from gates \(B\) goes to logical 0 on a count of \(C=0, D=0\). In the mid position the output goes to 0 on \(\mathrm{C}=1, \mathrm{D}=0\) and in the bottom position on \(C=0, D=1\). The \(A\) and \(B\) lines of the counter output are connected, as well as the inverted \(B\) gates output, to gates \(E\). It will be seen that the upper gate fires the decimal-point delay on a count of 0011,0111 and 1011 in the three switch positions mentioned. This will put the decimal delay after the prefix, first or second digits respectively. When the decimal delay monostable finishes its pulse it triggers the decimal-pip monostable, which takes over the job of arresting X and Y and sends a signal to the sound enable gate.
The lower gate E is operated, giving normal delay, whenever the A and B lines are high and the \(B\) gates output is also high, provided that the decimal-pip monostable has not fired. This means that it is triggered at the end of digits when the decimal point signal is not given. At the end of the whole cycle or phrase a count of 1111 forces the output of gate C low, thus firing the phrasedelay monostable and operating gate \(F\) to send a trigger signal to the voltmeter, which luckily has provision for this external control of its cycle. It is. possible that spurious readings would

Fig. 2. Bridge-indicator and sound circuit. Switch positions D enable the circuit to be used in the digital. voltmeter mode, the v.c.o. LM566 producing a low pitch for an input binary " 0 " and a high pitch for an input binary " 1 ". Switch positions \(L\) enable the circuit to be used as a bridge null-detector, the null point being at the point of lowest pitch.
be obtained with some meters if the outputs were multiplexed while they were half way through their cycle. In the Bellbird system the digital voltmeter measures only between phrases.

It will be noticed that if there is no connection at \(S_{1}\) no decimal point indication is given.

\section*{Bridge indicator and sound circuit}

Referring to Fig. 2, \(\mathrm{S}_{2 \mathrm{a}}\) connects the input of the voltage controlled oscillator to either the amplified out-of-balance voltage or to a fixed 2.5 V potential, to give the two modes of operation. At the same time \(\mathrm{S}_{2 \mathrm{~b}}\) connects the oscillator to either \(C_{1}\), for linear operation, or a circuit controlled by \(\mathrm{Tr}_{1}\) and \(\mathrm{Tr}_{2}\) for the voltmeter application. Safety diodes protect the LM566 from negative inputs, which could result from failure or wrong connections in the previous circuits. Two type 741 operational amplifiers perform the tasks of amplifying input signals with gains of 1,10 and

100 , selected by \(S_{1}\), and adjusting the d.c. output level to give a suitable range of tone. The input to the first 741 is protected by two 5 V zener diodes. A rectifier bridge ensures that when the output from the first 741 goes either positive or negative from zero the oscillator input voltage, and therefore the tone, will rise. This bridge should be constructed with germanium diodes to avoid a large "dead zone" caused by the higher forward voltage of silicon types.
The switching circuit enables one or two capacitors to be connected to the oscillator, giving high and low audible tones.

The audio circuit is as simple as possible: the a.c. component from LM566 is attenuated by a volume-control potentiometer before being fed to the LM380 amplifier.aThe loudspeaker coupling capacitor need not be of a high value since no low tones are required.
In use no special difficulties were noted. In linear operation the null point was obtained by listening for the point of lowest pitch. Greater sensitivity was obtained by adjusting \(S_{1}\) and 1 mm discrimination could easily be obtained on a metre bridge experiment. In the digital mode, as already noted, the learning process was fast. Sighted pupils were also interested, and as they had already some knowledge of binary code they were able to translate for themselves, though at a slower rate. After practice, of course, recognition of the "digit pattern" occurs, as with Morse code.


\section*{Ladder crystal filters}

Although the h.f. transceiver market continues to be dominated by Japanese firms there are signs that the Americans are fighting back by concentrating on innovation in all-solid-state designs. Technically, one of the most interesting of the current designs would appear to be the Atlas 210 based on semiconductor circuitry by Lester Earnshaw, formerly ZL1AAX. This compact unit also includes a high-grade eight-pole ladder filter designed by Bob Crawford; this is claimed to have an ultimate rejection, when installed in the equipment, better than 130 dB , a bandwith of 2700 Hz at \(-6 \mathrm{~dB}, 4300 \mathrm{~Hz}\) at -60 dB and 9200 Hz at -120 dB . Centre frequency is 5.52 MHz .

Traditionally most of the crystal bandpass filters used by amateurs have been based on the half-lattice configuration but with the increasing use of filters between 5 and 10.7 MHz the ladder configuration has become extremely attractive, not only for manufactured units but also for home constructors. The French amateur J. Pochet, F6BQP, has shown in Radio-REF how very attractive s.s.b. filters with centre frequencies between 8 and 10 MHz can be readily constructed using a handful of identical-frequency crystals plus a few \(10 \%\) tolerance capacitors, eliminating the need for carefully spaced crystal frequencies found in the lattice configurations. A four-crystal unit can provide an ultimate rejection of about 95 dB with a ripple (when correctly terminated) of only 0.8 dB and an insertion loss of 1.4 dB . His measured bandpass characteristics are 2050 Hz at \(-6 \mathrm{~dB}, 5200 \mathrm{~Hz}\) at -40 dB and 6950 Hz at -50 dB , though rather steeper sides can be achieved at some cost in extra ripple.

\section*{Licence facts and figures}

The Home Office is to introduce next year a new, comprehensive form of British amateur licence document that will cover all modes of operation and types of transmission, including fixed, mobile and hand-held operation, facsimile, slow-scan and "fast" TV, etc. An annual charge of about \(£ 5.50\) is likely to - be made for this form of licence but the
document will reduce the present need for special letters of permission and additional licences. A draft is currently with RSGB for comment.
Of more than 30 v.h.f. and u.h.f. "repeater" stations now licensed in the UK, about 20 are operational. Recent additions include Luton, Weymouth with Dover, Bushey, Cheshunt, Brighton, Birmingham and Margate expected this summer.

An investigation into the interference problems experienced by amateurs made by the RSGB Interference Committee indicates that many cases are solved by amateurs without intervention by the Post Office. The average amateur, it found, has a more than \(80 \%\) chance of experiencing tvi problems but a \(50 \%\) chance of curing these simply by the fitting of external filters. The Post Office is involved in less than \(15 \%\) of the cases of interference to radio reception. Interference to audio equipment is becoming an increasing problem, and in \(33 \%\) of cases it was found necessary to modify the equipment internally, \(18 \%\) externally. The report stresses that the manufacturers of domestic equipment could do more to make their equipment less susceptible to strong r.f. fields.

The number of amateur licences issued by the FCC in the USA at the end of February was 263,896 , including 24,154 novice; 51,664 technician; 25,633 conditional; 80,313 general; 67,636 advanced; and 14,149 "extra." As an instance of American "incentive" licensing, Ted Karas, WB3ZEA was licensed as a novice on March 11, 1975; passed his general/advanced examinations on August 8, 1975, and his "extra" examination on March 19, 1976 - while still only 13 years of age.

\section*{U.h.f., v.h.f. long delay echoes}

Two amateurs working on moonbounce (earth-moon-earth) systems have reported hearing additional echoes one or two seconds later than the usual moon returns. Hans Lohmann Rasmussen, OZ9CR, in Denmark first heard such echoes in the summer of 1974, about 2 seconds after hearing his e-m-e return on 1296 MHz when using 500 watts c.w. and a 26 ft diameter parabolic dish aerial. Alan Goodacre, VE2AEJ, has also reported weak unexplained echoes on 144 MHz moonbounce signals about a second after the normal return.

Statistics on the use of the Oscar amateur space satellites put the number of amateurs who have used these facilities as: USA 997; West Germany 315; England 172; France 170; Japan 136. On 432 MHz , however, the order becomes: West Germany 146; USA 114; England 58; and France 41. During recent Oscar low-power tests stations using as little as 500 mW to a dipole successfully worked through the satellite.

\section*{21 years of GB2RS}

The first news bulletin broadcast from GB2RS for radio amateurs was made by Frank Hicks-Arnold, G6MB, on September 25,1955 . The weekly, Sunday morning, broadcasts have continued regularly ever since and are now made on 3.5 MHz and 144 MHz . For many years the 3.5 MHz newsreader for south-east England has been Arthur Milne, G2MI, on 3600 kHz at 9.30 a .m. It is perhaps the only "interactive" news broadcasts to be made in the UK with listeners able to contact the newsreader (using his own callsign) immediately after the bulletins. As the British amateur licence is specifically limited to two-way communication, special authorisation is needed for this service and the scripts are subject to vetting by the Home Office Radio Regulatory Division.

\section*{In brief}

The special American-style callsign "WG1JFK" was used from Runnymede on July 4 to mark the American bicentenary ... The remarkable weather of June was notable for frequent Sporadic E conditions - these occurred almost daily on 21 MHz and included several 144 MHz "openings" to Eastern Europe . . . Limits may be imposed on local-oscillator radiation from amateur and Citizens' Band receivers capable of tuning between 26 and 30 MHz . This follows checks on spurious radiation from CB equipment that showed that many equipments were not reaching the specified limits
. An amateur "moonbounce" station is expected to operate from Barranquilla, Colombia, South America during :August. It will be on 432.040 MHz using high power and a portable 16 -element Yagi aerial . . . Some 178 delegates attended the third All India Amateur Radio Convention in Madras recently. Indian amateurs expect that amateur equipment will increasingly be limited to home-made and Indian-made units, presumably due to currency problems

During 1975 the International Amateur Radio Union issued 1658 "worked all continents" certificates including 760 endorsed for s.s.b. operation, 13 for slow-scan television, 6 for r.t.t.y., 44 for 3.5 MHz -only and 24 for 1.8 MHz only. 35 "five-band" certificates and one "six-band" certificate were issued . . . The hourly propagation forecasts at 18 minutes past the hour are no longer being made on the standard frequency transmission of WWV . . . A new publication by Plessey Semiconductors - "SL600 series transceiver applications" by Brian D. Comer gives ideas for building simple and multimode s.s.b. f.m. and a.m. transceivers using the SL600 series of integrated circuits, including the use of r.f. compression, voice-operated switching, noise blanking and incorporating the Anzac MD108 double balanced mixer.

PAT HAWKER, G3VA

\section*{New Products}

\section*{Low-cost oscilloscope}

A low-cost single-beam oscilloscope, suitable for use at frequencies up to, 8 MHz , has been introduced by Alcon Instruments Ltd. The P73, which is intended for educational or service applications where bandwidths rarely exceed 6 MHz , is designed for simplicity and reliability. A differential comparator i.c. provides synchronization even with weak h.f. signals, an f.e.t. circuit gives an input impedance of \(1 \mathrm{M} \Omega\) at 30 pF , and attenuators provide sensitivity ranging from \(30 \mathrm{mV} / \mathrm{div}\) to \(30 \mathrm{~V} / \mathrm{div}\) in I, 3 and 10 steps with an accuracy of \(\pm 5 \%\) and rise-time of less than \(0.05 \mu \mathrm{~s}\). The horizontal amplifier has a bandwidth of from 3 Hz to 700 kHz , an input impedance of 10 MS at 30 pF and a sensitivity of 0.25 V peak. The instrument, which measures \(225 \times 300 \times\) 125 mm and weighs 3.7 kg , costs \(£ 124\) (incl. VAT) complete with probe and handbook. Alcon Instruments Ltd, 19 Mulberry Walk, London SW3 6DZ.
WW 301 for further details.

\section*{Coaxial relays}

A series of r.f. coaxial relays with high sensitivity at low operating power can handle up to 150 watts of r.f. power. The 122 series by Diamond H. Controls Ltd offers a variety of single and dual coaxial switching capabilities. They are available with contact configurations up to 2 p.d.t. 4 p.d.t. or 8 p.s.t., normallyopen. A supporting range of coaxial relays offer a wide variety of alternative r.f. contact combinations. The series can additionally be equipped with auxiliary contacts, external to the relay's integral r.f. cavity, and these contacts are rated at up to 10 A . Control of the relays may be effected by either a.c. or d.c. power supplies. Diamond \(H\). Controls Ltd, Vulcan Road North, Norwich NR6 6AH.
WW 302 for further details.

\section*{Photosensor uses twocolour l.e.d.}

An infra-red pulse modulated beam provides immunity to ambient light up to 10 klx and sunlight to 30 klx in the Omron photosensing switch. It is claimed to sense any type of material, including transparent glass or cellophane. The two-colour l.e.d. indicator shows red when an input signal is received and then changes to green when the value of the signal reaches twice the operating level. This unique feature is said to guarantee fully stable operation during the life of the device, despite any change in the external operating conditions, particularly where sensitive settings are involved. A variety of models in the E3N series are available from stock for use across setting distances of up to 30 metres.


WW 301

Both reflex and separate receiver and transmitter types are available, with an aluminium housing using ' \(O\) ' ring seals to be oil and water tight. Operation is from 24 V directly to the switch or from \(110 / 240 \mathrm{~V}\) mains through a series of compatible amplifiers with instantaneous, single shot or on/off delay functions. Service life is claimed to be typically 100,000 hours. Prices start at £50 for a reflex-type switch. IMO Precision Controls Ltd, 349 Edgware Road, London W2.
WW 303 for further details.

\section*{Low-pass active filter}

A low-pass three-pole active filter, available from Analogic Ltd, is intended for processing sensitive low-level signals for integrating analogue-to-digital converters or data-sampling systems requiring precision l.f. passband filtering in the presence of extremely low offset and noise voltages. The MP230 has a flat passband from zero to the -3 dB cut-off frequency and then a roll-off of \(60 \mathrm{~dB} /\) decade beyond the cut-off point. The filter, which is available with cut-off frequencies of 0.5 , \(1,2,3.3\) and 100 Hz , has a maximum low offset voltage of \(2 \mu \mathrm{~V}\), a low output noise of \(1.4 \mu \mathrm{~V}\) p-p and passes an input voltage of \(\pm 10 \mathrm{~V}\) with a gain of unity \(\pm 0.01 \%\) at d.c. Analogic Ltd, The Centre, 68 High Street, Weybridge KT13 8BN.
WW \(\mathbf{3 0 4}\) for further details.

\section*{Surveillance receiver}

A compact panoramic receiver has been introduced by Watkins-Johnson International for surveying the 20 to 500 MHz frequency band. The WJ-7332 presents a


WW 302


WWW 303
\(10 \times 8 \mathrm{~cm}\) dual-trace logarithmic-verti-cal-scale display of signal activity in any double-octave band of the range. Tuning is provided by two VH series tuning heads, plugged into the main frame, which can be operated separately or sequentially. The centre frequencies and sweepwidths are adjustable and, to optimize the resolution, two i.f. bandwidths are provided, the narrow bandwidth being selected automatically when the sweepwidth is set below 20 MHz . For reference and security purposes a trace marker system, which can be driven by b.c.d. information, is incorporated. Watkins-Johnson International, Shirley Avenue, Windsor, Berkshire, SL4 5JU.
WW 305 for further details.

\section*{Military Avometer}

A military version of the Avometer Model 8, known as the Test Set Multirange No. 1 mk 2 , comprises a Model 8 instrument with minor changes in a special carrying case with leads, prods, clips and an instruction booklet. This Test Set has been approved for military use following extensive and exacting tests by the Ministry of Defence and has been allocated a NATO stock Number. The instrument in the T'est Set differs from the standard Model 8 only in respect of two labels and one tiny metal part. The industrial user thus gains the additional reassurance of knowing that the instrument has passed the Ministry of Defence tests, and the Ministry and the taxpayer avoid paying the higher price associated with a śpecial design. Avo Ltd, Archcliffe Road, Dover, Kent CT17 9EN.
WW 306 for further details.


WW 306


WW 310

\section*{Frequency counter}

A 200 MHz frequency counter, the TC 12 , has been added to the range of equipment manufactured by Telford Communications. The timebase comprises a high-stability 1 MHz crystal clock generator and a series of divide-by-ten dividers for gate times of 1 ms and 1 s , giving counts down to 1 Hz using either input. A front-panel l.e.d. indicates correct clock operation and the crystal stability, which is rated at \(0.05 \%\) between \(0^{\circ} \mathrm{C}\) and \(60^{\circ} \mathrm{C}\), can be improved by an optional crystal oven. Output markers of \(1 \mathrm{MHz}, 100 \mathrm{kHz}\) and 10 kHz are provided on the rear panel. The TC12 has a sensitivity of 20 mV , a h.f. input impedance of \(10 \mathrm{k} \Omega\) and a v.h.f. impedance of 50 or \(75 \Omega\). The display consists of seven-segment minitron units (l.e.ds to order) and is fully buffered. Telford Communications, 78B High Street, Bridgnorth, Salop, WV16 4DS.
WW 307 for further details.

\section*{Low-light-level camera tube .}

A high-sensitivity c.c.t.v. camera tube, the Newvicon, is claimed to be up to 20 times more sensitive than a standard vidicon and twice as sensitive as a silicon vidicon. The tube, which is intended for surveillance and security applications, is claimed to operate satisfactorily where the viewed scene is illuminated at a "dim twilight" level of one lumen \(/ \mathrm{m}\) and with almost zero blooming when a highlight is met. This performance is obtained using a heterojunction photoconductive target composed of cadmium and zinc tellurides. Three versions of the Newvicon are
available; types XQ1274 and XQ1440 are magnetically deflected and focused and type XQ1275 is magnetically deflected but electrostatically focused. Resolutions for the XQ1274, XQ1275 and XQ1440 are 650,600 and 800 lines respectively, spectral response is 750 nm max; cut-off is 900 nm and heater consumption is 95 mA at 6.5 V . Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.
WW 308 for further details.

\section*{Thumbwheel-switch mounts}

The Fast-mount hardware system, provides instant panel mounting for thumbwheel switches without the use of tools, screws, nuts or washers, and is made by Electronic Engineering Corporation of California. The system is designed for the EECo thumbwheelswitch series' 1776,1976 and \(5000 / 6000\) and will accommodate panel thicknesses from \(1 / 16\) in to \(1 / 8 \mathrm{in}\). The dimensions permit the Fast-mount to be fitted where standard mounting systems have previously been used, enhancing the appearance by eliminating front-panel screws. Waycom Lid, Wokingham Road, Bracknell, Berkshire, RG12 IND. WW 309 for further details.

\section*{Instrumentation tape recorder}

Hewlett Packard have introduced a four-channel version of their eightchannel instrumentation recorder, model 3968A. The four-channel tape recorder, model 3964A, has all the
features of the 3968A and can record and reproduce continuous data on \(1 / 4 \mathrm{in}\) tape with six tape speeds from \(15 / 32 \mathrm{in} / \mathrm{s}\) to \(15 \mathrm{in} / \mathrm{s}\). Features of the recorder, which is designed to meet the needs of the researcher and the o.e.m. user, include remote control and status of all tape speeds and operational modes, internal a.c./d.c. calibrator, tape/tacho servo mode and flutter compensation. In addition to recording data, channel 2 may be interrupted for voice recording using the microphone and speaker included. The user may choose either direct or f.m. recording or a combination of the two by selecting appropriate plug-in cards. F.m. recording is from zero to 5 kHz with a signal-to-noise ratio of 48 dB at \(15 \mathrm{in} / \mathrm{s}\). Direct recording is from 50 Hz to 64 kHz with a signal-tonoise ratio of 38 dB . Equalization and filtering for all speeds is included on each card and is automatically switched when a particular speed is selected. This recorder has many more standard features and available optional extras. Hewlett Packard Ltd, King Street Lane, Winnersh, Wokingham, Berkshire RGll 5AR.

\section*{WW 310 for further details.}

\section*{Low-cost digital meter}

The \(31 / 2\)-digit Beta multimeter from Gould Advance is portable, batterypowered and uses a 0.4in liquid-crystal display. Apart from the Motorola-designed c.m.o.s. integrated circuit, which carries all analogue and digital circuitry, the meter employs very few separate components, these being limited to three range trimmers, attenuator resistors and the power unit. The a-to-d converter is of the dual-ramp
variety for stability and contains over and under range detectors. Measurement capability is 200 mV to 750 V and \(200 \mu \mathrm{~A}\) to 2 A full-scale a.c.; 200 mV to 1000 V and \(200 \mu \mathrm{~A}\) to 2 A f.s.d.c., separate 10A a.c. and d.c. ranges and resistance from \(200 \Omega\) to \(200 \mathrm{M} \Omega\) full-scale. Com-mon-mode rejection ratio with the battery eliminator option in use is greater than 90 dB . Total power consumption is 50 mW and the company say that the instrument will work for 300 hours on a set of four SPll "C" cells. A two-year guarantee is offered and price is \(£ 99\). Gould Advance Ltd, Roebuck Road, Hainault, Essex.
WW 311 for further details.

\section*{Tubular power resistors}

A range of tubular wire-wound resistors, with a power range of 8.5 to 293 W , has been manufactured by Erg Industrial Corporation Ltd. The resistors, which are claimed to undergo sample quality checks to BS 6001 , range from \(1 \Omega\) to \(100 \mathrm{k} \Omega\) and are available with tab connections or mounting devices. Some of the resistors are approved to BS415 and BEAB safety requirements. Two types of coating are offered with these resistors; a smooth inorganic glassbonded material which is highly refractive, strong and resistant to impact or abrasion, or a silicone resin coating which provides a low-cost humidity protection. Erg Industrial Corporation Ltd, Luton Road, Dunstable, Bedfordshire LU5 4LJ.
WW 312 for further details.


\section*{V.h.f. tunerhead}

The EF5800 is a precision v.h.f. tuner head designed to operate from 88 to 108 MHz . Manufacturers specification for model HTQ are a typical power gain of 37 dB , noise figure of 7.8 dB , image rejection of -97 dB (referred to a \(1 \mu \mathrm{~V}\) input), i.f. bandwidth of 300 kHz \((-3 \mathrm{~dB})\), tracking \((88-104 \mathrm{MHz})\) within 2.5 dB , and a thermal stability of \(6 \mathrm{kHz} /\) deg \(\mathrm{C}(25-55)\). The makers say that certain aspects of the performance may be tailored to customers requirements.

The circuit uses six tuned stages symmetrically arranged in a case measuring \(145 \times 70 \times 24 \mathrm{~mm}\). The module is priced at around \(£ 14.50\) and is available from Ambit International, 37 High Street, Brentwood, Essex.
WW 313 for further details.

\section*{Perspex boxes}

Glazer Plastics has informed us that they are able to supply a custom built perspex box suitable for a digital clock (as featured in this issue). The box is constructed from smoked perspex with a transparent red front panel and uses mitred joins throughout. A bottom (or top) panel is removable for access. Overall dimensions are approximately 8 \(\times 5 \times 3\) in and the cost is \(£ 10\) inclusive of v.a.t. and carriage. The manufacturer also has facilities for precision machining, in production quantities, of acrylics and other plastics used in the electronics industry. Glazer Plastics Ltd, Braemar Works, Braemar Avenue, Neasden, London NWIO ODH.
WW 314 for firther details.


WW 314

\section*{Two-phase function generator}

Two sets of outputs, each providing sine, square and triangular waveforms are available from the Prosser D314 digitally-synthesized variable-phase function generator. The frequency range, which extends from 0.0001 Hz to 1 kHz , is switch-selectable in decade steps and incorporates a fine analogue control for more precise adjustment. Phase ranges can be selected by thumbwheel switches in increments of \(0.1^{\circ}\) between -180 and \(+180^{\circ}\) to within \(\pm 0.05^{\circ}\) between any two selected outputs. Each output has a peak amplitude of \(\pm 10 \mathrm{~V}\) and can be independently controlled by a coarse attenuator providing steps of \(10,20,30\) and 40 dB . Separate controls give fine attenuation adjustment from \(20 \%\) to \(100 \%\). Half or quarter cycles, starting at either the peak or zero, may be selected by push button. Prosser Scientific Instruments Ltd, Lady Lane Industrial Estate, Hadleigh, Ipswich, Suffolk, IP7 6DQ.
WW 315 for further details.

\section*{Solid Stafe \\ Devices}

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the. section.

\section*{Dual-tracking regulators}

The RC4194 is a dual-tracking voltage regulator designed to provide balanced or unbalanced positive and negative output voltages which can be adjusted by a single external resistor simultaneously between the limits of \(\pm 50 \mathrm{mV}\) and \(\pm 32 \mathrm{~V}\). This device, which has built-in current limiting and thermal shutdown, can supply output currents of up to \(\pm 200 \mathrm{~mA}\) on its own, and several amperes when used with external power transistors. Typical line and load regulations for the RC4194 are \(0.02 \%\) and \(0.001 \%\) respectively with a temperature coefficient of \(0.003 \% / \mathrm{deg}\) C and an output tracking capability better than \(2 \%\). The tracking deviation can be adjusted to zero. A similar device, the RC4195, is also available and offers fixed dual-tracking regulated outputs of \(\pm 15 \mathrm{~V}\) for maximum currents of \(\pm 100 \mathrm{~mA}\). Both the RC4194 and RC 4195 are specified for 0 to \(+70^{\circ} \mathrm{C}\), but RM4194 and RM4195 are available for use from -55 to \(+125^{\circ} \mathrm{C}\).

\section*{WWW 316}

Raytheon

\section*{Receiver i.cs}

Three integrated circuits from Hitachi have recently become available in the UK. Type HAl137, an i.f. sub-system, is
pin-compatible with the CA3089E, and offers \(15 \mu \mathrm{~V}\) for 3 dB limiting, signal strength and tuning meter facilities, a.f.c. mute and delayed a.g.c., \(60 \mathrm{~dB} \mathrm{~s} / \mathrm{n}\) and \(0.1 \%\) t.h.d.

Type HA1196 is a p.l.1. stereo decoder which provides an overall gain of six. Separation at 1 kHz is typically 55 dB and 42 dB at 10 kHz . Stereo t.h.d. is typically \(0.1 \%\) at 1 kHz rising to \(0.15 \%\) at 10 kHz . The device is suited to 12 V operation and offers a threshold switching facility.

Type HA1197 is an a.m. radio device and is claimed to produce the best result a.m. will permit. Manufacturers specifications are, a maximum \(\mathrm{s} / \mathrm{n}\) ratio of 55 dB ( 24.5 dB with \(15 \mu \mathrm{~V}\) input), \(0.25 \%\) t.h.d. with \(30 \%\) modulation, and a 75 dB a.g.c. figure of merit. The i.c. also offers a meter output.
WW 317
Ambit

\section*{Varactor diodes for h.f.}

Three hyperabrupt junction h.f. diodes. KV1401, KV1402 and KV1403, have been produced by KSW Electronics Inc. for wideband tuning applications in voltage-controlled LC or crystal circuits up to 100 MHz . The diodes, which are manufactured using the ion implantation process, are claimed to replace two conventional hyperabrupt diodes. The KV1401 offers Q values from 75 to 140 at 10 MHz , more than twice that of the MV1404. Both the KV1402 and the KV1403 have Q values from 200 to 700 at 1 MHz , the KV1402 meeting the specifications of two MV1404 diodes operated in series. Frequency ratios as high as 4:1 are offered with these diodes using a capacitance of 57 pF at 2 V . Other features include large capacitance ratios, closely specified capacitance/ voltage curves and a linear frequency performance over the tuning range 1.5 to 4 V .
WW 318
Intime

\section*{High-voltage transistors}

A series of germanium power transistors, the 2N1157-2N1157A family, has a peak current capability of 40 A and can handle up to 80 V . The p-n-p transistors are available from Germanium Power Devices Corporation in the standard MT-7 package.
WW 319
GPD

\section*{Low-noise op amp}

A low-noise operational amplifier, designated type TDA 1034 , has a 10 MHz bandwidth and an output drive capability of 10 V r.m.s. into a \(600 \Omega\) load. This general purpose amplifier has a noise figure of 0.9 dB , a slew rate of \(13 \mathrm{~V} / \mu \mathrm{s}\), and is internally compensated for gains of at least three. An external capacitor, if used to optimize the frequency response. enables the amplifier to be used for a wide range of applications such as studio and recording equipment and telecommunication systems.
WW 320
Mullard

\section*{C.m.o.s. clock circuits}

Two c.m.o.s. clock circuits, the ICM7051A and the ICM7051B, have dividers, output drivers and over-voltage protection circuitry on single chips and operate from a 4.19 MHz crystal. The ICM7051B has 23 divider stages, which allow division down to 0.5 MHz , and drives a bridge output providing a 31.2 ms pulse at 1 Hz for stepper motor applications. The ICM7051A has 16 divider stages providing a 64 Hz square wave output for synchronous motor applications. Both circuits have protected inputs and outputs and characteristics may be modified using metal masks.
WW 321
Intersil

\section*{Power Darlingtons}

Three ranges of fast-switching monolithic power Darlingtons have been announced by International Rectifier Ltd. Types IR6000 to IR6002, IR6060 to IR6062, and IR6251 to IR6253 have \(I_{\mathrm{cc}}\) and \(V_{c e}\) ratings of 15 A and \(500 \mathrm{~V}, 20 \mathrm{~A}\) and 450 V , and 10 A and 500 V respectively. The transistors, which offer maximum gains of 40 at \(I_{c c}\) (max), are triple diffused high voltage devices each incorporating stabilizing resistors and a fast-switching diode. Each transistor is housed in a TO-3 case.
WW 322 International Rectifier

\section*{Microprocessor r.a.m.}

The HM-6551 c.m.o.s. \(256 \times 4\) r.a.m. has been optimised for microprocessor use. This r.a.m., which has three-state latched outputs, an on-chip address register and an access time of 285 ns(max) is suitable for microprocessors or other small memory applications. It exhibits a low power consumption of \(15 \mu \mathrm{~W} /\) bit at 1 MHz and, though designed to operate at \(V_{c c}=5 \mathrm{~V}\), data can be retained with \(V_{c c}=2.2 \mathrm{~V}\) with a correspondingly low power consumption of \(50 \mathrm{nW} /\) bit. The HM-6551 is packaged in a 22 -lead d.i.l. package.
WW 323
GDS

Ambit International, 37a High Street, Brentwood, Essex.
GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
Germanium Power Devices Corporation, P.O. Box 65, Shawsheen Village Station, Andover, Maryland, USA.
International Rectifier (GB) Ltd, Hurst Green. Oxted, Surrey'.
Intersil Incorporated, 8 Tessa Road, Richfield Trading Estate, Reading, Berkshire.
Intime Electronics Ltd, 8 High Street, Maldon, Essex.
Mullard Limited, Mullard House, Torrington Place, London WCIE 7HD.
Raytheon Semiconductor, The Pinnacles, Harlow, Essex, CM19 5BB.

\title{
Make it with MAPLIN! ELECTRONIC COMPONENTS WIDE RANGE-HIHHOLALITF-FBTS SEVYCE
}


We stock sll the parts for this brilliantly designed synthesiser, including all the PCB's, netalwork and a drilled and printed front panel, gizing a superb prifessional finish. Opinions of authority agree the ETI International Syntmesiser is technically superior to most of today's models. Complete constuction details in our booklet now available price £1.50, or send SAE fo-specification.


BUILD IT YOURSELF . . in Stages

Get started with a 49 note instrument features tremulant and reverberation. deal to learn on. Leaflet MES 51. Price 15p gives full delails to build this complete instrument.
Extend the ranje of MES 51 by adding another keyboard and several new tane colours. Leatlet MES 52 . Price 15 p also shows how to use 61 note keyboards.

Fully controllable altack and delay controls fmormaily found only on the most expensive organs). up to seven footages on each keyboard. up to 70 controls including drawbars, and a 13 note pedalhoard, make up the additions described in the step-by-step 32 page instruction leatlet MES 53. Price 35p.


A really superior high qualiay stereo graphic equalizer featuring 9 octaves per channel. We slock all the parts lexcept woodwore including the metalwork drilled and printed. 15p brings you a reprint of the articla.


This is a fully constructed and tested electronic clock module as illustrated. Data sheet supplied. Simple to connsct to alarm and your hattery/mains radio. Smart case available shortly. Data sheet available separately. Please send SAE.
* Bright 4 Digit 0.5" Display
* Flashing Colon (1 Hz)
* Switch for Display Seconds
* Alarm Set Indicator
- P.M. Indicator
* Power Failure Indicator

SIMPLE ALARM KIT - \(\mathbf{E 9 . 3 8 \quad \text { ALFARM CLOCK KIT - £10.99 }}\) ALARM CLOCK \& RADIO CONTOLLER KIT - £11.51 SMART PLASTIC CASE with fully punched chassis - \(£ 2.49\)
* Seep Timer
* Scooze Timer
* Tune can be set accurately to
- thin one second
* Lading Zero Blanking

Please se..d SAE for our Clock 2 chassis - £2.49

Get our fabulous


All new Completely re-written Hundreds of new lines Lots of exciting new projects to buld - PRICE 50p
SEND NO MONEY NOW Overseas send 8 International reply coupons
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{JOIN OUR MAILING LIST NOW! \(\quad\) ¢ SAVE E£'S ON SPECIAL OFFERS!} \\
\hline Published every two months our Newsletter gives & * DETAILS OF NEW PROJECTS \\
\hline full details of our latest guaranteed prices & AND NEW LINES \\
\hline Send just 30p towards cost of postage and we II send you the published (A 5 p voucher is sent with each newsletter which & isix issues as they are be used on puichases ) \\
\hline
\end{tabular}

Please rush me a copy of your brand new \(1977 / 78\) catalogue the instant it is printed 10 ct 28ith, 1976) Only if I am completely satisfied tha it \(s\) worth every penny will I send \(50 p\) within 14 days of receipt. If I am not satisfied i may return the caralogue to you within 14 days without obligation. understand that I need not purchase anything from your catalogue should I choose to keep it

NAME
ACRESS

A range of communications amplifiers having power ratings from 15 to 200 watts, plug-in input tacilities ensure individual requirements can be provided.

\section*{\({ }^{\text {G Wendenfrange }}\) modularannpilitiers}

Manufacturers of sound systems and electronics

Station Road, Wenden Saffron Walden Essex CB11 4LG Saffron Walden (0799) 40888

\section*{Encilx}

\section*{Eddystone Model 990R}
professional VHF receiver

Designed for fixed or mobile point-to-point service or for broadcast monitoring, this solid-state single-conversion VHF receiver is finding increasing use in other professional,applications such as the meteorological service, radio astronomy, aerial investigations, civil aviation and in radio laboratories.
Continuous coverage is provided from 27 MHz to 240 MHz for CW, AM and FM reception, with exceptional stability and sensitivity, A crystal filter to suit \(12.5 \mathrm{kHz}, 25 \mathrm{kHz}\) or 50 kHz channel spacing can be supplied to suit customer requirements ; and output is available for panoramic display.

\section*{Eddystone Radio Limited \\ Member of Marconi Communication Systems Limited}

DCA NO. 10D/CA/5967

Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-475 2231. Telex: 337081
A GEC-Marconi Electronics Company.

Aninside...

the sound to be experienced!

\section*{Celestion \(\downarrow\)}

Please send me full detalls of the range and informme of nearest stockists. Name

Address

\title{
 Marshall's
}
A. Marshall (London) Ltd Dept WW 40/42 Cricklewood Broadway, London NW2 3ET Tel: 01-452 0161/2 Telex: 21492 \& 85 West Regent St Glasgow G2 2OD Tel: 041-332 4133 \& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel 0272 654201/2
\& 27 Rue Danton Issy Les Moulineaux Paris 92
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
made and export enquiries welcome
New Catalogue price 40 p ( 30 p to callers)

OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN TOP 200 IC'S. TIL. MOS \& LINEAR
popular semiconductors











LONDON, GLASGOW, PARIS AND BRISTOL IT'S OUR SERVICE THAT MAKES U'S GROW

\footnotetext{


MUIR HEAD D-658 \(18^{\prime \prime}\) MUFAX CHART TRANSMITTERS (Model GA) Further details on request. For \(110 / 250\) v ac. operation \(£ 325.00\)
MEGGER (Record): 500 volts \(£ 20.00 £ 1.00\) post
MEGGER (Evershed Vignoles): 250 volts \(£ 17.50 £ 1.00\) post
R216 Receiver MANUAL (photostat copy): \(£ 1.50\) inc. post
RACAL I.S.B. ADAPTOR RA-95A: £65. Carr. £2.
MUIRHEAD ATTENUATORS: 75 ohms \(0.8 \mathrm{Mc} / \mathrm{s} 3 \mathrm{~V}\) MAX 3 ranges \(0-5,0-25\) 0-50 DB E \(3.00+75\) p post
CRED MODEL 75 TELEPRINTER: Receiver only £30.00. Carr. £3
EDDYSTONE TEI.FPRINTER ADAPTOR TYPE 937: £45. Cart. £1
WILD GARFIELD ELECTRIC FURNACE MODEL CCI.22X;
indicating temperature controllers Model \(990.0-1400^{\circ} \mathrm{C}\). ©250. Carr. ©5
-METROVAC IONIZATION GAUGE MODEL V.C.3: E55. Carr. E゙3
AVO VALVE TESTER CT.I60: (Portable) similar to Avo Mk. 3 Characteristic - REDIFON TELEPRINTER RELAY UNIT No. 12: ZA-41196 and power supply \(200-250 \mathrm{~V}\) ac. Polarised relay type 3 SEITR \(80-0 \mathrm{~V}\) 25 mA. Two stabilised valves
CV 286 . Centre Zero Meter \(10-0-10\). Size 8 in . 88 in . x 8 in . New condiuon. £I0. Carr. 75p.
GOLARTRON PULSE GENERATOR TYPE G110I-2: £75.00 each. Carr. £2.00. -TELEPRINTER TYPE 7B: Pageprinter 24 V d.c. power supply, speed 50 bauds per AUTO TRANSFORMER: \(230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000\) watts Mounted in strong steel case \(5^{\prime \prime} \times 61 / 2^{\prime \prime} \times 7^{\prime \prime}\). Bitumen impregnated. £12.00. Carr. \(£ 1.50\)
CRYSTAL TEST SET TYPE I93: used for checking crystals in freq. range \(3000-10,000 \mathrm{KHz}\). Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in OL junction with a fred. meter. \(£ 25\). Carr \(£ 1.50\)
SOLARTRON VARIABLE POWER UNIT S.R.S. \(1535: 0-500\) volts at 100 mA and .3 volts C.T. 3 amps d.c. \(110 / 250\) volts ac. input. £18.50. Carr. \(£ 1.50\). 5.50 kHz . Adjustable level between 200 uv and 20 v Overall or square wave output \(\%\). Output adjustable 1.4 mV to 140 V . Waveform ratio \(50: 50\) up to 25 kHz Standard A.C. mains input. As new condition \(£ 40.00\). Carr. \(£ 2.00\).
ADVANCE A.F. SIGNAL GENERATOR H.I.: Same frequency and characteris tics as above. Earlier model. Secondhand condition. £25.00. Carr. £2.00.
PULSE GENERATOR PG21: Pulse width variable 15 nS to 200 msec in 7 ranges Delay variable 40 nS to 200 msec with respect to sync pulse output in 7 ranges vailable in double pulse mode. Pulse mode: normal, square wave and 10 MHz pulse. 240 v ac. As new condition. £125.00. Carr. £2.00.
CLASS 'D' WAVEMETER NO. l: Crystal controlled heterodyne frequency meter covering 2.8 MHz . Power supply 6 V d.c. Good secondhand condition
£8.50. Carr. \(£ 1.50\).

PRECISION PHASE DETECTOR TYPE 205: Freq. \(0.1-15 \mathrm{MHz}\) in 5 ranges.
Variable time delay microseconds 0-0.1c, 115 V input. \(£ 55\) each. Carr. \(£ 1\)
RING TOROIDAL DUST CORES: Size \(2^{1 / 2 \prime \prime}\) outside \(13 / 4\) inside \(5 / 16^{\prime \prime}\) thick. Box o two \(\mathbf{E 1 . 0 0}\). Post 30p.
MUIR HEAD PHASEMETER TYPE D729: A.M. £95.00. Carr. £3.00
CT. 420 SIGNAL GENERATOR: \(200-8000 \mathrm{c} / \mathrm{s}\) Variable tuning. Two fixed frequencies 9000 and 10,000 . Internal calibrator \(100 \& 500 \mathrm{c} / \mathrm{s}\). £75 each carr. E2. NOISE GENERATOR TF-I106: Frequency 1 to \(200 \mathrm{Mc} / \mathrm{s}\) Direct noise factor calibration. Output impedance 70 ohms \(£ 65\) each. Carr. £1.50.
MW-59 UNIVERSAL KLYSTRON POWER SUPPLY: £85. Carr. £ 3
TF-1278/1 TRAVELLING TUBE WAVE AMPLIFIER: £125. Carr. \(£ 2\).
BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts-2 volts, 6 ranges. £30. Carr
CAWKELL REMSCOPE TYPE 741: Memory scope, 'as new' cong. £150.00. MANSON SYNTHESISER O115-URC: \(2-30 \mathrm{mc} / \mathrm{s}\). \(£ 175.00\) FIREPROOF TELEPHONES: \(\mathbf{£ 2 5 . 0 0}\) each, carr. \(£ 1.50\).
POWER UNIT: \(110 / 230\) volts ac. input. 28 volts d.c. at 40 amps output. £30.00 each. carr. £3.00
SMOOTHING UNIT (for the above): £I0.00 each. carr. £2.00.
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott £I25 each. Carr. \(\mathbf{E l}\)
BACKWARD WAVE OSCILLATOR TYPE SE-I25: 6.3 heater, 105 V Anode, 7.9 mA . Mnfr. Watkins \& Johnson. £85 each. Carr. El.

ROTARY INVERTERS: TYPE PE. 218 E - in put \(24-28 \mathrm{~V}\) dec. \(80 \mathrm{Amps} .4,800 \mathrm{rpm}\) Output 115 V ac. 13 Amp \(400 \mathrm{c} / \mathrm{s}\). Ph. P.F.9. \(\mathbf{£ 2 0 . 0 0}\) each. Carr. \(£ 2.50\).
FREQUENCY METER BC-221: \(125-20.000 \mathrm{Kc} / \mathrm{s}\) complete with original calibration charts. Checked out, working order \(£ 20+£ 1.50\) carr
SORENSEN VOLTAGE REGULATOR: Input \(190 / 260\) volts a c. Output \(220 / 240\) outs ac. 1000 watts. \(£ 40.00\), carr. \(£ 3.00\).
EVERSHED SAFETY OHM. METER: Max 10 Ma . Test pressure 30 v . Complete in leather case. \(£ 25.00\) each, post £1.00.
FYLDE AMPLIFIERS TYPE 154 BDM: Rack mounted \(3 v\) dc. and power supply FE. 500.TP \(£ 65.00\), carr \(£ 2.00\).
AUTOMATIC VOLTAGE STABILIZERS: Input \(207-242 \mathrm{v}\) ac. Output 230v ac. at 2.80 amps . \(£ 17.50\), carriage \(£ 150\).
ANTENNA MAST 36ft.: Aluminium, diameter at base \(3^{\prime \prime}\) tapering to \(2^{\prime \prime}\) at top complete with red hazard lights, stays, guys, etc. Normally used with direction With rotating Antenna suitable for \(200.400 \mathrm{~m}, \mathrm{~Hz}\). £l5.00 extra
BURGLAR ALARM BELL: \(6-8 \mathrm{v}\). d.c. \(£ 3.00, £ 1.00\) post.
Carriage quotes given are for 50 -mile radius of London

If wishing to call at
stores, please telephone
for appointment
}

\title{
spotlight on our NEW extended range of Toshliea GEMICONDOTOR
}

We are pleased to announce that we have been able to add the name of a major international manufacturer to our already comprehensive range of semi conductors.


\(\left|\begin{array}{lr}\text { TYPE } & \text { Price (p) } \\ \text { BC } 337 & 12 \\ \hline B C \quad 338 & 12 \\ \hline B D ~ 135 & 29 \\ \hline B D 138 & 33 \\ \hline B D 139 & 37 \\ \hline B D 140 & 39 \\ \hline B D 233 & 43 \\ \hline B D 234 & 49 \\ \hline B D 235 & 49 \\ \hline B D 236 & 53 \\ \hline B D 237 & 49\end{array}\right|\)
\begin{tabular}{|c|c|}
\hline TYFE & Price ( \(p\) ) \\
\hline BF 457 & 37 \\
\hline BF 458 & 37 \\
\hline BUI' 69A & ¢2.65 \\
\hline BU'698 & 12.50 \\
\hline BU 26 & ¢14S \\
\hline BU 205 & 11.67 \\
\hline S2802 & ¢29c \\
\hline BU 208102 & โ27E \\
\hline S6030A Kits & \(\underline{4.96}\) \\
\hline
\end{tabular}


Good people to deal with

\section*{Combined Precision Gomponents Ltd.}

194-200 NORTH ROAD, PRESTON, LANCASHIRE, ENGLAND. Phone: Preston (0772) 55934. Telex 677122

\section*{Understand electronics.}

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit Course.

(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.


RADFORD HD250
High Definition Stereo Amplifier


A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.
Maximum power output: 90 watts av. per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)

Distortion. power amplifier: Typically \(0.006 \%\) at 25 watts, less than \(0.02 \%\) at rated output (Typically \(0.01 \%\) at 1 Khz )

Hum and noise: Disc, -83 dBV measured flat with noise band width 23 Khz (ref 5 mV ); -88 dBV " \(A\) " weighted (ref. 5 mv )

Line - 85 disV measured flat (ref 100v) \(-88 d\) BV "A" weighted (ref 100 v )
Hear the HD250 at

\section*{SWIFT OF WILMSLOW}

5 Swan Street, Wilmslow, Cheshire (Tel. 26213)
Mail Order and Personal Export enquiries: Wilmsiow Audio. Swan Works, Bank Square, Wilmslow (Tel. 29599)
Also in stock: All Redford speaker drive units and crossovers, ZD22 preamp. Low Distortion oscillator LDO3 and Distortion Measuring set DMS3.


Distributors for Siemens
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Vatyes} & \multicolumn{4}{|l|}{Semi Conductors} \\
\hline Type & Price (p) & Type & Price (p) & Type P & Price (p) & Type & Price (p) \\
\hline DY87 & 37 & PCF802 & 52 & AD142 & 62 & BC148 & 9 \\
\hline DY802 & 37 & PCL82 & 54 & AD143 & 65 & BC149 & 10 \\
\hline ECC82 & 37 & PCL84 & 55 & AD149 & 45 & BC153 & \(\overline{20}\) \\
\hline EF80 & 34 & PCL85 & 52 & AD161 & 38 & BC154 & 20 \\
\hline EF183 & 39 & PCL86 & 50 & AD161/2PR & R \(£ 1.00\) & BC157 & 11 \\
\hline EF 184 & 39 & PFL200 & 65 & AD162 & 38 & BC158 & 10 \\
\hline EH90 & 40 & PL36 & 63 & AF114 & 25 & BC159 & 11 \\
\hline PC86 & 58 & PL84 & 30 & AF115 & 22 & BC160 & 30 \\
\hline PC88 & 58 & PL504 & 90 & 4F116 & 22 & BC161 & 33 \\
\hline PC900 & 30 & PL508 & 78 & AF117 & 20 & BC171 & 10 \\
\hline PCC89 & 46 & PL509 & \(£ 1.35\) & AF118 & 45 & BC172 & 10 \\
\hline PCC189 & 47 & PY88 & 43 & AF 124 & 38 & BC173 & 15 \\
\hline PCF80 & 38 & PY500A & £1.25 & AF125 & 27 & BC178 & 18 \\
\hline PCF86 & 44 & PY800 & 42 & AF126 & 38 & BC178B & 20 \\
\hline PCF801 & 46 & & & AF127 & 25 & BC179 & 22 \\
\hline & & & & AF139 & 35 & BC182 & 11 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Integrated Gircuits}} & AF178 & 45 & BC182L & 12 \\
\hline & & & & AF180 & 40 & BC183L & 12 \\
\hline & & & & AF181 & 40 & BC184 & 12 \\
\hline & \multirow[b]{2}{*}{Price (p)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Type Price (p)}} & AF239 & 45 & BC186 & 25 \\
\hline Type P & & & & AF240 & 20 & BC187 & 25 \\
\hline \(\frac{\text { ETRR6016 }}{\text { MC1351P }}\) & ¢2.00 & SN76660N & - 60 & AL102 & 11.40 & BC204 & 14 \\
\hline SAS560S & \(\underline{1} 1.65\) & SN76666N & \(1 \quad 30\) & AL103 & \(\underline{1} 1.30\) & BC212 & 11 \\
\hline SAS570S & £1.65 & TAA700 & 13.80 & AU107 & £1.35 & BC212L & 11 \\
\hline SN76003N & ¢2.35 & TBA120AS & 60 & \(\frac{1}{\text { AU1113 }}\) & £1.20 & \(\frac{\mathrm{BC} 213}{\mathrm{BC} 213 \mathrm{~L}}\) & 11 \\
\hline SN76013N & \(£ 1.43\) & TBA120SQ & \(\underline{¢ 1.00}\) & BC107 & \(\underline{10}\) & BC214 & 1 \\
\hline SN76013ND & ¢ £1. 25 & TBA480Q & \(\underline{¢ 1.40}\) & BC107B & 15 & BC214L & 15 \\
\hline SN76023N & £1.43 & TBA520Q & £1.75 & BC108 & 10 & BC237 & 11 \\
\hline SN76023ND & D \(£ 1.20\) & TBA530Q & £1.75 & BC109 & 12 & BC238 & 11 \\
\hline SN76033N & £2.15 & TBA540Q & \(£ 1.25\) & BC109C & 14 & BC301 & 30 \\
\hline SN76110N & ¢1.75 & TBA550Q & \(\underline{¢} 2.30\) & BC113 & 15 & BC303 & 30 \\
\hline SN76226N & \(\underline{¢ 2.20}\) & TBA560CQ & ¢2.40 & BC114 & 15 & BC327 & 13 \\
\hline SN76227N & £1.45 & TBA800 & £1.10 & BC115 & \(17 \frac{1}{2}\) & BC328 & 13 \\
\hline SN76532N & \(£ 1.45\) & TBA920Q & \(\underline{¢ 2.90}\) & BC116 & \(17 \frac{1}{2}\) & BC337 & 12 \\
\hline SN76533N & \(\underline{1} .50\) & TBA990a & \(£ 2.50\) & BC116A & 25 & BC338 & 12 \\
\hline SN76544N & \(£ 1.70\) & \multirow[t]{3}{*}{TCA2700} & \multirow[t]{3}{*}{¢2.90} & BC117 & 14 & BC546 & 13 \\
\hline \multirow[t]{2}{*}{SN76653N} & \multirow[t]{2}{*}{C1.15} & & & BC118 & 15 & BC547 & 12 \\
\hline & & & & BC119 & 27 & BC548 & 12 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Semi Gonductors}} & BC125 & \(17 \frac{1}{2}\) & BC549 & 13 \\
\hline & & & & BC125B & 18 & BC550 & 14 \\
\hline \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Price (p)} & BC126 & 15 & BC556 & 14 \\
\hline Type Primer & rice (p) & & & \(\frac{\mathrm{BC} 132}{\text { BC } 135}\) & 15 & BC557 & 13 \\
\hline AC107 & \(\underline{25}\) & \[
\begin{aligned}
& \text { Type } \\
& \text { AC155 }
\end{aligned}
\] & Price (p) & BC135 & 15 & BC558 & 12 \\
\hline AC126 & 24 & AC156 & 20 & BC136 & 16 & BC559 & 14 \\
\hline AC127 & 20 & AC176 & 22 & BC137 & 20 & BCY72 & 16 \\
\hline AC128 & 15 & AC176K & 34 & BC138 & 30 & BD115 & 39 \\
\hline AC128K & 24 & AC187 & 20 & BC139 & 28 & BD116 & 59 \\
\hline AC141 & 24 & AC187K & 30 & BC140 & 32 & BD124 & 75 \\
\hline AC141K & 25 & AC188 & 18 & BC141 & 28 & BD131 & 35 \\
\hline AC142 & 18 & AC188K & 30 & BC142 & 20 & BD132 & 39 \\
\hline AC142K & 25 & AC193K & 36 & BC143 & 25 & BD133 & 45 \\
\hline AC151 & 20 & AC194K & 35 & BC147 & 8 & BD135 & 29 \\
\hline AC154 & 18 & AD140 & 65 & BC147A & 11 & BD136 & 30 \\
\hline
\end{tabular}
*Our rapidly growing number of Area Distributors will provide you with a fast and efficient local service. See right hand columns for name and address.
*Prices subject to \(12 \frac{1}{2} \%\) V.A.T.
*No Postal Charges
*C.P.C. Price - Quality - Service

\title{
low cost-topquality COMPONENTS
}

\section*{-A.E.G. Telefunken and Toshiba Components}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Semi coinductors} \\
\hline Type & Price (p) & Type Pr & Price (D) \\
\hline BD137 & 30 & BF457 & 37 \\
\hline BD138 & 33 & BF458 & 37 \\
\hline BD139 & 37 & BF459 & 38 \\
\hline BD140 & 39 & BFT42 & 35 \\
\hline BD144 & \(£ 1.99\) & BFT43 & 35 \\
\hline BD160 & £1.65 & BFX29 & 29 \\
\hline BD181 & 83 & BFX84 & 29 \\
\hline BD182 & 90 & BFX85 & 30 \\
\hline BD183 & 85 & BFX86 & 28 \\
\hline B0184 & \(£ 1.10\) & BF \(\times 88\) & 25 \\
\hline 80222 & 47 & BFY50 & 19 \\
\hline 80225 & 47 & BFY51 & 19 \\
\hline BD232 & 50 & BFY52 & 20 \\
\hline BD233 & 43 & BFY90 & \(£ 1.10\) \\
\hline BD234 & 49 & BR100 & 32 \\
\hline BD235 & 49 & BR101 & 38 \\
\hline BD236 & 53 & BRC4443 & 80 \\
\hline BD237 & 49 & BRY39 & 38 \\
\hline BD238 & 55 & BSY52 & 30 \\
\hline BDX32 & \(¢ 2.40\) & BT106 & ¢1.20 \\
\hline BDY20 & 80 & BT108 & C1.50 \\
\hline BF115 & 24 & BT116 & £1.25 \\
\hline BF152 & 20 & BU105/02 & ¢1.60 \\
\hline BF158 & 20 & BU108 & £1.80 \\
\hline BF160 & 35 & BU126 & ¢1.49 \\
\hline BF167 & 24 & BU204 & ¢1.80 \\
\hline BF173 & 25 & BU205 & ¢1.67 \\
\hline BF178 & 33 & BU206 & \(£ 1.95\) \\
\hline BF179 & 38 & BU208 & ¢2.20 \\
\hline BF180 & 31 & BU208/02 & ¢ ¢2.75 \\
\hline BF181 & 32 & BUY69B & ¢2.50 \\
\hline BF182 & 30 & BUY69A & ¢2.65 \\
\hline BF183 & 30 & E1222 & 38 \\
\hline BF184 & 29 & MJE340 & 45 \\
\hline BF 185 & 30 & MJE520 & 44 \\
\hline BF186 & 26 & 2N696 & 35 \\
\hline BF 194 & 8 & \(2 N 706\) & 15 \\
\hline BF 195 & 8 & 2N3053 & 20 \\
\hline BF196 & 10 & 2N3054 & 65 \\
\hline BF197 & 11 & 2N3055 & 55 \\
\hline BF 198 & 23 & 2N3702 & 12 \\
\hline BF 199 & 25 & 2N3703 & 12 \\
\hline BF200 & 25 & 2N3704 & 10 \\
\hline BF218 & 40 & 2N3705 & 10 \\
\hline BF224 & 20 & 2N3706 & 10 \\
\hline BF240 & 17 & 2N3819 & 38 \\
\hline BF241 & 17 & 2N5296 & 40 \\
\hline BF257 & 28 & 2N5496 & 53 \\
\hline BF258 & 26 & OC71 & 18 \\
\hline BF259 & 30 & OC72 & 18 \\
\hline BF336 & 27 & R2008B & ¢1.90 \\
\hline BF337 & 35 & R2010B & \(£ 1.90\) \\
\hline BF338 & 34 & RCA16334 & 480 \\
\hline BF355 & 50 & RCA16335 & -80 \\
\hline
\end{tabular}


\section*{New B \& W Tuhes}

Scre
Size
\(\frac{20^{\prime \prime}}{24^{\prime \prime}}\)
\(\begin{array}{ll}\text { Size } & \text { Type } \\ 20^{\prime \prime} & \text { CME }\end{array}\)
\(\begin{array}{rrr} & \text { Price }\end{array}\)
4" CME 2413
\(£ 15.50\)
\(£ 17.30\)

Distributors


\section*{LANGASHIRE}
6. Taylor,

70 Moorside Avenue
Smlthllis
Bolton. Tel. 020440918

\section*{SOUTHLONDON \\ \& SOUTH EAST}

Paul Electrical Ltd.
250/252 Grand Drlve,
Raynes Park.
London. SW20
Tel. 015426546

\section*{EAST ANGLIA}

Norwich Electronic Components
16 Denbigh Road,
Norwich. NR2 3AA
SOUTH WIST

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
WALES \\
Swansea Aerlal Co. Ltd., \\
Sllor Road, Landore, \\
Swansea SA1 2NT \\
Tel. Swansea 50393/54836
\end{tabular} \\
\hline N.TREAND \\
\hline Electronic Sales (Ulster) Limited. 4 Tates Ave., Lisburn Road, Belfast BT9 7BY Tel. Belfast (0232) 668718 \\
\hline
\end{tabular}

Distributors are still required for the following areas-

1 Yorkshire West \& North Humberside Area

2 Yorkshire South Nottingham Lincoln

3 Hereford \& Worcester W. Midlands Warwickshire
4 Leicester
Northants
5 North East
6 Somerset
Avon
Gloucester
Wilts.
7 0xford
Berkshire
Buckinghamshire
8 Bedfordshire
Herts.
North London

\section*{The Semicon International Diode छ SCR Index \\ A COMPANION VOLUME TO THE PROVEN Semicon International Transistor Index \\ 6th EDITION £ 9.60 (UK) Elsewhere £ 10.60 \\ ISBN 0904944018}

These prices apply only when a remittance is sent with your order. Otherwise a booking charge of \(10 \%\) will be added. Air-mail extra.

Each volume has a unique easy reference alpha-numeric listing of the maximum ratings and characteristics of some 25,000 discrete devices of international origin-Eurcpear, USA and Japanese. Essential to all Engineers, Technicians and Buyers. Accepted worldwide as the best of its kind available-and with a 12 -months guarantee of viability.
* ALPHA-NUMERIC LISTING OF ALL DEVICES
* EXTENSIVE SUBSTITUTION GUIDE
* CV DEVICES AND COMMERCIAL EQUIVALENTS
* terminations
* ALTERNATIVE MANUFACTURERS \& AGENTS

ACCESS/BARCLA Y/INTERBANK accepted. Quote card No. Refund if not satisfied and book is returned within 14 days.
Semicon Indexes Ltd. 2 Denmark St. Wokingham. Berks. RG 112 BB. TEL: WOKINGHAM (0734) 786161

WW - \(\mathbf{0 0 4}\) FOR FURTHER DETAILS

\section*{QUARTZ CHRONOMETER}
Electro Systems and Timing electronic chronometers are available in assembled and tested or kit form.
48 Robinson Road, Loudwater, High Wycombe, Bucks., England. Trade and overeses enquiries welcome
\begin{tabular}{|c|c|c|}
\hline PRICES & KIT & ASSEMBLED \& TESTED \\
\hline 401.6 (Hours, minutes, seconds) 401-6-R (As 401-6. with Ni-Cd batery) & \[
\begin{array}{r}
£ 52.00 \\
-£ 68.30
\end{array}
\] & \[
\begin{array}{r}
£ 65.00 \\
\mathbf{E 8 2 . 0 0}
\end{array}
\] \\
\hline
\end{tabular}
countries
countries

\section*{OUISTANDING FEATURES OF THE MODEL 401 DIGITAL CHRONOMETER}
- One second per month accuracy at 20 C
* All versions provide security used for best possible temperature stability interference and interference and mains requency variaions
Rotecton aganst a
protection against outright mains failure, may be lett on charge continuously
Large bright and easy to read LED display. 24 hour or 12 hou
\(220 / 240 \mathrm{~V}\) mains or external battery operation 110 V version also avaition
Weight 05 kg Width 13 cm , depth 5 cm . height \(10 \mathrm{~cm}(12 \mathrm{~cm}\) with stand)
No-cost extras include precision engineered adjustable metal stand and power
unit battery charger
12 month guarantee for correctly assembled kits and ready-buitt chronometers
* All components needed service for kits. If required
All components needed are supplied in kits including wre screws and cas COMPREHENSIVE INSTRUCTIONS SUPPLIED WITH KITS
To ELECTROSYSTEMS ARD TIMING CO.
48 Robinson Road, Loudwater, High Wycombe, Bucks., HP13 7BJ
Please supply
\(\square 401.6 \mathrm{ktt} \square 401-6 . \mathrm{Rktt} 401.6\) assemb \& tested \(\square 401.6-\mathrm{R}\) assemb \& tested
Name
Address
ENCLOSE CHEQUE/P O FOR


\section*{15-240 Watts!}

HY5
Preamplifier
he HY 5 is a nono hybrid amphifer deally sumed tor all applications All common inpur functions mag Catridge lune, etc) are catered for intemally the desired tunction is achieved ether by nerely requise connecting to exiernal potentiomesers (not included) The HY5 is compatible with all IP power amplifiers and power supplies To ease construction and mounting a P.C connecto: Suppled with each pre amplitier
FEATURES Con
FEATURES: Complete preamphier in single pack - Miltifunction equalization - Low noise ... Low distorion - High overload - Two simply combulied tor siereo APPIICATIONS: HI-Fi Mixers - Disco -- Guitar and Organ - Public address
SPECIFICATIONS: \(\quad 3 \mathrm{mV}\) Ceramic Pick-up 30 mV Tunei 100 mV Miciophone 10 mV Aluxilary 3.100 mV input impedance \(47 \mathrm{k}: l\) at 1 kHz
OUTPUTS Tape 100 mV Main output 500 mV R M S
ACTIVE TONE CONTROLS treble - 12 dB at 10 kHz . Bass at 100 Hz
DISIORTION \(01 \%\) at 1 klizz Signal Noise Ratio 68dB
OVERLOAD 38 dB on Maynetic Pick up) SUPPLY VOLTAGE: 10.50 V

\section*{Price E4. 75 + 59p VAT Peip fres.}

HY30
15 Watts into \(8 \Omega\)
The HY 30 is an excing New kit from IL \(P\) if features a virtualiy indesiructible I C with shoct circuit and thetrial protection The kit consists of AC heatsink PC board 4 iesistors 6 capacitors mounting kit logether vith easy to tollow construct to the beginner in dudio who wishes to use the most up to date technology avaliable
FEATURES: Complete Kith Distorion - Shot Open and Thermal Piotection - Easy to Buil FEATURES: Complete Kit Low Distortion - Shortiar practice amplifier - Test amplitier - dudio APPLICATION
specifications
OUTPUT POWER 15 W RM S Inio \(8!\) DISTORTION 0 I\% al 15 W
NPUT SENSITIVITY 500 mV FREQUENCY RESPONSE \(10 \mathrm{H}_{2} \cdot 16 \mathrm{kHz}\)-Supply voltage - ibV
Price \(\mathbf{E 4} .75\) + 59p VAT P\& P free.
HY50
25 Watts into \(8 \Omega\)
The HY50 leads I LP storal integration approach to power amplifier design the amplifer features an integral heatsink together with the simplicity of no external components During the past three yean
the amplifier has been retined to the extent that in musi be one of the most reliatile and robust High Fidelty modules in the World
FEATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output tranststors - No external componerts

APPLICATIONS: Medium Power HI.FI systerns - Low nower disco - Guitar amplifier SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPU POWER 25W RMS Into 8! LOAD IMPEDANCE 4. 16 ! DISTORTION 004 at 25 W at
1 kHz NIGNAL NOISE RAIIO 75 dB FREQUENCY RESPONSE \(10 \mathrm{H}_{2} .45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLYVOLTAGE 25 V SIZE 1055025 mm
Price \(\mathbf{£ 6 . 2 0 + 7 7 p}\) VAT P\&P free.


Available
June '76

the HY120 is the baby" of ILP s new high power range designed to meet the most exactin design Five connections - No external components Public addiess - Monitor amplifier - Guitar and SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 80 LOAD IMPEDANCE \(4.16!\) DISTORTION \(004 \%\), al 60 W al
ikignal noise ratio 90dB frequency response 10 Hz .45 kHz . 3 dB SUPPLY voltage SIZE 1145085 mim

\section*{Price £14.40 + £1.16 VAT P\& free}

HY200
120 Watts into \(8 \Omega\)
Thow improved to give an outhut of 120 Walts been designed to
rugged conditions such as disco or group while still retaiming true Hi-FI pertormance
No external components
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 8!? LOAD IMPEDANCE 4-16!! DISTORTION 0.05 at 100 W a
I kHz IGAL/NOISE RATIO 96 dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}\) - 3 dB SUPPIY VOLTAGE SIZE 11410085 mm
Price \(\mathbf{6 2 1 . 2 0 + £ 1 . 7 0 \text { VAT P\& Pree. }}\)

\section*{HY400}

240 Watts into \(4 \Omega\)
The HY400 is I LPs Big Daddy of the range produchin 240W into 4! It has been designed to high power disco or pubtic address applications it the amptitier is to be used at continuous high power lead the market as a tue high power h-fidelity power module
lead the market as a tuse high power hithdelity power module
FEATURES: Thermat shuidown - Very low isition - Load line protection - No external
APPLICATIONS: Public address - Disco -- Power slave - Industrial
SPECIFICATIONS
OUTPUT POWER 2HOW RMS Into 4: LOAD IMPEDANCE 4.16:) DISTORTION \(01 \%\) at 240 W at
1kHz
SIGNAL NOISE RATIO \(94 \mathrm{de} \mathrm{FREQUENCY} \mathrm{RESPONSE} 10 \mathrm{~Hz}-45 \mathrm{kHz}\) — 308 SUPPLYVOLTAGE SPUT SENSITIVITY 500 mV SIZE: \(14 \times 100 \times 85 \mathrm{~mm}\)
Price \(\mathbf{£ 2 9 . 2 5}+\mathbf{£ 2} .34\) VAT P\&P free.
POWER SUPPLIES





TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

\author{
I.L.P. Electronics Ltd \\ Crossland House \\ Nackington, Canterhury \\ Kent CT4 7AD \\ Tel (0227) 63218
}

Please Supply
Total Purchase Price
I Enclose Cheque \([\square\) Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account \(\square\) Barclaycard account \(\square \square\)
Account number
Name \& Address
Signature

Bahrain Singapore Thailand Iceland Brazil Sweden Germany Iran Jamaica St. Kitts Tunisia

\section*{POWERTRAN ELECTRONICS \\ HI-FI NEWS 75W /CHANNEL AMPLIFIER}


By J. L. Linsley Hood



In \(H_{1} . F_{1}\) News there was published by Mr Linsley-Hood a series of four article (Aprit, 1974) on a design for an amplifier of follow-up periormance which has as is principal teature an abilier of exceptional direct coupled fully protected output stage, power in excess of 75 watr whilst maintaming distornon at less than \(0.01 \%\) even at very low oower levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system. namely the equalization stage and tone control stage, positions where most spectrum late extremes of the frequency spectrum Unusual features of the design are the variable transition Thequencies of the tone controls and the variable slope of the scratch filter. independently adjustable signal level. The attractive slimline each heving indes been made practicat by highly compact The attractive slimline unit pictured Toroidal transformer.

\section*{FREE}
teak case with full kits
vreace onv \(£ 73.90\)
WIRELESS WORLD FM TUNER

Uesignēd in response 10 demand for a tuner to complement the world-wide The Wireless World hood 75 W Amplifier. This kit provides the perfect match. The Wireless World published original circuit has been developed further for end module, excellent a.m. rejection and temperature compensated fron cuning, which may be controlled either continuously or by push button pre-selection. Frequencies are indicated by a frequency meter and sliding LED indicators, attached to each channel selector pre-set. The PLL stereo decoder incorporates active filters for "birdy suppression and power is supplied via a oxide resistors are used throughout regulator for long term stability metal

\section*{NEW KIT! LINSLEY-HOOD CASSETTE DECK}


A full kıt has been prepared for this excellent new design. The above illustration is of Mr. Linsley-Hood's own unit but the Powertran kit is, though not identical, very similar and of course in the same cabinet (that used for the outstandingly successful 75 W Linsley-Hood Amplifier design).
Prek
\begin{tabular}{|c|c|c|}
\hline Fock & Price & Pact \\
\hline & Sterem MCB |acermmedales 2 rap. anps. 2 rec. & 10. Set of capaciters. reclifiers. I.C. veltage regulater \\
\hline & me. 2 nailer agas. thas/arase osc. reliyje3.35 & \\
\hline & ret set & |18sa \\
\hline & & molder. luses, intercmabetion wire. Etc. . E2.50 \\
\hline & & 12. Sat of mexawort inchalin! silk sereenet ficin \\
\hline & & pamel. internal seresm, fixien ports. Mc. . 87.10 \\
\hline &  & 13. Construction motes . . . . . . . . . . . . . . E0.25 \\
\hline & Goldrim tomes mechanisa as specitiod. E19.10 & 14. Teak embinat \(18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime} \ldots .\). E8.85 \\
\hline & switen. knobs . . . . . . . . . . . 51.60 & One each of packs 1-14 inclusive are \\
\hline & Wu meter with illuminating lamp . . . . £ \(7^{\text {a }}\) & for compete tereo castelta \\
\hline & aidal tranterner with E.S. scrien prim. & ch. Total cost of individually pur- \\
\hline & & chased packs \\
\hline
\end{tabular}

Price



 circuits
 mation swith knobs ............ E1.60 One each of packs 1-14 inclusive are Toreided trautiorner with ES. scrian prim. dech. Totat cost of individually pur-


\section*{SPECIAL PRICE FOR} COMPLETE KITS
Further details of above given in our FREE LIST r/and Portugal Mozambique Belgium Sumatra



FREE
TEAK CASE WITH FULL KITS
wromacem £66.75

\section*{PRICE STABILITY!}

Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order E\&OE VAT rate changes excluded. All components are brand new first grade full specificatıon devices. All resistors (except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilied, roller tinned and supplied with circuit diagrams and construction layouts
U.K. Orders. Subject to \(121 / 2 \%\) ": Surcharge for VAT. Carriage free MAIL ORDER ONLY (*or at current rate if changed).
Securicor Delivery: For this optional service (Mainland only) add \(£ 2.50\) VAT inc per kit.
Overseas Orders: No VAT. Postage charged at actual cost plus 50p packing and
handling.

PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN

Hong Kong Jersey Australia St. Lucia India Barbados Antigua Jordan Spain Israel Mauritius St.

\section*{AUDIO KIT SUPPLIERS TO THE WORLD}

\(\mathbf{T} 20+20\) and our new \(\mathbf{T} \mathbf{3 0}+30\)
\(20 \mathrm{~W}, 30 \mathrm{~W}\) AMPLIFIERS

Designed by Texas engineers and described in Practical Wirel uss the Texan was an immediate success. Now developed further in our laboratories to include a Toroidal transtormer and addmona improvements, the slimline \(\uparrow 20+20\) delivers 20 W per channel of the normal facilities found on quality The design is based on a single F/Glass PCB and features an the normand head phones socket. In a amplifiers. including scratch and rumble filters. adaptable input selector and head and these have been tollow up article in Practica 30 These include RF interterence filters and a tape monitor facility Power output of this new model is 30 W per channel.


\begin{tabular}{ll}
120 & \(T 30\) \\
1.40 & 1.50 \\
2.20 & 2.80 \\
1.90 & 2.30 \\
3.20 & 3.20 \\
1.20 & 1.20 \\
2.80 & 2.80 \\
7.25 & 7.75
\end{tabular}

T20 T30 1
\(\begin{array}{ll}4.95 & 6.80 \\ 3.20 & 3.60\end{array}\)
\(\begin{array}{ll}3.20 & .60 \\ 4.20 & 4.80 \\ 0.40 & 0.40\end{array}\)
\(\begin{array}{ll}4.20 & 4.80 \\ 0.40 & 0.40 \\ 0.25 & 0.25\end{array}\)
\(\begin{array}{ll}0.25 & 0.25 \\ 4.50 & 4.50\end{array}\)

\section*{2 NEW TUNERS!}

WW SFMT II
Following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model. designed 10 complement the T20 and T30 amplifiers The frequency meter of the more advanced model has been omitted and the mechanics simplified. however the circuitry is identical and this new kit offers most exceptional value for money Facilities included are swichable adjustable pre-set swithable muing. Chan LED tuning indication Individual pack prices in push-button

POWERTRAN SFMT
This easy to construct tuner using our own circuit design includes a pre-aligned front end module, PLL stereo decoder, adjustable switchable muting, switchable afc and push-button charinel selection As with all our futl kits. all components down to the last nut and bolt are supplied together with full constructional details

SPECIAL PRICES
FOR COMPLETE KITS!



With 100s of titles now available no longer is there any protiem over suitable software No problems with hardware either Ou new unit the SQM 1.30 simply plugs into the tape monitor sacke of your existing amplifiter and drives two additional speakers a oow per channel \(A\) full complement of concris in olume. bass, treble and balance bling the unit to be used omprehensive swrthing lacimies enabling the decoder for for either front or rear channels. by-passing une dels The SQ rereo-only use and exch ino a single integrated circuit and was matrix decoder is basils the power and tone control section:; are idenical to those used in our \(\mathrm{T} 30+30\) amphifier whict the SQM 1-30 mathes perfectly Kit price includes CBS licencer lee


\section*{cpocter offor to \(\mathbf{T 2 0}+20\) and Toxan}

Owners of T20 +20 and Texen amplitiors. which have no tape monitor oupliter. on requort, ofree conversion kit to fit 4 ulipe moniboring facility to the exieting amplifier.
This mekkes simple the connecion to the

Thie mekes simple the cannegion to the dwocoder/reer ctiennel mimplifier.
Wruless Wordd Amplifier Desigins. Full kits are not available tor these projectis bu component packs and PCEs are siciked for the hignty design Suutable for driving these amplitiers is the Bailey Burrows pie-amplifier and ou circuin board, for the steree version of it teatures 6 inputs scratch and rumble tiliers and mde range tone controls which may be eliher volary or sider operaling for tho Intending to get the best out of their speakers we aiso offer an active fither systern
deccribed by \(D\) Read which splits the output of each channel from the pre-amplitier into three channels each of which is fed to the appropriate speaker by its own powet amplifier The Read/Texas 20W. or any of our other kits are sutable for these for ape syslems a set of three PCBs have been prepared for the integrated ourcuit based high

30W Bandey Ampltifier
BAIL Pk 2 Resistors. Capactiors. Potentiometer se
BAIL Pk 3 Semiconductor se
20W Linsley Hood Class
LHAB Pk 1 F Glass PCB
IHAB Pk 2 Resistor. Capacito
onnometer set
LhaB Pk. 3 Semitonductor ser
Regulator Power Sypply
6OWS Pk
F/Glass PCB
GOVS Pk 2 Resistor. Capacitor set
60 S \(P_{k} 3\) Sem-Conductor ser
\(60 V P_{k} 6 A\) Toroddal rransformer (tor use with Barley)
GOVS Pk 68 Toroidal transtormer (for use with 20 W LH
Banley Burtows Stereo Pre-Amp
BBPA Pk 1 F/Ghess PCB
BSPA Pk 2 Resistor, capectior semiconductor set
BBPA Pk 3R Rotary Potentiometer set
Active Fitter
FILT \(\mathrm{Pk} ~\) F/Gisss PCB
FILT Pk. 2 Resistor, Capacit
FIT Pk 3 Semiconductor
2 off Pks \(1.2,3\) rqd for ste
\(\begin{aligned} & \text { Read/Texas } 20 \mathrm{~W} \text { Amp } \\ & \text { READ } P k \\ & 1\end{aligned} \mathrm{~F} /\) Glass \(P C B\)
\(\begin{array}{ll}\text { READ Pk } & 1 \mathrm{~F} / \mathrm{GH} \text { Bss PCB } \\ \text { READ Pk } & 2 \text { Ressision. Capacitor } \\ \text { READ }\end{array}\)
6 READ Pk 3 Serriconductor sel
Stuart Tape Reccrder
TRRP Pk 1 Replay Amp F/Glass PCB
\(\begin{array}{ll}\text { TRRC Pk } & \text { Record Amp F/Giass PCB } \\ \text { TROS Pk } & \text { Bias/Erase/Stallizer F/Giass PCB }\end{array}\)

\section*{EXPORT NO PROBLEM}

\section*{SQ QUADRAPHONIC DECODERS}

\section*{Feed 2 channels ( \(200-1000 \mathrm{mV}\) as obtainable from most pre-amplifirers or amplith no overall signal leve} tape molat LB-RB balance and Dimension controls can all be implemented by simple single gang potentiometers
controls can all be impiemented by simple sing from CBS are offered in kits of superior quality with close tolerance hese state-of-the-art circuits used under licence from CBS are ored for edge connector insertion All kit prices include CBS licence tee
£5.90
M1 Basic matrix decoder with fixed \(10-40\) blend "All components. PCB
L1 Full logic controlled decoder with "wave matching" and front back logic" for enhanced channel separation. All
\(\mathbf{E 1 7 . 2 0}\) components PCB foll logic decoder with "variable blend" for increased front back separation. All components. PCB.
PCB. Decoder similar to L2A but with discreet component front end with high precision 6 -pole phase shift networks for ncreased frequency resoonse. All components (carbon film resistors). PCB increased frequency response. All components (carbon add
70 SEMICONDUCTORS as used in our range of quality audio equipment.


Our Export Department will be pleased to advise on pastal costs to any country in the world Some of the countries to which we sent kits in 1975 are shown surrounding this advertisement

Kenya France St. Martin, Java New Zealand Borneo South Africa Denmark Nigeria Anguilla fir

\section*{For Toshiba say Erie}

For top quality, reliable transistors, FETs, diodes, LEDs (single and 7-segment), and ICs, choose Toshiba from Erie. Here's a selection from the wide Toshiba range, with prices for quantities from I to 24
\(\mathbf{1 5 \%}\) discount applies to all orders for quantities of 25 to 99. If you want 100 or more of any one item, special prices apply-send for price list direct from Erie, or complete the reader service card.
Data sheets for devices ordered are supplied free on card.
you want data sheets only, please send iop for each set of device data, to cover costs.
\(\mathbf{P} \& \mathbf{P}^{2}\) of 30 p is applicable on all orders up to 100 devices (any mix of types).
VAT Please add \(12 \frac{1}{2} \%\) for VAT to all prices, except those marked with an asterisk (*) which are rated at \(8 \%\) VAT
NEW SERIES! (TO-92)
Audio Amplifier Small Signal Transistor incorporating the Toshiba perfect crystal technology (P.C.T.) manufacturing process, giving excellent low noise characteristics.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & \begin{tabular}{l}
\(V_{\text {cbo }}\) \\
(V)
\end{tabular} & \[
\stackrel{I c}{\mathrm{I}_{\mathrm{m}}}
\] & \[
\underset{(\mathrm{mC}}{\mathrm{P}_{\mathrm{W}}}
\] & \[
h_{\text {FE }}
\]
\[
\max
\] & Price Each \\
\hline Audio Input & BC451 & NPN & 50 & 100 & 300 & 800 & \\
\hline Audio Input & BC452 & NPN & 30 & 100 & 300 & 800 & 11p \\
\hline Low noise & BC453 & NPN & 30 & 100 & 300 & 800 & 11 p \\
\hline Driver & BC454 & PNP & -50 & -100 & 300 & 800 & 12 p \\
\hline Driver & BC455 & PNP & -30 & -100 & 300 & 800 & 12 p \\
\hline Low noise
\[
(2-5 B)
\] & BC456 & PNP & -30 & -100 & 300 & 800 & 12p \\
\hline Low noise \({ }^{\text {d }}\) & 2SC1000 & NPN & 50 & 100 & 200 & 700 & 16p \\
\hline Pre Amp. \(\} 2\) & 2SC1 681 & NPN & 60 & 50 & 200 & 700 & 16p \\
\hline \multicolumn{8}{|l|}{Plastic Power (TO-126) Audio Medium Power incorporating P.C.T.} \\
\hline Driver & BD135 & NPN & 45 & 500 & 6.5W & 250 & 33.5 \\
\hline Driver & BD136 & PNP & -45 & -500 & 6.5W & 250 & 36.5 \\
\hline Driver & BD137 & NPN & 60 & 500 & 6.5W & 250 & 36.5 \\
\hline Driver & BD138 & PNP & -60 & -500 & 6.5 W & 250 & 40p \\
\hline Driver & BD139 & NPN & 80 & 500 & 6.5W & 250 & 40p \\
\hline Driver & BD140 & PNP & -80 & -500 & 6.5W & 250 & 44 p \\
\hline
\end{tabular}

LED'S
Erie's range of Toshiba Led's include:-
\(V_{R} V_{F} I_{R} \quad I_{F} \quad P_{D} \quad l_{v}\) Price
\((V)(V)(\mu A)(m A)(m W)(m c d)\) Each
 \(\begin{array}{lllllllll}\text { Red Clear Lens } & \text { TLR103 } & 4 & 2 & .5 & 35 & 100 & .5 / 3 & 21.5 p\end{array}\) Red Diamond Lens TLR \(10542 \begin{array}{lllllll} & 4 & 2 & .5 & 35 & 100 & .5 / 1.7 \\ 21.5 p\end{array}\) Grn. Diffused Lens TLG \(1024 \begin{array}{llllllll} & 2 & .5 & 30 & 80 & .05 / .1 & 35.5 p\end{array}\) Grn. ClearLens TLG \(1034 \begin{array}{llllllll} & 4 & .5 & 45 & 125 & .3 / 3 & 35.5 p\end{array}\) Grn. Diamond Lens TLG \(1054 \begin{array}{lllllll}105 & 2 & .5 & 45 & 125 & .2 / 1.8 & 35.5 p\end{array}\)

NEW! (TO-3) Toshiba introduce the low priced S2530A/ S2530 equivalent to the BUY69A/BUY69B


\section*{SEVEN SEGMENT}

Common Cathode TLR \(3015.2 \times 2.6 \mathrm{~mm}\) character size, continuous current IF/Segment 20 mA , VR3V, VF 2V, power dissipation 400 mW . Total Luminous intensity \(0.04 / 0.11\) med PRICE \(£ 1.08\) Common Cathode TLR \(3138.3 \times 3.8 \mathrm{~mm}\) character size, continuous current IF/Segment 15 mA, VR \(3 V\), VF 2 V power dissipation 350 mW . Total luminous intensity \(0.04 / 0.11\) mad PRICE \(£ 2.22\) Common Anode TLR 315 same characteristics. PRICE \(\mathbf{f} 2.22\) Common Cathode TLR \(30815 \times 9 \mathrm{~mm}\) character size, continuous current IF/Segment 35 mA , VR 3, VF 2V, power dissipation 750 mW . Total luminous intensity \(0.07 / 0.3 \mathrm{mcd}\)

PRICE £3.08
Common Anode TLR 306 same characteristics PRICE 13.08

\section*{ERIE ELECTRONICS LIMITED}

South Denes, Great Yarmouth, Norfolk.
Tel: 0493 56i22 Telex: 9742 I
Components
IUI

WW-06I FOR FURTHER DETAILS


Wireless World, September 1976
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
ANALYTICAL EQUIPMENT \\
GAS CHROMATOGRAPHY RESEARCH OVEN \\
PV4051/4056 (other GC iterme in tock) \\
A large capacty oven of low thermal mass for use between 35 and 400 \\
Deg C Provides a forced air circulating system yielding 1000 changes of air per min. The oven has forced aif cooled outer surfaces when the internal lemperature is \(\mathrm{high} .210-240 \mathrm{~V}, 50 \mathrm{~Hz}, 2.6 \mathrm{KW} \mathrm{E} 33.50\). (C.Pd. England). \\
IONISATION AMPLIFIER PV4075 \\
A modern high grade low noise solid state amplifier to feed a potentiometer
\end{tabular}} \\
\hline \\
\hline
\end{tabular}


 advance and shutter cock with septe. Button control and electrical release
facilly (24V DC) Spool holds 40 exposures Camera may be wall mounted



\section*{COMPUTERS AND PERIPHERALS
}

\section*{\(\underset{\substack{\text { x.s.oce } \\ \text { mat }}}{ }\) SYNCHROS SERVOMOTORS}

MAGSLIP ELEMENTS
Auital onverds tor Sunchro and Magsio intormation
VELDOYNE MOTOR GENERATORS and D.C. SPLIT FIELD SERVO MOTORS

PLESSEY GROUND BASED UHF GROUND/AIR TX/RX FOR EXPORT ONLY OR SALE TO LICENSED USERS
Single Channel Receiver 5820.99-932-.5694

Power Unit to Amplifier 5820 99
Cooler Unit \(5820.99 .932-3995\)

, the TX/Ampllter unit givirig 100 Watts R.F. Output into 50 Otms Spare subrun

\section*{We hold extremaly large slocks of CASTANET TANTALUM CAPACITORS \\ Our current stock holding exceeds 30,000 pct and you}

WE HAVE ONE OF THE LARGEST STOCKS IN THE COUNTRY OF
INSTRUMENTS AND COMPONENTS F/S MANUFAGTURERS. INSTRUMENTS AND COMPONEN
TELEX 985265 RE AVAILABILITY


HEWLETT PACKARD SAMPLING


400 Hz HIGH FREQUENCY ROTARY CONVERTERS

 ther capactry only 16 6. long and 13 In high overall. trcludimg the contion



SPECIAL OFFER OF REED RELAYS
 FULL RANGE of MK MU mutivay and co-axal connectors alweys
avalable to small and large users. Ex-stock detivery at extremuly

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
AIRCRAFT INSTRUMENTS \\
For industrial and educational use Released items availabie for flight use
\end{tabular} \\
\hline \begin{tabular}{l}
UNIVERSAL AVOMETERS \\
Ranges DC Volts. 2.5. \(10.50 .100,1,000(10 K \Omega / v)\) DC curfent 1 mA \(2.5 \mathrm{~mA} .10 \mathrm{~mA} .50 \mathrm{~mA}, 100 \mathrm{~mA} .500 \mathrm{~mA}\). 1 A . AC Vots. \(10,100,1,000\) \\
 E29.50 (inc. P\&P \& VAT) (Good condrion with test certificate).
\end{tabular} \\
\hline \begin{tabular}{l}
MODEL 8 AVO METERS \\
Completely overhauled E37.50 with case including carrage (U.K) and V.A.T
\end{tabular} \\
\hline \begin{tabular}{l}
AVO MULTIMINORS \\
Mk. IV in case in excellent condition E12.50 inc (P\&P UK.) VAT
\end{tabular} \\
\hline \begin{tabular}{l}
WEE MEGGERS \\
250V £14.50. RECORD WEE MEGGERS, 500V 616.50 . INE (F\&P UKIVAT
\end{tabular} \\
\hline
\end{tabular}

ETHER-ELECTROMETHODS LOW INERTIA INTEGRATING MOTORS

DESSYN TRANSMITTERS AND RECEIVERS
rond Blank Dial Rece verers Platase advise
and
requirements and we will be pleased to quote.
ETHER ELECROMETHODS LOW INERTIA INTEGRATING MOTORS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
FLOODLAMPS \\
For use with back reflectors by internationally lamous company 200 w 250 V ES.- \(\mathbf{6 8 . 5 0}\) per pack of 25 (post pard) Also 300 w 240 V G.E. S \(-\mathbf{8 5 . 5 0}\) per pack of 12 (posi paid) \\
These lamps are litled with front silvered bulbs to enhance reflection 4.0 m the fitting.
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}


TYPE TAD



TYFESA

 FOR YOUR PRODUCTION REQUIREMENTS USE ALPS PANEL METERS
Substantion quantity discounts to manulacturers Remember! We are the sole importers!


NEW ADDITIONS to our range of PANEL METERS available at present only in MANUFACTURING QUANTITIES


Above mener forma ere for moving coil
house S -meter mod VU-metor inatruments.
WW - 096 FOR FURTHER DETAILS TELEPRINTER PAPER

\section*{4 ply 67.00 per}

AUTOMOBILE TEST EQUIPMENT
SERVO Autotester No. 1. 0.3 \& \& \(0.16 \mathrm{VV}, 0.80 \mathrm{~A} .0 \mathrm{OC} \& 0.20 \mathrm{SEC}\)

 4.688 anc engines Sice SERVO AUTOTESTER No. 3. Simultaneousty on Separate meters 0.16 .


200-250V AC MAINS
TO 27V 500mA D.C. STABILISED P.S.U.
 With circuir Thise interesting 27V 0.5A units (w.ll happhty provide
700 mA Indetinitoly) are built into ari atractive grey.tinished instrument
case. provision loeing made for base or side mounting Cable entry
grome case provision lseing made tor base or side mounting. Cablo entry
grommes are mounted in the base of the Unit The choke capacity
smoonhed output is sold sate stabiled smoothed output is solid state stabilsed against varation in input voltage
and output curremt. and input and output fuses with spares are fitted The and
outpuit operates \(a\) buift-in \(S\). P C. O relay to switch for instance an alarm
curcuit There is didequate room for other equipment within the ventilated £5.50 EACH (P.Pd U.K.) PLANNAIR
Axial Flow Fons (mounting) Typ 6PL-122-331 Mk. 26 in. 2.800
 CONTINENTAL CUSTOMERS - We have a direct link by air from Lydd
CO to Beauvars (alsu Channel Islands) and are \(35-45\) minutes drive trom
Dover-Folkestone with hovercraft/sea links with France and Belgium G.E.C. SEALED RELAYS

Servo and Ele letronic Jales \(\mathcal{L}\) td
24 HIGH ST., LYDD, KENT TN29 9.AJ. Tel. Lydd 20252 (STD 0679) VAT No.



\section*{\(=1-2-130\) \\ Bargains in Semi－Gonductors，components，modules \＆equipment．}

\section*{D．P．P Packs}


Originated in 1959 by the Company＇e managing director，his were the first semi－conductor and component packe to be marketed in this country，and Industrial Pre－Packed Componen grew out of＂British continues to occupy a position of pre－eminence in the supply of packs as well as a vastly extended range of products detailed in our latest 24 －page A．4 size free cotalogue．Send 10p stamped large addrested envetope for your copy，together with our spacial ummer bargains list，by retum．
IT＇S ALL IN OUR FREE CATALOGUE

\section*{Bomponent Packs}


\section*{YOUR SUPPLIERS FOR}

Sambeonduoten，all popular irpon，Opro－pleartronic
 Trimes，Thyrittora，Zunce Dioder and mueh more in ou entologue end ahop．

\section*{Semi－Fondurtors}
－TESTED AND GUARANTEED PACKS SN 7490 integrated circuits 14 pin duat in line TTL type
Decade counter Get one FREE these are 60 parah in
singles
E1．20p＊ LIngles SN 7400 integrated circults． 14 pin dual in line \(T T L\) type
Quad 2－input NAND gate Get one FREE these are 150


 TP15 20 glass sye Germanium PNP audio output transistor white glass
 TP19 100 Unmarked
TP20 10 Lsefus．melecture of germanium gold benderd silicon erct

 TP3O 20 NMP sLilcon plantar tranisisors．TO． 18 simiar 10 BC 108 TP31 20 elc exp sincicad planar transisiors，T0． 18 similar 10 BC178

2N20 sicon plasictransisors uncoded and ungraded

\section*{－UNTESTED PACKS－60p each} Specially for keen bargain hunters

\section*{}

UT10 15 Pownsis tramp． mostly TO． 3 bul some olastit and same marked
Integated circuits experimeniers pack．oual in Inlegrated circuits experimeniers pack，dubl in line TO． 5
\(\Pi\) OLL．marked and unmarked some definity g good but for full ranges－see catalooue POWER TRANSISTORS
\begin{tabular}{|c|c|c|c|}
\hline & ve＊ & wert & Am \\
\hline 40 P 1 & 15 & 20 & 3 \\
\hline 40 N 2 & 40 & 40 & \\
\hline 40 P 2 & 40 & 40 & 4 \\
\hline 90 Ni & 15 & 45 & 4 \\
\hline 90 P 1 & 15 & 45 & 4 \\
\hline 90 Nz & 40 & 90 & 8 \\
\hline 90 P 2 & 40 & 90 & 8 \\
\hline
\end{tabular}

\section*{INTEGRATED CIRCUITS}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Uni．Junction} \\
\hline \(2 N 3819\)
2N4 18 & \({ }^{180}\) & TAANSISTORS & \\
\hline mos FET & & & \({ }^{65 p}{ }^{\text {che }}\) \\
\hline 3N141／MEM618 & sop & \({ }_{\text {Tis }}\) & \({ }_{\substack{48 p \\ 310}}\) \\
\hline \multicolumn{4}{|l|}{} \\
\hline \({ }_{2} \mathrm{~N}^{2} 8027\) & \({ }^{50}\) & T1209－ \(\mathrm{Ra}^{\text {a }}\) & ＊＊ \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{ERIDGE RECTIFIERS Platic encmpoulated} \\
\hline 1 & & & \\
\hline 2 amp &  & \({ }^{38 \mathrm{p}}\)＊ & 过 \\
\hline & 45 p & \({ }^{450} 5\) & \\
\hline 8 mmp & \({ }^{50 \mathrm{p}}\) & 60p＊ & \({ }^{\text {O }}\) \\
\hline
\end{tabular}

\section*{－WHEN ORDERING}

Write your own name and addren ， \(10+1\)


四宛）
－MAKE SURE YOU OET OUR NAME orderina．

TERMS OF BUSINESS： VAT at 12 2\％must be added to total value of order．except for tems marked or \((8 \%)\) when VAT is to be added at B\％No VAT on overseas orders POST \＆PACKING add 30p
Overseas orders add kil for postage And difference will be credited or charged PRICES Sublec：to atteration withoul notice AVAlL ABILITY Al credited or charged PRICES going to press when every eftort is made to ensure correciness of information Cash with gorng to press when every effort is made to ensure correciness of information Cash with
order plaase Cheques or money orders should be crossed and made payable to
Bi－Pre．pak Lid．

\title{
PANEL LETTERING for that professional look
}

A unique patented system of rub down lettering needing no position marks on artwork or facia panel. This new system ensures correct spacing of characters and a clean finish no matter what the application.
A neat and professional job is assured under our money back guarantee.

Send today for a pack containing capitals, lower case and numerals together with straight edges, spacer carriers, line spacers, applicator pencil, full instructions and order form.

Prices including postage, packing and VAT.
\(1 / 8^{\prime \prime}\) Complete kit \(£ 1.00\)
\(1 / 4^{\prime \prime}\) Complete kit \(£ 1.00\)
\(1 / 2^{\prime \prime}\) Complete kit \(£ 2.50\)

\section*{E. R. NICHOLLS}



FAST §ERVOCE

\section*{\(E\)}

\section*{IC's}



58-60 GROWE RD. WINDSOR, BEIRKS SLAIHS ADD \(8 \%\) VAT TO PRICES MARKED * ADD \(121 / 2 \%\) VAT TO ALI. OTHER PRICES. SEND CWO (EXCEPT GOVT. DEPTS.) POST \& PACKING 20p FOR THE UK.

TEW FAST SERVTCB, IOT PRICES MOMEY BACX IF NOT OATYGFIED, ALL BRIND NE TOP GRADELCOM Mee catalocue hier face 3az. BARCLAYCARD ACCESS IY POST


\section*{TRANSISTORS}

\section*{PRICE EACH:- NATCEING}

TELEPHONE 54525
DIODES
OA81 \& OA91 GERMANITY \(5 p\) IN4001 IA5OV \& 1N4002 5p* 1N4004 6p* 1N4007 9p* 1N4148 1 N914 SILICON 4 p ZENERS BZY88 400mm 9p RENERS 1! H TIFIER 1A50 BRIDGE RECTIFIER 1ASO 48 p SCR's TRIACS SCR's TAG1/400 1A400V 50p* 1A50V 38p* 1 A \(600470 p *\) C106D 4A400V SCR ONLY 47p* TRIAC SC146D 10A400V TRIAC DISCO 16A400V DIACS:ST2 20p.BR10

\section*{\(\sqrt{ }-\infty\)}

36PINS 28p*FACE CUTTER49p* COPPERCLAD 0.1 PITCH VERO
 37"x5" 37p* 3ม"x3き" 32p* 3'1x17" £1,70* 3/ "x17" PLAIN 0.1"§1.06*
DIL BREADBOARD \(6 \times 4^{\prime \prime}{ }^{\circ} 2^{*}\)

\section*{DALO pen \\ \(\left.\begin{array}{lll}0 & 0 \\ 0 & 0 \\ 0\end{array}\right]\)}

DALO FTCI RESIST PEN 69p* FEC LETCH TAK 500 gm 89 p * \(6 \times 4^{\prime \prime}\) COPPER BOARD 50p* PCB KIT 3 ITEMS CASSETTE MECHANISM §9 \& ASC 12 S GAS DETECTORS ILL sochets

\section*{RST \\ VALVE MAIL ORDER CO. Climax House, 159 Fallsbrook Rd., Streatham London SW16 6ED \\ Tel: 01-677 2424 Telex: 946708}


TRANSISTORS \& ICs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{TRANSISTORS \& ICs} & & \(\Gamma\) & &  & & SN7476 & 45 \\
\hline AA & 0.7 & BF179 & \(0.3 \overline{3}\) & Oc36 & 50 & & & \[
\begin{aligned}
& 2 \mathrm{~N}_{4} 24
\end{aligned}
\] & \({ }_{0.81}^{0.30}\) & SN7480 & 60 \\
\hline AAZ 13 & 12 & \({ }^{\text {BFP180 }}\) & \({ }_{0}^{0.36}\) & & 40 & 2 N 7 & & & 0.40. & SN7 & 1.10 \\
\hline AAAZ & 0.10 & \({ }^{\text {BFIP1 }}\) & 0.35 & OC & 0.20 & & & & 0.45 & & 00 \\
\hline \({ }_{\text {AC }}{ }_{\text {AC }}\) & 0.25 &  & \({ }_{0} 13\) & \({ }_{0} \mathrm{C}\) & 020 & \({ }_{2}^{2 \mathrm{NH} 13}\) & 2025 & 4 & 040 & SN7446 & \\
\hline \({ }_{\text {AC }}\) & 0.25 & \({ }^{\text {BFF } 197}\) & 0.15 & OC72 & 0.28 & \({ }_{2 \mathrm{~N} / 302}^{2 \mathrm{~N}}\) & 0.18 & SN740 & 0.16 & & \(\mathrm{N}^{0.55}\) \\
\hline \({ }^{\text {ACli28 }}\) & 0.15 &  & 0.32 & O & 0.30 & 2N1333 & 018 & SN & 0.16 & & \\
\hline & 0.23 & \({ }_{\text {BFF }}\) & 025 & \(\bigcirc\) & 0.54 & 2 N & 0.28 & & 0,16 & & 70 \\
\hline & & & 0.25 & & ars & & 0.22 & SN7 & 0.16 & & . 70 \\
\hline & 8.35 & \({ }_{\text {BFP }}\) & \({ }^{0.688}\) & \({ }^{\circ} \mathrm{C}\) & 078 & \({ }^{2}\) & 0.28 & & 016 & SN7 & ..80 \\
\hline \({ }^{\text {ACr }}\) & 8. & BFe &  & OC & & 2 N 13 & 0.28 & SN74 & 0 & & 30 \\
\hline & 0.50 & 8 F & 0.21 & \({ }_{0}\) & \(\bigcirc\) & \({ }_{\text {2N }}\) & \({ }^{0.285}\) & SN & 0.42 & & \\
\hline & 0.75 & \(\mathrm{BFF51}^{\text {P }}\) & axd & \(\bigcirc\) & 6.30 & \({ }_{2 \mathrm{~N} / 613}\) & 0.21 & \(\mathrm{SN}^{1}\) & & & 17 \\
\hline & 0.4 & \({ }^{\text {BFY }}\) & 0.2 & & 1.30 & \({ }^{2 N 1614}\) & 0.45 & SN74 & 0.28 & SN74107 & 0.45 \\
\hline & 0.44 & BR10 & 000 & & 1.00 & \({ }^{2} \mathrm{~N} 214\) & & & 0.28 & SN74110 & 0.58 \\
\hline AF & 0.25 & BY1 & 0.27 & & 150 & 2N210 & & SN/ & & SN741 & \\
\hline \({ }_{\text {AFFII }}\) & . 0.24 & \({ }_{\text {BY }} 127\) & \({ }_{0} 12\) & \({ }^{\circ}\) & 1.50 & & & & & SN741 & \\
\hline AFI 186 & 048 & BZ & es. & 1 C & 1.20 & \({ }_{2}\) & 0.20 & SN7 & 0.36 & SN/411 & \\
\hline AF239 & 044 & & & ORP & 0.50 & \({ }^{2} \mathbf{N} 29\) & 025 & & & SN741 & \\
\hline & 0.40. & & & ORP & 0.55 & 2N29 & 0.32 & SN7 & 036 & 5N74 & \\
\hline & ,0.25 & CRS \({ }^{\text {a }}\) & 10 & Tic4 & 0.23 & 2 N 230 & & SN74 & 0.16 & SN7 & 0.90 \\
\hline \({ }^{\text {BALO2 }}\) & 0 & CRS5 & 04 & \({ }^{\text {ric22e }}\) & 150 & 2 N 293 & 0.20 & SN74 & 0.25 & & \\
\hline balis & 0.14 & CRS3 & 0.40 & \({ }_{\text {LTM10 }}^{\text {T12, }}\) & \({ }_{0}\) & \({ }_{2}^{2}\) & 10 & SN7 & \({ }^{637}\) & & \\
\hline \({ }^{\text {BA }}\) & 0.13 & CR & 0.65 & ZTX108 & 019 & \({ }_{2 \mathrm{~N} 305}\) & 0.65 & SN74 & 0.37 & SNT & \\
\hline & 014 & MJ & 0.4 & \(21 \times 30\) & 0.13 & 2N352 & 0.91 & SN74 & 0.40 & & 00 \\
\hline & 0.15 & MJ & -68 & 2Tx30 & 0.4 & 2N361 & 1.00 & SN74 & 0.16 & & \\
\hline & 0.20 & & . 103 & 21xa & :18 & 2 N 36 & 0.65 & SN74 & 0.37 & & \\
\hline \({ }_{\text {BC }}{ }_{\text {BC }}\) & -310 & MIE3055 & 0.7 & \({ }_{717500}\) & 0.24 & 370 & & SN743 & 0.37 & & \\
\hline & 0.08 & & & \(21 \times 50\) & & \({ }_{2} \mathrm{~N} 37404\) & , 12 & & & & 57 \\
\hline & 0.15 & MP & 0.3 & & 0.16 & \({ }^{2} 3735\) & 915 & SN7440 & 0.22 & & \\
\hline & 0.12 & MPFIOS & \({ }^{0.35}\) & & 0.25 & 2 N 3706 & 0.11 & Han & & SN74 & 2.00 \\
\hline & 012 & MPF 10 S & 0.36 & zTx5 & 018 & 2N370 & 013 & & 028 & SN7 & \\
\hline \({ }_{\text {BC }}{ }_{\text {BC }}\) & 0.85 & NE555 & \({ }^{0.042}\) & & 0.06 & & 0.07 & & 0.79 & SN7 & \\
\hline & 0.38 & OA & 0.72 & in & 0 & 2 N & 1 & & \(\frac{0.16}{0.16}\) & N77193 & \\
\hline & 045 & OA & 0.40 & & 0 & & 11 & SN & 0 & SN7439 & \\
\hline & 0.18 & & 0.10 & & 0.88 & 2 N 315 & 0.38 & & 016 & SN74196 & 20 \\
\hline & 0.2 & \(\mathrm{OABI}^{\text {a }}\) & 0.18 & 退4005 & 0.10 & & 0 50, & & & SN7497 & 20 \\
\hline \({ }_{\text {BCZII }}\) & 015 & OA & \({ }_{0}^{0.07}\) & in4006 & 0.12 & \(2 \mathrm{N382}\) & 0.50 & & 0.36 & & \\
\hline BDI21 & 1.00 & OA2 & 0.06 & & 0.06 & \({ }_{2 \mathrm{~N} 3}^{2 \mathrm{~N} 3}\) & \({ }^{0.15}\) & \({ }_{\text {SN }}\) & \({ }_{0.41}^{0.38}\) & N7.11 & \\
\hline \({ }^{\text {BD }} 124\) & 0.65 & & 1.00 & iN4148 & 0.06 & 2 N & 0.25 & & 0.42 & & \\
\hline & 0.42 & C20 & 2.20 & 15131 & 013 & 23908 & 0.25 & SN745 & 0.59 & & \\
\hline \({ }_{\text {BF1 } 15}\) & 020 & \(00^{25}\) & 0.90 & & 0.20 & \({ }_{2 \mathrm{~N}}^{2} \mathrm{~N} 05959\) & 0.19 & DIL & & & \\
\hline \({ }^{1737}\) & 0.25 & Oc & 8.75 &  & 0.20 & & & SOCK & & , & \\
\hline
\end{tabular}

INDUSTRIAL VALVES


\section*{PROXIMITY SENSOR} TYPE EP45

ANIMAL VEGETABLE' OR MINERAL
A new type of dielectric detector which is no
limised to metals Will detect movement of
most materials at considerable distances
most materiais at considerable distances
Variable sensitivity, will detect humans and
a, TT T. compatible output pulse of adjusiable
minute


\footnotetext{
Applications include securty devices process control and counting automatic alarm
} and hazard warning syster

PHYSICAL \& ELECTRONIC LABORATORIES LTD.
28. Athenaeum Road, Whetstone, London N20 9AE. Tel. \(01-4457683\)

\section*{Become a radio amateur.}

Learn how to become a radio amateur in contact in the whole world. We give skilled preparation for the

> VAT to be added VALES \& PLASTIC TRANSISTORS \(121 / 2 \%\) INTEGRATED CIRCUITS \(8 \%\) AND METAL CAN TRABSISTORS \(8 \%\)

\section*{THIS MONTH'S}

OSCILLOSCOPE TUBES
TYPE DG 7-5, VCR 139A, CV 1526
Price \(£ 8.00\) P\&P 50p add VAT 8\%
SPECIAL OFFER

Wireless World, September 1976
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
SINCLAIR AND \\
CBM CALCULATORS* \\
Sinclair: Cambridge Scientific \(\mathbf{E 1 1 . 4 5 .}\) Oxford 300 £13.30. Programmable Scientific with free mains unit \(£ 24.95\). Mains adaptors for all models \(£ \mathbf{£ 2 0}\). CBM: SR79190 8 digit or \(5+2\) memory / trig / \(\log /\) pi/powers \(£ 11.90\). 796MD 8 digit/ \(\% /\) memory \(£ 5.98\). Mains adaptors \(£ \mathbf{£} .20\).
\end{tabular}} & \begin{tabular}{l}
SINCLAIR BLACK WATCH* \\
Fully assembled with black strap \(£ 20.95\). Bracelet £2.00.
\end{tabular} \\
\hline & \begin{tabular}{l}
SINCLAIR IC20 \\
1C20 10W +10W stereo amp kit with printed circuit £4.95. PZ20 Power supply for above £3.95. VP20 Control and preamp kit £7.95.
\end{tabular} \\
\hline \begin{tabular}{l}
FERRANTI ZN414 \\
IC radio chip £1.44. Extra parts and pc for radio £3.65. Case 90p. Send sae fo free leaflet.
\end{tabular} & \begin{tabular}{l}
SINCLAIR PROJECT 80 \\
FM tuner £13.25. Q16 £9.50. PZ5 £3.95. PZ6 £8.70. PZ8 £9.10. Trans for PZ8 £5.60. Z40 £5.75. Stereo 80 £11.95. Project 8050 £18.95.
\end{tabular} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
BATTERY ELIMINATORS \\
STABILIZED POWER UNITS \\
Millenia series. Switched 1 to 30 V in 0.1 V steps. 1 A output: Kit £11.45. Kit + case \(£ 14.40\). 8 uilt \(£ 18.40\). \\
2 A output Kit £13.95. Kit + case £16.90. Built £20.95. \\
6-WAY \\
SPE \\
CIAL \\
Switched output \\
of \(3.4 \frac{1}{2} .6 \quad 71 / 2\), \\
9. 12 V at 500 mA \\
£5.20. \\
6-WAY DOUBLE RADIO MODEL \\
Switched output \(3+3,41 / 2+41 / 2.6+6\). \\
\(71 / 2+71 / 2, \quad 9+9, \quad 12+12 \mathrm{~V}\) at 250 mA . \\
Also \(15,18 \quad 24 \mathrm{~V}\) single \(£ 6.20\) \\
3-WAY MODEL \\
Switched output of \(6 / 71 / 2 / 9 \mathrm{~V}\) at 250 mA E2.95*. \\
RADIO MODELS \\
50 mA with press-stud battery connectors for radios etc. 6 V £3.45. 9V £3.25. \(41 / 2+41 / 2 \vee £ 4.45 .6+6 \vee £ 4.45 .9+9 V\) £4.45. Also 9V 300mA £3.95. \\
CASSETTE MAINS UNITS \\
\(71 / 2 \mathrm{~V}\) output with 5 pin DIN plug. 50 mA model £3.45. 300 mA model \(£ 3.95\). CAR CONVERTERS Input 12 V DC. Output 6, \(71 / 2,9 \mathrm{~V}\) DC 1 A regulated £4.75*.
\end{tabular}} & \begin{tabular}{l}
JC12 AMPLIFIER \\
6W IC audio amp with free data and printed circuit \\
£1.95 \(\ddagger\). \\
DELUXE KIT FOR JC12 \\
Volume and tone controls and extra parts for the pcb. Mono £2.33. Stereo £4.95. JC12 POWER KIT \\
Supplies 25V 1 Amp E3.55. \\
SEND SAE FOR FREE LEAFLET
\end{tabular} \\
\hline & \begin{tabular}{l}
S-DECS AND T-DECS * \\
S-DeC £2.24 \\
T-DeC E4.05 \\
u-DeCA \(£ 4.45\) \\
u-DeCB £7.85 \\
16 dil IC carriers? \\
with sockets \(£ 2.21\)
\end{tabular} \\
\hline & \begin{tabular}{l}
BATTERY ELIMINATOR KITS \\
Send sae for free leaflet on range. 100 mA radio type: with press stud terminals. \(41 / 2 \mathrm{~V}, 6 \mathrm{~V}\) or 9 V £1.95. \\
100 mA double radio type: with press stud terminals. \(41 / 2+41 / 2,6+6\) or \(9+9 \mathrm{~V}\) E2.60. \\
100 mA cassette type: \(71 / 2 \mathrm{~V}\) din plug. £1.95. \\
Stabilized 8-way types: transistor stabilized to give low hum. \(3 / 41 / 2 / 6 /\) \(71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{~mA}\) model
\end{tabular} \\
\hline \begin{tabular}{l}
PRINTED CIRCUIT KIT* \\
Make your own printed circuits. Contains etching dish, 10059 ins of copper clad board. 1 lb ferric chloride, etch resist pen. drill bit and laminate culter \(£ 3.95\).
\end{tabular} & Heavy duty 13-way types: \(4 / 2 / 6 / 7 /\) \(8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 / 28 /\) \(34 / 42 \mathrm{~V}\). 1A £4.40. 2A £6.95. Car converter kit: Input 12 V DC. Output \(.6 / 71 / 2 / 9 \mathrm{~V}\) DC 1 A regulated \(£ 2.95\). \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
SWANLEY ELECTRONICS \\
DEPT. WW, PO BOX 68, SWANLEY, KENT BR 8 8TO \\
Post 30p on orders under E2, otherwise free. Prices include VAT. (Overseas customers deduct \(7 \%\) on items marked*, otherwise \(11 \%\) ) Otficial orders welcome
\end{tabular}} \\
\hline
\end{tabular}

\section*{NEW FROM E.S.E.}


A full frequency range graphic equaliser YOU can afford!
For JUST \(\mathbf{6 3 5 . 0 0}\) plus VAT Condensed Technical Spec You can tune out all unwanted Max. output: terminated to \(600 \Omega\)
\(100 \mathrm{~dB}>1.6\) volts peak to peak. noises at seven different frequencies!
Bring all your recordings, P.A., discos, lead guitar, bass guitar, organ, anything amplified to life at the touch of a slider!!
No more annoying amplifier noises - just clear, true sound Frequencies from 60 Hz to 10 kHz ! Cut or boost each frequency by maximum of 15 dB !
Hi and lo gain inputs.
Powered by just two PP3 batteries which last for ages. Or built in mains power unit available at \(69.50+\) VAT.
Try it and you'll buy it - it will change your concept of sound.
Trade enquiries welcomed.
\[
\begin{aligned}
& \text { Max. output: terminated to } 600 \Omega \\
& 100 \text { dB> }>1.6 \text { volts peak to peak. }
\end{aligned}
\] 2.5 volts R.M.S. Signal to noise ratio: input terminated with 47K resistor. All filters at max. becter than -70 dB .
Frequency response: All filters at central better than \(\pm 2 \mathrm{~dB}\).
Filter slope: Better than Filter slope: Better than \(\pm 13 \mathrm{~dB}\) per octave. Fitter ranges: Max. \(\pm 15 \mathrm{~dB}\) at 60 . To: E.S. Electronics, \(2-\frac{4}{\text { Upper }}\) Fant Road, Maidstone, Kent. Please send me \(\square 1, \square 2\), \(\square 3\), \(\square 4, \square^{5}\) of your Graphic Equalisers. cheque or postal order for \(£ \ldots \ldots . .\). having added 61.50 for \(p\). \& p. on each item ordered and V.A. i. understa
that two batteries are included. Name Address

\section*{TRANSFORMERS}

ALL EX-STOCK - SAME-DAY DESPATCH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{MAINS ISOLATING PRI \(120 / 240 \mathrm{~V}\) SEC \(120 / 240 \mathrm{~V}\) Centre Tappet and Screened} & \multicolumn{5}{|c|}{12 and/ or 24-VOLT} \\
\hline Ref. & \[
\begin{aligned}
& \text { VA } \\
& \text { (Watts) }
\end{aligned}
\] & £ & P\&P & Ref & 12v & 24 v & & 36 \\
\hline 07 & 20 & 3.10 & 66 & 111 & 0.5 & 0.25 & 1.54 & 36
65 \\
\hline 149 & 60 & 4.69 & 80 & 213 & 1.0 & 0.5 & 2.86 & 65 \\
\hline 150 & 100 & 5.33 & 95 & 18 & 2 & 2 & 2.97 & 80 \\
\hline 151 & 200 & 8.54 & 1. 25 & 78 & 6 & 3 & 4.43 & 80 \\
\hline 152 & 250 & 10.32 & 1.53 & 108 & 8 & 4 & 5.09 & 95 \\
\hline 153 & 350 & 12.47 & 1.53
1.79 & 108
72 & 10 & 5 & 5.50 & 95 \\
\hline 154 & 500 & 14.33 & 1.79 & 116 & 12 & 6 & 5.80 & 1.10 \\
\hline 155 & 750 & 21.94 & BRS & 17 & 16 & 8 & 7.48 & 1.10 \\
\hline 156 & 1000 & 30.51 & BRS & 115 & 20 & 10 & 10.91 & 1.73 \\
\hline 157 & 1500 & 34.89
38.92 & ERS & 187 & 30 & 15 & 14.20 & 1.73 \\
\hline 158 & 2000 & 38.92 & ERS & 226 & 60 & 30 & 17.67 & BRS \\
\hline 159 & 3000 & 61.48 & ers & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{50 VOLT RANGE SEC TAPS 0-19-25-33-40-50} \\
\hline Ref. & Amps & \(\pm\) & PAP \\
\hline 102 & 0.5 & 2.71 & 65 \\
\hline 103 & 1.0 & 3.55 & 80 \\
\hline 104 & 2.0 & 4.95 & 95 \\
\hline 105 & 3.0 & 6.10 & 1.10 \\
\hline 106 & 4.0 & 7.98 & 1.25 \\
\hline 107 & 6.0 & 12.71 & 1.37 \\
\hline 118 & 8.0 & 13.63 & 1.73 \\
\hline 119 & 10.0 & 17.75 & 385 \\
\hline
\end{tabular}

30 VOLT RANGE
SEC. TAPS \(0-12-15-20-25-30 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{01} & \multicolumn{3}{|c|}{SEC} \\
\hline & Ref. & Amps & ¢ \\
\hline Ps P & 112 & 0.5 & 1.90 \\
\hline 65 & 79 & 1.0 & 2.52 \\
\hline 80 & 3 & 2.0 & 3.77 \\
\hline 95 & 20 & 3.0 & 4.70 \\
\hline 1.10 & 21 & 4.0 & 5.56 \\
\hline 1.25 & 51 & 5.0 & 6.73 \\
\hline 1.37 & 117 & 6.0 & 7.52 \\
\hline 1.73 & 88 & 8.0 & 10.20 \\
\hline 3RS & 89 & 10.0 & 10.36 \\
\hline
\end{tabular}
\(\begin{array}{r}\text { P\&P } \\ .65 \\ .80 \\ .80 \\ .95 \\ .95 \\ 1.10 \\ 1.25 \\ 1.37 \\ 1.53 \\ \hline\end{array}\)

\section*{60 VOLT RANGE \\ \begin{tabular}{|c|c|c|c|}
\hline SEC & S & -40 & \\
\hline Ref. & Amps & E & P8P \\
\hline 124 & 0.5 & 2.48 & 80 \\
\hline 126 & 1.0 & 3.68 & 80 \\
\hline 127 & 2.0 & 5.33 & 5 \\
\hline 125 & 3.0 & 7.90 & 1.10 \\
\hline 123 & 4.0 & 9.19 & 1.53 \\
\hline 40 & 5.0 & 10.24 & 1.37 \\
\hline 120 & 6.0 & 12.07 & 1.53 \\
\hline 121 & 8.0 & 15.75 & BRS \\
\hline 122 & 10.0 & 19.40 & BRS \\
\hline 189 & 12.0 & 20.25 & BRS \\
\hline
\end{tabular}

\[
\begin{gathered}
\text { HIGH VOLTAGE } \\
\text { MAINS ISOLATING } \\
\text { Pri } 200 / 220 \text { or } 400 / 440 \\
\text { Sec } 100 / 120 \text { or } 200 / 240 \\
\text { VA Ref. \& P\& }
\end{gathered}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{SCREENED MINIATURES} \\
\hline Ref. & mA & Volts & c & P\&P \\
\hline 238 & 200 & 3-0-3 & 1.62 & 46 \\
\hline 212 & \(1 \mathrm{~A}, ~ 1 A\) & 0.6.0-6 & 1.93 & 58 \\
\hline 13 & 100 & 9-0.9 & 1.56 & 32 \\
\hline 235 & 330,330 & 0-9. 0-9 & 1.64 & 32 \\
\hline \(2 \mathrm{C7}\) & 500, 500 & 0-8-9, 0-8-9 & 2.02 & 65 \\
\hline 2 C 8 & 1A, 1A & 0-8-9. 0-8-9 & 3.07 & 65 \\
\hline 236 & 200. 200 & 0-15, 0-15 & 1.56 & 32 \\
\hline 214 & 300. 300 & 0.20, 0-20 & 2.03 & 65 \\
\hline 221 & 700 (DC) & 20-12-0-12-20 & 2.38 & 65 \\
\hline 20.6 & 1A, 1A & 0-15-20, 0-15-20 & 3.63 & 80 \\
\hline 203 & 500, 500 & 0-15-27, 0-15-27 & 3.15 & B0 \\
\hline 2 Cl 4 & 1A. IA & 0-15-27, 0-15-27 & 4.14 & 80 \\
\hline \$112 & 500 & 0-12.15.20-24-30 & 1.97 & 65 \\
\hline \multicolumn{5}{|l|}{CASED AUTO. TRANSFORMERS} \\
\hline \multicolumn{5}{|l|}{240 v mains lead output and USA 2 -pin outlets} \\
\hline & VVA \(£ 3.29\) & 29. P\&P 80p & Ref. & 113W \\
\hline & VVA E8.37 & 7. P\&P 95p. & Ref. & 4W \\
\hline & VA £10.9 & 7. P\&P E1.37 & Ref & 67 W \\
\hline 1100 & VA E18.3 & 19 BRS & Ref. & 84 W \\
\hline 2000 & VA ¢28 & 11 BRS & Ref. & 95W \\
\hline
\end{tabular} \(\begin{array}{r}\text { P\& } P \\ 46 \\ \hline\end{array}\)
\begin{tabular}{|c|c|}
\hline HIGH QUALITY MODUL & \\
\hline 3 watt RMS Amplifier & C2. 65 \\
\hline 5 watt RMS Amplifler & c2.95 \\
\hline 25 watt RMS Amplifier & £3.95 \\
\hline Pre.Amp for 3.5.10w (new) & £6.50 \\
\hline Pre-Amp for 25 w & £13.87 \\
\hline Power Supplies for 3-5-10w & £1.20 \\
\hline Power Supplies for \(25 w\) & £3.00 \\
\hline Transformer for 3w & £1.90 \\
\hline Transformer for 5.10 w & £2.30 \\
\hline Transformer for 25 w & £2.60 \\
\hline P\&P Amps/Pre-Amps / Power Supplies & 18 \\
\hline P Transiormers VAT 121/2\% & \\
\hline
\end{tabular}

NEW STEREO 30
Complete chassis. inc. \(7+7 \mathrm{w}\) r.s. amps
pre-amp, power supply, tront panel, knobs (need pre-amp, power supply, front panel, knobs (needs
mains trans.), \(£ 15.75\). Mains trans \(£ \mathbf{4 5}\). mains trans.), \(£ 15.75\). Mains trans, \(\mathbf{£ 2 . 4 5}\). T
veneered cab. \(£ 3.65\). P\&P 88 p . VAT \(121 / 2 \%\).
```

 POWVER UNITS
    ```

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ANTEX SOLDERING IRONS 15W £2.90. 18W £2.75. 25W £2.45 Soldering iron kit \(£ 3.90\)} \\
\hline
\end{tabular}
                                    PLEASE ADD VAT AFTER P\&P
ELECTROSIL AND SEMICONDUCTOR
    BSR MIAII-DEC
    4-speed autochanger
Garrard SP25 Mk. IV
        Garrard SP25 Mk. IV
(Chassis).
        hassis).
            16.00
STOCKISTS, AUDIO ACCESSORIES \& BARGAIN
PAKS CALLERS WELCOME (MON .FRI.) OR

> Barrie Electronics Ltd.
> 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8
> nEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST

\section*{HART ELECTRONICS}

\section*{The Only Firm for Quality Audio Kits}

\section*{J．L．Linsley－Hood High Quality Cassette Recorder}


As these circuits in recent issues of＂Wireless World＂are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price．We have theretore spent a little more on professional hardware allowing us to design a very advanced modular system．This enables a more satisfactory electrical layout to be achieved，particularly around the very critical input areas of the replay preamps．These are totally stable with this láyout and require no extra stabilising components．Many other advantages also come from this system which has separate record and replay amps for each channel plugging in to a master board with gold plated sockets．The most obvious is the reduction of crosstalk and interaction which could cause trouble on a single plane board，with our modular system the layout is compact but there is no component crowding．Testing is very easy with separate identical modules and building with the aid of our component－by－component instructions is childishly simple，but the finished result is a unit designed not to normal domestic standards but to the best professional practice


LENCO CRV CASSETTE MECHANISM
High Quality，robust cassette transport for Linsley Hood Recorder．Features fast forward Record／Play and Erase Heads and supplic cassente ejection facilties Fitted with ejection spring for above horizontal use．Ex－stock \(£ 19.10+£ 2.38\) VAT
\(71 x\) Complete set of parts for Master Board，includes Bias oscillator Relay，Controls，etc．£9．83＋£1．23 VAT
\(72 \times\) Parts for Motor Speed and Solenoid Control for Lenco CRV Deck £3．52＋44p VAT
\(73 x\) Complete set of parts for stereo Replay Amps and VU Meter Drive £8．02＋£1 VAT
74x Complete set for Stereo Record Amps．£6． \(64+83 p\) VAT
\(75 x\) Complete set of parts for Stablised Power Supply including special Low Hum field Mains Transformer．This unit is a separate \(3.5^{\prime \prime} \times 5^{\prime \prime}\) PCB designed so that the motor control board fits above t to save space．\(£ 8.29+£ 1.03\) VAT
700 M VU Meters Individual high quality meters with excellent ballistics and built－in illumination．\(£ 6.48+81 \mathrm{p}\) VAT PER PAIR

ALL PARTS ARE POST FREE
Please send \(9 \times 4\) SAE for lists giving fuller details and Price breakdowns A suitable Metalwork and Front Plate will be available soon

\section*{Penylan Mill，Oswestry，Salop}

Minin eonpouter Ixehenge
JUST RECEIVED－SUPERB，hardly used PDP8E SYSTEM ON VIEW IN OUR SHOW． ROOM NOW AND AVAILABLE FOR IMME－ DIATE DELIVERY


PDP11／20 20K Processor with Dual OEC：3pe and \(C\) ． PDpsk Drive and Control．Real Time Clock．Line Printer Control． 64 K nova ean Pack－mounted 24K Srstem comp
Novadisc．VDU and Real Tume Clork
PDP11 Interlace Boards DR11 Parallel Interface．DC11－AC Serial PDPAE Option Modules KD8E Databreak．KP8E Power Farl／Auto estar．MPPI－Mas
mith packard spas in stock
HEWLETT PACKARD 9830A Programmable Caiculator
TERMINALS－LARGE STOCKS AVAILAB
TERMINALS－LARGE STO
KSR33 Teletype from \(£ 250.00\)
ASR35 Teletype from \(\mathbf{E 7 5 0 . 0 0}\)
ban witer from E275．00
SPECIAL OFFER
Cossor DIDS 401.2 Visual Display Units 13 Tines \(\times 40\) characters
\(81 / 2 x^{4} 12^{\prime \prime}\)
screen）
64
character repertoire with detachen keyboard．（Control devioe required．）

\section*{Add 8\％Yat to all}
prices shown．
Carriage extra
detaits on request．


\section*{Keyboands}

\section*{NEW STOCKS \\ OF}

CLARE－ PENDAR
KEYBOARDS JUST RECEIVED

ASCI－Coded TIL－Compatible C．bank alphanumeric pead－switch
 Power Supply．\(+5 \mathrm{VOC}+\quad\) SPECIFICATIONS 10 mA Oupput logic levels Data Birs \(-\mathrm{mVO}-12 \mathrm{VOC}+1-10 \%\) 25 V OV 5.25 V Fan Out One standard TIT Load Strobe 26 V Fan 1 lay 10 miliseconds nominal to allow data to stabilise

KB6： 56 －station standard Teletype Iayoul AS RECOMMENDED FOA Plus 21.00 P \(\& P+8 \%\) VAT
KB7：Sumbar to KB6 PLUS 8 additional key－stations Istandaid ASCI 64 character set）PLUS lower－case Alpha tacility Price \(\mathbf{E 4 2 . 5 0}\) ，plus
it 100 P \(8 \mathrm{P}+8 \%\) ． ALSO AVAILABLE－SPECIAL LOW－COST KEYBOARD
KB5：3－bank alphanumeric 8audol－coded 36 －stalion keybard
TTL－compatible．strobed output．Price \(\mathbf{~} 2 \mathbf{2 0 . 0 0}\) ，plus 75 p P PQP \(+8 \%\)


\section*{MULTIMETER F4313 (Made in USSR)}

\(\overline{\mathrm{AC}} / \mathrm{DC}\) current ranges: \(60-120-600 \mu \mathrm{~A}-3-12-30 \overline{\mathrm{~mA}}-1.2-6 \mathrm{~A}\)
\(A C / D C\) voltage ranges: \(60-300 \mathrm{mV} \cdot 1.2 \cdot 6-30-120-300-600-1200 \mathrm{~V}\) Resistance ranges: \(3002 \cdot 10-100-1000 \mathrm{~K}\)
Accuracy: \(1.5 \% \mathrm{DC} ; 2.5 \% \mathrm{AC}\) (of full scale deflection)
Mirror scale and knife edge pointer. Taut suspension of movement. Transistor amplifier is used for all AC ranges thus achieving a common linear scale for both AC and DC ranges.
Meter is fully protected for a transistorised cut-out relay circuit. Range selection is achieved by clearly marked pian
Dimensions: \(95 \times 225 \times 120 \mathrm{~mm}\).

PRICE \(£ 37.50\) plus VAT
packaging and postage \(£ 1.10\)

\section*{OSCILLOSCOPE CI-5}

Made in USSR
Exiremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance sandwidth of 10 MHz the instrument is suitable to general electronic applications and educationa purposes where a sophisticated instrument would be both too expensive and delicate. 3 -in. tube giving a 50 \(\times 50 \mathrm{~mm}\) clear display. Amplitude and time base calibrations Sensitivity \(30 \mathrm{~mm} / \mathrm{v}\) max. Triggered and ree-running time base. suitable for displayation

Price \(£ 55.00\) ex. works
Price \(£ 55.00\) ex. Works
Packıng and carriage ( K . only \(£ 2.50\) )

\section*{}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{ULKY GUARANTE} \\
\hline \multicolumn{5}{|l|}{0.45} \\
\hline 0.38 & \multicolumn{4}{|l|}{\% \(\quad \mathrm{l}\)} \\
\hline \multicolumn{2}{|l|}{0.38} & & & \\
\hline \multicolumn{5}{|l|}{0.80} \\
\hline \multicolumn{5}{|l|}{0.60} \\
\hline 0.60 & & & & \\
\hline \multicolumn{5}{|l|}{0.60} \\
\hline \multicolumn{5}{|l|}{0.50} \\
\hline 0.75 & & & & \\
\hline 0.70 & \({ }_{\text {ecces }}\) & 0.38 & c¢88
EFF183 & 0.40 \\
\hline 0.70
0.80 & \({ }_{\text {ECCOA }}\) & 0.35 & Efis & 0.45
0.40 \\
\hline 0.70 & Eccas & 1.25 & ER200 & 0.75 \\
\hline 0.70 & ECC38 & 0.60 & El34 & 0.70 \\
\hline 0.00 & eccas & 0.60 & E13\% & 0.60 \\
\hline 0.60 & ECC189 & 0.00 & El4 & 80 \\
\hline 1.00 & ECF80 & 0.45 & EL81 & 0.80 \\
\hline 0.85 & ECFP82 & 0.45 & 8182 & 0.60 \\
\hline 0.70 & ECFES & 0.75 & E183 & 0.60 \\
\hline 1.50 & ECFE01 & 0.75 & 6184 & 0.35 \\
\hline 0.40 & ECFACR & 0.75 & \(E 190\) & \\
\hline 0.55 & ECH42 & 0.85 & E195 & 0.70 \\
\hline 0.70 & ECar 1 & 0.50 & EL500 & 0.80 \\
\hline 0.65 & ECHB3 & 0.50 & Emeo & . 50 \\
\hline 0.75 & ECHP4 & 0.50 & Emel & 0.60 \\
\hline 0.50 & ECL80 & 0.40 & Em84 & 0.40 \\
\hline 0.50 & ecasi & 0.75 & EY51 & 0.45 \\
\hline 0.50 & eals & 0.42 & EY51 & 0.45 \\
\hline 0.40 & ECLB & 0.75 & EY87 & 0.50 \\
\hline 0.75 & CCLO4 & 0.60 & EY88 & 0.50 \\
\hline 0.75 & ECO85 & 0.65 & \(E 740\) & 0.60 \\
\hline 2.60 & ECLP6 & 0.55 & E241 & 0.75 \\
\hline 0.80 & EC1300 & 4.50 & E280 & 0.30 \\
\hline 0.45 & EFEO & 0.35 & E2B1 & 0.35 \\
\hline 0.38 & Ef85 & 0.45 & 6234 & 0.75 \\
\hline
\end{tabular}

자영영



\section*{HIGH GAIN DARLINGTON PAIRS}

Plastic 3-Lead Case Diarlingion Parrs Typica current gain 30,000 Max collector voltage Ocbo 40 V Max. collector current 400 mA
ICBo-10nA. ICBO-10nA.
BC516 PNP
BC516 PNP
BC517 NPN

\section*{TRANSISTORS FOR T.V.}
R2008B
R2010B
BU126
BU133
BU208
0.95
1.55
1.55



Z \& I AERO SERVICES LTD.
Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF
Tel.: 7275641
Telex: 261306

Retail Branch:
85 Tottenham Court Road
London W1. Tel: 5808403


\section*{Wireless World Dolby noise reducer}

Trademark of Dolby Laboratories Inc
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring
- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stēreo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
-complete set ot components for stereo processor

\section*{Typical performance}

Noise reduction: better than 9 dB weighted
Clipping level: 16.5 dB above Dolby level (measured at \(1 \%\) third harmonic content)

Harmonic distortion \(0.1 \%\) at Dolby level typically \(0.05 \%\) over most of band. rising to a maximum of \(0.12 \%\).

Signal-to-noise ratio: \(75 \mathrm{~dB}\{2 \mathrm{OHz}\) to 20 kHz , signal at Dolby level) at Monitor output.
Dynamic Range \(>\) 90dB
30 mV sensitivity
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: \(£ 37.90\) + VAT
Also available ready built and tested
Calibration tapes are available for open-reel use and for cassette (specify which)
Price \(\mathbf{£ 2 . 0 0 + V A T *}\)
Single channel plug-in Dolby PROCESSOR BOARDS ( \(92 \times 87 \mathrm{~mm}\) ) with gold plated contacts are available with ali components

Price \(£ \mathbf{7 . 2 0}+\mathrm{VAT}\)
Single channel board with selected fet.
Price \(£ \mathbf{2} .20+V A T\)
Gold plated edge connector
Price £1.40 + VAT*
Selected FET's. 60p each + VAT, 100p + VAT for two, \(\mathbf{£ 1 . 9 0 + V A T}\) for four
Please add VAT at \(121 / 2 \%\) unless marked thus*, when \(8 \%\) applies
We guarantee full after-sales technical and servicing facilities on all our kits


\section*{INTEGREX LTD.}

\section*{IITTEGREK}

\section*{S-2020TA STEREO TUNER / AMPLIFIER KIT}

\section*{SOLID MAHOGANY CABINET}

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo
 Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc), THD less than \(0.1 \%\) at 20 W into 8 ohms. All sockets, fuses, etc, are PC mounted for ease of assembly. Tuner section: uses Mullard LP1 186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range \(88-104 \mathrm{MHz} .30 \mathrm{~dB}\) mono \(\mathrm{S} / \mathrm{N} @\) \(1.8 \mu \mathrm{~V}\). THD typ. \(0.4 \%\)

PRICE: £53.95 + VAF

\section*{NELSON-JONES STEREO FM TUNER KIT}

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.


Brief Spec. Tuning range \(88-104 \mathrm{MHz} .20 \mathrm{~dB}\) mono quieting @ \(0.75 \mu \mathrm{~V}\). Image rejection - 70 dB . IF rejection- 85 dB . THD typically \(0.4 \%\)
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price

\author{
Mono £29.15 + VAT With ICPL Decoder \(£ 33.42\) +VAT With Portus-Haywood Decoder \(£ 35.95+\) VAT
}

\section*{STEREO MODULE TUNER KIT}


Sens. 30dB S/N mono @ \(1.8 \mu \mathrm{~V}\)
THD typically \(0.4 \%\)
Tuning range \(88-104 \mathrm{MHz}\)
LED sig. strength and stereo indicator
A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC
PRICE: Mono \(£ 26.85+\) VAT \(_{1}\)
Stereo £29.95 + VAT

\section*{S-2020A AMPLIFIER KIT}


Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Type Spec. \(24+24 \mathrm{~W}\) r.m.s into 8 -ohm load at less than \(0.1 \%\) THD. Mag. PU input \(\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}\). Radio input \(\mathrm{S} / \mathrm{N}\) 72 dB . Headphone output. Tape in/Out facility (for noise reduction unit, etc.: Toroidal mains transformer.

PRICE: \(£ 31.95+\) VAT.
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS
£4.47+VAT BASIC MODULE TUNER KIT (Mono) £14.75 + VAT BASIC MODULE TUNER KIT (stereo). £16.75 +VAT

PHASE-LOCKED IC DECODER KIT
PUSH-BUTTON UNIT
\(\mathbf{£ 4 . 5 0 + V A T}\)

\section*{SINTEL for MEMORIES－GMOS－DISPLAYS－MPUS－BOOKS comement iem FAST SERVICE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline CMO & & \({ }^{2} 04026\) & 1.79 & counosi & 0.97 & CD4085 & 0.74 & clock & \\
\hline & & & 0.5 & C040 & & CD4086 & & 512 & \\
\hline CD4000 & 0．16 & & 0．89 & & 0.97 & cos & & & \\
\hline C04002 & 0.18 & & 1.16 & & 1.20 & & & & \\
\hline C04006 & & & 0．56 & & 1.37 & & & & \\
\hline C0 & 1． 12 & & 2.24 & CD & 1.37 & & & & \\
\hline & & & 1.11 & & 7.9 & & & & \\
\hline C0400 & 0．95 & & 1.45 & CD4 & 4.96 & & & & \\
\hline & & & 1.98 & & & & & & \\
\hline 发 & ． 51 & & & C040 & 9．07 & CD4 & & & \\
\hline & & C040 & 3．18 & & 1.1 & C045 & & & \\
\hline 边 & ． 17 & CD & 0.99 & & 0．64 & C045 & & & \\
\hline  & & CO40 & 1．22 & & 3.8 & CD45 & & 75 & \\
\hline O40015 & & & 3.09 & CO4 & ． 22 & CO4 & & 751 & \\
\hline 㖪 & & & 1．11 & CO4 & 0.2 & C045 & & & \\
\hline C04017 & \({ }_{0.99}\) & C04042 & \({ }^{0.87}\) & & 0.22 & CO45 & & 7512380 & \\
\hline 4018 & 0.99 & C04043 & 1.05 & & 0.22 & & & & \\
\hline D4019 & & CDA & & & 0.22 & & & & \\
\hline & 1.16 & CO4045 & 1.45 & & 0.22 & CO4555 & & CA3130 & \\
\hline C04021 & & & & & & & & & \\
\hline CO4022 & & \(\mathrm{COPO45}\) & 0.94 & & 0.60 & MC14528 & & IRCA 8 di & \\
\hline & 0.17
0.81 & CO4048 & 0.58 & CO4078 & 0.22 & MC14552 & 8.05 & 75491 & \\
\hline C04024 & & C04049
CD4050 & 0.55
0.55 & （04081 & & MC1455 & & 75492 & \\
\hline \multicolumn{10}{|l|}{\multirow[b]{8}{*}{}} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

DISPLAYS
 Many Display PCB＇s also available
FNDSOO C．C．
Red \(05^{\prime \prime} £ 1.02\)


 XANB52 CA 81.7
XAN654C． \(\mathrm{E1.7}\)

\section*{S． \\ PULSE GENERATOR MODULES}

100 Hz Module：For any system counting
\(\mathbf{3 2 . 7 6 8 k H z ~ M i n . ~ W a t c h ~ Q u a r z ~ C r y s t a r ~}\)

－Access and Barclaycard Dorders very welcome Lrice List sent with orders or free on reques
SITE 53c ASTON STREET，OXFORD Tel． 086549791
\(\square\) Als，


KITS
SOHz CRYSTAL TIMEBASE KIT：provides an extremely stable outpul
of one pulse every 20 msec Uses clocks to improve accuracy， 10 within a few seconds a month if used With battery backup also makes clocks power out or switch－or proot
heplacing 50 Hz signal on batery．powered equipmen1 Providing fim OIGITAI CLOCK KITS WITH CRYSTAL CONTROL BATTERY BACK UP OL


These two kits incorporate our Crystal Timebase Kit（XTK），together with components for Accurale to within a few seconds a month it mains power is disconnected the ctock cash a powe cut．actidental switching off or moving clock）the clocks will still keep perfect lume white on ATTRACTIVE G－DIGIT ALARM CLOCK．\(U\) ty life Touch swich snooze control and automatic intensty control Alarm remains fulty Operational while clock is on back－up Complete kil including case
order as＂ACK \(+X T K+\) BBK kir also available less crystal control and back－up Order as ACK \(\quad \begin{gathered}\text { E33．58 } \\ \mathbf{E 2 6 . 8 0}\end{gathered}\)


\section*{microprocessors}
\begin{tabular}{|c|c|c|c|}
\hline IMstooccol & 658．00 & 6820 & ¢17．67 \\
\hline 8080 A （2 uS） & ¢43．65 & 6850 & \(\underline{\$ 17.67}\) \\
\hline 6800 & ¢33．87 & 8224 & ¢9．76 \\
\hline ISPA／ 100 （SC／MP） & c18．75 & 8228 & ¢12．16 \\
\hline 2650 & c27．00 & 8251 & ［17．67 \\
\hline & & 8255 & 117.67 \\
\hline
\end{tabular}

MEK680001－with the 6800 MPY main IC＇s．PCE．Manuats and Dat ［137．00 sooks and Dathern（no
New 1976 RCA CMOS and Linear IC Combuned Databook
New 1976 RCA Power 176．65
E4．
\(\mathbf{E 4 . 9 5}\)1976 National Semiconductor 7400 series TTL Databook．co 200 pagesE2． 95
Intel 8080 Microcomputer Sysiems Users Manual．c． 220 pages ..... \(\mathbf{£ 4 . 7 5}\)
\(\mathbf{6 4 . 8 5}\)
\(\mathbf{6 2 . 7 7}\)
SNTIELnuar．c． 650 page612.45


\section*{SINE WAVE OSCILLATOR}

\section*{FROM THIS S-DeC \\ MAKE THIS}


象, "

Simplify carcuit design. Use S-DeC. Sockets in plastic block are connected in pre-arranged pattern. To build circuit, simply plug in components. Atterwards, unplug components ready to build more circuits. Use same components again and again
Every S-DeC comes complete with step-by-step instructions. free control panel, and booklet with nine circuits you can build. Sine wave oscillator, radio receiver, binary counter. VHF radio microphone - they re all easy with S.DeC (see free booklet for circuits and instructions).

Send cheque / PO now and start designing the easy way, with S-DeC. Each S-DeC costs only \(\mathbf{£ 1 . 9 8}\) plus \(37 p\) posi, packaging and VAT


JOYSTICKS


Precise, reliable, long-life Joystick Control Units, in single, dual or triple axis forms. Sprung to centre, or held by adjustable friction locks. Chorce of wirewound, cermet or plastic film potentiometers (all standard \(3 / \mathbf{B}^{\prime \prime}\) bush types) - or rotary switches.
Already in quantity production for remote control, TV games, electric wheelchars, audio control panels, etc., etc. Any quantity from one-off to hundreds per month. Typical one-off prices: Single axis \(£ 4.50\). Dual \(£ 6.50\). Triple \(£ 11.00+\) VAT
WE WISH TO APPOINT DISTRIBUTORS FOR THE U.K. AND OVERSEAS. Please write for full details of all our products.

See our ad. in January issue for details of all our products
FLIGHT LINK CONTROL LTD.
Bristow Works, Bristow Road
Hounslow, Middlesex, 01-570 4065


WW - 629 FOR FURTHER DETAILS

\section*{Solid State Colour Television Circuits}

\author{
G. R. WILDING
}

The book contains, firstly, a clear and concise explanation of how the various semiconductor devices used in solidstate receivers function, and how they are utilized in the complicated and of ten highly ingenious arrangements of modern designs. Secondly, concentrating on the most modern c.t.v. designs, explanations are given of how these circuits operate, providing excellent back-up material to the manufacturers' service manuals, which can contain only the minimum of 'circuit notes' to aid fault diagnosis.
The information covering the most up-to-date innovations in c.t.v. design in major British, European and Japanese receivers will be useful to service engineers, technicians and students and to amateur enthusiasts as a lucid exposition of the modern design of colour television receiver.
CONTENTS: Devices and Principles. Power Supplies. Timebase Circuits, Sync Separators. Convergence and Degaussing. Tuners and I.F. Amplifiers. Luminance Circuits. Chromı nance Circuits. Burst Gates and Reference Oscillators. Demodulator and PAL Switch Circuitry. Signal Amplifying and Output Stages. Beam Limiters. Index
1976208 pages \(252 \times 160 \mathrm{~mm} \quad 040800228 \times \quad £ 5.75\)

\footnotetext{
Order from your bookseller or, in case of difficulty,
} from
NEWNES-BUTTERWORTHS
Borough Green, Sevenoaks, Kent, TN15 8PH
Telephone 0732884567


\section*{KINNIE COMPONENTS 10 NELMES WAY, HORNCHURCH, ESSEX RM11 202 HORNCHURCH 45167}

\section*{CIRCUIT BOARD \\ P.C.B. \(1 / 161 \mathrm{oz}\). COPPER} FORMICA
Dim. \(8.4 \times 7.7\) in 3 pcs. 80p.
Dim. \(9.4 \times 8.1\) in 3 pcs \(90 p\).
Dim. \(10.4 \times 7.9\) in \(\mathbf{3}\) pcs. £1.00.
Dim. \(10.1 \times 7.9\) in 3 pcs. \(£ 1.00\).
Dim. \(13.1 \times 9.4\) in 3 pcs. \(£ \mathbf{2 0}\).
Dim. \(13.1 \times 9.4\) in 3 pcs. \(£ 1.20\).
Dim. \(17.0 \times 9.0\) in 2 pcs. \(£ 1.20\).
P.P. 35p on each pack.

BARGAIN PACK
10 pcs. \(10.1 \times 7.9 \mathrm{in}\). (Formica) plus free \(1 / 2 \mathrm{lb}\) etching \(X\) tals, £3.30.
FIBRE GLASS P.C.B.
Dim. \(6 \times 6\) in, \(\mathbf{5 5 p}\) each
Dim. \(12 \times 6\) in, \(85 p\) each. P.P \(15 p\) Dim. \(12 \times 12\) in. \(\mathbf{5 1 . 4 0}\) each
fibre glass P.C.b.
DOUBLE SIDED
Dim. \(6 \times 6\) in, 45 p each.
Dim. \(12 \times 6 \mathrm{in}, 70 \mathrm{peach}\).
Dim. \(12 \times 12\) in, \(£ 1.30\) each.
ETCH RESIST PENS (55p, P.P. 5p)
RESIST COATED P.C.B.
\(10.1 \times 7.9 \mathrm{in}, 70 \mathrm{pea}\). (Formica). \(6 \times 6\) in. \(75 p\) ea. (Fibre glass). BLUE P.C.B. INK
Etch resist use with any pen. Much cheaper than ready loaded pens. 50 c.c., 55p. p.p. 10 p.
FERRIC CHLORIDE ETCHING XTALS
11b-1 litre pack, 70p, p.p. 35p. \(5 \mathrm{lb}-5\) litre pack, \(\mathbf{£ 2 . 2 0}\), p.p. 65 p. PRINTED CIRCUIT KIT
The no-frills-all-value kit contaning 4 pcs \(8 \times 7\) Formica laminate. 1 pce \(6 \times 6\) Fibre glass laminate, 1 lb Etching Crystals. 50 c.c. Resist ink with instructions. \(\mathbf{£ 2 . 4 0}\), p.p. 65 p.
BARGAIN PACK FIBRE GLASS
P.C.B.

200 sQ in all usable pieces, \(£ 1.40\).
EDGE CONNECTORS, 54 WAY.
1 Spacing
Vero size, etc. Can be cut to any length. 65p, p.p. 10p. Side guides to sult above. 15p each.


\section*{EXTENSION}

(Type 706). Various colours E5. 25 p.p. 75 p .

MINIATURE UNISELECTOR
12 volt 11 -way. 4 bank ( 3 non-bridging. 1 homingl, \(\mathbf{£ 2 . 5 0}\), p.p. 35 p. 24 volt 11 -way, 6 bank ( 5 non-bridging. 1 bridging). £2.00, p.p. 35 p. UNISELECTORS
(new), 25 -way half wipe 12 bank (non-bridging). 68ohms. £6.50, p.p 50p.
F.M. FRONT END

Geared tuning. AFC \(88 / 108 \mathrm{MHz}\) A.M. gangs fitted. Full circuit diagram A.M. gangs conn. details supplied. \(£ \mathbf{3 . 5 0}\), p.p. \(25 p\).

\section*{OUTPUT METER}
\(500 \mu\) a \(11 / 2 \times 11 / 2\) clear plastic pane type. £1.30.

\section*{AM/FM TUNING METER}

125-0-125 \(\mu\) a Edgewise, \(11 / 2 \times 1 / 2\). £1.10.

Signal strength meter
\(250 \mu\) a illuminated edgewise \(1 / 2 \times 1 / 2\). £1.10.
miniature meters
500 micro-amp (level-stereo beacon. etc.), scaled half black/half red. Size 1 \(\times 1\) in. 65p, p.p. 15 p.

3 GANG TUNING CAPACITOR
85 pf to 320 pf, \(\mathbf{8 0 p}\), p.p. 20p.
S.T.C. CRYSTAL FILTERS
( 10.7 MHz ) 445 -LQU-901A \((50 \mathrm{KHz}\) spacıng), £3, p.p. 20p:
\(445-\) LQU-901B ( 25 KHz spacing). £4.00, p.p. 20 p.
V.H.F./U.H.F. POWER TRANSISTORS
(Type BLY 38). 3 watt output at \(100-500 \mathrm{Mhz}\) £2.25, p.p. 10 p.

PANEL METERS
\(23 / 8\) in \(\times 1 / 8\) S 8500 mA
\(23 / 8\) in \(\times 1 / 8 \mathrm{~S} 8500 \mathrm{~m}\)
\(\mathrm{~S} 150 \mu \mathrm{~A} 91 \mathrm{Amp}\)


S2 100 uA S 10 50va.c. S3 \(500 \mu \mathrm{~A} 511300 \mathrm{v}\)
a.c.

S4 mA S 12 50/0/50 4 A
S5 10mA S \(13100 / 0 / 100 \mu \mathrm{~A}\)
S6 50mA S14 500/0/500 14
S7 100 mA All at \(£ 3.75\), p.p. 15 p.

\section*{PANEL METERS}
\(41 / 2\) in \(\times 31 / 4 \mathrm{~L} 3200 \mu \mathrm{~A}\)
L1 \(50 \mu \mathrm{~A}\) L4 \(500 \mu \mathrm{~A}\)
L2 \(100 \mu \mathrm{~A}\) - All at £5, p.p. 15 p.


E1.50, p.p. 20 p
3 digit 12 v (Rotary Reset), \(21 / 4 \times 13 / 4 \times\) 1 1/4. £1.40, p.p 15 p
6 digit (Reset), 240 v , maıns. \(£ 5.00\).

\section*{RESET COUNTER (BRAND NEW)} 6 digit 24 v 25 I.P.S. £4, p p. 25 p.

\section*{BULK COMPONENTS OFFER}

Resistors/Capacitors 600 new com ponents. £2.75, p.p. 40p
Trial order 100 pcs. 75p, p.p 20p.

HIGH CAPACITY ELECTROLYTICS
\(250 \mathrm{mfd} / 63\) volt 20p p.p. 8p \(1.000 \mathrm{mfd} / 100\) volt 70 p p.p. 25 p \(2.200 \mathrm{mfd} / 100\) volt 90 p p.p. 25 p \(4.200 \mathrm{mfd} / 100\) volt \(/ 25\) volt 65 p p.p. 20 p \(\begin{array}{ll}4.700 \mathrm{mfd} / 25 \text { volt } & 65 \mathrm{p} \text { p.p. } 20 \mathrm{p} \\ 6.800 \mathrm{mfd} / 16 \text { volt } & 50 \mathrm{p} \text { p.p. } 15 \mathrm{p}\end{array}\) \(6.800 \mathrm{mfd} / 16\) volt 50 p p.p. 15 p \(10,000 \mathrm{mfd} / 25\) volt 75 p p.p. 25 p \(25,000 \mathrm{mfd} / 40\) volt \(£ 1.25\) p.p. 30 p \(47.000 \mathrm{mfd} / 40\) volt \(£ 2.00\) p.p. 50 p \(100,000 \mathrm{mfd} / 10\) volt \(£ \mathbf{1} .50\) p.p. 50 p \(160,000 \mathrm{mfd} / 10\) volt £:2.00 p.p. 50 p
BULK COMPONENTS OFFER
Resistors/Capacitors 600 new components, £2.75, p.p. 36p.
Trial order 100 pcs, 75p, p.p. 20p
SMITHS GEARED MOTORS 240 V AC
3 rev. per min. \(\quad £ 11.50\) p.p. 25 p 4 rev. per min. \(\quad\) \&il. 50 p.p. 25 p 6 rev. per min. \(£ 1.50\) p.p. 25 p 2 rev. per hr. £ 1.50 p.p. 25 p 6 rev. per hr. £ 50 p.p. 25 p

\section*{RELAYS}

\section*{SIEMANS MINIATURE RELAYS}
\(6 \mathrm{v} .4 \mathrm{c} / \mathrm{o}, 65 \mathrm{p} .24 \mathrm{v} .2 \mathrm{c} / \mathrm{o} .50 \mathrm{p} .24 \mathrm{v}\) 4 c/o. 65p. p.p. \(5 p\).

MINIATURE RELAYS
\((1 \times 11 / 4 \times 1 / 2) .24 v .4 \mathrm{c} / \mathrm{o} .35 \mathrm{p}\), p.p. 5 p.
Mains Relay 240 V A.c.
\(3 \mathrm{c} / 010 \mathrm{amp}\). contacts. 80p with base, p.p 20p.

\section*{miniature reed relay}
\((1 \times 1 / 4), 12 v .1 \mathrm{c} / \mathrm{o}, 50\) p, p.p. 10 p.
S-DECS AND
T-DECS
S-DEC \(£ 1.90\)

\section*{£4.20}

T-DEC, £3.60
U-DEC B.
C6.90
S.C.R. - THYRISTORS

1 amp 400 P.I.V., 35p
5 amp 400 P.I.V. 40p
POWER UNIT 2OV D.C.
500 MA rectified and smoothed by 1250 Mfd . cap and OC25 Trans. circuit, £2.50, p.p. 55p.
POWER UNIT OUTPUT \(171 / 2 V\) RECTIFIED. UNSMOOTHED. £2.00, p.p. 50p.

\section*{OVERLOAD CUT OUTS}

Panel mounting \(800 \mathrm{M} / \mathrm{A} 18 \mathrm{amp} .10\) amp 55p ea.

\section*{H.D. ALARM BELLS}

6ın. Dome \(6 / 8 v\). d.c. Heavy cast housing for exterior/interior use £3.75, p.p. £ 1
1,000 TYPE KEY SWITCHES
Single \(\cdot 2 \times 6\) make locking centre off.
60p. p.p. \(10 p\)
BANK of 4-2 \(\times 4 \mathrm{c} / \mathrm{o}\) ea. switch (one bias

\section*{TRANSFORMERS}
H.T. TRANSFORMERS. Prim \(110 / 240 \mathrm{v}\). Sec. \(400 \mathrm{v} .100 \mathrm{M} / \mathrm{A}\).
\(\qquad\)
L.T. TRANSFORMER. Prim. 240 v .

Sec. 27-0-27 at \(800 \mathrm{M} / \mathrm{A}\).
£2.35, p.p. 50p.
\(110 / 240 v\). Sec. 50 v at 10 amp £10, p.p. £1.50. L.T TRANSFORMER. Prim. 240 v . Sec. 18 v at 1.5 amp and 12 v at 1 amp . T. TRANSFORMER. Prim. 240 v . Sec. 18 v .1 amp. \(£ 1.10\). p.p. 35 p. L.T. TRANSFORMER. Prim. \(110 / 240 v\). Sec. \(23 / 24 / 25 v\) at 10 amps. E7, p.p.E1. L.T. TRANSFORMER. Prim.
\(110 / 240 \mathrm{v}\). Sec. \(20 / 21 / 22 \mathrm{c}\). at 8 \(110 / 240 v\). Sec. \(20 / 21 / 22 c\) c. at 8 Emp, p.p. E1.
L.T. TRANSFORMER. Prim. \(110 / 240 \mathrm{v}\). Sec. \(0 / 24 / 40 \mathrm{v}\). at \(11 / 2\) amp. (Shrouded). £1.95, p.p. 50 p L.T. TRANSFORMER. Prim \(200 / 250 \mathrm{c}\). Sec. \(20 / 40 / 60 \mathrm{v}\). at 2 amp. (Shrouded). E3, p.p. 70p L.T. TRANSFORMER (H.D.). Prim \(200 / 250 \mathrm{v}\). Sec. 18 v . at 27 amp .40 v at 9.8 amp. 40 v . at 3.6 amp .52 v . at amp. 25 v . at 3.7 amp .
£17.50, p.p. £2.50 L.T. TRANSFORMER. Prim. 240 V Sec. 20 v , at 2.5 amp £2. p.p. 65 p L.T. TRANSFORMER ( \(\because \mathrm{C} \cdot\) CORE). \(200 / 240 v\). Secs. 1-3-8-9c. All at 1.5 amp. 50 v . at 1 amp. £2.50, p.p. 50p. L.T. TRANSFORMER ( ' ' C ' ' CORE) Prim \(120 \mathrm{v} / 120 \mathrm{v}\). SECS. 1-3-9-20v. \(10 \mathrm{amps} \quad\) £7.50, p.p.£1.25 L.T. TRANSFORMER ("C"' CORE). 200" 240v. Secs. 1-3-9-27v. All at 10 amp. £7.50, p.p. £1.50 L.T. TRANSFORMER ("C' CORE). \(200 / 240 v\). Secs. 1-3-9-20v. All at 4 \(\begin{array}{ll}200 / 240 v \\ \text { amp. Secs. } & \mathbf{~} \mathbf{~} 5.50 \text {. p.p. } 75 \text { p. }\end{array}\) amp.
L.T. TRANSFORMER ( \({ }^{\circ} \mathrm{C}^{\prime \prime}\) ' P (p. CORE). \(120 / 120 \mathrm{v}\). Sec. 1-3-9-9v. All at 10 E6.50, p.p. £1.50.
L.T. TRANSFORMER ( \({ }^{C}\) C \({ }^{-}\)CORE). \(110 / 240 \mathrm{v}\). Secs. \(1-3-9 \mathrm{v} \quad 10 \mathrm{amp}\) \(35 \mathrm{v} .1 \mathrm{amp} .50 \mathrm{v} .750 \mathrm{M} / \mathrm{A}\).
£6.50. p.p. E1 50.

\section*{MAINS MOTOR}

Type used in quality record decks and tape recorders suitable for extractor fans, heaters. etc, //s" stack. 85p. \(1^{\prime \prime}\) stack, \(£ 1\)
both 30 p.

\section*{MAINS MOTOR (EX-EQUIP.)}

24 pole as used in quality tape equipment 1360 r.p.m., size \(33 / 4 \times 33 / 4\) \(\times 31 / 2\), € 2.25 , p.p 50 p.

MULTICORE CABLE
6-core ( 6 colours) 14/0076 Screened P.V.C. 30p per yard 100 yds. at £16.50, pp \(2 p\) a yard. 7-core 17 £16.50, \(p p\)
colours). \(7 / 22 \mathrm{~mm}\) a Screened P.V.C: 30 p per yard; 100 yards \(£ 16.50\). P.P. 4 p per yard.

MAIL ORDER ONLY : CALLERS BY APPOINTMENT WW - 088 FOR FURTHER DETAILS


\section*{P.L.L. F.M. STEREO TUNER Requires no \\ Kit \(£ 40{ }_{(T a \times 121 / 2 \%]}\) \\ adjustments}

We can also supply REG PS.V O 60 v . O.1AL 1800 Tax \(8 \%\) FM SIG, GEN W
E12. TH O Analyser E 1850 MVMTE 15 25. Blomley \& Balley Amps
Analyser \& 1850 MVMTE15 25. Blomley
TELERADIO ELECTRONICS
325 FORE STREET EDMONTON. LONDON N.9. 01-807 3719

\section*{QUADRAPHONIC KIT MODULES}
nis Each module functions Each kit comprises of glass fibre PCBs and Constructed by means of a master switch

(mio which the boa
DEMODULATOR
\(\mathbf{\Sigma 3 2}+\) VAT ( \(£ 4.00\) ) VARIOMATIX DECODER SYNTHESIZER

COMPONENTS
CARBON RESISTOR PAKS These Paks contain a range of Carbon Restators,
groupt:R. 150 Mi:


RF Chokes CHI 2.5 mH \(\begin{array}{lll}\mathrm{CH} & 2.5 \mathrm{mH} & 0.27 \\ \mathrm{CH} 3 & 7.5 \mathrm{mH} & \mathbf{0 . 2 9}\end{array}\) \(\begin{array}{lll}\mathrm{CH} 5 & 1.5 \mathrm{mH} & \mathbf{0 . 2 9} \\ \mathrm{CH} & \mathbf{0 . 2 6}\end{array}\) \(\begin{array}{lll}\mathrm{CH} 2 & 5.0 \mathrm{mH} & 0.28 \\ \mathrm{CH} & \mathbf{0 . 2}\end{array}\) \(\mathrm{CH}^{4} \quad 10 \mathrm{mH} \quad 0.31\)
colls DRR2 Dual range 0.42
CARBON POTENTIOMETERS
LOg and Lin \(4.7 \mathrm{~K} .10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}\), Log and Lin \(4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}\) VC 1 Single Less Switch VC 3 Tangle D.P. Switch \begin{tabular}{ll} 
VC \\
4 & 1 KLLin Less Switch \\
VC. \\
\hline
\end{tabular}

\section*{HORIZONTAL CARBON PRESETS}
0.1 Watt 0.09 each
\(100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K} .22 \mathrm{~K}\), \(47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, \mathrm{IM}, 2 \mathrm{M}, 4.7 \mathrm{M}\).

\section*{REPANCO TRANS FÓOMMERS *}

240 V . Primary. Secondary voltages \(8 \mathrm{~V}, 10 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}\) and \(25 \mathrm{~V}-0-25 \mathrm{~V}\).
\begin{tabular}{lccc} 
Type & Amps & Price & P\&P \\
MT50/1/ & \(1 / 2\) & \(£ 3.00\) & 0.45 \\
MT50/1 & 1 & \(£ 4.00\) & 0.48 \\
MT50/2 & 2 & \(\mathbf{8 5 . 0 0}\) & 0.60 \\
\hline
\end{tabular}

COIL FORMERS \& CORES \(\begin{array}{ll}\text { * } \\ \\ & \text { Cores \& Formers }\end{array}\)

\section*{SWITCHES}


\section*{FUsEs}
\(20 \mathrm{~mm}, 100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}, 500 \mathrm{~mA}\)
1A, 1.5A. 2A QUICK BLOW
Anti-surge 20 mm only \(\quad\)\begin{tabular}{l}
\(* 0.05 p\) each \\
\\
\\
\\
\hline \(0.8 p\) each
\end{tabular}
VEROBOARDS*
VB 1
containing approx. 30sq. ins. various SB2
containing approx 30 sq. ins. various

\section*{ELECTROLYTIC PAKS}

Containing a range of miniature electrolytic capacitors assorted into the E1 18 mixed values.
E2 18 mixed 0.47uf-10uf
E3 18 mixed 100uf-680uf

\section*{V.A.T.}

\section*{ALL PRICES} EXCLUDE V.A.T.

Please aad 8\% to all prices marked *. Remainder add 12 \(1 / 2 \%\). Do NOT add V.A.T. to prices marked \(\dagger\).

INSTRUMENT CASES
 and bezel, in black or blue No. Length Wlath Height price

ALUMINHUM BOXES


Each complete, with \(1 / 2^{\prime \prime}\) deep lids \&
crews)
PACKING FOR EACH BOX

\section*{COMPONENT PAKS}

Pak Qty Description
No. 200 Resistors mixed values C2 150 approx. count by weight Capacitors mixed values
approx. count by weight
350 Precision Resistors mixed 75 values W 5 1/th W Resistors mixed \({ }_{5}\) preferred values
5 Pieces assorted Ferrite Rods. 60
2 Tuning Gangs. MW/LW 1 Pak w 1 Pak Wire 50 metres 0 assorted colours 3 Micro Switches \begin{tabular}{lll} 
C10 & 15 & Assorted Pots \& Pre-Sets \\
\hline
\end{tabular} 5 Jack Sockets \(3 \times 3.5 \mathrm{~m}, 2\) x standard Switch Type C12 30 Paper Condensers pre. ferred types mixed values .60 C13 20 Electrolytics Trans. types. Pack assorsed Hardware-
Nuts/Bolts, Grommets Nuts/Bolts, Grommets. etc. 2 Amp
C16 20 Assorted Tag Strips Panels \(\mathbf{. 6 0}\) C18 4 Assorted Control Knobs
Rotary Wave Change Switches
\begin{tabular}{ll}
C 19 & 2 Relays \(6-24 \mathrm{~V}\) Operating \\
C 20 \\
.60 \\
\hline .60
\end{tabular} C20 Sheets Copper Laminate. Please add 20 p post and 200 sq. ins. \(\quad \bullet .60\) Please add 20 p post and packing on all AVDEL BOND
SOLVE THOSE STICKY
PROBLEMS!


CYANOACRYLATE G2 ADHESIVE seconds. Bonds plastic, rubber, transistors. components. permanently. imme-
diately!
OUR PRICE ONLY 70p *
 per_nair

\section*{ANTEX EQUIPMENT}

SEMICONDUCTORS

\section*{soldering irons}
\(\times 25.25\) watt
- \(£ 2.95\)

Model \(G\). 18 wat
CCN 240.15 watt
\(\begin{array}{r}\text { E2. } 25 \\ +8.25 \\ \hline\end{array}\)
SK2.Soldering Kit \(\ldots \ldots \ldots \ldots \ldots\). . . . . . . 4.60
BITS AND ELEMENTS A
\begin{tabular}{|c|c|c|}
\hline 102 for model CN240 & 3/32" & 2p \\
\hline 104 for model CN240 & 3/16" & *48p \\
\hline 1100 for model CCN240 & 3/32* & 48p \\
\hline 1101 for model CCN240 & 3/8" & *46p \\
\hline 1102 for model CCN240 & \(1 /{ }^{\prime \prime}\) & *4p \\
\hline 1020 for model G240 & 3/32" & 46p \\
\hline 1021 for model G240 & 1/8" & *4p \\
\hline 1022 for model G240 & 3/16" & *4p \\
\hline 50 for model \(\times 25\) & 3/32' & \({ }^{46}\) p \\
\hline 51 for model X25 & 1/8' \({ }^{\prime \prime}\) & *46 \\
\hline 52 for model X25 & 3/16" & *46p \\
\hline
\end{tabular}

ELEMENTS -
\begin{tabular}{lr} 
Model ECN & * 1.25 \\
Model EG 240 & C1.60 \\
Model ECCN 240 & \(* \in 1.60\)
\end{tabular}


\section*{ST3 Suitable for all models \(\quad\) El. 25}
\begin{tabular}{lr} 
Antex heat shunt & \& 12 p \\
\hline PLUGS
\end{tabular}

\section*{\(\begin{array}{llr}\text { PS } 1 & \text { D.I.N. } 2 \text { Pin (Speaker) } & 0.10 \\ \text { PS } 2 & \text { D.I.N. } 3 \text { Pin } & 0.11\end{array}\) \\ \[
\begin{array}{ll}
\text { PS } 2 & \text { D.I.N. } 3 \text { Pin } \\
\text { PS } 3 & \text { D.I.N. } 4 \text { Pin }
\end{array}
\]}
\[
\begin{array}{ll}
\text { PS } 4 & \text { D.I.N. } 5 \text { Pin } 180^{\circ} \\
\text { PS } 5 & \text { D.IN. } 5 \text { Pin } 240^{\circ}
\end{array}
\]
\[
\begin{aligned}
& \text { PS } \\
& \text { PS } 8 \text { Jack. } 2.5 \mathrm{~mm} \text { Screened } \\
& \text { PS } 9 \\
& \text { Jack } 3.5 \mathrm{~mm} \text { Plactic }
\end{aligned}
\]
\[
\begin{aligned}
& 23 \text { D.IN. } 5 \text { Pin } 180^{\circ} \\
& 24 \text { D.I.N. } 5 \text { Pin } 240^{\circ}
\end{aligned}
\]

35 D.I.N. 2 Pin (Speaker) \(\quad 0.07\)

PS 40 Jack 3.5 mm Switched
PS 42 Jack Stereo Switched
PS 43 Phono Single
response extending from 25 Hz
are typically below \(1 \%\) levels
use of 4115 w transistors

SPECIFICATION
\(\mathbf{2 5 H z - 2 0 k H z}\) Measured at 100
\[
\begin{array}{ll}
6 & \text { D.I.N. } 6 \text { Pin } \\
7 & \text { D.I.N. } 7 \text { Pin }
\end{array}
\]
\[
\begin{aligned}
& \text { Jack } 2.5 \mathrm{~mm} \text { Screened } \\
& 9 \text { Jack } 3.5 \mathrm{~mm} \text { Plastic } \\
& 10 \text { Jack } 3.5 \mathrm{~mm} \text { Screened }
\end{aligned}
\]

PS 44 Phono Double

CIRCUIT KIT follow instructions.

Loads: 4-16 ohms

Sensitivity
mi \(1 \mathrm{kHz}: 450 \mathrm{mV}\)

\section*{REF}
\[
\begin{aligned}
& \text { PS } 7 \text { D.I.N. } 7 \text { Pin } \\
& \text { PS } 8
\end{aligned}
\]

Tape Head Cleaning Kit
\[
\begin{aligned}
& 0 \text { Jack } 3.5 \mathrm{~mm} \text { Screened } \\
& 1 \text { Jack 1/4" Plastic }
\end{aligned}
\]

Model 9 Wire Strppe
\[
\begin{aligned}
& 1 \text { Jack } 1 / 4 \text { " Plastic } \\
& 2 \text { Jack } 1 / 4^{\prime \prime} \text { Screene }
\end{aligned}
\]

23 1,", Tape Editing Kit
\[
\text { PS } 13 \text { Jack Stereo Screene }
\]

PS 38 D.IN. 5 Pin \(240^{\circ}\)
\(24 \mathrm{I} / \mathrm{m}^{\prime \prime}\) Cassette Editing Kit
\[
\begin{aligned}
& \text { PS } 13 \text { Jack Ster } \\
& \text { PS } 14 \text { Phono }
\end{aligned}
\]

PS 36 D.I.N. 3 Pin
PS 37 D.I.N. 5 Pin \(180^{\circ}\)

\section*{P.C.B. KITS \& PENS}

\section*{PROFESSIONAL D.I.Y. PRINTED}

Spectally derigned for use in-Disco
Unis. P.A. Syzems, high power Hi-FL

Continuous

D' 2 Hi-ri Cable \& Flex

36A Record \& Stylus Cleaning Kit \({ }^{* 38}{ }^{* 3}\) p
\[
\begin{aligned}
& \text { S } 21 \text { D.I.N. } 2 \text { Pin (Speaker) } \\
& 22 \text { D.I.N. } 3 \text { Pin }
\end{aligned}
\]
\[
28 \text { Jack } 1 / 4 \text {. Screened }
\]

PS 39 Jack 2.5 mm Switched

PS 47 Co-Axial Flush

Containing 6 sheets of \(6^{\prime \prime} \times 4^{\prime \prime}\) sing sided laminate. a generous supply of etchant powder. etching dish, etchant measure, tweezers. etch resistant marking pen, high quality pump drill with spares, cutting knife with spar blades, \(6^{\prime \prime}\) metal ruler, plus full easy to
follow instructions.

Spare container of etchant for per kit Spare container of etchant for above,
complete with instructions P.C.B. MARKING PEN:
\(x\) quality market pens. specifically designed for drawing fine etchan Complete with full instructions * \(£ 1.53\)

\section*{SLIDER PAK}


\section*{IT'S NEW-IT'S POWERFUL! IT'S THE AL250 \\ 125 watts R.M.S}

\author{
The module has a sensitiv
of 450 mV and frequency
response extending from
}
output stage makes the unit extremely rugged while damage sem incorrect or short-circuit loads is prevenied by four transistesulting from circuit
The unit is intended for use in many applications such as disco units. sound
Output Power: 125 watt RMS Total harmonic distortion
requency response
\(\mathbf{2 5 H z}-20 \mathrm{kHz}\) Measured at 100

\section*{ONLY £15.95 + 8\% VAT}

\section*{BIB HI-FI ACCESSORIES}

29A Salvage Cassette
\[
\begin{aligned}
& 14 \text { Phono } \\
& \text { OS } 15 \text { Car Aerial } \\
& \text { S } 16 \text { Co-Axial }
\end{aligned}
\]

Stylus Balance
Splicing Tape
PS I6 Co-AxIal

418 Track Cartridge Head Carrier
Model 42 Groov-Kileen
42/S Roller \& Brush for REF 42 \& 2000
\[
\begin{aligned}
& 24 \text { D.I.N. } 5 \text { Pin } 240^{\circ} \\
& 25 \text { Jack } 2.5 \mathrm{~mm} \text { Plasti }
\end{aligned}
\]
\[
25 \text { Jack } 2.5 \mathrm{~mm} \text { Plastic }
\]
\[
27 \text { Jack 1,": Plastic }
\]
\[
\begin{aligned}
& \text { S } 29 \text { Jack Stereo Plastic } \\
& \text { S } 30 \text { Jack Stereo Screene }
\end{aligned}
\]
\[
\begin{aligned}
& 30 \text { Jack Stereo Screened } \\
& 31 \text { Phono Screened }
\end{aligned}
\]
\[
\begin{aligned}
& 31 \text { Phono Screened } \\
& 32 \text { Car Aerial }
\end{aligned}
\]
\[
\begin{aligned}
& \text { PS } 32 \text { Car Aerial } \\
& \text { PS } 33 \text { Co-Axial }
\end{aligned}
\]
\[
\frac{\text { PS } 33 \text { Co-Ax }}{\text { SOCKETS }}
\]

43 Record Care Kit

\section*{45 Auto Chan \\ 48 Record Dust-off}

52 A Cassette Tra
53 Hi-Fi Stereo Test Cassett
56 Hi-Fi Hints \& Tips Book
56 Hi -Fi Hints \& Tips Book
Model 60 Groov-Kleen
Model 60 Groov-Kleen
rool-Kleen
* \(£ 2.76\)
98 p
* \({ }^{98 \mathrm{p}} \mathrm{p}\)

S Replacement Brush \(\quad{ }^{\mathbf{4}} \mathbf{4 8} 1.72\)
and Base Sucker for Model \(60 * 24 \mathrm{p}\)
71 Record 'Dust Off (Displays of ten)
71A Record 'Dust Off (Bubble Pack)
75 Indexa Record
7 Stylus Cleane
83 Cassette Fast Hand Winder
Cassette T
\((20 \& 10)\)

\section*{AUDIO LEADS}

S22I 5 pin DIN plug to 4 phono plugs
S222 5 pin DiN plug to 5 pin DIN socket
S237 length 1.5 m . \({ }^{2}\).68p
mirror image length 1.5 m El. 20
S238 2 pin DIN plug to 2 pin DIN socket
S268 5 pin DIN plug to 3 pin DIN plug 1
S270 \& 4 and \(3 \& 5\) length \(1.5 \mathrm{~m} \quad £ 1.00\)
S270 2 pin DIN plug to 2 pin DIN socket
lengit 10 m
5 pin DIN
5 pin DIN plug to 2 phone plugs conne
1.5 m
S275 5 pin DIN plug to 2 phono sockets connected to pins 3 \& 5 tength
\(\leq 3185 \mathrm{pin}\) DIN socket to 2 phono plugs
connected to pin \(3 \& 5\) length
23 cm
\(.68 p\)
S404 Coiled stereo hion exten
S217 \(\begin{aligned} & \text { sion cord extends to } \\ & 3 \text { pin DIN plug to } \\ & 7 \mathrm{~m} \\ & \text { pin } \\ & \text { DIN }\end{aligned}\)
length 1.5 m plug to 3 pin DIN plug
S219 5 pin DIN plug to 5 pin DIN plug
S474 length 1.5 m (1.5mm Jack to 3.5 mm Jack lengep
S600 5 pin DIN plug to 3.5 mm Jack connected to pins \(3 \& 5\) length
1.5 m
S700 5 pin DIN plug to 3.5 jack connected to pins \(1 \& \& \begin{array}{r}\text { length } \\ 1.5 \mathrm{~m}\end{array}\)
80 p

\section*{CERAMIC PAKS}

Containing a range of miniature ceramic capacitors
unrepeatable value
\(\begin{array}{rl}\mathrm{MCl} & 24 \\ 27 \mathrm{pF}, 33 \mathrm{pF}, 39 \mathrm{pF}, 47 \mathrm{pF}, 56 \mathrm{pF}, & 68 \mathrm{pF} .\end{array}\)
\(27 \mathrm{pF}, 33 \mathrm{pF}, 39 \mathrm{pF}, 47 \mathrm{pF}, 56 \mathrm{pF}, 68 \mathrm{pF}\),
and \(82 \mathrm{pF}, \ldots . . . . . . . . . . . . . .60\).
MC2 24 ceramic capacitors: 100 pF .
120 pF , \(150 \mathrm{pF}, 180 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}\)
MC3 24 ceramic capacitors: 470 pF .
\(560 \mathrm{pF}, 680 \mathrm{pF}, 830 \mathrm{pF}, 1000 \mathrm{pF}\). MC4 21 ceramic capacitors: 4700 pF
\(6800 \mathrm{pF}, 01 \mu \mathrm{~F}, .015 \mu \mathrm{~F}, .022 \mu \mathrm{~F}, .033_{\mu} \mathrm{F}\)
and \(.047 \mu \mathrm{~F}\)

\section*{MAMMOTH I.C. PAK} APPROX. 200 PIECES
Assorted fall-out integrated circuits, including: Logic, 74 series, Linear,
Audio and D.T.L. Many coded devices but some unmarked - you to identify. OUR SPECIAL PRICE £1.00

\section*{HANDBOOKS}

TRANSISTOR DATA BOOK. DTE 2 227 Pages packed with information on tion including outlines. Full specifica
TRANSISTOR EQUIVALENT BOOK BPE 75256 Pages of cross references and equivalents for European, Ameri can and Japanese Transistors. This is book on the market today equivalents introduction in 13 languages. 13 languages.
DIODE EQUIVALENT BOOK DE 7 144 Pages of cross references and and and Japanese Diodes, Zeners, Thyris tors. Triacs, Diacs and L.E.D.s.
MULLARD DATA Price \(+£ 1.98\) each MDB 76 The latest edition of this popular handbook contains informa Circuits, Television Picture Tubes Valves, Capacitors and Resistors. Included in the 161 informative pages are 21 pages on Semiconductor Comparables, Price +50 p each TTL DATA BOOK DIC 75 Now complete Data book of 74 series TTL
\((7400-74132\) ). Covering 13 main facturers in U.S.A. and Europe 13 manu. facturers in U.S.A. and Europe, this
book gives full data as well as equivalents. THE WORLD'S BROADCASTING STATIONS WBS 75 An up-to-theminute guide for those interested in DX-ing. Contains all the wo.Id's broadcasters on SW, MW and LW, as
well as European FM/TV wel! as European FM/TV stations.
A full range of technical books

\section*{*}





50 watts into 4 ohms: \(01.1 \%\) 50 wa
\(0.06 \%\)
S/N ratio; better than 80 dB s
Damping factor, 8 ohms: 65
Semiconductor complement: 13
transiators, 5 diodes
Ovarall eize: Heatsink width
190 mm , length 205 mm , height
40 mm

\section*{路}號



 
 \begin{tabular}{l} 
is \\
4 \\
\hline
\end{tabular}

\author{
......
}

PO BOX
————————

High quality modules for stereo, mono and other audio equipment.


- FET Input Stage
- VARI-CAP diode tuning - Switched AFC - Multi turn pre-sets * LED Stereo Indicator Typical Specification: Sensitivity \({ }^{3} \mu\) volts Stereo separation \(\mathbf{3 0 d b}\) Supply required 20-30v at 90 Ma max.

\section*{STEREO PRE-AMPLIFIER}



OUR PRICE £13.50

A top quality stereo pre-amplifier push-button selector switch provides a choice of inputs with a choice of inputs together high and low frequencies plus tope out low frequencies, plus tape MK. 60 AUDIO KIT: Comprising BTM80. \(1 \times\) SA 100 SPM 1 front pane \(1 \times\) and knobs. 1 Kit of parts to include on/off switch, neon indicator, stereo headphone sockets plus PRICE \(£ 27.55\) TEAK 60 AUDIO KIT size \(16^{34^{\prime \prime}} \times 1^{1 i^{\prime} 1 / 2^{\prime \prime} \times 33 /{ }^{\prime \prime}}\) cabine parts include aluminum chassis heatsink and front panel brackét plus back panel and appropriate sockets etc KIT PRICE E9.20 plus 02 p postage

Frequency Response +1 dB 20 Hz Tape Input 100 mV into 100 K ohm 2 Radio Tuner 3. Magnetic \(P\),
50 K ohms


IdB from 20 Hz to 20 KHz
Supply \(-20-35 \mathrm{~V}\) at 20 mA


Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges It is provided with a standard DIN
input socket for ease of connection. input socket for ease of connection.
Full instructions supplied.

POSTAGE \& PACKING
Postage \& Packing add 25p unless otherwise shown. Add extra for airmail. Min. E1.00 STEREO 30 COMPLETE AUDIU CHASSIS \(7+7\) WATTS R.M.S


The Siereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e high quality ceramic pick-up. stereo tuner, stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs, main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available Ideal for the beginner or the advanced constructor who requires Hi .Fi performance with a minimum of installation difficulty (can be installed in 30 mins).


Electronic Brokers Ltd, are one of the leading electronic instrumentation companies in the UK, providing a full range of cervices to Governments both at home and overseas.

We have the largeat stocks of secondhand tent equipment in Europe as well as a selected range of new products. These are on display at ar London showrooms where cuatomers can exsmine the equipment of their choice and see

Electronic Brokers Ltd. have fully equipped workehope on the premises to test and report

SEE IJS AT THE ELECTRONIC INSTRUMENTS EXHIBITION
LONDON - Bloomsbury Centre 21-23 September 1976

REMEMBER THE WORLD'S LEADING INSTRUMENTS ARE ON EXHIBITION ALL YEAR ROUND AT ELECTRONIC BROKERS

\section*{OSCILLOSCOPES}


HAMEG
Tansistorised compact single beam portabie scope
bandwidih of 8 MHz Compensated \(\forall \rightarrow\) attenuator 12 ranges \(50 \mathrm{mV} / \mathrm{cm}\) to \(30 \mathrm{~V} / \mathrm{cm}\) Timebase sweep range
of 10 Hz 10.50 Hz and can be triggered from +Ve or
-Ve externally or internally \(Y\) innut can be AC or DC
coupled. Display area \(6 \mathrm{~cm} \times 4 \mathrm{~cm}\) Rise time 44 ns coupled
DRmensions \(203 \mathrm{~mm} \times 160 \mathrm{~mm} \times 240 \mathrm{~mm}\). W1 5 kg
BRAND NEW Type No HM207 MRAND NEW Type No HM 207
 cortable Scope
cupled \(50 \mathrm{mV} /\)
SOLARTRON \(\begin{array}{ll}\text { SOLARTRON } \\ \text { Portable Scope } \mathrm{DC} \text {. } 6 \mathrm{MHz} \text { Double Beam CT436 } & \text { £95 } \\ \text { CD } 10143 \mathrm{DC}-5 \mathrm{MHz} & \mathbf{9 0} \\ & \end{array}\) Portable Scope CD \(1400 \mathrm{c}-15 \mathrm{MHz}\). Plug ins avalable
CX \(1441,1443,1444 \quad 1448.1571\) Wide Band General Purpose Scope CD 1212 (Min
spec. CT484) Plug ins CX 1251 \& CX 1252 (collection Portable transistorsed CD 1642 Dual race 149.50
\(15 \mathrm{MHz} 10 \mathrm{mV} / \mathrm{cm}\) Sensitivity Screen \(10 \times 6 \mathrm{~cm}\)
DC. 40 MHz Scope CT484 Dual Trace Display


\section*{SIGNAL SOURCES}

\section*{Universifies, Industry, Colleges and it working. on the majority of equipment we sell. \\  \\ H. Square wave Generator SG21 ,
K Hz - 100 MHz Max:0/0 2 V AIRMEC \\ Sily) Generator Type \(70130 \mathrm{KHz}-30 \underset{\mathrm{E} 95.0}{\mathrm{MHz}}\) GENERAL RADIO
Unft Oscillator 1209 C . Freq. \(250-920 \mathrm{MH}\) z Accuracy
\(1 \%\) Drith. \(0.2 \%\). \(0 /\) pin 1050 . \(50 \mathrm{mms}=150 \mathrm{~mW}\) supplied Wh Dint. \(0.2 \%\). 0 / Py 1050 ohms \(=150 \mathrm{~mW}\) supplie of 200 mW Wcross band \\  SM/FM SIGNAL GENERATOR TF \(1066 \quad 10-470 M H 2\) S.H.F Signal Generator \(618 \mathrm{C} \quad 2.8-7.6 \mathrm{GHz} \pm 19\) MARCOMI INSTS \\ M /A.M. Signal Generator TF \(995 \mathrm{~A} /\) 3S Ministr
type No CT402 \(15 \mathrm{MHz}-220 \mathrm{MHz}\) R F \begin{tabular}{l} 
2uV-200mV Internal \& Externa! Mod Facilities \\
yood condrition \\
\hline 385 \\
\hline
\end{tabular}



}
 R C Oscillator TF1370A \(10 \mathrm{~Hz}-10 \mathrm{MHz}\). Square Wave


 \(600 \Omega\) Distortion Via 1 KHz Filter less inan \(01 \%\)
Direct or via Aitenuator Less than \(0.5 \% \quad 50 \mathrm{~Hz}-20 \mathrm{KHz}\) UH.F. \& S. H F Signal Generator TF1058 (dance Portable Recerver Tester TF888/3 Freq
\(70 \mathrm{kHz}-70 \mathrm{MHz}\) Xial check. 500 kHz \& 5 MHz Ourpul Sig.F. 1064 B/SM TF \(144 \mathrm{H} / 4\),
 MAUSECONI
UH. F F.M. Signal Generator TF 2012, 400-520MHz measurements Price new ca 11,300 - OUR PRICE MUIRHEAD
\begin{tabular}{ll} 
Lo \(01 \mathrm{H}_{z}-112 \mathrm{KHz}\) & phase \\
E295 \\
\hline
\end{tabular} Oecade Oscillator D890A \(1 \mathrm{~Hz}-11.2 \mathrm{KHz}\)
NEUWIRTM (WEST GERMANY) VHF Skgnal Generator MS4/U Freq Range 9.6 MHz to /p \(30 \mathrm{mV}-1\) uV Sreq Dev \(1 \mathrm{KHz}=100 \mathrm{KHz}\) Amo RODODE S SCHWARTZ
SHF Generator SMCQ.BN 4 :04 2 1700-5000 MHZ HEWLETT PACKARD \(206 \mathrm{~A} \quad 20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \%\) accuracy Distion
RADIOMETER
Supert condition
Supar SMG1C Full spec on request.
\(\mathbf{E 3 5 0}\)
AM/FM Generatos Type MS27G
WAYNE KERR
Video Oscillator \(0.222 \quad 7 \mathrm{KHz}-8 \mathrm{MHz}\) in 6 ranges \(£ 75\)
£ 750 WANDEL \& GOLTERMAN
\(\begin{array}{ll}\text { U. H. F. Power Osciflator } \\ \text { Osciliators } & \text { 4. } 41 \mathrm{MHz} \\ \text { Type Lo-4 } & \text { 4. } 4 . \mathrm{M}^{2}\end{array}\)
\(\begin{array}{cc}\text { Type LO-4 } & \text { 4. } 41 \mathrm{MHz} \\ \text { Type LO-40 } & 40.108 \mathrm{MHz} \\ \text { Type } 10-170 & 170.330 \mathrm{MHz}\end{array}\)


\section*{RECORDERS}

\section*{RECDRO \\ ccor \\ 665.00
\(\mathbf{6 6 0 . 0 0}\)}

 day Warranty Our phice
HEWLLETP PACKARO
1707 A Portable 75 M

TEKTRONIX-SONY
323 Singie Channel solid state, portable bateryo
mains 1 miV/DiV to \(20 \mathrm{~V} / \mathrm{DIV} 4 \mathrm{MHz}\) weighing ca. 7 l os
TEKTRONIX
Sampling Scope \(661 \mathrm{c} / \mathrm{w}\) plug ins
S \(53 \mathrm{DC}-5 \mathrm{MHzz}\) Solid state \& portable
C650
\(545 \mathrm{c} / \mathrm{wCAA}\) Plug-n
TV Wavelorm Montor 525 . Freq. response Flat

whir steps. elimimates HF High Pass - Passes HF F
stirn
eliminates stair steps IRE meers IRE standards for


\[
\begin{aligned}
& \text { Pa }
\end{aligned}
\]

\section*{POWER SUPPLIES}

\section*{APT ELECTRONICS}


Es Compute, Load regulation of \(1 \%\) or better
\(112 / 115\)
\(6 \mathrm{~V}-12 \mathrm{~A}\)
20 V .15 A
Also stabilised bul unregulared 48 y
CL Powe Supplies (ex-compuler)
CV-25A (variable from 4 SV to 8 BV )
BRIDGES
sullivan
Contact Resistanc
\(-2 \%\) Free \(1 K H 2\)
WAYME KERR
WAYME KERA
Radio Frea Bridge B60

\section*{FHEOTRONIE}

49-53 Pancras Road London NW1 2 aB
Tel: 01 -837 7781

\section*{Carriage and packing} charge extra on all items unless otherwise stated

Please note: All instruments offared are secondhand and tested and guaranteed 12 months unless otherwise stated

\section*{NEW PRODUCTS DIVISION}
E.B. import and distribute high-grade products from World-renowned manu facturers including:

\section*{STROBOSCOPIC}

\section*{TACHOMETER}

Two unizs in one
STROBISCOPIC FLASH RATE - 200106.000
Ulashes Jer minute


49-53
PancrasRd London NWI 2QB Telephone: 01-8377781



The New 'TAK-ETTE Digital Hand-Held Tachometer

witt las hee carrying-caso and
AC SLAMP VOLT-AMMETER U. 91
Soec. Cistent \(\mathbf{E 1 4 . 6 0}\) Spec. Current 10-25-100-250-500 Amps. Voliage
300 sovv. Accuracy 4\%. Used for meassern AC vottages and currents without breaking the circluits AC lotajes and currents without breaking the circuits
Ranges ure selecied by means of a Rotary Selector SWIT IOHMMETER TYPE M4100/3
Megshmmeter. Type M4 100/3, 639.50 Nagrial o/p Vohage (open cct,) 500 V . High measuraments Range (al 500V) 500M (Mid Scale \(5 \mathrm{M}(\mathrm{S}\). Low mpasurements Range 1000 KQ . Portable (Tlib) ar d Hand operaled c/w carrying
PEN RECORDER H-3020 SERIES
1,3 and 5 channel instruments \(\pm 2 \mathrm{~mA}\) f.s.d. 5 Hz
natual frequency 8 ehart speed from nathal frequency. 8 chart speeds from
o.-2Emm/second Supplied complete with transit case and accessories.
case and
Pricas
Singe Channel H3020. 1
Three Channel H3020.3
£108.00
Fivee Channel H3020-3
Channei \(\mathrm{H} 3020-5\)
£160.00
£ 240.00
SEE INSIDE BACK COVER
FOR DETAILS OF ICE SUPER RANGE OF MULTIMETERSI

\section*{BROK=RGLTD}


\section*{ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON \\ OR JAMES KEYS 01-261 8353}

OVER 2,000 ELECTRONIC COMPONENTS INA


\section*{electronic instruments exhibilions London and Edinburgh Bloomsbury Centre, WG1 21-23 Seplember 1976 Grosvenor Centre, Edinburgh 28-30 Seplember 1976}


\section*{U simplesururemales six Way Sense \\ U \\ CONSERVES YOUR CASH. \\  \\ SOLVES BUFFER STOCK PROBLEMS. \\ SAVES TIME. \\  \\ SIMPLIFIES ORDERING. \\  \\ A PROTOTYPE SERVICE. \\  NO ORDER TOO SMALL}

\section*{So make United-Carr Supplies yourSINGLE SOURCE for:-}

\section*{CINEM Electronic Components}

Some examples: - Barrier terminal strips. Printed circuit board edge connectors. D Subminiatures. Multi way plugs and sockets. Audio sockets.

\section*{United-Carr Supplies Ltd.,}

112 Station Road, Ilkeston, Derbyshire, DE7 5LF
Tel: Ilkeston 328711 (STD 0602 328711) Telex 377117
WW-101 FOR FURTHER DETAILS

\section*{DEMA ELECTRONICS \\ NTERNATONAL \\ ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST}


TERMS: PRICES LISTED ARE BRITISH POUNDS \& PENCE. SEND CHEQUE WITH ORDER. ACCESS CARD,
 BANKAMERICARD, BARCLAY CARD ACCEPTED. (Card \# and expiration date requested). TERMS OFFERED TO SCHOOLS \& INSTITUTIONS. POSTAL AND HANDLING C
SHIPMENT VIA AIR MAIL
\(\qquad\)
倳 P.O. Box 407

San Ramon, Ca. 94583 USA

\section*{SERVICE TRADING CO}

RELAYS
SIEMENS PLESSEY
MINIATURE RELAYS
 \(2 \mathrm{c} / \mathrm{o}\)
\(4 \mathrm{c} / \mathrm{O}\)
2 co
6 M
\(2 \mathrm{c} / \mathrm{OH}\)
6 M
\(2 \mathrm{c} / \mathrm{O}\)
(acts.
(
Base)
 \(\rightarrow\).

YOLT DC. PELAY
\(3 \mathrm{c} / 05 \mathrm{amp}\) contacts 70 ohm coil 85 p .
\(9 / 12\) VOLT D.C. RELAY
state type required 85p. Post \(15 p\)
\(\mathbf{2 4 V O L T}\) D.C. \({ }^{2} \mathrm{HO} \mathrm{c} 10700 \mathrm{ohm}\) coll \(8 \mathbf{8 5 p}\). Post \(15 p\)
100 VOLT A.C. 2 c/0 75p. 3 c/o 85p. Post \(15 p\).
ENCLOSED TYPE RELAYS
6 VOLT A.C. 3 c/o 85p. Post \(15 p\).
\(24 V\) D.C.
P. Post 20 p . Base 15 p .
M.1. \(1173 \mathrm{~h} . \mathrm{d}\) c/0 contacts 6 sp .

24 VOLT A.C. Post 20 p . Base 15 p extr
55 VOLT A.C.
230 VOLT A.C. RELAY
Price 85p. Post 20p Octal base \(15 p\) extra
\(\mathbf{2 2 0 / 2 4 0 ~ V O L T ~ A . C . ~ R E L A Y ~}\)
ARROW 230/240V AC
CLARE-ELLIOTT TYPe RP 7641 G8 MANY OTHERS FROM STOCK. PHONE FOR DETAILS


230 VOLT FAN ASSEMBLY


SOLENOID HEAVY DUTY MODEL
24 VOLT D.C. SOLENOIDS


\section*{600 WATT DIMMER SWITCH}

Easily fitted. Fulty guaranteed by makers Will contral up
to 600 watrs of all lighting except fluorescent at manins
voltage. Complete with simple instructions \(£ 3.85\). Posi
E4.50. Post \(25 p\)
E9.00. Post \(40 p\)
 INPUT 230 Y A C 50/60 OUTPUT VARIABLE \(0 / 260 v\). A.C BRAND NEW. All types. 200W (1 Amp) fitted A/C
volt meter 1 KVA (Max. 5 Amp). 2 KVA (Max. 10 Amp) 3 KVA (Max. 15 Amp
4 KVA (Max. 20 Amp ) \(£ 11.50\)
\(£ 11.50\) KVA (Max. 15 Amp) …e. £30.00 \(\begin{array}{r}\text { E38.00 } \\ \hline\end{array}\) E60.00


AUTO TRANSFORMERS
Step up etep down 0115200220240 volis At 75 watt \(£ 3.00\) Post \(40 p\). 150 watt \(£ 4.30\) Post 50 p. 300 watt E6.20. Posi 60p. 500 watt E9.20 Posi 75 p. 1000 watt


VARIABLE VOLTAGE TRANSFORMERS E .8 Using the RT 100
@ \(12 \% / 2 \mathrm{Amp} .4 \mathrm{~V}\) (02


\section*{SIBTBE! STRDEE STHOEA}
* HY-LIGHT STROBE MK. IV

K Latest iype Xerion white light trube. Solid state timing and \(x\)
 greater than many (so called 4 Joute) strobes. Price \(\mathbf{~} 15.40\). Post
75 p
Specially designed case and reflector for hy-Lught \(\mathbf{~} \mathbf{E 8 . 2 5}\). Post

\section*{K XENON FLASH GUN TUBES}

* ULTRA VIOLET BLACK LIGHT
* FLUORESCENT TUBES


\section*{TRIAC}

COLOUR WHEEL PROJECTOR
TYPEP150 INTACHANGE


\section*{GEARED MOTORS}

100 R.P.M. 115 lbs. ins.!


15 R.P.M.

 60 R.P.M. REVERSBBLE
\begin{tabular}{l}
\(220 / 240\) volt A.C. Small, powerfut, continuously rated motor Mtg \\
BERGER (Germany) Size \(80 \mathrm{~mm} \times 65 \mathrm{~mm} \times 65 \mathrm{~mm}\) Spindle dia 6 mm \\
\hline
\end{tabular} engin 15 mm . Weight 725 grams. 66.50 . Post 50

BODINE TYPE N.C.I
GEARED MOTOR
(Type 1) 71 r.p.m. torque 10 lb in
Reversible \(1 / 70\) th h.p cycle 38 amp (Type
2) 28 r.p.m. torque 20 lb in 38 . 28 amp.

made US. A motors are offered in as new conkvn input voltage of
motor 115 V A.C. Supplied complete with transformer for \(230 / 240 \mathrm{v}\) A.C. input. . type \(\mathbf{6 6 . 2 5}\). Post \(\mathbf{7 5}\) p or less cransformer \(\mathbf{6 3 . 7 5}\). Pos: \(\mathbf{6 5 p}\)
(Type 3) 71 r.p.m. 230 Volt A.C
6/9 VOLT D.C. GOVERNED
\(40 \mathrm{~mm} \times 40 \mathrm{~mm}\).
E .65 Post Pald
24 R.P.M.
1 R.P.M.
230/240 VOLT A.C. SYNCHRONOUS!!
20 r.p.m. GEARED MOTOR
REVERSIBLE MOTOR 230V A.C



ROTARY VACUUM AIR COMPRESSOR


\section*{SERVICE TRADING CO}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{} &  & BEST PRICES PAID FOR
EOUIPMENT. Single items or &  \\
\hline & & & \\
\hline &  & &  \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline \multirow[t]{3}{*}{} & & & \\
\hline & & & \\
\hline & & & EQUIPMENT \\
\hline \multirow[t]{3}{*}{} & & & wn laboratories \\
\hline &  & & SOLOTRON CD 1220 OSCILLOSCOPE \\
\hline & & & \\
\hline \multirow[t]{4}{*}{} & & & \\
\hline \multirow[t]{2}{*}{} &  & HR 23 Triple & \\
\hline & Amsodet eot Po A - & & \\
\hline \multirow[t]{2}{*}{} &  & & \\
\hline & & & \\
\hline \multirow[t]{5}{*}{} &  &  & Export \\
\hline & TYPE FKM \(15.30 \mathrm{MHz}, 30.100 \mathrm{MHz} £ 1,000\). & Sum wat smoic &  \\
\hline & & & ANSMMIT \\
\hline & & 8\% AT FOR TEST EQUIPMEN & Mre 2310 \\
\hline & & Please send sta & \\
\hline \multirow[t]{2}{*}{Open Monday to Friday 9-12.30, 1.30-5.30 p.m.} & & & \\
\hline & & \begin{tabular}{l}
COLOMOR \\
(ELECTRONICS LTD
\end{tabular} & hawk Rd., London, W. 12. Tel. 01-743 0899 \\
\hline
\end{tabular}


\section*{\(20 \times 20\) Watt STEREO AMPLIFIER}

Superb Viscount IV unit in teak-finished cabinet. Black fascia with aluminium rotary controls and pushbuttons, red mains indicator and stereo jack socket. Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary. Rear panel features two mains outlets, DIN speaker and input sockets, plus fuse. \(20+20\) watts rms, \(40+40\) watts peak.

\section*{HOWYOUCANSAVE \({ }^{〔} 2990\)}

\section*{SYSTEM 1B}

For only \(£ 80\), you get the \(20+20\) watt Viscount IV amplifier; a pair of our 12-wattrms Duo Type ilb matched speakers; a BSR

MP 60 type deck complete with magnetic cartridge, de luxe plinth and cover.
£8000

\section*{SYSTEM 2}

Comprising our \(20+20\) watt Viscòunt IV amplifier; a pair of our large Duo Type III matching speakers which handle 20 watts rms each; and a BSR MP 60 type deck with magnetic cartridge. de luxe plinth and cover. de luxe plinth and cover.
£ 920

\section*{}


Specially designed by RT-VC for the experience constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier. Chassis is ready punched, drilled and tormed Cabinet is finished in teak veneer. Black fascia and easy-to-handle \begin{tabular}{l} 
aluminium knobs. \\
Outpu \(30+30\) watts \\
2 \\
\hline 200
\end{tabular} Output \(30+30\) watts rms, \(60+60\) peak.

\section*{TURNTABLES BY BSR}

Big value from RT-VC! Two units COMPLETE WITH PLINTHS, First, the popular MP 60 type semi-protessional deck. \(£ 1750+p \& p . £ 250\) Second, the lower-cost C141 automatic unit, fitted with a stereo ceramic cartridge. \(\mathbf{£ 1 1 9 5}{ }^{\mathrm{E} 2.55}{ }^{+0.0} \mathrm{D}\)
Both units have plinths tinished in superb teak veneer. Either wav, vou' re on to a bargain trom RT-VC

\section*{STEREO AMPLIFIER KIT}

Build up a 4-watts rms per channel stereo amplifier with Unisound MK2 modules. For only \(£ 9.95\)
 you get pre-amp, power amp, and all the control panel parts. Features include IC power chips for £g95 panel distortion. For the experienced constructor only

\section*{DISCO EQUIPMENT}


35-WATT DISCO AMP
Here's the mono unit you need to start off with. Gives you a good solid 35 watts rms, 70 watts peak output. Big teatures include two disc inputs, both for ceramic cartidges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and
£2750
master volume.
100-WATT DISCO AMP
All the big features as on the
70 -watt disco amplifier, but with a
massive 100 watts rms
200 watts peak
output power.
£6500


Minimum order on Access and Barclaycards £15

DO NOT SEND CARD Just write
your order giving your credit card number

PORTABLE DISCO CONSOLE with built-in pre-amplifiers
Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type auto-return, single-play protessional series record decks. Plus all the controls and features you need to give tabulous disco
pertormances. Simply
\(\mathbf{5 5 5 0 0}\) performances. Simply connects into your existing slave or external amplifier.

70-WAT DISCO AMP Not illustrated Brilliantly styled for easy disco performance! Sloping fascia, so that you can use the controls without fuss or bother. Brushed aluminium fascia and rotary controls. Five smooth-acting, vertically mounted slide controls - master volume tape level, mic level, deck level, PLUS INTER-DECK FADER for perfect graduated change from record deck No. 1 to No. 2, 0 vice-versa. Pre-fade level control (PFL) lets YOU hear next disc before fading it in. VU meter monitors output level. 70
£4900 watts rms, 140 watts peak output.

\section*{ALL PRICES INC.VAT \\ AT CURRENT RATES}

All items subject to availability. Price correct at 1st July, 1976 and subject to change without notice.
For further information, please send * stamped addressed envelope

EASY-TD-BUILD, WITH ENCLOSURE
Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teak-simulate enclosures, two EMI \(13{ }^{\prime \prime}\) (approx.) wooters, two \(3^{1 / 1 / 4}\) (approx.) tweeters and a pair of matching crossovers. Easily constructed, using a few basic tools. Supplied complete with an easy-to-follow circuit diagram, and crossover components. Input 15 watts rms, 30 watts peak.


\section*{15-WATT KIT YOUCANE IN CHASSIS FORM}

When you are looking for a good speaker why not build your own from this kit. It's the unit which we supply with the above enclosures. Size \(13^{\prime \prime} \times 8^{\prime \prime}\) (approx.) EM woofer, \(3^{1 / 4^{\prime \prime}}\) (approx.) tweeter, and matching crossover.

2750 + \(P\) \& \(P\). Power handling capacity PER SET


\section*{'COMPACT} FOR TOP VALUE

\author{
How about this for incredible
} bookshelf value from RT-VC! A pair of high efficiency units for Donly \(£ £ 7.50\) - just what you need for low-power amplifiers. These infinite baffle enclosures come to you ready mitred and professionally finished. Each cabinet measures \(12^{\prime \prime} \times 9^{\prime} \times 5^{\prime \prime}\) (approx.) deep, and is linished in simulated teak. Complete with two \(8^{\prime \prime}\) (approx.) speakers for max. power handling of 7 watts.

8750
20-WATT HI-FI KIT IN CHASSIS FORM \(\qquad\)
For extra power, choose this super RT-VC kit! EMI \(\dagger 3^{\prime \prime} \times 8^{\prime \prime}\) (approx.) triple-laminate-coned wooter with massive \(5^{\prime \prime}\) (approx.) magnet, plus \(5^{\prime \prime}\) (approx.) mid-range unit with concentric \(2^{\prime \prime}\) parasitic tweeter and \(2^{3 / 4} 4^{\prime \prime}\) (approx.) magnet complete with circuit diagram and crossover components. £1050 PER E2

\title{
a \\ T \\  \\ NO GOODS DESPATCHED OUTSIDE UK
}

21E HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LONDON WV2
Personal Shoppers EDGWARE ROAD: 9 a.m. \(-5.30 \mathrm{p} . \mathrm{m}\). Half day Thurs. ACTON: 9.30a.m.-5p.m. Closed all day Wed.

\section*{TELETYPE 35RO ASC11 CODE}
in standard free standing teletype CASE with SERVICE UNIT, PAPER TAKE UP ETC. \(£ 215\) each.
as previously advertised LIMITED QUANTITY LEFT. STILLAT E50 ONLY.

\section*{minn \\ FOR EX STOC DELIVERY OF B.P.O. COMPONENTS}

Manufacturers' Trade/Export enquiries only, quoting BPC and/or Manufacturers' Reference numbers

\section*{TELEPHONE \& WIRELESS} COMPONENTS LTD. 147 The Broadway, London, NW9 7EA
Tel: 01-203 2814
Cables: Telwireco London NW9

WW - 015 FOR FURTHER DETAILS


\section*{Audio Connectors}

Broadcast pattern jackfields, jackcords, plugs and jacks.
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut.

Hirschmann Banana plugs and test probes \(\bar{X} L R\) compatible in-line attenuators and reversers
Law cost slider faders by Ruf.
Future Film Developments Ltd. 90 Wardour Street London WIV 3LE 01-437 1892/3

WW - 034 FOR FURTHER DETAILS

\section*{EXPO DRILLS}

Illustrate:

\section*{A TITAN DRILL mounted in a MULTI PURPOSE STAND}

This drill is a powerful tool running on 12 v DC at approx. 9000 rpm with a torque of 350 grm . gm Chuck capacity \(3.00 \mathrm{~m} / \mathrm{m}\).
The mult-purpose stana is robustly constructed of steel and aluminium. The base and bracket are finished in hammer blue.
Also available for use in the stand is the RELIANT DRILL which is a smaller version of the Titan. Approx. speed 9000 \(\mathrm{rpm}, 12 \mathrm{vDC}\), torque \(35 \mathrm{grm} . \mathrm{cm}\). Capacity \(2.4 \mathrm{~m} / \mathrm{m}\)
TITAN DRILL
ONLY Cat. No. 175
\(\mathbf{£ 9 . 6 1 + 3 5 p p \& p \text { inc. VAT }}\)
RELIANT NRILL
ONLY Cat. '• 1,150
£5:64 + 18p \(p\) \& \(p\) inc. VAT.
MULTI-PURPOSE STAND
ONLY Cat. No. 0200
£11.44 + \(75 p p\) \& \(p\) inc. VAT

\section*{ADAPTOR COLLAR} FOR RELIANT DRILL Cat. No. 0201
£0.43 + \(11 p p\) \& \(p\) inc. VAT
These are only two examples of the extensive range of power tools designed to meet the needs of development engineers, laboratory workers, model makers and others requiring
small precision production aids. To back up the power tools Expo offer a comprehensive selection cf Drills, Grinding Points and other tools.
SEND S.A.E. (foolscap) for full details to main distributors

\section*{A. D. BAYLISS \& SON LTD.}

Pfera Works، Redmarley, Glos GLi9 3JU
Tel: Bromeaberrow (STD 053 181) 273 and 364
Stockists. Richards Electric. Worcester and Gloucester: Hoopers of Ledbury Hobbs of Ledbury. D\&D Models Hereford

ETURN OF POST MAIL ORDER SERVICE


\section*{ETE STEREO SYSTEM} roudspeakers
speakers making it extremely compact. overall \(33 / 4 \times 10 \times 81 / 2 \mathrm{in}\)., 3 watts per channel, plays all \(\begin{array}{lll} & \begin{array}{c}\text { controls } \\ 240 \mathrm{~V} \\ \end{array} & £ 22.50\end{array}\)
 1 carriage


SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP
TIME SWITCH
0-60 MINUTES \(\mathbb{E 2 . 9 5}\) Post 35 p
Single pole two-way Suriace mounting with swing screws. Will replace existing garage, auro gave light for return home. Varage, automatic anti-burglar lights. etc intermediate settings. Brand new and fully guaranteed.


TEAKWOOD LOUDSPEAKER GRILIE
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kir is suitable for record players. guitars. tape playback. vailable Mono, £11.25; Stereo, £18. Post 45p. Specification 10W per channel; input 100 mV : size \(91 / 2 \times 3 \times 2\) In approx


BLANKK ALUMINIÚM CHASSIS. \(6 \times 4-70 p ; 8 \times 6-90 p\);
 \(10 \times 7-£ 1.15 ; 12 \times 1.70\)
\(6-£ 1.45 ; 16 \times 10-£ 1.70\)
ALUMINIUM PANELS. \(6 \times 4-17 p ; 8 \times 6-24 p ; 14\) 3-25p; \(10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16\)
\(6 \times 12 p ; 14 \times 9-52 p ; 12 \times 12-68 p ; 16 \times 10-75 p\).
\begin{tabular}{cc} 
ELAC \(9 \times 5\) in HI-FI & S3.45 \\
SPEAKER & Post \(35 p\) \\
TYPE 59RM
\end{tabular}

This famous unit now available, 10 watts. 8 ohm
RCS LOW VOLTAGE STABILISED POWER PACK KITS
\(£ 2.95\)
circuit rectifiers and double wound mains transformer. Input \(200 / 240 \mathrm{~V}\) a.c. Output less. Size \(3 \times 2 \frac{1}{2} \times 11 / 2 i n\). Please state voltage required

\section*{RCS POWER PACK KIT}
inted
\(£ 3.35\)
12 VOLT, 750 mA . Complete with printed Post 30 p circuit board and assembly instructions
12 VOLT 300 mA KIT, \(£ 3.15 .9\) VOLT 1 AMP KIT, \(\mathbf{£ 3 . 3 5 .}\) R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE Ideal tor Mike. Tape, P.U., Guitar, etc. Can be used with 8 attery
\(9-12 \mathrm{~V}\) or HT . line \(200-300 \mathrm{~V} \mathrm{d.c}\) operation. Size \(13 / 4 \times 1 / 4 \mathrm{x}\)
\(3 / 4 \mathrm{in}\). Response \(25 \mathrm{c} / \mathrm{s}\) to \(25 \mathrm{kc} / \mathrm{s}\) s 26 dB gain E 1.45 \(3 / 4 \mathrm{in}\). Response \(25 \mathrm{c} / \mathrm{s}\) to \(25 \mathrm{kc} / \mathrm{s} .26 \mathrm{~dB}\) gain \(\quad \mathbb{E} .45\)
For use with valve or transistor equipment.

\section*{ELECTRO MAGNETIC}

\section*{PENDULUM MECHANISM}
1.5 V d.c. operation over 300 hours continuous on SP2 battery, fully adjustable swing and speed.
teaching electro magnetism or for
metronome, strobe, etc.

\section*{MAINS TRANSFORMERS}
\(\begin{array}{r}\text { ALL POST. } \\ 50 \mathrm{p} \\ \hline\end{array}\)
 \(250-0.25080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}\) or \(5 \mathrm{~V} 2 \mathrm{~A} . £ 4.60\)
\(350-0.35080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}\) or \(5 \mathrm{~V} 2 \mathrm{~A} . £ 5.80\)
\(300-300 \mathrm{~V}\) \(300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A}\) C. T.; 6.3 V 2 A MIDGET \(220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}\)
HEATED TRANS. \(6.3 \mathrm{~V} 1 / 2 \mathrm{amp} £ 1 ; 3 \mathrm{amp} . . . . \varepsilon 1.40\) GENERAL PURPOSE LOW VOLTAGE. Tapped outputs at 2 amp. 3, \(4,5,6,8,9,10.12,15,18,25\) and \(30 V £ 4.60\).
\(10,10,24,30,36,40,48,60\) \(1 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60\)
f4.60. 2 amp, \(6,8,10,12,16,18,20,24,30,36,40\),


 \({ }^{4} 10 \mathrm{~V}\). 2 amp . \(22.95,30 \mathrm{~V} 5 \mathrm{~A}\) and 34 V 2 ACT £3.45, 16 V
 20 V 3 amp . £2.50, 20-0-20V 1 amp . £2.95, \(30 \mathrm{~V} 11 / 2\) AUTO TRANS
AUTO TRANSFORMERS, \(115 \overline{\mathrm{~V}}\) to 230 V or 230 V to 115 V 150W £5; 250W £6; 400W £7; 500W \(£ 8\).
6 or 12 V outputs. \(1 / 1 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}\).
 12V. \(11 / 2\) A HALF WAVE Selenum Rectifier, 25p
R.C.S.

ROSEEVOOD
SPEAKERS
\(51 / 2\) in Response 50 to
14.000 cps 8 watts rms
3. or 8 , or 16 oh


\section*{KUBA - KOPENHAGEN} STEREO

TUNER-AMPLIFIER CHASSIS AM-FM \(5+5\) WATT This Continental 4 -band radiogram chassis uses first class quality components throughout. Features: Large facia panel with 7 push buttons for medium, long. shing volume tone balance. Facia size \(17 \times 41 / 2\) inches. Chassis size \(17 \times 41 / 2 \times 51 / 2\) inches DIN-connector sockets for tape record/playback. loudspeakers. phono pick-up. external FM-AM aerıals. Automatic stereo beacon light. Built-in ferrite rod aerial for medium/longwave. A.C. 240 V . mains \(\mathbf{£ 3 8 . 5 0}\) Circuit supplied.
LOW VOLTAGE EELECTROLYTICS
\(1,2,4,5.8 .16 .25 .30 .50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}\)
\(500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}\).
\(1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p}\); 100 V 70 p
\(2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}\).
\(2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}\).
5000mF 6V 25p; 12 V 42 p ; 25V 75p; 35V 85p; 50 V 95 p
SHORT WAVE 100 pF air spaced gangable tuner. 95p. TRIMMERS \(10 \mathrm{pF}, 30 \mathrm{pF}\). 50 pF . 5 p . 100 pFF . 150 pF . 15 p . CERAMIC, 1 pF to \(001 \mathrm{mF}, 5 \mathrm{p}\). Silver Mica 2 to 5000 pF , 5p. PAPER 350V-0.1 7p; 05 13p; 1mF \(150 \mathrm{~m} 15 \mathrm{p} ; 2 \mathrm{mF}\) 25p. 15p; \(500 \mathrm{~V}-0001\) to 0.05 5p; 0 . SUB-MIN MICRO SWITCH, 25p. Single pole change over TWIN GANG, 385 + 385pF 50p; 500pF standard 75p; 365 \(+365+25+25 \mathrm{pF}\). Slow motion drive 65 p .
120 pF TWIN GANG, 50p; 365pF TWIN GANG, 50p.
NEON PANEL INDICATORS 250V. Amber or red 30p. RESISTORS. \(1 / 1 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 20 \%\) 2p; \(2 \mathrm{~W} .10 \mathrm{p} ; 100\) to 10 M HIGH STABILITY. \(1 / 2 \mathrm{~W} 2 \% 10\) ohms to 6 meg . 12 p . Ditto \(5 \%\). Preferred values 10 ohms to t. 10 meg, 5 . 15 watt. 10
WRE-WOUND RESISTORS 5 watt, 10 wat ohms to 100 K 12 p each
TAPE OSCILLATOR COIL. Valve type. 35p.
BRIDGE RECTIFIER 200 V PIV \(1 / 2 \mathrm{amp} 50 \mathrm{p}\).
TOGGLE SWITCHES S.P. 20p. D.P.S.T. 25p. D PDT. 30p


BAKER "BIG-SOUND" SPEAKERS. Post 50p each
'Group 25' \({ }^{\prime}\) Group 35' \({ }^{\prime}\) 'Group.
 - 3 or 8 or 15 ohm 75 W 8 or 15 ohm NEW MODEL BAKER LOUDSPEAKER, 12 IN, 60
WATT. GROUP 50/12, 8 OR 15 OHM HIGH POWER. FULLTRANGE PROFESSIONAL QUALITY. \&14.50
\(30-16.000 \mathrm{CPS}\)

Post 80 p CERAMIC MAGNET
CENTRE DOME.
TEAK VENEERED HI-FI SPEAKERS AND CABINETS For 12 In or 10 in. speaker \(20 \times 13 \times 12\) in. £12.50 Post \(95 p\) For \(13 \times 8 \mathrm{in}\). or 8 in . speaker \(16 \times 10 \times 7 \mathrm{in}\). \(£ 6.95\) Posi 75 p For \(8 \times 5 \mathrm{in}\). speaker \(12 \times 8 \times 6 \mathrm{in}\). E4.95 Post 50p LOUDSPEAKER CABINET WADDING 18 in . wide. .20 p f .

\section*{R.C.S. 100 watt \\ VALVE \\ AMPLIFIER \\ CHASSIS}
our inputs. Four way mixing, master volume, treble and bass controls. Suits all speakers. This professional quality amplifier chassis is suitable for all groups, disco, P.A.. where high quality power is required. 5 speaker tout a quality valve amplifier.
Send for leaflet.
Suitable carrying cab \(£ 14\)
ce \(\mathbf{£ 8 5}\) carr. E2.50
Speaker covering materials. Samples Large S.A.E. Hom Tweeters \(2.16 \mathrm{kc} / \mathrm{s}\). \(10 W 8 \mathrm{ohm}\) or \(15 \mathrm{ohm} £ 3.60\) De Luxe Horn Tweeters \(3.18 \mathrm{kc} / \mathrm{s}, 30 \mathrm{~W} .8\) ohm, \(£ 7.50\).
CROSSOVERS. TWO-WAY \(3000 \mathrm{c} / \mathrm{s} 3\) or 8 or 15 ohm £1.90. 3-way \(950 \mathrm{cps} / 3000 \mathrm{cps}\), 2.20.
 £1.80; \(8 \times 5\) in., \(£ 1.90\); 8 in.. \(£ 1.95\).
SPECIAL OFFER: 80 ohm , \(21 / \mathrm{in} ., 23 / 4 \mathrm{in} ., 35 \mathrm{ohm} .3 \mathrm{in}, 25\) ohm, \(21 / 2 \mathrm{mn}\) dia., 3 in . dia.. \(5 \times 3 \mathrm{in}\). 8 ohm. \(21 / 2 \mathrm{in}\)., \(3 \mathrm{in} . .31 / 2 \mathrm{ın}\).

HILIPS LOUDSPEAKER, 8 in.. 4 ohms. 4 watts, \(£ 1.95\) RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8in. diameter \(4 W £ 2.50\). 10 in . diameter \(5 W £ 2.95\); VALVE OUTPUT TRANS. 40p; MIKE TRANS. 50.1. 40p. Mike trans. mu metal 100 i \(£ 1.25\).
Loudspeaker Volume Control 15 ohms 10 W with one inch long
oudspeaker volume Contronel mounting. Y/4in. spindle. 65p.
 All purpose transistorise
deal for Groups, Disco deal for Groups, Disco Output A. 15 inputs speech and Sm. Separate way mixing bass controls. \(\quad £ 68\) E 1.00 Carr E49.95 NEW MODEL MAJOR- 50 watt, 4 in
Treble and bass. Ideal disco amplifier.

\section*{100 WATT DISCO AMPLIFIER CHASSIS} volume, treble. bass controls \(500 \mathrm{M} . \mathrm{V}\). or 1 volt
input. Four loudspeaker outputs 4 to 16 ohm.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER Add musical highlights and sound effects to recordings.} \\
\hline Will mix Microphone, records. tape and tuner with separate controls into single oupput. 9 V . & 5.20 \\
\hline TWO STEREO CHANNEL VERSION & £6.85 \\
\hline BARGAIN 3 WATT AMPLIFIER. 4 Transis Push-Pull Ready Built. with volume. Treble and bass controls. 18 volt d.c. Mains Power P & \[
{ }_{\varepsilon 3.45}^{8.95}
\] \\
\hline
\end{tabular}

BALANCED TWIN RIBBON FEEDER 300 ohms. 7p yd. JACK SOCKET Std. open-circuit 20p, closed circuit 25p: Chrome Lead-Socket 45 p . Mono or
JACK PLUGS Std. Chrome 30p; Plastic 25p; 3.5mm 15p JACK PLUGS ST. Chrome 30p; Plastic
DIN SOCKETS Chassis 3-pin 10p. 5-pin 10 p
DIN SOCKETS FREE 3 -pin 25p; 5-pin 25p. DIN PLUGS
3-pin 25p; 5 -pin 25p. VALVE HOLDERS, \(10 p\); CANS \(10 p\)

\section*{R.C.S. SOUND TO LIGHT KIT Kit of parts to build a 3 channel sound to light Easy to build Full instructions supplied \(\mathbf{1 , 0}\). As featured in December Practical Wireless.}
E.M.I. TAPE MOTORS. 240 V a.c. 1,200 p.m. 4 pole 185 mA . Spindle \(0.187 \times 0\).
Size \(31 / 2 \times 21 / 2 \times 21 / \mathrm{in}\). \(£ 2\). Post 40 p

120 V Model, \(£ 1\)
Collaro gram motor \(240 \mathrm{~V} £ 1.50\).

Wireless World, September 1976



SPECIAL RESISTOR KITS (CARBON FILM 5\%) Prices include post \& packing)
1OE 12 \%W or VW KIT 10 of each E 12 valu \(25 \mathrm{E} 12 \mathrm{I} / \mathrm{sW}\) or \(1 / 4 \mathrm{~W}\) KIT 25 of each E12

\section*{SPECIAL CAPACITOR KITS}

C280 Kil-PC Mounling palyester 250Y 5 of each vaiue 0.01. 0.022

C296 K.1.-Tubuiar palyesier \(400 v 5\) of each value \(0.01,0.022 .0 .047 .0 .1\)

 4770. 1000, if. 2200.4700 if 0.01 , \(; E 1.66\) nat

50y Paper Kii-Tubular melal case, 3 of each value 0.05 . 0.1 . 0.25

0.0250 .5 1000 P Paper Kil-Tubular metal case. 3 of each value 0.01 . 0.025 . 0.05 , \(0.1,1, f \in 1.63\) net.
B.H. COMPONENT FACTORS LTD. mULTIMETER U4341 27 Ranges plus. Transistor Teste,
167002 V Volt
Vdc--0 3-900V in 8 ranges \(\mathrm{Vac}-1.5-750 \mathrm{~V}\) in 6 ranges
Idc \(-0.06-600 \mathrm{~mA}\) in 5 ranges lac - \(03-300 \mathrm{~mA}\) in 4 ranges. Resistance \(-2 K!-2 M!\) in 4 ranges Accuracy-dc-
ac. \(-4 \%\) of FS.
.
hte \(-10-350\) in 2 ranges
Size \(-115 \times 215 \times 90 \mathrm{~mm}\)
Complete with steel carrying case, tes



\section*{Wilmslow Audio THE firm for speakers!}

Baker Group 25.3.8. or 15 onm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe. 8 or 15 ohm
Baker Major. 3.8 or 15 ofm Baker Regent. 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion HF 13008 or 15 ohm Celestion MH 1000 horn. 8 or 15 ohm Decca London and \(X\) over
Decca DK 30 and \(X\) over
EMI 5" Mid range
EMI \(61 / 2^{\prime \prime}\) d/cone roll surr 8 ohm EMI \(8 \times 5,10\) watt \(\mathrm{d} / \mathrm{c}\), roll/s 8 ohm EMI \(14^{\prime \prime} \times 9^{\prime \prime}\) Bass 8 ohm
Elac 59RM 10915 ohm. 5 Elac \(6^{1 / 2^{\prime \prime}} \mathrm{d} / \mathrm{c}\) roll \(/ \mathrm{s} 8\) ohm
Fane Pop 15 watt \(12^{\prime}\)
Fane Pop 33T 33 watt \({ }^{\prime}\)
Fane Pop 55, 12" 60 wat
Fane Pop 60 watt. 15
Fane Pop 70 watt \(15^{\prime \prime}\)
Fane Crescendo 12A or B. 8 or 15 ohm
Fane Crescendo 15,8 or 15 ohm
Fane Crescendo 18.8 or 15 ohm
Fane \(807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\), rolls/s. 8 or 15 ohm Fane 801T \(8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll's 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12 P-G 8 or 15 ohms Goodmans Audiom 2008 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom 8"' 8 or 15 ohm Goodmans Twinaxiom \(10^{* \prime} 8\) or 15 ohm Goodmans Twinaxiom \(10^{\prime \prime} 8\) or 15 ohm
Kef T27 Kef T27
Kef B1 10
Kel B200
Kel B139
Kef DN8
Kef DN 12
Kef DN 13
Richard Allan HP8B 8" 45 watt
Richard Allan CG8T \(8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s STC 4001 G super tweeter STC 4001 K super iweeter Goker Ma;or Module, each Goodmans DIN 20, 4 ohm each Helme XLK 35 , pai Helme XLK 35 , pai
Helmé XLK40 pair Heime XLK 30 , pai
Kefkıt 1, paır
Kefkıt lil each
Richard Allan Twinkıt each Richard Allan Triple 8, each Richard Allan Triple, each Richard Allan Super Triple, each Richard Allan RA8 kit parr Richard Allan RA82 kit parr Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 XP kit, pai Wharfedale Dovedale \(3 \mathrm{kıt}\), pair

All Radford Gauss Castle Jordan Watis Eagle
owther. Peerless Tannoy units in stock
Prices correct at \(15 / 7 / 76\)
ALL PRICES INCLUDE VAT
Cabinets wadding. Vynair, Crossovers etc FREE with all orders over \(£ 10\) - HiFi Loudspeaker Enclosures Book All units are guaranteed new and perfect

> Prompt despatch

Carriage Speakers 55 p each. \(12^{\prime \prime}\) and up \(85 p\) each, tweeters and crossovers 33 p each. kits

\section*{WILMSLOW AUDIO}

Loudspeakers \& Expori Dept: Swan Works Bank Square, Wilmsiow, Cheshire SK9 1HF. Discount HiFi, PA etc: 10 Swan Street Wilmslow. Radio, Hi-Fi, TV: Swift of Wilms. low, 5 Swan Street, Wilmslow. Tel. (Loudspeakers) Wilmslow 29599, (HiFi, etc.) Wilmslow 26213.


CBS TAPE Bulk tape-for duplicating
reLCO Telephone answering instruments, RF powe amplifiers and \(C B\) accessories

CROMmES Public address amplifiers PRECISION and sound systems.

BLONDER Superb quality and per TONGUE formance-antennas. meters, MATV and CATV products

TRUSOWIC Speaker systems for every indoor and outdoor need.

IFISH TAFE Premium quality tape available in cassette, 8 track, open reel, video

CONSOLIDATED
WIRE-CABLE AVA-coaxial connectors
UTAld Complete line of hi-fi speakers and accessories

\section*{ROBIMS}

INDUSTRIES Audio accessories
SOUTH SHONE Citizens Band and Marine
TRADINE Radio Accessories, Lock Mounts

Write for
Iree illustrated
catalogs and specifications.

\section*{Hosited \\ 270-278 Newtown Road \\ Plainview, N. Y. 11803 \\ Cable Address: Morhanex, NY Telex: 96-7880}

\section*{Appointments}

Advertisements accepted up to 12 noon Monday, August 30, for the October issue, subject to space being available.

DISPILAYED APPOINTMENTS VACANT: \(£ 6.50\) per single col centimetre ( min .3 cm ). LINE advertisements (run on): \(£ 1\) per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Owen Bailey on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

\title{
Radio Officers-now you can enjoy the comforts of home.
}

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are \(£ 2905\) rising to \(£ 3704\) after three years service. Between 19 and 24 , the starting salary varies from \(£ 2234\) to \(£ 2627\) according to age. In addition, a supplement of \(£ 312\)
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages \(£ 900\) a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London ECIA 1AR.
Posit Offifice Tellecommunicaitions

\section*{CAPITAL}

APPONTMENTS LTD.

\section*{JOB HUNTING?}

We have more vacancies for DESIGN. DEV, TEST AND FIELD SERVICE ENG than ever before. All areas and applications. Salaries to:
£5,000
34 Percy Street, London, W1 \(01-6369659\) (day) or 5500836 (avg.)

CIRCUIT DESIGN ENGINEERS SYSTEMS TEST ENGINEERS SALES AND CONTRACTS ENGINEERS
(5243)

\section*{DEVELOPMENT ENGINEERS PRODUCT ENGINEERS}

Grampian, a member of the Telephone Rentals group, manufactures a wide range of electronic and electro-acoustic audio and internal telephone equipment. We have vacancies for Development Engineers to work on all aspects of communications processing and audio distribution systems, and for Product Engıneers to turn this work into essential production information, and to provide technical support for existing products.
We are seeking people with suitable experience either of analogue development work or of product engineering within the electronics industry, and who possess a high degree of motivation. In return for initiative we offer competitive salaries and generous Pension and Life Assurance schemes.


For application form ort Mr. G.N. Turner
details please contact
Grampian Reproducers Lid.
The Hanworth Trading Estate,
Feltham, Middlesex TW136EJ
018949141 .
-解

\section*{UNIVERSITY OF SALFORD \\ ELECTRONICS TECHNICIAN}

To work in the Electronics Workshop of the Department of Electrical Engineering Work involves the repair and maintenance of a wide range of instrumentation (including minicomputers and their associated electromechanical peripheral equipment) together with the developelectronics Applicants should possess ONC or equivalent, logether with some years' experience relevant to the work involved
Salary scale \(£ 2751 £ 3207\) Starting salary according to age. qualifications and experience Local Government Superannuation
Letters of application stating age. qualifica lions and experience together with the names and addresses of two referees should be sent to the Registrar. University of Salford. Salford M5 4WT by 10 September, 1976 quoting reference E/176/inw
(6102) With contracts for a variety of advanced avionic projects in the Tornado (MRCA), Sea Harrier, Nimrod Mk2, Mitsubishi FS-T2, Jaguar and the naval Lynx helicopter, Ferranti in Edinburgh are in a position to offer career conscious engineers a wealth of technological experience. Planned expansion through this year and next now requires the appointment of engineers with experience in the following areas:


\section*{OMAN}

\section*{Dhofar Region Television Service}

We are recruiting on renewable one year contracts and have vacancies for
- Very Good Salary
- Free Family Passage
- No Income Tax payable in Oman
- Free Furnished

Accommodation
- Special End of Contract Bonus
- We pay Local Education Fees
- Comprehensive Free Insurance, Health, Dental, etc.
- Hard work is necessary

\section*{ASS. CHIEF ENGINEER}

SECRETARY TO GENERAL MANAGER

\section*{SENIOR} MAINTENANCE ENGINEER

THESE ARE IMPORTANT POSTS TO BE FILLED

Let us discuss with you your abilities for these interesting and important positions

Phone: Tony Owers, 01-573 8333 for more information

\section*{PERSONNEL \& ELECTRONICS LTD.}

\section*{INTERNATION!AL VIDEO SYSTEMS REQUIRE: \\ SENIOR SUPERVISORY ENGINEER}

Experienced in operational TV systems. Knowledge of all colour systems, telecine. Ampex 1200 and video cassettes. Salary \(£ 3,000-£ 6,000\) depending upon experience and qualifications.

\section*{OPERATIONAL ENGINEERS}

Technically qualified and experienced in operating with video tape and film. Salary approx. \(£ 2,500\) £3,500
The above vacancies are in Mitcham, Surrey.

\section*{SALES \\ REPRESENTATIVES}

Experienced television equipment and systems, required to sell UK and abroad exclusive equipment and services. Salary approx. \(£ 3,000\) basic plus commission (Total at least \(£ 5,000\) ) based Central London.
Applicants send full details of qualifications, experience and age, to:
G. White, Technical Director, I.V.S. (UK) Ltd.

Redan House, One Redan Place London W2 4SA
Tel. 01-727 2783

\section*{Junior Laboratory Technicians \\ BBC Engineering Designs Department -London.}

A number of posts are available in C'entral London for enthusiastic and forward thinking young students to train as TEC'HNIC'IANS in the laboratorie's of the BBC"s D(signs Department.
The work will include assisting engineering and laboratory staff in the development, construction and testing of units of sound and television broadcasting equipment.
The successful candidates will probably be aged \(18-20\) and have a keen interest in, and possibly some experience of. electronies. They will have some 'O' levels two preferably will be scientific and will be either qualified to ONC or City and Guilds part II standard, or have recently commenced the final year of such a course.
Salary according to experience in the range \(£ 2514\) to \(£ 2706\) rising to \(\$ 2994\). Good promotion prospects. Pensionable. Good club and restaurant facilities,
Please write for application form to:
The Engineering Recruitment Officer, Broadcasting House, London W1A 1AA quoting reference: 76.E.217.1 1 Whandenclosinganaddressed conchope at least \(9^{\prime \prime} x\) f." Closing dute for completed apphlcation forms: 14 davs after publucation

\section*{Looking}
for a new job?

\section*{Perhaps we can help!}

We have regular contact with hundreds of electronics and electrical companies needing qualified ellectronics engineers and technicians and TV service engineers.
We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

\section*{TJB Electrotechnical Personnel Services 12 Mount Ephraim Tunbridge Wells, Kent}

Tunbridge Wells (0892) 39388


TJB Electrotechnical Personnel Services is a division of Technical \& Executive Personnel Ltd. and is solely concerned with job placement in the Electronics and Electrical Industries

Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

Please send me an "Application for Registration" form
NAME
ADDRESS

\section*{SOUTH HAMMERSMITH HEALTH DISTRICT(T) \\ \section*{Charing \\ \\ Cross \\ \\ Hospital \\ \\ ELECTRONICS \\ \\ ELECTRONICS TECHNICIAN} TECHNICIAN}

\section*{Medical Physics Department}

\section*{£2,970-£3,891}

The person appointed will act as an assistant to the Senior Electronics Technican responsible for the day-to-day maintenance and servicing in the Medical Electronics Sectıon of the Medical Physics Department. The work will include calibration and safety checking of electronic equipment used in this and associated hospitals
A good knowledge of electronic equipment, particularly differential amplifiers, oscilloscopes, power supphes. chart recorders, tape recorders etc., is necessary
Applicants should have a minimum qualification of ONC in Electrical Engineering or equivalent, and have appropriate experience A knowledge of medical equipment is not essential but would be an advantage
Application forms from Heather Dann at District Personnel Department Charing Cross Hospital, Fulham Palace Road. London. W6 8RF Telephone 01-748 2040, ext 2997. Closing date for return of completed application forms. 3rd September, 1976
(6108)

\section*{maner}

Opportunities in the ELECTRONICS FIELD

We have selected from many vacancies those which offer ex ceptional career prospects and job interest If you have experi ence in desian, test. sales or service and wish to progress your career, please telephone Mike Geinat B Sc who is advis ing on these opportunties
E.M.A. Management Personnel Lid Burne House, 88/89 High Holborn London WC1V 6LR 01.2427773

\section*{VIDEO SALES REPRESENTATIVES}

Due to expansion we require additional experienced representatives, with proven record of success in previous job. enthusiasm and self-motivation to work in the office and on the road
We offer
1) an excellent ealary negotiable
2) company car (where applicable) and Expenses atisfaction with an 3) permanent and assured future, plus

\section*{VIDEO HIRE DEPARTMENT}

Manager and Manager's assistant, required to work in busy department Previous experience in video or allied field essential.
Please write in confidence to the Managing Director, M. Murray, REW Audio Visual Company, REW House, 10/12 High Street, Colliers Wood, London SW19 2BE.

These positions are available to either sex.

WESTFIELD COLLEGE (University of London)

\section*{ELECTRONICS} TECHNICIAN

\section*{In the College Physics Department} Duties include construction and maintenance of a variety of electronic equipment. Applicants must be educated to A level/ONC/OND or equivalent level and have 3-5 years' relevant experience. Salary scale \(£ 2325 \times £ 66\) to \(£ 2655\) plus E465 London Weighting
Further details and application form from Dr. J. Buckingham. Personnel Officer. Westfield College, Kidderpore Avenue. Hampstead, London NW3 7ST.
(6087)

\section*{TECHNICAL TRAINEES FOR TELEVISION}

Thames Television is seeking applications for appointments as Technical Operatıons and Engineerıng Traınees. The Technica Traıning Scheme is a one year broad based course which covers all aspects of television operations.

Candidates should be between 20 and 25 years of age. possess a degree. Higher National Diploma or sımilar qualification in electrical or electronic engineering and have a sound knowledge of television engineering principles. A keen interest in the field is also essential.

Applicants should give full details of age, qualifications and experience and must arrive not later than 28th August, 1976.

Training Organiser, Thames Television Limited, Teddington Studios, Teddington Lock, Teddington, Middlesex

TW11 9NT.

\section*{AMPEX SYSTEMS ENGINEER}

We are currently seeking a first class systems engineer to fill a vacancy in our offices in Reading. The engineer appointed will be responsible for the execution of contracts for outside broadcast mobiles, which includes designing, planning. liaison with sub-contractors through to check-out and commissioning
Acceptance usually takes the place on the customers site in the U.K. and abroad, and therefore the successful applicant will be required to travel.
Experience in television broadcasting would be an advantage. Salary commensurate with experience, generous overtime payments.
Applications with curriculum vitae should be sent to the Personnel Manager, Ampex Electronics Limited. 72 Berkeley Avenue, Reading RG 16 HZ , quoting ref. RVDL.
(6110)


Pye TVT is a leading supplier of professional TV and radio broadcasting equipment. Current contracts include TV outside broadcast vehicles for Denmark, Holland and Nigeria, a major studio installation in Indonesia and a complete radio and TV turnkey project in Oman Our continually increasing broadcasting systems activity world-wide has created the need for a further Studio Systems Engineer. You will be technically qualified to HNC or equivalent standard, and will have spent several years in TV broadcast engineering, either in design, installation or operation and maintenance of studios or outside broadcast vehicles. As a member of the Marketing Projects Team, your main activities will be the design of TV studio systems together with responsibility for the preparation of technical quotations and

tenders and related customer information. You will be based in Cambridge, but may be required to make short visits to any part of the world. Ideally, the position calls for someone dedicated to broadcast engineering, having the ability also to plan, and firmly maintain, target dates. In addition to the usual employee benefits, assistance will be given with relocation expenses.
Replies, giving brief details of qualifications and experience to date, should be sent to
Alan Fergusson, Personnel Manager,

\section*{LKB INSTRUMENTS LIMITED ELECTRONICS TECHNICIAN/ ENGINEER}
required to be responsible for repairs and the general day-to-day running of our workshop. The position offers a wide variety of challenge and opportunity covering all types of modern electronics and small mechanical instruments.
The applicant should possess a good modern electronics background and a mechanical aptitude.

The Company is internationally renowned for the quality of its products and offers excellent working conditions.

Write for application form to:

\section*{Service Manager}

LKB Instruments Ltd.
232 Addington Road
Selsdon, South Croydon
CR2 8YD
or telephone: 01-657 8822


THF INCENTIVE GROUH

\section*{UNIVERSITY OF EDINBURGH SENIOR TECHNICIAN -and audio visual SERVICES}

Duties include the operation and maintenance of a C.C.T.V. studio including telecine and helical scan video tape recording and editing facilities, provision of video and audio recording/replay facılities outwith studio and maintenance of University Department's video and audio equipment.
Applicants must be qualified and have worked for a minimum of 5 years in a C.C.T.V. or broadcast studio complex and have sound knowledge of electronics with diagnosing and reparring experience. The post is one of responsibility and requires drive. initiative and tact in dealing with technicians in the unit and academics using the facilities
Salary on the scale E3666-£4122p.a. Annual holidays, 4 working weeks and 4 days, plus public holidays. The names and addresses of two referees will be required. Applications. quoting post reference no. A196, should be addressed to the Personnel Office. University of Edinburgh, 63 South Bridge, Edinburgh EH1 1LS. Telephone 031-667 1011, Ext. \(4510-3\)

\section*{TELEVISION ENGINEERS}

Doric Radio is a fast growing member of the Rediffusion group of , aelliag monocbrome and colour T.V. receivers to the retall trade through an increasing network of dealers. A small but effective team is being established to provide a technical service to our customers at home and overseas. This team provides service beck up facilities by direct contact with our Doric dealers, belping to solve their problems and completing the link back to our factories where necessary.

Attitude, ability, thoroughness, tact and a willingness to get inrolved are essential requirements for these positions. This is a challenging opportunity for expertenced engineers who wish to become important members of a small succesaful team working on the latest recelvers employing advanced electronic techniques. Prospects for promotion are excellent. Formal qualifications, whilst desirable, are not essential where adequate practical experience on modern colour television receivers can be demonstrated.

Suecessiul applicants will be based at our Chessington laboratortes Wth their excellent facilitios and equipment, but occasional visits to our factortes in the North of England and to our dealers' premises both at home and abroad, may be necessary.

Salaries will depend on abllity and experience, but will reflect the importance of these new posta. Assistance with relocation expenses will be given where approprtate,
nterested? then write to:-
H. Brearley.

Head of Tecbaical Services,
Doric Radio Ltd.,
Fullers Way South
Chesaington.
Surrey. KT9 1 HJ
Telephone 01-397-5411

\section*{Systems Test Engineer}

Crosfield Electronics Ltd are leaders in the field of sophisticated electronic equipment for the printing industry. We need engineers to work on the final testing of systems using analogue and digital circuitry with a degree of photographic and optical involvement.

The right people will be aged 20 to 32 and either up to HNC standard with three to five years' relevant experience or with a service background. Knowledge and experience of computer software and hardware would be an important advantage

Starting salary depending on experience will be attractive and benefits are commensurate with those expected of a member of an international group of companies.

For an application form please contact Linda Geers, Crosfield Electronics Lid, 766 Holloway Road, London N19 3JG. Telephone 01-272 7766.

CROSFIELD ELECTRONICS

\section*{UNIVERSITY OF WARWICK}

\section*{ELECTRONICS} TECHNICIANS - GRADE 5
in the
DEPARTMENT OF PSYCHOLOGY
(1) A Technician is required for a wide range of electronics work with particular emphasis on the ability to participate in the development of microprocessor systems for laboratory measure ment and control applications Extensive experience relevant to this field is required and appli cants should be qualified to HNC or equivalent level The post is permanent and pensionable and permanement will be made on the apoinicon Grade 5 scale -2.75153207 pa
2) A Technican is required to work on a three-year. MRC fuñded research project into the rela tions between eye movement control and perceived move ment and stability. The job will include the development. construction and maintenance of electronic equipment, and it is hoped that the successful candidate will also want actively to participate in other aspects of the project. We shall be using on-line computer analysis of eye movement responses and online control of experimental conditions. A knowledge of mini-computers and programming, and an interest in models of eye movements would be an asset. Starting salary up to \(£ 2.934\) p.a. on the Technician Grade 5 scale: £2.751-£3.207 p.a.

Further details may be obtained from the Academic Registrar, University of Whe Acad Coventry CV4 7AL to Warwick, Coventry in writing (oo whom applications cho wing (no forms) giving full details and the names of two refes should be set as soon as possible. Please quote Ref. No \(51 / \mathrm{J} / 76\)
( \(61 \% 1\) )

\section*{ROYAL COLLEGE OF ART}

The Department of Environmental Media operates and maintains an information system of all work undertaken in this area
Applications are now invited from suitably qualified candidates to fill the post of

\section*{TWO DAYS A WEEK TECHNICIAN}
in the Department Salary within the salary range £1448-£1690 p.a according to qualifications and experience Applicants should have a expering knowledge of the following working knowledge of the folowing equipment and have the capacity to undertake routine ont or familiarity with elementary information processing systems. 26 mm cine projector: \(1 / 2^{\prime \prime}\) Sony video recording and editing facilities multi-screen encoder/decoder and cross-fade unit: sound recording mixing and synthesising equipment.

Please write giving full details of age, qualifications and previous exper qence to Mr. H. W. Denyer Assistant Registrar, Royal College of Art, Kensington Gore, London SW7 2EU.

WEST SUSSEX COUNTY COUNGIL FURTHER EDUCATION CRAWLEY COLLEGE OF TECHNOLOGY
College Road, Crawley, Sussex

\section*{LECTURER}

Grade 1, required as soon as possible for the following courses RADIO, TELEVISION and ELECTRONIG MECHANICS (C \& GSIC G 222)
ASIC ENGINEERING CRAFT STUDIES (C \& G 200) and ELECTRICAL \& ELECTRONIC
CRAFT STUDIES (C \& G 231)
Suitable applicants will have good practical experience at least a City \& Guilds Full Technological Certificate and ability to teach craft students practical and theoretical subjects. Salary Scale - £2.469-t.4.377 +

Further details and application forms available on receipt of foolscap s.a.e. from The Principal. Crawley Colleg
of Technology, Crawley. Sussex.
Applications to be returned to the
Principal by ist September. 1976 ment expenses payable in approved cases There is a possibilly of

\section*{LOGIC ENGINEER} REQUIRED
Able to troubleshoot digital and anaiog circuits. Must have working knowledge of
solid state television and power supplies Good mechanical aptitude. Excellent salary and working condition
Telephone: Ruffier \& Deith Limited, 8705238 and 8705224 or write to 127 Wandaworth High Street, London SW18 4JB.

\section*{MANCHESTER POLYTECHNIC} raculty of Art and Design, DEPART AND DESIGN. School of Film and AND DESICVision. TELEVISION STUDIO ENGINEER. The post is one of res ponsibility and entails assisiting the senior Engineer with studio operations and maintenance in closed circuit television. Candidates should educational television operations and should be conversant with both television and sound studio production. Appropriate technical qualifications such as HNC or City and Guilds Certificate would be an 4 advantage. Salary scale: Technician 4 £3,366-£3,702, plus £312 per annum and application further particulars and application form (returnable self-addressed envelope marked \(\because A / 253{ }^{\prime \prime}\) to the Secretary, Manchester Polytechnic. Lower Ormond Street, Manchester Mils 6BX.

Electronic Engineers with market able dideas or inventions to join well established company with development laboratory and produc tion facilities on salary and profit high quality instrumence given to high quality instruments, avionics opportunity for right man to build apportunity for right man to build a future with a share in well essouth of London Airport. Write Box WW 6051 .

\section*{U.S.A. OPPORTUNITY. Marine Electronics Field Service techni-} cian. Must be experienced in all Autopilots and radar. Work on world's largest luxury yachts. Please submit résumé and photograph to Electronics for Yachting, 1525 S. E. 16 th Street, Ft. Lauder: dale, Fla. 33316 U.S.A. (6054)

\section*{SOUND SYSTEM ENGINEERS}

Join the APAE, the only official Association representing the P.A. Industry - further details:

The Secretariat
The Association of Public Address Engineers

47 Windsor Road, Slough, Berks., SL1 2EE
(6039).

\section*{(CAA Capital APPDINTMENTS LTD.}

FIELD SERVICE ENGINEERS (ELECTRONICS) If you re not earning over
\(£ 3,500\) p.a. plus a car - then you had better contact us!

34 Percy Streat, London, w.t
01.6365659 (diy) or 01.636 pes
550 0836 (avening or

\section*{DESIGN TEST \\ FIELD SERVICE}

Immediate vacancies exist in most areas for engineers qualified to areas for engineers qualified to
\(B S c / H N C / C \& G\) with analogue. digral or R.F. experience
Phone or write
APEX PERSONNEL
800 FULHAM ROAD
LONDON S.W. 6
01-7314353

RADIO TELEPHONE Service Engineer wanted for work-shops in south London. Must be reliabble and experienced with Pye, GEC, and other mobite radio equip.
Natary
(5329)


Instrument case problems? We have
OVER 300 SOLUTIONS
See last month's or next month's
issue or telephone us
WEST HYDE DEVELOPMENTS LTD Ryefield Croscent, Northwood Hills Tel. Nood, Middx, HA6 1 NN Tol. Northwood \(24941 / 26732(6160)\)
Tolex: 923321

Digital CLOCK mODULES KITS
Further details tree on request
\begin{tabular}{|c|c|c|c|c|c|}
\hline E' LED displays & & clock chips & & soldercon pin & \\
\hline DL-704E 03 3', & \({ }_{7}^{700}\) & AY-5.1224A & c3.50 & & \\
\hline - \(\mathrm{LL}-707 \mathrm{O}\) & 70 p & Mk 50253 & c5.50 & & 4.00 \\
\hline  & E1.80 & CA Amps 130 COS /MOS) & & hED ACA & \\
\hline DL.750606 & & CA 1140 (limos & E1.00 & For & \\
\hline DI.747E \(06^{\prime \prime}\) & \(E 1.50\) & 741 M mindip & \({ }_{25 p}^{\text {25p }}\) & 157 socker & \\
\hline
\end{tabular}

PUSH BUTTON SWITCHES TYpe SW9 Min Push to make 15 p
CMOS WITH OISCOUNTSI (Any mix disc. \(10 \% 25+.25 \% 100+.33 \% \% 1000+\) )


N

 \(14515 /\)
\(14516 /\)
14517
\(1451 /\)
\(14519 /\)
\(14520 /\)
\(14521 /\)
\(14522 /\)
\(14526 /\)
\(1427 /\)
\(14588 /\)
\(1429 /\)
\(1450 /\)
\(14571 /\)
\(1432 /\)
\(14534 /\)
\(14536 /\)
\(14537 \prime\)
14539
\(14541 /\)
\(14543 /\)
\(14549 /\)
\(14552 /\)
\(14553 /\)
\(14554 /\)
\(14555 /\)
\(14556 /\)
\(14557 /\)
\(14558 /\)
\(14559 /\)
\(14560 /\)
\(14561 /\)
\(14562 /\)
\(14566 /\)
\(14568 /\)
\(14569 /\)
\(14572 \prime\)
\(14580 /\)
\(14581 /\)


\section*{GREENBANK ELECTRONICS (Dept. W9 w)} 94 New Chester Road, New Ferry, Wirral, Marseyside L62 5AG, England. Tel: \(051-645\) 3391

DIGITAL CLOCK CHIP, AY-5-1224, with data and circuit diagram 3.66 pius VaT, Jumbo LEiD digits only f2.04 each plus VAT Griy c2.04 each plus VAT, post free Chester Road, Wirral' Merseyside L62 5AG. Mirral. Merseyside
C.R.T. REGUNNING PLANT. New and secondhand reconditioned B/W. Barretts, Mayo Road, Croydon Surrey, CRO 2QP. VACUUM is our speciality, new
and secondhand rotary pumps dif. fusion outfits, accessories coaters. fusion outfits, accessories, coaters grassing equipment from E40. V. N. Barrett (Sales) Ltd. 1 Mayi) Road Croydion. 01-684 9917.

16MM B \& H 631 Sound projectors c/w speaker and transformers \(£ 135\). ford -T. 20009 . 8 West Hih, Dart 60KHz MSF Rugby Receiver. BCD
TIME OF DAY OUTPUT Hiyh performance, phase locked. loop radio receiver. 5 V operation writh 1 second LED indication. Kit complete with tuned fernite rod aerial f14.08 (including postage and VAT). Assembled circuit and casedup version also available. Send for detaills Toolex, Sherborne
(4359), Dorset.

> YOUR TAPES TO DISC. MONO or Stereo Cutting. Vinylite Pressings. Sleeves/labels. Top professional quality. S.A.E. for photo leaflet,
DEROY
Records. Cove Dunbartonshire, Scotland.

\section*{PRACTICAL SOLID STATE D.C. SUPPLIES}
by T. D. Towers. Price \(£ 6.00\)
THE OSCILLOSCOPE IN USE byI. R.SInclair PRICE: E2.85
THYRISTOR RECTIFIER THYRISTOR R RECTIFIER
MANUAL BY RCA
PRICE: E3.50 MANUAL BY RCA PRICE
IC OP-AMP COOKBOOK IC OP-AMP COOKBOOK
by W. G. Jung PRICE: \(\mathbf{E 8 . 8 5}\) AUDIO AMPLIFIERS FOR THE HOME CONSTRUCTOR BY I. R. Sinclair PRICE: 12.65 SOLID STATE COLOUR TELEVISION CIRCUITS by G. R. Wilding PRICE: £6.2 RCA INTEGRATED CIRCUITS DATA BOOK bry RCA ARRL ELECTRONICS DATA BOOK by ARRL PRICE: \(£ 3.10\) THE ELECTRONIC MUSICAL. INSTRUMENT MANUAL by A Douglas PRICE: E8.00 MICROPROCESSORS NEW
DIRECTIONS FOR DESIBNERS by E. A. Torrero PRICE: \(£ 5.90\) RADIO VALVE \& SEMICONDUCTOR DATA by A. M. Ball
* All Paices include postage *

THE MODERN BOOK CO
SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS

\section*{19-21 PRAED STREET \\ LONDON W2 1NP}

Phone 7234185

COLOUR, UHF AND TV SPARES, Lists on nequest. "Whrekess World' TV Tuner and FM Tuner Projects TV Tuner and FM Tuner Projects able. JAPANESE SOLID STATE
COLOUR CHASSIS for the experi menter. Includes IF, Decoder, CDA, Timebases, Output stages etc. Incl. circuit. Brand new. £20 p/p E1.50. New Cross Hatch kit, Aerisil Input type. No other con nections. Battery operated port able. Incl. Sync \& UHF Modurator unuts £11* Add-on Grey Scale kit, £2.90 p/p 45p. CRT Reactivatior kit for colour and mono £17.48* p/p 80p. Signal Strength Meter kit E18*. p/p 70p. 625 TV IF Unit, for
\(\mathrm{Hi}-\mathrm{Fi}\)
amps or tape recording 88.80 p/p 6.5p. Decca Colour TV Thyris tor Power Supply Unit, incl. HT L.T., etc. Incl. circults \(£ 3.80 \mathrm{p} / \mathrm{p}\) 95p. Bush CTV 25 Power Supply Unit, inch. H.T., L.T., etc. c . 20 . 20 . p/p £1.20. Bush CTV 25 Conver: gence panel pius yoke, blue lateral
\(£ 3.60 \mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Philips single stand convergence units complete, incl 16 convergence units complete, Colour controls, e3.75 p/p \({ }^{\text {Scan }}\) Coils, Mullard or Pilessey \(£ 8\) Scan Coils, Mullard or AT1023/05 or
p/p 80 p . Mullard AT1023 p/p 80 p Muluard Yiessey Converg. Yoke \(£ 2.50 \mathrm{p} / \mathrm{p}\)
Ple 55p, Mullard or Plessey Blue
erals 75p p/p 30p. BRC 3000 type scan coils \(£ 2\) p/p 80p. Bush CTV 25 Scan Colls e2.50 p/p 80p. Dellay Lines: DL20 \(£ 3.50\) DL40 \(£ 1.50\) DL1E, \(\begin{array}{lllll}\text { DLI } & 85 p & \mathrm{p} / \mathrm{p} & 40 \mathrm{p} . \mathrm{Lum} \text { delay } \\ \text { lines } & 50 \mathrm{p} & \mathrm{p} / \mathrm{p} & 30 \mathrm{p} . & \text { Bush/Murphy }\end{array}\) \(\begin{array}{llll}\text { lines } & 50 p & p / p & 30 p . \\ \text { CTV Bush/Murphy } \\ 25 & 3 / 174 & \text { EHT quadrupler }\end{array}\) £8.50 p/p 75p. Special offer colour triplers, ITT TH25 1TH E2 GBC 2040
E1.75 p/p 50 p . Philips G8 Panels, part complete, surplus/salvaged: Decoder £2.50, IF incl. 5 modules \(\begin{array}{lllll}\text { £2.25, } & \text { T. } & \text { Base } 11 & \text { p/p } & 70 \mathrm{p} . \\ \text { Base } & \text { CRT } \\ \text { CR }\end{array}\) Base 75 p p/p 30 p . GEC 2040 De .
coder panel for spares \(£ 3.50 \mathrm{p} / \mathrm{p}\) 70p: VARICAP TUNERS. 1043 © 54.20 FLC \(1043 / 05\) VLC 1043 £4.20, ELC 1043, 1042 Philips VHF

 trol unit \(\mathrm{f1} \mathrm{p} / \mathrm{p} 35 \mathrm{p}\). UHF Tuners tranisd. indl. slow motion drive
e3.80. 4 Psn. and 6 Psn. push button transd. \(84.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}\). Philips, Bush. Decca integrated UHF/VHF transd. tuners \(84.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Thorn 850 dual stand, time base panels 50 p . Phllips 825 IF panel incl. cct. 50p. p/p 85p. VHF Turret tuners Philips 19TG170, GEC 2010, etc £2.50. Hye miniature incremental tuners el. Fireball tumers, ferguson, hap Mubland Mono scan colls ers 70p. Mubland Mono scan cons Ferranti, Invicta \(£ 2 \mathrm{p} / \mathrm{p} 70 \mathrm{p}\). Large Ferranti, Invicta \(£ 2 \mathrm{p} / \mathrm{p}\) 70p. Large
selection LOPTs, FOPTs available selection LOPTS, FOPTs available SUPPLIES, 172 West End Lane. London, N.W.6. Shop premises. Callers welcome. (Nos. 28, 159 buses or West Hampstead-Bakeroo Golders Manor Drive, London, N.W.11. Tel: 01-794 8751. V.A.T. Please ADD 123\% TO ALL PRICBS (EXCEPT WHERE MARKED \(8 \%\) ).


\section*{PRECISION POLYCARBONATE CAPACITORS} ail

\section*{aiv \\ VAfCE DIMEN PRICE
 \(100,04 F\) at 3 V . AlL


 \({ }^{4}\) LOW PRICE ZENER DIODES-400MW. Tol. \(\pm 5 \%\) at 5 mA . Values avaliable: \(3 \mathrm{~V} .3 .3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V} .5 .1 \mathrm{~V}\)
\(5.6 \mathrm{~V} .6 .2 \mathrm{~V}, 6.8 \mathrm{~V}, 7.5 \mathrm{~V} .8 .2 \mathrm{~V}, 9.1 \mathrm{~V} .10 \mathrm{~V} .11 \mathrm{~V}\)
\(13 \mathrm{~V} .13 .5 \mathrm{~V}, 15 \mathrm{~V} .16 \mathrm{~V} .18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V} .30 \mathrm{~V}\) All at 7 Pe each" 5 for 33 p ; 10
OFFER: IOO Zeners for 66.00
"RESISTORS-High stablitit.
 of any one value. 70 for 100 of any one value
SPECIAL PACK. 10 of each value 2.28 to 2.2 M 1 (730 resistors) LS.
SILCON RLASTIC RECIFIERS- 1.5 amp, brand
new wire ended DO27; 100 P.I.V. 7 p ( 4 for 28 ) 400 P.I.V. 8 p ( 4 for 30 p ).
BRIOGE RECTIFIERS \(21 \%\) amp. 200 V 40 p . 350 V 45p. 800 V 55 p \\ -SUBMINIATURE VERTICAL PRESETS-0.1W

 ORDI.RS BELOW ES. ALL EXPORT ORDERS
ADD COST OF SEAAIRMAL. marked with " which are 255 Ind S.A.E. for lists of additional ex.stock items.
Wholesale price liss a vallable to bona fide}

\section*{MARCO TRADING} (Dept. D1)
The Old School, Edstaston, Mr. Wem Shropshire
Tel. Whixall (Shropshire) (STD 094872) 464/5


\section*{PHOTO ETCH}
pl LIMited pal 9 LOWER QUEEN STREET PENZANCE, CORNWALL TR184DF

Prototype or long run - we will
supply your printed circuit require supply
ments
Also facilities for Design. Assembly and Test
Prompt and efficient service assured

EXCLUSIVE OFFER

\section*{WORLD-WIDE RANGE NEVER BEFORE OFFERED \\ PHILCO HC-15e POINT-TO-POINT STRIP
RADHO HF RECEIVERS \(2 / 30 \mathrm{~m} / \mathrm{cs}\). Ten fully tuneable channels to 0.5 kcs with synthesisers.
Single and diversity reception on \(15 B\). DSB, SSB
with 4 sub-bands to each channel. Full details and prices on application.}

HIGHEST QUALITY 19 RACK MOUNTING CABINETS \& RACKS ENQUIRIES INVITED
FOR NEW STOCK FOR NEW STOCK
AUDIO AND INSTRUMENTATIONTAPE RECORDER-REPRODUCERS
- Plessey ID33 Digital Units. 7 track
* Plessey M5500 Digital Unit. 7 tracks

D.R.I. RMI, 4 speeds, 4 tracks \(1 / 4\)

EMI R301G. 2speeds. 2 tracks \(1 /{ }^{-1}\)

Prices of above \(£ 70\) to \(£ 400\)
Aso Transport Decks only availabie
We have a large quantity of "bits and pieces" w
cannot list - please send us your requirements. w can probably help-all enquiries answered.

Collins 500 watt 218 mcs. Transmitters
Collins KWT6 SSB 500 W Transceivers Collins KWT6 SSB 500W Transceivers.
Collins KWT8 200 m/w AM Transceivers \(£ 1000.00\)
\(\mathbf{E 1 2 5 0 . 0 0}\)
\(\varepsilon 750.00\) STC Rx5 \(2 / 25 \mathrm{mcs}\) Receivers Diversity
....
E140.00 Rack Mounting Operator Tabies ..
Gaumont Kalee 56 Flutter Meters

 Rohn \(\operatorname{sift}\) masts lattice \(12^{\prime \prime}\) sides ....
30f Latuice Masts, 14" sides. 15 f Latuice Mast sections. 12 "
120 L Lattice Masts, \(15^{\prime \prime}\) sides. 75/80n Sky Towers, sell-supporting heavy Aerial Rotators Raliol Recording M/A Meters Hallicrafter \(152 / 174 \mathrm{Mcsc}\) Receivers
75 St Aluminium Latuce Masts 75 A Aluminium Latice Masts,
Plessey peal distortion meters Polarrad Microwave power metef Rhode \& Schwarz SRR sig gen, \(1.6 / 2.4 \mathrm{gm}\) Armec 702 gig gen 30 cyc 30
S.E. 4000 System Units Large Aerial Turning Units
\(\qquad\) 45 Deet Uniradio 4 Co-.... 50 ohms 45 feet Uniradio Co-ax 50 ohms Beluns Protessional Exxerio'
\(25 f\) Teleacopic Aeral Mass 2sft Telescopic Aerial Masts .
Advance LI Signal Generator 30 Advance LI Signal Generator \(300 / 1000 \mathrm{~m}\)
Add \(5 / 8\) Track Tape Punches Digital Cassette Recorders \(1 s^{\prime \prime} 1000 \mathrm{bps}\) Quality Weather Vanes 8 c Video Cross Hatch TV Generators Racal MA-175 I.S.B. Modulators
Imslide Cabinet Shelf Sliders . Imslide Cabinet Shelf Sliders
DG-7/32 or DG7/5C.R.T DG-7/32 or DG7/5 C.R.T
M. V.R. Action Replay 20 Advance H1 Signal Generators Varian VAl75EA Backerators. \(15 / 50 \mathrm{Kcs}\). . E18.00 Oscillators................ Tally \(5 / 8\) Track Tape Readers 60 cps ......... . 48.0
Tally \(5 / 8\) Track Tape Readers Track Spooling 665.01 2 KVA Auto-Transformers
Cintel 2 KV Power Supplies Cintel 2 KV Power Supplie

We have a quantity of Power Transformers 250 watts to 15 KVA at voltages up to
quality at low prices. Lists available.

Racal RA-63 SSB Adaptors, new
Racal RA-237 L-W Converters, 19' Blank Rack Panels 8\%/in high. new Apeco Diala Copy Proto Copier. Electrostatic \(£ 35.00\)
Plo Portable Mains Battery Hospital Lights
400 Channel Pulse Height Spectrum Analysers

We have a varied assortment of industrial and
professional Cathode Ray Tubes available. List on request.

\section*{COMPUTER HARDWARE}
(LINE PRINTER, High speed 1000 Tines C.p.m. \(\quad\) READER, High-speed \(5 / 8\) track 800 c.p.m.
CARD READER \(80 \mathrm{col} .600 \mathrm{c} . \mathrm{p} . \mathrm{m}\) Prices on Application
PLEASE ADD CARRIAGE AND V.A.T.

AT APPROPRIATE RATE TO ABOVE
P. HARRIS

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH (0202) 765051 (6013)

VALVES RADIO TV TRANSMITTING INDUSTRIAL 1936 to 1975. many obsolete types, list 20p s.a.e. for quotation. Postal export service. We wish to buy all types of valves new and boxed. Wholesalers, Dealers, etc, stocks purchased. Cox Radio (Sussex) Ltd. West Wittering 2023 . (5392)

RECLAIMED COMPONENTS. G1.25 1310 decoders 95 p . TBA 651 95 p post free Box No. W 6045 .

ZENITH ROYAL 7000 solid state portable transoceanic chassis 18ZT 4023. As new, perfect. Nearest offer to £1/25. Keith 'Studd, Garry Cottage, Seal Chart Sevenoaks, Kent. Tel: Sevenoaks. (0732) \(\begin{aligned} \text { 61441, } \\ \text { (6089) }\end{aligned}\)

FACSIMILE, Helical Scan Recorder, sin Alden. fair condition. needs with carton of 12 rolls paper. £22 carriage, packing \&5. Branson. 111 Park Road. Peterborough.

OSCILLOSCOPE, Tektronix model 564 B storage with plug in 2 B 67 timebase and \(3 A 6\) dual trace amplifier, manuals. little used 5550 . Tel: Erith (Kent) 30556.

\section*{Burglar Alarm equlipment - safes Astro Alarms 25 Stockton Road Astro Aland, Tyne \& Wear. Tele Sunderiand,
phone 77825. \\ PYE, GEC, ITT mobile radio equip ment for sale. New and second hand mobiles and base stations ex stock. Crystals 2 weeks delivery Finglas mobile and base station antennas available ex. stock a very competitive prices. While you wait fitting service. Cash waiting for surpius \(r / t\) and test equipment.
\(01-680 \quad 1010\).}

WE INVITE ENQUIRIES from any where in the world. We have in stock several million carbon resis tors 1 th. \(1, \frac{1}{3}\), and 1 watt. \(\frac{1}{2}\) million wire wound resistors 5 and 10 wat - 1 million capacitors - 1 million electrolytic condensers - million transistors and diodes, thousands of potentiometers, and hosts of other components. Write. phone or fields and Mayco Disposals Broad fields and Mayco Disposals Lid. London, N.12. 01-445 0749, 4452713

Linsley-Hood 75 watt amplifier spares. BDY56 \(51.65, \quad\) BD 529559

 BFR39 25p,
Interference
suppression reduces preamp noise) with in reduces preamp noise
structions \(£ 1.35\). Power amp update kit \(\quad 8.40\). Inciusive prices. P\&P guaranteed components and despatched promptly. SAE for list. Construc tion and repair work undertaken I. G. Bowman (Dept WW), 59
Fowey Avenue, Torquay, S. Devon
\(\qquad\)
FIELD STRETH METER. Aveley
Electric Type. BN15014 HUZD/60 Electric Type. BN 15014 HUZD/60 Watt. Also Vortexion Sound Ampli \begin{tabular}{l} 
fier 3/PRM. Both \(£ 600\) or nearest \\
offer, \(01-845\) \\
\hline 4676.
\end{tabular}

TELEQUIPMENT D43A plug ins, ias new, 525 ; Boonton 202 H fm/am \(54-216 \mathrm{mhz}\). v.g.c. £200. Airmec 314 V.V.. V.g.e. f45. Please add VAT at per cent and postage. For all your test equipment requirements. the above is only a sample. Ring Mr
(6122
EDDYSTONE E.C. 10 BATTERY cOM munication receiver, as new, \(£ 135\) Rank/Bush T/V pattern generator type 55 (01-272 1529).

\section*{ARTICLES FOR SALE}

IBM GOLFBALL \(7351 / 0\) TYPEWRITERS
coding similar to EBCDIC Coding slmilar to EBCDIC
working order with photcketed paper supplied in manual Each machine serviced and tested interface 8\% Vat.
As above
go above but modified to take oftice range of
golbells ( 10 pitch) \(\mathrm{E} 125+3 \%\) VAT golfball) UK delicery by Securicor + VAT (inc. new + VAT Overseas air freight or surfoce at cost
+ ELECTROLytics
 \(5000 \mu 60 v 75 \mathrm{p}\) (25pp). \(10.000 \mu 16 v 50 \mathrm{p}\) (18pp).
\(2000 \mu 63 \mathrm{v} 38 \mathrm{p}(14 \mathrm{p}) .250 \mu+2500_{\mu} 30 \mathrm{v} 40 \mathrm{p}\) 15 ph 40 H 275 v RMS Motor start cap 50 p (20p).
+ small Electrolytics
\({ }^{2} 2 \mu 10 \mathrm{v}\)
\(10 \mu 35 \mathrm{v}, 50 \mu 40 \mathrm{v}, 100 \mu 40 \mathrm{v}, 100_{\mu} 4 \mathrm{v}\)
\(150 \mu 10 \mathrm{v} .64 \mu 10 \mathrm{v} .300 \mu \mathrm{v} .200 \mu 10 \mathrm{v} 12\) for \(150 \mu\) 10.
45p (12p)
\begin{tabular}{l}
+ PIHER PAESETS \\
\(200,470,1 \mathrm{~K} .4 \mathrm{~K} 7,100 \mathrm{mw}\) \\
\hline
\end{tabular}
200, \(470,1 \mathrm{~K}, 4 \mathrm{~K} 7.10 \mathrm{k} .47 \mathrm{k}, 100 \mathrm{k}, 220 \mathrm{~K} 12\) for sop (12p)
+ other prasets avalable in valves 3 K (large type)
\(\varepsilon 1 / 100470\) cermei 10 for \(50 \mathrm{p}(12 \mathrm{p})\)
TRANSFORMERS
 5A C Core
\(0.6 A\) E2.
VARIOUS
Humidity switches
Mains latching relays \(6 A\)
contacts
Relays varley \(\qquad\) 80p (13p)

Relays var
\(4 \mathrm{p} \mathrm{c} / \mathrm{o}\) \(80 p\) (13p) 3 M plastic seli-adhesive magnetic \(\quad \mathbf{5 5 p}(12 \mathrm{p})\)

U2 size \(1.25 v\) NICAD \(\begin{gathered}\text { 3" WIDE } \\ \text { colls } \\ \text { rergeable }\end{gathered}\) cells
\(+\quad 250\) +250 mixed crpacitors
OH Lamps \(12 v 53 \mu\)
12 v 100 w
250 v 500 w
Light activeted SCR L9F 50v 1.6 A
\(\mathrm{~F} \times 2243\) Por \(61.5000(20 p)\)
60 p
\((18 \mathrm{p})\) clamp
(Sutable e scorplo yignition)
DIODES GEXOO + Ge DIODES GEXOO E15/1000 E2.50/100 TEXAS CALCULATOR KEYBOARDS P.C Type new \begin{tabular}{l} 
PAPST FANS (or sumilar) EX. Equipt. Recondi- \\
HONed \(41 / 2 \times 41 / 2 \times 2 i n\) \\
\hline 100 \\
\hline
\end{tabular} + REED INSERTS \(70 \mathrm{~mm} / / \mathrm{d}\) contacts 10 for E ( 1 + REED INSERTS 45 mm
\(\qquad\)

\title{
KEYTRONICS
}

Shop open Monday to Saturday
9.30 a.m. - 2 p.m.

332 LEY STREET, ILFORD ESSEX. 01-553 1863

\section*{RIVERSIDE ELECTRONICS}

Wholesalers and other large users of consumer electronic components are invited to send for our monthly list of specia offers. We stock semi-conduc tors, l.c s, capacitors, resistors etc. Export enquiries wetcome

\section*{P.O. BOX 4, WISBECH} CAMBS.
Telephone: 09454188

\section*{EQUIPMENT WANTED}
R. F. INDUCTION HEATER
1. 5 KW . - Barrett 1 Mayo Road


\section*{LICENCE OFFERED}

ACOUSTICALLY ADJUSTABLE LOUDSPEAKERS. We wish to appoint licensees to manufacture the world's first Monitor Loudspeaker with acoustic adjustabilhty; the It has no competition and its many unique features include a variable transmission line (patented) gwing uncoloured sound reproduction of outstanding quality. For full details (Principals only), write to:Managing Direotor, Omal Group Ltoad, London NWio 7UF Eirculas

\section*{QUARTZ CRYSTAL}

UNITS from
- 1.0-98.0 mMZ
- bagt oeluyerr
- hagt oeluvery
- radef 5211.


WRITE FOA mckmight CRYSTAL Co. Ltd. handley imoustalal ESTATE. MTTH TEL HYTHE 848961 ESTATE. MTHTE:
SOUTHAMPTON SOA (6044)

STO CODE 0703 \(\qquad\)

\section*{MTV}

Best choice for used TV Worldwide exporters of colour and mono TV. Unlimited supplies.

Midland TV Trade \& Retail Services. Worcester Road, Kidderminster, England. Tel: Kidderminster 61907 or 67390 .

ARTICLES WANTED
```

MINICOMPUTERS
PERIPHERALS
INSTRUMENTATION
For fastest, best CASH offer. phone
COMPUTER APPRECIATION Godetone (088 384) 3106

```

WANTED, all types of communicaHons receivers and test equipment Details to R. T. \& I. Electronics Ltd., Ashville old Hall, Ashville Rd., London, E.11. Ley 4986. (63

SURPLUS COMPONENTS, Equipment and computer panels wanted for cash. Ring Southampton 772501,
(16)

WE BUY new valves, transistors and clean new components, large or small quantities, all detahs, quotations by return. - Walton's, 55 Worcester St., Wolverhampton.

WANTED, surplus or slightly used P.O. type 2 or equivalent heavy duty unislectors, \(22-50 \mathrm{v} \quad 4\) to 12
banks. Tel: 048157554.
banks. Tel: 0481 57554. (6097)

B-D ELECTRONICS offer prompt settlement for your surplus com ponents. Our main field of interest is consumer electronics. Please (0767) 81616.

B-D ELECTRONICS offer prompt settlement for your surplus com ponents. Our main field of interest is consumer electronics. Please borough (0733) 265219 . 22

\section*{BOOKS}
"VINTAGE CRYSTAL SETS, 1922 1927''. Just published by Wireless World, contains 128 pages. Chapters on the first days of broadcasting. The Crystal Set. Vintage Wireless Trademarks. Also catalogue sections listing and describing crystal sets together with their original prices in \(£: s: d\). A book for the collector or those interested in nostalgia. Available from main bokshops or direct from us. Please send
ness Press Lid., Room 11
Dorset ness Press Ltd., Room 11. Dorset House, Stamford Street, London.
SE1 9 LU .

WIRELESS WORLD, November 1939 to September 1947 complete. Some bound. Reasonable condilion. Box No. WW 6122.
(1252
RECEIVERS AND AMPLIFIERS

HRO Rx5s, etc. AR88. CR100, BRT400 G209, S640. etc. etc. in stock. R. T. \& I. Electronics, Ltd. Londion, E11. Ley 4986 .

SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, Multi-range Meters etc., etc. in stock. \(R\). T. \& I. Electronics Ltd. Ashville Old Hali, Ashville Rd., London. E.11. Ley 4986 .

\section*{SERVICE AND REPAIRS}

\section*{PRINTED CIRCUITS and HARDWARE}

\section*{Readily avalable supplies of Constructors.} hardware. Aluminium sheet and sections. Printed circuit board. top quality for individual or published designs
Prompt service
Send \(15 p\) for catalogue

\section*{RAMAR CONSTRUCTOR} SERVICES
Masons Romd, Stratfordion-Avon Warwicks. Tel: 4879

\section*{AUDIOMASTER BACKGROUND MUSIC \(\cdot\) service, sales. Tape Onslow Street Guildiord 4801}

LABELS. MAMEPLATES, FASCIAS on aluminium or plastic. Speedy delivery G.S.M. Graphic Arts


\section*{The Polytechnic of NorthLondon}

DEPARTMENT OF PHYSICS
B.Sc. (Hons.) The Physics and Technology of Electronics
A sandwich course offering specialisation in Nicrowave Physics, or Theory and Processes in Gases and Associated Spectroscopy.
HNC in Applied Physics
2-year day-release course with special
topics in electronics.
Certificate of Supplementary Study
3 one-term day-release courses (Furt her Electronics, Nuclear Radiation and mic Spectroscopy).
M.Sc. The Physical Basis of Electronics
This course is available as a full-time part time or an evening only course for ing and allied disciplines.
Specialisation is offered in Semiconductor Physics and Devices, Plasma and Laser
Physics, Electromagnetic Waves and Communication Theory.
Details of these courses from:
The Head of the Physics Dept.
(Ref. wws

THE POLYTECHNIC OF NORTH LONDON
Holloway Road, London N7 8DB
(Tel: 01-607 6767. Ext. 305)

RADIO and Radar M.P.T. and C.G.L.I. Courses. Write: Princtpal, Nautical College, Fleetwood, FY7
\(8 . J Z\).

RADID AMATEURS EXAMINATION, City \& Gullds. Pass this impertant examination and obtain your G8 licence, with an RRC Home Study course. For details of this, and other courses (GCE, Professiontal Examinations, etc), write or phone The Rapld Results College, Dept. SW19 tuition House, London, Advisory Service) or for (Caureers Advisory Service), or for a prosnour recording service) 102 ( 6040

\section*{VALVES WANTED}

VALVES. Good prices. Types CV2797 CV2798, CV2792, CV2130, CV2131, CV345, CV450. Phone 021:373 4357.

\author{
From drawings \\ to completed product \\ Fer quallity service and a \\ kesen pry Mr Prece-Smith
contact \\  \\ Multiform Electronics Limited
}

22 Portugal Road Woking Surrey GU2IEJE Telephone Woking (04862) 70248 (6036)

\footnotetext{
PRINTED CIRCUIT BOARDS Quick deliveries, competitive prices, quotations on request, roller tin batches, larger quantities available Jampesons Automatics Ltd, 1-5 Westgate, Bridington, N. Humberside. for the attention of Mr. J Harrison. Tel: (0262) 4738/77877.
}

PRINTED CIRCUIT BOARDS. High quality, fast deliveries Phototechniques, 11 Old Witney Road, Eynsham, Oxiord. Tel. \({ }_{(6077}\)

CAPACITY aratlable to the
CAPACITY avallable to the Elec tronic Industry. Precision turned parts, engraving, milling and grind ing both in metals and plastics. Mathey SP33 ijg borer. Write for lists of full plant capacity to C.B. lists of full plant capacity to C.B. Mackintosh Lane, E9 6AB. Tel: 01. 9857057.

DESIGN, development, repair test and small production of electronic equipment. Specialist in production of printed circuit assemblies YOUNG ELE Street LID.' 18 Royral College Street, London NW
gNN 01-267 0201.

BATCH Production Wiring and As
sembly to sample or drawings sembly to sample or drawings
Deane Electricals, \(19 B\) Station Parade, Ealing Common, London, W.5. Tel: 01.992 8976.

AIRTRONICS LTD., for Coil Wind ing - large or small production runs. Also PC Boards Assemblies Suppliers to P.O., M.O.D. etc. Ex Walerand Road London SE13 7PE Tel. 01-852 1706 (61

FINE SPOT WELDING, coil wind ing. soldering, mechanical and electrical assembly, light sheet metal and presswork. Contact tonfild poad Sharston Industrial Estate, Manchester 22, (5376

COIL WINDING and transformer Manufacturer. Qulck deliveries competitive prices. Raven Trans ton. E10. 01-556 9467 . (6028)

RESEARCH, DESIGN \& DEVELOP MENT. We are expanding our Eflectronics Laboratory and can offer rapid results in all electronic departments. We have 15 years ex perience working for the Government and industry generally. Give our Technical Director, E. A. Falk ner a ring on Ashford (69) 53661-2 6 Wolsey Road, Ashford, Middlesex TW16 2RB
(6104)

Small batch production wiring assembly to sample or drawings Specialists in printed circuit assem biy. Rock Electronics. 41 Silver Street. Stansted, Essex. Tel. Stansted (0279) 33018/814006.

\section*{ANNOUNCEMENT}

\section*{Sinciair DM2 digital multimeter. Important announcement to all users.}

Since the introduction of the DM2 Multimeter, certain types of metal-clad PP9 batteries have become available which could, if faulty, give rise to a safety hazard when the meter is used to measure high voltage.
Users of this instrument supplied before 1st July 1976 should get in contact at once with the distributor from whom it was purchased or directly with:
Miss Julie Charles, Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ Tel: St Ives (0480) 64646 (reverse charges).

The Voice of Iran
change frequency

The English Programme of Iran Radio will be broadcast for Europe on \(1177^{\circ} \mathrm{KHZ}^{-}(25\) metre band) as from June 20, 1976, from 20.00 to 23.00 GMT

EQUIPMENT, WANTED

BROADFIELDS AND
MAYCO DISPOSALS
21 Lodge Lane, N. Finchley Ondon, N12 8IC Telephone:
\(01-4450749\)
01-958 7624
WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELEC TRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES.
WE PAY PROMPT CASH AND CLEAR MATERIAL BY RETURN.


COMPONENTS DISTRIBUTION

\section*{DAVALEX ELECTRONICS}

55 HIGH STREET, DORCHESTER
DORSET DT1 1UT
Tel. (0305) 66016. Telex: 417276
\begin{tabular}{lcccc} 
DEVICE & \(1-24\) & \(25-99\) & \(100-999\) & \\
CD4015BE & 78 & .60 & 55 & \\
4016 & 39 & 33 & 30 & \\
4017 & 78 & 60 & 55 & \\
4024 & 68 & 57 & .52 & \\
4049 & 35 & .30 & .28 & \\
4070 & 39 & 30 & 20 & \\
4520 & .89 & 72 & 66 & \\
4013 & 39 & 33 & 30 & \\
\(2 N 4410\) & 125 & 10 & 075 & \\
LM 301 AH & 39 & 35 & 31 & \\
2N1420 & 125 & 11 & 085 & \\
2N2222A & 14 & .12 & 10 & \((61301\)
\end{tabular}

\section*{FOR \\ CLASSIFIED ADVERTISING}

\section*{RING OWEN BAILEY ON 01-261 8508}


SERVICE, you can obtain many other Technical Products including Electrical, Mechanical and Tools in addition to the Electronic components that we have been distributing to Industry for over 30 years.

Large duplicate stocks are kept in LONDON and SCOTLAND to give you quick service.

CABLES B COMPONENTS
Park Avenue, London NW10 7XN

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Strẹet, London, SEI GLU
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
- Rate 81p PER LINE Average seven words per line Minimum THREE lines.
- Name and address to be included in charge if used in advertisement
- Box No Allow two words plus \(45 p\)
- Cheques, etc., payable to "Wireless World" and crossed "\& Co.

NAME. \(\qquad\)

ADDRESS \(\qquad\)
\(\qquad\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline & & & & & \\
\hline & - & & & & \\
\hline & & & & & \\
\hline & & & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{INDEX TO ADVERTISERS}

\section*{Appointments Vacant Advertisements appear on pages 132-143}
\begin{tabular}{|c|c|c|c|c|}
\hline PAGE & & PAGE & & \[
\begin{aligned}
& \text { PAGE } \\
& . . \quad 83
\end{aligned}
\] \\
\hline Acoustical Mfg. Co. Ltd. . . . . . . . . . . . . . . . . . . . . 11 & Gardners Transformers Lid. & & Q-Max & \\
\hline Alice (Stancoil) Ltd. . . . . . . . . . . . . . . . . . . . . . . 6 & Grampian Reproducers & & & \\
\hline Ambit International ........................... . . 16 & Greenbank Electronics & & Radford Laboratories Ltd. , & 23 \\
\hline Arrow-Hart (U.K.) Ltd. . . . . . . . . . . . . . . . . . . . . 26 & Greenwood Electronics & & Radio Component Specialists. & 130 \\
\hline Aspen Electronics Ltd . . . . . . . . . . . . . . . . . . . . . . 979 & & & Raindirk Ltd. . . . & \\
\hline Audix Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.9 . 96 & Hall Electric Ltd. Harris Electronics (London) Ltd. & \[
\begin{array}{cc}
4 \\
\hdashline \& \& 16
\end{array}
\] & Rastra Electronics Lid. & 127 \\
\hline Avo Lid.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 25 & Harris Electronics (London) Ltd. P. Harris. & \[
\begin{array}{r}
8 \& 16 \\
\cdots \quad 140
\end{array}
\] & R.C.S. Electronics & \[
\begin{array}{r}
14 \\
-\quad 22
\end{array}
\] \\
\hline Barrie Electronics Ltd. . . . . . . . . . . . . . . . . . . . . . 111 & Hart Electronics. & 112 & Rola Celestion Ltd. & 97 \\
\hline Bauch F. W. O., Ltd. . . . . . . . . . . . . . . . . . . . . . . 31 & Hayden Laboratories Ltd. & - 3 & R.S.T. Valves Lid. & 110 \\
\hline Bayliss, A. D., \& Sons Ltd. . . . . . . . . . . . . . . . . . 129 & H/H Electronic ...... & \[
\begin{array}{r}
32 \\
\cdot 10
\end{array}
\] & RTVC . . . . . . . . & 128 \\
\hline Belling \& Lee Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . 21 & Hightech Components & \[
.10
\] & & \\
\hline Bentley Acoustic Corp. Ltd. . . . . . . . . . . . . . . . . 113 & & & & \\
\hline B.H. Component Factors Ltd. . . . . . . . . . . . . . . 131 & Icon Designs. & . 26 & Scopex Instruments Lid. & 32 \\
\hline Bi-Pak Semiconductors Ltd. . . . . . . . . . . . . . . 120, 121 & Industrial Instruments Ltd. & - 35 & Semiconductor Supplies Ltd. & 34 \\
\hline Bi-Pre Pak Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 & Industrial Tape Applications. & . 30 & Semicon Indexes Lid. . . . . . & - 102 \\
\hline Boss Industrial Mouldings Ltd.. . . . . . . . . . . . . . . . 29 & Integrex Lid.. . . . . . . . . . . . . & \& 115 & Service Trading Co. & 126 \\
\hline Brennell Eng . . . . . . . . . . . . . . . . . . . . . . . .... 29 & 1.L.P. Electronics Ltd. & 103 & Servo \& Electronic Sales Lid. & \& 107 \\
\hline \begin{tabular}{l}
British National Radio and \\
Electronic School . . . . . . . . . . . . . . . . . . . . . 100, 117
\end{tabular} & ITF Electronic Instruments Exhibition & 125 & Shure Electronics Ltd. . . . . . & over iii 116 \\
\hline Broadfields \& Mayko Disposals . . . . . . . . . . . . . . 142 & Keytronics & 141 & S.M.E. Lid. & \\
\hline Bull J., Electrical Lid. . . . . . . . . . . . . . . . . . . . . . . 118 & KGM Electronic Ltd. & 23 & Sowter, E. A. Lid. & 139 \\
\hline Cambridge Learning . . . . . . . . . . . . . . . . . . . . . . . 18 & Kinnie Components Lid. & 119 & The Solartron Electronic Group Lid. & \\
\hline Cambridge Learning......................................................... 117 & Klark Teknik Ltd. & & Special Products Litd. & \\
\hline Chiltmead Lid . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 & & & Speywood Commun
Strumech Eng. Ltd. & \\
\hline Colomor (Electronics) Ltd. . . . . . . . . . . . . . . . . 127 & Ledon Instruments Ltd & & Sugden, J. E., \& Co. Ltd. & 12 \\
\hline Combined Precision Components Ltd. .. 99, 100, 101 & Levell Electronics Ltd. . & \[
24
\] & Surrey Electronics. . . . & 34 \\
\hline Compcor Electronics . . . . . . . . . . . . . . . . . . . . . . 119 & Lloyd J J Instruments Ltd. & \[
22
\] & Swanley Electronics Lid. & 111 \\
\hline Computer Sales \& Service . . . . . . . . . . . . . . . . . . . . . . 112 & Lynx (Electronics) London Ltd. & \[
102
\] & Swift of Wilmslow. . . . . & 100 \\
\hline Condor Electronics Lid. Croydon Precision Instrument Co. & Lyons Instruments & \[
12 \& 17
\] & & \\
\hline Danavox (G.B.) Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 & MacInnes Laboratories Ltd. & & Tandy Corporation (U.K.) & 124 \\
\hline Datong Electronics Lid. . . . . . . . . . . . . . . . . . . . . . . . 34 & McKnight Crystal Co. . & & 3M Co. Ltd. . & - \\
\hline Decon Laboratories Ltd. . . . . . . . . . . . . . . . . . . . . \({ }^{9}\) & McLennan Eng. Lid. & & Technomatic Ltd. .......... & - 124 \\
\hline Dema Electronics International ............... 125 & Maplin Electronic Supplies & & Tektronix (Teleguipment) Ltd. & \\
\hline Doram Electronic Comps. Ltd. . . . . . . . . . . . . . . 33 & Marconi Instruments Ltd. & Cover ii & Teleprinter Equipment Lid. & 17 \\
\hline Drake Transformers Ltd. . . . . . . . . . . . . . . . . . . . \({ }^{6}\) & Marshall, A., \& Sons (London) Litd. & & Teleradio Hi-Fi. & 119 \\
\hline Dymar Electronics Ltd, . . . . . . . . . . . . . . . . . . . . 19 & Mills, W. ...... & & Telford Communications. & 21 \\
\hline Dymar Electronics Lid. & Modern Book Co. & - & Trampus Electronics. & \\
\hline Eagle International Lid.. . . . . . . . . . . . . . . . . . . . . 28 & Morhan Exporting Inc. & \[
131
\] & Telephone \& Wireless Components Lid. & 129 \\
\hline ECM (Europe) Lid. . . . . . . . . . . . . . . . . . . . . . . . . . 27 & Multicore Solders Lid. & ver is & & \\
\hline Eddystone Radio Ltd. . . . . . . . . . . . . . . . . . . . . 96 & & & & \\
\hline Electronic Brokers Ltd. ............. . . 122,123 \& 145 & Natural Sound Systems Led. & & United-Carr Supplies lıd. & 125 \\
\hline Electronlc Services \& Products Lid. . . . . . . . . . . 24 & Nicholls, E. R.. , & 109 & United-Carr Supplies lid. & \\
\hline Electrosystems \& Timing Ltd. . . . . . . . . . . . . . . . 102 & Nombrex Lid. & 29 & & \\
\hline Electrotime Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 & & & & \\
\hline Electrovalue Ltd. ...... .................. . . . 20 \& 116 & OMB Electronics & 25 & Vero Electronics Ltd. & 21 \\
\hline English Electric Valve Co. Ltd. . . . . . . . . . 20 \& 84 & OMb Electronics & & Vintage Crystal Sets & \\
\hline Erie Electronics Ltd, . . . . . . . . . . . . . . . . . 106 \& 116 & & & & \\
\hline Environmental Equipment Ltd. . . . . . . . . . . . . . . . . 28 & Physical \& Elec. Labs. Lid. & \[
110
\] & & \\
\hline E.S. Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ll & Plessey Distributors & . 83 & Wilnot Breeden Electronics Lid. & \[
\begin{array}{r}
13 \\
131
\end{array}
\] \\
\hline Farnell Instruments Ltd. . . . . . . . . . . . . . . . . . . . 14 & Powertran Electronics. & 4 \& 105 & Wilmslow Audio & 131 \\
\hline Flight Link Control Ltd. . . . . . . . . . . . . . . . . . . 117 & Precision Instruments Labs, \& & & & \\
\hline Forgestone Colour Developments Litd. . . . . . . 18 & \begin{tabular}{l}
Instrument Electrical Company \\
Precision Petite Itd
\end{tabular} & & 2. \& I. Aero Services Lid. & \& 113 \\
\hline Future Flim Developments Lid. . . . . . . . . . . . . . . . . . . . 1298 & Precision Electronics Lid. & & Zettler (U.K.) Division & \\
\hline
\end{tabular}


\title{
M24H: A superb new stereo cartridge ...but that's only half the story.
}


Shure's new M24H stereo + quadriphonic cartridge offers uncompromised stereo with the bonus of state-of-the-art full four-channel capability for the hi-fi enthusiast in transition from stereo to quadriphony. It features several breakthroughs by Shure: the M24H has exceptionally low ( 0.39 mg ) effective stylus mass for truly outstanding trackability at minimal forces . . . its optimized 20 to \(50,000 \mathrm{~Hz}\) frequency response curve is essentially flat in the stereo range and rises smoothly to accommodate CD-4's supersonic FM carrier frequencies . . . its hyperbolic "long-contact" stylus tip geometry results in a solid groove-tip interface . . . it has a new "Dynetic \({ }^{\circledR}\) ' \({ }^{\text {P }}\) " highenergy magnet assembly and low-loss laminated electromagnetic structure ... and high-performance trackability at 1 to \(11 / 2\) grams. If you are considering adding CD-4 capability, but intend to continue playing your stereo library, this is the one cartridge for you.

\footnotetext{
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881
}

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. That is why for utmost reliability leading electronic manufacturers in the USA and in 106 other countries throughout the world insist on using Ersin Multicore Solder. It's the solder they have depended on for consistent high quality for more than 30 years.

If you are not already using Ersin Multicore Solder it must be to your advantage to investigate the wide range of Specifications which are available. Besides achieving better joints - always - your labour costs will be reduced and subsequently savings in overall costs of solder may be possible.

There are well over 1.000 Specifications, made to all International Standards to choose from, and here are just a few of the special solders that we manufacture

Savbit Alloy - dramatically reduces erosion of copper wires and printed circuits and also reduces the wear of soldering iron bits

96S Silver Solder - highest strength soft solder Melting pont \(221^{\circ} \mathrm{C}\). Bright and non-toxic. Replaces high temperature brazing alloys

95A alloy - Melting range 236-243 C. For electrical connections subjected to peak temp. of approx. 240 C .
H.M.P. alloy - Melting range \(296-301^{\circ} \mathrm{C}\). Highest melting point soft solder for high service temperature applications.
T.L.C. alloy - Melting point \(145^{\circ} \mathrm{C}\). Lowest melting point Ersin Multicore solder for making joints on top of other solders and for heat sensitive components.
L.M.P. alloy - Melting Point \(179^{\circ} \mathrm{C}\). For soldering silver plated surfaces such as ceramic capacitors and soldering gold.

Alu-Sol Multicore Solder - for soldering aluminıum
Arax acid-cored solder - for non-electrical applications or pre-tinning of parts of difficult solderability (flux residue must be removed) which can then be assembled with Ersin Multicore Solder.

Write for Technical Bulletins, on your Company's letterhead, for products which interest you to


Multicore Solders Ltd.
Maylands Avenue,
Hemel Hempstead, Hertfordshire, HP2 7EP
Tel: Hemel Hempstead 3636 Telex : 82363
```


[^0]: (

