Electrolytic capacitor tester
Radio in the '80s

New isotope scanning technique
How long does it take for you to make a series of modulation tests with the meter you are using? The M.I. TF 2304 Automatic Modulation Meter eliminates at least five manual operations for each test and even more per test when a series of measurements is to be made. That can save you hours in a production day.

When connected to a transmitter, the TF 2304 automatically tunes to the carrier frequency and automatically sets the level, all within a few seconds. Exceptionally efficient screening and a very low distortion mixer ensure locking to the wanted signal. It is only necessary to select the required mode and range and the meter will read either deviation or % depth. L.E.D. lamps indicate if the signal level is too high or low and a push-button insert a 20 dB attenuator to extend the maximum input level to 1 watt.

The basic frequency range is 25-1000 MHz and there are 8 peak deviation ranges covering 1.5 kHz f.s.d. to 150 kHz f.s.d. and a.m. depth ranges of 30% and 100% f.s.d. all with a modulation frequency range of 50 Hz to 9 kHz. Modulation symmetry can be checked by push-button selection of positive or negative deviation and peak or trough amplitude.

The accuracy of modulation measurement is ± 3% of full scale so transmitter deviation can now be set close to the permitted maximum with a consequent increase in efficiency.

The TF 2304 can be operated either from mains or internal rechargeable battery. It's small and light and there's a comprehensive range of accessories including a carrying case.

The price will pleasantly surprise you. Ask for full details.
Contents

35 Surround sound — time to consolidate
36 Radio in the '80s by Duncan MacEwan
41 BBC Matrix H by P. A. Ratcliffe and D. J. Meares
46 World of amateur radio
47 Automatic electrolytic tester by A. Drummond-Murray
50 Variomatrix adapter for System 45J and Matrix H by Michael A Gerzon
51 H.F. predictions
52 Logic design — 4 by B. Holdsworth and D. Zissos
55 Viewdata — 4 by S. Fedida
60 Letters to the editor
 Mobile radio planning
 Do-it-yourself biofeedback
 Audibility of phase effects
63 News of the month
 Annan and technology
 ITU Conference results
67 Two-stage linear amplifier by Helge Gronberg
71 Power semiconductors — 2 by Mike Sagin
79 Circuit ideas
 Linear voltage/frequency converter
 Pulse-counting frequency comparator
 Op-amp power output stage
82 New tomography machine by John Dwyer
85 New products

IN OUR NEXT ISSUE

Loudspeakers and rooms. A discussion by James Moir of the interaction between the output of a loudspeaker and the acoustic performance of the listening room.

Matrix H decoding. Circuit details of a matrix H variable matrix decoder, a development of Sansui's Variomatrix, for use with experimental surround-sound programmes.

Using a microprocessor. The start of a series of articles on the design of a typical processor-based control system, starting with no assumptions of prior knowledge on the reader's part.
The Acoustical Manufacturing Co. Ltd. have been designing and producing amplifiers since 1936 but it was not until 1951 that the Q.U.A.D. 1 was introduced, the forerunner of the Quad series of Amplifiers which have earned an unrivalled reputation for originality of design, excellence of performance and reliability in the ensuing twenty-five years.

The introduction of the Quad 405 current dumping amplifier represents yet another contribution to the science of sound reproduction. Current dumping successfully overcomes many of the problems associated with high power amplifiers, crossover, thermal tracking and matching of components, added to which the complete absence of adjustments or alignment requirements, ensures that performance will be consistently maintained.

For further details on current dumping and other Quad products write to Dept. WW.

The Acoustical Manufacturing Co. Ltd.
Huntingdon, Cambs. PE18 7DB
Telephone: (0480) 52561

Design Council Award 1976

for the closest approach to the original sound for twenty-five years.

QUAD is a Registered Trade Mark

WW-064 FOR FURTHER DETAILS
LOW COST VOLTMETERS
from the range of
LEVALL
PORTABLE INSTRUMENTS

A.C. MICROVOLTMETERS
VOLTAGE & dB RANGES: 15µV, 50µV, 150µV, 500V
Acc. ± 1% ± 1% f.s.d. ± 1µV at 1kHz - 100, - 96
± 50µV
Scale - 20dB/6dB ret. to 1mW/600Ω.
RESPONSE: ± 3dB from 1Hz to 3MHz, ± 0.3dB from
4kHz to 1MHz above 500µV. Type TM3B can be
set to a restricted B.W. of 10Hz to 10kHz or 100 kHz.
INPUT IMPEDANCE: Above 50mV >4 3MO < 20pf.
On 500V to 50mV : > 5MO < 50pf.
AMPLIFIER OUTPUT: 150mV at f.s.d.

D.C. MULTIMETERS
VOLTAGE RANGES: 3µV, 10µV, 30µV, 1kV.
Acc. ± 1% ± 1% f.s.d. ± 0.1µV, L2 & CZ scales.
CURRENT RANGES: 3µA, 10µA, 30µA, 1mA (1A for
TM9BP).
Acc. ± 2% ± 1% f.s.d. ± 0.3µA, L2 & CZ scales.
RESISTANCE RANGES: 30Ω, 100Ω, 300Ω, 1GΩ linear Acc.:
± 1% ± 1% f.s.d. up to 100Ω.
RECORDER OUTPUT: ± 1V at f.s.d. into > 1kΩ on L2 ranges.

BROADBAND VOLTMETERS
H.F. VOLTAGE & dB RANGES: 1mV, 3mV, 10mV... 3V
Acc. ±4% ± 1% f.s.d. at 30MHz - 50dB, - 40dB,
- 30dB ± 20dB. Scale - 10dB/ 3dB nl. to 1mW/50 Ω
± 0.7dB from 1MHz to 50MHz, ± 3dB from 300kHz to
400kHz.
L.F.RANGES: As TM3 except for the omission of 15µV and
150µV.
AMPLIFIER OUTPUT: Square wave at 20Hz on H.F. with
amplitude proportional to square of input. As TM3 on L.F.

D.C. MICROVOLTMETERS
VOLTAGE RANGES: 30mV, 100mV, 300mV... 300V
Acc. ± 1% ± 2% f.s.d. ± 1µV, CZ scale.
CURRENT RANGES: 30µA, 100µA, 300µA... 300mA.
Acc. ± 2% ± 2% f.s.d. ± 2µA, CZ scale.
LOGARITHMIC RANGE:
± 5µV at ± 1% f.s.d., ± 5mV at ± 5% f.s.d., ± 50mV at
f.s.d.
RECORDER OUTPUT: ± 1V at f.s.d. into > 1kΩ.

These highly accurate instruments incorporate many useful features, including long battery life. All A type models have 83mm scale meters, and

LEVALL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel: 01-449 5028/449 8686

Prices are ex works with batteries. Carriage and packing extra. VAT
extra in U.K. Optional extras are leather cases and mains power units.
Send for data covering our range of portable instruments.

WW—047 FOR FURTHER DETAILS
On site instrumentation recording.

From the world's leading Datatape® manufacturer

The Bell & Howell CR3000 battery operated cassette recorder enables engineers to collect data at source. Forget the problems of threading tape out of doors. Just load the cassette and the four channel CR3000 is ready to make recordings of instrumentation quality. Specifically developed for portability, the CR3000 is compact and lightweight, you no longer have to strain with heavy equipment to achieve high quality recordings. Plug-in self-contained preamplifier provides for input levels down to one millivolt, so no more signal conditioning to recorder problems either.

The built-in noise canceller means high quality reproduction, even when recordings are made in rugged environments. Use of standard cassettes reduces costs, saves storage space and ensures a local supply of tape.

CR3000 is available in three I.R.I.G. speed versions with FM and direct electronics selected at the press of a button, providing frequency coverage of d.c. to 24kHz dependent on speed and electronics used.

The CR3000 is competitively priced and includes built-in metering, voice and battery charger as standard.

Measurement and control systems available from Bell & Howell:
Pressure Transducers
Level Measurement
Physiological Instruments
Marine Pressure Measurement Instruments
Transmitters—Gauge & DP
Intrinsically Safe Pressure Transmitters
Flameproof Pressure Transducers
Pressure Standards
Liquid Density Transmitters
Vibration Monitoring Systems
Accelerometers
Instrumentation Magnetic Tape Recorders
Direct Writing Oscillograph Recording Systems
Microcomputer Instrumentation Systems

For further information please contact C. Southee.

ELECTRONICS & INSTRUMENTS DIVISION

BELL & HOWELL

Lennox Road, Basingstoke, Hampshire
RG22 4AW Basingstoke (0256) 20244

WW — 074 FOR FURTHER DETAILS
Why are we bothering to become sole distributors of Omron relays when our own are so good?

The IMO Series 60 are a fine range of relays, but only by the inclusion of the wide Omron range are we able to offer relays for every conceivable relay application.

Omron covers the whole spectrum of the relay industry. From switching dry circuits with electronic and reed relays to heavy duty control circuits with miniature relay contactors. IMO with Omron will meet every specification.

This puts the whole Omron component range conveniently under the same roof. And that means the same consistent, reliable and helpful IMO service.

IMO and Omron; a combined range that covers just about every application and every price bracket.

Isn't that something worth bothering about?

IMO. Now most people know
ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE

A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $1\frac{1}{2}$ volt standard size battery.

Model "Mini-Z 1" measures from -40° C to $+70^\circ$ C. Price £25.00

Model "Mini-Z 2" measures from -5° C to $+105^\circ$ C. Price £25.00

Model "Mini-on Hi" measures from $+100^\circ$ C to $+500^\circ$ C. £20.00

(VAT 8% EXTRA)

Write for further details to:
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON. WC1X 8AX
(Phone 01-837 7937)

BIMBOARD

Stop Ruining Your I.C.'s And Wasting Time Soldering
Plug Into The Revolutionary New

BIMBOARD

The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins

Incorporates Bus Strips For Vcc And Ground

Includes A Component Support Bracket

Has Over 500 Individual Sockets

And Allows You To Use And Re-Use
IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only £9.72 (cheque with order) Including VAT and P.P.

Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors

BOSS INDUSTRIAL MOULDINGS LTD

Higgs Industrial Estate, 2 Herne Hill Road, London, SE24 0AU, England

Telephone 01-737 2383

Transients

Peaks

The Allen and Heath Broadcast Feed Forward Delay Limiter.

The only limiter that makes it IMPOSSIBLE for a transient peak to pass through the unit, without the use of clipping devices. Included in its design is a revolutionary bucket brigade integrated circuit. This delays the main signal path by approximately one thousandth of a second. Thus gain reduction is fed forward before there is any increase in the programme level. The unit can be used with high powered equipment such as broadcast units and P.A. systems. Use it too in studios with effects units.

Try and test one at our demo. studio. Pembroke House, Campsbourne Road, Hornsey, London N8.

Or, for more information, call Andrew Stirling at 01-340 3291.

Allen and Heath Limited.
Looks like a display.
Works like a newscaster.

The new Hewlett-Packard Alphanumeric Display from GDS.

This important development from Hewlett-Packard is a significant advance in the design and manufacture of Alphanumeric displays.

The HP HDSP-2000 is a 3.8mm, 5x7 LED array, available in 4 character clusters and packaged in a 12 pin DIL ceramic glass pack. A serial-in-parallel-out, 7 bit shift register associated with each digit controls constant current LED drivers. Full character display is achieved by external column strobing.

Applications include interactive I/O terminals, point of sale equipment, portable telecommunications gear plus a good many more that you can now consider.

For full data and highly informative answers to your questions, write or telephone:
An 'off-the-shelf' solution to all your filtering problems

Barr & Stroud
Active Filter Modules

In so many electronic projects there is a need to incorporate an element of filtering. Quickly, easily and—above all—for a minimum cost.

The most rapid solution is to select one of the Barr & Stroud 'ready to use' compact filter units. They are inexpensive and readily available. They come 'one-off' or in 'thousands' to match your requirements.

Each containing a basic filter function, adjustable for cut-off or centre frequency and response type. Adjustment is simple. No filter knowledge is required. The modules are available in low-pass, high-pass, universal and notch designs with a pass band capability from d.c. to 1 MHz. Complete details are in freely available literature, yours on request.

BARR & STROUD LIMITED
London Office:
1 Pall Mall East,
London SW1Y 5AU
Tel: 01-930 1541
Telex: 261877

WW—023 FOR FURTHER DETAILS
The only organ you can build in stages and tailor to your requirements as you go along — and at each stage you’ll have a fully working instrument! We haven’t got the gimmicks (yet — they’re coming soon), but we have got the most beautiful sounds — you won’t find them on any organ less than twice our price. So get our MES50 series leaflets now! 65p buys the three available so far.

This high-quality Graphic Equaliser will enhance even the most sophisticated system at a fraction of the cost of a ready-made equaliser of equal quality. You can get all the parts from us (except woodwork) including drilled and printed metalwork. Construction details in our leaflet: 15p.

We stock a wide range of switches including a really low-priced high quality interlocking push-button switch system, which is extremely versatile. We’ve got toggle switches, slide switches, push switches, rotary switches — there are dozens to choose from, but it’s only a tiny part of our fantastic range.

A completely self-contained pedal unit: 13-note, 2-octave range, 4 organ stops. It can be added to any organ! A really unusual extra is the bass guitar stop which uses four envelope shapers to give a real bass guitar sound. A must for the solo guitarist. Full construction details in our catalogue — post the coupon below now!

Play fascinating games NOW on your own t.v. in your own living room. The kids will think it’s magic when the scores pop up on the screen. Lay your bets — anyone could win — with Maplin’s prices everyone can win. Get the May edition of Electronics Today International now — then get all the parts from us at a remarkably low price (I.C. alone £11.99). All prices include VAT and P&P.

IT’S A FANTASTIC BESTSELLER!
216 big (11" x 8") pages! Over a thousand illustrations!
Over 30 pages of complete projects to build!
Thousands and thousands of useful components described and illustrated! No wonder it’s a bestseller!
DON’T MISS OUT! SEND 50p NOW!

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE
PRICE 50p

Please rush me a copy of your 216 page catalogue by return of post. I enclose 50p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 50p refunded immediately.

NAME

ADDRESS

WW -- 016 FOR FURTHER DETAILS
United-Carr Supplies carries the widest range of CINCH parts available in the UK, and will accept for quick delivery mixed or small quantity orders. So make United-Carr Supplies your Single CINCH Source. Send for free catalogue illustrating the full range of components available.

United-Carr Supplies Limited
The largest CINCH, DOT and FT stockist
112 Station Road, Ilkeston, Derbyshire DE7 5LF
Tel: 0602 328711 Telex 377117

James Scott (Electronic Engineering) Limited have developed, over a number of years, a range of miniature traffic radar systems of advanced design for law enforcement and traffic analysis applications.
- Digital speed presentation
- Suitable for LH/RH traffic systems
- Alarm speed selectable in the range 21 to 99 mph or kph in unit steps
- Can be used tripod mounted or from inside a parked vehicle
- Compact, lightweight design with solid state circuitry except for digital display tubes
- Facility to operate camera/flash unit (available as optional extra)
- Test oscillator incorporated
- BCD output available for data-logging.

These are some of the reasons why the James Scott Gatso Mini Radars are rapidly gaining acceptance with Police Forces and Traffic Engineers throughout the world (U.K., West Germany, Holland, Belgium, Greece, Singapore, Malaysia, Australia.) If you want more please write or telephone.

AS SUPPLIED TO THE HOME OFFICE, LONDON.
Model 104 aB.

One step nearer the reference.

Computer-based analysis has led KEF engineers to a significant advance in speaker performance – the acoustic Butterworth (aB) filter network. Now, replacing conventional filter circuitry in the renowned Model 104, it transforms performance with reduced colouration, increased stereo depth and imaging. A difference you can hear. An advance radical enough to justify making the new network available for replacement in existing Model 104’s – see your dealer about this. Power rating is higher too – 100 watts programme – with fuse protection for the tweeter. So KEF engineers have seemingly done the impossible – taken the superb 3 speaker system that reviewers already praised for its clean, uncoloured ‘reference’ sound – and improved it.

Model 104aB – one step nearer the reference – live sound.
The world's most famous company in communication, the Nippon Electric Company Ltd., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators. First in history of amateur radio, such a big and famous company with more than 80 years of experience in creation of communication facilities, made its experience available to radio amateurs around the world. The NEC, which has declared microwave space communication to its specialty, knows perfectly which attributes equipments must have for becoming bestsellers.

Today we present:

NEC CQ 110 E DIGITAL

Allband, HF, 300 watt transceiver, 160 / 80 / 40 / 20 / 15 / 11 / 10A / 10B / 10C / 10D / WWV, modes FSK, USB, LSB, CW, AM, with separate 8 pole X-tal lattice filters for each mode fitted. Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme cross-modulation security by application for the 7360 low noise beam, deflection mixer tube. This feature alone makes of the NEC CQ 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course.

NEC CQ 301

Allband, HF, 3KW, linear amplifier, 160/80/40/20/15/11/10 meter, for modern amateur communication. Two EIMAC 3-500 Z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CQ 301 can be driven by our CQ 110E or other exciters capable of about 50-100 watts of drive. AC power supply 100-235 volts is built in of course.

Solo distributor in Europe:

CEC Corp., Via Valdarei 1 - CH 6830 CHIASSO—SWITZERLAND

Phone: (091) 44 26 51, Telex: 79959 CH

Join the Digital Revolution

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation....

Each of the 6 volumes of this self-instruction course measures 11¾” x 8¼” and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits and on to a complete understanding of the design and operation of calculators and computers.

Design of Digital Systems.

£6.20

plus 80p packing and surface post anywhere in the world.

Payments may be made in foreign currencies.

Quantity discounts available on request

VAT zero rated

Also available — a more elementary course assuming no prior knowledge except simple arithmetic.

Digital Computer Logic and Electronics.

In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

£4.20

plus 80p P. & P.

Offer Order both courses for the bargain price £9.70, plus 80p P. & P.

Designer Manager Enthusiast Scientist Engineer Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee—no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

To Cambridge Learning Enterprises, Dept. COM, FREEPOST
Rivermill House, St. Ives, Huntingdon, Cambs. PE17 4HR

*Please send me set(s) of Design of Digital Systems at £7.00 each
p & p included

*or set(s) of Digital Computer Logic and Electronics at £5.00 each,
p & p included

combined set(s) at £10.50 each, p & p included

Name

Address

Debit as applicable

Delete as applicable

No need to use a stamp — just print FREEPOST on the envelope.
We measure up to your standards

Whether you check components at Goods Inwards, during production or on Final Test, Wayne Kerr has the bridge you need. For fast measurements of resistance, capacitance and inductance, or for continuous monitoring of changing values, you can select the ideal instrument from our comprehensive range.

All models—AF, RF and VHF—have a wide measurement range and are easy to use. Many have automatic readout and automatic lead compensation; most will measure components in situ.

Only part of our range is illustrated. Send in the coupon for further information.

WAYNE KERR BRIDGES

Wilmot Breeden Electronics Limited,
442 Bath Road, Slough, SL1 6BB, England.
Telephone: Burnham (06286) 62511
Telex: 847297

Please send me the Wayne Kerr short form catalogue.

Name:
Position:
Company:
Address:
Telephone:

Wilmot Breeden Electronics Limited,
442 Bath Road, Slough, SL1 6BB, England.
This is an echo chamber?

Yes, and much more! It is the first N-channel Bucket Brigade Device designed with the audio engineer in mind. The SAD-1024 Serial Analog Delay will provide reverberation, echo, tremolo, vibrato and chorus effects in electronic organs and musical instruments. It will equalise speaker systems in an auditorium, or can be used in speech compression or voice scrambling systems. The SAD-1024, which contains two independent sections of 512 analog storage elements will accomplish all of these with a signal-to-noise ratio in excess of 75dB. The two sections may be used independently or they may be connected in sequence to provide 1024 clock periods of delay. The delay provided by the device can be continuously varied by the clock rate from less than one millisecond to more than one second.

Other performance characteristics include: signal bandwidth from 0 to 200 KHz, less than 1% total harmonic distortion, 0dB insertion loss, and less than 5mW power requirements from a single 15V power supply.

You get all these features for less than 1p per storage element in OEM quantities.

We also offer an optional complete circuit card to help you evaluate this exciting new device. Other devices for applications such as time base correction in the video bandwidth are also available.

Switching problems?
Rely on Zettler.

Producing 30 basic types of relay and 15,000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range comprises:

- Low profile (flatform) Timing
- Miniature Low contact capacity Hermetically sealed
- Stepping
- Mains switching Latching
- Contact stacks Solenoids

We resolve your switching problems rapidly and expertly. Please contact us for further details.

ZETTLER Zettler
UK Division
Brember Road, Harrow, Middx.
HA2 8AS. Tel. (01) 422 0061

Please see us at
IFSEC 77. Olympia, London. 25th-29th April. Stand No. 27
All-Electronics Show, Grosvenor House, Park Lane, London
19th-21st April. Stand No. 141. Great Room
A member of the worldwide Zettler electrical engineering group est. 1877
Wireless World, May 1977

The new Philips range of 4½ digit multimeters is designed to meet modern technology’s demand for ever higher measuring accuracy and resolution - and to meet individual application requirements and budgets. They are all high quality instruments, fully tested to IEC standards, and offer numerous attractive features to make your measurements easier, safer and more efficient.

The one manual ranging multimeter in the family, PM2522A, features a display-hold facility which can be remotely controlled at the measuring probe, while the other models incorporate intelligent auto ranging circuits providing ultra-fast stable displays.

True r.m.s. measurement is possible with the PM2526 and PM2527 and these models can also be fitted with an optional IEC bus interface. In addition the PM2527 features sophisticated guarding, very sensitive current and wide resistance ranges, making it ideal for measurements on advanced low-power circuitry.

All models permit measurement of surface temperature with an extremely fast-acting probe, over a range of –60 to +200°C.

Numerous options and accessories allow you to further tailor the specifications to your requirements and keep the cost within your budget. Study the basic specifications below.

Please write, telephone or use the reader enquiry service for further information.

Pye Unicam Ltd.
Philips Electronic Instruments Dept
York Street, Cambridge England CB1 2PX
Tel Cambridge (0223) 58866

A member of the Pye Group

<table>
<thead>
<tr>
<th>Parameters</th>
<th>PM 2522 A</th>
<th>PM 2524</th>
<th>PM 2526</th>
<th>PM 2527</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts Accuracy</td>
<td>± 0.03 % rdng</td>
<td>± 0.02 % rdng</td>
<td>± 0.02 % rdng</td>
<td>± 0.02 % rdng</td>
</tr>
<tr>
<td>Volts Resolution in Lowest Range</td>
<td>100 µV</td>
<td>10 µV</td>
<td>10 µV</td>
<td>10 µV</td>
</tr>
<tr>
<td>Max ± reference value / Resolution in Lowest Range</td>
<td>20 MΩ / 0.1 Ω</td>
<td>20 MΩ / 0.1 Ω</td>
<td>20 MΩ / 0.01 Ω</td>
<td>2000 MΩ / 0.01 Ω</td>
</tr>
<tr>
<td>Max ± Current Resolution in Lowest Range</td>
<td>2000 mA / 10 µA</td>
<td>2000 mA / 100 µA</td>
<td>—</td>
<td>2000 mA / 100 pA</td>
</tr>
<tr>
<td>VAC Frequency Range</td>
<td>35 Hz - 30 kHz</td>
<td>40 Hz - 30 kHz</td>
<td>30 Hz - 100 kHz</td>
<td>30 Hz - 100 kHz</td>
</tr>
<tr>
<td>A-C-DC Conversion</td>
<td>Averaging</td>
<td>Averaging</td>
<td>True RMS (VAC + VDC)</td>
<td>True RMS VAC, IAC</td>
</tr>
<tr>
<td>Type of Input/Power Supply</td>
<td>Floating/Mains and Battery</td>
<td>Floating/Mains and Battery</td>
<td>Floating/Mains</td>
<td>Guarded/Mains</td>
</tr>
</tbody>
</table>

The RANGE of experience

PHILIPS

WW — 988 FOR FURTHER DETAILS
Edicron

For Quality and Reliability

Edicron Limited
Redan House 1 Redan Place
London W2 4SA
Tel: 01-727 0101
Telex: 265531
Cables: Edicron London W2

EXPORT — INDUSTRY — WHOLESALE

FYLDE

TRANSUDER and RECORDER
AMPLIFIERS and **SYSTEMS**

16 Wireless World, May 1977

REPAIRS

OF ELECTRICAL MEASURING INSTRUMENTS
7–14 DAYS SERVICE

Contractors to H.M. Govt. P.O.

STOCKISTS
ALSO SUPPLIERS OF GEC
ROSSO AND OTHER
MULTI-RANGE TEST SETS

WE SPECIALISE IN ASSEMBLIES, AND IN THE
REPAIR, CALIBRATION AND CONVERSION
OF ALL TYPES OF INSTRUMENTS, INDUSTRIAL
AND PRECISION GRADE

LEDON INSTRUMENTS LTD.

GLADSTONE WORKS, GLADSTONE RD,
FOLKESTONE, KENT.
TEL: (STD) 0303 57555
WW—042 FOR FURTHER DETAILS
Safe, tough, efficient and versatile – that’s our new miniature CX iron. Safe because it is virtually leak-free (leakage current less than 1 mA). Earth it if you like – three core lead. It is made to conform with B.S. 3456 and has a breakdown voltage of more than 4000 V. Tough because the handle is almost unbreakable and the ceramic shaft is covered by a stainless steel shaft. Efficient because the element is situated right inside the soldering bit and the heat generated by its 17 watts is not wasted. Versatile because the iron can be used for a wide variety of soldering jobs, with six easily interchangeable, slide-on bits, ranging from 1/2" right down to 1/8" (1 mm). It’s suitable for small, miniature and micro miniature joints.

Available for 220-250 volts or 100-120 volts. Weight - 1 oz (40 gram). Length 7 3/4" (19 cm). Price - £3.40 fitted with standard bit 3/8" (2.3 mm). Spare bits £0.46, £0.72, £0.84 exclusive of VAT.

Stocked by most of the well-known wholesale and many retailers. Or direct from us if you are desperate.

Send for colour catalogue from:
Antex Freepost, Plymouth PL1 1BR

Model X.25 is a general purpose soldering iron, also with two shafts for toughness and perfect insulation. Available for 220-250 volts or 100-120 volts at 25 watts and priced at £3.40 exclusive of VAT.

Stand model S.T.3 has a chromium plated steel spring, two sponges for cleaning the bits and is priced at £1.40 exclusive of VAT.

Mayflower House, Plymouth.
Telephone (0752) 67377/8 Telex 45296
Giro 2581000

Forget all you’ve ever read about miniaturised soldering irons. This is the NEW ANTEX CX.
The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over 20,000Hz. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
- DC 20kHz 150 watts ± 1db, 0db
- 500 watts RMS into 2.5 ohms
- +0 - 15 DC to 20kHz, 1 watt 90dB
- Below 0.05% DC to 20kHz
- Below 0.05% 0.01 watt to 150 watts
- Greater than 200 DC to 1kHz at 82dB
- At least 110db below 150 watts

Other models in the range:
- D60 60 watts per channel
- D150A 150 watts per channel

Slew Rate:
- 8 volts per microsecond

Load Impedance:
- 1 ohm to infinity
- 1.75 V for 150 watts into 8Ω
- 10 ohms to 1000 ohms

Input Sensitivity:
- Short, mismatch & open cct. protection
- 120-256V, 50-400Hz

Power supply:
- 19" Rackmount, 7" High, 9" Deep

Hum & Noise (20-20kHz):
- Below 0.05% DC to 20kHz
- Below 0.05% 0.01 watt to 150 watts
- Greater than 200 DC to 1kHz at 82dB
- At least 110db below 150 watts

Other models available from 100 watts to 3000 watts

Do you really need a synthesiser?

The Eddystone 1830 series of general purpose HF/MF communication receivers is widely used in marine, military, police, broadcasting and other professional applications. Using the optional crystal control facility, high stability performance is obtained at minimal cost.

Economy, simplicity and reliability are characteristics of the 1830 series. Continuous coverage is provided from 120 kHz to 30 MHz in 9 ranges, with reception facilities for CW, MCW, AM and SSB signals. Variants are available with modified coverage, and 50-channel crystal capability.

DCA NO: 100/CA 10696

Eddystone Radio Limited
Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-475 2231 Telex: 337081
A GEC-Marconi Electronics Company

WW—059 FOR FURTHER DETAILS
3009+FD200

The FD200 is a new accessory from SME: a fluid damping device which can be fitted, easily and quickly, to any Series II or Series II Improved arm. The benefits of fluid damping have long been known: audibly improved bass and the reduction of spurious low frequencies; but these are not fully realised when the damping is applied at the bearings. For this reason the FD200 is designed to be fitted at a point along the length of the arm.

The FD200 design overcomes the usual problems of leakage and low efficiency. It offers a choice of two damping rates, to suit a wide range of cartridge compliances. The attractively presented kit includes ready-filled tank and full instructions.

Write to Dept 0643 · SME Limited
Steyning · Sussex · England

The best pick-up arm in the world
Oryx Super 30

The feature packed general purpose iron built to professional standards for only £2.95 + (8% vat)

When we introduced the Super 30 last year it was the best general purpose soldering iron at its price in Britain—it still is, at only £2.95p. (plus 8% VAT)

The Oryx Super 30 offers you all these features at standard: Neon safety light, Long life element, Iron coated screw-on tip, Stainless steel shaft, Styled handle, Two minute element change and a stainless steel clip-on hook.

Industrial Distributors include:
- Electroplan Ltd., Orchard Road, Royston, Herts SG8 5HH
- GDS (Sales) Ltd., 380 Bath Road, Slough, Berks SL1 6JE
- ITT Electronic Services, Edinburgh Way, Harlow, Essex CM20 2DF

Our forte

40,000 L series bench power supplies sold and 50% of the U.K. market is certainly a strong point in favour of buying Farnell.

The latest version provides either constant voltage or constant current, features large recessed meters, overload and short-circuit protection, coarse and fine adjustment controls, a separate output switch and LED indicators for mains on and current limit.

Models available

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>L50-05</td>
<td>0-50V, 0.5A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L30-1</td>
<td>0-30V, 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L10-3C*</td>
<td>0-10V, 3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L30-2</td>
<td>0-30V, 2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L30-5</td>
<td>0-30V, 5A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L12-10C*</td>
<td>0-10V, 10A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT50-05</td>
<td>twin output unit</td>
<td>2 x 0 - 50V, 0.5A</td>
<td></td>
</tr>
<tr>
<td>LT30-1</td>
<td>twin output unit</td>
<td>2 x 0 - 30V, 1A</td>
<td></td>
</tr>
<tr>
<td>LT30-2</td>
<td>twin output unit</td>
<td>2 x 0 - 30V, 2A</td>
<td></td>
</tr>
</tbody>
</table>

*with adjustable overvoltage protection

For full specification and prices contact:

FARRELL INSTRUMENTS LIMITED · SANDBECK WAY · WETHERBY · WEST YORKS
LS22 4DH · TELEPHONE 0332-3541 · TELEX 557594 · LONDON TEL. 01-864 7433

WW — 676 FOR FURTHER DETAILS
News of the Decade

RESISTANCE

CAPACITANCE

INDUCTANCE

over 60 different models available, many from stock

CONTACT US IF YOU NEED MORE INFORMATION OR DEMONSTRATION

DECADE BOXES

<table>
<thead>
<tr>
<th>"Junior" Series—Resistance—1%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decades pF Range</td>
<td>Ohms Res Range</td>
</tr>
<tr>
<td>J1</td>
<td>3</td>
</tr>
<tr>
<td>J2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>"Junior" Series—Capacitance—1%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decades</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>3</td>
</tr>
<tr>
<td>J2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>"Hundred" Series—Resistance—0.03%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decades</td>
<td>Ohms Res Range</td>
</tr>
<tr>
<td>R400</td>
<td>4</td>
</tr>
</tbody>
</table>

DECADE BOXES continued

<table>
<thead>
<tr>
<th>"Point One" Series—Resistance—0.1%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decades pF Range</td>
<td>Ohms Res Range</td>
</tr>
<tr>
<td>R301</td>
<td>4</td>
</tr>
<tr>
<td>R302</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>"Point One" Series—Inductance—5%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decades mH Range</td>
<td>mH Resolution</td>
</tr>
<tr>
<td>L100</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>"Point One" Series—Inductance—5%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decades mH Range</td>
<td>mH Resolution</td>
</tr>
<tr>
<td>L100</td>
<td>3</td>
</tr>
</tbody>
</table>

CAPACITANCE BOXES

<table>
<thead>
<tr>
<th>Decades</th>
<th>pF Range</th>
<th>fF Resolution Accuracy</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>C100</td>
<td>0–1,111,110</td>
<td>100</td>
<td>1.0</td>
</tr>
</tbody>
</table>

INSTRUMENTS

J.J. Lloyd

Brook Avenue, Warsash, Southampton S03 6HP

Tel: Locks Heath 4221

WW—007 FOR FURTHER DETAILS
FAST RESPONSE STRIP CHART RECORDERS
Made in USSR

Series H3020
Basic error: 2.5%
Sensitivity: 8mA F.S.D.
Response: 0.2 sec.
Width of each channel:
Single and three-pen recorders: 80mm
Five-pen recorders: 50mm

Chart speeds, selected by push buttons: 0.1-0.2-0.5-1.0-
2.5-5.0-12.5-25 mm/sec.
Chart drive: 200-250V 50Hz
Recording: Syphon pen directly attached to moving coil frames.
Curvilinear co-ordinates.
Equipment: Marker pen, timer pen, paper footage indicator, 10
rolls of paper, connectors, etc.

H3020-1 (Single pen): 285mm wide x 384mm deep x 165mm
high
PRICE £108.00
H3020-3 (Three pen): 475mm wide x 384mm deep x 165mm
high
PRICE £160.00
H3020-5 (Five pen): 475mm wide x 384mm deep x 185mm
high
PRICE £295.00

Note: Prices are exclusive of VAT
Available for immediate delivery

Z & I AERO SERVICES LTD.
44A WESTBOURNE GROVE, LONDON W2 5SF
Tel. 01-727 5641
Telex: 261306
WW - 053 FOR FURTHER DETAILS

Series H327
Polarized moving iron movements with syphon pens directly attached.
Built-in solid state amplifier (one per channel) provides 8 calibrated
sensitivity steps. Two marker pens are provided.
Basic error: 4%
Frequency response from DC to 100Hz 2dB

Sensitivity: 0.02 - 0.05 - 0.1 - 0.2 - 0.5 - 1 - 2 - 5 volts/cm
Width of each recording channel: 40mm
Chart drive: 220-250V 50Hz

Type H327-1. Single pen: Dimensions: 259 x 384 x 165mm
Weight: 15 kilos
PRICE £265.00
Type H327-3. Three pen: Dimensions: 335 x 384 x 165mm
Weight: 20 kilos
PRICE £520.00
Type H327-5. Five pen: Dimensions: 425 x 385 x 185mm
Weight: 25 kilos
PRICE £770.00

The Quickest, Simplest Way of Punching Holes in Sheet Metal

Q-Max punches make clean, accurate holes every time, in no time. With no
filing, no jagged edges, virtually no bursts—without hard work. And no
holes are barred. Round or square, Q-Max punches are available in
sizes down to 10 mm up to 75 mm for use on sheet metal up to 16 gauge.
No wonder they’re used by all
government services (Atomic, Military, Naval, Air, GPO, Ministry of
Works) and all over the world by radio, motor and industrial manufacturers,
plumbing and sheet metal trades and garages.

Wholesale and Export inquiries welcomed. Further details from,
“Q-MAX” (ELECTRONICS) LTD
44 PENTON STREET, LONDON N1 9QA Tel: 01-278 2500
WW - 101 FOR FURTHER DETAILS

Test Equipment
Multimeters
The Eagle range of multimeters covers every possible need of the
electrical or electronic engineer. They cost from about £6 to £58
(inc V.A.T.). There’s at least one
which suits your job precisely.

We have a lot of other test equipment too.
Send the coupon and we’ll send you our
complete catalogue.

Please send me details of all your test equipment.

NAME

ADDRESS

Eagle International, Precision Centre, Heather Park Drive,
Wembley HA0 1SU Tel: (01) 302 8832

WW/4
If you can hand clean a board for 12p... keep up the hard work.

An 'Arklone' cleaning plant costs £410

There has never been a stronger case for solvent cleaning with Arklone 'K'. Combining efficiency, simplicity, speed, safety and surprising economy in use, Arklone 'K' has rapidly become the firm-favourite solvent choice of Britain's leading electronics companies for cleaning p.c. boards. And in times when labour is increasingly expensive, old-fashioned hand-wiping could be making a sizeable hole in your profits.

Installation of a solvent cleaning plant is unlikely to break your bank—when for less than £500 you could be set up in business, and the improvements you'll get in results are really quite dramatic. Arklone 'K' not only searches out flux and contamination from even the most inaccessible places, but also dries perfectly cleanly—leaving no problems of residue or stain. And, of course, as your throughput goes up, your labour bill and unit cleaning costs go down. So you recover your capital outlay in next to no time. You won't need much space either—because the plants made specially by ICI to suit the solvent are neat and compact.

You'll find solvent cleaning with Arklone 'K' makes a very good deal of sense. So clip out the coupon and do yourself a good deal.

ICI Mond Division, P.O. Box 13, The Heath, Runcorn, Cheshire WA7 4QF England

WW — 108 FOR FURTHER DETAILS
FOR THICK FILM PRODUCTS

As the leading Thick Film manufacturer in the U.K., Erie are the obvious choice for these cost saving, highly reliable products, with over twelve years experience in the design and production of Passive and Hybrid Thick Film circuits.

Erie offer a comprehensive range of units including:
- Dual In Line Custom designed and Standard Resistor Networks in Ceramic Sandwich and Plastic Transfer Moulded formats.
- Single In Line Custom designed and Standard Resistor Networks.
- Power Resistors with Pluggable terminations, and High Value High Voltage wire ended Resistors.

Our experience, engineering and production facilities enable us to offer hybrid circuits in a variety of formats including Dual and Single In Line conformally coated and transfer moulded packages for a wide range of applications.

For more information about Thick Film contact:-
ERIE ELECTRONICS LIMITED
Resistor Division
South Denes, Great Yarmouth, Norfolk.
Tel: 0493 56122 Telex: 97424

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

NEAL STEREO
NEAL 3 CHANNEL AUDIO VISUAL
NEAL 4 CHANNEL RECORDERS

NEAL Range includes:
102, 103 STEREO DOLBY
110 MONO AV DOLBY
102AV, 103AV STEREO AV DOLBY
140 SERIES 4 CHANNEL RECORDERS
104 HEAVY DUTY REPLAY

TRANSCRIPTION CASSETTE RECORDERS
NORTH EAST AUDIO LIMITED
5 Charlotte Square, Newcastle upon Tyne NE1 4XE. Telephone (0632) 26660
SOPHISTICATION IN SOLDERING

- TEMPERATURE ACCURACY ± 2% OF INDICATED DIAL TEMPERATURE
- ELECTRONIC CONTROL (NO MOVING PARTS).
- FULLY EARTHED SYSTEM.
- RADIO SUPPRESSED WITH NO MAINS "SPIKING".
- LOW VOLTAGE ON ACTUAL SOLDERING INSTRUMENT.
- A SELECTION OF ELEVEN "ADIRON" BIT PROFILES.
- MANUFACTURED GENERALLY TO B.S. 3456 (APPROVALS ALREADY HELD SEV & VDE).
- FULLY GUARANTEED AGAINST ELECTRICAL/MECHANICAL DEFECTS.
- MINIMAL HEAT TRANSFER TO SLIM LIGHTWEIGHT HANDLE.

ARE YOU MANUFACTURING QUALITY ELECTRONIC EQUIPMENT?
WORKING ON MOS AND SETS?
THEN THE 101 SOLDERING STATION IS A MUST!

ADCOLA 'ADIRON' IRON PLATED PLUG-IN BIT PROFILES

End section of bits actual size

This unit will be on show at the International London Electronic Components Show Olympia May 17-20 1977

Full technical information can be obtained from ADCOLA PRODUCTS LIMITED
ADCOLA HOUSE LONDON SW4 6LH
TELEPHONE 01-622 0291/3
TELEX 21851 ADCOLA

WW—018 FOR FURTHER DETAILS
The measure of our success.

MAJOR Multimeter £34.30

Useful for both valve and transistorised equipment.

Ranges
- 41 Ranges
- 40 Kohm/V DC & AC
- 1200V AC & DC, 3 Amps
- dB - Frequency - Capacitance Ranges.

Signal Injector £7.50

In Circuit Tester NPN & PNP Signal & Power Devices, Clear Colour Zone Scale.

Ranges
- 5 Ranges
- dB - Frequency - Capacitance Ranges.

Transistor Tester £24.65

Capacitance Meter £27.50

In Circuit Tester NPN & PNP Signal & Power Devices, Clear Colour Zone Scale.

Ranges
- 5 Ranges
- Range 50pF to 0-5pF
- Resistance & dB Ranges.

41 Ranges
40 Kohm/V DC & AC
1200V AC & DC, 3 Amps
dB - Frequency - Capacitance Ranges.

Precision Instrument Laboratories have rapidly become the most comprehensive instrument stockist in the U.K. Shown above are just 5 of the instruments that we have available for the Radio and Television engineer.

Our full range includes Oscilloscopes, DVM's, Field Strength Meters, Valve Testers, Logic Probes and Colour Bar Generators.

Instruments Electrical Co. Ltd., the repair associate company of P.I.L., offer a complete repair service on all these and many other types of instrumentation.

PIL IEC

Items illustrated may be purchased by enclosing a cheque for amount shown + 8% VAT. Wholesale Enquiries Welcome.

WW—057 FOR FURTHER DETAILS
FREQUENCY COUNTERS
1/10 Hz to 1.2GHz
High performance instruments measuring frequency, period, time, freq./ratio and calibrated output facility. Fast delivery. Specials by arrangement.

TYPE 801B

CRITICAL OVEN
OPERATING MANUAL
TWO TONE BLUE CASE

Sensitivity 10mV. Stability 5 parts 10^10
Resolution ± 1 Count

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Frequency, Time, Tiipe</th>
<th>Memory Versions Available (if not suffixed M)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>301M</td>
<td>32MHz 5 Digit E95</td>
<td>32MHz 6 Digit E132</td>
<td>£274 250 MHz</td>
<td>£274 250 MHz</td>
</tr>
<tr>
<td>501A</td>
<td>80MHz 8 Digit E206</td>
<td>50MHz 8 Digit E375</td>
<td>£329 50MHz</td>
<td>£329 50MHz</td>
</tr>
<tr>
<td>1001M</td>
<td>1.2GHz 8 Digit E670</td>
<td>1.2GHz 8 Digit E670</td>
<td>£670 1GHz</td>
<td>£670 1GHz</td>
</tr>
<tr>
<td></td>
<td>Start/Stop versions plus £15</td>
<td></td>
<td>Memory versions available if not suffixed M</td>
<td>£25 extra</td>
</tr>
</tbody>
</table>

Type 101 1MHz 10kHz Crystal Standard E95
Type 103 O/H Air Standard £95

R.C.S. ELECTRONICS
6 WOLSEY ROAD, ASHFORD
MIDDX. TW15 2RB
Telephone: Ashford (Code 69) 53661/2

745 COUNTER TIMER
DC-32 MHz
FREQUENCY, PERIOD, TIME & TOTALISE
±5ppm STABILITY @ 25°C

745 COUNTER TIMER £94.00 + £2.50 p&p WW009
Other products include:
744 Counter Timer £85.00 WW010
643 Function Generator £98.00 WW011
643A Function Generator £85.00 WW012
631 Filter Oscillator £108.00 WW013

Delivery is normally ex-stock — telephone for confirmation.
Prices correct at time of going to press, subject to change without notice.

Telford Communications
TC12 Freq. Counter 10Hz to 200MHz
TC15 Inductance Bridge 1uH to 20H
TC14 Cap. Meter 1pF to 1uF.

Measure rapid and accurately with Telford Digital Test Equipment. Suppliers to Industry and Educational Establishments World Wide.

788 HIGH STREET, BRIDGNORTH WV16 4DS, SALOP, ENGLAND. TEL. 074-62 4082

ELECTRONIC TECHNIKA
Carbon Film Resistors
1/8 and 1/4w 70°C 5% tol. E.12
EX-STOCK
£4.90 PER 1,000
PLUS V.A.T. & POSTAGE
OF ONE VALUE
Minimum export order £100
Contact John Gingell

AERO SERVICES LTD.
44A Westbourne Grove
London W2 5SP
TEL: 01-727 5641 TELEX 261306

JES AUDIO INSTRUMENTATION
Illustrated the Si452 Distortion Measuring Unit—low cost distortion measurement down to .01% £48.00
Si451 £60.00 Si453 £60.00
Comprehensive Millivoltmeter Low distortion Oscillator
350u Volts 20 ranges sine — square — RIAA
prices plus VAT
J. E. SUGDEN & CO. LTD. Tel. Cleckheaton (0274) 872501
CARR STREET, CLECKHEATON, W. YORKSHIRE B19 5LA

HERO SERVICES LTD.
44A Westbourne Grove
London W2 5SP
TEL: 01-727 5641 TELEX 261306

TESLA AUDIO INSTRUMENTATION
Illustrated the Si452 Distortion Measuring Unit—low cost distortion measurement down to .01% £48.00
Si451 £60.00 Si453 £60.00
Comprehensive Millivoltmeter Low distortion Oscillator
350u Volts 20 ranges sine — square — RIAA
prices plus VAT
J. E. SUGDEN & CO. LTD. Tel. Cleckheaton (0274) 872501
CARR STREET, CLECKHEATON, W. YORKSHIRE B19 5LA

WWW — 055 FOR FURTHER DETAILS
ESP Capacitance Measuring Instruments

<table>
<thead>
<tr>
<th>Model</th>
<th>Range</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP 100 A</td>
<td>1 pF to 10 μF</td>
<td>Portable</td>
<td>£49.00 + V.A.T.</td>
</tr>
<tr>
<td>ESP 200 A</td>
<td>0.1 pF to 50 μF</td>
<td>Wide scale laboratory model</td>
<td>£120.00 + V.A.T.</td>
</tr>
<tr>
<td>ESP 300 A</td>
<td>1 pF to 2,000 μF</td>
<td>Autoranging capacitance bridge</td>
<td>£235.00 + V.A.T.</td>
</tr>
</tbody>
</table>

A complete range of British-made instruments designed to simplify capacitance measuring:
- Accurate and sensitive
- Requires no manual balancing
- Takes less than a second to measure a capacitor
- Updates changes in capacitance automatically
- Wide range of applications

Send for technical literature and free booklet: "Modern methods of capacitance measuring"

PAY LESS FOR LOADS?

With nearly 3 decades of experience built into every TERMALINE® Coaxial Load Resistor, buying BIRD will often cost no more or save you money. BIRD QC Quick-Change Connectors on many models offer a choice of any common RF connector, eliminating the need for performance-degrading adapters.

Twenty aircooled dry Loads (2W to 225W), thirteen aircooled liquid Loads (20W to 5kW) and nineteen watercooled TERMALINE® models (1kW to 50kW) are listed in our 1977 Catalog. Ask for it.

EXCLUSIVE U.K. REPRESENTATIVE FOR BIRD ELECTRONICS

aspen electronics limited
2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UW.
Tel: 01-868 1188. Telex: 8812727

FOR R.F.I. SAY ERIE.

When your problem is elimination of R.F.I., space and weight are at a premium and reliable performance is essential, specify Erie Filters.

Erie Technological Products of Canada are the world's largest volume producer of R.F.I. low pass suppression filters and filter assemblies for aerospace and defence systems. Their position as world leader in the field of miniature R.F.I. filters is a matter of record, for no other company has comparable capability in-house.

For the latest information on "state of the art" miniature R.F.I. filters contact:-

ERIE ELECTRONICS LIMITED
Resistor Division
South Denes, Great Yarmouth, Norfolk.
Tel: 0493 56122 Telex: 91421
Look up to a Versatower installation and your radio communications will achieve new heights!
Acclaimed as the World’s leading telescopic tilt-over tower in the international field of radio communication.
A complete range of models: from 20 to 120 feet, static and mobile. Full details and specifications are in our brochure. Send for it today!

Strumech Engineering Limited,
Portland House, Coppice Side,
Brownhills, Walsall,
West Midlands WS8 7EX.
Telephone: Brownhills 4321

Due to the enormously increased demand for Versatower systems we have now opened our new West Works. Phone us – we’ll be glad to show you around.

STRUMECH
VERSATOWER SYSTEM

If it's good enough for us....

... the Digitron 175 could solve YOUR temperature measurement problem

We evaluated most of the digital thermometers on the market and the Digitron 175 came out the best buy on almost every count. The unique auto-ranging facility gives the user the advantage of a wide temperature span without having to select individual ranges.

Automatic cold junction compensation and automatic zeroing gives a high degree of accuracy and reliability. All readings taken throughout the range -50 to +1200°C are shown on a clear bright LED seven-segment display. A range of interchangeable Type K thermocouple probes are available. The instrument is supplied in an attractive carrying case which can accommodate several alternative probes and the unit is available powered from dry batteries or with an optional rechargeable battery pack and charger. Contact Electroplan today and put us to the test.

Electroplan Ltd., P.O. Box 19, Orchard Road, Royston, Herts, SG8 5HH.
Tel: Royston (0763) 41171 Telex: 81337

Rechargeable power sources, calibration and potentiometric, measurement, d.c. power supplies, tools and accessories, frequency counter/imeters, digital multimeters, digital panel meters

An Electrocomponents Group Company
Priced too low for comfort?

No need to worry: it’s an Exact Model 121 swept-frequency waveform generator, with all of the quality assurance that superb breeding brings. You may wonder what corners have been cut to get the price down to £225.00. Relax, the answer is ‘None’.

- Sine, square, triangle, pulse & ramp waveforms over 0.02 Hz to 2.2 MHz
- Most compact, but rugged: 18.7 cm wide by 21.6 cm deep by 7.3 cm high
- 10 V peak-to-peak signal into a 50-ohm load (20 V open circuit)
- Internal sweep generator to sweep the main generator with a 3-decade sweep width
- Sweep rate adjustable from 1 ms to 10 s
- 60 dB attenuation on low output, using the 30 dB variable amplitude control
Where performance is paramount, professionals prefer Gardners...

From microphone to tape (or film), speakers or headphones, studio consoles, manpacks, amplifiers, modems, we at Gardners have tried to anticipate your needs. Miniaturisation (yes) plus good performance (yes) through to exceptional performance (of course). Impedance changing, coupling, isolation, bridging, low and high power, with or without D.C. Choose from our standard range of 95 models! Every one an example of sheer professionalism.

All have low loss, low distortion, low phase-shift, low pick-up, BUT wide frequency range.

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Impedance (Ohms)</th>
<th>Turns Ratio</th>
<th>Operating Level</th>
<th>Frequency Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU 7501</td>
<td>0.31</td>
<td>10k</td>
<td>50/120</td>
<td>± 0.5 dB</td>
</tr>
<tr>
<td>MU 7503</td>
<td>0.20</td>
<td>600</td>
<td>2.6</td>
<td>40/2.5</td>
</tr>
<tr>
<td>MU 7504</td>
<td>1.8</td>
<td>600</td>
<td>2.1</td>
<td>16/1</td>
</tr>
<tr>
<td>MU 7505</td>
<td>1.0</td>
<td>10k</td>
<td>2.0</td>
<td>1</td>
</tr>
<tr>
<td>MU 7506</td>
<td>0.60</td>
<td>600/150</td>
<td>20</td>
<td>1/2</td>
</tr>
<tr>
<td>VM 7461</td>
<td>15/3.75</td>
<td>600</td>
<td>6</td>
<td>1/2</td>
</tr>
<tr>
<td>VM 7464</td>
<td>600/150</td>
<td>600</td>
<td>1/2</td>
<td>100</td>
</tr>
<tr>
<td>VM 7466</td>
<td>50/12.5</td>
<td>50k</td>
<td>32</td>
<td>1/2</td>
</tr>
<tr>
<td>VM 7468</td>
<td>50/12.5</td>
<td>50k</td>
<td>32</td>
<td>1/2</td>
</tr>
</tbody>
</table>

We would emphasise that the above is a representative selection only. Send for Brochure GT5 for complete listings.

SPECIAL DESIGN SERVICE. If your requirements cannot be met by our standard ranges, then we will gladly design for your production needs.

Cut costs by 50% with the same high performance. Isn’t that what new ideas are all about?

Light in weight and low in cost, new Thermalloy heat sinks are designed specifically for plastic or metal case power devices.

They are remarkably simple to use, no extra mounting hardware is required—and they can be attached to the device after board assembly.

The slip on types have positive retention and can be supplied with locking tabs.

For full details of the range, simply return the coupon—cutting costs without cutting performance is a good idea you ought to know about.

MCP Electronics Ltd. Alperton, Wembley, Middlesex Tel: 01-902 5941.

Please send me full details on Thermalloy heat sinks.

Name
Company
Address
Tel:
F.M. MODULES, KITS & TUNERS by Icon Design

MAIN RECEIVER MODULE M1
We have claimed before that this F.M. system is the most advanced on the market, and after nearly three years we repeat our claim. Some have borrowed ideas, some have not, but no other tuner gives you all the features of this unit. How many tuners mute the spurious tuning effects found at either side of a correctly tuned station? How many tuners fade the sound out as you tune too far off station for good quality sound? How many tuners kill the tuning indicator so that it does not indicate when there is no station there? How many offer you drift free tuning? We could go on. If you want a tuner that has been well thought out and engineered, start with this module.

DIGITAL FREQUENCY METER M6
We are very proud of this one. We don’t have to say it’s the best, as far as we know it’s the only one! On a board less than 4” square is all the electronics of a stable counter with i.f. offset (added) and a stabilized power supply! With the aid of a small daughter board (not shown) which fits neatly into the above module (M1), the exact station frequency is displayed to the nearest 0.1 MHz. It’s a tuning scale 20” long with accurate calibrations every 0.1”. You get the transformer, daughter board (ready wired in), polarized filter, and a list of station frequencies. What more do you want?

TOUCH TUNE MODULE M5
This module must put the finishing touches to an outstanding combination. Six pre-set stations at the touch of a button. No moving parts to go wrong, or contacts to get dirty. Internal illumination shows you which button has been touched, while the tuning adjustment is made using high reliability multi-turn cermet pots for repeatable selection of the most used stations, yet retaining the use of separate manual tuning. This module interfaces directly with the M1 above, being wired between the board and the normal manual tuning control. A touch of sheer genius!

FULL DETAILS FROM
33 Restrop View
Purton, WILTS
SN5 9DG

*All prices subject to VAT
(12.5% at the time of printing)

Fully descriptive booklet (issue 2) with circuits and assembly instructions
U.K. 50p. Export £1 post free
PLASTIC FASTENERS FOR ELECTRONICS

SELF-ADHESIVE CABLE CLIPS are a quick and simple means of securing cables, cords and small looms to flat surfaces. No drilling or fixing screws necessary. The peel-back is removed immediately before placing the clip. The coating adheres to most clean, flat surfaces and withstands a wide range of humidity and temperature. Cable clips are moulded in natural nylon and have rounded edges to prevent damage to the cables.

CABLE STRAPS are semi-permanent fasteners for strapping wires and cables into tight, compact looms. The ratchet fastener is adjustable and can be released by pinching the sides of the fastener head. Cable straps are made from black nylon.

WIRE TIES are a flexible means of fastening wires and small cables into orderly, compact looms. They are quick and easy to fit and can be re-used, greatly reducing re-loom times. Wire ties are made from nylon and are available in various sizes each determined by a different colour.

The P.C. BOARD GUIDE is a self-retaining edge support for printed circuit boards. It has good panel retention and grips p.c. boards firmly and securely. The guide is available in two types of material - yellow acetal or grey Noryl, for high temperature and voltage applications.

P.C. BOARD SPACERS are simple to fit, one-piece mouldings for use with p.c. boards. They have a self-retaining shank for fastening into panels and a T-shaped anchor for securing p.c. boards of 0.062" thickness. They have good resistance to vibration and are suitable for board-to-board or board-to-chassis use.

P.C. BOARD STAND-OFFS are quickly assembled, self-retaining panel supports for p.c. boards. Made from natural (off white) nylon and have good resistance to vibration. Suitable for panels up to 0.079" thickness. Stand-Offs accept a No. 4 self-tapping screw.

PLASTIC RIVETS fasten panels, fittings and name plates to metal plastic and wood. Resilient enough to fix into brittle materials like fibre-glass, hardboard and glass. Shank, head and pin are one piece. Fixing is by driving the pin through the head into the space between the legs, gripping the work.

DRIVE FASTENERS hold two or more panels together. Easily fixed, normally by thumb pressure. No special tools required. Boat-shaped DRIVE Fasteners are for panels of thin and medium thickness and are removable. Ribbed Drive Fasteners are used in blind holes where hole length exceeds length of shank.

PLASTIC HOLE PLUGS are quick, inexpensive means of plugging unwanted holes. Hole Plugs keep out dust, dirt and moisture. Attractively shaped heads give a neat finish. The snap action grip of the Hole Plug makes a vibration resistant seal. Hole Plugs are made from nylon and are non-corrosive.

LOKUT ANCHORS are used to strengthen holes by providing additional screw thread engagement in materials where self-tapping screws would be unsatisfactory. Made from high strength nylon and used in insulation, and electrical chassis work. Easily fitted by hand.

1000's OF OTHER TYPES OF PLASTIC AND METAL FASTENERS LEAFLETS ON REQUEST

HARMSWORTH HAREHILL TODMORDEN LANCs OL14 5JY Phone TODMORDEN 2601 (STD 070-681 2601)
When failure spells disaster

that’s the testing time

Advanced electronic technology now forms a major part of systems designed to support man’s activities in increasingly demanding and even hostile environments. In such systems, an equipment malfunction may take on a new and more serious significance. When so much depends on maintaining the performance of such vital equipment, the provision of the right test instrument can be of paramount importance.

The Telequipment range of oscilloscopes is specially designed to meet the extreme challenge of today's technology—at down to earth prices. So if you expect a testing time ahead choose from Telequipment’s unrivalled range.

Telequipment D83

The Telequipment D83 is a dual trace 50MHz oscilloscope offering exceptional performance at modest cost. A large size CRT operated at 15kV provides a bright sharp display and a wide range of plug in amplifiers offers a choice between 5mV/Div sensitivity at maximum bandwidth and 50pV/Div differential sensitivity with high common mode rejection. A dual time base option provides comprehensive sweep intensifying, sweep delaying and single shot facilities while a simple single time base plug-in offers additional XY capabilities. Measurements on 625 line TV waveforms are made simple with a special TV amplifier plug-in.

Telequipment D75

This is a lightweight portable version of the dual trace 50MHz D83 model. It brings the same laboratory standards of measurement and performance in a rugged monolithic form ideal for mains-driven field use. The 8 x 10cm CRT operated at 15kV provides a bright sharp display under all normal conditions, while a choice of factory fitted options from the well proven D83 series plug-ins make it suitable for a wide variety of measurement applications. When fitted with the S2A dual time base, for instance, the D75 offers comprehensive features such as mixed sweep, sweep intensifying and delaying modes. As with the D83 measuring accuracy is ± 3%.
Surround sound — time to consolidate

It may seem strange that when surround-sound equipment sales are at a low level, the systems confrontation is still unsettled, and people apparently are disillusioned by the whole thing, interest in surround sound seems as high as ever among broadcasters, particularly in Europe. This apparent paradox is the consequence of having forced quadraphonics on the public, discovering what went wrong (Wireless World, December 1974) and trying to put it right second time round. Wireless World is in the midst of publishing details of what may be the most significant contributions to the art, reflecting an escape from the blind alley into which quadraphonics, as conceived at the turn of the decade, appears to have led.

One of the effects of these early attempts at coding two channels for surround use was to send people away thinking of other ways of doing it. One such avenue, followed independently by Duane Cooper and Peter Fellgett, in 1971, led to the omni-phasor idea. This phase-encoding of direction could, by simple sum and difference matrixing, produce a reasonably compatible stereo pair of signals. The snag was a 90° phase difference between the pair.

A derivative of this was therefore studied by the BBC Research Department in 1973. Dubbed Matrix H, it was last in a list of eight arrangements tested. The front part of its pan-locus was bent toward the in-phase mono point on the energy sphere, which gave a front centre sound a reduced phase difference of 48° and appeared to give commendable overall compatibility. Then in 1975 an effort was made to achieve a compromise, between the limit of RM on the one hand and BMX on the other, that would suit both broadcasters and the record industry. But the move failed (see News page 65) and messrs Fellgett and Gerzon were left to put forward their idea for a provisional industry standard in Electronics Letters later that year.

Now that patents have been granted, fuller details of this NRDC-sponsored work are available. They show that a range of options exists for pairwise mixed material to enable a variety of needs to be met; indeed the H matrix could almost be one of the options.

For a surround encoding to be universally adopted, allowance must be made for the addition of a third channel where feasible (a fourth would allow three-dimensional sound reproduction but that seems very much in the future), the resulting system not then needing "rescue" by non-linear circuitry.

The record industry seems well able to produce band-limited carrier-channel discs, but the transmission of quadrature sidebands along with the in-phase difference-signal sidebands can have undesirable effects in some stereo receivers. To prevent this one could transmit the quadrature information at a level chosen to reduce these effects to agreed proportions, hopefully negligible. And to avoid signal-to-noise ratio problems it follows that the bandwidth of this third channel would need to be restricted. Design procedures are now available that allow computation of third signal coefficients so that reduction of its level does not upset localization.

What we now have is the opportunity to standardize on a rational, unified surround sound technology, which will meet the needs of broadcasters and the record industry, now and for the foreseeable future, with an assurance that the system is not likely to be bettered. As these two British proposals - BBC H and NRDC J - have much in common, it would be most unfortunate if this opportunity were to be wasted. We urge the two parties to get together; there is so much to be lost by fighting and so much to be gained by pulling together.
Radio in the '80s

Broadcasting and the ideal sound receiver of the future

by Duncan MacEwan, Chief Engineer, Radio Broadcasting, BBC

A number of policy changes and trends in broadcasting over the last two decades have a very definite bearing on reception difficulties and the adequacy or otherwise of present day receivers:

• There has been a move away from mixed programming on networks towards channels and stations which can be clearly identified with one particular kind of output, e.g. news, orchestral music, light middle-of-the-road music, rock, country and western, "pop", etc. This "generic broadcasting" concept applies to a greater or lesser extent in many countries of the world today. The BBC itself has for its own national networks such a format (as indicated in Fig. 1).

• Within these basic frameworks, however, most countries run networks which also offer strands or segments of specialised programming, e.g. education, ethnic languages, sport, motoring information, immigrants' programmes, etc. Fig. 2 shows something of BBC Radio's special programme services within its four networks, which it can be seen offer seven different programme outlets. Such widening of choice to the listener must be matched by his ability to take advantage of this by means of a receiver with adequate facilities.

• Programme scheduling on networks has become much more closely geared to the realities of life in the '70s. For example, television competition, not only from outside but also from within the same organisation, is recognised by radio programme planners. Peak listening times — breakfast, middle of the day and early evening — are established and programme patterns developed against such a background. In the process, some of radio's inherent advantages — speed, range of outlets, fulfilling needs which television cannot — can be capitalised on. As a second example, different programming is scheduled during clearly identifiable leisure times, which are the weekends and weekday evenings for most. Furthermore, listening habits have changed dramatically. The television set now occupies the place in the room previously held by the mains radio of the '40s and early '50s, and by far the largest amount of listening is now done on portables, but with a growing element in cars.

• The introduction of more radio services, many of which have found their outlets on f.m. However, in some parts of the world, for a variety of reasons, countries have grown to rely heavily not just on a.m. in the medium wave-band but also on long waves. This gives rise to the need for a three-waveband set, even before any short-wave requirement is taken into account for those who either actually need such a facility in order to receive their own national services, or simply wish it in order to extend the range of choice by being able

Radio 1 : "Pop"	a.m. (medium wave/m.f.)
Radio 2 : Light, middle-of-the-road music	a.m. (long wave/l.f.)
Radio 3 : Serious music, drama etc.	f.m. (v.h.f.)
Radio 4 : Speech network mainly, (news and current affairs)	a.m. (medium wave/m.f.)
Local radio	f.m. (v.h.f.)

Fig. 1. The basic "generic network" concept used by BBC Radio. Note that there is a total of nine outlets.

| Radio 1 a.m. (m.f.) |
| Radio 2 f.m. (stereo) |
| Progressive "pop" music |
| Radio 2 a.m. (l.f.) |
| Motoring information |
| Sport, shipping forecasts |
| Radio 3 f.m. (stereo capable) |
| Open University ("University of the Air") |
| Radio 3 a.m. (m.f.) |
| "Schools," Welsh language, O.U. and F.E. (weekends) |
| Radio 4 f.m. (stereo capable) |
| National regions (Scotland, N. Ireland, Wales) |
| National regions (part time) |
| Radio 4 a.m. (m.f.) |

Fig. 2. Examples of specialist programming on BBC Radio’s seven network outlets. Note that radio sets must have three wavebands, m.f., l.f. and v.h.f.
to listen to broadcasts from distant countries. Whereas in a modern television set channel selection is normally effected by simple switches or buttons, the counterpart of these in the radio set is usually required to band change, the process, manual tuning; this in itself is not always found easy, nor can stations invariably be located and identified positively. The problem for the listener in the UK may be highlighted by brief reference to the situation now obtaining in certain cities. In both London and Birmingham, for example, a total of 13 radio broadcasting outlets is available, viz. the BBC's nine plus the a.m./f.m. pairs of two independent commercial local radio stations.

Many broadcasting organisations' programme journals usually have to give pride of place to television programmes and indeed are encouraged to do so in light of the lucrative advertisements they attract. This often results in too little space being left for a proper, easily readable display of radio's multifarious choices. The would-be listeners find difficulty in spotting programmes of their taste and perhaps miss many they might otherwise have enjoyed.

Technical factors
The demand for the increased number and range of services has given rise to severe congestion in the a.m. medium and long wave bands. The Geneva frequency conference of 1974-75 authorised transmission for some 10,000 stations in Regions 1 and 3, within spectrum space which allows for a total of only 135 channels (120 medium wave and 15 long wave). This represents an increase of 2½ times the present number of assignments with a total carrier power of 540 megawatts - a greater than four-fold increase. Services after dark will inevitably suffer badly and greater reliance must therefore be placed on f.m. in the future. Broadcasting organisations may well find themselves having to work out a strategy for weaning listeners off a.m. where such outlets are merely carrying in duplication the same programmes. "On air" and written publicity would be key factors in any campaign of this kind.

Because of the different propagation characteristics prevailing during the hours of darkness, which give rise to the all too familiar night-time interference, population coverage figures are lower at these times. For example, in the BBC's own case:

<table>
<thead>
<tr>
<th></th>
<th>Daylight</th>
<th>Night-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio 1</td>
<td>87%</td>
<td>37%</td>
</tr>
<tr>
<td>Radio 2</td>
<td>98%</td>
<td>83%</td>
</tr>
<tr>
<td>Radio 3</td>
<td>94%</td>
<td>72%</td>
</tr>
<tr>
<td>Radio 4</td>
<td>88%</td>
<td>74%</td>
</tr>
</tbody>
</table>

In the face of these night-time figures alone, a case can be made for duplication on f.m.

Many of the world's a.m. services were planned on the basis of much lower signal strengths than are now found necessary in city centres, with their high rise, steel framed buildings. In an earlier era the BBC considered 3 to 5 millivolts per metre to be adequate, whereas now it recognises the need for about 10 millivolts. In certain other countries signal levels as high as 25 millivolts are considered essential. This is also a function of which end of the a.m. medium wave band the station lies. At the high frequency end, due allowance has to be made for the increased attenuation which is experienced as the signal traverses a city.

While the position in respect of f.m. (Band II v.h.f.) is a good deal easier, the packing density of stations is getting dangerously high in some countries. Stereo channels, which are on the increase, call for more spectrum space than monophonic services. In Band II, frequency allocation is fast becoming very difficult and pressure is being put on other users — taxi, fire authorities, police and ambulance services — to move out of it. In the UK the degree of privation (Fig. 3) is such as to have inhibited the development of further national networks, while extension in the number of local services is in jeopardy. The same is true in certain other countries including those which are restricted by their geographical proximity to the densely populated areas of their neighbours. It is hardly surprising, therefore, that most European countries seek an enlargement of that part of Band II allocated to them as broadcasters. The Americas and the countries in the Far East are in a privileged position with at least 20MHz of band space within which frequencies may be allocated, whereas in the UK it is only 9.6MHz at present.

Many f.m. services were planned in the early '50s in an era when practically all receivers were mains operated and used in fixed positions. Coverage areas were predicted on the basis of roof top (or loft) aerials at a height of 10 metres. The advent of the battery operated transistor set changed all this, and small portables with the built-in aerial and often with only one a.m. band became the norm; many are still in use. Those sets capable of receiving the f.m. services were provided additionally with an extendable rod aerial and used at a height rarely exceeding one metre above ground level. For satisfactory reception at this level, the signal strength required at roof level would have to be four times the strength normally needed for a roof-top aerial. To give point to this, the BBC has quoted for some years, and quite correctly so, its f.m. monophonic service national coverage figure as 99.3% of the population for all three v.h.f. networks, the figure applicable to the roof-top aerial situation. More recently it has estimated, however, that reception on transistor portables of all types is nominally unsatisfactory possibly for as much as 10% of the population. Even with a roof-top aerial good stereo reception calls typically for about twice the signal strength adequate for the same standard of mono, but in difficult reception conditions much more may be needed. Put another way, this means that stereo service areas are always smaller than the monophonic ones.

A recent BBC Engineering/Audience
Research survey in some depth has demonstrated the continuing importance to BBC radio of its a.m. services. Over 80% of all listening is done on the medium and long wavebands and 58% on portable receivers. This latter figure indicates very clearly that there are almost equal markets for both the good quality fixed-position mains receiver and the portable. Listening in cars (6.5%) was established as of growing importance.

The survey has also shown that even now, 20 years after the BBC’s first v.h.f./f.m. transmitter went on the air, only 40% of the sets in the hands of the British public have facilities for receiving such transmissions. F.m. receivers, in spite of affording vastly improved quality, remain in many cases more difficult to tune, and the portables are equipped with awkward rod aerials, consume more battery power and have to be carefully placed within the room for optimum results. Since they also invariably cost more, customer and listener resistance is generated. Furthermore many v.h.f. portables have too small loudspeakers to take much advantage of the higher quality offered by the transmitted signals. Under these circumstances it is more difficult to convince the public that the f.m. service is so very much better than the a.m. one.

In addition, good f.m. car radios tend to be very costly, and suppression of ignition, wiper and other local electrical interferences proves difficult. Since this varies from model to model and is often a function of the car manufacturing process, no one solution can be universally applied, which means that installation costs tend to be high. Too few good economically priced f.m./a.m. car radios are available; even fewer have built-in suppression and cover all three wavebands.

In other parts of the world the position may well be different.

Most broadcasting organisations, when establishing their f.m. services some time ago, did so with a horizontal plane of polarisation. How well does this serve the listener to a portable set with its vertical rod aerial in and out of doors, and those in cars? A recent EBU Working Party K study showed under what circumstances horizontal, vertical or mixed polarisation gave optimum results. For this particular type of potential audience it concluded that in other than rugged terrain served by an existing horizontally polarised transmitter it would be advantageous to change to or establish from the outset either mixed or vertical polarisation. (Many transmitting stations in the USA have been modified in this way during the last decade.) The cost of such a programme of work for a national broadcasting organisation is, however, prodigious. Of the BBC’s own 20 local radio stations built during the 1970-72 period, seven are slant polarised as a result of the same kind of considerations, coupled with the need to keep faith with those f.m. listeners who had equipped themselves in earlier years with horizontal roof-top aerials for the three national network services and for whom a move to vertical polarisation would have meant too severe a drop in signal strength.

In the duplicated service situation, considerable problems can arise in those parts of a country where the a.m. and f.m. transmitter coverages differ, leaving a proportion of the listeners solely dependent on one or other outlet. In the UK this difficulty is prevalent in mountainous regions of Wales and in parts of the north and north west of Scotland. For two principal reasons — finance and frequency allocation — such situations can present nearly insoluble problems, and are most acute for a public service broadcasting organisation which has as its objective 100% national coverage.

The language of both the broadcasting engineer and set manufacturer often act against the public’s interest and certainly its understanding of wavebands and frequencies — there is much talk of a.m. and f.m., medium wave, long wave and v.h.f., m.f. and l.f., of metres, kilohertz and megahertz. On the European continent many countries adopt the simple expedient of quoting channel numbers only, where the f.m. band is concerned, while some manufacturers continue to put station names on their sets.
set dials — a restriction for the broadcaster in the face of any impending reallocation of frequencies and a potential source of frustration to the listener.

Requirements for sets
The conclusions which might be drawn from all this are that if in the future the broadcaster is not to be restricted and the listener suffer deprivation:

- every set sold in the country must be capable of receiving at least all the indigenous services available in that country. This must be made to apply to both home produced and imported sets, and legislation will be required to ensure the inclusion of all the necessary wavebands.
- f.m. portables must be made easier to tune and be rid of the rod aerial
- an adequate number of pre-set push buttons should be provided for making network or station selection and switching as simple as it already is on television sets
- channel identification must be simplified
- programme journals need designing with the problems outlined earlier very much in mind
- the frequency with which stations are identified "on the air" needs to be increased in subtle ways
- signal strengths will in some cases have to be increased to take greater account of the indoor listener using his portable in one room or another, and often within a steel framed building
- changes need to be made in the plane of polarisation of many f.m. transmitters
- f.m. portables could with advantage be made more sensitive to help the "fringe area" listener.

The immediate problem is one of ensuring that the right programmes can be easily found and listened to around the home in a variety of domestic situations, in the car or out of doors. Potential audiences will be lost and programmes missed unless these can be easily and positively located. The complex programming of a multiplicity of transmission outlets can only be really successful if programme people as well as engineers understand the technical parameters of the problem and jointly engage with the receiver industry in seeking a solution.

The ideal set of the future?
Looking forward into the 1980s, the ideal radio set might well have the following features:

No dial but either an alphanumeric display or an electrochromic indicator. The frequency or channel identification could simply appear as a number in a "window". Some of the more sophisticated tuner-amplifier combinations at the expensive end of the market already use an alphanumeric display of which Toshiba, Revox and Telefunken are examples. Electrochromic cells which might well prove suitable for this purpose have been developed by ICI.

No manual tuning control as such, the set using pre-tuned button selection, or this combined with "memorised selection". A new Swiss Revox tuner has a programmable memory — 16 pre-sets with a storage time of 6 months before any re-establishing of the choices originally made becomes necessary. Philips are marketing a receiver with "electronic search tuning" — by pressing a button the tuner will search up or down the band, stopping for 2 seconds on any f.m. signal of sufficient strength before moving on to the next one. When the listener is satisfied with what he hears he simply releases the button. This particular tuner also includes a "fast run-on" or "back" facility (Fig. 6).

Plug-in pre-set frequency cards for particular channel or type of programme. Various technical possibilities suggest themselves using a sub-carrier in or out of band. Frequency modulation of the a.m. carrier is another avenue of approach. Many applications for such labels are possible:

- Programmes could be selected by type or channel and a receiver designed to "search" the frequency band for a programme carrying a particular label; generic broadcasting makes such a concept more meaningful for the listener. Since searching may take time, it is possible to envisage a second, auxiliary receiver contained within the same box that would search and log behind the scenes, as it were, so that programmes or stations would be available for the listener without delay.

- A receiver could be pre-programmed for an evening's listening, making use of broadcast data labels to switch "on" and "off", channel select, etc, according to a pre-set plan.

- Coupled with a built-in recorder and using similar methods to that above, selected programmes (e.g. news bulletins, weather forecasts, educational programmes, etc) could be stored for later recall by the set owner.

- Such a receiver could incorporate a digital clock either driven from an internal quartz oscillator or "running free" but corrected at regular intervals by clock-time data signals transmitted by the broadcaster, thus absolving the listener from the need to take any action himself.

- Remote control by the broadcaster of signals travelling with the broadcast signal signifying, for example, a particular channel or type of programme. Various technical possibilities suggest themselves using a sub-carrier in or out of band. Frequency modulation of the a.m. carrier is another avenue of approach. Many applications for such labels are possible:
The volume required for satisfactory speech and music levels by 'data-labelling', which would solve an age-old listeners' complaint.

Radio Luxembourg uses a simple form of programme-labelling by adding coded signals just before and after its news broadcasts. A frequency within the audio band (2325Hz) carries frequency modulation in the shape of a square wave; a deviation of 175Hz is used to open the receiver and 75Hz to close it. ITT market the "Oceanic" receiver (Fig. 7) with a fixed tuning button for RTL associated with which is another marked "VEILLE"; with both pressed the receiver "watches" for news broadcasts only, and bursts into audio life when one is being transmitted. The Dutch are also beginning to experiment with coded programme-labelling using a sub-carrier well out of the audio and stereo bands.

The American SCA (Subsidiary Communications Authorisation) or "store-casting" facility as it is commonly called. This could be used for an additional low quality monophonic service of narrow bandwidth when the main transmission was also monophonic.

An f.m. as well as a.m. ferrite aerial contained within the body of the set. The BBC's Research Department has modified a portable in this way and has also produced two different versions for cars, all with encouraging results (Fig. 8).

Armchair control of channel, volume, tone and stereo balance using remote acoustic, infra-red, etc, control.

Improved f.m. interference protection drawing upon new techniques evolved for digital processes. At least one well-known European manufacturer of car radios has incorporated such a circuit with advantageous results.

Frequency compensation for listening level, since both the low and high audio frequencies require to be boosted for low volume control settings.

Stereo decoder in portables for earphone listening. BBC Designs Department produced such a thing about five years ago for our own use, since when Hacker have taken this idea up commercially with their "Silver Knight" model (Fig. 9), as have ITT and others. (A new Hacker model takes the proposition a stage further with a loudspeaker facing out from either end.)

"No-wires" stereo becomes possible if two f.m. portables are equipped with these small, relatively inexpensive decoders, provided each is also fitted with a left-channel/right channel switch; paired up they could be arranged to provide good stereo listening on their loudspeakers.

A cabinet which is rigid, sealed, waterproof, rugged and with improved acoustics.

Rechargeable batteries with inbuilt—charger.

The technology clearly already exists to bring all of these facilities into being. Which do the world's broadcasters consider the most important for (a) fixed set listening; (b) portables, and (c) car radios, and what are likely to be the price restrictions on the degree of sophistication? For its part, the BBC has had discussions with the British Radio Equipment Manufacturers Association (BREMA) as part of its continuing dialogue with that body, and has been encouraged by its response. BREMA has agreed to co-operate in any experiment the BBC decides to mount.

In conclusion, the author believes that since technology is no longer holding back either the broadcaster or the manufacturer, major developments in receiver design are possible; the receivers of the future are, however, only going to match our needs if the broadcaster specifies these clearly and works closely with the set-making industry.

Acknowledgements

The author wishes to record his thanks to S. M. Edwardson of the BBC's Engineering Research Department for his help and advice in preparing this article, and to Howard Newby, Managing Director, BBC Radio, and James Redmond, Director of Engineering, for their permission to publish it.
BBC Matrix H
Compatible system for broadcasting

by P. A. Ratliff, B.Sc., Ph.D and D. J. Meares, B.Sc. (Hons) BBC Research Department

During the past few years the BBC has been involved in assessing the performance of "surround sound" systems to determine whether the provision of a surround sound broadcast service would be viable. Most system proposals may loosely be called "quadraphonic" and they use four loudspeakers for reproduction, arranged as a fore and aft stereo set-up. To carry four loudspeaker signals to the listener, multiplexing techniques have been devised for discs in which four nominally independent signals are recorded, and a decoder, not unlike two stereo broadcast decoders in concept, is required to extract them. In circumstances where only two channels are available (as for conventional stereo discs, cassettes/tapes, and broadcasting), many proposals for channel-reduction matrices have been made whereby four loudspeaker signals are derived in the listener's decoder from two signals as recorded or broadcast.

The broadcasting of four independent signals would require either two complete stereo networks for each quadraphonic programme (as for example the BBC experimental broadcasts on 6th July and 23rd December, 1974, which used Radio 3 and 4 v.h.f. transmitters) or alternatively the inclusion of the additional signals by quadrature modulation of the 38kHz subcarrier and/or the addition of a further subcarrier. There are not enough Band II v.h.f. broadcast channels to permit the first-mentioned possibility on a permanent basis, and although the last has been discussed at some length\(^1\), including the transmission of only three signals\(^2\), there are serious problems in practice\(^2,3\).

To overcome some of these problems three-channel systems have been proposed which transmit the third signal with a reduced bandwidth and/or modulation level. These could substantially reduce the problem of incompatibility with existing stereo receivers, but at the same time would reduce the service area.

Most attention has therefore been paid to two-channel matrix systems for possible broadcast use, as these would not, in principle, require any changes in distribution, transmission, or receiving apparatus. It would also be possible to record them with conventional stereo equipment. However, some loss of information is inevitable in mixing surround-sound signals into only two independent channels, and re-creation of the surround sound-stage, by means of a suitable decoder to provide four loudspeaker signals, has enjoyed a varying degree of success. The lack of loudspeaker signal separation inherent with any linear-decoding matrix\(^4\) has led to considerable effort being devoted to the design of variable matrices, whose decoding parameters are dependent upon the programme content. Such systems can only work ideally for one source direction at a time, and thus compromises must be made to enable a complex sound distribution to be accommodated.

Of paramount importance, the two encoded matrix signals must be capable of sensible reproduction, both directly in stereo and when summed in mono. This compatibility requirement, which is desirable in the disc, cassette, and tape market to eliminate the need for double inventories (i.e. the same programme material being released in both stereo and "quad" editions), becomes essential in broadcasting because all but a small proportion of the public will use existing stereo and mono receivers for the same broadcasts. Indeed, there must be no penalty paid by the existing stereo and mono audiences, who are likely to be in the majority for many years to come, if not permanently, in order to satisfy a minority quadraphonic audience. This requirement is perhaps the most important of a matrix system for broadcasting, and is the one which the commercial systems have failed to satisfy completely so far.

Psychoacoustics

Initial studies at BBC Research Department concentrated on investigating the subjective properties of the human hearing mechanism, to find out the extent to which quadraphonic signals are capable of producing a subjective enhancement of the sound sensation for the listener. Ideally, by surrounding the listener with sound information, a system should create a greater sense of realism and involvement in the programme. It is important to realise, however, that the programme must satisfy the listener subjectively, and merely the re-creation of the actual sound field at a suitable position in the recording environment may not be sufficient. This feature is, of course, well known in stereo reproduction, but applies equally for surround sound, because the lack of other perceptions of the recording environment (e.g. visual) often requires that the aural presentation be artificially exaggerated.

From a large number of subjective experiments, it was found that at normal listening levels the listener is almost equally sensitive to the loudness of a sound at any azimuth around him, and although his assessment of the location of a sound exhibits a left/right expansion in the rear of the sound-stage, he can co-locate two separate sounds to an accuracy of better than 3° for all stage azimuths. This last-mentioned factor is clearly the more important for surround sound reproduction, as the listener will not be so concerned about the true positions of the various sound sources in a programme, but will be likely to be more critical of their relative positions.

Studies were then made of quadraphonic presentation of sounds; in particular, the effects of combinations of signals with various amplitude and phase relationships typical of those produced by proposed matrix systems. Using conventional stereophonic sound-panning techniques\(^5\) for positioning a sound-image, a discrete system (i.e. four independent audio signals) is capable of giving good sound-image localization in the front and rear of the sound stage, but is sensitive to the listener's head position for the sides unless the listener turns to face the sound, particularly in non-reverberant surroundings. Fortunately, the acoustics of typical home living.

\(^*\) The minimum number of channels which intuitively can provide independent directional information in one plane, i.e. a horizontal sound-stage.

\(^{1}\) A sound-image is moved between the two stereo loudspeakers by electrically altering the ratio of the sound signal fed to each loudspeaker, keeping the total power constant. This technique is also known as pairwise panpot mixing.
rooms serve to mitigate the last mentioned effect. When groups of directional microphones or channel reduction matrices are employed, more complex output signal configurations occur which can give rise to most unnatural sound effects, changing the location, definition and quality of the sound. On the other hand, with suitable control of these parameters, it is possible to enhance the sound image considerably.

Furthermore, it was necessary to examine the compatibility requirements of a sound system for stereo and mono reproduction. All the two-channel matrix proposals use phase difference between the left and right stereo signals, in addition to their amplitude ratio, to convey left/right and front/back directional information. For normal stereo the phase difference between the two signals is maintained at a nominal zero degrees, and it is well known that completely antiphase signals give rise to quite unpleasant, even nauseating, effects when the amplitude difference between the signals is small. Nevertheless, a much more detailed knowledge was required with the advent of matrix systems, and a comprehensive investigation into the effects of phase on stereo image formation was undertaken. As a result, the compatibility of any two-channel system can be predicted from a knowledge of its encoding parameters.

A useful pictorial representation of the stereo signal is given by Scheiber's sphere, which maps the amplitude ratio \(L/R\) and the phase differences \(\beta\) of the two-channel signals onto the surface of a sphere. This is facilitated by expressing the amplitude ratio as an angle, by the relationship \(\alpha = 2\tan^{-1}(L/R)\). Thus \(\alpha = 0^\circ\) when the signal is totally in the right channel, \(90^\circ\) when it is split equally between the left and right channels, and \(180^\circ\) when the signal is totally in the left channel. The right-hand half of the sphere is represented in Fig. 1, where the phase difference \(\beta\) is plotted as a projection around the circle, and the amplitude ratio \(\alpha\) is plotted as the radius of the circle, so that \(\alpha = 0^\circ\) (signal all in the right channel) is at the centre of the circle, and \(\alpha = 90^\circ\) (signal equal in the left and right channels) is on the circumference. The left-hand half of the sphere can be regarded as mirrored the other side of the paper with \(\alpha = 180^\circ\) (signal all in the left channel) at the centre of the circle on that side. Usually left/right symmetry pertains in stereophonic transmission systems and it is sufficient to examine only the one half of the sphere.

From the work on the effects of phase it was possible to divide the sphere into areas of impairment of stereo image quality, and in Fig. 1 three nominal regions are defined, namely negligible, slight, and severe impairment zones, as shown by the appropriately shaded areas. Impairment zones can be defined for mono reproduction, but these are less severe, resulting only in a reduction of level for large values of the two-channel phase difference \(\beta\) thus affecting the balance in mono of sounds from different encoding azimuths.

The compatibility problems found with earlier matrix system proposals could now clearly be seen when the system loci were plotted on the sphere; they all transgressed into the slight and/or severe impairment zones to too great an extent. What was required was a system whose encoding locus lay principally within the negligible impairment zone, having a sensible image distribution in stereo reduction, and yet retaining the capability to be decoded in surround sound with both left/right and front/back sound-stage discrimination.

Matrix H encoding

The requirement was met with the development of Matrix H at the Research Department. The two-channel encoding matrix may be defined in terms of the position of the sound source in the surround sound stage to give left and right channel coded signals of

\[
\begin{bmatrix}
\sin\beta & \cos\beta \\
\cos\beta & -\sin\beta
\end{bmatrix}
\begin{bmatrix}
R_L \\
R_R
\end{bmatrix}
\]

where \(R_L\) and \(R_R\) represents a quantity of magnitude r and phase-shift \(\phi\) relative to an arbitrary reference, and \(\beta\) is the azimuth angle of a unit amplitude sound source measured in a clockwise sense from the centre-front direction of the sound stage. The first component represents the mono, or omnidirectional response, the second the front/back directional response, and the third component represents the left/right directional response. The locus of this encoding equation on the sphere is shown by the dashed line in Fig. 1, with marks for the encoding positions of the eight cardinal sound-stage locations \(C_r, R_r, C_p, B_r, L_r, L_p, R_p, C_l\) shown, and \(L_{p}, C_{l}, L_{p}\) are on the other side of the sphere to the corresponding right-hand positions. This locus also corresponds to that obtained using coincident group-microphone techniques for recording the natural sound-field at a single location.

It is common studio practice however, to position a source-sound electrically by panning a source signal between pairs of channels (pairwise panpot mixing). In quad mixing such panning is usually arranged to take place between the four corner channels \(L_{p}, R_{p}, L_{p}, R_{p}\), and the equation for Matrix H given above has to be adapted to accommodate these inputs. It then takes on the form

\[
\begin{bmatrix}
0.63 & 0.37 \\
0.37 & -0.63
\end{bmatrix}
\begin{bmatrix}
R_L \\
R_R
\end{bmatrix}
\]

The locus of this equation is shown by the solid line in Fig. 1 for pairwise panpot mixing, and is the form in which Matrix H is usually instrumented. This

\[\text{An explanation of matrix notation in relation to surround systems may be found in reference 1.}\]
configuration also provides ideal group-microphone encoding, following
the dashed curve, for four coincident hypercardioid-response microphones
arranged to point in the directions of the corresponding loudspeakers used in
quadraphonic reproduction. In practice these cardioid-response microphone
elements are used, and their signals are mixed to give the required hypercar-
dioid-response signals, with a forward/backward response ratio of 5.83.

For maximum front/back discrimination the centre-front (C_F) and centre-
back (C_B) encoding points should be diametrically opposite on the
sphere, as are the centre-left (C_L) and centre-right (C_R) encoding points.
However, this would involve using too much of the slight and severe impair-
ment zones, thus seriously affecting compatibility, and so the Matrix H loci
have been bent so that 80% of the locus lies in the negligible impairment
zone. None of the locus enters the severe impairment zone and only the
region near C_B significantly enters the slight impairment zone. This last-men-
tioned feature is used to advantage in that even the stereophonic listener
gains an impression of the depth of the sound stage.

The distribution of encoding azimuths around the locus is arranged to
give sensible localization in stereo as well as correct localization in quad.
Fig.2 shows experimental results for the stereo image localization and image
spread, or diffuseness, using Matrix H and, for comparison, using a direct
 stereo fold-down from a four-channel discrete system. (The corresponding
front and back signals are simply summed to give what is known as
discrete-blend stereo.) With discrete-blend stereo, full stage width is given to
the front and back quadrants of the sound stage whilst the side quadrants
are compressed to two points. This usually results in a very “ping-pong”
stereo presentation of the programme. Also there is no differentiation between
front and back quadrants, which can make the sound presentation dull or
even confusing.

Matrix H, on the other hand, gives a more uniform distribution of the
sound-stage whilst maintaining prime emphasis on the all-important front
sector. The front quadrant spans most of the stereo stage with C_F and C_R
actually at the loudspeakers, and the rear corner positions are arranged so
that overwidth stereo may be obtained, particularly when using pairwise-pa-
not mixing. Thus, images may be localized outside the space enclosed by
the loudspeakers and, without generating unpleasant phase effects, a “super
stereo” can be produced when desired. Centre-back is reproduced somewhat
spread compared with C_F and also displaced slightly to one side. This
diffuseness of rear images is subjectively very good in a complex programmed
mix in that it gives a more distant

perspective and hence creates depth to
the stereophonic sound-picture, with
the front sound stage appearing more
prominent.

In monophonic reproduction, Fig.3, Matrix H gives a small bias towards the
front of the sound-stage when compared with discrete-blend mono (ob-
tained by summing the four-channels of a discrete system). With pairwise
panpot mixing, a maximum level reduction of 3.6dB with respect to the
front corner stage locations occurs at the rear corner positions. This is a
highly desirable feature for stage/am-
ience (e.g. concert hall) recordings, where a reduction of ambiance level is
required in mono to retain a subjectively
satisfactory sound balance with principal sources. In surround presen-
tations, where such a level drop would not be desirable, the rear corner sounds
are simply panned inward slightly
toward stage centre, equivalent to
about -15dB cross-mix to the opposite
front corner encoding point. This
permits moving the rear corner
encoding point on the sphere towards
that for coincident microphone rec-
ording. Thus “quad” presentation is not
substantially altered, and the only
penalty paid is that the overwidth effect
in stereo is reduced slightly.

Matrix H decoding

To obtain surround sound, a suitable
decoder is required to extract the
directional information from the coded
two-channel signal. A linear decoding
matrix may be formed by taking the
complex conjugates of the row ele-
mements of the encode matrix and writing
them down as the column elements of the decode matrix

$$
\begin{bmatrix}
L_L & 0.84 & 0.94 & 0.34 \\
L_R & 0.19 & 0.79 & 0.94 \\
C_L & 0.34 & 0.34 & 0.34 \\
C_R & 0.94 & 0.34 & 0.94 \\
R_L & 0.34 & 0.94 & 0.34 \\
R_R & 0.94 & 0.34 & 0.94 \\
\end{bmatrix}
$$

This results in an overall transfer function for the Matrix H system of

$$
\begin{bmatrix}
L_L & 0.19 & 0.19 & 0.19 & 0.19 & 0.19 & 0.19 \\
L_R & 0.84 & 0.84 & 0.84 & 0.84 & 0.84 & 0.84 \\
C_L & 0.79 & 0.79 & 0.79 & 0.79 & 0.79 & 0.79 \\
C_R & 0.34 & 0.34 & 0.34 & 0.34 & 0.34 & 0.34 \\
R_L & 0.34 & 0.34 & 0.34 & 0.34 & 0.34 & 0.34 \\
R_R & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\end{bmatrix}
$$

Low separation figures are obtained
between adjacent outputs; this character-
istic is typical of two-channel linear
matrix systems, as only two outputs can
be completely isolated. However, in the
case of Matrix H decoding the signal
separations obtained are not symmetri-
cally disposed, and were optimized by
taking account of psychoacoustic pro-
PERTIES so that a centrally-seated,
forward-facing listener obtains optimal
results. In addition, the phase
relationships between these signals
were modified to further enhance the
directionality of sound sources and
substantially eliminate unpleasant

![Fig.2. Stereo image localization and spread for Matrix H and “discrete blend”](image-url)

![Fig.3. Variation of mono signal with sound-stage location](image-url)
Fig. 4. "Quad" image localization and spread (length of radial bars). (a) Ideal test-image positions, (b) four-channel results, (c) two-channel Matrix H linear decoder, and (d) Matrix H with programme-dependent decoder.

phase effects which can occur with basic matrix decoding due to large phase differences between associated signals.

The performance of this decoder was initially assessed in single-source localization tests, in which the listener was asked to estimate the position and spread, or diffuseness, of the sound-image produced when a source-signal was encoded at any one of 16 azimuth positions. Fig. 4(a) shows the ideal locations of the test sound-images (numbered 0 to 15, position 0 corresponding to the CF position) and Fig. 4(b) shows the corresponding mean assessed image positions together with their image spreads, for a discrete four-channel system.

A reasonable distribution of images is obtained, although the side quadrant positions are more diffuse and sensitive to positioning. In comparison, Fig. 4(c) shows results for the basic linear Matrix H system. Although there is more variation in absolute positional accuracy, a fairly uniform image distribution is maintained and hence relative sound localization is good. Image spreads are greater for Matrix H, notably in the corner locations, but again remain fairly uniform around the whole sound stage.

These results were substantially better than for any other linear matrix system tested. However, a limitation of linear matrix decoding is that it is sensitive to listening position if the correct directionality of sounds is to be maintained. Also, the sound stage is reproduced too close to the listener. Nevertheless, linear Matrix H creates a pleasing sound sensation, even when listening off-centre, possessing the warm and spacious characteristics of good surround sound reproduction.

For a larger effective usable listening area, signal separations greater than can be provided by linear matrix decoding are required. These can be achieved by a programme dependent technique in the decoding process. The decoder is still based upon the linear matrix of the system, but circuits are introduced which detect the principal (loudest) sound-source location and vary the decoding parameters to enhance its subjective localization.

In principle, an enhanced two-channel matrix decoder is capable of reproducing sources at any single location with the same fidelity as a four-channel discrete system. However, it is a fundamental limitation of such matrix systems that sources at different locations cannot all be reproduced faithfully at the same time. In fact, some of the early "enhanced" decoders caused quite unpleasant effects, such as severe image instability and/or level variations, but if the variable decoding mechanisms are suitably controlled, e.g. the gain-laws and time-constants selected with care, these objectionable effects can be reduced almost to the point of inaudibility.

It has been found that a variable-matrix enhancement technique, first developed by Sansui (see for example reference 9) is the most successful to date. The detailed mechanics of such decoding are complex and there are many possible variations, but details of such a technique for matrix H and a suitable decoder are to be published in a subsequent issue of Wireless World. With Matrix H, however, the advantages of a good linear decoding matrix are combined with those of variable matrix enhancement, so that a good decoding performance is obtained not only when there is a principal sound source to command the enhancement circuits, but also in an ambience-sound situation when there is no dominant sound source to cause the decoding matrix to vary from its quiescent linear condition. This obviously eases the compromises that have to be made in decoder design to make it perform well with both simple and complex sound-stage arrangements.

Subjectively, when enhancement is applied to a Matrix H decoder, the sensitivity to listener position is reduced, and the "closing in" characteristic of the linear matrix disappears. Fig. 4(d) shows image localization and spread results obtained for an experimental enhanced Matrix H decoder. Positional accuracy is close to that of a discrete four-channel system and image spreads are very similar. Assessments on pre-mixed programme material also show a surround-sound performance similar to that of a discrete system is obtained. The performance is better than that from the best commercial systems with programme-dependent decoding, but with the significant advantage that it combines with a highly compatible stereo and mono presentation from the same encoded signals.

System assessment

Matrix H had proved to be highly compatible and effective in the laboratory, but it was then necessary to find out whether the system was readily usable in practice, under the normal processes of programme production in existing studio installations. Also it was important to set up an impartial experiment to find out whether any of the other system proposals had developed to the point where they might in practice be equally, or better suited to a surround-sound broadcast service.

The BBC invited the proponents of all known practical systems to submit their equipment and supervise its installation. The following accepted: BMX, SQ, QS and Matrix H.

Programme production teams selected material recorded on 16-track master-tapes, some recorded using indivi-
The advantage of the two-channel compatible system is that surround-sound broadcasting can take place over existing stereo networks and transmitters, and all existing stereo facilities can continue to be used. Most importantly, this includes the listener's equipment, and not only his v.h.f. stereo receiver, but also his disc and tape apparatus.

In the unlikely event of it becoming possible to devise a new broadcasting system, with the necessary extra bandwidth and improved s/n Matrix H could, of course, readily be expanded to provide three or even four transmission signals. Even so, as it would retain its present excellent stereo and mono compatibility and the present high standard of quadraphony for existing listeners, one wonders how many listeners would consider the additional expense of three- or four-channel receiving apparatus justifiable.

The advantage of the two-channel compatible system is that surround-sound broadcasting can take place over existing stereo networks and transmitters, and all existing stereo facilities can continue to be used. Most importantly, this includes the listener's equipment, and not only his v.h.f. stereo receiver, but also his disc and tape apparatus.

References

Acknowledgements. The authors wish to thank the Director of Engineering of the BBC for permission to publish this article and are also grateful to the many people who have helped during the development of Matrix H. In particular, Messrs Crompton, Gaskell, Harrison, and Wright.

Nothing is rendered redundant, but it is of course necessary to provide a decoder, loudspeakers, and amplifier, to gain the extra sound dimension.

References

Changes in amateur examination

Since its introduction in 1946 the Radio Amateurs' Examination of the City and Guilds of London Institute — the examination which must be passed to obtain either a Class A or Class B licence in the United Kingdom — has been conducted as a three-hour written paper, divided into two parts: Part 1 with two compulsory questions; Part 2 with eight questions of which six should be attempted.

But from 1979, City and Guilds are expected to introduce a new format to the examination based on objective tests containing multiple-choice questions, i.e. four possible answers are provided and the candidate indicates which he thinks is the right one. This technique, if pitched at the right level, can provide a revealing assessment of the knowledge of a candidate without reference to his "literary" abilities and can result in more consistent marking. Such an approach would seem very suitable for an examination taken by candidates who range from about 14 to over 70 years of age.

In preparation for these changes the City and Guilds is inviting readers in the London area to assist. It is the Institute's policy to pre-test objective tests containing multiple-choice questions. If you are preparing for your amateur licence on your own and live in the London area, you may be able to assist. It is the Institute's policy to pre-test objective questions, trying them out on candidates who have reached examination standard. Pre-tests are intended to test the performance of individual questions and syllabus coverage. Information is obtained which assists the Institute's reviewing panels in judging whether each individual question should be included in the question bank for use in future exams... pre-tests must be administered to a sample of students representative of those who will take the exam. Many would-be radio amateurs prepare for exams without following a college course and the Institute invites such candidates who live in the London area to assist.

"The pre-tests are to be held at the Institute, 76 Portland Place, W1, on Tuesday, May 3, from 10.15 a.m. As well as helping us the tests may help would-be examinees to revise their work and gain some exam experience. If you are willing to assist please telephone Miss Jackie Clifford (01-278 2468, ext. 491). Invitation will be issued to eligible candidates."

Promoting RTTY

The British Amateur Radio Teleprinter Group seems to have stepped up its efforts to encourage more use of r.t.t.y. by British amateurs. Apart from publishing information on the principles and practice of r.t.t.y., BARTG has recently established a forum of lecturers prepared to talk on r.t.t.y. to amateur radio clubs. Requests should be made to J. P. G. Jones, GW31GG, Hon. Sec. BARTG, 40 Lower Quay Road, Hook, Haverfordwest, Dyfed SA62 4LR.

BARTG is holding its annual convention on Saturday, May 21, at the Village Hall, Meopham, Kent, where there will be lectures, trade stands, bring-and-buy stalls and a "tape factory". Trains arriving at Meopham station before 1315 hours will be met by transport.

An American amateur who first demonstrated a radio teleprinter system as long ago as 1921 has recently been honoured by the Radio Club of America. The club's 1976 Surnoff Medal was awarded to Captain W. G. H. Finch, first licensed in 1912 as 8MK and BIE. His early r.t.t.y. was based on his invention of a highly sensitive relay.

Silver Jubilee prefix

To mark the Queen's Silver Jubilee the Home Office is authorizing all British Class A and B amateurs to use the special commemorative prefix "GE" instead of the usual G, GM etc. in all parts of the UK from 0001 hours on Saturday, June 4 to 2359 hours on Sunday, June 12. This is the first time a special prefix has been made generally available to UK amateurs to mark a national event and the Home Office state that it will not set a precedent.

Scanning the bands

Sunspot activity seems to be rising again (at last!) with h.f. conditions in December, January and February benefiting from the small but noticeable improvement. Particularly fortunate was the ARRL DX contest (c.w. section) on February 10-20 with many of the new "N" two-letter calls pounding in on 7, 14 and 21 MHz. Maritime activity on 21MHz also seems to be on the increase: recent contacts include JA4GY/mm in the Arabian Sea; and YU3EO/mm a freighter in mid-Atlantic.

It is reported that during the American bicentennial year (1976) Dick Spencerley, KV4AA — operating as AJ3AA — made some 35,000 contacts, an average of nearly 100 a day, from the Virgin Islands — surely a record!

Microwave Associates are producing a 20mW Gunn-diode 10GHz transceiver specifically for the amateur. It is supplied with (or without) a 17dB gain horn antenna, Schottky diode mixer and circulator. It can put an amateur on the 10GHz band at costs very favourably in comparison with those for factory equipment at lower frequencies. Details are in "Bulletin 7624" issued by the firm.

"World Radio Club" — the BBC World Service programme for DX enthusiasts and amateurs — celebrated its 500th weekly edition with one of the few audience participation broadcasts ever produced at Bush House. Over 32,000 listeners have joined the club since it began in July 1967.

"Employers in the communications industry have reason to be grateful to the RSGB for the enthusiasm and expertise implanted in many of their young apprentices through membership of local radio clubs and the society itself. I hope more firms will take a closer and more practical interest in the RSGB in the future" — Lord Wallace of Coslany at his installation as 1977 president of the RSGB held at the Palace of Westminster.

In brief

The new honorary secretary of the Radio Amateur Invalid and Bedfast Club is Mr H. R. Botttle, G2CLP, 14 Queen's Drive, Bedford MK41 9QB... A feature of the RSGB International Radio Communication Exhibition and Convention at Alexandra Palace, London on May 6-8 will be a "Members' Mart" on May 8 in the west corridor... Northern Radio Societies' Association annual convention and exhibition — sponsored by a number of radio societies in the north of England, is at Belle Vue, Manchester, on Sunday, April 24. A record number of trade exhibitors and club standards are expected... The 3rd European Conference for Radio Amateurs under the aegis of the German society DARc takes place May 27-30 at Wolfsburg. Earlier conferences were held in 1968 and 1972... Harold Woodhead, G2NX, who died recently was one of the first amateur to use single-sideband in the UK... A busy time for mobile rallies: May 1 Spalding Tulp-Time Rally (Gled Boys School, Spalding); May 22 Welsh Mobile Rally (Barry Rugby Football Ground) and Northern Mobile Rally (Victoria Park Hall, Keighley); May 29 Suffolk Wireless Revival (Ipswich), Southend (Fitzwimarc School, Rayleigh) and a Hull rally.

PAT HAWKER, G3VA
Electrolytic capacitor tester

Automatic instrument offers a reform facility and meter display

by A. Drummond-Murray

This instrument uses a charge injection technique to develop a voltage across the capacitor under test. The voltage is measured on a calibrated meter and no balancing or adjusting is required except for range selection. A reform facility allows an old or unused capacitor to have a voltage applied for about 15s which re-polarizes the dielectric before a measurement is made. An indication of leakage is also provided by the meter movement which is buffered by a f.e.t.-input amplifier.

Electrolytic capacitors depend on a dielectric formed on a aluminium or tantalum electrode by a thin layer of oxide. This dielectric requires polarizing to maintain its insulating properties and long periods of rest can result in de-polarization, a high leakage current and even total breakdown. Fortunately, the dielectric layer can be restored by applying a polarizing potential to the capacitor for at least five minutes via a current limiting resistor. This process is known as reforming. If a capacitor is to be tested and has started to de-polarize, a reforming period is necessary before any meaningful results can be obtained. The tester is provided with a reform facility which charges the capacitor to +12V via a 1200Ω resistor for about 15 seconds prior to the capacitance measurement. Although this period is too short for complete reforming, it is sufficient for most capacitors to recover enough for testing. The main property to suffer from incomplete reforming is leakage current. If, on test, a capacitor exhibits a high leakage current, a second reform period will often suffice. If no such improvement is apparent, the capacitor is faulty and unlikely to benefit from a prolonged reform. A short tone from the instrument indicates that the reform period is complete. During the measuring cycle, a further I.e.d. flashes when the test capacitor is being charged.

Fig.1. Simplified circuit of the tester

An equivalent circuit is shown in Fig. 1. The charge period on any range is the same for any unknown capacitance, and the voltage developed across the capacitor is proportional to its capacitance. If this voltage is measured from 0V instead of 12V, the capacitance increase is indicated as an increased voltage. This voltage rises exponentially. Fig. 2 shows the sequence of events following a start pulse. Fig. 2 shows the sequence of events following a start pulse. After a polarizing potential is applied, the capacitor is completely discharged through a circuit which limits the peak current to 100mA. A finite charge is then injected into the capacitor and the voltage is measured on a calibrated meter. The rate of decay is taken as a measure of internal leakage. A complete circuit of the tester is shown in Fig. 3.

Input impedance of the measuring circuit is important because of the shunting effect which occurs. Fortunately, modern operational amplifiers are ideally suited for producing high input...
impedances. Simple devices like the 741 can be made to have a high input impedance, but the bias current taken by the input transistors can still cause the capacitor voltage to vary. F.e.t.-input op-amps do not suffer from this problem, and the input resistance is greater than 1000MΩ. Using a f.e.t.-input amplifier the meter reading obtained with a 1µF polyester capacitor had no change after 20 minutes. Leakage current through any conventional electrolytic capacitor is certain to be many times higher than this, so the meter-drive loading may be disregarded.

In general the range of the instrument is altered by varying the charge current period. Because each range is ten times larger than the previous one, the charge injected increases by the same proportion, so the scale calibration is correct for all ranges. Calibration of the instrument is achieved by using known values of capacitance and marking the scale accordingly. Mullard 10% 100V polyester types with values 0.33µF, 0.47µF and 1.0µF × 3, were used and checked on a capacitance bridge and found to be within ±5%. These are quite adequate for calibration in view of the wide tolerance of electrolytic types (up to +100% –50%). On the 3000µF range the test capacitor is switched out of circuit, and the period reduces to a few nanoseconds. At the completion of this period the test capacitor is fully discharged. The duration of the discharge cycle is 0.25× on all except the 3000µF range which is increased to 2s. Capacitor C5 is switched in parallel with the existing timing capacitor, C4 for this purpose.

As discussed earlier, the accuracy of the instrument depends on each range having a ten-fold change in the amount of charge injected during the test period. Stable capacitors are therefore required on the timing multivibrator, IC3. Polycarbonate and polystyrene capacitors are particularly suitable but mylar, paper or ceramic devices are not recommended. On all but the 3000µF range, the test capacitors are charged through a series 1.2kΩ resistor and consequently the accuracy with which the periods change directly affects the meter calibration from range to range. On the 3000µF range the test capacitor is charged through 120Ω, formed by the addition of 135Ω in parallel with R12. Two extra resistors are used to prevent aging due to the relatively high peak current of 100mA. A monostable is used to drive the precision charge circuit because this device is recommended by the manufacturer for stability and repeatability.

Operation of the circuit is indicated by the pulsing of LED2. During the reform period, current passing through R12 is monitored by Tr1. If the Vbe exceeds 0.7V then Tr1 turns on LED2. Resistor R14 limits the base current and prevents Tr1 from shunting R12. The L.e.d. is illuminated fully when the capacitor current exceeds about 5mA. During the discharge sequence, Tr2 is turned on by Tr1 and Tr1 remains cut off. When Tr2 turns on, the discharge path is completed via R13 and R14 in series. Because R14 is in parallel with a diode which will be forward biased, the maximum potential across R14 is limited to 0.7V so the remainder of the voltage drop will be across R12 which is a low resistance. Diode D2 removes R13 from the discharge path during the initial current flow, and until the capacitor voltage falls below 0.7V. Schmitt trigger IC4a, is connected as a simple oscillator producing a continuous rectangular waveform. The second Schmitt trigger IC4b isolates the oscillator from the loudspeaker. The trailing edge of the reform cycle pulse at Pin 13 of IC4a, has a positive-going edge which is differentiated by C6, R8 and used to switch the oscillator output to the loudspeaker. It

![Fig.3. Complete circuit of the capacitor tester. Switches 3a. and 3b. only close on range M of switch 3](image)
Converse & calibration
Leads should be kept short and wherever possible separate. This is particularly important in the relatively high impedance wiring associated with the timing circuits of IC1 and IC3. An efficient ground plane should be provided on the circuit board to keep the earth impedance as low as possible. Disc ceramic capacitors should be used to decouple the circuits at hf. If the power supply regulators are used, it is advisable to decouple the input with a disc ceramic capacitor to ensure stability.

Calibration of the meter movement is achieved by adjusting the preset potentiometer on IC2 with a capacitor of known value on test. Calibration for other values and ranges should then be correct. Resistor R19 is used for scaling the voltmeter circuit. The prototype uses a 1mA meter movement and consequently a 10kΩ resistor is required to provide a 10V f.s.d. range. The tester is not really suitable for capacitors with voltage ratings of less than 10V. Lower voltage components may be tested provided that no attempt is made to reform them from the internal 12V current-limited supply, and the range selected for testing ensures that the terminal voltage is less than the capacitor peak voltage rating. The meter scale can be marked with the capacitor terminal voltage corresponding to the capacitance value of this purpose. The table shows the prototype meter calibration figures.

Electrolytic capacitors vary in value according to the applied voltage, and when a capacitor is severely under-rated, the nominal capacitance is reduced. This must be borne in mind when relatively high voltage capacitors are tested. Because the tester measures voltage from 0V, the capacitor voltage will decay upwards. Some capacitors, always faulty, exhibit a fall of meter reading. This effect is similar to a c.r.t. regaining the e.h.t. potential, after switch-off, due to the physical properties of the glass dielectric.

P.C.Bs
A glass fibre printed circuit board which accommodates board mounted switches will be available for £3.50 inclusive from M. R. Sagin at 23 Keys Road, London NW2.

We understand that Circuit Services, 36 Hallowes Crescent, S. Oxhey, Herts, will be offering a set of components for this design.

Correction
In the article "Metal detector," published in the April issue, the values of R3 and R6 were printed incorrectly in the parts list. The correct values are 4.7kΩ as shown in the circuit diagram.

Readers of the April issue may have been fooled by Part 2 of the article entitled Power Semiconductors — so were we, it should have read Part 1.
Surround sound decoders — 5

Variomatrix adaptor for System 45J and Matrix H

Phase shift circuit allows Variomatrix to decode Matrix H and System 45J

by Michael A. Gerzon, M.A., Mathematical Institute, Oxford.

Many hi-fi enthusiasts have Sansui Variomatrix decoders, and the present article describes an adaptor suitable for converting the Variomatrix for decoding signals encoded via the NRDC System 45J or BBC Matrix H systems. While such a decoder cannot be psychoacoustically optimal, it does permit existing owners to extend the usefulness of their equipment.

The adaptor essentially does the job of converting the 45J or Matrix H signals into a form which the Variomatrix is designed to handle, i.e. into signals which are good approximations of Regular Matrix signals. The optimum method of conversion is slightly different for these two systems, but fortunately involves in both cases the use of a 58° phase-shift network, so that the circuit is kept fairly simple despite its two-fold function.

Essentially, the Matrix H adaptor consists of a 58° phase lead put into the right-channel signal relative to the left channel. The System 45J adaptor adds to this a −15dB blend circuit at the outputs of the phase shifters. The six pole phase shifter described gives a 58° shift with ±4° error over the frequency range 44Hz to 17kHz if precision components are used, and so is suitable for use even with a studio-quality Variomatrix. In practice for domestic applications, 8% tolerance components may be used, although the use of 2% resistors will give better results.

The input circuit of the adaptor is shown in Fig. 1. Depending on the quality desired, the operational amplifiers may be 741 types or special audio types. The circuit is designed to offer a fairly high and resistive input impedance (18k or 14k depending on switch position), and gives approximately unity overall gain in all modes. The mode switch offers three positions: normal (i.e. conventional use for stereo and Regular Matrix), Matrix H, and System 45J.

An odd feature of the way the adaptor is connected is that (except in normal mode) all left input signals are fed to the inputs labelled right on the Variomatrix, and vice-versa as shown in Fig. 1. Similarly, all outputs labelled left on the Variomatrix are connected to the corresponding right quadraphonic inputs on the preamplifier, and vice-versa. The reason for the switching, shown is to ensure that the left/right interchanging of the Variomatrix inputs and outputs does not occur in the normal switch position, and for this reason, the mode switch is six-pole three-way. Also shown in Fig. 2 is a +2dB gain for the back channel outputs in the System 45J mode only; such a +2dB gain is necessary for best results. However, constructors may omit these gains from the circuit provided that the front/rear balance control of their system is adjusted to give this +2dB rear gain when decoding System 45J.

Owners of Sansui equipment in which the Variomatrix is integrated with the preamplifier and amplifier may not always find it convenient to use the output switching circuitry of Fig. 2, since this would involve breaking into the equipment. For such users, we
Wireless World, May 1977

Fig. 2. Post-Variomatrix circuit, includes rear channel switched gain compensation. Resisting 5 or 10% tolerance.

suggest that they use the circuit of Fig. 1, for example in the tape monitoring circuit, but with the following modifications.

Connect the top output of Fig. 1 to the left Variomatrix input (and not the right), and the bottom output of Fig. 1 to the right Variomatrix input (and not the left), and Feed the two 56kΩ resistors connected to the normal switch position from the left input for the top switch of Fig. 1, and the right input for the bottom switch of Fig. 1.

When used in this way, no left/right interchanging is used, and the switch need only be two-pole three-way. This method of use does not handle "interior encoded" sounds quite so well, but still generally works. For best results with System 45J with this simplified method of use, the front/rear balance control should be set to give +2dB gain to the rear speakers.

The Matrix H switch position will decode existing BMX discs (e.g., the UD-4 discs of Nippon Columbia) with reasonably accurate results, so that in practice the circuit allows decoding of Regular Matrix, Matrix H, System 45J and BMX.

As the author is connected with the NRDC Ambisonic project, in order to avoid possible misunderstandings it is pointed out that the use of a Variomatrix with the adaptor described will not give proper NRDC Ambisonic decoding with optimal psychoacoustic results, but is merely a means of enabling Variomatrix owners to use their existing equipment with some of the newer systems.

Also, the method of using the Variomatrix described is solely the author's responsibility, and neither Sansui Electric Company Ltd nor the BBC would necessarily regard such use as being according to their own recommendations.

The BBC have applied for a patent (34839/74) on the use of a Variomatrix decoder with a prior phase shifting circuit of about 60°. — Ed.

Ionospheric conditions this month are about the same as they were in 1974 except that solar activity then was decreasing and now is increasing.

Magnetic disturbance is likely to occur over the whole of the second half of the month.

Sporadic E propagation is forecast on at least 20% of the days and should modify the FOT curves as follows: Hong Kong peaking to 21MHz at 10 GMT; Johannesburg rising to 22MHz at 09 GMT and remaining so until 15GMT; Montreal maintaining 10MHz from 23 through 08 GMT; Buenos Aires dip between 06 and 10 GMT smoothed out.

The time scale on right is 2-hour divisions GMT, midnight to midnight.
Causes of malfunction in event-driven circuits

by B. Holdsworth* and D. Zissos†

*Chelsea College, University of London †Department of Computing Science, University of Calgary, Canada.

In the last article, the procedure needed for the design of event-driven logic circuits was discussed. This second half of that article goes on to describe the causes of misoperation in such circuits and concludes with some examples of design. It is unfortunate that some of the diagrams concerned with this half of the article appeared in the first half — for this, we apologise.

Races between primary signals. The circuit shown in Fig. 11 is required to operate three lamps L1, L2, and L3, according to the following specifications.

1. Lamp L1 is to turn-on when both X and Y are operated, but only if switch X is operated before switch Y.
2. Lamp L2 is to turn-on when both input switches are operated simultaneously.
3. Lamp L3 is to turn-on when both X and Y are operated, but only if switch Y is operated first.

In practice, a logic circuit responds with different speeds to changes in the input signals. Hence the response time of the circuit to a change in X must be assumed to be different from the response time to a change in Y. As a consequence the circuit, instead of assuming state S3 on leaving state So, either assumes state S2 if the circuit responds to the change in X first, or alternatively it enters state S5, if the circuit responds to a change in Y first. In both cases the circuit operation is not according to specification.

Since there is no remedy to this problem the circuit constraint applied is that only one input signal is allowed to change at a time.

Races between secondary signals. In the internal state diagram shown in Fig. 12(a), the coding of the internal states is such that circuit transitions So to S1 and S1 to S2 involve the change of more than one secondary signal. In practice because of variations in the response times of the two secondary signals to a change in the input signal X from 0 to 1, either A or B will change first.

Assuming that A changes first the circuit, when it leaves S0, first enters S2, from state S2, because X = 1, the circuit assumes state S3 instead of S1, and this a stable state for X = 1. This is clearly incorrect operation of the circuit. Obviously a similar analysis of the circuit operation can be performed for the case when B changes faster than A.

The solution to this problem is to ensure that each circuit transition involves the change of one secondary signal only and a race-free assignment of the state variables should be used as described earlier in this article and as shown in Fig. 12(b).

Races between primary and secondary signals. A circuit implementation of Fig. 12(b) is shown in block schematic form in Fig. 13. The letters a and b are assigned to the two sections of the circuit which generate the secondary signals A and B.

Consider the transition from S0 to S1 in Fig. 12(b). This transition will take place in the time tX which it takes to turn-on the secondary signal B. It will also be assumed that the time taken to invert the primary signal X is tP. If tX > tP, the following sequence of events will take place.

1. At time tX, B changes to 1 and the circuit assumes state S1.
2. Since tX > tP, X = 1, and the condition for turning A on exists.
3. A turns on causing the circuit to move to state S2.
4. On assuming state S2, the circuit

Fig. 11. Three-lamp circuit and its state diagram.

Fig. 12. Elimination of races between secondary signals.
moves to state S_3 since $X = 1$.

If $t_p < t_s$ on assuming state S, the input signal to section a has already changed, i.e. $X = 0$, and the circuit remains in state S_1.

Unlike the previous two cases, elimination of races between primary and secondary signals cannot be achieved, since a change in a primary signal initiates a change in a secondary signal. Therefore to avoid circuit misoperation it is necessary to ensure that $t_p - t_s$. It follows that incorrect circuit behaviour will not occur if the maximum delay associated with a primary signal $t_{p_{\text{max}}}$ is less than the minimum delay associated with a secondary signal $t_{s_{\text{min}}}$. Hence

$$
\frac{t_{p_{\text{max}}}}{t_{s_{\text{min}}}} < 1
$$

The 33\% property

The sequential circuits designed with the aid of the sequential equations are hazard-free when implemented with gates whose maximum speed tolerance is ±33\%. The justification for this statement is as follows.

The maximum delay by which a primary signal in primitive sequential circuits can be delayed is one gate delay, t_g, when it has to be inverted. Allowing $x\%$ variation due to production spread, loading etc., $t_{p_{\text{max}}} = t_g(1 + x)$.

The minimum delay associated with a secondary signal is $2t_g$, since at least two levels of switching are involved, as an examination of the NAND sequential equation $Q = S + RQ$ will show. Allowing $x\%$ variation, $t_{s_{\text{min}}} = 2t_g(1-x)$.

Substituting these values in the equation developed in the last section gives $t_g(1+x)/2t_g(1-x) < 1$ for correct circuit behaviour. The reader should observe that this property is valid for circuits in which the sequential equations are implemented in their primitive form. Algebraic manipulation of the sequential equations will lead to a modification of the relative delays of the primary and secondary signals and therefore invalidate the 33\% property. Hence, processing of the sequential equations is not advised.

Design steps

Step 1. Draw a block diagram showing the available input signals and the required output signals.

Step 2. Draw a state diagram describing the internal performance of the circuit.

Step 3. This step is optional and can be omitted. Its purpose is to provide the designer with a means of reducing the number of internal states obtained in Step 2, if such a reduction is possible or desirable.

Step 4. With the aid of a race-free diagram if necessary, each internal state is given a unique code. From the coded state diagram the turn-on and turn-off sets for the secondary signals are obtained and these are used to derive the primitive sequential equations. Expressions are also obtained for the output signals. The implementation of these equations is the required circuit.

![Fig. 13. Races between primary and secondary signals.](image)

![Fig. 14. Function to be realized in Example 1 is at (a) and its state diagram is at (b), while the state table is shown in (c) and in merged form at (d). Initial state diagram based on (d) is shown at (e) and realization of the circuit is (f).](image)
The design procedure will now be applied to the solution of two problems.

Example 1
Design a fault detector with the following terminal characteristics. The appearance of a fault signal f activates an alarm bell, turns a green light off and a red light on. The operator turns off the bell by pressing an acknowledge button a. When the fault is cleared, the red light turns off, the green light turns on and the bell is reactivated to attract the operator’s attention. The bell is turned off when the operator presses the acknowledge button. Should the fault clear before the operator has responded, the circuit is to reset. Also if a fault reappears before the operator has responded the green light turns off, the red light turns on and the bell turns off.

Step 1. See Figs. 15(a) and (b).

Step 2. A suitable state diagram is shown in Fig. 15(c).

Step 3. The state table corresponding to Fig. 14(b) is shown in Fig. 14(c). Applying Caldwell’s merging rules to the state table in Fig. 14(c), states S_0 and S_1 can be merged to form state S_0, and states S_2 and S_3 can be merged to form state S_2. The reduced state table is shown in Fig. 14(d).

The internal state diagram based on the reduced state table is shown in Fig. 14(e).

Step 4. By direct reference to Fig. 14(e) the turn-on and turn-off sets are:
- Turn-on set of $A = af$.
- Turn-off set of $A = af + A(\bar{a} + f)$.
- Turn-on set of $B = \bar{a}A + fA\bar{a}$.
- Turn-off set of $B = c\bar{A} + (\bar{c} + \bar{A})B$.

Therefore the NAND circuit equations are:
- $A = bB + A(\bar{B} + \bar{a})$
- $B = \bar{a}A + (\bar{c} + \bar{A})B$
- $P_1 = \bar{A}B$
- $P_2 = \bar{A}B + AB$

The corresponding circuit is shown in Fig. 15(d).

Example 2
Water is pumped into a water tower by two pumps p_1 and p_2, where p_1 is an auxiliary pump used for boosting purposes. Both pumps are to turn on when the water goes below level 1 and are to remain on until the water reaches level 2, when pump p_1 turns off and remains off until the water is below level 1 again. Pump p_2 remains on until level 3 is reached when it also turns off and remains off until the water falls below level 1 again.

Level sensors are used to provide level detection signals as follows:
- Signal $a = 1$ when the water is at or above level 1, otherwise $a = 0$.
- Signal $b = 1$ when the water is at or above level 2, otherwise $b = 0$.
- Signal $c = 1$ when the water is at or above level 3, otherwise $c = 0$.

Develop a sequential logic circuit to control the pumps p_1 and p_2 according to the specification given above.

Step 1. See Figs. 15(a) and (b).

Step 2. A suitable state diagram is shown in Fig. 15(c).

Step 3. It is left as an exercise for the reader to draw the state table and examine the possibility of state reduction.

Step 4. By direct reference to Fig. 15(c) the turn-on and turn-off sets are:
- Turn-on set of $A = bB$
- Turn-off set of $A = B + \bar{a}B$

Therefore the NAND circuit equations are:
- $A = bB + A(\bar{B} + \bar{a})$
- $B = \bar{a}A + (\bar{c} + \bar{A})B$
- $P_1 = \bar{A}B$
- $P_2 = \bar{A}B + AB$

The corresponding circuit is shown in Fig. 15(d).

Article 5 of the series will be a discussion of clock-driven circuits.
A Viewdata decoder may be considered as being made up of six parts, as shown from left to right in Fig 1(a): a line isolation unit; a modem; a keypad; an input processor; a store (possibly r.a.m.); and an output processor. Indeed the breakdown of facilities is very similar to that of teletext, shown in Fig. 1(b). This diagram also indicates that, apart from additional minor interconnections, parts common to Viewdata and teletext are the store and output processor. These are substantial components and therefore combined Viewdata/teletext receivers show important savings over two separate decoders for the two services. This is a slightly over-simplified picture but the situation will be clarified later.

Note however, an important difference. The input circuits in Viewdata, up to and including the store are bi-directional, thus highlighting the interactive nature of the system. On teletext the input circuits are one way only.

Line transmission

The transmission code used over the telephone line between the Viewdata terminal and the computer is at present 8-bit, 10-unit asynchronous (or start stop), as shown in Fig. 2. Each character consists of an 8-bit code, the first 7 bits containing the information while the 8th bit is a parity bit. Preceding each character is a start bit, with a stop bit terminating the character. The character illustrated in Fig. 2 is M, with odd parity. A 10-unit asynchronous system was chosen for simplicity. It is clearly not as efficient as a synchronous transmission mode, in which characters follow each other without the intervention of start and stop bits, but it is simpler to implement and is currently used by many time-sharing computer systems.

In order to transmit this code over a telephone line, a modem (modulator-demodulator) is required. Essentially this device modulates the code on to a voice frequency carrier, within the speech band, thus obviating the problems encountered with very low frequency transmission over the telephone network. The modem also enables the go and return transmission to take place.
Transmission rates selected for Viewdata during the present experimental phase are 1200 bits per second from computer to terminal and 75 bits per second in the reverse direction.

In the computer-to-terminal direction as high a transmission rate as possible is desirable in order to achieve a fast picture build-up. 1200 bits per second was chosen to fit in with a well tried and readily available modem. For the majority of Viewdata displays, consisting for example of mainly alphanumeric characters, the picture build-up is much faster than can be read by the user, and hence quite adequate from this point of view. Where, however, large uniform areas of graphics are displayed, the build-up may appear rather slow (the display shows repetitive information), and improvements to the build-up in this case may be obtained by using special means. But in general the additional complexity is not really worthwhile.

In the direction from terminal to computer the bit rate of 75 bits per second (7.5 characters per second) is quite adequate for hand keying.

The frequencies used in line transmission are as follows:
Forward channel: binary 1 = 390 Hz
(from terminal to computer) binary 0 = 450 Hz

Return channel: binary 1 = 1300 Hz
(from computer to terminal) binary 0 = 2100 Hz

When no data transmission is taking place on the line the terminal is transmitting continuously at 390Hz and the computer at 1300Hz. These tones are used in the modems at either end of the line to provide an indication of continuity, which as we shall see below is of some importance in the operation of the whole system.

When data is being transmitted the carrier is frequency modulated (frequency shift keying), between the binary 1 and binary 0 frequencies, the change being smoothed out to give a gradual transition between the frequencies.

The transmission arrangement used at present is duplex, with “echoing” facilities provided from the computer to the terminal. In a duplex system transmission may take place in both directions at once over the telephone with no mutual interference (hence, of course, the choice of frequencies). Characters keyed at the terminal are first transmitted by the modem to the computer and displayed only when they are “echoed” back. This arrangement gives some important advantages. First, it provides a measure of error detection, the user being aware of any corruption in transmission, errors in the computer or mis-keying errors. Secondly, duplex working also increases the user’s confidence in the working of the system, as “echoed” characters provide a continuous indication that the whole system is in satisfactory order.

“Echoing” from the terminal to the computer is not necessary. A parity check is sufficient to provide for the detection of the majority of errors, the computer usually responding in these cases by requesting a repetition of the instruction. The computer also monitors continuously the terminal carrier, thus ensuring that a line break is noted as soon as it occurs. This avoids the possibility of the user being incorrectly charged for using the system after the occurrence of a line interruption.

Experimental Viewdata terminal
The experimental Viewdata terminal at present in use is best introduced in two parts: (a) the data transmission unit, which deals with the Viewdata signal between the telephone line and the internal store, and (2) the display unit, which deals with the Viewdata signal between the store and display device (the c.r.t. of a television set). As explained earlier, much of the display part is common with teletext.

A typical arrangement of a Viewdata terminal is shown in Fig. 3. There are four major units as follows: the data transmission unit (1); the address selector (2); the random access memory (3); and the display unit (4).

The address selector (2) is the only unit which interconnects the input and output processors, essentially for the purpose of preventing mutual interference. Unlike the situation in teletext data is received at random times from the telephone line, completely unsynchronized with the operation of the display. It is therefore necessary to organise the access to the memory for reading out and display on the one hand, and writing-in incoming characters on the other hand, without cross-interference. This function is carried out by the address selector. The write address generated in the data transmission unit (1) and the read address generated in the display unit (4) are both available at the address selector.

A mixed blanking waveform, also generated in the display unit, indicates the times at which characters are required to be extracted from the memory for display purposes essentially during 40 microseconds of every line period, excluding blank lines at the top and bottom margins of the display. During these times incoming characters are made to dwell a little longer in an input character buffer in the data transmission unit and the address supplied to the memory is the read address. At other times the write address is
switched to the memory. The address selector also notes the coincidence between the read address and the write address when it delivers a pulse to the display unit to initiate the generation of the cursor display (see Part 3).

Shown also in Fig. 3 in broken lines, are the units required for interfacing Viewdata with teletext. In a receiver already fitted with a teletext decoder, one additional unit is required: the data selector (5), while the Viewdata display unit may be dispensed with and the teletext display unit (6) used instead. The connections required are shown also as broken lines. A Viewdata/teletext switch unit (7) is also shown. This sets data and address selectors to Viewdata or teletext as required.

In the teletext mode the address and data selectors switch the memory to the teletext input circuits, while in the Viewdata mode the memory is available to Viewdata. The read address, however, is now provided by the teletext address, which scans the memory during the mixed blanking period.

Data transmission unit

The data transmission unit is shown in more detail in Fig. 4. This consists of a line isolator (1) and a modem (2, 3, 4), the last-mentioned including a modulator (4) which transforms the outgoing data stream to a voice frequency signal, a demodulator (3) which accepts a voice frequency signal from line and extracts the data stream from it, and a control circuit (2) which switches the connection of the telephone line to the telephone receiver or to the modem.

The transmission control unit (8), which is synchronized by the clock unit (5), accepts the demodulated data in serial form, checks character parity and offers assembled characters to the control codes decoder (9). It also triggers the operation of the timing unit (10) which generates the necessary waveforms used throughout the data transmission unit. The control codes decoder recognises the special control characters used in Viewdata, initiates the corresponding control functions and enables the memory (8) to store the appropriate characters. It also controls the memory address unit (11), which maintains a record of the addresses at which incoming characters are to be stored and instructs the terminal identifier (12), to generate the automatic identification code in reply to an enquiry signal received from the Viewdata computer.

The transmission control unit, the timing unit and the page transmission unit (7) together control the transmission of a complete page from the terminal to the computer. The keypad (13) generates and encodes the terminal responses and outputs these direct to the modem, for transmission to the computer.

The data transmission unit operates in two different modes: reception mode and transmission mode.

Reception of Viewdata signals

Isolator and modem. The Viewdata signal enters the terminal from the telephone line, after passing through the isolator. This may consist simply of two pairs of opposite polarity gas discharge tubes, each pair connecting one of the telephone wires to earth. It ensures that voltages originating from the terminal are limited to safe values before entering the telephone network. It also contains fuses, in series with each telephone wire and on either side of the gas discharge tubes, to limit the current flowing. The gas discharge tubes have a striking voltage of about 130V, to avoid breakdown in the presence of ringing tones originating in the telephone line.

Following the isolator is the modem control unit, which contains a relay operated by the “data” button on the telephone. When this button is depressed it switches the telephone line from the telephone receiver to a hybrid transformer within the control unit. This separates the go and return channels connected to the modem and demodulator respectively.

The incoming Viewdata signal is superimposed on an f.s.k. (frequency shift keying) carrier, binary 1 corresponding to a frequency of 1300Hz and binary 0 to a frequency of 2100Hz. The incoming carrier first goes through two stages of bandpass filtering to eliminate unwanted signals. After this it is frequency shifted by 10kHz, thus becoming a frequency modulated carrier centred on 11.7kHz with a deviation of ±400Hz, the modulation rate being 1200 per second. Frequency shifting the carrier by 10kHz makes the demodulation process much easier by virtue of increasing the number of carrier cycles per modulation cycle.

The incoming carrier is now applied to an unbalanced discriminator and a detector which extracts the data modulation. After filtering, amplification, squaring and level changing the data
signal is fed out to the transmission control unit at a level of -6V for a frequency of 1300Hz (binary 1) and +6V for a frequency of 2100Hz (binary 0).

The transmission control unit. The transmission control unit accepts data in serial form and, using a sampling technique controlled by the clock generator, recognises the start and stop bits of each 10-bit character sequence, and stores each character in a temporary buffer. This completed, it signals the event to the timing unit, and control codes decoder, i.e. that a character has been received and is available for transfer at the input data highway in a 7-bit parallel form.

The transmission control unit also checks character parity and feeds out IPE (input parity error) to the control codes decoder if parity is found in error.

The timing unit provides a number of waveforms which control the storage of characters in the memory. On receipt of a "data available" signal from the transmission control unit, it transfers the intended location of the received character from memory address to memory, enables memory to accept the character, clocks memory address to the next character position and resets the transmission control unit to indicate that the character received has been accepted.

The control codes decoder accepts incoming characters from the input data highway, decodes the special control codes and initiates the appropriate actions as follows. The unit is "transparent" to all characters other than control codes, the former being applied direct to the memory to be stored therein.

The control codes decoder performs the following functions. On receipt of:
(a) Non storing characters such as NUL, CR, LF, FF, etc. it inhibits their storage in memory. (Write disable to timing unit.)
(b) BS, it causes memory address to count down one character
(c) VT, it causes memory address to count down one row.
(d) CR, it causes memory address to be reset to character address of zero, leaving row address unchanged.
(e) LF it causes memory address to count up one row.
(f) FF it causes memory address to be reset to character address of zero and row address of zero. It also causes the complete content of memory to be erased by setting the code on the input data highway to "space" and entering the quiescent state.

At the beginning of a Viewdata session the computer interrogates the built-in terminal identifier. The control codes decoder initiates the operation of this unit, which sends out an identification code to the transmission control unit. This code is transmitted to the modulator, complete with start, stop and parity bits. The operation is similar to that of the page transmission unit except that the identification code is stored in the terminal identifier.

Transmission of Viewdata signals
The transmission of Viewdata signals originates either from the keypad unit or the page transmission unit. The keypad unit controls a keyboard connected in a cross-matrix of 5 columns and 9 rows, with a shift button, which together with the 45 keys, provides a maximum of 90 codes. The basic keypad with which most of the Viewdata facilities may be used provides only 12 codes, (0 to 9), * and #, with additional optional codes for automatic calling.

In both cases the output of the keyboard matrix is applied to an encoder which generates codes appropriate to the keys selected, serializes the bit pattern thus obtained, adds parity, start and stop bits and applies the resulting data stream directly to the modulator, under the control of an internal timing unit which generates the appropriate clock signals. Characters fed out are not displayed on the screen until they have been "echoed" back by the computer.

The page transmission unit operates jointly with the transmission control unit and timing unit, and its operation is initiated manually by a push-button on the terminal. This causes the page transmission unit to reset memory address, memory address counter, row counter and buffer empty (TBE) signal from the transmission control unit to start the timing unit (using the page transmission enables signal). It also inhibits the writing into memory, via write disable to timing unit.

On receipt of TBE, the timing unit generates a load signal to the transmission control unit which causes the latter to accept a character from memory, and to clock it out in serial form at 75 bits/second, complete with start, stop and parity bits, to the modulator. The timing unit also increases the memory address count by one. When a character has been discharged from the transmission control unit, the next transmission buffer empty signal recommences the above cycle on the next character. When the character has been sent out, the page transmission unit notes the fact and resets the terminal to the quiescent state.

At the beginning of a Viewdata session the computer interrogates the alphanumeric character generator (3), a graphics generator (4), a character rounding unit (5), and an output unit (6).

The sync generator and memory scanner generates line and frame synchronising pulses which are applied to the tv timebase generators, and row and character addresses which are applied to the r.a.m. via the address selector. The unit derives these waveforms from an 8MHz crystal controlled master oscillator followed by a chain of dividers. The exact position of characters from the memory and their display on the screen occurs at a rate of 1MHz, which is derived directly from the 8MHz clock by a divide-by-8 circuit, a further division by 64 providing the line synchronizing pulses. There is a certain amount of flexibility in the choice of master oscillator frequency; a lower frequency, say 2.5MHz gives a wider character on the display, without being quite so demanding on the width of the video passband. The width of individual characters may also be altered by adjusting the blank margins.
to the left and right of the page on display. The choice of 5MHz here is mainly of convenience to simplify the subsequent dividing circuits. The sync generator and memory scanned must also generate the mixed blanking waveform which provides the margins around the display area. Thus every 1µs a read signal is applied to the r.a.m., which then feeds out the character stored at the location indicated by the row and character addresses generated by the unit.

The timing of the whole display unit must take into account delays occurring in the r.a.m. and in the alphanumeric character generators. These delays may be each of the order of 200 to 600 nanoseconds, depending on cost, the faster unit obviously being more expensive. Thus in order to take up these tolerances and allow the cheaper units to be used, a 2µs delay is allowed for from the instant a character is requested from memory to the time it is displayed.

As in teletext, a row of characters consists of 10 television lines in each frame (20 lines counting the interface), made up of 7 display lines and 3 spacing lines, each character space in the horizontal direction consisting of 8 dots, 5 display dots and 3 space dots, the dots occurring at the 5MHz rate.

As each character is fed out from the memory it is transferred to the display control codes decoder which is programmed to recognise the characters in columns 0 and 1 of Fig 7 in the April issue, i.e. the special colour, graphics and other display control characters; provide blanking for the duration of these characters (since these are non-display characters); and inhibit the character generator or graphics generators as appropriate.

At the beginning of every row of characters all the latches are set to white, alphanumeric, steady according to the teletext convention. The output of the decoder is applied the output unit which provides R, G, B signals to the guns of the cathode-ray tube.

Non-control codes are applied to the alphanumeric character generator which generates the required character pattern. This generator also receives a 4-bit line address from the sync generator, which indicates which line out of the ten lines required for character display has been selected at any one time. When a line of dots is fed out from the character generator it is entered in 5-bit parallel form in a 5-stage shift register and clocked out in the next 1µs period at the 5MHz rate, under the control of the 5MHz clock.

If a graphics control character is displayed, a latch is set in the display control codes decoder to indicate that all subsequent characters are graphics. The inhibition is lifted, however, in the case of the “blast-through” characters in columns 4 and 5 of Fig. 6 in the April issue.

Generation of the simple waveform is carried out under the control of vertical and horizontal bright-up waveforms, generated in the graphics generator. The horizontal bright-up waveform picks up left, right or both columns of the graphics symbol while the vertical bright-up waveform picks up one or more of the top, middle or bottom pair of squares in the graphics symbols. The 7-bit vertical character is decoded with the aid of these two waveforms and control signals applied to the output unit.

The display of the Viewdata cursor is initiated by the address selector, which notes the coincidence of input and output memory addresses and enables an exclusive-OR gate in the output unit. This causes normal display of characters when the cursor is off, but inverted display (i.e. black on white) when the cursor is on. Thus characters on display may be read through the cursor.

Character rounding is provided in the character rounding unit when this feature is required, i.e. mostly with large screen displays. Character rounding is initiated by the odd/even signal generated together with the line interface pulse in the sync generator unit. A second alphanumeric character generator unit similar to unit (3) may be required, both units operating simultaneously out of step by one line of the 7 × 5 character matrix. The two outputs, one delayed with respect to the other, are converted in the character rounding unit and additional dot pulses generated half way in the 8MHz dot interval and transmitted to the output unit to give the required result.

The use of character rounding is not necessary in the case of the small-size Viewdata display for use in the office, and this results in a useful simplification.

(To be continued)

A limited number of commercial television sets containing Viewdata/teletext decoders are now being manufactured for marketing trials of Viewdata due to start in March 1978. In a later issue we hope to publish an article outlining the main features of a typical commercial set of this kind.
The Editor

MOBILE RADIO PLANNING

Recent editorials in your journal have complained about the secrecy surrounding the planning of mobile radio in the UK and have also referred to a document on the subject, which has been given a limited circulation by the Pye company. Unfortunately, the Pye document, which is issued in two versions, is not available to the generalities of your readers so it does not contribute greatly to the ventilation of the subject which you rightly judge to be desirable. I am one of the small number of people who have been privileged to see both the government and commercial documents and my views may therefore be of interest. I trust that the Wireless World's interest in the important decisions which have to be taken accurately, the Pye document, which is issued in the later and shortened version. Splitting the u.h.t. channels from 25 kHz u.h.f. equipment which continues to go back-burner. In the meantime, the more 25 kHz channels was shown to be eminently practical no less than seven years ago by I.T.T. and one cannot strengthen any claims being made for a leading manufacturer's claims.

A puzzling feature which emerges from the current reviews is that mobile radio in the UK seems to make very poor utilisation of the spectrum available to it. A total of approximately 1,000 channels accommodates some 200,000 equipments, an average of only 20 mobiles per centre, ignoring all rural development which it itself cannot be negligible. The populous south east of England only accounts for about one fifth of the vehicle population so it is difficult to see that average channel loading can be very heavy even there. I am of the opinion that you have given long of the opinion that the UK channel sharing arrangements are unsatisfactory, discourage investment and win badly made claims. The present situation in which the long established mobile radio consultative machinery has failed to produce a unanimous report and a leading manufacturer is disputing the ministry view that a delay is desirable. I cannot strengthen any claims being made for more mobile radio frequency space. The frequency spectrum is one of our greatest national assets and claims for shared spaces in it should be well made and be seen to be well made.

You have rightly sensed a serious failure in the subject can, I believe, only be beneficial. J. R. Brinkley, Reddion, London, SW18.

DO-IT-YOURSELF BIOFEEDBACK

A number of articles published in the technical press in recent years give popular accounts of biofeedback, together with details of the instrumentation required to do it yourself. It is of interest that the features associated with EEG biofeedback invariable results in a state of mind associated with tranquility, relaxation, meditation states, and generally pleasant feelings. Experiments which have attempted to control for the effects of artefacts, and the professional e.e.g. technician spends several years learning to record these signals, to differentiate true e.e.g. and artefacts, and to improve the technique of recording. Does your experience confirm these claims? Thus Sacks et al. 2 used well established methods for measuring subjects' feeling and mental states and found no difference when subjects enhanced their alpha to maintain a light on or inhibited it to maintain the light off. In a study of 140 subjects by Travis et al., "under both eyes-open and eyes-closed conditions, approximately 50 per cent of the subjects reported that alpha activity unambiguously as 'pleasant' and 50 per cent 'unpleasant/neural tral' \(^9\). Plottkin and Cohen concluded from their experiments that "undirected, free-flowing thought or thoughtlessness, and pleasant, emotionless states, are in no way intrinsically associated with enhanced occipi
tal alpha strength...".

These are just a small selection from many research studies urging caution in the interpretation of alpha feedback results and of course, one could quote an equal number putting a more optimistic point of view. The popular interpretation of the "alpha experience" is by no means established however.

There is no doubt that biofeedback is an exciting and valuable research tool. Whether it will be clinically useful is still to be proved.
The laboratory situation of "do it yourself" enthusiasm which accompanies it may indeed result in subjective feelings of relaxation or other pleasant sensations. It does not necessarily follow that these are directly due to subjective control over brain mechanisms. After all, as Lynch and Paskewitz have pointed out: "Simple physical manoeuvres like closing or opening the eyes have not been related to mood changes of the sort reported in feedback situations and yet such eye manoeuvres markedly affects alpha density."

J. C. Shaw,
MRC Clinical Psychiatry Unit,
Graylingwell Hospital,
Chichester, Sussex.

References

References

References
In reply to Mr Williamson (Letters, April), I think there are mainly two points to be made. One, that any pre-amplifier should have adequate signal handling capacity in excess of the performance of any pickup cartridge, both dynamically and in pure consideration of the amplitude of signals. Second, that as far as I am concerned the two pickup cartridges which are capable of giving peaks in excess of 200mV in my March 1976 SL15 (p.73) are the London cartridge and the Decca London cartridge.

The reference to signal peaks of 50 cm/s observed on gramophone records came from the book "E. U. Systems" by G. King where there is a graph illustrating the velocities measured on gramophone records at various frequencies.

I nominate my favourite charity as the Musicians Union! A. J. Watts. SGS-ATES (United Kingdom) Ltd, Aylesbury, Bucks.

LONG WAVES FOR AMATEURS?

I am normally in favour of amateur radio but a statement in your March 1977 issue (p.78) that the USA may request a frequency allocation in the i.f. band for amateurs fills me with anger. How can anyone be so wickedly irresponsible or unappreciative of the value of long wave channels?

Just in case the unique feature of long wave transmission has slipped anyone's mind I would point out that the long wave channels are the only ones capable of giving reliable, fade-free global communication without resorting to the use of satellites.

In my opinion it shows a serious lack of appreciation of the potentials of these frequencies to allow anyone to use them just for low power local broadcasting, and hence it is quite wrong to allow more than one transmitter on each channel unless the carriers are synchronised and they are radiating the same programme.

H. G. May, Barton-on-Sea, Hants.

AUDIBILITY OF PHASE EFFECTS

In view of the continuing controversy in these columns over the audibility (and hence undesirability) of non-linear-phase shifts in an audio signal — i.e., phase shifts which leave the harmonic structure unaltered but distort the signal waveform — the following recent observations of mine may be of interest to your readers. In particular, they may enable readers who have built the Wireless World Dolby B noise reducer to verify some of these effects for themselves.

Having completed the noise reducer kit from Integrex Ltd., I was somewhat surprised to find that, listening to the built-in calibration signal at the monitor output (with the input selector in the auxiliary position), I could hear a distinct difference between the apparent purity of the (approximately 456Hz) tone with the record/play button in and the sound with the button out. Reference to the circuit diagram shows that the only change introduced by this switch is the insertion of a unity-gain polarity inverting stage into the output circuit. Further investigation showed that the gain of this stage was indeed unity (within 0.02dB) and its harmonic distortion very low (of the order of 0.02% t.h.d.). So it clearly was not the culprit. It was at this point that I measured the calibration oscillator t.h.d. and found that this was 2.68%, comprised of 2.57% second harmonic (0.02%) fourth harmonic and approximately 0.16% higher-order harmonic distortion. The pronounced second harmonic distortion, like all even-order harmonic distortions, rendered the waveform asymmetrical; this asymmetry was sufficient to be just barely visible on an oscilloscope.

Here, then, was the explanation of the change in sound quality observed before. It is known from recent work 1, 2, 3 that the inner ear does not respond symmetrically to compression and rarefaction, and at lowish frequencies (below say 1kHz) where the rate of neuron firings can be modulated by the audio waveform, the ear performs to a certain extent at least like an asymmetrical waveform detector, responding more to one signal polarity than to the other. In this connection reference should be made to the publications cited in references 12 and 3 and in particular to the work of J. H. Craig and L. A. Jeffress. By switching from "record" to "playback" and hence drawing the slightly asymmetrical calibration waveform, the fact that the ear treats compressions and rarefactions unequally resulted in an audible difference in the tonal quality. Of course, this polarity reversal in the signal waveform is equivalent to a phase shift of the harmonics relative to the fundamental, and so this result has direct relevance to the current discussions on the audibility of phase distortion.

The letter by B. M. S. also be consulted for corroborative evidence.

The above explanation has subsequently been confirmed by introducing polarity reversals at other points in the reproduction chain, with the same effect. The audible effect of the polarity reversal in the Dolby noise reducer could be exactly counterbalanced by another polarity reversal later in the chain. In this way, it was possible to rule out transducer asymmetry as a contributory cause. The change in the polarity reversal has also been confirmed by friends on whom I have repeated the experiment.

The audibility of the polarity reversal depends to a great extent on having the volume level just right — neither too loud nor too soft. This also agreed with the earlier experiments cited. The change is audible on both headphones and loudspeakers, but for convenience the former were used primarily in my tests. I would like to invite readers who have constructed the Wireless World Dolby B circuit to try this experiment themselves. Of course, I cannot vouch that the distortion of their calibration oscillators will be the same as mine and so produce the desired asymmetry! It should be emphasized that the change is subtle, and some perseverance may be required in order to hear the tonal difference (Experiment also with the volume level.) The noise reduction should be switched “off.” (Switching it “on” exaggerates the difference in the right-hand channel, by pre-emphasizing the higher harmonics which in the “record” mode and de-emphasizing them when in the “playback” mode. The left-hand Dolby side-processer loop is not performing its normal function when the calibration oscillator is on, and so the left-hand channel does not display this further effect. Thus it may be found helpful initially to monitor the right-hand channel output with the noise reduction switched “on,” to serve as an aid in learning what to listen for. The change in the left-hand channel (if any) is, however, just a simple polarity reversal.)

At first sight, all the above would seem to bear only on the audibility of polarity reversals of non-sinusoidal waveforms. As such, it strongly suggests that an effort should be made to standardize the polarities of the whole recording/reproduction chain from microphone, through record or tape, to loudspeaker. This suggestion was made before, for example by D. S. Stodolsky 4. It also serves as a warning to those who conduct A/B comparison tests on audio components without taking into account the possible relative polarity reversals which such components can introduce. For example, some power amplifiers are inverting from input to output, whereas others are non-inverting. Some of the alleged differences between components compared A/B may be, due to such oversights.

Our observation does, however, indeed bear directly on the vexed question of the audibility of non-linear-phase shifts for the following reasons. Non-linear-phase distortion results in waveform distortion, and hence can change the symmetries of the signal waveform. As shown above, such symmetry changes can be detected by the ear, as such changes of polarity may be classed as undesirable, whatever the component which introduces it. So, to conclude, it is my belief that phase distortion is audible under suitable circumstances, that more effort should be devoted to obtaining bounds on the allowable phase distortions which such components can introduce.

Stanley P. Lipshitz, University of Waterloo, Ontario, Canada.

References

Further letters on the audibility of phase effects, and also on transient intermodulation distortion in amplifiers, will be published in a later issue.
News of the Month

Annan and technology

Mobile radio should get some of the frequencies freed from 405 line tv transmissions in 1982. Professor Geoffrey Sims said at a press conference marking the publication of the Report of the Committee of enquiry into broadcasting of which he was a member. Asked what would happen to the 405 line channels and whether they would be used for citizens' band radio Professor Sims said: "I think there are certain problems about these frequencies. They are not well suited to colour television. Certain of them, band three, do not interfere with public television services. For example they will be sensible to create these new large networks, or there is a lack of programme material. It's all right to talk about a fourth or fifth channel but when you come to the 24th or 25th, which is what these things could provide, the whole question becomes a different matter." Citizens' band was outside the scope of the committee's remit, but "It must be introduced at frequencies which do not interfere with public broadcasting."

Professor Sims's final point on the adoption of new technology was that the U.H.F. investment programme was still going forward. "By the early 1980s some U.H.F. channels will be going out of service, and some people who now get programmes won't get them unless these are replaced." Mr Phillip Whitehead, MP, a member of the committee, added that citizens' band was mentioned at the end of chapter 24. "We can't take that in this country." The kind of service that existed in the United States, on 27MHz, would cause "grave interference with services which are much more important."

The report makes scathing criticisms of the British television manufacturers, and presses for tighter control on the illegal use of C.B. equipment, including banning its sale as well as its manufacture and importation. The committee also recommends the setting up, as suggested in evidence by the National Electronics Council (see Wireless World, October 1975, p.447) of a telecommunications advisory committee to advise the government on the prospects and implications of technical developments for all telecommunications, including broadcasting.

The committee over-ride suggestions by the Newspaper Publishers Association and the Newspaper Society that teletext development should be held back for five years "to enable newspapers to adjust to the new competition." Neither need they be consulted about these developments. "We recommend that the BBC and IBA should be authorised to provide CEEFAX and ORACLE as an extension of their existing services." There should however be an enquiry by the new Public Enquiry board.

Wireless World will publish a full account of the less publicised aspects of the report in our next issue.

Battery car charges while braking

The Department of Industry is funding the development of a braking system for electrically powered vehicles which will feed the energy normally lost during braking back into the battery. Although the technique adopted, using the traction motor as a dynamo during braking, is fairly well established, up to the present time, the Department say, "regenerative braking systems have required a considerable number of additional components in the control circuit and hence have been costly, have necessitated critical adjustments to provide the requisite safety margin against miscommutation (which would effectively short circuit the battery and blow the traction fuses) and were not capable of operation at low road speeds."

The solution, developed after joint funding by the DoI and Cableform Ltd, is to use a Cableform Pulsomatic Mk 10 controller, developed for control of the acceleration of the vehicle, to control braking as well. Mr P.F. Hodges, field sales manager of Cableform, told Wireless World, "We started looking at this two years ago and, like everyone else, we ended up with about 250 discrete electronic components in the circuit. Then we noticed that the acceleration characteristics had so much in common with the braking characteristics that we could use the same controller for each function with only 120 components, and of course, as always happens when you reduce the number of components, the reliability shot up."

The detailed operation of the device is complicated, but in essence it overcomes the difficulty of absorbing the large amounts of energy that are generated by motors in a short time during braking. On the other hand there is a large current surge which may destroy the battery, and on the other a large voltage surge which is hostile to the semiconductor sections of the thyristor control circuit. Cableform have managed to mitigate the effects of both by feeding the energy back in smaller, more manageable quantities over a longer period. They have also overcome the reduced braking rate at lower speeds. The Department of Industry appear delighted with the device, and full of praise for Cableform.

The money, £16,500 to match Cableform's contribution, was channelled through the transport section of the Research Requirements Board. The Department of Industry sees it as its duty to put help under one of several publicised schemes into any company or organisation which comes forward with a proposal which the Department of Industry judges to be viable. That means the proposal must produce sales, and a project which represents solid judgement and good engineering will be preferred to one which, as one spokesman put it, "is a technological marvel that collects dust on someone's shelf."

One of the tasks with which the Department was charged was to look at the technical options offered by electric vehicles and the amount of energy that could be saved in using them. They came across "an ingenious way of simplifying a regenerative control". In particular, Cableform's design, described in three versions in the patent specification, eliminates the need for any tricky adjustments, according to the DoI.

ITU conference results

The sense of accord at the ITU Broadcasting Satellite Conference, which ended in Geneva on February 13,
Johnny Longden, chief engineer of BBC Radio London (right) examines a forerunner of the audio amplifier with David Clifton, until recently presenter and producer of the station’s Sounds Good programme. The valveless amplifier was originally used to drive loudspeakers from crystal circuits normally able only to power headphones. According to Longden the device, made by S. G. Brown, may have been intended for morse code rather than audio, since there was a peak of 12dB at around 1.5kHz.

Sounds Good has been running on Radio London almost since the station opened in October 1970. If the Annan Committee gets its way the BBC will lose all its local radio stations (full report next month).

was such, according to one report, that no votes were taken even on matters about which the 660 delegates from 111 countries disagreed. The amount of work done was therefore prodigious. A plan was adopted which gave every country present, with the exception of those in region 2, the Americas, frequencies and orbital positions for satellite broadcasting which will come into force on January 1, 1979. Region 1 (Europe and Africa) was given 40 channels and Region 3 (Asia and Australasia) 24. Region 3 has the frequency band from 11.7GHz to 12.2GHz, and region 1 up to 12.5GHz. The allocations are in the form of a 42-page table worked out by computer in channel order from 1 to 40. The plan is valid for 15 years. The final document produced by the conference, some 150 pages, contained 16 articles, including the plan, 11 annexes, a final protocol, nine resolutions and eight recommendations, as well as a small section relating to the rearrangement of the radio regulations, some additional regulations and a recommendation that they be published this September in good time for the 1979 WARC in Geneva, when the regulations agreed last month will form the basis for proposals to that conference.

Region 2, dominated by the United States, decided to wait for its final orbital station and frequency allocation until they hold their own regional administrative conference in 1982. Contingency plans have been made establishing a claim to orbital space, and each country in region 2 will get at least four channels at the 1982 conference.

The technical details of the plan, we believe, include the following: the broadcast signal will be either f.m, which will predominate, or another type of modulation which has at least the same interference standards, circular polarisation; at the edge of the coverage area in regions 1 and 3 the power flux density will be -103dBW, needing a receiver with a figure of merit (defined as the aerial gain divided by the system noise temperature in degrees Kelvin) of 6dB/K and a 90cm aerial. This is the equivalent of an effective isotropic radiated power of 67 dBW at the satellite; and a nominal spacing has been set for the satellites in regions 1 & 3 of 6° ±0.1° at the equatorial orbit. Narrower spacings are allowed at lower powers provided interference does not result.

The American countries are adopting slightly different standards, it is understood. Their power will be 2dBW lower at -105dBW at the edge of the coverage area, or a radiation from the satellite of 63dBW e.i.r.p, needing a 1m aerial. As a comparison, the Canadian communications satellite (see WW, March, p40) has an e.i.r.p of 59dBW.

IBA host EBU surround sound demonstrations

Working Party S of the European Broadcasting Union will be meeting at IBA Engineering HQ, Crawley Court, June 14-17 to investigate surround-sound broadcasting systems. The IBA will be giving demonstrations of five systems: BBC Matrix H, CBS SQ, NRDC 45L, Nippon Columbia UMX and Sansui QS. The aim is eventually to arrive at a single agreed system for the whole of Europe.

The IBA is currently exploring several surround systems, but still at a relatively early stage of its investigations and is anxious to complete them before making any formal statement of its views. "The choice of a preferred system involves questions not only of subjective performance" the IBA say "but also of the degree to which it would affect listeners relying on monophonic or two-channel stereophonic reception; whether it would significantly affect the coverage of the transmitting stations; whether it would cause, or be vulnerable to, interference to or from stations using adjacent channels and so complicate frequency planning; and of course the costs to broadcasters and listeners."

"It is also recognised that it would be highly desirable that the same system should be adopted nationally and internationally. In Europe the adoption of a particular system is primarily a question of achieving general agreement among the members of the European Broadcasting Union and ultimately the CCIR. Thus while the IBA and other members of EBU are currently investigating and making individual contributions to this field it is hoped that it will prove possible to agree on the system best suited to European broadcasting. The work in this area is being shared through Working Party S of the EBU."

During the meeting of the Working Party the IBA expects, with the co-operation of the BBC and the other broadcasters concerned, to stage a comprehensive series of demonstrations and experiments based on a number of different proposals, using different types of programme material.

"It must be stressed however that these experimental demonstrations to Working Party S cannot be expected to lead to an immediate recommendation by the EBU. It is only after consideration in detail of the technical and economic factors involved that European broadcasters are likely to be satisfied that a wise and prudent choice has been made from among the proposed systems, all of which appear to have useful features but also some ambiguities. It is interesting to note that despite the intensive work in this area since 1972 in the United States of America no final recommendation has yet been made by the Federal Communication Commission."

High speed track measurement

As the speed of passenger rail transport increases it becomes more necessary than ever to make sure that track is fault-free. The High Speed Track Recording Coach, which has already gone into service with British Rail, uses gyroscopes, accelerometers and mini-
computers to take track measurements at speeds up to 125 m.p.h. These measurements enable two types of fault to be located: those related to passenger comfort and those related to safety. Parameters measured include vertical (top) and horizontal (alignment) rail-profiles, cross-level (cant), curvature, gauge and slope. An Interdata model 70 digital computer samples the analogue measurements and allows other parameters such as twist, to be derived. The track assessments employ calculations based on the statistical standard-deviation principle.

Data from the gyroscopes and accelerometers is processed using a Membrain digital/analog computer, acting as an integrator, to provide a measure of the dynamic motion of the coach. This enables the main computer to distinguish between cants and curvatures due to natural slopes and comers and those due to faults.

Vertical measurements are made to within 1 mm using potentiometric displacement transducers mounted above the centre of running wheels. Lateral sensing, however, is by a non-contacting optical system. Light projectors are mounted on the bogies and arranged so that a small area of each railhead is illuminated. The reflected illumination from the railheads is converted into a video waveform by linescan cameras so that the gauge face, where the illumination intensity changes rapidly, can be sensed, to an accuracy of about 2 mm, using a threshold detector. While an ultra-violet recorder monitors the real-time analogue data, a 14-channel f.m. magnetic recorder stores this information for later playback at The Railway Technical Centre in Derby, where detailed studies can be made. In addition there is a magnetic tape recorder which is used to store the digital data and act as a transfer medium for the main computer. A character printer also provides printed pages of data indicating track statistics at 200 m intervals.

This coach, a result of work by British Rail's Research and Development Division, will run over 80,000 miles each year checking most of Britain's 21,000 miles of track. The existing system of track recording has been in use for over 20 years and is often limited to a speed of 20 m.p.h.

Other countries also have track geometry coaches but this, the first to use a computer, is believed to be the most accurate and reliable.

British Rail are also collaborating with Harwell in the development of a new system for their Ultrasonic Test Train. At present, data from the train, which looks for defects such as cracks in rails by recording the reflections of ultrasonic pulses, are recorded on film before subsequent interpretation by a computer system at Paddington. The new system will be fully automated and will save about one mile of film for every 100 miles of track inspected. Ultimately, it is hoped that the complete evaluation will be made on board the vehicle by using mini-computers. This real-time system, which could increase the inspection speed from 20 m.p.h. to 40 m.p.h., is expected to be installed by the summer of 1978.

British Rail is confident that the Recording Coach and the Ultrasonic Test Train are likely to be of considerable interest to railways throughout the world and, together with its consultancy company, Transmark, and Harwell Laboratories, it is taking steps to sell them in Germany and Eastern Europe. According to Transmark, the coaches, which are custom-built units, will be taking a stand at the American Railway Supplies Exhibition in Chicago.

Rise in components industry morale

The destinations of the £20 million of government funding for the electronic components industry (WW March p39) became a little clearer at a press conference to mark the merging of the Electronic Components Board with the larger Radio & Electronic Components Industry Federation, held on March 11. Mr M. St A. Eley, of Plessey, said, "We won't have the final say in how or where the money goes, but I think it will be going towards projects that are convincing enough to the Department [of Industry], whether from a small, large or medium sized company."

Former director of the ECB Sir Ronald Mallett, now an additional director of the new Electronic Components Industry Federation, said, "A lot of thought will be given to what use the technology is to be put." As well as being used for R & D the accent would be on the creation of new jobs and the building of factories. Eley added that the Department of Industry would sift potential projects very carefully. The announcement of the first successful applications is expected within a maximum of two months. The Secretary of State for Industry, Mr Varley is said to be already impatient to have the money available.

The formation of the ECIF, which first met on February 23 under the chairmanship of Jack Akerman of Mullard, coupled with the prospect of Government money, appear to mark a heightening of morale in the industry. Also contributing to this is what the ECIF calls the "five star treatment" that the industry will get as one of the five special industry sectors in the Government's industrial strategy, worked out with the National Economic Development Council and the trade unions. It appears that it is still no clearer what this "five star treatment" means and, asked by Wireless World to put a little more flesh on the skeleton the ECIF council were clearly at a loss. Akerman seemed satisfied with the Government's attitude; however: "It means that the Secretary of State will take a personal interest in the industry. In effect, we have got an open door to go straight to the government, up to cabinet level if necessary, to put forward our views."

Also indicative of a more positive approach to the part of the industry is the reduction of emphasis on import controls. "What we are pressing for," said Jack Akerman, long the leading campaigner for controls, "is effective import surveillance." This meant that they would expect to be able to retaliate against the importation of colour sets made by our European trading partners using tubes made in the Far East. "We want fair trading, and effective import surveillance so that we know what is going on. For example the declaration of current domestic value on the import documentation."

Commenting on the £20 million funds he said, he regarded it as merely the first instalment, although "We don't want to give the impression that this industry exists solely on the basis of taking the cap to the government. We must be careful that we don't come over as a lame duck."

ECIF members seem to feel that large research and development expenditures may have to be forgone in favour of less glamorous activities: "We do know that the government wants the money put into the sharp end rather than the blunt end. It's tempting to put the money into R & D but we should put the money into marketing and making our product acceptable abroad."

Digital course

Chelsea college will hold a one week course in Digital system design beginning May 16. The course, says the Department of Electronics, "is designed to give practising engineers and scientists a formal approach to the logical design of digital systems and should also prove useful to those engineers and scientists working in the field of digital electronics who have had no previous training in the methods of logic design." Professor J. E. Houldin, department of electronics, Chelsea College, Pulton Place, London SW6 SPR, 01-736 1244.

Owing to a communication error, the date of the course for teachers of the new A level course in electronic systems was published as June 18 to 20 instead of the correct date, July 18 to 20.

"UD-45"?

In case you're wondering why articles on the NRDC system 45J decoding are appearing without there being any encoded material available, a clue to the
probable answer appeared in our last issue. No prizes, but if you want to do a bit of detective work stop reading here and read "NRDC - surrounding sound system."

Concurrent with the gradual emergence of System 45J, moves were made to bring about a compromise settlement with surround-sound system codes. What seemed to be needed was a circle locus on the energy sphere that lay between two extremes. On the one hand was the BMX or "bimodal" matrix coding of Duane Cooper, used in the Nippon Columbia UD-4 basebands, and of Peter Fellgett's patent (with its one day priority over Bauer's similar "New Orleans" patent!) and on the other, was the amplitude coding of the Japanese Regular Matrix, to which Sansui's QS System approximated. The BMX vertical circle gave good mono performance but had a 90° phase difference between stereo channels, and the RM locus gave disastrous mono performance.

Now the best compromise is not necessarily the half way mark between these two extremes. The best plan may well have been to allow for a range of loci over which the balance may be tipped, in favour of reduced phasiness in the front section or else in favour of improved performance in mono, to suit the application. (Actually, the 45J system allows for such a range, but in its pairwise mixed options, rather than in its kernel form.) The BBC chose their locus to be about half way for the front section or else in favour of System 45J, moves were made to bring about a compromise settlement on the part of broadcasters and the record industry (page 35), lest new enthusiasm should go off at half cock.

Spacelab experiments

The first Spacelab mission towards the end of 1980 will carry 61 European, 15 American and one Japanese experiment. The mission, jointly planned between the National Aeronautics and Space Administration of the United States and the European Space Agency, will involve 222 experimenters from 16 countries. The experiments were chosen from 2,000 replies to invitations to participate. Eighty-one of the investigators come from Japan, 135 from Europe and the rest from Canada, India and the USA.

Spacelab will be launched aboard the NASA space shuttle, remaining attached to its three-man orbiter. The first mission carrying two instrument operators will last a week, but the re-usable Spacelab may stay in orbit for up to a month on subsequent occasions, carrying four operators, or "payload specialists" as they may be called. The laboratory is expected to fly 50 missions during its ten-year life. The two operators will work shifts with the orbiter crew to ensure the laboratory, which is expected to complete 100 man hours experiments, is used round the clock.

The two payload specialist posts have now been advertised and they are expected to be filled in the summer of next year.

Of the nine experiments selected in the life sciences Britain has managed to capture three, compared with one each for France, Germany, Italy, Sweden, Switzerland and the United States. The three are:

- Canal otolith interactions and adaptation in man (A. J. Benson of the RAF Institute of Aviation Medicine); Mass discrimination during weightlessness (Dr Helen Ross, Stirling University Department of Psychology); Personal miniature electrophysiological tape recorder (Mr Heinz Wolff, Clinical Research Committee).

Of the three Astronomy experiments Britain has one, France, Germany and Italy sharing the other two. It is a Mullard Space Science Laboratory experiment on X-ray astronomy spectroscopy using a gas scintillation proportional counter. The four participants are Professor Boyd, Dr Brownlie, Dr Culham and Dr Sanford.

Dr H. M. Rosenberg of Oxford University has one of the 39 material science experiments. Processing of composite materials in Spacelab. From the School of Chemistry, Bristol, Dr J. M. Haynes has two experiments: Kinetics of the spreading of liquids on solids, and a model study of interstitial instability and capillary hysteresis. Almost half a dozen materials science experiments put forward by the Department of Industry are being considered for funding, of which two or three will be successful. As we go to press the decisions had not been made.

No decision yet on microwave landing system

A working party of the International Civil Aviation Organisation, meeting at the ICAO's headquarters in Montreal, has failed to reach agreement on the choice of a worldwide microwave landing system (m.l.s.). For two weeks beginning February 28 the All Weather Operations Panel of ICAO tried, in the final session of discussions that have lasted over a year, to decide among three rival systems: the British Doppler system; the American Federal Aviation Authority-sponsored scanning beam system; and a German ground-based system.

The search for a microwave replacement for the current instrument landing system (i.l.s.) began in the late 1950s when it became clear that, in view of the growth in air traffic, the current v.h.f./u.h.f. equipment was inadequate. However, the ICAO has endorsed the view that i.l.s. will be standard for another 25 years. First used in 1946, and adopted by the ICAO in 1949, it provides, essentially, three sets of information for the pilot: azimuth, or bearing, elevation and "distance to go." Three marker beacons five miles, one mile and 300 feet from the end of the runway provide distance. A "glide path" transmitter provides two overlapping beams modulated at 90 and 150Hz which are equal in received amplitude only when the angle of approach, normally 3°, is correct; above or below that angle one or other tone will predominate. A similar localized beam operates down the centre of the runway, and another provides lateral information.

In a typical large airport installation meeting ICAO's "Category 3" standards (full instrument guidance from 25 nautical miles to the safe end of the runway with various subcategories for visibility) some 87 signals have to be
Two-stage h.f. linear amplifier

by Helge O. Granberg

Motorola Semiconductor Products, Phoenix, Arizona

This article discusses the design of 50W and 300W linear amplifiers for the 1.6 to 30MHz frequency band, both of which employ push-pull design for low, even-harmonic distortion. This harmonic distortion and the 50Vd.c. supply voltage make the output impedance matching easier for 50Ω interface, and permit the use of efficient 1:1 and 4:1 broadband transformers. The four 300W modules are combined to provide a 1 to 1.2kW p.e.p. or c.w. output capability. The driver amplifier increases the total power gain of the system to approximately 34dB.

Bias voltage
The bias voltage source shown in Fig.1 is employed with each of the 300W modules and the preamplifier. Its basic components are the integrated-circuit voltage regulator MC1723C, the current boost transistor Tr3, the temperature sensing diode D1 and the voltage adjustment element R10. The advantages of this type of bias source are:
- line voltage regulation, which is important if the amplifier is to be operated from various supply voltages.
- adjustable current limit.
- very low stand-by current drain.

The supply voltage is reduced by D2 and R13 to a level below 40V, which is the maximum input voltage of the regulator. The base-emitter junction of a 2N5190, in a Case 77 plastic package, forms the diode D1 of which the temperature compensation has a slight negative coefficient. Current limiting resistor R5 sets the limit to approximately 0.65A, which is sufficient for devices with a minimum hFE of 17, (Ib=Ic/hFE) when the maximum average Ic is 10.9A. Typically, the MRF428 hFE is 30-40.

Measured output voltage variations of the bias source (0 — 600mA) are ± 5 to 7mV, which implies a source impedance of approximately 20 milliohms.

300W amplifier
Due to the large emitter periphery of the MRF428, the series base impedance is as low as 0.88 — j0.80Ω at 30 MHz. In a

Prototype 1kW linear amplifier showing input power divider in foreground, with preamplifier to the right. Two of the four 300W modules can be seen on the upper side of the structure.

Fig.1. Circuit to provide bias voltage.
A push-pull circuit a 16:1 input transformer would provide the best impedance match from a 50Ω source but would result in a high v.s.w.r. at 2 MHz, and would make it difficult to implement the gain-correction network design. For this reason a 9:1 transformer, which is more ideal at the lower frequencies, was chosen. This represents a 5.55Ω base-to-base source impedance.

A centre tap, common in push-pull circuits, is not necessary in the input transformer secondary, if the transistors are balanced. \(C_{BB}, h_{FE}, V_{BE} \) The base current return path of the momentarily amplifying transistor is through the base-emitter junction of the momentarily non-amplifying transistor, which acts as a clamping diode, and the power gain is somewhat dependent upon the bias current. The equivalent input circuit of Fig. 2 represents one half of the push-pull circuit, and for calculations \(R_s \) equals the total source impedance divided by two.

Since a junction transistor is a current amplifier, it should ideally be driven from a current source which, in r.f. applications, would result in excessive loss of power gain. However, input networks can be designed with frequency slopes having some of the current source characteristics at low frequencies, where excess gain is available.

The complex base input characteristics of a transistor would require a very complicated input compensation network for optimum overall performance. The design goal here was to maintain an input v.s.w.r. of 2:1 or less and a maximum gain variation of ±1.5dB from 2 to 30MHz. Initial calculations indicated that these requirements could be met with a simple RC network in conjunction with negative collector-to-base feedback. Fig. 2 shows this network for one device, where \(L_1 \) and \(L_2 \) represent lead lengths, their values being fixed. The feedback is provided through \(R_2 \) and \(L_2 \). Because the calculations were done without the feedback, this branch is grounded to simulate the operating conditions.

Calculated values of \(R_1 \) and \(R_2 \) along with other known values and the device input data at four frequencies were used to simulate the network in a computer programme. An estimated arbitrary value of 4000 pF for \(C_1 \) was chosen, and \(V_{CS2} \) represents the negative-feedback voltage (Fig. 2). The optimization was done in two separate programmes for \(R_1, R_2, C_1 \) and \(V_{CS2} \) and in several steps. The goals were (a) \(V_{CS} \) and \(R_2 \) for a transducer loss of 13 dB at 2 MHz and a minimum loss at 30 MHz. b) \(R_1 \) and \(C_1 \) for input v.s.w.r. of <1:1:1 and <2:1 respectively. The optimized values obtained were \(C_1 = 5850 \text{ pF}, R_1 = 1.3Ω, R_2 = 2.1Ω \) and \(V_{CS2} = 15\text{ V} \). The minimum obtainable transducer loss at 30MHz was 2.3dB, which is partly caused by the highest reflected power at this frequency, and can be reduced by "over-compensation" of the input transformer. This indicates that at the higher frequencies, the source impedance \((R_s) \) is effectively decreased, which leaves the input v.s.w.r. highest at 15 MHz.

In the practical circuit the value of \(C_1 \) (and \(C_2 \)) was rounded to the nearest standard, or 5600 pF. For each half cycle of operation \(R_2 \) and \(R_3 \) are in series and the value of each should be 1.3Ω/2 for a \(V_{CS} \) of 1.5V. Since the voltage across ac
and \(bd = V_{cc}\), a turns ratio of 32:1 would be required. It appears that if the feedback voltage on the bases remains unchanged, the ratio of the voltage across \(L_4\) \((V_{CS2})\) and \(R_2R\) can be varied with only a small effect to the overall input v.s.w.r. To minimize the resistive losses in the bifilar winding of \(T_1\) in Fig. 3, the highest practical turns ratio should not be much higher than that required for the minimum inductance, which is

\[
\frac{4R}{2\pi} = \frac{50}{12.5} = 4.0\mu H,
\]

where \(R\) is the collector-to-collector impedance of 12.5 \(\Omega\) and \(f = 2\) MHz. The inductance of \(ac\) and \(bd\) will then be 1.0 \(\mu H\), which amounts to 5 turns. A margin of 25% over this represents a 7:1 ratio, setting \(V_{CS2}\) to 6.9 V.

The currents for each half cycle are in opposite phase in \(ac\) and \(bd\) and, depending on the coupling factor between the windings, the even harmonic components will see a much lower impedance than the fundamental. The optimum line impedance for \(ac\) and \(bd\) would equal the collector-to-collector impedance, but experiments have shown that increasing this number by a factor of 2 to 3 affects the second and fourth harmonic amplitudes by only 1 to 2 dB.

Since the minimum gain loss obtainable at 30 MHz with the network in Fig. 2, and the modified \(V_{CS2}\) source was about \(-3.8\) dB at 30 MHz, \(C_4\) was added to form, with \(L_4\) a parallel resonant circuit with a \(Q\) of approximately 1.5. Its purpose is to increase the shunting impedance across the lines, and to disturb the 180° phase difference between the input signal and the feedback voltage at the higher frequencies. This reduces the gain loss of 3.8 dB, of which 1.4 dB is caused by the feedback at 30 MHz. The amount depends upon the resonant frequency of \(C_L4\), which should be above the highest operating frequency to avoid possible instabilities.

The input transformer is a 9:1 type, and uses a television aerial balun type ferrite core, made of high permeability material. The low-impedance winding consists of one turn of 1/8in copper braid. The sections which pass through the openings in the ferrite core are rounded to resemble two pieces of tubing electrically. The primary consists of 23 s.w.g. p.t.f.e insulated wire, threaded through the rounded sections of braid, with the primary and secondary leads in opposite ends of the core. The saturation flux density is about 60 gauss, which is well below the limits for this type of core. Several types of output transformer configuration were considered. The 12.5Ω collector-to-collector impedance estimated earlier requires a 4:1 transformer for a 300 W output. A coaxial cable version was adapted for this design, since the transmission line type transformers are theoretically ideal for r.f. applications, especially in the 1:4 impedance ratio. A balanced-to-unbalanced function would normally require three separate transmission lines including a balun, but the third line can be omitted, if lines a and b in Fig. 3 are wound on separate magnetic cores, and the physical length of the lines is sufficient to provide the necessary isolation between the collectors and the load. Measurements showed the core losses to be negligible compared to the line losses at 2 MHz and 30 MHz. However, the losses increase as the square of \(B_{max}\) at low frequencies.

With the amount of h.f. compensation dependent upon circuit layout and the exact transformer construction, no calculations were made on this aspect for the input (or output) transformers. The values of \(C_3\), \(C_5\) and \(C_6\) were selected by employing adjustable capacitors on a prototype whose values were then measured. The performance data of the 300 W module is shown in Fig. 4.

Driver amplifier

The driver shown in Fig. 5, uses a pair of MRF 427 devices, and the same circuit board layout as the power amplifier, with the exception of the type of the output transformer.

The input transformer is similar to that used with the power amplifier, but has a 4:1 impedance ratio. The required minimum inductance \(4\mu H\) in the one turn secondary (Fig. 3) being considerably higher in this case, the \(A_{1}\) product of the core is barely sufficient. The measured inductances between a number of cores range 3.8 – 4.1 \(\mu H\).

This formula also applies to the output transformer, which is a 1:1 balun. The required minimum inductance at 2 MHz is 16 \(\mu H\), amounting to 11
turns on a Ferroxcube 2616P-A100-4C4 pot core.

Input power divider

The purpose of the power divider is to divide the input power into four equal sources, providing an amount of isolation between each. The outputs are designed for 50Ω impedance, which sets the common input at 12.5Ω. This requires an additional 4:1 step down transformer to provide a 50Ω load for the driver amplifier. Another requirement is a 0° phase shift between the input and the 50Ω outputs, which can be accomplished with 1:1 balun transformers (a,b,c and d in Fig. 6). For improved low frequency isolation characteristics the line impedance must be increased for the parallel currents. This can be done, without affecting the physical length of the line, by loading the line with magnetic material. In this type of transformer, the currents cancel, making it possible to employ high-permeability ferrite and a relatively short physical length for the transmission lines.

The purpose of the balancing resistors R is to dissipate any excess power if the v.s.w.r. increases. Their optimum values, which are equal, are determined by the number of 50Ω sources assumed unbalanced at one time, and the resistor values are calculated accordingly.

Examining the currents with one load open, it can be seen that the excess power is dissipated in one resistor in series with three parallel resistors, whose total value is 50Ω/12.5Ω = 3.75Ω. Similarly, if two loads are open, the current flows through one resistor in series with two parallel resistors, totalling 3.75Ω again. This situation is illustrated in Fig. 7.

Output combiner

The operation of the output combiner shown in Fig. 8, is the reverse of that of the input power divider. In this application we have four 50Ω inputs and one 12.5Ω output, which is transformed to 50Ω by a 1:4 impedance transformer.

An arrangement similar to the input power divider is employed in the combiner. The baluns consist of straight pieces of coaxial cable loaded by a sleeve of magnetic material (ferrite). The line length is determined by the physical dimensions of the ferrite sleeves. Straight-line baluns such as these have the advantage over multi-turn toroidal types in introducing a smaller possibility for phase errors, due to the smaller length of the line. The largest possible phase errors occur in the input and output connecting cables, whose lengths are 15in and 10in respectively. All four input and output cables must be of equal length within approximately ¼in, and the excess in some, caused by the asymmetrical system layout, can be coiled or formed into loops.

The output connecting cables between the power amplifier outputs and the combiner are made of low loss RG-142/U coaxial cable, that can adequately handle the 300W power with the average current of 2.45A.

The purpose of the step-up transformer T_2 is to transform the 12.5Ω impedance from the combiner up to 50Ω. It is a standard 1:4 unbalanced-to-unbalanced transmission line type transformer 3,4,5 in which the line is made of two RG-188 coaxial cables connected in parallel. As in the input transformer, the h.f. compensation (C2) was not required.

References

1. Granberg, H.: Get 300 Watts PEP Linear Across 2 to 30 MHz From this Push-Pull Amplifier, EB-27, Motorola Semiconductor Products Inc.
Power semiconductors — 2

A survey of devices, technologies and applications

by Mike Sagin Assistant editor, Wireless World

Last month's article discussed the group of switching power semiconductor devices known as thyristors. This concluding article looks at power devices which can be used in the linear or switching mode.

Power transistors

Bipolar junction transistors have been in use since 1948 and, although the early types used germanium, almost all of today's devices are silicon. A power transistor is a current amplifying device whose parameters are dependent upon the structure and geometry. There are four important parameters, voltage breakdown, current gain, speed, and power dissipation, all of which are mutually dependent. This places constraints on the design of a power transistor, and in general the most important parameter is given priority and the others are a compromise.

At low current density, the peak current-gain is determined by the emitter efficiency, base lifetime, and sometimes surface recombination. At high current density, the geometry and base-width are the most important factors. Voltage breakdown is generally proportional to the resistivity or impurity doping concentration on both sides of the junction. Most of the voltage drop occurs on the side of the junction with the lower impurity doping. Power dissipation is restricted by thermal and electrical limitations. Thermal limitation is controlled by the pellet size, thermal capacitance and resistance of the device. Electrical limitation is controlled by the secondary breakdown characteristic. Speed, or transient response, is determined by the capacitance and resistance of the transistor. Junction area and periphery control the capacitance, while doping and thickness of the active regions control the resistivity.

Because of the various trade-offs that exist in power transistors, several different structures have been developed.

Single diffused, sometimes called hometaxial-base, transistors — Fig. 20 start with a wafer of moderately high resistivity silicon which then has several thin layers of impurities deposited and diffused deeply into both sides. Early in this diffusion process the top of the wafer is etched to produce a plateau which becomes the emitter area. This raised area is called a mesa. The process is completed when the deeply-diffused junctions are separated by a base region of about 25 micro-metres.

The single diffused process produces a very rugged device which has a high safe operating area (s.o.a.). The wide undiffused base region, called homogeneous, allows injected charge carriers to spread out and reduce the charge carrier density at the collector junction where most of the heating takes place. The wide base region does, however, restrict the maximum f_T to around 2MHz. Large batch processing allows these devices to be manufactured cheaply although only n-p-n varieties can be produced. Maximum ratings for single diffused transistors are V_{CEO} of around 200V and continuous I_C of about 30A.

Double diffused mesa transistors — Fig. 21 start with a moderately high resistivity silicon wafer which has a dopant impurity deposited and then diffused to a shallow depth. Silicon dioxide is selectively etched to define regions where the emitter impurity is to be deposited and diffused. The oxide forms a mask which causes the emitter to diffuse more rapidly than the base. This action provides a narrow base region. Double diffused structures have the high-resistivity side of the collector-base junction on the collector side. As a result, the collector voltage can be designed almost independently of the base width.

The narrow nonhomogenous base provides an f_T up to around 20MHz but the base is also more fragile which reduces the s.o.a. The thick high-resistivity collector region also produces a high saturation resistance.

Double diffused planar transistors — Fig. 22 are very similar to the mesa type except for the collector-base junction. An additional selective mask is used for the base impurities which terminates the collector-base junction at the surface of the wafer instead of on the side. This junction is therefore passivated by a protective oxide layer as is the base-emitter junction in the mesa structure.

The planar transistor offers a greatly reduced collector leakage current and more predictable device characteristics. Disadvantages are similar to those of the mesa type but the planar structure also has a collector voltage capability.
which is up to 20% lower than a comparable mesa type. Again, only n-p-n devices are available.

Triple-diffused transistors — Fig. 23 are similar to double-diffused devices except for a third diffusion on the opposite side of the silicon wafer. This eliminates the high saturation resistance. The structure shown in Fig. 23 is the planar version and, like the double diffused, a mesa structure is also available. Devices with \(f_p\) ratings up to 30MHz, \(V_{CEO}\) ratings around 400V and continuous \(I_C\) ratings up to 15A are possible. Because the high- resistivity collector region is narrowed by a third diffusion, and the bulk of the collector is heavily doped and highly conductive, the junction is very fragile which greatly reduces the s.o.a. As with previous diffused devices, only n-p-n types are available.

A variation of this structure is the triple-diffused etch-cut device from Motorola — Fig. 24. This produces transistors with \(V_{CEO}\) ratings of up to 1000V, and continuous \(I_C\) ratings up to 15A. The \(h_{fe}\) rating is normally reduced together with the \(f_T\), up to 10MHz, but the s.o.a. is slightly increased. Only n-p-n devices are available.

Double-diffused epitaxial transistors — Fig. 25 (a) and (b) are similar in appearance to the triple-diffused types, except that the diffused collector region is replaced by a heavily doped homogeneous layer referred to as the epitaxial substrate. A difference in doping produces improvements in the \(f_T\), up to 100MHz, and saturation resistance. However, the s.o.a. is very low and this type of device is unsuitable for driving capacitive or inductive loads. Both mesa and planar structures are available with \(V_{CEO}\) ratings up to around 300V and continuous \(I_C\) ratings up to 50A. Unlike the normal diffused transistors, both n-p-n and p-n-p types are available.

Epitaxial-base mesa transistors — Fig. 26 use epitaxial layers in the actual formation of the base-collector junction. A layer of impurity is epitaxially grown, rather than diffused, on to an opposite polarity and highly doped substrate. Oxide masking and emitter diffusion into this epitaxial layer completes the construction. The main advantage of the epitaxial-base structure is its ruggedness and s.o.a.

The epitaxial-base mesa transistor also has a higher frequency response, up to 10MHz, and the ability to carry higher currents for an equivalent emitter area. Maximum \(V_{CEO}\) ratings are around 160V with continuous \(I_C\) ratings up to 50A. The disadvantage of this design is the low voltage limitation which is due to the abrupt base-collector junction formed between the heavily doped collector substrate and the

Table 3. Silicon power transistor structures and trade-offs

<table>
<thead>
<tr>
<th>Structure</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single diffused (hometaxial-base)</td>
<td>Rugged, low cost</td>
<td>Low speed</td>
</tr>
<tr>
<td>Double-diffused mesa</td>
<td>High speed</td>
<td>High saturation resistance</td>
</tr>
<tr>
<td>Double-diffused planar</td>
<td>High speed, low leakage</td>
<td>Moderate cost, moderate leakage</td>
</tr>
<tr>
<td>Triple-diffused</td>
<td>High Speed, low saturation resistance</td>
<td>Moderate speed</td>
</tr>
<tr>
<td>Double-diffused etch cut</td>
<td>High voltage</td>
<td>Moderate cost, moderate leakage less rugged</td>
</tr>
<tr>
<td>Double-diffused epitaxial mesa</td>
<td>High speed, low saturation resistance</td>
<td>Higher cost, less rugged</td>
</tr>
<tr>
<td>Double-diffused epitaxial planar</td>
<td>High speed, low leakage, low saturation resistance</td>
<td>Low voltage, moderate leakage</td>
</tr>
<tr>
<td>Epitaxial-base mesa</td>
<td>Moderate speed, low saturation resistance, moderately rugged</td>
<td>Moderate cost</td>
</tr>
<tr>
<td>Multiple epitaxial base mesa</td>
<td>Moderate speed, low saturation resistance, rugged, high voltage</td>
<td>Moderate cost, moderate leakage</td>
</tr>
<tr>
<td>Double-diffused multiple-epitaxial mesa</td>
<td>High speed, rugged, low saturation resistance</td>
<td>Moderate cost, moderate leakage</td>
</tr>
</tbody>
</table>
epitaxially deposited base layer. A second disadvantage is the moderate collector leakage-current resulting from the mesa construction. Both n-p-n and p-n-p devices are available.

Multiple-epitaxial base transistors — Fig. 27 are similar to the epitaxial base devices except for an added high-resistivity epitaxial layer for the active collector region. The transistor is constructed from a heavily doped silicon wafer on which alternate layers of p-n or n-p high resistivity silicon are epitaxially grown to create a p-n-v base-collector junction. An emitter area is then diffused into the structure.

The main advantages of this construction are high voltage ratings and good current carrying abilities together with an improved s.o.a. The higher voltage ratings are due to the base and collector regions which both support the applied collector voltage. Good current ratings are due to the lower collector resistivity. The moderately wide base region and partial homogeneous base doping, which spreads the charge carrier density, provides good secondary breakdown characteristics. The main disadvantage of this construction is the relatively high manufacturing cost.

Multiple-epitaxial double-diffused mesa transistors — Fig. 28 are similar to the double-diffused epitaxial types except that multiple epitaxial layers are used in the collector region. The top collector is a thin highly resistive layer followed by one or more thin heavily doped layers. These layers are grown sequentially onto a thick and heavily doped silicon substrate wafer. Advantages of this process are high speed, low saturation resistance, higher collector-junction voltage ratings and an increased s.o.a. Disadvantages are high cost and moderate leakage in the structure.

The main advantages of this construction are high voltage ratings and good current carrying abilities together with an improved s.o.a. The higher voltage ratings are due to the base and collector regions which both support the applied collector voltage. Good current ratings are due to the lower collector resistivity. The moderately wide base region and partial homogeneous base doping, which spreads the charge carrier density, provides good secondary breakdown characteristics. The main disadvantage of this construction is the relatively high manufacturing cost.

The types of structures already discussed are summarized in Table 3 with advantages and disadvantages. Performance curves for five popular types of device are shown in Fig. 29.

The geometry of a transistor can be considered as its topography. This together with the structure defines most of the fundamental properties. Most geometry designs in power transistors are aimed at increasing the current handling per unit area of device. The diagrams in Fig. 30 show various configurations from the inefficient ring-dot format to a present day overlay system. The recent interdigitated and overlay-geometries greatly increase the emitter periphery which in turn reduces high current density. This reduction in current crowding effectively increases the current gain of the device.

Two general methods exist for connecting the ohmic portion of the emitter and base contacts to the external leads of the package. Either wire bonds or soldered contact clips are used and Table 4 shows a range of connections.

![Fig. 29. Performance curves for five different transistor structures.](image)

![Fig. 30. Various transistor geometries.](image)
Darlington transistors

The Darlington pair is a well-known current-gain configuration which uses two transistors and one or two passive components. A relatively new device is the monolithic power Darlington which combines these components on one chip. The structure and equivalent circuit of such a device is shown in Fig. 31. This particular structure uses a double-e.p.i.-axial, single-diffused process where the collector consists of an n+ substrate plus an epitaxially grown n-type layer. The p-type base is epitaxially grown on top of the substrate, and the n-type emitter impurities are diffused into the base. For p-n-p versions the structure is similar. Construction of such a power Darlington is essentially the same as an epitaxial single-diffused transistor. The geometry, however, is very different. The driver transistor in the structure of Fig. 31 is in the centre of the pellet and is surrounded by the output transistor. The base emitter connection of the two devices is formed by metallization on the surface of the pellet.

Although monolithic Darlington devices have not been in existence for many years, some awesome devices are currently being produced. Toshiba have introduced a range of switching devices, one of which can handle a current of 400A at 300V and dissipate a staggering 3000W while offering a hp of 100 and a turn on time of 1µs. This sort of device is currently being used in audio equipment. Six devices from the three manufacturers are shown in table 5, and Fig. 33(a) shows a simplified construction. Current flows vertically from the substrate through the chip, which measures about 3×3mm, and allows a greater current density for high power applications. This type of construction permits the production of complementary pairs. Output characteristics of these devices are very similar to a triode valve. One disadvantage of this construction is the relatively high capacitance (Cov) around 700pF for the NEC type and 3000pF for the Yamaha, which limits the upper frequency response.

Over the last three years f.e.t.s have challenged conventional bipolar power devices. Advantages of these f.e.t.s include high input impedance, greater linearity, majority carriers as opposed to minority carriers in bipolar devices, fast switching, and a negative temperature coefficient for the drain current. The last mentioned prevents secondary breakdown and provides an inherently short-circuit proof device when used in the output of an amplifier.

Although there are only two main types of power field-effect transistor available at the moment, much confusion has arisen from the use of loose terminology. The current “buzz” word is “V” f.e.t.s which has been used to describe either the vertical current flow within the device, the physical V shaped groove in the device, or both. The most publicised f.e.t.s at present are the Japanese devices, first reported in Wireless World July 74 and July 76. These are vertical-junction depletion-mode (normally on) f.e.t.s and are currently being used in audio equipment. Six devices from the three manufacturers are shown in table 5, and Fig. 33(a) shows a simplified construction. Current flows vertically from the substrate through the chip, which measures about 3×3mm, and allows a greater current density for high power applications. This type of construction permits the production of complementary pairs. Output characteristics of these devices are very similar to a triode valve. One disadvantage of this construction is the relatively high capacitance (Cov) around 700pF for the NEC type and 3000pF for the Yamaha, which limits the upper frequency response. Also, when used in linear amplifiers, several different supply voltages are necessary. Because the devices are

<table>
<thead>
<tr>
<th>Table 4: Methods of lead attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Nailhead bond</td>
</tr>
<tr>
<td>Ultrasonic bond</td>
</tr>
<tr>
<td>Wire solder</td>
</tr>
<tr>
<td>Clip solder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5: Power ratings of commercial vertical junction f.e.t.s</th>
</tr>
</thead>
<tbody>
<tr>
<td>f.e.t.</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>2SK70 2SK20</td>
</tr>
<tr>
<td>2SK60 2SK18</td>
</tr>
<tr>
<td>2SK75 2SK77</td>
</tr>
<tr>
<td>100W at 25°C</td>
</tr>
<tr>
<td>63W at 25°C</td>
</tr>
</tbody>
</table>

The Darlington transistor. This type of device has been designed to compete with medium and high power thyristors in d.c. applications. Faster devices are also being developed to compete with conventional low-gain power switching transistors.
normally on, a gate bias has to be applied before power is supplied to the output stage. Conversely, power has to be removed from the output stage before the gate bias.

Up to date these devices have only been commercially used in linear hi-fi equipment but in a recent paper presented at the 55th AES Convention, Mr T. Suzuki of the Sony Corporation outlined the design of a pulse-width modulation audio power amplifier using vertical junction f.e.t.s.

Although these f.e.t.s are better suited to low frequency application, future devices will offer lower saturation resistances by using larger chip sizes, and higher amplification factors.

Power m.o.s.f.e.t.s, commonly called v.m.o.s. are the second group of devices and several companies are developing this technology. At present most of the devices are lower power than junction f.e.t.s, but offer faster switching speeds. American Microsystems and Electronic Arrays are developing v.m.o.s structures — see Fig. 33(b) for use in r.o.m.s, r.a.m.s and possibly microprocessors. Westinghouse Research Centre have experimented with "shadow mask" gate metallization in the structure shown in Fig. 33(c). The overhanging oxide layer forms an aperture through which the gate metallization is sputtered over the channel. This process has been used to produce microwave devices which exhibit an F_T of 4.8GHz, but there are no commercial products available yet.

Harris Semiconductor have developed a 12W device using the structure shown in Fig. 33(d). This offers depletion mode performance and is called v.m.o.s. because of the groove and not the current path. Hitachi have produced a v.m.o.s. device without the groove, see Fig. 33(e). Current flow is again vertical but a polysilicon gate is used and this allows a high packing density but limits the high frequency performance to 1MHz. By using a large geometry size of 5x5mm, the device has an 80V 20A capability and is aimed at the high fidelity market as an alternative to the vertical-junction f.e.t.s. Siliconix have commercially available a range of v.m.o.s. devices under the trade mark MOSPOWER. These f.e.t.s are based on the structure in Fig. 33(f). The n+ substrate becomes the drain and an n-epilayer increases the drain-source breakdown voltage by absorbing the depletion region from the drain p-body junction which is normally reversed biased. Because the gate overlaps n- instead of n+ material, the feedback capacitance is reduced by the epilayer. A p- body and n+ source are then diffused into the epilayer, similar to the base and emitter diffusions in a bipolar transistor. A V groove is then etched through the source body and into the n-epilayer. Oxide is grown, followed by the deposition of an aluminium gate. The completed chip is then passivated.

In operation the gate is taken positive with respect to the source. The resulting electric field induces an n-type channel on both surfaces of the body facing the gate. Electrons can then flow directly from the source through the n-type channel and epilayer into the drain.

The V groove structure offers several advantages over conventional m.o.s. devices. The length of the channel is determined by diffusion depths which are much more controllable than the mask spacings used to define the channel length in standard low power devices. The substrate forms the drain contact, so drain metal runs are not required on top of the chip. This reduces chip area and keeps the saturation resistance low. Because the groove creates two channels the current density is doubled, which also keeps the chip capacitance low.

Output characteristics of a typical device are shown in Fig. 34. Because of the extremely fast switching time, 1 amp in 4ns, and typical on resistance of around 3Ω, these f.e.t.s can be used in converter, r.f., and switching regulator circuits. Although the maximum dissipation is around 25W at 25°C several devices can be used in parallel operation as shown in Fig. 35. This practical audio amplifier circuit will deliver around 40W continuous into 8Ω. As the f.e.t.s

![Fig. 33 Various power f.e.t. structures under development and in production.](image)

![Fig. 34 Output characteristics of a typical v.m.o.s. field effect transistor.](image)
are enhancement mode (normally off) only one split power supply is needed. The circuit has a bandwidth from 1Hz to 800kHz, a typical distortion figure of 0.04% at 1kHz 40W, and the output is short circuit proof due to the negative temperature coefficient.

The future of v.m.o.s. devices seems well assured especially as Siliconix are talking about transistors with 10A, 200V capabilities, and on-resistances of below one ohm.

Following the setting up of a committee in 1967, when about 50 microwave landing systems were competing, the decision to base future systems on microwaves was taken about five years ago. Broadly, the choice is between two, the American and the British, though both sides have changed their proposals frequently in a way reminiscent of the surround-sound matrix battle in audio systems. The British system was devised by Charles Earp of Standard Telephone Laboratories, Harlow, in 1968. He thought that if a fixed frequency r.f. signal were moved back and forth perpendicular to ideal path down the centre of the runway, a plane approaching at a wrong angle would observe a change in its frequency, a Doppler shift, proportional to the sine of the angle the plane’s path made with the correct approach. Any Doppler shift caused by the movement of the plane could be compensated by an additional stationary reference beam at the same frequency.

A horizontal Doppler beam would provide the azimuth, and a vertical one the approach angle. In a practical system the moving source could be replaced with a switched series of stationary sources. The British proposal is now being put forward by Plessey, for whom STL are now subcontractors.

The American system, the time-reference scanning beam (t.r.s.b.) devised by Bendix, works by sending out two fan-shaped beams which scan through predetermined angles. One beam provides azimuth and the other elevation information. During each scan, the aircraft receives two pulses, one each during the to and fro scans. The position angle of the aircraft is determined by the time differences between these pulses, since the aircraft will only receive them at equal intervals if it is directly on course. A third “flare” transmitter provides the low-angle guidance needed in the last half mile before touchdown.

In the voting in Montreal Britain was supported by Dutch and Canadian delegates and the representatives of the International Federation of Airline Pilots’ Associations. The US system was supported by a formidable alliance of Russia, Australia and the International Air Transport Association, for the airlines. The ICAO navigation committee is expected to meet in the autumn.
The world over-
You get the
best service
from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service - specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray,
Orpington, Kent BR5 3QJ,
Telephone: Orpington 27099
Telex: 896141

WW-437 FOR FURTHER DETAILS
Way out in front!

A great new line of RF-heating tubes from THOMSON-CSF:
- Output power from 100 to 800 kW
- Superior PYROBLOC® grids and HYPERVAPOTRON® anode cooling - the latest word in power-grid tube technology.
Specially designed for industrial thermal treatment and built using rugged metal/ceramic technology.
Get the latest advance in the power-grid tube state of the art from the RF-heating leader: THOMSON-CSF!
Contact us today.

THOMSON-CSF
THOMSON-CSF U.K. LTD
RINGWAY HOUSE BELL ROAD / DANESHILL
BASINGSTOKE RG24 0QG
TEL.: (0256) 29155 / TELEX : 858865

WW—061 FOR FURTHER DETAILS
Zero crossing detection with exponentially decaying hysteresis

It is well known that a zero detector may be constructed as shown in Fig. 1. Assuming that the output V_o of the operational amplifier is at its positive limit V_+, then the voltage V_+ on the non-inverting input is $V_+ R_2 / (R_1 + R_2)$, and the amplifier output will not change unless $V_o > V_+$. Once V_o starts to fall, V_+ decreases and the switching process is accelerated due to positive feedback through R_1. The penalty for this sharp switching is that when V_o is at its negative limit $-V_-$, the amplifier will not start to switch unless $V_o < -V_+ R_2 / (R_1 + R_2)$ and thus exhibits a hysteresis band of width $(V_1 + V_2) R_2 / (R_1 + R_2)$ as shown in Fig. 2.

This hysteresis is often valuable because it avoids multiple switching of the detector when the input consists of a low frequency signal corrupted with high frequency noise. It does, however, reduce detector sensitivity for small inputs.

The modified circuit shown in Fig. 3 gives improved zero detection. When the circuit changes state, V_o changes by an amount $(V_+ - V_2)$ and thus V_+ changes by $(V_1 + V_2) R_2 / (R_1 + R_2)$, because the charge on the capacitor cannot change instantaneously. Subsequently, V_+ decays exponentially to zero with time constant $(R_1 + R_2) C$. Since V_o only changes when $V_o = V_+$, the hysteresis in the detector is large just after a change of state has occurred, but later decays to zero. Therefore, there is sharp switching between the limits and when noise is present multiple switching is avoided. If the time constant is significantly shorter than the average time separation of the zero crossings the zero detection is very accurate.

To avoid error with the input bias currents of the amplifier, $R_3 = R_1 R_2 / (R_1 + R_2)$ in Fig. 1 and $R_3 = R_2$ in Fig. 3. Also in Fig. 3 $R_2 > R_2$ so that the input-voltage limits of the operational amplifier are not exceeded.

M. L. Bransby,
University of Sheffield.

Contributors to Circuit Ideas are urged to say what is new or improved about their circuit early in the item, preferably in the first sentence.
Linear v-f converter

In this circuit a NE556 timer is used in a dual mode. Frequency of operation is 0.91/2RC where R is the resistance of the f.e.t. Because the resistance R is indirectly proportional to the input voltage, the circuit is very linear. Frequency range is from 0.1Hz to 100kHz and the linearity is within 0.005%.

Kamil Kraus, Rokycany, Czechoslovakia.

True count-by-twelve circuit

An ordinary divide-by-twelve circuit gives a logical sequence of output states that go from zero to eleven, whereas a true count-by-twelve circuit will do so from the count 1 through 12 and will come back to 1 with no zero. One application of such a circuit is in a 12-hour digital clock. The design is fairly straightforward and relies on the truth table of the J-K flip-flop. On resetting, all the outputs go to logical zero but, on clocking, the zero state does not recur.

Ijazur Rehman, University of Islamabad, Pakistan.

Speech compressor/limiter

This simple compressor/limiter, which was developed for p.a. applications, uses the voltage-controlled attenuator designed by D. Self, Wireless World, December 1975. Resistor R, sets the threshold voltage and the compression law. The output signal from the attenuator is made as large as possible by the inverting CA3130 before being applied to the rectifier and low-pass filter. This minimizes the effects of diode non-linearities and capacitor leakage. The low-pass filter is necessary to obtain a fast attack time of around 500µs and long decay time of about 1 min.

The circuit was used successfully with a microphone in a p.a. system with no noticeable distortion. Bandwidth of the circuit is 15Hz to 25kHz.

Pulse-counting frequency comparator

With two periodic signals of nearly equal frequency, it is easy to generate their beat frequency and make it drive a pulse-counting discriminator. This produces an output voltage linearly proportional to the modulus of the difference frequency. The circuit shown works on the same principle but the output is positive or negative according to which input is at the higher frequency.

The Schmitt triggers and dividers convert the inputs to square waves of unity mark-space ratio. These i.c.s may be omitted if the inputs are already suitable, in which case divider (a) must be replaced by an inverting gate. Unity mark-space ratios are desirable if operation over the maximum range of beat frequency is required.

Dividers (c) and (d) produce two square waves in quadrature at frequency $f_1/4$. The interconnection of (c) and (d) ensures that the quadrature wave is always lagging. These waveforms together with $f_2/4$ drive two D-type flip-flops as shown. The outputs at points X and Y define four possible states. Monostables (s) and (t) feed positive and negative-going pulses respectively, of constant area into a summing and integrating network to produce the desired output.

The output is proportional to the frequency if f_2 lies between $4/5 f_1$ and $4/3 f_1$. There is negligible offset on the output voltage because when the inputs are phase locked, neither monostable is triggering. The circuit can be used in frequency servo-systems where a signal has to be locked in frequency, though not in phase, to a reference frequency.

Such a system can be less tempestamental than a phase locked loop.

N. J. McEwan,
University of Bradford.

B.c.d. converter

Conversion of "2 shift" b.c.d. to standard b.c.d. can be achieved with the circuit shown. Circuits which drive "Nixie" tubes or similar decimal displays may be economically converted for driving other displays such as seven segment I.e.d. types via a decoder driver i.c.

P. M. Weston,
Birkenhead, Merseyside.

Unusual sinewave generator

With the values shown the frequency is about 3.8kHz.

Jorge S. Lucas,
Brazil.
A new tomography machine

Machines still appearing despite slowdown in the medical equipment scramble.

by John Dwyer

A company with less than 100 employees has launched what they say is “a diagnostic instrument complementary to the much publicised EMI scanner, but costing only a quarter of the price.” Mr Anthony Bernard, managing director of J&P Engineering (Reading) Ltd, said in a statement: “We will be competing for sales with the EMI scanner, but in an ideal world the two pieces of equipment would be used together to provide an entirely new dimension to diagnosis.” The price is £65,000.

The Tomoscaner uses a different technique from that exploited by EMI. Instead of measuring the degree to which certain tissues absorb external X-rays, the Tomoscaner measures the concentrations of injected chemicals within the body. This is known as an “invasive” technique. In a process called ‘labelling,’ radioisotopes are bonded to the molecules of the pharmaceutical used and radioactivity in a series of points in the organ under study is measured. Gamma ray photography has been used since the early 60s, but the resolution of the plots achieved with it has been notably less than seems possible with the Tomoscaner method, and it is only the use of a computer that enables the construction of a section through the patient. The radioactive dose the patient has to take is “comparable with a normal chest X-ray,” according to technical director John Eppstein.

Dual detectors

The patient lies on a padded plywood couch between two sensors placed at either side of the couch so that they can either rotate through a circle with the patient at the centre, or, for rectilinear scans used to build up a conventional profile, move in two parallel planes with the patient between them. The whole apparatus can be moved down the moving couch for bone scans the field of view can be extended to 40cm x 160cm. The scanning speed is adjustable from 0 to 5cm with line spacings of 1.7, 2.5 or 3.4mm. Each detector can differentiate between two types of isotope, so that in the case of organs such as the liver and spleen, which may need to be viewed together but which absorb different pharmaceuticals, addition and subtraction can be used to differentiate between the two and to view them together.

In normal use, a rectilinear scan is first taken of, say, the upper half of the body. Each detector will provide a profile of one side of the head, or a view of the front or back. Once any abnormal features are seen on any of these scans, the Tomoscaner can take 30 angled views around the head in any plane through it. The information from each of these scans is processed by a computer which assembles a printout showing a section about 12mm thick through the head in that plane. “The section image is computed as an 80 x 80 cell matrix, and is subsequently interpolated and played back as a 160 x 160 cell picture for display purposes.” The printout is the same size as the patient’s head. J & P say a typical scan lasts seven minutes, with another three for computing and plotting time. The printout can be in a scale of nine colours or a corresponding gray scale on X-ray plates.

J & P say the advantage of the method is that it shows only the organs under investigation, unlike the X-ray method, which shows up a lot of extraneous detail. “Experience shows that the section view confirms lesions which are equivocal in other scans, and helps to distinguish between cerebral infarcts, subdural and extradural haematomas.”

Rivalry

J & P stress they have no wish to suggest that their machine in any way supercedes the X ray scanner, but EMI have taken exception to the ambiguity of a phrase in the J & P press statement saying: “the complementary isotope mission technique can yield more valuable clinical data of the physiological and biochemical processes for the same view.” Neither do they see how it can give more physiological data than the X ray method. Linked with that, EMI say they see little point in trumpeting the selective nature of the Tomoscaner. If EMI want to show a particular organ, they say, they just use the appropriate part of the X ray scan, which can be altered in size to concentrate on chosen areas.

At a somewhat higher level of argument, one source involved in similar research described the Tomoscaner as “a backward step.” Asked why, he said that it went against the general tendency to lower the radioactive doses administered to patients, with the eventual aim of using totally non-invasive techniques which can carry out all the clinical procedures needed without any danger or discomfort to the patient.
of the two methods: “The present objectives in diagnostic medicine are towards the investigation of body functions. This is the strongest potential advantage of a radioisotope system over X-rays or ultrasonics, which can only reproduce the structure in the region of interest. The function of organs can be investigated by labelling gases for lung function, iodine for thyroid investigation etc. These are slow processes which can be partially followed with conventional gamma cameras and to some extent by X-ray and ultrasonic techniques, but the study of blood flow in the heart, for instance, poses a problem which we feel could be handled by our ‘Compton’ camera system. The medical implications of such imaging techniques are immense.”

Compton effect

The X-ray scanners currently in use have beam energies of around 70 keV and, like the gamma ray cameras, operate mostly in the photoelectric region, the detector measuring simply the number of photons arriving at it normal to the detector.

At higher energies, between about 400keV and 2MeV for sodium iodide, the Compton effect takes over. In 1927 American physicist Arthur Compton was awarded the Nobel Prize for discovering that the trajectory of a photon incident on the electron of an atom in a low atomic weight absorber, in this case body tissue, can be calculated from the change in wavelength of the incident and scattered photons and their change in angle. Because the collision reduces the energy of the incident photon, there is a slight reduction in frequency, the scattered radiation containing both the original and modified wavelengths. This means there is a linear relationship between tissue density and the alterations in energy and direction of the X-ray photon.

A scan of the left side of a patient’s head. The lighter areas show high isotope activity, meaning that there has been increased blood flow to these regions where there should be none.

Having obtained the side view, the Tomoscaner is adjusted to take a section through the patient’s head at the level of the light spot on the side view. This shows the result, which tells doctors the extent and shape of the abnormality. “Further investigation indicated presence of a parietal cyst associated with a mural tumour,” say J & P. The large light area to the right of the left side scan proved to be a scalp lesion due to a plexiforma neuroma.
The detectors in present scanners are highly collimated to reduce scatter photons. EMI estimate that only about a thousandth of the particles reaching the detectors are used in building up the final picture. The Compton camera, which should be able to produce three-dimensional pictures, is an attempt to use all the particles, including the scatter, and, by measuring their incident angles, build up a picture of their trajectories before they reached the detector. This means using two arrays and observing the displacement the particle undergoes in travelling from one array to the next.

Schottky arrays

In the Compton camera the detector is analogous to the lens in an optical system, and each photon incident on the detector defines an ellipse on the image plane. The source could be on any point on the circumference of that ellipse. Successive interactions produce a series of ellipses which intersect on the image plane to define a point. This point can be found by direct summation of all the ellipses generated. “It is possible to project images on to a multitude of planes using the same set of measurements, and even to superimpose them to obtain three dimensional images.”

The Compton camera detector is based on a lattice of Schottky barrier orthogonal arrays of 0.4mm cubic elements. The elements are Schottky barrier junctions on n-type high resistivity silicon slices. There are 50 slices of silicon each 5cm in diameter and each having an associated energy amplifier, or photomultiplier. The imaging time is about a second. Resolution is about 2.5mm, compared with 8mm on conventional gamma cameras.

This technique is certainly attractive, particularly because of the number of photons being used, each one providing information and contributing to the final picture. But it has drawbacks. EMI say they have already thought about the technique a great deal. The chief scientist at EMI’s central research Laboratories, Dr R. J. Froggatt, told Wireless World EMI had “done the sums and we are very, very dubious.”

He identified two main difficulties: the particles may already have been through two or more collisions before they reach the Compton detector lens so “you’re never sure where they’re coming from”; and each time you looked at the incident photon, which you had to do twice, you tended to deflect it — it could not be incident on each of the two matrices without something happening to it. Dr Froggatt added, however, that “We’re waiting to see whether they can bring it off.”

Scanner business fall

The US congress reported last August that there were about 300 scanners in use in the country and several hundred more on order. A year ago EMI’s excellent financial record for the year to the end of the previous June was largely attributable to the success of their brain scanner, even before the body scanner had one into production.

EMI’s brain scanner was the first. In October 1973 the American National Biomedical Research Foundation announced a colour, whole body scanner with better resolution, they claimed, than that from a normal X-ray. EMI’s body scanner arrived in July 1975, and by September press reports in American journals were reflecting the growing size of the scanner bandwagon.

Digital Information Sciences Corporation began to make the scanner developed by NBRF, and it was marketed in the US by Pfizer medical systems. Ohio-Nuclear made another scanner which Siemens marketed in Europe as well as their own Siretom scanner. Ohio-Nuclear told the American journal Electronics in September 1975 that they expected to sell $30 million worth to Siemens alone. The world wide market at this time was estimated at around 10,000 units a year, with an average price of perhaps $0.5 million each. General Electric jumped in with their S5 scanner and, in a single week in December that year, half a dozen new makers of scanning equipment announced their products.

Medical instrument legislation

There has been growing concern in America about the proliferation of scanners, and it has been suggested that patients are not benefiting as greatly from that proliferation as they might. The same congressional report said that each machine scanned 12 patients a day at a charge of at least $200 per scan. So Americans now appear to be spending at least $200 million a year on scanning although, the report says, many more scans are being made than can be accounted for by substitution for previously available techniques. This implication is clear: that some patients are paying for scans they don’t need.

Linked with this is the enactment of the 1976 Medical Device Amendments to the Food, Drug and Cosmetic Act. The amendments followed agitation by the Association for the Advancement of Medical Instrumentation as far back as 1968, and the elements up by the Department of Health, Education and Welfare of a study group under the chairmanship of the director of the National Heart and Lung Institute, National Institutes of Health, Theodore Cooper. The Cooper report advocating legislation to improve safety was published in September 1970, and various bills were introduced in congress over the following years, as well as expressions of concern by the administration, but because of delays caused by Watergate, among other things, it was not until May last year that the legislation was signed, by President Ford.
New Products

Terminal covers
A range of insulating terminal covers, from Highvol Connectors Ltd, have been developed to comply with international safety regulations. The covers are preformed and require no heating or chemical agent for attachment to their terminals. The range includes many different covers to suit wire and cable terminals of most shapes and sizes. Highvol Connectors Limited, Uddens Trading Estate, Wimborne, Dorset BH21 7NL.

Digital multimeter
In addition to a 3½-digit, 11mm L.E.D. display, the 460-3 multimeter has a calibrated analogue meter, intended for nulling and scanning peaks and variations. The meter has 32 overload-protected, push-button ranges giving five direct voltage ranges up to 1000V, five alternating voltage ranges up to 600V, six a.c. and six d.c. ranges, both up to 10A, and five resistance ranges up to 2MΩ. There are also five low-power resistance ranges up to 2MΩ. Accuracy on all direct voltage ranges is ±0.1% of reading plus one digit. The instrument, available in either mains/rechargeable battery or mains only, is priced at about £200. Bach-Simpson (UK) Limited, Trenant Industrial Estate, Wadebridge, Cornwall PL27 6HD.

Crystal frequency sources
Small plastic encapsulated crystals, in the SPXO range from Cathodeon Crystals Ltd, provide a stability of ±0.002% over the range 4 to 10MHz, operating in the temperature range -20 to +70°C. Pin positions are on a standard 0.1in grid but a variety of mounting arrangements are also available. Cathodeon Crystals Limited, Linton, Cambridge CB1 6JU.

Inductance bridge
The model B324, from Wayne Kerr, is a low-inductance bridge suitable for measuring audio-frequency coils, as used in amplifiers, filters and telecommunications circuits. The unit provides a choice of three switch-selected measurement frequencies, 400Hz, 1kHz and 10kHz, and an adjustable test signal level. An aperiodic high-gain amplifier is used as the detector and provision is made for the connection of an external tuned detector for specialized tests. On its most sensitive range, the discrimination available from the B324 is 1nH and 100μA. Top values measurable are 1.111H and 11.11kΩ. The bridge is subject to a maximum error of 0.25% up to 10MHz and 1kΩ increasing to 0.5% for measurements of higher values. Wilmot Breeden Electronics Limited, 442 Bath Road, Slough SL1 6BB.

Power supplies
A series of chassis-mounting power supplies, from Datel Systems, comprises two single-output models, types UCMS/1000 and UCMS/2000, and three dual-output models, types BCM15/100, BCM15/200 and BCM15/300. The UCMS models are designed for digital applications and have outputs of ±15V at 100, 200 and 300mA respectively, with line regulations of 0.05% max., load regulations of 0.1% max. and output ripples of 1mV r.m.s. max. The BCM models are designed for linear applications and these have outputs of ±15V at 100, 200 and 300mA respectively, with line regulations of 0.02% max., load regulations of 0.05% max. and output ripples of 2mV r.m.s. max. Units are encapsulated in a phenolic case measuring 3.5in long by 2.5in wide and up to 1.56in high. Datel Systems Incorporated, 1020 Turnpike Street, Canton, Mass. 02021 U.S.A.

Mains capacitors
A range of paper and foil Duralit capacitors, from Wima, is approved to VDE0560-7 for use between line and neutral (Class X), for 630V ratings, and for use between line and earth (Class Y), for 1000V ratings. The capacitors, which are available in values from 470pF to 4700μF, have axial leads and are epoxy resin impregnated for a high ionization inception level. These capacitors can also be supplied for 400 and 1250V. Waycom Limited, Wokingham Road, Bracknell, Berks.
Television aerials

Three television aerials, having extra large screen grid reflectors, have been added to the range available from Jaybeam Ltd. Type MSG-8 has eight-by-four directors, type MSG-15 has 15-by-four directors and type MSG-21 has 21-by-four directors. In addition to the above, each aerial has two launch directors. These aerials, which are available for television channel groups A (21 to 24), B (39 to 53) and C (48 to 68), have 21-by-four directors. In addition to 15-by-four directors, type MSG-15 has 42 directors and type MSG-21 has 66 directors. Type MSG-8 has eight-by-four directors. In addition to these director configurations, each aerial has two launch directors.

Wire cutters

Two low-cost side cutters, types 2131 and 2132 from Bahco Tools Ltd of Sweden, are produced by blanking instead of forging, depending on grinding and heat treatment for the cutting edges. Bahco claim that the useful life of the cutters, which cut copper wire from 0.3 to 1.2mm dia., is comparable to that of more expensive forged patterns. Type 2131 has a bevel on the outer face of the jaws, while type 2132 has no bevel and may be used for flush cutting. The pliers have polypropylene grips for comfort, and include a detachable clip which holds the wire off-cut after each operation. Prices are £6.38 each. Bahco Tools Ltd, Bahco House, Beaumont Road, Banbury, Oxon.

Low profile keyboards

Low profile keyboards are now available with encoding facilities for dual tone multi-frequency switching, for communications applications, and row and column formats for microprocessor systems. These keyboards, called Minikeys, have precious metal contacts with ratings of 50mA at 28V d.c. resistive. The top of each key on the Minikey extends only 1.78mm from the face of the keyboard and has a travel of 1.27mm. Total keyboard depth is less than 3.12mm. Tactile “feedback” is by a mechanism which ensures fast positive closure of the contact. Prices for a one-off are from £4.20. Digitran Endevco UK Division, Melbourn, Royston, Herts SG8 6AQ.

10MHz oscilloscope

The VP-5100A is a general-purpose 10MHz oscilloscope having nine calibrated ranges from 10mV/div. to 5V/div. A variable control allows continuous variation between steps up to 12.5V/div. In addition to seven calibrated sweep rates, from 0.1µs/div. to 0.1s/div., the timebase provides a mode for viewing composite TV signals. Telonic Altair UK, 2 Castle Hill Terrace, Maidenhead, Berkshire SL6 4JR.

Strain gauge indicator

The Doric 420 Digital Indicator displays the output of strain gauge devices in engineering units. This instrument can be used to measure pressure, torque, thrust and force, etc., with a resolution of one part in 10,000. The sensitivity is adjustable from 1 to 12µV per increment. Five 0.63in Leds provide the display. Lee Engineering, Napier House, Bridge Street, Walton-on-Thames, Surrey KT12 1AP.

Miniature slide switch

A single-pole, double-throw slide switch, type 1101, is said to be capable of breaking 6A at an alternating voltage of 120V or a direct voltage of 28V. The
Switch, which incorporates the C & K toggle mechanism, measures 0.5 \times 0.26 \times 0.25\text{in} and may be mounted directly on to a p.c.b. Typical characteristics include a maximum contact resistance of 10\Omega, minimum insulation resistance of 100\Omega and dielectric strength of 1kV r.m.s. Roxburgh Electronics Limited, 22 Winchelsea Road, Rye, Sussex.

Microwave absorber
A flexible microwave absorber called Eccosorb RMP is intended for frequencies of 2.4GHz and above. The absorber, available in silicone rubber (RMP-S-75) or vinyl rubber (RMP-V-75), is a mould of pyramids each having a height of about 2.5cm and a base of about 2.54cm square. The silicon product is fabric reinforced and is preferred for high temperature, high power and airborne applications. The vinyl absorber is more rugged and is intended for outdoor use. Both products have nominal reflectivities of 17 to 20dB down, over the useful frequency range, and are supplied in 30.5cm square sheets. Both absorbers conform to curvature, can be bonded in place and cut with a knife. Neither product will support combustion. Emerson & Cuming (UK) Limited, Colville Road, Acton, London W3.

Programmable pulse generator
A programmable pulse generator, designated as model EH1501A/129, is specifically designed for e.c.l. and other high speed applications. The programmable output stage can deliver positive or negative pulses of up to 2V amplitude and ±1V offset with rise and fall times of less than 500ps at full amplitude. This generator has a programmable frequency of up to 50MHz. A variety of programming interfaces are also available and include the IEC 488 and facilities such as memory read-out or optical isolation. Elex-Electronics, 22-24 Bell Street, Henley-on-Thames, Oxfordshire RG9 2BG.

Piezo-electric sounder
A long-life, low-power piezo-electric sounder, the U3-50R, generates a single tone in excess of 85dB at a rated current of 8mA and rated voltage of 24V. The sounder, which is 60mm square and 10mm deep, has no moving parts and is claimed to have a life of 1000h, compared with about 50h for a conventional electro-mechanical bell. ITT Components Group Europe, Standard Telephones and Cables Limited, Edinburgh Way, Harlow, Essex.

Spectrum analyser
A spectrum analyser, from Court Acoustics, uses a 28 by 11 l.e.d. matrix, measuring 14 x 4in, to provide an easy-to-read real-time display of audio frequencies from 28Hz to 20kHz with standard ISO centre frequencies from 31.5Kz to 16KHz. An extra l.e.d. display reads the full programme level, in dBm on line settings and in s.p.l. on microphone settings. Facilities are included for a 2.5ms attack and decay, a 2s decay, peak accumulation readings and display storage. The unit has a digital pseudo-random noise generator with a word length of 16Bits which can provide pink or white noise to an isolated socket. On pink noise an output of 20Hz to 20kHz ±0.5dB is available with a peak-to-mean ratio of 4:1. Court Acoustics, 50 Dennington Park Road, West Hampstead, London N.W.6.

Low-cost logic wiring system
The Wire Distribution System, from Zartronix, uses solderable synthetic enamel wire (36 s.w.g.) for producing prototype logic circuit boards. The point-to-point wiring is retained by moulded distribution strips which may be used for any desired i.c. packing density. Two types of strip are available: a general purpose moulding which can be used on all types of circuit board (when used with a quick-set adhesive), and another, designed specifically to press fit into any board with 1mm dia. holes on a 2.54mm pitch matrix. The versatility of the strips ensures that there is no restriction on size or type of prototype board used. An introductory kit is available and consists of wire distribution strips and pencil, a spare spool, i.c. leg deformer, circuit board and a comprehensive instruction leaflet. Zartronix, 115 Lion Lane, Haslemere, Surrey.

Wire-wrapping tool
A battery-operated wire-wrapping tool from Vero Systems Ltd, is designed for 0.63mm square terminals using 0.25mm wire. The tool, priced at £32.50, is fitted with a bit and sleeve so that ½ turns of insulation are wound around the terminal before the bare-wire wrap is made. A built-in device prevents overwrapping and the unit is self-indexing to simplify use and provide a constant wire turn consistency. The tools are moulded from impact resistant material, weigh 11 oz and can be supplied with rechargeable nickel-cadmium batteries and a charger. Vero Systems (Electronic) Limited, 362a Spring Road, Sholing, Southampton.
Breakdown voltage tester

An instrument, available from Stoneleigh Electronics Ltd, has been designed for determining the voltage breakdown characteristics of transistors, diodes, neon lamps and other semiconductor devices. The device to be tested is placed across the test terminals of the instrument and then a constant current source, which can be set within the range of 1 to 15mA, is applied to it. This source has an output potential of up to 300V. The breakdown voltage is then displayed on a voltmeter which has switched ranges of 10, 30, 100 and 300V f.s.d. The instrument, which can also be used to check voltage ratings of semiconductor devices, has a polarity switch allowing forward and reverse characteristics to be checked quickly.

WW321

Infrared pyroelectric vidicon

The P8092 is a 1in vidicon which is sensitive to infrared radiation from 1.8 to 1000μm, with optimized performance in the 8 to 14μm band. When used with a high-performance lens, this tube can resolve increments in scene temperature of less than 0.2°C. The tube has a spatial resolution capability of 300 TV lines, and deuterated triglycerine-sulphate target having a useful diameter of 18mm. The P8092 requires no gas coolant or mechanical scanning system and it has a fully compatible TV output signal.

WW322

Solid State Devices

High-power switching transistors

Four transistors, designated as RCA-2N6338, 2N6339, 2N6340 and 2N6341, have maximum rise and fall times of 0.3 and 0.25 μs respectively at a collector current of 10A d.c. Voltage ratings are high, for example V(Breakdown) for the 2N6341 is 180V. For an Ic of 10A, V(Breakdown) (sat) is only 1.8V and with an Ic of 25A a high gain is maintained and a minimum forward-current transfer of 12 is obtained. The devices are in hermetic steel TO-3 packages.

RCA Solid State-Europe, Sunbury-on-Thames, Middlesex TW16 7HW.

WW323

Fast-recovery rectifiers

A range of fast switching rectifiers, designated as the RGP series, has devices rated at 1, 1.5, 2 and 3A with peak-inverse voltages between 50 and 1000V. The rectifiers, which are claimed to meet all international requirements, have recovery times varying from 150ns for 50V types to 500ns for 1000V types. Typical reverse leakage currents are less than 1μA. In all cases the peak forward surge currents are at least 30 times the rated value. The devices comply with UL flammability classification 94V-0 and generally exceed the environmental MIL-Std-19500/228.

General Instruments UK Limited, Cock Lane, High Wycombe, Bucks.

WW324

Field programmable logic array

Two military-range versions of industrial programmable logic arrays (f.p.l.a.s.) are now available from Mullard. Type S82S100 has a three-state output and type S82S101 is an open-collector version. The Schottky-t.t.l. devices employ nichrome fuse technology and have typical power dissipations of 600mW and maximum access times of 50ns. Signetics IC Marketing Group, Mullard Limited, Mullard House, Torrington Place, London WC1E 7HD.

WW325

V.h.f. m.o.s.f.e.t.

The BF327 is a protected-gate depletion mode m.o.s.f.e.t. suitable for use in v.h.f. amplifier and mixer circuits. It has a low feedback capacitance of 0.03pF, a lower rise figure, typically 2.3dB, and offers high gain. The plastic encapsulation reduces manufacturing costs without impairing performance and conforms to the outline requirements popularly adopted as the European standard for these v.h.f. and u.h.f. devices.

Mullard Limited, Mullard House, Torrington Place, London WC1E 7HD.

WW326

R.f. transistor

The BF796 transistor has been added to the range of silicon p-n-p devices available from SGS-ATES. This transistor is a driver or medium power amplifier giving linear outputs up to 0.5V across 75Ω at 1GHz. By using the BF796 with the BF795 (see New Products August 1976) as the first stage in a wideband amplifier, typical noise figures of 2dB can be obtained between 40 and 1000MHz. The two devices may also be used for medium-power complementary applications for centralized antennae systems.

SGS-ATES (UK) Limited, Walton Street, Aylesbury, Bucks.

WW327

Planar transistor

The BFW92, from SGS-ATES, is an n-p-n silicon planar transistor designed for use in broadband amplifiers. It offers low noise (4dB at 500MHz) and low cross-modulation with a high fT (1.6GHz). The package is in a common-emitter configuration and offers reduced parasitics for u.h.f. applications.

SGS-ATES (UK) Limited, Walton Street, Aylesbury, Bucks HP21 7QN.

WW328

Avalanche diodes

Two silicon planar epitaxial controlled-avalanche diodes, types BAW21A and BAW21B, are fast switching devices intended for use in general applications where transients occur, or where a very steep forward characteristic is required. Avalanche breakdown voltages are 90 to 150V for type A and 120 to 175V for type B, at an Ic of 100μA. The diodes, in a DO-35 package, have maximum rectified forward currents of 0.4mA when averaged over a 20ms period. Mullard Limited, Mullard House, Torrington Place, London WC1E 7HD.

WW329

Impatt diodes

Two Read-profile Impatt diodes, types MS927A and MS927B, are intended for operation from 12 to 14GHz. The MS927A offers a power output of 2.5W minimum at 20% minimum efficiency and the MS927B is for 1.5W minimum at 15% minimum efficiency.

Walmore Electronics Limited, Microwave Division, 11-15 Betterton Street, Drury Lane, London WC2H 9BS.

WW330
SEW analogue panel meters are now available ex-stock (compared with 6–8 week delivery date from competitive manufacturers). And that’s not the only advantage to buyers now ITT Instrument Services are sole UK stockists and distributors.

You also enjoy big choice of types, in-depth stocks, smooth streamlined progressing of your order and of course, a friendly personal service. ■ Broad range of sensitivities and sizes. ■ Low individual cost* with attractive quantity discounts.

*From £4 one off to £2.66 for 1000+

Analogue Panel Meters. Only SEW and ITT give you all this.

Put new life into your equalising....

With the Trident Parametric.

THE TRIDENT MODEL CB9066 PARAMETRIC EQUALISER/FILTER is a comprehensive equaliser offering the user a degree of flexibility in tone correction hitherto unavailable. The five sections of the Equaliser can be used simultaneously. Silent switch operation enables the facility to be used during critical applications such as Disc Mastering, Re-Mixing, etc.

FEATURES:
* Low, Mid and High range, continuously variable control of Frequency, Amplitude and Q.
* Separate High-Pass and Low-Pass Filters with continuously variable control of Cut-off frequency and slope.
* Silent IN/OUT switching of ranges and system.
* Automatic compensation for sharp and broad Q settings adjusts for apparent loss of loudness in sharp Q modes.
* Compact 19in. x 1⅜in. x 8in. rack mountable.
* Built-in Power Supply.

United States Agents:
East Coast:
Audiotecniques Inc.
142 Hamilton Avenue, Stamford, Conn. 06902
Tel. (203) 359 2312
Contact: Adam Howell.

West Coast:
Studio Maintenance Service
2444 Wilshire Blvd., Suite 214, Santa Monica Ca. 90403
Tel. (213) 990 5855
Contact: David Michaels

Send for details to:
Trident Audio Developments Ltd.
Sales Office: 36-44 Brewer Street
London, W.1
Tel. 01-439 4177. Telex 27782 Tridisc.
The Finest

The "S.K.A." Plastic Keyboard was developed by Kimber Allen Ltd in co-operation with a Swedish company and the manufacturers state that in their opinion it is the finest moulded plastic keyboard made and is not to be confused with cheaper keyboards available.

The keys are moulded in Acrylic plastic, a material chosen for its hard wearing properties and ideal feel to the touch. They are moulded in two parts, the key face, which has to be perfect in appearance and finish, and the action, which has to be strong and carry the mechanism. The strong section of aluminium extrusion upon which they are mounted is specially designed to take all the pressures of playing. Springs, felts, and contact actuators are supplied ready-fitted.

The contact assemblies are constructed of laminated bakelite, thus giving smooth slot walls and completely free movement of the gold-clad contact wires. Types available as follows (Contact pairs normally open):

- GJ-SPCO: 24p each GE-4 pairs: 45p each
- GB-2 pairs: 27p each GH-5 pairs: 57p each
- GC-3 pairs: 36p each 4PS-SPCO & 3 prs: 53p ea

Palladium Wire Bus Bars — 1 octave lengths: 50p each

We also stock kits and PCBs for the P.E. Synthesiser, P.E. Joanna (electronic piano), P.E. Minisonic, and other sound synthesising and modifying projects published in Practical Electronics. Send SAE for full list (Overseas send 40p).

PHONOSONICS
DEPT. WW75, 22 HIGH STREET
SIDCUP, KENT DA14 6EH

KEYBOARDs & CONTACTs

U.K. POST & HANDLING:
Keyboards: £1.50 each
Contacts:
Orders under £15.00: 25p
Orders over £15.00: 50p

37 Note C-C Keyboard: £25.50
49 Note C-C Keyboard: £32.25
61 Note C-C Keyboard: £39.75

VAT: Add 12½% to final total on all U.K. orders

EXPORT ORDERS ARE WELCOME but please see our price list for Export Postage Rates. N.B. EIRE, CHANNEL ISLES & B.F.P.O. classify as Export.

MAIL ORDER AND C.W.O. ONLY — SORRY BUT NO CALLERS PLEASE

Prices are correct at time of Press, E. & O.E. Delivery subject to availability

RELAYs

SPECIAL OFFER

CO-AX RELAYS
For Aerial Switching

- Available with 12V or 24V DC coil
- Single change-over contact
- For use with UR43 co-ax cable
- Characteristic impedance: 50 ohms
- Nominal frequency: 450 MHz
- VSWR approx: 1:1
- Cross-talk: 39dB
- Contact rated at 1 amp or 50W max.

£5 EACH
Inc. P & P and V.A.T.

When ordering specify operating voltage required.
Offer applies to Great Britain and N.Ireland only.
Cash with order.

REL Equipment & Components Ltd.
Croft House, Bancroft, Hitchin, Hertfordshire, SG5 1BU, England
Telephone: Hitchin(0462)57181(10 lines) Telex: 82431

RELAYs

SPECIAL OFFER

CO-AX RELAYS
For Aerial Switching

- Available with 12V or 24V DC coil
- Single change-over contact
- For use with UR43 co-ax cable
- Characteristic impedance: 50 ohms
- Nominal frequency: 450 MHz
- VSWR approx: 1:1
- Cross-talk: 39dB
- Contact rated at 1 amp or 50W max.

£5 EACH
Inc. P & P and V.A.T.

When ordering specify operating voltage required.
Offer applies to Great Britain and N.Ireland only.
Cash with order.

REL Equipment & Components Ltd.
Croft House, Bancroft, Hitchin, Hertfordshire, SG5 1BU, England
Telephone: Hitchin(0462)57181(10 lines) Telex: 82431
...The leaders through creativity

GR 1657 Digibridge

Automatically measures R, L, C, D and Q. Ranging from 0.001Ω to 99.999 MΩ, 0.0001 mH to 9999.9H, 0.0001 nF to 99999μF. D from 0001 to 9999 and Q from 00.01 to 999.9. Basic accuracy 0.2%. Five digit display for R, L and C, four digit display for D and Q.

Microprocessor - directed ranging. Selectable test frequencies of 1 KHz and 100 Hz (120Hz). Series or parallel measurement selection. Built-in Kelvin test fixture tests radial and axial lead components. Other bridges from our range include:

GR1650 GR1656 GR1608
RLC Bridge RLC Bridge RLC Bridge
Precision 1% 0.1% 0.05%

It is easy to test components with GenRad. Write or call for descriptive literature to GenRad Ltd. Bourne End, Bucks SL8 5AT. (06285) 26611

GenRad
SURROUND SOUND KITS

Demodulator TDM29
- A new JVC design with improved muting.

Type A Variomatrix
- Decoder Synthesizer (with or without SQ Option).

Decoder
- Type 3A
- Type 5A

PRICE LIST (VAT in brackets; overseas customers neglect):

- **CD4**
 - Complete kit: £35.00+ (£4.38)
 - PCB ICS and coils only: £18.00+ (£2.25)
 - Varimatrix Decoder Kit: £32.00+ (£4.00)
 - As above but with SQ option: £36.00+ (£4.50)
 - Type 13A Kit: £26.50+ (£3.31)
 - Type LSA Kit: £31.50+ (£3.94)
 - PCBs (for both types): £6.90+ (£0.86)
 - Master Switch Kit: £9.50+ (£1.20)
 - 4 Gang Potentiometer: £2.00+ (£0.25)

- **QS**
 - Variomatrix Decoder Kit: £32.00+ (£4.00)
 - As above but with SQ option: £36.00+ (£4.50)

- **SQ**
 - Type L3A Kit: £26.50+ (£3.31)
 - Type L5A Kit: £31.50+ (£3.94)

FREE SAMPLES and catalogue showing our full range of bushings on request.

HEYCO NYLON SNAP BUSHINGS convert sharp edges to smooth, insulated holes, quickly and easily. Snap lock into panels. 56 sizes to fit holes from 1/8" to 3" diameter.

HEYCO NYLON HOLE PLUGS seal unwanted holes neatly, quickly and easily. Low cost. Rattle-free fit. 25 sizes to fit holes from 1/8" to 2" diameter.

For details send SAE to

COMPACOR ELECTRONICS LIMITED
5 DELL WAY, LONDON W13 8JH. Telephone 01-998 8221

TIME + FUEL + EFFORT = MONEY

You can effectively reduce costs by the installation of a STORNO mobile radio system.

To investigate further, write, telephone or telex to

STORNO

RADIO COMMUNICATION SYSTEMS

Storno Limited, Frimley Road, Camberley, Surrey.
Telephone: Camberley (0276) 29131 Telex: 858154

SAME DAY DISPATCH

DAVENTRY
67 HIGH STREET
DAVENTRY
NORTHANTS
TEL: (032-72) 76545

UXBRIDGE

METAC ELECTRONICS & TIME CENTRE
3 THE NEW ARCADE
HIGHLST, UXBIRIDGE
MIDDLESEX
TEL. UXBIRIDGE (0895) 56961

Cash, Cheque or Postal Order or if you wish to use Barclaycard or Access, simply quote name, address and card number when ordering.

SHOWROOMS OPEN 9 - 5.30 DAILY
The Litesold ETC/2B provides simple, tamper-proof, electronic temperature control.

- **CLOSELY** temperature controlled
- **INSTANTLY** adjustable, yet tamper-proof
- **ENTIRELY** static and transient free
- **LOW** voltage DC operated
- **INEXPENSIVE** and simple to maintain

LIGHT SOLDERING DEVELOPMENTS LIMITED
97-99 Gloucester Road, Croydon, Surrey.

Tel: 01 689 0574 Telex: 8811945

MODELLING R.F. SIGNAL GENERATOR
Price £54.85

- **150 KHz** — 220 MHz on fundamentals.
- **8** clear scales — Total length 130mm.
- **Spin-Wheel** Slow Motion Drive 11 — 1 ratio.
- **Overall Accuracy** — ±1%
- **Modulation** — Variable output.
- **Internal Crystal Oscillator** providing calibration checks throughout all ranges.
- **Mechanical scale adjustment** for accurate alignment against internal 1MHz crystal oscillator.
- **Powered by 9V Battery.**

Trade and Export enquiries welcome.
Send for full technical leaflet.
Post and Packing £0.06 extra

DEMA ELECTRONICS INTERNATIONAL
ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYST

DMS 74 SERIES

NEW LOW PRICES

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>400A 014</td>
<td>4050</td>
<td>0.16</td>
</tr>
<tr>
<td>400A 014</td>
<td>4050</td>
<td>0.14</td>
</tr>
<tr>
<td>400A 014</td>
<td>4050</td>
<td>0.10</td>
</tr>
<tr>
<td>400A 014</td>
<td>4050</td>
<td>0.06</td>
</tr>
<tr>
<td>400A 014</td>
<td>4050</td>
<td>0.04</td>
</tr>
<tr>
<td>400A 014</td>
<td>4050</td>
<td>0.02</td>
</tr>
<tr>
<td>400A 014</td>
<td>4050</td>
<td>0.01</td>
</tr>
</tbody>
</table>

SCHOTTKY

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SC2950</td>
<td>2SC2950</td>
<td>1.25</td>
</tr>
<tr>
<td>2SC2950</td>
<td>2SC2950</td>
<td>1.05</td>
</tr>
<tr>
<td>2SC2950</td>
<td>2SC2950</td>
<td>0.85</td>
</tr>
<tr>
<td>2SC2950</td>
<td>2SC2950</td>
<td>0.65</td>
</tr>
<tr>
<td>2SC2950</td>
<td>2SC2950</td>
<td>0.45</td>
</tr>
<tr>
<td>2SC2950</td>
<td>2SC2950</td>
<td>0.25</td>
</tr>
</tbody>
</table>

DEMA ELECTRONICS INTERNATIONAL
P.D. Box 407
San Ramon, Ca. 94583 USA
Cable: DEMAELINTL
New Achievements from Xcelite

Xcelite technology has created some new additions to the famous 99 SERIES of Interchangeable Tools. The first of these is the Compact Set of Ball-End Hex drivers which, as illustrated, can drive from any angle.

Also now available in the same series are the POSIDIV blades Nos. 1, 2 and 3.

Send for the complete Xcelite precision tools catalogue from:

Special Products Distributors Limited
81 Piccadilly, London W1V 0HL
Telephone: 01-629 9550

XCELITE PROFESSIONAL HAND TOOLS
WW — 066 FOR FURTHER DETAILS

VALVES

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1065</td>
<td></td>
<td>1.38</td>
</tr>
<tr>
<td>AHE</td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>APF3</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>APF4</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>B12H</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>D12H</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>D13H</td>
<td></td>
<td>1.35</td>
</tr>
<tr>
<td>D15H</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>D18H</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>D65H</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>DL70</td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>DM30</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>D2N20</td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>D2N26</td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>D2N30</td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>D2N50</td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>D2N75</td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>D2N100</td>
<td></td>
<td>0.70</td>
</tr>
</tbody>
</table>

PLUMBICON TUBES TYPES XO 1021 Mullard

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Current</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>P56G</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
<tr>
<td>P56L</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
<tr>
<td>P56M</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
<tr>
<td>P56N</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
<tr>
<td>P56O</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
<tr>
<td>P56P</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
<tr>
<td>P56Q</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
<tr>
<td>P56R</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
<tr>
<td>P56S</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
<tr>
<td>P56T</td>
<td>0.56</td>
<td>1.06</td>
<td>65.5</td>
</tr>
</tbody>
</table>

TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Current</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3391</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254172</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VOLTMETER WITH A GUARDIAN

<table>
<thead>
<tr>
<th>Meter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>812A</td>
<td></td>
</tr>
<tr>
<td>807</td>
<td></td>
</tr>
<tr>
<td>7234/89</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
</tr>
</tbody>
</table>

VIDEOMICROSCOPE TYPE P 863 B English Electric

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Current</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SC7</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLUMBIC TUBES has been calculated and found to be 150.00.
CURRENT RANGE OF NEW L.T. TRANSFORMERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Sec Type</th>
<th>Amps</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24-48-48</td>
<td>12</td>
<td>£7.00</td>
</tr>
<tr>
<td>1</td>
<td>24-48-48</td>
<td>12</td>
<td>£6.00</td>
</tr>
<tr>
<td>2</td>
<td>24-48-65</td>
<td>8</td>
<td>£7.95</td>
</tr>
<tr>
<td>1</td>
<td>24-48-65</td>
<td>8</td>
<td>£7.60</td>
</tr>
<tr>
<td>2</td>
<td>24-48-86</td>
<td>5</td>
<td>£9.15</td>
</tr>
<tr>
<td>1</td>
<td>24-48-86</td>
<td>5</td>
<td>£8.75</td>
</tr>
<tr>
<td>2</td>
<td>24-48-100</td>
<td>4</td>
<td>£9.35</td>
</tr>
<tr>
<td>1</td>
<td>24-48-100</td>
<td>4</td>
<td>£8.95</td>
</tr>
</tbody>
</table>

- **FULLY SHROUDED TYPE TERMINAL CONNECTIONS**
 - 22S24: 4, £8.75 | 75p |
 - 14S24: 6, £10.50 | 75p |
 - 12S24: 16, £11.50 | 75p |
 - 12S28/30: 12, £12.25 |
 - 12S30: 17, £13.75 |
 - 14S28: 8, £14.50 |
 - 16S30: 3, £16.00 |
 - 14S40: 8, £16.50 |
 - 16S40: 8, £18.00 |

- **3 PHASE ISOLATION TRANSFORMERS**
 - For master control. Made in tubular and open frame.
 - 80v, 300amps. £2.50.
 - 120v, 600amps. £3.50.
 - 240v, 300amps. £4.25.

GARDEN TRANSFORMERS

- **100V TRANSFORMERS**
 - 100v, 400amps. £2.75.
 - 100v, 600amps. £3.00.
 - 100v, 800amps. £3.75.

HIGH VOLTAGE TRANSFORMERS

- **220-240v TRANSFORMERS**
 - 3 phase. 540v, 150amps. £3.60.
 - 440v, 150amps. £4.00.

LOW VOLTAGE TRANSFORMERS

- **240v TRANSFORMERS**
 - 230v, 94v, 300amps. £4.30.
 - 230v, 100v, 400amps. £5.40.

- **240v TRANSFORMERS**
 - 240v, 80v, 250amps. £5.00.
 - 240v, 100v, 300amps. £6.00.

- **240v TRANSFORMERS**
 - 240v, 120v, 400amps. £6.40.
 - 240v, 200v, 500amps. £7.20.

- **240v TRANSFORMERS**
 - 240v, 300v, 600amps. £8.00.

WIND Midwest TRANSFORMERS

- **110v TRANSFORMERS**
 - 110v, 100amps. £3.00.
 - 110v, 300amps. £4.50.

POWER TRANSFORMERS

- **110v TRANSFORMERS**
 - 110v, 300amps. £4.25.
 - 110v, 500amps. £5.00.

LOW VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 20v, 100amps. £3.50.
 - 24v, 30v, 50amps. £3.90.

- **24v TRANSFORMERS**
 - 24v, 40v, 35amps. £4.50.
 - 24v, 60v, 20amps. £5.50.

LOW VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 20amps. £5.90.
 - 24v, 100v, 15amps. £7.00.

LOW VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 15amps. £7.60.
 - 24v, 100v, 10amps. £8.30.

- **24v TRANSFORMERS**
 - 24v, 100v, 10amps. £9.00.

HIGH VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 10amps. £7.80.
 - 24v, 100v, 10amps. £8.60.

LOW VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 10amps. £8.40.
 - 24v, 100v, 10amps. £9.10.

HIGH VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 10amps. £8.70.
 - 24v, 100v, 10amps. £9.40.

LOW VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 10amps. £9.20.
 - 24v, 100v, 10amps. £9.90.

HIGH VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 10amps. £9.70.
 - 24v, 100v, 10amps. £10.40.

LOW VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 10amps. £10.20.
 - 24v, 100v, 10amps. £10.90.

HIGH VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 10amps. £10.70.
 - 24v, 100v, 10amps. £11.40.

LOW VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 10amps. £11.20.
 - 24v, 100v, 10amps. £11.90.

HIGH VOLTAGE TRANSFORMERS

- **24v TRANSFORMERS**
 - 24v, 50v, 10amps. £11.70.
 - 24v, 100v, 10amps. £12.40.
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring:
- Switching for both encoding (low-level h.f. compression) and decoding
- A switchable f.m. stereo multiplex and bias filter
- Provision for decoding Dolby f.m. radio transmissions (as in USA)
- No equipment needed for alignment
- Suitability for both open-reel and cassette tape machines
- Check tape switch for encoded monitoring in three-head machines

The kit includes:
- Complete set of components for stereo processor
- Regulated power supply components
- Board-mounted DIN sockets and push-button switches
- Fibreglass board designed for minimum wiring
- Solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts

Typical performance
- Noise reduction better than 9dB weighted
- Clipping level 16.5dB above Dolby level (measured at 1% third harmonic content)
- Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%
- Signal-to-noise ratio: 75dB (20Hz to 20kHz, signal at Dolby level) at Monitor output
- Dynamic Range >90dB
- 30mV sensitivity

PRICE: £39.90 +VAT

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration tapes are available for open-reel use and for cassette (specify which)</td>
<td>£2.20 +VAT *</td>
</tr>
<tr>
<td>Single channel plug-in Dolby® PROCESSOR BOARDS (92 x 87mm) with gold plated contacts are available with all components</td>
<td>£8.20 +VAT</td>
</tr>
<tr>
<td>Single channel board with selected fet</td>
<td>£2.50 +VAT</td>
</tr>
<tr>
<td>Gold Plated edge connector</td>
<td>£1.50 +VAT *</td>
</tr>
<tr>
<td>Selected FETs 60p each +VAT, 100p +VAT for two, £1.90 +VAT for four</td>
<td></td>
</tr>
</tbody>
</table>

Please add VAT @ 12½% unless marked thus*, when 8% applies (or current rates)

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

INTEGREX LTD.

Portwood Industrial Estate, Church Gresley,
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106
S-2020TA STEREO TUNER/AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag. input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range 88—104MHz. 30dB mono S/N @ 1.2μV. THD 0.3%. Pre-decoder 'birdy' filter.

PRICE: £58.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range 88—104MHz. 20dB mono quieting @ 0.75μV. Image rejection — 70dB. IF rejection — 85dB. THD typically 0.4%. IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders. Compare this spec. with tuners costing twice the price.

Mono £32.40 + VAT
With ICPL Decoder £36.67 + VAT
With Portus-Haywood Decoder £39.20 + VAT

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter

PRICE: Stereo £31.95 + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Power 'on/off' FET transient protection.

PRICE: £33.95 + VAT

ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BASIC NELSON-JONES TUNER KIT £14.28 + VAT
BASIC MODULE TUNER KIT (stereo) £16.75 + VAT
PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER KIT £8.00 + VAT
Marshall's

CA3090
- CA30860.51
- CA3080A 1.88
- CA3053

GROSVENOR HOUSE, 19-21 APRIL

LM3725
- Telex 82362
- Spares, repairs, overhauls and maintenance

LM3885
- 0.98
- 1.91
- 2.25
- 1.75

TAA522
- 0.91
- WW -034 FOR FURTHER DETAILS

TBA560
- 1.91
- WW -063 FOR FURTHER DETAILS

CM7105
- 0.60
- 1.00
- 1.05
- 1.45

SCE4160
- 2.25
- 1.62
- 2.21
- 1.95

28A 400V
- 0.80

654201/2
- & 85 West Regent St Glasgow G2 2QD Tel: 041-332 4133

POPULAR SEMICONDUCTORS (A very small selection from our vast stocks, please enquire about devices not listed.)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>······</td>
<td>······</td>
<td>·····</td>
</tr>
<tr>
<td>······</td>
<td>······</td>
<td>·····</td>
</tr>
<tr>
<td>······</td>
<td>······</td>
<td>·····</td>
</tr>
</tbody>
</table>

DATA AND COMMUNICATIONS TERMINALS

Telnetype 28, 32, 33, 35, 40
- TermiNet 30, 300 & 1200 (30 and 120 cps)
- Teletype 132 and 1200 series (portable/fixed 30 cps) with integral coupler and RS 232C

Other page printers (by Siemens, ITT Creed, etc.)
- Spares, repairs, overhauls and maintenance
- Other types and models available
- Refurbished units also available
- Short and long period rentals
- Minicomputer interfaces
- Quantity discounts
- Immediate delivery

RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

- Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.
- Maximum power output: 90 watts av. per channel into 5 ohms.

Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)

Distortion, power amplifier: Typically 0.005% at 25 watts, less than 0.02% at rated output (Typically 0.01% at 1 kHz)

Num and noise: Diao.—83dB measured flat with noise bandwidth 23 KHz (ref: 5mV); —85dBV “A” weighted (ref: 5mV)

Line —85dBV measured flat (ref 300K)

85dB 8V “A” weighted (ref 100K)

SWIFT OF WILMSLOW

Dept WW, 8 Swan Street, Wilmslow, Cheshire
(Tel: 26213)

Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank Square, Wilmslow (Tel: 25999)

Now available ZD100 power amplifier and ZD22 pre-amplifier

SEE US AT THE ALL ELECTRONIC SHOW — GROSVENOR HOUSE, 19-21 APRIL

STORE FOR OUR SPECIAL PRODUCTS LIST

RADFORD HD250

High Definition Stereo Amplifier

New!

£65.84

We now offer a comprehensive range of Microprocessors and associated equipment and components including the famous National Semiconductor SC/MP Wraith and Keyboard.

TELEPRINTER EQUIPMENT LTD.

70-80 AKEN STREET TRING, HERTS., U.K.

£65.84

We now offer a comprehensive range of Microprocessors and associated equipment and components including the famous National Semiconductor SC/MP Wraith and Keyboard.

RADFORD HD250

High Definition Stereo Amplifier

New!

£65.84

We now offer a comprehensive range of Microprocessors and associated equipment and components including the famous National Semiconductor SC/MP Wraith and Keyboard.
MANY ALI BOXES IN STOCK. MANY SIZES ALUMINIUM PANELS. 6 AND HEAD DEMAGNETISER. Suitable for Teak finish. For EMI 13 x 8 speakers.

Radio Books and Components Lists 10p. (Minimum posting charge 30p.) All prices include VAT. (We accept Access or Barclaycard. Phone your Order)

Teak veneer grill. Frame sizes 3 x 16 x 7 in. £7.50. 3 x 12 x 6 in. £5.00. 2 x 12 x 6 in. £3.00. Suitable carrying cab E14. £13.95. £13.95 75W £24.95. De Luxe Horn Tweeter £13.50. Horn Tweeters 21/4 x 3 in. 12, diameter 6 mm £3.50. £2.20. £7.50 Post £1.

EUROPEAN SIREN SPEAKERS. 150 WATTS. HIGH STABILITY. 1/2W 2% 10 ohms to 6 meg., 12p. 150 WATT DISCO AMPLIFIER CHASSIS. Four loudspeaker outputs 4 to 16 ohm. All transistor. £3.35 20V 3 amp., £2.50, 20V 1 amp., £2.00 12V 1 1/2A, HALF WAVE Selenium Rectifier, 25p. 6 or 12V outputs, 11/2 amp 40p; 2 amp 55p; 4 amp 85p.

The INSTITUTE BULLET-HEAD 'MINOR' 10 watt AMPLIFIER KIT. This kit is suitable for record players, guitar, tape playback, electronic instruments or small S.A.E. systems. Various versions available. Mono. £11.25; Stereo. £14.25. Post £1.60. Special 1/4 in. channeled input 100mW (100 ohm). £3.00. Full instructions supplied. S.A.E. details. Full instructions supplied. £3.50; £5.00. £7.00. £14.50 Post £2.50. LOUDSPEAKER GRILLES will fit 8 in. tweeter. £3.00. £3.50. £4.00. £4.50. £5.00. £5.50. £6.00. £6.50. £7.00. £7.50. £8.00. £8.50. £9.00. £9.50. £10.00. £10.50. £11.00. £11.50. £12.00. £12.50. £13.00. £13.50. £14.00. £14.50. £15.00. £15.50. £16.00. £16.50. £17.00. £17.50. £18.00. £18.50. £19.00. £19.50. £20.00. £20.50. £21.00. £21.50. £22.00. £22.50. £23.00. £23.50. £24.00. £24.50. £25.00. £25.50. £26.00. £26.50. £27.00. £27.50. £28.00. £28.50. £29.00. £29.50. £30.00. £30.50. £31.00. £31.50. £32.00. £32.50. £33.00. £33.50. £34.00. £34.50. £35.00. £35.50. £36.00. £36.50. £37.00. £37.50. £38.00. £38.50. £39.00. £39.50. £40.00. £40.50. £41.00. £41.50. £42.00. £42.50. £43.00. £43.50. £44.00. £44.50. £45.00. £45.50. £46.00. £46.50. £47.00. £47.50. £48.00. £48.50. £49.00. £49.50. £50.00. £50.50. £51.00. £51.50. £52.00. £52.50. £53.00. £53.50. £54.00. £54.50. £55.00. £55.50. £56.00. £56.50. £57.00. £57.50. £58.00. £58.50. £59.00. £59.50. £60.00. £60.50. £61.00. £61.50. £62.00. £62.50. £63.00. £63.50. £64.00. £64.50. £65.00. £65.50. £66.00. £66.50. £67.00. £67.50. £68.00. £68.50. £69.00. £69.50. £70.00. £70.50. £71.00. £71.50. £72.00. £72.50. £73.00. £73.50. £74.00. £74.50. £75.00. £75.50. £76.00. £76.50. £77.00. £77.50. £78.00. £78.50. £79.00. £79.50. £80.00. £80.50. £81.00. £81.50. £82.00. £82.50. £83.00. £83.50. £84.00. £84.50. £85.00. £85.50. £86.00. £86.50. £87.00. £87.50. £88.00. £88.50. £89.00. £89.50. £90.00. £90.50. £91.00. £91.50. £92.00. £92.50. £93.00. £93.50. £94.00. £94.50. £95.00. £95.50. £96.00. £96.50. £97.00. £97.50. £98.00. £98.50. £99.00. £99.50.
PAKS - PARTS - AUDIO MODULES

PANEL METERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4" RANGE</td>
<td>0-100 UA</td>
<td>£0.50</td>
</tr>
<tr>
<td></td>
<td>1-500 UA</td>
<td>£0.50</td>
</tr>
<tr>
<td></td>
<td>0-1 MA</td>
<td>£0.60</td>
</tr>
<tr>
<td>2" RANGE</td>
<td>0-50 VA</td>
<td>£0.50</td>
</tr>
<tr>
<td></td>
<td>0-500 MA</td>
<td>£0.50</td>
</tr>
<tr>
<td></td>
<td>1-10 MA</td>
<td>£0.60</td>
</tr>
</tbody>
</table>

EDGEWISE BALANCE/STANDARD METER

<table>
<thead>
<tr>
<th>Size</th>
<th>Sensitivity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>42x42x28mm</td>
<td>1000/1000 Ohms</td>
<td>£1.15</td>
</tr>
</tbody>
</table>

Vu METER

<table>
<thead>
<tr>
<th>Size</th>
<th>Sensitivity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x20x50mm</td>
<td>130 VA</td>
<td>£3.20</td>
</tr>
</tbody>
</table>

MINI-MULTI-METER

<table>
<thead>
<tr>
<th>Size</th>
<th>Sensitivity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 2 x 25mm</td>
<td>0.1-100 Ohms</td>
<td>£2.00</td>
</tr>
</tbody>
</table>

HIGH SENSITIVITY TEST METER

<table>
<thead>
<tr>
<th>Size</th>
<th>Sensitivity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 x 6 x 60mm</td>
<td>0.001-5 kV</td>
<td>£5.95</td>
</tr>
</tbody>
</table>

CMOS ICs

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1011</td>
<td>£0.05</td>
</tr>
<tr>
<td>MC1002-24V</td>
<td>£0.06</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4148</td>
<td>£0.06</td>
</tr>
<tr>
<td>1N4149</td>
<td>£0.11</td>
</tr>
</tbody>
</table>

AUDIO MUNDULES

P&P

Postage and Packing is £2.50 unless otherwise stated. Minimum order £15.

* No. 225 110 THYRISTOR PROJECTS USING SCR & TRIACS PRICE £2.50
* No. 233 A101 BEGINNERS GUIDE TO TRANSMITTERS PRICE £2.25
* No. 230 BEGINNERS GUIDE TO TELEVISION PRICE £2.50
* No. 232 BEGINNERS GUIDE TO AUDIO MODULES PRICE £2.50
* No. 220 BEGINNERS GUIDE TO ELECTRICITY PRICE £2.25

THYRISTORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 THY104</td>
<td>£0.25</td>
</tr>
<tr>
<td>100 THY104</td>
<td>£0.50</td>
</tr>
</tbody>
</table>

ORDERING

Add 12% to prices marked *.
Add 8% to others excepting those marked **.

V.A.T.

Add 12% to prices marked *.
Add 8% to others excepting those marked **. These are zero.

P.O. BOX 6, WARE, HERTS

OFFERS OFFICES OPEN 9.00 TO 5.30 MON - SAT.
High quality modules for stereo, mono and other audio equipment.

STEREO FM TUNER

OUR PRICE ONLY

£20.45

Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls.

Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS12 can be used if no suitable supply is available, together with the Transformer T538.

The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied.

STEREO PRE-AMPLIFIER

A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together with two really effective filters for high and low frequencies, plus tape output.

AL 30

AUDIO AMPLIFIER MODULE

The versatility of the design makes it ideal for use in record players, tape recorders, stereo amplifiers and cassette and cartridge tape players in the home.

SPECIFICATION:

- Harmonic Distortion Po=3 watts f=1KHz 0.25%
- Load Impedance 8-16ohm
- Dimensions: 29mm x 89mm x 35mm
- Sensitivity for Rated O/P = Vs=25V. RL=8ohm f=1KHz 75mV. RMS

AL30 10w R.M.S. £3.45

- Frequency Response = 1dB 20Hz-20KHz. Sensitivity of Inputs
- 1. Tape Input 100mV into 100K ohms
- 2. Radio Tuner 100mV into 10K ohms
- 3. Magnetic P.U. 3mV into 50K ohms
- P.U. Input equals to RIAA curve with 1dB 10Hz to 20KHz. Supply = 20-30V 270mA.

NEW PA12 Stereo Pre-Amplifier completely redesigned for use with AL 30 Amplifier Modules. Features include on/off volume/ balance, Bass and Treble controls. Complete with tape output.

OUR PRICE

£6.70

MPA 30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new, M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only.

It is provided with a standard DIN input socket for ease of connection.

Full instructions supplied.

OUR PRICE

£2.85

NEW PA12 Stereo Pre-Amplifier complete with Transformer T538 £2.30

<table>
<thead>
<tr>
<th>Input voltage 15-20v A.C.</th>
<th>Output voltage 22-30v D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current 800 mA Max.</td>
<td>Size 63mm x 43mm x 26mm</td>
</tr>
</tbody>
</table>

Transformer T538 £2.30

OUR PRICE

£1.30

BI-PAK

P.O. BOX 6, WARE, HERTS.

OUR PRICE

£3.75

NEW PA12 Stereo Pre-Amplifier complete with Transformer T538 £2.30

<table>
<thead>
<tr>
<th>Input voltage 15-20v A.C.</th>
<th>Output voltage 22-30v D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current 800 mA Max.</td>
<td>Size 63mm x 43mm x 26mm</td>
</tr>
</tbody>
</table>

Transformer T538 £2.30

OUR PRICE

£1.30

STEREO 30 COMPLETE AUDIO

7 + 7 WATTS R.M.S.

OUR PRICE

£16.25

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e. high quality ceramic pick-up, stereo tuner, stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs, main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinets available. Ideal for the beginner or the advanced constructor who requires Hi-Fi performance with a minimum of installation difficulty (can be installed in 30 mins).

TRANFORMER £2.45 plus 62p p & p

OUR PRICE

£18.25

NEW

The AL60 and AL20/30, SA450 etc.

<table>
<thead>
<tr>
<th>Input voltage 15-20v A.C.</th>
<th>Output voltage 22-30v D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current 800 mA Max.</td>
<td>Size 63mm x 43mm x 26mm</td>
</tr>
</tbody>
</table>

Transformer T538 £2.30

OUR PRICE

£1.30

SHOP

18 BALDOCK ST., WARE, HERTS.

OPEN 9 to 5.30 Mon / Sat.
58-60 GROVE RD, WINDSOR, BERKS. SL4 1HS.
TEL. 54525

ADD 87, VARKED.
EXCEPT GOV'T DEPT: ALL PRICES & VAT

INSTANT SINAD MEASUREMENTS

with the

The SINADDER is a specialized distortion meter for Sinad Measurements. Just connect it to the audio output and read SINAD directly. No adjustments to make. Automatic circuitry does the level setting for you.

£120 p. p. & VAT

LYONS INSTRUMENTS
Hoddesdon Herts EN11 9DX Tel: 67161 Telex 22724
A Claude Lyons Company

WWW--921 FOR FURTHER DETAILS

PUT IT ON RECORD WITH WATANABE

MULTICORDER - SERVOCORDER
* POTENTIOMETRIC
* 1-6 PENS x 250mm CHARTWIDTH
* MULTI RANGE x MULTISPEED

LINEARCORDER - MINIWRITER
* FAST RESPONSE DC
* 1-16 PENS & 6cm PER CHANNEL
* MULTI RANGE x MULTISPEED

X - Y RECORDERS
* HORIZONTAL & VERTICAL USE
* 1m & 3m TIME BASE
* ROLL CHART OPTION

ENVIRONMENTAL EQUIPMENT LTD. Eastheath Avenue, Wokingham, Berks, RG11 2PP. Tel: Wokingham 784922

WWW--103 FOR FURTHER DETAILS

QUARTZ CRYSTALS - FAST!

AEL CRYSTALS LIMITED
Canary Wharf, Milner, Surrey, England RH1 XU
Telephone: Horley (0233) 282. Telex: 61111 (Arrowmark Horley)

AEL日凌晨

INSTANT SINAD MEASUREMENTS

with the

The SINADDER is a specialized distortion meter for Sinad Measurements. Just connect it to the audio output and read SINAD directly. No adjustments to make. Automatic circuitry does the level setting for you.

£120 p. p. & VAT

LYONS INSTRUMENTS
Hoddesdon Herts EN11 9DX Tel: 67161 Telex 22724
A Claude Lyons Company

WWW--921 FOR FURTHER DETAILS

PUT IT ON RECORD WITH WATANABE

MULTICORDER - SERVOCORDER
* POTENTIOMETRIC
* 1-6 PENS x 250mm CHARTWIDTH
* MULTI RANGE x MULTISPEED

LINEARCORDER - MINIWRITER
* FAST RESPONSE DC
* 1-16 PENS & 6cm PER CHANNEL
* MULTI RANGE x MULTISPEED

X - Y RECORDERS
* HORIZONTAL & VERTICAL USE
* 1m & 3m TIME BASE
* ROLL CHART OPTION

ENVIRONMENTAL EQUIPMENT LTD. Eastheath Avenue, Wokingham, Berks, RG11 2PP. Tel: Wokingham 784922

WWW--103 FOR FURTHER DETAILS

QUARTZ CRYSTALS - FAST!

AEL CRYSTALS LIMITED
Canary Wharf, Milner, Surrey, England RH1 XU
Telephone: Horley (0233) 282. Telex: 61111 (Arrowmark Horley)

AEL日凌晨
VARIABLE TRANSFORMER SIZES

<table>
<thead>
<tr>
<th>Cartridge extra</th>
<th>INPUT 230 v. A.C. 50/60</th>
<th>OUTPUT VARIABLE 0/260v. A.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200W (120v. A.C)</td>
<td>240V. A.C. 240 volts A.C</td>
<td>200W (120v. A.C. 240 volts A.C</td>
</tr>
<tr>
<td>100W (360v. A.C.)</td>
<td>360V. A.C. 360 volts A.C</td>
<td>100W (360v. A.C. 360 volts A.C</td>
</tr>
<tr>
<td>50W (720v. A.C.)</td>
<td>720V. A.C. 720 volts A.C</td>
<td>50W (720v. A.C. 720 volts A.C</td>
</tr>
<tr>
<td>25W (1440v. A.C)</td>
<td>1440V. A.C. 1440 volts A.C</td>
<td>25W (1440v. A.C. 1440 volts A.C</td>
</tr>
<tr>
<td>15W (2160v. A.C)</td>
<td>2160V. A.C. 2160 volts A.C</td>
<td>15W (2160v. A.C. 2160 volts A.C</td>
</tr>
<tr>
<td>10W (3240v. A.C)</td>
<td>3240V. A.C. 3240 volts A.C</td>
<td>10W (3240v. A.C. 3240 volts A.C</td>
</tr>
<tr>
<td>5W (6480v. A.C)</td>
<td>6480V. A.C. 6480 volts A.C</td>
<td>5W (6480v. A.C. 6480 volts A.C</td>
</tr>
</tbody>
</table>

WHY PAY MORE?

MIGHT HAVING SOC. VAT v. 230V. A.C. 50/60 D.C.
360V. A.C. 360 volts A.C | 360V. A.C. 360 volts A.C |
2160V. A.C. 2160 volts A.C	2160V. A.C. 2160 volts A.C
1440V. A.C. 1440 volts A.C	1440V. A.C. 1440 volts A.C
720V. A.C. 720 volts A.C	720V. A.C. 720 volts A.C
360V. A.C. 360 volts A.C	360V. A.C. 360 volts A.C
180V. A.C. 180 volts A.C	180V. A.C. 180 volts A.C
90V. A.C. 90 volts A.C	90V. A.C. 90 volts A.C
45V. A.C. 45 volts A.C	45V. A.C. 45 volts A.C
22.5V. A.C. 22.5 volts A.C	22.5V. A.C. 22.5 volts A.C

VA @ 110 VOLTAC

AT CURRENT RATE

MUST BE ADDED TO ALL

ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING

POSTAGE UNLESS OTHERWISE STATED

ACCOUNT CUSTOMERS MIN ORDER £100.00

SERVICE TRADING CO.

SHOWROOMS NOW OPEN

AMPLE PARKING

ALL MAIL ORDERS. ALSO CALLERS AT

57 BRIIDGMAN ROAD, CHISWICK, LONDON, W4 8BB Phone: 01-995 1560

Calendar Trade

Relays

Wireless World, May 1977

V 50's

PACKING E12.00, p&p 60p

0.32 kg. SERVICE TRADING CO. Price £6.80.

Sturdy compact moving coil instrument with 21
volts 250 - 500 (Sensitivity 20000/V D.C. & A.C.)
Rated 1 p swill handle up to 7 p. s. 1. Forged brass body,
Unimax USA 10 for £4.00 plus 50p P&P (min. order 101
50 for £10.00, post paid.

MINIATURE UNISELECTOR

Dynamically

Other types available, phone for details.

38mm x 31mm 12 0.f.m. E2.76. Poor 50p

BLOWERS (230/2400 AC)

switched up to 21 positions and can be reset from
The ingenious electro mechanical device can be

VAT 121/2%.

Price £1.25. Post 50p

230 VOLT FAN ASSEMBLY

motor, torque 14.5kg, gear ratio 144-1. Brand new incl. compositors,
FHP motor type C7333/15 220/240 volts AC. 19 rpm reversible

CONTACTOR

Mfg. by Mixed Relays, type C238 220/250 AC ops. Contact 4/0
In 230 volts ac at 400 volts AC post £6.00. F7s 1hp.

CIFTRON

P&P £1.25.

230 VOLT FAN ASSEMBLY

VAT 12 1/2%.

21-WAY SELECTOR

SWITCH with reset coil
The switch may be fitted with a coil which
switch can be switched up to 21 positions and can be reset from
any position. Mfg. 12 volt, 24 volt. Size 70 x 50 x 25. £3.50.

PRECISION CENTRIFUGAL BLOWERS

(230/240V AC)

BLOWER UNIT

220/240 v. a.c. precision German built. Ovens, Fridges, bathrooms, etc. Large.

TUBES

60 A 1.5 Enamel coated £6.00, 25 A Met. £6.50, 23 A Plastic £7.00.

COPPER CORE wave guide. £6.00.

MINIATURE UNSELECTOR

MICRO SWITCHES

Dynev relay micro switch Type V 1115 22-1C 10 to £2.00
20 amp. - £1.75. Post 75p. 10 amp. - £1.75. Post 75p. 15 amp. - £1.75. Post 75p.

NEW HEAVY DUTY SOLENOID

Mfg. by Unimat, Inc. 220v. A.C. operation approx. 200, pull £1.25. Price £7.00. £5.00.

230 - 250 VOLT A.C. SOLENOID

Appearance similar to illustration. Approximate weight 22 oz. £1.25. Price £7.50. £5.50.

24 VOLT D.C. SOLENOIDS

UNIT with integral armature and field in oil, duty limited approx. 25 lb, pull at 25 volt.
24 volt or 12 volt. Suitable for 42 volt c. £1.25. Price £7.50. £5.50.

240 A.C. SOLENOID OPERATED FLUID VALVE

Fast 1 p. c. seal and handle up to 7 a. Can be used with air, gas or steam. £1.25.

INSULATION TESTERS (NEW)

Test to 1100 volts. Simple, rugged construction. Can be used with either 240 volt or 110 volt A.C.

REVERSIBLE MOTOR 230v A.C.

General Electric 230v 1 - 200 watts. £2.00.

REVERSIBLE MOTOR 230V A.C.

Parry当日 200w. £3.00.

METERS NEW 90MM Diameter

Type 6ES5 A.C. 5 25 50 250 500, £3.00. £2.50.

BENDIX MAGNETIC CLUTCH

Superior example of electromagnetic mechanics. Main body can be rotated in any 10° increments. Casing can be removed separately. £2.00.

TIME SWITCH

Type W 425 belt driven time switch 230/250 volt A.C. Two or four position, £3.50. £3.25.

POWER RHEOSTATS

New. Ceramic construction. Integral terminal, embedded wiring, heavy duty brush assembly, continuous rating.

PROGRAMME TIMERS

230 Volt A.C. Operation. 15 or 20 second timing. £3.00. £2.50.

A.C. MAINS TIMER UNIT

Ideal for test, check, sound recording, etc. Type M.T.U.-1. Single pole switch, which can be preset for any period up to 15 sec., set via switch at end of the time period. Suitable for M.T.U.-3, £2.75.

DRAYTON MOTOR

115 lb. pull, 3600 rpm. Suits 100 - 500 watt lamps. Retains a 26mm. weight. £1.25. Post Free.

MANUFACTURE OF CUSTOM DESIGNS

NAME, ADDRESS, POST CODE

All mail orders, also callers at

9 LITTLE NEWPORT STREET, LONDON W1. Phone: 01-492 073A

ALL MAIL ORDERS. ALSO CALLERS AT

57 BRIIDGMAN ROAD, CHISWICK, LONDON, W4 8BB Phone: 01-995 1560 Calendar Trade.
MULTIMETER F4313 (Made in USSR)

Sensitivity:
- 1200 DC range: 10,000 Q/V
- Other DC ranges: 20,000 Q/V
- 1200 AC range: 6,000 Q/V
- 600 AC range: 15,000 Q/V
- 3000 AC range: 12,000 Q/V

AC/DC current ranges: 60-120-600 mA-3-12-300mA-1-2.6A

AC/DC voltage ranges: 60-300mV-1.2-6-30-120-300-600-1200V

Resistance ranges: 300-1-10-100-1M

Accuracy: 1.5% DC, 2.5% AC (full scale deflection)

Mirror scale and knife edge pointer. Taut suspension of movement. Transistor amplifier is used for all AC ranges thus achieving a common linear scale for both AC and DC ranges.

Meier is protected by a transistorised cut-out relay circuit. Range selection is achieved by clearly marked piano keys. Power source: 5 1.5V dry cells. Dimensions: 95 x 225 x 120mm.

PRICE £39.50 plus VAT

Packaging and postage £1.10

OSCILLOSCOPE CI-5

Made in USSR

Extremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive. Because of its bandwith of 10 MHz the instrument is suitable for general electronic applications and educational purposes where a sophisticated instrument would be too expensive and delicate. 3in. tube giving a 50 x 50mm clear display. Amplitude and time-base calibration. Sensitivity 30mm/v max. Triggered and free-running time-base, suitable for displaying pulses from 0.1 us to 3ms sec. A.C. mains operation.

Price £55.00 ex. works, plus VAT Packing and carriage (U.K. only) £3.00

A SELECTION FROM OUR LARGE STOCKS

TRANSISTORS

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Current</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1105</td>
<td>2N1487</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>2N1106</td>
<td>2N1488</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>2N1107</td>
<td>2N1489</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>2N1108</td>
<td>2N1490</td>
<td>0.20</td>
<td>0.25</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Current</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2048</td>
<td>2N2049</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>2N2050</td>
<td>2N2051</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>2N2052</td>
<td>2N2053</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>2N2054</td>
<td>2N2055</td>
<td>0.20</td>
<td>0.25</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1109</td>
<td>2N1110</td>
<td>300K</td>
</tr>
<tr>
<td>2N1111</td>
<td>2N1112</td>
<td>10K</td>
</tr>
</tbody>
</table>

FUZZY GUARANTEED

1976/1977

CATALOGUE

AVAILABLE 30p

P&P 25p min. (U.K. only). Please add 8% VAT + 12.5%

MINIMUM EXPORT ORDER £100

WE HAVE

A SPECIAL OFFER

FOR NEW AND EXISTING SUBSCRIBERS

SEND FOR DETAILS • DON'T DELAY

THE SEMICON

INTERNATIONAL TRANSISTOR INDEX

AND THE DIODE/SCR INDEX

WE HAVE

A SPECIAL OFFER

FOR NEW AND EXISTING SUBSCRIBERS

SEND FOR DETAILS • DON'T DELAY

SEMICON INDEXES LTD.

7, KING'S PARADE, KING'S ROAD, FLEET, HAMPSHIRE, GU13 9AB, U.K.

TELEPHONE: FLEET (025 14) 28526

TELEX: 858855 Banter G

WW—102 FOR FURTHER DETAILS
Marconi Test Equipment

TF232G circuit magnification meter.
TF455E Wave analyser.
TF8010 RF signal generator.
TF802 Universal Bridge.
TF895A/2 AM/FM generator.
TF10418 V.T. Voltmeter.
TF2200 Oscilloscope.
TF1060 Sensitive V./voltmeter.
TF1152A/1 RF power meter.
TF1245 Q-meter.
TF4172 200kHz frequency counter.
TF3142 Low capacitance bridge.
TF370 Wide-range RC oscillator.
TF2500 A/C power oscillator DC-1GHz.
TF2500 AI power meter.
TF2600 Sensitive V./voltmeter.
TF2604 Electronic voltmeter.
TF2808 Different DC voltmeter.
TF2660 Digital voltmeter.

Marconi TF995B/2 AM/FM Generators.

200kHz-220MHz in 5 bands. 0.1-12v-200mV. Continuously variable FM in two ranges to 75kHz. Price and full spec upon request.

EVER-READY NICKEL-CADMIUM BATTERY.

TF2600 Sensitive v/voltmeter.
TF2500 A/C power meter.
TF329G Circuit magnification meter.

Wireless World, May 1977

To catalogue the relative virtues of each type here, so please send an SAE for details.

DETECTIONEYKE

Is an explanation, that builds up from first principles, why iron sometimes

is impossible

to detect.

DETECTIONEYKE?

Not a spelling mistake, but a new publication from AMBIT that sets out to explain some of the basic theory that surrounds metal location techniques.

DETECTIONEYKE

It is an explanation, that builds up from first principles, why iron sometimes

is impossible

to detect.
To acquire long-distance TV reception, an aerial amplifier is needed which combines high gain and low noise performance. These properties you will find in a narrow band or channel amplifier. To obtain more amplified channels (programmes), SCHRADER ELECTRONICA has developed an electronic remotely tunable amplifier, which can be tuned at any desired channel from 21 up to 65, in other words the whole UHF Band (IV/V). The ideal position is to mount the RB 45 as near as possible to a UHF wide band aerial, in order to obtain a good signal to noise ratio. The RB 45 should be applied in combination with the power supply and control unit VR 12/01.

TECHNICAL DATA:

- Channel range: 21-65
- Gain: 22-30 dB
- Noise ratio: 3.5 dB
- Impedance input/output: 60/75
- Transistors: 2 x S1
- Varicapacitors: 5
- Max output voltage at dB: 300 mV
- Power consumption: 8 mA/18 V

Complete unit price £50 (RB 45 + VR 12/01). Long Distance Aerial £32.50. Channel 21-69 gain 13-18 dB.

Prices mentioned are FOB Amsterdam. By sending an international Money Order we will send you these articles immediately.

SCHRADER ELECTRONICA BV
Lippinstraat 4 B AMSTERDAM HOLLAND
Tel. 020-861543 Telex: TELAM + 18118

You’ve got to hand it to the 3001 thermometer.

Weighing only 300 gms., and easily fitting into the palm of your hand, the 3001 digital thermometer’s bright green 8.2 mm display gives 0.5°C resolution over the range -50°C to +1000°C.

A front panel thumb switch makes for simple control, and the unit’s dry batteries or rechargeable cells give up to 7 hours operational life.

Designed for use with thermocouple sensors the 3001 is completely self-contained, so if you need a reliable and durable thermometer that you can take anywhere; then you need a 3001. You’ll find it really handy.

Comark Electronics Limited,
Brookside Avenue, Rustington,
West Sussex BN16 3LF, England.
Tel: Rustington (090 62) 71911.
Telex: 877317.

WWW-065 FOR FURTHER DETAILS
SINGLE-CHIP SYNC PULSE GENERATOR

Our SPG is designed around a new Ferranti i.c. and is probably the simplest you can build.

Constructed on a p.c.b. (available through Readers’ PCBs Services) and housed in a veroboard measuring only 6 x 3 1/2 x 1 1/2" that includes an integral power supply unit, it provides mixed sync, mixed blanking, line drive, field drive and camera tube blanking.

Teletext decoder

This issue carries part 3 which deals with the construction of the input logic card.

Extending the Scope of VCRs

A special article shows how you can increase the scope of VCRs by some simple modifications.

Plus all our regular servicing features.

MAY ISSUE OUT NOW 45p
HI-FI NEWS 75W/CHANNEL AMPLIFIER

By Mr. Linsley-Hood

Table 1: Principal printed-circuit board for stereo amplifier

<table>
<thead>
<tr>
<th>No.</th>
<th>Feature</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Printed</td>
<td>Printed</td>
<td>£1.10</td>
</tr>
<tr>
<td>2.</td>
<td>Board for</td>
<td>front panel</td>
<td>£1.15</td>
</tr>
<tr>
<td>3.</td>
<td>Printed</td>
<td>rear panel</td>
<td>£1.10</td>
</tr>
<tr>
<td>4.</td>
<td>Printed</td>
<td>main board</td>
<td>£1.15</td>
</tr>
<tr>
<td>5.</td>
<td>Printed</td>
<td>socket board</td>
<td>£1.10</td>
</tr>
<tr>
<td>6.</td>
<td>Printed</td>
<td>circuit board</td>
<td>£1.15</td>
</tr>
</tbody>
</table>

Table 2: Main amplifier chassis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board</td>
<td>Printed</td>
<td>£1.15</td>
</tr>
<tr>
<td>Board</td>
<td>Main</td>
<td>£1.10</td>
</tr>
<tr>
<td>Board</td>
<td>Rear</td>
<td>£1.15</td>
</tr>
<tr>
<td>Board</td>
<td>Front</td>
<td>£1.10</td>
</tr>
<tr>
<td>Board</td>
<td>Socket</td>
<td>£1.15</td>
</tr>
</tbody>
</table>

Table 3: Passive components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitor</td>
<td>100uF 25V</td>
<td>£0.80</td>
</tr>
<tr>
<td>Resistor</td>
<td>1K ohm</td>
<td>£0.85</td>
</tr>
<tr>
<td>Inductor</td>
<td>100uH</td>
<td>£0.70</td>
</tr>
</tbody>
</table>

Table 4: Active components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistor</td>
<td>NPN 2N3904</td>
<td>£0.90</td>
</tr>
<tr>
<td>IC</td>
<td>741</td>
<td>£0.85</td>
</tr>
<tr>
<td>Comparator</td>
<td>LM324</td>
<td>£0.80</td>
</tr>
</tbody>
</table>

Table 5: Transformer

<table>
<thead>
<tr>
<th>Transformer</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toroidal</td>
<td>18V 5VA</td>
<td>£0.70</td>
</tr>
</tbody>
</table>

Table 6: Miscellaneous

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knob</td>
<td>Aluminum</td>
<td>£0.60</td>
</tr>
<tr>
<td>Switch</td>
<td>Miniature</td>
<td>£0.55</td>
</tr>
</tbody>
</table>

Table 7: Kit contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linsley-Hood 75W Amplifier Kit</td>
<td>£79.80</td>
</tr>
<tr>
<td>Free Teacase with Full Kits</td>
<td>£70.20</td>
</tr>
</tbody>
</table>

Table 8: Supplier information

<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>121/2% surcharge for VAT. Carriage free.</td>
</tr>
<tr>
<td>UK</td>
<td>MAIL ORDER, 117T.C., Sec. 1C</td>
</tr>
<tr>
<td>Eire</td>
<td>DEPT WW4</td>
</tr>
<tr>
<td>Scandinavia</td>
<td>POWERTRAN ELECTRONICS</td>
</tr>
<tr>
<td>Canada</td>
<td>PORTWAY INDUSTRIAL ESTATE</td>
</tr>
<tr>
<td>Australia</td>
<td>ANDOVER, HANTS SP10 3NN</td>
</tr>
</tbody>
</table>

FREE TEACASE WITH FULL KITS | KIT PRICE ONLY | £70.20

LINSLEY-HOOD CASSETTE DECK

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>£7.90</td>
</tr>
<tr>
<td>Teacase</td>
<td>£6.90</td>
</tr>
</tbody>
</table>

SPECIAL PRICE FOR COMPLETE KITS | £85.90
2 MATCHING TUNERS!

PowerTRAN SFMT

Following the success of our Wireless World FM Tuner kit we are now glad to announce the availability of the WW SFMT. This easy to construct tuner using our own circuit design includes a full muting, switchable AFC and push-button channel selection. As with all our tuners, it is supplied complete with an Australian style (12V) power supply, a cut-off and operating coil, a suitable filter and a simple switch. The power output of this new model is 30W per channel.

Audio Kit Suppliers to the World

Tunisia Germany Nauru Hong Kong Australia Eire Gambia Denmark France Muscat & Oman

20W, 30W AMPLIFIERS

T20 + 20 and our new T30 + 30 Amplifiers

Described by D. C. Read in Practical Wireless, these amplifiers are based on a T20 or T30 circuit and can replace the majority of the existing T2 and T3 models. The new 30W version has been designed with this in mind and can be used in the same kit. These kits are supplied complete with power supply, switches and a control panel, and are suitable for driving these amplifiers. For tape monitoring, a decoder and some additional components are required.

SPECIAL PRICES

FOR COMPLETE KITS!

T20 + 20

KIT PRICE only £34.20

T30 + 30

KIT PRICE only £39.50

CONVERT NOW TO QUADRAPHONICS!

With 100s of kits now available no longer is there any problem over suitable software. No problems with hardware either. Our new unit the SQM 1-30 simply plugs into the tape monitor socket of your existing amplifier and drives two additional speakers at 30W per channel. A full complement of controls including volume, bass, treble and balance are provided as well as comprehensive switching facilities enabling the unit to be used for either front or rear channels, by-passing the decoder for sensitivity use and exchanging left and right channels. The SQM 1-30 matches perfectly with the T21 amplifier. Kit prices include CBS licence fee.

SQ QUADRAPHONIC DECODERS

Feed 2 channels (200:100/mV) as obtained from most pre-amplifiers or amplifier. These unit decoders GULY one of our 3 decoders and take 3 channels, but with overall signal level. The output is fed to a high precision 4-pole phase shift network for increased frequency response. All kits include CBS licence fee.

CONVERT TO QUADRAPHONICS NOW!

SQ4 DECODERS (SCM1 + 30)

Feed 2 channels (200:100/mV) as obtained from most pre-amplifiers or amplifier. These unit decoders GULY one of our 3 decoders and take 3 channels, but with overall signal level. The output is fed to a high precision 4-pole phase shift network for increased frequency response. All kits include CBS licence fee.

L1. Basic identity decoder with full logic decoder with "variable blend" for increased front/back separation. All components, PCB £4.90

L2. Advanced full logic decoder with "variable blend" for increased front/back separation. All components, PCB £17.20

2A. Decoder similar to L2A but with discrete component front end and with high precision 6-pole phase shift networks for increased frequency response. All components, PCB £23.60

FILTERS

These state-of-the-art circuits used under licence from CBS are offered in kits of superior quality with close tolerance components down to the last nut and bolt are supplied. Further details of above and additional packs given in our FREE LIST.

Export No Problem

Our Export Department will be pleased to advise on postal costs to any country in the world. Some of the countries to which we sent kits in 1976 are shown following this advertisement.
HY5 Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (i.e. cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require connection to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.

FEATURES:
- Complete pre-amplifier in single pack
- Multi-function equalization
- Low noise
- Low supply voltage

APPLICATIONS:
- Hi-Fi
- Mixers
- Disco
- Guitar and Organ
- Public address

SPECIFICATIONS:
- INPUT SENSITIVITY 500mV
- OUTPUT POWER 25W RMS into 8Ω, FREQUENCY RESPONSE 10 Hz-45 kHz -- 3dB
- SUPPLY VOLTAGE ±15V
- SIZE 105 x 25 x 50mm

PRICE: £5.22 + 65p VAT P&P free.

HY30

15 Watts into 8Ω

The HY30 is an exciting new kit from I.L.P., it features a virtually Indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available.

FEATURES:
- Complete kit
- Low Distortion
- Short Open and Thermal Protection
- Easy to Build

APPLICATIONS:
- Upgrading audio equipment
- Guitar practice amplifier
- Test amplifier
- Audio project for the beginner

SPECIFICATIONS:
- INPUT SENSITIVITY 500mV
- OUTPUT POWER 15W RMS into 8Ω, FREQUENCY RESPONSE 10 Hz-45 kHz -- 3dB
- SUPPLY VOLTAGE ±15V
- SIZE 105 x 105 x 50.5mm

PRICE: £6.92 + 85p VAT P&P free.

HY50

25 Watts into 8Ω

The HY50 is I.L.P.'s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust Hi-Fi modules in the World.

FEATURES:
- Low Distortion
- Integral Heatsink
- Only five connections
- 7 Amp output transistors
- No external components

APPLICATIONS:
- High quality disco
- Public address
- Monitor amplifier
- Guitar and organ

SPECIFICATIONS:
- INPUT SENSITIVITY 500mV
- OUTPUT POWER 250W RMS into 8Ω, FREQUENCY RESPONSE 10 Hz-45 kHz -- 3dB
- SUPPLY VOLTAGE ±45V
- SIGNAL/NOISE RATIO 75dB
- SIZE 114 x 100 x 85mm

PRICE: £15.84 + £1.27 VAT P&P free.

HY120

60 Watts into 8Ω

The HY120 is the baby of I.L.P.’s new high power range, designed to meet the most exacting requirements including loading and thermal protection, this amplifier sets new standards in modular design.

FEATURES:
- Very low distortion
- Integral Heatsink
- Load line protection
- Thermal protection
- Five connections
- No external components

APPLICATIONS:
- Hi-Fi
- High quality disco
- Public address
- Monitor amplifier
- Guitar and organ

SPECIFICATIONS:
- INPUT SENSITIVITY 500mV
- OUTPUT POWER 60W RMS into 8Ω, FREQUENCY RESPONSE 10 Hz-45 kHz -- 3dB
- SUPPLY VOLTAGE ±45V
- SIGNAL/NOISE RATIO 90dB
- FREQUENCY RESPONSE 10Hz-45kHz -- 3dB
- SIZE 114 x 100 x 85mm

PRICE: £23.32 + £1.87 VAT P&P free.

HY200

120 Watts into 8Ω

The HY200, now improved to give an output of 120 Watts, has been designed to stand the most rigorous conditions, such as disco or group while still retaining true Hi-Fi performance.

FEATURES:
- Thermal shutdown
- Very low distortion
- Load line protection
- Integral Heatsink
- No external components

APPLICATIONS:
- Hi-Fi
- Disco
- Monitor
- Power Slave
- Industrial
- Public address

SPECIFICATIONS:
- INPUT SENSITIVITY 500mV
- OUTPUT POWER 120W RMS into 8Ω, FREQUENCY RESPONSE 10 Hz-45 kHz -- 3dB
- SIGNAL/NOISE RATIO 95dB
- FREQUENCY RESPONSE 10Hz-45kHz -- 3dB
- SUPPLY VOLTAGE ±45V
- SIZE 114 x 100 x 85mm

PRICE: £32.17 + £2.57 VAT P&P free.

HY400

240 Watts into 4Ω

The HY400 is I.L.P.'s "Big Daddy" of the range producing 240W into 4Ω. It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to a true high power hi-fidelity power module.

FEATURES:
- Thermal shutdown
- Very low distortion
- Load line protection
- No external components

APPLICATIONS:
- Public address
- Disco
- Power slave
- Industrial

SPECIFICATIONS:
- INPUT SENSITIVITY 500mV
- OUTPUT POWER 240W RMS into 4Ω, FREQUENCY RESPONSE 10 Hz-45 kHz -- 3dB
- SIGNAL/NOISE RATIO 94dB
- FREQUENCY RESPONSE 10Hz-45kHz -- 3dB
- SIZE 114 x 100 x 85mm

PRICE: £32.57 + £2.57 VAT P&P free.

POWER SUPPLIES

- PSU15 suitable for two HY200s or one HY400 (E23.10 + £1.85 VAT P&P free)...
- PSU18 suitable for two HY200s or one HY400 (E23.10 + £1.85 VAT P&P free)...
CATRONICS WW

TELETEXT DECODER

Our kit contains all the printed circuit boards and components necessary to build the complete decoder. The power supply and video switching circuitry are normally inserted within the television cabinet and the main decoding control and memory circuitry in a separate cabinet positioned on top of the television.

PRICES (INCLUDING VAT) ARE AS FOLLOWS:

<table>
<thead>
<tr>
<th>Component Kit (incl. PCB)</th>
<th>£120.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addon Unit for lower case PCB</td>
<td>£133.70</td>
</tr>
<tr>
<td>Component Kit (incl. PCB)</td>
<td>£13.75</td>
</tr>
</tbody>
</table>

PLATED-THROUGH hole PCBs are available for TEXAS version only at additional cost of £27.00.

A reprint of the series of articles is available at £2.50 + large 14p SAE (included free in complete list). COMPONENTS ALSO AVAILABLE SEPARATELY - SEE price list. READY BUILT & TESTED DECODERS also available at £241.87 + £5 Carr.

VHF DIGITAL FREQUENCY METER

200MHz, 7 digit, D.F.M. for direct readings up to the mobile radio VHF 'High Band'. Will operate on mains or 12V supply, making it ideal for use with mobile equipment. Manufactured and guaranteed by Catronics.

Price only £141.75 + £1.50 carriage (inc VAT). Write for illustrated leaflet.

CATRONICS LTD (Dept 726)

Communications House, 20 Wallington Square, Wallington, Surrey. Tel: 01-669 6700

WWW - 725 FOR FURTHER DETAILS

Signalo Chokes

Miniature low-cost precision inductors for radio, TV, calculators, filters etc.

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7BA</td>
<td>1uH to 1mH</td>
<td>Ref.</td>
</tr>
<tr>
<td>8RB</td>
<td>0.1mH to 33mH</td>
<td>Ref.</td>
</tr>
</tbody>
</table>

10RB: 1mH to 120mH

10RA: 1mH to 80mH

TOKO (UK) Ltd. Ward Royal Pde, Alma Rd., Windsor, Berkshire. (07535-54057)

Ambit International, 37A Hign St., Brentwood, Essex. (0277-227050) for ex-stock values.

WW - 062 FOR FURTHER DETAILS

LIST OF TRANSFORMERS

ALL EX-STOCK – SAME-DAY DESPATCH

<table>
<thead>
<tr>
<th>Component Kit (incl. PCB)</th>
<th>£120.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addon Unit for lower case PCB</td>
<td>£133.70</td>
</tr>
<tr>
<td>Component Kit (incl. PCB)</td>
<td>£13.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7BA</td>
<td>1uH to 1mH</td>
<td>Ref.</td>
</tr>
<tr>
<td>8RB</td>
<td>0.1mH to 33mH</td>
<td>Ref.</td>
</tr>
</tbody>
</table>

10RB: 1mH to 120mH

10RA: 1mH to 80mH

TOKO (UK) Ltd. Ward Royal Pde, Alma Rd., Windsor, Berkshire. (07535-54057)

Ambit International, 37A High St., Brentwood, Essex. (0277-227050) for ex-stock values.

WWW - 062 FOR FURTHER DETAILS
A range of communications amplifiers having power ratings from 15 to 200 watts, plug-in input facilities ensure individual requirements can be provided.

Manufacturers of sound systems and electronics

Station Road, Wenden
Saffron Walden
Essex CB11 4LG
Saffron Walden
(0799) 40888

3½ Measuring Accuracy
Stabilised Power Supplies
10 MHz Dual Trace
10 mV Sensitivity

SCOPEX 4D10A

Now YOU can afford the Best at
£175
UK ex VAT

SCOPEX Instruments Limited, Pixmore Industrial Estate, Pixmore Avenue, Leitchworth, Herts SG6 1JU, Leitchworth 72771 (STD 046 26)
DIY SPEAKER KITS

EASY-TO-BUILD KITS WITH ENCLOSED CHASSIS

Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teak-simulate enclosures, two EMI 13" x 8" (approx.) woofers, two tweeters and a pair of matching crossovers. Easily constructed, using a few basic tools. Supplied complete with an easy-to-follow circuit diagram, and crossover components. Complete with built-in pre-amplifiers. £25.50 per pair.

15-WATT KIT IN CHASSIS FORM

When you are looking for a good speaker, why not build your own from this kit. It's the unit which we supply with the above enclosures. SIZE 13" x 8" (approx.) woofers (EMI) tweeter, and matching crossover. Power handling capacity 15 watts rms. 30 watts peak.

'COMPACT' FOR TOP VALUE

How about this for incredible bookshelf value from RT-VC? A pair of high efficiency units for only £7.50 — just what you need for low-power amplifiers. These infinite wavelength units for only £7.50 — just what you need! A pair of high efficiency 'COMPACT' FOR TOP VALUE

20 x 20 WATT STEREO AMPLIFIER

£29.90

For the experienced constructor who wants to design his own stereo, this kit includes all necessary components including constructors manual. Plus pair of easy to build 4 watt speakers in kit form, with teak finish cabinets 1 2" x 9" x 5" approx.

30 x 30 WATT AMPLIFIER KIT

Specially designed by RT-VC for the experienced constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier. £29.90

4 x 4 STEREO AMP KIT £14.50 P&P £2.00

For the experienced constructor who wants to design his own stereo, this kit includes all necessary components including constructors manual. Plus pair of easy to build 4 watt speakers in kit form, with teak finish cabinets 1 2" x 9" x 5" approx.

FANTASTIC SAVING

sinclair

NEW BC 20, 20 WATT STEREO AMPLIFIER KIT

With PZ 20 POWER UNIT

A build-ify-yourself stereo power amplifier with latest integrated circuitry. 10W RMS per channel output, full short-circuit and overheat protection. £5.50

PORTABLE DISCO CONSOLE

with built-in pre-amplifiers

Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type auto-return, single-play professional series record decks. Plus all the controls and features you need to give fabulous disco performances. Simply £64.00 connects into your existing slave or external amplifier.

70 & 100 WATT DISCO AMPS

Brilliantly styled for easy disco performance! Sloping fascia, so that you can use the controls without fuss or bother. Brushed aluminium fascia and rotary controls. Five smooth acting vertically mounted slide controls — master volume, tape level, deck level, PLUS INTER-DECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre-fade level control (PFL) lets you hear next disc before fading in. VU meter monitors output level 70 watts rms, 140 watts peak output. All the big features as on the 70-watt disco console, but with a massive 100 watts rms, 200 watts peak output power.

BSR T145 8-TRACK CARTRIDGE PLAYER MECHANISM

Requires some attention. Complete with built-in pre-amp, A.C. 240V + p & p £15.00

ALL PRICES INC. VAT. AT 12% GROSS NOT DESPATCHED OUTSIDE UK

Goods not dispatched outside UK. All items subject to availability. Price correct at 1.3.77 and subject to change without notice. We are unable to show all our products. So please send stamped addressed envelope for our fully descriptive catalogue and any further information.

DO NOT SEND CARD — just write your order giving your credit card number.

21E HIGH STREET, ACTON, LONDON W3 6NG

323 EDGWARE ROAD, LONDON W2

Personal Shoppers EDGWARE ROAD 9.30am-5.30pm. Half day Thurs.

ACTON: Mail Order only. No callers.
FANS
DUAL EXTRACTOR FAN.

DUAL SELECTOR 48p & 50p.

PROGRAMME TIMERS.

TRANSFORMERS.

ROTARY STUD SWITCH.

UNI-SELECTOR.

UNI-SELECTOR.

G430 provides Sine-wave (0-10Vrms) and Square-wave (0-20V p-p) from 6000Ω, continuous duty factor, via 4-position, 0-60Ω, push button operated step attenuator. Frequency range 1Hz to 1MHz.

£95

Send for details of our complete range.

For Electroctek Components Ltd...

MOBILES

NEW PULSE GENERATOR

MODEL 70 (Illustrated above).

Compact, low-cost pulse and square-wave generator, featuring:

- P.R.F. 4Hz to 400kHz, gated or free-running.
- O/P 10V peak from 50Ω, also synch. O/P.
- Pulse width 1μsec to 1000Sec.
- Delay 1μsec to 1000sec.
- Pulse mark/space inversion.

For further details.

NEW WIDE-RANGE MULTIMETER UM-11.

Features 38-colour-coded ranges with high input impedance.

£94

For further details...

Callers welcome—Monday to Friday 9 a.m. to 5 p.m.

114 Wireless World, May 1977

Strobes, Tachos, Meters, Generators and Telecommunications Test Equipment

E.B. import and distribute high-grade products from World-renowned British & Overseas Manufacturers.

NEW FUNCTION GENERATORS!

For further details...

G940 provides Sine-wave (0-10Vrms) and Square-wave (0-20V p-p) from 6000Ω, continuous duty factor, via 4-position, 0-60Ω, push button operated step attenuator. Frequency range 1Hz to 1MHz.

£95

Send for details of our complete range.

For Electroctek Components Ltd...
As these circuits in recent issues of "Wireless World" are capable of such an excellent performance, we feel that it is not sensible to sacrifice this potential by designing a kit down to a price. We have therefore spent a little more on professional hardware allowing us to design a kit, which is completely reliable and can be built on a single plane board, with our plated sockets. The most obvious is the reduction of crosstalk and interference which could cause trouble on a single plane board, with our plated sockets. The most obvious is the reduction of crosstalk and interference which could cause trouble on a single plane board, with our plated sockets.

Master Board with one Relay Amp removed

All prices include VAT. No extra charge for any enquiries. Please enclose S.A.E. for reply to any enquiries.

Special offer of £2300 valves, sold but new and tested. £1 each.

LENCO CRV CASSETTE MECHANISM

High Quality, robust cassette transport for Linsley Hood Recorder. Features fast forward, fast reverse, repeat, pause and automatic cassette ejection facilities. Fitted with Lenco Record/Play and Erase Heads and supplied complete with Data and extra cassette recorders. Spring for allowing horizontal use of recorder.

71\c Complete set of parts for Master Board, includes Bias oscillator, Relay, Controls, etc. £9.83 + 1.12 VAT
72\c Parts for Motor Speed and Solenoid Control for Lenco CRV Deck, £3.52 + 44p VAT
73\c Complete set of parts for stereo Replay Amps and VU Meter Drive. £6.12 + 1.02 VAT
74\c Complete set of parts for Stereo Record Amps. £6.74 + 84p VAT. £7.55 + 1.40 VAT
75\c Complete set of parts for Stabilised Power Supply including special Low Hum Field Mains Transformer. This unit is a separate 3.5" x 6" PCB designed so that the motor control board fits above it to save space. £8.79 + 1.10 VAT
700\c VU Meters Individual high quality meters with excellent ballistics and built-in illumination. £8.48 + 1.06 VAT

PAIR

Personal callers are always welcome, but please note we are closed all day Saturday.

Penylan Mill, Oswestry, Salop

BENTLEY ACOUSTIC CORPORATION LTD.
7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Tel. 6743

HART ELECTRONICS
The Only Firm for Quality Audio Kits

J. L. Linsley-Hood High Quality Cassette Recorder

Master Board with one Relay Amp removed

As these circuits in recent issues of "Wireless World" are capable of such an excellent performance, we feel that it is not sensible to sacrifice this potential by designing a kit down to a price. We have therefore spent a little more on professional hardware allowing us to design a kit, which is completely reliable and can be built on a single plane board, with our plated sockets. The most obvious is the reduction of crosstalk and interference which could cause trouble on a single plane board, with our plated sockets. The most obvious is the reduction of crosstalk and interference which could cause trouble on a single plane board, with our plated sockets.

All prices include VAT. No extra charge for any enquiries. Please enclose S.A.E. for reply to any enquiries.

Special offer of £2300 valves, sold but new and tested. £1 each.

LENCO CRV CASSETTE MECHANISM

High Quality, robust cassette transport for Linsley Hood Recorder. Features fast forward, fast reverse, repeat, pause and automatic cassette ejection facilities. Fitted with Lenco Record/Play and Erase Heads and supplied complete with Data and extra cassette recorders. Spring for allowing horizontal use of recorder.

71\c Complete set of parts for Master Board, includes Bias oscillator, Relay, Controls, etc. £9.83 + 1.12 VAT
72\c Parts for Motor Speed and Solenoid Control for Lenco CRV Deck, £3.52 + 44p VAT
73\c Complete set of parts for stereo Replay Amps and VU Meter Drive. £6.12 + 1.02 VAT
74\c Complete set of parts for Stereo Record Amps. £6.74 + 84p VAT. £7.55 + 1.40 VAT
75\c Complete set of parts for Stabilised Power Supply including special Low Hum Field Mains Transformer. This unit is a separate 3.5" x 6" PCB designed so that the motor control board fits above it to save space. £8.79 + 1.10 VAT
700\c VU Meters Individual high quality meters with excellent ballistics and built-in illumination. £8.48 + 1.06 VAT

PAIR

Personal callers are always welcome, but please note we are closed all day Saturday.

Penylan Mill, Oswestry, Salop
BI-PRE-PAK COMPONENT BARGAIN SALE

PRICES INCLUDE V.A.T., POSTAGE IN U.K. NO EXTRA POSTAGE DEDUCTED FOR PERSONAL SHOPPERS

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 TRANSISTORS mixed types: PNP, NPN, JFET, MOSFET</td>
<td>£1.35</td>
</tr>
<tr>
<td>100 I.C.s, mixed types, marked: Ideal for experiments, etc.</td>
<td>£1.35</td>
</tr>
<tr>
<td>40 WIRE WOUND RESISTORS mixed values and wattages</td>
<td>85p</td>
</tr>
<tr>
<td>40 POTENTIOMETERS various values and types, some switched, pre-set, etc.</td>
<td>£1.35</td>
</tr>
<tr>
<td>100 DIODES, silicon, equal to 1N914, 1N4148, etc. unmarked, untested</td>
<td>£75p</td>
</tr>
<tr>
<td>100 DIODES, germanium, glass and metal types, untested</td>
<td>£75p</td>
</tr>
<tr>
<td>10 ELECTRIFIER STICKS for colour TV, inputs 13 KV working, Type CS011 80P</td>
<td>£65p</td>
</tr>
<tr>
<td>100 ZENER DIODES (500/1500 volt) Mixed types, unused</td>
<td>£75p</td>
</tr>
<tr>
<td>PCB Printed circuit board, copper laminated, approx. 250 sq. in., about 7 pieces</td>
<td>£1.35</td>
</tr>
</tbody>
</table>

POWER AMPS FROM 4 TO 100 WATTS R.M.S.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS.318</td>
<td>£5.60</td>
</tr>
<tr>
<td>SS.312</td>
<td>£5.35</td>
</tr>
<tr>
<td>SS.314</td>
<td>£4.99</td>
</tr>
<tr>
<td>SS.315</td>
<td>£3.49</td>
</tr>
<tr>
<td>SS.310</td>
<td>£1.10</td>
</tr>
<tr>
<td>SS.316</td>
<td>£1.50</td>
</tr>
<tr>
<td>SS.319</td>
<td>£6.75</td>
</tr>
</tbody>
</table>

POWER AMPS FROM 100 TO 500 WATTS R.M.S.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS.340</td>
<td>£8.80</td>
</tr>
<tr>
<td>SS.345</td>
<td>£8.50</td>
</tr>
<tr>
<td>SS.347</td>
<td>£8.20</td>
</tr>
<tr>
<td>SS.348</td>
<td>£8.00</td>
</tr>
</tbody>
</table>

POWER AMPS FROM 500 TO 1100 WATTS R.M.S.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS.400</td>
<td>£11.50</td>
</tr>
</tbody>
</table>

NOISE FILTERS 800/1500 volt

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>£5.25</td>
</tr>
</tbody>
</table>

2 LIGHT ACTIVATED S.C.R.s

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.35</td>
</tr>
</tbody>
</table>

PUSH BUTTON TUNER ASSEMBLIES

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.95</td>
</tr>
</tbody>
</table>

EX-C.P.O. INSTRUMENT CASES

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>£4.20</td>
</tr>
</tbody>
</table>

50 ONLY SIGNAL GENERATORS

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.25</td>
</tr>
</tbody>
</table>

WHEN ORDERING

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>£2.75</td>
</tr>
</tbody>
</table>

BI-PRE-PAK LTD.

220-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX, SS0 9DF

WHEN ORDERING

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>£2.75</td>
</tr>
</tbody>
</table>

Better instruments. Better service.

We have established a nationwide network of approved service organisations to deal with the repair and maintenance of our instruments. If your repair is backed by a full 12 month guarantee. Here’s where to find them.

ENGLAND London Instrument Repair Centre, Acton Lane, Chiswick, London W4 5JH. Trade Reception: Cunningham Street. Tel: 01-995 9212 London Instrument Repair Centre, Archifield House, Dover, Kent. Tel: Dover (0356) 20626 Farnell International Instruments Ltd, Sandbec, Wavetel House, West Yorkshire LS22 4DH. Tel: Wetherby (0527) 5547 T.E.K. Instruments Ltd, Pet Lane, Acton, Manchester M29 7BH. Tel: Atherton (03523) 2275 or 5611 Midlands Instrument Repair Centre, Thorn Automation Ltd, Armitage Road, Rugby, Staffs. Tel: Rugby (0896) 591539.

SCOTLAND Falcon Electronics, 92 High Street, Johnstone, Scotland. Tel: Johnstone (0506) 23377

WALES Electro Services, 5 Chepstow Road, Newport, Gwent NP7 8BE. Tel: Newport (0633) 211243

BI-PRE-PAK INSTRUMENT REPAIR CENTRE

The manufacturers’ joint service organisation. WW—105 FOR FURTHER DETAILS
ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON 01-2618353

INJECTION AND COMPRESSION MOLDING TO YOUR REQUIREMENTS ALSO INDELIBLE PRINTING OF G.R.P. ALUMINUM AND COATED PANELS. GLASS FIBRE CASES. D.M.C. OR S.M.C. GREY, BUT OTHER COLOURS BY ARRANGEMENT.

SEND YOUR SINTEL ORDER TO PO BOX 75C, OXFORD Tel. 0865 49791
Caravan/Car Connector

The famous Clarke connectors have been designed to incorporate the electric stopper clip and plug - thus together cannot be twisted off or come out with the stopper inside. The plug is designed so that it will not come out when caravan is not connected. All have the new S.S.A. quality rated at 10 amp each.

Motorised Disco Switches

£2.25. 230v mains operated - precision made as Induction Motors.

Low R.P.M. Motors

WEE MEGGER

A very special offer. Most famous testing instruments. Made by Burricht & Vincent. A must for every electrical contractor and service man. In perfect going order having been thoroughly reconditioned. G.P.O. Price £16.00 + £1.12 Post Wpa.

Tape Heads Etc.

2 track record/Playback 78p. 4 track record/Playback £1.50. Erase head 2 shelf 50p, 4 track 95p. M. metal shields and terminals 8p each, 2 track shield, 2 track erase head. All on mounting plates ready for tape working - £1.20 each.

Remember 7.029

We still have a large stock of S.A.E. Below are a few of the Bargains still available. Our monthly Advance Advertising Bargains List gives details of bargains and savings. We believe this to be a burglar. LEDs are of the 25 switch full through one switch way all we wound are approx £6.75 + £0.20. Non cartridge and all spares are available at low prices.

Delay Switch

For security or delay - can be accurately set by controls for periods of up to 10 mins. 2 contacts switch to switch 10 amps - second contact opens low resistance, after 10 sec. contact 95p.

Uniselectors

Three pole uniselectors are read at 10 amp each and can be wired as a total of 2000a can be controlled and this would provide a magnificent display. For complete details of this and other Bargains, please write for a copy of our catalogue. G.P.O. Price £6.50 + £1.00 Postage.

Motorised Disco Switches

With six 10 and 15 amp switches. Multi adjustable switches are read at 10 amp each tip is a total of 40amp and can be wired as a total of 2000a. We have a limited supply of Diac Nickel Cadmium rechargeable batteries to replace the battery. Price £3.75 + £0.48 - actually you would have a job to buy or make the battery. Lights £3.50 + £0.30. Post £1.50.

VAFER Switches

 imprisoned with a lamp of 100w. To give the lamp of 250 watts. Use for a long while but we are pleased to say they are once again in stock at 90p each - second.

24-Hour Timers

Vermillion as illustrated with sub connection made to 24 volt atom lamp. Unusual and popular - second contact opens low resistance, after 10 sec. contact 95p.

Mullard Unilex

A mains operated 4 + 4 stereo system sealed in a container with the two units containing the original Mullard Unilex together. A High Quality Tele Alarms, side by side in aluminium container, with a current capacity of 600mA and 150mA respectively, input 50-60 cycles 220v or 235v plus or minus 10%. S.A.E. approx. 8 1/2" x 5" x 2 1/4" with a retailvalue of £3.75 + £0.48 - actually you would have a job to buy or make the battery. Use for a long while but we are pleased to say they are once again in stock at 90p each - second.

Central Heating Hearts

Rental replacement in 3010 £6.75. Horses £6.35. SMITHS Controllers 10 - 100 complete in well mounting case £7.50.

Main Transformers BARGAINS

24v 1amp £1.25. 24v 2amp £2.00. 24v 3amp £2.50. 24v 4amp £3.00. 24v 5amp £3.50. 24v 6amp £4.00. 24v 7amp £4.50. 24v 8amp £5.00. 24v 9amp £5.50. 24v 10amp £5.75. 24v 11amp £6.00. 24v 12amp £6.25. 30v 1amp £1.50. 30v 2amp £2.25. 30v 3amp £2.75. 30v 4amp £3.25. 30v 5amp £3.75. 30v 6amp £4.25. 30v 7amp £4.75. 30v 8amp £5.25. 30v 9amp £5.75. 30v 10amp £6.25. 30v 11amp £6.75. 30v 12amp £7.25. 45v 1amp £2.00. 45v 2amp £2.50. 45v 3amp £3.00. 45v 4amp £3.50. 45v 5amp £4.00. 45v 6amp £4.50. 45v 7amp £5.00. 45v 8amp £5.50. 45v 9amp £6.00. 45v 10amp £6.50. 45v 11amp £7.00. 45v 12amp £7.50. 50v 1amp £2.25. 50v 2amp £2.75. 50v 3amp £3.25. 50v 4amp £3.75. 50v 5amp £4.25. 50v 6amp £4.75. 50v 7amp £5.25. 50v 8amp £5.75. 50v 9amp £6.25. 50v 10amp £6.75. 50v 11amp £7.25. 50v 12amp £7.75. 12v 1amp £1.50. 12v 2amp £2.00. 12v 3amp £2.50. 12v 4amp £3.00. 12v 5amp £3.50. 12v 6amp £4.00. 12v 7amp £4.50. 12v 8amp £5.00. 12v 9amp £5.50. 12v 10amp £6.00. 12v 11amp £6.50. 12v 12amp £7.00. 24v 1amp £1.00. 24v 2amp £1.50. 24v 3amp £2.00. 24v 4amp £2.50. 24v 5amp £3.00. 24v 6amp £3.50. 24v 7amp £4.00. 24v 8amp £4.50. 24v 9amp £5.00. 24v 10amp £5.50. 24v 11amp £6.00. 24v 12amp £6.50. 30v 1amp £0.50. 30v 2amp £1.00. 30v 3amp £1.50. 30v 4amp £2.00. 30v 5amp £2.50. 30v 6amp £3.00. 30v 7amp £3.50. 30v 8amp £4.00. 30v 9amp £4.50. 30v 10amp £5.00. 30v 11amp £5.50. 30v 12amp £6.00. 12v 1amp £0.30. 12v 2amp £0.60. 12v 3amp £0.90. 12v 4amp £1.20. 12v 5amp £1.50. 12v 6amp £1.80. 12v 7amp £2.10. 12v 8amp £2.40. 12v 9amp £2.70. 12v 10amp £3.00. 12v 11amp £3.30. 12v 12amp £3.60. 24v 1amp £0.30. 24v 2amp £0.60. 24v 3amp £0.90. 24v 4amp £1.20. 24v 5amp £1.50. 24v 6amp £1.80. 24v 7amp £2.10. 24v 8amp £2.40. 24v 9amp £2.70. 24v 10amp £3.00. 24v 11amp £3.30. 24v 12amp £3.60. 30v 1amp £0.30. 30v 2amp £0.60. 30v 3amp £0.90. 30v 4amp £1.20. 30v 5amp £1.50. 30v 6amp £1.80. 30v 7amp £2.10. 30v 8amp £2.40. 30v 9amp £2.70. 30v 10amp £3.00. 30v 11amp £3.30. 30v 12amp £3.60.
The SECOND-USER
Computer Specialists

Mini-Computer Exchange

PPBXK 16K Processor.
PDP11/40 FD RX Core Processor, brand new from PDPBI 20K. Extended Arithmetic, TTY control, Clock. 1:15:5 DEC tapes, PDP8 reader, Punch.
9 track incremental tape drive. ROD 256K Disk.
PDPB RX Processor with 64K line EO011 modern control hardware/backup. DWOD, DF32 disk.
Novel 5200 RX Processor with TTY control and clock Nova 3112 RX processor with TTY control, clock and memory management. Brand new.

PDP RX Processor with A/D Converter. TTY control.
High Speed, Reduced.

800 & 1600 bps Magnetic Tape Decks by CIPHER ENERGEN RIO.
RT02 DEC Data Entry Terminal with single line. 32 charactr display, complete with control for PDP8.
TUBO DEC Cassette Drive with control for PDP11 system.
Calcump Digital Incremental Plotters.
Model 583 31'' drum, 300 steps per second.
Model 585 12'' drum, 300 steps per second.
Model 586 12'' drum, 250 steps per second.
DE32 DEC 32K Disk Drive & Control drive slivers drives type.
KKB set available.

OUR STOCKS ARE CONSTANTLY CHANGING — please phone for latest availability.

The ELECTRONIC BROKERS LIMITED (Computer Sales & Services Division) 49-53 Pancras Road, London NW1 2QB. Tel: 01-837 7781.

POST & PACKING 25p. Discounts £5 - 5%: £10 - 7%: £15 - 10%: VAT add 12.5%. Rest as 8%.

ORCHARD ELECTRONICS LTD., Flint House, High Street, Wallingford, Oxon (Tel. 0491 35529)

WW — 085 FOR FURTHER DETAILS

THE ELECTRONIC BROKERS LIMITED (Computer Sales & Services Division) 49-53 Pancras Road, London NW1 2QB. Tel: 01-837 7781.

WW — 112 FOR FURTHER DETAILS
MOD 3 WEST HYDE

Offert instrument manufacturers have vast cases in stock. Both PVC coated steel strength and rigidity. PVC/PVC grey fronts and rear panels are removable. PCB and PSU mounting systems available. Also available in black, 305-PRO of 302, BK 303 303, BK 304 305.

CONTIL

A range of all weather cases in bright textured acrylic. Front panels matt white, PVC/PVC or PVC/Aluminium, also available unpainted up to 1771cm. Aluminium panels 79cm extra up to 1771cm only.

MOD 2 WEST HYDE

MOD 2 cases over 24 sizes. Front and back panel grey PVC, Aluminium cases included. Pocket flat. Outer casing is removable PVC steel up to 1771cm. Also available in wood/metal and plastic. Price for rear panel 79cm or 4. Black 8.50 PRO.

All these multi case are available with substantial discounts for quantity. Most cases have drawings at 660 and 250 which display up to 25% off at 1000 PRO. Prices include P & P and are too 10% if ordered, or for large quantities on 10 day credit.

PAY A CASE FROM A SMALL RANGE, YOU GET A CASE—BUY A CASE FROM A BIG RANGE, YOU GET A SOLUTION

Instrument cases

All dimensions are Wdth x Height x Depth

<table>
<thead>
<tr>
<th>Case Type</th>
<th>Dimensions</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD 3 (aluminium coated)</td>
<td>183 x 84 x 38</td>
<td>4.50 PRO</td>
</tr>
<tr>
<td>MOD 3</td>
<td>183 x 84 x 38</td>
<td>4.50 PRO</td>
</tr>
<tr>
<td>MOD 3</td>
<td>220 x 84 x 38</td>
<td>4.65 PRO</td>
</tr>
<tr>
<td>MOD 3</td>
<td>277 x 84 x 38</td>
<td>4.80 PRO</td>
</tr>
<tr>
<td>MOD 3</td>
<td>305 x 84 x 38</td>
<td>4.95 PRO</td>
</tr>
<tr>
<td>CONTIL TEXTURED</td>
<td>137 x 61 x 22</td>
<td>4.60 PRO</td>
</tr>
<tr>
<td>CONTIL</td>
<td>137 x 61 x 22</td>
<td>4.60 PRO</td>
</tr>
<tr>
<td>CONTIL</td>
<td>183 x 61 x 22</td>
<td>4.75 PRO</td>
</tr>
<tr>
<td>GEL CASES (grey only)</td>
<td>96 x 96 x 38</td>
<td>4.90 PRO</td>
</tr>
<tr>
<td></td>
<td>122 x 122 x 38</td>
<td>5.05 PRO</td>
</tr>
</tbody>
</table>

Send for catalogue

WEST HYDE

APPLICATIONS

- Power supply systems
- Computer systems
- Test equipment
- Instrumentation

COMPONENTS

Neon prices include P & P

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeD</td>
<td>0.10 PRO</td>
</tr>
<tr>
<td>PCF</td>
<td>0.20 PRO</td>
</tr>
<tr>
<td>PCA</td>
<td>0.25 PRO</td>
</tr>
<tr>
<td>PCB</td>
<td>0.30 PRO</td>
</tr>
<tr>
<td>PPA</td>
<td>0.40 PRO</td>
</tr>
</tbody>
</table>

TEST METERS

Populated - 25,000 units. LT801, 13 ranges. Packed LT901 basic set, 13 ranges. 1,000 units. LT141 66 ranges, 20,000 units, incl. main cases. 11mm (V), 5.5mm (V), 3.5mm (AC & DC), 2.5kV (AC & DC), well damped, many accessories.

BRADRAD CONECUT ADEL

£1 t x 2.5mm. Bradad, drills and bolts. £9.15/11 diameter (Bradad). 6 Commodities, 3/7.77. Adair retaining tool, square or round hole, 11mm dia. entry. Underneath 2 rearers, 5/7.77. To make round holes with no vibration.

THE INSTRUMENT

- Power supply systems
- Computer systems
- Test equipment
- Instrumentation

Send for catalogue

WEST HYDE

APPLICATIONS

- Power supply systems
- Computer systems
- Test equipment
- Instrumentation

COMPONENTS

Neon prices include P & P

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeD</td>
<td>0.10 PRO</td>
</tr>
<tr>
<td>PCF</td>
<td>0.20 PRO</td>
</tr>
<tr>
<td>PCA</td>
<td>0.25 PRO</td>
</tr>
<tr>
<td>PCB</td>
<td>0.30 PRO</td>
</tr>
<tr>
<td>PPA</td>
<td>0.40 PRO</td>
</tr>
</tbody>
</table>

TEST METERS

Populated - 25,000 units. LT801, 13 ranges. Packed LT901 basic set, 13 ranges. 1,000 units. LT141 66 ranges, 20,000 units, incl. main cases. 11mm (V), 5.5mm (V), 3.5mm (AC & DC), 2.5kV (AC & DC), well damped, many accessories.

BRADRAD CONECUT ADEL

£1 t x 2.5mm. Bradad, drills and bolts. £9.15/11 diameter (Bradad). 6 Commodities, 3/7.77. Adair retaining tool, square or round hole, 11mm dia. entry. Underneath 2 rearers, 5/7.77. To make round holes with no vibration.
Electronic Ltd are one of the leading electronic instrumentation companies in the UK, providing a full range of services to Universities, Industries and Colleges and Governments both at home and overseas.

We have the largest stocks of secondhand test equipment in Europe as well as a selected range of new products. These are on display at our London showrooms where customers can examine the equipment of their choice and see it working.

Electronic Ltd have fully equipped workshops on the premises to test and report on the majority of equipment we sell.

WRITE NOW....

for a FREE copy of our latest Test Equipment Catalogue. Please apply on headed paper.
On these pages you will find just the briefest selection from the vast range which we hold in stock at any one time.

If you are seeking a specific item and it is not listed there, please telephone us. We believe we offer the best prices and the best service.

WORLD WIDE EXPORT

Enquiries and tenders welcome from any part of the world.

HOW TO REACH US...

We are easy to reach, no matter where you live. Minutes away from Kings Cross or St. Pancras main-line stations, and a bus ride from Euston; only just over half an hour from Heathrow Airport.
AMATEUR COMPONENTS

ORCHARD WORKS, CHURCH LANE, WALLINGTON, SURREY SM6 7NF

MAIL ORDER DIVISION OF SEMICONDUCTOR SUPPLIES (CORDOVA) LTD.

For Semiconductors Capacitors Resistors I/C sockets L.E.D.s and Hi-Fi Accessories

For Semiconductors Capacitors Resistors I/C sockets L.E.D.s and Hi-Fi Accessories

124
'AC125 Items marked thus 5 carry higher rate of VAT. otherwise 8% Please send SAE for new issues.

Try it and you'll buy it — it will change your concept of sound.

Hi and lo gain inputs.

Signal to noise ratio: input terminated.

Max. output: terminated, 10 dB > 1.6 V.

BATTERY ELIMINATOR BARGAINS

NEW COMPONENTS

Resistors, 5% carbon E12 2 7 3 to 10M. 2 1W 1W 2p. Precision Pots subminiature 0.1W E10 3 100 4 to 4.7M. Vertical 8p. horizontal 8p. Potentiometers 0.25W E3 4X7 to 2W 2 log or lin.

Single 2ap. dual 7ap. Polystyrene Capacitors E12 63V 22p to 820pF. Ceramic Capacitors 22p to 470pF. 3ap. Mylar Capacitors 100pF. E12 0.01. 0.02. 0.05. 0.1. 0.5. 1.0. 2.2. 4.7. 10.0. 22. 47. 100. 220. 1.0K. 2.2K. 4.7K. 10K. 22K. 47K. 100K. 147. 104. 105. 474. 104F. 105F. 224F. 104PF. 105PF. 224PF. 104PF.

Mains Transformers

6V 6W 100mA 94p. 50V 75mA 94p. 120V 120V 50mA 94p. 110V 110V 10mA 94p. 220V 220V 5mA 94p. 115V 115V 2.5mA 94p. 230V 230V 2.5mA 94p. 240V 240V 2.5mA 94p. 230V 230V 2.5mA 94p. 240V 240V 2.5mA 94p.

Printed Circuit Kits, etc.

Contains etching dish, 100 sq. in. of pc board, 10mm ferrite core, etc.

S.O.C.S. and T.O.C.E.s

To: E.S. Electronics, 2 Upper Farmstead, Hindhead, Surrey. Please send me 2, 3, 4, 5, 6, 7 of your Graphic Equalizers. I enclose cheque or postal order for £1.

SINCLAIR PROJECT 80 MODULARS P75 £95. 240V. £75.

B.B. AUDIO MODULARS

S450 Tuner £20.95 86S0 £6.50.

B.B. Microphone £14.95 86X0 Audio Kit £13.95 Stereo £16.95 86M480 £8.95 86VB18 £3.32.

FIVE TIP31A 2N2941A IC radio chip £1.44. Extra parts and job for radio £2.65. Case £1. 5x for data.

S.W.A.N.E.Y ELECTRONICS

DEPT. W.W., PO BOX 68, SWANLEY, KENT BR5 8TG

Mail order only. No calls. Send s.a.e. for free leaflet on both models. We are now offering special order supply and post free kit.

SINCLAIR MICROWONDERS

FOR THE VDU BUILDER - New stock of Large Rectangular Screen 30 x 20cm tube. Type M38 at the ridiculous price of £4 each. And also available the CME1220, 24 x 15cm at £9 ea. Base price £18 ea.

SPOOLS OF 1/2" MAG TAPE APPROX. 2000ft 60p ea. P&P £1 ea.

SPECTRUM ANALYSER by NELSON ROSS. Plug-in for TEKTRONIX Oscilloscopes 561/563 etc. Free 0.500kHz £22.50.

POLAROID READER Model FMR-2. Complete 1-100GHZ £35. Contains a number of useful accessories, including an adjustable stand, a 10 x 10cm size A4 paper holder, and a 20 x 30cm large format holder.

ROYAL INVERTERS manufactured USA. 24V. DC input. Output 115V AC 400Hz up to 2kVA. Brand new. Crated £12.50 each.

ROYAL INVERTERS manufactured USA. 24V. DC input. Output 115V AC 400Hz up to 2kVA. Brand new. Crated £12.50 each.

MARCONI INVERTERS manufactured USA. 24V. DC input. Output 115V AC 400Hz up to 2kVA. Brand new. Crated £12.50 each.

MARCONI INVERTERS manufactured USA. 24V. DC input. Output 115V AC 400Hz up to 2kVA. Brand new. Crated £12.50 each.

AVO TRANSISTOR ANALYSER Type V54-46. Suitcase style. Now £27.50 each.
Unique full-function 8-digit wrist calculator... available only as a kit.

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes – take your jacket off, and you’re lost!

But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8-digit display.

This one does. What’s more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable £9.95 (plus 8% VAT, P&P). And for that, you get not only a high-calibre calculator, but the fascination of building it yourself.

How to make 10 keys do the work of 27
The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic (‘enter it as you write it’). But in addition, it offers a % key; plus the convenience functions y^x, 1/x, x^2; plus a full 5-function memory.

All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

1. The switch in its normal, central position. With the switch centred, numbers – which make up the vast majority of key strokes – are tapped in the normal way.

2. Hold the switch to the left to use the functions to the left above the keys...

3. and hold it to the right to use the functions to the right above the keys.

The display uses 8 full-size red LED digits, and the calculator runs on readily-available hearing-aid batteries to give weeks of normal use.

Assembling the Sinclair Instrument wrist calculator
The wrist calculator kit comes to you complete and ready for assembly. All you need is a reasonable degree of skill with a fine-point soldering iron. It takes about three hours to assemble. If anything goes wrong, Sinclair Instrument will replace any damaged components free: we want you to enjoy assembling the kit, and to end up with a valuable and useful calculator.

Contents
Case and display window.
Strap.
Printed circuit board.
Switches.
Special direct-drive chip (no interface chip needed).
Display.
Batteries.

Everything is packaged in a neat plastic box, and is accompanied by full instructions. The only thing you need is a fine-point soldering iron.

All components are fully guaranteed, and any which are damaged during assembly will be replaced free.

The wrist-calculator kit is available only direct from Sinclair Instrument. Take advantage of this 10-day money-back undertaking.

Send the coupon today.

To: Sinclair Instrument Ltd,
6 Kings Parade, Cambridge, Cambs., CB2 1SN.

* Please send me... (qty) Sinclair Instrument wrist-calculator kits at £9.95 plus 80p VAT plus 25p P&P (Total £11).

* I enclose cheque/PO/money order for £

* Complete as applicable.

Name
Address

(Please print)
I understand that you will refund my money in full if I return the kit undamaged within 10 days of receipt.

Sinclair Instrument Ltd.
6 Kings Parade, Cambridge,
Cambs., CB2 1SN.
Tel: Cambridge (0223) 311488.

WW-075 FOR FURTHER DETAILS
The greatest public show of home entertainment - at Olympia in September

That's the Audio Fair this year. It's moved with the market – as the emphasis changes, so does the Fair. More people buy systems. More people look to home electronics for entertainment, as outside attractions become priced out of the market. More people want the package deal. So . . . not only audio and hi-fi, but also the whole spectrum of RADIO . . . TELEVISION . . . MUSIC . . . TV GAMES . . . RECORDS . . . TAPES . . . HOME RECORDING and MUSIC-MAKING

More young people are among the buyers. More older people are getting into the new scene of sound. That's why the Audio Fair is a big family occasion, with the big family attractions.

Already the exhibitors include Agfa-Gevaert, Amstrad, Hitachi, National Panasonic, Natural Sound Systems, Rank, Sanyo – to name a few that indicate the width of appeal.

There's a whole world of Home Entertainment at the Audio Festival and Fair this year. You ought to be there! It's Sound Sense!

THE COMPLETE HOME ENTERTAINMENT SHOW

To: Audio Fair, Iliffe Promotions Limited, Dorset House, Stamford Street, London SE1 9LU
YES, I MUST find out more about the 1977 International Audio Festival and Fair. Please send me an exhibitor's brochure right away.

Name
Position in firm
Address
Products we want to exhibit
Wilseslow Audio

THE firm for speakers!

Baker Group 25, 3, 8 or 15 ohm £13.00
Baker Group 35, 3, 8 or 15 ohm £14.50
Baker Deluxe 8 or 15 ohm £17.50
Baker Major, 3, 8 or 15 ohm £15.00
Baker Regent, 8 or 15 ohm £12.50
Baker Superb, 8 or 15 ohm £22.50
Celestion HF1300 8 or 15 ohm £7.50
Celestion MH 1000 horn, 8 or 15 ohm £13.50
Coles 400 TG super tweeter £5.90
Coles 400 K super tweeter £3.95
Decca London and X over £38.45
Decca DCX30 and X over £25.25
EMI 5" Mid range £3.50
EMI 6½"/c/d cone roll surr. ohm £3.95
EMI 8 x 5, 10 watt, 15/15 ohm £8.65 £3.95
EMI 14" x 9" Bass 8 ohm £12.50
Elac 59RM 1015 ohm, 59RM 1148 ohm £3.50
Elac 6½"/d/c roll/s 8 ohm £3.95
Fane Pop 15 watt 12" £7.50
Fane Pop 50 watt, 12" £12.50
Fane Pop 55, 12" 60 watt £16.95
Fane Pop 60 watt, 15" £19.95
Fane Pop 70 watt 15" £21.75
Fane Pop 100 watt, 18" £33.95
Fane Crescendo 12A or B, 8 or 15 ohm £42.95
Fane Crescendo 15, 8 or 15 ohm £54.25
Fane Crescendo 18, 8 or 15 ohm £75.95
Fane 807T 8/c, rolls/s, 8 ohm £5.40
Fane 801T 8/c roll/s £8.50
Goodmans BPA 8 or 15 ohm £3.50
Goodmans 10P or 15 ohm £6.95
Goodmans 12P 8 or 15 ohm £16.50
Goodmans 12P-D 8 or 15 ohm £18.75
Goodmans 12P-G 8 or 15 ohm £17.75
Goodmans Audiom 200 ohm £14.95
Goodmans Axent 100 8 ohm £8.50
Goodmans Axim 402 8 or 15 ohm £22.00
Goodmans Twinaxiom 8" 8 or 15 ohm £10.60
Kef T27 £8.50
Kef T15 £10.75
Kef B110 £10.95
Kef 6200 £11.95
Kef B139 £24.95
Kef DN8 £2.75
Kef DN12 £7.25
Kef DN13 £4.95
Richard Allan HP8B 8" 45 watt £12.50
Richard Allan CBG8B 8"/c roll/s £7.95
Baker Major Module, each £18.00
Goodmans Mezzo Twinkit, pair £1.95
Goodmans DIN 20, 4 ohm, each £15.75
Helme XLC35, pair £26.75
Helme XLC40, pair £38.50
Helme XLC30, pair £21.95
Kefkit 1, pair £59.50
Kefkit III, each £56.00
Richard Allan Twinkit, each £13.95
Richard Allan Triple 6, each £20.75
Richard Allan Triple 12, each £25.95
Richard Allan Super Triple, each £29.50
Richard Allan RAB kit, pair £37.80
Richard Allan RAB2 kit, pair £59.40
Wharfedale Denton 2XP Kit. pair £23.25
Wharfedale Linton 3XP Kit. pair £34.25
Wharfedale Glendale 3XP kit pair £49.50

All Radford, Gauss, Castle, Jordan Watts, Eagle, Lowther, Peerless Tannoy units in stock

Prices correct at 21/3/77

ALL PRICES INCLUDE VAT

FREE with all orders over £10

Hi-Fi Loudspeaker Enclosures Book
Send stamp for free 38-page booklet

"Choosing a Speaker -
Cabinets wadding, Vynair, Crossovers etc.

All units are guaranteed new and perfect

Prompt despatch

Carrigine: Speakers up to 12" 60p; 12" £1; 15" £1.75; 18" £2.50
Kits £1 each (£2 per pair). Tweeters & Crossovers 33p each

WILMSLOW AUDIO

Dept. VVV

Loudspeakers & Export Dept: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Discount Hi-Fi, PA, etc.; 10 Swan Street, Wilmslow, Radio, Hi-Fi, TV; Swift of Wilmslow, 5 Swan Street, Wilmslow. Tel. (Loudspeakers), Wilmslow 29599 (Hi-Fi, etc.), Wilmslow 26213.

Access and Barclaycard orders accepted by phone

WWW - 015 FOR FURTHER DETAILS
Radio Officers—now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator’s General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are £2905 rising to £3704 after three years service. Between 19 and 24, the starting salary varies from £2234 to £2627 according to age. In addition, a supplement of £312 p.a. is payable. You’ll also receive an allowance for shift duties which at the maximum of the scale averages £900 a year and there are opportunities to earn overtime. There’s a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you’re 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.
ELECTRONIC DESIGN/
DEVELOPMENT ENGINEERS
FERRANTI OFFERS YOU FREEDOM

..... freedom to create. Over the years leading design and development engineers have been attracted to Ferranti by our reputation for truly innovative engineering and together they have formed specialised teams involved on a variety of sophisticated projects related to the Tornado, Sea Harrier, Jaguar, Nimrod 2 and other front line aircraft.

We now require additional engineers to join these teams engaged on the creative work of designing and developing airborne radar, laser and inertial navigation systems and their associated test equipment.

Engineers are required in the following technical fields:
- Digital and analogue electronic circuitry design.
- Design and application of small digital computers.
- Microwave and laser techniques.
- Advanced instrument design including gyroscopes of inertial quality.
- Design of small mechanical structures and analysis of stress.

In addition to the above we have vacancies for production engineers with either electrical or mechanical backgrounds in these fields.

Applicants should have some design/development experience to offer in avionics and a desire to expand their experience to project leader level.

Edinburgh, with its outstanding facilities for education, housing, sport and entertainment, is one of the ideal cities in Europe in which to live, work and bring up a family. And to make moving here easier, we pay realistic relocation expenses. Salaries are negotiable and the Company operates a contributory pension and life assurance scheme.

Apply in writing, with full details of experience and qualifications to
Staff Appointments Officer,
Ferranti Limited,
Ferry Road,
EDINBURGH, EH5 2XS.
Please quote Ref. WW/3
HF/VHF Military Radio Design

Successful candidates will be involved in the design of new products using advanced miniaturisation techniques. Experience of digital systems and RF techniques at HF and VHF would be particularly valuable. These appointments will be of particular interest to designers willing to work against short time scale development plans on products mainly for the export market.

UHF/SHF Radio Relay Design

Engineers to work on the design of transmitters and receivers at UHF and SHF, IF amplifiers, and baseband amplifiers for multi-channel radio relay equipment. It would be useful if experience included liaison with production.

Radio Relay Systems Design

Engineers for the design of overall radio relay systems, the development of sub-equipments and systems evaluation. Previous experience in the design and/or commissioning of radio communications systems is desirable.

Candidates should be educated to degree level or equivalent and have at least two years experience. Situated in a semi-rural environment near Portsmouth, Chichester, the South Downs and several seaside resorts, we are well placed for housing, shops and recreational amenities. Relocation assistance will be given where appropriate and there is a comprehensive range of large company benefits. Attractive salaries will be negotiated in line with experience and qualifications.

Please write with brief career details or telephone for an application form. L. Wise, Recruitment Manager, The Plessey Company Limited, Martin Road, West Leigh, Havant, Hants. Tel (070 2) 6391. Applications are invited from either sex.
Electronic Test Engineers

Pye Telecommunications of Cambridge has immediate vacancies for Production Test Engineers, of either sex.

The work entails checking to an exacting specification VHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment.

Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.

Pye Telecommunications is a major exporter of radio-telephone equipment and is shortly moving into a new purpose built factory.

There are good opportunities for promotion within the Company.

Pye also encourages its staff to take higher technical and professional qualifications.

Write or telephone without delay for an application form to: Miss C. Barton

Brunei Training Officers

a) In the field of cable jointing

b) Laying subscribers' apparatus installation and maintenance are required for on-job training of in-service staff who have minimal formal training and little or no knowledge of correct telecommunications methods and of new entrants to complement formal class training. They will be required to support the overall departmental training programme wherever necessary including the organisation of practical training classes.

Candidates must have 5 years' experience either in or working on behalf of a telecommunication operating organisation in a relevant field, preferably in a developing country.

Salary in a scale equivalent to £6,195-£7,150 tax-free including special allowance.

Appointment is for 2 or 3 years. Benefits include 25% gratuity, free passages, education allowances and subsidised housing.

For full details and application form write quoting MT/309/WD, to:

The Crown Agents for Oversea Governments and Administrations, Appointments Division, 4 Millbank, London SW1P 3JD
Electronic Circuit Designer

We are one of the European leaders in the manufacture of thick film hybrid circuits.

We are looking for a young circuit designer to join an established team which deals with design, limitations and potential of thick film technology. You should have experience of analogue and digital circuit design, not necessarily in thick film, and have an understanding of C.A.D. procedures and tolerancing for production. You should not be bound by currently accepted solutions to problems, but be prepared to explore unconventional methods within the manufacturing technology.

Salary is negotiable, there is an excellent range of fringe benefits and relocation expenses are available to this very pleasant location.

For further information and an application form, please contact C. L. BORROW

NKT
Newmarket Transistors Ltd

FOR AIRBORNE ELECTRONICS EQUIPMENT

We are looking for a young circuit designer to join our teams of Service and Test Engineers working both in the aircraft and in our extensively equipped workshops.

You should have a good knowledge of radio and electronics theory, ranging from audio to microwave, and at least two years' experience in servicing and maintaining complex electronic equipment, including fault diagnosis using sophisticated test gear. A recognised qualification would also be desirable but sound practical experience is more important.

A good salary will be offered together with an attractive range of benefits.

Working conditions are excellent and the establishment is conveniently situated in pleasant surroundings within easy reach of the A1 and M1.

Write with details of experience to Mrs. E. Wagg, Marconi-Elliott Avionic Systems Limited, 22-26 Dalston Gardens, Stanmore, Middlesex HA7 1BZ.

Tel: 01-204 3322.

MARCONI
Elliott
AVIONICS
A GEC-Marconi Electronics Company

ELECTRONICS ENGINEER

An interesting and challenging opportunity exists within our international organisation which will appeal to the individualist electronics engineer.

Our range of highly sophisticated scientific instruments is of advanced design and involves all aspects of electronics from high-power RF to high-speed digital switching.

We require a first-class Electronics Engineer to carry out installation, commissioning and after-sales service at customers' premises.

The ideal applicant will be aged 25-35, have a minimum qualification of HNC (Electronics) and some industrial experience, preferably in a design/development environment, and be capable of working with a minimum of supervision.

Extensive travel in the United Kingdom is involved with occasional trips abroad.

Knowledge of the German language though not essential would be an advantage.

Due to expansion, we require additional Field Service Engineers. Technicians & IV Service Engineers.

For Electronic Engineers. Technicians & IV Service Engineers.

Elliott Avionic Systems

Telex: Pipo Hounslow 935413

Pipco (S & W Services) Limited

For Electronic Engineers. Technicians & IV Service Engineers.

26a High Street
Moulsoy, Middx.
Tel: 01-572 7363

Please write, stating relevant details, to

R. F. LADbury
BRUKER SPECTROSPIN LIMITED
UNIT 3, 209 TORRINGTON AVENUE
COVENTRY CV4 9HN
The Cable and Wireless Group is continuing its impressive growth record, and is now seeking additional Engineers and Assistant Engineers in the following disciplines, for its Head Office Engineering Department in Central London:

- International and National Telex and Telephony; MF, HF, VHF, Microwave and Satellite Radio; Primary Power Plant and distribution; Data and Telegraph Transmission and Switching; Telemetry.

The responsibilities could involve the complete range of project work, from assessment, through to commissioning and acceptance. Occasional overseas visits may be necessary. Applicants should have specialist knowledge and experience of one or more of the above disciplines together with a wide appreciation of telecommunications operations in general. Some experience of customer liaison would be an advantage.

Candidates for the Engineer posts would probably have a relevant degree or professional qualification, although this is not essential. At least five years related experience is required. Salary will be up to £6,000.

For the Assistant Engineer posts an HNC/C&G FTC is desirable and several years' related experience. Salary will be up to £5,000.

Benefits include a pension scheme, staff restaurant, sports and social club and generous overseas allowances.

If you think that your qualifications and experience make you suitable for one of these opportunities, please send a summary of your career.

Write to:
Recruitment Manager, Cable & Wireless Ltd.,
(A587/WW),
Theobalds Road, London WC1X 8RX.
Tel: 01-242 4433 Ext. 4008

Are You Interested In Radio Communications

and do you have practical experience in this field

If you have City and Guilds Intermediate Certificate in Electronics or Telecommunications; ONC; or an equivalent qualification

then the Metropolitan Police may have a job for you as a Radio Technician.

we offer

Good pay
Excellent prospects
Secure employment
4 weeks holiday
Day release

Phone our Engineer Mr. H. G. Fielding on 01-653 0881, during office hours, to arrange an informal interview, or write to Metropolitan Police, Room 1634, New Scotland Yard, Broadway, London SW1H 0BG.
UNITED GLASS LTD.

TECHNICAL OFFICER

A person is required to join a small team engaged in the development and use of electronic equipment for monitoring process variables in the glass container industry. This will initially concern time and temperature measuring equipment, but subsequently involvement in the use of a microprocessor system currently being developed will be necessary. The applicant should be familiar with digital and analogue circuitry. The starting salary is expected to be in the range £3,000-£3,500 per annum.

We offer excellent working conditions, including a subsidised staff restaurant, four weeks' paid holiday and Pension Scheme.

Apply to:
Group Research Manager
UNITED GLASS LTD
Research & Development Centre
Porters Wood
St. Albans
Herts. AL3 6NY

Rolls-Royce Limited

Data Acquisition Engineer

Within an extensive application of electro and electronic measuring systems used in the development of aero engines we have positions for engineers interested in the collection of data of an experimental nature.

The work encompasses measurement techniques applied to static and dynamic parameters, that is, stress, pressure, flow and temperature.

Ideally candidates (male or female) should possess an HND or HNC in Electrical or Electronic Engineering with experience in this type of work, but candidates with suitable alternative backgrounds who are prepared to undergo specialist training will be considered.

Salary will be paid according to age, qualifications and experience.

The Company operates a Staff Pension Scheme.

We should be pleased to discuss re-location expenses with candidates who are invited for interview.

Enquiries should be addressed to:
Mr J A J Clarke, Senior Personnel Officer
Rolls-Royce Limited
PO Box 31 Derby DE2 8BJ
Telephone: Derby 42424 Extension 109

Service Engineers

£3,400 + Car

Our Client, based 50 miles North of London are leading distributors of electronic organs, amplifiers, synthesisers and mixers.

They now require an Electronics Engineer to repair and service their equipment. You will be liaising with Retailers' Engineers and Professional Musicians' Engineers on technical matters. This position will involve trips to Hamburg or Japan for product training. A higher salary will be considered for an applicant who is fully conversant with this type of work.

Contact Sue Skidmore, PER, 36-62 Park Street
Luton LU1 3JB. Telephone (0582) 417562

Professional and Executive Recruitment

This vacancy is open to male or female candidates.

Yamaha

AUDIO ENGINEERS

We require experienced bench engineers to work to a high standard on the above products.

Applicants should have a keen interest in, and at least 3 years' experience of all aspects of Audio servicing with similar quality equipment.

For further details and application forms please contact the Service Manager, Terry Finn, at

Natural Sound Systems Ltd.

10 Byron Road
Wealdstone, Harrow, Middx.
Tel: 01-863 8622

Strathcona Road, North Wembley, Middlesex HA9 8QL
Marconi Instruments

Professional Electronics
In St Albans

Development Engineers
Designing state of the art r.f. and digital circuitry as members of small project teams.

Components Engineer
To specialise in the analysis of new components used in electronic equipment manufacture.

ATE Field Service Engineers
Servicing Automatic Electrical Inspection Systems throughout the UK.

Advanced Test Engineers
To develop test methods in particular programming systems in new generation instrumentation that utilise microprocessors and state of the art logic.

Export Engineer
Based in St. Albans, travelling the world selling the Company's range of r.f. and digital test equipment.

Technical Author
Compiling instruction manuals on communications test equipment and ATE.

Test Technicians
Commissioning a wide range of batch produced test equipment eg. Spectrum analysers, signal generators and modulator meters.

Technician Engineer
Working within a Test Gear Maintenance Department repairing a very wide range of modern, commercial and special to type test equipment.

In Luton

Test Engineers
Serving customer owned equipment in the largest communications test equipment maintenance organisation in W. Europe.

Further information may be obtained from John Proctor: Marconi Instruments Ltd., Longacres, St. Albans, Herts. Tel: St. Albans 59292.

A GEC-Marconi Electronics Company.

PROJECT ENGINEER
(LEITUNG CONTROL SYSTEMS)

We are a leading Company in the field of thyristor controlled lighting and associated equipment, including standby power sources, power distribution and industrial control. A high percentage of our production is exported.

Due to our continued expansion, we require a project engineer to assist in the design and planning of equipment to meet customer requirements, provide manufacturing information, and organise on-site commissioning. The ability to work with minimal supervision and to be self-motivated is essential.

Contact: P. J. Harrison, Technical Director

Polaron Controls Limited
60/62 Greenhill Crescent
Holywell Industrial Estate
Wuford, Herts WD1 8BL
Tel: Wuford (0923) 37144
Fax: 022330

APPENDICES

ALCAN LABORATORIES LIMITED
ATLANTIC REGION RESEARCH CENTRE

INSTRUMENT TECHNICIAN

Alcan Laboratories Limited require an Instrument Technician at their Research Centre in Banbury, Oxfordshire. The work will be concerned mainly with the development of electronic measurement and control equipment which will be used in the Laboratory and in Alcan factories.

The Research Centre, which is one of Europe's leading metallurgical laboratories, carries out Research and Development work for associated Group companies in the U.K., Europe, Africa and South America; it is part of the Canadian-based Alcan Aluminum Limited Group, which is one of the world's major aluminium producers.

Candidates will be required to work largely on their own initiative: they should have an HNC in Electronic Engineering followed by two/three years' experience in the development of prototype electronic equipment.

The company offers excellent working conditions, progressive salary scales, flexible working hours and a contributory pension scheme. Assistance with the cost of moving house will be given where appropriate.

Application forms can be obtained from:

Mrs. S. M. White
ALCAN LABORATORIES LIMITED
Southam Road
Banbury, Oxon OX16 7SP
Tel: Banbury (0295) 2821

UNIVERSITY OF LEEDS. Applications are invited for the post of electronics technician Grade 3 in the Department of Psychology, University of Leeds. Duties include maintenance of existing equipment and building of new equipment to interface with computer and other monitoring on-line experiments. The successful candidate will be able to work without constant supervision, should hold ONC and/or City and Guilds Intermediate Qualifications and have at least three years relevant experience including some digital work. Salary on the scale: £455/£575. Applications including full details of education and experience together with names and addresses of two referees, to: Mr. D. Pritchett, Department of Psychology, Leeds University.

ELECTRICAL TECHNICIAN for Educational Services Unit. Candidate should have interest in television as a teaching and research tool, sound background in electronics with ability to communicate with patients, students and staff at all levels. Major part of the post involves maintenance of small studio in Department of Psychology, preparation and replay of video-recordings. Salary scale £2,880/£3,857 p.a. Application forms from: Assistant Secretary, Personnel Office, University of Birmingham, P.O. Box 516, Birmingham B5 2TT. Ref. 498/C/57.

LANCHESTER POLYTECHNIC, Coventry. Technician, Centre for Media Studies. An Electronics Technician is required to constitute part of the work of a highly creative team involved in all aspects of the Media. The appointee will work in the areas of Electronic Media (study of light, sound and motor), Video and Sound Recording. Duties will include constructing, fitting, maintenance and testing of experimental equipment and involvement in undergraduate project. The successful candidate will be expected to have experience in one of these fields, be suitably qualified and be prepared to use his/her own initiative in coping with a diversity of demands. Salary scale: £3259-£3702 plus £312 supplement per annum. For application form please apply in writing enclosing a resume and addressed envelope to the Assistant Secretary, Personnel Office, Coventry Polytechnic, CV1 3JU, returnable within ten days of the appearance of this advertisement.

PROJECT ENGINEER
(LIGHTING CONTROL SYSTEMS)

We are a leading Company in the field of thyristor controlled lighting and associated equipment, including standby power sources, power distribution and industrial control. A high percentage of our production is exported.

Due to our continued expansion, we require a project engineer to assist in the design and planning of equipment to meet customer requirements, provide manufacturing information, and organise on-site commissioning. The ability to work with minimal supervision and to be self-motivated is essential.

Contact: P. J. Harrison, Technical Director

Polaron Controls Limited
60/62 Greenhill Crescent
Holywell Industrial Estate
Wuford, Herts WD1 8BL
Tel: Wuford (0923) 37144
Fax: 022330

Additional content:

MEDICAL Electronics Engineers required for servicing, testing and fault finding must be fully experienced. Qualifications to ONC level. Salary rising negotiable. - Mr. Cooper 8567 ext. telephone 272 8312.

(734)

LANCESTER POLYTECHNIC, Coventry. Technician, Centre for Media Studies. An Electronics Technician is required to constitute part of the work of a highly creative team involved in all aspects of the Media. The appointee will work in the areas of Electronic Media (study of light, sound and motor), Video and Sound Recording. Duties will include constructing, fitting, maintenance and testing of experimental equipment and involvement in undergraduate project. The successful candidate will be expected to have experience in one of these fields, be suitably qualified and be prepared to use his/her own initiative in coping with a diversity of demands. Salary scale: £3259-£3702 plus £312 supplement per annum. For application form please apply in writing enclosing a resume and addressed envelope to the Assistant Secretary, Personnel Office, Coventry Polytechnic, CV1 3JU, returnable within ten days of the appearance of this advertisement.

TEST ENGINEER with sound knowledge of logic circuitry for work on ou range of instruments. Phone or write R.C.S. Electronics, 4 Wolsey Road, Ashford, Middlesex. STD 69/3368.

(7166)

ELECTRONIC TECHNICIAN Grade 5 required in the Chemical and bio-medical fields, particularly for the electronic workshop. Knowledge of fault finding and servicing electronic instruments required. Together with the ability to work on prototype circuits. Salary in range £3,838 including London Weighting. Application form and further details from Personnel Officer, Technical Staff (B/E/W), University College, London University, WCIE 6BT.

(7120)
Botswana Telecomms Maintenance Engineer

To co-ordinate the planning, installation and maintenance of all telecomms equipment, co-ordinate responsibility between operating switching and transmission services; control and estimate spending, plan maintenance schedules and maintain quality control; and inspect outstations and equipment.

You would have sole responsibility for the efficient functioning of telegraph, telex, telephone and broadcast transmission equipment, supervise Senior Assistant Engineers, and train staff.

You must be MIEE or MIER and preferably possess a degree in telecomms, electronics or electrical engineering. You should have at least 5 years' experience in a senior position within a telecomms organisation with full responsibility for engineering and administrative activities. Your experience should cover radio relay and multiplex systems, monitoring and operation of step by step and common control automatic telephone and tele exchanges and subscriber's equipment including PABX distribution networks and open wire routes.

Starting salary is equivalent to £6145 - £7680 pa and includes a substantial and normally tax-free allowance payable under Britain's overseas aid programme. Basic salary attracts a 25% tax-free gratuity.

Benefits include free passages, generous paid leave, children's holiday visit passages and education allowances, subsidised housing, appointment grant and interest-free car loan.

For full details and application form write quoting M1X/1202/W0 to Crown Agents for Overseas Governments and Administrations, Appointments Division, 4 Millbank, London SW1P 3JD.

SITUATIONS VACANT

Senior Electronics Engineer

An opportunity has arisen at our Warrington Factory for an electronics engineer, in our Technical Services Department, with proven ability in a wide range of fields connected with the manufacture of H.F. communications receivers and drive units.

The person chosen for this demanding position will need considerable practical experience of dealing at first hand with engineering problems arising from the manufacture of communications equipment. Duties will also include the control and development of test schedules for computer controlled automatic test equipment as well as repair and calibration of proprietary test equipment.

The successful candidate will be qualified to degree level and have had several years experience in a similar or related field. This position carries competitive rates of pay and a generous holiday entitlement and sick pay scheme together with a pension

Communicate with Racial

Please apply in writing to The Personnel Manager, Racial Communications Equipment Ltd., Chesford Grange, Woolston, WARRINGTON, Cheshire WA1 4RH.

ARTICLES FOR SALE

VALVES RADIO — T.V.—Industrial-Transmitting. We dispatch valves to all parts of the world by return of port, air or sea mail, 2,700 types in stock, 1930 to 1976. Obsolete types a speciality. List 20p. Quotation S.A.E. Open to callers Monday to Saturday 9.30 to 5.00. Closed Wednesday 1.00. We wish to purchase all types of new and bared valves, Cox Radio (Sussex) Ltd., Dept WW, The Parade, East Wittering, Sussex PO22 8BN. West Wittering, 2933 [STD Code (02486)].

SPOTWELDERS new from £85. Samwise from £250. Bing 01-540 7377/8. Kentwell's, 14 Clarence Road, London W7 3DX. (8088)

ARTICLES FOR SALE

LEKTROPACKS, 17 Turnham Green Terrace, London, W4, Tel. 01.994 2784

100 Resistors 75p

4W 5% If CWM 2LL—2 M10 (12) 10 each at any value £1.00 £1.50 £2.00 £2.50 £3.00 £3.50 £4.00

ENAMELLED COPPER WIRE

£1.00 50m reel 100m reel £2.00 100m reel £3.00 200m reel £4.00 250m reel £5.00 500m reel £6.00 1,000m reel £10.00 3,000m reel £20.00

COPPER SUPPLIES

102 Partridge Road, Withington, Manchester 25, Telephone 061-445 8753
GILFIRE BOUND Wireless World 1940-1957 inclusive complete used reference only. Excellent condition. Offers - £14 Ennerdale Drive, Aughton, Ormskirk L9 4HP. (7137)

2 - MOTOROLA Page Boy J9 and 39 capacity encoder, almost new, £450 plus VAT. Would exchange Storno High band equipment. Also 23KC Storno Visovico L25 each. Thomson Communication 0793 72401. (7135)

ARTICLES FOR SALE

PHOTO ETCH LIMITED

Tel: 01-249 6146, 01-590 1909, 30 Goodey Street, London W1.

CASSETTE HEADS AND MECHANISM. Three-head cassette system; allows off-tape monitoring; four-in-line cassette record/play head; Ferrite record/play stereo head; loading stereo cassette mechanism with piano key controls. For full technical datas send Adv. inc. No. Box. NW 7359. (7134)

BREMENN MK 6 tape transport with Bogen heads and Hart Electronics. Stuart circuits. Cased, needs further attention. Offers. 50 Mile, 144 Blackbrook Road, Fareham. Hans Pois SB. (7134)

GILFIRE BOUND Wireless World 1940-1957 inclusive complete used reference only. Excellent condition. Offers - £14 Ennerdale Drive, Aughton, Ormskirk L9 4HP. (7137)

GLAXO ELECTRONICS TECHNICIAN

We require an Electronics Technician, preferably under the age of 35, to assist in the maintenance and construction of electronic instruments in our Research Laboratories at Greenford and neighbouring sites.

The successful applicant will be a member of a small team responsible for the design and servicing of a wide range of electronic instruments used in our chemistry and biological laboratories.

A qualification equivalent to O.N.C. or H.N.C. would be an advantage. Consideration would be given to applicants who have been accepted for, or are taking, an appropriate course of instruction.

Salary will be negotiable. All applicants should be of Nigerian nationality and should address their enquiries to:

Company Radio Engineer
George Wimpey & Co. Limited
Stockwood Road
Brisingdon
Bristol.
WANTED IN LARGE QUANTITIES

Electronic components, resistors, capacitors, diodes, transistors, chips, logic: common, semi-conductors, diodes, TV tubes, especially colour tubes e.g.1st and 2nd grades. Finished or incomplete products. Second: players, amplifiers, radios, tuners, tape recorders, encoders, etc. etc.

We will buy complete factories and pay cash.

SERVICE AND REPAIRS

EURO CIRCUITS

Printed Circuit Boards - Solder less equipment - Photography - Desoldering - Roller timing - Gold plating - Flexolead - Polycarbonate - Multi layer - Multicore - No order (too large or too small) - Fast turnround on prototypes. All for part service available NOW.

EURO CIRCUITS TO ORDER.

BROADFIELDS AND MAYCO DISPOSAL

21 Lodge Lane, N. Rochley, Manchester M23 1TG.

EQUIPMENT WANTED

We are interested in purchasing all kinds of RADIO T.V. AND ELECTRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES.

We pay prompt cash and clear material by return.

TOP CASH AVAILABLE FOR NEW SURPLUS COMPONENTS

All details to:

SKYWAVE ELECTRONICS
01-568 1331

**BAFDAL VALED AMPHILES, STA 300, STA 60, STA 15, power amps, 5/15/30 watt, etc., FM tuners. Good prices paid. — Details to 641, Walbrook Road, London E.1 (1766)

WANTED: Test equipment, RF power transistors, and components of DEUTSCH type. Immediate cash available. Modular Electronics. Phone: 024-241 2916, Mr Craig. (1718)

**MADHUMEN, V.W. 1965 to date (7 missing). Electronics Eng. 1964 to June 72 (1 missing). Offers in.
SPECIAL LOW PRICE ARRANGEMENTS FOR VISITING OVERSEAS TRADE FAIRS

IPC Electrical-Electronic Press Ltd., the world's largest publishers of computer, electrical and electronic journals, have made special arrangements for readers wishing to visit important overseas trade fairs. The cost, in most cases, is little more than the normal air fare but includes — travel by scheduled airline from Heathrow and Manchester * first-class hotel accommodation * arrival and departure transfers * admission to the trade fair * services of an experienced tour manager. The current programme comprises the following tours.

To obtain a brochure and booking form, tick the box against the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent, Commercial Trade Travel Ltd., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469.

Hanover Fair [] Hanover April 20-28 1977

International Electric Vehicle Exhibition and Conference [] Chicago April 26-29 1977 Interregcon/Industrial Electronik [] Vienna November 9-12 1977

Please send details of the tours indicated above.

NAME .. COMPANY ..
ADDRESS .. Telephone
Two books from Wireless World

These books are of very special appeal to all concerned with designing, using and understanding electronic circuits. They comprise information previously included in Wireless World's highly successful Circards – regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of these magazine-size hard cover books contains ten sets of Circards plus additional circuits and explanatory introduction.

BOOK 1
Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

BOOK 2
Basic logic gates
Wideband amplifiers
Alarm circuits
Digital counters
Pulse modulators
C.d.as – signal processing
C.d.as – signal generation
C.d.as – measurement and detection
Monostable circuits
Transistor pairs

ORDER FORM
To: General Sales Department,
IPC Business Press Limited,
Room 11, Dorset House,
Stamford Street, London SE1 9LU.
Please send me __ copy/copies of
Circuit Designs - Number 1 at £10.80 □
Circuit Designs - Number 2 at £12.50 □
each inclusive. I enclose remittance value £
(name payable to IPC Business Press Ltd.)
I.C.E. MULTIMETERS

The I.C.E. range of multimeters provides an unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more than 1,000 functions.

All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc., and a 50-plus page, fully detailed and illustrated Operating and Maintenance Manual.

Now available from selected stockists. Write or phone for list, or for details of direct mail-order service.

Microtest 80
- 2000V CAT I, 10% f.s.d. on d.c.
- 400V CAT III, 2% f.s.d. on a.c.
- 40 Range - 5 Functions
- Complete with case
- only 33 x 93 x 37mm
- £14.95 + VAT

Supertest 680R (Illustrated)
- 2000V CAT I, 10% f.s.d. on d.c.
- 400V CAT III, 2% f.s.d. on a.c.
- 40 Range - 10 Functions
- '109 x 113 x 37mm
- £19.95 + VAT

Electronic Brokers Ltd
49-53 Pancras Road, London NW1 2QB
Tel: 01-837 7781

TWICE - THE INFORMATION in HALF the size

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 130-141

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Telephone</th>
<th>Telex</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustical MFG Co. Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addola Product Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEL Crystals Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen & Heath</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerodynamics Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambit International</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex Electronics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astra-Pak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barr & Stroud Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnes Electronics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell & Howell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell & Lee Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevel Acoustic Corp. Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-Pak Semiconductors Ltd.</td>
<td></td>
<td>100,100</td>
<td>104</td>
<td>1004</td>
</tr>
<tr>
<td>Bi-Pak-Pre-Pak Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boss Industrial Mouldings Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butt, J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambridge Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC Corporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilimed Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit Designs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colcomor Electronics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comark Electronics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial T/Travel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computex Electronics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crevice Electronics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crofton Electronics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fighters Brokers Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrolyte Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Components Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Equipments Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erie Electronics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrolux Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electro-Tech Components Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Equipment Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.R. Pianos Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edelbrock Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairly Entertain Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Film Developments Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fylde Electronic Co. Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma Scientifics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genrad Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenwood Electronics Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OVERSEAS ADVERTISMENT AGENTS:

Equipe: 227-77-50, Tél. 280274.

Hungary: Mrs. Ida Ruzsinszky, Hungaroad Advertising Agency, Budapest XIV, Vascaptató

Telephone: 225-0059, Tél. Budapest 22-4525 INGFOR.

Japan: Mr. Inaikai, Trade Media - JP, B212, 212-111 Tokyo, 17-01, 225-093 Tokyo, Japan.

Radio: 355-0581

United States of America: Ray Bars.

Photocopy: 205 East 42nd Street, New York, NY 10017, Telephone: (212) 610-5066.

Jos. ac Turkey, 1047-70, Tél. 217-120.

Mr. Jack Martin, 210 E. 10th St., New York, NY 10017.

Mr. Jack Mentel, The Farley Co.

For subscription agreements.

Printed in Great Britain by MB Ltd., Seymour Road, Colchster and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD., Darfoot House, Stamford St, London, SEI 8UJ, interoffice 82-31 90, Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon & Goetch Ltd, INDIA: A. H. Wheeler & Co. CANADA: The Wm. Dawson Subscription Service Ltd, Gordon & Goetch Ltd, SOUTHERN AFRICA: Central News Agency Ltd, William Dawson & Sons (S.A.) Ltd, UNITED STATES: Eastern News Distributors Inc., 1401 Hall Avenue, New York, N.Y. 10017.
One of the world's smallest dynamic-element lavalier microphones is designed to be heard, not seen. Other mini-mics may be O.K. at first, but, as you know, there have been problems with sudden failures... sometimes on the air! The new Shure SM11 lavalier solves the problem with an unusually high quality dynamic element that delivers all the reliability of a desk microphone—yet it weighs less than a third of an ounce.

Rugged, all-around durability and a field-serviceable design keeps this new breed of lavalier on the air when you need it most. Without batteries or unnecessary wiring. And without a big price tag either.

The SM11 has everything: size, performance, durability, price. That's not just small talk!

Shure Electronics Limited
Eccleston Road,
Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

TECHNICORNER
Frequency Response: 50 to 15,000 Hz
Polar Pattern: Omnidirectional
Impedance: 150 ohms (200 ohms optional) for connection to microphone inputs rated at 25 to 200 ohms
Hum Pickup: Less than 35.3 dB equivalent SPL in a 1 millioersted field
Accessories Supplied: Specially designed lavalier assembly; clip-on clip; re-rack assembly; connector belt clip.

Small wonder.
There's a lot more to Multicore...

Multicore Solid Solders. In Bars, Ingots, Sticks, Wire or Pellets. For all dip and wave-soldering.

Multicore now solders the 'impossible'. ALU-SOL 45D solders most types of aluminium and has a good corrosion resistance. Arax 96S for difficult stainless steels, being non-toxic and bright.

Multicore Fluxes, Chemicals, Preservatives, Cleaners and Conformal Coatings. For highest quality soldering.

Multicore Oxide-free Solder Creams. For microcircuits and P.C.'s. Also a wide variety of pre-forms for repetitive soldering operations.

Multicore Oxide-free Solder Creams. For microcircuits and P.C.'s. Also a wide variety of pre-forms for repetitive soldering operations.

The name that stands for quality and quantity.

Please write on your Company's letterhead for further details on your particular application.

Multicore Solders Limited,
Maylands Avenue, Hemel Hempstead, Herts HP2 7EP. Tel: Hemel Hempstead 3636. Telex: 82363.