Radio and electronics into the 'eighties
Take a high performance dual beam storage mainframe, and you have a specification range which embraces a whole spectrum of applications.

With variable persistence, up to four input channels, 15MHz bandwidth and the option to operate in X-Y and differential modes — that's the Telequipment DM63.

All the specs are in a non-storage model, the D63. The same superb basic features are available in our 36 page catalogue. It's yours for the asking.

Four trace versatility with or without storage

TELEQUIPMENT

Tektronix UK Ltd., PO Box 66, Coldharbour Lane, Harpenden, Herts. AL5 4UE
Tel: Harpenden 03141

Wireless World, January 1980
37 Into the 'eighties

38 RADIO AND ELECTRONICS INTO THE 'EIGHTIES

Land mobile radio by W. M. Pannell
Broadcasting by D. P. Leggatt
Consumer electronics by St John C. Jackson
Radio navigation and radar by D. W. G. Byatt
Audio by Adrian Hope

H.f. radio communication by R. F. E. Winn
Electronic measuring instruments by John L. Minck

61 News of the month
More v.h.f. broadcasting
Engineers want registration
Japanese make Prestel terminals

64 World of amateur radio

67 Practical parallel-tracking pickup arm — 2
by R. Cooper

73 Circuit ideas
Simple waveform generator
Amplitude modulator
Long duration timer

77 Letters to the editor
Sidebands as phasors
Digital filters
The Poynting vector

81 More on the scientific computer
by J. H. Adams

87 S.s.b. and f.m. tranceiver — 4
by G. R. B. Thornley

92 Novatexts: astables — logic gate circuits
by P. Williams

95 New products
Hameg the name for quality, performance and value in OSCILLOSCOPES. Advanced design optimising the use of both integrated circuits and discrete components ensures reliability. Just a glance at the specification chart will make you want to know more.

HM 307
Single Trace DC-10 MHz, 5 mV/cm
Plus built in Component Tester
£149

HM 312
Dual Trace DC-20 MHz, 5 mV/cm
Sweep Speeds 40 ns - 0.2s/cm 8 x 10 cm Display
£250

HM 412
Dual Trace DC-20 MHz, 2mV/cm
Sweep Speeds 40 ns - 2 s/cm and Sweep Delay
£350

HM 512
Dual Trace DC-50 MHz, 5 mV/cm
Sweep Speeds 20 ns - 5 s/cm plus Sweep Delay
£580

HM 812
Dual Trace DC - 50 MHz, 5 mV/cm
20 ns - 5 s/cm, Sweep Delay and Storage
£1325

We may be a new name to you, but each instrument is backed by over 21 years experience in oscilloscopes.

For FULL Details please contact
HAMEG Limited
74 - 78 Collingdon St.,
Luton, Beds. LU1 1RX.
Tel: (0582) 413174
UK Subsidiary of Hameg K Hartmann KG

All prices UK list exc. VAT.

WW-033 FOR FURTHER DETAILS
## LEVELL OSCILLATORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Accuracy</th>
<th>Sine Output</th>
<th>Distortion</th>
<th>Square Output</th>
<th>Sync Output</th>
<th>Sync Input</th>
<th>Meter Scales</th>
<th>Size &amp; Weight</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG200</td>
<td>1Hz to 1MHz in 12 ranges</td>
<td>±1.5% ±0.01Hz up to 100kHz</td>
<td>7V r.m.s. down to &lt;200µV with Rs = 6000</td>
<td>&lt;0.05% from 50Hz to 15kHz, &lt;0.1% from 10Hz to 50kHz, &lt;0.2% from 5Hz to 150kHz, &lt;1% at 1Hz and 1MHz</td>
<td>TG200D, DM &amp; DMP only, 7V peak down to &lt;200µV, rise time &lt;150nS, &lt;1V r.m.s. sine in phase with output, ±1% freq. lock range per volt r.m.s.</td>
<td>TG200M, DM &amp; DMP only, 0/2V, 0/7V &amp; 0/2V</td>
<td>TG200D, DM &amp; DMP only, 7V peak down to &lt;200µV</td>
<td>260 x 130 x 180mm, 4.3kg with batteries</td>
<td>£92</td>
<td></td>
</tr>
<tr>
<td>TG200D</td>
<td>3Hz to 300kHz in 5 decade ranges, increasing to ±3% at 300kHz</td>
<td>±2% ±0.1Hz to 100kHz</td>
<td>2.5V r.m.s. down to &lt;200µV</td>
<td>&lt;0.2% from 50Hz to 60kHz, &lt;1% from 10Hz to 200kHz, 2.5V peak down to &lt;200µV</td>
<td>2.5V r.m.s. sine, 2.5V r.m.s. sine, 0/2.5V &amp; -10/+10dB on TG152DM</td>
<td>TG152DM</td>
<td>TG152DM</td>
<td>260 x 130 x 180mm, 3.4kg with batteries</td>
<td>£99</td>
<td></td>
</tr>
<tr>
<td>TG200M</td>
<td>0.2Hz to 122MHz on four decade controls</td>
<td>±0.02Hz below 6Hz, ±0.3% from 6Hz to 100kHz, ±1% from 100kHz to 300kHz, ±3% above 300kHz</td>
<td>5V r.m.s. down to 30µV with Rs = 6000</td>
<td>&lt;0.15% from 15Hz to 15kHz, &lt;0.5% at 1.5Hz and 150kHz</td>
<td>2 Expanded voltage and -2/4dBm</td>
<td>260 x 180 x 180mm, 5.4kg</td>
<td>TG66B</td>
<td>Battery model £245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG200DM</td>
<td>0.2Hz to 122MHz on four decade controls</td>
<td>±0.02Hz below 6Hz, ±0.3% from 6Hz to 100kHz, ±1% from 100kHz to 300kHz, ±3% above 300kHz</td>
<td>5V r.m.s. down to 30µV with Rs = 6000</td>
<td>&lt;0.15% from 15Hz to 15kHz, &lt;0.5% at 1.5Hz and 150kHz</td>
<td>2 Expanded voltage and -2/4dBm</td>
<td>260 x 180 x 180mm, 5.4kg</td>
<td>TG66A</td>
<td>Mains &amp; battery model £260</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prices are ex works with batteries. Carriage, packing and VAT extra. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

**LEVELL ELECTRONICS LTD.**

MOXON STREET, BARNET, HERTS., EN5 5SD.
TEL: 01-449 5028/440 8686

WW 028 FOR FURTHER DETAILS
Quantum Electronics
THE LATEST AND BEST SOURCE OF SUPERFI AUDIO EQUIPMENT

Although we may be a new name to you, our products use refinements of circuitry which has been well proven over the past few years. By redesigning to what we consider the optimum cost/performance/ appearance breakdown we can now offer the best sound pound for pound that you will find anywhere. In addition to the items below we can supply ready built power amplifiers should active crossovers be required, in a variety of options including custom designed and finishedmetalwork in small (5+) or large quantities. If you do not see what you want please enquire.

'STATE OF THE ART' PRE-AMP

Undoubtedly the best pre-amp on the market, it is supplied ready built, not a kit, and carries for disc, aux and 2 or 3-head tape machines. The built-in supply regulators relate only rough d.c. from all your power amps or the matching mains supply kit, CSI. The performance is almost perfect, with virtually zero hum (0.002%, 1kHz), zero common mode distortion, fast slew, high overload (40dB), low noise (70dB). It is attractively finished in black and is also available in a special version to cater for moving coil cartridges.

'DOMESTIC' POWER AMP KITS

POA

'MASTER' AMP KITS

POA

'NEW' Mono 100W/50

ST7: Mono 1 x 50W/80, 80W/40 £67.85
ST8: Stereo 2 x 50W/40, 65W/40 £65.55
ST9: Mono 1 x 120W/80 £83.22
ST10: Mono 2 x 110W/80 £99.48
ST11: Mono 1 x 150W/80, 250W/80 £103.24
ST12: Mono 1 x 250W/80 £112.35
Also available ready built POA

'NEW' Mono 50W/80

POA

'SLAVE TRAY' & RACK MOUNTING KITS

Slotted tray (blank which) plus £15.41
Black lid £7.68

Also available ready built POA

These kits are designed to cope with sustained high level use, for which the domestic kits are not suitable. The same high performance circuitry is used with the power transistors mounted on substantial external heatsinks. The 'slave tray' is the bare bones of a power amp and encapsulates a simple printed circuit board, transistors and power supply. No specific connectors are supplied to allow flexibility of application. You can mount the slave tray in your cabinet or use our plain or black lid to achieve a match with our pre-amp. The slave tray forms the basis for the rack mounting kits which add a black lid and heavy gauge 3/8 in black brawn. Low field toroidal transformers are used and there is spare room for extra circuitry if required. We stock a range of connectors for your convenience.

'MODULES: UP TO 250W r.m.s.

These modules are available in a variety of powers and forms including L, bracket mounting to trade and export customers only. They come ready built and tested and use the same proven circuitry as the other amps in our range and set an unsurpassed standard of performance and reliability. We also have power supplies for use with these. Please contact us for prices with competitive quantity discounts. The module illustrated is a medium duty 25W general purpose type 4 of the latest Japanese 'Super' power transistors.

EXCHANGE: We can deal efficiently with orders to any country. Please write with your specific requirements for a quote by return. All power amps can be wired for 110V mains.

INFORMATION: Before ordering any of these or competitors' products, why not send for our detailed information? Large 40+ page brochure. Large orders please phone for delivery details and costs.

DISTRIBUTORS: We are eager to establish distributors throughout the world and invite enquiries from interested parties.

DISTRIBUTORS: We are eager to establish distributors throughout the world and invite enquiries from interested parties.

Large orders please phone for delivery details and costs.

DISTRIBUTORS: We are eager to establish distributors throughout the world and invite enquiries from interested parties.

FORTRAN COLORING BOOK £5.40

If you have to learn Fortran (and no one actually wants to), then you can still enjoy yourself with a course which takes you from complete ignorance step-by-step to real proficiency - all you need to start with is a knowledge of simple arithmetic and the use of decimals. And you don't need a computer.

This unique course comes as four A4 books, written by three authors well-known in the fields of microcomputing, self instruction and writing clear English. In 60 straightforward lessons you learn the five essentials, problem definition, flowcharting, coding the program, debugging, and preparing clear documentation.

Every issue has thought-provoking questions and we never ask for mindless drudgery. You will know that you are mastering the material and feel a rare satisfaction. Harder problems are provided with a series of graded hints, a unique and really helpful approach. So you never sit glasseyed with your mind a blank.

First time through, you may need to read most of the hints, but you will soon learn to tackle tough programming tasks - such as writing programs for your computer games, processing graphics on an output printer, calculating compound interest tables and estimating costs.

COMPUTER PROGRAMMING IN BASIC £7.50

Book 1 Computers and what they do well: READ, DATA, PRINT, powers, brackets, variable names; LET, errors, output; programs; the BEEP.

Book 2 High and low level languages, flowcharting, functions, REM and documentation; INPUT; IF...THEN...ELSE; limitations of computers, problem definition.

Book 3 Compilers and interpreters; loops, FOR...NEXT, RESTORE, debugging, arrays; building tutors: TAB

Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples, glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

NEW SCIENTIST

Microcomputers are coming - ride the wave! Learn to program

Millions of jobs are threatened, but millions more will be created through the microcomputer revolution. Will YOU sink or swim? Be one of the people who welcomes computers and the end of boring jobs.

Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step by step to real proficiency - all you need to start with is a knowledge of simple arithmetic and the use of decimals. And you don't need a computer.

The latest and best source of superb hi-fi audio equipment

Also available ready built

P5 Mono 1

P1 Mono 1

ST6: Mono 1x250W/80

Slave tray (state which) plus £15.41

RACK MOUNTING KIT:

Black lid

Plain lid

ST5 Mono 1

ST3. Mono 1

x 55W/80, 80W/40 £63.94

x 130W/80 £65.55

x 150W/80, 260W/80 £67.85

x 250W/80 £79.35

x 300W/80 £86.25

x 350W/80 £93.32

x 400W/80 £105.00

x 500W/80 £127.35

THE LATEST AND BEST SOURCE

OF SUPERFI AUDIO EQUIPMENT

1A STAFFORD STREET, LEICESTER LE1 6NL
Tel: 546198
USA: OX DISCO, BOX 123, CLAYMONT, DE 19703
Understand Digital Electronics

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS £7.00

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Book 1 Binary, octal and decimal number systems; conversion between number systems.
Book 2 AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates.
Book 4 R-S and J-K flip flops; binary counters, shift registers and half adders.

DESIGN OF DIGITAL SYSTEMS £11.50

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR NAND, NOR and two-level logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring; Johnson and exclusive feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROMS; address decoding; instruction sets; instruction decoding; control programme structure...
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

O-LEVEL ENGLISH LANGUAGE £7.00

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays; watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION. Book 2 covers SUMMARY, PUNCTUATION & SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR NAND, NOR and two-level logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring; Johnson and exclusive feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROMS; address decoding; instruction sets; instruction decoding; control programme structure...
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

O-LEVEL ENGLISH LANGUAGE £7.00

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR NAND, NOR and two-level logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring; Johnson and exclusive feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROMS; address decoding; instruction sets; instruction decoding; control programme structure...
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.
In future, recording the present will be a thing of the past.

What's past is past. And said to be best forgotten.
But it's fundamental to the very existence of communications recording to be able to replay a selected portion of tape to find out what was said by who, to whom . . . and when. And 'when' can be vital.

Equally vital, particularly in emergencies when every second counts, is the ability to obtain such replay access rapidly, precisely, automatically. With absolute certainty—and without time-consuming multiple knob-twiddling aided by guesswork.

Racal Recorders has recognized this need and produced TIMESEARCH—designed specifically for its ICR range of multi-channel communications recorders—and providing just these facilities.

TIMESEARCH can generate a coded time reference signal of crystal accuracy and index it onto the tape. It can read and display that signal. It can search a tape at high speed for a pre-selected time signal and automatically initiate replay at that time.

In communications recording, the future becomes the present; the present becomes the past. And when you need to recall the past with precision, you need TIMESEARCH.

Racal Recorders always on the right track

And for providing precise time signals every 10 seconds for recording onto magnetic tape: the International Timing Unit.
THE CINTEC
SINUSOIDAL FREQUENCY
AND
VOLTAGE STABILIZER

APPLICATIONS
* SOUND RECORDING
* VIDEO RECORDING
* MEDICAL
* MARINE
* COMPUTERS
* NAVIGATIONAL SYSTEMS

The efficient operation of sophisticated electrical and electronic equipment is, in many instances, dependent upon an electrical supply which is stable in both frequency and voltage. In many countries and even in the United Kingdom during periods of heavy demand, the variation in the frequency and voltage is sufficient to introduce errors and the malfunction of such items as recording equipment. Likewise, in certain areas, the only source of supply is from a Generator, the output of which can vary considerably when different loads are imposed. This has precluded the use of a wide range of equipment in many countries. Voltage Stabilizers are readily available but these do not stabilize the frequency of the supply which, in many instances, is essential.

The CINTEC FREQUENCY & VOLTAGE STABILIZER provides the answer to both these problems. When the supply frequency is fluctuating wildly, between 45Hz and 65Hz and the voltage by more than 10% the output from the Stabilizer will not vary more than .01% from 50Hz or 1% in voltage, even when different loads are imposed.

Applications for the use of CINTEC FREQUENCY & VOLTAGE STABILIZER are more numerous than can be listed. Therefore, if you have a supply problem, contact CINTEC LIMITED whose engineers will be only too pleased to assist.

SPECIFICATION

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-125 volts or 200-250 volts</td>
<td>115 volts or 230 volts</td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>45-65Hz</td>
<td>50Hz or 60Hz</td>
</tr>
<tr>
<td>STABILITY</td>
<td>VOLTAGE</td>
</tr>
<tr>
<td>Voltage</td>
<td>Frequency</td>
</tr>
<tr>
<td>±1% No load to full load</td>
<td>±0.01% No load to full load</td>
</tr>
<tr>
<td>POWER</td>
<td>DISTORTION</td>
</tr>
<tr>
<td>500VA or 250VA</td>
<td>2%</td>
</tr>
<tr>
<td>COOLING</td>
<td>DUTY</td>
</tr>
<tr>
<td>Fan Cooled</td>
<td>Continuous</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td>WEIGHT</td>
</tr>
<tr>
<td>432 x 162 x 508mm (17&quot; x 6&quot; x 20&quot;)</td>
<td>45 or 30Kg unpacked</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td>TERMINATION</td>
</tr>
<tr>
<td>Cabinet or rack mounting</td>
<td>Cannon Connectors at rear of case</td>
</tr>
<tr>
<td>NATO CODIFIED</td>
<td>24V DC Inverter</td>
</tr>
<tr>
<td>24V DC Inverter</td>
<td></td>
</tr>
</tbody>
</table>

In addition to the A.C. operated models, a 24v D.C. INVERTER Stabilizer is available which operates from a heavy duty 24 volt battery and has output ratings similar to the A.C. models. This type of Stabilizer is particularly suitable for mobile operation.

CINTEC LTD

WW - 019 FOR FURTHER DETAILS
The Leaders in Short Wave

Eddystone at SONIC SOUND AUDIO
BRITAIN’S No. 1 AUDIO STORE

Sonic Sound, the premier home entertainment store, have now added yet another big name in the field of sound equipment to further enhance their prestige in London’s centre of the audio/visual and Hi-Fi field in Tottenham Court Road.

Eddystone, at the top of the tree since short wave began, have now appointed Sonic Sound Audio as sole retail distributors in the United Kingdom. Anyone even contemplating purchasing short wave equipment, be they looking for the best possible available for their Embassy, press department or home use, should visit or contact Sonic where they will be able to view and listen to the most comprehensive range of the latest short wave equipment on the market today.

Listen and choose in comfort at Britain’s most up-to-date air conditioned sound demonstration studios. Full ranges of Hi-Fi, Video equipment, In-car and portables, etc., from all leading manufacturers, B & O, Sanyo, Sony, Hitachi, Pioneer, J.V.C.

THE COMMUNICATION CENTRE
SONIC SOUND AUDIO
248-256 TOTTENHAM COURT ROAD LONDON W1 TEL: 01-637 1908

Eddystone
A Marconi Group Company.
within your reach!

The M80-MC 80 column printer from Mannesmann Tally

Higher reliability, longer life, faster operation...that's the M80-MC.

It may cost just a little more than some "personal computer" printers, but it offers a whole lot better value.

When other cheaper printers come to a halt in the middle of a heavy work load, the Mannesmann Tally M80-MC carries on. It's a proven, 200 c.p.s. bi-directional printer which is based on microprocessor electronics—hence the low price.

- 80 column, 200 c.p.s., bi-directional, 7 x 7 matrix (64 character U.K. set).
- Industry standard parallel interface—compatible with all popular microcomputers.
- Simple DIY installation.
- Only £995 + VAT (includes Securicor delivery).
- 12 month comprehensive Warranty (return to factory); fixed price repair service thereafter.

* Field service agreements available from our own nationwide maintenance organisation.
* Options include: 16.5 c.p.i. condensed print, 9 x 9 matrix, 96 c. set, serial interface, etc.

Applications assistance is only a 'phone call away.

MANNESMANN TALLY

Send coupon for more details.

Tally Limited, Tally House, 7 Cremyll Road, Reading, Berks. RG1 8NQ.

MANNESMANN

International Electrical Electronic and Instrument Exhibition

The third International Electrical, Electronic and Instrument Exhibition will once again prove to be a unique point of contact for specifiers, buyers, and indeed anyone interested in the future of the industry.

Over 1,000 different exhibiting companies covering just about everything electrical and electronic. From heavy power production equipment, coil-winding machinery, insulation and lighting...to electronic test, control and measurement instruments, general and sophisticated. Electric vehicles and allied equipment...to scientific and laboratory instruments. Transformers...to opto-electronic devices. Electrical and electronic components of all kinds.

To help you locate specific items, the highly successful computer enquiry service will once again be operating; providing an instant read out of exhibitor and product information, as well as the specific location, based on the visitor's particular enquiry.

As an additional bonus, too, visitors will be able to transfer, free of charge, to IPHEX '80—the International Pneumatics and Hydraulics Exhibition.

Naturally enough, IEA ELECTREX '80, the only internationally recognised event for the electrical and electronic industries in the UK, will have an internationally recognised venue—Birmingham's National Exhibition Centre.

Here, in the heart of the country, facilities for visitors are unrivalled. Excellent communications, accommodation and entertainment make a fitting location for this shop window for the British and international electrical and electronic industries.

Make sure you're there. And make some positive contacts at IEA ELECTREX '80.

IEA ELECTREX '80. Together, they mean business.

National Exhibition Centre Birmingham
England 25-29 February 1980
Opening hours: 09.30-18.00 hrs. daily.
Eddystone EC958/7 for arduous environments

This ruggedized version of the famous Eddystone 958 Series of high-grade professional receivers is fitted with anti-vibration mounts and drip-proof cowl. It covers 10kHz to 30MHz, with 1Hz digital readout and 4Hz stability under rigorous conditions of service. This receiver is ideal for general communication use, network monitoring, surveillance, military, mobile and shipborne installations. It is also available in standard form for bench or rack mounting.

Eddystone Radio Limited
Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-475 2231 Telex: 337081
A GEC-Marconi Electronics Company

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS —

POWER AMPLIFIER KIT. The kit includes all metalwork, heatsinks and hardware to house any two of our power amp modules plus a power supply. It is contemporarily styled and it quality is consistent with that of our other products. Comprehensive instructions and full-back-up services enable a novice to build it with confidence in a few hours.

PRE-AMP KIT
This includes all metalwork, guts, knobs, etc., to make a complete pre-amp with the CPR1(S) module and the MC1(S) module if required.

POWER AMPLIFIER KIT
£35.05

PRE-AMPS
£18.55

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

CRIMSON ELEKTRIK
1A STAMFORD STREET, LEICESTER LE1 6NL. Tel. (0533) 553508
U.K. — Please allow up to 21 days for delivery

All prices shown are UK only and include VAT and post. COD 10% extra, a £10 limit. Repair service is no problem, please write for technical aid. Send large tape or 3 International Reply Coupons for detailed information.

Distributed by: Down Hi-Fi & Video Centre. 65 Abbey Street. Bangor, N. Ireland. B阿富汗 Sound Services Ltd.

WW—006 FOR FURTHER DETAILS

WW—005 FOR FURTHER DETAILS
Avo produce an impressive range of servicing instruments for on-site and work-bench use.

1. There is the tried and tested Avometer 8, with overload protection and a robust centre-pole movement resisting all the knocks of on-site work. It is just one of a complete range of portable multimeters.

2. Then there is the Avoscope A101, a portable, mains operated dual channel 10 MHz oscilloscope – a low cost instrument offering an accuracy of ±5% that is simple to use.

3. Also, Avo offer a choice of AM or AM/FM Signal Generators with variable outputs, providing accurate repeatable attenuation.

Avo quality is built on many years of experience. If you’d like more detailed information about the range, contact your nearest Avo Appointed Distributor, or ask Avo.

Avo Limited,
Archcliffe Road, Dover,
Kent CT17 9EN.
Tel: 0304 202620 Telex: 96283
Thorn Measurement & Components Division

You'll never meet a better meter
The invention of the silicon chip by Texas Instruments, turned science fiction into science fact overnight. That was in 1965, but only now is the full potential of the ‘chip’ being realised.

Texas Instruments offer you 14 years of extensive research and development in the form of data and reference books that will enable you to get the very best from their micro-miracle.

Whether it’s your business or hobby, anyone interested in micro-technology will find these books invaluable.

Get the real facts from the inventors of the ‘chip’:

TEXAS INSTRUMENTS

Texas Instruments Ltd, Supply Division, MS21, Manton Lane, Bedford Tel: 0234 67466
Slough: 186 High Street, Slough, Berks. Tel: 0753 70531
Manchester: Knightsbridge Mall, Arndale Centre, Market Street, Manchester. Tel: 061-832 6238

PORTABLE PRECISION

A range of 3½ digit LCD multimeters offering high precision and extended battery life. All feature 0.5” LCD read-out with ‘battery low’ warning, inputs protected against overloads and transients, Auto-polarity, Auto-zero, rugged ABS cases and a full 1-year warranty.

The LMM-200 is a compact handheld multimeter with 0.5% basic accuracy and 15 different ranges. It measures voltage from 0.1mV to 500V, current from 0.1uA to 2 Amps, and resistance from 0.1Ω to 2MΩ.

The LMM-2001 is an identical instrument but with 0.1% basic accuracy.

The LMM-100 has an adjustable handle, a 2,000 hour battery life and is ideally suited to field or bench use. It measures voltage from 0.1mV to 1KV, current from 0.1uA to 2 Amps, and resistance from 0.1Ω to 20MΩ. 0.1% basic accuracy.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon, Essex. Telephone No: Basildon (0268) 727383.

Please send me the books ticked. I enclose £_______ plus £1.15 P&P

DATA BOOKS
- TI L Data £5.00
- Interface Circuits Data £3.50
- Power Semiconductor Data £3.50
- Transistor and Diode Vol. I £3.50

OTHER TI BOOKS
- Optoelectronics Theory and Practice £7.50
- Semiconductor Circuit Design Vols. I to IV £5.50 each
- Understanding Solid State Electronics £1.20
- Understanding Digital Electronics £3.50
- Software Design for Microprocessors £2.00
- 9900 Assembly Language Guide £4.00
- 9900 Family Systems Design £8.00
- Calculating Better Decisions (5511) £5.00
- Calculator Analysis for Business and Finance (542 MBA) £7.00
- Sourcebook for Programmable Calculators (556/585/59) £11.45

TI-59 PAKETTES
Each pakette contains complete listings of programmes suitable for use with the Ti Programmable 59 calculator £5.95 each
- Electronic Engineering
- Black Body Radiation
- Astrology
- Marketing/Sales
- Mathematics
- Production Planning
- TI-59 Fun (Games Pakette)
- Oil/Gas/Energy
- Printer Utility
- Programming Aids
- Fluid Dynamics
- 3D Graphics
- Lab Chemistry

NAME ____________________________
ADDRESS __________________________

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon, Essex. Telephone No: Basildon (0268) 727383.
4-DIGIT DDD'S FOR LCD'S.
SMARTER. CHEAPER. MONOLITHIC.
FROM INTERSIL. NATURALLY.

BCD DATA INPUT

V+
GND

D4 D3 D2 D1
DIGIT SELECT

ICM7211/7212

4-DIGIT LCD/LED HEXADECIMAL/CODE B DISPLAY DECODER DRIVER

DOWN GOES THE COMPONENT COUNT.
As a leader in monolithic Display Decoder Drivers (DDD), Intersil pioneered the “Driver on a Chip.” But, we’re not resting on our laurels. We’re making more and better DDD’s. Less expensively. The ICM7211 (LCD) and ICM7212 (LED) Display Decoder/Drivers are two good examples.

ONE CHIP FROM LOGIC TO DISPLAY.
The ICM7211 is simply the best 4-digit LCD driver available today. μP-controlled or multiplexed BCD input. Hexadecimal (0-9, A, B, C, D, E, F) or Code B (0-9, ←, E, H, L, P, BLANK). It requires no external logic to drive four digits. The segment outputs of ganged chips can be directly slaved to the backplane. And, a complete on-board backplane oscillator eliminates the need for any external components. LED Displays? Specify the ICM7212 for non-multiplexed LED display and get a brightness control with a single potentiometer, no RF interference, and typically 8mA DC per segment at full brightness.

LOW POWER CMOS DDD’S.
Today, Intersil offers a complete family of counters, timers and display drivers in low-power MAXCMOS™. Monolithic circuits that reduce your component count, power requirements and design time. At a cost that helps you think CMOS.

COMPARE PRICE AND PERFORMANCE.

<table>
<thead>
<tr>
<th>ORDER PART NUMBER</th>
<th>OUTPUT CONFIGURATIONS</th>
<th>PRICE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM7211IPL</td>
<td>HEXADECIMAL MULTIPLEXED 4-BIT</td>
<td>£3.55</td>
</tr>
<tr>
<td>ICM7211APIPL</td>
<td>CODE B MICROPROCESSOR INTERFACE</td>
<td>£3.37</td>
</tr>
<tr>
<td>ICM7211MPIPL</td>
<td>HEXADECIMAL CODE B INTERF</td>
<td>£3.37</td>
</tr>
<tr>
<td>ICM7212IPL</td>
<td>HEXADECIMAL MULTIPLEXED 4-BIT</td>
<td>£3.55</td>
</tr>
<tr>
<td>ICM7212APIPL</td>
<td>CODE B MICROPROCESSOR INTERFACE</td>
<td>£3.37</td>
</tr>
</tbody>
</table>

COUNT ON US.
Whatever your display or counting problem, there’s probably a better, simpler solution available from Intersil. For complete information on the ICM7211/7212, call your Intersil Sales Office, Franchised Distributor, or, return the coupon below.

U.K. SALES OFFICE
Intersil, Snamprogetti House, Basing View
Basingstoke RG21 2EE, Hants.

U.K. DISTRIBUTORS
Macro Marketing Ltd. 396 Bath Road, Slough, Berks.
Tel: Burnham 63011
Tranchant Electronics (U.K.) Ltd. 61-63 London Road,
Redhill, Surrey. Telephone: Redhill 69217 Telex: 895230 TRELEC G
Rapid Recall Ltd. 46-50 Beam Street, Nantwich, Cheshire CW5 5LJ.
Tel: Crewe 626061 Telex: 36329
Rapid Recall Ltd. Soho Mills Industrial Park, Wooburn Green, Bucks.
Tel: Bourne End 24961 Telex: 849439
Andis Components Ltd. Etwall Street, Derby. Tel: Derby 363296

Intersil, Snamprogetti House, Basing View
Basingstoke RG21 2EE, Hants.

Order everything you need to know about the ICM7211/7212 DDDs.
Send me literature on your family of display driver/counter/timer circuits.

Name ____________________________
Company _________________________
Address __________________________
Tel: ______________________________

WW — 024 FOR FURTHER DETAILS
If QUAD amplifiers are so perfect, why does it still sound better in the concert hall?

In real life, the sounds from all the instruments and sometimes parts thereof are independently radiated and so are not 'phase locked' together nor are they subjected to common eigentones.

These mutually incoherent wavefronts are subjected to tiny but important reflections at the pinna and finally end up as just two channels representing the pressure at the two ear drums. It is not possible to achieve this transfer accurately by means of loudspeakers or headphones however good these components may be.

Nevertheless with good amplifiers and loudspeakers (and on those occasions when the people at the recording and transmitting end get it right) a musical experience can be achieved which is extremely satisfying and one of the greatest pleasures of our time.

For further details on the full range of QUAD products write to: The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB.
Tel: (0480) 52561.
**REGULATED POWER SUPPLIES**

Protection:
All models internal foldback, overload, thermal and short circuit protected. Fully fused.

**Type AD12 - AD24 (Illustrated)**

**TYPES AVAILABLE**

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>AD12</th>
<th>AD24</th>
<th>AD2412</th>
<th>ADV030</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT CURRENT</td>
<td>8 amp</td>
<td>8 amp</td>
<td>16 amp</td>
<td>5 amp</td>
</tr>
<tr>
<td>NOMINAL OUTPUT VOLTS</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>0 to 30</td>
</tr>
<tr>
<td>TOLERATED MAINS VARIATION</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>PRICES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 off - AD12/24</td>
<td>£68.50</td>
<td>£54.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 off - AD2412</td>
<td></td>
<td>£118.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All subject to VAT @ 15%

**2-YEAR GUARANTEE**

**SOUTHERN ELECTRONICS**

6 WESTCLIFF ARCADE, RAMSGATE, KENT
TEL. THANET (0843) 57888

**WW - 012 FOR FURTHER DETAILS**

---

**ELECTIONVALUE CATALOGUE 10**

Ready early December

Our computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's **FREE**

(You don’t even have to pay postage)

**IT'S A GOOD DEAL BETTER FROM ELECTROVALUE**

- We give discounts on C.W.O. orders, except for a few items market Net or N in our price lists.
- We stabilise prices. by keeping to our printed price lists which appear but three or four times a year.
- We guarantee all products brand new, clean and maker’s spec. No seconds, no surplus.
- We pay postage in U.K. on C.W.O. orders list value £5 or over. If under, add 30p handling charge.
- We stabilise prices. by keeping to our printed price lists which appear but three or four times a year.
- We guarantee all products brand new, clean and maker’s spec. No seconds, no surplus.
- We stabilise prices. by keeping to our printed price lists which appear but three or four times a year.
- We guarantee all products brand new, clean and maker’s spec. No seconds, no surplus.

**OUR NEW CATALOGUE No 10**


**ELECTROVALUE LTD**

HEAD OFFICE (Mail Orders)
286(6) St. Jukes Road, Englehard Green, Egham, Surrey. TW20 0HB. Phone: 33603 (London prefix 87. STD 0784)
Telex 264475.

NORTHERN BRANCH (Personal Shoppers Only)
680 Burnage Lane, Burnage, Manchester M19 1NA
Phone: (061) 432 4945.

**ORGAN and PIANO KEYBOARDS**

<table>
<thead>
<tr>
<th>Price</th>
<th>Inc. VAT</th>
<th>P &amp; P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Octave C-C</td>
<td>£32.20</td>
<td>£2.75</td>
</tr>
<tr>
<td>5-Octave C-C</td>
<td>£34.50</td>
<td>£2.75</td>
</tr>
<tr>
<td>5-Octave F-F</td>
<td>£34.50</td>
<td>£2.75</td>
</tr>
<tr>
<td>6-Octave C-C</td>
<td>£36.80</td>
<td>£3.00</td>
</tr>
</tbody>
</table>

**DALSTON ELECTRONICS**

40a Dalston Lane, Dalston Junction
London, E8 2AZ. Tel: 01-249 5624

---

**At last...**

**A REALLY RELIABLE IN CIRCUIT TRANSISTOR TESTER THAT WORKS!**

Previous testers have been too easily fooled by low short circuited transistor. The DATEST tests transistors. Rates at 20 ohms and works even when shorted by fuses as low as 20 inch.

Automatic NPN/PNP indication, simple through-LCD display, and unique test pads allow the very high rates of testing even by unskilled users. Very competitive price includes grading and the DATEST 1 is available from stock. Full rate sheet in our catalogue.

**ONLY £40 COMPLETE, + 15% VAT**

Total Price £57.75 Inc. VAT & P&P.

**DATEST ELECTRONICS LIMITED**

Spence Mills, Mill Lane, Bramley
Loudon LS13 3HE
Telephone: Puttenham (0532) 552461

**WW - 013 FOR FURTHER DETAILS**
MIC STAND
A high quality standard stand by Edwin Muhicore. Use for microphone components. £2.19. Nig relief, about 182 inches. Order at FY89A. Price £7.87

MINIATURE TRANSFORMERS
Good quality mini transformers to 0.125A. Resistance 0 to 1.5M ohms. Order as WBB56A. Price £2.59. Transformer diameter 0.125 to 0.254. Order as WBB56. Price £2.44. 120 use transformer 0.125 to 0.254. Order as WBB56A. Price £2.44. Transformer on 0.125 to 0.254. Order at FY89A. Price £2.44.

AMP KITS
Suitable kits for use with high-end loudspeakers. £2.19. All kits transformers including high-end loudspeakers. Order at FY89B. Price £3.56. Transformers ordered at FY89A. Price £2.44.

REVERBERATION SYSTEM

SOLDER

POCKET MULTIMETER

REVERBERATION SYSTEM

SIREN

MIC KIT 8 POWER SPEAKERS

SOLDERING IRONS & KITS

POCKET MULTIMETER

REVERBERATION SYSTEM

SOLDERING IRONS & KITS

MINIATURE TRANSFORMERS
Good quality mini transformers to 0.125A. Resistance 0 to 1.5M ohms. Order as WBB56A. Price £2.59. Transformer diameter 0.125 to 0.254. Order as WBB56. Price £2.44. 120 use transformer 0.125 to 0.254. Order as WBB56A. Price £2.44. Transformer on 0.125 to 0.254. Order at FY89A. Price £2.44.

AMP KITS
Suitable kits for use with high-end loudspeakers. £2.19. All kits transformers including high-end loudspeakers. Order at FY89B. Price £3.56. Transformers ordered at FY89A. Price £2.44.
NOT EVERY CABLE HAS A LABEL

Everyone who works with electricity needs to know at some time or other what's going on inside the cable he's handling. What voltage. What current. What resistance. Not knowing the answers, or worse still having inaccurate answers, can make life difficult, even terminal.

Eagle Test Equipment gives the right answers

The range covers general multimeters, high voltage probes, clamp meters, insulation testers. Here are just four. Send the coupon for details of all the rest.

KEW 7 Multimeter
1000 OPV. DC volts up to 1000, DC amps up to 100 mA. AC volts up to 1000. Resistance up to 150 Kohms. Pocket size. "Off" damping. Complete with leads & battery. R.R.P. £6.95 ex. VAT.

EM 1200 Multimeter
100,000 OPV. Taut band movement. Overload protection. Reversible DC polarity. AC amps: 15, AC volts to 1500. DC amps up to 15, DC volts to 1500. Resistance up to 200 megohms. "Off" damping. Overload protection. R.R.P. £79.35 ex. VAT.

EM10, 20 & 30 Multimeters
10, 20 & 30,000 OPV. All with antiparallax mirror scale. DC volts to 1000 (1200 for EM30). DC amps to 250 mA (600 for EM30). AC volts to 1000 (1200 for EM30). Resistance up to 6.5 and 60 megohms respectively. R.R.P.'s EM10 £13.50, EM20 £17.25, EM30 £20.75 ex. VAT.

Test Equipment: EAGLE

Please send me details of your complete range of Test Equipment.

Name ____________________________ Company ____________________________

Address ____________________________ ____________________________

EAGLE INTERNATIONAL

Precision Centre, Heather Park Drive, Wembley, Middlesex HA0 1SU.

WWW - 977 FOR FURTHER DETAILS
CROPICO - A CERTAIN MEASURE OF PERFECTION

Cropico, established as one of Britain's leading manufacturers of precision electrical measuring equipment, offer a wide range of instruments which have been proved for accuracy and performance throughout the world.

- Resistance Boxes
- Resistance Bridges
- Resistance Standards
- D.C. Potentiometers
- Thermocouple Reference
- Thermocouple Switches
- Pt 100 Switches
- Pt 100 Simulators
- D.C. Null Detectors
- Digital Temperature Indicators
- Electronic Standard Cell
- Multimeters, Digital or Analogue
- Wattmeters, Digital or Analogue
- Insulation Test Sets
- Earth Resistance Meters
- Fluxmeters
- And many more

Cropico - Britain's leading manufacturer, exporter and importer of precision electrical measuring equipment.

Request full details — Visitors Welcome

CROPICO LTD., Hampton Road, Croydon CR9 2RU
Telephone: 01-684 4025 and 4094
Cables: CROPICO-CROYDON
Telex: 945632 CROPCO G

CROPICO

WW — 075 FOR FURTHER DETAILS

POWER UNITS

Now available with 3 OUTPUTS

Type 250VRU/30/25

OUTPUT 1: 0-30v, 25A DC
OUTPUT 2: 0-70v, 10A AC
OUTPUT 3: 0-250v, 4A AC

ALL Continuously Variable

VARADIO LIMITED, BROWELLS LANE, FELTHAM
MIDDLESEX TW13 7EN
Telephone: 01-890 4242/4837

WW — 045 FOR FURTHER DETAILS

FOR *** SAKE BOB! WHY
DIDN'T YOU TELL ME ABOUT THE
LR71 MONTHS AGO!

for all demagnetising problems

LEEVERS - RICH have the answer

LR70 for tapes up to 8¼ Dia and 1" wide
LR71 for tapes up to 11½ Dia and 1" wide
LR72 Han-d-mag for demagnetising heads and tape path components

LEEVERS - RICH
EQUIPMENT LTD
319 Trinity Road, Wandsworth, London SW18 3SL
Tel: 01-874 9054 Telex: 92355

WW — 041 FOR FURTHER DETAILS
Pil are pleased to announce the official opening of their new 1500 sq. ft. showroom to the public.

Offering a range of some 350 electrical measuring instruments manufactured by around 60 manufacturers, both British and international.

Pil can cater for practically every electrical measurement problem for any user on an ex-stock/short delivery basis.

The showroom facilities and its technical back-up are available to everyone from export houses and overseas users, buyers engineers, to do-it-yourself enthusiasts and hobbyists.

Instruments Electrical the service and calibration division can provide full guarantee facilities as well as offering their normal repair and calibration service.

For an immediate solution to your instrument problems, contact the Instrument Group at Instrument House.

Factory/Repairs 01-639 0155
North London Showroom 01-965 2352

INSTRUMENT HOUSE, 727 OLD KENT ROAD, LONDON SE15
TELEPHONE: 01-639 4461  TELEX: 8811854(INSTEL)
Top value test equipment from TANDY

**LCD DIGITAL MULTIMETER.**

Low-cost hand held digital multimeter with a full 31/2 digit LCD display. 0.5% basic accuracy, auto polarity operation. 10 Mohm DC input impedance.

- **Reading to ± 1999**
- **Scales:**
  - DC volts: 1mv to 2000V (1% ± 1 digit accurate).
  - AC volts: 1mv to 500V (1% ± 2 digits accurate).
  - DC current: 1mA to 200mA (1% ± 1 digit accurate).
  - Resistance: 10 Ohm to 20 MOhm (1.5% ± 1 digit accurate).
  - Power source: 9V battery or AC adaptor.

- **Size:** 155x 75 x 30mm

**PRICE** 53.19

**LOW-COST LCD MULTIMETER**

A portable, compact sized multimeter with a full 31/2 digit LCD display. Auto polarity operation, low battery indicator. 10 MOhm Input impedance.

- **Scales:**
  - DC volts: 2 20 200 1000V
  - AC volts: 200 500V
  - DC current: 2 20 200mA
  - Resistance: 2 20 200K

- **Size:** 37 x 85 x 130 mm

**PRICE** 39.93

**COMPONENTS AND PARTS**

<table>
<thead>
<tr>
<th>CAT No.</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>276-032</td>
<td>LED</td>
<td>4 for 69p</td>
</tr>
<tr>
<td>276-033</td>
<td>LED</td>
<td>2 for 48p</td>
</tr>
<tr>
<td>276-034</td>
<td>LED</td>
<td>2 for 59p</td>
</tr>
<tr>
<td>276-142</td>
<td>Infra Red Emitter Detector Pair</td>
<td>£1.37</td>
</tr>
<tr>
<td>277-1003</td>
<td>12V DC Automotive Digital Clock Module</td>
<td>£17.52</td>
</tr>
<tr>
<td>276-9110</td>
<td>6 pin edge connector for 277 1003</td>
<td>40p</td>
</tr>
<tr>
<td>276-1373</td>
<td>Power Transistor Mounting Hardware</td>
<td>50p</td>
</tr>
<tr>
<td>276-1363</td>
<td>10 220 Heat Sink</td>
<td>60p</td>
</tr>
<tr>
<td>276-1364</td>
<td>10 3 Heat Sink</td>
<td>81p</td>
</tr>
</tbody>
</table>

**AC/DC 8 MHz OSCILLOSCOPE**

A new approved 8MHz version of last year's winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in laboratories and schools. Ideal for radio and TV servicing, audio testing, etc.

- **Specifications:**
  - Horizontal axis: Deflection sensitivity better than 250mv/DIV. Vertical axis: Deflection sensitivity better than 10mv/DIV. Bandwidth: 0.8MHz.
  - Input impedance: 1MOhm parallel capacitance: 35pF. Time base: Sweep range: 0.04s-1000ms/div. Horizontal calibration: 10s/div. Bandwidth: 0.8MHz.

**PRICE** 137.36

You save because we design, manufacture, sell and service.

Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

KNOwn AS RADIO SHACK IN THE U.S.A. MAKERS OF THE WORLD'S BIGGEST SELLING PC/MICROCOMPUTER (IBM)

The largest electronics retailer in the world.

OFFERS SUBJECT TO AVAILABILITY. INSTANT CREDIT AVAILABLE IN MOST CASES.

OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

WW - 060 FOR FURTHER DETAILS
MEASURE RESISTANCE TO 0.01Ω

At a Price that has no resistance at all

New ELENCO PRECISION Digital Multimeter M1200B USA

ONLY £55

[Price details and features listed]

YOUR OPPORTUNITY TO BUY THIS SUPERB DMM AT THIS PRICE FOR A LIMITED PERIOD ONLY

FULLY GUARANTEED FOR 2 YEARS

METAL CASE

EX STOCK DELIVERY

THE ULTIMATE IN PERFORMANCE — MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICRO VolTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

FEATURES

- 3½ digits 0.56" high LED for easy reading
- 100μV, 1μA, 0.01Ω resolution
- High input impedance 10 Megohm
- High accuracy offered with precision resistors, not unstable tripmats
- Input overload protected to 1000V (except 200V range to 600V)
- Auto zeroing, autotolarity
- Mains (with adaptors not supplied) or battery operation built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

SPECIFICATIONS:

- DC Volts
  Range 200mV, 2V, 20V, 200V, 1000V
  Accuracy 1% ± 1 digit, Resolution 1mV

- AC Volts
  Range 200mV, 2V, 20V, 200V, 1000V
  Accuracy 1.5% ± 2 digits, Resolution 1mV

- DC Current
  Range 2mA, 20mA, 200mA, 2amp.
  Accuracy 1% ± 1 digit, Resolution 0.1a

- AC Current
  Range 2mA, 20mA, 200mA, 2amp.
  Accuracy 1.5% ± 2 digits, Resolution 1Microamp

- Overload protection
  - 2 amp fuse and diodes
  - Overload protection — to 2 amp fuse and diodes

- Resistance
  Range 20, 200, 2K, 20K, 2 Meg. 20 Meg.
  Accuracy ± 1% ± 2 digits, Resolution 0.1ohm

- Environmental
  Temp coefficient 0 °C to 30 °C ± 0.025% C
  Operating Temp 0 °C to 50 °C Storage — 20 °C to 60° C

- General
  Main adapter: 6 - 9 Volts @ 200mA (not supplied)
  45C size batteries (not supplied)
  Size 3.1/2 " x 2.5" Weight 2.5 lbs.

To: Maclin-Zand Electronics Ltd
1st Floor. Unit 10. East Block
39 Mount Pleasant, London WC1X OAP

Please send me
£66.70 inc. p&p + VAT (overseas £60)

(£3 p&p + VAT E8.70 = £66.70)

I enclose cheque /PO / Bank Draft for £

Name

Address

[Contact information for ELENCO PRECISION Sole UK Distributor]

Also available from retail shop

Audio Electronics, 301 Edgware Road
London, W.2

Telephone: 01-724 3664

© N Zand

Maclin-Zand Electronics Ltd
38 Mount Pleasant, London WC1X OAP
Tel. 01-837 1166
Tellex. 8953084 MACLING

WWW FOR FURTHER DETAILS
NEWBEAR BOOKS

WE HAVE 397 TITLES IN STOCK, SEND FOR COMPLETE LIST.

GAMES
Chess & Computer D. Levy £ 7.16
Chess Skill in Man and Machine P. Frey £11.84
32 Basic Programs for the Pet £ 9.95
Game Playing with Computers D. Spencer £10.20
Basic Computer Games D. Ahl £ 5.50
Star Ship Simulation £ 5.10
Game Playing with Basic D. Spencer £ 4.10
Sargon Spracklen £ 9.50

PASCAL
Pascal: User Manual and Report Springer-Verlag £ 5.52
Problem Solving Using Pascal Springer-Verlag £ 7.84
Programming in Pascal P. Grogono £ 7.50
A Practical Intro. to Pascal A. Addyman £ 9.50
An Introduction to Programming and Problem Solving with Pascal Schneider £ 9.50
Introduction to Pascal J. Welsh & J. Elder £ 6.95

FORTRAN
Elementary Computer Programming in Fortran IV Boguslauksky £ 6.30

PROGRAMMING
Chemistry with a Computer P. A. Cauchon £ 7.96
Seminaral Algorithms Knuth £17.85
Fundamental Algorithms Knuth £17.85
Assembly Level Programming for Small Computers W. J. Weller £12.50
Sorting & Searching Knuth £17.85
Top-Down Structured Programming Techniques McGowan £12.50
The Design of Well Structured and Correct Programs Alagic & Arbib £10.00
Computer Mathematics Saxen/Stryer £ 8.58
Basic Principles of Data Processing Knuth £ 7.75
Fundamentals of Computer Algorithms Horowitz/Sahni £15.00
Computer Approach to Introductory College Mathematics Scalzo £11.30
Computer Input Design Woolridge £ 8.85
Computer Output Design Woolridge £ 9.70
How to Program Micro's. Barden £ 6.85

MISCELLANEOUS
Intro. to TRS 80 Graphics Zaks £ 5.75
Microprocessors C201 £ 5.75
Scelbi Bote Primer £ 9.95
Business Data Systems Clifton £ 5.75
The Systems Analyst Atwood £ 6.60
Your Home Computer White £ 4.95
Programming a Micro 6502 Poster £ 7.95
6502 Applications Handbook Zaks £ 8.95

BASIC
Learning Basic Fast De Rossi £ 6.30
Basic Basic J. S. Coan £ 5.00
Advanced Basic J. S. Coan £ 5.50
Illustated Basic D. Alcock £ 2.25
Basic with Business Applications Hayden £ 8.40
Introduction to Basic J. Morton £ 6.50
The Basic Handbook £11.00

COBOL
Cobol Programming Nickerson £ 6.95
Learning Cobol Fast De Rossi £ 6.20
Cobol with Style Hayden £ 4.20
Reducing Cobol Complexity Mc Clue £11.50

CALLERS AND MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 0635 30505
CALLERS ONLY: 220-222 Stockport Road, Cheadle Heath, Stockport Tel: 061 491 2290

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1 Phone: 01/837/7937

FYLDE

30/31 Fylde Road Preston PR1 2XQ
Telephone 0772 57560

TRANSDUCER and RECORDER

AMPLIFIERS and SYSTEMS

reliable high performance & practical controls. individually powered modules— mains or dc option single cases and up to 17 modules in standard 19" crates small size—low weight—realistic prices.

Fylde Electronic Laboratories Limited.
NEW UNBEATABLE 1980 PRICES NOW!

EXPLORER /85
FEATURING THE RCA COSMAC 1802 CPU
WITH ON BOARD S-100 EXPANSION

FLEXIBILITY: Real flexibility at LAST. The EXPLORER /85 features the Intel 8085 cpu 100% compatible with all 8080A and 8088 software. Runs at 3MHz. Mother Board (Level A) with 2, S-100 pads expandable to 6 (Level C).

MEMORY
2K Monitor ROM
4K WORKSPACE/USER RAM
1K Video RAM
8K Microsoft BASIC in ROM or Cassette.

INTERFACES
STANDALONE FULL ASCII Keyboard Terminal, 32/64 characters per 16 lines
Cassette interface (with motor control and cassette-File structure)
RS-232/20mA Loop, 4, 8bit: 1, 6 bit I/O ports, programmable 14bit binary counter/timer.
Direct interface for any S-100 Board.
FULL Buffering decoding for S-100n Bus pads, wait state generator for slow memory.

NEWTONTRONICS KEYBOARD TERMINAL AT £114.20 + VAT
The Newtontrons Keyboard Terminal is a low cost stand alone Video Terminal that operates quietly and maintenance free. It will allow you to display on a monitor 16 lines of 64 characters or 16 lines of 32 characters on a modified TV (RF Modulator required).

Now Available 8K FULL BASIC FOR ELF II

SEND SAE FOR COMPREHENSIVE BROCHURE
Please add VAT to all prices (except manuals). P&P £2. Please make cheques and postal orders payable to NETRONICS or phone your order quoting BARCLAYCARD, ACCESS number.

NEW ADDRESS:
H. L. AUDIO LTD.
255 ARCHWAY ROAD
LONDON N6 5BS

New Phone No. 01-348 3325

We are now open for demonstrations and Sales, Monday-Saturday, 9.30 a.m.-6.30 p.m. Near Highgate Underground, on main A1 into London.
Carston Electronics

specialists in second user test and measuring instruments

AS NEW

EX STOCK DELIVERY

Oscilloscopes

TEKTRONIX 465
DC-100MHz Dual Trace 5mV-5V/Div
0.05μs-0.5s/Div Delayed T/B XY DC 4MHz

£1200

TEKTRONIX 475A
DC-250MHz Dual Trace 5mV-5V/Div
0.01μs-0.5s/Div Delayed T/B XY DC 3MHz

£1950

Other New Additions to our Stock —

Amplifiers
MICRO MOVEMENTS
M1229 AC Amplifier and Strain Gauge Conditioning Unit
M1270 DC Amplifier 15mV 150V
2 and 10 channel rack systems available

Counter Timers
HEWLETT PACKARD
5462A/5463B DC-50MHz 6 Digit

Distortion Systems
RADFORD
DA120 10Hz-100kHz meter
LD20 10Hz 10kHz Oscillator

Modulation Meters
MARCONI
TE211 AM/FM 10MHz

Oscilloscopes
TEKTRONIX
547 1A1 DC-50MHz Dual Trace DTB
547 1A4 DC-50MHz Four Trace DTB
Plug ins for 5A1 Series
1A1 Dual Trace Plug-In DC 50MHz
1A2 Dual Trace Plug-In DC 50MHz
1A4 Four Trace Plug-In DC 50MHz
1A5 Differential Plug-In
2A Differential Plug-In
81 Adaptor Plug-In to 1A Series to 580 Series

TELEquipment
934 DC 15MHz Dual Trace
980 DC 15MHz Single Trace

Power Meters
MARCONI SAUNDERS
6460 10MHz 40GHz (Depending on Head)
6421 10MHz 12.4GHz 10mw
6422 10MHz 12.4GHz 100mw
6428 26.5 40GHz 10mw

Pulse Generators
EH
1200 10KHz 100MHz 20V 50Ω RT 1ns
122 1KHz 200MHz 5V 50Ω RT 10ns
121 1KHz 200MHz 20V 50Ω RT 10ns
1391 10Hz-50MHz 10V 50Ω RT 8ns
1221 1MHz-10MHz 5V 50Ω RT 8ns

Recorders
HEWLETT PACKARD
981M 5 Inch Stripchart Single Pen
681M 120V 100cm/min 2.5cm/sec
SOUTHERN INSTRUMENTS
1001 5 Channel U.V. 5.1 1000mm/sec

Selection of Calibrators available

Voltmeters Digital
FARNELL
DM1316 1999 FSD AC/DC OHMS Current Temp.
SOLARTRON
LMH20 2 2300 FSD DC Only 0.05%
LM1420 28A 2300 FSD AC True RMS DC

WW — 078 FOR FURTHER DETAILS
More second user bargains

Carston Electronics Limited
Shirley House, 27 Camden Road, London NW1 9NR. Telex: 23920

Carston

Contact David Kennedy

01-267 5311/2

VAT charged at Standard Rate

Redundant Test Equipment
Why not turn your under-utilized test equipment into cash? Ring us and we'll make you an offer.
**MODEL 756**

**FULL ASCII KEYBOARD**

**LOW COST!**

**Fully Assembled**

- **Alpha lock.**
- **Extra loose keys available.**
- **Supplied complete with full technical data.**
- **Rugged mil. spec. G–10 PCB with plated through holes.**
- **2-key roll-over.**
- **DC level and pulse strobe signal for easy interface to any 8-bit input port microprocessor system, video display or terminal board.**
- **Strobe pulse width 1 ms.**
- **User selection of positive or negative logic data and strobe output.**

**£39.50 + VAT 15%**

Also available:
- Numeric keypad — interfaces with 756
- DC to DC converter to give –12V
- Plastic enclosure type 701
- Gold plated edge connector type 756/con

Generous Quantity Discounts Available

U.K. orders add 15% VAT ON ORDER TOTAL.

**Carter Associates**

P.O. Box 11262 VLAEBERG
South Africa postal code 8018

**NUMERICAL KEYPAD**

- **Indicated for professional microprocessor applications.**
- **One Keyboard will meet most present and future requirements.**
- **Full 128-character ASCII 8-bit code Tri-mode MOS encoding.**
- **Applications notes for auto repeat, numeric pad, serial output.**
- **Upper and lower case characters generated by keyboard with latching shift-lock.**
- **Selectable polarity.**
- **Size 305 X 140 X 32mm (12V4 X 51/2 X 11/4in)**
- **MOS/DTL/TTL compatible outputs.**
- **New guaranteed OEM grade components.**
- **Needs +5 and –12V supply**
- **Board has space for small low cost DC/DC converter so that entire unit operates off single 5V rail.**

**A new edition of a Newnes-Butterworths classic**

**Radio and Electronic Laboratory Handbook**

Ninth Edition

M. G. Scroggie

assisted by G. G. Johnstone

- **First published in 1938, and now recognised as a standard work in its field.**
- **Covers every aspect of modern electronic laboratory practice.**
- **Many new techniques are included for the first time and the subject of filters has been expanded.**
- **Includes chapters on the general principles of measurement and laboratory practice including interpretation of results, methods of measurement and a comprehensive reference section.**
- **Describes the use of integrated circuits and digital instruments.**

1980 608 pages £17.95 (US $40.50)

**Newnes - Butterworths**

Borough Green, Sevenoaks, Kent TN15 8PH
Tel: (0732) 884567

Butterworths has companies in Australia, Canada, New Zealand, South Africa and the USA, where local prices apply.

**EMC/R.F.I. INSTRUMENTATION**

6-8 WEEKS DELIVERY/FULL AFTER-SALES SERVICE

- **ELECTRO-METRICS** Interference Analysers (20Hz-40GHz) CISPR/VDE/ANSI/MIL-STD 461/2.
- **HIRE**: A wide range of equipment available.
- **FISCHER CUSTOM COMMUNICATIONS** Current Probes — Spikeguard Suppressors (12 weeks delivery)
- **AERITALIA** Electric and Magnetic field sensor system
- **CONTACT:**

Electro-Metrics Services Ltd.
‘Coach House’, 84 Tilehouse St.
Hitchin, Herts.

**ELECTRO-METRICS SERVICES LTD.**

Telex: 825115 ELMEC Tel: Hitchin (0462) 59698
STRUMECH ENGINEERING ELECTRONICS DEVELOPMENTS

*** BUSINESS *** EDUCATION *** RESEARCH ***

32K-56K RAM - DUAL MINI DISKS  56K RAM-DUAL 8" DISKS-10MgDISK

seed system one 
prices from £1500-£2500
NEW-FORTRAN £80

seed system 12 
prices from £4500-£12000

Suppliers of equipment to: Leading Universities, H.M. Government, Hospitals, Schools, Colleges and Small Business

SEED - STRUMECH - PORTLAND HSE. - COPPICE SIDE - BROWNHILLS - WALSALL

WW — 076 FOR FURTHER DETAILS

---

THRULINE WATTMETER
0.45-2300 MHz / 0.1-10,000 watts
The Standard of the Industry
What more need we say... Exclusice UK representative

The King of Valves

Genuine Gold Lion valves - hand built, utilising advanced pumping techniques and individually tested to a tight specification - are your answer to the high quality sound demands made by musicians and listeners alike.

Gold Lion KT77's and KT88's covering 30-200 watts, are now available from M-OV along with data and distribution details. Find out all about the King of Quality - from M-OV.

M-OV
A MEMBER OF THE GEC GROUP

THE M-O VALVE CO. LTD., HAMMERSMITH, LONDON, ENGLAND, W6 7PE
TELEPHONE 01-603 3431 TELEX 529435 GRAMS THERMIONIC LONDON
WW — 067 FOR FURTHER DETAILS
The New Toolrange Catalogue is still the only comprehensive single source of electronic tools and production aids. The product range has almost doubled since last year and now over 2,000 tools, toolkits and service aids are illustrated in full colour. Products from over 100 top manufacturers are available from stock. Over 60,000 catalogues are now in circulation. If you don't have one simply write, telephone or telex Toolrange for your free copy.

Your measurement problems solved in one compact precision instrument — The Lindos LA1 Audio Analyser

**FLUTTER**
- 0.01% - 0.1% FSD
- 1 Hz - 200 Hz or DIN Weighted Mean or DIN Quasi Peak

**NOISE**
- CCHI-ARM
- DIN Audio Band
- DIN Rumble A and B
- Other Weightings Available

**DISTORTION**
- 0.01% - 0.1% FSD
- @ 45 Hz 1 KHz 10 KHz

£425 + V.A.T.

Lindos
Lindos Electronics
Sandy Lane, Bromeswell
Woodbridge, Suffolk
IP12 2PR 03947 432

**The 935** from Data Precision

**HANDY** — easy to hold, to carry, to use, to read. Always at hand to make difficult measurements easy.

**VERSATILE** — all the functions and ranges you need ... 29 in all: volts and amps, s.c. and d.c. switchable Hi and Lo ohms.

**TOUGH** — built to take the rough and tumble of field service and survive normally disastrous overloads the 935 will stay in cal.

**PRECISE** — basic 0.1% d.c. accuracy — better than many bench models!

VISIBLE — big, clear, high contrast 3½ digit LED display, readable anywhere. ½" characters.

EXPANDABLE — accessories extend measurements to 1000 A 40kV r.f. at 700 MHz or temperature from 60 to 150°C.

INEXPENSIVE — the 935 has the lowest price tag of any high performance hand-held DMM at £425. UK mainland delivered ex VAT (it uses a low cost PP9 battery which can give up to 200 hours use). Get the leaflet now and see why your next multimeter should be a Data Precision 935.

Contact: Farnell International

Contact: Farnell International
- the Mark III ASCII encoded touch keyboard

This professional quality touch sensitive keyboard has the full ASCII code set of characters available from the main keyboard, plus a separate 12 key pad to allow fast numeric entry. The MK III has a ‘bleep’ facility with volume control and power ‘on’ light plus a polyester sealed wipe clean surface making the unit particularly suitable for use in hostile environments. The MK III is supplied complete with mating gold plated edge connector in a low profile matt grey plastic case with non-slip feet.

Optional extras (all options are incorporated in the unit)

A Serial output compatible to RS232/V24 £6.00
A1 Internal baud rate generator. For use with Option A or C. Please state Baud rate required ........................................ £5.00
A2 Internal generation of ±12 Volts for use with Option A £8.00
C 20 mA Current loop output. Passive £6.00
D On board — 5 Volt regulator. Requiring unregulated D.C. input of 7-12 V £4.00
E Earphone socket and plug in personal earphone £2.00
F Switch selectable TTY compatibility £10.00

With Option ‘A’ or ‘C’ the Baud rate may be supplied externally by the user
With Option ‘A’ the — 12 Volt may be externally supplied

Additional features
- 7 bit parallel ASCII encoded output with positive and negative strobes
- Odd and even parity check bits (bit 8)
- Two user definable pads — switch closures (24V 50mA max)
- Repeat pad
- Illuminating, electronically latched shift lock pad
- Electronic hysteresis
- Industry standard key spacing (¾ in)
- Operating life greater than 5,000,000 operations per pad
- Available ex stock (manufactured in U.K.)

Custom keyboard design and manufacturing capability

Please send me details of your range of keypads.

Price £48.50 plus VAT

Postage and packing
U.K. £1.00 *Europe £2.00 *Outside Europe £3.00
(This includes Air Mail delivery)

Payment should be made in sterling drawn on a U.K.
bank or I.M.O.
Cheques made payable to Star Devices Ltd.
P O Box 21, Unit 1, Mill Lane, Newbury, Berkshire.
Telephone 0635 40405

Access/Eurocard/Mastercharge
Name .......................................................... 
Address ......................................................... 
Card Number ................................................ 
BLOCK CAPITALS

WW — 072 FOR FURTHER DETAILS
A major exhibition of computers, peripherals, terminals and services, held each spring in the most highly industrialised area of Western Europe.

COMPEC
EUROPE’80
Centre International Rogier, Brussels, May 6, 7 & 8, 1980

The ever-growing international attendance gives Compec Europe exceptional status as a sales platform for providers of hardware, software and services from every country. Ensure participation in its benefits by posting the coupon below.

COMPEC EUROPE’80 STAND RESERVATION FORM
To: The Exhibition Manager, Compec Europe, Room 821, Dorset House, Stamford Street, London, SE1 9LU, England.

Please provisionally reserve for us stand space at Compec Europe 80 and send the undersigned more information.
Name ___________________________________________ Company _______________________________________


New:

220 with aircraft,
direct programming without calculating

A range of digital scanners with microprocessor, so without crystals... Extremely accurate and reliable. Each Bearcat-scanner searches its frequencies itself, which you can read out immediately at the display. Lock-out, delay and search are some of the many functions of the Bearcat. Each type is delivered in the European frequency.

**Bearcat 210** 10 channels
- 72 - 90 MHz.
- 146 - 174 MHz.
- 416 - 512 MHz.
sensitivity through all bands 0.6 μV/20 dB

**Bearcat 250** 50 channels
- 72 - 90 MHz.
sensitivity 0.3 μV/12dB
- 146 - 174 MHz.
sensitivity 0.3 μV/12dB
- 420 - 512 MHz.
sensitivity 0.6 μV/12dB

Selectable speed control for both scan and search, as well as priority.

**Bearcat 220**
Police, Marine and Aircraft band, 20 channels
- 66 - 88 MHz.
sensitivity better than 0.3 μV/12dB
- 144 - 174 MHz.
sensitivity better than 0.3 μV/12dB
- 118 - 136 MHz.
sensitivity better than 0.8 μV/10dB
- 420 - 512 MHz.
sensitivity better than 0.6 μV/12dB

The Bearcat 220 has an extremely good selectivity, a selectable speed control for both scan and search, as well as priority.

Instead of 72-90 MHz, the Bearcats can also be delivered in 30-50 MHz.

Please send us your leaflets and pricelist of the Bearcats.

Name

Address


Wolfsen Electronics is the exclusive import dealer for many European countries.
PORTABLE MAINS DISTRIBUTION

New!
Slim Jim
Dim. 1 1/4" x 2 1/2" x 1 1/4"
£12.15. PP 85p + VAT

19" Rack Mounting Type 13A/4SW/R £16.80. P&P £1 + VAT.

NEW! 10 sockets switched in sloping box

Type 13A/10SW £27.50. P&P £1.85 + VAT

COMPLETE WITH 6FT. CABLE AND 13-AMP FUSED PLUG:
4 sockets 13A £12.75
8 sockets 13A £15.00
4 sockets 13A switched £14.45
6 sockets 13A switched £16.75

ALL DISTRIBUTION PANELS ARE FITTED WITH MK SOCKETS & PLUG
Send for details of complete range

OLSON ELECTRONICS LTD., FACTORY NO. 8, 5-7 LONG ST., LONDON E2 8HJ
TEL. 01-739 2343

WW - 063 FOR FURTHER DETAILS

EPROM ERASER

Low cost ultra violet eprom erasing lamp will erase up to 12 chips at one time.
PRICE £95.00 + VAT

TR6 - 6 sockets switched £21.50
TR9 - 9 sockets switched £25.50
Plus P&P £2 + VAT

MAINS ISOLATING UNIT

The Olson mains isolating unit is an essential bench item for safety when testing and repairing mains-operated equipment. The isolating transformer has an earthed screen and is rated 250VA.
£38 + P&P £2 + VAT

ALL DISTRIBUTION PANELS ARE FITTED WITH MK SOCKETS & PLUG
Send for details of complete range

OLSON ELECTRONICS LTD., FACTORY NO. 8, 5-7 LONG ST., LONDON E2 8HJ
TEL. 01-739 2343

WW - 063 FOR FURTHER DETAILS

AEL
Suppliers of Electronic Tubes Semiconductors

For use in Professional Equipment

Exceptionally wide range of spares for most equipment in use

Write for catalogues or just state your requirement to

AEL
AERO ELECTRONICS (AEL) LIMITED
GATWICK HOUSE, HORLEY, SURREY,
ENGLAND RH6 9SU
Telephone: Horley (0293) 5353
Telex: 87116 (Aero G Horley)
Cables: Aero G Telex Horley

WW - 062 FOR FURTHER DETAILS

747 UNIVERSAL COUNTER TIMER
£175 + £3.50 p&p

DC-150MHz
8 DIGITS
8 FUNCTIONS
3 CHANNELS

Also available - Counter Timers, Frequency Meters, Filter Oscillators, Function Generators, Off-air Standards, Lab/ Bench Power Supplies, Panel Meters & Bar Indicators.

OMB ELECTRONICS
Riverside, Eynsford, Kent DA4 0AE
Tel: Farningham (0322) 863567

Prices, which are CWO & ex-VAT, are correct at time of going to press and are subject to change without notice

WWW - 073 FOR FURTHER DETAILS
LOWE ELECTRONICS LTD.

119 CAVENDISH ROAD, MATLOCK, DERBYSHIRE
TEL. 0629 2430 OR 2817. TELEX 377482 LOWLEC G

CS1352 DUAL TRACE 15
MHz/2mV PORTABLE

£350 + VAT

PRICE INCLUDES TWO X10
FULL BANDWIDTH PROBES

The CS1352 oscilloscope offers you not only dual trace, 15MHz bandwidth operation at sensitivities down to 2mV/cm but also use from 100-240 Vac mains and portable operation using the optional rechargeable battery pack. Automatic charging is carried out when the CS1352 is plugged into a mains supply. Now you can have top performance both on the bench and out in the field — and at an affordable price.

CS1575 DUAL TRACE 4 FUNCTION

The CS1575 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to 1 mV/cm but not only can it display the input signals on two channels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero calibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with widely differing input frequencies. Absolutely indispensable to the professional audio engineer, the CS1575 is now in use all over the world. See it in action or send for complete details.

£278 + VAT

TRIO OSCILLOSCOPES

The Trio range of oscilloscopes offer top quality at moderate cost. The brief specifications show the performance features which have made these oscilloscopes firm favourites in all parts of the world, with bandwidths to 30 MHz and sensitivities down to 1mV/cm on 130 mm screens. Prices are very realistic and we try to ensure that delivery is ex-stock at all times — quite a change these days.

FOR FULL DETAILS ON THESE AND OTHER MODELS, CONTACT THE SOLE AGENTS, LOWE ELECTRONICS

WW - 052 FOR FURTHER DETAILS

LOWE ELECTRONICS LTD.

WWW - 052 FOR FURTHER DETAILS
Whatever it is, the HH 'S' range of power amplifiers will handle it

The HH 'S' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

**S 500D**
- Dual Channel
- 19" rack mount 3½" high
- 500w r.m.s. into 2.5 ohms per channel
- 900w r.m.s. in bridge mode
- DC–20 KHZ at full power
- 0.005% harmonic distortion (typical) at 300w r.m.s. into 4 ohms at 1 KHZ
- 3KW dissipation from in-built force cooled dissipators

**S 250D**
- Single Channel
- 19" rack mount 3½" high
- 500w r.m.s. into 2.5 ohms
- Retro-convertible to dual channel
- DC–20 KHZ at full power
- Full short and open circuit protection
- Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.

Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

**Kirkham Electronics**
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594

FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR H | H ELECTRONICS

WW — 065 FOR FURTHER DETAILS
fact:

you can choose your microphone to enhance your sound system.

Shure makes microphones for every imaginable use. Like musical instruments, each different type of Shure microphone has a distinctive "sound," or physical characteristic that optimizes it for particular applications, voices, or effects. Take, for example, the Shure SM58 and SM59 microphones:

**SM59**

Mellow, smooth, silent...

The SM59 is a relatively new, dynamic cardioid microphone. Yet it is already widely accepted for critical studio productions. In fact, you'll see it most often where accurate, natural sound quality is a major consideration. This revolutionary cardioid microphone has an exceptionally flat frequency response and neutral sound that reproduces exactly what it hears. It's designed to give good bass response when miking at a distance. Remarkably rugged—it's built to shrug off rough handling. And, it is superb in rejecting mechanical stand noise such as floor and desk vibrations because of a unique, patented built-in shock mount. It also features a special hum-bucking coil for superior noise reduction!

**SM58**

Crisp, bright "abuse proof"

Probably the most widely used on-stage, hand-held cardioid dynamic microphone. The SM58 dynamic microphone is preferred for its punch in live vocal applications... especially where close-up miking is important. It is THE world-standard professional stage microphone with the distinctive Shure upper mid-range presence peak for an intelligible, lively sound. World-renowned for its ability to withstand the kind of abuse that would destroy many other microphones. Designed to minimize the boominess you'd expect from close miking. Rugged, efficient spherical windscreen eliminates pops. The first choice among rock, pop, R & B, country, gospel, and jazz vocalists.

**professional microphones...by SHURE**

Shure Electronics Limited, Eccleston Road, Maidstone ME 15 6AU—Telephone: Maidstone (0622) 59881

WW—071 FOR FURTHER DETAILS
Our front cover this month, introducing the articles "Radio and electronics into the 'eighties", symbolizes man's increasing involvement with his technology. This is a two-way process. The more devices and systems he produces the more he changes his environment and this reflects back on him by modifying his customs, institutions and general way of life. And it may go deeper than this. According to the early sociologist Durkheim, a person's knowledge of himself — his self-image — is created by the society in which he lives. Not only does he exist in society but society exists in him. So in modifying the material basis of society and hence social relations by technology, he continually changes his concept of himself as an individual and all the imagined needs or wants that arise out of this concept. No wonder that modern man in industrialized society seems such a restless, anxious and dissatisfied creature.

This two-way process is very intense when the technology is electronics, for here we are concerned with transmitting and transforming information, and ultimately, if not directly, this information causes human beings to think, feel and act. What seems to emerge from the developments described in the following articles is that the 1980s will see a further intensification of the links between the human being and his electronic systems. The systems will become even more closely matched to the input and output capabilities of the biological organism and will make even greater demands on it. It's not simply a case of more communication channels conveying more information in a given time, but a continuing increase in the refinement and variety of the information put in by and presented to the human beings.

Higher quality sound and visual images, and higher performance in radar systems and laboratory instruments, for example, all demand greater attention and discrimination. In broadcasting the addition of colour and text to television and stereophony to sound have already given us more to perceive and cognize, and electronic tricks in sound and vision synthesis are stretching these abilities to the edge of confusion. In radiocommunication, voice messages are being supplemented by digital data transmission, often on the same circuits, to make possible greater detail and accuracy. And now the general public can retrieve useful facts from data banks over the ordinary telephone lines.

Telecommunications are, of course, essential to organizations — especially large, far-flung organizations like multinational companies, airlines and political/military alliances — to enable them to respond quickly and appropriately to events in any part of their structure. Any message demands a decision, if only to ignore it, but with messages arriving quicker, and in ever greater quantity and detail, the mounting pressure on responsible people to be continually making decisions and deciding priorities is reaching inhuman proportions. Some individuals have found it too much and have left for a quieter life.

On the 50th anniversary of Bell Laboratories, the president, W. O. Baker, said of communications: "I see it also as a mission of importance involving great responsibility. Improving communications, more efficient and satisfying handling of information — these I deeply feel are essential to help solve economic and social problems and aid efforts to civilise the future". These are noble sentiments but it is already evident that we cannot solve such problems by technology alone. As humans we are limited in our powers to assimilate information and in our good will to act on it properly. Perhaps what we really need is less information and more wisdom.
Radio and electronics into the 'eighties

Intelsat V (above) the latest communications satellite, which will be launched at the turn of the year, marks dramatically the entry of radio and electronic technology into the 1980s, for it has double the communications capacity of its predecessor, Intelsat IVA. Equally important advances are being made in terrestrial radio and its related fields, and in the following pages we present articles by seven specialists who first look back at what has happened over the past decade and then project their thoughts and expectations into the 'eighties.

Land mobile radio

by W. M. Pannell, M.I.E.R.E. Pye Telecommunications Ltd

Technical progress in the electronics industry over the past decade has taken vast strides, with the land mobile radio sector certainly not lagging behind. The inevitable questions arise: What effect have all the changes in technique had on the mobile radio industry and its users? Which changes have made the biggest impact? And, what can we expect over the next decade?

Although the changes to the mobile and portable units, the fixed equipments and the peripherals have shown considerable innovation over the past ten years, many of the changes in technique have been brought about by the increasing complexity of overall system requirements.

One change that made a major impact on mobile radio in the UK, over a decade ago, was the decision to split the channel bandwidth at v.h.f. from 25 to 121/2 kHz. This resulted in some immediate relief in the search for extra spectrum and a marked reduction in co-channel interference. The change improved the utilization of channels for many types of user.

During the 1970s we also saw the increasing use of personal portables in all types of system. This is, of course, a logical progression in view of communication being needed between people rather than vehicles in most cases — the main exceptions being where interrogation of vehicle status is desired or where vehicles are the essential tool, for example fire engines.

It was at this point that the move towards miniaturization became an essential requirement in all types of equipment, not so much because of the need for smaller equipments, although in portable design this was naturally a fundamental requirement, but more to enable equipments of increased complexity and versatility to be designed for the more sophisticated systems without increasing the total volume of individual units. So an upsurge in the use of integrated circuits took place: the ubiquitous light bulb was replaced by light emitting diodes: l.e.d. followed by l.c.d. displays became a recognised means of presenting information; while conventional components became steadily smaller to keep up with the new techniques. At the same time, higher stability frequency sources and better i.f. filters became necessary in fixed, mobile and portable equipments as the need for higher performance developed.

Meanwhile, in the systems control field, processors began to take over many of the functions which had previously involved complicated manual operations. More facilities and information became available to the system controller, while, in the mobile, actions...
could, for example, be initiated from control or other designated points without the need for intervention by the mobile user.

Signalling. Signalling over radio gained considerable ground during the 1970s. Previously such requirements as selective calling were often considered to be refinements and were avoided where possible, usually on the grounds of cost and size. Solid-state techniques changed this view and selective calling units employing relays and often mechanical selectors gave way to units of but a fraction of the size and power consumption.

Unfortunately during this period the variations in signalling techniques increased in an alarming way, each manufacturer tending to develop his own form of coding with the result that compatibility became almost impossible. At present there is however a trend to standardise on a few of the better systems, mainly of the sequential tone variety. Even with the reduced number of variants, compatibility is still a problem and further standardisation would be advantageous.

A lot of work has been undertaken in recent years in digital signalling, generally of the order of 1200 bit/s. Various error detecting and correcting codes have and are being investigated to obtain higher coding efficiency and provide a good throughput of data. Such techniques may help in providing data communication at signal levels which in the past have been considered too low for error free data transmission. Digital signalling will undoubtedly be the answer to providing channel assignment switching, sophisticated selective calling, alarms, identity, printer drive, data display and many other uses. However, the low signal threshold achieved with tone signalling has yet to be equalled by any but very low speed digital signalling.

Microprocessors have enabled “intelligence” to be added to systems. The era of manual press-to-talk and the occasional channel change accompanied, where needed, by a selective call operating an electronic ‘door bell’ is now often superseded in the larger systems by intelligent switching functions where channel and routing procedures are performed automatically; hand shaking/identity routines are undertaken with complex control functions being processed, as well as many other technically complex operations. At the moment, microprocessors, although cheap, tend to be greedy in power consumption (n.m.o.s.). This may be improved in the near future by the use of c.m.o.s. and ultimately silicon on sapphire (s.o.s. m.o.s.). Microprocessors in portables where low consumption is critical may thus become practical.

Trunking. Trunking in land mobile systems is a technique which has grown during the past few years with the help of the microprocessor. While the full advantages of such systems in frequency spectrum economy have yet to be seen, undoubtedly first indications are favourable. The use of trunking, however, can raise an operational problem concerning the ownership of the base complex, and this may limit its use to definite types of system where single ownership or the radio common carrier type of operation prevails.

Quasi-synchronization. System techniques evolved during the 1970s included the use of a quasi-sync — a method whereby a number of transmitters carrying the same intelligent radiate simultaneously without interference in a number of overlapping areas. Although as early as 1946 J. R. Brinkley proposed the use of staggered carrier techniques, this method ultimately became unworkable as the channel bandwidth was reduced down to 12 kHz. At these narrow bandwidths much closer staggering, of the order of a few hertz, is required, so that a need arose for high stability, low noise oscillator sources. The technique of quasi-sync is generally applicable to a.m. and f.m. at frequencies up to 500 MHz although at v.h.f. the use of f.m. quasi-sync is subject to some reservations.

Frequency sources. The development of frequency synthesizers for mobile radio also shows signs of increasing in tempo as the need for greater frequency agility grows. Several designs have been announced using various custom built chips. It is just a matter of time before the cost of such devices is comparable with conventional crystals, even for one channel. Meanwhile frequency control has improved considerably by the use of a phase lock loop system and this is often standard on present day fixed receivers in the land mobile bands.

Modulation methods. Overshadowing many of the developments during the past few years has been the obvious rapidly diminishing spectrum space available for each new land mobile radio system. Much has been written on the,

This microprocessor controlled equipment generates and decodes selective calling tones. Providing alert, identification, status, alarm and other operating functions, it is compatible with all known selective calling systems.

Synthesizer board in the Pye M206X two-way radio can be supplied for anything from 16 to 128 channels.
subject and at the recent World Administrative Radio Conference in Geneva much was undoubtedly discussed. Even if, as a result of all the decisions made, extra spectrum is handed to mobile radio, the rate of growth is such that economies must be made. To this end techniques are already being investigated to achieve spectrum savings and further bandwidth splitting by the use of s.s.b. is but one method currently under review. Others include spread spectrum methods, stored speech and the virtual elimination of speech by the total use of data in those applications where standard forms of message predominate. The latter methods are still in the early stages of investigation, but the development of s.s.b. is quite advanced and shows considerable promise.

Cellular systems. Much has also been written on the use of small cell techniques in urban area radio systems. In the United States, where a lot of work has originated, several systems are being put into operation at 900MHz using this principle. Although the cells involved initially in these systems cannot really be described as 'small cell', the possibility of sub-division exists and will undoubtedly be the subject of further investigation. Small cell systems are necessarily oriented towards processor control if all the functions proposed are to be implemented. Cellular systems and trunking have a great deal in common in many design aspects.

Energy sources. In spite of the huge variety of systems which have been devised over the past decade, one common denominator remains — that of the energy source required to drive the equipments. Vehicle units are generally no problem, there being a ready source of d.c. in the vehicle. Portables are a different matter insofar as, although a battery of a suitable type is included in the assembly, this must be either replaced or recharged after a period of work. There has been no outstanding design change during the past ten years which has increased the portable battery capacity appreciably or reduced its size, so this is one aspect where changes are required.

In fixed equipment the tendency has been to use secondary batteries charged from sources of energy ranging from the public power supply through diesel generating sets, wind and water driven generators, thermal generators to solar cells. All methods have their place in providing power to radio equipment. With the present energy crisis, further work is indicated, not only to find means of providing power in relatively inaccessible places but to do so using the minimum resources at present in great demand.

The next ten years

In view of the vast changes which have taken place over the past decade one is tempted to forecast the future almost in terms of science fiction. It is not my intention to examine such possibilities but rather to consider the more down-to-earth developments of existing techniques.

Data will undoubtedly appear as one of the main contenders for optimising usage of the frequency spectrum. While speech will be with us for some considerable time, particularly in the simpler systems, the efforts being made in the data field must be recognised. For example although there is a lack of economically viable vocoders suitable for digital speech at the moment, they will undoubtedly appear. Alternatively, stored speech controlled by a digital bit stream could well be a relatively inexpensive method of spectrum conservation. Speech syntheisers driven directly by computers are also likely. Good speech quality at real time digital speeds of 2 or 3 kbit/s now appears probable in the next decade. Bubble memory techniques permitting occupancy time reduction are, even now, a possibility, with available bubble memories capable of $10^6$ bits/chip, one square centimetre in size, already available.

At present the rate of growth of data by digital methods is in excess of 20% per annum and is expected to maintain or even exceed this during the next ten years. Obviously the use of digital techniques, spread spectrum for example, provides a high degree of privacy and at the same time enables a high degree of large scale integration to be employed — all leading to smaller equipments and, one hopes, greater power economy.

The use of data processing methods to impart "intelligence" to a system is of course one of the most important aspects. Already microprocessors play a major role in the more sophisticated systems, as indeed they are beginning to do in many other areas of present day activity. The future holds an almost unlimited range of possibilities. Dynamic channel allocation, automatic transmitter power level adjustment to suit the propagation conditions and local interference level, automatic call routing, and many others are already in the pipeline, and every day sees a new requirement.

In spite of the digital revolution we must not forget the more conventional forms of mobile communications — forms which will undoubtedly remain in use for a long time, particularly in the simple system and in many of the overseas areas where sophistication is not necessarily needed at present. Here single sideband at frequencies up to at least 500 MHz could well provide all the channels needed until the end of the present century even in areas of international congestion — where, for economic reasons, several countries merge into a single overall area. It should also be emphasised that s.s.b. can also carry the simpler forms of data on equal terms with the more conventional a.m. and f.m. systems.

Portables will tend to become the more normal form of unit, although generally adaptable also for mobile use. Here again the use of data may modify the portable as we see it. For example, display methods may be incorporated to minimize standard speech messages. Key pads to send alpha-numeric messages will be of greater convenience than speech, in many cases, for example, in crowded environments where privacy is required. Similarly key pads will be used for routing the call.

The low efficiency of the portable antenna is another area for further development. However, it could well be that, rather than improving the ranges possible with portables, cell type systems will predominate and most fixed networks will consist of many low power stations closely spaced. Typically, if operation into the telephone is envisaged, the existing telephone call box could be used to locate individual fixed stations, the present physical spacing being close enough to permit very low power to be used. Available power and easy connection into the telephone system favours such an approach.

All these innovations will inevitably increase the complexity of the portable, requiring more compact packaging if only to maintain the same size. Work must be undertaken on battery design if sizes are to remain as at present or preferably reduced in volume, while the extra consumption of the ancillary equipments means that increased battery efficiency is a 'must'.

Two-way mobile data unit for use in a vehicle availability system.
possibly a packet of 'king' size cigarettes is about optimum, although the present day 'credit card' calculator seems to be popular, and this format could well be considered in future personal radio designs. The 'king' size package has already been achieved in many types of pager, but of course the battery requirement here is quite different as there is no heavy transmitter drain.

Methods of charging batteries, whether the batteries are small in size and number, or are the larger types feeding a fixed station, are important aspects requiring further attention. In many parts of the world solar energy is the obvious immediate answer for powers up to a maximum of 500 watts. If efficiency could be improved, many other types of station could benefit, quite often saving expendable fuel.

In suitable areas the wind is already utilized as a source of electrical power and work on optimizing the energy conversion has produced good results. The energy in water movement, whether wave motion, tidal changes or just flow, also offer large scope for investigation.

Without any doubt, the future of mobile radio looks exciting. We must however, keep a firm grip on future developments to ensure that they do not fall into 'nice to have' category, but perform a real service to the world. Improved communication, saving of energy and all the other advantages likely to accompany the microchip era will undoubtedly gain momentum as we move through the years towards the next century. It is up to the engineer to ensure that the steps taken follow an ordered path.

---

*Broadcasting*

*by D. P. Leggett B.Sc., F.I.E.E.*

Engineering Information Department, BBC

One of the most striking features of the last decade has been the public appetite for high-quality audio. The 'hi-fi' was becoming a must in any modern household in the early 'seventies and by the end of the decade this had developed into 'quadrophony'. This movement has been led by the gramophone record, and experimental transmissions of quadraphony or surround-sound systems have been made. Although the majority of the radio audience still uses medium and long waves, the congestion and limited quality of reception on these bands has added further impetus to the swing towards v.h.f.

Another reflection of the healthy activity of radio in the last ten years has been the development of local and regional radio services. BBC Local Radio started in the late 'sixties, followed by Independent Local Radio in the early 'seventies. These did not bring new technical problems, but they did increase pressure on available frequency channels; indeed, we have now reached the point where the v.h.f. Band II is badly congested and frequencies have to be shared by programme services which really require channels to themselves.

Turning to television, the main areas of development in the past decade can be categorised as improvements in transmitted quality; extension of programme services; and improved facilities for programme makers. Improvement of picture quality is, of course, a continuing process as each generation of equipment succeeds the last, but one very obvious advance has been the spread of colour into the majority of all programmes with steady development in clarity, fidelity and consistency of colour picture generation and reproduction. Two other examples of technical quality improvement are worthy of mention: the introduction of almost distortion-free digital standard converters has brought significant quality improvements in the international exchange field; and the video noise reducer, a recent digital development, offers considerable benefits for programme material in general.

Programme services have been actively extended in the 'seventies. Notable developments have been the extension of U.H.F. transmitter coverage; the introduction of the electronic news presentation services, Ceefax and Oracle; increasing use of satellites for international exchange; computer-based subtitling services for the deaf and for foreign films; the simultaneous transmission (on radio) of stereo sound with selected television music programmes; and, in the home, the availability of video cassette recorders for catching programmes which would otherwise be missed.

Improved facilities for programme makers should, and do, result in a wider range of better programmes for the viewer. The decade has seen much progress, including improved videotape recorders with sophisticated editing systems; instant replay and slow motion facilities; really portable cameras and video recorders for electronic news gathering; full-facilities outside broadcast cameras requiring only a single coaxial cable; zoom lenses of increased range and aperture; digital timing correctors and synchronisers for automatic signal timing; and digital picture stores for special effects and graphics work.

What, then, is the zeitgeist which has characterised the 'seventies? I suggest it is the realisation that with
transistors, large-scale integration and computer techniques, technical solutions can be devised for most problems. Increasingly, as time goes on, it will be economic, political and social factors which determine the course and pace of development. The questions for the future will more often be “how much do we want and what can we afford?” rather than “is it technically feasible?”

The next ten years
You want ‘100 Best Tunes’ in the kitchen, so you pull out the telescopic aerial in your v.h.f. portable. For good results you need the aerial horizontal and angled for best reception; and in doing so you sweep three cups onto the floor! Then you find Radio 1 is taking its turn on the v.h.f. channel so you switch to medium wave. You find three or four stations transmitting serious music, so you pull out the telescopic aerial and angled for best reception; and in the room you can see the radio gain. You want ‘100 Best Tunes’ in the kitchen. You can hear Alan Keith’s voice, but with an exciting Frenchman in the background plus crackles from your neighbour’s electric drill. So there’s nothing for it but down to the pub again!

This points the way to some main tasks for the ‘eighties. We need more radio channels, signals which can be more easily received, and something to help us find the programme we want.

It is to be expected, following the World Administrative Radio Conference in Geneva, that more broadcasting channels will become available in the v.h.f. Band II. This will enable us to re-engineer the existing v.h.f. transmitting networks to avoid the necessity for sharing between BBC Radio 1 and Radio 2; to reduce the need for displacement of some Radio 3 and Radio 4 programmes by educational material; to place some Radio 3 and Radio 4 programmes in digital form. Although this may become the norm in the long-term future, current investment in conventional analogue systems is such that change to digital methods is not likely to be rapid.

Choosing a programme from the published schedules, selecting the right channel at the right time and tuning the receiver for optimum reception are becoming increasingly difficult for the average listener. Ideas are now developing for radio transmissions to carry coded identification signals inaudible to the listener but detectable by a suitable receiver. Given such codes, a receiver could be pre-programmed at the listener’s choice to search for any desired programme — or type of programmes such as news, light music — and switch on at the appropriate time without the need for any manipulation or control by the listener. Such coded signals could also be used for automatic control of cassette recorders and to carry time information for electronic clocks.

New radio services we can expect in the ‘eighties may include whatever form of surround-sound is finally agreed; and a dedicated channel of motoring information such as the BBC’s Carfax development.

At the programme origination end, digital sound recorders will fairly soon be with us and will offer quality good enough for multi-generation work with little need for the careful alignment and maintenance which analogue recorders demand. Digital sound mixing desks will also appear, together with computer control of complex mixdowns from multitrack recordings which is already a facility in some recording studios and television sound dubbing areas.

Television. Although the solution to many technical problems can be foreseen, there are in television one or two areas where we need to tell our inventors “go away and make a breakthrough!”

The limited sensitivity of colour cameras is a case in point. Existing sensors are already approaching the region where photon noise — arising from the quantum nature of light — becomes the limiting factor. No new sensor, however revolutionary, can cross this fundamental barrier nor can we foresee optical devices of manageable size which would gather in many more of the limited number photons emitted by an ill-lit scene. The apparently much greater sensitivity of the human eye/brain combination is achieved by physical and subjective processes which are not yet understood.

In another area, colour camera sensors and receiver display devices employ rather cumbersome three-colour superimposition techniques with attendant disadvantages in terms of size, complexity and cost. A single colour pick-up device is wanted with outputs directly related to hue and luminance and not needing for optical colour separation filtering: correspondingly a large area, flat display device is needed, responding to hue and luminance signals rather than relying on superimposition of three separate colour images. We must hope that the ‘eighties will see a breakthrough in this area also.

Turning to more foreseeable developments, work will continue through...
Prototype Carfax receiver module.

Teletext hard copy printer.

2Mbit television field store based on c.c.d. devices, as used in digital standards converter and digital noise reducer.

the decade to extend relay station coverage to yet smaller population groups in the UK, with community aerials and local wired distribution systems playing an important part. The fourth television channel will be with us and there may be increasing pressure for local television services. More channels will be needed and the u.h.f. bands may be extended to accommodate this; 405-line services on v.h.f. Bands I and III will be closed down and Band III at least is likely to be re-developed for extended, or new, television networks. Band I is not ideal for television and could be used for mobile services displaced from Band II and perhaps for the start of direct digital radio broadcasts. Television broadcasting via satellites — for direct reception at home or with local distribution from a number of ground stations — is being actively planned for some European countries, but seems less needed in the UK where conventional transmitter coverage is fairly comprehensive.

An alternative source of television programmes is the video cassette recorder. Already well launched in the 'seventies, its use for replay of pre-recorded material will become a significant factor in programme distribution in the 'eighties.

In the studios, programme makers will be looking for increased flexibility and reliability. These qualities are offered by digital techniques, by which signals may be stored, manipulated and passed between areas with little degradation or need for manual intervention. Already we have digital systems for special effects and graphics, standards conversion, noise reduction, source synchronisation, sound distribution, teletext services and numerous routing control functions. We can soon expect to see digital video recorders and editing systems, digital vision mixers and digital camera processing chains. Digital PAL coding will reduce very significantly the cross-colour effect which is perhaps the most obvious shortcoming of present-day colour television. For outside broadcasts we can look forward to compact cameras using highly integrated digital circuitry (and a single colour sensor?) with digital transmission via transportable satellite links into the network control centre.

The islands of digital operation now appearing in the chain will steadily be
merged during the 'eighties. Once a signal has been converted to digital form there are many good reasons for keeping it that way until final conversion at the transmitter to the PAL-coded analogue signal required by the domestic receiver.

For international exchange we shall find signals distributed in digital form, very possibly as luminance plus colour difference components; final coding into PAL, SECAM, etc. will be left to the individual customer countries. Accompanying sound will be digitally multiplexed with the vision signal, several sound channels being available for multilingual requirements. All this will require comprehensive national and international standardisation of digital coding methods, and much work in the 'eighties will be devoted to negotiation and argument on this front.

Teletext and similar services can clearly be expected to advance rapidly in the next ten years. The scope of the information provided can increase almost indefinitely, reasonably short access times being maintained by allocating an entire television channel to this purpose and by provision of further storage and processing in receivers.

High-resolution graphics, still and animated pictures of full television quality, and increasing sophisticated subtitling services will become available. Teletextware, the transmission via teletext of computer programmes, will greatly extend the variety of TV games and will provide the non-specialised computer services which increasingly we shall make use of in our domestic lives. Hard-copy printers will become available to give us permanent records of any desired teletext information and (though not perhaps in the 'eighties) this may become the medium by which we receive our copy of Wireless World.

As we move towards the 'nineties, we may see the first optical fibre data circuits run into private homes. In the longer term all radio, television, information and communications services will come to us 'on the fibre,' radiated transmissions being reserved for mobile applications where wireless communication is essential. Once we have our domestic wide-band circuits and high-quality large screen displays, the way will be clear for 'hi-fi' television on new standards. But it will not be in the 'eighties that we shall be closing down the 625-line services.

With TV receivers now in 97% of UK homes (70% colour) it's right and proper to consider television first. In the early 'seventies, the transition was being made from hybrid circuits with a mixture of valves and transistors to all solid-state. With moves in this direction, styling improvements were made possible to reduce the overall size of the average television cabinet and chassis engineering moved towards modular construction.

Ultrasonic remote controls made their appearance, and were quickly accepted only to be gradually replaced by quicker-acting infra-red control systems. Whilst ultrasonic controls were more than adequate for the typical viewer of the late 'seventies who wanted to send simple commands to his receiver, the introduction of infra-red microprocessor-controlled systems is particularly relevant to the customer requirements of the 'eighties when...
Teletext and Prestel are likely to be in widespread use.

However, both of these great British developments with their data display capabilities are still in their infancy and the lack of average consumer awareness about their existence and what the services offer is an indication that it is not enough for the engineers to apply their minds and develop such powerful means of communication. Marketing people must do more to promote their benefits.

Probably the product area of the 'seventies which will have the greatest impact in the 'eighties is domestic video, both cassette recorder and disc. The late 'seventies saw the introduction of domestic video cassette recorders not much larger than conventional audio cassette recorders and almost as easy to install and use. The early recorders (of any format) relied heavily on mechanical control functions but already we are beginning to see mechanical operations replaced by electronics and especially microprocessor controls, but more of this later. The audio scene saw one overriding development - the growth in importance of the conventional audio cassette, aided by the world-wide acceptance of a common standard. Ten years ago, the available cassette hardware and software was still regarded as something of a novelty and not a serious contender to the established position of the quality record player and audio disc or open reel recorder. Developments such as noise reduction systems, improved drive systems and record/replay heads, software developments improving overall performance standards (with first of all CrO₂ tape and more recently the introduction of metallic tapes) have elevated the performance of cassette equipment and cassettes of ten years ago to a replay medium generally accepted even in serious hi-fi circles. Certainly the public have also accepted the cassette. At the close of the 'seventies, UK homes owned more cassette playing equipment than disc playing.

The development of low price, good quality cassette mechanisms made the music centre a practical proposition and without doubt this particular item was the audio home entertainment product of the 'seventies. The audio cassette is also the common denominator amongst those other products that during the period had greatest appeal for the public. Cassette and radio cassette recorders now sell at an annual rate of more than 2-million units per annum in the UK. The biggest growth area in the late 'seventies was quality stereo radio cassettes with automatic programming facilities and even Dolby Noise Reduction.

Cassette-based products have been so successful because they have two overwhelming advantages over their disc counterparts; the cassette can be re-recorded and the machine is easily portable, satisfying today's demand for music on the move. In-car entertainment products have also adapted to the higher ownership levels of home based cassette equipment so that today it is possible to have better quality audio sound in a car than was was possible in most homes ten years ago.

But enough of the past; it seems that the 'eighties will see most of the colour televisions acquired during the 'seventies replaced by receivers which, on the outside, may look similar (apart from the reduced number of function controls) but on the inside will bear very little likeness. The modular chassis of the 'seventies will increasingly be replaced by single board chassis designed to optimize the availability of large scale integrated circuits (l.s.i.) and the application of microprocessors, remote control teletext and viewdata displays. The introduction of single board chassis will revolutionise not only product reliability but also the approach to servicing so that the service department of the 'eighties will look vastly different to that of the 'seventies. Today's cathode ray tube technology means that the television viewers of tomorrow will see demonstrably better pictures and data displays than have been seen to date.

Increasingly, TV receiver design will have to accommodate the requirements of home computers, video games etc. which are rapidly changing the nature of television from a passive piece of equipment capable of only showing programme material being broadcast by the BBC or IBA to a two-way, interactive display medium at the centre of a communications network. By the mid 'eighties, satellite broadcasting could become a reality, allowing the viewer a much wider choice of programme material. It is also reasonable to predict that voice-activated controls will begin to make their appearance, freeing the
viewer from the arduous task of having to press the control buttons of a hand-held remote unit!

But, as previously mentioned, the 'eighties will more than anything else be the decade of the widespread introduction of domestic video products. The VHS (Video Home System) format has quickly established itself as the best-selling video system in the world in all the major developed markets - the UK, Europe, USA and Japan - but despite this, other video formats are likely to be around for many years to come. The conventional format of the early video recorders is likely to change with the accent being on the portability of a recorder unit linked to a separate programmable TV tuner/timer which could be indispensable when satellite broadcasting is a reality. Indeed the situation could well arise that despite the increased leisure time available, video owners will be so busy recording programmes they will never have the time to replay them!

Already the introduction of the vidicon tube has made low-cost, good quality colour video cameras a reality. No one can doubt that the already high performance standards of today's products will be improved, real money prices will fall and the cameras themselves will weigh less and diminish in size. No wonder that with the arrival of electronic photography manufacturers around the world are getting out of the conventional cine 8 camera business as quickly as possible - they have seen the writing on the wall.

It is forecast that the ownership of domestic video cassette recorders will parallel the early growth of colour TV in the UK. By 1984 at least 7% of UK homes are expected to have acquired one. They will be used mainly for time-shift recording and the replay of home-made video movies at around £5 per hour, compared with £100 per hour plus for cine, the difference adding greatly to consumer appeal. The additional appeal of pre-recorded video cassette software will pale into insignificance when video disc players with their lost cost software become a reality. One thing is certain; the incompatibility of the various video disc standards that are likely to appear will be a much more serious factor than with the present ones surrounding video cassette recorders. The availability of disc software will be a critical factor on three counts:

a. without the appropriate software the disc player itself is useless.

b. questions related to the low cost production of video discs still have to be resolved.

c. material for reproduction on video disc is likely to be surrounded by a minefield of copyright issues which have still to be resolved.

However, the video disc player is likely to lead to the further demise of the conventional audio record player because despite the name "video disc," all video disc players give the capability of very much improved audio-only replay, making possible a signal-to-noise ratio in excess of 90dB through the use of PCM recording techniques. So looking ahead, any audio disc system that does not include a video replay mode is likely to find the going a bit tough.

So far no reference has been made to monochrome television receivers which, as the years pass, are likely to become increasingly less attractive as potential purchasers accept colour TV viewing as the norm. On the other hand it is not unreasonable to suggest that the youth of tomorrow will look at television in the same way that today they look at radio and the cassette. That is, they will want to take it with them wherever they go. Therefore (and with continuing miniaturization) today's combination TV products either with radio, or radio and cassette, are likely to become more and more popular. Audio products either mains-only, portable or "in-car" will become increasingly cassette-based as the youngsters of today become the purchasers of tomorrow. This is a generation to whom the cassette is not something new and the majority look upon their parents collection of 78, 33⅓ and 45 r.p.m. discs with the same degree of interest that Arthur Negus looks at 17th century...
Beyond the 'eighties?

Quite recently Ferguson had an experimental look at the home entertainment centre of the early 1990s. The result was a concept called "Total Television" which included in a domestic console unit, a VHS electronic cassette recorder, floppy disc machine, electronic audio cassette, Prestel/home computer keyboard and videophone with remote control of all viewing functions. The conventional c.r.t. was replaced by a wall-mounted flat screen to take account of the multiple screen viewing that might be a requirement of the future. A dream? Well apart from the sorting out of problems related to the flat screen the other features of the unit are either with us today or at least a large scale manufacturing possibility.

Only time will tell how close to reality the ideas of the late 'seventies will be at the end of the 'eighties.

Radio navigation and radar


The fields of radio navigation and radar cover a broad range of constantly changing techniques, and are influenced by advances in computers and military systems.

With both these topics, we are interested either in where we are, or where someone else is. Almost every permutation and combination of these alternatives has been investigated over the past fifty years or so.

In moving a vessel from A to B some basic form of dead reckoning and position plotting should be maintained and in ships in particular, traditional methods using the sextant, chronometer and compass are fundamental to good navigation. In the air, long-haul aircraft frequently rely on inertial navigation, again based upon the gyro, and indeed ships also use this type of navigational aid. However, we are here primarily concerned with radio aids and radar, and in very many ships, in aircraft and at airfields, the ubiquitous direction finder (d.f.) is used, and is sometimes the only form of aid. In fact, both radar and radio navigation can trace their ancestry back to the simple d.f.

The adoption of new equipment in civil aircraft and ships is inevitably limited by financial constraints; every piece of new hardware proposed for a ship or aircraft must be justified in terms of cost effectiveness. This means that adequate, well-proven techniques and systems tend to have a very long operational life. Nevertheless, if rapid, accurate position-fixing can shorten journeys and minimize delays, then in a period of increasing fuel costs, new equipment capable of providing this must become more readily acceptable.

Safety at sea and in the air is, of course, vitally important. At sea, minimum safety requirements are recommended by the International Maritime Consultative Organization (IMCO) primarily for vessels above 300 tons, although the country in which the ship is registered legislates for this in the UK, it is the responsibility of the Department of Trade. In the air, the equivalent authority is the International Civil Aviation Organization (ICAO).

Direction finding

Before dealing with some of the more recent developments in navigation aids, the current state of d.f. is worth examining. There are three major areas of common commercial usage, air-to-ground, ship-to-shore and ground-to-air. There are other military applications, but for general navigation the major advances have been in improving the equipment. A typical marine automatic direction finder, in common use, covers the m.f. beacons in the band 250-550 kHz and also operates on the international distress frequency of 2182 kHz. This equipment is as simple to use as a domestic receiver, gives automatic ambiguity resolution, the bearing of the station being read directly from a compass-type scale, typically to within ±1°. Because of the relatively short range of reliable bearings, ship navigation by d.f. is mainly confined to coastal waters; in the consumer field, many thousands of simple direction finders are in use in modest sailing boats and motor cruisers. The situation with airborne d.f. is similar to that for ships: most aircraft carry one and the accent is...
on automatic operation. The frequency band is typically 190 to 1800 kHz. The size of the antenna loops have been reduced and contained in streamlined bumps to reduce air drag. In many parts of the world a.d.f. is still the primary source of navigation information, which in areas with good reception can provide a bearing of \( \pm 1^\circ \).

Ground-based direction finders require only the minimum of a communication set in the aircraft to provide a position line, so that if all else fails, navigation assistance can still be provided. These direction finders mostly operate on v.h.f./u.h.f. and in order to minimize the bearing errors from all causes, antenna arrays are multielement, frequently wide aperture and automatic in operation, with direct-reading bearing presentation. Most locations can provide \( \pm 1^\circ \) accuracy on signals of reasonable strength.

A short-range navigational aid closely allied to d.f. is the v.h.f. omnirange (VOR) which, when associated with a distance-measuring equipment (DME), gives aircraft a precise location. The range limitations caused by operating at v.h.f./u.h.f. (108-118 MHz for VOR and 960-1215 MHz for DME) make this system unattractive for ships.

**Hyperbolic systems**

Measuring distances from known ground radio stations is a well-established navigational aid. Hyperbolic systems are so called because the position lines they provide from such measurements are hyperbolic curves. Referring to Fig. 2, if \( T_1 \), a transmitting station, emits a short pulse, and transmitter \( T_2 \) simultaneously emits a second pulse, then any receiver on line \( A-B \) will receive these pulses together. Positions at which one pulse is delayed by a given time with respect to the other lie on one of the hyperbolae. The association of a third transmitter would provide two position lines and therefore a fix.

One of the best known pulse systems is Loran 'C' which operates on a frequency of about 2 MHz and covers large areas of the Pacific, Atlantic and Europe. During the last war, a similar British system known as GEE operated at v.h.f. With a good ground-wave pulse, position accuracies of better than one mile in 100 miles are possible but, as with many long-range navigational aids, ionospheric sky-wave propagation can produce errors an order of magnitude larger, and considerable skill is needed to interpret results in adverse conditions. The Decca system, operating at around 100 kHz, also became established during the second world war. This uses c.w. signals and phase measurement to provide position lines and fixes. Very many ships and aircraft carry Decca, which has been considerably refined over the years to overcome propagation and ambiguity problems, so that automatic plotting on route maps is now generally in use, giving accuracies of fractions of a mile.

A system of increasing importance, which is designed to minimize range and propagation problems, is Omega. This operates on very low frequencies (v.l.f.)—typically 10-14 kHz—with interstation baselines of around 5,000 miles. The very low frequency provides long range, stable and predictable propagation characteristics and the large separation between stations means that position lines are almost parallel over very large areas. Omega is a c.w. phase-comparison system and is virtually the only radio navigation system that can be used by completely submerged submarines.

A typical marine Omega receiver incorporates four channels for continuous monitoring of four transmitters, each channel measuring the phase of the signal relative to an internal high stability reference oscillator. Phase difference can be measured to one-hundredth of a cycle, defined as centi-lanes. In use, the receiver is run continuously from leaving port, automatically logging the lanes. It takes about half an hour to cross one lane, and modern equipment provides direct
Fig. 3. Doppler navigation — airborne equipment — 1980 model AD660 compared with designs of the '50s (left) and '60s (right).

Fig. 4. Satellite navigation.

Terrain-reference navigation
The Doppler navigator provides an aircraft with means for measuring the frequency shift of a radio signal reflected from the ground. With no drift and for a radio beam transmitted at a forward angle \( \theta \) to the aircraft horizontal axis, the Doppler frequency shift is \( \frac{2V}{c} \cos \theta \) Hz. Thus, the Doppler shift can provide an accurate measure of the aircraft ground speed, \( V \).

If two beams are radiated downwards at an angle to the forward direction then it is possible to measure the sideways motion or drift of the aircraft. Note that the Doppler shift is also proportional to the cosine of the vertical angle of the beam, hence antenna systems must be horizontally stabilized or a further pair of beams arranged to point aft to provide a differential signal, independent of attitude.

The Doppler itself gives ground speed and drift angle; to determine location, accurate heading information must be provided to the navigation computer. Most Doppler systems operate at microwave frequencies around X-Band (3 cm) and are sufficiently refined to drive an automatic map reader, or feed an integrated navigation system. Overall accuracies of one or two per cent of distance flown can be expected.

Sonar Doppler operating on similar principles is increasingly used by larger ships, and mariners also use depth sounding to augment their position fixing, particularly near harbour.

Airborne radar systems giving very high azimuth resolution and known as synthetic aperture radar (SAR) can be used for navigation by map reading the high quality returns. The high resolution is obtained by simulating the radiation as from a wide aperture antenna by storing and recombining the individual signal elements from a small antenna as the aircraft carrying this small antenna moves along its track.

Similarly, by storing the height of the terrain along or adjacent to your own desired flight path, and comparing actual height from a radio altimeter, positional information may be obtained using correlation techniques.

Satellite navigation
NAVSTAR or Global Positioning System (GPS) is designed to give very accurate position and velocity information anywhere in the world. The full system is intended to include 24 satellites in three orbits, giving visibility of 6 to 11 satellites at 5° or more above the horizon from any location on the earth's surface.

The basic method of position fixing by means of satellites is similar to celestial navigation except that distance, rather than angle provides the basic data. Fig. 4 shows the essential components of NAVSTAR. The height of the satellite is accurately determined, the earth's radius is known and the range is measured by timing radio signals from the satellite. In three dimensions, the range line traces a circle upon the earth's surface giving an observer position line. Two such lines give a location fix, and three are needed.
for an aircraft to include its height. Signals are transmitted on two L-band frequencies, 1227 MHz and 1575 MHz, containing identification and the navigation data for the user to compute his position. This includes information on the status of the satellite, orbit details to enable the user to calculate the position of each satellite at the time of transmission, time corrections and propagation delay corrections.

High accuracy can only be achieved by precise synchronization of the satellite clocks with each other and the user clock error must be known or corrected; each space vehicle carries an atomic frequency standard which is corrected at least daily with a caesium clock at the master control ground station. In terms of accuracy one nanosecond of time error is equivalent to 0.3m range error.

The concept of navigation by satellite is simple. In practice however, for a worldwide system, a number of space vehicles must be maintained in accurate orbit, constantly updated for time and position. The user equipment includes a microwave antenna and receiver, together with a comprehensive navigation computer. Nevertheless, advances in microwave and microprocessor devices have made possible a range of receivers for ships, aircraft and missiles, and even a 10kg manpack, which will locate position to within about 10m. At present, GPS is in the validation phase I - about six satellites are in operation. Phase II is the period of development for military use, primarily in the USA, and this phase will end in 1982. True production of an operational system will take place between 1984 and 1987. Thus, one can expect that it will be the latter part of the 80s before NAVSTAR can be considered a truly universal worldwide navigational aid.

Radar systems

There is an enormous variety of radar equipments and techniques, ranging from small boat sets, to large ground military complexes. Radar is frequently used for navigation, especially by ships, but here I would like to discuss a few recent innovations affecting the big system design philosophies.

A simple, basic, airfield-based surveillance radar locates an aircraft by rotating a continuous train of pulses in a transmitted radio beam, narrow in azimuth, and measuring the time of flight of the pulses reflected from the aircraft. The aircraft position is usually displayed on a cathode ray tube or plan position indicator (p.p.i.) in the form of range and bearing from the radar antenna.

There have been considerable developments in radar techniques since the last war to help controllers cope with increased air traffic. Early improvements integrated computers and alpha/numeric labelling systems to automatically track and identify target returns. Extensive signal processing and moving target indication circuitry has overcome many problems of false returns and clutter obscuration. Perhaps two of the more recent major improvements in ground radar have been in the growth of secondary radar for air traffic control and the evolution of the 3-D radar for military use.

In hostile conditions the ability to observe enemy aircraft without their co-operation is obviously useful, but for aircraft which are both co-operating and controlled, the addition of a transponder confers useful advantages.

Secondary surveillance radar (s.s.r.) is similar to the military Identification Friend or Foe (i.f.f.) developed during the war to protect friendly aircraft. S.s.r. works by sending a radar pulse from an interrogating transmitter. This pulse is received aboard the aircraft by a transponder and retransmitted on a different frequency as a group of coded pulses, which include aircraft identity and a height reading from the aircraft's altimeter. The equipment is normally mounted on the primary radar and the signals from s.s.r. are either displayed directly on the radar p.p.i. for identification purposes or separately processed in the computer system.

The classic radar with the rotating beam will not provide height information; in fact, the beam shape is designed to cover as much vertical air space as possible. For height information, a separate vertically-scanning radar antenna was employed, usually controlled on demand. Continuing improvements in the design of microwave antennas and component design have enabled a new 3-D radar to be designed. Modern techniques enable such a system to be fully transportable and highly reliable; for example, the transmitter valve operates at 3.3MW to provide a 10,000h expected life. The operating wavelength of this particular system is 23cm, the range accuracy 0.05 nautical miles, azimuth accuracy 0.5 nautical miles in 100 and height accuracy 1,000ft at 100 nautical miles. It has many advanced facilities such as automatic plot extraction and tracking in three dimensions, and for military operation provides a range of electronic counter-counter-measure (e.c.c.m.) facilities including unrestricted frequency agility, random pulse staggering, pulse compression, chaff and clutter suppression and digital Doppler moving-target indication.

The future

The ideal radar gives all-weather, clutter-free operation and as much information as possible about aircraft in the air space of interest. This is true for both ground-based and aircraft systems, and similar criteria apply to ships' radars. The ideal navigation aid gives exact location under all operational conditions, is lightweight and simple to use. For both activities, of course, equipment needs to be highly reliable and cost-effective. The systems described so far represent the current,
state of development and undergo continuing refinement towards these objectives.

One must, however, differentiate between military and civil use. Co-operation-dependent systems, such as those based upon satellites or global transmitters, could well be vulnerable in times of national conflict. Probably the self-contained navaid is least open to this sort of criticism if high accuracy at reasonable cost can be sustained.

One can fairly safely predict that semiconductor microcircuit advances will continue to affect radar and range navigation developments in a very significant manner. Digital processing and storage are already leading to new concepts in system organization and complex error corrections not previously feasible.

Miniaturization of the newer solid-state, microwave power sources and other components leads to new applications. One example is location and control of road vehicles, increasingly important for large, commercial fleets or public utilities in these times of energy problems and rising fuel costs. The display shown in Fig. 5 us of part of the area of a map of London, where the characteristics of each road junction are stored in a computer in the boot of a car for automatic position fixing.

A further example is in radar developments which are making feasible static antenna arrays where each element of the array is effectively a miniature transmitter/receiver and the beam is electronically rotated or selected. One such system, known as bi-static, can use a separate transmitter as an illuminator, with several spaced receiving systems using multi-beam static arrays. Such a system could provide enhanced protection against noise, interference and signal distortion.

The US Air Force hopes to deploy a 600ft diameter radar in earth orbit by 1985, using the space shuttle. This could be used for tracking ships, aircraft, cruise missiles, inter-continental ballistic missiles and even armoured vehicles on the ground.

The author thanks the technical director, GEC-Marconi, for permission to publish this article.

Further Reading

Audio
by Adrian Hope

BACK IN the early winter of 1969 the Olympia Exhibition Hall played host to the International Audio and Photo-Cine fairs. Ten years ago, although burgeoning trade and public interest in sound reproduction had made Olympia a must in the post-war tradition of exhibiting equipment in the Russell, Washington and Waldorf hotels in London, there was still insufficient support to justify an audio-only show at Olympia. It soon changed of course as hi-fi became an essential domestic luxury. Now, ten years later, we have seen the rise to dizzy heights and fall into disfavour of Olympia as a hi-fi exhibition site. Indeed in many respects Olympia has been a barometer of hi-fi trade. After 1969 the Audio and Photo-Cine Fair became the Audio Festival and Fair and then the Home Entertainment Show. It was cancelled at the eleventh hour in 1976 and in 1977 drew only very disappointing crowds. Since then there hasn't been an Olympia audio exhibition.

The face of audio retailing has changed at least as much as the Olympia Exhibition Hall in the beginning of the 1970s most of the electronic shops in London's Tottenham Court and Charing Cross roads sold electronic components, along with construction kits and a smattering of ready-built audio equipment. Almost all had one characteristic in common: undisguised impatience with the average customer. It was, I suppose, understandable. There is little profit to be had from testing a valve or advising an amateur constructor on why a resistor has burned out. Soon one asks for a fuse, a resistor or a spare part could expect to be treated like a mad leper in all but a very few shops. Gradually the public became reconciled to the idea of buying equipment in a cardboard box from a shop assistant who might just as well have been selling washing powder or potatoes. The main culprit, some observers argued, was the end of resale price maintenance and the consequent declaration of a competitive price war. Shops selling at cut-to-the-bone prices could not hope to offer anything in the way of before and after sales service or advice. Some dealers stuck to higher prices but offered service into the bar-

gain. Inevitably some customers took advice from the high price dealer and then bought the recommended product at cut price in a cardboard box from a warehouse dealer. Between these extremes some dealers, both in London's golden mile and elsewhere in the UK where the golden mile image had spread, offered intelligent advice and reasonable service at a low price. Others offered neither service nor advice but at high price.

It was inevitable that the bubble would eventually burst. There comes a time, especially when money is short, when a householder with an adequate sound system will no longer go out once a year and buy a replacement. There comes a time when the public, working hard for their money, start to resent the need to junk relatively new equipment for the want of a single spare part that proves unobtainable, or at least an expensive nightmare to procure. It is no secret that now, at the end of the decade, the audio trade is in bad trouble. Spare cash now, and there is clearly less of it around, goes toward a video recorder or a second colour tv, not a new stereo amplifier, record turntable or cassette recorder to replace a perfectly adequate system which is still giving faithful service.

The Olympia barometer of hi-fi is not however to be taken as gospel. Although Olympia is no longer the site of an annual audio exhibition in London, other shows flourish. The sad truth is that Olympia now has a bad name in the audio world. Exhibitor firms have suffered once too often from what they euphemistically refer to as "union problems," but which in less euphemistic terms means spending many tens of thousands of pounds to exhibit and finding the stand unfinished on opening day. It's also a barn of a place, in many respects the unideal venue for audio demonstrations. But smaller shows in hotels in and around London have always left some exhibitors or visitors dissatisfied. One year in the mid-seventies there were two rival shows at two Heathrow hotels running in parallel. An autumn 1979 show in London was cancelled at the last minute through lack of trade support. Currently, perhaps rather curiously, the major UK show is the annual exhibition held at Harrogate in Yorkshire. The fact that so many of the trade, press and public are prepared to venture so far
Another phenomenon of the decade has been the rise, and occasional fall, of so many audio and hi-fi publications. At the beginning of the decade there were just two specialist hi-fi magazines. Both had a fairly staid outlook. Then the first of the breakaway "glossies" appeared followed by a string of several more. After various changes of ownership, a few bankruptcies, and several changes of title and direction the market now appears stable.

One theory is that the current misfortunes of the trade are partly due to the boom in hi-fi journalism. The argument is that enthusiasts, with limited money, are now content to read about new developments and leave buying them to someone else. Whereas magazines like Playboy and Penthouse work on the assumption that readers are interested mainly in vicarious thrills, the hi-fi industry has so far assumed that a stimulating article on audio will stimulate sales of the product. It appears stable.

The last decade has seen any number of new developments and offered, often foisted on the buying public. But a few have stood out head and shoulders from the rest either as a result of value which has been subsequently proven or because the passage of time has underlined their lack of consequence. But some ideas of consequence have failed, at least first time round. And some ideas of no consequence have succeeded, at least temporarily.

From a considered and selective recap on the technology seen in the 'seventies, likely trends for the 'eighties become clear.

The 1970s must surely go down in history as the decade in which surround sound didn't happen. In the late 'sixties engineers in the USA started to show interest in improving the reproduction of music in a relatively small domestic room by adding reverberation to simulate the sound of concert hall or large room. Early workers soon recognised that it was not sufficient merely to reproduce natural hall ambience, rather than simulate it at the reproduction stage.

The then-new breed of multitrack studio recorders provided the ideal tool to record ambience along with the main, front, sound stage. An eight-track tape cartridge or four-track tape-recorder provided the ideal medium for selling the resultant multichannel surround sound to the public. The record companies, forseeing a drastic drop in two-channel stereo disc sales, panicked. At the turn of the decade numerous engineers around the world beavered away to produce a multichannel surround sound disc that would also offer good stereo and mono.

Not to be outdone, the broadcasters addressed themselves to the same problem. At first there was excitement that the apparently impossible had been achieved; a quartet of loudspeakers around the room could be fed with four sets of signals derived from a two-channel stereo source. But as the inevitable trade-offs and compromises became better understood, thinking engineers became disillusioned. So did the public not so much because of the various system deficiencies, but because of the lack of standardisation between so many competitive systems.

With the benefit of hindsight we now know that lack of standardisation on any one system was probably the best thing that ever happened to domestic audio. If any one early 'seventies system had become a world standard we would now be stuck with it — and all its inherent inadequacies. But early in the 1970s surround sound reproduction (or quadraphonics as it became known when four loudspeakers in the four corners of a room became tradition), looked to the marketing men like potential big business. The 1972 Consumer Electronics Show in Chicago saw private discontent flare into public squabbles. While the manufacturers tried to produce reproduction equipment capable of playing any or all of the competitive systems then available or announced, the record companies hedged over which system to adopt. "They ought to be locked in a room and kept on bread and water until they come out with an agreement" said one frustrated manufacturer.

---

*When broadcasters finally agree a surround format we might get multi-channel surround sound records from the industry again.*
At around this time a compromise offered by American engineer David Hafler started to find favour. This was the now familiar “Hafler circuit” which feeds a rear pair of loudspeakers with the difference information available across the outputs of a conventional stereo amplifier.

This simple connection provides signals for the rear, from almost any programme material. Readers of hi-fi magazines, puzzled over which quadraphonic system to buy, were repeatedly advised to compromise with a Hafler set up, at least temporarily until a standard was agreed. Even now, long after the quadraphonic bubble has burst, many enthusiasts retain a Hafler connection to feed rear loudspeakers because, especially with programme material recorded with a simple crossed pair of microphones, the results can be highly acceptable. There is now little doubt that every quadraphonic system marketed during the last decade is dead in its present form.

But the last years of the decade has seen the progressive acceptance of Ambisonics surround sound technology. This of course stems from the work of Michael Gerzon and Professor Peter Felligett.

It is also embraced, albeit at a fluctuating extent, by the BBC and IBA. The recent patent pool agreement between Ambisonics-NRDC, Nippon Columbia and Duane Cooper (joint holders of most of the crucial patents covering a hierarchical approach to Ambisonics. surround-sound technology) will almost certainly prove a significant influence in the next decade. In the USA, the Federal Communications Commission is currently debating, yet again, the future of surround-sound broadcasting. The signs are that the final FCC choice will be between Ambisonics and the CBS SQ system, or modern variants thereof. Until recently there has been a fair amount of interest from the Ambisonics faction. But now the IBA has raised a question mark over the validity of the hierarchical approach. Essentially the IBA argues that the best compromise is a three channel system, which offers good surround sound to listeners with a three-channel decoder, and good stereo and mono with existing equipment. This conflicts with the Ambisonics-NRDC approach which seeks to offer the surround-sound listener the choice of using either two or three channel (the third with or without limited bandwidth) reproduction equipment.

The IBA now describes the two approaches as “irreconcilable” so it is clear that if surround sound is to progress in the 'eighties past the laboratory stage the IBA, BBC and Ambisonics-NRDC engineers must reconcile their differences. This will require the cooperation of all parties in an intensive on-air transmission tests. Unfortunately the BBC and IBA have not been noted for their mutual cooperation and have instead appeared more inclined to generate competition even where none naturally exists. Although independency of technical research at the development stage is admirable and in the public interest, rivalry at the early stages of commercial development can only hamper the spread of a new technology. Witness the 'eighties past the laboratory stage the cooperation and have instead appeared not been noted for their mutual cooperation and have instead appeared.
that the future of one is dependent on the other. It was in 1972 that Philips first announced a video cassette recorder capable of recording colour TV pictures and sound on a cassette of half-inch tape. Although the original N1500 machine was intended for the industrial and educational market, by 1974 it was launched for — albeit limited — open sale to the general public. This started not only the domestic video revolution but also the inexorable move toward digital sound. Any recording system capable of handling the four or 5MHz necessary for colour video is more than capable of handling the bit stream necessary for stereo or multichannel sound in digital form. Moreover a decade of work into video reproduction from discs, which culminated in the USA test marketing launch of a practical video disc system by Philips-Magnavox in 1979, brings the digital audio disc a step closer. Philips has of course already shown the compact disc, or digital audio version of the Philips VLP video disc, and toward the end of 1979 announced a patents liaison with Sony. Sony had independently developed a laser-optical disc system similar to that proposed by Philips. With the union of Philips and Sony standardization of a laser-read optical video disc comes a step closer. Almost certainly the Philips-Sony union will bring agreement on a digital Compact Audio Disc smaller than the 30cm proposal made by Sony and larger than the 11.5cm diameter chosen by Philips for the compact disc. Very probably a digital "compact audio disc" of around 15cm will emerge from the union. But this will almost certainly not herald world standardization. JVC still sticks hard with its different, and quite incompatible, capacitance-read grooveless disc and RCA argues in favour of a grooved capacitance disc. Matsushita has proposed a grooved disc which is read by a mechanical pressure-sensitive stylus similar to that developed by Telefunken and Decca early in the decade and briefly marketed at the Teldec TeD video disc. It is now known that Teldec has a miniature digital audio disc version of TeD. This Teldec Mini Disc is ready to launch in Europe if and when the time is adjudged commercially right. Without doubt there are many bitter battles ahead before there can be world standardization on the digital audio disc. These battles will delay standardization and give impetus to the short term stop gaps such as metal tape. There is also a move toward 45rev/min long-playing analogue discs. It is argued that their higher rotational speed, coupled with the long playing time per side offered by computer-assisted cutting techniques, offer the analogue album a shot in the arm. Casual observers talk vaguely of some wholly new, as yet undreamed of, storage medium to replace the tape or disc. Without doubt it would be possible to encode programme material in holographic form. But the idea of a chip or memory, storing an hour of programme in solid state, must surely remain a dream for at least the next decade. Although high density memories with fast access time are available, a few moments calculation is sufficient to show that solid-state memories have a long way to go before they can offer the equivalent of an LP record in real time. Prophesies, especially in such fast-moving times, are always dangerous, but it seems a safe bet that for the next ten years sound and vision in the home will be stored on, and reproduced from, a moving strip of magnetic, capacitive or optical material or a rotating disc of similar characteristics.

The speed with which a new storage medium becomes a commercial success and gains acceptance as a household norm, will depend entirely on the behaviour of the companies involved in the development and promotion of such a new medium. Rapid agreement on digital encoding standards and storage techniques could bring a new record medium into the home within a couple of years. But behind the scenes squabbling, similar to that which killed off the quadraphonic fiasco this may not necessarily be a bad thing. Currently the signs are that the strong US and Japanese influences may impose on us world coding and sampling standards for digital sound reproduction which are tied to local TV standards. These could well prohibit or make expensively difficult, the exchange of recorded audio material between continents. Certainly it would be an appallingly retrogressive step. Moreover in their enthusiasm for a new generation of recording and reproduction techniques, engineers at laboratory level appear to have overlooked, or at least brushed to one side, the very real problems of mass producing high-density storage programme material in reliable quality as well as quantity. After one hundred years of analogue disc recording, there are still all too few record pressing plants capable of producing a respectable audio disc pressing. With track spacing between 50 and 100 times tighter in digital or video programme storage the importance of producing blemish-free pressings becomes paramount. The video and digital audio systems that succeed in the long run may well be the system for which it proves easiest to mass produce programme material.

Cassette recorders for the 'eighties will have bias and equalization for metal-particle tape but will the public pay the extra price?

H.f. radio communication
by R. F. E. Winn B.Sc.(Eng.), F.I.E.E. Racial Communications Ltd

Advances in component technology and new design concepts during the past decade, together with projected future developments, ensure that h.f. radio communications will retain importance well into the twenty-first century. In particular this is true of the maritime mobile service where satellite communication is still in its embryonic stage, in developing countries where the economies of h.f. point-to-point working with low traffic density are attractive, in defence (as a back-up if not always primary system), and in emergency use where air-transportable containerised stations can be rapidly deployed. As well as advances in technology in recent years there has been a better understanding of the vagaries of propagation. This has resulted in greater precision in predicting maximum usable frequencies over various paths during the 24-hour day at different seasons and during sun-spot cycles.

For medium and long-haul communication h.f. radio today is still an economic, efficient and reliable solution.

Receivers of the 1970s. The most significant technical changes have been in receiver design in which a number of ideas, coupled with newly available...
components, converged to provide by the early 1970s a completely new order of excellence in terms of overall performance and ease of operation. Before discussing the "breakthrough" of the 1970s it is helpful to look briefly at two previous generations of receivers.

In the immediate post-war years the most exciting development was the drift-cancelling technique known as the Wadley Loop. Although a tricky concept, demanding skilled mechanical as well as electrical design, it was successfully implemented in the now classic RA 17 receiver, made by my company, of which some thousands are still in daily use throughout the world. For the first time it had become possible to tune to a given frequency and leave the receiver unattended with reasonable confidence in its frequency stability over extended periods.

The next big challenge came in the 1960s with the change from thermionic valves to solid state devices. Early examples were heavily influenced by the previous valved designs, and although greater ingenuity was sometimes achieved they were little more than an exercise in re-engineering using transistors in place of valves. The advantages were reductions in weight, size and power consumption and an increase, at least in theory, in reliability. Overall performance, however, was disappointing and, in general, the best of the first generation of solid state receivers were inferior to the best of the valved sets. There was not even an advantage in price.

A parallel development in the 1960s was the frequency synthesizer, which generated a wide range of frequencies each with a stability equal to that of a single master crystal oscillator. This was seen as an elegant substitute for the often troublesome free-running local oscillator in superhet receivers and as a simpler solution to drift than the Wadley Loop. Unhappily the early synthesizers brought their own problems in the shape of unwanted intermodulation products generated by the internal mixers, adders and dividers. The advent of the digital synthesizer provided a cleaner output and today's units are capable of excellent spectral purity. The early synthesizers also suffered from the operational disadvantage in that frequency was selected through decade switches. Excellent if the exact frequency of a wanted signal was known, but hopeless for "searching". This problem was overcome later.

With so much new technology becoming available, engineers in this field came to the conclusion that a radical re-think on receiver design was overdue. Not only on how newly available technology and components could be implemented to advantage but also all aspects of performance and operation in modern conditions. The starting point was a statistical analysis of their occupancy of the h.f. frequency spectrum in terms of density and types of signals, their distribution and relative strengths, which would give a clearer indication of how a receiver needed to perform in order to use efficiently the 9,000 or so 3kHz channels available. An analysis was made by a computer in my company and, independently, a similar exercise was carried out by B. M. Sosin of Marconi Communications Systems.

It had been realised that the most significant limiting factor in receiver performance was linearity. Selectivity was as important as ever but the emphasis on front end sensitivity which had been a paramount feature of design for the past 50 years had come to the end of its usefulness and no further gains were necessary or indeed possible in this area.

It was found from the analysis and measurement that high powered broadcast and commercial stations were generating tens, in some cases hundreds, of millivolts at the antenna terminals when received on large collecting systems. The strong signals were generating a large number of intermodulation products strong enough to give the appearance of liveliness in the receiver yet masking weak wanted signals. What was required was a big increase in dynamic range together with extreme linearity, and the key to the problem of intermodulation products was to work out the linearity of previous receivers and to discover where the products were formed and at what level.

The first range of solid state receivers to incorporate the new principles in the 1970s was the RA 1770 series, of which the RA 1772 general purpose receiver will be discussed. The block diagram of this receiver (Fig. 1) shows it to be a straightforward double conversion superhet but with a number of novel features which provided a performance with respect to dynamic range, intermodulation products, reciprocal mixing, cross modulation, blocking and spurious response far superior to any other receiver then in production.

Fig. 1. Block diagram of the RA 1772 general purpose receiver.
The design sensitivity had indeed been necessary to convince ourselves that tests with a signal generator were there were far fewer signals. Repeated apparent lack of sensitivity because echoed by the first customer, were on the development models, later with the main gain in the second i.f. switching m.o.s.f.e.t. first mixer, only the potentially troublesome mechanical the front panel. This not only eliminated switching controlled by d.c. only from filters were selected through transistor fitted at the customers' choice. The rack of equipment. Provision was made had frequently resulted in a 6ft high case instead of extending facilities with complete receiving terminal in a single add-on adaptor units, which, in the past, could be disengaged electrically to hold the receiver on any particular frequency. The digital frequency readout, derived from the local oscillator, although at first disliked by operators accustomed to dial and pointer indicators, was necessary if the accuracy of the synthesizer was to be exploited operationally. No traditional mechanical analogue dial could achieve a resolution of 10Hz at 30MHz and even the most conservative of the old-time operational advantages.

Another innovation was to provide a complete receiving terminal in a single case instead of extending facilities with add-on adaptor units, which, in the past, had frequently resulted in a 6ft high rack of equipment. Provision was made for six internal filters which could be fitted at the customers' choice. These filters were selected through transistor switching controlled by d.c. only from the front panel. This not only eliminated the potentially troublesome mechanical switching of r.f. circuits from the front panel but also simplified remote control.

Although an earlier receiver had been developed using plug-in modules it was decided in the interests of economy to use conventional construction in the RA 1770 series but the physical configuration allows all circuits and components to be accessed by test gear for fault diagnosis while the receivers are in an operating condition. By the mid-1970s the series had been extended to include programmable and remote control receivers. The programmable set, in addition to continuous tuning at three selectable rates (10 Hz, 20 Hz or 1 kHz), had twelve programmable channels selected from a front panel switch.

The receiver for extended or full remote control is in two units, the receiver itself with blanked-off front panel except for local test facility, and an associated remote control unit with all the front panel controls. The receiver is triple conversion with the third i.f. at 100 kHz. Apart from a spin-wheel tuner and rotary controls for b.f.o. setting and i.f. and a.f. gain, all other functions on the remote control unit are selected by push-buttons. Control is exercised by a time-sharing data-multiplexing system which converts parallel control information into serial form for transmission over single wire lines. For extended control of all receiver functions three cable pairs are required. For full remote control over virtually any distance standard data modems are used on an associated remote control unit with blanked-off front panel.

The system enables complete receiving systems to be built in which a single operator with one remote control unit commands several remote receivers.

Transmitters of the 1970s. Transmitter development in the past decade has not been as spectacular as in receivers. The digital synthesizer came into more general use for frequency control in drive units and remote control systems provided flexible extended and fully remote control. The most dramatic development was a solid-state power amplifier delivering up to 1kW of power (Fig. 2). This presented a great technical challenge, the problem as with solid state receivers being the inherent non-linearity of bipolar transistors which demanded careful balance at every stage. No single device could produce significant output and my company's approach was to employ eight modules, each of 125W output with combiners summing through hybrid units to 250W, 500W and finally 1kW. The system had to survive a module failure which necessitated some complexity in design to provide protection over a large frequency range.

The advantages of the solid state design were mainly in reliability and ease of servicing. The 30V supply rail was non-lethal (although it is of course still possible to receive a serious r.f. burn from the antenna terminal). In terms of reliability there was adequate redundancy, failure of a module merely reducing total power output and any of the eight modules could be replaced or worked on without interruption of service. 500W and finally 1kW were on the same principle but with only four 125W modules was also produced.

For higher powers the valve remains supreme in terms of economy and efficiency. One 10 kW transmitter of the 1970s period, still in production, was solid state in the drive stages with air-cooled semiconductor devices in the power stages. Automatic tuning, servo-driven, gave a typical tuning time of 8 seconds with a maximum output of frequencies of 20 seconds. Automatic level control was provided and the power supply had automatic overload protection with automatic re-set which would not finally lock out the supply in...
the case of a transient fault until four unsuccessful attempts at reconnection had been made.

The next ten years

Both technical and economic gains are anticipated in the decade ahead and in fact are already being realised. The market is highly competitive and it is clear that design trends will be towards better specification and more facilities per unit cost.

A positive example is an m.f./h.f. receiver which made its public debut in London in October 1979. It is a joint Anglo-American development and substantial orders have already been received from the US Air Force. The receiver (Fig. 3) has the overall performance of its predecessors at a far lower price, achieved largely by more functions per integrated circuit and therefore a smaller number of components. It is a double conversion superhet with the first i.f. at 40.455 MHz and the second i.f. at 455 kHz. Frequency and receiver status displays are liquid crystal and all functions are push-button selected, control being through a microprocessor.

The important innovative advance is the synthesizer. In the RA 1772, described earlier, there were five circuit loops constructed on four printed circuit boards. In the new receiver a single loop synthesizer occupies only one board and as well as generating the local oscillator frequencies at intervals of 1 Hz (previously 10 Hz resolution) it also generates the b.f.o. output in 10 Hz steps. Because of the single loop design the new synthesizer has even greater spectral purity because all mixing has been eliminated and thus fewer frequencies are being generated. The unit is based on an I.S.i. m.o.s. chip developed by Racal Microelectronics Ltd which achieved 1 Hz resolution by synthesizing phase as well as frequency. The UK version has a 100-channel frequency store and an interface for a remote control system. The US version has IEEE 488 input/output interfaces as standard, but both versions can be adapted for other interfaces by software changes.

Fig. 3. Anglo-American m.f./h.f. receiver. This recently introduced model uses a microprocessor for control and a new synthesizer.
The synthesizer mentioned above is also employed in a military wide-band receiver where it is used to cover the h.f./v.h.f. spectrum continuously from 2MHz to 512MHz.

On the transmitter front the advances that one will see in the 1980s are less spectacular but none-the-less worthwhile. A second-generation 1kW solid state amplifier uses four 300 W modules which, allowing for losses in the com- biners, delivers a full 1kW to the radiating system. Linearity has been further improved so that for the first time the CCIR recommendations for intermodulation products have been met over the whole of the h.f. range.

Looking further ahead there are two great hopes. One is v.m.o.s. devices which could provide much greater linearity than current bipolar devices, and of greater efficiency. The second is the feed-forward or polar loop concept on which research is being conducted at Bath University. If successful, there is a promise of solid-state transmitters comparable in efficiency and linearity with current class AB vacuum tube amplifiers.

Of more immediate note the world demand for low-cost channelised transmitters continues unabated, and it is now becoming apparent that the conven- tional channelised drive unit may well be displaced by a programmable synthesizer on economic grounds. With modern technology a synthesizer is already comparable in cost with a 10-channel crystal drive unit.

Receiver performance has now reached a new plateau but the application of the microprocessor will provide considerable refinement, resulting in more "intelligent" units in both systems management through remote control and the receiver itself. For example, there is the self-adaptive receiver already realised which senses the type of signal it is receiving and automatically adjusts itself by minor frequency shift and selection of appropriate filters and demodulators to the transmission mode it is receiving without operator intervention. If on c.w. it would probably select the narrowest filter and adjust the b.f.o. frequency for a pleasant tone, and audio gain to a convenient level, for recording or operator con- venience. If s.s.b. is detected then the appropriate upper or lower sideband filter, and so on. The microprocessor will also be used for routine self- checking of sensitivity and other parameters.

The newer techniques pioneered on h.f. are already producing a spin-off at higher frequencies, particularly the concept of a high first i.f. which opens the door to broad band pre-mixer amplification. High stability v.h.f. syn- thesizers will also allow s.s.b. on v.h.f. and u.h.f., thus enabling more efficient use of the spectrum as has happened on h.f.

We may also expect new forms of modulation which will help overcome the inherent limitations of ionospheric propagation. There could be re-births such as the Piccolo system, where the advent of solid state circuitry has made the system economic enough to attract much wider application.

Work is currently being conducted on topics such as time encoded digital speech at 2.4 kilobit/s and, though presenting considerable technical dif- culties, few professionals doubt that such developments will eventually prove successful and further enhance communications at h.f.

Although for purposes of illustration the practical examples quoted are all from the author's own company, he gladly acknowledges parallel work in other countries which, through pro- fessional cross-fertilisation, will con- tinue to advance the art and science of h.f. radio.

**Electronic measuring instruments**

**by John L. Minch **Hewlett-Packard Company

Progress in instrumentation is a result of at least three driving forces: the on-rush of new system requirements such as fibre-optic communications and satellite technology, 'breakthroughs' in component technology, such as micro- processors or microwave, hybrid microcircuits; extensions and combinations of present instrumentation, such as the remarkably successful IEEE-488 interface bus for programmable systems. Very often, progress is really an intricate combination of all of the above. In so many cases successful instruments don't involve technology 'breakthroughs', but merely embody the right combination of customer requirements. With few exceptions, most of these requirements were already in place at the beginning of the decade. Digital, analogue, and microwave integrated circuit techniques' advanced substantially, but the primary technology was already there.

The 1970s

Dramatic progress did take place during the 'seventies. Probably the most important new developments were of logic analysers and logic design instru- ments. The earliest of these, typified by the HP 1601L introduced in 1973, was nothing more than a standard oscilloscope display with columns of Os and Is. An early serial data analyser, the HP 5000A, permitted diagnostics on long streams of data captured and displayed on rows of 1.e. ds. In the six years since, the progress in logic analysers and microprocessor design instruments has been nothing but breathtaking. And none too soon either, because relentless marketing pressure is pushing microprocessors well beyond the obvious applications in calculators and communications into appliances, toys, electric organs and motor cars. Design, qualification, production test, maintenance and service all need these measurement tools to work with microprocessors and digital circuitry.

One common theme of the 'seventies for most classes of instrument was that requirements moved two ways at once. Thus, the market called for smaller, more portable and less expensive models at the same time that other models went as far as technology would allow, with highly complex and powerful instruments and remarkably high price tags. An example of the former is the low-priced, digital voltmeter, while the high-priced example is the HP 3455A, a high-precision, system d.v.m.

Oscilloscopes handled higher frequencies and became both smaller and more portable, while others became much more powerful and complex, using microprocessors to measure digital time delay or rise times. Waveform, pulse and function genera- tors tended to go in only one direction — towards smaller and cheaper designs, but with remarkably strong specifications. It's amazing how much waveform performance can be packed in a small package these days. The more complex pulse-generator products usually were the word and coded-pulse instruments.
required by new digital communications technology and fibre-optics.

**R.f. and microwave.** R.f. and microwave instruments entered the 'seventies with great promise. In 1970, hybrid microcircuit technology and the design processes using scattering parameters were in place, ready to supply the building blocks; G.a.s.f.e.t. devices were coming. The results were truly astounding. The microprocessor has made the difference — about half the circuits in many microwave instruments are now digital and it comes as no surprise that about half of our microwave design teams are digital and software designers.

A typical result is a newly-introduced synthesized signal generator. The 10kHz-1280MHz signal spectral purity of this generator rivals the best cavity-type generator of previous years, but it is also fully programmable and frequency agile (500µs switching time). The real contribution of this very expensive generator is in the design of the front panel controls. The mostly digital keyboard communicates only to the microprocessor, which does all the circuit and signal control, making things extremely easy for the operator. For example, he can set up ten completely different front-panel signal conditions, store each, and recall them at the push of a button.

Another example of this "smart" type of microwave instrument is a recent 1500MHz spectrum analyser. Starting from power switch-on, the machine runs through 30 self-tests and draws its own graticules and titles, and provides powerful measurement routines which are far beyond usual manual testing. Self-tuning routines bring identified signals to the centre of the screen and read out frequency and amplitude digitally. Sweep speed, bandwidth and read out frequency and amplitude signals to the centre of the screen and the display will then show only new signals which show up later.

R.f. network analysis finishes the 'seventies with a typical instrument, covering 500 kHz to 1.3 GHz, which measures, calculates and displays complex impedance transfer functions, group delay, deviations from linear phase, etc. It's about all the design power an r.f design engineer needs.

**Fig. 3.** 110MHz spectrum analyser employs digital storage, a television type display and automatic operation to give accurate spectral information quickly and easily.

**Fig. 2.** Synthesized signal generator provides precision r.f. signals and, being bus-controllable, may be incorporated into a fully automatic test set up.

In instrumentation, the 'seventies brought one development which probably overshadows all other advances in instrument techniques — the IEEE-488 bus. Interestingly, the IEEE bus was not a technological breakthrough; it was really more of an organisational and political advance. A simple data party line allowing automatic control of instruments and resulting data computations has revolutionised measurements already: over 700 instruments and controllers from over 160 manufacturers throughout the world now operate on the bus. Engineers now think in terms of automatic measurements for labs and production and maintenance uses.

**Servicing.** Finally, in the late 1970s, a more coherent strategy for dealing with service and repair of digital circuits was emerging. Early attempts at field diagnosis and repair of 'digital' boards placed the emphasis on changing the board. When the total number of instruments in service was small and widely scattered, the organisation to make this feasible was difficult.

One solution gaining rapid acceptance now is a design strategy based on signature analysis of digital circuitry. Instruments with a high content of digital components are designed with a certain portion of the microprocessor set aside to be used in fault diagnosis. In that test mode, the instrument circuitry is forced through a switching procedure which causes each digital circuit node or pin on a digital logic pack to produce a sequential stream of 0s and 1s. That repetitive pattern is unique to that pin of a good instrument. Thus a signature analyser like the HP 5004 takes a bit stream as long as 216 bits and compresses it into a 4-digit alphanumeric display. Instruction manuals and test procedures are written to measure and assign a unique 4-digit signature number to every digital circuit pin. Technicians can quickly troubleshoot right down to a component level, picking out faulty i.c. packs with little trouble and alleviating the serious problem of stocking complete p.c. boards.

**The future**

Forecasting the future is always risky, but the clues to the next five years of instrumentation are already apparent from the most recent offerings.
Alternative digital methods will continue to invade analogue and r.f. techniques. For example, instead of a super-accurate, flat-frequency-response r.f. attenuator for use in signal generators, a signal generator will use a moderately-accurate but highly stable one: a highly-precise calibration table stored in memory then corrects the output signal. This is effective and inexpensive so long as there is already a microprocessor available.

It seems quite clear that analogue and radio-frequency circuit techniques will be further eroded by digital methods. As faster analogue-to-digital converter components come along, instruments will sample and convert signals to digital form forward in the measurement process. Output signals may be more commonly generated by digital waveform synthesizers. For example, oscilloscope sweeps would be much more accurate if generated digitally by a clock whose frequency was referred to a crystal standard.

Systems. Systems engineering will call for new initiatives in measurement which will create new instrument concepts. Communications systems are moving rapidly to digital modulations. Signal simulators will be needed for generating phase-shift-keyed modulations for satellite work as well as frequency agile signals for the new military communications and the cellular mobile telephone technology.

Fibre optics technology's on-rush into communications, in spite of its highly optimistic projections, has been underestimated: few people really see its impact clearly. The bandwidths of communication power to be unleashed by fibre optics will revolutionise not only the system business but will change instrumentation. Fibre optic data links can already link IEEE-488 bus instruments. Computer and terminal links as well as medical data transmission with no ground loops are just the beginning. These technologies will call for design and test equipment not yet envisaged. More importantly, they will call for new concepts in measurement.

The computer system technology will have memory and processors in every corner. Instrumentation will more than adapt: there is very heavy interaction between logic design instrumentation and the semiconductor revolution itself.

Fig. 4. Each pin of a digital i.c. pack has a unique 4-digit signature displayed and referenced in the repair manual, allowing diagnostics down to a component level.

Certainly, computer-aided design for assistance in lab. projects becomes common. Engineering productivity is the key: in the 'seventies, automatic test equipment found willing ears for production test and for lowering costs — it was easier to justify.

The 1980s must attack the design side of things. Technology moves so fast that any lab. project which lasts longer than three years is going to produce a product with old or obsolete technology. As a result, there will be a steady proliferation of IEEE-488 bus minisystems in laboratories. New instruments will appear with more operator-interactive controls and displays which interact, compute, correct and translate into your terms.

Complicated measurement procedures will be captured in software so the same tests can be re-run two weeks later. Suppose you run a particular test as you complete your circuit bread-board. Two weeks later, after modifications, you would like to recall the same procedure, set up all front panel settings as they were, run the test and compare the data to the previous test. This may sound a little like the HAL computer from the movie 2001, but it isn't; the technology to do that is here now in IEEE-488 bus systems. Now just contemplate individual instruments doing much of the same.

How will we maintain all this equipment? One computer maker recently proposed throwaway p.c. boards as a repair strategy; that might happen. Super-integration and high-reliability test programs could well give a substantial advantage in reliability. But the usual reaction to that is to pack even more complexity into the instrument functions, putting instrument reliability back where it started. Smaller, less costly, highly digital instruments will get more reliable. Larger, more complex, high priced instruments will hold their own on reliability. The most likely course will be a combination. With maintenance labour rates bound to increase, there may be some trends towards the throw-away-type repair on very low-priced instruments. In higher-priced equipment the instrument will contain more self-test and diagnostic capability, under control of its own microprocessor: that trend is already apparent. Then when the self-test has isolated problems to a given module or p.c. board, the digital signal analysers will take over.

Instruments in ten years will still consist of printed-circuit mother boards and plug-in modules. But p.c. board testing which has focused mostly on production functions may gravitate to maintenance depots where repair quantities can justify the cost. The new super-flexible automatic board-test systems are becoming attractive because of their remarkably low prices.

So, get ready for some technically exciting times. The surface has barely been scratched.
"Make way for engineers"—IERE president

The normal fabric of British life will have to be substantially changed, claims Professor William Gosling of the University of Bath, if we are to create an engineering profession adequate to the needs of our society. Giving his inaugural address as new president of the IERE, he said that we urgently need "an elite corps of engineers, particularly electronic engineers, who will be as able, perhaps abler, than any others in the world. To induce the most talented people to seek such a life, society will need to use the only inducements which have ever been known to work, namely honour, prestige and wealth. They will also need a good 'second division' of supporting engineers, of technician engineers and technicians. At each level of employment the appropriate rewards — tangible and intangible — to secure the quality and numbers to meet our social needs must be forthcoming. Such things are not achieved cheaply, but only by the diversion of resources in the appropriate direction. Since, the wealth of society cannot immediately increase, even with the most favourable industrial policies, we are faced with a stark logic. If we need better engineers, more able to facilitate the creation of wealth by industry, we must make that career more attractive to the ablest of our children. To do that the rewards must be markedly improved. But if the very best engineers grow richer, everybody else, including all the other engineers, the trade union members and the arts graduates, must for a time see their prosperity grow less rapidly than would otherwise have been the case. This is a high hurdle for us all to get over, particularly in a society largely run by a collusion of arts graduates and trade unions, which has developed a marked predilection for living on its seed corn."

In a reference to the Finniston inquiry into the engineering profession, Professor Gosling said that nothing that could conceivably come out of this will change overnight the whole status and remuneration of engineers. "Maybe if engineers could be organised into a tight and monolithic union, and if they exploited their power ruthlessly and without regard for others, a change of that magnitude could be achieved. So far, engineers have for the most part not shown that willingness to unite themselves, nor yet to their credit the extreme degree of ruthlessness and militancy. We may be sure that what they have not been prepared to organize themselves for and force from society, they will not be given unasked, from some kind of altruistic recognition of merit. We do not live in that kind of world."

Japanese see opportunity in Prestel

Only a month after Prestel, the Post Office's viewdata system, started as a full public service (December 1979 issue, p55), the Japanese firm Sony displayed in London some equipment it has specially developed and manufactured for this information retrieval service. Shown by Sony (UK) Ltd at the Professional Viewdata Exhibition in November, it consists of two 14-inch colour television terminals using the famous Trinitron tube (December 1971 issue, p.587), one with a simple keypad and the other with a full alpha-numeric keyboard. Editing will be possible on these terminals. The equipment was developed at Tokyo and at the Sony (UK) manufacturing plant at Bridgend, Wales, and is assembled at Bridgend.

Speaking of his company's involvement in Prestel, Mr Kazuo Imac, of the Commercial and Industrial Division, said: "As well as being the first Japanese company to develop Prestel equipment, we have considerable investment in viewdata technology and this Prestel equipment is only the first of many developments to come." It will be remarked that this Japanese company seems to show considerably more enthusiasm for the system than the television set manufacturers in the country where Prestel was born. The British set makers have been well behind schedule in supplying viewdata receivers ordered for the test service started in September 1978.

"Engineers want statutory registration"—survey

A survey has revealed that professional electrical and civil engineers are overwhelmingly in favour of a statutory registering authority for the professions. The survey, carried out by NOP Market Research Ltd for the Institution of Electrical Engineers, questioned IEE and ICE members on their attitudes towards their professions, standards, and the way qualified engineers were perceived by society. It found that 92 per cent of IEE members favoured registration while the figure for the Civils was 87 per cent. The registering authority should be responsible for the registration of professionally qualified engineers (said 92 per cent IEE, 93 per cent ICE) as well as exercising control over the standards of education, training and qualification (80 per cent IEE, 72 per cent ICE) and professional conduct and discipline (78 per cent IEE, 79 per cent ICE). Virtually all members questioned believed that the registering authority should have the right of sanction against an individual if professional standards were not maintained.

It should be compulsory for all professional engineers to become registered (said 58 per cent IEE and 65 per cent ICE). A further fifth thought registration should be compulsory above a certain level of responsibility. However, if registration wasn't made compulsory then 79 per cent (IEE). 71 per cent (ICE) said they would apply anyway.

Not only did the majority favour registration but 67 per cent of both institutions believed that work requiring a high degree of responsibility should only be undertaken by registered engineers. When it came to the way the profession was perceived by the public, 97 per cent (IEE), 98 per cent (ICE) stated that "the public have little knowledge of the engineering profession." On the question of pay, 91 per cent (IEE), 88 per cent (ICE) said that they believed they were paid less than others in similar professional occupations. An overwhelming majority stated that engineers had achieved a higher professional status abroad than in the UK. The questions were posted to a random sample comprising 4,400 corporate members of the IEE and 600 of the ICE, and the overall response rate was 52 per cent.

Japanese companies, Mullard Ltd, General Instruments, Texas Instruments and VG Electronics, demonstrated the British teletext/viewdata system in Tokyo on December 10 and 11. The object of the presentations was to show the advantages of the system's components and sub-assemblies to Japanese setmakers who undertake, or plan to undertake, the manufacture of suitably-adapted TV receivers in the UK or Europe. The presentations were organised by the British Overseas Trade Board. The Sony terminals mentioned above in fact use Mullard viewdata integrated circuits.

Arts competition

The Royal Society of Arts is including an audio-visual presentation in its 1979/80 Design Bursaries Competition, which this time will offer awards to the value of £20,000. In the audio-visual presentation section, students and young designers are given the opportunity to develop their technical skills and to apply their visual imagination to animating a sequence of ideas by means of lasers, holograms or any other audio-visual method. Further information may be obtained from the Royal Society of Arts, John Adam Street, Adelphi, London WC2N 6EZ.
Hospital paging using synthesized speech

A new microprocessor-controlled radio paging system, recently installed by Multitone Electric Company Ltd at Frenchay Hospital near Bristol, includes synthesized speech. Multitone's ACCESS 1800 paging terminal has enabled the hospital to organise several group alert sections of staff and considerably speed up the connection of one member of staff to another by telephone without using the switchboard staff.

ACCESS 1800 enables simultaneous calls to be made to as many as 12 team members in up to ten teams including the cardiac arrest team, a mobile resuscitation unit, and major accidents and fire teams. A member of staff can locate any receiver holder by simply dialling an access digit on any telephone, followed by the receiver number and the caller’s extension number. He may then hang up the phone. A “bleep” will be heard by the receiver holder who, upon pressing a button, will then hear a synthesized speech message giving the caller’s extension number. The switchboard is not involved in this at all. The cardiac arrest team can be alerted and mustered within seconds to a particular ward by a verbal message over their receivers. Similarly, the mobile resuscitation unit can usually be mobile in about 30 seconds from the origination of a call from the switchboard.

Thirty calls may be stacked in the computer’s memory and automatically processed in sequence, even when interrupted by a priority call. Any temporary change of receiver number, for staff on call, can be programmed into the memory, which will automatically call the alternative number when the original, unobtainable number is dialled. If one doctor is unobtainable, a second on-call doctor can be summoned automatically in his place. This call transfer system eliminates the need to inform all staff of the change of number when any receiver is exchanged.

Pseudo-direct satellite speculation

Mr Pat Hawker of the IBA, speaking as a ‘devil’s advocate’—his own words—at a meeting of the Society of Cable Television Engineers on October 16, posed the question “What would happen if a commercial company in Luxembourg were to use lower-power satellite positioned at 19° W (the orbital position allocated to Luxembourg) on the appropriate 12GHz channels and carrying a stream of bought-in programmes in the English language?” Speculating, he said, “Such transmissions would be picked up in the UK.”

A small number of enthusiasts, according to Mr Hawker, would undoubtedly be capable of making their own equipment to receive these transmissions and sell or give it away for community distribution. For good quality reception, he said, they would need efficient satellite receive-only terminals with — for 12GHz, possibly 1.5, 2 or at most 3 metre dish aerials and these, while requiring greater profile accuracy, would not necessarily be any more expensive than the 4.5 metre dishes used in the USA. According to a recent press report, he said, enthusiasts in North America had managed to receive tv from Westar and Satcom Systems, mainly to mining and timber camps. The report said that Canadian government officials had estimated that 50 unlicensed stations were involved, but their operators were not shut down because the government had difficulty in locating them and there was a genuine danger, according to an official, that the lumberjacks and miners would resist with force.

Reminding his audience that Radio Luxembourg had been carried on cable, Mr Hawker posed a second question, “Would British cable networks be permitted to distribute programmes from France, West Germany or Luxembourg?”

“It would need Home Office approval,” he said, “but as Erik Jurgens, chairman of the Netherlands Broadcasting Corporation has pointed out, there is Article 10 of the European Convention. This states: Everyone has the right to freedom of expression. This right shall include freedom to hold opinions and to receive and impart information and ideas without interference by public authority and regardless of frontiers. This Article shall not prevent States from requiring the licensing of broadcasting, television or cinema enterprises.” Mr Hawker suggested that such an Article posed the question: “The system of transmission used in most other countries would certainly cause interference, and shouldn’t be used in the UK. There are other systems (e.g. v.h.f./f.m.) that would be much less troublesome — but the problem of interference is undoubtedly important, and more research is needed to ensure that any chosen system would be satisfactory.”

CA for CB

The Consumers’ Association have come out in favour of introducing a citizens’ band radio service in the UK. In a one-page summary of the arguments for and against in the November issue of their magazine Which? they conclude: “Citizens Band radio in this country may not save many lives, nor may it be the best way of relaying traffic information. But it could provide an easy-to-use, relatively cheap method of communication that many people would find useful to have on occasions. We’d like to see it available here, if the problems of interference can be overcome.”

The Association maintains in fact that the possibility of interference with other electronic equipment is the only serious argument against the introduction of c.b.: “The system of transmission used in most other countries would certainly cause interference, and shouldn’t be used in the UK. There are other systems (e.g. v.h.f./f.m.) that would be much less troublesome — but the problem of interference is undoubtedly important, and more research is needed to ensure that any chosen system would be satisfactory.”

SERT move

German press considers higher frequencies for c.b.

Conditions on the 27MHz citizen's band are giving users cause for concern and every day there are new calls for better operating conditions. The German electronics journal, Funkschau, therefore carried out tests and compared some alternative bands to get acquainted with the advantages and disadvantages of each one as far as c.b. was concerned. Their findings showed that shifting c.b. into the v.h.f. or u.h.f. region could produce considerable advantages. It would cause much less interference to home-entertainment equipment, and the substantial increase in the channels which could be used would put an end to the present overcrowding.

Because special permission is required in West Germany to use frequencies around 900MHz, this band could not be included in the tests. Instead the 23cm amateur band (1295MHz), which has similar propagation characteristics, was considered, together with the 70cm (435MHz) band and the current 11m (27MHz) band. On the 11m band they found that there was always heavy interference from vehicles in country districts, further south and from industrial generators, while on v.h.f. and u.h.f. only noise could be heard. The tests were carried out using omnidirectional antennas with no gain and power levels of less than 1W.

For propagation comparisons the different types of terrain were considered. Munich was chosen as a heavily built-up municipality, the Upper- Bavarian lakes were used for propagation over areas of water, and the hilly country in the north of Munich enabled trials to be done over undulating terrain. As expected, the poorest ranges were observed in the 22cm band, and usable ranges could not be achieved until a station arrived at an exposed location. Penetration was good on this band and radio contact was not even lost when one station moved into a garage. In the city of Munich, the "phase wipeouts" from passing vehicles proves a great nuisance, and it was concluded that diversity reception could help in this case. It was the journal's experience that the 23cm band could only be of value for c.b. radio if repeater stations were set up on high buildings or mountains, and it would also be necessary to obtain approval for high-gain antennas.

US noise jammer simulator to be made by UK company

A contract, valued at more than $4 million, to build the US Navy a noise jammer simulator, has been awarded to Watkins-Johnson the Windsor-based electronics company. The order, which comes from the Naval Weapons Centre at Dahlgren, Virginia, gives the company the responsibility of designing, manufacturing, installing and activating a computer-controlled system capable of emulating hostile jamming environments. When completed in 1981, the simulator will be used at the Atlantic Fleet Weapons Training Facility to provide electronic counter-countermeasures training for Navy radar operators.

More v.h.f. broadcasting likely

The v.h.f. sound broadcasting band in Region 1, at present 87.5 MHz to 108 MHz, will almost certainly be extended upward to 104 MHz as a result of a decision at WARC 79, we understand. In Britain, for example, this will allow an extension of BBC and IBA local radio services, will avoid the necessity for sharing between BBC Radio 1 and Radio 2, and will reduce the need for some Radio 3 and Radio 4 programmes to be displaced by educational broadcasts (see article by D. F. Leggatt in this issue). To permit this extension of broadcasting, the police radio communications at present occupying 100-104 MHz will have to be moved elsewhere but it is not yet known what frequencies are likely to be used.

Apart from this loss, mobile radio in Region 1 has benefited overall from the decisions at WARC 79. At the time of going to press we understand that unofficial sources that this service will be allocated sections of the spectrum which it has not had the use of before. In Britain one of these sections could well be part of Band 3 (806-960 MHz) which is at present used for 405-line television broadcasting by both the BBC and IBA, but what happens here will in fact be an internal UK decision made by the Home Office. The BBC hint that the remainder of Band 1 could perhaps be used for the new direct digital radio broadcasts.

It seems there has been something of a conflict at WARC 79 between the USA and Canada over the allocations for services in the u.h.f. bands in Region 2. Because the heavily populated areas of Canada are close to the US border it is obviously necessary that the two countries use these bands in the same manner in an integrated way to avoid interference. Canada wants to use the u.h.f. bands exclusively for television broadcasting (the present exclusive allocation for this service being 470-890 MHz), partly because it has a large number of language groups to cater for both native peoples and immigrants, while the USA wants a more flexible arrangement in which they are shared with mobile radio. For example, the land mobile radio community in the USA recommended a co-equal mobile and broadcasting allocation between 470 and 806 MHz to provide flexibility in the international table of allocations and leave the domestic u.h.f. television allocations intact to the degree that is necessary. At the time of going to press we understand that the Canadian case is getting strong support from other delegations, but the issue is not yet settled.

Impulse buying by hi-fi customers

A consulting firm, Venture Development Corporation, from Massachusetts, claims that there is a link between the time spent by a customer selecting a radio set and the amount of money spent by the manufacturer. The Corporation says that hi-fi buyers sometimes have a lot in common with new car buyers in that they need a lot of information, they often price shop, and they frequently require substantial psychological support. At other times, it says, the hi-fi buyers behave like chewing gum buyers, needing very little time to make a brand selection and being completely pre-sold on a particular product. Price did not seem to be a critical factor as long as the merchandise was available.

The consulting firm compared the owners of systems costing $1400 or more with owners of systems costing less than $800, and found that 72.7% of the owners of high-priced systems spent at least a month selecting component brands, but only 37.2% of low-priced systems owners spent that long. Two factors accounted for this, according to the firm. Firstly, the larger the purchase, the more the people were willing to invest to guarantee an optional selection, and secondly, the more expensive systems had more features requiring consideration, making the final choice more complicated.

20.7% of the owners of systems worth less the $800 decided on their components within one day or less, and only 4.2% of the owners of high-priced systems were able to make a purchase in the same time. The Corporation claims that the implication for retailers is clear. They should not rush the sales of high-priced merchandise. Product literature, specification sheets and reprints of reviews should be readily available for customers to consider at their leisure, and the higher the price, the more information should be offered.

V.o.r. computer

Walter Freter, who is a member of the Munich gliding club and the Siemens (Munch) amateur electronics group, has developed an automatic v.h.f. omnirange (v.o.r.) receiver, using a microprocessor to calculate and display the required compass bearing. Normally, the pilot of an aircraft is required to look up the frequency of the selected v.o.r. beacon, tune his navigation receiver and set the omni-bearing selector, observing the left/right indications of the display and adjusting the heading to keep the needle centred.

Freter's design avoids all this by virtue of its programmed table of all European frequencies, and the power of its microprocessor to tune the navigation receiver to the beacon transmission. The processor will calculate the required compass course to fly, using the left/right information which would normally be displayed, and will show the continuously up-dated compass course on a numerical display on the control panel.

Siemens say that several manufacturers (not Siemens?) have shown interest in the equipment.
Past the peak?
By the time these words are published it seems likely that the peak of Solar Cycle 21 may have passed — although this will not be known for certainty until 1980. Long-distance paths on frequencies up to and above 50MHz reappeared in mid-October with many cross-band (50MHz/28MHz) amateur contacts between Europe and North America. The season appears to have opened on October 18 when American 50MHz signals were received in West Germany. The amateur station, G3SSO, operated by personnel at GCHQ, Cheltenham is thought to have been the first British station to make such a contact this autumn, working Canadian VE1AVX on October 19. RSGB advises that 28.875 - 28.895MHz has become established as the frequencies for cross-band s.s.b. operation with 50MHz North American stations.

The sunspot peak has been reached sooner than expected, although if the cycle follows the usual pattern, the decline will be considerably slower and several more seasons of 28MHz (and possibly 50MHz) long-distance bands and other "openings" appear likely. The past decade has shown once again the great difficulties experienced by radio physicists in accurately predicting, except in the short-term, the dates of maxima and minima and the level of maximum sunspot activity. Perhaps the most interesting new theories to emerge recently are those of Professor R. H. Dicke of Princeton University who believes that the cycles are accurately timed deep inside the sun by a form of magneto-fluid oscillator but take varying times for the magnetic fields to reach the surface; he also espouses the theory that the true solar cycle last 22 years with a reversal of magnetic field polarity at 11-year intervals.

The first G/YL
Miss Barbara Dunn, G6YL, who died recently, is generally believed to have been the first licensed 'YL' ('young lady') amateur operator in the UK and held her licence for over 50 years. Throughout the 1930s she was one of the small group of British 'YL' operators who were tremendously active on the long-distance bands and in pioneering both 28MHz and the old 56MHz bands. Even in 1937, ten years after she took out her licence, there were only five 'YL' amateurs in the UK: Nell Corry, G2YL; Constance Hall, G8LY (still licensed); A. J. Burns, GM2IA; G6SF; and Barbara Dunn — though these were joined soon afterwards by Catherine Myler, G3GH, who later was one of the very few amateurs to receive official recognition for their work as Voluntary Interceptors in the Radio Security Service.

Foxhunting
One of the aspects of amateur radio that continue to attract a small but faithful and enthusiastic following is the art of locating hidden stations by the use of direction-finding receivers. For many years the RSGB has organized a series of "qualifying events" leading to a "national final" based on transmissions in the 1.8MHz amateur band. For the qualifying events, competitors are expected to locate two different hidden transmitters within about a ten-mile radius of the starting point, but for the national final it is a question of finding three stations in a matter of a few hours. The 1979 winner, Eric Mollart of the Mid-Thames Club, took only just over two hours to do this, in spite of the many ingenious difficulties that tend to get built into the course as a result of past experiences. The technique which has been used at several events is to have an extremely long aerial which even when located may apparently lead nowhere. At Wolverhampton, in one of the 1979 qualifying events, for instance, one transmitter had several hundred yards of fine wire suspended in the trees as aerial, but with a final length tacked under the horizontal rails of a fence, eventually leading to gorse bushes in which the operator and his transmitter were concealed. The d/f bearings thus led the competitors only to a wooden fence with no sign of the concealed station.

A rather different form of 'foxhunting' using the 144MHz band, is also organized, for example, by the UK FM Group (London), though one gains the impression that care is taken to ensure that it can be combined with the objectives of the Campaign for Real Ale!

In brief
The USSR is planning to launch an RS3 amateur radio satellite during spring or summer 1980. King Hussein of Jordan (JY1 and G5ATM) recently met 45 members of the Radio Society of Harrow at a reception given by the Mayor .... Richard Thurlow, G3WW has become the third amateur in the world to obtain a CQDX award for working 100 different countries on slow-scan television (No. 1 was W8YEH, No. 2 G3IAD). Japan is now issuing amateur callsigns in the JM prefix series. The VHF Committee of the RSGB has recommended 146.500MHz as a "calling frequency" for amplitude-modulated transmissions.
NOBODY CAN DO IT LIKE SABTRONICS CAN. NOBODY!

We pioneered the first benchtop professional quality Digital Multimeter at lowest price anywhere. We sold tens of thousands of units around the world and are still selling. Nobody has been able to beat our price/performance ratio.

Now we are making the impossible again. A 3½ Digit LCD handheld professional quality multimeter at an absolute low price of only £ 59.95*. But don't get sold yet, wait till you have read further.

QUALITY, PERFORMANCE AND ACCURACY

The model 2035A offers you long term accuracy with a laser trimmed resistor network, a stable bandgap reference element, and single chip LSI circuitry. Expert circuit design and board layout have reduced component count to the optimum minimum. With 32 ranges** and 6 functions, you can measure AC or DC volts from 100 µV to 1000 V; AC and DC current from 0.1 µA to 2 A; resistance from 0.1 Ω to 20 MΩ. Typical DCV accuracy of 0.1% ± 1 digit.

OVERLOAD PROTECTION FOR GREATER SAFETY

Input overload is protected to 1000 V (DC + AC peak). Ohm and current ranges are fuse protected. These features, plus a high immunity to voltage transients, protect the 2035A against uncertain input conditions. Input and battery eliminator jacks are recessed to add to operational safety. Wait don't order it until you have read further.

OTHER FEATURES FOR GREATER CONVENIENCE AND FLEXIBILITY

Automatic zero; Automatic polarity (+ implied, - shown); Large ½" LCD readout with automatic decimal and low battery indicator; uses inexpensive 9 V transistor battery; 200 hours battery life; push button switches for easy operation; light weight (only 11 oz); fits easily into a jacket pocket; specially designed injection moulded rugged plastic case in beautiful grey beach colour with matching switch buttons; only 2 calibration controls. Whether you are professional or amateur, you should check out the Model 2035A for yourself.

BRIEF SPECIFICATIONS MODEL 2035A & 2037A

<table>
<thead>
<tr>
<th>DC Volts</th>
<th>5 ranges 100 µV to 1000 V</th>
<th>0.1% ± 1 digit, 0.25% ± 1 digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Volts</td>
<td>5 ranges 100 µV to 1000 V m</td>
<td>0.5% ± 1 digit, 1.0% ± 1 digit</td>
</tr>
<tr>
<td>DC Current</td>
<td>5 ranges 0.1 mA to 2.00A</td>
<td>0.25% ± 1 digit, 0.5% ± 1 digit</td>
</tr>
<tr>
<td>AC Current</td>
<td>9 ranges 0.1 mA to 2.00A</td>
<td>0.5% ± 1 digit, 1.0% ± 1 digit</td>
</tr>
<tr>
<td>High Ohms</td>
<td>6 ranges 0.1 Ω to 20 MΩ</td>
<td>0.2% ± 1 digit, 0.5% ± 1 digit</td>
</tr>
<tr>
<td>Low Ohms</td>
<td>6 ranges 0.1 Ω to 20 MΩ</td>
<td>0.2% ± 1 digit, 0.5% ± 1 digit</td>
</tr>
<tr>
<td>Temperature**</td>
<td>10 ranges -50°C to +150°C</td>
<td>1°C to 2.5°C</td>
</tr>
</tbody>
</table>

Input impedance: 10 MΩ + DC and 10 MΩ/100pF - ACV
Burden voltage: 100 mV at 1000 display
Over voltage protection: 1000 V (DC + AC peak)
Over current protection: 2x250 V fuse
Ohm overload protection: 250 V DC or AC peak
AC Frequency response: 40 Hz to 5 kHz
Battery life (8V): 200 hours typical with alkaline battery
Weight: 11 Oz (310 gms) without battery.
Accesories supplied: Test leads
Temperature Co-ef: 0.1% /°C
Display: ½" (13 mm) Character, 3½ Digits Liquid crystal display with low battery indicator, and «—» sign
Case colour: Light grey with matching buttons.
Case Material: ABS Rugged plastic with texture.
Optional: Touch and hold probes for hard to reach measuring areas.

Order yours now!

* Model 2035A as shown.
Model 2037A with temperature measuring circuitry £ 69.95.
** Model 2037A has 34 ranges and 7 functions.
Micro-soldering!

ANTEX

TCSU1 & CTC

...its the perfect kit

Model TCSU1

Accurate pin point temperature control between 65° and 400°C. Heating element and sensor built in tip of the iron for fast response. Interchangeable slide-on bits from 4.7 mm (3/16") down to 0.5 mm. Zero voltage switching, no spikes. No magnetic field, no leakage. Supplied with miniature CTC (35-40 watt) iron or XTC (50 watt). TCSU1 soldering station with XTC or CTC iron £36 (6.44) nett to industry.

Model CTC - 24 volts Priced at £9.75 (1.87)

Model X25 25 watts - 230 volts

A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near-perfect insulation. Fitted with 1/8" bit and priced at £4.20 (0.98) Range of 4 other bits available. Also available in 24 volts.

Spare element Model CXC230E

Model SK3 Kit

Contains both the model CX230 soldering iron and the stand ST3. Priced at £5.70 (1.49) It makes an excellent present for the radio amateur or hobbyist.

ST3 Stand.

A strong chromium plated, steel spring screwed into a plastic base of high grade insulating material provides a safe and handy receptacle for all ANTEX models soldering irons. Priced at £1.50 (0.57)

Please send me the Antex colour brochure, I enclose cheque/P.O./Giro No. 258 1000

Name

Address

Antex Ltd. Freepost, Plymouth PL1 1BR Tel. 0752 673 777

WWW

WIRELESS WORLD, JANUARY 1980

WWW - 057 FOR FURTHER DETAILS
Practical parallel-tracking pickup arm — 2

Optoelectronic servo control gives low-inertia, fail-safe operation

by Rod Cooper

Despite the many advantages of the parallel-tracking record deck, the high cost of owning one deters all but the well-heeled few. This prompted the design and construction of a pick-up arm and control system with simplicity of construction specifically in mind. By avoiding complex engineering it is possible to construct the design with non-specialized tools in about 40 hours and for a fraction of the cost of a commercial item.

WHilst ACCESS to a lathe makes construction quicker and easier, it is quite feasible to make all the parts with tools normally found in a small workshop. An electric drill and stand, some BA taps and dies and a selection of metal cutting files and saws are however essential.

Both the tracking arm and reference arms are made of thin-wall Duralumin tube, readily available from aeromodel shops. One end of the tracking arm is plugged with a tight fitting brass rod and glued into place with Araldite. This serves to strengthen the fragile tube where the vertical pivot goes through, and provides some degree of counterbalance.

Constructors will notice that the positions of horizontal and vertical pivots have been transposed, compared with the conventional arrangement. Having the vertical pivot on the tracking arm is not good practice on a conventional arm of course, but is permissible here because the tracking arm on a parallel-tracking machine does not swing on the pivot more than half a degree, whereas the conventional must swing through a wide angle. The change enables an unusual design of horizontal pivot to be used — one that allows the tracking arm assembly to be easily taken off for transport or adjustment without having to dismantle anything, and allows replacement without having to re-align it with the reference arm. There are other advantages to this design, namely: it is much easier to make than the usual spindle type, it is virtually friction-free, needs no lubrication, has no play due to bearing clearances and does not introduce play due to wear.

Avoiding play is important because the control system cannot distinguish between play and tracking error. It is for this reason too that the sliding platform is spring loaded, so that any running clearance in the track is taken up. Diagram 3 shows the horizontal pivot design. Two adjustable screwed pivot points rest on top of two support pillars, one in a slot and the other in a conical cup on the opposite side of the gimbal ring. The arrangement is quite stable, provided the two pivots are far enough apart.

The vertical pivot is straightforward. Adjustment for inclination is by means of the brass plate which forms the upper bearing, and which can be moved around on the flat top of the gimbal ring to the correct position.

The track in Fig. 4 can be cut with a small hack saw and then filed to the exact dimensions. It is worth spending some time ensuring the track is straight, as the whole concept depends on the reference arm maintaining a constant angle to the tracked radius of the record. Also, it is essential that the carriage slides without any hard spots. It is not necessary to produce a perfect fit, as a small amount of slack will be taken up by the spring-loading.

To reduce wear, a few drops of clock-oil (which has good non-gumming properties) can be applied to the vertical pivot, the lead screw and the running surfaces parallel track. Don’t use mineral oil sold as general-purpose or light machine oil because it thickens to a gum after a while.

The hinge pivot holder part 14 is soldered in position to the lower plate, part 11. The best way of doing this is to pre-solder both plate and holder; with a length of 6BA rod through both holders, position them the correct distance apart and place them on the plate, and gently heat the plate from below. It is then quite easy to move the two holders into the exact position while the solder is molten; excess solder will cause holders to float out of place, so use the bare minimum.

For the sake of simplicity, the counterweight on the prototype was made from a piece of lin diameter brass bar drilled through the centre and decoupled with a foam rubber insert. However, the comments by Randhawa on counterweights (WW April 1978 pages 63-8) should be noted by constructors as a better design is probably possible. The main requirement for the counterweight is that it should give neutral equilibrium with the chosen cartridge when the tracking arm is positioned about half way up the vertical pivot.

The photocell holder was filed from a piece of solid engineering-grade p.v.c. which is particularly easy to use, but
other reinforced or filled plastics such as Tufnol would probably be suitable. The two photodiodes were cemented to the holder with Araldite. An aluminium shim separated the diodes, this being necessary to prevent light from one diode reaching the other by reflections via the transparent sides of the BPW34. The size of the shim is not critical but for good light cut-off between the diodes it should project 15in or so all round.

A shroud was made from the same shim material to clip onto the holder. It is best if this is eventually fixed in place with Araldite when the system has been proved to work satisfactorily. Beer and soft drink cans are a good source of strong, thin aluminium. It is important that the weight of the holder and shroud is kept as low as possible to preserve the low inertia of the tracking arm.

Regarding the finish and appearance of the self-made metal parts, both polished brass and aluminium can be protected from tarnish by Letraset aerosol spray No. 101. This provides quite a tough, abrasion-resistant transparent film which is almost undetectable.

Fig. 4. Lower assembly comprised lead screw arrangements as shown, together with drive mechanism pictured in December issue.

Fig. 3. Improved design of upper assembly differs from author's original as shown in photographs.
Note that spigot on part 22 in Fig. 4 has projecting part filed to fit loosely in slider, part 19.
Wiring to the cartridge, opto-switch and filament bulb is made with 3x48swg Litz wire. There seems to be no readily available alternative to Litz wire which is flexible enough for the job. The cartridge and opto-switch wiring is carried inside the tubular tracking arm, exits near the vertical pivot and is firmly clipped to the back of the upper platform. From here the cartridge wiring is kept apart and carried in p.v.c. sleeving to a 16 pin dual in-line plug and socket on the plinth. The opto-switch wiring is combined with the wiring from the bulb and carried in separate p.v.c. sleeving to the socket. This arrangement gives a neat and symmetrical layout and helps prevent the lead-out wires from fouling the gimbals.

The T1½ filament bulb is the only commonly available bulb which will insert into the standard ¼in diameter tube. It should not be free to move when in place, and wrapping a small piece of adhesive tape round the plastic body of the bulb will make it a firm push fit. Insert so that the filament is vertical.

The cassette motor used in the prototype drew 80 mA on normal play, rising only a few milliams when running on full rated voltage, but drawing 500 mA when stalled. The output transistors need to be mounted on heat dissipators to avoid overheating when the motor is stalled; though stalling should never take place in theory, it is not unlikely during testing and setting up. Similarly, the short-circuit protection resistor in the BD35 collector circuit should be generously rated.

The relay used was a sensitive reed-switch type with a coil wound specifically for this circuit, but a standard 12V relay could be used in conjunction with a series ballast resistor. The 47kΩ adjustment potentiometer should be set so that in normal ambient light conditions and with the light slit off the face of the photodiodes, the relay will close. High ambient light conditions may swamp the diodes despite the shroud, and prevent the relay from closing. However this is never likely to occur if the unit is used sensibly, for example away from bright sunlight. A heavily-tinted or even light-tight cover on the record player is recommended.

The power supply for the turntable, servo motor and electronics is a 20V stabilized unit capable of giving 1A (my servo motor and electronics is a 20V design of the power supply is by no turntable required 350mA peak). As the design of the power supply is by no
Fig. 5. Assembly details of motor and 100 to one speed reduction (lower portion) are left to individual constructors. Upper assembly is detailed in drawings and Figs. 3 & 4.

Fig. 6. When properly adjusted a tracking error of 0.2° is corrected in half a second. A set square is needed for scribing reference lines on an aluminium template at right angles to radius line.

means critical it is left to the discretion of the constructor. On the prototype, which had the mains transformer bolted to the plinth, it was found that mechanical vibration was finding its way to the tracking arm to give 50Hz hum. Mounting the transformer on rubber grommets cured the problem, but it is perhaps a better solution to have a power supply unit which is separate from the plinth. At least one commercial unit has adopted this approach.

Setting up

With the tracking arm fully assembled with cartridge and counterweight, raise or lower the vertical pivot to produce neutral equilibrium. The horizontal pivots can also be adjusted to help produce equilibrium, and then set in place with Loctite thread-locking compound. With the cartridge resting on a discarded record, the level of the opto-switch is now adjusted to be in line with the light beam, by means of the spacing washer (Fig. 1, part 1), which may have to be filed down or added to in order to achieve this.

A template to check the accuracy of tracking is essential. A sheet of thin aluminium is cut to suit Fig. 6, the corners being checked against an engineer’s set-square. Find distance d, which will depend on cartridge position, with the template resting firmly against the front edge of the parallel track. Scribe a radius line at distance d parallel to the front edge of the template, left to right, and then using the set-square scribe several lines for reference purposes at right angles to this radius. Adjust the reference arm by means of the screws securing it to the upper platform so that it is parallel to one of the reference lines on the template. Track the arm fast forward and check that the reference arm remains parallel to the various other reference lines. If there is a discrepancy, the parallel track is not straight, and should be re-filed; fortunately the eye has very good perception of parallelism. When this is satisfactory, and with the opto-switch disconnected, play a record, setting the voltage to the servo motor so that the tracking arm keeps pace with the record, very approximately. Note this voltage.

Now connect the opto-switch and with the record stationary and the sliding platform disconnected from the lead screw, bring the tracking arm parallel to the reference arm. The meter reading should now correspond to that obtained with the opto-switch disconnected. If it is not then either the reference arm must be moved sideways to correct this (and then re-aligned of course) or the opto-switch must be moved in relation to the tracking arm.

As a final check, observe the tracking arm from above as it plays a record properly, and note the changes in meter reading as the servo-system corrects tracking errors. Now is the time to adjust the sensitivity by means of R4 and the maximum voltage to the motor (if necessary), by changing the 13V limiting Zener diode for a higher or lower value as required. The prototype was set to correct an error of 0.2 degrees in about 0.5 seconds, which I found to be adequate. The time taken depends not only on the sensitivity but on how hard one is prepared to drive the servo motor. The amount of noise and vibration generated is naturally small in motors designed for cassette decks, but in the prototype, which used a 6V motor, 5.5V was the optimum voltage, before noise from this motor overtook noise from the turntable motor.

S. G. Brown, F.R.S.

At the time of his death shortly after the end of the second world war Sidney George Brown F.R.S. had more than 1000 patents for inventions. These included the gyrocompass used by the Admiralty during the first world war, when they wanted to avoid adopting the American Sperry equipment; the tuned-reed headphones, which were so sensitive to weak signals that they were a standard issue for wireless operators; and a loudspeaker. Brown was the son of a family which had already won fame in the USA for proposing methods of preventing a repetition of the fire which destroyed much of Chicago in the eighteenth century.

Mr F. P. Thomson, biographer of A. D. Blumlein, is now preparing a biography of Brown. He would like to hear from people who knew the Brown family in the USA or worked for S. G. Brown or his company in Britain and who could give or lend papers, notes, photographs, etc. Mr Thomson’s address is 39 Church Road, Watford, Herts WD1 3PY.

Editorial writer for Wireless World

Wireless World needs a new person on its editorial staff. Technical experience in electronics and/or communications and an ability to write are essential. The work is varied and includes writing technical news reports and other material, attending meetings, exhibitions, press conferences and other events, some abroad, and editing contributed technical articles. A good deal of freedom will be given to a person who shows ability and responsibility. Preferred age range 25 to 35. Write to: The Editor, Wireless World, Dorset House, Stamford Street, London SE1 9LU.
C.m.o.s. compatible piezo sounder

Piezo electric sounders are efficient and reliable devices which contain a ceramic transducer and a switching transistor. Although the average current drain is 50mA, the sounder functions as a class C blocking oscillator where the current is pulsed with a peak of 800mA.

It is difficult to switch such a current directly with c.m.o.s. or t.t.l. and a switching transistor would need a wasteful 50mA or so of base current to ensure saturation. Although v.m.o.s. transistors need no drive current they are relatively expensive and have a significant saturation voltage. The simplest solution is a small thyristor which requires a maximum gate current of only 0.2mA. Because the anode current falls to zero between each pulse, the thyristor will turn off unless gate current is present. No gate to cathode resistor is required because a logic low output clamps the gate off.

C. Stephens
Woodbridge
Suffolk

Variable current-limiting supply

This simple power supply offers variable current limiting from 10mA to 3A by using the pass transistor to offset the $V_{be}$ of the protection transistor. Resistor $R_1$ can have any reasonable value and omitting $R_2$ allows unlimited maximum current. In the alternative circuit, $R_3$ and $D_1$ must be chosen for the maximum current required.

D. Rawson-Harris
Stockport
Cheshire

Thermistor replacement for oscillators

The R53 thermistor is often used in oscillator circuits to stabilize the output and reduce distortion. Unfortunately the device is reasonably expensive and intolerant of accidental power surges. This circuit provides a more stable output than the bridge driven rectifier previously published in Wireless World.

In the bipolar version the transistor and diodes can be any general purpose silicon types. The output level can be raised by connecting a Zener diode in series with the emitter. As the output of the oscillator is stabilized to 2.5V ± 5% it should be at least 3.5V r.m.s. before limiting.

If low distortion is important, a similar circuit with a f.e.t. can be used as shown. This does, however, require an oscillator output which at least equals $V_{ge}$ i.e. 8V r.m.s. for a 2N3820.

R. Dynan
London

Continued on page 94
Improved transistor tester

This transistor tester is based on a circuit by N E Thomas in the March 1977 issue of Wireless World. Any unknown bipolar transistor can be placed in the test socket and the transistor leads can be in any order. The ring of three oscillator produces a three-phase waveform which switches either two green and one red l.e.d. on for a n-p-n device or two red and one green for a p-n-p type. Other displays indicate a faulty device. By switching $S_1$ to the appropriate position, the base can be biased via the correct test socket switch. When this has been identified, increasing the base current by reducing the variable resistance turns the collector l.e.d. on first so all three leads are identified. Noting the position of the wiper and the brightness of the l.e.d. gives an indication of the transistors' gain.

M. Odyniec
Podlaska
Poland

12W class A power amplifier

Almost all of the published audio power amplifier designs have had outputs in excess of 30W. However, there are still many applications where a high quality amplifier with less output is needed.

This circuit uses a class A output stage with feedback control of the quiescent current. Two independent amplifiers throughout simplify the circuit and provide a 3 dB improvement in the signal to noise ratio. The necessary trimming of resistors $R_1$ to $R_4$ can be achieved by temporarily connecting them in a bridge arrangement. Specification of the prototype is shown below.

Power output into 8Ω: 12.5W
Frequency response: 5Hz to 225kHz
(-3dB)
Output slew rate: 10V/μs
Distortion: <0.02%
(5Hz to 20kHz, 0 to 10W)
Hum (ref. full power): -85dB
Noise excluding hum: -103dB
Stability: Unconditional
Output offset without nulling network: 15mV

N. Pollock
Victoria
Australia
Now, the complete MK 14 micro-computer system from Science of Cambridge

**VDU MODULE. £33.75**

- Display up to 4K memory (32 lines x 16 chars, with character generator; or 4096 spot positions in graphics mode) on UHF domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete ASCII upper-case character set can be mixed with graphics.

**POWER SUPPLY. £6.10 inc. p & p.**

- Delivers 8 V at 600 mA from 220/240 V mains - sufficient to drive all modules shown here simultaneously. Sealed plastic case, BS-approved.

**MK 14 MICROCOMPUTER KIT £46.55 inc. p & p.**

- Widely-reviewed microcomputer kit with hexadecimal keyboard, display, 8 x 512-byte PROM, 256-byte RAM, and optional 16-line I/O plus further 128 bytes of RAM.
- Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology. Designed for fast, easy assembly, supplied with step-by-step instructions.

**CASSETTE INTERFACE MODULE. £7.25, inc. p & p.**

- Store and retrieve programs on any cassette recorder. Use for serial transmission down single line at up to 110 baud (teletype speed), e.g. over telephone line, and to communicate between two or more MK 14s.

**PROM PROGRAMMER. £11.85 inc. p & p.**

- Use to transfer your own program developed and debugged on the MK 14 RAM to PROM (74S571) to replace SC105 monitor for special applications, e.g. model railway control. Software allows editing and verifying.

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: 0223 311488.

To order, complete coupon and post to Science of Cambridge
Return as received within 14 days for full money refund if not completely satisfied.

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Please send me:
- MK 14 standard kit @ £46.55
- Extra RAM @ £4.14 per pair
- RAM I/O device @ £8.97
- VDU module including character generator @ £33.75
- VDU module without character generator @ £26.85
- Cassette interface module @ £7.25
- PROM programmer @ £11.85
- Power supply @ £6.10
- Full technical details of the MK 14 System, with order form

I enclose cheque/NO/PO for £________ (total).

Name ___________________________
Address (please print) ______________________

WW — 01 FOR FURTHER DETAILS
FROM HERE...

TO HERE...

NEED NO LONGER TAKE AN ETERNITY OR COST A FORTUNE

Time is money and with conventional custom designs, the process from the detailed logic design through to layout of the chip can take 6 to 9 months of total engineer involvement.

The following stages of mask making, prototypes, and test programmes still have to take place. In this age of rapidly changing technology, two years to production is an eternity in both commercial and economical sense. This is why GEC Semiconductors have developed the Cellmos system, which allows customers to benefit from special LSI designs with a much lower starting fee and in a much shorter time.

Once we have approved logic diagrams, our computer will process the design through a series of programmes, which will layout the circuit onto the chip. The whole sequence will not take more than a few hours of computer and engineering time. The turn round time from the approved logic to samples is within 12 weeks. Hardly an eternity...

If you feel the Cellmos system can help with your problem, please write or phone our sales office for further details or even a demonstration.

GEC Semiconductors Limited
East Lane, Wembley
Middlesex HA9 7PP
Tel: 01-904 9303 Telex 28817.

WW — 061 FOR FURTHER DETAILS
HURRAH FOR TELETEXT

May I, as a television dealer, air my views concerning teletext, which seems to have dominated Letters to the Editor in recent issues?

I feel the first point I must make concerns the letter from Mr Williams in the October 1979 issue. He complains on the one hand that there are not enough pages, and then goes on to add that if there were, he would not have time to read them all. Spelling and punctuation errors, he says, occur frequently but in my opinion they do not occur as often as in some newspapers.

Regarding access time, it takes on average 12 seconds for a page to appear, a little longer on Oracle - not bad for a system that has to ride piggyback on a few borrowed lines. Teletext is not fading away as some people would have you believe. We dealers must take a lot of the blame for its slow start. My teletext customers are extremely pleased with their sets, which could be due to the fact that we spend over an hour demonstrating the full teletext facilities to them.

I keep wondering why some people wish to change the format of teletext. As far as I am concerned, it offers a very good and comprehensive service the way it is. Teletext sales are on the increase and I feel there is a healthy market developing for the future. So hands off our teletext service, it is the best healthy market developing for the future. So sales are on the increase and I feel there is a

SIDEBANDS AS PHASORS

The opening remarks of J. M. Osborne's excellent article "Sidetbands as Phasors" (September 1979) suggest that Ressel functions are necessary to show that the sidebands of a frequency modulated wave extend to infinity. This is not strictly true for their use is merely a mathematical convenience. The same result can be achieved using primarily traditional trigonometrical methods. A general expression for a frequency modulated wave (see Terman's "Electronic and Radio Engineering", page 588) is:

\[ e = \text{Asin}(\omega_c + \text{msin} \omega_t) \]

where \( \omega_c \) and \( \omega_t \) are \( 2\pi \times \) the carrier and \( 2\pi \times \) the modulation frequency respectively and \( m \) is the modulation index. This expression can be expanded using the well known "sine-sum" formula to:

\[ e = A\sin(\omega_c) \cos(m\sin \omega_t) + A\cos(\omega_c) \sin(m\sin \omega_t) \]

Thus the problem now turns on finding a simplification for the terms \( \cos(m\sin \omega_t) \) and \( \sin(m\sin \omega_t) \) and here we must depart into the realms of simple differentiation. Sine and cosine can each be expanded in series form (see, for example, Saxelby "A course in Practical Mathematics", page 221) so that:

\[ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots \]

and \( \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots \]

Substituting \( m\sin \omega_t \) for \( x \) in these two series we arrive at two other series, one with odd powers of \( \sin \omega_t \) and the other with a zero frequency component and even powers of \( \sin \omega_t \). Each has related coefficients in powers of \( m \).

The individual terms of each series can be further expanded into fundamental and harmonic components of \( \omega_c \). The even indices will produce cosine terms of even harmonics and the odd indices harmonic sine terms, the highest harmonic in a particular term being equal to the order of the index.

For example:

\[ \sin^2 \omega_t = \frac{1}{2}(1 - \cos 2\omega_t) \]

and \( \sin 3\omega_t = \frac{1}{4}(3\sin \omega_t - \sin 3\omega_t) \)

It is now necessary to collect together terms of similar frequencies and to condensate their coefficients. We have to substitute these terms back into the original expansion where the cosine terms will be multiplied by \( \cos \omega_t \) and the sine terms by \( \sin \omega_t \). We are now on familiar ground where each term will resemble that of an a.m. wave. The terms will have the form:

\[ \cos(\omega_c + \text{msin} \omega_t) + \sin(\omega_c + \text{msin} \omega_t) \]

These are, of course, the infinite sidebands of the frequency modulated wave. The carrier term will result from the zero frequency component arising from the expansion of the even powers of \( \sin \omega_t \) and it should be noted that it will have an amplitude depending on a complex function of \( m \).

The method is laborious and it does not have the elegance of the more accepted method. However, it may appeal to students who have not progressed far with their mathematics - if they have the time and patience to pursue the complicated calculations. There may also be advantages when the modulating wave is not a simple sine or cosine function \( a_m \) for instance, in frequency shift telegraphy, although the mind boggles at the intricacy of the ensuing manipulations.

A similar expansion can also be used for showing the infinite extent of the sidebands when phase modulation is employed.

S. F. Brown
Post Office Telecommunications
Rugby Radio Station
Warwickshire

CORRECTIONS

In the second part of J. M. Osborne's article "Sidetbands as phasors" in the October issue, several errors occurred on page 68. In Appendices 1 and 2 for which we apologize to readers. In Appendix 1 the expression in the second line (for p.m. of carrier) should read:

\[ a \sin(2\pi t + 8\sin2\pi \omega t) \]

In Appendix 2 the first expression (for f.m. of carrier) should read:

\[ a \sin(2\pi t + \frac{\Delta f}{f} \sin \omega t) \]

and the second expression (seventh line) should read:

\[ a \sin(2\pi F + \frac{\Delta F}{F} \sin 2\pi ft) \]

Also in Appendix 2 the expression in the middle column of p. 68 for the maximum rate of swing in terms of frequency (11 lines from top of column) should read:

\[ 2\Delta F \approx 82\pi f \]

- Editor.

WHAT IS AN ELECTRON?

Neither Dr Theocharis nor Professor Jennison appears to understand the aim of modern physics (Letters, October). This is to discover and systematise useful descriptions of the natural universe as we observe it in experiment. Those descriptions are invariably mathematical and some of them are carefully bounded. Professor Jennison has proposed a model and the numbers will show whether or not it is useful. Particle-wave duality must be one of the classic paradoxes and it remains unresolved. Dr Theocharis thinks that most physicists actually believe in a real Jekyll and Hyde electron. Professor Jennison actually appears to do so - and that is his prerogative. Most modern scientists will be happy to leave these two to fight it out. Paradoxes arise through the inadequacy or incompleteness of mathematical descriptions but that does not itself invalidate those descriptions. One must simply tread carefully in making use of them.

D. A. Ross
Poynton
Cheshire

CITIZENS' BAND AND THE LAW

In November a correspondent criticised you for "supporting" the illegal use of c.b. radio, and his criticism was based on the belief that law-breaking is automatically wrong in any circumstances. Is law-breaking automatically wrong? Let us hear some eminent views.

J. J. Rousseau, 1762: "The inflexibility of the laws, which prevents them from bending to circumstances, may in certain cases make them injurious, and bring about in a time of crisis the ruin of the state."

Edmund Burke M P: "It is not what a lawyer tells me I may do, but what humanity, reason, and justice tell me I ought to do."

J. S. Mill, 1861: "There is no ethical creed which does not temper the rigidity of its laws by giving a certain latitude for accomodation to peculiarities of circumstances and it seems to be universally admitted that there may be unjust laws. and that law..."
DIGITAL FILTERS

It is with great interest that I have been following the Wireless World articles on digital filters ever since the original article by Rees. Having programmed the RC low-pass filter on my H-P calculator, I would like to draw attention to a problem that seems to have been overlooked concerning the testing of these algorithms.

As the algorithm is basically derived from the impulse response via the Laplace transform method, the user is tempted to test it by applying a unit step, and feel satisfied when the desired exponential response is obtained. However, the filter cannot operate meaningfully on any frequency above the Nyquist frequency, while any impulsive type of test signal contains a large proportion of its energy in its high frequencies. Thus the only acceptable test signal must be one containing no harmonics beyond a certain frequency.

When a sine wave was used to test the RC filter it was found to be phase advanced by an amount corresponding to half of one time increment. The amplitude error was 0.16% when there were 10 samples per cycle and the period was equal to RC. To correct the time error a sliding mean was applied. Each sample was weighted with the previous sample before being used (see Fig. 1). The sliding mean can be considered as another filter with a rectangular impulse response whose first frequency null falls upon the sampling frequency (see Fig. 2). The equivalent geometrical procedure is to interpolate the samples as shown in Fig. 1. Even so the procedure is not entirely satisfactory as odd multiples of the Nyquist frequency are only attenuated, not removed. The interpolated sine wave had negligible phase error but the amplitude error had increased to 3.5%.

The process is equivalent to using an almost ideal filter on the interpolated waveform and then sampling the output at the original sample rate. Presumably a more sophisticated pre-processor such as for example a filter with a Gaussian impulse response would reduce errors due to residual harmonics.

In conclusion, and as Ham2 points out, aliasing of the input signal is to be avoided if at all possible. Thus, at least for instrumental data there is no entirely satisfactory substitute for an analogue anti-aliasing filter to be applied before any digital processing. For synthetic test data, some digital pre-processing is needed to reduce unwanted harmonics. It seems that digital filters are not necessary as simple as has been implied in your articles.

W. Gray
Farnborough
Hants

References

COMMENT IS POLITICAL

I have read Wireless World for more than 25 years and paid for it out of my own pocket as, unlike many readers, I do not have the subscription paid by my company. During this period it has served me well and I shall be forever grateful for the technical help and guidance it has provided me with. There have also been delightful moments of humour which have helped to demonstrate that technical people can be human.

However, recently I have noticed a tendency to knock the establishment - whatever flavour it might be. I consider the inclusion of political rhetoric out of place in a journal of the calibre of Wireless World: your November editorial was particularly distasteful to me. I take Wireless World for many reasons but they do not include being subjected to the political bias of the editorial staff, both in editorials and general content.

Please, Mr Editor, can we return to an apolitical journal - crusades I can accept but political bias no.

J. Greenwood
Chelmsford
Essex

POUYTING VECTOR

Apparently many people find the concept of displacement current useful and some find it distasteful. Not being a member of either group I would normally be prepared to continue as a passive spectator of the fascinating correspondence which has been stimulated by the recent articles on the subject. After all, no-one is suggesting that $\varepsilon_0\alpha$ should be struck out from Maxwell’s equations, and presumably no-one is insisting that everyone must believe that there is any physical reality in a current which is said to flow in empty space where there is nothing to carry it (and nothing to be displaced). I would even leave it to others to point out that in Fig. 4 of “The history of displacement current” in your March issue the current $i$ will vary continuously between B and B', as is the way.
with transmission lines, so if you want a continuous "current" you do need a displacement current, not localised at B, but distributed along the length of the transmission.

However, the excellent iconoclasts Catt, Davidson and Walton have spurned me to action by their uncharacteristically unquestioning use of a concept/mathematical construct which is far less harmless than displacement current, namely the Poynting vector or "energy current" ExH. A single example will show what I mean. Suppose I take a battery and connect it to a lamp by a pair of good thick wires. Since the electric field is negligible inside the wires the Poynting vector is too. In fact the Poynting vector is mainly localised in the space surrounding and particularly between the wires. In other words, a correctly drawn conclusion that energy flows from the battery to the lamp. One could even, in principle, integrate the Poynting vector over a surface containing the battery or the lamp, but not both, and calculate correctly the rate at which energy flows from the battery to the lamp, but one would be allowing oneself to be blinded by one's own mathematics to deduce from the fact that the Poynting vector is indeed locally zero in the wires and is at a maximum between the wires that the energy flows mainly between the wires and not to any appreciable extent through the wires.

In case anyone does believe that even in this case the Poynting vector represents a physical energy flow I propose the following experiment. First, interpose a metal screen between the battery and the lamp, less than an inch from one of the wires, but fitting as closely as possible, so as not to leave more than the tiniest space for the Poynting vector to squeeze through. Note the effect (if any) on the amount of energy which gets to the lamp. Now take away the screen and make a break (just a little one, mind) in one of the wires. Again, note the effect on the amount of energy which gets to the lamp. Note the effect on the amount of energy which gets to the lamp. Again, note the effect on the amount of energy which gets to the lamp. After the break a long section of the wires, however short it may be (say one mile), creating a long section with very low characteristic impedance, transmits energy over its entire length (say one mile), creating a long section with very low characteristic impedance, transmission line reflection theory correctly tells us that energy flow from battery to lamp is delayed. More conventionally, this delay would be thought of as an RC time constant, the C being the narrow gap between conductor and screen for the very long distance. Referring to his sentence 3, once the tiny break is made, and energy current breaks (Heaviside called an obstructor) is made, energy current flows through the break and out into the vast space beyond. This space presents a rapidly increasing (characteristic) impedance, causing all the outgoing energy current to be reflected back through the break into the narrow channel through which energy was previously gliding calmly (at the speed of light) from the battery to the lamp. After the initial disturbance of the steady state caused by the breaking of the conductor (obstructor), the lines of energy current gradually, through the mechanism of reflections, settle down to a new pattern where energy (of the same amplitude as before the conductor was broken) flows out of the battery to the gap in the wire, there to be fully reflected back into the battery, in a "continual dance of energy" which Carter dismissed as absurd but CAM Consultants do not. (The Electromagnetic Field in its Engineering Aspects, by G. W. Carter, Longmans 1954, page 321.) If however the break is made when the conductor is extremely narrow (and long), it will take time for its existence to become apparent. Very traditionally, this very narrow, long gap in the conductor would be regarded as a capacitor. An RC time constant was envisaged, the transmission line of very low characteristic impedance.

Dealing with his third para. in a lighter vein, one is urged to suggest that it is the "phlogiston" in a balloon material which keeps it doing its job. The absurd theory that goods travelling in a railway system travel between the rails, or an obstruction across between the rails, nearly touching the rails; close enough to leave too little space for the train wheels to get through. This will prove that goods are really piped along inside the railway lines and it is absurd to think that the lines merely guide the flow of merchandise.

When all is said and done, however, the acid test is the question of whether the velocity of propagation of the energy (electric) current is a function of the characteristics μ, of the dielectric or of the conductor. When a seagull (or merely the reflection of a seagull) is flying above the surface of the water, does its speed depend on the nature of the air or of the water?

I. Cott, M. F. Davidson, D. S. Walton

"TRIVIAL" AMPLIFIER DESIGNS

I find it quite incredible that Wireless World, should see fit to publish yet another article describing amplification equipment for domestic sound reproduction, in which purely academic distortion levels are pursued virtually for their own sake. The author states that he designed the amplifier with a view to its being "competitive with current commercial designs." Can this really be an accurate aim? In my estimation and third harmonic distortion audibility threshold (even where skilled sound engineers and producers are concerned) is in the region of 0.1%. Given that this is so, then an amplifier which produces second and third harmonic distortion not in excess of 0.1% over its entire bandwidth should sound as good as one with 0.0002% second harmonic distortion, all other factors being equal — entrance slew rate limitations, overload effects, audibility threshold of high harmonics, et al.

A multitude of exotic schools of thought currently abound to extol the "sound" of polypropylene capacitors, special loudspeaker cables, diaphragm materials, etc., 'real time' amplification, 180V/μs slew rates, passive equalisation, minimal overall feedback, etc. I challenge Wireless World to seek out the truth of this mysticism, rather than present confused and confusing material. I wish to state that I in no way whatsoever wish to deprecate per se the designs presented by Douglas Self and B. J. Codd, but rather to suggest that whilst their engineering approaches are interesting, they are really grossly trivial in a world where the allowable second harmonic distortion on a studio tape machine is of the order of 3%, where 70% of record presences are defective and electromechanical transducers from the cutting head to the loudspeaker are as yet imperfect.

'To exemplify: I have recently built Douglas Self's Mk I advanced preamplifier design using TDA 1034N op-amps. Using horn-loaded loudspeakers and Cridom Electrika amplifiers in a tri-amplified configuration, I perceive no different results for my friends to say "Your equipment sounds different." The chances are high that your equipment sounds different.'
THERMIONIC DEVICES

I know of nothing more likely to start an argument between historians than that of Fleming's diode ushered in the thermionic "valve era..." (November 1979, p.94).

Dare I suggest that Edison's patent of 1884 (nothing to do with wireless of course) covered a most practical application of ther- mionics to the control of a generator? For all I know this may also have been the first thermionic closed-loop servo-mechanism to be described. But Edison was very busy inventing hundreds of other things, and can perhaps be excused for not applying his "so-called" effect to wireless, the phonograph, moving pictures etc. as well.

What is most puzzling is that Fleming was apparently so slow off the mark - a whole 20 years before the penny dropped! Of course he had been fairly busy around 1900 combining the more recent ideas of Tesla, Thomson and Marconi into the Pollock transmitter, a very substantial engineering task; and this may have diverted his mind from developments in Germany, such as Wehnelt's lime-coated thermionic filament also published in 1904 which was incorporated into the Braun-Wehnelt cathode ray tube of 1905. (The same Braun, of course, who later shared a Nobel prize with Marconi.)

In the event it must have been a little humilitating for Fleming that there was not more interest in his thermionic diode (though it may have stimulated the invention of the crystal detector). The reasons were that the carbournium detector was simpler and more rugged and the Marconi magnetic detector needed no battery. Thermionics really took off in a more obvious fashion about a decade later, with the advent of better vacua and other technical improvements. In fact it became important enough for litigation over rights; and though neither side seemed to emerge with much of value, the ruling did confirm Fleming's legal title to his (rather gassy) diode valve.

Desmond Thackeray
University of Surrey
Guildford

MICROPROCESSOR PERIPHERAL ICs

A problem exists in the design of circuits using the latest microprocessor peripheral i.c.s. I would like to suggest a solution which, although using one more pin of the package, would require little complication of the i.c.

The problem is evident when several peripheral interface to the same data bus, and this bus includes one or more sets of bi-directional bus buffers. In order to ensure that these buffers are always driving in the correct direction, the logic designer finds himself duplicating circuitry that must already exist inside the i.c. Some peripheral chips put data on the bus for up to one of three different reasons. To determine the direction of the relevant bus buffer, all these states must be decoded, and ORed together, along with similar lines from other peripheral chips on that section of the bus.

My suggestion is that a 'drivers active' function be brought out to a pin of each bus-interface peripheral i.e. Relevant bus buffers could be turned around by a simple OR of these few signals. Even greater simplicity could be achieved if the 'drivers active' lines were open-collector types, a wired-OR then being possible.

I feel sure that this line would also be useful in the debugging phase of microprocessor support circuitry where problems of bus contention and floating buses may have to be resolved.

PRE-AMPLIFIER WITH NO T.I.D.

Potential builders of the Miloslavskij passive de-emphasis preamplifier (August issue) might like to note that its RIAA network is grossly in error. Correct design formulae for passive de-emphasis can be found in the literature:

S. Lipshitz
University of Waterloo
Ontario, Canada

References


ELEMENT OR DIAMOND?

While experimenting in television during the "mechanical" period, I realised that the accepted theory of the "picture element", based on the chessboard idea, is a fallacy. I found that a continuously moving spot cannot resolve a picture detail as small as itself; it smudges along the traced line, generating a maximum frequency only two-thirds that calculated from an ST100 diagram, which involved 15 crossovers [Diagrams supplied.-Ed.]. The celebrated "ST100" offered plenty of scope for compulsive twiddlers, with two tuning capacitors, plug-in coils with variable coupling, filament rheostats and a cats whisker. Although it was an essentially simple reflex arrangement, Scott-Taggart showed real originality in circuit-diagram presentation. Scoring ordinary logic in layout, he produced bafflingly devious links.

One of the figures I have sent you is copied from an "ST100" diagram, which involved 15 crossed wires. The other is the same circuit, but as it would more commonly have been designed 50 years ago - with only three crossovers [Diagrams supplied.—Ed.]. The contrast speaks for itself.

C. Leslie Thomson
Kingston
Edinburgh, 16

RADIO AMATEUR INVALID AND BLIND CLUB

May I bring to your attention the change in the title, secretary and address of the Radio Amateur Invalid and Blind Club. Now celebrating its silver jubilee, the Club is formed of invalid and blind members interested in the hobby of amateur radio; their local representatives who undertake to help by visits, repairs and advice; and supporter members whose financial contributions enable help to be given. The sole condition of membership in any of the above categories is an annual subscription of £1 minimum for Radial the Club newsletter which is issued every six weeks.

F. E. Woolley (Mrs)
Hon. Secretary
9 Runnach Court
Addington Road
Sunbury
Surrey KT6 4TE

JOHN SCOTT-TAGGART

Your brief, but nostalgic, obituary on John Scott-Taggart (p.35 October 1979) recorded his prowess as an engineer. In his earlier days he was also a formidable showman. From the mid-twenties to the early thirties, thousands of experimenters were persuaded that the 'ST' series of circuits had supernatural powers.

The celebrated 'ST100' offered plenty of scope for compulsive twiddlers, with two tuning capacitors, plug-in coils with variable coupling, filament rheostats and a cats whisker. Although it was an essentially simple reflex arrangement, Scott-Taggart showed real originality in circuit-diagram presentation. Scoring ordinary logic in layout, he produced bafflingly devious links.

One of the figures I have sent you is copied from an 'ST100' diagram, which involved 15 crossed wires. The other is the same circuit, but as it would more commonly have been designed 50 years ago - with only three crossovers [Diagrams supplied.—Ed.]. The contrast speaks for itself.

C. Leslie Thomson
Kingston
Edinburgh, 16

RADIO AMATEUR INVALID AND BLIND CLUB

May I bring to your attention the change in the title, secretary and address of the Radio Amateur Invalid and Blind Club. Now celebrating its silver jubilee, the Club is formed of invalid and blind members interested in the hobby of amateur radio; their local representatives who undertake to help by visits, repairs and advice; and supporter members whose financial contributions enable help to be given. The sole condition of membership in any of the above categories is an annual subscription of £1 minimum for Radial the Club newsletter which is issued every six weeks.

F. E. Woolley (Mrs)
Hon. Secretary
9 Runnach Court
Addington Road
Surbiton
Surrey KT6 4TE
More on the scientific computer

Further details of the monitors

By J. H. Adams, M.Sc.

After publication of the scientific computer series (April to September 1979) there have been many requests for more information on the firmware. This article describes in more detail the machine code and BURP monitors in terms of hexadecimal machine code. Readers will need a hex print-out of the three p.r.o.m.s and the mnemonic to hex conversion tables published in the July 1979 issue of Wireless World.

Several readers have expressed incredulity at the thought of working directly in machine code rather than using assembly language mnemonics. However, the hex codes for 50 to 60 of the most regularly used operations can soon be learnt and, thanks to the logical distribution of codes to operations, many more follow from these. The once-in-a-megabyte ones such as IN D (C), ED 50 in hex, can be obtained from the conversion table. This does not rule out working in assembly language and using an assembler, or translating yourself, but in my experience the latter soon becomes tiresome and it is easier to write in hexadecimal.

When writing software it is useful to have a supply of the forms shown in Fig. 1. The instruction 18, a relative jump, should be pronounced one eight and not eighteen. Similarly, the second byte is one seven and definitely not seventeen. If you want to jump forward with a relative jump, simply make the jump byte the number of bytes (up to 7F) over which execution must move, in this case 17 — 1 row and 7 bytes, to reach the target byte FF. For a jump back to the same target from the second 18, calculate the jump forward code to the next byte immediately under the target, 02 in this case, and then jump up row by row, decrementing the higher order hex character, i.e. from 02, F2, E2. When using a jump back the byte must be in the range 80 to FD (FE and FF serve no useful purpose).

Machine code monitor

Both monitors follow the same basic sequence as illustrated in Fig. 2. With the machine code monitor the base address of the Z80 stack is set, the address for the top corner of the screen is loaded into the DE register pair which will have been pushed onto the stack, is exchanged with the contents of the HL register pair and then used as a pointer to that data before being exchanged back onto the stack, at the end of the routine, to cause a return to, in this case, 0010. The start procedure then clears the rest of the top line, resets the teletypewriter output flip-flop and, using the subroutine at 0355, reads in and encodes a command from the keyboard. As explained in table 1, only the first and last letters are important to the subroutine. Whilst this limits the number of possible combinations which will produce different codes, a byte by byte comparison with a look-up table comprising all of the commands would use far too much p.r.o.m. space. After this has been achieved (001A), a comparison is made and if the code is not FC (the entry code for RUN) executions jump over 0D bytes for a further comparison and so on until a match is found, whereupon a block of instructions is executed before operation returns to 0000 again.

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0254</td>
<td>Sets tape interface tone to 2400Hz and then calls 255 long time delays — about 4 seconds.</td>
</tr>
<tr>
<td>0260</td>
<td>Transmits the byte in register A to the tape interface, preceded by a start bit and followed by two stop bits.</td>
</tr>
<tr>
<td>027F</td>
<td>Calls a new line and then prints the contents of HL on the teletypewriter.</td>
</tr>
<tr>
<td>028E</td>
<td>Formats the hex byte in register A for printing as two characters on the teletypewriter.</td>
</tr>
<tr>
<td>02EC</td>
<td>Prints a space on the teletypewriter.</td>
</tr>
<tr>
<td>02FD</td>
<td>Calls a new line on the teletypewriter.</td>
</tr>
<tr>
<td>0301</td>
<td>Prints the contents of the A register on the teletypewriter.</td>
</tr>
<tr>
<td>0317</td>
<td>List subroutine. Entered at 0317, the starting address must be loaded in from the keyboard. Entry at 0310 assumes the address to be at 1FF0 to 1. Entry at 0320 assumes that the address is already in HL.</td>
</tr>
<tr>
<td>0336</td>
<td>A programmable time delay. The computer loops through six E3s, a long exchange instruction which, if used in pairs, does nothing but use up time. The number of loops is set by the byte immediately following the CALL in the original program. Each loop lasts 64μs.</td>
</tr>
<tr>
<td>0346</td>
<td>Clears the top line and sets DE to 8000.</td>
</tr>
<tr>
<td>034E</td>
<td>Used to format results, as in FIND and COR, this rounds DE up to the next multiple of B.</td>
</tr>
<tr>
<td>0355</td>
<td>The algorithm for encoding input commands. Returns with last letter of the command minus the first letter in register A.</td>
</tr>
<tr>
<td>0372</td>
<td>The formatter used in LOAD and LIST in machine code language.</td>
</tr>
<tr>
<td>0393</td>
<td>Clears the v.d.u., leaving DE unaffected.</td>
</tr>
<tr>
<td>039F</td>
<td>Displays HL and a space. Used in LIST, LOAD, FIND, COR and in BURP lists.</td>
</tr>
<tr>
<td>03AA</td>
<td>Displays the contents of A as a two character hex byte.</td>
</tr>
<tr>
<td>03C4</td>
<td>Calls a new line on the v.d.u. and clears the remainder of the current one.</td>
</tr>
<tr>
<td>03CE</td>
<td>Displays the string of characters following the call in the program block up to byte 1D.</td>
</tr>
<tr>
<td>03DE</td>
<td>Loads HL from the keyboard.</td>
</tr>
<tr>
<td>03E7</td>
<td>Loads A with a hex byte from the keyboard.</td>
</tr>
<tr>
<td>03F6</td>
<td>Reads in a single keyboard character and, if a letter adds 8, then truncates to four bit binary (used as part of 03E7).</td>
</tr>
</tbody>
</table>

Table 1. Low level monitor subroutines.
An exception to this is for the code FC, the routine for which 001E jumps immediately to 0042. This avoids one of the subroutines which have to be located at particular points in the memory map. Several subroutines can be called by single byte instructions which are known in mnemonic form as RSTs. These were originally intended for use with the 8080 and the Z80’s “8080 mode” interrupt response which, after receiving the interrupt, calls for the interrupting device to place one or more instruction bytes onto the data bus for execution. Although this mode is not used, the single byte calls are a useful space-saver where a subroutine may be short and often needed. The subroutine which is avoided in this case at 0020 is called by byte E7 and produces a space on the v.d.u. at address 0026 is a jump to a subroutine which would require more than eight bytes. It is intended for use during the testing of machine-code programs and when its RST byte EF is inserted into the program by using an ALT, it will suspend the execution of the inserted instruction bytes onto the data bus and when its RST byte EF is avoided in this case at 0020 is space-saver where a subroutine may be used, the single byte calls are a useful instruction bytes onto the data bus for receiving the interrupt, calls for the execution of a subroutine which would require more instruction bytes. The sequence check that the 57109 is ready, outputs the instruction with the hold-off, waits for the ready to go off and then puts the hold on again.

The two interrupts also use fixed service routines. At 0038 is the maskable interrupt routine which reads in and stores number cruncher data using HL as a pointer. At 0066 the non-maskable interrupt’s routine services the keyboard, first checking if the computer is at a HALT byte (76) and reading in the keyboard if it is or resetting the computer if it is not (0068 is an example of a long relative jump). This particular software does not make use of the control characters available in ASCII except for the RETURN byte 0D, which it translates to 0D. Instead it blanks off the top three bits of any codes above 3F (mainly the letters) at 007C and moves lower and upper case codes into the area 00 to 1F. This compression of the ASCII code into six bits produces byte which are compatible with the v.d.u. character generator and this makes writing to the v.d.u., which occurs at many places in the monitors, a simple operation.

Before the service routine, the routines for the various operations in table 2 fit end to end to 0253, with the exception of some unprogrammed space at 0139. This space may be used by overprogramming the jump byte 011F-10 and the ten bytes as required. Note that the LIST (014A) routine is just a call to a subroutine at 0317 because an identical block of instructions are required as part of the ALT routine. As this is the last command code to be checked, the call is conditional on a match so that if the code is undefined, execution passes to 01A9 and a software reset.

### Table 1. BURP subroutines.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Used in graph plotting. Converts a number stored in 1E00 to the nearest integral value. Negative values are put to zero.</td>
</tr>
<tr>
<td>002E</td>
<td>Displays a number formatted by 05A9 in 1E00 - F displaying E for OB,. for OA, a space for OF, - for OC and ASCII</td>
</tr>
<tr>
<td>01A6</td>
<td>Converts A to three digit denary and displays on v.d.u.</td>
</tr>
<tr>
<td>01CD</td>
<td>Inputs denary keyboard digits to binary in C.</td>
</tr>
<tr>
<td>016F</td>
<td>Prepares the store area specified by the contents of A using 0714 and then reads in a number from the keyboard, converting standard and</td>
</tr>
<tr>
<td>0226</td>
<td>handles the 57109 TR (branch) output which pulses low whenever one of the 57109 test instructions proves to be true. The subroutine starts</td>
</tr>
<tr>
<td>0203</td>
<td>The look-up table for the 57109 instructions.</td>
</tr>
<tr>
<td>0253</td>
<td>The list is terminated by FF.</td>
</tr>
<tr>
<td>046E</td>
<td>Repeats 042E for the string of 57109 instructions following the call in the main program. The list is terminated by FF.</td>
</tr>
<tr>
<td>04D4</td>
<td>Jumps over the next word in the program line. Used in FOR statements to miss STEP and UNTIL.</td>
</tr>
<tr>
<td>0460</td>
<td>Outputs the contents of the 57109 X register to locations 1FF4 - 1FFF and then reformats it into the location specified by the contents of</td>
</tr>
<tr>
<td>0452</td>
<td>The routine starting addresses.</td>
</tr>
<tr>
<td>0466</td>
<td>Graph plotting routine which scales the variables to be plotted to the screen matrix of 63 X 128. It divides the variable specified by</td>
</tr>
<tr>
<td>0458</td>
<td>after outputting to 1E00.</td>
</tr>
<tr>
<td>0468</td>
<td>Handles the 57109 RR (branch) output which pulses low whenever one of the 57109 test instructions proves to be true. The subroutine starts</td>
</tr>
<tr>
<td>058A</td>
<td>Prepares the store area specified by the contents of A using 0714 and then reads in a number from the keyboard, converting standard and</td>
</tr>
<tr>
<td>0688</td>
<td>the last procedure is jumped. Finally, the read in and masked byte which caused the exit from the parity checking loop, stored in register B as</td>
</tr>
<tr>
<td>0714</td>
<td>The look-up table for the 57109 instructions.</td>
</tr>
</tbody>
</table>

### Table 2. Machine code routine starting addresses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>002F</td>
<td>FILL</td>
</tr>
<tr>
<td>0099</td>
<td>LOAD</td>
</tr>
<tr>
<td>011E</td>
<td>ALPH</td>
</tr>
<tr>
<td>0152</td>
<td>FIND</td>
</tr>
<tr>
<td>01A6</td>
<td>LIST</td>
</tr>
<tr>
<td>0042</td>
<td>RUN</td>
</tr>
<tr>
<td>004D</td>
<td>MOV</td>
</tr>
<tr>
<td>007C</td>
<td>CTRL</td>
</tr>
<tr>
<td>0080</td>
<td>ALT</td>
</tr>
<tr>
<td>0084</td>
<td>COR</td>
</tr>
<tr>
<td>00B2</td>
<td>0120</td>
</tr>
<tr>
<td>0203</td>
<td>TAPE</td>
</tr>
<tr>
<td>022E</td>
<td>READ</td>
</tr>
</tbody>
</table>
Table 4. Format for storing and printing three variables.

<table>
<thead>
<tr>
<th>Table 4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>005 LET A = 23.45</td>
</tr>
<tr>
<td>006 LET B = 0.00733</td>
</tr>
<tr>
<td>007 LET C = 3.45633</td>
</tr>
<tr>
<td>008 PRINT A</td>
</tr>
<tr>
<td>009 END</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5. BURP routine starting addresses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>083F DEL</td>
</tr>
<tr>
<td>0929 LOAD</td>
</tr>
<tr>
<td>092F GOTO</td>
</tr>
<tr>
<td>092B INPUT</td>
</tr>
<tr>
<td>092B WRITE</td>
</tr>
<tr>
<td>092B GOSUB</td>
</tr>
<tr>
<td>092B NEXT</td>
</tr>
</tbody>
</table>

From 0254 to 03FF are the subroutines listed in Table 1. When necessary, the subroutines PUSH registers to be used solely within the subroutine and then POP them back before the return so that no interference is caused to data within the main program. Most subroutines are self-contained but some, e.g. 02EC, jump on to others for their completion. As subroutines are sometimes called within subroutines, within subroutines etc., the stack storage area, which extends into the r/w.m. from 1FFD, should be left free to at least 1FC0 for the computer's use. Like C7, other space savers will be found in the subroutines, e.g. AF to clear the register A instead of 3E 00, which makes use of them. Details of the subroutines are given in Table 3. In BURP, program material is loaded from OCO on, the area 1E00 to 1EDF is used for the formatting of results to be printed and 1E10-F stores variable A and so on up to 1FB0-F which holds the FOR loop step. Table 4 shows the formatting used for the storage and printing of three different variables. Note that all results are stored scientifically to maintain eight digit accuracy. Although the MM57109 can operate in either mode, it is quicker to stay in the scientific mode and let the Z80 convert the results within the range 0.0001-99999999 to floating point for display.

At 0800 the stack pointer is set and DE is assigned as the screen pointer again. BURP is then displayed and the rest of the top line cleared. The mantissa digit count is set at 04 (0817) and the screen position reset to 8008 ready for the input of a command. 081E to 0823 is harmless nonsense and 0824 to 0837 resets the number cruncher by sending the operation 3F (NO OP) with the hold to the 57109 off, pausing for 8ms and then reapplying the hold. During this sequence the interrupt mode is set but as it is the masked one that is driven by the number cruncher, the somewhat capricious behaviour of the i.c. before it has run the reset has been taken over by the rest of the system. The i.c. is then given a master clear (2F) and switched to the scientific mode (22) by a multiple executive subroutine at 0446 (0832).

At 0838 another command encoder is called to read in a command from the keyboard. The algorithm used here is two times first plus last, so once again only two letters are required. However, this algorithm is capable of producing a far greater list of codes and therefore reduces the chance of two words deriving an identical one. As with the low level monitor, routines entered by recognition of this code ensue, see Table 5. The start of the last of these, the RUN command, reads in and encodes the line number input in the command and stores it in register C. The v.d.u. pointer is then set to 8040, the start of the second line, and C is decremented, pushed, popped, incremented and then pushed again. Four of these operations might seem to do nothing to C and on this occasion they do not. The total effect is to store the current line number on the stack. When the execution of a line is completed however, the next line number can be computed and saved by returning to 097F. After GOTOs, when A will hold the next line number, a pop to remove the old number followed by a jump to 0981 will load this as the next line to be executed. As all lines will terminate by jumping back to one of these locations (except for END which returns to 0800), to avoid absolute jumps (i.e. jumps to specific addresses), relative jumps to these two critical points are string out through the third param.

A line of BURP is stored as the hex byte ED, the line number in hex, the actual data in modified ASCII and then the byte IF to signify its end. The end of the memory block in use is signalled by the byte C0. With the commands ADD, DEL, DUMP, LIST and RUN involving line numbers, the memory block up to C0 and looks for ED followed by the line number in question. During a RUN the next word in the line is encoded using the two times first plus last algorithm (0983) and again, the routines for all of the commands are strung end to end and each is preceded by an immediate compare and a jump-on-not-zero (20 hex). The last command. HALT, compares at 080F and if a match is not made the computer jumps over the single byte 76 of the HALT routine and goes on to the next line by executing several relative jumps back to 097F. This explains why there is no routine for REM as it and any unrecognised first word on a line is just.

**Fig. 2. Basic operating sequence for both monitors.**
Table 6. New features of the improved firmware.

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>v.d.u. cursor on all modes.</td>
<td>RETURN available in graphics mode.</td>
</tr>
<tr>
<td>DEL deletes last character on all modes.</td>
<td>Interface for ASR or KSR teleprinter (as printer and/or punch).</td>
</tr>
</tbody>
</table>

**BUPR**

Extended IF statements. Any statement may be conditioned by IF.

Mathematical capability available in IF. FOR PRINT, WRITE, GRAPH and AXIS statements.

Printed strings in INPUT as well as PRINT statements.

Multiple statements — virtually unlimited numbers of statements may be written against a single line number.

This speeds execution and expands the effective statement capacity well beyond the 254 lines.

Extra maths functions:
- **ABS** makes current result positive
- **INT** blanks digits following decimal point
- **FRAC** blanks digits preceding decimal point
- **RND** places pseudo-random number into the MM57109

No need for LET at the start of LET-type lines.

'in a line, causes the computer to ignore the data following, up to the end of that line (alternative to REM).

**Hardware changes required**

The wiring of several spare keys.

The teleprinter interface shifted from D7, to D0, and 55V reduced to 5V.

**P.r.o.m. required**

Complete with the graph plotting firmware, this will still fit into three 2708 p.r.o.ms.

The 1980 conference has a four-part conference and exhibition, January 30 to February 1. Sponsored by Wireless World and associated electronics and computer journals, this annual event has grown in size to such an extent that it has had to be moved from its hotel venue to the Wembley Conference Centre (opening hours, 0930 to 1800 hours each day).

The 1980 conference has a four-part programme ranging from an introduction to microprocessors to an overview of the latest developments in microelectronics. Topics include: technology update, micro processor software, controlling microprocessor projects, microprocessor applications, bridging the hardware/software gap, and microprocessors in process control.

The conference will concentrate on personal computers on its third day.

There will be buyers' forum sessions to help people in selecting goods and services. and a one-day appreciation course to introduce managers to the use of microprocessors in business and industry. Delegates' fee for the conference is £145.50, including v.a.t. and booking forms are obtainable from the organizers, iliffe Promotions, Room 821, Dorset House, Stamford Street, London SE1 9LU (telephone 01-261 8113). The exhibition, with some 110 stands, is open to all at no charge, whether or not the visitor is a conference delegate.
THE VALVE AND TUBE SPECIALIST

**Illuminated Pocket Microscope with Measurement Graticule**

The low-cost illuminated pocket microscope designed for close observation and measurement of minute detail too small to be seen with the naked eye.

It gives a sharp and brilliant vision with wide field of view at 20 X magnification, plus built-in focusing system and illumination system.

Ideal for close inspection of PCB, components, metals, depth of cracks, samples, minerals and tissues. A valuable aid to Quality Inspectors, research engineers and laboratory personnel.

Complete with batteries and plastic pocket case at the special price of £13.99, including postage and V.A.T.

The graticule is calibrated to 4mm overall in increments of 0.1mm, with angles shown from 30° to 90° and hole sizes of 0.2, 0.3, 0.4 and 0.5mm diameter.

**Businesses have been built on our ferrites. Ours included.**

If you’re a manufacturer, even the most inexpensive components must be checked out—or they’ll let your product down.

And it’s particularly true of ferrites. Apex are the sole UK agents for one of America’s largest ferrite manufacturers, Fair-Rite. Apex use Fair-Rite products in their own manufacture of wound components and know how good they are.

The range covers most shapes from toroidal and pot cores to E cores, shield beads and baluns.

Full data is available on request.

The most useful kit in the business.

We’ve put together a kit of assorted ferrites that contains a versatile selection of ferrite cores that will enable designers of RFI suppression devices and wideband transformers to optimise circuits and approximate final designs very quickly.

A comprehensive data kit is included that contains impedance vs frequency curves, attenuation curves and wideband transformer design data.

It costs just £10.00 (cheque or company order). It’s really too good to miss.

---

**INTEL ELECTRONIC COMPONENTS LTD.**

30/50 Osbourn Road, London SE15AN. Tel: 237 0404

WW - 025 FOR FURTHER DETAILS

---

**THE VALVE AND TUBE SPECIALIST**

<table>
<thead>
<tr>
<th>VALVES</th>
<th>RECEIVING, SQ, TRANSMITTING</th>
<th>DISPLAY, GAS FILLED, ETC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Price</td>
<td>Type</td>
</tr>
<tr>
<td>421/40W</td>
<td>15.90</td>
<td>EF37A</td>
</tr>
<tr>
<td>422/51W</td>
<td>29.50</td>
<td>EF38</td>
</tr>
<tr>
<td>424/51W</td>
<td>23.15</td>
<td>EF39</td>
</tr>
<tr>
<td>421/52W</td>
<td>24.00</td>
<td>EF40</td>
</tr>
<tr>
<td>A50/12W</td>
<td>37.11</td>
<td>EF39A</td>
</tr>
<tr>
<td>A50/22W</td>
<td>37.11</td>
<td>EF41</td>
</tr>
<tr>
<td>A50/32W</td>
<td>33.10</td>
<td>EF42</td>
</tr>
<tr>
<td>A62/42W</td>
<td>33.10</td>
<td>EF43</td>
</tr>
<tr>
<td>B4/48</td>
<td>28.90</td>
<td>EF44</td>
</tr>
<tr>
<td>B3/48</td>
<td>31.60</td>
<td>EF45</td>
</tr>
<tr>
<td>BT56</td>
<td>28.15</td>
<td>EF46</td>
</tr>
<tr>
<td>BT58</td>
<td>23.75</td>
<td>EF47</td>
</tr>
<tr>
<td>BT59</td>
<td>31.50</td>
<td>EF48</td>
</tr>
<tr>
<td>BT174</td>
<td>23.75</td>
<td>EF50</td>
</tr>
<tr>
<td>BT175</td>
<td>28.15</td>
<td>EF51</td>
</tr>
<tr>
<td>D101/60ST</td>
<td>64.41</td>
<td>EL34</td>
</tr>
<tr>
<td>D101/49ST</td>
<td>64.41</td>
<td>EL37</td>
</tr>
<tr>
<td>D77</td>
<td>0.60</td>
<td>EL81</td>
</tr>
<tr>
<td>D81</td>
<td>0.80</td>
<td>EL84</td>
</tr>
<tr>
<td>D91</td>
<td>1.32</td>
<td>EM10</td>
</tr>
<tr>
<td>D101/15</td>
<td>4.43</td>
<td>EM11</td>
</tr>
<tr>
<td>D198</td>
<td>5.64</td>
<td>EM12</td>
</tr>
<tr>
<td>D293</td>
<td>1.76</td>
<td>EM14</td>
</tr>
<tr>
<td>D22CC</td>
<td>3.22</td>
<td>EM15</td>
</tr>
<tr>
<td>D22CC</td>
<td>3.56</td>
<td>EM17</td>
</tr>
<tr>
<td>D20</td>
<td>2.20</td>
<td>EM20</td>
</tr>
<tr>
<td>D23</td>
<td>2.70</td>
<td>EM21</td>
</tr>
<tr>
<td>D25</td>
<td>3.60</td>
<td>EM22</td>
</tr>
<tr>
<td>D26</td>
<td>4.8</td>
<td>EM24</td>
</tr>
<tr>
<td>D28</td>
<td>5.50</td>
<td>EM26</td>
</tr>
<tr>
<td>D29</td>
<td>6.50</td>
<td>EM27</td>
</tr>
<tr>
<td>D30</td>
<td>7.00</td>
<td>EM28</td>
</tr>
<tr>
<td>D31</td>
<td>8.00</td>
<td>EM29</td>
</tr>
<tr>
<td>D33</td>
<td>9.00</td>
<td>EM31</td>
</tr>
<tr>
<td>D35</td>
<td>10.00</td>
<td>EM32</td>
</tr>
<tr>
<td>D37</td>
<td>11.00</td>
<td>EM33</td>
</tr>
<tr>
<td>D39</td>
<td>12.00</td>
<td>EM35</td>
</tr>
<tr>
<td>D41</td>
<td>13.00</td>
<td>EM37</td>
</tr>
<tr>
<td>D43</td>
<td>14.00</td>
<td>EM39</td>
</tr>
<tr>
<td>D45</td>
<td>15.00</td>
<td>EM41</td>
</tr>
<tr>
<td>D47</td>
<td>16.00</td>
<td>EM43</td>
</tr>
<tr>
<td>D49</td>
<td>17.00</td>
<td>EM45</td>
</tr>
<tr>
<td>D51</td>
<td>18.00</td>
<td>EM47</td>
</tr>
<tr>
<td>D53</td>
<td>19.00</td>
<td>EM49</td>
</tr>
<tr>
<td>D55</td>
<td>20.00</td>
<td>EM51</td>
</tr>
<tr>
<td>D57</td>
<td>21.00</td>
<td>EM53</td>
</tr>
<tr>
<td>D59</td>
<td>22.00</td>
<td>EM55</td>
</tr>
<tr>
<td>D61</td>
<td>23.00</td>
<td>EM57</td>
</tr>
<tr>
<td>D63</td>
<td>24.00</td>
<td>EM59</td>
</tr>
<tr>
<td>D65</td>
<td>25.00</td>
<td>EM61</td>
</tr>
<tr>
<td>D67</td>
<td>26.00</td>
<td>EM63</td>
</tr>
<tr>
<td>D69</td>
<td>27.00</td>
<td>EM65</td>
</tr>
<tr>
<td>D71</td>
<td>28.00</td>
<td>EM67</td>
</tr>
<tr>
<td>D73</td>
<td>29.00</td>
<td>EM69</td>
</tr>
<tr>
<td>D75</td>
<td>30.00</td>
<td>EM71</td>
</tr>
</tbody>
</table>

**INTEL ELECTRONIC COMPONENTS LTD.**

30/50 Osbourn Road, London SE15AN. Tel: 237 0404

WW - 025 FOR FURTHER DETAILS
Top marks in one clear sweep.

You'd expect a Sweep Function Generator from Feedback to contain a lot more features for your money. And you'd be right — the SFG606 with its crisp frequency marker does just that.

It sweeps up to 4 decades of frequency bi-directionally. So you can avoid problems of transient effects. It maintains low signal distortion with absolute precision over the entire sweep range. It features a choice of decade or octave sweep — so it's ideal for narrow band analysis. It provides sine, square or triangle outputs over the frequency range 0.01Hz to 1MHz.

And with that beautifully sharp, fine line frequency marker that gives you accurate determination of spot frequency on the display, the SFG606 really does score top marks. Read all about the SFG606 and all its companion test instruments in the Feedback 600 range. Send to Feedback for literature today.

Or contact our distributors

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane
Billericay Essex CM11 2SP
Telephone: Billericay (02774) 51155
Telex: 99426 (prefix Drake)

The new SFG606 passes even the testiest tester's test.

WW — 014 FOR FURTHER DETAILS

OEM — let Drake Transformers advise you on a component specification and design to solve that special problem. Pre-production prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.
Two-metre s.s.b. and f.m. transceiver—4
Alignment procedure and operating notes

by G. R. B. Thornley, G2DAF

For satisfactory alignment the following test instruments will be required: a c.w. signal generator; an absorption wavemeter; an AVO Model 8 or equivalent; a diode probe valve-voltmeter; a digital frequency meter; and an audio oscillator.

It is advantageous to test and align as many units as possible before final assembly in the chassis, so the following instructions will be based on this method. Initially, each unit should be connected to a stabilized power supply, set to 12.7V, with a milliammeter in series to monitor the current drain and to ensure that there is no short circuit or fault condition on the circuit.

S.s.b. generator unit
Connect the power supply, still set to 12.7V, to the +12V TX terminal post on the s.s.b. generator board and wire an external 1-pole, 2-way switch in place of S12, with the pole connected to the power supply. Check that there is 9.1V feeding Tr1. Set the slider of R11 to mid position and connect the diode probe of the valve-voltmeter to the test point TP. Adjust the core of L3 for maximum carrier output — this will be in the range 0.3 to 0.5V r.m.s. Operate the temporary switch S13 to select crystals XL1 and XL2 in turn, and ensure that they are both oscillating at approximately equal amplitude.

Remove the valve-voltmeter probe and connect the digital frequency meter via a 5pF series capacitor to the test point TP. Switch to the i.f.s. crystal and adjust C30 until the crystal is on exactly 10,700kHz to the “IF. in” terminal post. Transfer the valve-voltmeter probe to the “I.F. out” terminal post (output side of C32). Connect a microphone to the “Mic” terminal post and adjust R16 for maximum gain. If all is well, a whistle into the microphone will produce an s.s.b. signal and will deflect the pointer of the valve-voltmeter to approximately 0.25V r.m.s.

Connect an 8-ohm loudspeaker to the circuit, transfer the 12.7V supply to the +12V amplifier terminal post and adjust R15 for exactly 6.35V at the junction of R65 and R66. Open circuit the wire link between the test point TP and the ground plane, and connect the AVO, on the 1,000mA range, in lieu. Adjust R65 for a quiescent Tr13, Tr14 collector current of 20mA. Set the audio signal generator to 1.5kHz and zero output, and connect it to the “A in” terminal post (connection to C65). Advance the audio generator output to 100mV r.m.s., while watching the AVO reading, which should increase to 250-300mA. A clean undistorted note, at full volume, should be heard from the loudspeaker. Reduce the audio drive to about 100mA collector current and swing the audio generator output frequency from 300 to 3,000Hz. The sound amplitude should remain approximately constant and without distortion at any frequency. Remove the AVO and reconnect the link (Note that R65 is soldered across D13 on the etched side of the p.c.b.).

Temporarily bridge the “A out” terminal post of the demodulator (junction of R66 and R63) and connect it to the “A in” terminal post of the audio amplifier using screened cable. Connect the 12.7V power supply to the +12V RX terminal post, check that the source rail is at 3.3V and set the a.g.c. rail to 5.5V by adjusting R65. Set the wiper arm of the balancing potentiometer R65 to mid position, connect the signal generator, set to exactly 10,700kHz to the “IF. in” terminal post (input to C65) and advance the r.f. output until a 1.5kHz tone can be heard from the loudspeaker. Adjust the cores of L13, L14 and L15, for maximum output while progressively reducing the signal generator output to avoid overloading the demodulator and the audio stages.

Make a screened-cable link from C65 to the drain of Tr15 on the underside of the p.c.b. and temporarily connect R65 and R63 to a 1mA-movement S-meter. With no signal generator input, set the S-meter to zero by adjusting R65. This will alter the a.g.c.-line potential because R65 and R63 interact, so it will be necessary to reset R65. Repeat the two adjustments until the S-meter reads zero and the a.g.c. reads 5.5V. Set the signal generator output to 10mV and adjust the core of L13 for maximum S-meter reading. Reduce the signal generator output to 100μV. If all is well the meter should give about an S9 reading. When the transceiver is completed, R66, which controls the S-meter sensitivity, can be set to obtain an S9 reading for a 50μV two-metre-band signal.

Reduce the signal generator output to zero, and the S-meter should return to zero. If it does not do this, it means that the carrier oscillator output is leaking into the i.f. amplifier. Connect C65 to one side of the balanced-modulator potentialmeter, R65 and adjust R64 and C65 in turn to balance the modulator and obtain a zero indication on the S-meter. If adjusting C65 does not improve the balance, remove the link and connect C65 to the other side of R65. While making these adjustments ensure that the correct h.s.b. crystal (10,685.5kHz) is switched into operation. If balance cannot be fully obtained and C65 is at full capacity, wire a 25pF ceramic capacitor across C65 on the underside of the p.c.b. and readjust C65.

F.m. generator unit
Connect a 100μA f.s.d. S-meter to the SM terminal post of the f.m. generator board. Turn the i.f. gain control, R45, to
maximum, and inject exactly 10,700kHz from the signal generator into the "F.M. in" terminal post, at a level that starts to deflect the S-meter. (Note that the meter will read approximately 50pA with no signal input.) Adjust the cores of L14 and L15 to obtain maximum S-meter reading. At the same time as the tuned circuits are brought onto resonance, reduce the signal generator output to avoid overloading the i.f. stages.

Set the signal generator input to obtain a S-meter deflection of three-quarters full scale and connect the digital frequency meter in parallel with the signal generator output to avoid overloading the i.f. stages.

Set the signal generator input to 10,700kHz and carefully adjust C111 until the AVO reads 50µA and make a note of the frequency. Repeat for 100µA and 150µA and note these frequencies too. Go back to the 0µA reading and reverse the AVO connecting leads. Check that the meter is indicating the wavemeter set to 62.5MHz. Set the slider of R117 for "Mod out". Set the signal generator output to avoid overloading the i.f. stages.

Phase-lock v.c.o. unit

The alignment instructions for the phase-lock v.c.o. unit assume that the three p.c.b.s and the MC7805 regulator have been assembled in the screening box, and the LED indicator D10 connected to C26 and C29. All interconnections should be made, and supply and switching terminal posts wired to the appropriate box via 1,000pF feed-through capacitors. Measure the output voltage of the MC7805 regulator and ensure that this is 5.0V.

With a soldered link, short circuit TP1 on the v.c.o. p.c.b. to the groundplane in order to disable the oscillator Tr30. Apply the signal generator output to TP1 and connect the valve-voltmeter probe to "RF out" terminal post. Set the signal generator to 134.3MHz and adjust the core of L24 for maximum r.f. output. Transfer the valve-voltmeter probe to "V.C.O. out" terminal post and adjust core of L25 for maximum r.f. output.

Wire the microphone to "Microphone in", and high impedance headphones to "Mod out". Set the slider of R117 for maximum audio gain. Speak into the microphone, and if all is well this should produce low-level crisp, clean audio in the headphones.

Connect the d.f.m. to test point TP3, and with trimmers C117 and C118 trim each crystal as near as possible to the required frequencies 125,000kHz and 126,000kHz. Note that crystals for amateur use are normally supplied to a frequency tolerance of ±0.005% and it may not be possible to pull XL5 and XL6 completely on to the required frequency. Finally operate S2 a number of times, and ensure that both crystals operate without hesitation and without frequency jumping. Remove the d.f.m. and connect the signal generator, set to 9,300kHz to test point TP4, and the valve-voltmeter probe to "I.F. out". Adjust cores of L24 and L25 for maximum r.f. output.

With the short-circuit link from TP, and the AVO should now read 0.85V. With the external switch S2, select the 125MHz crystal and connect the signal generator, on 9.3MHz and 500mV r.f. output, to "V.F.O. in". Screw the core of L21 completely into the winding. The AVO will now read 4.9V. Slowly unscrew the core of L21 until the AVO indication drops from 4.9V to 2.9V. At this point the indicating LED will light. The loop is now locked.

Operate the external switch S2 to select the 126MHz crystal. The AVO should now read 4.5V and the LED should remain lit. Select the 125MHz crystal and tune the signal generator to 8.3MHz. The AVO should now read 1.6V with the LED illuminated. Switch to the 126MHz crystal and the AVO should read 2.9V with the LED illuminated.

It will be noted that with the 126MHz crystal selected and the v.f.o. (signal generator) input of 9.3MHz, the loop control voltage is 4.5V falling to 2.9V with a v.f.o. input of 8.3MHz. Swing the signal generator across the 1MHz tuning range and the control voltage will follow in step, within the above limits. Select the 125MHz crystal and repeat. The control voltage will follow in step, within the limits of 2.9V to 1.6V.

As a final check of reliable phase-lock loop operation, short circuit the "I.F. in" terminal post to chassis earth. This should cause the AVO reading to

---

**Note:** The above text is a transcription of a technical document related to electronics and frequency modulation, focusing on alignment instructions and crystal discriminator measurements. The document includes diagrams and equations for different frequency points and crystal resonances. The text is dense with technical terms and requires a good understanding of electronics to comprehend thoroughly. The provided text is a comprehensive guide for setting up and testing a phase-lock v.c.o. unit, including instructions for crystal selection, frequency tuning, and operating checks. The document aims to ensure that the equipment operates within specified frequency ranges and error margins.
change to 4.9V and the l.e.d. to cease illumination - loop unlocked. Immediately the short circuit is removed, the AVO should revert to its original reading and the l.e.d. should illuminate - loop locked. Switch the 12.7V power supply on and off a number of times, and check that the loop always locks reliably from switch on, at any 8.3 to 9.3MHz input frequency.

For reliable operation the v.f.o. input should be not less than 500mV r.m.s. The i.f. input at "I.F. in" will only appear when the loop is locked, and this, measured with the valve-voltmeter diode probe, will be in the range 0.6 to 1.2V r.m.s., depending on the v.c.o. operating frequency (133.3 to 135.3MHz).

Note that it is important that the v.f.o. input drives Tr39 and the i.f. input drives Tr46 as shown. If these input connections are reversed the MC4044P phase detector will be disabled and the loop will not lock.

V.c.o. amplifier unit
Connect the signal generator set to 134.3MHz to "V.C.O. in", and the valve-voltmeter probe to "Out RX".
Adjust cores of L30 and L31 to obtain maximum r.f. output. Transfer valve-voltmeter probe to "Out TX" and check that both readings are approximately the same. The measured output should be in the range 500 to 700mV r.m.s.

V.f.o. unit
These alignment instructions assume that a 100:1 ratio gear drive is being used (i.e. 50:1 for 180 degrees rotation of C222) and that 40 turns of the tuning knob will change the v.f.o. by 1,000kHz, equal to 25kHz per turn.
Fully mesh the vanes of C222 and mark a reference point on the drum dial. Turn the tuning knob two complete turns clockwise. Mark a calibration point on the drum dial and number 0. This is 0kHz and is the start of the tuning drum scale. Now turn the tuning knob 40 complete turns, mark the calibration point on the drum dial and number 1,000. This is 1,000kHz and is the end of the v.f.o. tuning range.
Unscrew the cores of L33 and L34 so that they are outside the windings. Check that there is 8.5V feeding Tr45, Tr46, and Tr47. Connect the "V.F.O. out" terminal to the d.f.m. and with the dial at 0kHz adjust the dust core of L33 for an output frequency of 8,300kHz. Turn the drum dial to 1,000kHz and adjust C222 for 9,300kHz. These two adjustments interact with each other, and must be repeated until the d.f.m. readout is correct at each end of the tuning range. Once this has been achieved the drum dial can be calibrated each 100kHz with main divisions, and every 25kHz for intermediate divisions. Finally the tuning knob circumference is divided into 25 equal sections and numbered 0 to 24 so as to provide a calibration mark every 1kHz.
Disconnect the d.f.m. and replace with the valve-voltmeter probe and measure the r.f. output at 8,300kHz and 9,300kHz. The two readings should be approximately equal and in the range 0.9 to 1V r.m.s. (unloaded value). Set the v.f.o. output to 9,300kHz and screw in the cores of the low-pass filter L33 and L34 equally until the valve-voltmeter reading just begins to reduce. At this point unscrew each core by one turn. Alignment has been undertaken without any biasing potential on D31. When in normal operation with R190 connected to the "Calibrate" control, the mean potential on D31 will be about 2V and this will reduce the capacitance by approximately 10pF. The v.f.o. can be brought back to correct calibration by re-adjusting C222.

Receiver converter unit
Because a second signal generator is required for the heterodyning input (133.3 to 135.3MHz) to the receiver converter unit and the transmitter converter unit, it is at this stage an advantage to complete the construction by installing and wiring all units and panel controls in the main chassis - with the exception of the power amplifier.
Connect the valve-voltmeter probe to the "HET in" terminal and check that...
the input level is 500 to 700mV r.m.s. Set slider of R31 to mid position, and tuning dial to 144.9MHz. Couple 100mV output from signal generator via a 2 turn link, to L38 and adjust output transceiver tuning knob until a 1.5kHz tone can be heard from the loudspeaker. Adjust cores of L4c and L4d for maximum S-meter reading. Transfer the link to L39 and adjust the transceiver dial to 144.9MHz. Select 100mV output slider of R211 to mid position, and tuning the input level is 500 to 700mV r.m.s. Set the slider of R216 to mid position. Adjust C242 and C237 for maximum meter reading. As each circuit is brought into resonance reduce the signal generator output to avoid overflowing the following stages.

Re-set R31 as necessary to give equal voltages at source connection of Tr51 and Tr52.

Transmit converter unit

Fit a TO-5 clip-on heat sink to Tr5a and bend the vanes as necessary to clear the screening can of L52. Check that the emitter potential is 0.15V indicating a collector current of 15mA. This is not critical and can be in the range 10 to 20mA. If outside these limits it will be necessary to withdraw the p.c.b. and adjust the value of R52.

Set the transceiver tuning dial to 145MHz. Connect the valve-voltmeter probe to “HET in”, and check that the input level is in the range 500 to 700V r.m.s. Set the slider of R51 to mid position. Connect 750hm dummy load to “RF out” via two feet of coaxial cable, with the valve-voltmeter probe in parallel with the 750hm load. Set the dual cores of L4c and L4d so that each core is just level with the top of the screening can. Connect the signal generator, set to 145MHz, to test point TP5. Operate the “press-to-talk” switch and adjust trimmers C276, C277, C288 and C282 for maximum output. Unscrew cores of L2b and L2c for maximum output. Connect a 1.5kHz audio tone into the junction of L66 and C312, with the valve-voltmeter diode probe in parallel with the 750hm load. Wire a suitable ammeter in series with the 20V supply. Connect a 20V supply to the +20V line, and adjust R232 to obtain Tr57 collector current of 10mA. Reconnect the link between C288 and C289.

Unscrew the link between C203 and C214. Connect stabilised 20V supply to C230 with the milliammeter in series and adjust value of R52 to obtain Tr58 collector current of 40mA. Connect a 20V supply to the +20V terminal with the milliammeter in series. Adjust value of R51 to obtain Tr59 collector current of 90mA. Reconnect the link between C208 and C214.

Assemble the amplifier in the die-cast screening box, install in the main chassis, and complete all connections. Connect a 750hm dummy load via a two foot length of coaxial cable to the junction of L6b and C152. With the valve-voltmeter diode probe in parallel with the 750hm load. Wire a suitable ammeter in series with the 20V supply. Connect a 1.5kHz audio tone into the “MIC” socket via a 40mA attenuator. Set the output of the audio generator to zero and operate the “press-to-talk” switch. Tr58 and Tr59 should be drawing the combined quiescent collector current of 130mA.

Power amplifier

On the power amplifier, first check that the damping resistors R33b and R33a have been wired across the r.f.cs. to the bases of Tr58 and Tr59. Unsolder the link between C288 and C289 and replace with a milliammeter wired to extension leads. Connect the +12.7V supply to the +12V terminal. Adjust value of R232 to obtain Tr57 collector current of 10mA. Reconnect the link between C288 and C289.

Unscrew the link between C203 and C214. Connect stabilised 20V supply to C230 with the milliammeter in series and adjust value of R52 to obtain Tr58 collector current of 40mA. Connect a 20V supply to the +20V terminal with the milliammeter in series. Adjust value of R51 to obtain Tr59 collector current of 90mA. Reconnect the link between C208 and C214. Assemble the amplifier in the die-cast screening box, install in the main chassis, and complete all connections.

Connect a 750hm dummy load via a two foot length of coaxial cable to the junction of L6b and C152, with the valve-voltmeter diode probe in parallel with the 750hm load. Wire a suitable ammeter in series with the 20V supply. Connect a 1.5kHz audio tone into the “MIC” socket via a 40mA attenuator. Set the output of the audio generator to zero and operate the “press-to-talk” switch. Tr58 and Tr59 should be drawing the combined quiescent collector current of 130mA.

Dust core locking

It is most important that all the dust cores are an interference fit in the former and will hold their settings, and the material used must hold the core firmly but must not become solid, in case re-adjustment should be necessary at some future date. Before commencing alignment it is recommended that the screwed threads of each core and former are smeared with zinc ointment (obtainable from any chemist). The author has used this method for many years without any problems.

Operating notes

It is worth noting that the transmit output from the f.m. generator unit is a

<table>
<thead>
<tr>
<th>Test procedure</th>
<th>A.c. Line (volts)</th>
<th>Output Audio relative that at 10V input</th>
<th>Signal Input dB relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Signal generator on 10, 700kHz connected &quot;1F in&quot; terminal post.</td>
<td>4.4</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>2. A.g.c. a.c. 80Hz on 100mA c.c. range.</td>
<td>3.9</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td>3. Audio output. AVO 8 on 100mA a.c. range in series with loudspeaker.</td>
<td>3.5</td>
<td>30</td>
<td>100,000</td>
</tr>
<tr>
<td>4. Source rail. 3.3 volts (2.7V BZY88 zener).</td>
<td>3.2</td>
<td>33</td>
<td>800</td>
</tr>
<tr>
<td>5. R4a set at mid position, 110 ohms.</td>
<td>2.9</td>
<td>36</td>
<td>100,000</td>
</tr>
</tbody>
</table>

It will be noted that the change in audio output is within 2dB for a change in r.f. input of 60dB and within 5dB for a change in i.f. input of 80dB. This represents very acceptable receiver r.f. performance.
c.w. carrier and the frequency modulation on the final 144 to 146MHz signal is derived from the v.f.o. Deviation is controlled by the microphone amplifier gain control potentiometer $R_{19}$ (on the f.m. generator p.c.b.), and, in the absence of a deviation meter, this can be set to accepted amateur band requirements by 'on-the-air' reports. The "CALIBRATE" control — nominally set at the mid position — will provide the required reference bias of 2 volts for the varicap diode in the v.f.o. unit.

For a final check on s.s.b. carrier attenuation, connect the "Aerial" output socket to a 75ohm dummy load with the diode probe of the valve-voltmeter in parallel across the load. Set the valve-voltmeter to the 1.5 volt range and remove the microphone from its socket. Operate the "press-to-talk" switch, and if there is a reading on the valve-voltmeter this denotes carrier leakage. Carefully re-balance the transmit modulator on the s.s.b. generator p.c.b. by adjusting $R_{11}$ and $C_{18}$ in step, until there is zero reading on the valve-voltmeter.

For the c.w. operator, transmission is conveniently effected by keying an outboard transistorised 1kHz audio oscillator fed into the microphone input socket. Both the receiver converter unit, and the transmitter power amplifier will work equally well into a 50ohm aerial system.

Modifications
As a result of more than two years "on-the-air" experience, two modifications have been incorporated to improve the s.s.b. operating convenience. These are as follows:

1. Wire a 10µF 10V capacitor across the end pins of $R_{2}$ on the printed circuit side of the s.s.b. generator p.c.b. This delays the gate 2 potential of $Tr_{3}$ and $Tr_{4}$ and prevents the transmission of a small "splash" of carrier caused by the switching transient on relay $RL_{1}$ changes over from "receive" to "transmit".

2. Relay $RL_{2}$ has a spare set of contacts which can be used to speed up the receiver a.g.c. recovery time, for those operators who like fast "break-in" operation. Connect the pole (pin 12) to chassis earth and the by-pass contact (pin 13) to chassis earth via a 47µF 25V capacitor. With a length of PVC-covered wire routed along the fold of the chassis rear apron, connect pin 13 to gate 2 of the a.g.c. amplifier $Tr_{7}$ (junction of $R_{2}$ and $R_{7}$ on the etched side of the p.c.b.) This modification shortens down $Tr_{7}$'s gate-2 potential to zero when transmitting, and prevents the switching transient feeding from the 10.7MHz i.f. amplifier into the a.g.c. system at high level.

Conclusion
This transceiver has been designed to provide a high level of performance on both transmit and receive, together with a high standard of reliability and convenience of operation.

For the f.m.-only operator, construction can be greatly simplified by omitting the s.s.b. generator unit. Repeater operation on any channel in the 145 to 146MHz section of the band can be provided by installing two crystals 300kHz apart, in the phase-lock unit. (That is, 63.0MHz and 62.7MHz giving heterodyne frequencies of 126.0MHz and 125.4MHz.) The switching lines can be taken to a spare set of contacts on the change-over relay $RL_{1}$, so that 126.0MHz is selected on "receive" and 125.4MHz on "transmit" for normal repeater operation. If reverse repeater operation is also required, it is only necessary to add a panel-operated, 2-pole 2-way switch and wire this so that the crystal switching lines can be reversed.

Because there is ample information in textbooks and other literature on stabilized power supplies, detailed constructional details have not been given. The two units used by the author incorporate simple series stabilization using BDY20 transistors with the usual BC108 and BYZ88 reference diode, and have proved to be entirely satisfactory. All prospective constructors are strongly advised to use — with the exception of the surplus S.T.C. 445-LQU 901B FM filter specified — only first class new guaranteed components and transistors.

Notes on Part 3. Component suffixes for $L_{1}$ to $L_{4}$ in Fig. 11 are incorrect and should read respectively: 53, 54, 55, 60, 57, 56, 59, 62, 61, 58, 63, 64, 65 and 66. $C_{19}$ in line four of p78 should read $C_{18}$. Fourth line of last column on p79 should read "die-cast box are mounted vertically to at either end of the chassis platform, and the squelch unit is mounted vertically on the rear panel." Caption to Fig. 16 on p80 refers to $Tr_{3a}$ and $Tr_{3b}$ and not $Tr_{7a}$ and $Tr_{7b}$ as shown. Component suffixes for $C_{19}$ to $C_{24}$ in Fig. 17 are incorrect and should read respectively: 200, 206, 203, 204 and 193. A table of d.c. voltage checks for this transceiver will be made available on request.

Books Received
Manual of Avionics, by Brian Kendal, is said by the publishers to enable the layman to acquire a working knowledge of radio nav aids, but to have as its primary aim the detailed analysis of electronics in civil aviation for the professional reader. The author, however, maintains that he has steered a middle course between the elementary and the mathematical analysis.

The book is certainly of interest to the layman, and is written at this level: it will probably not be of great help to the professional for the reasons given in the author's introduction — it is simply not possible to perform the tasks set in the book. At the layman's level, it is extremely detailed, comprehensive and authoritative, if one bears in mind that the 'avionics' of the title is restricted to communications and navigational aids, including radar.

A short historical chapter, which manages to cover everything from Clerk Maxwell to cavity magnetrons in 26 pages, is followed by seven chapters on air traffic management, radio telephony and direction-finding, short-range nav aids and radio landing systems, radar, and the hyperbolic systems and Doppler navigation.

For anyone interested in gaining a fairly superficial (in professional terms) idea of the control and navigation of civil aircraft, the book can be highly recommended for its comprehensiveness and authority: the author is Senior Air Traffic Engineer of the Civil Aviation Authority. It is published by Granada Publishing, PO Box 9, Frogmore, St. Albans, Herts. at £10.

A Window in the Sky, by A. T. Lawton, is concerned with the possibilities opened up for astronomers by the use of equipment outside our atmosphere. In contrast to many works on astronomy, the book is not only immensely detailed and factual, it is also a "good read." Mr Lawton puts the case for extra-terrestrial instruments, discusses the techniques for putting them there and examines several possible 'sites' in space. When all the equipment is in place, there is then the problem of what to investigate and, after a detour into the physics of integrated circuits and optical and radio telescopes, the rest of the book is a survey of some of the astronomical phenomena already known and others only guessed at. The book is published in hardback by David and Charles, Brunel House, Newton Abbot, Devon, at £8.50.
Astables: Logic gate circuits

by Peter Williams, Ph.D. Paisley College of Technology

A widely quoted astable circuit using inverters from the c.m.o.s. logic family is shown, using one capacitor and one resistor. A modification using a second resistor \( R_s \) is also well-known but \( R_s \) plays no part in the frequency control; rather it isolates the protective diodes at the inverter input from the voltage step applied via the capacitor, thereby protecting the input and preventing the diodes from conducting heavily and disturbing the frequency. Because only passive components are needed the circuit seems not to conform to any of types I to V (December issue). It does, however, contain a differentiator as in type IV and though the amplifier gain is much less the behaviour should be similar in this respect. The other amplifier has an inverting gain of relatively small magnitude and this corresponds to the see-saw amplifier. The other amplifier is much less the behaviour should be similar in this respect. The other amplifier has an inverting gain of relatively small magnitude and this corresponds to the see-saw amplifier of type IV. Hence this apparently new circuit is in fact type IV whether the inverters be c.m.o.s., t.t.l. or e.c.l.

Another common form of astable circuit quoted in the literature uses three inverters and a single capacitor with no passive resistors. It is sometimes described in terms of a three-phase oscillator. Such circuits are used as sinusoidal oscillators with 60° phase-shift per stage and with feedback or attenuation to limit the gain of each stage such that oscillation is not excessive. The present circuit is then argued to be a development of this with one external capacitor to define a longer time constant and hence lower the frequency. It is not then clear how the other inverters contribute to the response and the circuit certainly seems quite different from types I to V. It is unwise to press arguments based on sinusoidal response too hard when applied to switching behaviour and vice versa. The absence of a passive resistor does not mean that the circuits have no resistance. The output slope resistance of a c.m.o.s. inverter is quite high and the maximum current may be limited to < 1 mA. Hence to compare the circuit with one based on op.amps it has to be visualized with a resistor at each output.

There is a simple change that suggests a different interpretation of the circuit and allows it to be classified as a known type. The circuit is simply redrawn with the capacitor appearing to shunt two of the cascaded inverters rather than one. This involves no actual change since the capacitor is still connected across the single inverter — it is merely a changed appearance. The two cascaded inverters are equivalent to a single high-gain, non-inverting stage and, adding a resistor at the output of the first stage to represent its output resistance, the circuit is shown to be functionally identical with type V. An inverting amplifier of finite gain drives a non-inverting amplifier with capacitive feedback via a resistive path. It is important to try re-arranging unfamiliar or difficult circuits to see if various sub-sections become recognizable. Many circuit diagrams have a layout that suits the whims of a designer or the convenience of a draughtsman; they have to be made to serve the understanding of the user.

Other apparently more complex astable circuits can sometimes be simplified readily. In the circuit shown the cascaded inverters become equivalent to either a high gain inverting or non-inverting amplifier depending on whether an odd or even number of inverters is employed. Once this is noted, then this circuit is obviously a type V astable again. As in the previous circuit the external resistor offers a considerable advantage — the resulting time constant can be very large and hence the frequency can be very low while using only a small value of capacitance. If the resistor is omitted the frequency also becomes strongly dependent on supply voltage via the variation in output resistance of the individual devices composing the inverter. The multiple delays in the cascaded inverters limit the upper frequency of oscillation but the high gain makes lower frequencies less dependent on parameter variations. Such circuits are not recommended for stable frequency clock generators, a task normally performed by crystal-controlled oscillators.

Astables can also be devised that use only a single active circuit and correspond to types I and II. In some logic families Schmitt circuits are already available often with more than one input. These add the AND function to the switching action. The circuit with the unused inputs inhibited behaves like an operational amplifier with series positive feedback and the signal applied to the inverting input, i.e. when the output is returned to the input via an RC section it becomes a type I astable. When the output is positive the capacitor charges until it reaches the upper threshold voltage, switching the output to zero and discharging the capacitor back toward the lower threshold. The op.amp. and potential divider in type II comprise a non-inverting amplifier of finite gain. If the combination is replaced by a non-inverting logic buffer an astable action should again result. The missing factor is that the circuit must have a quiescent state in the capacitor's absence that brings it into the linear region. A grounded resistor is not valid for a logic gate, and is here replaced by a potentiometer. When set in the linear region oscillations commence — an additional series resistor can be used to set the frequency.
Astables: Logic gate circuits

THEORY

Both gates must enter their linear region for the loop gain to reach unity and initiate regenerative feedback. If these regions correspond to a small range of input voltages centred on $V_5/2$ the analysis is simple. For low-gain inverters both the waveforms and frequencies are less precise. It is assumed that input conduction is avoided (or minimized) as shown.

Under these conditions the outputs are anti-phase square waves with the transitions occurring as the differentiator input passes through $V_5/2$. On the positive going step this input is driven up to $V/2 + V_s = 3V_s/2$. At that instant the other end of the resistor is taken down to zero. Hence $V_1 = -3V_s/2$ while $V_2 = -V_s/2$

$$t_2 - t_1 = \tau \log_3 1.1 \tau$$

The second part of the cycle has the differentiator input driven to $V_2/2 - V_s = -V_2/2$ while the other end of the resistor rises to $V_s$. Hence $V_1 = 3V_s/2$, $V_2 = V_s/2$ giving an identical time interval.

Hence $T = 2\tau \log_3 2 = 2.2\tau$

If the circuit is interpreted as a phase-shift circuit using analysis as for a sinusoidal response, invalid results are obtained.

The modified form of the circuit has an inverter with a voltage-gain $>1$. Hence its output is saturated for most of the timing cycle, and though type V in structure, a modified analysis is required. Again the thresholds are assumed to be close to $V_2/2$ and the CR junction is driven to $3V_s/2$ and $-V_s/2$ on the transitions.

This leads to comparable values of period and frequency, viz $T = 2.2\tau$

Second-order effects are important at high frequencies where gate delays modify the response. In each case an additional large value resistor should be added in series with any gate/inverter input subject to voltage steps going outside the supply lines.

The first-order response is identical with that of the previous circuit. The Schmitt trigger is assumed to have upper and lower threshold voltages $V_u$ and $V_l$. The time for the rising ramp is

$$t_2 - t_1 = \tau \log_3 \frac{V_2}{V_1} = \tau \log_3 \frac{V_2 - V_l}{V_s - V_u}$$

and for the falling ramp $\tau \log_3 \frac{V_2 - V_u}{V_s - V_l}$

The period is $T = \tau \log_3 \left( \frac{V_2 - V_l}{V_s - V_u} \right) + \log_3 \frac{V_2}{V_s}$

$$T = T \log_3 \left( \frac{V_2 - V_l}{V_s - V_u} \right) + \tau \log_3 \left( \frac{V_2}{V_s} \right)$$

But for symmetrically placed thresholds

$$T = \tau \log_3 \left( \frac{V_2 - V_l}{V_s - V_u} \right) + \tau \log_3 \left( \frac{V_2}{V_s} \right) = 2\tau \log_3 \left( \frac{V_2}{V_s} \right)$$

EXAMPLES

1. The c.m.o.s. astable has $R = 100\,k\Omega$ and is required to oscillate at 10kHz. Assuming that $R_2$ is large enough to avoid conduction choose a suitable value of capacitance stating any assumptions.

The threshold of c.m.o.s inverters is normally within the range 45 to 55% $V_s$. It is convenient to take the threshold as $V_s/2$.

To check the effect of the variable threshold, assume each inverter switches at 0.45$V_s$

$$V_1 = V_1 + 0.45V_s$$

First time interval

$$t_1 = \tau \log_3 \left( \frac{3V_s}{2V_s} \right)$$

Second time interval

$$t_2 = \tau \log_3 \left( \frac{3V_s}{2V_s} \right)$$

This compares with a value of 2.197 for the symmetrical case if $\log_3$ is evaluated more accurately i.e. on changing the threshold by 5% of supply (or 10% of its initial value) the mark-space ratio changes from 1:1 to 1:1.12 a change of 13%, though the frequency changes by only 0.4%.

2. An astable is constructed with a c.m.o.s Schmitt circuit having upper and lower thresholds of 3$V_s$ and 6.5$V_s$ at a supply voltage of 10$V_s$. Estimate the frequency of oscillation with an RC section having $T = 500\mu s$.

The second part of the cycle has

$$V_1 = -1.55V_s$$

$$V_2 = -0.55V_s$$

First time interval

$$t_1 = \tau \log_3 \left( \frac{1.55}{0.55} \right) = 1.170\tau$$

Second time interval

$$t_2 = 2\tau \log_3 \left( \frac{1.55}{0.55} \right)$$

This result can be obtained from the general case above by substitution as in the analysis opposite.
Circuit Ideas continued

Amplitude modulator
With a 555 connected in the astable mode the timing capacitor charges and discharges between $V_{H} = 2V_{cc}/3$ and $V_{L} = V_{cc}/3$. By simultaneously increasing or decreasing $V_{H}$ to $V_{L}$ symmetrically about $V_{cc}/2$, amplitude modulation can be achieved. Resistor $R_{x}$ is a compromise between excessive drop under d.c. conditions and loading of op-amp $A_{1}$.

A. D. Teckchandani
Faridabad
India

Simple waveform generator
For audio frequencies this waveform generator offers several advantages over the usual Wien bridge circuit. No amplitude stabilization is required, there are no spasmodic interruptions to the output when switching range, and a range of 10:1 is easily achieved with a standard twin-gang potentiometer.

The integrator $T_1, T_2$, the emitter follower and the Schmitt trigger $T_6, T_3$ produce a triangular waveform at the collector of $T_2$. This output is of constant amplitude throughout the frequency range due to fixed triggering points. The triangular waveform also feeds a second integrator $T_6, T_3$, which produces a good sine wave of constant amplitude. The audio range is easily covered by three pairs of capacitors and the three outputs can be taken selectively to a single emitter follower.

F. V. Goodfellow
Southampton

Long duration timer
The two oscillators constructed from a 556 have periods $T_1 + t_1$ and $T_2 + t_2$, where the outputs of the oscillators are high during $T_1$ and $T_2$ and low during $t_1$ and $t_2$. Also, $t_1$ is much smaller than $T_1$ and $t_2$ is much smaller than $T_2$, but $T_1$ and $T_2$ are almost, but not quite, equal. When the supply is connected the oscillators start simultaneously and there is a long duration before the low periods of the oscillators overlap. When this occurs a short low pulse is produced by the 7400. The maximum interval between the pulses can be estimated as follows. Let $t_1 = t_2 = t$ and let $T_1 = T_2$. It then takes $T_1/t$ periods of the slow oscillator to overlap at the low duration. Therefore, the time delay $T$ is $T_1, T_2/t$ and can be very long. For example, if $t$ is 50μs and $T_1, T_2$ is 18 min, $T$ is 778 years. In the practical circuit with a 556 or two 555s, such long periods are not possible because the well known current spike, caused when the output of a 555 goes high, triggers the other oscillator into a low state before its high period has been completed. However, the new 355 timer should produce better results.

O. B. Hellman
Turku
Finland
Solenoid-operated cassette units

Typical applications of two new solenoid-operated cassette mechanisms, the Symot models LW 104 and YME 1006, include remote data acquisition, automatic annunciation, and processing activities in security systems. The LW 104 has been designed for use with continuous loop cassettes and is manufactured in corrosion-resistant plastic with a close-fitting translucent dust cover. The control solenoid, which operates on either 6V or 12V d.c., pulls on the pinch wheel and head assembly. The standard motor is an electronically-regulated type with an external circuit. YME 1006 is an all-metal skeleton mechanism for use with either continuous loop or conventional compact cassettes. Three forms are available — play only, record/replay with rewound facility and record/replay with cue and review facility. A (specially compounded) rubber capstan pinch roller permits permanent tape engagement without damage or roller indentation. Mono tape heads are fitted as standard and motors are mechanically regulated at 6V or 9V d.c. Symot Ltd, 22a Reading Rd, Henley-on-Thames, Oxfordshire RG9 1AG.

WW 301

Diagnostic engine tester

Diagnosis of engine timing and faults in the electrical system of petrol engines is the function of the SD-80 ignition tester manufactured by Albol Electronic and Mechanical Products. The unit is supplied from a 12V battery and the makers claim that, by its use, savings of about 10% can be made on petrol costs, although we assume that this presupposes that the engine is already operating below par. Functions covered by the tester include engine revs, ignition angle (with respect to t.d.c.), contact breaker make angle (dwell), battery voltage, h.t. voltage, plus two resistance checking ranges. The unit also powers a stroscopic lamp for advance/retard measurement and dimensions are 250 x 310 x 170mm at a weight of 4.8kg (2.21b). Price is £198 plus v.a.t. and a six-month guarantee is provided. Albol Electronic and Mechanical Products Ltd, 3 Crown St, London SE5.

WW 302

7-segment i.e.d. display

Each of the seven segments of the Highland Electronics 31-019 i.e.d. display can be illuminated separately and the unit can be panel-mounted in a single 16mm diameter round hole. Terminations are provided on a miniature p.c.b., which is an integral part of the unit's construction and extends in a vertical plane from the moulded body of the display. The terminal print on the board aligns with a standard 7-way d.i.l. socket with 2.54mm terminal spacing. Alternatively, the unit may be hard-wired. Ten connections are provided, one for each segment, one for the decimal point and two commoned negative supply terminals. The display will operate on voltages between 1.7 and 2.7V (d.c.), with each segment and the decimal point drawing 15mA continuous, 80mA pulse, for 1ms at max. voltage. The display provides, apart from numerals, upper case letters ACFHJLPUY and lower case letters bceghinory. Highland Electronics, 8 Old Steine, Brighton, East Sussex BN1 1EJ.

WW 303

Pocket frequency meter

Mobile communications applications are the areas of use which Electroplan quotes for the Labgear CM7044 portable frequency meter. This instrument covers the range 10MHz to 500MHz and it is powered by rechargeable batteries. A small antenna (with b.n.c. fitting) is provided enabling measurement of transmissions to be made without disturbing the transmitter or making internal connections. Readings are presented on a seven-segment i.e.d. display in two ranges — 10 to 50MHz and 50 to 500MHz. Electroplan Ltd, PO Box 19, Orchard Road, Royston, Herts SG8 5HJ.

WW 304

Radial component pre-former

An automatically fed machine, capable of forming and cropping up to 5000 components (radial capacitors and transistors) an hour is now available from Elite Engineering Ltd. The design of the machine allows the cropping and forming of components to the same form even where their bodies are different, without changing the tooling, although interchangeable tooling permits most different transistors to be cropped and formed for insertion in p.c. boards. Radial lead capacitors can be hopper fed if necessary or hand fed on to a belt if an especially difficult form is required. Demonstrations of the machine can be arranged or sample components sent to the makers for forming on standard
tools. Peter J. W. Noble, Elite Engineering Ltd, Unit 3, Saltern Lane, Fareham, Hants PO16 0TD.

**WW 305**

**Power supply and nicad charger**

Producing an output of 13.8V d.c. at 750mA for amateur radio transceiver operation and a second output at 45mA, constant current, for recharging nickel-cadmium batteries, the Lar Modules PS1200, permits trans-

mission from the base station while recharging is taking place. The transceiver output supply is regulated and all switching is automatic. Protection circuits are included and output 2 (charger) is at negative ground. LAP Modules Ltd, 27 Cookridge St, Leeds, LS2 3AG.

**WW 306**

**R.f.i. sealing paste**

Described as "extremely fine in texture, consisting of a high concentration of pure silver particles in silicone resin" by the makers, Emerson and Cumming (UK) Ltd, Eccoshield SX is a conductive, non-hardening sealant and gasketing material for use as an r.f. shield. Volume resistivity of the paste is less than 0.005-ohm and it can be used at temperatures from -70°F to +400°F (-56°C to +204°C) with no adverse effects. The paste's consistency can be changed by thinning with toluene and the manufacturer quotes its use on cover plates of conduit junction boxes, to replace knitted metal gaskets and on bolt threads where it can help to assure continuous electrical contact and to prevent corrosion. The claim is also made that structures sealed with Eccoshield have a measured insertion loss in excess of 100dB.

**WW 307**

**Mains socket tester**

Constructed in the form of a 13A mains plug top, a socket tester with a visual display which indicates a variety of fault conditions in a domestic mains supply is available from Galatrek. The makers say that when the tester is plugged into a socket (any form, including 5A or 15A round pin, these are connected by a length of cable) the neon display indicates "correct," "live fault," "no earth," "live/neutral reversed," "neutral fault," and "live/earth reversed." The tester costs £4.50 including v.a.t. and a 3-phase remote tester is also available at £8.95 inc. v.a.t. Galatrek, Scotland St, Lanrwst, Gwynedd, LL26 0AL, North Wales.

**WW 308**

**Tape head demagnetizer**

Demagnetization of tape heads without the need to withdraw the demagnetizing yoke away from the head at a constant speed is the claim made by TDK for its battery-operated electronic head demagnetizer, type No. HD11. The defluxing operation can be carried out in Is, and the yoke is adjustable to settings of 15° and 30° from the horizontal. The design of the unit also makes it possible to carry out defluxing of heads on many older models of tape recorder, some of which are difficult in terms of head access. TDK Tape Distributor (UK) Ltd, 11th Floor, Pembroke House, Wellesley Rd, Croydon, Surrey.

**WW 309**

**Auto transformers**

A range of transformers intended for the adaptation of modernized equipment which has been imported from the US is now available from F. H. Radford Ltd. This comprises a series of single phase auto transformers for either 240 or 220V supply, this input being transformed to 115V, by means of a single connection change. Four basic models are available as 500, 1000, 2000 and 3000VA, each of which is equipped with two American 15A 3-pin outlets and a 3-core output lead. F. H. Radford Ltd, 38 Charlotte St, London WIP 1HP.

**WW 310**

**Magazine storage rack**

A collapsible frame moulded from polythene and held together by four metal tubes constitutes the Multi-file magazine storage rack. The frame is designed to hold up to 24 issues of a fairly bulky A4 publication (such as Wireless World) although a few more can be squeezed in if required. Each magazine is fitted with two clips which pinch at either end of the spine, and located at the centre spread — these must be fitted carefully to avoid tearing — and the journal is then hung by these polythene spikes from broadcast f.m. circuits or d.c. motors. In order to maintain the 19kHz pilot tone during blanking periods, a signal generated by a car's ignition circuits or d.c. motors. In order to maintain the 19kHz pilot tone during blanking periods, a signal derived from the decoder v.c.o. is added to the input signal for a period determined by the setting of externally-controlled time constants. This method ensures that the blanking process does not impair the quality of the output signal. Further information for alternative applications is available from the distributor and the one-off price of the i.c. is £2.53 excluding v.a.t. Ambit International, 200 North Service Rd, Brentwood, Essex CM14 4SG.

**WW 311**

**Long scale panel meter**

Applications requiring higher than usual accuracy are quoted by Bach-Simpson (UK) for its new range of panel meters featuring a 250° pointer deflection angle. These meters, specified as 2123L for d.c. and 2143L for a.c. (rectified) are self-shielded, permanent magnet moving-coil instruments with non-magnetic pivots and spring-backed jewels; zero adjustment is via the front pivot. The facia dimensions of these meters are identical to the Simpson "Century" range of 3½ in panel meters. Bach-Simpson (UK) Ltd, Trenant Estate, Wadebridge, Cornwall, PL27 6HD.

**WW 312**

**Noise blanking chip**

Designed for the removal of noise spikes from broadcast f.m. com- posite signals before decoding, the Toko KB456 is claimed by the UK distributor, Ambit Inter-
ternational, to be capable of providing an improvement of approximately 25 to 30dB on the unblanked signal to noise ratio. This i.c. is specifically intended for the removal of short duration impulse noise such as that generated by a car's ignition circuits or d.c. motors. In order to maintain the 19kHz pilot tone during blanking periods, a signal derived from the decoder v.c.o. is added to the input signal for a period determined by the setting of externally-controlled time constants. This method ensures that the blanking process does not impair the quality of the output signal. Further information for alternative applications is available from the distributor and the one-off price of the i.c. is £2.53 excluding v.a.t. Ambit International, 200 North Service Rd, Brentwood, Essex CM14 4SG.
Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues for about the same price.

Our new 169 is a tough, lightweight, battery-powered digital multimeter for use in the field or on the bench. It is a 34-digit, full 5-function DMM with respectable .25% DC accuracy.

Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer component life and fewer failures. MTBF is 20,000 hrs. or about 10 years.

All 5 functions are fully protected – 1400V peak on DCV and ACV, 300V on Ω, 2A (250V) on DCA and ACA. The fuse is externally accessible for quick replacement. Extensive vibration stress-testing assures the 169 will stand up to all the mechanical shock and abuse normally associated with tough applications.

Cost-conscious ease of maintenance is so thoroughly designed into the 169 that only one calibration adjustment a year is required. That adds up to a cost-of-ownership no other competitive DMM can touch. For example, the 169 needs only one battery change per year at a cost of about £1.50.

When you factor in features like function and range annunciation right on the display, auto-zero, auto polarity, 60% larger display than other DMMs and the easy-to-read, colour coded front panel, we think you'll get the point. No analogue meter or DMM can match the price/performance of the new 169. It costs £99 (plus VAT)

For information on the 169 or any Keithley DMM call (0734) 861287
Telex: 847047

Ex stock

WW-059 FOR FURTHER DETAILS
SIMPLY AHEAD - and staying there!

O.E.M. PLATE
POWER AMPLIFIERS

MADE IN ENGLAND

I.L.P. offer for prompt delivery, a range of O.E.M. Plate Power Amplifiers in three useful output ratings. These units are typical of I.L.P. design and manufacture - encapsulated circuitry, rugged construction, just five pin connections, trouble-free mounting, no output capacitor or other external components to be added, and operation from split line power source. PRICES ARE KEENLY COMPETITIVE. QUALITY AND MANUFACTURE OF THE HIGHEST POSSIBLE STANDARDS. Modules can also be manufactured to customer's own design.

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PRICE FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>HY 120P 60W rms (6)</td>
<td>£10.30</td>
</tr>
<tr>
<td>HY 200P 120W rms (6)</td>
<td>£13.18</td>
</tr>
<tr>
<td>HY 400P 200W rms (4)</td>
<td>£19.26</td>
</tr>
</tbody>
</table>

Sizes -
HYP 120P and HY 200P
HY 400P

116 x 50 x 23mm
116 x 75 x 23mm

A division of I.L.P. ELECTRONICS LTD., GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY, KENT, CT2 7EP (0227) 54778 : Telex 965780

WW—088 FOR FURTHER DETAILS

SOFTY
IN FACT IS AN INTELLIGENT EPROM PROGRAMMER

with a range of serial and parallel inputs - plus a keyboard for manual entry.

SOFTY presents a hexa-decimal MAP OF MEMORY contents on a TV set. The user has an ASSEMBLER-FACILITY to manipulate the displayed data, and cassette-tape storage of working programs and useful routines.

When purchased as a microprocessor product development kit, Softy costs only £100.

For literature and the name of your local retailer, contact Damnam, P.O. Box 5, Dorchester, Dorset DT2 7UB or Telephone 03002 700.

WHOLESALE ELECTRONIC COMPONENTS

- AU113
- 3k-Presets
- TBA800
- 4700µF 16v Elec.
- 7448 TTL
- 16-Pin DIL Socket
- Z-80 P10 4MHz
- 2708 EPROM
- 2114 SRAM
- 4116 DRAM

Prices include 15% VAT. Postage extra.

And many more. Companies invited to send SAE for our up-to-date price list.

Please phone for availability before ordering.

STRUTT ELECTRICAL AND MECHANICAL ENGINEERING LTD.
ELECTRICAL COMPONENT DISTRIBUTORS

3c BARLEY MARKET ST.
TAVISTOCK
DEVON PL19 0SF
Tel. TAVISTOCK (0822) 5439
Telex: 45263
THREE FOR FREE FROM CSC

Available from selected stockists

ELECTRONICS BY NUMBERS

RAIN ALARM
You need never be caught out by the weather again.
The rain alarm will emit a warning sound whenever there's rain or moisture in the atmosphere.
The current drawn from the battery is negligible so it can be left switched on for up to a year!

WOBBLY WIRE GAME
All the fun of the fair, in your own home! Test your skill at building and playing this version of the popular game, where a "wand" has to be moved from one end of a wire to the other, without the loop at the end of the wand ever touching the wire.

HIGH QUALITY CONTINUITY TESTER
An invaluable piece of test gear for testing and fault finding circuits and wiring. Pure continuity checks can be carried out without being affected by adjoining circuitry.

Want to get started on building exciting projects but don't know how? Now using EXPERIMENTOR BREADBOARDS, you can build electronic projects.

Look at the diagram, select R1, plug it in to the letter numbered holes on the EXPERIMENTOR BREADBOARD, do the same with the other components, connect to battery and ANYBODY can build a perfect working project.

YOU WILL NEED
e.g. LED Bar Graph (a previous project) components EXP300 or EXP350
D1 to D15 - Silicon Diodes
R1 to R6 Resistors
LED 1 to LED 6 Light emitting diodes

For the full detailed instructions, including "Electronics by Numbers" circuit diagrams, simply take the coupon to your nearest CSC stockist or send direct to us and you will receive "THREE FREE PROJECTS FROM CSC".

If you missed Free project No's 1, 2 and 3, please tick the appropriate box in the coupon.

PROTO-BOARDS
The ultimate in breadboards for the minimum of cost. Two easily assembled kits.
P 86 Kit, 630 contacts, four 5-way binding posts accepts up to six 14-pin Dips.

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.

IT'S EASY WITH C.S.C.
TO RECEIVE YOUR FREE COPY OF PROJECTS 4, 5 and 6.

Just clip the coupon
Give us your name and full postal address (in block capitals). Enclose cheque, postal order or credit card number and expiry date, indicating in the appropriate boxes (the breadboard(s) you require.

For immediate action
The C.S.C., 24 hour, 5 day a week service.
Telephone 0799 21862 and give us your Access, American Express or Barclaycard number and your order will be in the post immediately.

STICK THE COUPON TO YOUR LETTERHEAD AND SEND TO

CONTINENTAL SPECIALTIES CORPORATION
C.S.C. (UK) LTD.
Dept 7EE Shire Hill Industrial Estate Unit 1
Saffron Walden, Essex CB11 3AQ
Tel. Saffron Walden (0799) 21862. Telex: 817477

PB 86 Kit, 630 contacts, four 5-way binding posts accepts up to six 14-pin Dips.

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.

PROTO-BOARD 100 KIT (£11.80)

Available from selected stockists

EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter numbered nickel-silver contact holes. Start small and simply snap lock boards together to build a breadboard of any size.

All EXP breadboards have two bus bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus bars with the aid of an EXP 4B.

EXP 325 £1.60 The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus bars.

EXP 360 £3.15 Specially designed for working with up to 40 pin ICs perfect for 5 & 14 pin ICs. Has 270 contact points including two 20 point bus bars.

EXP 300 £5.75 The most widely bought breadboard in the UK. With 150 contact points, two 40 point bus bars, the EXP 300 will accept any size IC and up to 6 x 14 pin DIPs.

EXP 600 £6.30 Most MICROPROCESSOR projects in magazines and educational books are built on the EXP 600.

EXP 650 £9.00 Has -6 centre spacing so is perfect for MICROPROCESSOR applications.

EXP 4B £2.30 Four 40 point bus bars in "snap-on" unit.

The above prices are exclusive of P&P and 15% VAT.

THE CSC 24 HOUR SERVICE
TELEPHONE (0799) 21862

With your Access, American Express, Barclaycard number and your order will be in the post immediately.
The 7208 600 MHz Mini Counter

**FEATURES...**
- All Metal Cabinet
- 8 Digit .4" LED Display
- Built-in Prescaler
- Automatic Dp Placement
- Gate Light
- IC Sockets Included
- 240V or 12V Operation
- Proportional Control Crystal Oven (Optional)
- Built-in VHF-UHF Preamp
- Completely Portable with Rechargeable Batteries (Optional)

**DESCRIPTION**
The Davis 7208 VHF-UHF Frequency Counter incorporates the latest LSI technology in a wide range portable instrument at a reasonable price. The 7208 offers outstanding features including an all metal cabinet for RF shielding, large 8 digit display, built-in prescaler, automatic DP, and with the built-in VHF-UHF preamp the 7208 can directly measure low level RF signals from RF generators. The 7208 can also be operated completely portable with the Ni-Cad battery option. Price £145.00 + VAT.

**AVAILABLE FROM THE EXCLUSIVE U.K. DISTRIBUTORS:**
SOTA COMMUNICATION SYSTEMS LTD.
26 CHILDWALL LANE, BOWRING PARK, LIVERPOOL L14 6TX
MERSEYSIDE. TEL. 051-480 5770 Telex 627110 SOTA G

---

**NewBear Components**

**CALLERS AND MAIL ORDER:** 40 Bartholomew Street, Newbury, Berks. Tel: 0635 30505

---

**Microcomputing I.C.'s**

<table>
<thead>
<tr>
<th>I.C.</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC6800</td>
<td>7.15</td>
</tr>
<tr>
<td>MC6802</td>
<td>8.50</td>
</tr>
<tr>
<td>MC6821</td>
<td>4.65</td>
</tr>
<tr>
<td>MC6850</td>
<td>6.74</td>
</tr>
<tr>
<td>MC6810AP</td>
<td>3.61</td>
</tr>
<tr>
<td>MC6840</td>
<td>12.72</td>
</tr>
<tr>
<td>MC6802P</td>
<td>2.88</td>
</tr>
<tr>
<td>MG14536P</td>
<td>3.69</td>
</tr>
<tr>
<td>MC3459</td>
<td>2.43</td>
</tr>
<tr>
<td>280 CPU 2.5MHz</td>
<td>8.99</td>
</tr>
<tr>
<td>280 P1 2.5MHz</td>
<td>7.99</td>
</tr>
<tr>
<td>280 CTC 2.5MHz</td>
<td>7.99</td>
</tr>
<tr>
<td>280 A CPU 4kHz</td>
<td>13.99</td>
</tr>
<tr>
<td>280 A P1 4kHz</td>
<td>10.00</td>
</tr>
<tr>
<td>280 A CTC 4kHz</td>
<td>10.00</td>
</tr>
<tr>
<td>SC/MP 11</td>
<td>8.88</td>
</tr>
<tr>
<td>(INS 8060N)</td>
<td></td>
</tr>
<tr>
<td>8080A</td>
<td>8.18</td>
</tr>
<tr>
<td>6502</td>
<td>9.90</td>
</tr>
<tr>
<td>6522</td>
<td>7.90</td>
</tr>
<tr>
<td>6532</td>
<td>12.56</td>
</tr>
<tr>
<td>6551</td>
<td>10.79</td>
</tr>
<tr>
<td>6545</td>
<td>16.66</td>
</tr>
<tr>
<td>28001</td>
<td></td>
</tr>
<tr>
<td>AMD 9511</td>
<td></td>
</tr>
</tbody>
</table>

**ACORN......**

S100 at NEWBEAR

**SPECTRONICS**

**UV Eprom-Erasing Lamp**

PE14* Erases up to 6 chips. Takes approx. 19 mins. **£56.00**

PE14T* Erases up to 6 chips. Takes approx. 15 mins. **£76.58**

PE24T* Erases up to 9 chips. Takes approx. 15 mins. **£111.22**

PR125* Erases up to 6 chips. Takes approx. 7 mins. **£237.84**

PR320T* Erases up to 36 chips. Takes approx. 7 mins. **£384.09**

PC1000* Erases up to 72 chips. Takes approx. 7 mins. **£842.83**

**UV Eprom-Erasing Cabinet**

PC2000* Erases up to 144 chips. Takes approx. 7 mins. **£1227.69**

Includes a 60 min. Timer.

**TERMS:** Credit Sales (minimum £10.00) Barclaycard and Access Welcome. Please add 15% VAT.

---

**FREQUENCY COUNTERS — OSCILLOSCOPES — OFF-AIR RECEIVERS**

**20 MODELS AVAILABLE INCLUDING LED VERSIONS AND TALKING READOUTS**

<table>
<thead>
<tr>
<th>Model</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250MHz 801 B/M</td>
<td>£250</td>
</tr>
<tr>
<td>Crystal oven, 3 parts 10*</td>
<td></td>
</tr>
</tbody>
</table>

**RCS ELECTRONICS, WOLSELEY ROAD, ASHFORD, MIDDX. ASHFORD 53661**

**SUPPLIERS TO:** Ministry of Defence, G.P.O., B.B.C., N.P.L., Government Depts., Crystal Manufacturers and Electronic Laboratories world-wide

**WWW — 046 FOR FURTHER DETAILS**
**SEMICONDUCTORS**  
SEND YOUR ORDERS TO  
DEPT. WW11, PO BOX 6, WARE, HERTF.  
VISIT OUR SHOP AT: 3 BALDOW ST, WARE, HERTF.  
TEL: 0920 3182. TELEX: 878611

**BI-PAK**

### TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC156</td>
<td>0.21</td>
<td>BC148</td>
<td>0.08</td>
</tr>
<tr>
<td>AC158</td>
<td>0.14</td>
<td>BC149</td>
<td>0.09</td>
</tr>
<tr>
<td>AC79</td>
<td>0.25</td>
<td>BC227</td>
<td>0.62</td>
</tr>
<tr>
<td>AC132</td>
<td>0.23</td>
<td>BC160</td>
<td>0.12</td>
</tr>
<tr>
<td>AC173</td>
<td>0.23</td>
<td>BC161</td>
<td>0.15</td>
</tr>
<tr>
<td>AC141X</td>
<td>0.35</td>
<td>BC162</td>
<td>0.12</td>
</tr>
<tr>
<td>AC137</td>
<td>0.23</td>
<td>BC166</td>
<td>0.11</td>
</tr>
<tr>
<td>AC142X</td>
<td>0.35</td>
<td>BC168</td>
<td>0.11</td>
</tr>
<tr>
<td>AC137</td>
<td>0.23</td>
<td>BC169</td>
<td>0.11</td>
</tr>
<tr>
<td>AC186</td>
<td>0.24</td>
<td>BC171</td>
<td>0.14</td>
</tr>
<tr>
<td>AC198X</td>
<td>0.32</td>
<td>BC172</td>
<td>0.14</td>
</tr>
<tr>
<td>AC196</td>
<td>0.25</td>
<td>BC173</td>
<td>0.14</td>
</tr>
<tr>
<td>AC167</td>
<td>0.16</td>
<td>BC207</td>
<td>0.12</td>
</tr>
<tr>
<td>AC183</td>
<td>0.46</td>
<td>BC209</td>
<td>0.19</td>
</tr>
<tr>
<td>AC189</td>
<td>0.68</td>
<td>BC210</td>
<td>0.27</td>
</tr>
<tr>
<td>AC192</td>
<td>0.52</td>
<td>BC211</td>
<td>0.27</td>
</tr>
<tr>
<td>AC190</td>
<td>0.46</td>
<td>BC212</td>
<td>0.27</td>
</tr>
<tr>
<td>AC191</td>
<td>0.47</td>
<td>BC213</td>
<td>0.27</td>
</tr>
<tr>
<td>AC102</td>
<td>0.13</td>
<td>BC214</td>
<td>0.17</td>
</tr>
<tr>
<td>AC110</td>
<td>0.10</td>
<td>BC215</td>
<td>0.17</td>
</tr>
<tr>
<td>AC108</td>
<td>0.10</td>
<td>BC216</td>
<td>0.17</td>
</tr>
<tr>
<td>AC104</td>
<td>0.07</td>
<td>BC217</td>
<td>0.17</td>
</tr>
<tr>
<td>AC106</td>
<td>0.07</td>
<td>BC218</td>
<td>0.17</td>
</tr>
<tr>
<td>AC105</td>
<td>0.12</td>
<td>BC219</td>
<td>0.17</td>
</tr>
<tr>
<td>AC147</td>
<td>0.05</td>
<td>BC349</td>
<td>0.12</td>
</tr>
</tbody>
</table>

### SILICON RECTIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7407</td>
<td>£0.21</td>
<td>£0.21</td>
</tr>
<tr>
<td>7406</td>
<td>£0.21</td>
<td>£0.21</td>
</tr>
<tr>
<td>7402</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7403</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7404</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7407</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7408</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7409</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7410</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7411</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7412</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7413</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7414</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7415</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7416</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7417</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7418</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7419</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7420</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7421</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7422</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7423</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7424</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
<tr>
<td>7425</td>
<td>£0.12</td>
<td>£0.12</td>
</tr>
</tbody>
</table>

### CMOS ICs

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4002</td>
<td>0.16</td>
<td>CD4015</td>
<td>0.87</td>
</tr>
</tbody>
</table>

### POWER SUPPLIES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2</td>
<td>£1.22</td>
</tr>
</tbody>
</table>

### AUDIO MODULES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>AL20 5 watt amplifier module</td>
<td>£3.73</td>
<td></td>
</tr>
<tr>
<td>AL30A 7-10 watt amplifier module</td>
<td>£3.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL60 15-25 watt amplifier module</td>
<td>£5.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL80 35 watt amplifier module</td>
<td>£8.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL120 50 watt amplifier module</td>
<td>£13.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL250 125 watt amplifier module</td>
<td>£19.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### G.P. SWITCHING TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors</td>
<td>J301 30 amp NPN</td>
<td>£0.09</td>
<td></td>
</tr>
<tr>
<td>J302 30 amp PNP</td>
<td>£0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J303 30 amp JFET</td>
<td>£0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J304 30 amp JFET</td>
<td>£0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J305 30 amp JFET</td>
<td>£0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J306 30 amp JFET</td>
<td>£0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J307 30 amp JFET</td>
<td>£0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J308 30 amp JFET</td>
<td>£0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J309 30 amp JFET</td>
<td>£0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J310 30 amp JFET</td>
<td>£0.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### G.P. SILICON DIODES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diodes</td>
<td>3N5401 1N4001 50v</td>
<td>£0.05</td>
</tr>
<tr>
<td>3N5402 1N4002 100v</td>
<td>£0.07</td>
<td></td>
</tr>
<tr>
<td>3N5403 1N4003 200v</td>
<td>£0.12</td>
<td></td>
</tr>
<tr>
<td>3N5404 1N4004 200v</td>
<td>£0.27</td>
<td></td>
</tr>
<tr>
<td>3N5405 1N4005 200v</td>
<td>£0.27</td>
<td></td>
</tr>
<tr>
<td>3N5406 1N4006 200v</td>
<td>£0.27</td>
<td></td>
</tr>
<tr>
<td>3N5407 1N4007 200v</td>
<td>£0.27</td>
<td></td>
</tr>
<tr>
<td>3N5408 1N4008 200v</td>
<td>£0.27</td>
<td></td>
</tr>
<tr>
<td>3N5409 1N4009 200v</td>
<td>£0.27</td>
<td></td>
</tr>
<tr>
<td>3N5410 1N4010 200v</td>
<td>£0.27</td>
<td></td>
</tr>
</tbody>
</table>

## SOCKETS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Amp StO 400v</td>
<td>£0.40</td>
<td></td>
</tr>
<tr>
<td>5 Amp</td>
<td>£0.71</td>
<td></td>
</tr>
</tbody>
</table>

## METAL FOIL CAPACITOR PAK

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01uF 100v</td>
<td>£0.55</td>
<td></td>
</tr>
<tr>
<td>0.1uF 100v</td>
<td>£0.66</td>
<td></td>
</tr>
</tbody>
</table>

## JUMBO PAK SEMICONDUCTOR

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N342 10N342 200v</td>
<td>£0.12</td>
<td></td>
</tr>
</tbody>
</table>

### ALL PRICES INCLUDE VAT: ADD 35p POST PER ORDER

JUST QUOTE YOUR ACCESS OR BARCLAYCARD NO.
NRDC-AMBIOSONIC UHJ

SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years’ research by the Ambisonic team. W.W. July, Aug. ’77.

The unit is designed to decode not only UHJ but virtually all other ‘quadrophonic’ systems (Not CD4), including the new BBC HJ 10 input selections.

The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee £49.50 + VAT
or ready built and tested £67.50 + VAT

NEW S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. S/N 90 dB, Mag/n 80 dB.
Output device rating 360w per channel
Tone cancel switch. 2 tape monitor switches.
Metal case—comprehensive heatsinks
Complete kit only £63.90 + VAT.

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

The original 'Wireless World' published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240V ac mains or 12V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet.

Complete kit £49.50 plus VAT.

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc.

Feature:
- switching for both encoding (low-level h.f. compression) and decoding
- a switchable t.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA).
- no equipment needed for alignment.
- suitability for both open-reel and cassette tape machines.
- check tape switch for encoded monitoring in three-head machines.

Also available ready built and tested

Calibration tapes are available for open-reel use and for cassette (specify which)

Single channel plug-in Dolby PROCESSOR BOARDS (92 x 87mm) with gold plated contacts and all components

Please add VAT @ 15%

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

INTEGREX LTD.
A high-quality push-button FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range 88–104MHz. 30dB mono S/N @ 1.2V. THD 0.3%. Pre-decoder ‘birdy’ filter. PRICE: £59.95 + VAT

NELSON-JONES MK.2 STEREO FM TUNER KIT
Price: £69.95 + VAT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.  

Brief Spec. Tuning range 88–104MHz. 20dB mono quieting @ 0.75μV. Image rejection — 70dB. IF rejection — 85dB. THD typically 0.4%. IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.

Mono £36.40 + VAT
With ICPL Decoder £40.67 + VAT
With Portus-Haywood Decoder £44.20 + VAT

STEREO MODULE TUNER KIT
A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder ‘birdy’ filter. Push-button tuning

PRICE: Stereo £33.95 + VAT

S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful ‘TEXAN’ design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring. Power on/off FET transient protection.

PRICE: £35.95 + VAT

BASIC NELSON-JONES TUNER KIT £15.70 + VAT
BASIC MODULE TUNER KIT (stereo) £18.50 + VAT
PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER KIT £8.80 + VAT

WWW — FOR FURTHER DETAILS
West Hyde have the greatest range of instrument cases

**CONTIL-DIN**

The ready-made DIN case you have been waiting for

Heavy aluminium extrusions lock rigidly together providing, heat dissipation, screening, and strength, with provision for 16 P.C. boards and quick component mounting. Each section consists of, aluminium section, steel sections and strength, with provision for 16 P.C. boards and quick component mounting.

- MD2A 8.90
- MD2B 11.20
- MD2C 12.50
- MD2D 16.70
- MD2E 12.40
- MD2F 13.95
- MD2G 11.90
- MD2H 16.90
- MD2I 18.80
- MD2J 13.95
- MD2K 17.80
- MD2L 20.50
- MD2M 14.50
- MD2N 12.75
- MD2O 16.70
- MD2P 12.20
- MD2Q 14.30
- MD2R 16.50
- MD2S 13.55
- MD2T 15.90
- MD2U 20.80
- MD2V 16.70
- MD2W 18.10
- MD2X 24.50
- MD2Y 19.40
- MD2Z 22.75

This is logical miniaturization.

**MOD-2**

A very popular case of universal use


- SAM 001: £10.90
- SAM 002: £10.50
- SAM 003: £11.20
- SAM 004: £11.90
- SAM 005: £12.40
- SAM 006: £12.75
- SAM 007: £13.25
- SAM 008: £13.75
- SAM 009: £14.30
- SAM 010: £15.30
- SAM 011: £15.90
- SAM 012: £16.50
- SAM 013: £17.25
- SAM 014: £17.90
- SAM 015: £19.60
- SAM 016: £23.25

A truly environmental housing

Entrap solves your environmental and structural problems and because of its chemical resistance is ideal in the process industries. The polycarbonate is virtually unbreakable. Covers-PVC, glass reinforced PVC, glass reinforced aluminium, aluminium. Each section consists of, environmental housing, Entrap solves your environmental and structural problems and because of its chemical resistance is ideal in the process industries. The polycarbonate is virtually unbreakable. Covers-PVC, glass reinforced PVC, glass reinforced aluminium, aluminium.

- ENCASE A: £17.95
- ENCASE C: £17.25
- ENCASE J: £19.60
- ENCASE L: £23.25

Send for catalogue

All West Hyde cases are available with substantial discounts for quantities. Most cases have discounts at 5, 10 and 25 off with discounts up to 25% at 100 off. Prices include P&P but not VAT, and are less 10% if collected on first two price breaks on cases only. Send for NEW catalogue. Prices correct at press date.

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Milivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 50 calibrated ranges. £78.00.

- Si452: £63.00
- Si453: £78.00

STEREO DISC AMPLIFIER 3

A reference amplifier for disc monitoring and transfer when replay signals of the highest quality are required.

- Dominus: P.O. Box 1

Please ring or write for six page specification leaflet.

Radio Shack Ltd

188 Broadhurst Gardens, London NW6 3AY

Giro Account No. 588 7151. Telephone: 01-624 7174
SERVICE TRADING CO

FT3 NEON FLASH TUBE
High intensity, multi-amp, high voltage neon glow discharge flash tube. Operates at 20,000 V and 300 mA. £2.49 inc. VAT & P.

WHY PAY MORE?
To meet all your electrical needs. Type M751A
AC/DC voltmeter 40, 50, 100, 150, 200, 300, 400, 500. £4.50 inc. VAT & P.

240V/250V 24 Channel, 20mA ± 3%, operate for non-approved test. £22.50 inc. VAT & P.

TRIAC
Rectifier thyristorised, Type T50/250-500 10 amp 500 volts. £3.50 inc. VAT & P.

MICRO SWITCHES
Test to IEE spec. Rugged metal construction
WESTOOL TYPE MMS MODEL 2
240V AC Solenoid. Approx 11lb pull, 1/2 inch Rating 1. Price £2.00 inc. VAT & P.

MAGNETIC TRANSFORMERS
Rated 10 kVA (Max. 50 amp) 7-5 kVA (Max. 25 amp) 1 kVA (Max. 10 amp) 500/1 kVA (Max. 50 amp). Price £20.25 inc. VAT & P.

SQUAD LIGHT
A new conception in light control

GEARED MOTORS
100 RPM 115lb stall
110 in. 110 volt 0-50 Micro Universal 240V 200/50 50HP motor. £30.95 inc. VAT & P.

GEARED MOTORS
12 in. 75mm diameter. All types. £4.95 inc. VAT & P.

PARVALUX 230/250V AC MOTOR
Type 1020B 250V AC motor. £2.95 inc. VAT & P.

CITENCO
FPD motor type 7233-15 220-240V AC 19W. £4.50 inc. VAT & P.

REDUCTION DRIVE GEARBOX
POWERS IV. £18.75 inc. VAT & P.

BIG INCH
1200 RPM 1200 watts 1/0', 0-1000 0-2000V DC 0-2000V DC. £18.10 inc. VAT & P.

GEARED RHEOSTATS
New ceramic construction, extreme material strength and welding, heavy duty assembly continuously rated.

SOLDIERS CABLES
Wiring and power cables. 10/250 too 10/2500. £1.50 inc. VAT & P.

POWER RELAYS
A wide range of DC and AC relays available from stock. Price £0.15 inc. VAT & P.

All Mail Orders — Callers
— All Operating
Showroom open Mon.-Fri.
PROBABLY THE MOST INEXPENSIVE QUALITY SIGNAL GENERATOR AVAILABLE TODAY

Audio Range: 10Hz-100Khz, in four switched ranges. Distortion
Extremely low. (.0015% typical, @ 1Khz).
Output
1v into 6000, with
Fixed and Variable Attenuation.
Sine and Square Wave.
Based on a Linsley Hood design
Battery or Mains.

£36.00 (batty.)
Tax extra £5.40
P&P £2.00

TELERADIO ELECTRONICS
325 FORE STREET, EDMONTON, LONDON N9 0PE
01-807 3719
Closed Thursdays
SAE for lists

WW - 020 FOR FURTHER DETAILS

BUILD YOUR OWN HIGH QUALITY TURNTABLE

Direct drive motor/die cast turntable pack
£26.00 + £3.90 V.A.T.
including post & packing
(V.A.T. shown at present rate of 15%)
Further details of these top quality components in return for s.a.e. or personal callers welcome.
This offer applies to U.K. & Northern Ireland only: ask for quote for export orders.
Symot Limited, 22a, Reading Road, Henley-on-Thames, Oxfordshire. RG9 1AG. Telephone (049-12) 2663.

WW - 081 FOR FURTHER DETAILS

K.A.G A150 MIXER AMPLIFIER

£149.50
inc. VAT

Mono, all purpose, reliable, strongly made (¼" All frame).
Double anodised facia. Full electronic short circuit protection.
Six independent inputs. Dual Stereo, RIAA, change-over fader for Discos.
Twin Jack output sockets: 80 150W, 40100W, 160 80W (R.M.S.)

K.A.G. Electronic Inv. Ltd., 20 Priory St., Tonbridge, Kent
CALL FOR DEM or PHONE (0732) 358105 FOR LEAFLET

WWW - 050 FOR FURTHER DETAILS

EURO VHF FM TUNERSET 7252

The four stage frontend employs dual gate MOSFET transistors for both RF and Mixer stages, providing the 7252 with a 1uV sensitivity for 30dB S/B (m). The IF uses a dual ceramic IF filter, and provides all usual HiFi functions, of tuning meter, muting, AFC and AGC. THD is only 0.1%.

LARSHOLT ELECTRONICS
DK-4622 HAVDRUP - DENMARK

ex-stock from:
AMBIT INTERNATIONAL
200 North Service Road
Brentwood, ESSEX CM14 4SG
Tel. (0277) 230909

Write or phone for free brochure which gives full technical details and application notes for this and other Larsholt products.

WW - 023 FOR FURTHER DETAILS
WIRELESS WORLD, JANUARY 1980

Specially reduced prices for ready-built Teletext Decoders... from only £160. Send SAE for details and current list.

Kits and PCBs are now available for the Ultrasonic Remote Control unit as described in recent issues of W.W. Kit includes printed-through-hole "Board 4" Kit £26.62 total.

Components necessary to build the complete decoder. A reprint of the series of articles is complete decoder. Components and installation instructions.

Heatsink and Screwdriver £5.29, + £1.73. Specially reduced prices for ready-built Teletext Decoders... also available.

Full fault-finding and repair service available. Components also available separately — SAE for price list.

Everything covered by our three year guarantee.

Barrie Electronics Ltd.
3,THE MINORIES, LONDON EC 3N 1BJ

Telephone: 01-488 3316

NEAREST TUBE STATIONS: ALDAGATE & LIVERPOOL ST.

WW - 039 FOR FURTHER DETAILS

 WW - 011 FOR FURTHER DETAILS
Simply ahead...

ILP'S NEW GENERATION OF HIGH

I.L.P. modular units comprise five power amplifiers, pre-amp which is compatible with the whole range, and the necessary power supply units. The amplifiers are housed and sealed within heatsinks all of which will stand up to prolonged working under maximum operating conditions.

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain — the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD’S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

AVAILABLE ALSO FROM A NUMBER OF SELECTED STOCKISTS
and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

VALUES OF COMPONENTS FOR CONNECTING TO HY5

Volume - 10K / log.
Bass/Treble - 100K / linear.
Balance - 5K / linear.

The HY5 pre-amp is compatible with all I.L.P, amplifiers and P.S.U.'s. It is contained within a single pack 50 x 40 x 15 mm. and provides multi-function equalisation for Magnetic/Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at 1KHz-0.01%. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.

£4.64 + 74p VAT

THE POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Output Power</th>
<th>Distortion Typical at 1KHz</th>
<th>Minimum Signal/Noise Ratio</th>
<th>Power Supply Voltage</th>
<th>Size in mm</th>
<th>Weight in gms</th>
<th>Price + V.A.T.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY30</td>
<td>15 W</td>
<td>0.02%</td>
<td>80dB</td>
<td>-200 to +20</td>
<td>105x50x25</td>
<td>155</td>
<td>£6.34 + 95p</td>
</tr>
<tr>
<td>HY50</td>
<td>30 W</td>
<td>0.02%</td>
<td>90dB</td>
<td>-250 to +25</td>
<td>105x50x25</td>
<td>155</td>
<td>£7.24 + 10p</td>
</tr>
<tr>
<td>HY120</td>
<td>60 W</td>
<td>0.01%</td>
<td>100dB</td>
<td>-350 to +35</td>
<td>114x50x85</td>
<td>575</td>
<td>£15.20 + 22p</td>
</tr>
<tr>
<td>HY200</td>
<td>120 W</td>
<td>0.01%</td>
<td>100dB</td>
<td>-450 to +45</td>
<td>114x50x85</td>
<td>575</td>
<td>£18.44 + 27p</td>
</tr>
<tr>
<td>HY400</td>
<td>240 W</td>
<td>0.01%</td>
<td>100dB</td>
<td>-450 to +45</td>
<td>114x100x85</td>
<td>1.15Kg</td>
<td>£27.68 + 45p</td>
</tr>
</tbody>
</table>

Load impedance - all models 4 - 16.11 - input sensitivity - all models 500 mV - Input impedance - all models 100K / log - Frequency response - all models 10Hz - 45Hz - 3dB

THE POWER SUPPLY UNITS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

PSU 30 15V at 100mA to drive up to five HY5 pre-amps £4.50 + £0.68 VAT
PSU 36 for 1 or 2 HY30's £8.10 + £1.22 VAT
PSU 50 for 1 or 2 HY50's £8.10 + £1.22 VAT
PSU 70 with toroidal transformer for 1 or 2 HY120's £13.61 + £2.04 VAT
PSU 90 with toroidal transformer for 1 HY200 £13.61 + £2.04 VAT
PSU180 with toroidal transformer for 1 HY400 or 2 x HY200 £23.02 + £3.45 VAT

NO QUIBBLE 5 YEAR GUARANTEE 7 DAY DESPATCH ON ALL ORDERS INTEGRAL HEATSINKS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE -see below

ALL U.K. ORDERS DESPATCHED POST PAID

HOW TO ORDER, USING FREEPPOST SYSTEM

Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

Please supply
I enclose Cheque
I enclose Postal Orders
I enclose International Money Order
Please debit my Account/Barclaycard Account No.

NAME
ADDRESS
Signature.

WIRELESS WORLD, JANUARY 1980

109
AN INVITATION TO

Communications 80, the fifth in a series of international expositions dealing with the applications of telecommunications equipment and systems, particularly in the areas of data and business communications which are being created by the converging technologies of computing and telecommunications.

Communications 80 will attract visitors from all over the world (from 69 countries at the last event in 1978) who will be coming to see the latest developments in communications technology displayed by leading international manufacturers. Many of the visitors will also attend the integral conference, organised by the Institute of Electrical Engineers in association with the Electronic Engineering Association and the Telecommunications Engineering and Manufacturing Association.

Communications 80, the world's leading international exposition in the field, is actively supported by the International Telecommunication Union - the world telecommunications authority representing 153 governments; the British government, through the Home Office, the British Post Office, Cable and Wireless Ltd; and the two main UK trade associations - the Electronic Engineering Association and the Telecommunications Engineering and Manufacturing Association.

Please make a note of the dates and venue of Communications 80 - Tuesday 15 April to Friday 18 April, 1980, at the National Exhibition Centre, Birmingham, England.

You cannot afford not to come if you make, use or specify communications equipment and systems.

I am interested in attending Communications

Please send me details of exhibition conference

Name

Position

Company

Address

Complete, detach and mail to

Tony Davies Communications
c/o Industrial and Trade Fairs Ltd, Radcliffe House, Blenheim Court, Solihull, West Midlands B91 2BG, England.

Telephone: 021 705 6707 Telex: 337073

WIRELESS WORLD, JANUARY 1980
LOW VOLTAGE POWER PACK FOR MODELS

Cut out for most BSR or Garrard decks.

Stereo 78 rpm 6.5 x 4.9 x 2.8in. £3.70

3 speed record changers and smaller 6.5 x 4.9 x 2.8in. £3.70

3-40p; 10 x 7-54p; 12 x 8-70p; 12 x 5-44p; 16 x 12-70p

HEATER TRANSFORMER. 6.3V '12 amp E2.00 3 amp

E4.50 9V, 3 amp £4.00

5 amp 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40, 48, 60

2 amp 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40, 48, 60

AUTO TRANSFORMERS 115v or 230v or 230v 115v

500mF 50V 65p; 1000mF 12V 17p; 2000mF 50V 35p;

1000mF 12V 17p; 2000mF 50V 35p; 5000mF 12V 42p

500mF 50V 65p; 1000mF 12V 17p; 2000mF 50V 35p;

1000mF 12V 17p; 2000mF 50V 35p; 5000mF 12V 42p

LOW VOLTAGE POWER PACK FOR MODELS

Large ceramic mag. 50-16,000 c/s.

Ideal replacement or disco deck with Ceramic Stereo cartridge.

200/250V. Size 131/2-111/4in. £3.50 each.

BSR P183 3 speeds fixed aluminium turntable "S" shape arm, cased ceramic cartridge £24. Post £1 60

BARRACUDA VACCUM TUBE AMPLIFIER KIT £12.50

For 61/2in speaker and tweeter

For 13x8in or 8in speaker

MOTOROLA PIEZO ELECTRIC HORN TWEETER.

Tweeter 8 in (48, 52, 60, 80, 120 watts)

Model "A" Size 141/2 x 121/2 x 3in.

Model "B" Size 16 x 13 x 3in.

TWO 100 PLASTIC 200V 200V 200V 200V 200V 200V 200V 200V 200V 200V

Sizes: 14 x 12 x 9 x 4in. £3.50 each.

14 x 10 x 7 x 4in. £3.00 each.

15 x 13 x 9 x 6in. £4.60 each.

16 x 13 x 9 x 6in. £5.00 each.

14 x 14 x 12 x 4in. £4.90 each.

15 x 14 x 12 x 4in. £5.35 each.

LOW VOLTAGE POWER PACK FOR MODELS

Exacting turntable for average quality

EAC. mains 200/250V Leaflet F.A.C.

HEATER TRANSFORMER. 6.3V ‘12 amp E2.00

FULL WAVE BRIDGE CHARGER RECTIFIERS.

30V. 1 1/2 amp £3.60

25-0-25V Zany £4.50

9V, 3 amp £4.00

250W 30V. 1 1/2 amp £3.60

25-0-25V Zany £4.50

9V, 3 amp £4.00

5 watts 8 ohms 5 watts 8 ohms 5 watts 8 ohms 5 watts 8 ohms 5 watts 8 ohms

50 to 14,000 cps. 10 watts. 4 ohm

FULL WAVE BRIDGE CHARGER RECTIFIERS.

250W 30V. 1 1/2 amp £3.60

25-0-25V Zany £4.50

9V, 3 amp £4.00

250W 30V. 1 1/2 amp £3.60

25-0-25V Zany £4.50

9V, 3 amp £4.00

5 watts 8 ohms 5 watts 8 ohms 5 watts 8 ohms 5 watts 8 ohms 5 watts 8 ohms

50 to 14,000 cps. 10 watts. 4 ohm
The Mark III FM Tuner

DIY Hi-Fi will never seem the same again. Ambit's Mark III tuner system is electrically & visually superior to all others. Some options available, but the illustrated version with reference series modules: £149.00 + £22.35 VAT

With Hyperfil Series modules £185.00 + £27.75 VAT

PH SANDBANKS PH METAL LOCATOR

Maintaining our professional approach to hunt construction kits, we offer the pulse induction 'Sandbanks'. Now with patented moisture casing for greatly improved environmental sealing. £27.00 + £3.54vat.

VHF MONITOR RX WITH PLESSEY IC 4 & 6 channel version of the FM design but using standard (Robby5)crystals, and TOYO 8 pole crystal filter with matching transformers. Cord sets from our standard range to cover bands from 40 to 200MHz. Complete module kit: £31.25 + £4.68 vat.

MICROMARKET 0515 overflow

Great prices on the most popular modules, including: 6810: £5.35, 6820P: £6.00, 6850P: £2.75, 6800P: £1.25, etc.

RADIO and AUDIO SIDEBAR: £5 Consistently the most advanced FORMING: £125.00 plus VAT, 8 stage or 12 stage depending on your choice. 3050: Dual gate MOSFET RF stage, linear mixer £17.45 + £2.61 VAT. 3082: Dual gate RF Power stage, amplified L0 cut £19.75 + £1.75 VAT. 3084: Hyperfil series, with optical PIN diode age, and other wide tuning tuning system £24.95 + £3.74 VAT.

EF5402: 1 stage variable voltage with TD10462 and LO buffer. Use PCTC input. PIN out £17.55 + £1.56 VAT.

For 30.200Mhz ThE EF series are available on special order to cover bands basically approx 20% of the centre frequency in the range described. Details in our price list.

For PIN PA £5.70

730A: Single 6 pole linear phase filter. £16.75 + £2.27 VAT.

7310: Two 6 pole linear phase filter with CA3189 £18.25 + £2.44 VAT.

7230: Hypertec IF, switched bandwidth, AGC IF mixing, linear phase ceramic filters with decade switched variable filter £24.95 + £3.74 VAT.

DECODERS FOR MPEG STEREO

Various types, sourced around the world's largest and best ranges.

LASHOLM TX TUNERSET

IC 300: Direct IFFM printed circuit board £6.55 + £0.85 VAT.

IC 301: Direct IFFM printed circuit board with IC2091F £6.50 + £0.85 VAT.

FM/FM radiowaves, stereo details structure in its advertising.

Commodities

COMPOSITES FOR RADIO/COMMUNICATIONS/AUDIO-TV etc.

As usual, Ambit brings you the latest and best, a small selection of which is shown in this advertisement. The detailed technical content information on most of the devices mentioned here is an order for the new part three will ensure you stay up with latest developments. Data processing service detailed in product leaflets.

The use of a Fibre Optic Recorder in the unique Raster mode with wideband brilliance modulation allows digital data to be recorded in an ideal format for visual inspection.

Typically a test word would be transmitted through a system with the output digital data applied as brilliance modulation to the FOR. The word marker triggers the timebase which would be adjusted to cover one word across the paper. The paper speed is adjustable to just separate successive words, thus producing a uniform pattern on a regular signal from a perfect system. Disturbances due to data change, errors and drop-outs are very obvious. Resolution and bandwidth are adequate to resolve 265 bit words at 9600 bands.

Medelec Fibre Optic Recorders are also used for research and development in Video Imaging, Noise and Vibration, Transients and many other fields.

Ambit International

Digital Data

The use of a Fibre Optic Recorder in the unique Raster mode with wideband brilliance modulation allows digital data to be recorded in an ideal format for visual inspection.

Typically a test word would be transmitted through a system with the output digital data applied as brilliance modulation to the FOR. The word marker triggers the timebase which would be adjusted to cover one word across the paper. The paper speed is adjustable to just separate successive words, thus producing a uniform pattern on a regular signal from a perfect system. Disturbances due to data change, errors and drop-outs are very obvious. Resolution and bandwidth are adequate to resolve 265 bit words at 9600 bands.

Medelec Fibre Optic Recorders are also used for research and development in Video Imaging, Noise and Vibration, Transients and many other fields.

Ambit International

Digital Data

The use of a Fibre Optic Recorder in the unique Raster mode with wideband brilliance modulation allows digital data to be recorded in an ideal format for visual inspection.

Typically a test word would be transmitted through a system with the output digital data applied as brilliance modulation to the FOR. The word marker triggers the timebase which would be adjusted to cover one word across the paper. The paper speed is adjustable to just separate successive words, thus producing a uniform pattern on a regular signal from a perfect system. Disturbances due to data change, errors and drop-outs are very obvious. Resolution and bandwidth are adequate to resolve 265 bit words at 9600 bands.

Medelec Fibre Optic Recorders are also used for research and development in Video Imaging, Noise and Vibration, Transients and many other fields.

Ambit International
The 14D-15 is the very latest addition to the Scopex range of brilliantly engineered, easy to use oscilloscopes.
Here's what it offers:
- Large screen 10 cm x 8 cm
- Triggers on channels 1 and 2
- 2 mV – 10V/DIV sensitivity
- 3% accuracy – a Scopex speciality
- DC-15 MHz bandwidth over the entire screen
- Probe test output
- Wide time base range
- Switched mode power supply

Plus a host of well thought-out additional facilities, free delivery in the UK mainland and a very good price of £280 plus VAT.

Trust Scopex to get it right.
We are the Designer Approved suppliers of kits for this excellent design. The Author's reputation tells all you need to know about the circuitry and Hart expertise and experience guarantees the engineering design of the kit. Advanced features include:

- High quality separate VU meters with excellent ballistics. Controls, switches and sockets mounted on PCB to eliminate difficult wiring. Proper moulded escutcheon for cassette aperture improves appearance and removes the need for the cassette sockets mounted on PCB to eliminate difficult wiring.

- Sophisticated modular PCB system gives a spacious, easily built and tested layout. 
- All those features added to the high quality metalwork make this a most satisfying kit to build. Also included at no extra cost is our new HS15 Sendust Alloy Super Head. This has an even better high frequency response than our HS14.
# LANGREX SUPPLIES LTD

Climax House, Fallsbrook Rd, Streatham, London SW16 6ED

**Tel:** 01-677 2424 **Telex:** 946708

## SEMICONDUCTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Code</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

## VALVES

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Code</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

## BATTERIES

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Code</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

## INTEGRATED CIRCUITS

### INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

## BASES

### BASES

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

## CRts

### CRts

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

## Channels

### Channels

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

## Rate cards

### Rate cards

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
DISPLAY ELECTRONICS

Would like to wish all their customers and business associates a Very Merry Christmas and Prosperous New Year.
NO COMPETITION

The superb 3.77 is the only choice in compact professional recorders.

Who says?
Hundreds of satisfied professional users — Broadcast authorities, studios, record companies, universities etc etc.

What makes it the best?
The 3.77 provides more performance and features for your £ than any other model. Like 3 speeds, flat metal facia with excellent editing facilities, 100% variable speed control, logic control with motion sensing, line-up oscillator.

An ITA Product.

1-7 Harewood Avenue, Marylebone Road, London NW1. Tel: 01-724 2497. Telex: 21879

WW—890 FOR FURTHER DETAILS
Polyskop SWOB I. E450.
IT I 101 RC oscillators £65.
20WAY JACK SOCKET STRIPS. 3 pole
PYE RESISTANCE BOXES

TIP42C
0.25
0.25
0.31
0.27
0.38

252
17
17
70
59

0.44
0.75
0.11
1.30
1

74
239
201
14

ARROW HART

TRIALS

TEKTRONIX 515A Oscilloscope
AIRMEC Display oscilloscope. 4 beam.

BRUEL & KJOER Frequency analyser 2105
SOLARTRON LM 1420.2. DVM. 6 ranges to 1KV.

SOLARTRON LM 1420.2. DVM. 6 ranges to 1KV.

SOLARTRON LM 1420.2. DVM. 6 ranges to 1KV.

DVM. 6 ranges to 1KV.
**OLIVETTI PRINTER & KEYBOARD type Te 300**

with PUNCH & READER. Upper case ASCII with V24 Interface. 240 volt operation

£125 each

**TELETYPES KSR33**

Upper case ASCII with 20MA Loop. This isa printer with keyboard (no Punch or Reader on this model)

£225 each

**BRUHL & KJER EQUIPMENT**

AUDIO FREQUENCY SPECTRO METRE type 2112 £175 ea.

BEAT FREQUENCY OSCILLATOR type 1013 £140

BEAT FREQUENCY OSCILLATOR type 1014 £140

BEAT FREQUENCY OSCILLATOR type 1024 £140

AUTOMATIC VIBRATION EXCITOR CONTROL type 1018 £90

AUTOMATIC VIBRATION EXCITOR CONTROL type 1019 £90

AUTOMATIC VIBRATION EXCITOR CONTROL type 1016 £90

**TRANSISTOR INVERTER 115V 50/60 Hz INPUT**

These run at 20kHz. They can be modified to be a switching power supply or to provide EHT for VDU, Oscilloscopes, etc. or the output core could be rewound to provide any voltage/current within the units rating. As supplied they have multiple outputs. A schematic is for VDU, Oscilloscopes, etc. or the output core could be rewound to provide any

£125 each

**CROWN replacement MOTOR for IBM GOLF BALL TYPWRITERS.**

115v 50/380 1380. £6.50 each P&P £1.50

**علومات**

**INFRA RED IMAGE CONVERTER type 9606 (CV 144)**

1 1/2" aperture. Requires single low current 3KV to 6KV supply, and is individually boxed. With leads.

£12.50 each P&P 75p

Infra Red Lamps also advertised

**HONEYWELL YOu**

1920 Character Upper Case ASCII. With edit and block transmission. Limited quantity with data. **NEW LOW PRICE £200 each**

**POLARAD SPECTRUM ANALYSER**

5" Display. These are supplied with STU 2 plug-in. 1 to 4.5GHz

£125 each

**MARCONI SPECTRUM ANALYSER Type TF1094**

This gigantic but superb analyser covers from 100KHz to 30MHz with a 6Hz resolution. 5" display. Complete with trolley.

£75 each

**STEPMING MOTORS**

6/12 pinoption with additional where the motor occurs. Can be used as a tacho. Diagram supplied. Well actually work on 5 volts. 12/24 recommended.

£1.50 each P&P 75p or 5 for £5 P&P £1.50.

**CRYSTALS**

12th turning left past Reading Technical College in Kings Road then first right - look on right for door with "Spoked Wheel"

Minimum order £3 value of goods. P&P or carriage and VAT at 15% on total must be added to all orders.

CALLERS VERY WELCOME STRICTLY BETWEEN 9am-1pm and 2-5pm Monday to Saturday inc.

BARCLAYCARD (VISA) and ACCESS accepted. Official orders welcome

**CHILTHEAD**

NORWOOD ROAD, READING

TELEPHONE NO. 669656

(2nd turning left past Reading Technical College in King’s Road then first right — look on right for door with “Spoked Wheel”)
Our catalogue contains small metal enclosures for every application including the attractive new G range cases, with unique integrated chassis and sloping visor front and the inexpensive kit-form Veropak. We’ve also got circuit boards, accessories, module frames and plastic boxes—all to the highest standard to give your equipment the quality you demand. Send 40p to cover post and packing and the catalogue’s yours.

VERO ELECTRONICS LTD RETAIL DEPT.
Industrial Estate, Chandler’s Ford,
Hampshire S05 3ZR
Tel: (04215) 62829

Wireless World wishes to apologise to all parties concerned for any inconvenience caused by the publication in the December 1979 issue, of an advertisement purportedly on behalf of Nevenco Ltd. This was published due solely to an error on the part of Wireless World and not as the result of an order by any advertiser.

FOTOLAK
POSITIVE LIGHT SENSITIVE AEROSOL LACQUER

Enables YOU to produce perfect printed circuits in minutes!
Method: Spray cleaned board with lacquer. When dry, place positive master of required circuit on now sensitized surface. Expose to daylight, develop and etch. Any number of exact copies can of course be made from one master. Widely used in industry for prototype work.

FOTOLAK
£2.00
Developer 30p
Ferric Chloride 50p
Pre-coated 1/16 Fibre-glass board
204mm x 114mm £1.50
204mm x 228mm £3.00
408mm x 228mm £6.00
467mm x 305mm £9.00
Plain Copper-clad Fibre-glass
Approx. 1.8mm thick sq. ft. £2.00
Approx. 2.00mm thick sq. ft. £1.50
Approx. 1.00mm thick sq. ft. £1.75
Clear Acetate Sheet for making master: 260mm x 260mm 12p

POSTAGE AND PACKING 65p PER ORDER. VAT 15% ON TOTAL

G. F. MILWARD ELECTRONIC COMPONENTS LIMITED
369 Alum Rock Road, Birmingham B8 3DR. Telephone: 021-327 2339
8K ON BOARD MEMORY!
5K RAM, 3K ROM or 4K RAM, 4K ROM (link selectable). Kit supplied with 3K RAM, 3K ROM. System expandable for up to 32K memory.

2 KEYBOARDS!
56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS!
64 character graphics option — includes transistor symbols! Only £1.82 extra!

MEMORY MAPPED
High resolution VDU circuitry using discrete TTL for extra flexibility. Has its own 2K memory to give 32 lines for 64 characters.

KANSAS CITY
Low error rate tape interface.

COMPLETE KIT
Cabinet Size 19.0" x 15.7" x 3.3". Television by courtesy of Rumbelows Ltd, price £58.62

POWERTRAN COMPUTERS
POWERTRAN COMPUTERS
(POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE ANDOVER
HANTS SP10 3NN
(0264) 64455


The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete! Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board. 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer. 2K Basic and 1K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

PSI COMP 80 Memory Expansion System
Expansion up to 32K all inside the computer's own cabinet.
By carefully thought-out engineering a mother board with buffers and its own power supply (powered by the computer's transformer) enables up to 3 8K RAM or 8K ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion socket is made via a ribbon cable.

Mother Board:
Fibre glass double sided plated through hole P.C.B. 8.7" x 3.0" set of all components including all brackets, fixing parts and ribbon cable with socket to connect to expansion plug: £39.90

8K Static RAM Board:
Fibre glass double sided plated through hole P.C.B. 5.6" x 4.8". £12.50
Set of components including IC sockets, plug, and socket but excluding RAMs: £11.20
2114L RAM (16 required) Complete set of board, components, 16 RAMs: £89.50

8K ROM board:
Fibre glass double sided plated through hole P.C.B. 5.6" x 4.8". £12.40
Set of components including IC sockets, plug, and socket but excluding ROMs: £10.70
2708 ROM (8 required) Complete set of board, components, 8 ROMs: £78.50

Roppy Disk, PROM programmer and printer interface coming shortly!

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until December 31st 1979. If this month's advertisement is mentioned with your order Errors and VAT rate changes excluded.

EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50p handling and documentation.

U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for carriage. Or current rate is changed.

SECURICOR DELIVERY: For this optional service U.K. mainland only add £2.50 VAT included per kit.

UK Carriage FREE
**TERMINALS**

**EXTEL MATRIX PRINTERS**
- Optically coupled RS-232 interface
- Correspondence-quality upper / lower case
- Integral paper tape reader and punch
- Operates as stand-alone typewriter
- Selectic / EBCDIC coded
- £425 plus VAT

**IEL Model 1051**
- IBM GOLFBALL Typewriter
- RS232/V24 Interface
- £150 plus VAT

**PRINTERS**
- Matrix
- £150 plus VAT

**NEWNES TECHNICAL BOOKS FOR THE '80S**

**COMPUTER APPRECIATION,** 86 High Street, Betchlingey, Redhill, Surrey RH1 4PA
Tel: Godstone (0883) 843221

**Now you can get on-card dual output power supplies from Vero Systems — in five versions:**
- DUAL 5 Volts
- DUAL 12 Volts
- DUAL 15 Volts
- MIXED 5 and 12 Volts
- MIXED 5 and 15 Volts

The cards are designed to Eurocard standard size (100 x 164mm) to fit straight into your card or case frame.

**ORDER CODE**
- DUAL 5V: 89-2660K
- DUAL 12V: 89-2671K
- DUAL 15V: 89-2673K
- MIXED 5 and 12V: 89-9017K
- MIXED 5 and 15V: 89-9018K

**Each supply is fully regulated with over voltage current and thermal protection, input voltage 110/220v 230/240v AC and both outputs are fully isolated from each other but may be connected to give different power rail configurations. The cards are supplied fully tested each one complete with 64-way indirect connector plug, card handle and connection chart.**
YOUR LAST CHANCE to obtain Wireless World Circards. We still have some copies of the original Wireless World circuit cards, even though the companion bound volumes Circuit Designs 1 & 2* are out of print. Fill the gaps in your circuit files with these sets of 5 x 8in. (127 x 204mm) cards in plastic wallets — and at 1976 prices!

These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

*The two out-of-print volumes contained sets 1 to 10 and 11 to 20 of Circards.

To: General Sales Department, IPC Electrical-Electronic Press Ltd., Room CP34, Dorset House, Stamford Street, London SE1 9LU.

Please send me the following sets of Circards:

1 Basic active filters 2 Switching circuits, comparators and Schmitts 3 Waveform generators 4 AC measurements 5 Audio circuits 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10

£2 each, £18 for ten, inclusive.

I enclose cheque/money order for £

Make cheques payable to IPC Business Press Ltd.

Name

Address

Company registered in England. Registered address, Dorset House, Stamford Street, SE1 9LU, England. Registered Number 677128
ELECTRO-TECH COMPONENTS LTD.
364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

JVC-VICTOR HIGH FIDELITY STEREO CASSETTE TRANSPORT MECHANISM

ELECTRO-TECH COMPONENTS have secured a very large quantity of cassette transport mechanisms, equipped with all the latest improvements, as well as "SEN-ALLOY" type 1.5 micron record/replay heads, and solenoid-controlled auto-stop action. These were manufactured by JVC/VICTOR of Japan to specification of TANDEM OF NORWAY, for inclusion in a cassette deck costing over £280. This mechanism alone would normally cost over £50.

FEATURES:
- Close-tolerance, high-quality, top loading transport
- "SEN-Alloy" (SA type) R/P head
- Solenoid driven auto-stop circuit
- Electronic head cleaning device
- Air damped "soft" cassette eject
- Digital microswitches for switching
- Pre-aligned heads and calibrated motor speed regulator built in
- Three-digit tape position counter
- Six function keyboard controls: "Record", "Rewind", "Forward", "Play", "Stop/Eject", "Pause"
- PCB connectors and cables attached
- High mass balanced flywheel with permanent lubrication
- Full specifications for motors, heads, and switches available on request.

Price of above unit £14.95

Plus £1 P&P VAT Inc.

Regular readers of WIRELESS WORLD will know of the original LINSLEY-HOOD CASSETTE DECK design, published in May 1978. Subsequent articles by Mr. Linsley-Hood have confirmed that the design far exceeded his original expectations, so much so that he published a number of improvements, modifications, and additional features to the original design, which are now incorporated in our.

★ CASSETTE DECK KIT BASED ON DESIGN OF MR. LINSLEY-HOOD ★

We have developed an outstanding stereo cassette kit with the aid of Mr. Linsley-Hood, to complement the improved specification and latest important advances in cassette electronics since the original design was published.

Included in the kit are two fibreglass PCB's, drilled and plated for immediate assembly, two VU meters, Dual LED Peak Meters, Variable Bias system, Power Supply, over 10 micro-circuit IC's for the most up-to-date performance, as well as monitoring amplifier, test and calibration cassette, etc.

Price of Kit (without transport mech.) £15.95 plus £1.00 P&P VAT Inc.

Also available: A custom-designed case for the Kit, this is a fully screened enclosure, sloping panel, satin anodised, wood end panels, professional finish.

Price of Case £9.75 plus £1.00 P&P VAT inc.

HERE IT IS! THE BRAND NEW 8022A HAND HELD DMM

Consider the following features:
- 6 resistance ranges from 200 ohms to 60 meg.
- 8 current ranges from 2mA-2A
- 6 conductor ranges from 2mS-200nS.

£122

Cassette and Insurance £3.00

Even more sophisticated is the 8020A. Identical in most respects to the 8022A but in addition incorporates a conductance range from 2mS-200nS.

£122

Cassette and insurance £3.00

A handsome soft carrying case is available for the 8020A and 8022A at £7.

Trade and Export Enquiries Invited

IN THE COLUMN OF SPECIALS

WIRELESS WORLD, JANUARY 1980

FULLY AUTOMATIC ELECTRONIC MULTITESTER

THE 8022A HAND HELD DMM

This model incorporates all the features of the 8020A but in addition has:
- A peak hold switch which can be used in AC or DC for voltage and current functions.
- Audible continuity testing and level detection for sensing logic levels.
- A temperature (°C) range for use with a thermocouple.

£135

Cassette and insurance £3

8000A AND 8012A BENCH MODEL D.M.M.s

The 8000A is the genuine product, featuring digital display with more functions and features than ever offered for such a low price. The 8012A, has identical characteristics, but is scaled down in size and cost.

The 8000A and 8012A have 6 conductance ranges from 3m – 750V.

The 8012A has the following features:
- Three additional resistance ranges.
- Three additional current ranges.
- Three additional voltage ranges.

£230.00 each

Plus £1 P&P VAT Inc.

 lesbian & gay health prevention

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER

- Accurately in both frequency and period measurement modes.
- Wide frequency range – 0 Hz to 80 KHz.
- High sensitivity: 25 Hz, typically 15 Hz.
- Digital display with leading zero suppression, automatic annunciator and push switches.
- Autoscaling in all gain ranges, all function switches.
- Four manually selectable gate times providing resolution of 0.1 Hz.
- True counting to 10^6 events with overflow indicator.
- Digital output, compatible with analogue 1-5mV low pass filter and attenuator.
- Optional parallel digital output with decimal point and led illuminator.
- Traditional high quality finish.

£175

Cassette and Insurance £3

Please add 15% VAT to all orders

WELCOME CALLERS WELCOME

We are open 9 a.m.-6 p.m. Monday-Saturday.

Carrying a very large selection of electronic components and electro-mechanical items. Special quotations on quantities.

IT 1/2 20,000OV AC/DC 0-10, 0-5, 0-2.5, 0-1K, 0-500, 0-50V
DC 0-100A, 0-0.5A, 0-50 mA. 0-250, 0-50, 0-10, 0-2.5, 0-5, 0-1 uA
Power supply - 0.1, 0.25, 0.5, 1, 2.5A, 5, 10, 20, 50W.

£10.95

Y7202 MK

AC/DC 0-1000 0-500 0-100 0-50, 0-10, 0-5V
DC 0-100A, 0-0.5A, 0-50 mA. 0-250, 0-50, 0-10, 0-2.5, 0-5, 0-1 uA
Power supply - 0.1, 0.25, 0.5, 1, 2.5A, 5, 10, 20, 50W.

£10.95

Trade and Export Enquiries Invited
ELECTRONIC KITS OF DISTINCTION FROM POWERTRAN

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring whilst distortion is less than 0.01%.

WIRELESS WORLD FM TUNER £70.20 + VAT

A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection push-button station selection as well as infinitely variable tuning and a phase locked loop stereo decoder incorporating active filters for ‘birdy’ suppression.

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT

This design published in Wireless World, although straightforward and relatively low cost provides a very high standard of performance. There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels are also provided. The mechanism is the Goldring-Lenco CRV with electronic speed control.

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

As featured in Electronics Today International

The kit includes fully finished metalwork, fully assembled solid task cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or 1/2% metal film) and it really is complete — right down to the last nut and bolt and last piece of wire! There is even a 13A plug in the kit — you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professional quality glass PCB printed with component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with ready built units selling for between £500 and £700.

COMPLETE KIT ONLY £168.50 + VAT!

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more than a multi-meter and a pair of ears!

CHROMATHEQUE 5000 5-CHANNEL LIGHTING EFFECTS SYSTEM

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control setting or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500W and as the kit is a single board design wiring is minimal and construction very straightforward.

COMPLETE KIT ONLY £49.50 + VAT!

Complete kit includes fully finished metalwork, fibreglass PCB's, controls, wire, etc. — Complete right down to the last nut and bolt!

MrA200 100W MIXER/AMPLIFIER

Featured as a constructional article in Electronics Today International the MPA 200 is an exceptionally low-priced but professionally finished general purpose, rugged, high power amplifier which has an adaptable range of inputs such as disc, microphone, guitar etc. There are 3 wide-range tone controls and a master volume control. Mechanically the design is simplicity in the extreme with minimal wiring making construction very straightforward. Kit includes fully finished metalwork, fibreglass PCB's, controls, wire, etc. — Complete right down to the last nut and bolt!

COMPLETE KIT ONLY £49.90 + VAT!

All kits also available as separate packs (e.g. P.C.B. component sets, hardware sets, etc.). Prices in FREE CATALOGUE.
T20+20 AND T30+30 20W, 30W AMPLIFIERS

**SPECIAL PRICES FOR COMPLETE KITS**

- T20+20 KIT PRICE £33.10 + VAT
- T30+30 KIT PRICE £38.40 + VAT

**SOLD AS COMPLETE KITS ONLY**

- T20+20 deliver 20W rms per channel of true Hi-Fi at exceptionally low cost. The easy-to-build design is based on a Toroidal transformer and new amplifier circuitry. This unit matches well with the T30+30.

**WE’VE MOVED! NEW FACTORY UP! PRICES DOWN!**

**DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER**

The Transcendent DPX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either string or metal tone. Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple, very straightforward to assemble and contains many features which can be varied by the user.

**COMPLETE KIT ONLY £299.00 + VAT**

- Complete kit only includes power supply, keyboard, interface socket, synthesizer board, button board, on-off switch, variable delay control.

**EXPORT A SPECIALITY!**

Our Export Department can readily despatch orders of any size to any country in the world. Some of the countries to which we sent kits last year are shown in this advertisement. To assist in estimating postal costs our catalogue gives the weights of all packs and kits. This will be sent free on request, by airmail, together with our Export Postal Guide which gives current postage prices. There is no minimum order charge. Prices are subject to change.

**VALUE ADDED TAX NOT INCLUDED IN PRICES**

- UK Carriage FREE
- Overseas carriage £10.00

**POWERTRAN ELECTRONICS**

PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN

(STD 0264) 64455

QUALITY: All components are brand new and tested. Each unit is subjected to rigorous testing and quality control. Each unit is guaranteed for 2 years from the date of purchase.

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!
Now-highest quality copying at low cost

OTARI DP4050 C2 cassette duplicator

The first low cost copier to give you reliability and performance to professional standards. No other copier can match its precision engineering, and it is the only budget copier suitable for music programmes.

* One master, 2 slaves.
* Add on units available up to 11 slaves.
* Automatic rewind.
* Ferrite heads.
* 16:1 duplicating ratio.
* Modular slave decks with DC servo motors.

Also available: Reel to cassette version with 6 slaves.

OTARI from ITA

1-7 Harewood Avenue, Marylebone Road, London NW1. Tel: 01-724 2497. Telex: 21879.

WW - 086 FOR FURTHER DETAILS

CHILTERN ELECTRONICS
B.C.M. BOX 8085
LONDON WC1V 6XX

PDP8 COMPUTERS:
PDP8E. Latest version with 16K Core, as new £800
PDP8B1 8K with high speed tape reader/punch £450
PDP8B1 and PDP8B1 4K processors from £200
All above with teletype interface and ready to use — software available includes BASIC, FOCAL, FORTRAN, etc.

UDC8 Industrial Interface for PDP8 — provides 50 inputs and outputs isolated and buffered for process control.
Brand new, with all data and cables £450
All spare PDP8 modules and add-on memory in stock!

TERMINALS:
GE TERMINET — modern 30 ch/sec silent terminal. Full ASCII set, correspondence quality upper and lower case. Ideal for word processors. RS232 Interface.
As new with keyboard £350
Without keyboard £200

JUST ARRIVED FROM U.S.A. . .

INCOTERM SPD 10/25 Intelligent terminals. Top quality VDU with powerful computer. Memory 4K Core and 4K MOS. Two RS232 ports. Second video output. Detachable ASCII keyboard. Cost over £5,000. Offered at only £750

TELETYPES/CENTRONICS PRINTERS/VDUs — lots more in stock from £50 to £500

Elliott Paper Tape Readers, 250 ch/sec optical £40

IBM B-level readers with step motor, no data £20

Add 15% for VAT. For more details please send SAE or ring Nigel Dunn on 0494 714483

WW — 093 FOR FURTHER DETAILS

TAKE A DAY OFF

R & D Effort, Production Holdups, Machine down time etc. by securing your copy of the

VEROSPEED

fully priced catalogue of stocked components from

VEROSPEED

Barton Park Industrial Estate,
Eastleigh, Hampshire S05 5RR
Tel: (0703) 618525

WW — 095 FOR FURTHER DETAILS
Electronic Brokers
49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 298694
No.1 in Second User Minis & Peripherals

---

DEC EQUIPMENT

PDP11/04BD 8-slot 5¼' Processor with BKW MS and DL11W Interface. BRAND NEW SURPLUS...£3,250.00
PDP11/05 5¼' Processor with BKW core memory...£1,850.00
RK05J Add-on disk drive...£1,850.00
Large stocks of DEC modules and add-ons

PRINTERS & TERMINALS

CENTRONICS 101 Matrix Printer...£750.00
COSSOR UNITEIL II Visual Display Unit...£295.00
HAZELTINE H-2000 Editing Visual Display Unit...£395.00
SCOPE DATA Electrosensitive Printer...£495.00
TEXAS 733A Portable Terminal...£695.00
TEXAS 733A/S Terminal...£1,450.00

NEW ASCII KEYBOARDS—NEW LOW PRICES

KB756 56-station ASCII Keyboard mounted on P.C.B. £45.00 £59.23
KB756MF As above, fitted with metal mounting frame for extra rigidity £50.00 £69.23
KB710 10-key numeric pad, supplied with connecting cable £8.00 £9.78
KB701 Plastic enclosure for KB756 or KB756MF £5.00 £6.31
KB771 71-station ASCII Keyboard including numeric/cur sor control cluster, mounted in steel enclosure £95.00 £115.00
KB771 71-station ASCII Keyboard including numeric/cursor control cluster, mounted in steel enclosure £85.00 £115.00
PERK 56-station ASCII Keyboard for PET. Complete with PET interface, built-in power supply and steel enclosure £145.00 £172.50

MISCELLANEOUS

CALCOMP 565 Drum Plotters £1,250.00
DIGITRONICS P120 Paper Tape Punches £175.00
EMI 15" Diagonal TV Monitors £100.00
SEALECTRO 11x20 Patch Boards £12.50
SHUGART SA400 5¼" Floppy Disc Drives £195.00
SHUGART SA800 8½" Floppy Disc Drives £395.00

---

ICL TERMINPRINTER 7075

Type writer quality Keyboard Save/Receive impact Printer providing full upper and lower case character set, switch selectable print speeds at 10, 15 and 30cps 118 column print line with pin fed paper suitable for paper rolls or continuous stationery (paper width 12.35") Standard V.24 (RS232) interface £575.00.

GE TERMINET 1200

TYPEWRITER QUALITY impact printer with switch selectable print speeds of 0, 30 and 120cps 80 print positions with adjustable pin- fed paper tractor, full upper and lower case ASCII character set, current loop (20mA) interface £695.

BALL MIRATEL MONITOR

5" diagonal P4 phosphor tube Bandwidth 12 MHz 3-DB Input voltage 220 V 50/60Hz 24W Output voltage + 15V DC Screen circuit protected + 12V DC 12 V rms Horizontal and vertical sync Supplied complete with high and low voltage power supplies amplifier and attractive moulded plastic housing including space for keyboard Case dimensions - 20" x 19" x 10½" including keyboard space 20" x 7½". Full technical manual provided £95 total including carriage and VAT £123.

ASR33 and KSR33 TELETYPES

Input/Output terminals with 64 ASCII character set, 110 baud operation. Paper tape punch and reader (ASR33 only), Choice of interface (20mA or RS232) KSR33 - £425.00, ASR33 - £650.00. Pedestal £30.00.

WW-126 FOR FURTHER DETAILS
Electronic Brokers
49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 298694

ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE — SEND FOR LATEST CATALOGUE
Electronic Brokers unique catalogue contains 62 pages plus update of second user Test Equipment, and Mini Computers and Peripherals. Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters, Recorders, DEC Computers, VDUs, Teletypes, etc. Largest stocks — most cost effective.

LATEST EDITION JUST OUT. SENT FREE IN UK.
Airmail to overseas addresses £2.00

MARCONI INSTS.
TF 2162 M F. Attenuator
311 16dB Steps of 0.1 dB
50kHz-600MHz
Large Stocks
£135.00

SOLARTRON
7065 Micropower Counter/Display D M M
Without processor option
£975.00
With processor option
£1,300.00

HEWLETT PACKARD
Spectrum Analyser System
141T Display
8552A IF Section
8554L RF Section
500kHz-1250MHz
TOTAL PRICE £5,250

MARCONI PACKARD
TF 2300B M F. Modulation Meter
Carrier Freq. 5 to 1200MHz Deviation
Range up to 500KHz
Measures AM depth up to 95% at carrier freqs up to 400MHz
£950.00

WAYNE KERR
8642 Autobalance Univ. Bridge
Typically 0.1% accuracy LC R & G
Measurements
£975.00
With processor option
£1,300.00

HEWLETT PACKARD
170A Storage Oscilloscope
35kHz Delayed sweep Dual Channel
£1,850.00

MARCONI INSTRUMENTS
TF 2333 M F Transmission Test Set
Freq. Range 30Hz-360KHz
£600

PHILIPS
PM 3240 Scope
50MHz Dual trace and Sweep
Delay
£950.00

Unless otherwise stated all equipment offered in the Electronic Brokers 4-page advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for 3 months.

Hours of Business:
9 a.m.-5 p.m., Mon.-Fri.
Closed lunch 1-2 p.m.

A copy of our trading conditions is available on request.

WW — 10% FOR FURTHER DETAILS

Add 15% VAT to ALL PRICES
Carriage and Packing charge extra on all items unless otherwise stated.
<table>
<thead>
<tr>
<th>Equipment Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLUMBERGER-SOLARTRON 5½ digit Digital Multimeter A243</td>
<td>£675</td>
</tr>
<tr>
<td>4½ digit D.M. M. 7050</td>
<td>£350</td>
</tr>
<tr>
<td>D.M.M (Microprocessor configured, serviced 7065)</td>
<td>£1,150</td>
</tr>
<tr>
<td>with processor option</td>
<td>£1,450</td>
</tr>
<tr>
<td>OSCILLOSCOPES</td>
<td></td>
</tr>
<tr>
<td>Storage Scope OS2200</td>
<td>£745</td>
</tr>
<tr>
<td>30MHz Dual Trace DCDU 150</td>
<td>£450</td>
</tr>
<tr>
<td>75MHz Dual Trace 4100</td>
<td>£695</td>
</tr>
<tr>
<td>HEWLETT PACKARD 500KHz High Sensitivity 130C</td>
<td>£345</td>
</tr>
<tr>
<td>7MHz Dual Trace 1707B</td>
<td>£1200</td>
</tr>
<tr>
<td>T.D.R. System 140A + 1414A</td>
<td>£1500</td>
</tr>
<tr>
<td>PHILIPS</td>
<td></td>
</tr>
<tr>
<td>5MHz Battery Miniscop PM3010</td>
<td>£325</td>
</tr>
<tr>
<td>15MHz Portable Dual Trace PM3212</td>
<td>£810</td>
</tr>
<tr>
<td>25MHz Portable Dual Trace PM3212</td>
<td>£625</td>
</tr>
<tr>
<td>25MHz Portable Dual Trace PM3214</td>
<td>£700</td>
</tr>
<tr>
<td>120MHz Portable Dual Trace PM3260</td>
<td>£1095</td>
</tr>
<tr>
<td>100MHz Portable Dual Trace PM3262</td>
<td>£825</td>
</tr>
<tr>
<td>50MHz Storage Scope PM3243</td>
<td>£2000</td>
</tr>
<tr>
<td>TEKTRONIX</td>
<td></td>
</tr>
<tr>
<td>10MHz Dual Trace Battery Miniscop 326</td>
<td>£900</td>
</tr>
<tr>
<td>24MHz Dual Trace S448 + CA</td>
<td>£239</td>
</tr>
<tr>
<td>50MHz Dual Trace 484 + 1A</td>
<td>£775</td>
</tr>
<tr>
<td>25MHz Spill Screen Storage Scope 434</td>
<td>£1600</td>
</tr>
<tr>
<td>Large stocks of Plug ins for 50 series</td>
<td>£2000</td>
</tr>
<tr>
<td>mainframes at new low prices. Details on</td>
<td></td>
</tr>
<tr>
<td>request.</td>
<td></td>
</tr>
<tr>
<td>TELEQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>10MHz Single Trace P7CRT</td>
<td>£175</td>
</tr>
<tr>
<td>S54AR (Mint)</td>
<td>£695</td>
</tr>
<tr>
<td>50MHz Dual Trace D75</td>
<td>£695</td>
</tr>
<tr>
<td>Curve Trace CT71</td>
<td>£400</td>
</tr>
<tr>
<td>OSCILLOSCOPES PROBES</td>
<td></td>
</tr>
<tr>
<td>ELECTRONIC BROKERS (NEW)</td>
<td></td>
</tr>
<tr>
<td>X1 Probe Kit EB80</td>
<td>£9</td>
</tr>
<tr>
<td>X10 Probe Kit EB81</td>
<td>£11</td>
</tr>
<tr>
<td>X11X Probe Kit EB85</td>
<td>£15</td>
</tr>
<tr>
<td>SUPPLEMENTARY</td>
<td></td>
</tr>
<tr>
<td>RECORDERS</td>
<td></td>
</tr>
<tr>
<td>AMPEX FM/DR Tape Recorder PR2200</td>
<td>£500</td>
</tr>
<tr>
<td>BRUSH Multipoint B Channel Chart Recorder</td>
<td>£695</td>
</tr>
<tr>
<td>PHILIPS</td>
<td></td>
</tr>
<tr>
<td>Single Channel Chart Recorder PM6110</td>
<td>£1120</td>
</tr>
<tr>
<td>RACAL</td>
<td></td>
</tr>
<tr>
<td>Scan AP Tape Recorder</td>
<td>£2650</td>
</tr>
<tr>
<td>SHANDON SOUTHERN</td>
<td></td>
</tr>
<tr>
<td>6 Channel Recorder 10-650</td>
<td>£725</td>
</tr>
<tr>
<td>YOKOGAWA</td>
<td></td>
</tr>
<tr>
<td>2 Channel Chart Recorder 3047 £530</td>
<td>£725</td>
</tr>
<tr>
<td>RATIONAL</td>
<td></td>
</tr>
<tr>
<td>3003 Sweeper Main Frame c/w</td>
<td>£750</td>
</tr>
<tr>
<td>3302, 3331, 3341, 3351, 3360 and 3370 modules. Frequency range: 0-300MHz sweep width 0-100% of the range 0-62dB with 0.1dB attenuation in 10dB steps. Power supplies: 0/5V with 0.1% stability. Internal detector. £1,150</td>
<td></td>
</tr>
<tr>
<td>TELONIC</td>
<td></td>
</tr>
<tr>
<td>2003 Sweeper Main Frame 0-300MHz  650£</td>
<td></td>
</tr>
<tr>
<td>WAVETEK</td>
<td></td>
</tr>
<tr>
<td>1365 Lin Log Sweep Function Generator, 0-2Hz</td>
<td>£275</td>
</tr>
<tr>
<td>2Hz-10V 500 Hz. Sine and triangle. Sweep time 10yrs 10000s</td>
<td>£275</td>
</tr>
<tr>
<td>SOUND LEVEL METERS</td>
<td></td>
</tr>
<tr>
<td>BRUEL &amp; KJAER</td>
<td></td>
</tr>
<tr>
<td>Sound Level Meter 2203</td>
<td>£500</td>
</tr>
<tr>
<td>GENERAL RADIO</td>
<td></td>
</tr>
<tr>
<td>Portable Sound Level Meter, 1993</td>
<td>£90</td>
</tr>
<tr>
<td>Portable Sound Level Meter, 1995</td>
<td>£80</td>
</tr>
<tr>
<td>MISCELLANEOUS BIMATION</td>
<td></td>
</tr>
<tr>
<td>Channel Logic Analyser 1650</td>
<td>£410</td>
</tr>
<tr>
<td>BOONTON</td>
<td></td>
</tr>
<tr>
<td>True R.M.S. Voltmeter 933</td>
<td>£375</td>
</tr>
<tr>
<td>DC Voltage Calibrator 126B</td>
<td>£275</td>
</tr>
<tr>
<td>DATA LABS</td>
<td></td>
</tr>
<tr>
<td>Portable Sound Level Meter, 1993</td>
<td>£80</td>
</tr>
<tr>
<td>Portable Sound Level Meter, 1995</td>
<td>£90</td>
</tr>
<tr>
<td>DYMAR</td>
<td></td>
</tr>
<tr>
<td>LF Wave Analyser 1775</td>
<td>£375</td>
</tr>
<tr>
<td>AM/FM Mod. Meter 1785</td>
<td>£300</td>
</tr>
<tr>
<td>LF Distortion Meter 1785</td>
<td>£250</td>
</tr>
<tr>
<td>GERTSCH</td>
<td></td>
</tr>
<tr>
<td>Complex Ratio Bridge CR1B</td>
<td>£800</td>
</tr>
<tr>
<td>GENERAL RADIO</td>
<td></td>
</tr>
<tr>
<td>Vibration Analyser 1911A</td>
<td>£1200</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td></td>
</tr>
<tr>
<td>Power Meter 432A + 475</td>
<td>£650</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td></td>
</tr>
<tr>
<td>Power Meter 330A + 475</td>
<td>£650</td>
</tr>
<tr>
<td>Functional Generator PM 521</td>
<td>£900</td>
</tr>
<tr>
<td>Sine, square, triangle, single shot with</td>
<td></td>
</tr>
<tr>
<td>variable phase, 0-10V with 0.1% stability.</td>
<td></td>
</tr>
<tr>
<td>Internal detector.</td>
<td></td>
</tr>
<tr>
<td>MARCONI INSTRUMENTS</td>
<td></td>
</tr>
<tr>
<td>Function Generator, Up to 500MHz £1200</td>
<td></td>
</tr>
<tr>
<td>TELLONIC</td>
<td></td>
</tr>
<tr>
<td>2003 Sweeper Main Frame, 0-300MHz 650£</td>
<td></td>
</tr>
<tr>
<td>WAVETEK</td>
<td></td>
</tr>
<tr>
<td>1365 Lin Log Sweep Function Generator, 0-2Hz</td>
<td>£275</td>
</tr>
<tr>
<td>2Hz-10V 500 Hz. Sine and triangle. Sweep time 10yrs 10000s</td>
<td>£275</td>
</tr>
<tr>
<td>PHILIPS</td>
<td></td>
</tr>
<tr>
<td>Pattern Generator PM521</td>
<td>£975</td>
</tr>
<tr>
<td>AM Multimeter PM2454B</td>
<td>£299</td>
</tr>
<tr>
<td>AM Multimeter PM3501</td>
<td>£180</td>
</tr>
<tr>
<td>AM Multimeter PM2607</td>
<td>£725</td>
</tr>
<tr>
<td>AM Multimeter PM2622</td>
<td>£500</td>
</tr>
<tr>
<td>ELECTRONIC BROKERS</td>
<td></td>
</tr>
<tr>
<td>X1 Probe Kit EB80</td>
<td>£9</td>
</tr>
<tr>
<td>X10 Probe Kit EB81</td>
<td>£11</td>
</tr>
<tr>
<td>X11X Probe Kit EB85</td>
<td>£15</td>
</tr>
<tr>
<td>RATIONAL</td>
<td></td>
</tr>
<tr>
<td>3003 Sweeper Main Frame c/w</td>
<td>£750</td>
</tr>
<tr>
<td>3302, 3331, 3341, 3351, 3360 and 3370 modules. Frequency range: 0-300MHz sweep width 0-100% of the range 0-62dB with 0.1dB attenuation in 10dB steps. Power supplies: 0/5V with 0.1% stability. Internal detector. £1,150</td>
<td></td>
</tr>
<tr>
<td>TELONIC</td>
<td></td>
</tr>
<tr>
<td>2003 Sweeper Main Frame 0-300MHz 650£</td>
<td></td>
</tr>
<tr>
<td>WAVETEK</td>
<td></td>
</tr>
<tr>
<td>1365 Lin Log Sweep Function Generator, 0-2Hz</td>
<td>£275</td>
</tr>
<tr>
<td>2Hz-10V 500 Hz. Sine and triangle. Sweep time 10yrs 10000s</td>
<td>£275</td>
</tr>
<tr>
<td>MARCONI INSTRUMENTS</td>
<td></td>
</tr>
<tr>
<td>Function Generator, Up to 500MHz £1200</td>
<td></td>
</tr>
<tr>
<td>TELLONIC</td>
<td></td>
</tr>
<tr>
<td>2003 Sweeper Main Frame, 0-300MHz 650£</td>
<td></td>
</tr>
<tr>
<td>WAVETEK</td>
<td></td>
</tr>
<tr>
<td>1365 Lin Log Sweep Function Generator, 0-2Hz</td>
<td>£275</td>
</tr>
<tr>
<td>2Hz-10V 500 Hz. Sine and triangle. Sweep time 10yrs 10000s</td>
<td>£275</td>
</tr>
<tr>
<td>PHILIPS</td>
<td></td>
</tr>
<tr>
<td>Pattern Generator PM521</td>
<td>£975</td>
</tr>
<tr>
<td>AM Multimeter PM2454B</td>
<td>£299</td>
</tr>
<tr>
<td>AM Multimeter PM3501</td>
<td>£180</td>
</tr>
<tr>
<td>AM Multimeter PM2607</td>
<td>£725</td>
</tr>
<tr>
<td>ELECTRONIC BROKERS</td>
<td></td>
</tr>
<tr>
<td>X1 Probe Kit EB80</td>
<td>£9</td>
</tr>
<tr>
<td>X10 Probe Kit EB81</td>
<td>£11</td>
</tr>
<tr>
<td>X11X Probe Kit EB85</td>
<td>£15</td>
</tr>
<tr>
<td>RATIONAL</td>
<td></td>
</tr>
<tr>
<td>3003 Sweeper Main Frame c/w</td>
<td>£750</td>
</tr>
<tr>
<td>3302, 3331, 3341, 3351, 3360 and 3370 modules. Frequency range: 0-300MHz sweep width 0-100% of the range 0-62dB with 0.1dB attenuation in 10dB steps. Power supplies: 0/5V with 0.1% stability. Internal detector. £1,150</td>
<td></td>
</tr>
<tr>
<td>TELONIC</td>
<td></td>
</tr>
<tr>
<td>2003 Sweeper Main Frame 0-300MHz 650£</td>
<td></td>
</tr>
<tr>
<td>WAVETEK</td>
<td></td>
</tr>
<tr>
<td>1365 Lin Log Sweep Function Generator, 0-2Hz</td>
<td>£275</td>
</tr>
<tr>
<td>2Hz-10V 500 Hz. Sine and triangle. Sweep time 10yrs 10000s</td>
<td>£275</td>
</tr>
</tbody>
</table>

The table above lists various test equipment and their prices. The prices are in British pounds (£).
THE COMPLETE SOLUTION TO THERMOCOUPLE AMPLIFICATION

- Programmable Cold Junction Compensation
- Complete with Adjustments
- Platinum R/T Stability for C.J.C.
- Zero Suppression/Elevation Built in
- Gain from 100 to 10000 Built in

The Model TA100 thermocouple conditioning Unit is housed in a 50 x 50 x 15mm package and can be used to condition any type of thermocouple. Simply dial in the Thermocouple sensitivity (in µA/°C), set gain and zero, and the Unit automatically corrects for the Thermocouple you are using.

Gone are problems of different electronics for different applications.

THE ONE ANSWER

CIL Electronics Ltd
14 Willowbrook Road,
Worthing, Sussex BN14 8NA
Tel: Worthing 0903 204546
Telex: 87515 WISCO G ATT CIL

Z & I AERO SERVICES LTD.
Head Office: 44a WESTBOURNE GROVE, LONDON W2 5SF
Tel. 727 5841 Telex 261306

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>U4313</th>
<th>U4315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity D.C.</td>
<td>20,000 o.p.v.</td>
<td>20,000 o.p.v.</td>
</tr>
<tr>
<td>Sensitivity A.C.</td>
<td>2,000 o.p.v.</td>
<td>2,000 o.p.v.</td>
</tr>
<tr>
<td>D.C. Current</td>
<td>60µA-1.5A</td>
<td>50µA-2.5A</td>
</tr>
<tr>
<td>A.C. Current</td>
<td>0.6mA-1.5A</td>
<td>0.5mA-2.5A</td>
</tr>
<tr>
<td>D.C. Volts</td>
<td>75mV-600V</td>
<td>75mV-1000V</td>
</tr>
<tr>
<td>A.C. Volts</td>
<td>15V-600V</td>
<td>1V-1000V</td>
</tr>
<tr>
<td>Resistance</td>
<td>1k-1M</td>
<td>20k-50k</td>
</tr>
<tr>
<td>Capacity</td>
<td>0.5µF</td>
<td>0.5µF</td>
</tr>
<tr>
<td>Accuracy</td>
<td>1.5% D.C.</td>
<td>2.5% D.C.</td>
</tr>
<tr>
<td>Price complete with pressed steel carrying case and test leads</td>
<td>£10.50</td>
<td>£10.50</td>
</tr>
<tr>
<td>Packing and postage</td>
<td>£1.50</td>
<td>£1.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>U4324</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C. Current</td>
<td>0.06-0.6-60-600mA-4.3A</td>
</tr>
<tr>
<td>A.C. Current</td>
<td>0.3-3-300mA-3A</td>
</tr>
<tr>
<td>D.C. Voltage</td>
<td>0.6-1.2-12-30-60-120-500-1200V</td>
</tr>
<tr>
<td>A.C. Voltage</td>
<td>3.6-15-60-150-300-600-900V</td>
</tr>
<tr>
<td>Resistance</td>
<td>500(1)-5(5)-500k(4)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.5% D.C., 2.5% A.C., 4% (of F.S.D.)</td>
</tr>
<tr>
<td>PRICE</td>
<td>£9.50</td>
</tr>
<tr>
<td>Packing and postage</td>
<td>£1.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>U4323</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMBINED WITH SPOT FREQUENCY OSCILLATOR</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>20.000µV/V</td>
</tr>
<tr>
<td>Voltage ranges</td>
<td>2.5-1000V A.C./D.C.</td>
</tr>
<tr>
<td>Current ranges</td>
<td>0.05-500mA D.C. only</td>
</tr>
<tr>
<td>Resistance</td>
<td>5/1MQ</td>
</tr>
<tr>
<td>Accuracy</td>
<td>5% F.S.D.</td>
</tr>
<tr>
<td>Oscillator output</td>
<td>1kHz 50/50 squarewave</td>
</tr>
<tr>
<td>Frequency</td>
<td>485kHz sine wave</td>
</tr>
<tr>
<td>PRICE, in carrying case, complete with leads and manual</td>
<td>£8.00</td>
</tr>
<tr>
<td>Packing and postage</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>U4341</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMBINED MULTIMETER AND TRANSISTOR TESTER</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>16:700µV/V D.C. , 3.300µV/A.C.</td>
</tr>
<tr>
<td>Current</td>
<td>0.06-0.6-6-60-600mA D.C. , 0.3-3-30-300mA A.C.</td>
</tr>
<tr>
<td>Voltage</td>
<td>0.3-5.5-30-150-300-900V D.C.</td>
</tr>
<tr>
<td>Resistance</td>
<td>1.5-7.5-30-150-300-750V A.C.</td>
</tr>
<tr>
<td>Transistors</td>
<td>Collector cut-off current 60A max</td>
</tr>
<tr>
<td>D.C. current gain 10.350 in two ranges</td>
<td></td>
</tr>
<tr>
<td>PRICE, complete with steel carrying case, test lead, battery and instruction manual</td>
<td>£9.50</td>
</tr>
<tr>
<td>Packing and postage</td>
<td>£1.50</td>
</tr>
</tbody>
</table>
ELECTRONICS TEST ENGINEERS

We need your skills to stay true to type

equivalent. you could build a great career with us. A knowledge of analogue circuitry would be an added advantage. The work is deeply interesting and stimulating—and never routine. Staff facilities include superb working conditions, sick pay scheme, a subsidised canteen and relocation expenses where appropriate. And salary structures are highly competitive. Posts are open to both men and women. For full details, write or telephone to the Personnel Department, Linotype-Paul Limited, Runnings Road, Cheltenham. Tel: Cheltenham 45001.

Linotype-Paul
AMPEx

AMPEx Corporation, a world leader in analogue and digital data recording technology, has been designated the official supplier of video recording and magnetic tape products to the 1980 Moscow Olympics. Early in 1980 the Group’s Training Department in Reading will need an additional

INSTRUCTOR

IN BROADCAST TELEVISION COLOUR CAMERAS AND VIDEO TAPE RECORDERS

This is an opportunity to join a company in the forefront of technological innovation in a position involving contact with engineers from all over the world and some overseas travel.

The essential qualifications are:

* experience as, or personality to become, an expert instructor training engineers of many nationalities.
* sound knowledge of advanced electronics, particularly in the broadcast television field.
* sound knowledge of foreign language would be useful.

An attractive salary and benefits package is offered.

Please telephone Clive Legg on Reading 85200, Ampex Great Britain Limited, Acre Road, Reading, Berks.

ANTENNA SALES ENGINEER

Unusual opportunity for introducing Kathrein FM, TV and communication transmitting antennas to UK customers and to increase sales of Spiner and Kabelmetal products in the same market.

The job entails calling on existing customers throughout the UK, developing new customers, the preparation of quotations and tenders and assisting customers with their technical problems.

The successful candidate will be over 25 and preferably have good sales ability, suitable experience and qualifications. A good salary and an above average car will be offered. Four weeks’ holiday per annum and a non-contributory pension scheme complete the package.

Please apply in writing, marked confidential, to:

The Managing Director

Hayden Laboratories Limited

HAYDEN

Foreign and Commonwealth Office

Telecommunications Officers

in London and at Hanslope Park, Milton Keynes, for work in the installation, modification, maintenance and operation of HF, VHF, UHF and microwave receivers, associated test equipment, recorders, telephone and teleprinter equipment, electronic ancillary apparatus (some using analogue and digital techniques), voice frequency telegraph and other specialised equipment.

Candidates must have served an apprenticeship or have had equivalent training. They should normally have 3 years’ relevant experience, and hold ONC in Engineering (with pass in Electrical Engineering ‘A’) or Applied Physics or TEC/SCOTEC certificate or equivalent qualification in a relevant subject. Ex-Service personnel who have had suitable training and at least 3 years’ appropriate service (as Staff Sergeant or equivalent) will also be considered.

Salary: £4,575-£6,100; London £780 more. Starting salary may be above the minimum for those with more relevant experience. Promotion prospects. Non-contributory pension scheme.

For further details and an application form (to be returned by 17 January, 1980), write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote T/5274.
**Career Opportunities in Audio Electronics**

**Dolby Laboratories**

The UK operation of this international name in audio electronics manufactures a comprehensive range of professional noise reduction systems which is employed world-wide in the broadcasting, recording and film industries. Dramatic increase in world demand has stimulated the company's development, creating the following exciting career opportunities.

**Application Consultants** c. £9,000

Reporting to the International Marketing Director, the prime responsibility will be the provision of a full technical consultancy to professional users. Major activities will include advice on specifications and equipment compatibility in cinemas and studios; training installation and service technicians; distributor and end-user liaison; field servicing and trouble-shooting operational problems; and sound consultancy during film dubbing.

Candidates are likely to have a broad-based audio background ideally including practical experience in electronics, as well as professional recording and mixing. Essential personal qualities include the ability to work with considerable autonomy and flexibility to high professional standards. World-wide travel is involved for which a working knowledge of a European language would be an advantage. Ref AA57/7146/WW.

**Production Engineers**

*(Electromechanical & Electronic)* c. £7,000

Reporting to the Production Director, the principal responsibilities of these posts will include the introduction of new products to line production; production improvements/trouble-shooting; modification control; and liaison with the California-based R & D team. The electromechanical engineer will have prime responsibility for all mechanical aspects of production, with major emphasis on assembly processes; jig, fixture and tool design; and packaging. The electronics engineer will have responsibility for defining test procedures and for the design, development, specification, and/or procurement of test equipment. An analogue background is desirable.

Candidates, probably in their mid-20s to 30s, will be of graduate or equivalent status, and should be able to demonstrate an ability to produce reliable, cost-effective solutions. Considerable autonomy is offered; experience gained in a small-company environment would be an advantage. Ref TE61/7147/WW.

**Inspection Supervisor** c. £7,000

Reporting to the QA Manager, the Supervisor will assume full responsibility for inspection of 'in-house' assembly operations. Key tasks will be the motivation, control, training and development of the inspection team, and the preparation and analysis of inspection reports and quality investigations to improve both quality standards and cost-effective production. This post is likely to appeal to young electronics engineers (from age 23 years) who seek a stepping stone into line management. The attractive salaries will be supplemented by competitive benefits which include relocation assistance. Location: London SW9.

Initial interviews are conducted by PA Consultants. No details are divulged to clients without prior permission. Please send brief career details or write for an application form; quoting the appropriate reference number on both your letter and envelope, and advise us if you have recently made any other applications to PA Personnel Services.

---

**King's College, London**

**Electronic Technician**

For interesting work in busy Physics Research Department including construction, repair and maintenance of equipment. Experience in integrated circuits and digital electronics desirable.

Good conditions. 5-weeks' annual holiday. Superannuation scheme. Interest-free loans for annual rail season tickets. Salary on scale £4,480 p.a. to £5,100 p.a. inclusive (under review).

Apply in writing with full details to: The Head Clerk (Ref. 221743/WW), King's College, London, Strand WC2R 2LS.

**PA Personnel Services**

Hyde Park House, 6th Knightridge, London SW1X 7LE. Tel: 01-215 6006 Telex: 27874
AMPEX

BROADCAST VTR ENGINEERS

FOR MIDDLE EAST AND AFRICA BASED IN ATHENS

We seek HNC calibre Electronics Engineers or those with equivalent experience, to whom product training will be given. They will be required to travel and work independently and to join our highly professional team serving this area from its Regional Office in Athens.

Salaries reflect the demanding nature of the job. Assistance with relocation, rent, education expenses will be given. Pension, medical expenses and insurance.

Write fully to Don Cameron, AMPEX, P.O. Box 45, Halandri, Athens, Greece, or for application form from Clive Legg, Ampex Great Britain Ltd., Acre Road, Reading, Berks. on Reading 85200.

The Group parent company, Ampex Corporation, has been designated the official supplier of video recording and magnetic tape products to the 1980 Moscow Olympics.

---

Electronic Engineers – What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £4000 to £8000 p.a.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 0892 39388

Please send me a TJB Appointments Registration form:

Name ..................................................
Address ..................................................
How to get second interviews without having first ones, you have to cut a few corners.

All too often, first interviews are unnecessary. You provide a mass of information for the second or third time. You're screened by comparatively junior people. And you have to invent some excuse for being away from your own job at an inconvenient time. Second interviews are when it all happens. You meet the decision-makers and you know they're interested. Lansdowne can save you from wasteful first interviews. Just fill in and send us this coupon and you will receive our ‘First Interview’ form. And, because we have access to the opportunities in over 3,000 companies, large and small, we can match you with the situations that might suit you.

The employer will then get in touch with you directly and invite you to what is, in effect, a second interview. From then on, it's up to you. As you'd expect from Britain's most professionally respected register, we maintain total confidentiality throughout. And you can specify those companies to which you do not want your particulars sent. Cutting corners could save you a great deal of time. Why not cut a few right now?

Lansdowne Appointments Register, Design House, The Mall, London W5 5LS. Tel: 01-579 2282 (24 hour answering service).

Our clients would like to meet men and women, aged 20-40 years, earning between £4,000 and £8,000, from any of the following areas — (please tick where appropriate).

☐ Service Engineers  ☐ Audio Engineers  ☐ Technicians
☐ Test Engineers  ☐ Sales Engineers

Name

Address

Lansdowne Appointments Register, Design House, The Mall, London W5 5LS. Tel: 01-579 2282. (24 hour answering service).
RADIO OFFICERS

If your trade or training involves radio operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation.

A number of vacancies will be available in 1980/81 for suitably qualified candidates to be appointed as Trainee Radio Officers. Candidates must have had at least 2 years’ radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly.

On successful completion of 40 weeks’ specialist training, appointees move to the Radio Office Grade.

Salary Scales:

<table>
<thead>
<tr>
<th>Trainee Radio Officer</th>
<th>Radio Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 19 £3271</td>
<td>Age 19 £3961</td>
</tr>
<tr>
<td>Age 20 £3382</td>
<td>Age 20 £4107</td>
</tr>
<tr>
<td>Age 21 £3485</td>
<td>Age 21 £4243</td>
</tr>
<tr>
<td>Age 22 £3611</td>
<td>Age 22 £4359</td>
</tr>
<tr>
<td>Age 23 £3685</td>
<td>Age 23 £4571</td>
</tr>
<tr>
<td>Age 24 £3767</td>
<td>Age 24 £4854</td>
</tr>
<tr>
<td>Age 25+ £3856</td>
<td>Age 25+ £5166</td>
</tr>
</tbody>
</table>

then by 5 annual increments to £6981 inclusive of shift working and Saturday, Sunday days.

For further details telephone Cheltenham 21491 Ext. 2269, or write to the address below.

GCHQ Recruitment Office
Government Communications Headquarters
Oakley, Priors Road, Cheltenham GL52 5AJ

TELEVISION PROJECTS ENGINEERS

We have vacancies in our expanding Projects Section for Junior and Intermediate engineers. Responsibilities cover all stages of custom-built vision/audio switching system manufacture from customer liaison through design, production and test to final acceptance.

The positions offer the chance for energetic engineers with initiative to join a vision/audio switching system manufacture from customer liaison through to many professional TV broadcasters in the UK and Europe. A certain amount of travel here and abroad could be involved.

In particular this opportunity would suit engineers possessing some experience in electronic testing wishing to expand their horizons and gain experience in television broadcast systems.

In addition to a good salary the company offers profit-sharing and non-contributory pension schemes, free BUPA membership, a friendly environment in rural settings and excellent career prospects.

For more details contact David Steel at:

pro-bel LIMITED
TELEPHONE BRACKNELL (0341) 56869/56960

MARTIN-BAKER (ENGINEERING) CO. LTD.
has a vacancy for an

ELECTRONIC TECHNICIAN

AT CHALGROVE AIRFIELD, OXFORD

The successful applicant will be required to assist small team, on commissioning and operation of telemetry and instrumentation systems for ejection seat trials.

QUALIFICATIONS — Ability to make prototype units from rough drawings and test to specifications using standard test equipment. Knowledge and experience of U.H.F. Trans/Recs., tape recorders and logic systems. (Gained as a radio amateur perhaps).

Salary range £5500–£5700 per annum. Weekly paid 40-hour week. 22 days’ holiday per year, non-contributory pension scheme after five years.


Editorial writer for Wireless World

Wireless World needs a new person on its editorial staff. Technical experience in electronics and/or communications and an ability to write are essential. The work is varied and includes writing technical news reports and other material, attending meetings, exhibitions, press conferences and other events, some abroad, and editing contributed technical articles. A good deal of freedom will be given to a person who shows ability and responsibility. Preferred age range 25 to 35.

Write to: The Editor
WIRELESS WORLD
Dorset House, Stamford Street
London SE1 9LU

TECHNOMARK
Engineering and Technical Recruitment
11 Westbourne Grove
London W2 01229 9239

APPointments in
ELECTRONICS
£5 - £10,000

Missiles — Medical
Computers — Medical
Radar — COMMS
Hardware — Software

For free expert advice and immediate action on salary and career improvement, phone or write to: Mike Gemmell BSc.

ANDROMICA (T.V.) LTD.
34 Rockingham Road
Uxbridge, Middelx
Tel. Uxbridge 57971

VIDEO ENGINEERS

Experienced Video Engineers are required for important work, mainly in the field of high security systems. Some work on short contracts is available in the Middle East, North Africa etc, if required, but not mandatory. A company car, pension scheme and generous salary can be expected but loyalty and a determination to do the job well are necessary. We are looking for Engineers who expect to earn £4,000 - £7,000.

Please apply to:
ANDROMICA (T.V.) LTD.
34 Rockingham Road
Uxbridge, Middlesex
Tel. Uxbridge 57971
HNC Level Engineers

(Electrical or Electronic)

Train for the future as a
Broadcast Transmission Engineer

Through our network of over 500 transmission stations the IBA is responsible for the transmission of all Independent Television and Local Radio services. With a steadily increasing number of stations, the preparations for the fourth television channel and more local radio stations now underway we are taking on increased responsibilities.

We take great pride in the fact that our system is one of the best in the world and great importance is placed on maintaining the efficiency of the service. To do this we have teams of highly trained and experienced engineers all over the country.

Internal promotions and continued expansion have created a number of opportunities for H.N.C. or H.T.C. or equivalent level engineers (male or female) to train for a challenging future. Our carefully devised training programme, which will commence this summer, can lead to a recognised Diploma and combines theoretical study and practical training. This comprehensive training is a step beyond traditional learning and gives a grounding in broadcast engineering that is second to none. Naturally, course fees, accommodation and meals will be paid during the course. A full driving licence is required, but if you do not already have one, we will assist you by arranging and paying for instruction.

On the satisfactory completion of the training programme, your salary will be £5,880 per annum and then rise annually to £7,280 per annum, with further progression to £8,202 per annum. (During the training period you will receive a salary of up to £4,700 per annum, depending upon experience.) At higher levels it will be up to you to demonstrate your ability as promotions are based on internal competition - all of our Regional engineering managers started their careers at transmitting stations.

Employment benefits include Free Life Assurance and Personal Accident Schemes, a Contributory Pension Scheme, generous relocation expenses and subsidised mortgage facilities.

Please write or telephone Mike Wright for a fully illustrated information package and application form, at IBA, Crawley Court, Winchester, Hampshire SO21 2QA. Telephone: Winchester 822574.
Appointments

**DESIGN ENGINEER**

Thorn Consumer Electronics Limited, leading manufacturers of television and audio equipment in the U.K., wish to appoint an experienced Design Engineer for their Research and Engineering centre at Enfield.

The successful applicant will join a team investigating new ideas and systems for the television industry and should have a degree or equivalent, with at least two years in television design, with some digital design experience, and be preferably under 35 years of age.

The ability to work on his/her own initiative, liaising with internal development departments and outside suppliers, is essential.

Please apply in writing, stating age, experience and qualifications to:

The Personnel Manager, (DE/WWW),

**THORN CONSUMER ELECTRONICS LTD.**
Great Cambridge Road, Enfield, Middlesex, EN1 1UL.

---

**JUNIOR DEVELOPMENT ENGINEERS**

**ELECTRONICS**

John Player and Sons, a leading manufacturer of tobacco products, offers the following opportunities to young electronics engineers to gain valuable practical experience in industrial electronics.

Vacancies exist for work in the Machinery Evaluation Section where new generation cigarette making and packing machines are undergoing pre-production trials. These machines are equipped with increasing numbers of modern electronic control circuits and include microprocessors.

The successful applicants will undergo a period of familiarisation, look after specific machines during the evaluation period, be involved in the development of special features as well as devising evaluation aids and ultimately in the training of others in the maintenance of these machines on the production floor.

We are looking for men or women who are qualified to HNC or equivalent, and have 2 years’ experience in one or more of the following areas:

- electronic control and logic circuits
- process control systems
- microprocessors

A knowledge of the tobacco industry is not essential.

We offer a starting salary of £5,500 per annum together with other benefits including relocation assistance where applicable.

Application forms can be obtained by phoning Nottingham (STD 0602) 787711 Extension 345 or writing to:

Lorna Blayney

**JOHN PLAYER AND SONS**

Nottingham NG7 5PY

---

Manufacturers of professional film and video equipment now need the following staff:

**ELECTRONICS DESIGNER**

An engineer with some experience is required to join a small design team working on a variety of projects. Fields of interest include logic, analogue and power control circuits. The level of work would suit a Graduate or someone with relevant design experience.

**ELECTRONICS TECHNICIANS**

There are vacancies for test personnel for fault finding and general testing of PCB’s and equipment. Some experience of logic and analogue circuits is essential.

The above vacancies are suitable for men or women. If you are interested in either of them please telephone Nigel Gardiner on 01-543 3131, or come along and see us.

**PAG GROUP**

565 KINGSTON ROAD, RAYNES PARK
LONDON, SW20

---

**GUERNSEYMEN**

come home, we need you here!

We have vacancies for, **ELECTRONICS ENGINEERS** and a **DRAUGHTSMAN**

We are forming a Product Development group within our company here in Guernsey which will be involved in the introduction, appraisal, and design of new products aimed at our European Markets.

We are in the business of manufacturing data communications equipment including sophisticated microprocessor-based monitoring and test equipment. We have immediate vacancies for Engineers with experience in one or more of the following areas:

- Systems, Analogue, Software, and digital design.

We also have a vacancy for a Draughtsman with electronics experience.

Applicants, who must have Guernsey residential qualifications are invited to write to the Personnel Manager giving details of experience and qualifications.

---

**ROHDE & SCHWARZ**

Independent concern represented in 80 countries

**SENIOR TEST AND CALIBRATION ENGINEERS**

With a background in RF and microwave experience, in analogue, digital techniques, logic and microprocessor controlled ATE also vacancies exist for

**TEST & CALIBRATION ENGINEERS**

with knowledge of one or more of the above techniques.

We offer an exceptional salary, performance related bonus scheme, training abroad, prospects of promotion, a wide variety of work, a happy atmosphere, a non-contributory pension scheme and subsidised restaurant.

Please write or phone to:

Mr. Z. Eres (Technical Manager) extension 43.

Electronic Instruments & Communications Equipment

aveley electric LTD

Roebuck Road
Chesington
Surrey KT9 1LP

01-397 8771

---

**ITA EXPANSION**

We need more high-calibre engineers conversant with current recording equipment. Applicants must be able to assume responsibility in return for an attractive salary and secure future.

Apply: Chief Engineer
ITA, 1-7 Harewood Avenue
Marylebone Road
London, N.W.1
01-724 2497

---

**CAPITAL APPTS.**

**FREE LISTS**

**OF DESIGN/DEVELOPMENT** and **Test Jobs**

Permanent and Contract

To £6,500

01-543 3131
day: 636 9059 eve

---

**Dyatech DATA COMMUNICATIONS LTD**

Place du Commerce, Bouet, St Peter Port, Guernsey
Telephone 0481 26475
**SOUTHERN ELECTRICITY**
Littlewick Green, Maidenhead

**SECOND ENGINEER**
(Telecommunications)

**CHIEF ENGINEER’S DEPARTMENT**
**HEAD OFFICE**

**Applications**

**SALARY WITHIN THE RANGE £6,830-£8,955 PER ANNUM**

Applications are invited for the above post in the Technical Services Section of the Chief Engineer’s Department.

The successful applicant will be part of a team engaged in the design, commissioning, and subsequent maintenance of telecommunications systems throughout the Southern Electricity Board, and must be able to spend periods away from Head Office when carrying out these duties.

Schemes in progress include telecontrol, data communications, medium capacity microwave links, multi-channel line circuits and radio and line telephony systems. Applicants should have had experience in some of this work and preferably in possession of suitable technical qualifications.

The successful candidate will be required to drive a motor vehicle which may be either a private car or a Board-owned car. Appropriate relocation assistance will be provided.

Applications on forms obtainable from the Secretary, Southern Electricity, Southern Electricity House, Littlewick Green, Maidenhead, Berks., SL6 3QB, and returned to him quoting 76/79 by not later than January 11, 1980.

---

**FIELD ELECTRONICS ENGINEERS**

Gardline Surveys are a leading Hydrographic and Geophysical Survey Company providing shipping, offshore positioning and site investigation services to oil companies and other clients.

Due to continuing expansion we have vacancies for the following personnel:

**SEISMIC ENGINEERS**—with a strong electronics background, a familiarity with digital acquisition systems and preferably with marine or shallow marine operations.

**UNDERWATER SYSTEMS ENGINEERS**—with a sound background in electronics and an aptitude for practical work and fault finding. Gardline operates a variety of equipment including Huntex Deep Tow Boomer, E. G. and G. Sidescan Sonars, Magnetometers, Sparkers, etc. Experience with one or more of these systems is desirable but not essential.

**POSITIONING ENGINEERS**—with experience in the field of survey vessel navigation or oil rig positioning. Gardline operates a variety of positioning systems including Satellite Navigation, 2KHZ Systems, Syledis and Trisponder. A computer and track plotter are usually used in conjunction with the above equipment. Familiarity with digital techniques and the ability to fault-find desk top calculators would be an advantage.

Whilst formal qualifications are an advantage, experience and the ability to work effectively in a field environment is considered to be of prime importance. We expect our engineers to be adaptable and willing to learn to use systems that they are not familiar with at present.

Employment will be based at Great Yarmouth or if required Aberdeen. Operations are primarily North Sea based but there are good prospects of overseas employment through our branch offices in Houston and Sharjah (U.A.E.).

Salary is fully negotiable and with sea pay is likely to be around £8,000.

There is a company pension scheme and 4 weeks’ annual leave plus roster leave accrued whilst at sea.

Applicants should write or telephone The Technical Manager, Gardline Surveys, Oilmar House, Admiralty Road, Great Yarmouth, Norfolk. Tel: Great Yarmouth (0493) 50723.
HOLLAND

Holland, the most ‘English’ country in continental Europe offers you high salaries and excellent opportunities for advancement.

If you have the following background you could earn around £13,000 p.a. on a long-term contract in Holland.

We have an immediate need for:

Technical Authors and/or Instructors
with either an electronics, radar/sonar or weaponry background.

Contact Norma Baxter on 01-952 8092 or evenings between 6pm and 8pm on 01-207 1725.

The Howard Organisation enjoys an international reputation and you are invited to benefit from our experience and success.

We have an immediate need for:

Senior Electronic Technician (MALE OR FEMALE)

£4,317-£4,770

For the Media Resources Centre, Glyn House, Church Street, Ewell. To carry out on-site service/repair work to electronic equipment used for teaching deaf children (VHF radio microphones, speech trainers, group hearing aids, audiometers, etc). To remove from site and repair in Ewell workshop those items best serviced by bench work. You will be expected to travel from school to school and school to base in your own vehicle, for which Casual User car allowance will be paid. You will be expected to diagnose and repair the special equipment as necessary, working alone in schools.

Proven ability to carry out the above work and a current driving licence are essential requirements. The Centre is situated within easy access to public transport and ample free car parking is available on-site.

Application form from Media Resources Centre, Tel. 01-393 0208.

ENGINEER

for Deaf Teaching Equipment
(MALE OR FEMALE)

£4,317-£4,770

For the Media Resources Centre, Glyn House, Church Street, Ewell. To carry out on-site service/repair work to electronic equipment used for teaching deaf children (VHF radio microphones, speech trainers, group hearing aids, audiometers, etc). To remove from site and repair in Ewell workshop those items best serviced by bench work. You will be expected to travel from school to school and school to base in your own vehicle, for which Casual User car allowance will be paid. You will be expected to diagnose and repair the special equipment as necessary, working alone in schools.

Proven ability to carry out the above work and a current driving licence are essential requirements. The Centre is situated within easy access to public transport and ample free car parking is available on-site.

Application form from Media Resources Centre, Tel. 01-393 0208.

MINISTRY OF DEFENCE
require

Telecommunications Professional and Technology Officers III

for

BRITISH FORCES GERMANY

For (a) management and development planning for a private telephone network, (b) maintenance and repair of a multi-channel radio and relay network, (c) maintenance and repair of a colour TV transmission system. Candidates should be British Subjects, hold a current British driving licence, and must possess a City and Guilds certificate for telecommunications technical final or Part II (or intermediate plus 3 B subjects, which must include mathematics and tele-communications principles) or radio television and electronics technicians final or Part II, or an equivalent or higher acceptable qualification. Candidates must have served a recognised apprenticeship or had equivalent training and have at least three years’ appropriate operating experience. Ex-Service candidates who do not fulfil the above requirements will be considered only if, after completing a course of approved technical training they have served for at least three years in an approved technical capacity in HM Forces with the rank of Staff Sergeant or equivalent. A knowledge of German, although not essential, would be an advantage.

Salary: £4984-£5551 (currently under negotiation) plus an allowance equal to Inner London Weighting of £780 and Foreign Service allowance ranging from £1365-£2810. There are additional grants and allowances dependent on individual circumstances.

For further information and an application form (to be completed and returned by 18th January, 1979) please write, quoting reference NW, to: Ministry of Defence, CM(S)3e2, Room 317, Adelphi, John Adam Street, London WC2N 8BB, or telephone 01-217 4677/5129.
Senior Electronics Engineer

for component and standards evaluation

GEC-Computers is a world leader in the design, development and manufacture of highly sophisticated computers for both commercial and military applications.

Within the Techniques and Components Section of our Engineering Department at Borehamwood, we now require a Senior Electronics Engineer to work on a wide variety of components ranging from the latest semiconductor devices through to state-of-the-art printed circuit boards.

It's a job calling for a man or woman qualified to degree, HNC or equivalent level with several years' sound practical experience of component and standards evaluation, application rules and packaging techniques. Specialist training can, however, be given where specific experience is lacking.

We offer a competitive salary; attractive benefits, including assistance with relocation expenses, and the opportunity of working in a challenging environment as a member of a highly professional team.


GEC Computers Limited

Technical Manager
Radio Communications
London

... to be responsible for the management of staff engaged on type testing of communication equipment for maritime and land services to approved Home Office specifications. Work will involve development of specifications and participation in national and international technical committees and working groups dealing with maritime radio communications.

Candidates must have an HNC or equivalent qualification in a relevant subject. They must also have electrical/electronic engineering experience and a detailed knowledge of radio communications.

Salary starting at £8,440 and rising to £9,380. Promotion prospects. Non-contributory pension scheme.

For further details and an application form (to be returned by 17 January, 1980), write to Civil Service Commission, Alencon Link, Basingstoke, Hants. RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref. T/5266.

HOME OFFICE

TEST/COMMISSIONING ENGINEER

To £6,500 plus car
MIDDLESEX

We make an extensive range of environmental test systems, covering every application from strain measurement to the vibration of vehicles and buildings.

If you are:
—self-motivated and self-reliant;
—qualified to HNC or equivalent in electronics/radio and TV, and also interested in mechanics;
—experienced in analogue and/or digital work;

Then we can offer you a wide variety of testing and commissioning experience, working with newly developed modular control systems, in house and also at customers' premises in the U.K. and abroad.

SERVOTEST LIMITED
Sarsfield Road
Greenford, Middlesex UB7 7AA
Tel. 01-998 1552

DIAL 01-741 4011

Think of the Op Amp and the NAND Gate and your are through to:
CHARLES AIREY ASSOCIATES
4 Hammersmith Grove
London W6 ONA

CURRENT VACANCIES INCLUDE:

Chief Control Engineer for multi-million pound company engaged in the manufacture of roof tiles. Managerial ability as important as the ability to create a new generation of process automation products. Surrey. Excellent salary.

Young Entrepreneurial Engineers to join a multidisciplinary company with interests in: radio-controlled target systems, range finders, aerospace products, etc. Good microprocessor hardware/software experience. Wilts. Salary good.

Microprocessor Hardware/Software Engineers to design systems and supply modules for a very wide range of applications. Experience in either: M6800, R.P.A. 1802, GM 1650 or INTEL 8085. Berks. Salary - "What 'es worth."

INTEL Microprocessor Engineers for message switching systems based on a minicomputer and the INTEL 8080/85/86. Surrey — to £9,000.

Digital Engineers for exceptionally advanced technology associated with an MPU control system for shipborne aerials or early warning radar. To £9,000. Berks.

Computer Engineers for either technical support, field service, permanent site or systems test. Vacancies throughout the U.K.

For further details, please contact: 9940

Charles Airey Associates
4 Hammersmith Grove, London W6 ONA. Tel: 01-741 4001
"PROBABLY THE BEST KNOWN SUPPLIER OF ELECTRONIC ENGINEERS IN THE COUNTRY" Financial Times.
ELECTRONIC ENGINEER

We are a research laboratory engaged in detergency and toiletry projects which range from inception through development to pilot plant operation and are seeking to strengthen our instrumentation section by filling the following vacancy:

INSTRUMENTATION DESIGN ASSISTANT

An Electronics Engineer is required to join a Design team working on the development of scientific instruments.

The job will require knowledge of analogue and digital techniques, together with some experience in applying microprocessors and interfaces to design problems.

Applicants with City & Guilds, ONC, HNC or graduate qualifications will be considered.

Day release will be offered to persons already following a suitable course.

A progressive salary will be offered to the successful candidate and re-location where necessary. Flexible working hours operate in the Laboratory.

Those interested should write or telephone for an application form quoting ref: PS 655 AMA.

The Employment Officer
Unilever Research
Port Sunlight Laboratory
Port Sunlight, Wirral
Merseyside, L62 4XN
Tel: 051-645 2000, Ext. 8408

Interested persons should write to the address below for an application form.

Employment Officer, Unilever Research, Port Sunlight Laboratory, Port Sunlight, Wirral, MERSEYSIDE L62 4XN

GEOSOURCE OVERSEAS APPOINTMENTS

ELECTRONICS TECHNICIANS

Pett-Ray Geophysical Division of Geosource is one of the leading companies in the field of oil exploration, and due to our ever-increasing workload, require single personnel, in the age range 21-25, who are looking for a varied and interesting career working overseas.

You should be educated to ONC/HNC in Electronics or C&G Radio and TV Technician level, and on appointment, you will be assigned to one of our field crews either in AFRICA or the MIDDLE EAST for on-the-job training in the operation and maintenance of digital seismic recording equipment.

Candidates must be in possession of a current driving licence.

We offer a good starting salary which is paid NET, food and accommodation will be provided, and rest leaves are generous.

If you would like to have more information about these positions please write giving brief career details to the Personnel Officer.

GEOSOURCE
3/5 The Grove Slough Berkshire SL1 1QG

ELECTRONIC SEISMIC ENGINEERS

We are looking for young electronics engineers, with degree or equivalent qualifications, to join our marine seismic acquisition company.

This is a field position, with the successful applicants joining the technical crew of our exploration vessel for on-board training in seismic techniques. They will start as Assistant Technicians with a salary of £6,000+ per annum, and one month’s leave after each two months on the crew.

The seismic industry offers an interesting career with world-wide travel, and rapid promotion for the right person.

Sefel Geophysical is a member of the Sefel Group, which has seismic processing centres in Houston, Denver, Calgary and London.

Please write with full curriculum vitae to:

Linda Stammers,
Personnel Assistant,
Butterworth & Co. (Publishers) Ltd.,
Borough Green, Nr. Sevenoaks, Kent.

Butterworths
No more long goodbyes

Radio Officers

With the Post Office Maritime Service, you can do the job you’re trained for, and still work close to home!

Several coast stations need qualified Radio Officers to carry out a wide variety of duties ranging from Morse and teleprinter operating to traffic circulation and radio telephone operating. It’s a secure job that pays well, and if you’re ambitious, the prospects of promotion to senior management are excellent.

You must have a United Kingdom Maritime Radio Communication Operator’s General Certificate or First Class Certificate of proficiency in Radio-telegraphy or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic. Preferably you should have some sea-going experience.

The starting pay at 25 or over will be about £5,381; after 3 years service this figure rises to around £7,087. (If you are between 19 and 24 your pay on entry will vary between approximately £4,229 and £4,937). Overtime is additional, and there is a good pension scheme, sick-pay benefits and at least 4 weeks’ holiday a year.

For further information, please telephone Kathleen Watson on Freefone 2281 or write to her at the following address:
ETE Maritime Radio Services Division ( ),
ETEL17.1.1.2, Room 643, Union House,
St. Martins-le-Grand, London EC1A 1AR.

Marine Radio Service Engineers

Glasgow, Aberdeen, Tilbury, Cardiff and Newcastle

International Marine Radio Co., a member of the STC Group of Companies, is engaged in the manufacture of high quality marine communication equipment. We have vacancies for Marine Radio Service Engineers in our Glasgow, Aberdeen, Tilbury, Cardiff and Newcastle Depots.

The work will be concerned with installation and service of communication equipment on board commercial vessels of all types.

Ideal candidates, male or female, will have had at least three years sea experience as a Radio/Electronics Officer. A company vehicle is provided for business and personal use.

For further details on these positions please contact: Jonathan Smith, International Marine Radio Co. Ltd., Intelco House, 392 Commonsde East, Mitcham, Surrey CR4 1YT Tel: 01-640 3400.
Come to Somerset to make the most of your Electronics experience

At Wells, EMI Electronics Limited are developing new 'state of the art' electronic systems.

Current projects include microwave systems, radar signal processing, computer simulation and real-time software programmes.

Our established reputation for performance and reliability is dependent on quality requirements being incorporated in projects from inception to completion.

Due to expansion we have vacancies for:

Project Quality Engineers
To work with research, development and design teams with responsibility for ensuring that the engineering data produced complies with the quality requirements.

Applicants should be qualified to at least HNC standard and have previous experience in related fields.

Test Gear Engineers
To install, commission, calibrate and service a wide variety of proprietary and company designed test equipment.

Applicants should hold an HNC or equivalent and have practical experience of servicing, fault diagnosis and maintenance of modern complex electronic test equipment.

Test Engineers
To ensure that our microwave or digital assemblies and systems conform to design performance and quality standards.

Applications should be qualified to at least City & Guilds final technician certificate standard and have relevant experience.

Transformer Test Technicians
To undertake reliability tests on R.F. Transformers and Chokes in a small batch production environment.

Necessary specialist training will be given to the appointed applicant who will have previous experience in similar fields.

Technical Supervisor (Electrical)
To plan and control the work of a team of electrical inspectors. Applicants should be qualified to at least ONC standard, be familiar with MOD electrical inspection requirements in the Electronics Industry and preferably have previous supervisory experience.

Starting salaries are commensurate with the importance of the posts, other benefits include subsidised meals, sports and social club and the opportunity to live and work in the heart of Somerset. Where appropriate, assistance with relocation will be discussed at interview.

In the first instance please write or 'phone Wells (0749) 72081 for an application form (quoting ref. no. WW135) to D. K. Shires/F. M. Taylor, Personnel Department, EMI Electronics Limited, Wookey Hole Road, Wells, Somerset BA5 1AA.

---

**EMI**

EMI Electronics Limited, Wells, Somerset

---

**ARTICLES FOR SALE**

- **TELEQUIPMENT**
  - E101 SCOPE, only nine months old, twin trace, variable time base, first-class order, £45 inc. VAT. (01-937) 337.
  - SKILLSCOPE, Kemble, £499.50 (quoting ref. WW135) to D. D. Shires/F. M. Taylor, Personnel Department, EMI Electronics Limited, Wookey Hole Road, Wells, Somerset BA5 1AA.

- **MKS**
  - 27 Upper Stone St, Maidstone, Kent.

- **Scam Clark**
  - 40ft pneumatic masts by Scam, £985, built, tested, and working. - Phone Charles Frater, 01-937 3347.

- **GWM RADIO LTD.**

- **MICRO COMPUTER**
  - Nascom I with TV monitor, power supply, built, tested, and working £180. - Phone Charles Frater, 01-937 3347.

- **JH COMPUTER**
  - JH Computer tape £19.50. A computer tape, can be used as video tape on some machines. Three telephones, 94a. Phone for further details: 0622 60335. UKS, 27 Upper Stone St, Maidstone, Kent. (9449)
Production Manager
For Quad
£9,500+ca
Huntingdon, Cambridgeshire

The Acoustical Manufacturing Company produces amplifiers and loudspeakers under the brand name 'Quad' and is one of the world's most respected hi-fi equipment manufacturers. 'Quad' products have an enviable reputation for quality and technical excellence.

We require a fully experienced Production Manager to be responsible to the Managing Director for every aspect of the running of a medium sized manufacturing plant producing domestic audio equipment at the rate of 1,000 units per week.

Candidates, male or female, should be aged around 35 years with qualifications or experience at graduate level. The candidate should have proven success in running an electronic assembly plant coupled with experience of the latest automatic assembly and test methods and assembly finishing.

There is a wide range of benefits, including a non-contributory pension scheme, subsidised restaurant and sickness provision. Huntingdon offers a wide variety of reasonably priced housing; recreational amenities are excellent and London is within easy reach.

For an application form and Company information, please write to or telephone The Acoustical Manufacturing Co Ltd, St. Peters Road, Huntingdon PE18 7DB. Telephone 0458 55480.

**ARTICLES FOR SALE**

**TO MANUFACTURERS, WHOLESALE & BULK BUYERS ONLY**

Large quantities of Radio, T.V. and Electronic Components.

**RESISTORS CARBON & C/F £4 ¼, ½, ⅔ Watt from 1 ohm to 10 meg.**

**RESISTORS WIREWOUND: 1/4, 2, 3, 5, 10, 14, 25 Watt.**

**CAPACITORS: Silver mica, Polystrylene, Polyester, Disc Ceramics, Mica mica, CBB, etc.**

**Convergent Pots. Slide Pots. Electrolytic condensers, Can Types. Axial, Radial, etc.**

Transistors, diodes, triodes, hots, hoppers, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 445 2713, 445 0749.

**BROADFIELDS & MAYCO DISPOSALS**

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner.

---

**CLASSIFIED**

**COLOUR, UV AND TV SPARES**

(miniscribe ex 3 x 3.6). New Saw Filter IF Amplifier plus tuner (complete and tested for sound and vision, £28.50, p/p £1). TELETEXT KIT including Oracle in Colour, Manor Supplies "easy to assemble". Teletext kit including Texas Tzfx X11 Decorder, External unit aerial input, no other connections to set up. Side range of facilities in colour include 7-channel selection, Mix, Newshunt and Update. (Price: Texas Tzfx X11 £30.00, Auxiliary Units 55.00, Case £10.00, p/p £2.50). Demonstration model at 1/2 West End Lane, NW8. Also latest Mullard Teletext 410, TVK module available. Call, phone or write for further information. COMBINED COLOUR BAR AND CROSS HATCH GENERATOR KIT (MK 4) UHF aerial input type. Eight pal video, 100m range, 1000Km range, all parts, case, p/p, instructions, postage etc. money back assurance, send £4.50 for the RIGHT TIME — NOW.

**MSF CLOCK**

NEW! Shows continuous Date, Hours, Minutes, Seconds. 8 digit LED, also parallel IC output, auto-revert after power failure. Automatic GMT/BST. £195.00 incl. bulldozer 60Hz, 100KHz range, 1000KHz range, all parts, case, p/p, instructions, postage etc. money back assurance, send £4.20 for the RIGHT TIME — NOW.

**CAMBRIDGE KITS**

45 (1VA) Old School Lane, Milton Cambridge.

---

**SOLATRON 10 MHz scope, twin trace timebase, TV set, good working order. A shipfern. £180.00**

**TELEQUICK ENIGMATICO scope, only nine months old, twin trace, variable spike, first-class, £25.00 inc. VAT. Dorset (0297) 257.**

---

**THE MODERN BOOK CO. **


19-21 PRAED STREET

LONDON W2 1NP

Phone 402-9178

Direct Sat. 1 p.m.
WE'VE FORMED A NEW R&D GROUP
to make our shaving products even better.

As one of Britain's leading manufacturers of Razor Blades, we are continuously looking into better ways to shave, better methods and systems of production, and on line control. So in the interests of speed and efficiency of communication we are bringing our Research and Development teams together to form one multi-discipline group at our factory in Acton.

The group will be mainly concerned with the Research, Design and Development of new shaving systems and concepts. Join it in any of the following positions and we can promise you plenty of opportunities to apply your problem solving abilities to our modern technology.

Process Control Department Senior Electronic Engineer

The successful candidate will head our Control and Instrumentation Department as Section Leader. The work involves the design and implementation of a wide range of systems from Research and Development instrumentation to Production line control systems. Candidates should have a degree or H.N.C. in electronics or control engineering plus several years' experience of practical electronic engineering.

Electronic Design Engineer

Applicants should have several years experience of practical circuit design of both analogue and digital systems. The work involves the design of a wide range of production line control systems, and specialised electronic equipment required by our Research and Development Departments.

We offer excellent salaries and all those benefits expected of a major organisation.

Interested men and women should write with details of age, qualifications and experience, or phone for an application form to: Senior Personnel Officer, Wilkinson Sword Ltd., 287 Acton Lane, London W4 5LE. Tel: 01-994 3666.

Vanguard WIRELESS WORLD, JANUARY 1980
Test Engineers
A rewarding outlook for the 80's

We at Tektronix are not modest about being the acknowledged world leader in Test and Measurement. Instrumentation and all our Hoddesdon location in rural Hertfordshire we manufacture the world famous range of Telequipment oscilloscopes.

To keep our products to the highest possible standard we are looking for Technicians/Engineers qualified to at least ONC with two years' test and fault finding experience to component level, an enquiring mind and the ability to work on their own initiative.

Excellent salaries, profit sharing, generous holidays, sick pay, free life assurance, non-contributory pension and relocation expenses where applicable all add up to make Tektronix the best break you've ever had.

To get all the facts phone Norman Spreckley on 01-996 1931 or write to him at Tektronix UK Ltd, 86 Bishopsgate Street, London E1 8RD. We manufacture the world famous range of Test equipment, receivers, transmitters, components, cable and electronic scrap, any quantity. Prompt service and cash. Member of A.R.R.A. (8789)

WHEN TALKING OF ELECTRONICS

TEST EQUIPMENT WANTED

WANTED

- All your gold wasted scrap. Plugs, sockets, edge connectors, P.C. boards, pins, etc.
- We collect and pay cash for any amount from 1oz.
- Minimum price £100-£200 per oz.

WANTED: Recording equipment of all ages and varieties. (California, U.S.A.) Tel: (415) 232-7923. (8614)

SPOT CASH

paid for all forms of electronics equipment and components.

F.R.G. General Supplies
550 Kingston Road
London SW20 8DR
Tel: 01-404 5011
Telex: 24224. Quote Ref: 3165


FOR SALE

Tektronix"COMMITTED TO EXCELLENCE"

Electronics & Computer Test
To £7,500

Use your C.G./ONC/ HNC/ Forces Training and good DIGITAL/ANAOLUE/RF experience to advantage. Working with state-of-the-art MINI/MICRO PROCESSOR, LASER, ATE, COMMUNICATIONS, NUCLEONIC, CCTV and similar equipment. Most UK areas; from Technician to Manager.

For free confidential counselling and practical career advice contact GRANT WILSON ref: GV4/70.

TECHNOMARK, 11 Westbourne Grove, London W2 4UA. Tel: 01-229 9239 (01-229 4216 — 24 hrs.) Engineering Recruitment Consultants.

A.R. Sinclair
Electronic Stockholders
Stevenage 812193

We purchase all types of Mechanical and Electronic Equipment and Surplus stocks.

ARTICLES WANTED

WANTED

- Test equipment, receiver, valves, transmitters, components, cable and electronic scrap, any quantity. Prompt service and cash. Member of A.R.R.A.

M & B RADIO
26 Bishopsgate Street
London E1 8BB
Tel: 0532-35649

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES HARDING & Co., 193 South Brink, Wisbech, Cambs. 0945-4143. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. (9509)

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient clearance of all your, power supplies, PC boards, components, etc., regardless of condition or quantities. Call 01-771 9413. (8260)

SCOPES, TEK. 545B & CA £200. Cossor 4100 75MH. £120. — Crawley 964982. (9007)
SPEAKER KITS

Two great new kits from KEF — the Speaker Engineers respected by HIFI enthusiasts all over the world.

One is based on the Model 101B, and the other on the latest free standing Stantium. We'll give you helpful advice and full instructions. And you can hear how good the speakers are before you buy them.

BADGER SOUND SERVICES

46 Wood Street
Lytham St. Annes
Lanes EY1 1OG
Tel: 0253-729247

USE A REAL KEYBOARD

Brand new, built and sound, 60 keys including cursor control, steeped rows, optional arid after space. Auto repair. LEC user friendly. £48 inc. VAT.

BRITISH TECHNOLOGY LIMITED

94 Allerton Gardens
Sholing, Southampton
Soton (0703) 431323

FOR CLASSIFIED ADVERTISING

RING NEIL MCDONNELL

ON 01-261 8508

SPEAKER KITS

Two great new kits from KEF — the Speaker Engineers respected by HIFI enthusiasts all over the world.

One is based on the Model 101B, and the other on the latest free standing Stantium. We'll give you helpful advice and full instructions. And you can hear how good the speakers are before you buy them.

BADGER SOUND SERVICES

46 Wood Street
Lytham St. Annes
Lanes EY1 1OG
Tel: 0253-729247

USE A REAL KEYBOARD

Brand new, built and sound, 60 keys including cursor control, steeped rows, optional arid after space. Auto repair. LEC user friendly. £48 inc. VAT.

BRITISH TECHNOLOGY LIMITED

94 Allerton Gardens
Sholing, Southampton
Soton (0703) 431323

FOR CLASSIFIED ADVERTISING

RING NEIL MCDONNELL

ON 01-261 8508
WIRELESS WORLD, JANUARY 1980

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SE1 9LU

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate £1.50 PER LINE. Average six words per line. Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus 60p.
- Cheques, etc., payable to "Wireless World" and crossed "& Co."

NAME:

ADDRESS:

REMITTANCE VALUE:

ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION: NUMBER OF INSERTIONS:

TECHTRON

INDUSTRIAL & COMMERCIAL ELECTRONICS

PCB AND SYSTEMS ASSEMBLY - LARGE AND SMALL BATCHES - BACK PLANE, PROTOTYPE AND PRODUCTION WIRING TO SPECIFICATION - PROMPT QUOTATIONS AND DELIVERIES

Park Farm-Hoxne-Diss-Norfolk. Tel: Hoxne 520

CLASSIFIED

I.H.S. SYSTEMS

Due to expansion of our manufacturing facilities we are able to undertake assembly and testing of circuit boards or complete units in addition to contract development.

We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands.

Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quotation.

TEL. 01-253 4562

or reply to Box No. WW 8237

(8237)

COIL WINDING

Large or small
PRODUCTION RUNS

AIRTONICS LTD

GARDNER INDUSTRIAL ESTATE
KENT HOUSE LANE
BECHEHAM, KENT BR3 1UG
01-839-1147

PCBs Production runs or prototypes
Assembly to sample or drawings
* Design Service if required
* Quick response to demand
* Expert hand soldering
* Nothing too large or too small

Telephone or write:
SEAHORSE ELECTRONICS LTD.
Unit 2, Picow Farm Road
Service Industry Estate
Runcorn, Cheshire
Tel. Runcorn (09285) 75950

small batch productions wiring assembly to sample or drawings.
Specialist in printed circuits assemby. Rock Electronics, 43 Bishopsgate, Harlow, Essex 0279 393918

K.E.M. ELECTRONICS LTD.

now have additional capacity for Assembly and testing of PCBS, Circuit Design and Protoype Construction and Microprocessor Systems.

TEL: CHESTER 21817

K.A.H. ELECTRONICS LTD.

CONSULTANTS - DESIGNERS
ASSEMBLERS

SPECIALISTS IN MICRO-BASED SYSTEMS

50 Fixton Road
Urmston, Manchester
Tel: 061-748 3878

ELECTRONIC DESIGN SERVICE.
Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome.
— E.P.D.S. LTD., 93b King Street, MAIDSTONE, Kent. 0622-677916

(9667)

PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings. PADS Electronics Ltd., 01-850 6516, 45 Southwood Road, New Eltham SE9.

PRINTED CIRCUITS BOARDS. Quick deliveries, competitive prices. Quotations on request, roller thinning, drilling, etc. Speciality small batches. Larger quantities available. Jamieson Automatic Ltd., 1-5 Westgate, Bridlington, North Humberside. For the attention of J. Harrison (0262) 74738 or 77877.

PRINTED CIRCUITS BOARDS. Quick deliveries, competitive prices. Quotations on request, roller thinning, drilling, etc. Speciality small batches. Larger quantities available. Jamieson Automatic Ltd., 1-5 Westgate, Bridlington, North Humberside. For the attention of J. Harrison (0262) 74738 or 77877.

ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome.
— E.P.D.S. LTD., 93b King Street, MAIDSTONE, Kent. 0622-677916

(9667)

SMALL BATCH production wiring assembly to sample or drawings. Specialist in printed circuits assembly. Rock Electronics, 43 Bishopsgate, Harlow, Essex 0279 393918

PRINTED CIRCUITS BOARDS. Quick deliveries, competitive prices. Quotations on request, roller thinning, drilling, etc. Speciality small batches. Larger quantities available. Jamieson Automatic Ltd., 1-5 Westgate, Bridlington, North Humberside. For the attention of J. Harrison (0262) 74738 or 77877.

ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome.
— E.P.D.S. LTD., 93b King Street, MAIDSTONE, Kent. 0622-677916

(9667)
INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 133-151
This superb organ - build the first working section for just over £100. Full specification in our catalogue.


Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A wide range of disco accessories at marvellous prices. Our catalogue has all the details.

A very high quality 40W per channel stereo amplifier with a superb specification and lots of extras. Full construction details in our catalogue.

A genuine 150W per channel stereo disco to build yourself. Full specification in our catalogue.

A wide range of disco accessories at marvellous prices. Our catalogue has all the details.

A very high quality 40W per channel stereo amplifier with a superb specification and lots of extras. Full construction details in our catalogue.

A genuine 150W per channel stereo disco to build yourself. Full specification in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.
Toolbox Reels
Three solderers that cover all your electrical applications.
- Size 3: £3.22 each
- Size 10: £3.22 each
- Size 12: £3.22 each

Soldering Flux Paste
Erasm
A fast, non-corrosive, rosin flux for general and electrical soldering.
Use in conjunction with 'Erasm' Multicore solders.
- Size RF10: 60p inc. VAT
- 'Arax' Use in conjunction with 'Arax' Multicore solder for general metal fabrication.
- Size AP14: 60p inc. VAT

Multicore Wick
Multicore Wick for solder removal and desoldering for desoldering component leads from PCB's or removing solder from virtually any joint. Size AB10 £1.92 inc. VAT

Solder from virtually any joints. Size AB10 £1.92 inc. VAT

Multicore Wick
Multicore Wick for solder removal and desoldering for desoldering component leads from PCB's or removing solder from virtually any joints. Size AB10 £1.92 inc. VAT

Wire Stripper and Cutter
Easily adjustable for most sizes of flex and cable. Fitted with extra strong spring for automatic opening. Easy grip handles and handle locking device.
Ref. 9 £2.48 inc. VAT

Cassette Editing Kit
Make editing simple with the Bib splicer, tape cutter and splicing tape, with 6.3mm adaptor.
Ref. 56 £2.00 inc. VAT

Groov-Guard XL-2
Anti-static liquid and record preservative.
Following years of research, Bib laboratories have developed Groov-Guard XL-2, Anti-static Record Preservative. When applied to the record, eliminates static charge for the expected life of the record. Another advancement with Groov-Guard XL-2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable. Non-toxic.
Ref. 27 £2.48 inc. VAT

Emergency Solder
Self fluxing, tin/lead solder tape that melts with a match. For electrical and non-electrical applications. Size ES36 85p inc. VAT

Econopak
A reel of 1.2mm 'Erasm' Multicore solder for general electrical use.
Size 12A £2.99 inc. VAT
A reel of 3mm 'Arax' Multicore solder for general non-electrical use.
Size 16A £2.99 inc. VAT

Solder Cream
Tacky mixture of solder powder and correct percentage of flux for difficult to reach areas.
Electrical/Electronic ('Erasm' Flux) Size BCR10 £1.38
Metal joining ('Arax' flux)
- Size BCA14 £1.38
- Size BCA16 £2.04
(All prices inc. V.A.T.)

Record Valet
Soft bristles on leading edge remove dust and humd velvet pad collects particles. This advanced cleaner is engineered in a fine shiny black finish and is supplied with dust cover and a 22ml bottle of anti-static cleaner.
Ref. 47 £3.29 inc. VAT

Handy Dispensers (All prices inc. V.A.T.)
- Size 19A All electrical work 83p
- Size PC115 For small components 92p
- Size SV130 Use with copper bits and wires 1£1.27p
- Size AR140 Metal repairs 92p
- Size AL150 Aluminium 92p
- Size SS160 Stainless Steel £1.38p

Record Cleaner
Automatic
Make cleaning easy with the Bib Auto-Cleaner. For single-play turntables. Removes harmful dust to protect records and reduces copper erosion.
Ref. 42 £2.99 inc. VAT
Soft bristles on leading edge remove dust and humd velvet pad collects particles. This advanced cleaner is engineered in a fine shiny black finish and is supplied with dust cover and a 22ml bottle of anti-static cleaner.
Ref. 47 £3.29 inc. VAT

Cassette Fast Hand Tape Winder
The Bib Cassette Fast Winder enables you to wind tape in one cassette whilst you are listening to another cassette. If you have a battery recorder, always use the Fast Winder to save the high battery consumption when fast winding. It winds a C.90 cassette in 60 seconds - faster than most recorders.
Ref. 78 £1.59 inc. VAT

Tape Head Maintenance Kit
Everything necessary for cleaning heads, capstan and pinch wheel on all types of recorders.
Cleaning and polishing pads, cleaning liquid and brush inspection mirror included.
Ref. 25 £2.48 inc. VAT

Erasbit Dispenser
For radio, TV and similar work.
Reduces copper erosion.
- Size 5 78p inc. VAT

Bib Hi-Fi Accessories Limited,
Kelsey House, Wood Lane End,
Hemel Hempstead, Herts., HP2 4RQ.

WW-064 FOR FURTHER DETAILS