wireless world
MARCH 1980 50p

Metal detector
Electronic lock
Not just a Data Analyser, Signature Analyser, or Logic Analyser, but...

...all three in one very portable box: The 308 Analyser

To find out more about the NEW 308 Analyser, clip the coupon, circle the enquiry number, contact your field engineer, or simply phone. We'll be pleased to help.

Tektronix UK Limited, PO Box 69, Coldharbour Lane, Harpenden, Herts. AL5 4UP.
Tel: Harpenden 63141
Regional Telephone Numbers; Livingston: 32766, Maidenhead: 73211, Manchester: 428 0799, Dublin: 508132

Tektronix COMMITTED TO EXCELLENCE
Metal detector

Electronica

Front cover is a photograph, by Paul Brierley, of the printed-circuit pattern on a Motorola microcomputer board.

IN OUR NEXT ISSUE

Digital capacitance meter is a 3½-digit instrument, with full-scale readings of 200pF to 20pF.

How serious is multipath distortion? An investigation into this effect in v.h.f./f.m. sound broadcasting and results of recent research.

Shared-memory v.d.u. with opto-electronic interface is an economic and efficient peripheral for a home computer.

Current issue price 50p, back issue (if available) £1.00, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.

By post, current issue 79p, back issues (if available) £1.00, order and payments to Room CP34, Dorset House, London SE1 9LU.

Editorial & Advertising offices: Dorset House, Stamford Street, London SE1 9LU.

Subscription rates:
1 year £9.00
UK and £15.50 outside UK.

Student rates:
1 year, £4.00 UK and £15.50 outside UK.

Distribution: 40 Bowling Green Lane, London EC1R 0NS. Telephone 01-837 3636.

Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 59188. Please notify a change of address.

USA mailing agent: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd-class postage paid at New York.

IPC Business Press Ltd, 1980
ISSN 0043 6062

wireless world
ELECTRONICS/TELEVISION/RADIO/AUDIO
MARCH 1980 Vol 86 No 1531

39 Education for integration

40 Pulse-induction metal detector
by J. A. Corbin

45 Non-anechoic acoustic measurement
by R. N. Grubb

50 Clock timer — 2
by R. D. Clemow and T. C. Carden

74 Books 55 Literature received 58 World of amateur radio

53 Microwave radar alarm

56 Novatexts — alternative astable circuits
by P. Williams

59 Impedance mismatching
by F. J. Lidgey

60 Letters to the editor

Digital filters Auditory cues in stereophony
Programmable notes for musical instruments

65 Electronic combination lock
by A. Oakley

68 News of the month

Electronic mail Microwave cancer testing
Tube plants to be automated

72 More frequency allocations

77 Maxwell equations revisited
by I. Catt

79 Microwave intruder detector — 2
by K. Holford

87 Microelectronics and the Third World
by S. Jacobsson

90 Circuit ideas

Cmos triggered timebase Optically-isolated triac control
Photographic enlarger analyser

93 New products
Fault us on specification and we’ll eat it.

From the raw material to the finished component, Erie has been deeply involved in producing crystals for the past twenty years – to exacting specifications. The factory and test facility complies with the latest MIL standards. Each crystal is tested at least nine times during manufacture. Only after a final check against the customer’s specification is it allowed through the door.

Erie crystals from 1 KHz to 100 MHz, oscillators and filters, whether standard range or custom-built, could be the answer to your frequency control problem. Consult us with your specification.

ITT Mercator, South Denes, Great Yarmouth, Norfolk, NR30 3PX. Tel: (0493) 4911. Telex: 97421.
Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2V to 150V. Current gains are checked from 1µA to 100mA. Breakdown voltages up to 100V are measured at 10µA, 100µA and 1mA. Collector to emitter saturation voltage is measured at 1mA, 10mA, 30mA and 100mA for IC/IB ratios of 10, 20, 30. The instrument is powered by a 9V battery.

TRANSISTOR RANGES (PNP OR NPN)

<table>
<thead>
<tr>
<th>ICBO</th>
<th>BE</th>
<th>hFE</th>
<th>VCE(sat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10nA, 100nA, 1µA, 10µA and 100µA f.s.d. acc. ±2% f.s.d. ±1% at voltages of 2V, 5V, 10V, 20V, 30V, 40V, 50V, 60V, 80V, 100V, 120V, and 150V acc. ±3% ±100mV up to 10µA with fall at 100µA < 5% + 250mV.</td>
<td>10V or 100V f.s.d. acc. ±2% f.s.d. ±1% at currents of 10µA, 100µA and 1mA ± 20%.</td>
<td>3 inverse scales of 2000 to 10, 400 to 30 and 100 to 10 convert IB into hFE readings.</td>
<td>1V f.s.d. acc. ±20mV measured at conditions on hFE test.</td>
</tr>
</tbody>
</table>

- **BDV**
 - 10nA, 100nA, 1µA ... 10mA f.s.d. acc. ±2%
 - f.s.d. ±1% at fixed IF of 1µA, 10µA, 100µA, 1mA, 10mA, 30mA, and 100mA acc. ±1%.

- **hFE**
 - 3 inverse scales of 2000 to 100, 400 to 30 and 100 to 10 convert IB into hFE readings.

- **VBE**
 - 1V f.s.d. acc. ±20mV at collector currents of 1mA, 10mA, 30mA and 100mA with IC/IB selected at 10, 20 or 30 acc. ±20%.

DIODE & ZENER DIODE RANGES

<table>
<thead>
<tr>
<th>IDR</th>
<th>Vz</th>
<th>VDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>As IEBO transistor ranges.</td>
<td>Breakdown ranges as BDV for transistors.</td>
<td>1V f.s.d. acc. ±20mV at IF of 1µA, 10µA, 100µA, 1mA, 10mA, 30mA and 100mA.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>£145</th>
<th>Type</th>
<th>£155</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM12</td>
<td></td>
<td>TM14</td>
<td></td>
</tr>
</tbody>
</table>

Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K.
Top value test equipment from TANDY

LCD DIGITAL MULTIMETER.
Low-cost hand held digital multimeter with a full 3½ digit LCD display. 0.5% basic accuracy, auto polarity operation. 10 Mohm DC input impedance.

Scales:
- DC volts: 1mV to 500V (1½ ± 2 digits accurate)
- AC volts: 1mV to 500V (1½ ± 2 digits accurate)
- DC current: 1µA to 200mA (1½ ± 1 digit accurate)
- Resistance: 9 to 20 Mohm
- Power source: 9V battery or AC

Reading to ± 1999.

AC/DC 8 MHz OSCILLOSCOPE
A new approved 8MHz version of last years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in laboratories and schools. Ideal for radio and TV servicing, audio testing, etc.

Specifications:
- Horizontal axis: Deflection sensitivity better than 255mV/DIV. Vertical axis: Deflection sensitivity better than 100mV/DIV. 6mm Bandwidth 0.8MHz. Input impedance: 1MOhm parallel capacitor x 10pF. Time base: Sweep range 10µs to 10ms complete with sweep generator 220 VAC 50/60Hz. Supply 220/240VAC 50/60Hz.

PRICE

53.19

A new low-cost LCD multimeter
A portable, compact sized multimeter with a full 3½ digit LCD display. Auto polarity operation, low battery indicator. 10 Mohm Input impedance.

Scales:
- DC volts: 2, 20, 200 1000V
- AC volts: 200, 500V
- DC current: 2, 20 200mA
- Resistance: 2, 20 200 2000 Kohm
- Power source: 9V battery or AC

Reading to ± 1999.

AC/DC 8 MHz OSCILLOSCOPE
A new approved 8MHz version of last years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in laboratories and schools. Ideal for radio and TV servicing, audio testing, etc.

Specifications:
- Horizontal axis: Deflection sensitivity better than 255mV/DIV. Vertical axis: Deflection sensitivity better than 100mV/DIV. 6mm Bandwidth 0.8MHz. Input impedance: 1MOhm parallel capacitor x 10pF. Time base: Sweep range 10µs to 10ms complete with sweep generator 220 VAC 50/60Hz. Supply 220/240VAC 50/60Hz.

PRICE

39.93

COMPONENTS AND PARTS

<table>
<thead>
<tr>
<th>CAT No.</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>276 - 032</td>
<td>LED</td>
<td>£4 for £69p</td>
</tr>
<tr>
<td>276 - 033</td>
<td>LED</td>
<td>£2 for £48p</td>
</tr>
<tr>
<td>276 - 034</td>
<td>LED</td>
<td>£2 for £59p</td>
</tr>
<tr>
<td>276 - 142</td>
<td>Infra-Red Emitter Detector Pair</td>
<td>£1.37</td>
</tr>
<tr>
<td>277 - 1003</td>
<td>DC Automotive Digital Clock Module</td>
<td>£17.52</td>
</tr>
<tr>
<td>276 - 9110</td>
<td>DC/AC Converter for 277 1003</td>
<td>£40p</td>
</tr>
<tr>
<td>276 - 1373</td>
<td>Power Transistor Mounting Hardware</td>
<td>£50p</td>
</tr>
<tr>
<td>276 - 1363</td>
<td>TO 220 Heat Sink</td>
<td>£60p</td>
</tr>
<tr>
<td>276 - 1364</td>
<td>TO 3 Heat Sink</td>
<td>£81p</td>
</tr>
</tbody>
</table>

You save because we design, manufacture, sell and service Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

The largest electronics retailer in the world.

You can find Tandy dealers in your area.

OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

WW-080 FOR FURTHER DETAILS
THE MOST VERSATILE LIQUID CRYSTAL DISPLAY
1.24 25+ 100+ LCD106 6.45 5.50 5.25
.5" Field effect LCD display featuring 3½ digits, colon, plus/minus sign, 3 decimal points and '"LO BAT" indicator. Ideal for DMMs, DPMS, digital thermometers, AM/FM radio readouts. Just look at the features. Ultra low power consumption, high contrast ratio, wide viewing angle, rapid response, proven sealing techniques, superior MTBF, reflective aluminum foil. Over 300,000 already sold! Perfect interface for Intersil 7106 40 Pin DIL.

Display LEDs at Lowest Prices
LC1008FL 6.75
LC2007FL 6.95
ICL838CP 2.95

Linear ICs
NE555 8p Timer
NE556 14 Dual Timer 50p
UA733CN Voltage Regulator 39p
7812 Voltage Reg 55p

Power Converter-MT56WS
Now you can operate 115/120 Volts American equipment from 240 Volts. This converter has outlets for American type 2 or 3 pin plugs. Rated 700VA. Only £8.95.

From 1 T1. TL490 BAR/DOT DRIVER IC. Drives 10 LEDs with adjustable analog inputs. Units are encapsulated up to 12 (1000 each). Drives LEDs directly. Great for voltages, currents or audio displays. Similar in features to LM331 with specs and pinout noted. Only £1.75 NEW!

Fairchild Red Led Lamps
F5VS07 Medium Blue Clear Case RED EMITTING. These are not iridescent off-axial units as sold by some of our competitors. These are factory prite, first quality, new units.

Very Limited Stock!
8p each 100 off
5p each 1000 off
5p each 2000 off

Intersil Universal Timer/Counter Evaluation Kit
ICM7226A EV/KIT
8 digits 5 Function 4 range A 10MHz with 0.1Hz res. time interval and period to 10 seconds with 0.1 microsecond res. units up to 10 million and micro. A breadboarding unit is provided for use to add your input conditioning circuitry or preamplifiers and digital outputs are available as multi-pled as well as being displayed.

Complete kit only £39.95 + VAT

4 Molting Street
Appledore, Nr. Sidmouth
North Devon EX9 1RY
Tel: Bideford 02373 79507
Telex 8833084

WW - 110 FOR FURTHER DETAILS

Measure Resistance to 0.01Ω...
At a Price that has no resistance at all

New/ELenco PRECISION/Digital Multimeter M1200B

ONLY £55 (£3 p&p + VAT £8.70 = £66.70)

Your Opportunity to Buy This Superb DMM at This Price for a Limited Period Only.

"FULLY GUARANTEED FOR 2 YEARS"
"MINT CASE" "EX STOCK DELIVERY"

The Ultimate in Performance...Measures Resistance to 0.01 Ohms, Voltage to 100 Microvolts, Current to 1 Microamps at Lowest Ever Price!

Features
- 3½ digits 0.56" high LED for easy reading
- 100μV, 1μA, 0.01Ω resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000V (except 200mV scale to 600V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

Specifications:

<table>
<thead>
<tr>
<th>DC Volts</th>
<th>Range 200mV, 2V, 20V, 200V, 1000V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>1% ± 1 digit, Resolution 1mV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overload protection</th>
<th>1000VA max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current</td>
<td>Range 2mA, 20mA, 200mA, 2A, 2amp</td>
</tr>
<tr>
<td>Accuracy</td>
<td>1% ± 1 digit, Resolution 1 Microamp</td>
</tr>
<tr>
<td>Overload protection</td>
<td>- 2 amp fuse and diodes</td>
</tr>
<tr>
<td>DC Current</td>
<td>Range 2mA, 20mA, 200mA, 2 amp</td>
</tr>
<tr>
<td>Accuracy</td>
<td>15% ± 2 digits, Resolution 1 Microamp</td>
</tr>
<tr>
<td>Resistance</td>
<td>Range 20, 200, 2K, 200K, 2 Meg. 20 Meg.</td>
</tr>
<tr>
<td>Accuracy</td>
<td>1% ± 1 digit, Resolution 0.1 ohms</td>
</tr>
<tr>
<td>Environmental</td>
<td>Temo coeffient 0 to 30 C ± 0.25C</td>
</tr>
<tr>
<td>Operating Temp</td>
<td>0 to 60C Storage - 20 to 60C</td>
</tr>
</tbody>
</table>

General
- Maint adaptor, 6.9 Volt @ 200mA (not supplied)
- 4C size batteries (not supplied)
- Size 8% x 5½ x 2½
- Weight 2.5 lbs.

To: Maclin-Zand Electronics Ltd.
1st Floor, Unit 10, East Block
38 Mount Pleasant, London WC1X 1AP

Please send me:
- £65.70 inc. p&p + VAT (overseas £60)

Name ____________________________
Address ___

ELENC0 PRECISION Sole UK Distributor

ME
Maclin-Zand Electronics Ltd
38 Mount Pleasant, London WC1XOAP
Tel. 01-837 1165
Telex 8953084

WWW - 111 FOR FURTHER DETAILS
WIRELESS WORLD, MARCH 1980

MICRODIGITAL 1980

Apple II plus

Apple II Plus will change the way you think about computers. That's because it is specifically designed to handle the day to day activities of education, business, financial planning, accurate calculation and entertainment.

Applications

A fast extended 10K BASIC with 9 digit printing accuracy.

HIGH RESOLUTION GRAPHICS

On a monitor of 640 x 220 individually addressable points.

AUTO START ROM

With power on boot of applications programs and improved performance and improved accuracy.

INTERNAL MEMORY EXPANSION TO 64K bytes.

For big system performance at a low cost.

EIGHTY EXPANSION SLOTS

To let the system grow with your needs.

Apple II Plus

Net V.A.T. Total

16K RAM

695.00 104.25 799.25

APPLE PASCAL

Apple Pascal is the new extension to microcomputer power.

Pascal incorporating USPDASCALTM offers extended features in a complete interactive program environment.

This powerful system is now available today.

State of the art sophisticated programming language. It provides advanced capabilities that boost performance and cut development time for large business, scientific and educational projects.

This software package provides the most powerful set of tools yet available for the microcomputer programmer.

Apple Pascal

Net V.A.T. Total

System

229.00 44.85 273.85

FLOPPY DISCS

Give your system immediate access to large quantities of data.

The subsystem consists of an intelligent interface card, a powerful Disk Operating System and one or two floppy drives.

Net V.A.T. Total

Floppy disk Subsystem

349.00 52.35 401.35

Floppy disk drive diskette drive and cable

299.00 44.85 343.85

Parallel Printer Interface Card

Allows you to program any popular printer to your Apple. A BASIC program can produce hard-copy output as easily as it prints to the TV monitor screen.

Command interrogation and printer control details are handled by the low level built into the card, to eliminate user program requirements.

Net V.A.T. Total

Parallel Printer Interface Card

104.00 15.60 119.60

Communications Interface Card

Allows your Apple to 'talk through a modem' with other computers and terminals over ordinary telephone lines. Enables sophisticated communications, data exchange, and automatic sending and receiving of telemessages to remote terminals or access terminals over ordinary telephone and television cables.

Net V.A.T. Total

Communications Interface Card

130.00 19.50 149.50

Superboard II

The sensational single board computer from OhioScientific. Superboard comes fully assembled and tested. On board is an S6502 microprocessor, 4K RAM (expandable on board to 8K), 8K Microsoft BASIC in ROM, CUTS/cassette interface, full ASCII keyboard. Superboard interfaces with a video monitor to domestic television (via UHF Modulator) and provides x 24 x 24 display with 8 character set and a wide range of graphics/graphics characters.

Superboard comes complete with documentation and sample software on cassette.

Net V.A.T. Total

Superboard II

188.00 28.20 216.20

1 U.R.F Modulator 200 038 288

Video Genie

A third generation personal computer system, the video genie is a powerful microcomputer that is completely compatible with the Tandy TRS-80 TM.

Central Processor

The system uses the powerful and popular Z-80 processor. A system reset button is mounted at the rear of the console. Power down is not required should the system crash.

Video Display

16 lines of 3212 pixels or 64 characters, switch selectable. Full software cursor control.

Composite video output to domestic television.

Net V.A.T. Total

Video Genie

369.57 55.43 425.00

Sharp

SHARP MX-82

- 2.80 boosted CPU

- 4K Byte monitor RAM

- Internal memory capacity from 4 to 48K RAM.

- 16K Extended BASIC.

- 12K Extended Level II Basic interpreter, system monitor.

- Complete compatibility with TRS-80B LEVEL II BASIC.

- Integral 500 Kbps cassette deck eliminates external control system.

- An extended Level II Basic compatible with the TRS-80 LEVEL II BASIC.

- Features (line editing, formatted printing, multi dimensional arrays, AUTO Line numbering, Program linking)

- A huge range of software on cassette is already available.

Peripheral

Full ASCII keyboard with 10 key rollover. Automatic keyboard bounce. Expansion connector provides a parallel 1/0 Port for printer.

Net V.A.T. Total

Sharp

Net V.A.T. Total

439.50 65.85 505.35

Acorn

Acorn is a third generation personal computer.

- Full 79 Key Keyboard.

- Built in monochrome video monitor with 24 x 124 resolution.

- Fast reliable cassette unit with tape counter.

- Wide variety of software available on 50 pin bus connector for system expansion.

Acorn Memory

A high quality three glass, hole plated, phosphor screen and component identification, this computer has provision for 8K of RAM (2114) and 8K of EPROM (2732).

Net V.A.T. Total

Acorn Memory

595.00 88.00 683.00

Net V.A.T. Total

55.43 425.00

V D U Card (Kit)

88.00 13.20 101.20

NEW LOW PRICES
Microdigital are one of the largest and longest established Microcomputer firms in Europe. We sell a wide range of systems, backed up by support services that are second to none.

Our present retail outlet is at 25 Brunswick Street, Liverpool. Our well informed staff are happy to demonstrate equipment, provide technical help, or just chat.

Microdigital (Hire) provides a service for potential customers - the exploitation of a particular machine can be evaluated without a substantial capital investment.

All in all we try and provide the most competent services in the Microcomputer industry.

The Microcomputer shop providing a complete service from a single chip to data processing installation.

Opening hours 9:30 M dos Saturday Friendly, expert staff always on hand.

Our new, glossy, 16 page brochure is now the talk of the industry! — Send for your free copy today.

Microdigital Software Announce

5 packages which are:

General Ledger £295.00
Purchase Ledger £295.00
Sales Ledger £295.00
Stock Control £200.00
Payroll £360.00

These packages are now available, demonstrations on request.

Buy 051 227 2535 and ask for Graham Jones (Software Manager).

These are fully tested systems which run on the Apple/ITT 2020 with one or two disc drives.

The Stock Control package can handle up to 1250 stock items and uses two disc drives.

Liverpool Software Gazette

Britain's very first journal for Micro Software. Review, tutorials, news ... PET, Apple columns, keep yourself informed with the latest trends in Microcomputing.

Please subscribe for the next 12 issues of "Liverpool Software Gazette" and enclose cheque / PO for £6.00.

Access No.
Barclaycard No.
Name
Organisation
Address
Post Code

WW - 016 FOR FURTHER DETAILS
If QUAD amplifiers are so perfect, why does it still sound better in the concert hall?

In real life, the sounds from all the instruments and sometimes parts thereof are independently radiated and so are not 'phase locked' together nor are they subjected to common eigentones. These mutually incoherent wavefronts are subjected to tiny but important reflections at the pinna and finally end up as just two channels representing the pressure at the two ear drums. It is not possible to achieve this transfer accurately by means of loud-speakers or headphones however good these components may be.

Nevertheless with good amplifiers and loudspeakers (and on those occasions when the people at the recording and transmitting end get it right) a musical experience can be achieved which is extremely satisfying and one of the greatest pleasures of our time.

For further details on the full range of QUAD products write to: The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB.
Tel: (0480) 52561.

QUAD
for the closest approach to the original sound

QUAD is a registered Trade Mark
We wouldn't knock our rivals.

After all, it was they who inspired us to design and manufacture our own power loudspeakers... because of the frustration we experienced when trying to obtain power loudspeaker components for our enclosures. Nobody could consistently supply components to the exacting HH standards of quality, power and performance - at any price.

So, our designers started from a clean drawing board and were prepared to defy convention in the construction of a superior power loudspeaker. Our powerful computer calculated optimum cone profiles, whilst our scientists pushed back the frontiers of adhesives technology to develop new construction methods. Then we tested them relentlessly and did our best to destroy these new products (that was the hardest part.)

Now this range of superior power loudspeakers, crossover networks, "bullet" radiators, compression drivers and horns can be purchased at sensible prices from HH dealers. In their new and convenient packs you will also find an applications book, full of useful hints.

Send for our brochure, so you can convince yourself why our components are superior, by following our logical scientific arguments. Then you'll realise why we never need to knock our "rivals".

Power to the Performer.
HH Acoustics.

HH Acoustics Limited, Viking Way, Bar Hill, Cambridge CB3 8EL. Telephone: (0954) 81140. Telex: 817515 HH Elec G.

WWW - 064 FOR FURTHER DETAILS
Oscilloscopes

TEKTRONIX 465
- DC-100MHz Dual Trace 5mV-5V/Div
- 0.05µs-0.5s/Div Delayed T/B XY DC 4MHz

TEKTRONIX 475A
- DC-250MHz Dual Trace 5mV-5V/Div
- 0.01µs-0.5s/Div Delayed T/B XY DC 3MHz

Prices

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-100MHz Dual Trace 5mV-5V/Div</td>
<td>£1250</td>
<td></td>
</tr>
<tr>
<td>DC-250MHz Dual Trace 5mV-5V/Div</td>
<td>£1950</td>
<td></td>
</tr>
</tbody>
</table>

WIRELESS WORLD, MARCH 1980

Acoustic

- **BRUEL & KJAER**
 - 2233 Precision sound level meter
 - 1613 Octave filter set couples directly to 2203 & 2204

- **MARCONI**
 - 2170 1-300 MHz, Multi-Mode, 10V/100Ω sine, triangular

- **RUSSELL**
 - 288+ CT Cap on AC recording ammeter

Deliveries

This catalog is available for delivery until March 31, 1980. The prices listed are valid until that date. Prices are subject to change without notice. For further details, please contact Carston Electronics at the provided contact information. Prices are in £ and exclusive of VAT.

Multimeters

- **MARCONI**
 - 3220 Drive for Clary Printer
 - 3221 Drive for Facit 4000

- **TEKTRONIX**
 - 5303A DC-50 MHz, 100µV sens.
 - 5308A DC-520 MHz, 100µV sens.
 - 5309A DC-50 MHz, 100µV sens.

Prices

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-100MHz Dual Trace 5mV-5V/Div</td>
<td>£1250</td>
<td></td>
</tr>
<tr>
<td>DC-250MHz Dual Trace 5mV-5V/Div</td>
<td>£1950</td>
<td></td>
</tr>
</tbody>
</table>

Modulation Meters

- **MARCONI**
 - 3240/3301 Data Transfer Unit and Totalise
 - 3238 Power Supply

- **TEKTRONIX**
 - 5303A DC-50 MHz, 100µV sens.
 - 5308A DC-520 MHz, 100µV sens.
 - 5309A DC-50 MHz, 100µV sens.

Prices

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-100MHz Dual Trace 5mV-5V/Div</td>
<td>£1250</td>
<td></td>
</tr>
<tr>
<td>DC-250MHz Dual Trace 5mV-5V/Div</td>
<td>£1950</td>
<td></td>
</tr>
</tbody>
</table>
Hameg the name for quality, performance and value in OSCILLOSCOPES. Advanced design optimising the use of both integrated circuits and discrete components ensures reliability. Just a glance at the specification chart will make you want to know more.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM 307</td>
<td>Single Trace DC-10 MHz, 5 mV/cm Plus built in Component Tester</td>
<td>£149</td>
</tr>
<tr>
<td>HM 312</td>
<td>Dual Trace DC-20 MHz, 5 mV/cm Sweep Speeds 40 ns - 0.2s/cm 8 x 10 cm Display</td>
<td>£250</td>
</tr>
<tr>
<td>HM 412</td>
<td>Dual Trace DC-20 MHz, 2mV/cm Sweep Speeds 40 ns - 2 s/cm and Sweep Delay</td>
<td>£350</td>
</tr>
<tr>
<td>HM 512</td>
<td>Dual Trace DC-50 MHz, 5 mV/cm Sweep Speeds 20 ns - 5 s/cm plus Sweep Delay</td>
<td>£580</td>
</tr>
<tr>
<td>HM 812</td>
<td>Dual Trace DC - 50 MHz, 5 mV/cm 20 ns - 5 s/cm, Sweep Delay and Storage</td>
<td>£1325</td>
</tr>
</tbody>
</table>

We may be a new name to you, but each instrument is backed by over 21 years experience in oscilloscopes.

Distributed by
Electronic Brokers
49/53 Pancras Road
London NW1 2QB
Tel. 01-837 7781

WW - 041 FOR FURTHER DETAILS
Fits flexibly into your system.

Card-expandable micro-processor
Heart of the KGM C700 is a micro-processor powerful enough for really fast text movement. Card expansion space allows for extra memory up to 64K.

High performance display
High definition scan coil and dynamic focusing give exceptionally clear display on the 12" screen. A character generator offers 80 x 24 characters in 10 to 48pt — KGM designed to match the display performance.

Keyboard choice
Specify a 128 character computer keyboard, a selective format text editing keyboard, or a separate plug-in numeric pad — all planned for easy use.

NEW C700 series of programmable data terminals

Systems designers ... computer manufacturers ... please note! You can specify C700 units with a keyboard choice, then add extra capacity or interfaces via standard Eurocards. The C700 concept means state-of-the-art micro-processing, precisely tailored to your needs — without a single design problem. Ask us for details.

KGM Electronics Limited, Clock Tower Rd., Isleworth, Middlesex TW7 6DU.
Tel: 01-568 0151. Telex: 934120

SCOTCH STORAGE MODULE
THE MEMORY-SAFE.

When you entrust your records to a disk storage and retrieval system, you need to be sure that they're safe. And the best insurance you can have is a Scotch Storage Module.

Because built-in to every Scotch Storage Module is all the experience of magnetic coating technology which is why 3M are known as the Magnetic Media Specialists. Like the unique 'Crashguard' binder formulation, which protects you from data checks, damaged disks and heads, downtime and data loss.

Use the 3M Minicomputer Media Service for all your media supply needs. You can order from us direct, or from our network of local distributors.

Find out more.
Phone or write to:
The Minicomputer Media Service,
3M United Kingdom Limited, FREEPOST, Bracknell, Berkshire, RG12 1BR. Tel: Bracknell (0344) 58502.

3M

WW — 090 FOR FURTHER DETAILS

WW — 075 FOR FURTHER DETAILS
The PM 2517 has set the standard and the pace in Europe for hand-held digital multimeters - and still it remains in a class of its own. Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240, which a 3½ digit meter would read.

Some other PM 2517 plus points:
- LED or LCD display
- True RMS readings of AC voltage and current
- Autoranging with manual override
- Optional accessories include temperature and data hold probes

Reader inquiry number 220

NO WAITING FOR THESE TOP PRODUCTS

GREAT COUNTERS MYSTERY

Philips engineers have encountered the same reaction from customers and competitors alike when showing off the new microcomputer controlled PM 6667 (120 MHz) and PM 6668 (1GHz) frequency counters: "How do they do it for the price?" Here's a brief summary of what the counters offer.
- Reciprocal frequency counting (for higher resolution without ±1 cycle error)
- Auto-triggering on all waveforms

Reader inquiry number 222

The PM 3207 - Super Scope - is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expect from Philips Test and Measuring Instruments.
- 15 MHz dual trace
- Auto triggering from either channel with adjustable level between peaks and TV triggering
- 5 mV sensitivity, Y and X (via A input)
- B invert facility

Reader inquiry number 221

Both these instruments are available off the shelf from the Philips Electronic Instruments Department (see address below) or from the following distributors. British Tungsram, West Road, Tottenham, London N17 ORN. Tel: 01-886-4884. Philips Service Centres (25 throughout the country). Tel: 01-886-0905 for the address of your nearest branch. Wessex Electronics Ltd, 144-146 North Street, Downend, Bristol BS 16 5SE. Tel: (0272) 570516. These products are also available from Pye Unicam Ltd, Essex Electronics, 144-146 North Street, Downend, Bristol BS 16 5SE. Tel: (0272) 570516.

Reader inquiry number 222
Our 19" Card frame will house your projects in a 'professional' manner. It is designed to take Eurocards or Modules and offers facilities for interconnection through 2-part DIN 41612 or direct edge connectors. A full range of compatible items are available — all selected from the established range of industrial products — boards, accessories, cases etc. Just send 40p. and we'll send you our catalogue by return — it's got the lot!

WW — 038 FOR FURTHER DETAILS

OLSON PORTABLE MAINS DISTRIBUTION

New! Slim Jim

Dim. 1⅝" x 2⅛" x 18¼"
£12.15. P&P 85p + VAT

19" Rack Mounting Type 13A/4SW/R £16.80. P&P £1 + VAT.

Instant Trunking System for Wall or Bench Mounting

NEW! 10 sockets switched in sloping box

Type 13A/10SW £27.50. P&P £1.85 + VAT

COMPLETE WITH 6FT. CABLE AND 13-AMP FUSED PLUG:

4 sockets 13A £12.75
6 sockets 13A £15.00
4 sockets 13A switched £14.45
6 sockets 13A switched £18.75 + P&P £1 + VAT

ALL DISTRIBUTION PANELS ARE FITTED WITH MK SOCKETS & PLUG

Send for details of complete range

WW — 056 FOR FURTHER DETAILS
In future, recording the present will be a thing of the past.

What's past is past. And said to be best forgotten.
But it's fundamental to the very existence of communications recording to be able to replay a selected portion of tape to find out what was said by who, to whom ... and when. And 'when' can be vital.
Equally vital, particularly in emergencies when every second counts, is the ability to obtain such replay access rapidly, precisely, automatically. With absolute certainty — and without time-consuming multiple knob-twiddling aided by guesswork.
Racal Recorders has recognized this need and produced TIMESEARCH — designed specifically for its ICR range of multi-channel communications recorders — and providing just these facilities.
TIMESEARCH can generate a coded time reference signal of crystal accuracy and index it onto the tape. It can read and display that signal. It can search a tape at high speed for a pre-selected time signal and automatically initiate replay at that time.
In communications recording, the future becomes the present; the present becomes the past. And when you need to recall the past with precision, you need TIMESEARCH.

And for providing precise time signals every 10 seconds for recording onto magnetic tape: the International Timing Unit.

Racal Recorders always on the right track
The MSI System 12 computer system combines the popular MSI 6800 processor...the MSI FD-8 QUAD floppy disk system, and the new MSI HD-8/R 10 megabyte fixed/removable hard disk system in one compact desk unit.

Ideal for business applications, the MSI System 12 gives you a large capacity hard disk for mass storage, and a floppy disk system for program loading, backup, software updates and exchanges. System 12 will use MSIDOS, SDOS or FLEX operating systems. A variety of programs is available including Multi-User BASIC and a complete Management/Accounting package.

Complete with industry standard CRT and high speed printer, the MSI System 12 is one of the most powerful microcomputer systems available.

Quantum Electronics

NEW PRODUCTS — NEW PRODUCTS

Our product range for the 80s is outlined but it is impossible to cover everything in such a small space. For detailed information and a price list send a large SAE or a dollar bill.

PRE-AMP & POWER AMP KITS

The pre-amp is now available in kit form in versions to suit any cartridge and consists of the module C1 (below) and the hardware kit HK1. No soldering is involved and assembly takes about 20 mins. There are four power amp kits, four mono and two stereo, from 45 to 260W to satisfy virtually every requirement. They use ready-built and tested p.c. boards to achieve an ease of construction similar to module-based kits at lower cost. There are also mains supply kits to enable independent use of the pre-amp, which is normally powered via our power amp. Similar equipment is also available ready-built from us or via our dealers.

- C1 + HK1: £68.70
- C1mc + HK1: £70.95
- P2 (stereo 45W per channel) kit: £87.28
- P4 (stereo 110W per channel) kit: £109.42

MOVING-COIL & PRE-AMP MODULES

Previously restricted to trade and export, the C1 pre-amp module is now available separately in 3 versions to match any cartridge. It has unbeatable specifications, caters for disc, auxiliary and 2 or 3 head tape machines and requires only a rough supply of 18 to 36V d.c. The new moving coil pre-pre-amp achieves low total harmonic distortion, high overload, good noise performance without resorting to the expensive multiple transistor design. Only tantalum capacitors and metal oxide resistors are used in the signal path and it can be powered either via the C1 or by a battery. Hardware kits are available to build both types and they are also available ready-built.

- MC1 Module: £49.50
- C1mc Module: £51.75
- C1 Module: £49.50
- C1mc £51.75

POWER AMP MODULES AND SUPPLIES

The power amp modules are now also available to retail customers in a variety of powers and formats up to 260W r.m.s. They use the same high performance circuitry as the kits above, giving t.h.d. below 0.1% at 1kHz, but are capable of sustained high level use with excellent reliability. There are power supplies for use with any one or two of these modules, all of which use toroidal transformers, also available separately. The module illustrated is a medium duty 150W, r.m.s. type, the M150S, which requires the MS3 supply.

- M1508: £35.79
- MS3: £26.28

Exports: We can deal efficiently with orders to any country. Please write with your specific requirements for a quote by return. All equipment can be wired for 110V mains.

1A STAMFORD STREET, LEICESTER. Tel. 546198
OX DISCO, BOX 123 CLAYMONT, DE 19703, U.S.A. Tel. 1-302-756-7832
MINI TELEPRODUCTOR, BOX 12035, S-75012, UPPSALA 12, SWEDEN
L.A.B. (A.P.S.), VANDKUNSTEN 4, DK 1467, COPENHAGEN, DENMARK.
The Thinking Cap

Now you can measure, sort and check capacitance in less time, with more accuracy.

The new 3001 Digital Capacitance Meter is yet another superb instrument from C.S.C. Designed specifically for professional laboratories, test and production benches, it offers outstanding accuracy with features and accessories to match. All in a well designed, rugged unit for only £155*

As usual, we continued where everyone else left off. Behind the 3½-digit LED display is a unique Dual Threshold circuit that gives an accuracy of 0.1% of the reading (0.5% in the two highest ranges). Other features include nine overlapping ranges, up to 0.1999 F, with down to 1pF resolution, automatic over and under-range indications, and the 3001 isn’t fooled by dielectric absorption. Once the range is selected, measurement is speedy—less than half a second

Our back panel has more facilities too. An easy interface for remote display, sorting and control accessories, and, to eliminate battery problems an AC mains input.

A great deal of thought has been put into the accessories which include a production test fixture, a Limits Unit, a variety of test cables, and an extremely comprehensive manual covering not only measurement on capacitors but also applications to testing other types of components and even cables.

The 3001 Digital Capacitance Meter. The only one worth thinking about.

Price excluding P&P and 15% VAT

* Tomorrow’s tools for today’s problems

C.S.C. (UK) Limited,
Dept 7FF, Unit 1 Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682 Telex: 817477

Model 3001
Digital Capacitance Meter
Unit price inc. P&P 15½% VAT £179.97

Name
Address

I enclose cheque/PO for £

or debit my Barclaycard/Access/American Express card no

exp date

FOR IMMEDIATE ACTION — The C.S.C. 24 hour, 5 day a week service Telephone (0799) 21682 and give us your Barclaycard/Access/American Express number and your order will be in the post immediately

For FREE catalogue tick box

SW - 104 FOR FURTHER DETAILS
Britain's first complete personal computer for a third of the price of a bare board.

Also available ready assembled for £99.95

The Sinclair ZX80.

Until now, building your own computer could easily cost around £300 - and still leave you with only a bare board for your trouble.

The Sinclair ZX80 changes all that. For just £79.95 you get everything you need to build a personal computer at home... PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and television; everything!

And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done... Connect it to your TV set... link it to an appropriate power source and you're ready to go.

Your ZX80 kit contains...

* Printed circuit board, with IC sockets for all ICs.
* Complete components set, including all ICs - all manufactured by selected world-leading suppliers.
* New rugged Sinclair keyboard, touch-sensitive, wipe-clean.
* Ready-moulded case.
* Leads and plugs for connection to any portable cassette recorder (to store programs) and domestic TV (to act as VDU).
* FREE course in BASIC programming and user manual.

Optional extras

* Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately - see coupon).
* Additional memory expansion board plugs in to take up to 3K bytes extra RAM chips (Chips also available - see coupon).

* Use a 600 mA at 9 V DC nominal unregulated mains adaptor. Available from Sinclair if desired - see coupon.

Two unique and valuable components of the Sinclair ZX80.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter, and the Sinclair teach-yourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming advantages:

* Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
* Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you run them.
* Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string input-to request a line of text when necessary. Strings do not need to be dimensioned.
* Up to 26 single dimension arrays.
* PDB/NEST loops nested up to 26.
* Integer names of any length.
* BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
* Exceptionally powerful edit facilities, allows modification of existing program lines.
* Randomise function, useful for games and secret codes, as well as more serious applications.
* Timer under program control.
* PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.

* High-resolution graphics with 22 standard graphic symbols.
* All characters printable in reverse under program control.
* and the Sinclair teach-yourself BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you - don't worry. They're all explained in the specially-written 96-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately - purchase price refunded if you buy a ZX80 later.)
Fewer chips, compact design, volume production - more power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed onto fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80's 1K byte RAM is roughly equivalent to 4K bytes in a conventional computer, because the ZX80's brilliant design packs the RAM so much more tightly. (Key words, for instance, occupy just a single byte.)

To all that, add volume production - and you've that rare thing: a price breakthrough that really is a breakthrough.

The ZX80 kit costs a mere £79.95. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only £99.95.

Whether you choose the kit or the ready-made, you can be sure of world-famous Sinclair technology - and years of satisfying use. (Science of Cambridge Ltd is one of the Sinclair companies owned and run by Clive Sinclair.)

To order, complete the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied.

Order Form
To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Remember: all prices shown include VAT, postage and packing. No hidden extras.
Please send me:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Item price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sinclair ZX80 Personal Computer kit(s): Price includes ZX80 BASIC manual, excludes mains adaptor</td>
<td>79.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ready-assembled Sinclair ZX80 Personal Computer(s): Price includes ZX80 BASIC manual, excludes mains adaptor</td>
<td>99.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mains Adaptors (600 mA at 9 V DC nominal unregulated)</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Memory Expansion Board(s) (takes up to 3K bytes)</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAM Memory chips - standard 1K bytes capacity</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sinclair / ZX80 Manuals (manual free with every ZX80 kit or ready-made computer)</td>
<td>5.00</td>
<td></td>
</tr>
</tbody>
</table>

Total: £

NB: Your Sinclair ZX80 may qualify as a business expense.

I enclose a cheque/postal order payable to Science of Cambridge Ltd for £
Name: Mr/Mrs/Miss
Address

WW — 017 FOR FURTHER DETAILS
CROPICO - A CERTAIN MEASURE OF PERFECTION

Cropico, established as one of Britain's leading manufacturers of precision electrical measuring equipment, offers a wide range of instruments which have been proved for accuracy and performance throughout the world.

- **Resistance Boxes**: D.C. Null Detectors
- **Resistance Bridges**: Digital Temperature Indicators
- **Resistance Standards**: Electronic Standard Cell
- **D.C. Potentiometers**: Multipliers, Digital or Analogous
- **Thermocouple Reference**: Wattmeters, Digital or Analogous
- **Junctions**: Insulation Test Sets
- **Thermocouple Switches**: Earth Resistance Meters
- **Pt 100 Simulators**: And many more

Cropico - Britain's leading manufacturer, exporter and importer of precision electrical measuring equipment.

Request full details - Visitors Welcome

CROPICO LTD., Hampton Road, Croydon CR9 2BU

Telephone: 01-684 4025 and 4094

Cables: CROPICO-CROYDON

Telex: 945632 CROPCO G

Croydon CR9 2RU

CROPICO LTD., 1A Stamford Street, Leicester LE1 6NL. Tel. (0533) 553508

C.R.M. - A CERTAIN MEASURE OF PERFECTION

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

We now offer the widest range of sound products —

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS —

STEREO PRE-AMPLIFIER

POWER AMPLIFIER MODULE

PRE-AMPLIFIER KIT

CPR 1 - THE ADVANCED PRE-AMPLIFIER. The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably the disc stage. The overload margin is a superb 40dB, this together with the high slew rate ensures clean top, even with high output cartridges tracking heavily modulated records. Common-mode distortion is eliminated by an unusual design, R.F.A.A. is accurate to 1%, signal to noise ratio is 70dB relative to 3.5mV; distortion <0.005% at 30dB overload 20kHz.

Following this stage is the flat gain/balance stage to bring tape, tuner, etc. up to power amp level. Signal to noise ratio (R.M.S.); signal to noise ratio is 86dB relative to 3.5mV; distortion <0.005% at 30dB overload 20kHz.

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS —

POWER AMPLIFIER KIT. The kit includes all metalwork, 'snib' kits and hardware to house any two of our power amp modules plus a power supply. It is contemporary styled and its quality is consistent with that of our other products. Comprehensive instructions and full back-up service enable a novice to build it with confidence in a few hours.

PRE-AMP KIT

This includes all metalwork, 'snib' kits, etc. to make a complete pre amp with the CPR1(S) module and the MC1(S) module if required.

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS —

POWER AMPLIFIER MODULES

- **CPR1**: £19.12
- **CPR1S**: £21.28
- **MC1**: £22.54
- **MC1S**: £23.58

THERMAL CUT-OFF, 70'C

- **REG1**: £3.04
- **REG2**: £2.35
- **REG3**: £1.44

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS —

POWER AMPLIFIER KIT. The kit includes all metalwork, 'snib' kits and hardware to house any two of our power amp modules plus a power supply. It is contemporary styled and its quality is consistent with that of our other products. Comprehensive instructions and full back-up service enable a novice to build it with confidence in a few hours.

PRE-AMP KIT

This includes all metalwork, 'snib' kits, etc. to make a complete pre amp with the CPR1(S) module and the MC1(S) module if required.

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS —

POWER AMPLIFIER MODULES

- **CPR1**: £19.12
- **CPR1S**: £21.28
- **MC1**: £22.54
- **MC1S**: £23.58

THERMAL CUT-OFF, 70'C

- **REG1**: £3.04
- **REG2**: £2.35
- **REG3**: £1.44

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS —

POWER AMPLIFIER KIT. The kit includes all metalwork, 'snib' kits and hardware to house any two of our power amp modules plus a power supply. It is contemporary styled and its quality is consistent with that of our other products. Comprehensive instructions and full back-up service enable a novice to build it with confidence in a few hours.

PRE-AMP KIT

This includes all metalwork, 'snib' kits, etc. to make a complete pre amp with the CPR1(S) module and the MC1(S) module if required.
METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1
Phone: 01/837/7937

CAMBRIDGE LEARNING ENTERPRISES
Self Instruction Courses

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation.

- Book 1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
- Book 2 High and low level languages; flowcharting; functions, REM and documentation; INPUT, IF, THEN, GOTO; limitations of computers, problem definition.
- Book 3 Compilers and interpreters; locus, FOR...NEXT, RESTORE; debugging; errors; bubble sorting; TAB.
- Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples; glossary.

Understand Digital Electronics
Written for the student or enthusiast, this course is packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits and finally to an understanding of the design and operation of calculators and computers.

- Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems.
- Book 2 OR and AND functions; logic gates: NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgan's Laws; canonical forms; logic conventions; three state and wired logic.
- Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and ALU's; multiplication and division systems.
- Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; ROMS and RAMS.
- Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding.
- Book 6 CPU, memory organisation; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; compilers; executive programs; operating systems.

GUARANTEE - No risk to you
If you are not completely satisfied your money will be refunded on return of the books in good condition.

Please send me:

- Computer Programming in BASIC (4 books) @ £7.50
- Design of Digital Systems (6 books) @ £11.50
All prices include worldwide surface mailing costs (airmail extra)

IF YOUR ORDER EXCEEDS £15, DEDUCT £2

I enclose a cheque/PO payable to Cambridge Learning Enterprises for £

or please charge my Access/Barclaycard account no.

Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc Eire) send a bank draft in sterling drawn on a London bank, or quote credit card and number.

Name

Address

Cambridge Learning Enterprises, Unit 38, Rivermill Site, FREE-POST, St. Ives, Huntingdon, Cambs. PE17 4BR, England.
The New FM/AM 1000s with Spectrum Analyser—we call it the SUPER-S

A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter—and up to five service engineers who could be doing something else!

For further information contact Mike Taylor

VERO SYSTEMS (ELECTRONIC) LIMITED
362, SPRING ROAD, SOUTHAMPTON, HANTS, SO9 5QJ
Telephone: (0703) 440611 Telex: 477164

PPRODUCTION TESTING
DEVELOPMENT
SERVICING

POWER UNITS
Now available with 3 OUTPUTS

Type 250V RU/30/25
OUTPUT 1: 0-30v, 25A DC
OUTPUT 2: 0-70v, 10A AC
OUTPUT 3: 0-250v, 4A AC

ALL Continuously Variable

VERO SYSTEMS
VERO SYSTEMS (ELECTRONIC) LIMITED
362, SPRING ROAD, SOUTHAMPTON, HANTS, SO9 5QJ
Telephone: (0703) 440611 Telex: 477164

PRODUCTION TESTING
DEVELOPMENT
SERVICING

POWER UNITS
Now available with 3 OUTPUTS

Type 250V RU/30/25
OUTPUT 1: 0-30v, 25A DC
OUTPUT 2: 0-70v, 10A AC
OUTPUT 3: 0-250v, 4A AC

ALL Continuously Variable

VALRADIO LIMITED, BROWELLS LANE, FELTHAM
MIDDLESEX TW13 7EN
Telephone: 01-890 4242 /4837

WW — 038 FOR FURTHER DETAILS

WW — 038 FOR FURTHER DETAILS
TRIO TEST INSTRUMENTS

THE RANGE HAS INCREASED — THE PRICES ARE DOWN

THE CS1830 30 MHz + Sweep Delay

The CS1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal graticle, PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of 1μS-100mS and trace bright up to show the delay position. As you can see from close study of the photograph, the CS1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet.

Brief Specification
- Rectangular PDA tube 120 x 96 mm. P31 phosphor.
- Bandwidth DC - 30 MHz
- Sensitivity: 5mV/cm (30 MHz) 2mV/cm (20 MHz)
- Input R.C. 1 MΩ/23 pF
- Rise time 11.7 nS
- Sweep delay 1μS-100mS

CS1830 only £455 + VAT includes 2 probes

THE CS1572 30 MHz for the VTR Lab.

If you are in Video, you need the CS1572

The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video odd and even fields. A truly unique tool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a small advertisement so why not call us and ask for the full story on the CS1572.

Brief Specification
As for CS1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment.

CS1572 only £425 + VAT, includes 2 probes

THE CS1577 30 MHz at 2mV + Signal Delay

The most popular scope in the range.

The CS1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS1577 combines a wide bandwidth DC-30 MHz performance with extremely wide trigger bandwidth (DC-40 MHz) and 2 mV sensitivity over the full bandwidth. Fixed signal delay is provided by a helix delay line which allows viewing of the leading edges of fast pulses for accurate rise time measurement, and the 130 mm PDA tube gives a bright, stable trace even at the highest sweep speeds (20 nS/cm using X 5 expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS1577 demonstrates this to perfection. Triggering, as in the other 30 MHz instruments can be from CH1 or CH2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays. Truly an oscilloscope masterpiece. CS1577.

CS1577 only £410 + VAT, includes 2 probes.

THE CS1575, unique dual trace 4 function Audio Scope

The CS1575 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to 1 mV/cm but not only can it display the input signal on two channels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with widely differing input frequencies.

Absolutely indispensable to the professional audio engineer, the CS1575 is now in use all over the world. See it in action or send for complete details.

CS1575 only £235 + VAT.

AND TWO NEW ADDITIONS TO THE RANGE

DL705 MULTIMETER

DC to 1000V
AC to 1000V
0 to 20MA
1 to .2A
Semi Auto Ranging

£70 + VAT

For further details and ex stock delivery contact

LCW ELECTRONICS

CHESTERFIELD ROAD, MATLOCK, DERBYS.
0629-2430 - TELEX 377482
<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRMEC 248A 5-300MHz WAVE ANALYSER</td>
<td>£15600</td>
</tr>
<tr>
<td>DYMAR 771 A.F. Wave Analyser 20Hz-50KHz</td>
<td>£150.00</td>
</tr>
<tr>
<td>HEWLETT-PACKARD 331A Distortion Analyser 5Hz-600KHz</td>
<td>£350.00</td>
</tr>
<tr>
<td>MUIRHEAD D-988-A High Frequency Analyser 0.2KHz-64MHz</td>
<td>£120.00</td>
</tr>
<tr>
<td>TEKTRONIX 1L20 Spectrum Analyser 10MHz-4.2GHz</td>
<td>£1500.00</td>
</tr>
<tr>
<td>General Radio 1607A Transfer Function & Immittance Bridge</td>
<td>£250.00</td>
</tr>
<tr>
<td>MARCONI TF.868B 1% Universal Bridge 1KHz & 10KHz</td>
<td>£200.00</td>
</tr>
<tr>
<td>MARCONI TF.2701 Insitu Universal Bridge</td>
<td>£200.00</td>
</tr>
<tr>
<td>WAYNE KERR 221A .1% Universal Bridge</td>
<td>£200.00</td>
</tr>
<tr>
<td>WAYNE KERR B.224 .1% Universal Bridge</td>
<td>£200.00</td>
</tr>
<tr>
<td>WAYNE KERR B.641 .1% Autobalance Bridge</td>
<td>£200.00</td>
</tr>
<tr>
<td>WAYNE KERR K-288 Ganged Source & Detector</td>
<td>£150.00</td>
</tr>
<tr>
<td>WAYNE KERR B.601 .1% R.F. Bridge 15KHz-5MHz</td>
<td>£150.00</td>
</tr>
</tbody>
</table>

BRIDGES

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRMEC 364A 5-300MHz WAVE ANALYSER</td>
<td>£15600</td>
</tr>
<tr>
<td>DYMAR 771 A.F. Wave Analyser 20Hz-50KHz</td>
<td>£150.00</td>
</tr>
<tr>
<td>HEWLETT-PACKARD 331A Distortion Analyser 5Hz-600KHz</td>
<td>£350.00</td>
</tr>
<tr>
<td>MUIRHEAD D-988-A High Frequency Analyser 0.2KHz-64MHz</td>
<td>£120.00</td>
</tr>
<tr>
<td>TEKTRONIX 1L20 Spectrum Analyser 10MHz-4.2GHz</td>
<td>£1500.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEWLETT-PACKARD 350A Dual Beam DC-1MHz 100V/cm</td>
<td>£200.00</td>
</tr>
<tr>
<td>TEKTRONIX 954 Storage Dual Trace 2mV/Div.</td>
<td>£90.00</td>
</tr>
<tr>
<td>TELEQUIPMENT D.32 Dual Beam DC-10MHz Malloy/Batt.</td>
<td>£375.00</td>
</tr>
<tr>
<td>TELEQUIPMENT D.53 Dual Beam DC-25MHz</td>
<td>£250.00</td>
</tr>
<tr>
<td>TELEQUIPMENT 5 12 Single Beam DC-35MHz Malloy/Batt.</td>
<td>£230.00</td>
</tr>
<tr>
<td>TEKTRONIX Plug Ins. E.U.R.3.1A-1A/CA/821S1 from</td>
<td>£90.00</td>
</tr>
<tr>
<td>MARCONI TF.791D Carrier Deviation Meter</td>
<td>£175.00</td>
</tr>
<tr>
<td>MARCONI TF.1020A/I R.F. Power Meter 50W & 100W</td>
<td>£100.00</td>
</tr>
<tr>
<td>MARCONI TF.2600 Sensitive Valve Voltmeter 10KHz-5MHz</td>
<td>£130.00</td>
</tr>
<tr>
<td>RADOMETER BF.BA Distortion Meter 20Hz-20KHz</td>
<td>£350.00</td>
</tr>
<tr>
<td>BOONTON 91DA R.F. Voltmeter 20KHz-1200MHz</td>
<td>£195.00</td>
</tr>
<tr>
<td>DYMAR 761 Noise Factor Meter 100Hz-100KHz</td>
<td>£100.00</td>
</tr>
<tr>
<td>HEWLETT-PACKARD 431C Power Meter & Thermistor</td>
<td>£450.00</td>
</tr>
<tr>
<td>MARCONI TF.781D Carrier Deviation Meter</td>
<td>£175.00</td>
</tr>
<tr>
<td>MARCONI TF.1020A/I R.F. Power Meter 50W & 100W</td>
<td>£200.00</td>
</tr>
<tr>
<td>MARCONI TF.2600 Sensitive Valve Voltmeter 1MHz-3MHz</td>
<td>£130.00</td>
</tr>
<tr>
<td>RADOMETER BF.BA Distortion Meter 20Hz-20KHz</td>
<td>£350.00</td>
</tr>
</tbody>
</table>

METERS ANALOGUE

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRMEC 364A 5-300MHz WAVE ANALYSER</td>
<td>£15600</td>
</tr>
<tr>
<td>DYMAR 771 A.F. Wave Analyser 20Hz-50KHz</td>
<td>£150.00</td>
</tr>
<tr>
<td>HEWLETT-PACKARD 331A Distortion Analyser 5Hz-600KHz</td>
<td>£350.00</td>
</tr>
<tr>
<td>MUIRHEAD D-988-A High Frequency Analyser 0.2KHz-64MHz</td>
<td>£120.00</td>
</tr>
<tr>
<td>TEKTRONIX 1L20 Spectrum Analyser 10MHz-4.2GHz</td>
<td>£1500.00</td>
</tr>
</tbody>
</table>

OSCILLOSCOPES

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEWLETT-PACKARD 130C X-Y-Y DC-150KHz 200mV/cm</td>
<td>£150.00</td>
</tr>
<tr>
<td>SCOPEX 4D-10B Dual Beam 10MHz 10mV/cm, NEW</td>
<td>£210.00</td>
</tr>
<tr>
<td>SCOPEX 4D-30 Dual Beam 35mHz 10mV/cm, NEW</td>
<td>£250.00</td>
</tr>
<tr>
<td>TEKTRONIX 520A Dual Beam DC-1MHz 100V/cm</td>
<td>£200.00</td>
</tr>
<tr>
<td>TEKTRONIX 204 Storage Dual Trace 2mV/Div.</td>
<td>£90.00</td>
</tr>
<tr>
<td>TELEQUIPMENT D.32 Dual Beam DC-10MHz Malloy/Batt.</td>
<td>£375.00</td>
</tr>
<tr>
<td>TELEQUIPMENT D.53 Dual Beam DC-25MHz</td>
<td>£250.00</td>
</tr>
<tr>
<td>TELEQUIPMENT 5 12 Single Beam DC-35MHz Malloy/Batt.</td>
<td>£230.00</td>
</tr>
<tr>
<td>TEKTRONIX Plug Ins. E.U.R.3.1A-1A/CA/821S1 from</td>
<td>£90.00</td>
</tr>
<tr>
<td>MARCONI TF.791D Carrier Deviation Meter</td>
<td>£175.00</td>
</tr>
<tr>
<td>MARCONI TF.1020A/I R.F. Power Meter 50W & 100W</td>
<td>£100.00</td>
</tr>
<tr>
<td>MARCONI TF.2600 Sensitive Valve Voltmeter 1MHz-3MHz</td>
<td>£130.00</td>
</tr>
<tr>
<td>RADOMETER BF.BA Distortion Meter 20Hz-20KHz</td>
<td>£350.00</td>
</tr>
</tbody>
</table>

RECORDERS

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>B & K 2305 Sound Level Recorder</td>
<td>£500.00</td>
</tr>
<tr>
<td>GOLDS 200 Circuits 6-channel Recorder</td>
<td>£175.00</td>
</tr>
<tr>
<td>HONEYWELL 5.124 17-channel U/V Recorder & 7 Galvos</td>
<td>£600.00</td>
</tr>
<tr>
<td>HEWLETT-PACKARD 7510 6-channel Thermal Recorder</td>
<td>£550.00</td>
</tr>
<tr>
<td>MARCONI TF.3200 2-channel Thermal Recorder</td>
<td>£590.00</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>B & K 1118 Automatic Vibration Exciter</td>
<td>£300.00</td>
</tr>
<tr>
<td>R & E 312 Filter Set Band Pass-4 and 1 Octave</td>
<td>£150.00</td>
</tr>
<tr>
<td>BARNETT Dead Weight Tester + Weights & 2 Gauges</td>
<td>£250.00</td>
</tr>
<tr>
<td>POCHMORE Vibration Bowl 18" & 24"</td>
<td>£485.00</td>
</tr>
<tr>
<td>PYE LINQ Vibration Systems 1000b. Thrust</td>
<td>£700.00</td>
</tr>
<tr>
<td>REDIN Climatic Oven -10°C to +150°C</td>
<td>£700.00</td>
</tr>
<tr>
<td>MONTFORD Climatic Oven -20°C to +60°C</td>
<td>£500.00</td>
</tr>
</tbody>
</table>

WIRELESS WORLD, MARCH 1980

Go for Wow/Flutter standard from Bang & Olufsen when precision, versatility and good value for money are high on your list of priorities.

The Bang & Olufsen microprocessor quartz controlled Wow and Fluttermeter calibrator is a compact low cost device, especially designed to calibrate Wow/Fluttermeters with great accuracy according DIN, IEC, CCIR and IEEE standards. The application in this microprocessor controlled instrument has rendered calibration obsolete. Therefore the first and the last produced WFC 1 will be exactly alike!

Functions:
- Center frequency: 3 KHz or 3.15 KHz. Sirius and Squarewave outputs.
- Wow/Flutter generator: (5 ranges).
- Drift: (4 ranges).
- Pulsgenerator, to check the meter ballistics.
- Modulation signal generator.
- Accuracy and stability for all functions < 50 ppm.
- Option 1 portable
- Option 2 adaption to your mains supply.

Bang & Olufsen Instruments

A solid investment
The pre-eminent pick-up arm

Whilst able to explore the best of the present, the Series III precision pick-up arm anticipates the greater engineering elegance of impending miniature cartridges which may weigh as little as one and a half grammes.

Its unique patented balance system minimises mass and inertia, presenting optimum conditions for even the most delicate transducer.

No other pick-up arm is as versatile, a reason why the Series III is already playing its part in the development of tomorrow's cartridges.

Choose it for your listening pleasure today with confidence in the future.

*Another accolade for SME: the Series III precision pick-up arm was one of the Design and Engineering Awards at the 1979 U.S Summer Consumer Electronics Show, the only pick-up arm to be acknowledged in this way.

Write to Dept 0655, SME Limited, Steyning, Sussex, BN4 3GY, England
PORTABLE PRECISION

A RANGE OF 3½ DIGIT LCD MULTIMETERS OFFERING HIGH PRECISION AND EXTENDED BATTERY LIFE. ALL TYPES FEATURE FIVE FUNCTION OPERATION (AC AND DC VOLTS, AC AND DC CURRENT, RESISTANCE) WITH ABILITY TO CHECK DIODES. 0.5" LCD DISPLAY WITH 'BATTERY LOW' WARNING. AUTO-POLARITY, AUTO-ZERO. FULL PROTECTION AGAINST TRANSIENTS AND OVERLOADS WITH ABILITY TO WITHSTAND MAINS ON ANY RANGE. RUGGED ABS CASES AND A COMPREHENSIVE 1-YEAR WARRANTY.

The LMM-200 is a compact handheld multimeter with 0.5% basic accuracy and 15 different ranges. It measures AC/DC voltage from 0.1mV to 500V, AC/DC current from 0.1µA to 2 Amps and resistance from 0.1Ω to 20MΩ. 200 hour battery life.

The LMM-2001 is an identical instrument but with a 0.1% basic accuracy.

The LMM-100 is suitable for field or bench use. It has a basic accuracy of 0.1% and 25 different ranges. It measures AC/DC voltage from 0.1mV to 1KV, AC/DC current from 0.1µA to 2 Amps and resistance from 0.1Ω to 20MΩ. Battery life is over 2,000 hours. It also features a unique 'digital hold' facility and adjustable carrying handle.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon, Essex. Telephone No: Basildon (0268) 727383.

When components are small and space is tight use our

T-7 MICRO SOLDERING STATION

T-7 is a 12-watt continuous duty instrument for production line, lab or protoshop. Heating element in soldering tip puts heat right where needed. Accurate, stepless dialing, 175° to 910°F (79°-487°C). Work protected by solid-state, line-isolating circuitry and grounded element. Two interchangeable, reshapeable tips, plus slip-on tips for special needs. Ideal for soldering, rework, fine touch-up, working wax and plastic, heat-etching various materials.

Available from
Special Products Distributors Ltd.
81 Piccadilly, London W1V 0HL
Tel: 01-629 9558
Cables: Specialprod, London W 1

IQXO-100 SERIES LOW PROFILE CRYSTAL CLOCK OSCILLATORS

The frequency range 600 Hz to 30 MHz is covered by both CMOS (600 Hz - 8 MHz) and TTL (150 KHz - 30 MHz) types having an overall tolerance of ±0.01% from 0 to +70°C. For more stringent requirements, ±0.01% from -55 to +125°C is available. Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD
29 Market Street, Crewkerne, Somerset TA18 7JU
Crewkerne (0460) 74433 Telex 46283 inface g
A.C. ADAPTOR (Battery Charger) 120 vac input, 5.8 vdc at 200 mA output. USA type mains plug to 3.5mm jack socket. Brand new & boxed £1.25 each.

A.C. ADAPTOR (Battery Charger) 117 vac input, 4.5 vdc at 150 mA output. USA type mains plug to 3.5mm jack socket. Brand new & boxed £1.25 each.

VARICAP TUNER HEADS, 4 button type, 22K ohms with AFC switch & station indicator. Brand new & boxed £2.50 each.

SCREWS. Pack of nuts, bolts, washers, tags, self tapping & slotted BA & metric. Sold by weight. £2.00 per Kilogram.

LOW VOLTAGE ELECTROLYCS. Pack of miniature electrolycs. Brand new & boxed. £1.50 each.

JAYBEAM STARBEAM UHF set top aerials. Ex-Equip. £2.00 boxed & £1.25 each.

MODERN TELEPHONES Type 746 with dials, colour cream, used but new condition. £8.00 each. We also stock Jaybeam T.V. and Radio aerials. SAE for lists.

ISOL SLOTTED HORIZONTAL RAIL available in 9 ft. lengths. £4.00 each.

WATCH STRAPS Black stainless steel 50p each. Black plastic 25p each. Watch spring bars 10p each. WATCH STRAPS Black stainless steel 50p each. Watch spring bars 10p each.

RIBBON CABLE 19 way decimal coded, 4 metres. £1.00 each. 2 for £1.50.

TX FILTER W15AM

MULTI -CHANNEL OSC. PCB FOR AM & FM

E1 .00

W15AM18B (Boot Mount) low band complete with control gear and accessories, good condition. £8.00 each.

W15AM30 low band, sets only no control gear, complete and in good condition. £5.00 each.

W15AM30M mid band, sets only good condition £3.00 each.

Base Station F27 Low & High band, few only at £7.50 each.

Base Station F30 AM & Low Band, with & without T.T. Prices from £20.00 each.

Cambridge AM108 (Boot Mount) low band, 12.5 kHz, sets only, no control gear, good condition. £1.00 each.

UHF Link U450L Base Station Tx £15.00 or £20.00 for the two. Sold as seen.

PC180 (plastic BC108) for 50p.

B1512 (UHF am/fm/500) £1.00 each.

B154 (NP04) £1.00 each.

BAY31 Signal Diode £1.20 each.

BC107 (metal can) £0.50 each.

OSMOR REED RELAY COILS (for reed relays up to 15 volt relays) £6.00 each plus VAT.

RED LEDs (Min. type) 5 for 70p.

XTALS FOR TV SY NC GEN. 20.25 kHz for 405 line. £12.00 each. 50p.

XTALS FOR TV SY NC GEN. 20.25 kHz for 405 line. £12.00 each.

LOW PASS FILTERS (low imp. type). £2.00 each. £12.00 each.
ELF II

THE TRIED AND TESTED MICROCOMPUTER SYSTEM THAT EXPANDS TO MEET YOUR NEEDS

Computer Kit

STARTS AT £59.95 + VAT

ELF II BOARD WITH VIDEO OUTPUT

FEATURETING THE RCA COSMAC 1802 cpu

STOP reading about computers and get your "hands on" an ELF II and Tom Pilman's short course. ELF II demonstrates all the 91 commands which an RCA 1802 can execute, and the short course speedily instructs you how to use them.

ELF II VIDEO OUTPUT makes it unique among computers selling at such a modest price. The expanded ELF II is perfect for engineers, business, industry, scientific and educational purposes.

ELF II EXPANSION KITS

Ex VAT

£5.00

£18.75

£25.50

£57.50

£52.95

£13.00

£7.75

£6.00

£12.75

£5.00

£10.00

£20.95

£25.50

£61.00

£10.00

£12.75

£8.75

£8.75

£5.00

£1.00

£1.00

£6.00

£114.20

£295

£114.20

£39.95

£19.00

£57.50

£12.75

£12.75

£79 + VAT

£49.50 + VAT

THE ATARI VIDEO COMPUTER SYSTEM £138 + VAT

Atari's Video Computer System now offers more than 1200 different game variations and options in twenty great Game Program™ cartridges!

Cartridges now available All at £13.90 each + VAT

Extra Paddle Controllers-£14.90 + VAT

"Keyboard Controllers-£16.90 + VAT

UHF MODULATORS £2.75 + VAT

NEWSOFT GAMES FOR ELF II. 4 for £5

RACAL API2, C12 TAPES: 10 for £4.50 + VAT

WIRELESS WORLD, MARCH 1980
MORE SPEC. FOR YOUR MONEY

TYPE 631 FILTER OSCILLATOR
£112 & 2.50 carriage, ins. etc.
COVERS THE RANGE 0.1Hz to 100KHz

MODES —
ACCEPT 0 from less than 1 to over 300
REJECT 90 dB notch
Hi and LO PASS 12 dB per octave
OSCILLATE Sinewave and squarewave

TYPE 631LF — £118.13 & 2.50 carriage, ins. etc.
Low frequency version 0.01Hz to 10KHz

FROM OMB ELECTRONICS
WIRELESS WORLD, MARCH 1980

SINE WAVE INVERTERS: 120 to 1000 VA
—NOW USING WAVEFORM SYNTHESIS—

DESIGNED FOR FIXED, MOBILE OR MARINE USE AND STANDBY A.C. POWER FOR DATA PROCESSING, COMMUNICATIONS, LABORATORY AND MANY OTHER APPLICATIONS.

A.C. Output: 220-240V or 110-120V, 50 Hz or 60 Hz
D.C. Input: 12 VOLTS or 24 VOLTS

Waveform synthesis, with pulse width modulation to regulate the output voltage, has been used in high power inverters for some time.

Now, for the first time, CARACAL have developed this technology to produce a complete range of high quality sine wave inverters from 120 VA to 1000 VA AT COMPETITIVE, VALUE-FOR-MONEY PRICES.

The result is a very low distortion output waveform which is very stable, both in voltage and frequency, over all load and battery voltage conditions.

And that is not all — replacing obsolescent tuned transformers has resulted in lighter weight and high efficiency on both part and full loads, with low standby current drain.

PHONE OR WRITE FOR FULL DETAILS
CARACAL ENGINEERING
42-44 SHORTMEAD STREET, BIGGLESWADE, BEDS. TEL. 0767-81361
Sonic Sound, the premier home entertainment store have now added yet another big name in the field of sound equipment to further enhance their prestige in London's centre of the audio/visual and Hi-Fi field in Tottenham Court Road.

Eddystone, at the top of the free since short wave began, have now appointed Sonic Sound Audio as sole retail distributors in the United Kingdom. Anyone even contemplating purchasing short wave equipment, be they looking for the best possible available for their Embassy, press department or home use, should visit or contact Sonic where they will be able to view and listen to the most comprehensive range of the latest short wave equipment on the market today.

Listen and choose in comfort at Britain's most up-to-date air conditioned sound demonstration studios. Full ranges of Hi-Fi, Video equipment, in-car and portables, etc., from all leading manufacturers; B & O, Sony, Sony, Hitachi, Pioneer, J.V.C.

Get the latest update from Sonic Sound: the premier home entertainment store. In -car and portables, etc., are on request. ONLY £45 COMPLETE + 15% VAT. Anyone even contemplating short wave equipment, be they looking for the best possible available for their Embassy, press department or home use, should visit or contact Sonic where they will be able to view and listen to the most comprehensive range of the latest short wave equipment on the market today. Sonic Sound Audio is a Marconi Group Company.

Rechargeable Batteries

Trade Enquiries Welcome

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries. SAE for lists and prices. £1.25 for booklet. "Nickel Cadmium Power," plus catalogue.

Write or call at
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands. 021-354 9764
See full range at TLC, 32 Craven street, Charing Cross, London WC2
COMPUKIT UK101

EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

★ 6502 based system — best value for money on the market.
★ Powerful 8K Basic — Fastest around ★ Full Qwerty Keyboard ★ 4K RAM Expandable to 8K on board. ★ Power supply and RF Modulator on board. ★ No Extras needed — Plug-in and go. ★ Kansas City Tape Interface on board. ★ Free Sampler Tape including powerful Dissassembler and Monitor with each Kit. ★ If you want to learn about Micros, but didn’t know which machine to buy then this is the machine for you.

Simple Soldering due to clear and concise instructions compiled by Dr. A.A. Berk, BSc. PhD.

Build, Understand and Program your own Computer for only a small outlay

Kit only £199 + VAT
No Extras Needed

Available ready assembled & tested ready to go for £249 + VAT

Specially designed case for Computer in orange/black
With room for accessories £29.50 + VAT

The Compukit UK101 comes in kit form with all the parts necessary to be up and working, supplied. No extras are needed. After plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programs. By pressing the C key the world of Basic is open to you.

This machine is ideal to the computing student or Maths student, ideal to teach your children arithmetic, and is also great fun to use. Because of the enormous volume of users of this kit we are able to offer a new reduced price of £199 + VAT

BMHz Super Quality Modulators £4.90
6MHz Standard Modulators £2.90
C12 Computer Grade Cassettes 10 for £4.00
Super Multi-rail P.S.U. + 5 — 5 + 12v £29.50
Nascom I with Nas-sys Special Price Kit Limited quantities £125.00 Assembled £140.00
ETI Breakout Game — Chip and PCB £9.90
S100 Expansion Motherboard for Nascom I £39.00
Anadex Printer Paper — 2000 sheets £25.00
Floppy Disks 5 1/4" Hard & Soft Sected £3.50
Floppy Disk Library Case 5 1/4" £3.50
Lexicon Language Translator £125.00
Modules for Lexicon £29.00
Eeprom Boards £83.00
BK Static Ram Boards — S100 £118.00
Grandstand Video Game £59.00
Cartridges for Grandstand £11.99
George Risk Asci Keyboard £38.00
Cartridges for Atari — Full Range in Stock £13.90
Interface PET/IEEE — Centronics Parallel Not encoded £48.00
Decoded £77.00
Interface to Centronics parallel for TRS80 £75.00
Verocases for Nascom 1 & 2 etc. £22.50
Keyboard Cases £9.90
Electric Pencil for TRS80 £29.00

EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

Microprocessors 282A 8 bit CPU. This will run at 4MHz but is selectable down to 2¼ MHz. This CPU has now been generally accepted as the most powerful 8 bit processor on the market.

INTERFACE
Keyboards New expanded 57 key Lucic solid state keyboard especially built for Nascom Utes standard Nascom, monitor controlled, decoding.

T.V. The 1V peak to peak video signal can drive a monitor directly and is also fed to the on-board modulator to drive the domestic T.V.

I.O. On-board UART (6W,5402) which provides serial handling for the on-board cassette interface or the RS232/20mA teletype interface.

The cassette interface is Kansas City standard at either 300 or 100 baud. This is a 8 bit option on the Nascom 2. The RS232 and 20mA loop connector will interface directly into any standard interface.

The input and output sides of the UART are independently switchable between any of the options — i.e. it is possible to place input on the cassette and output on the printer.

PIO There is also a totally uncommitted Parallel I/O (MC38811 giving 16, programmable, 1/0 lines. These are addressable as 2 x 8 bit ports with complete handshake control.

Documentation Full construction article is provided for those who buy a kit and an extensive software package is provided for the monitor and Basic.

Basic The Nascom 2 contains a full BK Microsoft Basic in one ROM chip, with additional features like GEEK, DOKE, SET, RESET for simple programming.

Only £295 — VAT

NEW REDUCED PRICES

8K £449
16K £549
32K £649

Available ready assembled & tested ready to go for £249 + VAT

The PEDIGREE PETS

9" 12" BLACK & WHITE LOW COST VIDEO MONITOR
RPP £79
Only £69 + VAT

* Ideal for home, personal and business computer systems
★ 12" diagonal video monitor ★ Composite video input ★ Composite video input ★ Composite monitor ★ Soldered may be required for a stable & sharp picture ★ Video bandwidth — 12MHz + 3DB ★ Input impedance — 75 Ohms ★ Resolution — Lines Minimum at Central 80% of CRT; 550 Lines Minimum beyond central 80%

Only £399 + VAT

TRS80 LEVEL 2 16K

Fully converted to UK T.V. Standard. Comes complete with easy to follow manuals. UK Power Supply — Cassette Leads — Sample tape. Simply box to enable you to plug into your own T.V. Recommended for first time buyers. Just plug in and go. Full Range of Software Available

8W — 085 FOR FURTHER DETAILS

Please add VAT to all prices — Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number.

CREDIT FACILITIES ARRANGED — send S.A.E. for application form.

14 Station Road, New Barnet, Hertfordshire, EN5 1OW Telex: 298755 TELECOM G
Telephone: 01-441 2922 (Sales) 01-449 6596
OPEN - 10 am - 7 pm — Monday to Saturday
Close to New Barnet BR Station — Moorgate Line.

WW — 085 FOR FURTHER DETAILS

(Part of the Comshop Ltd Group)
LARSHOLT ELECTRONICS
DK 4622 HAVDRUP - DENMARK

Ex stock from:

- If you require immaculate electronics in a professionally designed system.
- Complex parts pre-built and aligned.
- Full service backup in the U.K.

LARSHOLT has the answer.

Prices:
- Signalmaster £86.95 + £13.04 VAT
- Audiomaster £79.00 + £11.85 VAT

Write or telephone for free brochure which gives full technical details for this and other Larsholt products.

AMBIT INTERNATIONAL
200 NORTH SERVICE ROAD
BRENTWOOD, ESSEX CM 14 4SG
Tel: (0277) 230909

SIMPLY AHEAD - and staying there!

O.E.M. PLATE POWER AMPLIFIERS

MADE IN ENGLAND

I.L.P. offer for prompt delivery, a range of O.E.M. Plate Power Amplifiers in three useful output ratings. These units are typical of I.L.P. design and manufacture — encapsulated circuitry, rugged construction, just five pin connections, trouble-free mounting, no output capacitor or other external components to be added, and operation from split line power source. PRICES ARE KEENLY COMPETITIVE. QUALITY AND MANUFACTURE OF THE HIGHEST POSSIBLE STANDARDS. Modules can also be manufactured to customer’s own design.

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PRICE FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>HY 120P 60W rms Bl.</td>
<td>£10.30</td>
</tr>
<tr>
<td>HY 200P 120W rms Bl.</td>
<td>£13.18</td>
</tr>
<tr>
<td>HY 400P 240W rms 4(</td>
<td>£19.26</td>
</tr>
</tbody>
</table>

Sizes:
- HY 120P and HY 200P
- HY 400P

116 x 50 x 23mm
116 x 75 x 33mm

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

SPECIAL FEATURES:
- Very low distortion content — less than 0.03%
- An output conforming to RIAA recording characteristic
- Battery operation for no ripple or hum loop
- Square wave output of fast rise time

£78.00

Also available

Si451 Millivoltmeter
- 20 ranges also with variable control permitting easy reading of relative frequency response

£78.00

Si452 Distortion Measuring Unit
- Low cost distortion measurement down to 0.01% with comprehensive facilities including L.F. cut switch, etc.

£63.00

ALL PRICES PLUS VAT

J.E. SUGDEN & CO. LTD., CARR STREET, CLECKHEATON, W. YORKS. BD19 5LA.
Tel: 0274-872501

WW - 066 FOR FURTHER DETAILS
"HOW CAN I BE SURE OF BUYING THE RIGHT VIDEO?"

It's easy to make mistakes when buying video equipment. Buy the cheapest and you may soon find that it can't meet the varying needs of all the people (in marketing, management, training and security, for example) who will want to use it.

Buy the most expensive and you could literally waste thousands on features never used.

Forget compatibility and the future and you could find yourself spending more money on extra equipment - or discarding equipment you've just bought.

WIDE CHOICE. GOOD ADVICE.

Through our network of Video Centres, we at Bell & Howell distribute one of the largest video ranges in the U.K. This means that we can offer well-founded advice about the many options and thus help you avoid investing in mistakes. So talk to us before buying video. Ask us "What's right for me?"

We answer that question by first helping you to define how you're going to use a video system.

We pose the questions buyers often forget to ask (and sellers sometimes ignore). Who will use it? When? And where? Is colour necessary? Do you want to edit your own programmes? Will you use tapes from libraries or other companies? Will you want a lot of duplicate tapes?

From your answers we can build up a video package to meet your exact needs. It could be a simple monochrome camera with a VHS video recorder. Or a sophisticated three-tube colour camera with portable recorder, monitor and electronic editing suite. Whatever it is, we make this promise.

If you don't need something, we'll tell you so. If you do need it, we can supply it - all the way to a total video system which, because it has been tailored to your individual needs, will be right for you.

AND SUPERSHIELD.

No matter what you buy from the Bell & Howell video range, our unique Supershield warranty will guarantee you free adjustments, repairs or replacements (except for tapes and tubes) for two years after purchase. And if the job can't be done on the spot, we'll provide transport to and from a specially equipped Supershield video workshop.

Like our practical advice, that's also free. Because we believe Service starts before a sale and continues long, long after.

Let Bell & Howell show you the answer.

To Pieter Glas, Bell & Howell A-V Ltd., Freepost, Wembley, Middlesex HA0 1BR.
I'd like to discuss video with Bell & Howell.

Name
Organisation
Address

JVC CAMERAS, JVC RECORDERS, JVC STUDIO EQUIPMENT, JVC MONITORS, ELECTROHOME MONITORS, FUJI VIDEO TAPES.
Read all about home entertainment ideas for the nineteen-eighties in the new Hi-Fi Yearbook and Home Entertainment. Still the leading reference book on Hi-Fi it's now bigger and better than ever, with over 550 pages and new sections covering other types of home entertainment equipment—radios, electronic organs, colour TVs, video recorders and electronic TV games. There are specifications, prices and illustrations for the equipment covered, as well as informative articles written by experts... Plus directories of manufacturers, suppliers and dealers.

Hi-Fi Year Book and Home Entertainment 1980 available at leading newsagents and bookshops from November 1st. Price £3.75. If in difficulty order direct from the publishers @ £4.25 inclusive.

To: General Sales Manager, Room CP34, IPC Business Press Ltd., Dorset House, Stamford Street, London SE1 9LU

Please send me copy/copies of Hi-Fi Year Book and Home Entertainment 1980 @ £4.25 a copy inclusive, remittance enclosed.

Name: ____________________________
Address: __________________________

Registered in England No. 677126
Registered Office: Dorset House, Stamford Street, London SE1 9LU

WW — 077 FOR FURTHER DETAILS

WW — 018 FOR FURTHER DETAILS

Quartz CRYSTALS
made to your spec.
MOD & CAA APPROVED...FAST!

WW — 102 FOR FURTHER DETAILS
PLAN FOR THE 80's WITH THE ADCOLA SOLDERING UNIT 101

It has features other tools have not

- 50w ELECTRONIC TEMPERATURE CONTROL
- TOTAL EARTH SYSTEM
- NO MAINS INTERFERENCE
- NO MOVING PARTS
- LOW SAFETY VOLTAGE OPERATION
- ADJUSTABLE TEMPERATURE WITHOUT BIT CHANGE
- MINIMUM OF MAINTENANCE
- SIMPLE PLUG-IN BITS
- PROMPT BIT REPLACEMENT SERVICE
- TOOL INTERCHANGEABILITY
- LOCKABLE TEMPERATURE INDICATING DIAL
- 12 MONTHS GUARANTEE

Soldering Unit 101 showing the two instruments available

ADCOLA PRODUCTS LIMITED
GAUDEN ROAD, LONDON SW4 6LH
TELEPHONE 01 622 0291/4
TELEX 121851 ADCOLA G

WWW - 031 FOR FURTHER DETAILS

ELECTRONIC
INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE

A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large scale meter. Supplied with carrying case, Probe and internal 1½ volt standard size battery.

Model "Mini-Z 1" measures from -40° C to + 70° C. Price £30.00
Model "Mini-Z 2" measures from -5° C to + 105° C. Price £30.00
Model "Mini-Z Hi" measures from +100° C to 500° C. £33.00

(VAT 15% EXTRA)

Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON, WC1X 8AX
(Phone 01-837 7937)

WWW - 010 FOR FURTHER DETAILS

Thurlby PLK triple output
A bench power supply system that meets today's needs

- Three fully independent Outputs, all fully floating
- Simultaneous digital metering of voltage and current
- 3% digit (4000 count) meters with ½" LED displays
- 0.1% accuracy, Resolution of 0.01 volts and 0.001 amps
- 5 volt high current Output with overvoltage crowbar
- Remote sense facility for maintenance at high currents
- Fully variable voltage and current. 0 to 60V or 0 to ±30V

Thurlby PL Series

Pl310K, 0 to 30V at 0 to 1A, 0 to 30V at 1/2A, 5 ±1V at 3/4A, £199.50

Full data and distributor list from Thurlby Electronics Ltd.,
Coach Meux, St. Ives, Camb, PE17 4BV. Telephone: (0480) 63570

WWW - 040 FOR FURTHER DETAILS
fact: five New Shure Cartridges feature unique, state-of-the-art technology

Including... Unprecedented Stylus Protection

the M97 Era IV Series pickup cartridges

<table>
<thead>
<tr>
<th>Model</th>
<th>Stylus Configuration</th>
<th>Force</th>
<th>Tracking Force</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>M97HE</td>
<td>Nude Hyperelliptical</td>
<td>¾</td>
<td>¾ to 1½ grams</td>
<td>Highest fidelity</td>
</tr>
<tr>
<td>M97ED</td>
<td>Nude Biradial (Elliptical)</td>
<td>¾</td>
<td>¾ to 1½ grams</td>
<td>Where light tracking forces are essential.</td>
</tr>
<tr>
<td>M97GD</td>
<td>Nude Spherical</td>
<td>¾</td>
<td>½ to 1½ grams</td>
<td></td>
</tr>
<tr>
<td>M97EJ</td>
<td>Biradial (Elliptical)</td>
<td>⅜</td>
<td>1½ to 3 grams</td>
<td>Where slightly heavier tracking forces are required.</td>
</tr>
<tr>
<td>M97B</td>
<td>Spherical</td>
<td>⅜</td>
<td>1½ to 3 grams</td>
<td></td>
</tr>
<tr>
<td>78 rpm Stylus for all M97's</td>
<td>Biradial (Elliptical)</td>
<td>⅜</td>
<td>1½ to 3 grams</td>
<td>For 78 rpm records.</td>
</tr>
</tbody>
</table>

Shure writes a new chapter in the history of affordable hi-fi by making the latest cartridge technological breakthroughs available in a complete line of high-performance, moderately priced cartridges: the M97 Era IV Series Pickup Cartridges, available with five different interchangeable stylus configurations to fit every system and every budget.

The M97 Series incorporates such vanguard features as the Dynamic Stabilizer—which simultaneously overcomes record-warp caused problems, provides electrostatic neutralization of the record surface, and effectively removes dust and lint from the record — and a unique telescoped stylus assembly which results in lower effective stylus mass and dramatically improved trackability.

Each of these features...and more...has been incorporated in the five cartridges in the M97 Series—there is even an M97 cartridge that offers the low distortion Hyperelliptical stylus!

What's more, every M97 cartridge features a unique lateral deflection assembly, called the SIDE-GUARD, which responds to side thrusts on the stylus by withdrawing the entire stylus shank and tip safely into the stylus housing before it can bend!

The performance of the cartridges is highly faithful to the recorded music. Hear it you must!

NEW! M97 Series Era IV Pickup Cartridges...

Five new invitations to the new era in hi-fi.
Since a television programme put the cat among the pigeons and made the world at large believe that Karel Capek’s view of the future was to materialise in about a fortnight at the very latest, engineering persons have become accustomed to hearing references to ‘chips’ from the unlikeliest of sources. Cabinet ministers, trade union leaders, industrial writers, popular magazine and newspaper columnists, television commentators — all kinds of non-engineering person never seem to tire of discussing integrated-circuit technology and its impact on society in terms that imply total familiarity with semiconductors in all their manifestations.

It is quite difficult to discover the received picture of modern electronics possessed by people whose interests do not include engineering. The crescendo of strident and frequently doom-laden prophecy, initiated by the adoption of ‘the chip’ as a sort of 1970s Spinning Jenny substitute, coupled with the more sanely informed comment from engineers, must have generated considerable confusion among those whose only present involvement is the direct or indirect provision of finance.

The attitude of mind which impels otherwise reasonable people to walk out on strike when ‘new technology’ is discovered in the offing is unlikely to be of much assistance to anyone. If an organisation is compelled by a lack of understanding to stick to outmoded methods of working, its customers will simply go to another source of supply which has taken advantage of modern developments. Many people will no doubt need to change their skills, but there is no reason to think that a smaller total workforce will be needed in the society of the next decade.

The microprocessor is not an invention of the Devil, but in the face of sensational reporting it will tax the skill of educators to prove it.

A Ludditic reaction to ‘new technology’, fuelled by badly disseminated information and mass news posing as information, is one possibility; the newspaper industry has already seen an illustration. The alternative is to demonstrate the respectability of the microprocessor as a down-to-earth, extremely useful, but entirely non-occult electronic component in a programme of education carried out by people who really do know what they are talking about. We have seen far too many newspaper and television pieces whose aim has been to describe the applications of integrated circuits in the ‘wonder of modern science’ manner, heightening in a most irresponsible way modern man’s ingrained and well-founded suspicion of single-minded, but accident-prone technocrats.

The microprocessor has an aura of sanctity about it which its lineage and capabilities do not warrant, and which may well be not only technically but politically perilous.
Pulse induction metal detector
Experimental system for overcoming magnetic viscosity effects
by J. A. Corbyn

Because the author considers buried "treasures" to be the most lasting and potentially most informative repositories of human history, he feels that their detection and excavation should be restricted to approved organisations. This article describes an experimental metal detector, originally developed for detecting gold in Western Australia (so far unsuccessfully), that can be adapted for archaeological or military applications. Particular emphasis is placed on magnetic viscosity and how to eliminate this undesirable effect.

Metal detectors used in searching for buried metallic objects are similar in concept to those used for geophysical exploration. All such instruments depend on the measurement of a magnetic field associated with eddy currents induced in the target by a primary magnetic field. The two main groups of metal detector are the continuous wave type where normally a sinusoidal primary magnetic field produces eddy currents in the target, and the pulse induction system where the primary field is a series of pulses. In a continuous wave detector, coupling between the transmitter and receiver is effected by the geometry of the system which must be rigid for detecting small metallic targets such as archaeological artifacts. Rigid geometry is not so important in a pulse induction system because there is no direct coupling between the transmitter and receiver.

Early metal detectors were mainly continuous wave types because simple circuits could be used. However, pulse induction systems have been described in the geophysical context by Grant and West, and in the archaeological context by Colani.

In a conventional pulse induction system a primary magnetic field is switched off and induces eddy currents in a conductive target. Voltages induced by the decay of these eddy currents are detected and then displayed. Fig. 1 shows a system comprising circular primary and receive coils which are coaxial with a target illustrated as a conducting loop. Fig. 2 shows the case where a magnetic flux of Bp Weber is normal to a loop of radius a and effectively falls to zero in time δt. If L is
the self inductance of the loop, R the resistance and i is the current then

$$iR = -\frac{d}{dt}[B_o \pi a^2 + Li] \quad (1)$$

If $B_o = B_0$ at $t = 0$, $B_p = 0$ at $t = \Delta t$ and i_{at} is the current at $t = \Delta t$,

$$i_{at} = \frac{\pi a^2}{L} B_o - \frac{R}{L} \int_0^{\Delta t} idt \quad (2)$$

If $\Delta t < L/R$, equation (2) can be approximated by

$$i_{at} = \frac{\pi a^2 B_o}{L} \quad (3)$$

If the target is given a standard form of a cylinder with radius a, height a and wall thickness $a/2$, L can be calculated from an adaptation of Wheeler's formulae

$$L = a \times 2.07 \times 10^{-6} \text{H} \quad (4)$$

Although equation (4) is an approximation it is sufficient for practical purposes because targets are rarely standard shapes. The resistance can be calculated from

$$R = \frac{0.289 \times 10^{-5} \times k}{a} \Omega \quad (5)$$

where it is assumed that the specific resistance of the metal is for gold ($0.023 \times 10^{-6} \Omega \text{m}$) and k is the specific resistance in relation to gold. When the primary magnetic field is removed the current in the target decays exponentially with a time constant.

$$T = \frac{L}{R} = 7.16a^2 \quad (6)$$

The eddy current induced in the model target is then

$$i = \frac{\pi a^2 B_o H_0}{a \times 2.07 \times 10^{-6}} e^{-\frac{r_a}{7.16a^2}} \text{A} \quad (7)$$

and setting H_0 at $4 \pi \times 10^{-7} \text{H/m}$

In the pulse induction system of Fig. 1 the primary magnetic field at P is

$$H_0 = \frac{\pi r_a^2 N_1 I_2}{4 \pi h^3} = \frac{r_a^2 N_1 I_2}{2h^3} \text{A/m} \quad (8)$$

The voltage at the receiver coil is determined by the rate of change of flux linkage originating from the target and is given by

$$V_r = 0.262 \times 10^{-6} r_a^2 N_1 N_2 \frac{ak}{h^5} e^{-\frac{r_a}{7.16a^2}} \quad (9)$$

If the received signal is integrated the mean output signal level V_m will be

$$V_m = \frac{1}{T_{rep}} \int_0^{\infty} V_r \, dt = \frac{1.875 \times 10^{-8} r_a^2 N_1 a H_p}{T_{rep} h^5} \quad (10)$$

where T_{rep} is the repetition interval defined in Fig. 1 and $T_{rep} \gg T$. As an example, consider the case where T is 0.6m, T is 0.545m, N_1 is 54 turns, N_2 is 68 turns, a is 0.04m, h is 1m, I_p is 1A and T_{rep} is 0.016s. Equation (10) gives a V_m of 1.1pV and for $k = 1$, $T = 5.7$ms. This is very approximate because h is not much greater than r_a.

The time constant of a non metallic material in the vicinity of a metal detector can be calculated by appropriate modifications to equation (6) as

$$T = \frac{1.64 \times 10^{-6} a^2}{S} \quad (11)$$

where S, is the specific resistance of the material. Substituting $a = 1\text{m}$ and $S = 0.20\Omega\text{m}$, the approximate specific resistance of sea water, the time constant is 0.85s.

Most rocks and soils have a specific resistance much higher than this so an effective separation can be made between signals due to metallic targets and conductivity effects in the ground by
introducing a delay Δt between switch off of the transmitter current and observation of the returned signal. In practice delays from 40μs to 300μs are suitable.

Magnetic viscosity effects

The magnetic properties of soils and rocks are mainly attributable to magnetite and maghaemite. These minerals exhibit a magnetic viscosity effect because their magnetization does not instantaneously follow an applied magnetic field. Magnetic viscosity is qualitatively similar to the effects of a conductor on a metal detector. The direction of temporary magnetization is the same as the primary magnetic field and the magnetic flux in the conductor being detected. Although there is no comprehensive theory of magnetic viscosity, Tropin has critically reviewed Neel's theory which is described by Stacey and Banerjee. Useful data for metal detector design has been provided by Colani and Aitken.

When designing a pulse induction metal detector it is necessary to know the response of soil or rock to a decreasing step in magnetic field. A general equation is

$$M(t) = K \Delta H g(t)$$

(12)

Fig. 7 Gated amplifier. Note that only one section of the 4053 is used, all unused inputs should be connected to ground. All voltages are d.c., measured with a high impedance meter. All capacitors are ceramic or aluminium electrolytic types.
where \(K \) is the magnetic susceptibility and \(M \) is the magnetic moment per unit volume of material resulting from a change \(\Delta H \) in the magnetic field at time \(t \) after this change. Equation (12) is linear in that \(g(t) \), which describes the decay of the magnetization, is independent of the primary magnetic field. At \(t = 0 \), \(g(t) \) should be finite and as \(t \to \infty \), \(g(t) \) should go to zero. Furthermore, \(g(t) \) from practical experiences should be a decreasing function of \(t \). Fig. 3 shows the response of a soil or rock to a decreasing step in magnetic field. A review of available literature and some experimental work shows that \(g(t) \) can be expressed as a sum of two exponentials. An electronic system was constructed to simulate the sum of exponentials and compare the result with the response of soil or rock. A satisfactory model for the derivative of \(g(t) \) is

\[
g'(t) = (1 - P)e^{-t/T_1} + Pe^{-t/T_2} \tag{13}
\]

where \(T_1 \) is 75\(\mu \)s, \(T_2 \) is 550 to 800\(\mu \)s and \(P \) is in the range 0.08 to 0.30. These observations apply to lateritic soils in the goldfield region of Western Australia. The function \(g'(t) \) does not depend on the physical dimensions of the material being magnetized and the form of the decay due to a conductive target is generally a simple exponential decay as in equation (7). I therefore decided to construct a ground effect elimination system for a pulse induction metal detector by determining the difference

Fig. 8 Synchronous detector. The regulated power supply is shared with the gated amplifier. The 47pF compensation capacitor is soldered directly to the 3130 leads.

Fig. 9 Sum of exponentials eliminator. Resistor \(R_1 \) controls the mixture of exponentials, \(R_2 \) controls the decay constant \(T_1 \), and \(R_3 \) controls the decay constant \(T_2 \). Production of the initiation pulse from logic level \(A \) is shown in Fig. 10.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Type</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>4016</td>
<td>Both closed only when initiation pulse is present</td>
</tr>
<tr>
<td>(S_2)</td>
<td>4016</td>
<td>Closed during end of receive period pulse</td>
</tr>
<tr>
<td>(S_3)</td>
<td>4016</td>
<td>Output earthed except when logic level is high</td>
</tr>
</tbody>
</table>

Logic level A

- Receive period
- Initiation pulse
- End of receive period pulse

Output

\[\text{+6k} \]
between the response of the ground and the observed response, assumed to be due to magnetic viscosity.

Coil design

Design objectives for the coil system are to maximise the primary magnetic field at the target and the voltage induced in the receiver coil by eddy currents in the target. The noise level due to variations in the earth's magnetic field and movement of the gradiometer over the ground is about 1 µV with a coil of 25 turns, an area of 1 m² and with a similar coaxial coil 1 m away. This limitation was determined for a receive system with a centre frequency of 200 Hz and a bandwidth of 10 Hz. The major noise contribution is from normal variations in the earth's magnetic field and does not account for man-made electrical interference.

The time constant of a critically damped gradiometer constructed with the above limitation is generally under 10 ms for a coil diameter above 1 m.

Transmitter coil design is controlled by the decay resistance required to prevent an excessive voltage being applied to the transistor switch, being Fig. 4. Neglecting coil capacitance, the decay of current I through a coil of self inductance L, and decay resistance R is

\[I = I_0 e^{-t/T} \]

(14)

where T is the decay constant \(R/L \) and \(I_0 \) is the initial current through the transmit coil. If \(M_r \) is the mutual inductance between transmit and receive coils and \(V_0 \) is the peak voltage permitted at the switch, the voltage decay at the receive coil due to the current decay through the transmit coil is, for \(I < I_0 \),

\[V_r = V_0 \frac{M_r e^{-vT}}{L_1} \]

(15)

If \(V_r \) is the maximum permitted voltage at the receive coil at time \(\Delta t \)

\[\Delta t = T \log_e \left(\frac{V_{0r} M_r}{V_r L_1} \right) \]

(16)

With \(V_{0r} = 750 \text{V}, V_r = 1 \mu\text{V} \) and \(M_r/L_1 = 0.1 \), equation (16) gives \(\Delta t = 18.1 \text{ ms} \).

Equation (16) shows that the minimum value of \(\Delta t \) is determined principally by \(T \). In practice \(T \) cannot be much greater than 5% of \(\Delta t \), depending on the ability of the circuit to reject a background decaying voltage during the receive period.

A circular metal detector array with coaxial receive and transmit coils is shown in Fig. 5. The receive coils are arranged in a gradiometer configuration and the bottom winding is coplanar with the larger transmit coils. Increasing the size of the transmit coils reduces the magnetic viscosity effects due to a relatively intense primary field close to them.

In addition to this array, various circular types have been constructed with diameters from 0.05 to 2 m, and rectangular versions up to 2 m long for searching large areas. For the larger arrays it is desirable to keep coil capacitance as low as possible by careful winding design. As previously noted, rigid system geometry is not essential for a pulse induction system, and the simple wooden structure described is sufficient.

Circuit design

A block diagram of the metal detector circuit is shown in Fig. 6. An alternating primary magnetic field is used to avoid magnetic polarization of the ground and to improve the overall signal-to-noise ratio. The gated wideband amplifier in Fig. 7 consists of a high voltage protection network, a c.m.o.s. analogue switch and a transistor amplifier designed for fast recovery from saturation. The 4053 grounds the amplifier input except during the receive period when the receive coils are connected. The passband of the amplifier is 20 Hz to 100 kHz and the gain is approximately 4000. It is not practical to use a higher gain due to instability and amplifier saturation caused by the decay of current in the transmit coils.

The synchronous detector in Fig. 8 recognises a pulsed alternating signal with a unity-gain sign switched amplifier. The op-amp provides an output of +1 or -1 and the 4053 grounds the input when a useful signal cannot be received. The rise-time of the detector for a square wave is about 25 µs.

A sum of exponentials eliminator is shown in Fig. 9. This circuit takes samples of 60 µs duration at the beginning and end of the receive period and simulates the magnetic viscosity effect of the ground by inserting a function as shown in equation (13). The simulated ground effect is subtracted from the input signal to give an output when the response does not match that caused by the ground. The parameters \(T_1, T_2 \) and \(P \) can be changed to suit the ground conditions. RC combinations are used for the simulation and a 0.32 µF capacitor stores the background level to which the sum of exponentials decays. With the components shown the range for \(T_1 \) is 20 to 240 µs (typically 80 µs), for \(T_2 \) 50 to 900 µs (typically 800 µs) and \(P \) is from 0 to 1.

References

February cover — correction

The thyristor stack pictured on our February issue front cover was made by Powerstax Division of The House of Power, of Orpington, Kent, not by Pinnacle Electronics Ltd as stated in the caption. We apologise to both companies and to readers for any inconvenience that may have resulted from this error.
Non-echoic acoustic measurement with the H-P 3582A

New Hewlett-Packard spectrum analyser uses digital signal processing

by R. N. Grubb, Auris of Boulder, Colorado

The HP3582A is a recently announced audio spectrum analyser using fast Fourier transform analysis. A number of its features can be exploited in the measurement of loudspeakers and microphones in non-echoic conditions. These are described and some practical examples of its application given.

THE RECENTLY announced model 3582A spectrum analyser by Hewlett-Packard is an example of the new generation of instruments which depend on microprocessor technology to provide powerful capabilities at a lower price than has previously been possible. In this case, digital signal processing technology is used to implement a flexible 0.02 Hz-25.5kHz spectrum analyser, using the fast Fourier transform (FFT) of the digitized input signal to calculate the signal spectrum in the frequency domain from a sample of the input signal in the time domain. Although the instrument is a computer system, the mechanics usually associated with the use of a computer are completely transparent to the user, who is presented with a fairly conventional-looking front-panel control layout. The program is, of course, contained in read-only memory.

The 3582A is not a real time third octave analyser. In fact, one thing which may put off the average audio engineer is the lack of anything but linear frequency-scale presentations. However, it is inherent in the fast Fourier transform approach that a linear, equally-spaced set of spectral estimates is produced. The resolution and bandwidth of each estimate depends on the length and shape of the time window used to select the signal sample for analysis. Thus a logarithmic presentation of the data would necessarily be only cosmetic, information at the higher frequencies being lost, if a constant proportional resolution were displayed. As the available frequency ranges of the instrument are very extensive, all the information is available, although it is perhaps more time consuming to obtain.

By audio spectrum-analysis standards, the capabilities are unconventional, including measurement of phase, measurement of transfer functions and time-domain signal averaging before analysis.

Measurement of the phase response of audio systems, particularly of loudspeakers, has recently become of interest in the quest for the more realistic reproduction of transients. The 3582A provides in one box the means to make response measurements, including phase, on loudspeakers and other audio transducers, without requiring an anechoic chamber, or the roomful of minicomputer used by loudspeaker manufacturers to make such measurements.

Before proceeding to explain how to use the analyser for this purpose, it may be useful to some readers to review what is meant by phase response and in particular how it can be measured by a spectrum analyser. The phase response of a device refers to a measurement of relative phase, usually the difference between the input and the output of the device. Unlike amplitude, or spectral amplitude, which is measured with a single connexion to the system under test, two separate connexions are needed to measure phase response as in Fig 1. Thus, although a spectrum analyser is normally a single-input device, with analysers like the 3582A, one must think in terms of two inputs to measure phase. Simply feeding in a composite signal to one channel of the instrument will give a perfectly good amplitude spectrum, but the phase answer computed will be different for each time sequence analysed because of the lack of a reference. This may not matter in some applications. For instance, if we want to know whether sidebands observed on a carrier are due to amplitude or phase modulation, their phase relationships to the carrier itself as seen in Fig 2 and a single sample

Fig. 1. Arrangement required for phase measurement.

Fig. 2. Identifying amplitude or phase modulation.
capability can be applied very neatly to the measurement of microphones. By connecting two microphones, one of which is to be regarded as the standard, to the two inputs of the analyser and placing them close together and in the sound field of a loudspeaker fed from the analyser noise source, their responses can be compared directly and very quickly. Figure 3 shows the result of comparing two nominally-identical C451 microphones with CK1 capsules. This disclosed the interesting information that although the microphones are well matched up to 15kHz, the two differed by nearly 6 dB at 17.5kHz. In this case, since neither microphone could be regarded as a standard, it was not possible to say which microphone or whether one or both was at fault. Exchanging the capsules on the microphone bodies showed the problem to be in the capsules and not in the microphone electronics or the amplifier chains.

The upper trace shows the phase difference. The constant phase slope at low frequencies shows that the “test” microphone was slightly in front of the reference microphone and it was possible by careful adjustment of the relative microphone position to make the phase slope zero. It is interesting that the difference between the capsules shows up in the phase at a lower frequency than in the amplitude. One thing to note in this and in most of the other examples shown is that the lowest-frequency point plotted by the analyser in the zero frequency start mode is in fact actually 0Hz, i.e., d.c. and the position of this point depends on the analyser amplifier d.c. offsets or externally applied d.c. In this case, of course, the microphone amplifiers are a.c. coupled, so the zero frequency point is quite meaningless.

Figure 4 shows another comparison of two microphones, in this case two 1in diameter capacitor microphone capsules mounted one above the other in the same case and designed to be used as a coincident stereo pair. The lower trace is the magnitude again. This showed a good match at all frequencies, except in the region 3-9kHz, where there are 2-3dB differences. Some experiment and the use of another microphone as a comparison standard showed that the irregularities were only present in the lower of the two capsules and were very sensitive to the angle of the microphone in the vertical plane to the direction of the incident sound field. This seemed to show that the problem was due to diffraction effects at the microphone case, the lower capsule being much closer to the vertical plane to the direction of the microphone in the vertical plane to the direction of the incident sound field.

Transfer function

The most straightforward mode of operation to give repeatable phase measurements is that of the transfer function measurement. The two channels of the analyser are connected across the input and the output of the device to be tested and one of the two built-in noise sources connected to the input. The analyser now plots the ratio of the amplitudes and the difference in the phase of its two inputs versus frequency.

This transfer function measurement analysis will give us the answer we want.

Impulse testing

All the preceding three examples were measured in a normal room with some acoustic treatment, but nevertheless far from anechoic. Thus, the sound field at the microphones being compared is composed of direct and reflected components. The comparison results have to be based on the assumption that the microphone polar responses are similar. It is only possible by this method to compare a cardioid microphone with another cardioid or an omnidirectional one with another omnidirectional microphone, etc. Providing the pair of microphones is not too far from the source compared with the dimensions of the room, and that the room is reasonably non reverberant, then small errors in polar response should have little effect on the comparison. However, we can do this kind of measurement in a non-anechoic room without these restrictions by using the capability of the instrument to analyse the impulse response of loudspeakers and microphones and present the results in the more familiar terms of amplitude and phase and it is to this, probably least familiar, mode that I now turn.

Fourier transform theory tells us that a zero width pulse contains equal energy per unit bandwidth (power spectral density — p.s.d.) at all frequencies, i.e., it possesses an infinite bandwidth. Of course, this is a mathematical abstraction because, unless the impulse is infinitely large in amplitude its energy in any particular bandwidth will be infinitely small. Fortunately for any given audio bandwidth, it is easy to produce an impulse sufficiently narrow for the p.s.d. to be flat. The theory tells us that the power spectrum of a pulse of width t is

\[P(f) = \frac{Asin(\pi ft)}{\pi ft} \]

This function, the familiar \(\sin x/x \), is plotted in Fig. 6. By choosing t to be small enough, we can make the p.s.d. as flat as we wish over the working bandwidth. For instance, it is easy to calculate that a 1μs wide pulse is only 0.01dB down at 25 KHz, the maximum band-

![Fig. 6. The function \(\sin x/x \).](image-url)
width of the analyser. A 10μs pulse is only ≈1dB down. At the rear of the 3582A is a t.t.l.-level impulse output. This gives a positive-going pulse which is ≈ 1μs long at the widest analysis bandwidth (25kHz) which increases in width as the analysis bandwidth is reduced. If this output is connected to the input of the analyser, the displayed amplitude spectrum will show the first of the problems of impulse analysis which has to be carefully considered in order to obtain valid results. Indeed, the analyser shows a flat spectrum but, as the sensitivity is increased to bring the observed spectrum above the baseline the input channel overload light rapidly comes on. In fact, it is impossible to get more than a 20dB measurement range above the noise floor. This, of course, is because the test signal has a very high ratio of peak to mean value, and the analyser input dynamic range, which is set by its analogue to digital converter, only permits this limited range in the spectral domain. This situation can be improved considerably, however, if an external impulse source is used. As calculated above, a pulse of ten times the width (100μs) is about 1dB down at 25kHz. This gives another 20dB of analysis dynamic range, which is adequate for nearly all acoustic testing; it is easy to correct for the small loss at high frequencies of the test signal, if 1dB is important.

Phase

Having developed the test signal, the next question to consider is what is meant by the phase of the test signal and how the analyser measures it. The reference, in this case, is set in the time domain by the position of the time window, in which the analyser samples the input signal. At a time t_0, one can think of all the reference frequencies starting simultaneously at zero phase (zero amplitude for a cosine wave). If the impulse is positioned at t_0, then its spectrum consists of all frequencies starting at zero phase and the analyser will read $0°$ at all frequencies. If the impulse is displaced from t_0, then there will be a progressive displacement, increasing with frequency, in the analysed phase expressed by the formula for the group delay introduced by the displacement

$$\Delta \phi = \Delta t \times 360° / \Delta f$$

where $\Delta \phi / \Delta f$ is the phase slope with frequency. For a positive delay (signal later than t_0) the phase of the higher frequencies lags the lower and vice versa. Note that a linear rate of change of phase implies only a delay and no waveform distortion.

In the 3582A, t_0 is set at the middle of the time window when the ‘flat top’ or Hanning passband shape is selected, or at the start of the time window when the ‘uniform’ passband shape is selected. The latter is the passband intended for transient analysis. In the former cases, the passband shape is set by amplitude weighting in the time domain so that a transient at the beginning or end of the time window would not be analysed correctly. To be able to interpret the phase readout from the analyser, it is necessary to place the impulse close to t_0 because a large phase slope due to a time difference will obscure the properties of the system under test and, if too large, renders it discontinuous, because the discrete samples computed by the analyser are not close enough together to resolve the rapid phase change. To adjust the timing, the analyser can be operated in two ways and can be thought of more like an oscilloscope. In fact, the time-domain sampled waveform can be selected for display on the c.r.t.; this is an almost indispensable mode for setting up the analyser for transient analysis. In the free-run mode, the instrument repeatedly starts new time windows as soon as it is ready to analyse new data. The rear-panel impulse output occurs at the start of each time window. Alternatively, the analyser can be triggered like an oscilloscope by an input signal on channel A or by a t.t.l. level pulse at a rear-panel input.

Echo gating

The advantage of using a transient signal to analyse the response of acoustic devices is that it is possible to suppress the effect of room reflections entirely without having to work in an anechoic room. To a close approximation, sound travels 1 foot per millisecond: the typical response of a loudspeaker to a 10μs wide impulse is over in 2-3ms, depending on the physical size of the cabinet. Even in a quite small room with a loudspeaker 3 to 4 feet from the floor and the measuring microphone 8 feet away, the first room reflection will arrive at the microphone 3-4ms later than the direct sound. Figure 7 shows the situation. A typical time domain response of a loudspeaker to a 10μs wide impulse is shown in Fig 8, which was taken from the analyser screen, with the instrument set on the 0-25kHz range. On this range the time window is ≈5ms long and, by controlling the trigger time, the transient picked up by the measuring microphone can be positioned near the centre of the time window with the first reflection just outside the window. This enables the amplitude response to be obtained, but as explained above, the transient should really be positioned near the start of the time window if the phase response is desired. Since the time window gets longer as the analysis bandwidth is reduced (necessary if the
low frequency response is to be examined in detail), an electronic signal gate is needed so that the first direct-path signal can be isolated. To do this, and to be able to adjust all the delays correctly and generate the test impulse required some auxiliary equipment in addition to the analyser itself. This is unfortunate because it seems that it would have been quite simple to build all the required functions into the analyser in the first instance.*

Figure 9 shows the overall timing and gating required. Because the analyser time window must be started later than the impulse sent to the loudspeaker, it is best to generate the measurement repetition rate externally. This should be set to the highest rate which allows all room responses to die out before the next pulse.

Two delayed trigger pulses are then needed — one to start the analyser time gate at the correct time with respect to the transient picked up by the measurement microphone, and one to start the signal gate. A convenient way to get the first delay is to use a second microphone slightly closer to the loudspeaker under test and feed its amplified output to channel A of the analyser as the trigger signal. The measurement microphone output is fed to channel B. The delay is adjusted by setting the relative distances of the two microphones to bring the received transient just at the start of the time window on channel B. Channel A should also be examined to make sure that the trigger point on the transient is a stable one.

It is very important to make sure that all the significant energy from the transient radiated by the loudspeaker is included in the time gate. This can be checked both by inspection in the time domain and by changing the signal gate window over a small range and seeing if it affects the transformed frequency and phase response. With high quality loudspeakers of small dimensions, it seemed the response died essentially to zero after about 3ms, and it seemed to be possible to get a clean separation between the direct arrival and the first reflected arrival in a room with a smallest dimension of 8 feet. With larger loudspeakers or units with pronounced resonances, this may not be possible and it would be necessary to use a larger room.

The delay mechanism for the signal gate and the signal gate itself need to be electronic. Commercial pulse generators can be used to generate these and the basic impulse and its repetition rate or, with the aid of a few digital i.c.s, a special generator and controller could be assembled. Some commercial signal gating devices may be satisfactory in this application — a simple shunt f.e.t. switch such as is shown in Fig. 10 works well. It is most important that the switch does not introduce appreciable transients itself in the signal path. When the analyser bandwidth is reduced, the time window becomes longer and it may be necessary to readjust the system repetition rate. Also, as discussed previously, the impulse length must be increased proportionately to preserve approximately constant spectral power density.

Practice

Unfortunately, no measuring technique is completely free of disadvantages and the gating-out of room reflections is no exception. The problem is that of determining whether the initial response of the loudspeaker really has died away or not. It turns out that the use of a time sample of length t produces an uncertainty in the value of the spectral amplitude points for all frequencies roughly less than 1/t in frequency. Why the effect is an uncertainty and not just a calculable loss can be seen by considering a couple of simple examples. If the device being analysed is perfect (i.e. a piece of wire) then locating the time window would clearly have no effect, because the input impulse signal has a zero value at all times except for a small interval near zero time. However, if the device had a low-frequency cut off caused by the equivalent of a single pole RC network, then its response to the impulse would have an overshoot following the impulse which returns to the baseline exponentially with a time constant of RC seconds. In this case, a significant error will be made in the low-frequency response measurement unless the time window is maintained for 5 or 6 time constants, so that the response has reached zero for all practical purposes. Locating the impulse response at a point where the net remaining area under the response is negative will result in an apparent enhancement of low frequencies well below 1/t and vice versa. Thus the effect of the truncation depends entirely on the exact form of the impulse response.
Figures 11 and 12 show typical results obtained in the author's studio with a Sennheiser BCC and a Chartwell LS3/5A. The phase response clearly show the effects of the crossover in the case of the Chartwell as a change in time delay (phase slope) starting at \(\approx 3 \text{kHz} \). With a little more flexible arrangement, the average phase slope could have been brought closer to zero with resultant easier integration. In all cases, the measurement microphone was about on axis and 6 feet from the loudspeaker. Figure 13 shows the effect of disabling the signal gate and allowing some of the room reflection to be analysed! I found that these loudspeaker measurements were relatively unaffected by the microphone used, providing it was a capacitor type and of professional quality, since these microphones invariably have a much flatter response than monitor loudspeakers. If a standard measuring microphone is not available, then a \(\frac{1}{2} \text{in diameter, omnidirectional capacitor microphone such as the AKG C451 with a CK2 capsule would be the best second choice.} \) The examples shown were made with this same microphone but with a CKI capsule, which probably does affect the results somewhat. In all cases the low frequency response below about 2-300 Hz appears to be attenuated compared with the published responses of these particular speakers, so it must be assumed that some truncation of the impulse response was taking place.

Care should be taken not to overdrive the loudspeaker with the impulse: A few watts peak power should be all that is required. The sound should be that of a quite quiet tick similar in volume to that of a typical alarm clock. If the measurement conditions are quiet, then the response can be obtained with only one impulse. However, if you don't live in the country or have a well isolated studio handy, there is no need to despair; use the last unique feature of the analyser, time domain averaging. This adds together, algebraically, each successive sample at the same time with respect to the trigger. The wanted signal is preserved but non coherent background noise cancels itself on the average. Thus, not only do you not need an anechoic room to make loudspeaker measurements, you do not even need a quiet one. The examples in Figs. 11 and 12 used a signal average of 16 impulses. All the comparison tests of microphones described earlier can be better done using a loudspeaker excited by an impulse with the appropriate delays and gating. In this case, since both signal channels will be needed for the measurement, the rear-panel t.t.l.

Measurement modes

1. Frequency spectrum, amplitude and phase.
2. Transfer function, ratio of input channel amplitudes and difference in phase.
3. Coherence function, the degree of coherence (0-1) between the input channels.

Signal sources

1. Random noise. This is generated digitally and adjusts automatically with the frequency range selected to maintain a constant power output in the analysis band.
2. Periodic noise. This is also generated digitally and is arranged to have a 'comb' spectrum which exactly matches the calculated spectral points. This gives the same effect as a tracking generator in a convensional swept analyser with the advantage over random noise that no frequency domain averaging is needed to get an accurate answer.
3. Impulse. This varies in width depending on the frequency range selected. It is timed to occur at the start of each analysis time window.

Averaging modes

1. Frequency Domain
 a) r.m.s. average of calculated spectral points with 4-256 points averaged or an exponential 'running average' mode.
 b) Peak. 4-256 points or peak hold in a continuous mode.
2. Time domain.
 4-256 input signal time sequences averaged. The zero time is set by a trigger circuit on input channel A or by an external trigger input at t.t.l. level.

References

With this same microphone but with a wire.

Wide-angle source.

Transistorized inverter (12V)

Metal outer case

Cross-sectional view of the EEV character display tube. The flying lead grid connections are for multiplexing; the "expected life" of the tube is 40,000 hours or about five years.

EEV provides bright lights for ATV games

A large scale, computer-controlled electronic display board supplied by English Electric Valve Co. can be seen by television viewers of the Bob Monkhouse "Family Fortunes" panel game on Sunday evenings. The main body of the display consists of 300 "character display tubes" (a form of r.c.t. costing about £100 each), which EEV say offer very high variable brightness, low power consumption and electronic switching with low level logic. The control logic, including a keyboard and v.d.s. control console, includes an Intel single board computer and the complete installation is said to have cost ATV about £80,000.
Numerical data from the keyboard is encoded to b.c.d. and fed to the memory data inputs. Four of the memory address pins are used to address an alarm time and are driven by a 4-bit binary counter. Two of the pins address the four digits of the alarm time and are connected directly to the A and B multiplex control lines from the clock. In the Set mode the alarm key clocks the counter and accesses the memory locations which store the next alarm time. In the Run mode, control line C clocks the counter so that the alarm times are scanned at one every 6ms. The read/write control circuit ensures that only the correct memory locations are used.

The memory input circuits are shown in Fig. 5 and Fig. 8. To set an alarm time, S2 is switched to Set and S3 to Alarm which takes Y low. This transition is differentiated by C16 and R26, see Fig. 8, and takes pin 12 of IC17b momentarily low. The output of IC17b goes low which sets both Q outputs of IC6 high and also resets IC7 via IC16b. In Fig. 5, if no key is pressed, the outputs of IC1 are all high and data valid is low. If a numerical key is pressed, an inverted binary code of the number appears at IC1 output, data valid goes high and the first monostable in IC23 is triggered which in turn triggers the second. This produces a 15ms write pulse at pin 5 of IC23 and, because the first monostable has a period of about 150ms, the second monostable cannot be retriggered by contact bounce, see Fig. 9. The write pulse clocks IC6a in Fig. 8 and the Q output goes high which clocks IC6b whose Q output goes low. The Q outputs of IC6 are compared with the multiplex control lines A and B by exclusive NOR gates IC15a and IC15b, and the output is high only when the control lines are both low. The write pulse from IC23 is delayed by R27 and C11, to allow IC6 to be clocked, and is gated to the memory r/w pin if data valid is high and all three multiplex lines are low. Data present at the memory inputs is then written into the tens-of-hours locations for the first alarm time. Pressing a second key clocks IC6a again so that its Q output goes high. Therefore, writing

Fig. 8. Memory control circuit.
Components marked with an asterisk refer to the Rugby clock designed by A. F. Cross.
can only occur when control line A is high and B, C are low which means that the data is written into the hours location of the memory. This procedure is repeated for the tens-of-minutes data. If a mistake is made, pressing four more keys overwrites the incorrect data.

When the first alarm time has been set, the alarm key is pressed which triggers the second monostable in IC22 and produces a low advance-alarm pulse at the Q output. This pulse is gated through IC11 to the set inputs of IC6 so that the Q outputs are high. The advance-alarm pulse also clocks IC7 via S2b and S1b so that the memory locations corresponding to the second alarm time are addressed, see Table 2. If a numerical key is released in less than 15ms the data-valid line goes low to force the memory read pin high and prevent the writing of false data.

Memory output circuit
A display selector switches the actual time or the alarm time and is controlled by the Run-Set and Alarm-Day switches. A comparator compares the actual time with the output from the memory and the comparison detector recognises an agreement if the alarm is enabled. The output circuit then drives a relay or other suitable device. Because

<table>
<thead>
<tr>
<th>Time (m.s.)</th>
<th>Multiplexed time in from clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adresses</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>A5</td>
<td>A7</td>
</tr>
<tr>
<td>A6</td>
<td>A0</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens of hours</th>
<th>Hours</th>
<th>Tens of minutes</th>
<th>Minutes</th>
<th>Tens of seconds</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The output drive capability of the memory is only one t.t.l. load, each output is buffered and inverted to produce non-inverted b.c.d. as shown in Fig. 10. Data is selected from the memory or the b.c.d. time output from the clock by IC4. When Y is low in the Set-Alarm mode the alarm times are displayed as they are set. As only the hours and minutes are set, seconds are blanked by IC21d. When Y is high in the Run mode the output of IC21d is low and the time is displayed normally. The memory output data is compared with the multiplexed time from the clock by

Key pressed

Pin 12 IC23

150 ms.

Write pulse

Pin 5 IC23

15ms.

Fig. 9. Single write pulse.
IC2. Normally, IC2 is clocked by control line C via S2a, so that the alarm times are fed out from the memory in sequence at one every 6ms. This sequence repeats after 16 x 6 i.e. 96ms. The comparator output in Fig. 10 is high when all four bits of a digit in the time agree with the memory data. The two inputs to IC13e are high only when the alarm is enabled by IC34, output going low, and during the first four seconds of a minute, i.e. tens-of-seconds A, B and C, and seconds C and D are all low. The output of IC13c is high only when the above conditions are met, control line C is low, i.e. tens-of-seconds or seconds data is not being processed, and the clock is not being updated at 100kHz i.e. the set-time pulse line is low. Therefore, if a true comparison between the stored alarm time and the displayed time exists, a 4ms high pulse appears at the output of IC13e. The 4ms pulse is repeated at 96ms intervals until four seconds past the start of the minute. However, during this time shorter pulses may appear at IC13e output such as a 3ms pulse produced by agreement of three consecutive digits in one alarm time. Pulses which are not 4ms long are rejected by the comparator detector in Fig. 11. The comparator output goes low for 2ms every 6ms when control line C goes high. Capacitor C16 therefore discharges through D20 to around 0.7V in the 2ms period, and then charges via R49 when the comparator output goes high. Resistor R49 is adjusted so that pulses shorter than 4ms are rejected.

Construction alignment and testing

Construction of the timer depends largely on how the clock has been built. In the prototype a Rugby clock was assembled on two 8x8in boards and the timer was built on third board. The keyboard and day indicator were mounted on the board inside a case to prevent unauthorised setting. The remaining components were positioned carefully to minimise wiring. The memory must be handled carefully to avoid damage by static charges and the 5V supply to the ICs should be decoupled at regular intervals with 10nF capacitors.

Alignment and testing is best carried out on individual sections. After constructing the power supplies check that no switching spikes are present on the battery charger and control circuit when the mains is switched on and off. Adjust R1 until the charging current is about 45mA and then disconnect the battery. Next, construct the keyboard encoding and debouncing circuit and insert all of the ICs except for the memory. Check that pins 4 and 12 of IC32 give single 150ms pulses when the respective keys are pressed and only when S2 is switched to Set. Check that 5 of IC32 gives a 15ms pulse when any numerical key is pressed.

Assemble the day-of-the-week indicator and check that the day advances each time the day key is pressed. To test the midnight-pulse circuit, set the clock to 23.59 by injecting pulses into the divider chain with the clock switched off, and check that the day indicator advances by one when the display changes to 00.00.00. Construct the alarm-enable/inhibit section and set the switches to Set Day. Test that the alarm-enable I.E.D. switches on by pressing key 1, and off by pressing key 0. Check that the data is recycled correctly by pressing the Day key seven times.

Construct the read/write control circuit and comparator, then modify the clock for display blanking and switch-on-reset as shown in Fig. 8 and Fig. 4 respectively. Insert the memory, check that the time is displayed with S2 at Run and that only hours and minutes are displayed with S2 at Set and S1 at Alarm. These digits will be random due to the unprogrammed memory. Pressing a numerical key should write into the continued on page 67
Microwave radar alarm
Improvements to the 1977 design

Accumulated experience since publication of Mike Hoskings design (July & August 1977) has led to a number of useful comments being received on the operational performance which, when combined with some circuit re-design, has resulted in a generally improved alarm system. This article presents the new system, which still has Home Office type approval for indoor use.

The alarm operates on the Doppler effect whereby a frequency shift occurs when a signal source and a receiver are moved relative to each other. For a given source frequency, the Doppler shift depends only on the relative radial velocity and is expressed by $f_d = 2V/\lambda$, where V is the radial velocity, and λ is the source wavelength. In this intruder alarm, the source and receiver are combined together into a single module, which then operates like a single radar.

The transmitter is a Gunn device mounted in a resonant cavity and produces a c.w. signal. This signal spreads out over a wide beam and when positioned in a room portions of the signal are reflected back into the receiver. The receiver front-end consists of a single Schottky-barrier mixer diode, operating as a superhet by mixing a directly-coupled portion of the transmitter power with the reflected signal. A difference or beat frequency is then extracted from the mixer output terminals.

When no movement is present, the received radar signal is at exactly the same frequency as that transmitted and so there is no output frequency (only a rectified d.c. level) from the mixer. As soon as any movement occurs, such as from an intruder, a Doppler frequency shift is imposed upon the reflected signal and appears at the mixer output. The appearance of such a signal can then be used to operate a remote alarm system.

Such is the basic simplicity of the alarm, but when account is taken of false alarms, transient movements, r.f. interference and special triggering requirements, then careful circuit design is necessary. It is in the amplifying, filtering, triggering and control sections that the up-dates and improvements to this intruder alarm have taken place.

In this country, the emission characteristics of the radar module are specified by the Home Office and for this application, the transmitter frequency is 10.687GHz. From the equation, the linear relationship between Doppler frequency and radial velocity is 71.25Hz for each metre per second (or 31.85Hz per mile/h).

In the complete circuit of the alarm shown the power supply is essentially the same as the previous supply to the radar module and provides an adjust-
able, highly stable output voltage with low ripple. This aspect is important as it minimizes the a.m. and f.m. content of the transmission. The main differences from the original version are

- fewer components
- conversion to a single-sided supply rail, making battery operation more convenient
- active filtering
- modification to the diode pump circuit to give increased immunity to interference and transient responses
- automatic switch-off and alarm reset after sounding for a period.

At the heart of the electronics is the RC4136 quad op-amp. Each individual op-amp is similar to the popular 741, but has a lower input noise figure. The first stage is used as a filter with a fixed gain of about 60dB, leading into a variable-gain second stage. Following the second stage is the diode pump, with the addition of a transistor to act as a fast discharge path and so prevent the circuit charging up on short-lived inputs such as might be generated by interference, insects or twitching curtains. This, together with the mains and i.f. input filter gives an excellent immunity to false alarms and ensures reliable triggering on more sustained movement.

A feature of the original circuit which is retained, but implemented differently is a built-in delay of about 45 seconds from the time of initial switch-on to when the alarm will start to respond. This allows one to leave the room after switching on the alarm. The delay is provided by the charging time constant of R1 and C1 to switch the output level of IC2c, and hence the correct non-inverting input of IC2d. Conversely, a new feature is now provided by the R2, C2 feedback combination which will automatically switch off the subsequent transistors after they have been on for about half a minute. This is a relatively long time for a loud alarm to sound and is considered sufficient to scare off an intruder. It also removes the embarrassment of returning home after a weekend away only to face one's neighbours, sleepless after an incessantly ringing alarm. After the re-set action, the alarm is, of course, returned to the "on-guard" state. Finally, the alarm circuit suggests a relay, with the coil connected in parallel with the sounder, so that a set of contacts may be provided for activating additional external circuitry.

Printed circuit board for this improved version of the 1977 intruder alarm is available from Intignex Ltd, Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT, for £3.75 plus v.a.t.
Performance specification

Transmitter frequency 10.6775 GHz ± 12 MHz
Transmitter output power 10 mW max
Antenna gain 5 dB above isotropic
Out-of-band radiation 40 dB below carrier
Operating temperature range -5 to +40 °C

Range approx. 10 m against a man-sized object
Switch-on delay approx. 45 s
Automatic re-set after approx. 30 s

Range of professional electron tubes, cathode ray tubes, vacuum capacitors and special products such as reed capsules and gas detectors are described in the EEV/M-09 abridged data book for 1980/81. An equivalents index is included. Available free of charge in response to requests on company letter heads.

A film entitled "The challenge of choice," written by David Weir and directed by James Hill for STC, examines the effect of developments in telecommunications on people's lives. A brochure containing the script is available from STC at STC House, 190 Strand, London WC2R 1DU. WW 408

A bulletin on the various sound systems which can be assembled from equipment made by Millbank, describing several specifications, is obtainable from Millbank Electronics Group Ltd, Uckfield, Sussex TN22 1PS. WW 409

Connectors of various types, including those for printed boards, modular connectors and other multi-way and single-pole kinds, are illustrated and briefly described in a leaflet from Hypertac Connectors, Chronos Works, North Circular Road, London NW2 7JT. WW 410

A vapour deposition system for production work on semiconductor materials is the subject of a leaflet, available from Metals Research Ltd, Melbourne, Royston, Herts SG8 6EJ. WW 411

Multiplexed monitoring and control systems made by Vindicator is described in a leaflet from the UK representatives, Fieldtech Ltd, London (Heathrow) Airport, Hounslow, Middx. WW 412

Performance optimization, fault-finding and evaluation of minicomputer using logic analysers is the subject of an application note from Hewlett Packard Ltd, King Street Lane, Winnersh, Wokingham, Berks. WW 413

Analogue and digital test-meters made by Sanwa are described in a catalogue from Quality Electronics Ltd, 24 High Street, Lydd, Kent TN29 9AJ. WW 414

An introduction to laser velocimetry and details of systems and components available are offered in a publication from Biral, Bristol Industrial Research Associates Ltd, PO Box 2, Portishead, Bristol BS20 9JB. WW 415

Weighing cells type Z7, which are shear-beam transducers for tensile and comprehensive loading, are the subject of a leaflet from the manufacturers, HBM, Stonefield Way, Ruilsip, Middx HA4 6TJ. WW 416

The 1980 catalogue from Livingston Hire is now available from Shirley House, 27 Camden Road, London NW1 9NR. WW 417

‘Radio navigation and radar’
The article on 'Radio Navigation and radar' in the January issue, p 47, contained an error, pointed out to us by LCDR R. E. Burke, Jr. The description of the Loron-C hyperbolic system on p 48 was in reality that for Loron-A. Loron-C is also a pulsed system, working on a 100 kHz carrier, but the time differences are measured on the carrier itself, giving errors of 30 to 300 feet from the starting point on a return trip. Ground wave, LCDR Burke tells us, extends up to 1000 miles, with a position accuracy of 0.25 nautical mile. We apologize for the mistake.
Alternative astable circuits

by Peter Williams Ph.D. Paisley College of Technology

These have generally been designed for special rather than general purpose use. Both transistors go off and on simultaneously. In circuits such as the one shown a long space is obtained by making \(R_2 > R_1 \). Hence the current is only on for a small part of the time and the mean current is low. Similarly astables based on the complementary pair shown earlier in the unijunction model have been used as pacemakers for heart stimulus. In these applications a space to mark ratio of up to 10,000:1 is needed to prolong battery life. Such circuits have an additional advantage in that the mean dissipation is also reduced for a given peak output current. The basic principle of the circuit shown is seen by assuming both devices are conducting though not saturated and then switch off. Point A rises sharply because of the positive step at Tr, collector while B corresponding falls. The capacitors then recover with \(R_1 + R_2 \) determining the rate of recovery and A and B approach and then pass each other. When the difference is about 1V the transistors just begin to conduct and regenerative switching forces A down and B up. The base currents are dependent on the current gains and the pulse duration is relatively short but ill-defined.

The two-transistor astable is often advocated because it can provide anti-phase and square-wave outputs. That facility is easily attainable with logic gates and flip-flops from almost any astable or pulse generator and more attention is due to such alternators. The long-tailed pair is the basis of a current-switching astable which operates at much higher speeds because neither transistor need be saturated. In this it is closely linked to the e.c.i. gate with which it can be implemented. The emitter resistor is sometimes replaced by a true constant-current circuit but this is not critical. Provided \(R_1 < R_2 \) the circuit will not saturate; keeping \(R_1 \) low reduces output pulse size, but generally improves the speed of response. Assume Tr, goes into conduction. The fall in collector voltage drives the base of Tr, negative and Tr, cuts-off transferring all of \(R_1 \) 's current to Tr,. As the base of Tr, recovers toward zero the amplifier enters its linear region. Tr, begins to conduct and current is diverted from Tr,. Its collector voltage rises and regenerative switching carries it up to +V. All the current in \(R_1 \) now flows in Tr, until the base of Tr, again returns to its linear region and the cycle recommenced. The long-tailed pair is a non-inverting amplifier of finite gain and the circuit is equivalent to a known form of op-amp astable.

A similar conclusion can be drawn about the emitter-coupled astable if it is considered as cascaded common-collector and common-base stages. The non-inverting combination having both \(A_1 > 1 \) and \(A_2 > 1 \) consists of a pair of cascaded common-emitter stages and this example is treated later. The analysis of this astable is easiest if \(R_{12} \) is replaced by constant-current sources \(I_1 \) and \(I_2 \). The capacitor must change its p.d. by equal and opposite amounts during succeeding portions of the cycle as the p.d. must always return to its original value at the start of each cycle in any stable oscillator. When the emitter of Tr, goes high, Tr, is cut off and the current in \(C \) is \(I_1 \). When Tr, conducts it pulls the base of Tr, below its emitter cutting it off and the current in \(C \) is \(I_2 \). Hence \(I_1 t_1 = I_2 t_1 \) and the mark-space ratio is unity for \(I_1 = I_2 \). If \(R_2 \ll R_1 \) the voltage steps on the resistors are small compared to the mean values and the waveforms and frequency differ little from the constant-current case. The circuit is again non-saturating and is capable of high speed.

Current-operated circuits extend the range of possibilities as compared to the restriction of voltage operation. A halfway house is provided where active devices are operated in series from a voltage supply. These are again a specialized sub-group of astables, but can be simple and effective. The version shown is a serial form of the emitter-coupled astable though implemented with junction f.e.t.s as this eliminates a number of bias components.

This circuit has been referred to above and can be approached in more than one way: as a conventional astable in which one of the capacitive couplings is replaced by a direct connection, as one of the two-amplifier single capacitor astables similar to a c.m.o.s. astable, or as equivalent to a single positive-gain amplifier with CR feedback. In this last interpretation the two inverting stages perform the same function as the two non-inverting stages of the long-tailed pair and emitter-coupled astables. This emphasizes the danger of "is" statements in electronic circuits. To say that a given circuit "is" a particular type refers only to the way in which the designer or user has decided to partition it. Each redrawing or repartitioning may reveal a new pattern, a new way of classifying it, or even a new class of which it is the first member. This particular astable has still greater significance when related to the classic two-transistor monostable.
THEORY

From symmetry then, when the transistors are conducting, the emitters are both at $V_s/2$ with the bases ±0.6V about that level. The timing is imprecise depending inter alia on h_{FE}. It is only one of a number of such complementary astables and no analysis is offered though the period is primarily defined by $R_1 C$.

In this circuit the output voltage step is of magnitude $V_s R_e / R_1$, for a supply of ±V_s as the current in R_1 is switched between T_R_1 and T_R_2. If the circuit were to have a linear voltage gain A, then the switching thresholds would be at ±$V_s R_e / R_1 A$ and the appropriate values of V_1, V_2 are

$$V_1 = V_s \left(1 - \frac{R_c}{R_t A_t}\right)$$

$$V_2 = V_s \frac{R_c}{A_t R_t} \left(1 - \frac{R_t}{A_t R_t}\right)$$

$$t_2 - t_1 = R_t \log_a \left[\frac{A_t R_t}{R_t - 1} \right]$$

For R_t, R_c comparable $A_t \gg 1$

$$T \approx 2 R_t \log_a \left[\frac{A_t R_t}{R_t - 1} \right]$$

A more accurate analysis uses the transistor exponential characteristics to derive the non-linear transfer function $V_s = k\tanh(V_1 / 2kT / q)$. From this the condition $dV_a / dV_t = 1$ can be obtained, fixing the switching threshold accurately.

Assume $R_e < R_{11}$, R_{12} so that voltage swing is small. Then charging and discharging currents are approximately constant at V_s / R_e for supply ±V_s and $R_{11} = R_{12} = R_e$.

Hence the transitions are separated by a time interval governed by $\Delta V \approx R_e V_s / 2 R_1$ (since for T_R_1 conducting, R_c carries currents in both tails while for T_R_2 conducting the current in R_c is negligible) while the current in the capacitor in each case is V_s / R_c. Thus $T \approx 2 \cdot C \Delta V / I = 4 C R_1$.

The above involves a number of approximations that make the result useful as a guide to the behaviour but not an accurate one. It suggests that neither R_e nor the negative supply rail have any significant effect on the frequency of oscillation though they directly control the amplitude.

Circuit behaviour is strongly dependent on the variable fet characteristics.

The voltage step at T_R_1 collector is $V_{R_1} (\text{sat}) - V_{C_1} (\text{sat}) \approx 0.5V$. The voltage available to control the current in the capacitor is too small for a stable well-defined frequency to be achieved. An additional resistor in the base of T_R_2 helps.

EXAMPLE

A long-tailed pair astable has $R_e = R_1$ and supply voltage of ±5V. Assume that the differential output current (I_d) of a long-tailed pair is given by $I_d / I = \tanh(V / 2kT / q)$ where V is the large-signal differential input voltage and I is the tail current. Determine the value of V at which the open-loop voltage gain from input base to output collector falls to unity. Hence determine the amplitude of the waveform at the base and the frequency of oscillation in terms of $\tau = R_e C$.

The gain will be half that for the differential output condition i.e. the latter is derived and equated to 2.

$$V_o = I \cdot R_e = I R_e \tanh \left(\frac{V}{2kT / q} \right)$$

But $I = \frac{V_s}{R_e}$ for a supply of ±V_s

$$\frac{dV_o}{dV} = \frac{V_s R_c}{2kT / q} \cdot \text{sech}^2 \left(\frac{V}{2kT / q} \right)$$

$\text{sech}^2 \left(\frac{V}{2kT / q} \right) \approx 1.2$ for $V/2kT \approx 1.2$

$\text{sech}^2 \left(\frac{V}{2kT / q} \right) = 0.5$ for $V \approx 1.95$

$V \approx 100mV$

The circuit should thus switch when the input base reaches about +100mV and again at −100mV giving a peak-peak amplitude of 200mV.

The collector step voltage is V_s. This might lead to saturation and a slowing of the response; reducing R_e to $R_e / 2$ avoids this but reduces the threshold to 80mV and the peak-peak amplitude to 160mV.

For a step of V_s, the resistor voltage is raised from −V to −$V + V_s$ i.e. from −0.1 up to 4.9V, decaying to +0.1V before initiating the switching action again.

From symmetry $t_2 - t_1 = 2 \cdot \log_a \left[\frac{V}{2kT / q} \right] \approx 3.9\tau$

$\text{From symmetry } t = \frac{1}{2} \cdot \frac{1}{2 \cdot 3.9 \tau} = \frac{1}{7.8\tau}$ assuming $R_e \gg R_c$.

For $R_e = R_1 / 2$ the step size is reduced making $V \approx 2.4V$ but the gain is also reduced

$\text{sech}^2 \left(\frac{V}{2kT / q} \right) = 0.5$

$V \approx 1.54$

$V \approx 80mV$

$\text{For } R_e = R_1 / 2 \text{ the step size is reduced making } V \approx 2.4V \text{ but the gain is also reduced}$

$\text{sech}^2 \left(\frac{V}{2kT / q} \right) = 0.5$

$V \approx 1.54$

$V \approx 80mV$

$\text{This is a reduction of about 13% for a 50% fall in resistance. This is reasonable stability for a fast and simple circuit.}$
WORLD OF AMATEUR RADIO

What's cooking?
The reluctance (for whatever reasons) of the Home Office to introduce a low-power citizens' band radio facility in the UK is in marked contrast with the open-ended permission given to the public to install crude, high-power transmitters in their homes in the form of microwave ovens. Radio-astronomers at Jodrell Bank have investigated (Nature, Vol 282, 6 December 1979) the amount of broadband spurious "out-of-band" emission from typical ovens and have confirmed that this is sufficient to cause interference to extra-terrestrial signals when picked up on the sidelobes of large radio-telescopes at distances up to 20km or more on some frequencies.

Ovens generally use the "rectified a.c." form of pulsed, self-excited microwave generators on the i.s.m. (industrial, scientific, medical) frequency of 2.45GHz with a power output of the order of 1-2kW.

The primary source of leakage of unpolarized radiation is, the report states, from the seals around the oven door. "The seals are non-contacting and seem to consist of a resonant, quarter-wavelength choke nominally tuned to 2450MHz, followed by microwave absorbing material." It is emphasised that while this form of sealing is sufficiently effective at 2.45GHz to satisfy the UK safety regulations (i.e. exposure to microwave radiation), it fails to give adequate out-of-band suppression to prevent possible interference with other radio services authorized to operate within the 1-6GHz spectrum. Elsewhere it has been suggested that harmonic emission from ovens could prove to be "the major source of interference to I.O.2G microwave television from direct-broadcast satellites."

The use of large numbers of microwave ovens in residential areas could also prove a major problem for radio amateurs interested in the development of microwave communication at low signal levels.

The Jodrell Bank team complain that for the past ten years they have been urging the Home Office to specify permitted levels of out-of-band spurious radiation from ovens.

A boom in the hobby
Amateur radio in the UK experienced a sharp boom during 1979 and a record 26,981 licences were current in December. The number of new licences issued by the Home Office during the year amounted to 3155, of which 1054 were Class C, 12,745 Class A and 201 Class B (v.h.f./u.h.f., no more). Some 2400 people passed the first "multichoice" Radio Amateurs' Examination held in May 1979 and a considerable number sat the December examination.

The RSGB reports a 10.5 per cent increase in membership with some 4145 new members enrolled during 1979.

It remains to be seen whether these exceptional increases in the hobby were part of a long term trend or were partly the result of the unusual amount of media coverage during 1979 which included the "Open Door" and "Nation-wide" programmes. The British electronics manufacturing industry, however, has benefited only marginally from this boom, with the overwhelming majority of factory-built equipment coming from overseas. While there appear to be no figures on the total UK amateur market, Electronics estimates the US market as worth $23-million in 1979, rising to an estimated $26-million in 1980.

Topics in the air
The New Year brought forth a flurry of "new prefix" activity. East German amateurs appeared under the guise of "2Z" instead of the long familiar "DM" in what seems likely to be a permanent change. A selected 200 Russian amateurs in Moscow, Leningrad, Tallinn, Kiev and Minsk introduced a series of prefixes to mark the country's hosting of the Olympic Games, using RX, RZ, RR and RU prefixes for what are termed, "special Olympic ham operations." Club stations in Moscow and Tallinn will similarly change prefixes on July 1st and those in Leningrad, Kiev and Minsk on July 15th. These special prefixes end on August 3rd.

The first complete break in 50MHz long-distance propagation in more than two months came on December 15th, 1979 when the expected decline in solar flux took effect. A feature of the period of high solar activity was its remarkable freedom from geomagnetic disturbances, normally expected at sunset maximis. An aspect of v.h.f. propagation in the USA that does not appear to occur in the UK is a regular winter Sporadic E season affecting signals on 28 and 50MHz.

A 432MHz amateur television repeater in operation in the Wellington area of New Zealand, providing opportunities for tv transmission over distances of 60 to 100 miles, with several more in the planning/construction stage. An estimated 50 such repeaters are now operational in various parts of the world. A special "intruder watch" call-sign, G3DFY, has been issued by the New Zealand Post Office but will not be used for normal contacts.

A new reciprocal operation agreement between Canada and the USA came into force on January 21st with exceptionally liberal terms. It allows amateurs of either country while visiting the other to operate without needing to obtain prior written permission. However, since US-type novice and technician licences are not issued in Canada, US amateurs with such licences are still not permitted to operate in Canada.

The Vojvodina Amateur Radio Federation of Yugoslavia has more than 10,000 members and its basic aims are: "to maintain radio links, teach and train young people in electronics and telecommunications and train all members for all-people's defence and social self-protection". The national amateur society in Yugoslavia is SRJ (Savez Radioamatera Jugoslovija).

A special event call-sign GB9 in the UK in the series GB4 plus two or three letters are being issued through the RSGB; the GB3 plus two letter calls will in future be used for repeater stations, and GB3 plus three letters for beacons. Special event call-signs in the series GB2 and GB8 continue to be issued.

A number of FCC employees who received call-signs in a manner stated to have been "inconsistent" with official procedures are to be allotted new calls. This follows an investigation into fraudulent licensing and issuance of stations in recent years.

A special Certificate of Membership has been presented by the Royal Naval Amateur Radio Society to 87-year-old Mrs F. V. McKenzie, OBE, former VK2FV who was Australia's first YL operator, first qualified woman electrical engineer and founder of the Women's Emergency Signalling Corps (later Women's Royal Australian Naval Service) which trained about 11,000 Australian, American and Indian radio operators during World War 2.

In brief
A new RSGB award for microwave operation will require confirmation of contacts with five "large QTH locator squares" on any of the bands between 1.3 and 24GHz. The FCC is expected soon to permit American rtty enthusiasts to use ASCII... A regular moonbounce newsletter is being organized by the Oxford University EME Group (G3WLG, The Crescent, Pottishall, Towcester, Northamptonshire).

Rev G. C. Dobbs, G3RJV, Hon. Secretary of the "G-QRP-Club", has changed address to 17 Aspen Drive, Chelmsley Wood, Birmingham B37. A linear translator (repeater) on the 1296MHz band is operating in San Jose, California.

PAT HAWKER, G3VA
Impedance mismatching

A pitfall to be avoided when using Thevenin and Norton equivalent sources

by F. J. Lidgey, Ph.D., B.Sc. Oxford Polytechnic

Power transfer from a source into a load is frequently discussed in circuit theory. Also a parameter of interest is the transfer efficiency (\(\eta \)) defined as the ratio of load power \(P_L \) to total power delivered by the source \(P_s \). The proposal of this article is to outline a common error made in calculating \(\eta \) which stems from an incorrect assumption regarding the power delivered by a Thevenin or Norton equivalent source.

With transfer efficiency in mind it is easy to show that a 'mismatching' of load to source impedance reduces power dissipation in the source impedance. For example, in Fig. 1:

\[
P_L = i_L^2 R_L = \frac{v_s^2}{(R_s + R_L)^2}
\]

\[
P_s = v_s i_s = \frac{v_s^2}{(R_s + R_L)}
\]

Thus \(\eta = \frac{R_L}{R_s + R_L} \).

\(\eta \) tends to zero for \(R_L = 0 \) and \(\eta \) tends to its maximum value of one for \(R_L = R_s \). If for example \(R_s = 500 \) then 80% efficiency of transfer of power into \(R_L \) occurs for \(R_L = 200 \) and \(P_s = 64\% \) of \(P_s \) max. However, there is obviously no optimum choice, as can be seen from the plot of Fig. 2, which shows that for \(\eta \) of 100%, i.e. no power dissipated in the source, then no power flows in the circuit, since \(R_L = R_s \to 0 \) and \(i_L \to 0 \).

All this seems quite reasonable and as one would expect, if \(R_s \) and \(v_s \) are really known in any circuit. At first sight, it appears that they are: all that seems necessary is to generate the Thevenin equivalent source, which gives \(R_s \) and \(v_s \); hence, \(\eta \) may be obtained from the expression given previously. This, however, is a fallacy, which can be exposed by the example of Fig. 3.

Taking the special case of \(v_s = 2v_s \) and \(R_s = 2R_s \), then applying Thevenin's Theorem, the source can be replaced by a voltage source of \(v_s \) and a source resistance of \(R_s \), exactly as in the circuit of Fig. 1. Clearly, \(P_s \) is the same but is \(P_s \).

For Fig. 3:

\[
P_s = \frac{(2v_s)^2}{(2R_s + 2R_L)} = \frac{v_s^2}{(R_s + R_L)} = P_s\]

For Fig. 1:

\[
P_s = \frac{v_s^2}{(R_s + R_L)} = P_s\]

As already stated, in obtaining the Thevenin equivalent source \(P_s \) remains the same, so \(P_s = P_s \) must remain the same; since the source powers are different, \(P_s \) is different in the two circuits; the power dissipated in the source resistance of the Thevenin equivalent source is not equal to the power dissipated in the original source.

The same argument applies if a current source is substituted for the voltage source, as in the circuit of Fig. 4, which is a Norton equivalent of Fig. 1.

\[
P_L = i_L^2 R_L = \frac{(v_L + R_s)^2}{R_s + R_L}
\]

\[
P_s = v_s i_s = \frac{v_s^2}{(R_s + R_L) R_s}
\]

Continued on page 78
LETTERS TO THE EDITOR

STATUS OF ENGINEERS

Regarding the status of engineers, as discussed in your editorials and correspondence. One factor seems to be overlooked, viz. that the status and respect given to doctors and lawyers increases exponentially with age, right up to their 70s, whereas that of an engineer, however experienced, reaches a plateau at 25 and then drops off rapidly beyond 35. How many jobs offered in WW advertisements are open to anyone over 30? Precious few!

Nor is this exclusive to Britain, but has already spread to the USA and is now beginning to be felt in Japan.

In countries devoted to production in support of the almighty deutschmark, engineers are still accorded some degree of respect in their middle years, but one wonders how long it will stay so when production there also falters, as indeed it must eventually in a world of resource shortages.

The sad fact is that engineers don't stay engineers long enough to get status! It would be interesting to know what old engineers do, for a living. Is there a suitable subject for a survey there? (They can't all retire at 40!)

A final word: no matter how much headway young engineers make, the days when they might have made it socially have gone. Yet, somehow, I don't ever expect to see aged engineers make, the days when productive engineers are still accorded some degree of respect, right up to their 70s, whereas that of doctors and lawyers increases exponentially with age, but that of an engineer, however experienced, reaches a plateau at 25 and then drops off rapidly beyond 35. How many jobs offered in WW advertisements are open to anyone over 30? Precious few!

Ronald G. Young
Peacehaven, Sussex

DIGITAL FILTERS

Perhaps, following Mr Gray's letter in your January 1980 issue, I could raise a point which is not always well-made in text books and which space did not permit me to touch upon in my article on simple digital filters in the July 1979 issue.

A digital filter algorithm performs calculations and outputs certain values at fixed intervals of time. Strictly speaking, the output values are only meaningful at those exact instants, and what happens in between is not defined; hence the plots of the points only in Figures 2 and 5 of my article.

This, however, is not particularly helpful in practice since we generally wish to produce some analogue waveform for further use or inspection on an oscilloscope. As soon as we do this we enter the field of waveform recovery and make implicit assumptions about the technique involved. Most frequently, as Mr Gray's Fig. 1 implies, a zero-order-hold is assumed, the properties of which have been well discussed by Zuch, and include an average delay of half the iteration interval and a linear phase response equal to 90° lag at the Nyquist frequency. If Mr Gray finds a phase advance of half the iteration interval, I would suggest he has made an error in interpreting or plotting his results.

Other methods for waveform recovery are, however available. A first-order hold retains the value of the previous iteration as well as the present one, and uses this data to generate a slope which will, one hopes, lead towards the point where the next sample will arrive as shown here. This method effects a significant reduction in the delay terms. A second order hold is also possible and this will generate second order or polynomial. I do not know of any applications in real time where this technique is used, but it is not uncommon for curve generation in the computer numerical control of milling machines, for example.

These factors are of importance to the practical engineer, since they imply that the exact response obtained from a digital filter as we approach the Nyquist frequency may owe as much to the waveform recovery technique as to the filter itself.

Incidentally, the reference to Nyquist derives from the communications field; it may be of interest to note that in the process industries virtually the same law is known as Shannon's Theorem but the formulation places greater emphasis on the exclusion of frequencies higher than 1/2T.

P. A. L. Ham
NEI Parsons Ltd
Newcastle-upon-Tyne

References
1. E. L. Zuch: "Designing with a sample-hold won't be a problem if you use the right circuit." Electronic Design 23, November 8, 1978, pp. 84-89.

AUDITORY CUES IN STEREOPHONY

We were most interested in Philip Vanderlyn's article on auditory cues in stereophony in the September 1979 issue. The whole piece begs one particular question — what does the current craze of multimiking do for our stereo perception? Perhaps Mr Vanderlyn could be persuaded to relate his research experiences in this aspect. I, for one, would be interested in a researcher's views of this particular debasement of Alan Blumlein's original ideas.

But more immediately I would question Mr Vanderlyn's attribution of "in the head" sounds to dummy head derived stereo, listened to on headphones. We are currently marketing a number of binaural records and would claim that "in the head" sounds are the last things being achieved. Real distance "out of the head" effects are clearly discernible on many parts of our discs. True, it is easier to get distance, side and rear effects as opposed to "out front" images, but to describe the effect as "in the head" clearly defeats the reason for the marketing of our discs.

M. G. Skeet
Whetstone Records
Milton Keynes

The author replies: First of all multimiking is not a current craze; it has been going on almost from the introduction of stereo records. Secondly, it owes nothing to research, so I have no experience of it in that context. Thirdly, my personal opinion of it is not for publication, but I would agree with him that it represents a debasement of Blumlein's conception. There is a fourth aspect, the economic one. Very early in the practice of stereo recording using "pure Blumlein" techniques it was found difficult and time consuming to get a good musical and spatial balance. It also called for much patience and understanding on the part of musicians and conductors. It was thus very expensive and the multimiking technique came into being, which permitted subsequent editing and which produced a colourable imitation of "real" stereo. I did wonder at one time whether it fell foul of the Trade Descriptions Act, but because the definition of stereophony in BS 691 is so widely drawn it appears it can unblushingly be called stereo.

Nonetheless it is a fact that, in this way, many very satisfying stereo records have been made that would not or could not have been necessary to keep to theoretically rigorous methods. We have to bear in mind, as I
am sure Mr Skeet does, that record companies exist to sell home entertainment rather than to demonstrate scientific truths.

My comments on headphone stereo were based on early experiences when it was found impossible to create a convincing image using dummy head techniques. The expression "in the head" was a form of words used to describe the vivid but unnatural effects produced. At that time the only headphones readily available were those affectionately known as "cans" — excellent for reading Morse code signals but not really suited for serious listening. Now that there are many excellent high quality headphones the situation is different and it is possible to listen with pleasure to all types of programme material. I must admit that on more than one occasion I have heard realistic external sounds, but these have been from special recordings which preserved possible cues due to the pinna. I am inclined to think that the role of the pinna, which has only recently been studied in detail, has hitherto been underrated. However, I still feel that the head rotation cue is an essential part of any convincingly external image, at any rate over an appreciable period of time, and there seems to be no possible way to provide this using transducers held in a fixed relationship to the ears.

Philip Vanderlyn

RUMBLE CANCELLATION FILTER

Congratulations to J. P. Macaulay for his elegant method of removing rumble from stereo disc reproduction without degrading the deep bass response (Circuit Ideas, September 1979 issue). The concept of turning the lowest bass into a mono signal is so beautifully simple that one wonders why this technique is not widely used.

After having studied the discrete circuit design, I decided to build a simplified and improved version, making use of today's superior integrated op-amps. The diagram shows how a TL074 quad op-amp is used together with a simpler matrixing system to form a rumble cancellation filter (as I prefer to call it) with near ideal characteristics. The TL074 exhibits a performance, in terms of extremely low distortion coupled with high slew-rate and bandwidth, that is hard to beat using even complex discrete designs. Expected figures will be around 100V noise, d<0.002%(to 20kHz) and f<1 several MHz.

In his filter Mr Macaulay uses equal C-values (33nF); this will not give a Butterworth characteristic. For this a ratio of 2.1 is required, hence my corrected values of 47 and 22nF.

It should be kept in mind that the rumble filter inverts the polarity of the input signal. If it is ever to be installed in a system where it may be switched in or out of service, inverting gain-of-one buffers must be used for the polarity convention to be preserved.

Jens Langvad

Vanlose

Denmark

TRICKLE DOWN OR TRICKLE UP?

Referring to the November editorial, I thought that in general the "trickle down" theory of reducing poverty by development was discredited, though there are exceptions. Where a country has a resource which can be turned into cash, as for example Britain's North Sea oil, there is a case for using the cash for capital investment in industry. This was also the Shah's policy in Iran, and no-one who has seen the traffic jams (of private cars) in Teheran would suppose that the benenficiaries of this policy were very few in number, though they might well be a minority of the whole population. On the issue of intermediate technology versus capital-intensive technology, there is also the prestige consideration which may be rationalised in the form: "If we are going to buy machinery from abroad, we should obviously buy the most up-to-date."

Those who are seriously interested in under-developed countries should see a book such as "Income Distribution Policy in Developing Countries" by Irma Adelman and Sherman Robinson.* Much of this book is concerned with the technicalities of constructing a computer model (for South Korea); but the authors do discuss various economic policies and conclude that the most effective single weapon to reduce poverty in such countries is to assist agriculture.

A pocket calculator is of no use to an under-nourished family; and such things as radio communication to call a doctor improve the amenities but do not reduce the poverty. The positive contribution of electronics is through computer simulation of the economy, which makes it possible to answer the question "What will happen if we do such-and-such?" without actually implementing an experiment which might prove to be disastrous. "Chips with everything" may be all right for developed countries, but we should be modest enough to admit that high technology alone cannot solve all the world's problems.

D. A. Bell

Walshington

Beverley

Yorks

*Published for the World Bank by Oxford University Press, 1978. There are many books on income distribution, but this one (a) is concerned with developing countries and (b) has a computer model, based on continuing processes rather than interpolation of past data, which appears to match reality successfully.

3D TELEVISION

K. P. Wood (October 1979 letters) suggests that it is impossible to provide stereoscopic viewing of a moving object on a flat screen without viewer discomfort. This he claims is because of conflict between focusing and convergence clues received by the viewer. However, his claims are pure hypothesis without any attempt to provide qualitative or quantitative evidence.

A major factor he omits to mention is perspective, a subject all painters and photographers have to fully comprehend to master their arts and crafts. A very strong illusion of depth is conveyed in mono pictures whether paintings or projected kinematograph films by the correct use of perspective in images on a flat surface. If Mr Wood is correct there would be a strong case for supposing that viewing of painted pictures with strong perspective would cause viewer discomfort. Surely he would not sustain this argument?

It is true that viewing of red/green anaglyph 3D images is tiring, but this is because it is quite an abnormal situation for one eye to see only deep red images whilst the other sees only green.

It is also true that viewing of a large number of early 3D polaroid colour films produced headaches and eye strain. However, it has now been established, as a result of research and a better understanding of the subject, that this was not due to the factors postulated by Mr Wood. It was because the camera men and directors who made the early 3D films did not properly understand
the rules that apply to stereo-cinematography and both in camera work and subsequent editing produced visual cue conflict situations much worse than Mr Wood postulates.

There is now no reason to believe that a correctly photographed and edited 3D stereo film of the colour/polaroid type will produce any viewer discomfort even over long periods. If there is any scientific evidence to the contrary I shall be most interested if Mr Wood will quote the basis of it.

Meanwhile, recommended reading for those interested in factual accounts of work done in this field is: "Introduction to 3D" by H. Dewhurst, Chapman & Hall, 1954; and American Cinematographer, (special 3D issue), April 1974, 1782, North Orange Drive, Hollywood, Calif. 90028.

A. E. Lott
Reading Berks

THE ‘WHY?’ OF ELECTRONICS

I was just reflecting on our good fortune in having in Wireless World a high quality technical journal which (unlike the numerous trade journals) is not afraid to discuss the why? and what for? of electronics as well as the how? when I came across Mr Greenwood’s letter (January issue) calling for an end to “political rhetoric” in your editorial.

Unlike Mr Greenwood I think it needs more than a few “delightful moments of humour” to “demonstrate that technical people can be human.” Technology is changing society now faster than at any other time: some changes are for the better, some for the worse. The people who find their livelihood changed as a result of the engineers’ combined efforts will not think us “human” if we blindly and mechanically create what we’re told to without sparing so much as a comment in a technical journal on the desirability or otherwise of what we are creating. Technology has great potential for improving the quality of life — if applied sensibly. As technologists we must make our contribu-

tion to the discussion of how to apply it sensibly, rather than allow its control to pass unquestioned to those primarily concerned with financial gain in the short term.

So, long may Wireless World continue its perceptible and searching editorial comment, followed I hope by vigorous discussion in the letters pages.

P. A. D. Bird
South Brent
Devon

'’TRIVIAL’ AMPLIFIER DESIGNS

In reply to Mr Duncan’s letter ‘‘Trivial amplifier designs’’, in the January issue, whilst I am in general agreement with his views on psycho-austhetics, I feel he may have missed the object of my article (“Low distortion amplification,” October 1979).

The nature and control of distortion and other important parameters in a.f. amplification are generally misunderstood, resulting in the growth of illusion and mysticism (as witnessed by Mr Duncan). The aim of my article was to combat this by defining the problems in engineering terms and using the solutions as design criteria for a gain cell block. Although the article described its use in a domestic sound reproduction system it could have equally been applied to a laboratory amplifier, low distortion oscillator, distortion factor meter etc.

To take Mr Duncan’s objections to their logical conclusion, should design in any one field of engineering be terminated due to imperfections in another?

B. J. Codd
Medical Physics Department
Leicester Royal Infirmary

FAILURE OF DISTRESS SIGNALS AT SEA

I was surprised on reading the letter by R. Philpot (November) and a previous letter by John Wiseman (June) about the problems encountered at sea operating at 500 kHz. In theory a solution of salt and water effectively earths the r.f. power present in the aerial’s insulator, which makes electrical contact with the wire.

The practical solution is the use of e.h.t. cable, so that there is no electrical contact with the conductor. A 150-watt input has been used, but much higher levels are believed possible. In the experiment, RS Components 18kV e.h.t. cable was used.

I feel sure that this is a late, but effective answer, and with lives at stake the cost is very small.

Peter C. Gregory, G4 HKV
Ashton-under-Lyne
Lancs

Mr Wiseman replies:

The use of e.h.t. cable would be similar in principle to the naval practice of using p.v.c. coated whip aerials. However, the statement that “...a solution of salt water effectively earths the r.f. power...” is an over-simplification. I have letters from people at sea reporting severe problems with ‘wet insulators’ at 500kHz but less effect at 2182kHz and similar, and very little at all at h.f. in the 4 to 21 MHz marine bands, and my own experience confirms that. Since Mr Gregory gives an amateur call sign, the experiments he refers to will have been carried out in the amateur bands 1.8 to 30 MHz. A ship’s main aerial is invariably greater than ¼ wave-length at h.f., and why h.f. is almost unaffected I leave to others to explain, but at 500kHz the antenna is always less than ¼ wavelength and its capacitance forms part of the pi-coupler resonant tank circuit. It is, in my opinion, change in antenna capacitance due to Kohlraush Effect that is the cause of the problem at 500 kHz.

For reasons of economics, the pi-coupler range of adjustment will be much less at 500 kHz than at h.f., due to the size of components required. The pi-coupler may be able to accommodate changes in aerial parameters at h.f. which it cannot accommodate at 500 kHz.

E.h.t. cable of the automotive kind would present some problems. Coated with water it might become a concentric capacitor, aggravating pi-coupler problems. It would lack mechanical strength and would not stand up to rough treatment; once the insulation was cut or bruised it would be rendered ineffective, and it does not lend itself to easy repair if broken by a wharf crane, for example.

John Wiseman

PROGRAMMABLE NOTES FOR MUSICAL INSTRUMENTS

Mr Waters is incorrect on several points in his letter in your January issue.

The system of temperament that was discarded when equal temperament was adopted about 140 years ago (not 250 as Mr Waters states) was mean tone temperament, not natural or just temperament. Mean tone temperament is based on natural temperament with a few judicious changes which produce harmonious music in 6 major keys and 3 minor keys. The remaining keys suffer from the effects of the changes and have rough harmonies. Handel and Bach had instruments tuned to this system. Equal temperament is an artificial system not based on the natural system at all. The result is that all keys have equally rough harmonies but music can be played in all keys.

The system I am proposing uses natural temperament, which sounds best, and allows modulation to any key. Surely, had such a system been available to Bach he would have adopted it in favour of equal temperament. I would be interested to find out in which ways Mr Waters’s musician friends consider my proposal is retrograde since it has not been possible hitherto!

M. Robins
Bilton
Rugby

I was very interested in M. Robins’s letter “Programmable Notes for Musical Instruments” in the November 1979, issue since I did some research on the possibilities a couple of years ago for my own amusement. I would like to mention, for anyone interested in pursuing this subject, the excellent treatise “On the Sensations of Tone” by Helmholtz, which is published by Dover with many extra appendices and tables; the theoretical work on harmony and tuning has never been bettered.

The information required by an instrument to perform a perfect job of just tuning is more complex than merely the key of the music. It
requires some skill in analysing harmonies to derive the data, and more than a few keys to enter it into the instrument. I do not believe that performers would welcome additional manual input to the instrument of this complexity.

My research concerned a computer model of an instrument which would analyse the music in real time and tune from the knowledge gained. Actually, it is theoretically impossible to make the perfect job of this in real time, as M. Robin probably knows, because the context of the harmony must be known, including what follows. My work showed that only about half of the job could be done this way, and it would not be cheap, given the amount of computer power it consumes.

Just temperament is interesting, but it is not obvious that it is musically desirable all the time. Unaccompanied singing, such as the close harmony which I have done, tends to go flat, for good reasons related to the tuning changes that occur when modulating in just temperament. This would be unacceptable in some situations. Further, the sound of chords in just temperament is very smooth and restful, lacking the high frequency beats which are normal in any other temperament. These are important, since they add "life" to the instrument, which would be dull and monotonous without them.

The service area is large; it is claimed to cover most of Europe but in some areas interfering signals may cause trouble. There is a powerful transmitter 1,000 hertz away from MSF and in the Manchester area it is 10 dB larger than MSF. In Preston it is 20 dB larger. A relatively wide band receiver is needed to make use of the coded time signals and this project has defeated several of our students.

May we suggest that anyone considering the problem do a few measurements in his area before building the complete clock? It would be interesting to know if your readers have ever had trouble with commercial equipment in this area.

Another source of interference is the fourth harmonic of the TV line timebase which this can be solved by moving the receiver.

T. G. Izatt
Preston Polytechnic
M. D. Samain
University of Salford

Reference
I. Mullard Technical Communications, Volume 14, Number 40, October 1979.

We understand that the interfering transmitter (on 61.8 kHz) is in fact a M.S. Inskip, between Preston and Blackpool.

MAGAZINE PROJECTS AND KITS

It occurs to me that many of your readers may be puzzled as to why different companies quote such widely differing prices for kits of parts for projects in the magazines, and possibly a few words explaining this might be of interest.

The fact is that when engineers design a product, they do not anticipate what happens to be at hand, and then when the project is finalised, a list of parts is sent out by the magazine to the leading companies for pricing.

If completely standard parts, normally carried in stock by the firms concerned, are specified, then there is no problem, and all companies should be able to offer competitive prices. Unfortunately, this is seldom the situation, and very often special non-stock items have to be obtained. Even this in itself would be unimportant if one knew how many kits were going to be sold, but it is usually pure crystal-ball gazing, and because of this the special parts have to be costed on a one-off basis.

Another problem is that for convenience a designer often uses a purely trade source to obtain his parts. This would not be particularly important if retailers were able to buy competitively from these sources, but one of the best and most reliable trade sources offers no discount for the retailer, and will not sell direct to retail customers, which means the retailer has to add his margin, and the end product becomes very expensive.

This letter is not meant as a criticism of designers or magazines, but might assist designers to provide economical kits. There is no doubt that if there was more liaison at the design stage with the retailers concerned many of these problems could be overcome.

J. N. Shipton
A. Marshall (London) Ltd
London NW6

Hijacking Carfax?

D. P. Leggatt of the BBC (October letters) in replying to Peter Manson's letter expresses optimism that the designers of the Carfax service have adequate means to control the security and authenticity of the information broadcast. Surely such a system is fundamentally vulnerable to hijacking for the following reasons.

Firstly, inexpensive Carfax decoders are going to be manufactured in large quantities; therefore their principles of operation cannot be inordinately complex. Secondly, some 80 genuine transmitters throughout the country will be quite openly broadcasting the "secret" initiation code every few minutes. Thirdly, test generators producing the appropriate signals will, no doubt, be extensively used in service workshops.

But, perhaps, traffic wardens will have their duties extended to ensure that no obscene, humorous or alien messages are being transmitted.

Mandy Peterson
Swindon
Wills

The BBC replies:
Mandy Peterson will not let me get away with my rather generalised statement on Carfax security, and she makes some very relevant comments.

Certainly 'secret' initiating codes would have their limitations, but there are other techniques available including comparisons between the original and transmitted signals.

As ever, it will be difficult to ensure absolute security and I must confess that our obscenity detector is not yet perfected.

D. P. Leggatt
Head of Engineering Information Dept
BBC, London W1
DIGITALLY CONTROLLED ATTENUATOR

I read the Circuit Idea on the digitally controlled attenuator by Mr S.R. Taylor, in the December issue. The AD75XX series of c.m.o.s. d-to-a converters are all inherently 4-quadrant multiplying devices. They can all therefore be used for audio applications, one of which Mr Taylor describes. It is not a large step of course to implement a stereo balance and volume control system using two such circuits running from updown counters fed serially.

Perhaps I could emphasize one or two general points with regard to such audio applications. Compared with analogue-controlled electronic attenuators, digitally-controlled attenuators offer some distinct advantages. Total harmonic distortion figures are significantly better, bandwidth is significantly wider and noise immunity greatly improved. In addition, such systems have the facility for remote operation under touch-switch or microprocessor control.

Could I also make a recommendation with regard to Mr Taylor’s circuit? The selection of the operational amplifier should be done with care. The output resistance of the d.c.a.c. changes with code-setting (as does its capacitance). This means that an amplifier with a large input-offset should be avoided as a code-dependent variable output-offset will result. This may produce significant noise during code change. As the d.c.a. has a few pF output capacitance typically 37-120pF (depending on code), capacitive feedback compensation is recommended when using wide-bandwidth amplifiers. This is usually about 10-20pF depending on the amplifier.

Instability may occur at some code settings if no compensation is used. Mr Taylor shows a gain-adjust potentiometer in the feedback loop of his system. I would suggest a fixed, low noise, resistor of value 1kΩ in the feedback loop and include a 2kΩ adjustable resistor in the input line to the AD75XX. (However, I suspect that there is only a limited need for a full scale absolute accuracy of better than 0.1% in anything other than test equipment).

In conclusion, perhaps to back up the above comments, Mr Taylor and other audio engineers may be interested to know that Analog Devices intend introducing a device specifically for the audio field, the AD7110, in mid March 1980. The AD7110 is a monolithic c.m.o.s. digitally controlled attenuator in a 16-pin d.i.l. package. The analogue output voltage decreases logarithmically as the 6-bit digital-input code increases. The attenuation range is 0 to 88,5dB (plus full muting facility) in 1.5dB steps. The total harmonic distortion is better than –96dB (0.002%) and the signal-to-noise ratio is 124dB. When tested with a commonly available audio op-amp, a bandwidth of 0 to 250kHz was observed.

M. I. Stephenson
Analog Devices B.V.
Limerick
Republic of Ireland

AND NOW THE PICOBEL

Contrary to Anne King’s letter (November 1979), the millibel has immediate and important application in musical recording/ reproduction systems. In fact, a lengthy article in International Audio Review 3 was devoted entirely to the 2-5 millibel sensitivity of the ear to 2-5 millibel deviations in frequency response, and the consequent need for very precise RIAA de-emphasis in phono preamplifiers.

This article discussed how those traditional experiments, which established the entrenched belief about our hearing insensitivity to loudness changes on single tones of less than 1 dB, are irrelevant to our hearing sensitivity to frequency response deviations on broadband signals, such as music.

Our experiments have established that we can hear frequency response differences in the 2-5 millibel area, as has empirical work by our friends Stanley Lipshitz and others. Not only can we reliably detect that there is a difference (which is a sufficient criterion to establish an auditory threshold), the difference is so clearly perceivable that we can quite readily describe it, quantitatively, and, yet more remarkably, qualitatively.

For example, we aurally compared one pre-amplifier against a straight wire on music. In spite of the masking presence of the pre-amplifier’s distortion byproducts, which seemed to add distorted bright energy to music above 5kHz, we also heard what seemed to be a purely tonal balance anomaly. We aurally judged this anomaly to be a plateau hinged at the 2120Hz RIAA breakpoint, and estimated its magnitude at 20 mB. Once we had established the pre-amp’s actual RIAA frequency response was flat—save for a plateau hinged at 2120Hz that measured 20 mB in magnitude (±1 mB). The pre-amplifier’s designer and manufacturer, who witnessed this experiment, asked why we even bothered with measurements, if the human ear could be that perceptive and calibrated.

Incidentally, our measuring technique presented in IAR 3 can reliably measure down to about 0.2 millibels, unlike the 0.5 dB limitation of Ms King’s meters. And since IAR 3 we have extended our measuring sensitivity (using differential techniques) into the picobal region. Therefore, and in sympathy with Mr Marks’ desire to end decimal point confusion, I herewith enter a plea for the picobal as the standard unit of commerce! Also, if we are to capitalize on engineering unit names in deference to the scientists they honour, let us do the job right and revert from bel to Bell, not Bel. That bell which tolls is hardly ever capitalized, so the confusion should be minimal.

J. Peter Moncrieff
International Audio Review
Berkeley
California, USA

In the UK it is standard practice to use capital letters for the abbreviations of unit names but not for the full names. — Ed.

LIQUID-STATE AMPLIFIER

The late Professor Fleming’s account of the thomonic diode (November 1979 issue) reminded me of a little search for the ‘missing counterpart of the vacuum-tube and solid-state devices – the liquid-state amplifier.

Although it might be argued that this is the biological amplifier of choice, as, for example, in the form of the ‘cochlear microphonic’ signal generator available in the mammalian ear (a signal capable of driving an ordinary audio amplifier), I was interested to find that a liquid ‘ionic diode’, at least is easy to arrange. A diode made with a platinum wire and a silver/silver-chloride wire dipped in dilute sulphuric acid gave a forward to reverse conductance ratio better than 25:1 for signals of less than ±100mV amplitude d.c. Moreover, Professor Fleischmann (Southampton) was able to describe a two-membrane ‘ionic triode’ which he constructed in an Physics student in 1947.

Considering the speeds of the various charge carriers estimated below:

\[
\begin{align*}
&> 10^4 \text{ m.s}^{-1} \text{ for a hard valve}, \\
&< 10^4 \text{ m.s}^{-1} \text{ in a copper wire}, \\
&< 10^3 \text{ m.s}^{-1} \text{ in an aluminium wire}, \\
&0.1 \text{ m.s}^{-1} \text{ for an electric field of } 1 \text{V.m}^{-1},
\end{align*}
\]

1 expect the frequency response of the wet triode is, well, wet.

B. Whatcott
Addlestone
Surrey
Electronic combination lock

Non-volatile logic devices give easy programming and long-term storage

by Alan Oakley, B.Sc. Plessey Semiconductors

This article describes how an ordinary key operated mechanical door lock can easily be converted to a 4-digit, multi-code electronic security lock, using non-volatile logic devices. The data in these devices can be altered easily but once entered can be retained for a considerable time even in the absence of applied power. The 4-digit combination codes are easily programmed and the versatility of the design means that the system does not need clearing down. It is a simple matter to extend the system from a 4-digit code (some 65,000 odd combinations) to any greater number of codes by adding more quad latches. Apart from the normal door latch such a system could find application anywhere where access is to be restricted, and could also be converted to be remote controlled.

The MN9102 quad latch is one of the NOVOL range of integrated circuits produced using the Plessey ‘metal-nitride-oxide-silicon’ (m.n.o.s.) process. This is essentially a p-channel, metal-gate process, but with the additional feature that variable-threshold memory transistors may be fabricated alongside conventional fixed threshold m.o.s. transistors. These memory transistors can be used to retain data even in the absence of applied power and therefore provide the facility of non-volatile data storage in standard m.o.s. circuits.

Data may be stored in the MN9102 for at least one year, in the absence of applied power, over a 0°C to 70°C temperature range. The device runs off standard m.o.s. supplies of +5V and -12V which are used internally to generate the high-voltage supply normally associated with m.n.o.s. memory devices, and requires only a single external capacitor to act as a charge reservoir for supplying current when writing into the memory. The data that is applied to the four inputs is written into the memory when the SAVE control is taken to a logic 0 level, presents a high-impedance state on each data output line, thus permitting multiplexed operation.

The digital security code system uses the MN9102 quad latch to store hexadecimal digit data in the absence of applied power. When this data is interrogated with the correct incoming data from a keyboard there is a 2½ second delay before an electro-mechanically operated mortice catch is opened for 2½ seconds. The delay and opening times may be varied easily and are included to improve security and conserve power. The number of digits in the security code is totally dependent on the number of quad latches.

Data is entered into the system via a hexadecimal keyboard with a diode/resistor decoder, if a 16, single-pole output keyboard is used. Alternatively, the data may be entered using a 16 key encoder (74C922) if a 4 x 4 matrix output keyboard is in use. Either system generates the four data signals and 'anykey,' which is normally low but goes high when a key is pressed; this signal is used to generate the timing pulses. The four data signals are fed into a c.m.o.s. quad D-type flip-flop (74C175) which is clocked by SRCLK, generated from two monostables gated with 'anykey' to prevent any keyboard bounce effects. Once clocked, this data is then compared with the stored data in the MN9102 using a c.m.o.s. four-bit magnetic comparator (14585). If the keyboard data is the same as the stored data, then the A = B output of the comparator will go high. For more digits the quad latches, comparators and flip-flops are cascaded as follows. The outputs of the nth flip-flop are connected to the inputs of the (n+1)th flip-flop, with all the 74C175 connections the same: i.e., SRCLK to CLK, clear held high, and all the Q outputs unused. The outputs of the nth flip-flop are also connected to the inputs of the nth quad latch. The outputs of the nth quad latch are connected to the second set of inputs of the nth comparator, of which the nth A = B output is connected to the (nth + 1)th A = B comparator input. Other common connexions are A > B and A < B held low with their respective outputs unused for the 14585, and output enabled high and Save inputs common for programming on the quad latch.

When a 4-digit code is stored the following sequence of events will occur when the code is interrogated. If, for example, the code stored was 9102, the data stored would be with 2 in latch A, 0 in latch B, 1 in latch C and 9 in latch D. The 9 when entered would be clocked into the output of flip-flop A and compared

![Fig. 1. Internal block diagram of MN9102 quad latch.](image-url)
with 2 in latch A, giving A = B on comparator A as a low level. When the 1 is entered, the 9 is clocked to the output of flip-flop B and compared with the 0 in latch B, hence A = B out of comparator B will also be low level. The 1 will be at the output of flip-flop A and will be compared with the 2 in latch A, so the A = B output on comparator A will remain low. The third digit 0 will cause the 9 to be clocked to the output of flip-flop C, the 1 to the output of flip-flop B and the 0 to the output of flip-flop A. The A = B output of comparator C will be low, as will the outputs of the other two comparators. The final digit 2, when entered, will cause the correct digits to fall in place with the stored data, hence the 2s will match in position A, the 0s in position B, the 1s in position C and finally the 9s will match in position D: the A = B outputs of all comparators will go high, indicating that the code was correct.

To program a new code, it is entered and the Save inputs to all latches are held low for at least 10ms, by pushing a switch for that time. The switch poles are connected to the inputs of a bistable, which have pull up resistors to +5V, and the centre pole is at 0V. When the switch is operated, the outputs change state, giving a high-to-low transition on one of the bistable outputs, going high again when the switch is released: this is the signal which is used as the common Save.

To make the system more secure...
Clock timer 2 continued from page 52

there is a 2½ second delay after the correct code has been found. This is achieved by means of a 14528 retriggerable c.m.o.s. monostable, which is positive-edge triggered from SRLCK, and initially preset with a delayed power-up pulse. When Q goes high again it is ANDed with 'Correct code' to give 'Door open', which is normally low but which goes high 2½ seconds after 'Correct code' goes high. The positive edge of 'Door-open' triggers another 14528 retriggerable monostable whose Q output, when it goes low again after 2½ seconds, is ANDed with 'Correct code', thus producing a 'Door enable' pulse. Although this signal is normally a low level, going high 2½ seconds before going low again, the values of the resisters and capacitors on the monostables may be varied to give different 'Door enable' delays and widths. The 'Door enable' signal is used to drive two bipolar transistors, which in turn activate the electromechanically operated motor. The second inverter consists of a high-power p-n-p transistor, which is designed to switch between the regulated supply and zero volts to provide the solenoid. A l.e.d. and resistor are used to indicate when the door is open.

Further modifications may be made to the outlined system with provision to activate an alarm when more than three incorrect codes are entered or possibly control the logic remotely, depending on the user’s requirements. The system described would need only the minimum modifications.

Clock timer 2

with the real time. Leave the switches at Set Alarm and check that the waveforms agree with Fig. 13(b). Insert the remaining i.cs and adjust R48 for a suitable output pulse length. Note that if the value of R48 is too low, IC1 is retriggered and produces a double output pulse. If the timer does not operate correctly when the tested circuits are connected together it is probable that 100Hz ripple on the 10V supply is turning Tr4 off every 10ms which produces spikes on the power fail line. This is easily cured by increasing the value of C3.

Modifications

The output of the 555 timer is t.t.l. compatible and can directly drive a variety of interface units. A simple flip-flop enables an external circuit to be switched on at one alarm time and off at the next. A counter and decoder allows the system to be expanded for the control of several different devices. The alarm-enable/inhibit circuit can be modified to select one of two different alarm-time programmes by selecting the alarm-enable line to a spare address input on the memory, pin 3 or 21, and grounding pin 13 of IC2c.

Up to 64 alarm times can be obtained by adding two flip-flops to the chain in IC7 and connecting the two new outputs to the spare memory address pins. If the alarm-enable/inhibit section is not required, the circuit can be omitted except for IC1ic. Alternatively, if the alarm-enable/inhibit section is duplicated and the two alarm-inhibit lines are connected to the spare memory address pins, four alarm-time programmes are obtained. If this modification is made, the control logic IC1ic and IC19c must be altered so that keys 0, 1, 2 and 3 select the appropriate programmes.

The timer can be used with a conventional digital clock which has a suitable multiplexed display and multiplex control lines coded in binary. A midnight pulse and the inputs to IC1c, and IC19c, have to be decoded from the display. The five inputs to IC1c can be replaced by the tens-of-seconds C bit driving a monostable to give a pulse of at least 100ms duration at the start of each minute. If switch-on-reset is not needed the set-time-pulse input is grounded and the circuit around Tr1, Tr5 omitted.

Acknowledgements

The authors thank the management of EMI Electronics for permission to publish this article and the technical staff in the Operations Training and Education department for their encouragement and assistance.
The long-awaited Finniston Report (see p36 Jan., p88 March and p46 June, 1978 issues) has now been officially published, some weeks after much of it had been leaked. Having had time to consider the proposals in the report, the professional institutions are welcoming it, but they also have reservations.

The Council of the IERE was disappointed to find that the Finniston Committee had little to say about what the IERE considered to be the root cause of the inadequate performance of the nation's manufacturing industry, namely the general lack of enthusiasm for work at non-professional levels and the consequent low standard of industrial relations within many areas of British industry. They also regretted that the summary report failed to give credit to the industry. They also regretted that the summery relations within many areas of British thusiasm for work at non-professional levels to be the root cause of the inadequate per-

little to say about what the IERE considered to find that the Finniston Committee had made a statement in which they endorsed the Finniston Report's analysis of the ill of the British manufacturing industry and its broad objectives for recognising and improving the contributions to be made by professional engineers. The council particularly supported the view that employers must be encouraged to look on their engineers as valuable investments to be developed, rather than assets to be exploited; and the need for thorough practical training for engineers in industry. The CEI, however, had reservations about the proposed methods of attaining these objectives, and the relevance of these proposals to the practical and urgent needs of manufacturing industry, they thought, would require critical examination.

According to the CEI, the benefits to industry claimed by the Finniston Report could be achieved much more cheaply and quickly by an evolutionary process — that of developing the already existing machinery of the engineering institutions to meet the broad objectives set in the report — rather than by the revolutionary process of replacing this machinery, which operates in the public interest under the authority of the CEI's Royal Charter, by the British Engineering Authority. The CEI was strongly opposed to the recommendation that all members of the proposed BEA should be appointed by the Secretary of State, as they saw this as having their affairs taken out of their hands — it is characteristic of all professions in the UK that they are mainly self-regulating and consist of members who have been elected or nominated by the profession itself.

Being aware that new engineers — products of the proposed education arrangements — could not become fully qualified engineers before the late 1980s, and that for the next half-century the majority of practising engineers will be those who now exist or who are under training by the present methods, the CEI warn that unless the morale of these engineers and international confidence in their ability are fully maintained, very great damage would be caused to the national interest.

The CEI considered that the report's failure to make any proposals for improving the education, training and progression of engineering technicians was a serious weakness. A union view.

Ken Gill, General Secretary of the Technical, Administrative and Supervisory Section of the AUEW was disappointed with the Finniston Report because the Committee of Enquiry had failed to deal with the pay and status of engineers. "It is surprising that in a report of 253 pages only about six pages are devoted to engineers' pay and the role of the trade unions in the engineering industry", he said. TASS, he said in a recent report, blamed the engineering professions' lack of status on inadequate salaries and the lack of rational salary structures. "If urgent consideration is not given to raising the salary and status of engineers, the British manufacturing industry will fail to attract and recruit a large enough number of new engineers", he added.

"In the beginning…….

Analysis of the cosmic microwave background radiation left over from the "big bang," the primordial explosion which it is believed began our universe, suggests the existence of clusters of galaxies containing hundreds of millions of stars. Data collected by NASA's U-2 aircraft in the upper atmosphere from remnants of radiation points to the conclusion that the Milky Way galaxy, of which we are a part, is hurtling toward the constellation Virgo at more than a million miles an hour, under the gravitational influence of a "supercluster" around it.

University of California scientists believe the supercluster contains 30 to 40% more galaxies than are normally found in the same volume of space and that it may be 2 billion light years across.

The supercluster would account for about 1% of the volume of the observable universe, which extends through 10 billion light years of space. Dr. George Smoot has pointed out that not enough time has elapsed since the "big bang" for such a supercluster to have formed, which implies that such a gigantic concentration of mass dates back to the beginning of the universe: "If one such huge concentration of matter exists," says Dr. Smoot, "there are probably others."

The new findings introduce an element of doubt into the previously accepted idea that the event which started the universe about 15 billion years ago was a powerful but tightly controlled expansion of matter in all directions at a uniform speed. The supercluster's existence implies that the primordial fireball was "lumpy" and that the vast forces released were by no means uniform in their effects.
BBC responds to WARC '79
frequency proposals

In a recent engineering press statement the BBC outlines its reactions to the WARC '79 frequency allocations, those for Region 1 having been given in our February 1980 issue.

The Corporation's response is generally favourable where domestic broadcasting is concerned, but it is "less happy with the implications of those services on the h.f. bands." For domestic radio broadcasting, extension of the v.h.f. band II to 108 MHz is welcomed. Although formal international agreement does not provide for complete clearance for both v.h.f. and u.h.f. channels the provision of up to four additional channels will considerably ease the planning of further extensions of u.h.f. coverage throughout the country.

Allocations for s.h.f. satellite links are also welcomed, but the rearrangement of the h.f. bands for overseas broadcasting falls considerably short of the BBC's wishes, especially at frequencies below 8MHz where no extensions have been agreed.

The statement ends with the BBC asserting its support for the reservations entered by the UK and the USA delegations to the conference, retaining the right to "take whatever steps may be necessary to maintain the effectiveness of our external services."

Microwave unit detects cancer

An instrument containing a sensitive radiometer capable of measuring temperature variations of less than 0.1° Celsius, part of a microwave applicator made by Microwave Associates, an American company, is being used to locate and possibly destroy cancerous tissue. The equipment has located tumours in 14 known cancer patients and has detected a cancerous site in one patient which was not revealed by the use of conventional techniques.

The principal advantages offered by the new instrument are that it does not emit harmful radiation, can be used outside the body and could become relatively inexpensive if mass-produced.

Cancerous tissue is hotter than healthy surrounding tissue and conventional methods such as infra-red thermography can detect tumours near the surface of the skin, but the new method permits checking at a much deeper body level.

If the instrument proves itself effective, after an extensive series of hospital and laboratory tests, it could become standard equipment in doctor's surgeries. Patients could be quickly and easily tested for many forms of cancer, just as they are now tested in a routine manner for heart malfunction by means of an electrocardiograph.

The treatment side of the new instrument's use would involve microwave heating of a tumour to destroy cancer cells. Tumours have a relatively poor vascular system (compared with healthy tissue) and researchers believe that a tumour will heat faster and remain hot longer than surrounding tissue because there are fewer blood vessels to carry the heat away.

The next stage in the instrument's test programme will be its use on cancers in large animals in the Norfolk, (Virginia) Medical School laboratories.

Scripts by wire at Bush House

Two mini-computers and an array of disc store units form the heart of a "scripts by wire" system now in operation at the BBC's Capital Projects Department.

Some 30 million scripts covering news stories and radio and television talks can now be distributed around the country, all by electronic means. The central newsroom contains 39 v.d.u.s and journalists dictate their stories to operators who type them into the system. Once written, the story is entered on magnetic tape and later transferred onto a megabyte disc pack drive. New material is entered into the system which can accommodate items of up to 5000 words; news stories are kept on file for seven days, current affairs stories for 14 days and general features for 100 days.

A selective "list" can be drawn up on the v.d.u. according to subject matter, or the full list of talks may be checked. On the other hand, stories which only apply to a particular part of the world may be called up for display.

The electronic distribution system is controlled by two General Automation 16/440 mini-processors. Both are in continuous operation and receive the same input, but only one provides output. If a fault occurs, the standby processor can take over immediately. Each processor is associated with a 2 megabyte fixed-head disc and a 24 megabyte disc pack drive. New material is entered onto magnetic tape and later transferred to microfiche for archive storage.

Each of the 137 v.d.u.s distributed around the building can undertake full text editing, but only those in the news, talks and features areas are free to amend stories in the central store. Hard copies are available from 85 printers strategically placed amongst the offices.

Ken Clayson, engineering manager in charge of the new system says, "The system is saving an enormous amount of time and paper and it lets us make far wider use of the material we prepare. Every one of the broadcasting sections at Bush House now has access to every script prepared here. In the days when we relied entirely on paper that was just not possible."

The hardware was provided by the data system division of ITT Business Systems to a specification set up by the BBC's Capital Projects Department.
Mullard to "axe" 900 jobs

Mullard's decision to "streamline" its tube production business will, according to a report in The Times, 16th Jan 1980, result in the loss of 900 jobs at its Durham and Simonstone Lancashire works.

The main changes, to take place over the next two years, will involve further automation and alterations to quality control departments; these moves are seen as necessary to compete with the high output of quality tubes and tv receivers from Japanese manufacturers and in the face of the development of domestic products using tv-like tubes.

The National Economic and Development Office has recently identified certain trends in the tv and components industries and a study of production costs of colour television sets in the UK, Japan, South Korea and West Germany has shown that Japan in particular gains a high cost advantage from its overall higher level of investment in advanced automated plant, superior efficiency in manufacturing and design and more rigid quality control of components.

The Mullard decision reflects an awareness of these findings and also links up with NEDO's main recommendations which include the "rationalization" of UK tv production into larger units producing five times the current number of receivers, more involvement directly with Japanese technology, to improve and introduce more new designs and to carry out more research and development.

Only about 100 of the threatened jobs will go in 1980 and Mullard says that it "intends to continue to invest substantially in the picture tube business."

Multi-I.led. aircraft instruments under test

A 4in by 3in screen incorporating more than 49,000 i.e.ds, providing a resolution of 64 lines per inch is currently being evaluated by the USAF Flight Dynamics Laboratory as part of a joint project between the USAF and the Canadian Department of Industry, Trade and Commerce.

The device is intended as a replacement for the mixture of dials and c.r.t. displays at present found in aircraft cockpits; it is computer-controlled and is designed to provide the pilot with information on various subsystems, such as navigation or weapon delivery. This information can then be called up at the flick of a switch, the data being depicted on the i.e.d. screen.

Walter Melnick, of the Flight Dynamics Laboratory says that the new display system is an advance on the c.r.t. form due to its less cumbersome nature and higher reliability - he estimates a c.r.t. display life of 500 hours and an i.e.d. display life of 10,000 hours. Furthermore, while all information can be lost in the event of tube failure, even if several thousands of i.e.ds fail, the display can still be read.

Several technical solutions to the problem were examined before deciding on the i.e.d. method, and this was eventually selected because it is adaptable to the "building block" mode of construction, where one inch squares of the diodes can be assembled into a variety of display sizes.

Bowmar Instruments, of Weybridge, are the UK representatives of the makers of the display, Optotek Ltd. of Canada.

Disobedient spacecraft

Radio contact with Voyager 1 was lost on 3rd January just after the spacecraft had been commanded to turn in space and fire thrusters for a trajectory correction. The manoeuvre apparently took place but the antenna alignment was not entirely successful. However, later in the day NASA controllers received confirmation that command signals intended to switch on the low-gain antenna and place it in a two-way reception mode, had been received and executed.

Efforts are being made to correct the antenna/Earth alignment, the problem requiring some analysis to ensure that attitude control fuel is not wasted.

Voyager 1 was launched in September 1977 and flew past Jupiter in March 1979. The spacecraft is now 660 million miles from Earth and is scheduled to encounter Saturn in November 1980. Voyager 2, a sister craft, is due to encounter Saturn in August 1981.

News in brief

The FCC is proposing to award additional frequencies for c.b. use on s.s.b. operation and may also liberalize rules on the distances c.b. stations are permitted to work over. The use of variable frequency oscillators may also be permitted.
Car to telephone service launched in Norwich

A new car telephone service, claimed by Air Call Ltd. as the first of its kind in England, was started in Norwich on the 21st January 1980.

This service, known as "interconnect", enables direct two-way communication between a car telephone user and subscribers to the public telephone network and is now available to Air Call's East Anglian customers. The company's branch manager, Derek Cunningham, says that Interconnect will be available to subscribers in addition to the existing range of services, which includes message handling, "talking bleeper" and telephone answering services.

In order to house the additional equipment required, the Norwich control complex has been moved to larger premises in the city centre, and plans have been drawn up to extend the Interconnect service to most of the company's 34 control centres during the coming year.

Car telephone users can take advantage of the new service without necessarily changing the equipment in use; the cost of all messages and inland telephone calls is included in the rental charge.

ITT researcher wins award

Paul Barton, a research engineer with Standard Telecommunication Laboratories, has received the William E. Jackson award from the Radio Technical Commission for Aeronautics (USA).

Mr Barton won the award, consisting of an honorarium and commemorative plaque, for his thesis, "Airborne Signal Processing for the Microwave Doppler Landing System," submitted for a Ph.D degree from University College, London. He graduated from Churchill College, Cambridge with an honours degree in mechanical sciences and joined STL in 1965, working with the late Alec Reeves on pulse-code modulation and electro-optic systems.

In 1971, he began work on the microwave landing system (MLS) programme, being particularly concerned with the design of the Doppler scanning system and in 1978 began the work which led to the winning thesis. He holds some 20 patents in the MLS and radar fields and is currently leading a team working on radar and adaptive systems at STL.

The award is a memorial to William E. Jackson, a pioneer in the development and implementation of the present airways, air traffic control and aviation communication systems.

News in brief

The British Amateur Electronics Club, which claims that it is the only national amateur electronics club, is seeking help from established local electronics groups, its main problem being difficulty in finding premises for meetings. The mainly scattered nature of the membership adds to the problem and if local groups are willing to welcome BAEC members to their meetings, they would be prepared to pay an affiliation fee. The chairman of the BAEC will send out a copy of a simple questionnaire to any reader who is interested enough to contact him: Cyril Bogoli, "Dickens", 26 Forrest Rd, Penarth, S. Wales.

The EIEE have the following lecture events held on the subjects "Tapes and high fidelity" from 2nd to 4th March inclusive. On Monday 28th March two conference debates will be held on the subjects "Tapes and high fidelity" and "standardization and high fidelity".

Frequency change for BBC's Ventnor Radio 3 Transmitter

In order to escape interference from the French transmitter at Caen in Normandy, the BBC's Ventnor v.f. transmitter has changed frequency (on 1st February). The previous frequency of 91.6MHz has been changed to 91.7MHz, but no change will be made to the shared Radio 1/2/4 frequencies also relayed by this transmitter.

The station is located at St. Boniface Down, on a height above the town, serving about 6,000 people in the Ventnor area and also relays the tv services of BBC1, BBC2, and ITV on 625 lines (u.h.f) and the 405-line BBC1 service. Listeners will only have to change the tuning of their receivers by a very small amount.
More frequency allocations

WARC 79 decisions for 10GHz to 275GHz in Region 1

Last month we published a list of frequency allocations, as decided at the 1979 World Administrative Radio Conference, Geneva, for radio services up to 10GHz. We now present the remainder of the frequency allocations made at WARC 79, from 10GHz up to 275GHz. This, of course, is the microwave region of the frequency allocations made at the 1959 Geneva conference for radio services up to 10GHz, as decided at the 1979 World Administrative Radio Conference in Geneva, for radio services up to 10GHz.

An outstanding feature of the present list is the large amount of spectrum space now allocated to satellites — communication, broadcasting, Earth exploration and so on. It will be seen from the key to the code letters that, of the traditional categories of terrestrial radio services (fixed, mobile broadcasting, amateur etc.), there are now seven which also have a corresponding service provided through satellites. The coming of the satellite was first recognized officially by the ITU at an Extraordinary Administrative Radio Conference in 1963 and there have been others devoted to satellites since then.

The results of a 1971 space conference were already embodied in the Radio Regulations before WARC 79 took place, and now, following WARC 79, three further ITU conferences devoted to space services have been planned or requested.

As we reported earlier, the UK Home Office had recommended that allocations for communication satellites should be increased in the 10-11GHz band. This proposal has in fact been generously implemented by a doubling of the spectrum space available. The original allocation was 500MHz, split into two separated bands at 10.95-11.2GHz and 11.45-11.7GHz, but now, as will be seen from the list, there is a new, uninterrupted 1GHz band from 10.7 to 11.7GHz in which, in fact, communication satellites are a primary service (although this band is shared with fixed and mobile primary services). In the space-to-Earth direction of communication this is a world-wide allocation. In the Earth-to-space direction, however, for Region 1 countries this band is also reserved for use by feeder links ("uplinks") to broadcasting satellites.

The needs of the maritime mobile-satellite as well as the aeronautical mobile-satellite services have been provided for and as a result these systems will be able to develop without hindrance. Also, in principle, it was agreed to provide for the feeder links to these services in the bands allocated below 10GHz. A mobile-satellite service has been introduced and frequencies have been provided for this.

Passive sensing in the Earth exploration-satellite and space research services have been identified as important activities in the future, so provision has been made for these services. Furthermore, in some parts of the spectrum where the fixed and mobile (except aeronautical mobile) services operate under a footnote provision, agreements have been reached to either limit or phase out the fixed and mobile services over a period of time with the intention of providing exclusive bands for the passive services. Increases have been made to the spectrum space allocated to Earth exploration satellites and space research. In addition, provision has been made for the operation of radars on board spacecraft in these services (e.g. in the band 35.5-35.6GHz).

Key to code letters in list

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Amateur</td>
</tr>
<tr>
<td>AR</td>
<td>Aeronautical radionavigation</td>
</tr>
<tr>
<td>AS</td>
<td>Amateur — satellite</td>
</tr>
<tr>
<td>B</td>
<td>Broadcasting</td>
</tr>
<tr>
<td>BS</td>
<td>Broadcasting — satellite</td>
</tr>
<tr>
<td>BSL</td>
<td>Broadcasting satellite feeder link</td>
</tr>
<tr>
<td>F</td>
<td>Fixed</td>
</tr>
<tr>
<td>FS</td>
<td>Fixed — satellite</td>
</tr>
<tr>
<td>IS</td>
<td>Inter satellite</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial, scientific, medical</td>
</tr>
<tr>
<td>LMS</td>
<td>Land mobile — satellite</td>
</tr>
<tr>
<td>M</td>
<td>Mobile</td>
</tr>
<tr>
<td>MA</td>
<td>Meteorological aids</td>
</tr>
<tr>
<td>MS</td>
<td>Mobile — satellite</td>
</tr>
<tr>
<td>RA</td>
<td>Radio astronomy</td>
</tr>
<tr>
<td>RL</td>
<td>Radiolocation</td>
</tr>
<tr>
<td>RN</td>
<td>Radionavigation</td>
</tr>
<tr>
<td>RNS</td>
<td>Radionavigation — satellite</td>
</tr>
<tr>
<td>S</td>
<td>Space research</td>
</tr>
<tr>
<td>SAT</td>
<td>Earth exploration satellite</td>
</tr>
<tr>
<td>SFTS</td>
<td>Standard frequency and time signal — satellite</td>
</tr>
</tbody>
</table>
Additional spectrum has been allocated to the fixed-satellite service in the Earth-to-space direction near 100GHz, keeping in mind the allocation to the broadcasting-satellite service in the band 85-86GHz (see later).

The pattern of allocations to the inter-satellite and the fixed-satellite services follow, in general, that laid down by the 1971 space conference, i.e., with the former concentrated in the absorption bands so as to take advantage of the atmospheric attenuation to provide shielding between the space and the surface (or low-altitude) systems, and the latter located in parts of the spectrum between the absorption bands.

In certain combinations of space and terrestrial services the conference concluded that there was inadequate information on sharing. Footnotes were therefore added to reflect this uncertainty and the subjects were referred to the CCIR for further study.

The three bands for direct broadcasting from satellites remain substantially unchanged. 11.7-12.5GHz is completely unchanged (and it will be recalled that 40 channels within this band were assigned at the 1977 satellite broadcasting conference – see January 1979 issue, p.41). However, the original 41-43GHz satellite broadcasting band has now been shifted slightly downwards to 40.5-42.5GHz. This has been done to give better clearance for various radio astronomy frequencies around 43GHz which are used for spectral observations of silicon monoxide. Furthermore the band is now shared with three other services – terrestrial broadcasting (on a “permitted basis”) and fixed and mobile communications (secondary basis).

The third band for satellite broadcasting, 84-86GHz, is unchanged in its band limits, but, whereas in the 1977 frequency plan written into the Radio Regulations it was exclusively for this use, it is now shared with primary fixed, mobile and terrestrial broadcasting services. (Although there is a footnote saying that these three must not cause harmful interference to broadcasting satellites to which frequencies are assigned.)

What is completely new in relation to broadcasting satellites is the set of frequencies chosen for the uplinks to them – the communication channels which convey the programme signals to the satellites’ transmitters. These were not planned at the 1977 space conference. At WARC 79 a wide range of proposals came from different countries. For example, the official British proposal was 21.2-22GHz (which the Scandinavians objected to because of rain attenuation at their northern latitudes), while the Indian proposal was 14.5-15.25GHz (which the USA and UK objected to because it conflicted with fixed communication services including military systems). In the end a world-wide compromise was found which did not conflict too seriously with the other services sharing allocations with it (see list), and this was 17.2-18.1GHz. At the same time the door was left open for two other bands to be used in particular areas. Outside of Europe and for Malta, 14-14.5GHz may be used for the uplinks, with the lower end, 14-14.4GHz, “subject to co-ordination with other networks broadcasting in the fixed satellite service”. And in Region 1, the uplinks may, as mentioned above, use the new 10.7-11.7GHz allocation which is otherwise intended for communication satellites, fixed and mobile services.

An unusual type of satellite uplink, pioneered by the IBA in Britain, is a road transportable earth station on a trailer designed for sending television outside broadcasts from any location straight up to a communications satellite (see picture in January issue, p. 42). It has already been used, in fact, with the OTS satellite. Largely through the IBA’s initiative, supported by the BBC, a decision was made at WARC 79 to allocate...
Radio and Electronic Laboratory Handbook, by M. G. Scroggie, is probably far too well known and respected to need much introduction. It has changed considerably, however, in the forty years since it was first published, having been continually revised to keep pace with accelerating change in the industry. It is now in its ninth edition, this one updated largely by G. G. Johnstone.

The plan of the book remains the same, information on measuring equipment being concentrated in the first half. Measuring techniques take up most of the second half of the book, and the already large reference section is extended for this edition: the piece on filter design is particularly useful. Throughout the text, references to the literature are lavishly scattered. The book is published in hard back at £17.99 by Newnes-Butterworths, and contains 592 pages.

Frequency Engineering in Mobile Radio Bands, by W. M. Pannell. Continuous expansion of land mobile radio communication makes it essential to plan allocations inside a frequency band in such a manner that interference is kept to a low level and that the spectrum is used to its fullest possible extent. The book is intended to help in the early stages of frequency planning, and is in two sections, the first dealing with general procedures and the second a more specific nature. Mr Pannell has many years of experience in the mobile radio field, and was responsible for the Pannell Report on future spectrum requirements for mobiles in the UK. Published in hard back, at £25.00 by Granta Technical Editions, Hargrave Lodge, 7 Brooklands Avenue, Cambridge.

Audio Equipment Tests, by Gordon J. King, is intended to demonstrate the performance of high-fidelity sound equipment to technicians, dealers and those who take an interest in the technicalities of their equipment. Each component of an audio chain from f.m. tuner (no a.m.) to loudspeaker model, complete with battery, loudspeaker as though expecting a materialization, and of malevolent infants being tranquillized by a bedtime story.

The sets described range from the Model ER-753 crystal receiver at 18 dollars to the Aeriola Grand valve detector, amplifier and loudspeaker model, complete with battery, aerial and instructions covering 150-550 at a cost of 409 dollars. In 1922, the catalogue cost 35 cents: now, it is published by The Vestal Press, 320 N. Jensen Road, PO Box 97, Vestal, NY 13850, USA at 12 dollars 50 cents, plus postage.

Entertainment Year Book

What used to be simply the Hi Fi Year Book has now been extended in scope to include reference material on colour television sets, electronic organs, video cassette recorders and television games. This is in addition to the familiar illustrated information on current audio products, including descriptions, technical data, prices (where available) and suppliers' names, addresses and telephone numbers. There are four survey articles on various audio topics. The 1980 'Hi Fi Year Book & Home Entertainment' contains over 580 pages and can be obtained from book-sellers at £3.75. Alternatively it can be obtained directly from the publishers, IPC Business Press Ltd, by sending £4.25 which includes packing and postage.
Micro-soldering!

ANTEX TCSU1 & CTC

...its the perfect kit

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model TCSU1</td>
<td>Accurate pin point temperature control between 65° and 400°C. Heating element and sensor built in tip of the iron for fast response. Interchangeable slide-on bits from 4.7 mm (3/16") down to 0.5mm. Zero voltage switching, no spikes. No magnetic field, no leakage. Supplied with miniature CTC (35-40watt) Iron or XTC (50watt). TCSU1 soldering station with XTC or CTC iron £38 (6.44). Nett to industry.</td>
<td>£9.75 (1.87)</td>
</tr>
<tr>
<td>Model CX</td>
<td>A miniature iron with the element enclosed first in a ceramic shaft, then in stainless steel. Virtually leak-free. Only 7/8" long. Fitted with a 3/32" bit. £4.20 (0.98) Range of 5 other bits available from 1/8" down to 3/64". Also available for 24 volts.</td>
<td>£4.20 (0.98)</td>
</tr>
<tr>
<td>Model X25</td>
<td>A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near-perfect insulation. Fitted with 1/8" bit and priced at £4.20 (0.98) Range of 4 other bits available. Also available in 24 volts.</td>
<td>£4.20 (0.98)</td>
</tr>
<tr>
<td>Model SK3 Kit</td>
<td>Contains both the model CX230 soldering iron and the stand ST3. Priced at £5.70 (1.49) It makes an excellent present for the radio amateur or hobbyist.</td>
<td>£5.70 (1.49)</td>
</tr>
<tr>
<td>Model SK4 Kit</td>
<td>With the model X25/240 general purpose iron and the ST3 stand, this kit is a must for every toolkit in the home. Priced at £5.70 (1.49)</td>
<td>£5.70 (1.49)</td>
</tr>
<tr>
<td>Model SK1</td>
<td>This kit contains a 15watt miniature soldering iron, complete with 2 spare bits, a coil of solder, a heat link, and a booklet, 'How to Solder'. Priced at £5.95 (1.53)</td>
<td>£5.95 (1.53)</td>
</tr>
<tr>
<td>Model MLX</td>
<td>The soldering iron in this kit can be operated from any ordinary car battery. It is fitted with 15 feet flexible cable and battery clips. Packed in a strong plastic envelope it can be left in a car, a boat or a caravan ready for soldering in the field. Price £4.20 (0.98)</td>
<td>£4.20 (0.98)</td>
</tr>
<tr>
<td>ST3 Stand.</td>
<td>A strong chromium plated, steel spring screwed into a plastic base of high grade insulating material provides a safe and handy receptacle for all ANTEX models soldering irons. Priced at £1.50 (0.57)</td>
<td>£1.50 (0.57)</td>
</tr>
</tbody>
</table>

VAT + P&P as shown in brackets ()

Antex Ltd. Freepost, Plymouth PL1 1BR Tel. 0752 67377
the batteries need replacing and to show if
the input is too high.
To measure an unknown value, simply
select the correct function on the large
rotary switch and take the reading.
However, should you want to take comp-
parative readings on the same range, a 'freeze'
button is incorporated which locks the range.
Press the button again to return to auto-ranging.

Our new auto-ranging
digital multimeter
won't take a second

The trouble with most auto-ranging
DMM's is that they are comparatively slow
to respond. Which let's face it rather defeats
the object of an auto-ranging facility.
Avo have changed all that with the new
Avo DA117 which has a
response time of less than a
second on d.c. and resistance
ranges. Indeed, even on the
a.c. range the DA117 will
respond in less than three.
The Avo DA117 has
many other fine features.
A large, easy-to-read
3½ digit liquid crystal display with automatic
indication of decimal point and the unit of
measurement – so reading errors are virtually
eliminated. There is automatic polarity indication
for d.c. measurement, visual displays for when

There is also a range-up or range-down
facility incorporated for manual range selection.
So now you have a choice of digital multi-
meters from Avo. The DA116 – for accurate
manual operation; and the
DA117 which does the
same thing automatically.
Contact your usual
Avo distributor for further
details, or call us direct.
We'll be quick to respond.

Avo Limited,
Archcliffe Road, Dover,
Kent CT17 9EN.
Tel: 0304 202620. Telex: 96283.
WW — 100 FOR FURTHER DETAILS
Thorn Measurement & Components Division.

You'll never meet a better meter
Maxwell's equations revisited

A critique of orthodox electromagnetic theory

by Ivor Catt, CAM Consultants

"It was once told as a good joke upon a mathematician that the poor man went mad and mistook his symbols for realities; as M for the moon and S for the sun." Oliver Heaviside, Electromagnetic Theory, 1893, volume 1, page 133.

... the universe appears to have been designed by a pure mathematician.

Faraday's Law of Induction, \(\nu = -\frac{d\Phi}{dt} \), seems to imply:
1. A causality relationship; the rate of change of magnetic flux through a surface causes a voltage around the circumference of the surface.
2. A reluctance, or resistance to the change of magnetic flux indicated by the minus sign.

A careful analysis of this one equation will give an insight into the vacuous nature of contemporary mathematical operations in electromagnetic theory. First let us discuss the minus sign, which leads us to the idea of a Lenz's Law reluctance, or resistance to the change \(\Phi = \frac{d\Phi}{dt} \).

We shall see that a minus sign is a solution to these equations. It is reasonable to do so, because Newton's Laws are close to common sense and the obvious. Common sense will prevent absurd conclusions from creeping into a Newtonian theoretical framework, even though the mathematical formulation of Newton's Laws has always been slovenly in this respect.* (Another perhaps permissible slovenly aspect is the use of the \(= \) sign, for numerous different, mutually contradictory meanings.)

Maxwell's Equations are not in the same class. Common sense will not save us from absurdity and nonsense if our initial formulations are ambiguous or wrong.

Let us consider an electromagnetic wave front advancing at the speed of light. When the step (or more accurately ramp) passes, as shown here

\[
\frac{\partial H}{\partial x} \text{ is negative. However, } \frac{\partial H}{\partial t} \text{ for the step is positive. To get the algebra right, we are forced to conclude that }
\]

* Even the brilliant philosopher Ernst Mach failed to notice this anomaly.

The text books say the "solution" to this pair of equations is a sine wave! See references 3 to 7. (In fact, almost anything is a solution to these equations.)

At this stage, the whole subject starts to look sophisticated and profound. Really it is neither.

Let us regard the velocity of the train \(\frac{dx}{dt} \) as positive. This creates an anomaly when we want to write the equation

\[
\frac{\partial H}{\partial x} \frac{\partial H}{\partial t} (1)
\]

It would be absurd to suggest that there was a causality relationship between \(\frac{\partial H}{\partial x} \) and \(\frac{\partial H}{\partial t} \). They are both descriptions associated with the passage of the train. Since Newton, it is accepted that a body continues in its state of uniform motion without a continuing cause, or push. (However, this principle is taking a long time to be applied to electromagnetic waves.)

Now we regard the velocity of the train \(\frac{dx}{dt} \) as positive. This creates an anomaly when we want to write the equation

\[
\frac{\partial H}{\partial x} \frac{\partial H}{\partial t} (1)
\]

because the left hand side product is negative when the right hand side is positive, as in the case of the leading face of the train.

This kind of absurdity, or anomaly, is ignored when Newton's Laws are considered. It is reasonable to do so, because Newton's Laws are close to common sense and the obvious. Common sense will prevent absurd conclusions from creeping into a Newtonian theoretical framework, even though the mathematical formulation of Newton's Laws has always been slovenly in this respect.* (Another perhaps permissible slovenly aspect is the use of the \(= \) sign, for numerous different, mutually contradictory meanings.)

Maxwell's Equations are not in the same class. Common sense will not save us from absurdity and nonsense if our initial formulations are ambiguous or wrong.

Let us consider an electromagnetic wave front advancing at the speed of light. When the step (or more accurately ramp) passes, as shown here

\[
\frac{\partial H}{\partial x} \frac{\partial H}{\partial t} (1)
\]

In fact, the last two equations (3), (4) are meaningless. If the front end of the high speed train were pointed, sloping out sideways as we step upwards, and \(w \) were the term given to width (as \(H \) stands for height), exactly the same pair of equations could be constructed.

\[
\frac{\partial w}{\partial x} = -\frac{e}{c} \frac{\partial \Phi}{\partial t} (3)
\]

\[
\frac{\partial H}{\partial x} = -\frac{\mu}{c} \frac{\partial \Phi}{\partial t} (4)
\]

As with e-m theory, we could conclude with equal validity that a train's height (and width) must vary sinusoidally along its length, making our trains look like the Loch Ness monster, or more accurately, like a row of short sausages, as shown here.

It is shocking that this nonsense has survived for a century at the core of a subject as crucial as electromagnetic theory. We see now that mathematical formulation of e-m theory, far from making the subject more rigorous, has
made it ludicrous and false. We see that the mathematicians are incompetent where physical reality is concerned and hide their incompetence and confuse others by conjuring up nonsensical, interrelated formulae.

When Hertz established that electromagnetic waves existed, Maxwell's equations should have been re-examined, and the large rubbish element removed. Instead physically ignorant mathematicians took over, piling garbage on garbage, frightening away those with real insight into the subject—the latter-day Faradays.

Those who try to build extensions, or additions to, the House of Newton should not assume that since the foundations were good enough for Newton's simpler theory, they are strong enough to support their own more complex constructions. Minkowski's failure to re-examine the foundations of Newton, in particular his assumption that velocity is positive and the passage of time is positive, makes his constructions useless in the same way as Maxwell's equations are useless.

In the Minkowski sense time really flows from $+\infty$ to $-\infty$, not, as he thought (and our clock faces, with their ascending sequence of numbers, think), from $-\infty$ to $+\infty$. Velocity, being the gaining of distance in return for the loss of time, is negative. This points to a fundamental difference between space and time, and means that the "space-time continuum" as Minkowski formulated it is bogus. At best, we see his pronouncements as oracular, similar to the answer that Delphos gave when being asked about the sex of an unborn child, "Girlnboy". This remark could well be interpreted as true, but really it has no content.

Einstein failed to consider the problem of the sign of time and of velocity. Also, he never succeeded in fighting his way through the mass of mathematical garbage surrounding electromagnetic theory.

References

Impedance mismatching

Thus, for maximum power transfer efficiency from the Norton source, the load must be such that $R_L/R_s \to 0$ (the opposite of the voltage source case). A similar set of arguments to those used above can be used to show that the expression for η is meaningless unless the actual circuit is a simple current source with source impedance.

Despite the fact that the Thevenin/Norton equivalent sources do not allow calculation directly of the transfer efficiency, it is perfectly true that to attain maximum power transfer into a load, the load impedance should be chosen to match the Thevenin or Norton source impedance (they are the same) but to say that this means 50% of the power from the source is lost in the source resistance is in general not true; often the power loss in the source resistance is higher!

Despite the cautions outlined in this paper the notion of transfer efficiency is not without its uses, since a number of frequently encountered circuits behave as true Thevenin or Norton circuits; for example, the common emitter amplifier shown in Fig. 5. Neglecting the bias-resistance loading effects and assuming that all capacitors are short circuits, the mid-band voltage gain is given approximately by

$$A_v = \frac{\beta_2}{\beta_1} \left(\frac{R_{e2}}{R_{e1}} \right)$$

which occurs when the input impedance of T_{r2} is much less than the collector resistance of T_{r1}, i.e. $\beta_2 R_{e2} < R_{e1}$. The output of T_{r1} is a current source of impedance R_{e1} and the Norton transfer efficiency result obtained above tells us that $R_L/R \to 0$ for good transfer efficiency, i.e. $\beta_2 R_{e2}/R_{e1} < 1$.

In conclusion, I would stress that extreme care should be taken to interpret the components of a Thevenin or Norton equivalent circuit correctly especially in deriving expressions for losses in power transfer.
Microwave intruder detector — 2

Design with good interference rejection and noise monitoring

by K. Holford, C.Eng., Philips Research Laboratories

This design provides a simple but effective circuit which uses a cycle counting scheme to prevent the alarm being triggered by short movements or pulses. The circuit has excellent interference rejecting properties. A noise monitoring circuit is described that allows the alarm to be set up easily and reliably in terms of a low false-alarm probability.

The complete intruder alarm circuit designed for use with the Mullard CL8960 module is shown in Fig. 9. It requires a nominal 12 volt power supply able to produce at least 300mA during switch-on but in general less than 200mA unless a high current relay is used (about 160mA plus the relay). This supply can be a car battery with the usual voltage variation during charging such as up to 16 volts. The minimum voltage is safely 11 volts with a 7.5 volt supply (or 10.5 volts with a 7.0 volt setting). With a selected 748 as in the text, this voltage is reduced by up to another 0.5 volts. However, with supply ripple, these represent an alarm risk level and should be avoided.

Supply ripple within these restrictions can be up to 1V pk-pk without affecting performance and some prototypes have tolerated 5V pk-pk with a 13 volt supply and a Vg of 7.5 volts.

The radar sensitivity is limited entirely by that of the microwave module, afterwards just called a module, rather than the circuit design. However, to realise this, due regard must be paid to the use of short screened leads at the amplifier input, because of the gain the circuit has to 100Hz and 1000Hz signals.

Two 741 op-amps are used as the main Doppler amplifier. These can be a single (twin) 747, if required. Thus the complete circuit uses one 1.5 watt power transistor, four small transistors and three cheap I.C.s. Much of the circuit is directly connected which saves on components.

The microwave module requires some cautionary remarks because the mixer contains a diode of extremely small electrical proportions so as to respond to the 10.687GHz frequency. If the mixer, or its lead to the amplifier, is touched with a measuring lead or an object which has not been grounded to the module metalwork it could be destroyed by static discharge. If a shorting clip across the mixer is supplied leave it in situ until connections have been made.

The microwave module requires a nominal 12 volt power supply and a Vg of 7.5 volts. However, with supply ripple, these represent an alarm risk level and should be avoided.

Connect the module to the amplifier circuit as follows. Use a screened input lead and make the amplifier connection first. The braid is connected to 0V at only the amplifier end. Keep exposed unscreened ends down to about 12mm. Next make the amplifier 0V connection to the module 0V metalwork. Then clip a lead with crocodile clips between the soldering iron bit and the module metalwork to equalize potentials. If the iron is not earthed, make a second lead between the module and earth. The lead from the amplifier which is to be connected to the mixer should now be touched on the module metalwork just prior to connection. Maintain one finger on the metalwork while the joint is being made to discharge and prevent the build-up of static also on the solder. Remove any shorting clip while the metalwork is being contacted and after making the connections.

Fig. 9. Components: Tr1, BC557, Tr2, BC547 or BC107, Tr3, BC135 or BFY51, with 50°C/W fin. Capacitors: Bead tantalum maximum leakage C2, 2μA, C1, 1μA at tmax. Resistors: all 0.1W, R1 and R3 are 2%, the rest 5% or could be 10%.

Connect the module to the amplifier circuit as follows. Use a screened input lead and make the amplifier connection first. The braid is connected to 0V at only the amplifier end. Keep exposed unscreened ends down to about 12mm. Next make the amplifier 0V connection to the module 0V metalwork. Then clip a lead with crocodile clips between the soldering iron bit and the module metalwork to equalize potentials. If the iron is not earthed, make a second lead between the module and earth. The lead from the amplifier which is to be connected to the mixer should now be touched on the module metalwork just prior to connection. Maintain one finger on the metalwork while the joint is being made to discharge and prevent the build-up of static also on the solder. Remove any shorting clip while the metalwork is being contacted and after making the connections.

Should it be necessary to measure the mixer direct voltage while it is working contact the metalwork beforehand and while the leads are being handled; but make the 0V connection first. To ensure no static, fit a 10kΩ resistor to the end of the measuring lead and touch on the metalwork just prior to the measurement. Mixer failure is evident by loss of sensitivity and by little or no direct voltage when passing a direct current, such as the 40μA bias current.
Circuit description

The circuit supplies about 40µA of current via Rf for mixer d.c. bias. Mixer bias will be about 300mV with no microwave energy and ideally about half this with the optimum mixer power. However, voltages from about 90 to 270mV with a 300mV diode will only cause a 1.5dB loss in signal-to-noise ratio at the extremes but require 5dB more gain for the same signal at the upper bias point. Observe the precautions mentioned when measuring mixer voltage to avoid static discharge during measurement it is best to point it upward and have no obstruction in front for at least 300mm. Covering the module requires special material (see data sheet) which is near-transparent to microwaves.

A hand moved slowly at about 150mm in front of the module should move the bias by a few tens of mV and confirm in front of the module should move the microwaves. A 2mm screw can be used to reflect the diode will mean a useless relay unless it is set by 2% tolerance resistors R2 and R3. The design centre voltage from IC1, and IC2, the design centre voltage from IC1, and IC2, is 3.9 to 4.4V with a 7.5V line and roughly in proportion for other voltages. Voltages about 4.8V can in frequently occur due to end-of-spread leakage current in C7 and C8 and if this happens a selected component should be used. An inaccurate d.c. level will limit the output voltage swing from IC4. Leakage has limited the value of these capacitors and they would otherwise have been increased by a factor two.

The supply voltage to the amplifiers is also used for the Gunn microwave oscillator in the module and so should lie between 7.25 and 7.75V. Lower voltages than 7.0V may not allow the oscillator to work properly, although will cause no damage. Voltages above 8.0V risk damage; the life at 10V can be just a few seconds. Thus the 7.5V line should be checked before connection.

Using a 7.5V zener diode with IC3 will usually produce a voltage within the above spread. Lower voltages can be corrected using the link AF, with a second resistor of higher value across FB. For instance a 10kΩ resistor will raise the voltage by about 10%. No adjustment exists for too high a voltage other than changing the diode. Alternatively a 6.8V zener may be fitted, in which case the resistor FB will lie between about 3.9 and 18kΩ.

The module produces audio frequencies in response to radial movement, the relationship being 32Hz per 1 mile/h. Movement across the 140° beam will produce a much lower frequency, or even zero at perfect constant radius with no change in target reflection properties during the movement. Range depends on the target size and is about 10 metres or could be more if C7 were increased and R7 decreased. But a high

module, Fig. 10, at a position in line with the centre web, such as between 4 and 8mm out from the shroud-to-module interface joint (without the plastics.

The intended optimum mixer power will occur naturally if the module is bolted to a 160 x 43mm aperture in a 1/16in plate, such the side of a box, provided the plate is sandwiched between the front shroud, Fig. 10 and the rest of the module. The shroud and module are supplied together.

*The intended optimum mixer power will occur naturally if the module is bolted to a 160 x 43mm aperture in a 1/16in plate, such the side of a box, provided the plate is sandwiched between the front shroud, Fig. 10 and the rest of the module. The shroud and module are supplied together.

![Fig. 10. Mixer power can be adjusted by-fitting a 2mm screw in shroud](image-url)
Setting the sensitivity

Setting the sensitivity can be done using an oscilloscope, but the noise monitor circuit of Fig. 11 is strongly recommended. The alarm starts to operate when the signal output from IC2 reaches 1.5V pk-pk and 2.0V pk-pk will usually lead to an alarm. The sensitivity should be set for no more than 0.5V pk-pk from IC2 to leave a margin for unforeseen events. This noise level will be entirely due to extraneous disturbance as the noise level of the alarm itself in a perfectly "quiet" room with the circuit values shown will be several times less than this.

Setting the sensitivity without either an oscilloscope or the circuit of Fig. 11 is more difficult if it is important that a false alarm should not occur. By shunting R12 with 100kΩ the memory can be shortened and an indicator l.e.d. can be fitted to the relay contacts and a walkabout test carried out. Fitting the 100kΩ will shorten the memory time to five seconds to 37% of previous movement stored in C7. However, to be sure that there will not be a build up to an alarm with the 100kΩ removed the gain of the amplifiers really needs to be increased by 3 or 4 times or more as a test. This could be done by reducing R4 to, say, 1kΩ and increasing C2 to 22µF to maintain the low speed response, but precautions must be taken to see that an alarm is not false due to the introduction of hum with long unscreened wires and that the leakage of the 22µF does not cause the voltage out of IC2 to go above 5V.

It is much better, and there will be more reliability, to build the noise monitoring circuit given. This will also monitor the MID environment and give warning that the safety factor is insufficient.

False alarms

The MID circuit should be well screened from 50Hz pick-up and preferably in a metal box with a good fitting lid. There should be no mains transformer nearby to induce 50Hz voltages. The alarm should not be used in the same room as fluorescent lamps while they are on as the gas in these ionizes at 100Hz to become a fluctuating reflector. Fans inside equipment, having apertures through which microwave energy can pass, will cause signals. These apertures can be screened with gauze of, say, not more than 6mm mesh size, and tested by placing the radar fairly close. The alarm sensitivity should not be greater than necessary bearing in mind that radar signals grow very quickly as range is shortened. The rate is four times in voltage per range halving and so if a target is detected occasionally at one range it will be detected most positively at half that range.
Flat metal surfaces should be treated as mirrors via which the radar may be able to see a movement or fluorescent lamps. Radar signals pass through glass, although weakened, and through dry plasterboard. Any testing must include walking outside windows.

Short flapping movements can lead to an alarm. A flap of less than about 14mm can give rise to one pulse into C7, and an extra pulse for each 14mm approach and recede travel.

Movement across the beam has less effect than when radial and may be used to advantage in the siting of the radar.

Circuit construction

In constructing the circuit treat it as you would a high gain audio amplifier. Screen the input lead and mount the circuit preferably inside a metal box with just the business end of the module protruding. Avoid earth loops and don't spread out the circuit. Insulate the box from the circuit and connect to the 0V line by only a single connection. Ideally the module metalwork would be insulated from the box, but if this is not so the module metalwork is already 0V and no other 0V connection should be made to the box.

If the box is bonded to earth, as preferred, leave the power supply floating so as to be earthed via the 0V and the box. Preferably use the same bolt to earth the box as used for the 0V connection inside the box. If both must have separate earth wires do not use the box as a conductor for 0V, nor take the earths for the box and that of the power supply to two different ground points.

Avoid long leads in circuit wiring associated with transistor connections because these high frequency devices can produce h.f. oscillation. In the case of Tr4 a capacitor of lNf is fitted across it and close to it to prevent this being caused by the relay inductance. The 0V lead from the regulator and IC3 is three separate leads to each part of the circuit to avoid possible earth loop problems.

Apart from the 2% tolerance resistors R7 and R3, which set the d.c. working point of the i.c.s resistor tolerance is not critical and 5% or even 10% can be used if they must.

Transistor Tr3 dissipates about 1.5 watts and requires a small heatsink of 50degC/watt or better. This could be a fin of say 15 x 25mm or an area of printed board copper of say 12mm square, and could have the transistor bolted to it. In each case use heatsink compound or silicon grease in the joint.

The microwave module can be obtained from RS Components who will also send out a licence form with it. Unfortunately they do not deal more directly with stockists - ming themselves into groups may be a better approach and obtain them for about £25 plus v.a.t.

The open ends of the microwave module should preferably be covered to keep out dust which may eventually degrade performance. However, such a cover must not reflect appreciable microwave power or this will upset the mixer working. A simple and effective covering is to sandwich a very thin polythene membrane between the module shroud, Fig. 10, and the rest of the module. Ordinary plastic bag material is suitable; the thinner the better. A capacitor of about 10Nf should be soldered across the Gunn connection to the module metalwork to prevent high frequency oscillation on the Gunn supply lead due to the negative resistance of the Gunn diode.

Microwave intruder alarms are required to be licensed so that the Home Office is aware of their location should there be an interference problem with other equipment. A licence costs £1.40 and last for 5 years and is called a Telapproach Licence. Normally only finished equipment is approved as a production equipment. However, as the microwave module is set at the factory to meet Home Office requirements, the Home Office will issue a licence on the understanding that the frequency-setting screws on the module are not disturbed from their factory settings and the equipment is operated only indoors. When applying for a licence the Home Office will issue a licence on the understanding that the frequency-setting screws on the module are not disturbed from their factory settings and the equipment is operated only indoors.

Internal photograph of demonstration model shows circuit board using Fig. 9 circuit only.

![Microwave Intruder Alarm Circuit Diagram](image-url)
Provided that the frequency setting is not disturbed the possibility of interfering with other services is extremely remote. Some mutual interference with another alarm in the vicinity is a possibility where the two microwave frequencies drift through each other to produce a spurious signal. Where two must be operated in these circumstances it is normal practice to install as pairs having their frequencies staggered by about 5 MHz.

False alarm confidence indicator

The intruder alarm circuit of Fig. 9 seems to be about the simplest that can be produced and still achieve the standard considered necessary in a microwave intruder alarm. But unless it can be readily set up to work as intended with a low false alarm risk, it is likely to remain a novelty. Thus some attempt should be made at obtaining a setting up and monitoring circuit for completeness.

Basically what is needed is an amplifier with about five times voltage gain to follow the last amplifier of the previous circuit and which will show by means of an i.e.d. whether the noise level of the MID, with its chosen setting of sensitivity, is too high to be reliable as in the main part of the MID circuit. This would not only monitor the noise due to the alarm circuits themselves but also the environment in which the alarm worked.

There are really two requirements. One for a quick response for setting-up the installation, and a second which allows the equipment to be monitored to see that the noise level stays within safe limits. The monitor should have an amplifier but ideally should also be followed by indentical bucket counting as in the main part of the MID circuit. Furthermore, the long-term monitor should have an i.e.d. indicator which stays on once it is lit until reset manually with a push button.

A circuit with a two-way switch, S\text{p}, is shown in Fig. 11 for these purposes. It has been built and tested on a one-off basis and worked extremely well. The connections M1 to M4 go to the similarly marked points on the MID Fig. 9. As shown the switch is in the setting-up mode and the values of R\text{p} and C\text{p} are 220 kQ and 4.7 \mu F for quick response and extinguish. When the switch is thrown these are increased to approximately 1 M\Omega and 4.7 \mu F, as in the main MID circuit. Also the capacitor discharge resistor is taken to the collector of Tr\text{p}. The i.e.d. then locks-on and the reset button has to be pressed to extinguish it. The lock-on mode may also be preferred for setting up, as this can then be done by one person; in which case S\text{p} should just short out the 820 kQ from Tr\text{p} collector.

Setting up the MID is now easy. Check that the monitor is working by walking in the protected area. Turn the

<p>| COMPONENTS |</p>
<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Value</th>
<th>Rating</th>
<th>Tol. %</th>
<th>Make</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>All carbon</td>
<td>CR16</td>
<td>100 Ω</td>
<td>±20</td>
<td>Mullard</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>Variable</td>
<td>90H</td>
<td>47 kΩ</td>
<td>...</td>
<td>(AB Metal)</td>
</tr>
<tr>
<td>8</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>12</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>13</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>14</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>R\text{m}</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>R\text{M}</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>16</td>
<td>Noise monitor</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>17(R\text{p})</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>18</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>19</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>20(R\text{p})</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>21</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>22, 23</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>24</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>25</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>C1</td>
<td>Electr. LV</td>
<td>015 90001</td>
<td>1 μF</td>
<td>63 V</td>
<td>+80</td>
</tr>
<tr>
<td>2</td>
<td>Tantalum</td>
<td>101-793</td>
<td>4.7 μF</td>
<td>35 V</td>
<td>±20</td>
</tr>
<tr>
<td>3</td>
<td>Ceramic</td>
<td>630 02472</td>
<td>4.7 μF</td>
<td>100 V</td>
<td>±10</td>
</tr>
<tr>
<td>4</td>
<td>Tantalum</td>
<td>101-838</td>
<td>22 μF</td>
<td>16 V</td>
<td>±20</td>
</tr>
<tr>
<td>5</td>
<td>Ceramic</td>
<td>630 02472</td>
<td>4.7 μF</td>
<td>100 V</td>
<td>±10</td>
</tr>
<tr>
<td>6A, 6B</td>
<td>Ceramic</td>
<td>789 02223</td>
<td>330 kΩ</td>
<td>820 V</td>
<td>...</td>
</tr>
<tr>
<td>22</td>
<td>Ceramic</td>
<td>630 02102</td>
<td>16 V</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>23</td>
<td>Ceramic</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Voltage rating of capacitors is that of components used by author. They need be no more than 16 V in practice.
sensitivity to maximum, set the monitor switch as shown and carry out tests by walking outside windows etc., thumping walls to simulate vibration (and therefore possible MID movement) and see if the l.e.d. can be made to indicate. If the l.e.d. indicates or the sensitivity is higher than needed, reduce the sensitivity.

In the setting-up mode the circuit responds much faster than the main MID circuit and also has less memory time, which speeds the setting-up process. Having established a safe sensitivity setting, it remains to check that the MID is sensitive to an intruder. In doing this there is no need to be too critical as signals increase in voltage by a factor of four each time range is halved. Thus occasional detection at one range becomes most positive at 70% of that range.

It is a good idea to mount the l.e.d. outside the protected area, so that with the monitor switched to the long time constant, the safety factor can be monitored without intruding the protected area. Any tendency to approach a risk situation will be latched in by the l.e.d. staying on until reset. In the case where the MID is set to sound an alarm for five minutes and stop if there is no further movement, it is worth fitting a second latched l.e.d. by the side of the first to show that the main MID circuit has alarmed. This will help sort out the situation where the monitor l.e.d. is latched. For instance, was this due to an intruder or a noise problem? If the main MID indicator is out then it is most likely, though not certain, that it is an interference problem to be aware of.

The above setting-up does not cover the case where the MID appears to have a safe setting but in fact is close to making the l.e.d. indicate and so a second attempt has to be made to get it correct; after perhaps one day seeing the l.e.d. indicating. This would need some two-stage gain control so that the alarm is first set up and then the gain is reduced even more to ensure a once-only setting up. An alternative, well worth considering, is to give the monitor circuit a higher gain in the setting-up mode than in the monitor mode. Perhaps seven times for setting up and four as a monitor. The gain is \(1 + \frac{R}{r}\) and the reader can choose the value of \(R\) to suit.

One can carry on increasing the complexity of MID's almost indefinitely. For instance, a clock could be included to show the time of the intrusion. But the above system in my opinion is the least that should be provided in any professional equipment. A great advantage of such monitors is that it allows the MID to go on test for a few days without being connected to an alarm bell.

For a long time there has been a need for this type of monitor circuit. True an oscilloscope can be used to look at the noise level in a particular installation, but this is no substitute for proper monitoring. Poor design in the past has been one reason for the growth of companies which now intercept alarm calls before passing these on to the appropriate security people. Of course, the problem of protecting a warehouse, where the roof may rise and fall in the wind, is much more difficult than a house or shop, and such problems may be helped by a security house who know about the difficulty. So would a wind meter which turned down the sensitivity in a storm.
NOW AVAILABLE IN BRITAIN!

A comprehensive range of precision instruments suitable for test and research purposes in schools, laboratories and factories as well as in service departments handling consumer electronics. Developed and perfected in Denmark by the Bang & Olufsen Instruments Division, this test equipment is already widely used throughout Europe.

1. RV11 Voltmeter/Multimeter. A highly versatile instrument which, when used with its probe accessories, allows measurement of temperature, frequency, DC high voltage, RF signal voltage etc. in addition to its standard readings of DC and AC voltage from 0.2mV to 1000V and resistance from 1Ω to 50MΩ. AC bandwidth to 1MHz. Automatic polarity indicator.

2. RV9A Voltmeter, with fully automatic and manual selection of 100mV to 316V AC and 10Hz to 10MHz. Easy-to-read scale and illuminated range indicator. Doubles as a measuring amplifier: bandwidth 10MHz ± 3dB, gain -50 to +60dB in 12 steps.

3. Stabilised DC Power Supply from model SN14 (0-20V DC/0-2A) or SN15 (0-50V DC/0-1A). Both offer high accuracy regulation with extremely low ripple and noise.

4. TG7 A low-distortion RC oscillator for testing high-specification AF amplifiers. Provides both sine and square waves. Output adjustable by push-button in 10dB steps.

5. WM2 Wow/Flutter meter. Professional standard instrument for record players and tape mechanisms. Separate filters for wow and flutter measurement. Analog outputs for oscilloscope, pen recorder, analyser etc.

6. AM1. AF Monitor/Wattmeter/AC Voltmeter. Measuring range 10mW-140W/4Hz-500kHz.

7. AS A5. Attenuator for unstepped attenuation (4-60dB) of signal voltage. Effective up to 1GHz.

Full details and prices of these and other high quality test instruments are available on application to the Instruments Division, Bang & Olufsen UK Limited, Eastbrook Road, Gloucester GL4 7DE. Telephone (0452) 21591.

Bang & Olufsen

WW - 081 FOR FURTHER DETAILS
Top marks in one clear sweep.

You'd expect a Sweep Function Generator from Feedback to contain a lot more features for your money. And you'd be right — the SFG606 with its crisp frequency marker does just that.

It sweeps up to 4 decades of frequency — bi-directionally. So you can avoid problems of transient effects. It maintains low signal distortion with absolute precision over the entire sweep range. It features a choice of decade or octave sweep — so it's ideal for narrow band analysis. It provides sine, square or triangle outputs over the frequency range 0.01Hz to 1MHz.

And with that beautifully sharp, fine line frequency marker that gives you accurate determination of spot frequency on the display, the SFG606 really does score top marks. Read all about the SFG606 and all its companion test instruments in the Feedback 600 range. Send to Feedback for literature today.

Or contact our distributors

Feedback Instruments Limited
P.O. Box 19, Orchard Road, Royston, Herts. SG8 5RH.
Telephone: Royston 4514.

The new SFG606 passes even the testiest tester's test.
Microelectronics and the Third World

An argument against labour intensive technology for less developed countries

by S. Jacobsson Research Policy Institute, University of Lund, Sweden

Microelectronics based technologies are now spreading into economies with already high unemployment levels. After discussing the possible implications of this technical change for employment in these countries, the author argues against the widespread view that the solution to the problems of the less developed countries lies in labour intensive manufacturing. Human labour has natural limitations and cannot match the abilities of the new electronic machines and the superior technologies that result from them.

Concern about the effect of microelectronics on future employment is now strengthened by the fact that microelectronic based technologies are being diffused into economies with already high unemployment levels. In the OECD (Organization for Economic Co-operation and Development) area the level of unemployment in the second half of the 1970s was the highest ever since the second world war and, more importantly, it stayed at a high level also in the post-recessionary period of 1975-8. While this situation in the OECD area is serious enough to warrant more attention than is given to it today, it is nevertheless rather insignificant in comparison with that of the less developed countries (LDCs). In the rest of this article I shall outline some possible effects of technical change induced by the diffusion of microelectronics on the employment situation in these economies.

The prevalent view on the evolution of the employment structure in the development process has suggested that the manufacturing sector would gradually absorb the rural labour force and transform the employment pattern in LDCs into something similar to that which prevails in the industrialized world of today. Table 1 gives a rather interesting perspective on this hypothesis. (A similar table is found in Stewart (1978).) It shows that, on the basis of past trends, not even the yearly addition to the labour force has been absorbed by the expanding manufacturing sector in any of the countries. Indeed, apart from the Republic of Korea, the jobs provided by the manufacturing sector were extremely inadequate in relation to the number of jobs required as a result of only the growth of the labour force, not to mention the already vast number of unemployed. (The figure of 1 billion has been mentioned by the ILO.)

Now it seems reasonable to ask whether this inadequate employment generation potential will prevail also in the future and, if so, what implications will it have. While there are several factors which may determine the answer to this question, e.g. rate of population growth and capital accumulation, we shall deal with only one factor, namely technical change, as this is the one most strongly associated with the diffusion of microelectronics.

The overwhelming majority of the world's technology is produced in the OECD area and there is nothing that points to any significant reduction in the LDCs' technological dependence on the developed countries in the future. What happens here is therefore of greatest relevance for the LDCs.

In Table 2 we have reproduced data on trends in manufacturing output and employment in the 'EEC-five' countries. (The same trends exist also in Britain; see Clarke (1979).)

The table reveals that in the postwar period and in particular since the early 1960s, there has been a strong downward trend in employment generation for a given rate of change in output. While the data covers only the period up to the 1973 'oil crisis', the trends have continued also in the post-recession period. Thus, the manufacturing output did not only recover but increased after 1975, while manufacturing employment has fallen in absolute numbers in most OECD countries.

While part of the change in labour input versus output can be explained by a structural shift of relatively labour intensive processes to the LDCs, for example in garment manufacturing, the magnitude of the change strongly suggests that the figures reflect an increased absorptive potential of the manufacturing sector will decline even further in the future.

The table reveals that in the postwar period and in particular since the early 1960s, there has been a strong downward trend in employment generation for a given rate of change in output. While the data covers only the period up to the 1973 'oil crisis', the trends have continued also in the post-recession period. Thus, the manufacturing output did not only recover but increased after 1975, while manufacturing employment has fallen in absolute numbers in most OECD countries.

At the time, it is nevertheless rather insignificant in comparison with that of the less developed countries (LDCs). In the rest of this article I shall outline some possible effects of technical change induced by the diffusion of microelectronics on the employment situation in these economies.

The table reveals that in the postwar period and in particular since the early 1960s, there has been a strong downward trend in employment generation for a given rate of change in output. While the data covers only the period up to the 1973 'oil crisis', the trends have continued also in the post-recession period. Thus, the manufacturing output did not only recover but increased after 1975, while manufacturing employment has fallen in absolute numbers in most OECD countries.

While part of the change in labour input versus output can be explained by a structural shift of relatively labour intensive processes to the LDCs, for example in garment manufacturing, the magnitude of the change strongly suggests that the figures reflect an increased absorptive potential of the manufacturing sector will decline even further in the future.

The table reveals that in the postwar period and in particular since the early 1960s, there has been a strong downward trend in employment generation for a given rate of change in output. While the data covers only the period up to the 1973 'oil crisis', the trends have continued also in the post-recession period. Thus, the manufacturing output did not only recover but increased after 1975, while manufacturing employment has fallen in absolute numbers in most OECD countries.

While part of the change in labour input versus output can be explained by a structural shift of relatively labour intensive processes to the LDCs, for example in garment manufacturing, the magnitude of the change strongly suggests that the figures reflect an increased absorptive potential of the manufacturing sector will decline even further in the future.

The table reveals that in the postwar period and in particular since the early 1960s, there has been a strong downward trend in employment generation for a given rate of change in output. While the data covers only the period up to the 1973 'oil crisis', the trends have continued also in the post-recession period. Thus, the manufacturing output did not only recover but increased after 1975, while manufacturing employment has fallen in absolute numbers in most OECD countries.

While part of the change in labour input versus output can be explained by a structural shift of relatively labour intensive processes to the LDCs, for example in garment manufacturing, the magnitude of the change strongly suggests that the figures reflect an increased absorptive potential of the manufacturing sector will decline even further in the future.

The table reveals that in the postwar period and in particular since the early 1960s, there has been a strong downward trend in employment generation for a given rate of change in output. While the data covers only the period up to the 1973 'oil crisis', the trends have continued also in the post-recession period. Thus, the manufacturing output did not only recover but increased after 1975, while manufacturing employment has fallen in absolute numbers in most OECD countries.
large scale is the neoclassical economis's conceptualization of alternative technologies in terms of different quantities of capital and labour. I would instead suggest that there are extremely important qualitative differences between the two factors of production. To my knowledge the first economist or social scientist who pointed out the qualitative differences between capital and labour was Marx. The distinctive feature of what he called large scale modern industry was that the characteristics of the worker and his physical limitations did not constitute a limiting factor in the design of the production processes. The distinction is, with his analysis, it is simple to argue that the physical properties of labour are quite different from those of a machine. In relation to a machine a person is first of all variable, which implies uneven quality; secondly he is weak, which has obvious implications; thirdly, he cannot achieve the same precision, which is absolutely basic in any machine-making activity; fourthly, he cannot stand extreme heat, and heat is essential in key processes such as steel and chemical production; fifthly he is slow, which implies that any industry which produces above a certain minimum level of output will use machines instead of people. From studying the history of technical change one may, as Marx did, draw the conclusion that technical change is to a very large extent a process of overcoming the restrictions set by these properties of human labour, through increasing the capital intensity of the production process.

Today developments in electronics mean that it is not so much human muscle as human intelligence which is replicated and extended. Thus any system which involves the processing of data, decision making, control of systems and equipment, in short, any task involving logic — is a candidate for the application of electronics. A list (not exhaustive) of these tasks includes:

1. controlled movement of materials, components and products
2. control of process variables
3. shaping, cutting, mixing, moulding, etc. of materials
4. assembly of components into sub-assemblies and finished products
5. control of quality at all stages of manufacture by inspection, testing or analysis
6. organisation of the manufacturing process, including design, stockkeeping, dispatch, machine maintenance, invoicing and the allocation of tasks.

This all-embracing character of electronics will probably have important implications for the application of more labour intensive technologies in LDCs and thus for the possibility of absorbing a greater proportion of the labour force in the manufacturing sector through reversing the trend towards more capital intensive technologies.

The reason behind this assertion is that the cause of increased competitiveness through using electronically based innovations lies not only in their labour saving nature (which is less important in cheap labour economies), but also in probability savings in investment, maintenance and producing a better quality product, thus leading to superior technologies. 2,3 The labour saving nature has been amply dealt with in the public debate, but the last-mentioned characteristics need some elaboration. I shall give examples from two situations which traditionally have been very labour intensive, the mechanical industries and the garment industry.

Mechanical Industries. In metalworking industries batch production dominates over flow-line techniques, with an associated low efficiency through poor machine utilization. Numerically controlled machine tools (n.c. machines) constituted a first attempt to increase the efficiency in this sector. With these machines, the control signals containing the information needed to produce the part are fed into the machine as the operation is performed. The control signals imitate the instructions given by a skilled machine operator, but with much greater speed and precision. By changing the control tape, an n.c. machine can be quickly switched to the next job which may involve a totally different sequence of operations. In this way the downtime — the setting time — of the machine tool is reduced, which is very important for machine utilization in small batch production work. By replacing the still relatively inflexible hard-wired circuitry in the n.c. machines by software in mini- or micro-computers — i.e. producing computerized numerically controlled machine tools (n.c.c. machines) — the versatility and flexibility of the machine tools are considerably enhanced.

The capital saving nature of technical change in this sector stems not only from increased machine utilization. C.n.c. and direct numerical control (which involves one computer controlling several machines) increase quality, for example in precision things. They also increase the throughput and reduce inventories, which saves capital embodied in materials. Furthermore they allow for in-process quality control, which makes possible early discovery of mistakes, and correction of process variables through electronic feedback. The latter source of capital saving is of considerable importance for process flow techniques also, for example in paper pulp and glass production, where work in progress often constitutes a very substantial part of total capital cost. Finally, the fixed investment costs are reduced by price cuts in the cost of control systems. According to one Japanese source, "today's n.c. systems are priced at a quarter of those of ten years ago".

Garments. The clothing sector has been characterized by having capital costs among the lowest in manufacture.4 The complexity of the production process and ever changing fashions have justified purpose built equipment except in some cases. However, with microelectronics both a high flexibility and a high degree of automation are made possible. As Dr Juan Rada explains:

"The use of self-programming robotic arms for cutting, and computerised systems for design, producing patterns, monitoring quality of fabric and leading laser beam cutters, is changing the face of the industry. Microprocessors are being used to control knitting heads (instead of the centuries old Jacquard's card), to control injection machines with high flexibility to change design and colours; they are used to control sewing patterns and fast stitching. These are part of a growing number of applications the trend being towards a "total system concept" which means the use of computerised techniques to detect flaws, keep track of patterns and orders, monitor the progress of work throughout the plant, automatic stitching of patterns and the cutting and sewing. These applications save labour, skills and materials (in the case of cutting, the saving ranges from 8 to 15 per cent)."

The investment saving nature of micro-electronic based innovations in this sector has been particularly emphasized by Raphael Kaplinsky who gives the example of a UK firm who produced an electronic pattern machine for a single knitting loom. This machine cut down time in the change-over of knitting patterns by more than 50% "as well as lowering the hardware costs of the control system (itself at 20% of the total loom cost) by 50 percent.”

Thus, because of the breakthrough made possible by microelectronics, in the near future the competitive edge in garments manufacturing will probably no longer be labour costs but technology.

All in all, it seems therefore very unlikely that more labour intensive technologies may be chosen in LDCs to the extent that the trends towards more capital intensive techniques may be altered or reversed.

The transformation of the technology

1From the figures in Table 1, we can see that if only the yearly addition to the labour force were to be absorbed by the expanding manufacturing sector, the labour intensity of new investment projects would on average have to increase by a factor of 12.25 in the Philippines, 8.6 in India, 5.3 in Peru and 3.3 in Brazil and Kenya.
in some traditional industries, i.e. not only garments but also textiles, leather and shoes, may have particularly severe implications for LDCs. The contribution to the total increase of manufacturing employment in the period 1968-1975 from these industries amounted to 30% for all LDCs and nearly 38% for the Asian LDCs. Furthermore in some Asian countries such as the Republic of Korea and Hong Kong, manufacture for exports accounts for a sizeable part of total employment. For example, it has been estimated that more than one half of the total employment growth in manufacturing during 1963-1970 in the Republic of Korea was due to an expansion of exports. (This may partly explain Korea's exceptional performance as shown in Table 1.)

The important point is that it is particularly in these economies where textiles, garments, leather and footwear products account for a considerable part of manufacturing exports.

Two implications can be drawn. Firstly, these traditional industries which account for a considerable part of yesterday's and today's employment generation in LDCs will probably fail to be duplicated by other LDCs. Secondly, as R. Kaplinsky has pointed out, the export-oriented growth and employment strategy - much cherished today among both LDCs and Western economists - which so successfully has guided the industrialization strategy of the Republic of Korea, will probably not be able to be duplicated by other LDCs in the future. This is essentially so since cheap labour will probably lose its importance as a factor in determining international trade. Of course, some more advanced LDCs with the necessary skills and 'industrial environment' might be able to pursue a growth strategy based on the new technologies, but the employment impact will then be marginal. (It could be argued, as has convincingly been done by R. Kaplinsky, that the high and possibly increasing unemployment figures in the OECD area will restrict the market for these countries.)

The implication of the previous analysis is that the manufacturing sector in most LDCs will not be able to absorb the growing labour force, not to speak of transforming the structure of employment in a way similar to what has happened in the OECD area. While the urban-based service sector may improve the employment situation slightly, the only possible way out seems to be that the agricultural sector will have to absorb the main part of the labour force permanently. This sector has greater potential to fulfill this task as it is much more flexible in the degree of mechanisation than the manufacturing sector - mainly due to the fact that the human limitations of precision/speed/quality etc. are not so critical in agriculture as in industry.

Well, what is the problem then? one may ask. Why not let a very 'modern' industrial sector coexist with a very labour intensive agriculture?

There are at least two very considerable ones. Firstly, institutional changes - mainly concerning distribution of land - need to be implemented if agriculture is to absorb a growing proportion of the labour force. This is widely recognized - even by the World Bank - so I will not elaborate on it. Secondly, even if the employment problem were to be solved in this way, the LDCs would experience a gigantic distributional problem since they would be faced with vastly different labour productivities in the industrial and agricultural sectors. (I was first made aware of this problem by C. Edquist at the Research Policy Institute, Lund, Sweden.) To take China as an example, as she has undertaken the most far reaching institutional changes in recent decades, the pressure on the agricultural sector to absorb the growing labour force has been associated with a decreasing marginal productivity of labour between 1959 and 1975. Indeed, this occurred in spite of massive capital formation projects such as irrigation schemes. For example, since the agricultural sector may absorb the labour force, the price to be paid for it, as noted already by the classical economists, is a very low and possibly decreasing labour productivity.

The very important point here is that as the industrialization process continues agriculture and the agricultural sector is charged with the job of absorbing the labour force, the political problem of transferring income from the high productive, and geographically concentrated, industrial sector to the low productive agricultural sector will take on increasingly stronger dimensions. This distributional problem will probably be one of the key ones for developing countries to deal with.

This article is a revised version of an article 'Technical Change, Employment and Distribution' which was attached to the Lund Letter of Science and Technology for Basic Human Needs, 15 June, 1979, published by the Research Policy Institute, University of Lund, Sweden. We are indebted to both the Salen Foundation and to SAREC for financial support for that essay. The Salen Foundation also generously sponsored the Lund workshop on technological change in industrialized countries and its consequences for developing countries, held in Lund in May 1979. Part of the content of this article has greatly benefited from discussions in the workshop. In addition, many people have contributed with very helpful comments on earlier drafts. In particular, we would like to thank C. Edquist, H. Hoffman, Howard Rush, Jon Sigurdson and John Wilson, but also Enrique Bautista, Richard Conroy, Charles Edquist, Christopher Freeman and Hans Gustafsson.

21. UNIDO. World Industry since 1960. Pro-}
Optically-isolated triac control

A common problem with optical isolators is that a separate power supply is required. A tapping from a mains transformer primary can be used, but this is not always available, particularly on small transformers. A simple solution is to use the transformer primary as a current limiter for a suitable low voltage supply. However, triacs often require a gate current of around 50mA, which is more than this type of supply can provide. To overcome this problem, gate current is pulsed with a duty cycle of about 10%. The current required by the I.E.D. to turn the triac off is about 250μA, so it can be directly driven by c.m.o.s. logic. Resistor R1 is included for protection in case the Zener diode goes open circuit.

G. R. Rulter
Woking
Surrey

Voltage-to-period converter

In some circuits it is more convenient to have an oscillator whose period, rather than frequency, has a linear relationship to the control voltage. This circuit was developed to drive an analogue delay line for audio signal processing. Resistors R1, R2, R3, diode D1 and Tr, form a reasonably temperature-stable current source, which charges C1 until the ramp voltage exceeds the control voltage. The comparator is biased by R4 for high current and fast slew rate, and R4, C2 decouple the control input and prevent spurious triggering. The output is taken via D2, R5, which prevent negative bias, to a c.m.o.s. buffer and discharge circuit. With the values shown, antiphase outputs equal to the reset pulse width are available from pins 12 and 1 of IC2. The reset pulse width of around 100ns is determined by propagation delays in the I.C.s. If a longer pulse width is required, C2 may be used to form a monostable with a period of approximately C2 R5. If low-frequency operation is required, C1 must be completely discharged and C1 should be equal to C1/6. The value of C1 is limited by the ability of IC2 to discharge it without damage and, in the prototype, a 100nF has been successfully used. With the values shown the period varies from about 0.5 μs to 30 μs for control voltages from 0.15 to 8V.

E. J. Leonie-Smith
Royston
Herts
Enlarger analyser

This analyser uses a recently introduced silicon-blue photoamplifier i.c. to achieve high linearity at low light values. A bridge circuit measures the current drawn by an open-collector output of the TFA 1001W and a set-time control converts this current into a voltage which is compared with a reference level. The reference is set by a speed control for various brands of printing paper. Bridge balance is indicated by a TCA965 window discriminator and three l.e.ds. The bridge is fed with a few millivolts of a.c. from the transformer to overcome hysteresis. At balance the set-time control is used with the 555 timer to expose the paper. S, turns the enlarger on for focussing and measurement, or allows S2 to start the exposure. Times from 2 to 140 s with paper speeds from 80 to 400 ANSI can be selected after speed calibration using test strips.

In the prototype, the photoamplifier was housed in a potting box together with the linearity control, associated components and twin-screened lead to the main circuit. Linearity is adjusted, with a d.v.m. across the time control set to 1MS2, by using the halving values obtained from progressively stopping the lens. Judicious setting of linearity can compensate for reciprocity failure. Note that linearity setting only applies at low light values and the components may be omitted if higher levels only are used.

R. I. Harcourt
Thornton Heath
Surrey

Economic three rail supply

In t.t.l. circuits which use 710 type comparators, power supplies of +5V, +12V and -6V are needed. The common arrangement is inefficient and costly compared with this circuit, which provides the voltages required from a single standard transformer. Although the 5V rail may have to provide a substantial current, the other supply rails only need to deliver small currents which can be provided by half wave rectification. During positive half-cycles the lower winding feeds the +6V rail via D1, and the two windings in series feed the +12V rail via D3 and D4. Diodes D3 and D4 are biased off. During negative half-cycles D1 and D2 are biased off and the windings are isolated. The top winding now feeds the +6V rail with a return via D3 and the lower winding feeds the -6V rail via D4. Therefore, the +6V rail is fed during both half cycles by the two secondary windings alternately and both low current rails are fed on alternate half cycles. The voltages shown increase when capacitors are connected to provide an adequate margin for the regulators.

R. M. Adelson
Hornby
Lancaster

Simple oscillator

A silicon bilateral switch, s.b.s., is a useful component for producing a simple, economic and versatile audio oscillator. With a 12V d.c. supply the circuit oscillates at 100Hz and draws only 400 µA. Direct or alternating supplies can be used and with suitable component values, mains operation is possible. Frequency modulation or on/off control is achieved by feeding a voltage or pulse to the gate. Minimum direct supply voltage is about 10V but an 18kΩ resistor between the gate and
Triggered timebase

High-quality oscilloscopes with sweep rates up to 0.1 μs/cm use special components, such as fast f.e.ts and tunnel diodes, together with logic i.cs. This timebase provides a wide sweep range with trigger hold-off and bright-line functions and does not require any expensive or uncommon devices. Three NAND gates generate a ramp waveform, and a Schmitt trigger shapes and inverts the square wave from gate C. When the flip-flop is set the output goes low and C1 discharges via D1 to provide the flyback at pin 3 and a pulse at pin 4. Ramp rate is varied by R1, and C1 is switch-selectable for a wide range of sweeps. The trigger input is shaped by a 710 and gated by a Schmitt trigger, so the flip-flop is only clocked when the output of gate C is high. This sets the output high and charges C1 linearly. The 710 output also goes to D2 and an integrator, which negatively charges C2 and disables the oscillator around gate K. When disabled, the oscillator output is high and therefore enables gate G to clock the flip-flop. When no input signal is present, the oscillator feeds the clock input of the flip-flop and provides automode operation for the timebase.

K. Padmanabhan
Madras
India

Two terminal constant current source

Most constant-current sources require output, ground and supply connexions to a circuit. However, a two-terminal arrangement can be obtained by combining two standard sources, of opposite polarity, back-to-back. In the circuit diagram the current is 2Vbe/R.

J. J. Ellis
Cambridge
Prestel / Viewdata printer
The Olympia International NMP 40 mechanism, incorporated in a printer terminal, forms one of the first screen image printers to appear in the UK. A hard copy of displayed Prestel / Viewdata images can be made with the printer which Dataplus, the equipment’s distributor, claims as “very quiet” in operation. The unit will print alphanumeric characters and graphics at high speed and paper loading is simple. The printhead consists of 240 discrete electrodes equally spaced across the 127mm wide paper and each is spring-loaded, obviating the need for adjustment. The rubber platen is driven by a small d.c. motor, this being the only moving part. Overall dimensions of the terminal are 250mm wide X 360mm deep x 150mm high. Production quantities of the unit will be available in late 1980 as will the full drive electronics to suit UK television receivers. Dataplus Ltd, 39-49 Roman Road, Cheltenham.

D.i.y. keyboards
Individual keys, rows of keys or groups of keys, elements of the series 87 family of switches, can be used to create keyboard forms for prototypes, short runs or volume production, according to the makers, Highland Electronics. Legending of switches is achieved by hot stamping of the buttons to customers’ requirements before delivery, although for prototype work, versions of the switches are available with snap-on caps. In this event a legend sheet is supplied and each legend is placed under the cap. The series 87 employs snap-dome contacts previously used on Highland series 83, 84 and 86, all 16 button keypads. A typical circuit for these switches is single-pole/common-bus and the 3×4 and 4×4 keypads are also available with matrix switching. Highland Electronics Ltd, Highland House, 8 Old Steine, Brighton, East Sussex.

V.s.w.r. / power meter
Direct reading of v.s.w.r. and output power without the need for interpolation is one of the capabilities of the v.s.w.r. /power meter offered by Zycomm Electronics. The unit is autoranging for power output measurement, covering 20W to 2kW in three ranges for 1.8 to 30MHz and 50 to 1500MHz, and 2W to 200W for the 430 to 470MHz range. V.s.w.r. from 1:1 to 1:10 can be measured. Separate sensing heads are supplied to cover each frequency range and these can be connected at any point in the feed line, including the masthead, for precise radiated power indication. Push switches on the front panel permit the selection of the appropriate head and the display of forward or reverse power as either peak or r.m.s. readings. The electronic comparator included in the unit permits constant readout of v.s.w.r. irrespective of power variation, thereby giving true indication during speech on s.s.b. The unit is for operation on 240v 50Hz mains. Zycomm Electronics Ltd, 47, 49 and 51 Pentrich Rd, Ripley, Derby DE5 3DS.

Digital slow scan transceiver
The Colorado Video model 285 is intended to provide “quality” tv picture transmission over data channels and is available as a receiver, a transmitter or transceiver. Features incorporated are “frame freeze”, a repeating “freeze and scan” mode for surveillance applications and continuous display at the receiver as each new image wipes off the previous image. The unit accepts tv signals from camera, v.t.r. or video disc recorder and also produces a signal for viewing on c.c.t.v. monitors. Transmission is in the synchronous serial digital form at rates up to 500 k/bits/s and the equipment requires no adjustment when changing rates, the unit itself tracking the modem clock rate. The operator may select left-to-right or top-to-bottom scanning to suit the item scanned and may transmit either a single field (shorter transmission time at reduced resolution) or a full frame, i.e. normal transmission time at full resolution. Transmission times vary according to the grey-scale levels chosen, either 64 levels (6 bit) or 256 levels (8 bit) depending upon the bit rate. Data may be encrypted for security purposes. Prices start at $9,000; this being the price for the receiver only. Colorado Video, Box 928, Boulder, Co, 80306, USA.
Music processor/mixer

The Cambridge Electronic Workshop music processor is a full broadcast specification mixer intended as an off-the-shelf item for club and mobile use, built in standard 19in rack units in modular form. The technical complement includes transformer-coupled inputs with phantom powering, microphone limiters, plastic track faders with remote start for external tape or disc transport mechanisms, and separate equalization for two disc units, two line inputs and both microphone inputs. Outputs are complete with a stereo limiter, "voice over," adjustable voice switch from the d.j.'s microphone and a nine-band graphic equalizer. Also featured is a built-in comprehensive lighting control which is compatible with Pulsar equipment and contains a six-channel sound-to-light chaser, strobe drive and four independently controlled mains terminals. Cambridge Electronic Workshop, 4 Water Lane, Oakington, Cambridge CB4 5AL.

WW305

High temperature contact adhesive

Excellent acid resistance, high moisture resistance and good dielectric strength are properties which Aremco Products International attributes to its Aremco-Bond 570, an elastomer-phenolic adhesive intended for the bonding of ceramic, glass and metallic materials at temperatures up to 315°C. A further characteristic is its good shock resistance due to a small degree of flexibility being present after curing, thus allowing bonding of materials with a dissimilar coefficient of expansion. The adhesive is applied in the usual manner to both surfaces, which are allowed to dry before pressing together and final heat cure under pressure will produce a high temperature high strength bond. Aremco-Bond 570 costs £21.50 per pint, plus carriage costs. Photograph shows the adhesive being used to bond together two ceramic bushes. The Meclec Company, 5-6 Towerfield Close, Shoeburness, Essex SS3 9GP.

WW306

Radio l.c.s

Two new l.c.s which the makers, Motorola, describe as "the first in the industry to be specifically characterised and specified for "crowbar" applications, is accompanied by data sheets giving a graph detailing peak capacitor discharge current. This plot indicates peak discharge current as a function of power supply discharge time, permitting power supply designers to select a specific s.c.r. whose peak current characteristics are suited to a particular supply circuit. Each item in the MCR67-71 range of s.c.r.s is capable of dumping peak currents of 300 to 1700A, thus discharging the power supply output capacitors and clamping the voltage to the on-state voltage of the s.c.r. until a fuse or circuit breaker opens. Gate trigger current for the series is 2mA minimum and 30mA maximum. The s.c.r.s are available in both metal and plastic packages with operating voltages between 25 and 100V. Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middlesex HA9 0FR.

WW309

Infra-red detectors

A range of lead sulphide and lead selenide infra-red detectors manufactured by the American Optoelectronics Inc, is now being marketed by Wentworth Laboratories. These detectors are available in single element or multi-array packages incorporating standard units made up from elements in sizes from 1 to 5mm square. Detectors for use at room temperatures are included and these can be provided as standard units or units with an optional built-in thermostatic cooler. Thermistors may be used in conjunction with the detectors for the monitoring of detector temperature and to allow closer control of performance. Wentworth Laboratories Ltd. Sun St, Potten, Essex HA9 0LR.

WW310

Spark gap c.r.t. protectors

The focusing electrode of a c.r.t. can be protected from the damaging effects of excessive e.h.t., by the spark gap series 5389, manufactured by Welwyn Electric. These units can also be used to protect v.d.u. tubes, oscilloscopes and photomultipliers from high voltage discharges and transients. The three items in the series cover the "popular" (perhaps not so for the t.v. service technician!) breakdown bands of 7 to 9kV, 8.5 to 10.5kV and 10 to 12kV all with current handling up to 1500 amps. These spark gap protectors meet BS2011 ("Components for printed circuit applications.") and are flame retardant in accordance with BS415-14/4. Welwyn Electric, Bedlington, Northumberland NE22 7AA.

WW307

"Crowbar" s.c.r.s

A range of s.c.r.s which the makers, Motorola, describe as "the first in the industry to be specifically characterised and specified for "crowbar" applications, is accompanied by data sheets giving a graph detailing peak capacitor discharge current. This plot indicates peak discharge current as a function of power supply discharge time, permitting power supply designers to select a specific s.c.r. whose peak current characteristics are suited to a particular supply circuit. Each item in the MCR67-71 range of s.c.r.s is capable of dumping peak currents of 300 to 1700A, thus discharging the power supply output capacitors and clamping the voltage to the on-state voltage of the s.c.r. until a fuse or circuit breaker opens. Gate trigger current for the series is 2mA minimum and 30mA maximum. The s.c.r.s are available in both metal and plastic packages with operating voltages between 25 and 100V. Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middlesex HA9 0FR.

WW310

Bar graph l.c.d. unit

Numerical annunciation and over-range/under-range indication are features included in the 20 element bar-graph liquid-crystal display unit from Hamlin Electronics. Each bar has a separate backplane enabling each of the two bars to be driven independently. The display is available with pins for d.i.l. mounting or with snap-on terminal strips. An applications note, including a drive circuit for the display, is also available. Hamlin Electronics, Diss, Norfolk.
THE VALVE AND TUBE SPECIALIST

RECEIVING, S.Q., TRANSMITTING , GAS FILLED, DISPLAY, TV ETC. AT NEW SPECIAL LOW PRICES

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Price</th>
<th>Type No.</th>
<th>Price</th>
<th>Type No.</th>
<th>Price</th>
<th>Type No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A34 - 510</td>
<td>0.56</td>
<td>D861</td>
<td>6.90</td>
<td>E 130L</td>
<td>3.75</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS118</td>
<td>0.06</td>
<td>D862</td>
<td>6.70</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS119</td>
<td>0.06</td>
<td>D863</td>
<td>6.50</td>
<td>El80</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS120</td>
<td>0.06</td>
<td>D864</td>
<td>6.30</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS121</td>
<td>0.06</td>
<td>D865</td>
<td>6.10</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS122</td>
<td>0.06</td>
<td>D866</td>
<td>5.90</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS123</td>
<td>0.06</td>
<td>D867</td>
<td>5.70</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS124</td>
<td>0.06</td>
<td>D868</td>
<td>5.50</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS125</td>
<td>0.06</td>
<td>D869</td>
<td>5.30</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS126</td>
<td>0.06</td>
<td>D870</td>
<td>5.10</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS127</td>
<td>0.06</td>
<td>D871</td>
<td>4.90</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS128</td>
<td>0.06</td>
<td>D872</td>
<td>4.70</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS129</td>
<td>0.06</td>
<td>D873</td>
<td>4.50</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS130</td>
<td>0.06</td>
<td>D874</td>
<td>4.30</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS131</td>
<td>0.06</td>
<td>D875</td>
<td>4.10</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS132</td>
<td>0.06</td>
<td>D876</td>
<td>3.90</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS133</td>
<td>0.06</td>
<td>D877</td>
<td>3.70</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS134</td>
<td>0.06</td>
<td>D878</td>
<td>3.50</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS135</td>
<td>0.06</td>
<td>D879</td>
<td>3.30</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS136</td>
<td>0.06</td>
<td>D880</td>
<td>3.10</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS137</td>
<td>0.06</td>
<td>D881</td>
<td>2.90</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS138</td>
<td>0.06</td>
<td>D882</td>
<td>2.70</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS139</td>
<td>0.06</td>
<td>D883</td>
<td>2.50</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS140</td>
<td>0.06</td>
<td>D884</td>
<td>2.30</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS141</td>
<td>0.06</td>
<td>D885</td>
<td>2.10</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS142</td>
<td>0.06</td>
<td>D886</td>
<td>1.90</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS143</td>
<td>0.06</td>
<td>D887</td>
<td>1.70</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS144</td>
<td>0.06</td>
<td>D888</td>
<td>1.50</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS145</td>
<td>0.06</td>
<td>D889</td>
<td>1.30</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS146</td>
<td>0.06</td>
<td>D890</td>
<td>1.10</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS147</td>
<td>0.06</td>
<td>D891</td>
<td>0.90</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS148</td>
<td>0.06</td>
<td>D892</td>
<td>0.70</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS149</td>
<td>0.06</td>
<td>D893</td>
<td>0.50</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS150</td>
<td>0.06</td>
<td>D894</td>
<td>0.30</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
<tr>
<td>AS151</td>
<td>0.06</td>
<td>D895</td>
<td>0.10</td>
<td>E 182CC</td>
<td>3.15</td>
<td>E 186F</td>
<td>3.15</td>
</tr>
</tbody>
</table>

WIRELESS WORLD, MARCH 1980

THE FOR-1004
A NEW WIDEBAND
GRAPHICAL RECORDER

9 Recording Modes

The FOR1004 is the first of a new generation from Medelec. A highly versatile graphical recorder, it has been specially developed for wide ranging applications in research and industry. In both performance and economy it has many advantages over conventional instrumentation.

There are nine recording modes - all push button controlled, which permit the optimum presentation of most graphical data. Triggering is fully automatic and displayed signals can be monitored via an internal loudspeaker. The fast response time and wide range timebase allows the detailed examination of transients and trends.

Attractive new styling and ease of operation of the FOR1004 an important new instrument.

Simultaneous View and Record

Four High Input Signal Channels

High Resolution, Inexpensive Records

For further information please contact:

Medelec Limited
Manor Way, Old Woking
Surrey GU22 9JU, England
Tel: Woking (04862) 70351
Telex: 65941 Medelec G
A Vickers Limited Company

WWW - 123 FOR FURTHER DETAILS
ILP’s New Generation of High

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance — and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain — the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD’S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

AVAILABLE ALSO FROM A NUMBER OF SELECTED STOCKISTS
and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

VALUES OF COMPONENTS FOR CONNECTING TO HY5

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack 50 x 40 x 15 mm. and provides multi-function equalisation for Magnetic/Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at 1KHz - 0.01%. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.

£4.64 + 74p VAT

THE POWER AMPLIFIERS

Model	Output Power R.M.S.	Distortion Typical at 1KHz	Minimum Signal/Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + VAT
HY30 | 15 W into 8 Ω | 0.02% | 80dB | -20 -0 +20 | 105x50x25 | 155 | £6.34 + 95c
HY50 | 30 W into 8 Ω | 0.02% | 90dB | -25 -0 +25 | 105x50x25 | 155 | £7.24 + £1.09
HY120 | 60 W into 8 Ω | 0.01% | 100dB | -35 -0 +35 | 114x50x85 | 575 | £15.22 + £2.28
HY200 | 120 W into 8 Ω | 0.01% | 100dB | -45 -0 +45 | 114x50x85 | 575 | £18.44 + £2.77
HY400 | 240 W into 4 Ω | 0.01% | 100dB | -45 -0 +45 | 114x100x85 | 1.15 Kg | £27.68 + £4.15

Load impedance - all models 4 - 16Ω.
Input sensitivity - all models 500 mV.
Input impedance - all models 100K. linear.
Frequency response - all models 10Hz - 45Hz - 3dB

PSU 30 | ±15V at 100ma to drive up to five HY5 pre-amps £4.50 + £0.68 VAT
PSU 36 | for 1 or 2 HY30's £8.10 + £1.22 VAT
PSU 50 | for 1 or 2 HY50's £8.10 + £1.22 VAT
PSU 70 | with toroidal transformer for 1 or 2 HY120's £13.61 + £2.04 VAT
PSU 90 | with toroidal transformer for HY200 £13.61 + £2.04 VAT
PSU180 | with toroidal transformer for 1 HY400 or 2 x HY200 £23.02 + £3.45 VAT

NO QUIBBLE
5 YEAR GUARANTEE
7 DAY DESPATCH ON ALL ORDERS
INTEGRAL HEATSINKS
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE
-see below

Total purchase price £
I enclose Cheque [] Postal Orders [] International Money Order []
Please debit my Account/Barclaycard Account No.

NAME []
ADDRESS []
Signature []

WW - 065 FOR FURTHER DETAILS
Whatever it is, the H|H S’ range of power amplifiers will handle it

The H|H ‘S’ range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 500D
- Dual Channel
- 19” rack mount 3½” high
- 500w r.m.s. into 2.5 ohms per channel
- 900w r.m.s. in bridge mode
- DC—20 KHZ at full power
- 0.005% harmonic distortion (typical) at 300w r.m.s. into 4 ohms at 1 KHZ
- 3KW dissipation from in-built force cooled dissipators

S 250D
- Single Channel
- 19” rack mount 3½” high
- 500w r.m.s. into 2.5 ohms
- Retro-convertible to dual channel
- DC—20 KHZ at full power
- Full short and open circuit protection
- Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.

Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594

FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR H|H ELECTRONICS
WW — 036 FOR FURTHER DETAILS
VIDEO or AUDIO BULK ERASURE

LR71
MAX REEL SIZE 11½" VIDEO AND AUDIO

LR70
MAX REEL SIZE 8½" AUDIO ONLY

LR70/71 bulk tape erasers are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of 11½" and tape width of 1", quickly and efficiently.

LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry.

Quality equipment moderately priced

LEEVERS-RICH EQUIPMENT LIMITED
319 Trinity Road, Wandsworth
London SW18 1YQ
01 874-9054 Telex 923455

DEVELOPING A MICROSYSTEM?

Then plug a Softy into your ROM socket.

SOFTY provides:
- TV map of memory contents (Hex)
- Keyboard entry with assembler facility
- Serial/parallel Inputs (e.g. RS232)
- EPROM programming (2708, 2716, 2732, etc.)
- Cassette tape storage
- A low cost solution! (£100 kit, £120 built + VAT)

SOFTY—What else do you need?

For literature and the name of your local retailer, contact Dataman.
P.O. Box 5, Dorchester, Dorset. DT2 7UB or Telephone 03002 700.

FREQUENCY COUNTERS — OSCILLOSCOPES — OFF-AIR RECEIVERS

20 MODELS AVAILABLE INCLUDING LED VERSIONS AND TALKING READOUTS

250MHz
801 B/M
£250
Crystal oven
3 parts 10°

401A
50MHz B/Digit £150
8018/M
250MHz B/Digit £250
901M
520MHz B/Digit £325
1001M
1-6GHz B/Digit £550
OFF-AIR RECEIVER £125

A professional standard model dual trace DC to 15MHz. Usable to 25MHz with alternate, shop and single-channel A or B amplifier selection. 5mv/cm. accuracy 3%. Excellent triggering wide range time base.

R.C.S. ELECTRONICS, WOLSEY ROAD, ASHFORD, MIDDX. ASHFORD 53661

WW — 019 FOR FURTHER DETAILS

WW — 107 FOR FURTHER DETAILS

WWW-WORLD, MARCH 1980
Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues for about the same price.

Our new 169 is a tough, lightweight, battery-powered digital multimeter for use in the field or on the bench. It is a 3½-digit, full 5-function DMM with respectable 0.25% DC accuracy.

Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer component life and fewer failures. MTBF is 20,000 hrs. or about 10 years.

All 5 functions are fully protected – 1400V peak on DCV and ACV, 300V on Ω, 2A (250V) on DCA and ACA. The fuse is externally accessible for quick replacement. Extensive vibration stress-testing assures the 169 will stand up to all the mechanical shock and abuse normally associated with tough applications.

Cost-conscious ease of maintenance is so thoroughly designed into the 169 that only one calibration adjustment a year is required. That adds up to a cost-of-ownership no other competitive DMM can touch. For example, the 169 needs only one battery change per year at a cost of about £1.50.

When you factor in features like function and range annunciation right on the display, auto-zero, auto polarity, 60% larger display than other DMMs and the easy-to-read, colour coded front panel, we think you'll get the point. No analogue meter or DMM can match the price/performance of the new 169. It costs £99 (plus VAT).

For information on the 169 or any Keithley DMM call (0734) 861287
Telex: 847047

Ex stock

WW - 635 FOR FURTHER DETAILS
The NEW Marshall's 79/80 catalogue is just full of components

and that's not all . . .

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's.

These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Displays, Heatsinks, ICs, Knobs, LEDs, Multimeters, Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers, Voltage Regulators, etc., etc.

Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility.

Plus — Twin postage paid order forms to facilitate speedy ordering.

Plus — Many new products and data.

Plus 100s of prices cut on our popular lines including ICs, Transistors, Resistors and many more.

If you need components you need the new Marshall's Catalogue.

Available by post 65p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50p.

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2. Also 325 Edgware Road, W2. Tel: 01-723 4242. Glasgow: 85 West Regent Street, G2 2QD. Tel: 041-332 4133. And Bristol: 10A Stokes Croft, Bristol. Tel: 0272 426801/2.

The indispensable

THRULINE WATTMETER
0.45-2300 MHz/0.1-10,000 watts
The Standard of the Industry
What more need we say...

Exclusive UK representative

aspen electronics limited
2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR
TELEPHONE: 01-868 1188 — TELEX 8812727

K.A.C. A150 MIXER AMPLIFIER
150 WATTS SINE WAVE POWER
£199.50 inc. VAT R.R.P.
Trade Enquiries welcome

Six independent inputs: Dual Phono, RIAA, change-over fader for Discos.
Twin Jack output sockets: 80 150W; 40 100W; 160 80W. (R.M.S.)

K.A.C. Electronic Inv. Ltd., 20 Priory St., Tonbridge, Kent
CALL FOR DEM or PHONE 0732 358109 FOR LEAFLET

PEAK PROGRAMME AND DEVIATION MONITORING
FOR MONITORING MONO OR STEREO LEVELS there is nothing that quite matches the ease of reading of pointer instruments. One of the principal reasons for this is that the meter displays motion in an arc, whereas most other changes in the operator's field of view are straight lines. Combine this with fast but defined attack, slow fall-back, uncluttered logarithmic scaling and a white pointer on a black background and it is easy to see why it is that many professional engineers insist on pointer instruments. The sweep movement offers a unique way of monitoring stereo programming. Ernest Turner 640, 642, 643, TWIN, flush mounting adaptors and illumination kits available from stock.

PPM2 Standard performance drive circuit under licence from the BBC. Mono £260, TWIN £320. 1040, 5157, TWIN.

SURREY ELECTRONICS, The Forge, Lucks Green, Crenleigh, Surrey GU6 711G — Tel. 04666 5997

K.A.C. Electronic Inv. Ltd., 20 Priory St., Tonbridge, Kent
CALL FOR DEM or PHONE 0732 358109 FOR LEAFLET

PEAK DEVIATION METER
A rack mounting unit for monitoring mono or stereo stations during programme, either on air or at the transmitter.

- An illuminated meter with deviation calibrated in kHz, percent and decibels.
- Switchable ±20dB sensitivity for accurate level readings of stereo pilot tone or control signals.

High impedance probe head which attaches to any monitor receiver.

FM calibration standard, producing 7.5kHz deviation with 400Hz and 5kHz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking onounder spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.

The peak detector has a very fast attack time, so checking on limiter spikes or other transients which could excite an excessive bandwidth. Multiple calibrations are given. The overall bandwidth as a peak programme meter. 17 separate stings are used for frequency and deviation. Calibrations as follows: 7.5kHz deviation, 75kHz bandwidth. 400Hz modulation.
WIRELESS WORLD, MARCH 1980

WILMSLOW AUDIO
The firm for Speakers

HI-FI DRIVE UNITS

Audax HD 12 902S £7.65
Audax HD 13034H £12.75
Audax HP11 2506 £6.65
Audax HP20825H4 £13.25
Audax H4D2454C £20.50
Baker Superb £25.00
Castle HF10RS/DD £26.65
Charnew CE2A20 8" bass, matched pair £8.25
Coles 4001 £7.65
Coles 3000 £7.65
Dalesford HF 1300 II £10.25
Dalesford O10 tweeter £8.45
Dalesford 030/110.5 5in £11.25
Dalesford D50/153 8/bm £12.25
Dalesford D50/200 8in £12.25
Dalesford D70/250 10in £22.25
Dalesford ABR 10in £10.25
Dalesford D30/110 5in £35.75
Deca London horn £57.25
Deca DK30 horn £43.75
Deca CC0/1000/8 £10.25
EMI 14A770 14x 9in $0.00
EMI Bin x 5in d/c, 10 watt, 4 ohm £4.05
EMI Type 354 0.4 in £9.45
Isophon KKB/8 £8.15
Isophon KX10/8 £8.15
Jordan Watts Module £20.40
Jordan Watts HF kit £9.15
Jorden 50mm unit £23.00
Jordan CB crossover (pair) £23.00
Jordan Mono crossover (pair) £23.00
Kef T27 £9.45
Kef T210 £27.00
Kef 8200 £13.25
Kef B139 £27.00
Kef DN 13 £5.40
Kef DN 12 £8.65
Kef DN 22 (pair) £40.85
Lowther PH6 £31.45
Lowther PH7 £88.45
Pioneers K100DT £10.50
Pioneers 010HC £10.50
Keoases K400MF £12.25
Radford BD25 II £12.25
Radford MD6 £10.85
Radford MD9 £10.85
Radford F68/F6331 £8.75
Radford F68/F6331 £8.75

PA GROUP & DISCO UNITS

Baker Group 35 £15.45
Baker Group 50/12 £23.45
Baker Group 50/15 £35.15
Celestion Powercell 12/150 £56.60
Celestion Powercell 15/250 £68.25
Celestion GL12/50 Twin cone £15.95
Celestion GL12/80 Cambric edge £20.25
Celestion GL12/80 Twin cone £19.75
Celestion GL12/125 Cambric edge £35.10
Celestion GL15/100 Cambric edge £31.95

WILMSLOW AUDIO

KITS FOR MAGAZINE DESIGNS etc

KITS FOR MAGAZINE DESIGNS
Kits include drive units, crossovers, BAF/long fibre wool, etc, for a pair of speakers.

PRICES PER PAIR -

CARRIAGE £2.66

Dalesford System 1 £45.00
Dalesford System 2 £75.00
Dalesford System 3 £104.00
Dalesford System 4 £110.00
Dalesford System 5 £142.00
Dalesford System 6 £95.00
Eagle SK210 £176.60
Eagle SK215 £32.60
Eagle SK320 £40.80
Eagle SK325 £68.50
Eagle SK335 £93.00
Goodmans 75/120 4 ohm (special offer) £27.60
LS3/SA equivalent kit £71.00
Lowther PM6 kit £105.30
Lowther PM5 kit £110.40
Lowther PM5 kit £176.85
Peerless 1070 £124.70
Peerless 1120 £142.10
Peerless 2050 £61.10
Peerless 2080 £67.40
Radford Studio 90 kit £184.00
Radford Monitor 180 £218.00
Radford Studio 270 kit £350.00
Radford Studio 360 kit £640.00
Ram Kit 50 (makes RAM 100) £17.15
Richard Allan Tangio Twin kit £49.00
Richard Allan Maratona kit £69.00
Richard Allan Charisma kit £101.20
Richard Allan Super Triple kit £81.70
Richard Allan RAB kit £83.30
Richard Allan RAB kit £83.30
Richard Allan RAB kit £89.90
Seas 232 £40.85
Seas 253 £63.10
Seas 403 £76.60
Seas 603 £122.86
Wharfedale Denton XF2 kit £31.45
Wharfedale Shalston XF2 kit £31.45
Wharfedale Linton XF2 kit £56.20
Wharfedale Glandale XF2 kit £68.00

CARRIAGE & INSURANCE

Tweeters & Crossovers 50p each Speakers 4½"-6½" 80p each Speakers 10"-12" £1.00 each Speakers 12½"-13½", "14" £1.15 each Speakers 15" £1.75 each Speakers 18" £2.75 each Speakers 18" £4.00 each Speaker kits £1.75 each £3.00 pair

Mag. design kits £3.75 pair

Send 30p stamp for free 38 page catalogue 'Choosing a Speaker'

Telephone Speakers, Mail Order and Export
0625 529599

Hi-Fi. (Swift of Wilmslow) 0625 526213.
Lightning service on telephoned credit card orders!

SWIFT OF WILMSLOW
The firm for Hi-Fi
58 Swan Street,
Wilmslow, Cheshire.

WILMSLOW AUDIO
The firm for Speakers

Swan Works, Bank Square,
Wilmslow, Cheshire.

WWW - 033 FOR FURTHER DETAILS

Everything in stock for the speaker constructor:
- BAF, Long Fibre Wool, Foam, Crossovers, Felt Panels, Components, etc
- Large selection of grille fabrics
- Send 18p (in stamps for grille fabric samples)
The 7208 600 MHz Mini Counter

the quality low cost counter

FEATURES
- All Metal Cabinet
- 8 Digit 4" LED Display
- Built-in Prescaler
- Automatic Dp Placement
- Gate Light
- IC Sockets Included
- 240V or 12V Operation
- Proportional Control Crystal Oven (Optional)
- Built-in VHF-UHF Preamp
- Completely Portable with Rechargeable Batteries (Optional)

DESCRIPTION
The Davis 7208 VHF-UHF Frequency Counter incorporates the latest LSI technology in a wide range portable instrument at a reasonable price. The 7208 offers outstanding features including an all metal cabinet for RF shielding, large 8 digit display, built-in prescaler, automatic DP, and with the built-in VHF-UHF preamp the 7208 can directly measure low level RF signals from RF generators. The 7208 can also be operated completely portable with the Ni-Cad battery option. Price £145.00 + VAT.

6502 BASED MICRO KIT
- £85.00

8K RAM KIT
- £95.00

MAINS ADAPTOR
- £5.00

V.D.U. KIT
- £88.00

SPECTRONICS

UV Erasure Lamp
- PE14: Erases up to 6 chips. Takes approx. 19 mins.
- PE14T*: Erases up to 6 chips. Takes approx. 19 mins. £56.00

UV Erasure Cabinet
- PC2000*: Erases up to 144 chips. Takes approx. 7 mins. £127.69

TERMS: Credit Sales (minimum £10.00) Barclaycard and Access Welcome. Please add 15% VAT.

CALLERS ONLY: 220-222 Stockport Road, Cheadle Heath, Stockport Tel: 061 491 2290

SEND FOR OUR NOVEMBER CATALOGUE AND BOOK LIST.
Your attention please!

MIL series amplifiers are designed and priced for installations in a wide range of applications including churches, schools, restaurants, factories, shops and offices.

Each amplifier is available with input facilities for microphones and music sources; six programme push button AM tuners or FM tuners and preannouncement chimes are available options.

One model incorporates automatic switching to a battery supply in the event of a power failure.

Such a versatile system can confidently satisfy your exact requirements.

Please tick as required.
For further information on this product □ Complete range of sound equipment □

Name ____________________________
Position ____________________________

Attach this coupon to your letter heading and send to:
MILLBANK ELECTRONICS GROUP LIMITED, MARKETING SERVICES UNIT, P.O. BOX 33, UCKFIELD, SUSSEX. ENGLAND.

WW—074 FOR FURTHER DETAILS
Recognise me?

If you do you should know your authorised

Avo Sales and Service Centre
Quick turn round on estimates/repairs
Large stocks of new AVOMETERS

Farnell International
Farnell International Instruments Ltd.,
Sandbeck Way, Wetherby West Yorkshire LS22 4DH
Tel 0937 63541 Telex 557294 Farist G

WW - 112 FOR FURTHER DETAILS

ELECTRONIC VALVES WANTED
All Types Receiving, Transmitting, Industrial

Phone/write to: PYPE HAYES RADIO LTD.
606 Kingsbury Road
Birmingham B24 9PJ
021-373 4942

WWW - 113 FOR FURTHER DETAILS

PROBABLY THE MOST INEXPENSIVE QUALITY SIGNAL GENERATOR AVAILABLE TODAY
Audio Range: 10Hz-100Khz, in four switched ranges.
Distortion
Extremely low.
(0.015% typical, @ 1Khz).
Output
1v into 600Ω, with Fixed and Variable Atten.
Sine and Square Wave.
Based on a Linsley Hood design.
Battery or Mains.

WWW - 097 FOR FURTHER DETAILS

ON-H SCIENTIFIC Surgeboard II, fully built 50Hz model for British 'v's, caserless operation, uses your TV or a vfo, full keyboard, 24 trace, 41 am. We have the only people who include a free power supply and irradiate in our price of £186 + 15% VAT and additional £18 for the board.

SILICON PRODUCTS Now 101040 models (£65.01), with £2.50, £4.50, £6.50, £11.77, £23.35, that price £21.70, £43.42, £86.84, £173.70, etc. £2.00.

COMPUTER GAMES: new renamed £9.95, classic challenger 7 £8.40, Piccies £7.00 home computer £16.80, Videogame £10.20. Acon video £7.00, Tandy £9.00

COMPONENTS: 1N1488 0.3p, £0.020 1p, 7011 4p, 1N4148 0.2p, 2401 0.55p, 2N2222 1.5p, 2N3819 9p, 55p, resistors VV 5k £12 10p to 10p 1p, 0.1p to 0.1p, 10p to 10p, 100 to 100, 1k to 1k, 2k to 2k, 5k to 5k, 10k to 10k, 100k to 100k, 1M to 1M, 10M to 10M, 100M to 100M, 1G to 1G, etc.

SWANLEY ELECTRONICS
Dept WW, 32 Goldsel Rd., Swanley
Kent.

Air - Marine - Commercial VHF/UHF Monitor Receiver

Air - Marine - Commercial VHF/UHF Monitor Receiver

VHF FM MOBILE 2 WAY RADIO

Model

CT210 NEW

Model

CT210

- 10 watts RF power
- Up to 12 channels
- Home Office Approved

- Made by us in the UK
- Modular construction
- Small physical size

Export entries welcome

Reg office

OM-TEK (MIDS) Ltd

506 Alum Rock Road, Birmingham B8 3HX
Tel: 021-326 6343 Telex 339938
BI-KITS AUDIO MODULATORS AT PRE-INCREASED PRICES!

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL20</td>
<td>3-way auto amplifier module</td>
<td>$2.50</td>
</tr>
<tr>
<td>AL30</td>
<td>6-way auto amplifier module</td>
<td>$2.80</td>
</tr>
<tr>
<td>AL40</td>
<td>9-way auto amplifier module</td>
<td>$3.00</td>
</tr>
<tr>
<td>AL50</td>
<td>12-way auto amplifier module</td>
<td>$3.50</td>
</tr>
<tr>
<td>AL25</td>
<td>15-way auto amplifier module</td>
<td>$4.00</td>
</tr>
<tr>
<td>AL23</td>
<td>20-way auto amplifier module</td>
<td>$4.50</td>
</tr>
<tr>
<td>AL22</td>
<td>25-way auto amplifier module</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

STEREO PRE-AMPLIFIER

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA100</td>
<td>100-watt power amplifier</td>
<td>$7.90</td>
</tr>
<tr>
<td>PA101</td>
<td>10-watt power amplifier</td>
<td>$5.90</td>
</tr>
<tr>
<td>PA110</td>
<td>110-watt power amplifier</td>
<td>$6.90</td>
</tr>
<tr>
<td>PA120</td>
<td>120-watt power amplifier</td>
<td>$7.90</td>
</tr>
</tbody>
</table>

MONO PRE-AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM100G</td>
<td>Mono power amplifier</td>
<td>$20.00</td>
</tr>
<tr>
<td>MM101G</td>
<td>Mono power amplifier</td>
<td>$22.00</td>
</tr>
</tbody>
</table>

TRANSFORMERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2024</td>
<td>7.5mm 500 ohm</td>
<td>$2.50 each</td>
</tr>
<tr>
<td>3036</td>
<td>7.5mm 1050 ohm</td>
<td>$3.00 each</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4001</td>
<td>50V 1A rectifier diode</td>
<td>$0.01 per piece</td>
</tr>
<tr>
<td>1N4002</td>
<td>25V 1A rectifier diode</td>
<td>$0.01 per piece</td>
</tr>
<tr>
<td>1N4003</td>
<td>15V 1A rectifier diode</td>
<td>$0.01 per piece</td>
</tr>
</tbody>
</table>

LINEAR

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805</td>
<td>5V regulator</td>
<td>$0.01 each</td>
</tr>
<tr>
<td>7812</td>
<td>12V regulator</td>
<td>$0.01 each</td>
</tr>
<tr>
<td>7909</td>
<td>9V regulator</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

SPECIAL OFFER

COMPONENT PARCELS

- **D/D** includes free delivery for all of your PCB designs.
- **SPECIAL OFFER** includes free delivery for all of your PCB designs.

WIRED-world, March 1980

SUPER SOUND SAVING! DINE IN LOW NOISE CASSETTES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCA11</td>
<td>2 channel</td>
<td>$5.00 each</td>
</tr>
<tr>
<td>SCA12</td>
<td>3 channel</td>
<td>$6.00 each</td>
</tr>
</tbody>
</table>

ALL REDUCED CAPACITOR PARCELS

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1uf</td>
<td>1000VDC 10%</td>
<td>$0.01 each</td>
</tr>
<tr>
<td>0.1uf</td>
<td>500VDC 10%</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

RESISTOR PARCELS

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>270ohm</td>
<td>1% Tolerance</td>
<td>$0.01 each</td>
</tr>
<tr>
<td>470ohm</td>
<td>1% Tolerance</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

IC SOCKET PARCELS

<table>
<thead>
<tr>
<th>IC Socket</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC14</td>
<td>Quad 2-input NOR gate</td>
<td>$0.01 each</td>
</tr>
<tr>
<td>74HC15</td>
<td>Quad 2-input NAND gate</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Regulator</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7806</td>
<td>5V regulator</td>
<td>$0.01 each</td>
</tr>
<tr>
<td>7815</td>
<td>15V regulator</td>
<td>$0.01 each</td>
</tr>
<tr>
<td>7818</td>
<td>18V regulator</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

OPTOELECTRONICS

<table>
<thead>
<tr>
<th>Diode</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN4001</td>
<td>50V 1A rectifier diode</td>
<td>$0.01 each</td>
</tr>
<tr>
<td>IN4002</td>
<td>25V 1A rectifier diode</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

2ND QUALITY LED PARCELS

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5007</td>
<td>3mm red LED</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

L.E.D. PARCELS

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7806</td>
<td>5V regulator</td>
<td>$0.01 each</td>
</tr>
<tr>
<td>7815</td>
<td>15V regulator</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

L.E.D. CLIPS

<table>
<thead>
<tr>
<th>Clip</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1023</td>
<td>10mm chrome knobs</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

SPECIAL OFFER

- **SUPER DUPER COMPONENT BOX**
 - 30% off in weight each of a fantastic assortment of Electronic Components - Pads, Resistors, Condensers, Transistors, Wireless Semiconductors, etc. Hardware etc. etc. etc.
 - **This is a large box and is set to improve your order.**

CAPACITOR CHIPS

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>22uf</td>
<td>16V 5% electrolytic</td>
<td>$0.01 each</td>
</tr>
</tbody>
</table>

SEND YOUR ORDER TO:

DEPT WW 3, BI-PAK PO BOX 6 WARE HERTS.

SHOPS 1: 3 BALDICK ST. WARE HERTS.

TERMS: CASH WITH ORDER, SAME DAY DESPATCH, ACCESS.

BARGAINS CARLISHIRE ALSO ACCEPTED. TEL. (0920) 3182. GIRIO 3887006

ADD 15% VAT AND 50P PER ORDER POSTAGE AND PACKING APPY. COUNT BY WEIGHT.
ORGAN and PIANO KEYBOARDS

Price inc. VAT P & P
4-Octave C-C £32.20 £2 75
5-Octave C-C £34.50 £2.75
5-Octave F-F £34.50 £2.75
6-Octave C-C £36.80 £3.00

DALSTON ELECTRONICS
40a Dalston Lane, Dalston Junction
London, E8 2AZ Tel: 01-249 5624

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear.

We are situated just around the corner from West Hampstead Underground Station (Bakerloo line). A few minutes' walk away is West Hampstead Midland Region station and West End Lane on the Broad Street Line. We are on the following bus routes: 28, 59, 158. Hours of opening are 9-5 Monday to Friday. Closed for Lunch 1-2 Saturday we are open 9-1 2.30 only. World wide exports. DRAKE * SALES * SERVICE

RADIO SHACK LTD
188 BROADHURST GARDENS, LONDON NW6 3AY
Giro Account No. 588 7151, Telephone: 01-684 1422, 01-689 8741

MAIL ORDER PROTECTION SCHEME
(Limited Liability)
If you order from mail order advertisers in this magazine, except for classified advertisements, and pay in post in advance of delivery, Wireless World will consider your complaint if the advertiser should become insolvent or bankrupt, provided:
1. You have not received the goods or had your money returned, and
2. You write to the publisher of Wireless World explaining the position not earlier than 21 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to write. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as practicable after the advertiser has been declared bankrupt or insolvent. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of Wireless World, but we do not guarantee to do so in view of the need to set some limit to our liability, to handle claims promptly, and to cater for other advertisers. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of Wireless World, but we do not guarantee to do so in view of the need to set some limit to our liability, to handle claims promptly, and to cater for other advertisers.

MAIL ORDER PROTECTION SCHEME (Limited Liability)

Mail order protection scheme (Limited Liability)

If you order from mail order advertisers in this magazine, except for classified advertisements, and pay in post in advance of delivery, Wireless World will consider your complaint if the advertiser should become insolvent or bankrupt, provided:
1. You have not received the goods or had your money returned, and
2. You write to the publisher of Wireless World explaining the position not earlier than 21 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to write. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as practicable after the advertiser has been declared bankrupt or insolvent. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of Wireless World, but we do not guarantee to do so in view of the need to set some limit to our liability, to handle claims promptly, and to cater for other advertisers. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of Wireless World, but we do not guarantee to do so in view of the need to set some limit to our liability, to handle claims promptly, and to cater for other advertisers.

MAIL ORDER PROTECTION SCHEME
(Limited Liability)

If you order from mail order advertisers in this magazine, except for classified advertisements, and pay in post in advance of delivery, Wireless World will consider your complaint if the advertiser should become insolvent or bankrupt, provided:
1. You have not received the goods or had your money returned, and
2. You write to the publisher of Wireless World explaining the position not earlier than 21 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to write. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as practicable after the advertiser has been declared bankrupt or insolvent. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of Wireless World, but we do not guarantee to do so in view of the need to set some limit to our liability, to handle claims promptly, and to cater for other advertisers. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of Wireless World, but we do not guarantee to do so in view of the need to set some limit to our liability, to handle claims promptly, and to cater for other advertisers.
Suitable Bookshelf Cabinet

With tweeter and EMI 131/2 x 8in. LOUDSPEAKERS

With spindles

POTENTIOMETERS

80 Ohm Coax

FRINGE LOW NOISE 15p

400 Ohm

PLUGS, 200g, SOCKETS 25p, LINE SOCKETS 45p, Sliders Mono 6p, Stereo 8p.

EMI 13 1/2 x 8in. LOUDSPEAKERS

With tweeter and crossover device.

BASS WOOFER only 15w. 20w.

Suitable Bookshelf Cabinet

Task finished and packed with circuit & connections. Some technical knowledge required.

"THE INFINITY" BULK TAPE ERASER

Suitable for erasing all types of记录, including reel to reel, reel to reel, and reel to reel.

WIRELESS WORLD, MARCH 1980

Baker Loudspeakers

"SPECIAL PRICES"

<table>
<thead>
<tr>
<th>MODEL</th>
<th>OHMS</th>
<th>POWER TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJ0Z</td>
<td>3</td>
<td>D1</td>
</tr>
<tr>
<td>MIK1X 12</td>
<td>3</td>
<td>ALUM</td>
</tr>
<tr>
<td>SUPERI</td>
<td>3</td>
<td>ALUM</td>
</tr>
<tr>
<td>AUDITORIUM</td>
<td>3</td>
<td>ALUM</td>
</tr>
<tr>
<td>GROUP 45</td>
<td>3</td>
<td>ALUM</td>
</tr>
<tr>
<td>GROUP 50</td>
<td>3</td>
<td>ALUM</td>
</tr>
<tr>
<td>DISCO 100</td>
<td>3</td>
<td>ALUM</td>
</tr>
<tr>
<td>DISCO 125</td>
<td>3</td>
<td>ALUM</td>
</tr>
</tbody>
</table>

WIRELESS WORLD, MARCH 1980

Baker Amplifier

£63 Post £1.60

Ideal for Halls/PA systems, Discos and Groups. Two inputs: Volume Controls, Mains Amp, Treble, Bow Gain Controls. 50 watts max. m.s. Three loudspeaker outlets 4, 8, 16 ohms.

Famous Loudspeakers

"SPECIAL PRICES"

<table>
<thead>
<tr>
<th>MODEL</th>
<th>OHMS</th>
<th>POWER TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEALS</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>GOODMAN 90W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>NUDAX 60W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>MID-RISE 50W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>MID-RISE 30W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>MID-RISE 15W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>MIDDY 20W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>MODERN 15W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>McKINNEY 15W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>CELESTIAL 15W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>CELESTIAL 15W</td>
<td>4</td>
<td>D1</td>
</tr>
<tr>
<td>CELESTIAL 15W</td>
<td>4</td>
<td>D1</td>
</tr>
</tbody>
</table>

Radio Books and Components Lists 20p. (Minimum posting charge 30p.) Access or Barclayscard please telephone: 01-684 1665 for same day despatch. Cash prices include VAT.
AEL
Suppliers of
Electronic Tubes
Semiconductors
For use in Professional Equipment

Exceptionally wide range of spares for most equipment in use

Write for catalogues or just state your requirement to

AEL
AERO ELECTRONICS (AEL) LIMITED
GATWICK HOUSE, HORLEY, SURREY, ENGLAND RH6 9SU
Telephone: Horley (02934) 5353
Telex: 87116 (Aero G Horley)
Cables: Aero G Telex Horley

110 Hz -100 KHz Generator
0.008% THD
100μV/IV Sin/Square
RIAA Output
6 Digit Frequency Display from input or output
100μV-100V FSD Millivoltmeter
1% Accuracy
1 Hz-200 KHz Bandwidth
Ultra low-power operation from single PP9 battery or optional mains adaptor
DIN or BNC connectors

YOUR MEASUREMENT PROBLEMS SOLVED IN ONE
COMPACT PRECISION INSTRUMENT — THE
LINDOS LA1 AUDIO ANALYSER

WE MAKE JOYSTICKS
in single, dual or triple axis forms, and we sell them in Thousands, Hundreds, Tens or Ones!
No minimum order, no prohibitive small quantity prices. Specials with switches as well as or instead of pots, press buttons in levers, etc. quickly, even in 1 offs. Also very heavy duty types by PQ Controls.

NEW CONTACTLESS INDUCTIVE JOYSTICKS
In quantity production from FEBRUARY for applications where extremely long life is essential, but costs preclude aerospace quality potentiometers. Synchronous detection in screened can makes these ideal even for areas subject to very high levels of interference. Ideal for applications like electric wheelchairs, fork lift trucks, and any application where constant cycling of controls is experienced. Available in single and dual axis and rotary shaft versions.

Send now for Full Details:
USA. PQ Controls, 71 Dolphin Road, Bristol, Connecticut 06010 USA. 203-583 6994
Germany. Appointment soon
Elsewhere. Applications invited

SUB FREQUENCY SYNTHESIZER
When connected to your HiFi system or PA this unit will generate frequencies one octave below the lowest frequency recorded on your discs or cassettes. SUB FREQUENCY SYNTHESIS adds a fourth dimension to sounds. It enables you not only to hear, but to feel the vibrations created by bass instruments. Connected to a high powered HiFi system the S F S assays your body with blasts of infra-sound. A disc (or cassette) recording lacks most of the frequencies below 50 Hz that were present in the original music. The S F S recreates these lost parts of the sound image, widening the dynamic range of the recording.

HOW IT WORKS
The frequency and amplitude of recorded signals in the range 60 to 120 Hz are used to synthesize frequencies one octave lower. These high tonal purity sub-harmonic signals are then added to the existing bass to produce a smooth spectral extension of the recorded sound. Higher frequencies are not affected by the S F S.

Two controls on the front match the input signal to the synthesizer level and control the level of sub-harmonic sound. The S F S was tested by the Swedish Audio magazine R&T Ino.5/1979) which praised the unit for its sensational effect when connected to a system of adequate power capacity. The sensation of feeling sound was described as tremendous.

The S F S is available as a kit comprising a mounted and tested PC board, aluminium case, mounting hardware and assembly instructions. The kit, when completed, is easily connected to any HiFi system, following the instructions provided. Cost is £76 + p&p (£3.3) + V.A.T. Enclose cheque for £79 when ordering.

Mail your order to:
INGENJÖRSMARNA LEIF MARENJUS & CO HB
P.O. Box 5086, S-421 05 VÄSTRA FROLUNDA, Sweden

FEEL DEEP DOWN BASS
We are the Designer Approved suppliers of kits for this excellent design. The Author’s reputation tells all you need to know about the circuitry and Hart expertise and experience guarantees the engineering design of the kit. Advanced features include: High quality 6082 VU meters with excellent ballistics. Complete, switches and sockets mounted on PCB to eliminate difficult wiring. Proper moulded escutcheon for cassette aperture improves appearance and removes the need for the cassette transport to be set back behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equalisation for different tape formulations. All wiring is terminated with plugs and sockets for easy assembly and test. Sophisticated modular PCB system gives a spacious, neatly built and tested layout. All these features added to the high quality metalwork make this a most satisfying kit to build. Also included at no extra cost in our new HS15 Sendust Alloy record/relay head, available separately at £7.80 plus VAT, but included FREE as part of the complete kit at £91.99 + VAT.

All prices plus VAT

CASSETTE HEADS

<table>
<thead>
<tr>
<th>Head</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS15 Sendust Alloy Super Head</td>
<td>7.60</td>
</tr>
<tr>
<td>HS20 Sendust Alloy R/P head for replacement use in car players, etc.</td>
<td>6.25</td>
</tr>
<tr>
<td>HM90 Stereo R/P head for METAL tape</td>
<td>7.20</td>
</tr>
<tr>
<td>HS61 Special Erase Head for METAL tape</td>
<td>4.90</td>
</tr>
<tr>
<td>HS24 Standard Ferrite Erase Head</td>
<td>1.50</td>
</tr>
<tr>
<td>4 Track R/P Head Standard Molding</td>
<td>7.40</td>
</tr>
<tr>
<td>R484 2/2 (Double Mono) R/P Head Std. Mtg.</td>
<td>4.80</td>
</tr>
<tr>
<td>ME151 2/2 Ferrite Erase, Large Mtg.</td>
<td>4.25</td>
</tr>
<tr>
<td>COE/BRN 3/2 Esrex Std. Mtg.</td>
<td>7.90</td>
</tr>
</tbody>
</table>

We are the actual importers of these heads and invite Trade/quantity enquiries.

All prices plus VAT

ALL UK ORDERS ARE POST-FREE

Please send 9x4 SAE for lists giving fuller details and price breakdowns.

Personal callers are always welcome but please note we are closed all day Saturday.

Instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894

J. L. Linsley Hood
High Quality Cassette Recorders

LINSLEY HOOD CASSETTE RECORDER 1

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and output modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter arrangement used on our Linsley Hood Cassette Recorder. This latest version has the following extra features. Ultra low wow-and-flutter of .9% — easily meets DIN Hi-fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record button for level setting. Dual concentric input level controls. Phone output. Microphone input facility if required. Record interlock prevents re-recording on valued cassettes. Frequency generating feedback servo drive motor with built-in speed control for thermal stability. All these desirable and useful features added to the excellent design of the Linsley-Hood circuits and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest £94.90 + VAT we ask for the complete kit.

SUPER BARGAIN OFFER
LENO FFR CASSETTE DECK

For those who missed our recent bargain CT4s we now are delighted to be able to offer brand new Lenco FFR Decks complete with motor speed and auto-stop control board fitted and tested. These will operate with any supply between 9 and 16 volts. This deck can be used for both record and playback applications and is fitted with an erase head. A mono record/play back head is fitted and we can supply an extra stereo head, if ordered with the deck at the very special price of £2 plus VAT. We also supply, with each deck and completely FREE, one of our specially moulded escutcheons. This deck would normally cost about £25 but we are able to offer them, while they last, at only £9.99 plus VAT.

BAILEY 30 WATT AMPLIFIER

We have now completed our rewrite of this popular amplifier to make it as easy to build as our latest kits. The power amplifiers are complete modules plugging into a power supply master board, all possible wiring has been eliminated but faith has been maintained with the amazing metal work to enable owners to update if they wish. Send for full details.

LINSLEY HOOD 30-WATT AMPLIFIER

Advanced new cost-effective amplifier of impeccable specification from the "master." We are supplying full kits to our usual professional standard.

STUART TAPE CIRCUITS

These circuits are (just the thing for converting that old valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and replay sections for simultaneous off tape monitoring. We also stock the heads. This kit is well engineered but does not have the detailed instructions that we give with our more recent designs. We would not therefore recommend it to beginners. Reprints of the original three articles 45p. Post free, No VAT.

HART ELECTRONIC KITS LTD
PENYLAN MILL, OSWESTRY, SHROPSHIRE
Phone (0691) 2894
Telex 35661 Hartel G
SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

TYPE U4313
- **Sensitivity D.C.** 20,000 o.p.v.
- **Sensitivity A.C.** 20,000 o.p.v.
- **D.C. Current** 0.6mA-1.5mA
- **A.C. Current** 0.6mA-2.5mA
- **D.C. Voltage** 75mV-1000V
- **A.C. Voltage** 15V-600V
- **Resistance** 1K-1M
- **Accuracy** 1.5% D.C., 2.5% A.C.

TYPE U4315
- **Sensitivity D.C.** 20,000 o.p.v.
- **Sensitivity A.C.** 20,000 o.p.v.
- **D.C. Current** 50mA-2.5mA
- **A.C. Current** 0.5mA-2.5mA
- **D.C. Voltage** 300V-1000V
- **A.C. Voltage** 1V-1000V
- **Resistance** 3000-500k
- **Accuracy** 2.5% D.C., 4% A.C.

Price complete with pressed steel carrying case and test leads:
- **£10.50**
- **£10.50**

Packing and postage:
- **£1.50**
- **£1.50**

TYPE U4324
- **D.C. Current** 0.06mA-0.6mA
- **A.C. Current** 0.3mA-3mA
- **D.C. Voltage** 0.6V-120V
- **A.C. Voltage** 1.5V-750V
- **Resistance** 500Q-20M
- **Accuracy** 2.5% D.C., 4% A.C.

Price complete with test leads and fibreboard storage case:
- **£9.50**

Packing and postage:
- **£1.20**

TYPE U4323
- **Sensitivity** 20,000V/V
- **Voltage ranges** 2.5-1000V D.C., 0.05-500mA D.C.
- **Current ranges** 0.05-500mA D.C.
- **Resistance** 50-1K
- **Accuracy** 5% F.S.D.
- **Oscillator output** 1kHz 50/50 squarewave

Price, in carrying case, complete with leads and manual:
- **£8.00**

Packing and postage:
- **£1.00**

TYPE U4341
- **Sensitivity** 16,700V/V
- **Voltage ranges** 2.5-1000V D.C., 0.05-500mA D.C.
- **Current ranges** 0.05-500mA D.C.
- **Resistance** 50-1K
- **Accuracy** 5% F.S.D.
- **Oscillator output** 1kHz 50/50 squarewave

Price, complete with steel carrying case, test lead, battery and instruction manual:
- **£9.50**

Packing and Postage:
- **£1.50**

Our Signal Processing Components come highly recommended

Space/Satellite/Military specification

Since 1967, Merrimac has developed sixty-seven different items designed for more than twenty-five space and missile applications. In addition, many other signal processing devices are in use in fighter and reconnaissance aircraft demonstrating a reliability that is second to none.

As UK agent for Merrimac, Pascall can offer the most comprehensive standard product line of signal processing components in the industry - over seven hundred and fifty catalogue items from DC to 18GHz incorporating lumped element, stripline or ferrite technology. And if this isn’t sufficient to meet your requirements Merrimac offers custom designed derivatives of all these products which surely will.

Pascall in-depth service and advice

Pascall is technically equipped to discuss the Merrimac range in detail and recommend integrated component packages - providing controlled component electrical interfaces at lower costs than the purchase of individual components.

Why not get the full facts on Merrimac from:

Pascall Electronics Limited
Hawke House, Green Street,
Sunbury-on-Thames,
Middlesex TW16 6RA
Telephone: (09327) 87418 Telex: 8814536
UK agent for Merrimac Signal Processing Components

WIRELESS WORLD

Head Office: 44a WESTBOURNE GROVE, LONDON W2 5SF
Tel. 727 5641
Telex 261306

Z & I AERO SERVICES LTD.

Head Office: 44a WESTBOURNE GROVE, LONDON W2 5SF
Tel. 727 5641
Telex 261306

RETAIL SHOP

85 TOTTENHAM COURT ROAD, W.1
Tel. 580-8403

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

<table>
<thead>
<tr>
<th>Type</th>
<th>U4323</th>
<th>U4315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity D.C.</td>
<td>20,000 o.p.v.</td>
<td>20,000 o.p.v.</td>
</tr>
<tr>
<td>Sensitivity A.C.</td>
<td>20,000 o.p.v.</td>
<td>20,000 o.p.v.</td>
</tr>
<tr>
<td>D.C. Current</td>
<td>0.6mA-1.5mA</td>
<td>0.6mA-2.5mA</td>
</tr>
<tr>
<td>A.C. Current</td>
<td>0.5mA-2.5mA</td>
<td>0.5mA-2.5mA</td>
</tr>
<tr>
<td>D.C. Voltage</td>
<td>75mV-1000V</td>
<td>300V-1000V</td>
</tr>
<tr>
<td>A.C. Voltage</td>
<td>15V-600V</td>
<td>1V-1000V</td>
</tr>
<tr>
<td>Resistance</td>
<td>50-1K</td>
<td>50-1K</td>
</tr>
<tr>
<td>Accuracy</td>
<td>5% F.S.D.</td>
<td>5% F.S.D.</td>
</tr>
</tbody>
</table>

Price complete with pressed steel carrying case and test leads:
- **£10.50**
- **£10.50**

Packing and postage:
- **£1.50**
- **£1.50**

TYPE U4323

COMBINED WITH SPOT FREQUENCY OSCILLATOR

Sensitivity	20,000V/V
Voltage ranges	2.5-1000V D.C., 0.05-500mA D.C.
Current ranges	0.05-500mA D.C.
Resistance	50-1K
Accuracy	5% F.S.D.

Oscillator output: 1kHz 50/50 squarewave

Price, in carrying case, complete with leads and manual:
- **£8.00**

Packing and postage:
- **£1.00**

TYPE U4341

COMBINED MULTIMETER AND TRANSISTOR TESTER

Sensitivity	16,700V/V
Voltage ranges	2.5-1000V D.C., 0.05-500mA D.C.
Current ranges	0.05-500mA D.C.
Resistance	50-1K
Accuracy	5% F.S.D.

Oscillator output: 1kHz 50/50 squarewave

Price, complete with steel carrying case, test lead, battery and instruction manual:
- **£9.50**

Packing and Postage:
- **£1.50**

THIS OFFER is VALID ONLY FOR ORDERS ACCOMPANIED BY REMITTANCE WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15% V.A.T. ON THE TOTAL

OUR 1980 CATALOGUE/PRICE LIST OF VALVES, SEMICONDUCTORS AND PASSIVE COMPONENTS IS AVAILABLE. PLEASE SEND P.O. FOR £0.60 FOR YOUR COPY
There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a XY facility using CMOS ICs for extra reliability. Z modulation for brightening or dimming the trace, 10MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At £210.00* it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and 10mV/cm sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3% accuracy and still only £360.00*.

Plus the 4S6 single beam 6MHz bandwidth model with easy to use controls. 10mV sensitivity and timebase range of 1 us to 100ms/cm. Lightweight, compact and a very good price. £144.00*.

Return the coupon for full details of the range that gives you a lot more scope.

"UK list price excluding VAT.

Scopex Sales,
Pixmore Avenue, Letchworth, Herts SG6 1JJ.
Tel: (04626) 72771.

Please send me full details of the Scopex range.

Name

Company

Address

Tel:

WW—079 FOR FURTHER DETAILS
PLYMOUTH PL7 4LU
Tel: 333300

NEW WIRELESS TELEPHONE UNITS

WOULD YOU LIKE A WIRELESS TELEPHONE SET?

NEW IMPROVED NO BATTERIES NO WIRES. Mfr. to high Safety and Telecommunications Standard. The modern way of Instant 2-way communications. Just plug into power socket. Ready to use. Crystal clear communications from room to room. Range +/- mile on the mains phase with call buzzer and light indicator. On/off switch. Volume also useful as burglar alarm. 6 months' service guarantee. P&P £1.50.

WIRELESS WORLD, MARCH 1980
PLYMOUTH PL7 4LU
MAINS INTERCOM
Also useful as burglar alarm. 6 months' service guarantee. P&P £1.50.

Not just any "Off the shelf — Out of the Door" Microcomputer Business. Nicomet can make your Microcomputer into a Telecommunications Terminal — Morse-Telex. Make it work instead of accounting or playing games. Nicomet adds the experience of Electronic Engineering and Telecommunications to that of Microcomputers — the result could be the answer to your problem. For further information on our services — write or call — stating your problems and requirements, to:

Nigel Huntley, Nicomet, 212 St. Stephen's Road, Saltash, Cornwall. Tel. 07555 2066.
8K ON BOARD MEMORY!
5K RAM, 3K ROM or 4K RAM, 4K ROM (link selectable). Kit supplied with 3K RAM, 3K ROM. System expandable for up to 32K memory.

2 KEYBOARDS!
56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS!
64 character graphics option — includes transistor symbols. Only £18.20 extra!

MEMORY MAPPED
High resolution VDU circuitry using discrete TTL for extra flexibility. Has its own 2K memory to give 32 lines for 64 characters.

KANSAS CITY
Low error rate tape interface.

NEW LOW PRICE!
Cabinet Size 19.0" x 15.7" x 3.3"

PSI COMP 80 Z80. Based powerful scientific computer.

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete!

Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2K Basic and 1K monitor in EPROMs and, of course, wire, nuts, bolts, etc.

PSI COMP 80 Memory Expansion System
Expansion up to 32K all inside the computer’s own cabinet!
By carefully thought-out engineering a motherboard with buffers and its own power supply (powered by the computer’s transformer) enables up to 3 8K RAM or 8K ROM boards to be fitted neatly inside the computer cabinet. Connections to the motherboard from the main board expansion socket is made via a ribbon cable.

Mother Board:
Fibre glass double sided plated through hole PCB.
8.7" x 4.8" £112.60
Set of components including IC sockets, plug and socket but excluding RAMs £11.20
5114. RAM (16 required) £5.00
£129.80

8K RAM board
Fibre glass double sided plated through hole PCB.
5.6" x 4.8" £12.40
£78.80

8K ROM board
Fibre glass double sided plated through hole PCB.
5.6" x 4.8" £12.40
Set of components including IC sockets, plug and socket but excluding ROMs £10.70
2708 ROM (8 required) £8.00
Complete set of board, components, 8 ROMs £78.50

Floppy Disk, PROM programmer and printer interface coming shortly!

Value Added Tax not included in prices

UK Carriage FREE
POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP10 3NN
(0264) 64455

2 MICROPROCESSEORS
Z80 the powerful CPU with 158 instructions, including all 78 of the 8080, controls the MM5109 number cruncher. Functions include +, -, squares, roots, logs, exponentials, trig functions, inverses, etc.

EFFICIENT OPERATION
Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC
With extended mathematical capability. Only 2K memory used but more powerful than most 8K Basics.

1K MONITOR
Resident in EPROM

SINGLE BOARD DESIGN
Even keyboards and power supply circuitry on the superb quality double-sided plated-through-hole PCB.

COMPLETE KIT NOW ONLY
£249 + VAT

Television by courtesy of Rumbelows Ltd, price £58.62

PSI Comp 80 280. Based powerful scientific computer.

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete!

Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2K Basic and 1K monitor in EPROMs and, of course, wire, nuts, bolts, etc.

PSI COMP 80 Memory Expansion System
Expansion up to 32K all inside the computer’s own cabinet!
By carefully thought-out engineering a motherboard with buffers and its own power supply (powered by the computer’s transformer) enables up to 3 8K RAM or 8K ROM boards to be fitted neatly inside the computer cabinet. Connections to the motherboard from the main board expansion socket is made via a ribbon cable.

Mother Board:
Fibre glass double sided plated through hole PCB.
8.7" x 4.8" £112.60
Set of components including IC sockets, plug and socket but excluding RAMs £11.20
5114. RAM (16 required) £5.00
£129.80

8K RAM board
Fibre glass double sided plated through hole PCB.
5.6" x 4.8" £12.40
£78.80

8K ROM board
Fibre glass double sided plated through hole PCB.
5.6" x 4.8" £12.40
Set of components including IC sockets, plug and socket but excluding ROMs £10.70
2708 ROM (8 required) £8.00
Complete set of board, components, 8 ROMs £78.50

Floppy Disk, PROM programmer and printer interface coming shortly!

Value Added Tax not included in prices

UK Carriage FREE
POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP10 3NN
(0264) 64455
THE CRÈME DE LA CRÈME OF ELECTRONIC ORGANS
FOR YOU TO BUILD...

Yes, any one of these superior instruments can be built by yourself in the comfort of your own home. The unique WERSI Kit-pack system is designed around modular units using the latest IC technology. Fully drilled P.C. boards together with beautifully illustrated instructions and preformed harnesses lead you to the final product which is now becoming accepted as the world’s most advanced instrument. All cabinets come fully assembled in a wide range of veneers. Home construction enables you to build one of these fabulous organs at 40% below factory price.

All Electro-Voice showrooms have resident demonstrators so why not come along and hear for yourself the wonder of WERSI. Alternatively send £1 for the 140 colour information package. (FREEPOST Electro-Voice, Rickmansworth, Herts RD3 6PF).

<table>
<thead>
<tr>
<th>Power Amps</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>21L02 450W</td>
<td>83p</td>
</tr>
<tr>
<td>21L02 250W</td>
<td>1.00</td>
</tr>
<tr>
<td>21L14 450W</td>
<td>4.35</td>
</tr>
<tr>
<td>21L14 250W</td>
<td>4.75</td>
</tr>
<tr>
<td>41L16 250W</td>
<td>4.50</td>
</tr>
<tr>
<td>41L18 160W</td>
<td>5.50</td>
</tr>
<tr>
<td>21L08 450W</td>
<td>5.95</td>
</tr>
<tr>
<td>21L16 5W</td>
<td>19.15</td>
</tr>
</tbody>
</table>

All Electro-Voice showrooms have resident demonstrators so why not come along and hear for yourself the wonder of WERSI. Alternatively send £1 for the 140 colour information package. (FREEPOST Electro-Voice, Rickmansworth, Herts RD3 6PF).
SOUTHERN SERVICE TRADING CO

9 Little Newport Street, London WC2H 7JJ
Telephone 01-437 0576

All Mail Orders — Callers
Ample parking
Showroom open Monday-Friday

FT3 NEON FLASH TUBE
High pressure mercury vapour lamp with voltage near glow discharge flash tube. Designed for ignition tuning, etc. £1.50 F & P 25p (E3.45 inc. VAT & P).

WIRELESS WORLD, MARCH 1980

0-20V DC BLOWER UNIT
£5.75 incl. P & VAT. Other types available. SAE for details.

TORIN BLOWER
Type 1S6 /L11. Coil 240V 50Hz. Contacts -3 make: 600V: can be switched up to 21 positions and
21 -WAY SELECTOR SWITCH with reset coil

INSULATION TESTERS (NEW)
18-24V DC 70 ohm Coil Solenoid. Push or Pull. Adjustable

Circuit Breaker

RELAYS
Wide range of AC and DC relays available from stock. Phone for our current stock list.

VARIABLE VOLTAGE TRANSFORMERS
INPUT 230/240 vac., 50/60 OUT PUT

VARIABLE 0-20V
200W, 1 amp inc. VAT £14.50
0.5 KVA (2/5 amp inc. VAT) £17.00
1 KVAR (1/3 amp inc. VAT) £22.00
2 KVA (1 amp inc. VAT) £37.00
3 KVAR (1/2 amp inc. VAT) £46.00
5 KVAR (25 amp inc. VAT) £74.00
10 KVAR (50 amp inc. VAT) £142.00
15 KVAR (100 amp inc. VAT) £260.00

2-Phase VARIABLE Voltage
3 KVA (max. 15 amp) £105.43 & VAT
3 KVA (max. 30 amp) £159.37
10 KVA (max. 55 amp) £347.53
PACKAGING & CARRYING UNIT

AC WKG TABULAR CAPACITORS

200V AC 300pF £1.00
250V AC 220pF £1.25
400V AC 100pF £2.00
600V AC 50pF £2.50
1000V AC 30pF £3.50

HY -LIGHT STROBE KIT MV. IV

LUX. Price £15.00 + 50p (£16.50 inc. VAT & P).

3-Phase 110V 15hp 30hp £75.00 + 50p P&P (£85.25 inc. VAT & P).

RAY Z. 220V 110V 15hp 30hp £75.00 + 50p P&P (£85.25 inc. VAT & P).

AC WKG TABULAR CAPACITORS

300V AC 220pF £1.00
400V AC 100pF £1.25
600V AC 50pF £2.00
1000V AC 30pF £2.50

AC WKG TABULAR CAPACITORS

200V AC 300pF £1.00
250V AC 220pF £1.25
400V AC 100pF £2.00
600V AC 50pF £2.50
1000V AC 30pF £3.50

HY -LIGHT STROBE KIT MV. IV

STROBE! STROBE! STROBE!

AC WKG TABULAR CAPACITORS

200V AC 300pF £1.00
250V AC 220pF £1.25
400V AC 100pF £2.00
600V AC 50pF £2.50
1000V AC 30pF £3.50

HY -LIGHT STROBE KIT MV. IV

AC WKG TABULAR CAPACITORS

200V AC 300pF £1.00
250V AC 220pF £1.25
400V AC 100pF £2.00
600V AC 50pF £2.50
1000V AC 30pF £3.50
S-2020TA STEREO TUNER/AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In / Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20W into 8 ohms. Power on/off FET transient protection. All sockets, leads, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range 88-108MHz, 30dB mono S/N @ 1.20V THD 0.3%. Pre-decoder "bird" filter.

PRICE: £59.95 + VAT

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase I.F. and 3 state MPX decoder.

PRICE: £69.95 + VAT

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years research by the Ambisonic team. W.W. July, Aug., '77.

The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (not CD4), including the new BBC HJ 10 input selections. The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 2 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee £49.50 + VAT or ready built and tested £67.50 + VAT

S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. S/N 90 dB. Mag/n 80 dB. Output device being 380w per channel.

Tone cancel switch: 2 tape monitor switches. Metal case - comprehensive heatsinks.

Complete kit only £63.90 + VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 60 seconds and the unit re-arms. 240V ac mains or 12V battery operated. Disguished as a hard-backed book. Detection range up to 45 feet.

Complete kit £49.50 plus VAT, or ready built and tested £64.50 plus VAT.

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc.

Typical performance

Noise reduction better than 9dB weighted.

Clipping level 16.5dB above Dolby level (measured at 1% third harmonic content).

Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%.

Signal-to-noise ratio: 37dB (20Hz to 20kHz, signal at Dolby level) at Monitor output.

Dynamic range >90dB

30mV sensitivity

Complete Kit PRICE: £43.90 + VAT

Also available ready built and tested

Price £59.40 + VAT

Price £2.40 + VAT

Price £9.00 + VAT

Single channel plug-in Dolby PROCESSOR BOARD (92 x 87mm) with gold plated contacts and all components

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

INTEGREX LIMITED

Please send SAE for complete lists and specifications

Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT

Burton-on-Trent (0283) 215432 Telex 377106
Cut costs and speed trouble shooting

with the

Huntron Tracker

This easy to use instrument displays shorts, opens, and leakage in solid state components - back diodes, unijunctions, bipolar, Darlington's, JFET's, MOS FET's, LED's, electrolytics and IC's... IN CIRCUIT/T!

Test pure digital analogue hybrid boards... WITHOUT CIRCUIT POWER!

Current limit to protect delicate devices in the MOS-COMOS family.

Save 20...30... even 50% of troubleshooting time and recover your investment! Exclusive 12 months warranty, available from-

M.T.L. Microcircuit Limited,
14 Butts Road Alton, Hampshire
Telephone Alton (0420) 88022

WWW-117 FOR FURTHER DETAILS

STERO DISC AMPLIFIER 3

A reference amplifier for disc monitoring and transfer when replay signals of the highest quality are required.

FOTOLAK

POSITIVE LIGHT SENSITIVE AEROSOL LACQUER

ENABLES YOU to produce perfect printed circuits in minutes!

Method: Spray cleaned board with lacquer. When dry, place positive master of required circuit on sensitized surface. Expose to daylight, develop, and etch. Any number of copies of course can be made from one master. Widely used in industry for prototyoe work.

FOTOLAK £2.00
Pre-coated 1/16 Fibre glass board
Developer £0.50
30p
Fence Chloride £0.00
50p
40mm x 228mm
60p
467mm x 305mm £0.00
Plain Copper clad fibre glass.
Single-sided £1.50
Double-sided £2.00
Approx. 10m 00g tps.
Approx. 1000mm tps.
Clear Acetate Sheet for making master:
260mm x 260mm
12p

Barrie Electronics Ltd.
3,THE MINORIES, LONDON EC3N 1BJ
TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIONS: ALDgate & LIVERPOOL ST.
All these only from HENRY'S

Nascom-2+FREE 16K RAM
Here's an offer you can't refuse:
Because of the lack of availability of 4K 4118 RAMs, Nascom Microcomputers is supplying its Nascom 2 without the 8 spare 4118s but with a FREE 16K dynamic RAM board.
When the 4118s become available, Nascom 2 purchasers can have them at the special price of £80 + VAT for the K.
So, for £295 plus VAT this is what you get:

- **MEMORIES**
 - 2708A RAM board will run at 4MHz but is selectable between 1/2/4 MHz.
- **MICROPROCESSOR**
 - 8080A which will run at 4MHz but is selectable between 1/2/4 MHz.
- **HARDWARE**
 - Industrial standard 12" x 8" PCB, through hole plate. Masked and extensive software manual for the monitor and ASIC.
 - Industrial standard 12" x 8" PCB, through hole plate. Masked and extensive software manual for the monitor and ASIC.
 - 1K Vdp RAM.
 - 1K Work RAM.
- **INTERFACES**
 - Licon 57 key solid state keyboard.
 - Monitor/demotic TV interface.
 - Kansas City cassette interface (300/1200 baud) or RS232/20mA.

The Nascom 2 kit is supplied complete with construction article and extensive software manual for the monitor and ASIC.

MEMORY
- 16K RAM board
- 32K RAM
- 1K Vdp RAM
- 1K Work RAM

SOFTWARE
- BASIC
- Z80A
- 8K 16K
- 32K
- EPROM programmable
- SMART-1
- Tiny Basic
- Too Tiny Basic
- TinyTiny
- Tiny basics
- Super Tiny Basic
- TinyBasic
- Tiny Basic
- Tin...
WIRELESS WORLD, MARCH 1980

ELECTRO-TECH COMPONENTS LTD.
364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

JVC-VICTOR HIGH FIDELITY STEREO CASSETTE TRANSPORT MECHANISM

ELECTRO-TECH COMPONENTS have secured a very large quantity of cassette transport mechanisms, equipped with all the latest improvements, as well as "SEN-ALLOY" type 1.5 micron record/replay heads, and solenoid-controlled auto-stop action. These were manufactured by JVC/VICTOR of Japan to specification of TANBORG OF NORWAY, for inclusion in a cassette deck costing over £250. This mechanism alone would normally cost over £50.

FEATURES:
- Close-tolerance, high-quality, tape loading transport
- "SEN-Alloy" (SA type) R/F head
- Solenoid driven auto-stop circuit
- Automatic head cleaning device
- Air damped "soft" cassette eject
- Miniature microswitches for switching
- Pre-aligned heads and calibrated motor speed regulator built in
- Three-digit tape position counter
- PCB connectors and cables attached
- High-mass balanced flywheel with permanent lubrication spindle
- Full specifications for motor, heads, and switches, available on request (S.A.E. please).

Price of above unit £14.95 VAT inc.

Plus £1 P&P.

Regular readers of WIRELESS WORLD will know of the original LINSLEY-HOOD CASSETTE DECK design, published in May 1976. Subsequent articles by Mr. Linsley-Hood have confirmed that the design far exceeded his original expectations, so much so that he published a number of improvements, modifications, and additional features to the original design, which are now incorporated in our: *CASSETTE DECK KIT BASED ON DESIGN OF MR. LINSLEY-HOOD*

We have developed an outstanding stereo cassette kit with the aid of Mr. Linsley-Hood, to complement the improved specification and latest important advances in casette electronics since the original design was published. The kit is ideal for use in conjunction with the JVC transport mechanism (above).

Included in the kit are two fibre-glass PCB's, drilled and plated for immediate assembly, two VU meters, Dual LED Peak Meters, Variable Bias system. Price of Kit (without transport mech.) £35.95 VAT inc. plus £1.00 P&P.

SOFT CARRYING CASE

Trade and Export Enquiries Invited

Also available: A custom-designed case for the kit, this is a fully screened enclosure, sloping panel, satin anodised, wood end panels, professional finish. Price of Case £9.75 VAT inc. plus £1.00 P&P.

HERE IT IS! THE BRAND NEW 8022A HAND-HELD DMM

Consider the following features:
- 6 resistance ranges from 200 ohm-20k ohm.
- 8 current ranges from 2mA-2A.
- 10 voltage ranges from 200mV: 2000V.
- 200mV - 750V.
- 10 voltage ranges from 200mV - 1000V.
- 1000V.
- 0 to 6k ohms.
- 6 meg. ohms.
- 60 meg. ohms.
- 600 ohms.
- 500 ohms.
- 100 ohms.
- 50 ohms.
- 20 ohms.
- 5 ohms.
- 2.5 ohms.

Price £112

Carriage and insurance £3.00

A handsome soft carrying case is included (this model only).

SOFIT CARRYING CASE £7 extra

Even more sophisticated is the Fluke 8020A, identical in most respects to the 8022A but in addition incorporates a conductance range from 0.01-200k ohms.

Price £159

Carriage and insurance £3.00

A handsome soft carrying case is included (this model only).

DIGITAL MULTIMETERS

8010A AND 8012A BENCH MODEL D.M.M.s

The 8010A is a general purpose, bench-top digital multimeter with more functions for testing than most of the others for such a low price. Its companion, the 8012A, has similar characteristics except that it has two additional low resistance ranges, 20 and 200 to replace the 8010A's 0.1 micro-ohm current range. The 8010A and 8012A feature:
- Full voltage ranges from 0.0 to 1000 v.
- 1000V.
- 0 to 250V.
- 0 to 100V.
- 0 to 50V.
- 0 to 10V.
- 200 micro-volts.
- 20 micro-volts.
- 10 micro-volts.
- 5 micro-volts.
- 2.5 micro-volts.
- 1 micro-volt.
- 0.5 micro-volt.
- 0.25 micro-volt.
- 0.125 micro-volt.
- 0.0625 micro-volt.
- 0.03125 micro-volt.

Price of Kit (without transport mech.) £159.

Carriage and insurance £3.00

Some quotations on:
- Ferric Oxide Cassette.
- Chorme Dioxide Cassette.

FOR FURTHER INFORMATION SEE ADVERTS ON NEXT PAGE.

CHROME DIOXIDE CASSETTES

Limited quantity only. Excellent quality low noise brand (Italian). Satisfaction guaranteed. C90s only. Price per six (minimum quantity) £6 inc. VAT. P&P 75p any quantity.

FERRIC OXIDE CASSETTES

Excellent quality (Italian) C120s only. Price per 6 (min. quantity) £5 inc. VAT. P&P 75p any quantity.

This offer only applies while stocks last.

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- Acquiring in both frequency and period measurement modes.
- Triple-frequency display, 250, 2000, 2MHz.
- High sensitivity 2µVs max. ±5%.
- ±5 digit LED display with 5 segments; automatic illumination; auto-identity.
- Dual internal batteries; battery positioning in 4 hours continuous operation.
- Automatic on when in time, full function switches.
- Four manual views with time bases; providing resolution to 0.1 Hz.
- Built-in precision and 10% errors with superlow output.
- Signal input conditioning with selectable 1.5k low pass filter and attenuator.
- Rugged mounted case with convenient lifting carrying handle.
- Front panel panel layout with electrical print and illumination.
- Traditional Fluke quality.

Price £175

Carriage and Insurance £3

PLEASE ADD 15% VAT TO ALL ORDERS

EXCEPT WHERE ITEMS MARKED "VAT INCLUDED."

CALLERS WELCOME

We are open Mon. to Sat.

Monday-Saturday

We carry a very large selection of electronic components and electrical materials. Special quotations on request.

For further details write: JVC-VICTOR, HIGH FIDELITY STEREO CASSETTE TRANSPORT MECHANISM, ELECTRO-TECH COMPONENTS LTD., 364 EDGWARE ROAD, LONDON, W.2.

T.E.L.: 01-723 5667

This offer only applies while stocks last.
ELECTRONIC KITS OF DISTINCTION FROM

DE LUXE EASY TO BUILD LINSLEY-HOOD
75W STEREO AMPLIFIER £99.30 + VAT
This easy to build version of our world-wide acclaimed 75W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring whilst distortion is less than 0.01%.

WIRELESS WORLD FM TUNER £70.20 + VAT
A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection push-button station selection as well as infinitely variable tuning and a phase locked loop stereo decoder. incorporating active filters for "birdy" suppression.

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT
This design, published in Wireless World, although straightforward and relatively low cost provides a very high standard of performance. There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels are also provided. The mechanism is the Goldring-Lenco CRV with electronic speed control.

TRANSCENDENT 2000
SINGLE BOARD SYNTHESIZER
As featured in Electronics Today International
The kit includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or 1/2% metal film) and it really is complete — right down to the last nut and bolt and last piece of wire! There is even a 13A plug in the kit — you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professional quality fibre glass PCB printed with component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with ready built units selling for between £500 and £79!

COMPLETE KIT ONLY
£168.50 + VAT!
Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more than a multi-meter and a pair of ears!

CHROMATHEQUE 5000 5-CHANNEL LIGHTING EFFECTS SYSTEM
This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control setting or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500W and as the kit is a single board design wiring is minimal and construction very straightforward.

COMPLETE KIT ONLY
£49.50 + VAT
Most kits also available as separate packs (e.g. P.C.B. component sets, hardware sets, etc.). Prices in FREE CATALOGUE.

MPA200 100W MIXER/AMPLIFIER
Panelsize 19.0"x3.5". Depth 7.3"

COMPLETE KIT ONLY
£49.90 + VAT
T20+20 AND T30+30 20W 30W AMPLIFIERS

SPECIAL PRICE FOR COMPLETE KIT £47.70 + VAT

PRICES IN OUR FREE CATALOGUE

Following the success of our Wireless World FM Tuner Kit this time reduced model was designed to complement the T20+20 and T30+30 amplifiers and the cabinet size, front panel format and electrical characteristics make this tuner compatible with other.

WE’VE MOVED! NEW FACTORY UP! PRICES DOWN!

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

The Transcendent DPX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first line there is a beautiful harpsichord or reed sound — fully polyphonic I.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a straightforward piano or a harpsichord or a piano that has been tuned to the standard Western scale. Alternatively you can play strings over the whole range of the keyboard or bass over the whole range of the keyboard or should you prefer — strings on the top of the keyboard and brass at the lower end (the keyboard is electronically split after the first two octaves) or vice versa or even a combination of strings and bass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitive! The harder you press down a key the louder it sounds — just like an acoustic piano. The digitally controlled multiple-system makes practical sensitivity with the complex dynamics law necessary for a high degree of realism. There is a major volume and tone control, a separate control for the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes in only after waiting a short time after the note is struck for even more realistic string sounds.

PACKETS - PRICES IN FREE CATALOGUE

To add interest to the sounds and make them more natural there is a chorus/ensemble unit which is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble quality can be controlled in with either strong or mild effects.

As the system is based on digital circuits it can be easily taken to and from a computer (or storing and playing back accompaniments with or without pitch or key change, computer control, etc.) and a 12-bit interface is provided for this purpose.

Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which can be kept in any room.

The kit includes fully finished metalwork, solid teak cabinet, professional quality components (all resistors 2% metal oxide). nuts, bolts, etc. even a 1 3A plug and draught proofing and seals are used throughout. Also available as separate packs — prices in free catalogue

COMPLETE KIT ONLY £299.00 + VAT!

EXPORT A SPECIALITY!

Our Export Department can readily dispatch orders of any size to any country in the world. Some of the countries to which we sent kits last year are shown in this advertisement. To assist in estimating postal costs our catalogue gives the weights of all packs and kits.

Value Added Tax not included in prices

UK CARRIAGE FREE

PRICE SATISFACTION Policy with confidence Inrespective of any price changes we will honour all prices in this advertisement until April 30th, 1980. If this month’s advertisement is mentioned with your order.

UNIONS: Subject to 15% surcharge for VAT. No change is made for carriage. Or current rate if changed.

SECURITY DELIVERY: For this optional service (U.K. mainland only) add £1.50 per kit.

SALES COUNTER: If you prefer to collect your kit from the factory, call at Sales Counter. 9 a.m. to 12.30 p.m. and 1.30 to 4.30 p.m. Monday to Thursday.

QUALITY: All components are brand new first grade full specification guaranteed devices. All resistors (except where stated as metal oxide) are low noise carbon film types. All printed circuit boards are fibreglass, drilled copper

NEW FACTORY IN SAME INDUSTRIAL ESTATE

ADDRESS AND PHONE NUMBER UNCHANGED

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3NN

(0264) 64455
Judged against competitors the 8-track Otaris make the rest seem toys.

MX7800 One inch £4490

MX5050-8 Half inch £2490
MUFFIN FANS

Version should be mounted in a heatsink. 100’s of contain a reed relay for, chokes and mac.

Interface your MPU etc, weft’s" outside world made into the "BARGAIN PARCiL OF A LIFETIME"

include in our ads

bargains, we have thousand of I C’s Transistors.

which enables us to bring nu the best possible

'Ex equipment tested

10,000mf 10v 10,000pf 10v 200v 100uf + 10uf 200v

1M, 0.1uf 1kv 10uf 1kv 1uf 0.01uf 1k

Anyone with circuits or onuals please contact us.

Carriage extra. New ramsvailable 95p each. P.S. Although grade 1 sold worhg no guarantee is offered.

Grade 3 condition as described 14.50. Grade 2: 1175.00 + VAT

spec. 12- monitor, 24 lines 80 characters, upper and
time to obtain full detailsut we’ll make a start. Made

Note: All units are sted and working prior size, etc. makesiis a snip at only .

displayed on an3sily read meter. Other
200mV. Outputnd deviation are deviation is also triable from 0-15 KHz.

bands from 1.57220 MHz-F.M.

ideal equipment citing etc

 Redistribution 14.50

magnetic is 4 x 1-

EAR OF A SILVER \n
seems to direct drive (via

isolation 3 for £1.00

(isolated 240v 4 PAP & 10 AMP

Electronics

MRF1405 AVTR 0.1uf 1kv 1uf 0.01uf 1k

MRF1401 AVTR 0.1uf 1kv 1uf 0.01uf 1k

C106D1 400v 5 amps 10202 55p each 10 for £5.00

2115943 R.F. output 40 volts, 105 can £11

214304 WN720 C E T

A4.50 each

2N4351 N channel MOS FET.

2N4352 P channel MOS FET.

2N4354 N channel MOS FET.

as described 1175.00 + VAT

WWW - 127 FOR FURTHER DETAILS

SAE

214304 WN720 F E T

2115943 R.F. output 40 volts, 105 can £11

214304 WN720 C E T

A4.50 each

2N4351 N channel MOS FET.

2N4352 P channel MOS FET.

2N4354 N channel MOS FET.

as described 1175.00 + VAT

WWW - 127 FOR FURTHER DETAILS

SAE

214304 WN720 F E T

2115943 R.F. output 40 volts, 105 can £11

214304 WN720 C E T

A4.50 each

2N4351 N channel MOS FET.

2N4352 P channel MOS FET.

2N4354 N channel MOS FET.

as described 1175.00 + VAT

WWW - 127 FOR FURTHER DETAILS

SAE

214304 WN720 F E T

2115943 R.F. output 40 volts, 105 can £11

214304 WN720 C E T

A4.50 each

2N4351 N channel MOS FET.

2N4352 P channel MOS FET.

2N4354 N channel MOS FET.
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Description</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDU GLASS TYPE 20MA & RS232</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>VDU MODERN with SVW1 DISPLAY</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>TEKTRONIX STORAGE SCOE type 5103N with TB and two 7A Plug-ins (4 trace)</td>
<td>1500</td>
</tr>
<tr>
<td>4</td>
<td>TEKTRONIX STORAGE scope type 5103N with 5A Plug-ins</td>
<td>990</td>
</tr>
<tr>
<td>5</td>
<td>RANK COLOUR TV MONITOR</td>
<td>990</td>
</tr>
<tr>
<td>6</td>
<td>O-COMP DRUM PLOTTER</td>
<td>990</td>
</tr>
<tr>
<td>7</td>
<td>SCOPE SCOPES type 4D10 DC-10MHZ Double beam</td>
<td>990</td>
</tr>
<tr>
<td>10-13</td>
<td>TELEQUIPMENT SCOPE type 531 Single beam</td>
<td>1750</td>
</tr>
<tr>
<td>14</td>
<td>MARCONI R & S SCOPES 20HZ-100KHZ</td>
<td>950</td>
</tr>
<tr>
<td>15</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>16</td>
<td>MALCOLM ELECTRONIC VOLTOMETER 823A</td>
<td>850</td>
</tr>
<tr>
<td>17</td>
<td>SICE LABS EM102. DC-15MHz DB</td>
<td>750</td>
</tr>
<tr>
<td>18</td>
<td>SOLARTRON DC VOLTMETER type 6210-12</td>
<td>1400</td>
</tr>
<tr>
<td>24-25</td>
<td>POLYCOM JANSFORD ANALYSER UPM84 10MHZ-500KHZ</td>
<td>1190</td>
</tr>
<tr>
<td>26</td>
<td>HIGH SAMPLEING SCOPE type 1586</td>
<td>1500</td>
</tr>
<tr>
<td>27-36</td>
<td>SOLARTRON DVM JM776-300V plus db Scale</td>
<td>450</td>
</tr>
<tr>
<td>37</td>
<td>MARCONI RF POWER METER TF1152/1 50 ohm</td>
<td>1900</td>
</tr>
<tr>
<td>40</td>
<td>ADAMS RF SCOPE OS250 DC-10MHz DB. Solid State</td>
<td>1200</td>
</tr>
<tr>
<td>42</td>
<td>AVO FM STEREO GENERATOR 1G-37</td>
<td>450</td>
</tr>
<tr>
<td>44</td>
<td>WAYNE KERR PULSE GENERATOR CT500 £25</td>
<td>250</td>
</tr>
<tr>
<td>45</td>
<td>COHU DC VOLTAGE STANDARD Model 303B</td>
<td>1250</td>
</tr>
<tr>
<td>46</td>
<td>HEATHKIT FM STEREO GENERATOR 1G-37</td>
<td>450</td>
</tr>
<tr>
<td>48-50</td>
<td>H.P. AC CONVERTOR type 3461A</td>
<td>275</td>
</tr>
<tr>
<td>51-53</td>
<td>FLUKE AC-DC VOLTMETER 823A</td>
<td>600</td>
</tr>
<tr>
<td>54</td>
<td>HEATHKIT AC Voltmeter 450</td>
<td>600</td>
</tr>
<tr>
<td>55</td>
<td>R & S SIGGEN DB. Solid State</td>
<td>2000</td>
</tr>
<tr>
<td>56</td>
<td>WATSON RF SIGNAL GENERATOR TF1066B £25</td>
<td>1000</td>
</tr>
<tr>
<td>57</td>
<td>SOLARTRON DVM JM777</td>
<td>1750</td>
</tr>
<tr>
<td>58</td>
<td>W & S SIGNAL GENERATOR 5725, 50HZ input Mystery interface</td>
<td>275</td>
</tr>
<tr>
<td>59</td>
<td>RANK WAVEVELOUTER MF802 £25</td>
<td>1200</td>
</tr>
<tr>
<td>60-62</td>
<td>IBM HIGH GAIN SINGLE BEAM 5mV/orn 3db 20KHZ £75 ea</td>
<td>225</td>
</tr>
<tr>
<td>63-66</td>
<td>TELEQUIPMENT SCOPE type 531 Single beam</td>
<td>1200</td>
</tr>
<tr>
<td>67</td>
<td>MARCONI TF1066B AM/FM Signal Generator</td>
<td>1200</td>
</tr>
<tr>
<td>68-70</td>
<td>W & S SIGNAL GENERATOR 5725, 50HZ input Mystery interface</td>
<td>275</td>
</tr>
<tr>
<td>71-77</td>
<td>ADAMS RF SCOPE OS250 DC-10MHz DB. Solid State</td>
<td>1200</td>
</tr>
<tr>
<td>78-80</td>
<td>SOLARTRON DVM JM777</td>
<td>1750</td>
</tr>
<tr>
<td>81</td>
<td>MARCONI FM GENERATOR 58110H-100KHZ</td>
<td>2500</td>
</tr>
<tr>
<td>82-84</td>
<td>W & S SIGNAL GENERATOR 5725, 50HZ input Mystery interface</td>
<td>275</td>
</tr>
<tr>
<td>85-87</td>
<td>MARCONI UNIVERSAL BRIDGE TF868</td>
<td>4000</td>
</tr>
<tr>
<td>90-92</td>
<td>TEKTRONIX SAMPLING SCOPE type 66</td>
<td>2500</td>
</tr>
<tr>
<td>93-95</td>
<td>MARCONI TF1066B AM/FM Signal Generator</td>
<td>1200</td>
</tr>
<tr>
<td>96-98</td>
<td>R & S RF SIGNAL GENERATOR 20HZ-100KHZ</td>
<td>2500</td>
</tr>
<tr>
<td>99-101</td>
<td>TEKTRONIX Scope 551 DC-27MHZ will take two vertical plug-ins.</td>
<td>1500</td>
</tr>
<tr>
<td>102-104</td>
<td>MARCONI TF1066B AM/FM Signal Generator</td>
<td>1200</td>
</tr>
<tr>
<td>105-107</td>
<td>MARCONI TF1066B AM/FM Signal Generator</td>
<td>1200</td>
</tr>
<tr>
<td>108-110</td>
<td>SOLARTRON DVM JM777</td>
<td>1750</td>
</tr>
<tr>
<td>111-113</td>
<td>R & S SIGNAL GENERATOR SCR BN8.3-16</td>
<td>1500</td>
</tr>
<tr>
<td>114-116</td>
<td>R & S SPECTROSCOPE SWB BN4110 £50</td>
<td>250</td>
</tr>
<tr>
<td>117-119</td>
<td>MARCONI WAVE ANALYSER type TF2330 20HZ-50KHZ</td>
<td>1200</td>
</tr>
<tr>
<td>120-122</td>
<td>R & S SIGNAL GENERATOR SCR BN8.3-16</td>
<td>1500</td>
</tr>
<tr>
<td>123-125</td>
<td>MARCONI TF1066B AM/FM Signal Generator</td>
<td>1200</td>
</tr>
<tr>
<td>126-128</td>
<td>R & S SPECTROSCOPE SWB BN4110 £50</td>
<td>250</td>
</tr>
<tr>
<td>129-131</td>
<td>R & S UFH TEST RECEIVER USVU BN151 0.9-2.7GHZ £120</td>
<td>50</td>
</tr>
<tr>
<td>132-134</td>
<td>MARCONI TF1066B AM/FM Signal Generator</td>
<td>1200</td>
</tr>
<tr>
<td>135-137</td>
<td>R & S UFH STANDARD SIGNAL GENERATOR 50AF £120</td>
<td>50</td>
</tr>
<tr>
<td>138-140</td>
<td>SIEMENS THERMAL MILLIVOLTOMETER ohm 1.500V/ 0-12GHZ £120</td>
<td>50</td>
</tr>
<tr>
<td>141-143</td>
<td>SOLARTRON SCOPES CD523S 3 Single Bech DC-10MHZ £50</td>
<td>150</td>
</tr>
<tr>
<td>144-146</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>147-149</td>
<td>TEKTRONIX SAMPLING scope type 66 complete with plug-ins</td>
<td>350</td>
</tr>
<tr>
<td>150-152</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>153-155</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>156-158</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>159-161</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>162-164</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>165-167</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>168-170</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>171-173</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>174-176</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
<tr>
<td>177-179</td>
<td>WAYNE KERR CAPACITANCE BRIDGE 541C</td>
<td>250</td>
</tr>
</tbody>
</table>

Plugs-in available for above Oscilloscopes

- **CA DC-24MHZ** Dual Trace 50mV/cm | £65 ea
- **D HIGH GAIN DIFFERENTIAL 1mV/cm** | £300 ea
- **E LOW LEVEL DC Differential 50mV/cm** | £49 ea
- **F LOW LEVEL AC Differential 50microV/20KHZ** | £75 ea
- **G LOW BAND DC Differential 50mV/cm DC-20MHZ** | £20 ea
- **H DC-30MHZ 50V/cm** | £60 ea
- **I L HIGH GAIN SINGLE BEAM 5mV/cm** | £20 ea
- **J 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **K SAMPLING UNIT** | £115 ea
- **L FOR MEASUREMENT of Transistor Parameters** | £100 ea
- **M Z FOR ACCURATE Voltage Measurements** | £150 ea
- **N SAMPLING UNIT** | £250 ea
- **O 151 SAMPLING UNIT** | £500 ea
- **P 620 1A4 4 TRACE 20mV/cm DC-50MHZ** | £150 ea
- **Q 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **R HIGH SLED 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **S HIGH SLED 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **T HIGH SLED 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **U HIGH SLED 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **V HIGH SLED 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **W 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **X HIGH SLED 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **Y HIGH SLED 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea
- **Z HIGH SLED 1A4; 1S1. 1A4 4 TRACE 10mV/cm DC-50MHZ** | £75 ea

Remarks:

- One unit (Plug-ins not required for this coverage)
- Two units (Plug-ins not required for this coverage)
WEATHER PLOTTER

RECEIVER SET AN/GM-5 FACSIMILE SYSTEM

Speed is switch selectable. 7 buttons. 1200 Bauds to 4800 Bauds. Max speed 11W.

Input signal digital 3MHz nominal 2-wire 600 ohm.

Max Jitter less than 0.0025%.

Uses 7400 range ICs on 2 boards. 200 plus ICs per board. This unit is as New and complete with Manuals.

ONLY ONE UNIT AVAILABLE **£350**

TELETYPES

ASR; KSR; RO’s with 20mA/RS232 loops. Prices from £80. Please enquire.

GENERAL ELECTRIC TERMINAL PRINTER

With Twin Cassettes RS232 Interface. IN VERY GOOD CONDITION.

£1,200

DIODES

All new full spec devices. IN3063; IN4148; IS44. 100 off £1.50 – 1000 off £10.

WEIGHTS AND MEASURES

(2nd turning left past Reading Technical College in King’s Road then first right – look on right for door with “Spoked Wheel”)

STRATHAURAN AUCTION

TELEGRAPH

TELEPHONES

OLIVETTI PRINTER & KEYBOARD

Te 300 with PUNCH & READER. Upper case ASCII with V24 Interface. 240 volt operation.

£125 each

INFRA RED IMAGE CONVERTER

Te 300 with PUNCH & READER. Upper case ASCII with V24 Interface. 240 volt operation.

LEADING INDUSTRY

WIRELESS WORLD, MARCH 1980

there are transformers and...

Drake Transformers

OEM — let Drake Transformers advise you on a component specification and design to solve that special problem. Pre-production prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED
South Green Works, Kennel Lane
Billericay Essex CM11 2SP
Telephone: Billericay (02774) 51155
Telex: 99426 (prefix Drake)

When you want to...

Relieve strain
Heyco Nylon Snap Bushings anchor, insulate and protect cable at entry into chassis.

Plug a hole
Heyco Nylon Hole Plugs for closing up large holes, neatly, easily, at low cost.

Vent a hole
Heyco Nylon snap-in plugs.

Tie cables
Heyco Nylon Tie Ties.

Clamp a cable
Heyco Nylon Cable Clamps anchor and insulate.

(Dis) Connect a cable
Heyco Nylon Terminal Bushings with 3/16" or 5/32" tabs.

Smooth cable holes
Heyco Nylon Snap Bushings smooth raw edge holes and insulate cables.

Insulate cables
Heyco Nylon Open/Closed Bushings allow side entry, then close to insulate.

Absorb vibration
Heyco Nylon Universal Bushings cushion one or more cables.

Heyco solves designer problems.
For more detailed information on answers to these problems and samples, write to:

HEYCO MANUFACTURING COMPANY LTD.
Uddens Trading Estate, Nr. Wimborne, Dorset BH21 7NL.
Tel. Ferndown (STD: 0202187141/2/3
Telex: HEYCOMAN Wimborne

If you are interested in a particular article/special Feature or advertisement published in this issue of WIRELESS WORLD why not take advantage of our reprint service. Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)

For further details contact:
Brian Bannister, IPC Electrical-Electronic Press Ltd.
Phone: 01-261 8046 or simply complete and return the form below.

To Brian Bannister, Reprints Department
Dorset House, Stamford Street
London SE1 9LU

I am interested in copies of the article/advertisement headed featured in WIRELESS WORLD on page(s) in the issue dated

Please send me full details of your reprint service by return of post.

Name
Company
Address
Telephone

WW — 128 FOR FURTHER DETAILS
Electronic Brokers

49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 298694

No.1 in Second User Minis & Peripherals

MODULAR ONE SERIES VDUs

Large new stock of the fabulous HAZELTINE MODULAR ONE SERIES VDUs

- **Basic Model** from £450.00
- **Editing Model** from £595.00

EXAS SILENT 700

- 725KSR Terminal mounted in integral carrying case complete but fitted acoustic coupler 64 ASCII character set with 5 X 7 dot matrix 30 cps. Weight 35Ibs Dimensions 21'/" x 19'/" x 61/4'.
- **EXAS Silent 725KSR** £725.00
- **EXAS Silent 733ASR** £1,450.00
- **Model 742** £1,750.00

DEC PDP11/04 — SPECIAL PURCHASE

PDP11/04-80 8 slot 5 1/2" Processor with 8KW core memory £9,750.00

DEC EQUIPMENT

PDP11/40 System

- 48KW Parity Core Processor complete with KT110 Memory Management, DL11 Asynchronous Interface, RK110 Disc Controller, 2 x RKOSJ Disc Drives, 2 x 6ft. Rack Cabinets. Fully DEC maintained in immaculate condition (or could be reconfigured to suit) £9,750.00
- PDP11/05 5 1/2" Processor with 8KW core memory £1,850.00
- RKOSJ Add-on disk drive £1,850.00
- MM112D 16K parity core (for PDP11/04 and 11/34 series). **BRAND NEW SURPLUS** — ONLY £995.00
- PR11 High Speed Paper Tape Reader & Control £1,450.00

PRINTERS & TERMINALS

CENTRONICS

- 101 Matrix Printer £750.00
- 102 Matrix Printer £895.00

GETERMINET 300 KSR Impact Printer £625.00

GT TERMINET 1200 RO Impact Printer £395.00

HAZELTINE H-1200 VDU £375.00

HAZELTINE H-2000 VDU from £395.00

SCOPE DATA Electropic Printer £395.00

TEKTRONIX 611 XY Storage Monitor £1,350.00

TEKTRONIX 4010-1 Graphics Terminal £1,500.00

TEKTRONIX 4801 Hard Copy Unit £1,400.00

NEW ASCII KEYBOARDS — NEW LOW PRICES

- **KB756 56-station ASCII Keyboard** mounted on P.C. B. £45.00 £53.48
- **KB756MF As above, fitted with metal mounting frame for extra rigidity** £50.00 £59.23
- **KB710 10-key numeric pad, supplied with connecting cable** £8.00 £9.78

MISCELLANEOUS

AMPLEX 1" x 3000' Video Tape £15.00

CALCOPM 565 Drum Plotters £1,250.00

CIPHER 100K Magnetic Tape Drive £950.00

DATA GENERAL NOVA 1210 4K CPU £795.00

DIGITRONICS P135 Paper Tape Punches £395.00

EMI 15" Diagonal TV Monitors £100.00

SEALECTRO 11x20 Patch Boards £12.50

SHUGART SA400 Mini Floppy Disc Drives £95.00

SHUGART SAB01 8" Floppy Disc Drives £395.00

WW—122 FOR FURTHER DETAILS
Electronic Brokers
49/53 Pancras Road London NW1 2QB Tel: 01-837 7781. Telex 298694

ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE — SEND FOR LATEST CATALOGUE

Electronic Brokers' unique catalogue contains 62 pages plus update of second user Test Equipment and Mini Computers and Peripherals. Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters, Recorders, DEC Computers, VDUs, Teletypes, etc. Largest stocks — most cost effective.

LATEST EDITION. SENT FREE IN UK
Airmail to overseas addresses £2.00

NEW EQUIPMENT

HAMEG SCOPES
(from W. Germany)
from 10MHz to 50MHz
See ad. at top of index page at rear of this magazine.
AVAILABLE EX-STOCK
ICE MULTIMETERS
(from Italy)
Microtest 80, Supertesters 680G & 680R and their accessories always in stock.

TEKTRONIX
326 Battery Mains
Dual Trace 10MHz Oscilloscope
1 Only reduced
£725.00

SOLARTRON
7055 Microprocessor Controlled DMM
Without processor option
£975.00
With processor option
£1300.00

HPEWLETT PACKARD
Spectrum Analyzer System
141T Display
8552A IF Section
8554L RF Section
500KHz-1250MHz
TOTAL PRICE £5,250

FERROGRAPH
Tape Recorder Test Set
RTS2 2 Only
£395.00

WAYNE KERR
Universal Bridge 8543
L.C.R. measurement Accuracy 0.1%
Supers value Only
£695.00

HEWLETT PACKARD
1707B Oscilloscope
75MHz Dual Trace and delayed time base
New Price £1200.00 approx.
Battery model £100.00 extra
£925.00

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for 3 months.

Hours of Business:
9 a.m.-5 p.m., Mon.-Fri.
Closed lunch 1-2 p.m.

A copy of our trading conditions is available on request.

WW — 124 FOR FURTHER DETAILS
<table>
<thead>
<tr>
<th>Component</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Capacitors</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Inductors</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Transistors</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Diodes</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Integrated Circuits</td>
<td>IC</td>
<td></td>
</tr>
<tr>
<td>Operational Amplifiers</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Memory Devices</td>
<td>MEM</td>
<td></td>
</tr>
<tr>
<td>Microprocessors</td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td>Controllers</td>
<td>CONT</td>
<td></td>
</tr>
<tr>
<td>Connectors</td>
<td>CON</td>
<td></td>
</tr>
</tbody>
</table>

Special Offer

£250

£160 / £160

£225 / £225 (with VAT)

£32 / £32

Please add P&P and VAT. All offers valid until 31/03/80 and subject to availability.
Appointments

Advertisements accepted up to 12 noon Monday, February 25th for April issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: £10.00 per single col. centimetre (min. 3cm).
LINE advertisements (run on): £1.50 per line, minimum three lines.
BOX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the advertisement. c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.)
PHONE: Neil McDonnell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Electronic Engineers –
What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £4000 to £8000 p.a.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 0892 39388

Please send me a TJB Appointments Registration form:
Name ...
Address ...

Radio Communications
Electronic Engineers and Software Designers

Mid-Sussex—S.W. London
Salaries up to £8,000
To join our expanding R&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio nav aids and radio monitoring remote computer-controlled systems.

Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.

Attractive salaries are complemented by excellent prospects and generous benefits.

Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).

DATEK SYSTEMS LTD.
A leading company in the phototypesetting industry manufacturing minicomputer based VDU terminals incorporating the latest in MSI and LSI techniques in real time applications.

We require:

SENIOR TEST ENGINEERS
Salary £5,500+
Qualified to at least HNC with considerable experience in digital electronics including some knowledge of machine language software.
A background of word processing or printing industries would be beneficial. The position involves occasional overseas travel.

JUNIOR TEST ENGINEERS
Salary £3500+
This position requires a young engineer with HND, HNC or C and G Full Tech in Electronics.
Some experience of TTL logic or microprocessors would be an advantage but a real interest in electronics is more valuable.
The company provides 4 weeks holiday and pension scheme.

Write or phone for application form to: Miss Bux, Datek Systems Ltd., 849 Harrow Road, Wembley, Middx. Tel. 01-904 0061.
Our channels are open for communication

The sophisticated communications systems and ancillary services produced by IAL help people all over the world to stay in touch. However, on this occasion, we would like you to do the communicating.

An increasing number of projects, embracing everything from mobile radio centres to all types of telephone telegraph and data switching centres, means we need additional specialist personnel. It is in your interest to get in touch.

Installation/Commissioning Engineer

You will lead a small team responsible for installing all types of communication systems and allied equipment. As well as being appropriately qualified, you will have about seven years’ experience of radio link installation, testing and commissioning, three of which should have been spent at supervisory level and some overseas. The job will necessitate travelling abroad for limited periods at short notice, often to remote areas. Quote ref K/025.

Maintenance Technician

Electronic Services Unit

You will be involved in the installation, commissioning and maintenance of a wide range of electronic, digital and radio equipment. Maintenance is to component level, including DIL/IC packages, transistorised equipment and some valve circuits. Experience is needed in some of the following fields: facsimile, computer peripherals, VHF radio, the control/operation of systems over private wires and data transmission. You should be qualified to ONC Electronics or equivalent, capable of working unsupervised and under pressure and prepared to be on out-of-hours standby. Quote ref K/026.

Salaries for both positions are negotiable and are at present under review; there are also a wide range of attractive company benefits. For more information, please contact the Senior Recruitment Officer, IAL, Aeradio House, Hayes Road, Southall, Middlesex. Tel: 01-574 5134.
HNC Level Engineers-
(Electrical or Electronic)

Train for the future as a Broadcast Transmission Engineer

Through our network of over 500 transmission stations the IBA is responsible for the transmission of all Independent Television and Local Radio services. With a steadily increasing number of stations, the preparations for the fourth television channel and more local radio stations now underway we are taking on increased responsibilities.

We take great pride in the fact that our system is one of the best in the world and great importance is placed on maintaining the efficiency of the service. To do this we have teams of highly trained and experienced engineers all over the country.

Internal promotions and continued expansion have created a number of opportunities for H.N.C. or H.T.C. or equivalent level engineers (male or female) to train for a challenging future. Our carefully devised training programme, which will commence this summer, can lead to a recognised Diploma and combines theoretical study and practical training. This comprehensive training is a step beyond traditional learning and gives a grounding in broadcast engineering that is second to none. Naturally, course fees, accommodation and meals will be paid during the course. A full driving licence is required, but if you do not already have one, we will assist you by arranging and paying for instruction.

On the satisfactory completion of the training programme, your salary will be £5,880 per annum and then rise annually to £7,280 per annum, with further progression to £8,202 per annum. (During the training period you will receive a salary of up to £4,700 per annum, depending upon experience.) At higher levels it will be up to you to demonstrate your ability as promotions are based on internal competition – all of our Regional engineering managers started their careers at transmitting stations.

Employment benefits include Free Life Assurance and Personal Accident Schemes, a Contributory Pension Scheme, generous relocation expenses and subsidised mortgage facilities.

Please write or telephone Mike Wright for a fully illustrated information package and application form, at IBA, Crawley Court, Winchester, Hampshire SO21 2QA. Telephone: Winchester 822574.

IBA
INDEPENDENT BROADCASTING AUTHORITY
(9920)
Electronics Technician
Space Research Projects

An Electronics Technician is required by the Rutherford and Appleton Laboratories to work on the instrumentation of rocket-born scientific experiments making measurements of the upper atmosphere (60 to 150 km). Duties will include the development and construction of digital and analogue circuits and the assembly of experiments; the integration of experiments with rocket and telemetry systems; the calibration and environmental testing of equipment; the carrying out of pre-launch assembly and final check-out of the experiments on the launch sites. The work will involve collaboration with the University College of Wales, Aberystwyth, and with overseas groups and the successful candidate will be expected to travel occasionally to rocket ranges in the UK and abroad for periods of a few weeks.

The vacancy is at Professional and Technology Officer Grade III level. Applicants should have at least ONC or a TEC/SCOTEC Certificate with a minimum of 4 years experience including the design, construction and operation of analogue and digital circuits. The Salary scale is under review but currently stands at £5309 - £5876, inclusive of Outer London Weighting Allowance. There is a non-contributory pension scheme. The post will be located at Ditton Park, Slough until mid 1981 when it is anticipated that the work will be transferred to the Laboratories' site at Chilton, Oxfordshire.

Please request an application form, quoting reference VN5017 from:
Mrs Jane Williams, Rutherford and Appleton Laboratories, Chilton, Didcot, OXON OX11 0QX.
Tel: Abingdon (0235) 21900 – Extension 510.

Rutherford and Appleton Laboratories

Royal Military College of Science, Shrvenheim
Lecturers/Senior Lecturers
Electronic Engineering

The College is a residential establishment, running first degree and postgraduate CNAA courses, Army Staff courses and specialist courses, for both civilian and military students. It has an academic staff of over 100, whose duties are similar to those of University Lecturers. There are comprehensive laboratory, computing, workshop and library facilities, and staff are given every opportunity to become involved in research and development work, and read for higher degrees.

The Electronics Branch is responsible for instruction in the principles of electronic devices, the fundamentals of signal transmission and processing, and in the applications of these topics to telecommunications, radar, telemetry and radio guidance. The Lecturer(s) appointed will be expected to take an interest in one of the topics listed above, but the posts will be mainly concerned with digital electronics and signal processing. For further information contact Professor Hill, Shrvenheim 782551, ext. 290.

Candidates must have a first or second class honours degree or equivalent in electrical engineering or applied physics (with electronics). Experience in the field of electronics or communications is desirable and preference will be given to candidates with experience in the design and application of modern digital electronic systems, including microprocessors.

Appointment will be as Senior Lecturer (£6330-£8705) or Lecturer (£4210-£5485) according to age and experience. At least 4 years' post graduate experience is necessary for appointment as Senior Lecturer. Starting salary may be above the minimum at each level. Non-contributory pension scheme and promotion prospects to a salary of £11,000 and above. Accommodation may be available for single staff and housing for married persons.

For further details and an application form (to be returned by 14 March 1980) write to Professor Hill, Royal Military College of Science, Shrvenheim 782551, ext. 290.
In Electronics, there's Good and ULTRA Good.

UEL have established a formidable international reputation for the innovation and manufacture of advanced technological equipment. By applying their engineering ability in a highly sophisticated and creative way, UEL have been awarded numerous long term contracts for which they require a diversity of talented personnel. Because of the high standards employed in these projects, we are therefore looking for the following experienced people.

Electronic Development Engineers
£5000–£6500
You should be a graduate or equivalent, with a minimum of 2 years development experience in an electronic laboratory. A knowledge of Radio Frequency and Analogue Circuit Design is necessary (ideally on MOD project work). Working within a close knit team, you will report to a Project Engineer and be assisted by laboratory technicians. A specific vacancy also exists for a Test Equipment Design Engineer.

Quality Engineers
£4500–£6000
You should ideally be an experienced Quality Engineer, but suitable Inspectors or Test Engineers would be considered. Holding at least an ONC, you should have a good command of English combined with some mathematical ability. Responsibilities include development of quality procedures for new product ranges and the maintenance and development of existing product quality.

At UEL you will work in a small group environment and can look forward to a stimulating and demanding job with good career prospects. There are many benefits – sports and social club, contributory pension scheme, 22 days annual holiday, subsidised canteen and a weekly attendance bonus.

If you feel you are one of the few who can help by injecting a rather rare combination of skills, expertise and enthusiasm, we would be pleased if you’d contact us.

To find out more, please ring Gavin Rendall on 01-578 0081.

SALES ENGINEER
Public Address Systems
EXCELLENT PROSPECTS — A Public Address Sales Engineer with wide experience is required to head up the Vortexion Division of this Company.

The applicant must be experienced in this field, prepared to handle sales enquiries through to the wiring and installation stage, also to develop and expand the sales of Vortexion amplifier equipment to existing Agents/Distributors in the UK. In this position he/she will be responsible to the Sales Manager.

The successful applicant will be self-motivated, with a professional approach and a willingness to travel, initially in the UK and later in export markets.

An excellent career is assured, together with negotiable salary/commission, company car, incurred expenses, BUPA Plan, and a good working environment in the suburbs of London. Age is not important, experience and a desire to carry out a job well is paramount.

Applications should be addressed to: Personnel Manager, Clarke & Smith Mfg Co Ltd, Melbourne House, Melbourne Road, Wal-lington, Surrey SM6 8SD. Tel: 01-669 4411, ext 32.
Appointments

Electronics Field-Technicians

Company Car

Linotype-Paul field technicians install, commission and service real time high technology systems for the printing/publishing industry. Our technicians can think logically, work alone and provide a timely, accurate service. Because they meet customers, often at high level, they also have to be diplomatic, tactful and friendly.

We want to build our team with men and women who are qualified to ONC level and have several years experience on electronics equipments which we will complement with progressive product training.

We provide a competitive salary and generous expenses and benefits. As there is considerable travel, sometimes involving overnight stays, a company car is provided which is available for private use. In time there may be the opportunity to work abroad for short periods.

We are continually expanding our markets and products and career prospects could not be better.

If you are interested contact: Personnel Department, Linotype-Paul Limited, Kingsbury Road, Kingsbury, London NW9. (01-205-0123)

Linotype-Paul

Electronics Engineers

Do not miss this opportunity!

Apply your inventor's ingenuity in designing, developing complex communication systems for commercial and military use over the next decade and beyond.

Our work demands a dedication not normally experienced in an electronics manufacturing environment. Highly skilled qualified men and women are needed to make a useful contribution in any of the hardware/software areas below:

- Digital Design
- A/D Signal Processing
- Micro-Processors
- ECM and ECCM
- Circuit Design
- Systems Analysis
- UHF/VHF Development

Send a brief C.V., give me a ring to arrange an informal chat with one of our Senior Engineers, or just complete the coupon and send it to me for further information.

Jack Burnie, Marconi Space & Defence Systems Limited, Browns Lane, The Airport, Portsmouth PO3 5PH, Tel: Portsmouth 699414.

Name
Address

Area of Interest
Tel:

Marconi Space & Defence Systems (Portsmouth)
A.G.E. Marconi Electronics Company

IMPERIAL COLLEGE
(UNIVERSITY OF LONDON)
DEPARTMENT OF COMPUTING AND CONTROL

Applications are invited for a

RESEARCH ASSISTANT

to work on an SRC funded project which involved the design of communication techniques for distribution process control, based on a network of 4LSI II microcomputers.

Candidates should have a degree in computer science or digital electronics and post graduate experience in computer communications, distributed processing, or real-time mini or micro computer systems.

The appointment will be for 2 years, with a salary on the 1A scale, £3335-£7521 (under review) plus £740 London Allowance and USS.

Applications, including curriculum vitae and the names and addresses of two referees, should be sent to Dr. M. Sloman, Computing and Control Department, Imperial College, 1983 Queen's Gate, London SW7 2BZ, from whom additional information can be obtained.

UNIVERSITY OF SURREY

ELECTRONIC/ ELECTRICAL ENGINEERING OPPORTUNITIES

Owing to the expansion of the highly successful Industrial Electronics Group in the Department of Electronics and Electrical Engineering at the University of Surrey, vacancies exist, immediately, for technicians (engineers) who are keen to further their training.

Candidates should have a degree in computer science or digital electronics and post graduate experience in non-destructive testing and signal processing fields with interest in/experience in microprocessor based Instrumentation and control systems. Some experience in control engineering or computer communications would be advantageous.

The Group at present consists of a small team of Professional Engineers and Technicians who liaise closely with academic staff in problem solving for industry. Projects usually entail the development of novel instrumentation covering communication, non-destructive testing and signal processing fields.

Applications, including curriculum vitae and the names and addresses of two referees, should be sent to Dr. M. Sloman, Computing and Control Department, Imperial College, 1983 Queen's Gate, London SW7 2BZ.

Normal hours are 371/2 per week and flexible working arrangements can be arranged. Day release is possible for study leading to higher qualifications.

The University facilities provide a wide range of social and sports opportunities. Assistance with the cost of moving house will be given where appropriate.

Candidates are advised to contact Doctor Sloman prior to application.

Contact: Mrs. J. Histon

A.V. AND VIDEO SERVICE ENGINEERS

We require service engineers with specific experience of Tape/Slide systems and/or Video. Salary according to age and experience.

Contact: Mrs. J. Histon

KADEK VISION LIMITED
Shepperton Studio Centre
Shepperton, Middlesex
(0933) 281567

138 WIRELESS WORLD, MARCH 1980
Graduate Electrical/ Electronic Engineers

Research and Development in telecommunications

The Directorate of Telecommunications, London, is responsible for the extensive and sophisticated facilities used by the police, fire, prison and associated services. The role of the Research and Development Section is to ensure that maximum benefit is derived from the use of modern techniques.

The training and experience given to Graduate Engineers — ranging from the initial interpretation of non-technical statement of requirement through to the management of design, development and contract — is carefully planned by a senior engineer and covers the training requirements of the IEE.

You should preferably be aged under 26 and must have a good honours degree in electronics or electrical engineering or an allied subject.

Salary (under review) starts at a minimum of £5035. Completion of training (usually one or two years) leads to a salary rising to £7680. Promotion prospects. Non-contributory pension scheme.

For further details and an application form (to be returned by 13 March 1980) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG 21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote Ref: T/5308.

Home Office

LIVERPOOL AREA HEALTH AUTHORITY

ELECTRONICS TECHNICIAN

— (MEDICAL PHYSICS TECHNICIAN III)

Salary Scale: £4,605 to £5,952 per annum

Applications are invited from Technicians / Engineers with good general electronics experience for the above post which will involve the maintenance/development of equipment used in the Department of Nuclear Medicine at the new Royal Liverpool Hospital.

Application form available from the Personnel Department, Royal Liverpool Hospital, Prescot Street, Liverpool 7.

Closing date: March 7th, 1980.

SOUNDOUT Laboratories, Surbiton, Surrey, who manufacture a range of professional sound equipment, are looking for an experienced TEST ENGINEER

who has had extensive experience of testing amplifiers, mixers and other audio apparatus. The post entails total responsibility for final product approval. Remuneration up to £5,000 plus profit-sharing and a total package including BUPA, 18 days annual holiday and sickness benefit.

Call John Stadius, Technical Director, on 01-399 3392.

MEDICAL EQUIPMENT REPAIRMAN

Saudi Arabia c £7,500 tax free

The Whittaker Corporation of the U.S.A. is responsible for the staffing and management of three general hospitals in Saudi Arabia, where the task is to provide a high standard of Health Care in this rapidly developing country.

We now wish to appoint a man with 2/3 years' experience of biomedical electronics who has successfully completed a formal course in biomedical electronic equipment repair.

The benefits package includes free accommodation, life and medical insurance and return air fare. In addition, there are bonuses of around £500 after 6 and 15 months' service and an extra months salary on completion of the 2 year contract.

Please write with full career details, or telephone 01-584 7639.

Dedicated to a world of health

Whittaker Life Sciences Ltd
Test Development Engineer

Our Test Projects Section has an opening for a Test Development Engineer. In this job he/she will be developing practical production test methods for our broad range of integrated circuits.

The work covers evaluating test methods with the designers and producing test hardware and software, through to the production of efficient test facilities for use on sophisticated computer-controlled test equipment. This requires interfacing with the production, QA and circuit design functions of our business and thus offers a unique opportunity for those who wish to broaden their knowledge of electronics.

Applicants must have a minimum qualification of HNC plus a practical engineering background.

Write or phone for an application form to Shirley Cave, Resourcing Officer, Plessey Semiconductors Limited, Cheney Manor, Swindon, Wilts. SN2 2QW. Tel. Swindon 36251.
Electronics Engineers

Linotype-Paul is in the process of expanding its Test Engineering facility throughout the production function. Recently considerable expenditure has taken place in the provision of additional sophisticated ATE facilities. We seek a number of Engineers/Technicians with experience of digital electronics who may wish to become involved in ATE Programming. Ideally some previous experience of ATE would be an advantage, although Electronics Engineers having good hardware experience in logic techniques will be provided full appropriate programming training. Consideration will also be given to recently qualified Electronics Engineers who seek their first industrial appointment. Vacancies also exist for Engineers and Technicians to provide a wide range of duties on sophisticated digital equipment. The above posts are open to both men and women. Assistance with relocation will be provided where appropriate. Please write to the Personnel Department, Linotype-Paul Ltd, Runnings Road, Cheltenham. Telephone Cheltenham 45001.

Linotype-Paul

Electronics R&D

Take your pick
HF - VHF - UHF -
Microwave Optics & Acoustics
A challenging and full career in Government Service.
Minimum qualification — HNC.
Starting salary up to £6,737.
Please apply for an application form to the Recruitment Officer (Dept. WW1), H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.
Wireless Technicians

We require staff, male or female, to prepare and maintain the latest in communications equipment used by the Police and Fire Brigades in England and Wales.

You will need to be qualified to at least City and Guilds Intermediate Telecommunications standard and be able to demonstrate practical skills in locating and diagnosing faults in a wide range of equipment from computer based data transmission to FM and AM radio systems. You would live near to and work from one of our service centres located at Andover, Hants; Bishops Cleeve, Gloucecs; Hannington, Basingstoke, Hants; Shapwick, Somerset; Harrow, Middlesex.

Specialised courses or training are run to assist staff to keep up to date with developments and new equipment and there are opportunities for day release to gain higher qualifications. Applications from registered disabled persons will be considered.

Promotion prospects are good and the work represents a secure future with generous leave allowance and non-contributory pension scheme.

Possession of a driving licence is essential since some travelling will normally be involved.

The salary scale is as follows: £3,900; £4,160; £4,420; £4,680; £4,940; £5,200; £5,530.

If you are interested in working with us, then write for further details and application form to:

Mr. C. B. Constable, Directorate of Telecommunications, Horseferry House, Dean Ryle Street, London SW1P 2AW. Telephone 01 211-5293.

INSTRUMENTS & ELECTRONICS SUPERVISOR

DRG Flexible Packaging is one of Europe's largest converters of protective packaging materials using a wide variety of sophisticated plant and machinery.

There is a vacancy for a Supervisor in the instruments and electronics section of the engineering department. The section consists of six electronics and three industrial technicians and is responsible for the maintenance and development of industrial electronic equipment including photo-electric, process control and measuring equipment and machine drives. The section works mainly double shift (although it serves a treble shift factory) but the Supervisor's job is a day position. The successful applicant will have had several years' experience in electronics and hold a relevant qualification such as City and Guilds Full Technical Certificate.

The Company offers a competitive salary, 4 weeks' holiday a year, a contributory pension scheme and other benefits associated with working for a large company.

Applications should be made in writing, giving brief career details and current salary to:

Mr. P. Hawkins

DRG FLEXIBLE PACKAGING

Fishponds, Bristol BS16 3RY

A Dickinson Robinson Group Company

SCOTTISH HOME AND HEALTH DEPARTMENT

Wireless Technician

Applications are invited for one post of Wireless Technician in the Scottish Home and Health Department.

Location:

The post is in Inverness.

Qualifications:

Candidates must hold an Ordinary National Certificate in Electronic or Electrical Engineering or a City and Guilds of London Institute Certificate in an appropriate subject or a qualification of a higher or equivalent standard.

Experience:

3 years' appropriate experience.

Starting Salary:

£3,900, scale maximum £5,530.

Applicants should have sound theoretical and practical knowledge of Radio Engineering and Radio Communications equipment in HF, VHF and UHF bands. The work involves installation and maintenance of equipment located at considerable distance from headquarters. A current driving licence and ability to drive private and commercial vehicles are essential.

The appointment is unestablished initially but there is prospect of an established (i.e. permanent) appointment after 1 year's satisfactory service.

Application forms and further information are obtainable from Scottish Office Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH1 3DN (quote ref: PM(PTS) 3 /2 /80) (031-556 8400, Ext. 4317 or 5028).

Closing date for receipt of completed application forms is 18 April, 1980.
R & D Engineers

required to work on digital circuits for
micro-processor based industrial and commercial
systems.

The candidate should have a working knowledge of
TTL and CMOS logic and have experience of
programming at assembler language level for
micro-processor systems.

Engineers should hold a degree/HNC or equivalent
qualifications. Salary will be commensurate with
qualifications, age and experience.

If you are seeking an enjoyable position involving
both hardware and software development, write
giving your career to date or telephone

Dr. G. O. Towler
(New Product Development Manager)
British Relay Electronics Ltd.
32 Biggin Way
Upper Norwood
London, SE19
Tel. 01-764 0931

RADIO OFFICERS

If your trade or training involves radio operating, you
qualify to be considered for a Radio Officer post with the
Composite Signals Organisation.

A number of vacancies will be available in 1980/81 for
suitably qualified candidates to be appointed as Trainee
Radio Officers. Candidates must have had at least 2 years' radio
operating experience or hold a PMG, MPT or MRGC
certificate, or expect to obtain this shortly. Registered
disabled people may be considered.

On successful completion of 40 weeks' specialist training, appointees move to the Radio Office Grade.

Salary Scales:

<table>
<thead>
<tr>
<th>Age</th>
<th>Trainee Radio Officer</th>
<th>Radio Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>£3271</td>
<td>£4493</td>
</tr>
<tr>
<td>20</td>
<td>£3382</td>
<td>£4655</td>
</tr>
<tr>
<td>21</td>
<td>£3485</td>
<td>£4844</td>
</tr>
<tr>
<td>22</td>
<td>£3611</td>
<td>£4989</td>
</tr>
<tr>
<td>23</td>
<td>£3685</td>
<td>£5249</td>
</tr>
<tr>
<td>24</td>
<td>£3767</td>
<td>£5559</td>
</tr>
<tr>
<td>25+</td>
<td>£3856</td>
<td>£5899</td>
</tr>
</tbody>
</table>

then by 5 annual increments to £7892 inclusive of
shift working and Saturday, Sunday elements.

For further details telephone Cheltenham
21491 Ext. 2269, or write to the address
below.

SIP, Recruitment Office
Government Communications Headquarters
Oakley, Priors Road, Cheltenham GL52 5AJ

SENIOR ELECTRONICS ENGINEER
Gloucestershire

The Company, pleasantly situated on the
outskirts of Cheltenham, is a leading
manufacturer of aircraft gas turbine fuel systems
and associated equipment. Our Electronics
Laboratory has a vacancy for an experienced
Electronics Engineer to join a small team
engaged in the design and development of
special purpose prototype instrumentation and
control equipment.

Applicants, male or female, educated to at least
HNC/HND standard or equivalent should have
practical experience in current digital and
analogue design techniques.

In addition to a competitive salary, we offer
excellent fringe benefits including a self-
financing productivity scheme and excellent
pension scheme. Generous assistance with
relocation expenses to this desirable Cotswolds
area will be given where appropriate.

Please write giving details of career to date and
salary expectations to: The Senior Personnel
Officer, Dowty Fuel Systems Ltd. Arle Court,
Cheltenham or telephone. Cheltenham 21411
Ext. 163 for further details and an application
form.

DOWTY

Rogers BRITISH HIGH-FIDELITY

We require two additional qualified
ELECTRONIC ENGINEERS

to work in our acoustics and electronics divisions on the testing and development
of our prestige range of loudspeakers, amplifiers and tuners.

The electronics post is based at our factory in London S.E. 6, within 20 minutes
of Central London, as is the acoustics post which is based at our Wadhurst
Loudspeaker Division.

Both positions offer a competitive salary with fringe benefits. Applicants should
apply initially in writing to:

MR. M. S. SCED
Technical Director
SWISSTONE ELECTRONICS LIMITED
4/14 Barmeston Road, London SE6 3BN

PHILIP DRAKE ELECTRONICS
Limited

Electronic Engineers
Worldwide Airborne Surveys

Our Engineers prepare electronic sensing and digital recording systems at U.K. base for eventual in-flight operation by themselves in fixed and rotary winged aircraft engaged on overseas geophysical projects. Typical overseas project duration is between 2 to 6 months.

A wide spectrum of electronics is covered with a growing emphasis on microprocessor based devices. Qualifications or experience to HNC standard together with a flair for fault diagnosis, solving interfacing problems and mechanical packaging ability is desired.

Persons interested in joining our teams or who require further information should apply to:

The Personnel Manager,
Hunting Surveys
& Consultants Limited,
Elstree Way, Borehamwood,
Herts, WD6 1SB.
Appointments

Calling All
Engineers

Up to £19,000
Per contract year after tax

The Communications Department of Aramco, the world’s largest oil producer, based in Saudi Arabia, urgently requires

MICROWAVE ENGINEERS experienced in microwave system project management and design, with practical knowledge in one or more of the following: Telephone, mobile radio, analog-digital communications and control systems.

UHF/VHF ENGINEERS experienced in mobile UHF/VHF systems project management and design and practical experience in one or more of the following: Microwave, telephone, analog-digital communications and control systems.

SENIOR FIELD CONSTRUCTION SPECIALISTS/FIELD CONSTRUCTION SPECIALISTS to install and commission electronic instrumentation and data acquisition systems. Experienced in trouble shooting complex digital electronics at the system, card and component levels. Familiarity with electronic test equipment, digital diagnostic test procedures and equipment as applied to mini-computers and/or other digital systems.

PLANNING & SCHEDULING ENGINEERS to evaluate schedules, implementation and control analysis and, if necessary, initiate corrective action. There are also requirements for Engineers & Technicians in INSTRUMENTATION, ELECTRICAL & ELECTRONICS disciplines, £14,500 - £19,000

All positions require at least HNC and 10 years experience.

Renewable contracts, single status.

12 days Public Holidays per year.

Leave for married men - 14, 14, 25 days after each 4 month period per contract year.

Leave for single men - 30 days after 12 months.

Free Medicare.

Valid U.K. Driving Licence essential.

Switch to a new wavelength with ARAMCO
Write with career details quoting ref: ww/2

Professional Careers in Electronics

All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.

If you are interested to hear more, please fill in the following details:-

Name Age

Address

Telephone Work/Home (if convenient)

Years of experience 0-1 1-3 3-6 Over 6

Present salary £2,500-£3,500-£4,500-over

Qualifications None C & G HNC Degree

Present job

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts, AL4 0BR. Tel: St Albans 59292

Marconi Instruments
DEVELOPMENT ENGINEER
To work on the design of new broadcast TV studio products. Applicants should have some knowledge of television studio techniques and be qualified to HND or Degree level.

TEST ENGINEERS
At senior and intermediate level to work on our range of advanced broadcast television studio products, including colour and monochrome television studio cameras.
Applicants should have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equipment, radar equipment or similar sophisticated products and qualified to HND, HNC or equivalent level.

SYSTEMS ENGINEER
You would be involved in all stages of product management on the design and building of studio and mobile TV systems and should be prepared for occasional world-wide travel. The appointment requires someone with a background in this type of work, or in the operational side of television with the ability to take charge of people and deal with problems in the field on your own initiative.
Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.

Please apply for further details and application forms to Jean Smith at the address given below.

MEDIA RESOURCES CENTRE
GLYN HOUSE, CHURCH STREET, EWELL
The Centre is within easy reach of main line railway stations and on bus routes, convenient for shops. There is ample free parking available on site.

Field Service Engineer
(Electronic A/V Equipment) (M/F)
£4317–£4770
To carry out on-site service, including fault finding, on schools' audio visual equipment, e.g., language laboratories, TV/Video installations, radio systems, Hi-Fi, etc.
Some of the time, you will be engaged in bench service at the Centre workshop. Experience in the maintenance/repair/fault diagnosis of some, or all, of the above is essential, and practical experience is vital. You should possess City & Guilds or ONC and experience in digital equipment is highly desirable.

Installation/Field Service Engineer
(M/F)
£4317–£4770
To carry out installation/repair work of school fixed A/V systems, wiring of radio lines, aerials (not roof work), language laboratory trunking, etc. This will involve installing screens in school classrooms (drilling walls, etc.), installing study carrels, etc., relocating language laboratories, moving all services, furniture, etc., and re-installing in new positions. Also some bench work at the Centre, dealing with repair of some A/V items. You should possess ONC or City & Guilds and practical experience of installation work together with a working knowledge of A/V systems.

Applicants will be expected to use their own transport for travelling to establishments — an appropriate car allowance is payable.
Application forms from Mrs S. Goode, Administrative Officer at the Centre, Tel: 01-393 0208.

MIDDLE EAST
Precision Measuring Equipment Technicians
The Northrop Corporation, a major US aerospace company, is seeking experienced personnel for their support operations at a number of locations in Saudi Arabia.
Qualified to C & G/ONC or equivalent, you should have at least 5 years' laboratory experience on the calibration and testing of avionics systems and related ground based equipment.
This is an opportunity to secure a sound financial future for yourself and to become involved with the latest developments in electronics technology. The employment package includes:
 * 1 year renewable contract
 * Good bachelor accommodation
 * Regular home leave
 * Excellent recreational facilities
Please contact us quoting ref. 84 PMT.

INTERNATIONAL RECRUITMENT CONSULTANTS,
45 KENSINGTON HIGH STREET, LONDON W8 5ED.
TEL: 01-937 6586 TELEX: 21879 ATT WEBB WHITLEY.
Opportunities for Radio Hazards and Microwave Engineers

At EMI Electronics Ltd. Feltham, we are involved in the design and development of high technology equipments. Thanks largely to the high calibre of its staff, the Company is already a recognised authority in this sphere and is rapidly gaining an international reputation for its specialized equipment and expertise.

Radio Frequency Engineers
To join the existing team engaged in work associated with the assessment of the radio frequency characteristics of a variety of weapon systems. The work currently in hand includes the definition of user requirements, the generation of new analytical and measurement techniques, the development of new forms of miniature radio frequency and analogue instrumentation, and the performance of field trials.

We are looking for engineers with a relevant degree or equivalent qualifications together with up to five years' post-degree experience. Vacancies also exist for less experienced graduates with an interest in this exciting field.

Microwave Development Engineers
To join our radiation laboratory for work on the design and development of microwave components, aerials and systems for ground and airborne applications.

The people we are looking for include graduates with one or two years' post-degree experience in an appropriate field. New graduates with a good degree in physics or electronic engineering and who are looking for an exciting career in the microwave field are also invited to apply.

EMI offers competitive salaries of circa £7,500 for the senior posts, excellent experience and career prospects as well as good employment conditions and substantial fringe benefits. Relocation expenses will be paid where appropriate.

To apply, telephone or write to Lisa Kleinhorn, Personnel Officer, EMI Electronics Ltd., FREEPOST, Victoria Road, Feltham, Middlesex. (NO STAMP REQUIRED). Tel: 01-890 3600 ext 117 or 01-751 0702.

EMI Electronics Limited, Feltham.

A Member of the THORN EMI Group.

ELECTRONIC SERVICE ENGINEERS
LONDON — BRISTOL — MANCHESTER — GLASGOW

Our Company specialises in both sales and servicing of Discotheque Sound and Lighting equipment. We currently have vacancies for engineers who have had previous experience of either HiFi, Studio PA or similar equipment. Excellent salary plus quarterly bonus and P.P.P. Please telephone or write to Andree Mead, Personnel Director for further details.

Roger Squire's
Barnet Trading Estate, Park Road, Barnet, Herts EN5 5SA
Telephone: 01-441 1919

TELECOMMS ENGINEERS/TECHNICIANS
for Saudi Libya Nigeria
Salaries to £22,000 p.a.
for degreed Switching Engineers, External Plant Engineers, Microwave and Mux Engineers. Minimum qualifications must be BSc or equivalent.

Salaries to £12,000 p.a.
for Telephone Technicians with digital PABX experience, Radio Technicians, Telex/Telex Installation and Repair Technicians.

All salaries are paid tax-free plus accommodation and transportation.

Please send résumé to:
ADVANCE PERSONNEL SERVICES LTD. (Agy)
The White House, 12A Lodge Road, Hendon, London NW4
Tel. 01-203 4272
RF pollution control wasn’t so critical in the first crystal age

Electronics Engineers/Physicists to specialise in interference technology

Develop your career and make a significant contribution to the control of electrical noise by moving into the increasingly important field of interference technology with Plessey Assessment Services.

Pleasantly situated in purpose-built laboratory units at Titchfield, Hampshire, we’re a well-established and rapidly expanding test house offering in-depth specialist services to a wide variety of Government and industrial organisations.

Strengthening an existing team of experts in one of the most advanced computer-aided testing facilities in Europe, you’ll be responsible for evaluating the effects of across-the-spectrum electro-magnetic interference on a wide range of electronic equipment.

Ideally, you should have analogue or digital experience, together with a relevant qualification, and knowledge of radio frequency measurement techniques.

Lack of experience in interference technology should not be a bar to applicants since training can be arranged.

There are opportunities at all levels from Assistant Engineer upwards with salaries to suit up to £7,500, plus benefits including generous relocation expenses where appropriate.

Contact Richard Wyatt, Recruitment Manager, on Titchfield 0329 43031 or write to him at Plessey Assessment Services Limited, Titchfield, Fareham, Hampshire, PO14 4QA.

Plessey assessment services
Calibration and Maintenance Engineer

We'd like to start by asking you a few pertinent questions:

- Do you enjoy working with digital and analogue measuring and test equipment?
- Can you maintain, calibrate and program microcomputer-based ATE?
- Do you have ONC, HNC or something similar in Electrical/Electronic Engineering or can you match it with relevant experience?
- Are you looking for more technical and professional challenge and an environment where an ambitious product development programme is investing no less than £2 million in new test facilities for the 80s?

If the answer is 'Yes', you could be the man or woman we need to join the small metrology team based at the Brighton manufacturing plant of ITT Creed, Part of ITT Business Systems Group Ltd., already one of the leading names in data comms - and fast becoming a world leader. There will be occasional travel to other ITT locations: a current driving licence would be essential.

Salary is attractive, there's an excellent range of benefits - and our location offers the pleasant choice of living by the sea or in the country.

For an application form and more information, please contact Hazel Johnson, ITT Creed Limited, Hollingbury, Brighton BN1 1AL.

Tel. Brighton 50 1111 Ext. 3521. Outside office hours please leave a message on our answering machine.

ITT Creed Limited

GWM RADIO LTD., of radio telephones

PNEUMATIC MASTS

£43.

GWM RADIO LTD.,

Details. AVO movements.

Type

Road, Worthing, Sussex, Tel: 01903 637437.

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY, OR P.A. QUALITY. PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESKS, MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a specialty and we have overseas clients in the COMMONWEALTH.

For details and inspection please contact:

Mr. G. Peabody
Walker Engineering Ltd.
Staveley, Derbyshire S43 3JN

Telephone: 0246.87-2147

Telex: 547323

SOWTER TRANSFORMERS

Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990

The Boat Yard, Cullingham Road, Ipswich IP1 2EG

Suffolk, P.O. Box 36 Ipswich IP1 2EL, England

Phone: 01472 527246 & 01472 219390

ARTICLES FOR SALE

With 38 years experience in the design and manufacturing of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY, OR P.A. QUALITY. PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESKS, MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a specialty and we have overseas clients in the COMMONWEALTH.

Send for our questionnaire which, when completed, enables us to post quotation by return.

SOWTER TRANSFORMERS

Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990

The Boat Yard, Cullingham Road, Ipswich IP1 2EG

Suffolk, P.O. Box 36 Ipswich IP1 2EL, England

Phone: 01472 527246 & 01472 219390

LAD CLEARANCE: Signal Generator:

Bridges: Waveform, transducer analyser; calibrators; standards; millivoltmeters; dynadynamometers; KW meters; oscilloscopes; recorders; Thermal, sweep, low distortion true RMS, audio PR, deviation. Tel. 090-376394. (9259)

VMF MONITOR RECEIVERS, Air or Marine band from £50. FM Business bands from £60. For leaflets send 50p P.O., not stamps. Radio Communications Ltd, 13 Glos Road, Ottershaw, St Sampson, Guernsey, Channel Islands.

TELEPHONE ANSWERING machine available for outright purchase. - Telephone Button-on-Trent (94854) 47447.

500 WATT Boozy & Hawkes amplifier, 16. 30 and 60 watt Boozy and Hawkes amplifiers. Creed type No. 7s. Tel. (0222) 59250. MKS, Upper Stone St., Maidstone. Kent. (94425)

VERO 191M card frames suit New- neoprene or Neoprene. Complete with extras and case. £15 plus £4 P.P. Edge Connect £1. Tel. (08489) 5335. (116)

COMPONENTS FOR SALE. Brand new, price per 100-120p, and base £PCO RYAS, 230V ac £123. G.I. bridge £124. KRL 400V £4, £5. BOSS Pesticide tile £14 Amber Wire Lead £92. 1SKRA LFD 180p £7 K5K £7, Min Ord £100. Carry £4.50 and VAT 17%. CWO only. Electro point, Beechook House Falkland Close, Coventry, West Midlands.

MSF CLOCK

NOW GET ABSOLUTE TIME, never gains or loses. Auto GMT BST, 8 digits show Instant time. Hours, Minutes and Seconds. Also display MSF and BOC output, receives MSF and BOC signals, 1000MHz range, built-in antenna. EACH £64.80.

A POWERFUL WORD PROCESSOR AT £950 PLUS VAT. IBM golfball typewriter linked to twin magnetic tape cassette (or twin magnetic card) memory stations. Comprehensive edit/search and formatting operations. Auto-type (specialists in reconditioned Word Processors), Abingdon 813245 and Oxford 3256.

ARTICLES FOR SALE

With 38 years experience in the design and manufacturing of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY, OR P.A. QUALITY. PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESKS, MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a specialty and we have overseas clients in the COMMONWEALTH.

Send for our questionnaire which, when completed, enables us to post quotation by return.

SOWTER TRANSFORMERS

Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990

The Boat Yard, Cullingham Road, Ipswich IP1 2EG

Suffolk, P.O. Box 36 Ipswich IP1 2EL, England

Phone: 01472 527246 & 01472 219390

LAD CLEARANCE: Signal Generator:

Bridges: Waveform, transducer analyser; calibrators; standards; millivoltmeters; dynadynamometers; KW meters; oscilloscopes; recorders; Thermal, sweep, low distortion true RMS, audio PR, deviation. Tel. 090-376394. (9259)

VMF MONITOR RECEIVERS, Air or Marine band from £50. FM Business bands from £60. For leaflets send 50p P.O., not stamps. Radio Communications Ltd, 13 Glos Road, Ottershaw, St Sampson, Guernsey, Channel Islands.

TELEPHONE ANSWERING machine available for outright purchase. - Telephone Button-on-Trent (94854) 47447.

500 WATT Boozy & Hawkes amplifier, 16. 30 and 60 watt Boozy and Hawkes amplifiers. Creed type No. 7s. Tel. (0222) 59250. MKS, Upper Stone St., Maidstone. Kent. (94425)

VERO 191M card frames suit New- neoprene or Neoprene. Complete with extras and case. £15 plus £4 P.P. Edge Connect £1. Tel. (08489) 5335. (116)

COMPONENTS FOR SALE. Brand new, price per 100-120p, and base £PCO RYAS, 230V ac £123. G.I. bridge £124. KRL 400V £4, £5. BOSS Pesticide tile £14 Amber Wire Lead £92. 1SKRA LFD 180p £7 K5K £7, Min Ord £100. Carry £4.50 and VAT 17%. CWO only. Electro point, Beechook House Falkland Close, Coventry, West Midlands.

MSF CLOCK

NOW GET ABSOLUTE TIME, never gains or loses. Auto GMT BST, 8 digits show Instant time. Hours, Minutes and Seconds. Also display MSF and BOC output, receives MSF and BOC signals, 1000MHz range, built-in antenna. EACH £64.80.

A POWERFUL WORD PROCESSOR AT £950 PLUS VAT. IBM golfball typewriter linked to twin magnetic tape cassette (or twin magnetic card) memory stations. Comprehensive edit/search and formatting operations. Auto-type (specialists in reconditioned Word Processors), Abingdon 813245 and Oxford 3256.
COLOUR, UHF AND TV SPARES (minimum size 4 x 21 x 2). New Saw Filter plus further complete and tested for sound and vision, £25.00 each. TELETEXT, Ceefax and Oracle in Colour. Manufacturer's SUPPLIES to assemble TELETEXT Kit including Texas TI1246 Decoder. External unit allows selection to set wide range of T.C's-Resolution, Mix, Newshash and Update. (Price: £120.00, Auxilary Units £8.00, Case £14.00. TEL:-020 922 172 West End Lane, NW6. Also latest Mullard TeleText £10/20/30 mod. Write for further information. COMBINED - CRO & CROSS BATH GENERATOR KIT (MK 4) Triple state. Eight vertical partial colour bars, R-Y, B-Y, U-Y, rising from the bottom. Control panel. Field control.
TV TUBE REBUILDING!

We can offer the most complete range of servicing and repair for TV picture tubes. All gun types for black and white, also high definition guns for monochrome and a wide range of colour guns, to suit European/ American and UK sets.

We also offer services for testing and manufacturing waxes, catalogue and technical service on request.

Applications: Electronic & Equipment

LISPERSTEENENG 190 Great Western Road Downham Market
NORFOLK P38 6L Telephone: 0363 828142

SMALL BATCH

Productions assembled from Sample or Drawing estimates. Compete prices. Design Service also available. Write or phone.

SYNGERY BRITON ELECTRONICS LIMITED

BRITON HOUSE 62 RAILWAY ROAD DOWNHAM MARKET
NORFOLK PE3 5EL
Telephone: 0363 828142

SMALL BATCH PCB's produced from your artwork. Also DIAls, PADS, LAYOUTS, LAMINATING, ROBUSTLY undertaken. FAST TURNAROUND.

- Details: Winston Promotions, 9 Farnham Rd, Farnham, Surrey. Tel: 01-465 4127/9060.

DURHAM'S SERVICE REPRESENTATION DESIGN AND DEVELOPMENT Service available in Digital and Analogue Application of circuit design to manufacturers and Receivers for control of any type of digital or analogue Telemetry, Video Transmitters and Receivers, etc. Suppliers to the Industry for 16 years. Service by F. Fenwick, R.C.S. Electronics, 6 Welby Rd, Ashton, Middleton, Manchester M20 7BN.

REPEITION SHEET METALWORK on Wicksteed Park Road, Kettering. Highly competitive. Quick delivery commitments for high volume orders. - EELS Ltd, Clifford Rd, Monks Rd, Exeter. 36849. (8960)

SHEET METAL WORK fine or general front panels chassis, covers, boxes, fabrication. 1 off or batch work fast turnaround. 01-449 2899. M. Gear Ltd, I.P.A Victoria Road, Fareham, Hants. (9090)

PRINTED CIRCUIT MANUFACTURE, very reliable, low cost, lowest prices. Prototypes welcome. In-house photography. Phone 0674-5731 for fast service. Quote on sample or drawings. - AKTRONICS Ltd, 42/44 Ford Street, Moretonhampstead, Devon. (9267)

ELECTRONIC DESIGN SERVICES Wide engineering experience available in all aspects of electronic design to small batch production. Digital/Analogue prototypes welcome. For cumulative pricing, please contact: Quick Delivery phone Mr. Flower, Dittishams Ltd, 19 Ridgeway Road, Eastbourne, East Sussex. Tel: 0434 3142.

ELECTRONIC CIRCUITS Printed Circuit Boards - Master Laminates, Quality Photographic - Legally printing - Roller timing - Gold plating - Flaw detection - Conventional air fibre glass - No order too large or too small - Fast turnaround on prototypes. All or part service available NOW.

EURO CIRCUITS

Printed Circuit Boards - Master Laminates, Quality Photographic - Legally printing - Roller timing - Gold plating - Flaw detection - Conventional air fibre glass - No order too large or too small - Fast turnaround on prototypes. All or part service available NOW.

EURO CIRCUITS TO Neils Kington St Weavering, Kent, TEL. 23347

TEST EQUIPMENT CALIBRATION AND REPAIR

Quick turn round, attractive rates, ring for details on Southampton (0703) 431 323

DUTCHGATE LTD.

94 Ashton Gardens, Sholing
Southampton

(0928)

PROCESS PHOTOGRAPHY 2:1 reduction. All types of PCB artwork. Prices for positives - 53 x 7 £3.50, 11 x 4.99, 34 x 5.99. Return of past positives or up to 50% on copies for all other quick calls. D.J.S. Electronics, Totterdown, 146 Wells Rd, Totterdown, Bristol BS4 2AZ, Tel: 0722 779289.

COURSES

UNIVERSITY OF LANCASTER DEPARTMENT OF PHYSICS

MSc Course in SEMICONDUCTOR DEVICES

Microelectronic devices — their operation, construction and use are studied in this one year MSc course at the University. The course preparation in the production of microelectronic Devices will result in a need for experts in the device physics, design and manufacture of semiconductor devices. This course material is based on the device physics, design and manufacture in this branch of solid state electronics, as well as the theory of operation. There is a project done in collaboration with industry.

The course is approved by the Science Research Council for award of their Advanced Course Studentships. Applicants should hold a first or second class degree in Physics or Engineering or equivalent qualifications. Further details and application form from Professor R. H. Tredgold, Department of Physics, University of Lancaster, Lancaster LA1 4YB.

UMIST POSTGRADUATE COURSE IN SOLID-STATE ELECTRONICS

(M.Sc and Ph.D.)

A 12-month MSc course comprising two terms of lectures followed by a special research project, starts at UMIST in October each year. Suitable candidates may be given the opportunity to proceed to Ph.D. work. SRC Studentships are available for full-time qualified candidates.

Instructor: Dr. K. E. Singer.
Department of Electronic Engineering and Electronics, UMIST, Manchester M60 1QD.

ROSS WALKER

SMALL BATCH production wiring assembly to sample or drawings. Specialist in printed circuits as printed board Electronics, 6 Wolfland Ave, Runcorn, Cheshire.

BATCH PRODUCTION wiring and assembly to sample or drawings. McDermot Electronics, 199 Station Parade, Ealing Common, London, W5. Tel: 01-989 8978.

PRINTED CIRCUITS BOARDS, quick delivery, competitive prices. Quotations on request, roller thinning, drilling, etc. Speciality small batches. Larger quantities available. Jamiessen Material, 15 Westgate, Bridlington, North Humberside. For the attention of J. Harrison (0262) 747387 or 776716.

ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development work. New board, small batch and prototype production welcome.

KEMO DAVIDS 550 Filton Road, Briton Park, BRISTOL, Southwood Road, New Eltham, SE9.

(9765)

KEMO DAVIDS

 dislikes for printed circuits, rapid prototype to production runs. Also panal printing design, layout, artwork and photographic services. - Kibmore Circuits Ltd. Redhill, Surrey. Tel. Reigate 41016. (9771)

ELECTRONIC ASSEMBLY. High quality, Quick turn around for all your needs: Prototypes, Batch, Repairs, Special Printing, Wafertronics, Frognome, Wansworth, London SW19. 01-470 6550. (10861)

RAYVEN TRANSFORMER COMPANY offer production, transformer and coil winding, quick delivery and competitive prices. - 597 High Road, Leyton, E3. Tel. 01-556 9487.

(107)

BUSINESS OPPORTUNITIES

INNER NORTH LONDON

Excellent first floor premises. Fully equipped for Electronic/Light Assembly, 8,000 sq. ft. Rent £9,288 p.a. Price: £25,000 (would consider sensible offer for quick sale would sell suitable without fittings).

Drivers & Norris, 407 Holloway Road London N7 - 607 5001

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic components. Prompt service and cash: Member of A.R.A.

M & B RADIO

86 Shopton Road
London, SW2 8DR

Tel: 01-404 5011

Telex: 24224. Quote Ref: 3165

(8742)

ARTICLES WANTED

SPOT CASH

Paid for all forms of electronic equipment and components.

F.R.G. General Supplies

550 Kingston Road
London SW20 8DR

Tel: 01-404 5011

(8743)

STORAGE SPACE is expensive, why not buy your own and dispose of it yourself? For fast and efficient clearance of all test gear, power supplies, PC boards, components, etc., regardless of condition or quantity. Call 01-711 9413. 9209
ELECTRONIC BROKERS/HAMEG OSCILLOSCOPES

Brand New —
Top Quality Performance & Value

HM 307
- Single Trace DC-10 MHz, 5mV/cm. Sweep speeds 40 ns-0.2 s/cm X10 cm Display
- H.Fi Y/Book
- H.L. Audio
- I.L.P. Electronics Ltd. 34, 96, 97
- Industrial Type Applications
- Integrilx Ltd. 118
- Intel Electronic Components Ltd.
- Interface Quartz Devices 28
- I.T. Mecorator 2

HM 312
- Single Trace DC-20 MHz, 5mV/cm. Sweep speeds 40 ns-0.2 s/cm X10 cm Display
- H.Fi Y/Book
- H.L. Audio
- I.L.P. Electronics Ltd. 34, 96, 97
- Industrial Type Applications
- Integrilx Ltd. 118
- Intel Electronic Components Ltd.
- Interface Quartz Devices 28
- I.T. Mecorator 2

Other models up to 50MHz bandwidth available. Prices and full specs on request. Full demonstration at our premises. Quick delivery.

Prices do not include VAT (15 %) or carriage.

WW — 125 FOR FURTHER DETAILS

INDEX TO ADVERTISERS

(Appointments Vacant Advertisements appear on pages 133-151)

- **PAGE**
- **PAGE**

H.H. Electronic
- Quantum Electronics 18
- Quartzlock 114

HI-FI Y/Book
- Racial Recorders 17
- Radio Component Specialists 109
- Radio Slownik 109
- R.C.S. Electronics 100

H.L. Audio
- Sandwell Plant Ltd. 32
- Science of Cambridge 20, 21
- Scopes Instruments Ltd. 113
- Service Trading 117
- Shore Electronics 38
- SME Ltd. 27
- Softly Ltd. 100
- Sound Council Ltd. 32, 104
- Sota Communications Systems Ltd. 104
- Southern Electronics 108
- Special Products Ltd 28
- Strumech Eng. Ltd. 18
- Sugden, J. E. & Co Ltd 34
- Surrey Electronics Ltd. 102
- Swanley Electronics Ltd 106

INATSUKI. Trade Media - IBPA (Japan). B.212.
- Tandy Corporation 4
- Technomatic Ltd 132
- Tektronix (Telequipment) Cover 1
- Telefonia Radioelectronica 106
- TFMEC 26
- 3M (United Kingdom) 14
- Thurlby Electronics 37

I.L.P. Electronics Ltd.
- Valradio Ltd. 24
- Vero Electronics Ltd. 16
- Vero Speed 37
- Vero Systems 24
- Videotone Loose insert

Integrilx Ltd.
- West Hyde Developments Ltd 98
- West London Direct Supplies 114
- Wilmot Breeden Electronics Ltd. 86
- Wilsmsow Audio 103

Intel Electronic Components Ltd.
- Z. & I. Aero Services Ltd 36, 112

PRINTED IN GREAT BRITAIN BY QB LTD., SHEEPEN PLACE, COLCHESTER, AND PUBLISHED BY THE PROPRIETORS IPC ELECTRICAL-ELECTRONIC PRESS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, SE1 2LU: TELEPHONE 01-361 8000. WIRELESS WORLD can be obtained abroad from the following: AUSTRALIA: NORTHERN COMMUNICATIONS, 24 MCDOWELL STREET, HAYMARKET, SYDNEY; NEW ZEALAND: MAILBOX 3 BOX 701, AUCKLAND; CANADA: THE WM. DAWSON SUBSCRIPTION SERVICE LTD, GORDON & GOTECH LTD. SOUTH AFRICA: CENTRAL NEWS AGENCY LTD; WILLIAM DAWSON & SONS (S.A.) LTD. UNITED STATES: EASTERN NEW SERVICE DISTRIBUTION INC., 14TH FLOOR, 111 EIGHTH AVENUE, NEW YORK, N.Y. 10011.
This superb organ—build the first working section for just over £100. Full specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

Speakers from 1½ inch to 15 inch; megaphone. PA horns, crossovers etc. They’re all in our catalogue. Send the coupon now!

Post this coupon now for your copy of our 1979-80 catalogue price 70p. Please send me a copy of your 290 page catalogue. I enclose 70p (plus 37p p&p).

If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send £1.35 or ten International Reply Coupons. I enclose £1.07.

NAME
ADDRESS

A wide range of disco accessories at marvellous prices. Our catalogue has all the details.

A very high quality 40W per channel stereo amplifier with a superb specification and lots of extras. Full construction details in our catalogue.

A genuine 150W per channel stereo disco to build yourself. Full specification in our catalogue.

Our bi-monthly newsletter contains guaranteed prices, special offers and all the latest news from Maplin.
Toolbox Reels
Three solders that cover all your electrical applications
40/60 Tin/Lead size 3
60/40 Tin/Lead size 10
Savbit Alloy size 12
£3.22 each

Economy Pack
This convenient dispenser contains enough general purpose solder for about 200 average joints. Suitable for all electrical work.
Size 6 46p

Handy Dispensers
Size 19A All electrical work 83p
Size PC145 For small components 92p
Size SV130 Use with copper bits and wires £1.27
Size AR140 Metal repairs 92p
Size AL150 Aluminium 92p
Size SS160 Stainless Steel £1.38

Savbit Dispenser
Contains Ersin Multicore Savbit solder which increases life of copper bits by 10 times.
Size 5 78p

Solder Cream
For jointing most metals. Easy to use and ideal where solder wire cannot penetrate.
Electrical/Electronic (Ersin Flux) Size BCR10 £1.38p
Metal joining (Arax Flux) Size BCA14 £1.38p
Stainless Steel & Jewellery (Arax Flux) Size BCA16 £2.04
(All prices inc. VAT)

Cassette Editing Kit
Make editing simple with the Bib splicer, tape cutter and splicing tape, with 6.3mm adaptor.
Ref 56 £2.86 inc. VAT

Groov-Kleen Automatic Record Cleaner
For single-play turntables. Removes harmful dust to protect records and stylus. Finished in chrome, bright anodised aluminium and shiny black.
£2.99 inc. VAT

Groov-Guard XL-2
Anti-static liquid and record preservative. Following years of research, Bib laboratories have developed Groov-Guard XL-2, Anti-static Record Preservative. When applied to the record, eliminates static charge for the expected life of the record. Another advancement with Groov-Guard XL-2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable, Non-toxic.
Ref. 27 £2.48 inc. VAT

Groov-Guard XL-2
Anti-static liquid and record preservative. Following years of research, Bib laboratories have developed Groov-Guard XL-2, Anti-static Record Preservative. When applied to the record, eliminates static charge for the expected life of the record. Another advancement with Groov-Guard XL-2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable, Non-toxic.
Ref. 27 £2.48 inc. VAT

Record Valet
Soft bristles on leading edge remove dust and humid velvet pad collects particles. This advanced cleaner is engineered in a fine shiny black finish and is supplied with dust cover and a 22ml bottle of anti-static cleaner.
Ref. 47 £3.29 inc. VAT

Cassette Fast Hand Tape Winder
The Bib Cassette Fast Winder enables you to wind tape in one cassette whilst you are listening to another cassette. If you have a battery recorder, always use the Fast Winder to save the high battery consumption when fast winding. It winds a C90 cassette in 60 seconds — faster than most recorders.
Ref. 78 £1.59 inc. VAT

Tape Head Maintenance Kit
Everything necessary for cleaning heads, capstan and pinch wheel on all types of recorders. Cleaning and polishing pads, cleaning liquid and brush inspection mirror included.
Ref 25 £2.48 inc. VAT

All prices shown are recommended retail, inc. VAT.

In difficulty send direct, plus 20p P & P. Send S.A.E. for free copy of colour catalogue detailing complete range.
Bib Hi-Fi Accessories Limited, Kelsey House, Wood Lane End, Hemel Hempstead, Herts., HP2 4RQ.

WW—004 FOR FURTHER DETAILS