Unique pickup arm
Amplifier-speaker distortion
TESTING MOBILE RADIOS?

... catch this bus with Farnell

and arrive economically at an efficient ATE workstation.

Comprehensive testing under low cost desk computer control.

Manual systems too.

INTERFACE WITH US NOW!

Ask for details from:

FARNELL INSTRUMENTS LIMITED • WETHERBY • WEST YORKSHIRE LS22 4DH • ENGLAND • TEL: 0937 61961 • TELEX 557294 FARIST G

WW—001 FOR FURTHER DETAILS
Front cover shows a quartz crystal made by Hewlett-Packard for a new oscillator. A plano-convex finish is used to achieve high stability.

IN OUR NEXT ISSUE

Darkroom exposure and enlarger timer measures required exposure for a black-and-white print, giving a digital readout in seconds and tenths. It then times this exposure.

Christmas electronics quiz, set by polytechnic lecturer Bryan Hart and colleague. Prizes are offered.

Programmable power supply provides 0 to 40V at 2A, controlled via the IEEE General Purpose Interface Bus.

More details page 47.

Current issue price 60p, back issue (if available) £1.00, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.

By post, current issue 85p, back issues (if available) £1.50, order and payments to Room CP34, Dorset House, London SE1 9LU.

Editorial & Advertising offices: Dorset House, Stamford Street, London SE1 9LU.

Subscription rates:
1 year £10.00 UK and $33.80 outside UK.
Student rates: 1 year £5.00 UK and $16.90 outside UK.

Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.

Subscriptions: Oakfield House, Perry-mount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444 59188. Please notify a change of address.

USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd-class postage paid at New York.

© IPC Business Press Ltd, 1980
ISSN 0043 6062

Change of address
With the December issue, editorial and advertisement offices will be at the following new address

Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Tel 01-661 3500 Telex BS2084 Answer code BISPRS G
VIDEOTONE Introduces DIRECT SELLING - the Ultimate Discount!!

LOUDSPEAKERS
The complete fully reviewed range of Videotone Speakers which dominate within their class. Now at lowest ever prices.

- D 100: £38
- Minimax 11: £44
- GB3: £50
- GB2: £60
- GBS: £207
- D 93: £40

ELECTRONICS
This new range of Electronics from Videotone redefines the words quality and value for money to a new high.

- 30 watt amp MC input SA4130: £75.00
- Stereo Tuner ST4120: £68.00
- Cassette full features SC3200: £38.00
- 50 Watt amplifier WA7700: £77.00
- 20 Watt amplifier LA2020: £58.00

HEADPHONES

- HP 90 Headphone: £12.65
- HP 80 Headphone: £9.69

Superbly made with top flight performance.

CORAL CARTRIDGES
Fast becoming one of the top names

- MOVING COIL
 - UK's No. 1 Cartridge MC 81: £48.87
 - 777EX: £35
 - 777E: £25

- MOVING MAGNET
 - 555SX: £7.28
 - 555E: £14.22
 - 666E: £32.48

- HEAD AMP
 - H300: £51.75
 - T100: £24.75

- HEADSHELLS
 - S100: £6
 - S101: £7
 - S200: £4

MICROPHONES

- MU 105-22: £29.30
- MU 105-12: £22.25
- MU 25 C: £17.39

TURNTABLES

- Sansui SR222 Mk2: £69.00
- JVC LA 11: £64.00
- JVC SLQ 3: £140.00

A MESSAGE FROM VIDEOTONE

Dear Customer,
You will find that the products advertised on this page are the best possible value for money. They are only low in price because we have eliminated large amounts of selling costs that other brands have to suffer. These savings are passed directly on to you. We have full brochures on any specific item you may be interested in and a competent realistic staff of engineers at our London Showrooms to help you in your choice. Our consumer protection packages are comprehensive and we offer every form of financing you may require. Money. We are confident our products are unbeatable. You may purchase with confidence because our Engineers have specially selected them from competitive sources throughout the world and we import them directly ourselves. Remember, you have 21 days trial period on all products. That is the measure of our confidence.

Managing Director

SEND FOR OUR LATEST FREE BROCHURE AND DETAIL LIST OF LOCAL SALES OUTLETS IN THE U.K.

VIDEOTONE 98 CROFTON PARK ROAD, GROFTON PARK, LONDON SE4 Tel: 01-690 8511/2

Please send me your Direct Selling Brochure and list of sales outlets.

Name ____________________________
Address ____________________________

WW 11/80

WW 008 FOR FURTHER DETAILS
TWO NEW THANDAR LCD MULTIMETERS

TM351 & TM353 LCD
3½ DIGIT MULTIMETERS

Two new laboratory quality portable multimeters using LCDs and low power LSI circuitry to give exceptionally long battery life.

Both have a full measurement capability of AC and DC volts, AC and DC current, resistance and diode check, permitting measurement of voltages from 100 μV to 1000 V AC/DC, current from 100 nA to 10A (to 2A on TM353) and resistance from 100 mΩ to 20 MΩ (from 100 Ω on TM353). Basic accuracy on the TM351 is 0.1% and on the TM353 0.25%.

As with all Thandar products the TM351 and TM353 offer exceptional specification for money.

TM351 only £99 + £14.85 VAT
TM353 only £84 + £12.60 VAT

Both are supplied complete with long life alkaline batteries, and test leads.

OVER
3000 hrs
BATTERY LIFE

TF200 LCD FREQUENCY METER

Combines professional specification, portability and value for money.

- Wide frequency range — 10Hz to 200MHz (with TP600 to 600MHz)
- High sensitivity — 10mV rms
- Battery or mains operation
- Versatile — Lo f, Hi f, Time Av. period and totalise functions

Only £145 + £21.75 VAT (including batteries)

TP600 600MHz Prescaler £37.50 + £5.63 VAT.

UP TO
4000 hrs
BATTERY LIFE

OTHER PORTABLE TEST INSTRUMENTS IN THE THANDAR RANGE

SC110 Single-Trace Portable Oscilloscope
10MHz bandwidth 10mV/div sensitivity £139.00 + £20.85 VAT

DM450 4½ Digit Multimeter
34 ranges; 0.05% basic accuracy £99.00 + £14.85 VAT

DM350 3½ Digit Multimeter
34 ranges; 0.1% basic accuracy £72.50 + £10.88 VAT

DM235 Pocket Digital Multimeter
21 ranges; 0.5% basic accuracy £52.50 + £7.88 VAT

PFM200 Pocket Frequency Meter
20Hz-200MHz; 10mV sensitivity £49.80 + £7.47 VAT

PDM35 Pocket Digital Multimeter
16 ranges; 1½ basic accuracy £34.50 + £5.18 VAT

For full technical details together with price list and stockist list please contact:

SINCLAIR ELECTRONICS LTD
London Road, St. Ives, Huntingdon, Cambs. PE1 7 4HJ,
Tel: St. Ives (0480) 64646. Telex: 32250

WW—011 FOR FURTHER DETAILS
Modulators Meters

<table>
<thead>
<tr>
<th>Type</th>
<th>DC-8 MHz 6 digits</th>
<th>DC-8 MHz 5 Megahertz, AM/FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTRON DONNER</td>
<td>£195</td>
<td>£150</td>
</tr>
<tr>
<td>Function Generators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A111 Logic state analysers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tektron s 12 channel display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM552</td>
<td>£235</td>
<td></td>
</tr>
<tr>
<td>MAIN ELECTRONICS</td>
<td>PM556</td>
<td>£215</td>
</tr>
<tr>
<td>Tektron s 15 channel up to 50 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mains Monitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cole</td>
<td>£105</td>
<td></td>
</tr>
<tr>
<td>Datablock</td>
<td>£175</td>
<td></td>
</tr>
<tr>
<td>DRANETZ</td>
<td>£265</td>
<td></td>
</tr>
<tr>
<td>GAY</td>
<td>£125</td>
<td></td>
</tr>
</tbody>
</table>

Oscilloscopes

<table>
<thead>
<tr>
<th>Type</th>
<th>DC-8 MHz 6 digits</th>
<th>DC-8 MHz 5 Megahertz, AM/FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEKTRONIX</td>
<td>£415</td>
<td>£315</td>
</tr>
<tr>
<td>Advance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53001 Dual Trace DC-10 MHz</td>
<td>£415</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3233 DC-10 Beam DC-10 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
</tbody>
</table>

Power Meters

<table>
<thead>
<tr>
<th>Type</th>
<th>DC-8 MHz 6 digits</th>
<th>DC-8 MHz 5 Megahertz, AM/FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYMAR</td>
<td>£425</td>
<td>£425</td>
</tr>
<tr>
<td>Hevlett Packard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>432A Telemetry Mount for 432A-600</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>435A 0.3-W to 1000 MHz 5 Megahertz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>9841A Power Sensor for 435A</td>
<td>£200</td>
<td></td>
</tr>
<tr>
<td>Marconi Sanneys</td>
<td>£600</td>
<td>£600</td>
</tr>
<tr>
<td>600-10 MHz 40 GHz (depending on Head)</td>
<td>£300</td>
<td></td>
</tr>
<tr>
<td>6400 100-1000 MHz 10 Megahertz</td>
<td>£110</td>
<td></td>
</tr>
<tr>
<td>6422 12.4-12.4 MHz 100 Hz</td>
<td>£100</td>
<td></td>
</tr>
<tr>
<td>6426 24.4-40 GHz 1050</td>
<td>£150</td>
<td></td>
</tr>
<tr>
<td>8A 610-6100 MHz 1000 Hz</td>
<td>£300</td>
<td></td>
</tr>
</tbody>
</table>

Price List

<table>
<thead>
<tr>
<th>Type</th>
<th>DC-8 MHz 6 digits</th>
<th>DC-8 MHz 5 Megahertz, AM/FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>D520 Dual Trace DC-10 MHz</td>
<td>£1250</td>
<td></td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td>£1250</td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£250</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3233 DC-10 Beam DC-10 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>Scopec</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM3231 DC-15 MHz Dual Trace 2 MHz</td>
<td>£425</td>
<td></td>
</tr>
<tr>
<td>SCOPEX</td>
<td>£425</td>
<td>£400</td>
</tr>
<tr>
<td>Tektron s 8 Dual Trace 10-100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Monitors</td>
<td>£165</td>
<td></td>
</tr>
</tbody>
</table>
Prime Equipment

Prime Equipment

Carston Prime Equipment brings you recent "State-of-the-Art" instruments at competitive prices, with fast delivery (2-4 weeks). Every "Prime" instrument carries the Carston 90 Day Full Guarantee covering parts and labour.

Prime Equipment List

<table>
<thead>
<tr>
<th>Product</th>
<th>Code</th>
<th>Description</th>
<th>Price from £</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRYANS SOUTHERN</td>
<td>5000 X Y Recorder</td>
<td>A4 0.25mm/10V/cm</td>
<td>525</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td>85314 4 Channel 1MV-10V</td>
<td>0.1A 200MHz</td>
<td>220</td>
</tr>
<tr>
<td>2305B BS316</td>
<td>100kHz-1MHz</td>
<td>10V/cm</td>
<td>1850</td>
</tr>
<tr>
<td>85314 B</td>
<td>6.5 inch. Stripchart</td>
<td>Single Pen 150V/DC 30mm/sec</td>
<td>2350</td>
</tr>
<tr>
<td>KDUELS</td>
<td>6.5 inch. Stripchart</td>
<td>Single Pen A3 0.25mm</td>
<td>995</td>
</tr>
<tr>
<td>MARCONI</td>
<td>2305B 0.2 Hz</td>
<td>25ms/10V/RT</td>
<td>175</td>
</tr>
<tr>
<td>510V</td>
<td>100V/500</td>
<td>Double pulse 0/P</td>
<td>12</td>
</tr>
<tr>
<td>8525A</td>
<td>0.1-2 MHz</td>
<td>0.1V/cm</td>
<td>300</td>
</tr>
<tr>
<td>74216</td>
<td>10MHz-18GHz</td>
<td>0.01%</td>
<td>525</td>
</tr>
<tr>
<td>9903A</td>
<td>10-300MHz</td>
<td>Sweep generator</td>
<td>525</td>
</tr>
<tr>
<td>2350</td>
<td>10kHz-1MHz</td>
<td>CRT Display</td>
<td>250</td>
</tr>
</tbody>
</table>

Prime Equipment Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Code</th>
<th>Description</th>
<th>Price from £</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT</td>
<td>Power Lab. up to 30V Dual Supply</td>
<td>90</td>
<td>1100</td>
</tr>
<tr>
<td>MARCONI</td>
<td>TF251641 10/30V 1A</td>
<td>15V 2A</td>
<td>25</td>
</tr>
<tr>
<td>84TP</td>
<td>1.5V 4A</td>
<td>22</td>
<td>250</td>
</tr>
<tr>
<td>SORRENSE</td>
<td>DCO 300 2.5-300V 2.5A DC Stab.</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Pulse Generators</td>
<td>9052 1.5V 5A</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>DB ELECTRONICS</td>
<td>3.2V 384</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>EH RESEARCH</td>
<td>12: 1 kHz-200MHz</td>
<td>500</td>
<td>0.5</td>
</tr>
<tr>
<td>214A</td>
<td>100V/500</td>
<td>Double pulse 0/P</td>
<td>12</td>
</tr>
<tr>
<td>Log recording of AC: 2 Hz -200 kHz</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>10 Hz -1 MHz. 15ns RT</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>85736</td>
<td>100kHz-1MHz</td>
<td>2.60cm/min and/hr</td>
<td>350</td>
</tr>
<tr>
<td>8526</td>
<td>25mm/min 6 in chart</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>SMITHS INDUSTRIES</td>
<td>8541</td>
<td>20 Single pen 1mm chart</td>
<td>350</td>
</tr>
<tr>
<td>YOKOGAWA</td>
<td>3064</td>
<td>10 inch Chart Single Pen. 0.5 mm/100V</td>
<td>350</td>
</tr>
<tr>
<td>Signal Sources and Generators</td>
<td>404A</td>
<td>150kHz-1MHz 20Vp-p</td>
<td>1725</td>
</tr>
<tr>
<td>BOONTON</td>
<td>19DB 3.520MHz</td>
<td>Ext/FM/AM</td>
<td>1200</td>
</tr>
<tr>
<td>2003B Linear</td>
<td>10-110V</td>
<td>Ext/FM/AM</td>
<td>525</td>
</tr>
<tr>
<td>29000</td>
<td>25dBm Equiv.</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>29050</td>
<td>50dBm Equiv.</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>29060</td>
<td>75dBm Equiv.</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Carston Electronics

Contact Brian Hollingsworth or Noel Jennings

CARSTON ELECTRONICS LTD
SHIRLEY HOUSE, 27 CAMDEN RD.,
LONDON NW1 9NR Telex 23920

Prime Equipment

Carston Prime Equipment brings you recent "State-of-the-Art" instruments at competitive prices, with fast delivery (2-4 weeks). Every "Prime" instrument carries the Carston 90 Day Full Guarantee covering parts and labour.

Prime Equipment List

<table>
<thead>
<tr>
<th>Product</th>
<th>Code</th>
<th>Description</th>
<th>Price from £</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRYANS SOUTHERN</td>
<td>2000 X Y Recorder</td>
<td>A4 0.25mm/10V/cm</td>
<td>525</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td>85314 4 Channel 1MV-10V</td>
<td>0.1A 200MHz</td>
<td>220</td>
</tr>
<tr>
<td>2305B BS316</td>
<td>100kHz-1MHz</td>
<td>10V/cm</td>
<td>1850</td>
</tr>
<tr>
<td>85314 B</td>
<td>6.5 inch. Stripchart</td>
<td>Single Pen 150V/DC 30mm/sec</td>
<td>2350</td>
</tr>
<tr>
<td>KDUELS</td>
<td>6.5 inch. Stripchart</td>
<td>Single Pen A3 0.25mm</td>
<td>995</td>
</tr>
<tr>
<td>MARCONI</td>
<td>2305B 0.2 Hz</td>
<td>25ms/10V/RT</td>
<td>175</td>
</tr>
<tr>
<td>510V</td>
<td>100V/500</td>
<td>Double pulse 0/P</td>
<td>12</td>
</tr>
</tbody>
</table>

Prime Equipment Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Code</th>
<th>Description</th>
<th>Price from £</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT</td>
<td>Power Lab. up to 30V Dual Supply</td>
<td>90</td>
<td>1100</td>
</tr>
<tr>
<td>MARCONI</td>
<td>TF251641 10/30V 1A</td>
<td>15V 2A</td>
<td>25</td>
</tr>
<tr>
<td>84TP</td>
<td>1.5V 4A</td>
<td>22</td>
<td>250</td>
</tr>
<tr>
<td>SORRENSE</td>
<td>DCO 300 2.5-300V 2.5A DC Stab.</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Pulse Generators</td>
<td>9052 1.5V 5A</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>DB ELECTRONICS</td>
<td>3.2V 384</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>EH RESEARCH</td>
<td>12: 1 kHz-200MHz</td>
<td>500</td>
<td>0.5</td>
</tr>
<tr>
<td>214A</td>
<td>100V/500</td>
<td>Double pulse 0/P</td>
<td>12</td>
</tr>
<tr>
<td>Log recording of AC: 2 Hz -200 kHz</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>10 Hz -1 MHz. 15ns RT</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>85736</td>
<td>100kHz-1MHz</td>
<td>2.60cm/min and/hr</td>
<td>350</td>
</tr>
<tr>
<td>8526</td>
<td>25mm/min 6 in chart</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>SMITHS INDUSTRIES</td>
<td>8541</td>
<td>20 Single pen 1mm chart</td>
<td>350</td>
</tr>
<tr>
<td>YOKOGAWA</td>
<td>3064</td>
<td>10 inch Chart Single Pen. 0.5 mm/100V</td>
<td>350</td>
</tr>
<tr>
<td>Signal Sources and Generators</td>
<td>404A</td>
<td>150kHz-1MHz 20Vp-p</td>
<td>1725</td>
</tr>
<tr>
<td>BOONTON</td>
<td>19DB 3.520MHz</td>
<td>Ext/FM/AM</td>
<td>1200</td>
</tr>
<tr>
<td>2003B Linear</td>
<td>10-110V</td>
<td>Ext/FM/AM</td>
<td>525</td>
</tr>
<tr>
<td>29000</td>
<td>25dBm Equiv.</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>29050</td>
<td>50dBm Equiv.</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>29060</td>
<td>75dBm Equiv.</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
Model — M600

* POWER RESPONSE DC — 20KHz ± 1dB.
* OUTPUT POWER IN EXCESS OF 1.5kW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.).
* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2kVa.
* HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1kW INTO 6 OHMS
* PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS ★ UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
* FULL OPEN AND SHORT CIRCUIT PROTECTION ★ GUARANTEED STABLE INTO ANY LOAD.
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW.
* INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
* 3-YEAR PARTS AND LABOUR WARRANTY.

For full details on all Amcron Products write or phone Chris Flack

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594
Precision control of speech amplitude, signal to noise ratio and waveform characteristics using a feedforward control process developed at University College, Swansea with NRDC backing (British Patent Application No. 12050/77). High speed digital processing techniques are employed using a Zilog Z80A microprocessor to sample and process the speech waveform.

The processor is a single self-contained unit which may be placed at any audio point within a voice communication system between the microphone at the sending end and the loudspeaker at the receiving end.

APPLICATIONS

Mobile radio
H.F. point-to-point radio
Inter-comm systems

PERFORMANCE

* CONSTANT OUTPUT AMPLITUDE
 Peak output is constant within ± 0.5 dB over an input variation of 24dB

* SIGNAL TO NOISE RATIO IMPROVEMENT
 The maximum SNR improvement of 15 dB effectively removes ambience at the talking location. Speech degraded to zero dB SNR is improved to an SNR of 5 dB

* INHERENTLY LOUDER SPEECH
 Processed speech is approximately 8 dB louder than natural speech of the same peak amplitude. The SNR at the output of a noisy channel will be approximately 8 dB higher in addition to the benefits resulting directly from the use of speech level control

Available in a 2U high standard 19" rack-mounting for 240V or 110V, 50 Hz or 60 Hz operation.

Price: £424, case £26, excluding carriage and V.A.T.
Manual available separately.

Installation, maintenance and contract R & D facilities available.

Export enquiries welcomed.

HIGHER ACCOUSTIC OUTPUT
Loudspeaker or earphone output is approximately 8 dB higher with no increase in peak output or distortion from peak limiting

NORMAL SPEECH QUALITY
Processed speech has the quality of normal telephony speech

HIGHER INTELLIGIBILITY
All speech sounds are raised to the same loudness level and thus processed speech retains high intelligibility when listening under conditions of ambient acoustic noise

INSTANTANEOUS RESPONSE
The response is synchronised to the zero crossings of the input waveform and no instrumental effects are noticeable

VOICE MICROSYSTEM LTD
UNIT F, CARDIFF WORKSHOPS
EAST MOORS
CARDIFF CF1 5EH
UNITED KINGDOM.

Tel: CARDIFF (0222) 33409

WW -- 005 FOR FURTHER DETAILS
Thank you.
You gave VHS
70% of the market.

Last year, nearly three out of every four home video recorders bought or rented in Britain used the VHS format. You, as a VHS dealer, have been instrumental in helping VHS build its dominant market position. And now we would like to say thank you.

Thank you for recognizing the concrete qualities of leadership in the system: the superb picture and sound reproduction, the reliability and the high level of compatibility.

Thank you too for backing the judgement of such respected VHS manufacturers and video companies as Akai, Ferguson, Hitachi, JVC, Panasonic and Sharp.

And finally, thank you for continuing to stock VHS. Last year you were responsible for giving VHS 70% of the market. This year you look set to do even better.

The World's No.1 VHS
Hitachi, JVC, Panasonic, Sharp.

WW — 012 FOR FURTHER DETAILS
SCOPES
A range of Scopes in stock from 5mHz Single Trace to 50mHz Dualtrace. Mains and Battery/Mains available. Many on demonstration.

SINGLE TRACE (UK cip etc £2.50)
Hm 307-3 10mHz, 5mv, 6 x 7cm display plus component test £17.00
CO1030D 5mHz, 10mHz, 7 x 7cm display £109.25
SC110 10mHz, Battery portable, 10mV 3.7 x 2.6cm display (optional case £8.80, Nicads £7.95, Mains unit £4.00)
LORO12A 10mHz, 10mV, 5" display (plus FREE probe) £15.50
CS1559A 10mHz, 10mV, 5" display £15.50
NAMEG + TRIO + SINCLAIR + LEADER

DUAL TRACE (UK cip etc £3.50)
CS1653A 10mHz, 10mV, 5" display £234.95
CS1867A 5mHz, 10mHz, 5" display £720.00
CS1867A 5mHz, 5mHz, 5" display £720.00
CS1352 10mHz, 5mHz, 7.5cm display, battery/mains portable (Nicads pack £29.90) £348.15
LORO12A 20mHz, 5mV, 8 x 10cm display plus Sweep Delay £399.50
CS1577A 20mHz, 2mV, 5" display £455.40
CS1035 20mHz, 2mV, 5" display plus sweep £507.15
LORO12B 5mHz, 5mV, 10x8cm display, Delay Sweep £670.00
LB0514 10mHz, 1mV (5mV) 5" display plus (2 FREE probes) £284.00

GENERATORS
(UK cip £1.75)
RF
SG402 100kHz - 30mHz £64.40
SG516 100kHz on Harmonics £65.50
SG231 100Hz Hz 1mHz (adjustable) £155.00

PULSE
2001 1kHz 1kHz £86.00
TG02 1kHz 5mHz £105.00
2000 P22Hz 5mHz £253.00
2000SPC as 200P plus built in freq. display/10mHz counter £437.00

A range of Signal Generators to cover Audio, RF and Pulsing. Mains operated (TG series Battery).

LEADER + TRIO + SINCLAIR + LEADER

DIGITAL MULTIMETERS

HAND HELD (UK post etc £7.50)
TM352/3 1/2 Digit LCD plus 10 £54.95
ADC and Hfe checker £32.95
MTM92 3 1/2 Digit LCD plus 10A DC and Hfe checker £45.95
LM2001 3 1/2 Digit LCD 2 amp £51.70
LM2002 3 1/2 Digit LCD 0.2A AC/DC Auto range £89.85
LM200 A600 plus 10A DC £90.95
LM200 A600 plus Cont. range hold £94.95
LM211 A610 plus 10A DC £74.95

BENCH PORTABLES (UK cip £8.50)
DM225 3 1/2 Digit LED 21 ranges, 0.5% AC/DC 2A £56.50
DM220 3 1/2 Digit LED 34 ranges AC/DC 10A £78.50
TM353 3 1/2 Digit LCD AC/DC £28.50
TM53 £28.50
TM51 3 1/2 Digit LCD AC/DC 10 £107.05
LM100 3 1/2 Digit LCD AC/DC 2 £86.95
LM85 £86.95
DM420 3 1/2 Digit LCD 34 ranges AC/DC £107.95
(LD series options. Carry case £40.50, Nicads £7.95, Mains adaptor £19.00)

CLAMP METERS / INSULATION TESTERS
[Continued]
"I NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"

Don't be put off by what you may have heard – or imagined – about the cost of colour video.

Talk to Bell & Howell or one of our Video Centres and get the current facts.

The fact, for example, that a portable JVC colour camera costs little more than an ordinary black-and-white camera.

And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as £1,300 plus VAT. For playback, a standard TV receiver is all you need.

At these prices every user can benefit from colour. Training will be easier to understand; publicity more compelling; management communications more interesting; role-playing more effective. After all, we live in a coloured world.

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has been achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions; a 6:1 power or manual zoom, giving close-ups as close as 50 mm; TTL indicators which automatically show exposure level, auto-white balance, operating mode and power level.

BETTER STILL

Or, if you feel inclined to make even fuller use of the camera's capabilities, couple it to a JVC ¾-inch U-format recorder.

The picture will be improved. You'll have another sound track to use for foreign-language commentaries or question-and-answer training routines.

On ¾-inch, moreover, you'll be in the right format to edit and duplicate – or add in library material. And still the cost of the system needn't exceed £2,700 plus VAT. Alternatively, at very attractive rates, it can be leased.

SEE FIRST, THEN DECIDE

You can, of course, spend more. At any Bell & Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn't be out of place in a national network.

But do you need them?

Let the Video Centre, or Bell & Howell, help you decide. Whatever your decision, two things are certain.

One, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use).

Two, every unit in the system you choose qualifies for the Supershield warranty, unique to Bell & Howell.

Under Supershield, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. And if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped Supershield video workshop.

Convert to (or start with) colour. With JVC video equipment. And the Bell & Howell Supershield guarantee.

Let Bell & Howell show you the answer.

To Pieter Glas, Bell & Howell A-V Ltd.; Freepost, Wembley, Middlesex HA0 1BR
Please send me more information about video equipment and a list of your Video Centres.

Name
Organisation
Address

AV CAMERAS, JVC RECORDERS, JVC STUDIO EQUIPMENT, JVC MONITORS, ELECTROHOME MONITORS, FUJI VIDEO TAPES.

WW — 026 FOR FURTHER DETAILS
320 pages worth of the latest & best in signal processing components.

Write to PascoII for this new M80 catalogue which covers the complete Merrimac range of signal processing components and integrated networks from DC to 4GHz. It also provides reliability data in the form of MTBF calculations for each product area.

Merrimac is one of the World's most technically advanced companies specialising in low frequency lumped element components and integrated networks; microwave stripline components, subsystems, high power ferrite isolators and circulators.

So write to PascoII today for your copy of the M80 on your company's

Def Stan 05-31 / BS9000 / CECC approved

PascaII Electronics Limited
Hawke House, Green Street,
Sunbury-on-Thames,
Middlesex TW16 6RA
Telephone: 0181 271 87418 Telex: 8814536

WW — 034 FOR FURTHER DETAILS

You could do with a Helper on your test bench.

Helper low cost instruments are specially designed for 'fiddle-free', instant bench testing or mobile servicing of two-way radio equipment.

They'll make life easier for the busy technician whilst giving extremely reliable, lasting service.

The Autopeak Modulation Monitor...

For reading peak modulation and modulation density on any FM receiver whose 2nd I.F. is 400, 450 or 455KHz. Other frequencies may be accommodated on special order.

The Sinadder 3...

Ideal for bench or mobile service van use, with 3 functions in one. Automatic SINAD meter with audio monitoring plus a 1000Hz tone generator. Sensitive AC voltmeter, 1M12 input impedance, with audio monitor for tracking down distortion and locating defective stages.

These are just two of our Helper range.

Lyons Instruments Limited, Hoddesdon, Herts, EN11 9DX, England
Telephone 67161 Telex 22724
A Claude Lyons Company

WW — 043 FOR FURTHER DETAILS
Keithley D.M.M. Test Equipment:
Quality. With machines like the 169 shown above, 3½ digits; 25% accuracy. A no-nonsense five function D.M.M. at a no-nonsense price.

Cost. And at a price even fewer can match. From £79 + V.A.T., Keithley D.M.M. test equipment is backed by the resources of a specialist company with a formidable reputation. To find out more, just fill in the coupon, and get your free literature today.

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 0NL
Telephone (0734) 861287

Keithley D.M.M.'s, I.E.E.E. options. So we can be sure of having exactly the right product for your own requirements. Built to a standard that very few people can equal.

Choice. The Keithley range spans Pocket, 3½, 4½, 5½ digit D.M.M.'s, many with I.E.E.E. options.
Think of KGM as your monitor production line...

Use CRT displays in your systems or equipment? Then it's well worth getting to know the KGM resources. We can take both design and production problems onto our own experienced shoulders. Far better than struggling with complex video concepts yourself!

For a quick scan of KGM capability, look through our new colour folder — featuring some of the units we have produced for major customers. Some are based on our standard monitor range — but even these come with a choice of thick film modules or discrete components, for maximum 'tailor-made' flexibility. And today our technology extends to complete keyboard and micro-processor units. If you're ready to talk monitors now, ring our Sales Applications Engineer. Or start with one of those folders.

KGM Electronics Limited
Clock Tower Road, Isleworth, Middlesex TW7 6DU.
Tel: 01-568 0151. Telex: 934 120

POWER UNITS
Now available with 3 OUTPUTS

Type 250VRU/30/25

OUTPUT 1: 0-30v, 25A DC
OUTPUT 2: 0-70v, 10A AC
OUTPUT 3: 0-250v, 4A AC

ALL Continuously Variable

Valradio
VALRADIO LIMITED, BROWELLS LANE, FELTHAM MIDDLESEX TW13 7EN
Telephone: 01-890 4242/4837

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance & practical controls. individually powered modules—mains or dc option single cases and up to 17 modules in standard 19” crates small size—low weight—realistic prices.

Fylde Electronic Laboratories Limited.

49/51 Fylde Road Preston PR1 2XQ
Telephone 0772 57560
Understand Digital Electronics

In the years ahead digital electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970's - from 1980 we will have digital car instrumentation, cash cards, TV messages from friends and electronic mail.

After completing these books you will have broadened your career prospects and increased your knowledge of the fast-changing world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS £7.00

This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood.

Everyone can learn from - students, engineers, hobbyists, housewives, scientists. Its four A4 volumes consist of:

- Book 1: Binary, octal, hexadecimal and binary number systems
- Book 2: OR, AND, NOT, EXCLUSIVE-OR functions
- Book 3: Positive ECI, De Morgan laws, designing logic circuits using NOR gates
- Book 4: Introduction to pulse driven circuits

DESIGN OF DIGITAL SYSTEMS £12.50

This takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.

- Book 1: Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; parallel and serial systems; conversion of fractions; octal-decimal conversion tables.
- Book 2: OR gates; inverters; NOR and NAND gates; truth tables; introduction to computer logic.
- Book 3: Positive ECI; De Morgan laws; designing logic circuits using NOR and NAND gates; dual-input gates.
- Book 4: Introduction to pulse driven circuits; R-S and J-K flip flops; binary counters; shift registers; half adders.

Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC £9.00

Books 1 and 2 explain how to define questions, put them in the best order and draw up a flow chart, with numerous examples. This best-selling American title usesfully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be run on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

A.N.S. COBOL £4.40

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

ORDER FORM

Please send me the following books:

- Digital Computer Logic & Electronics @ £7.00
- Design of Digital Systems @ £12.50
- Algorithm Writer's Guide @ £4.00
- Computer Programming in BASIC @ £9.00
- BASIC Handbook @ £11.50
- ANS COBOL @ £4.40

Please charge my:

- Access/ American Express/ Barclaycard/ Diners Club/ Eurocard/ Visa/ Mastercharge/ Trustcard

Credit Card No.

Signature

Telephone orders from credit card holders accepted on 0480 57446 (Ansafone).

Overseas customers (incl. Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number.

Name

Address

Cambridge Learning Limited, Unit 36, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs, PE17 4BR, England.

(Registered in England, No. 1327872)

Guarantee

No risk to you. If you are not completely satisfied, your money will be refunded upon return of the books in good condition.

Cambridge Learning Limited, Unit 36, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs, PE17 4BR, England.

(Registered in England, No. 1327872)

All prices include worldwide postage (airmail is extra - please ask for prepayment invoice).

Please allow 28 days for delivery in U.K.
Hybrid Circuit Module Kits for CRT displays

Brimar kits save you -
* Design Time
* Component Purchasing Costs
* Component Stock Control
* Staff Training Time
* Production Costs
* Test Time
* Rejects

Write for information on the benefits Brimar hybrid circuit modules can bring you.

Thorn Brimar Limited
Mollison Avenue, Brimsdown, Enfield,
Middlesex EN3 7NS
Telephone: 01-804 1201

WIRELESS WORLD NOVEMBER 1980

SPECIAL PURCHASE

Kaise

OF TOP QUALITY

LCD MULTIMETERS

AC/DC
CURRENT
22
RANGES

6100

6200

CHOOSE FROM FOUR MODELS
★ 3½ digit autoranging (volts/OHms)
★ 200 hours battery life (2 pen cells)
★ 10 amp AC/DC (6220 & 6110) ★ 1000v DC
600v AC
★ 200 mA AC/DC (6200 & 6100)
★ Range hold facility (6100 & 6110)
★ Unit and range sign (6110 & 6220)
★ Continuity buzzer (6100 & 6110)

RESOLUTION
100 μVDC, 1 mVAC
10 μA AC/DC, 0.1 ΩHM
10 mA on 10A. AC/DC

ACCU RAM
6100/6110
0.6% DC Volts
1% DC Current
1.2% AC Current
0.5% Resistance
6200/6220
0.8% DC Volts
1.3% DC Current
1.4% AC Current
0.8% Resistance

6200
£39.95
6100
£64.95

6220
£49.95
6110
£74.95

★ All prices include batteries/leads and UK VAT (UK c/p 65p)
★ Order By Post or Telephone with Barclay or Access.

OR CALL IN AND SEE FOR YOURSELF

Cubegate Limited
301 EDGWARE ROAD, LONDON, W2 1BN
TELEPHONE 01 724 3564

FREE CATALOGUE
Send large SAE (1/2½p UK)
Satisfaction Guaranteed.
Post free on request.

AUDIO ELECTRONICS

WIRELESS WORLD - 014 FOR FURTHER DETAILS
If everything were perfect...

...a control unit would consist of an on/off switch, a volume control and a programme selector switch.

Unfortunately this is not the case as any prospective high fidelity buyer, be he neophyte or hardened campaigner, quickly discovers.

He is faced with a choice.

He can attempt to sift the vast quantities of conflicting information gathered from high fidelity magazines, retailers and "my friend who is an electronics engineer and knows quite a bit about high fidelity,"

– or he can buy a Quad 44.

In the latter case he can be confident that whatever the programme sources, he will be able to match them correctly and apply tonal correction when necessary to obtain optimum results.

Moreover he can be confident that he need not change his pre-amplifier to meet future developments.

To learn all about the Quad 44 he only has to write or telephone for a leaflet.

The Acoustical Manufacturing Co. Ltd., Huntingdon, PE18 7DB.
Tel: (0480) 52561.

QUAD

for the closest approach to the original sound

QUAD is a registered trade mark.
of research...

"on components and accessories for dictating machines, tele-communications, hearing aids and electroacoustic equipment etc."

STETOCUPL JUNIOR 60 HEADSET
STETOCUPL LIGHTWEIGHT HEADSET
SENIOR STETOCUPL HEADSET
STETOMIKE BOOM MICROPHONE HEADSET
STANDARD & SUB-MINOR EARPHONES
PLASTIC EARHANGERS
DANAMIC FIDELITY EARS
STETOTUBE HEADSET
2.5 mm and 3.5 mm JACK PLUGS & SOCKETS
DANASOUND HEADSET
DANASONIC INDUCTION AUDIO LOOP RECEIVER
SUBMINIATURE SWITCHES

WW — 943 FOR FURTHER DETAILS
SPECIAL OFFER

TYPE 1 SOLDERING IRON

EXCLUSIVE OFFER TO "WIRELESS WORLD" READERS

ILLUSTRATION
FULL SIZE!

£3.30
INC. V.A.T. P.P.
NORMAL PRICE £5.23

IDEALLY SUITED FOR ALL
MODERN ELECTRONIC
AND GENERAL
PURPOSE
APPLICATIONS

16-18 WATTS
220-240 VOLTS
SUPPLIED WITH 3mm
TIP. OTHER TIPS ARE
AVAILABLE AND EASILY
REPLACED

MADE IN BRITAIN

SPECIAL OFFER

exclusive to Wireless World readers...

Since its recent introduction the Keithley 130 has established itself as one of the finest Handheld D.M.M.'s available.

And through Wireless World it can be yours for only £73.60 including V.A.T., package and postage - a saving of £17.25 on the recommended retail price.

Features include:
* Full 10 amp range * Only one calibration adjustment required per annum
* 25 ranges and five functions: ohms DC and AC volts and amps
* 100µV, 1µA, 0.11/ Sensitivity * 20,000 hour M.T.B.F.
* One year guarantee on specification

To take advantage of this unique offer, simply fill in the coupon, and send it to Wireless World with a cheque or Postal Order, allowing 21 days for delivery.

Note: Offer closes on December 10th. This offer applies to readers in the U.K. only.

To: Wireless World Offer, Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks.
Please send me a Keithley 130 at £73.60 including V.A.T., package and postage. I enclose a cheque/postal order made payable to Keithley Instruments Ltd.

Name

Address

WW—658 FOR FURTHER DETAILS
Exciting

The new name in Linear I/Cs

Analog Systems, the fast growing linear IC company of Arizona whose products are available from Pascal, offer a wide range of high performance linear integrated circuits.

Audio Amplifiers and pre-amplifiers

- MA 700 Hi Voltage Op Amp
 + 13V/μs slew rate for O/P
 ± 20V swing to 40V
 2 MHz GBW product, audio
 S/N ratio 140 dB

- MA 532 Audio Operational
 Amplifier 0.002% THD
 4nV/Hz input noise voltage,
 ± 20V/μs slew rate and 20V
 0/P swing into 600 ohms

- MA 60391 80391 equivalent
 to LM 391N-60/80

- MG 328 Variable Gain
 100 db dynamic range,
 2MHz 8/W and 800 μS

Send for full product
lstdings of Analog Systems
exciting product range

Pascal Electronic Limited,
Hawke House, Green Street,
Sunbury-on-Thames,
Middlesex TW16 6RA

Telex: 7941918 Telex: 9814536

Def Stan 05-31/BS9000/CECC approved

WW — 033 FOR FURTHER DETAILS

Sonoric

ULTRASONIC CLEANERS

SC50

- CLEANS ELECTRONIC COMPONENTS FAST.
- P.C.B.'S, WIREWOUND POTS, SWITCHES
- RELAYS ETC.
- RUGGED 56KHz GENERATORS AND LEAD
- ZIRCONATE TRANSDUCER.
- SOLVENT CLEANING FLUIDS AVAILABLE.
- UNIT ILLUSTRATED IS 2 LTR. CAPACITY
 (APPROX.) AND COSTS £7.
- FULL RANGE OF SIZES AVAILABLE
 INCLUDING INDUSTRIAL UNITS.

DETAILS FROM:

Orme Scientific Limited
P.O. Box 3
Stakehill Industrial Estate
Middleton
Manchester M24 2RH
Tel: 061-643 9134/5/6
Telex: 669846

WW — 035 FOR FURTHER DETAILS
TELEVISION SOUND IS GOOD!

Yes it's true — but you'll need to listen through a Minim Television Sound Tuner to be convinced. Music, wildlife, even the news suddenly comes to life when you can hear all the detail that you expect from High Fidelity equipment.

Connect the Minim Television Sound Tuner to the amplifier for music centre or listen directly on headphones so as not to disturb others.

Further information will only cost you 12p — stamp out poor television sound!

Name

Address

Minim Audio Limited, Lent Rise Road, Burnham Slough SL1 7NY. Tel: Burnham 63724
MINIM AUDIO
make a note of our name!

MAIL ORDER PROTECTION SCHEME (Limited Liability)

If you order from mail order advertisers in this magazine, except for classified advertisements, and pay by post in advance of delivery, Wireless World will consider you for compensation if the advertiser should become insolvent or bankrupt, provided

1. You have not received the goods or had your money returned; and
2. You write to the publisher of Wireless World explaining the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent up to a limit of £3,550 per annum for any one advertiser and up to £10,000 per annum in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of Wireless World; but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of readers' difficulties.

This guarantee covers only advanced payments sent in direct response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc., received as a result of answering such advertisements). Personal advertisements are excluded.

Base 2 MODEL 800MST
80 COLUMN HIGH PERFORMANCE IMPACT PRINTER - suitable for most Micros.

JUST LOOK AT THESE STANDARD FEATURES:

* RS-232, 20mA, IEEE 488 and Centronics I/O
* 15 Baud rates to 9,600 * 100 Chrs. per second - Bidirectional * 6 print densities 60, 72, 80, 96, 120 or 132 Chrs/line * Self test switch * 96 Chrs. ASC II Standard * Auxiliary User Defined Ch. set * Tractor and fast paper feed/graphics * 2k Buffer * Accepts 6 1/2" max. paper pressure feed and 9 1/2" max. paper tractor feed.

FREE INTERFACE CABLE WORTH £25
ONLY £359 + VAT

80 COLUMN HIGH PERFORMANCE IMPACT PRINTER

VERBATIM 5¼" DISCS £1.85 each (min. 10) + VAT
STATIC RAM 2114 1-12 £3 each + VAT 13+ £2.50 each + VAT

EXATRON Stringy Floppy

COMBINES ECONOMY OF CASSETTE WITH SPEED & RELIABILITY OF DISC

16k loads in approx. 24 secs. - Wafers to 75ft (48k approx.)

ONLY £118
+ VAT

Stringy Floppy with 10 Wafers (Tapes)
BUS EX. 2 for 1. Machine Lang. Monitor

Ohana Superboard II & Challenger 1P with FREE RAM

- the no fuss start to Micro's.

* Ready Built * 8k Microsoft in ROM, 6 digit floating point basic plus full features. 4k RAM - expandable to 32k

SUPERBOARD II (24x24 format) £159 + VAT
SUPERBOARD II (48x32 format) £199 + VAT
POWER SUPPLY 5v.3A. £27 + VAT
CASE £29 + VAT
CHALLENGER 1P (24x24 format) £219 + VAT
CHALLENGER 1P (48x32 format) £259 + VAT
(Superboard is used in Challenger)

Please add VAT at 15%. carriage extra, will advise at time of order. Official orders welcome.

61 NEWMARKET SQUARE, BASINGSTOKE, HAMPSHIRE. RG21 1HWD
Telephone: Basingstoke (0256) 56466 and 56417

Buy in confidence. If on receipt of your order the goods do not meet with your satisfaction, return within 7 days for full refund. Credit facilities arranged.
Newport Range –
Sound reinforcement and public address amplifiers; 30, 60, 120 or 200 watts – with a range of 10 models for free standing and rack mounting use – engineered for reliability

Audix Limited, Station Road, Wenden, Saffron Walden, Essex CB11 4LG
Tel: Saffron Walden (0799) 40888; Tel x: 817444

Remote Operation Tape Transport Mechanism
FOR DIGITAL OR AUDIO.
THIS BRITISH MADE CASSETTE TRANSPORT HAS GIVEN INDUSTRY A GREAT COST SAVINGS OVER COMPARABLE FOREIGN IMPORTS AND IS NOW BEING MADE GENERALLY AVAILABLE.
FULLY REMOTE OPERATION.
WRITE NOW FOR FULL DETAILS
BASIC PRICE £86.25 INC. VAT

THE MONOLITH ELECTRONICS CO. LTD
57 CHURCH ST., CHERTRENTN, SHERTON, ENGLAND
FULL INFORMATION FROM:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1 Phone: 01/837/7937

SEND FOR OUR FULL CATALOGUE 50p
WWW – 047 FOR FURTHER DETAILS

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1 Phone: 01/837/7937
WWW – 054 FOR FURTHER DETAILS
SINE WAVE INVERTERS
FROM CARACAL

200 to 1000VA
DC Input:
12, 24 or 48 V
AC Output:
220/240 V or
110/120 V
50/60 Hz

Caracal sine wave inverters are designed to replace older tuned-type inverters in fixed mobile or marine use. They are also used for standby AC power for data units, communications and many other applications.

Our technical specification and competitive pricing offer without doubt the best value on the market.

- Very stable output voltage (±2%) and frequency (±0.3 Hz) under all load/battery conditions.
- High efficiency throughout the load range, not just at full load — resulting in lower battery size and cost.
- Very low distortion sine wave — only 3% T.H.D.
- Low idling/no-load input current.
- Automatic "standby" operation available.
- Comparatively low weight.

CARACAL POWER PRODUCTS LTD
42-44 SHORTMEAD ST., BIGGLESWADE
BEDFORDSHIRE. TEL 0767-81361.
LEADERS IN LOW-POWER INVERTER TECHNOLOGY

MORE SPEC. FOR YOUR MONEY

TYPE 747 UNIVERSAL COUNTER TIMER
DC to 150MHz
8 DIGITS, 3 CHANNELS
MEASURES —
FREQUENCY Ch A and Ch C
PERIOD Ch A
TIME Ch A to Ch B
PULSE WIDTH Ch A + or —
COUNT Ch A (may be gated and reset by B & C)
AVERAGES 1 to 1000 events
£175
& 3.50 carriage, ins. etc.

TYPE 745 COUNTER TIMER
DC to 32MHz
5 DIGITS
MEASURES —
FREQUENCY
PERIOD
TIME
COUNT
£116.38
& 13 carriage, ins. etc.
6 GATE TIMES/TIME UNITS
16 μs to 15

TYPE 746 AUTORANGING FREQUENCY METER £84.88
1Hz to 99.9kHz

TYPE 615 OFF-AIR STANDARD £97.13
100kHz, 11kHz and 1kHz

FROM OMB ELECTRONICS
WW — 611 FOR FURTHER DETAILS

ROYAL HORTICULTURAL HALLS
ELVERTON STREET
WESTMINSTER LONDON SW1
November 26-30 1980

It’s all at Breadboard ’80

This is the exhibition for the electronics enthusiast. From November 26 -30 there is only one place in the universe for the electronics enthusiast to be — Breadboard ’80, at the Royal Horticultural Hall in London. The majority of leading companies will be exhibiting, including all the top monthly magazines in the field. There will be demonstrations on most stands and many feature special offers that are EXCLUSIVE to Breadboard!

All aspects of this fascinating field are catered for, from CB to home computing, so whether you want to buy a soldering iron or a synthesiser — or just keep up to date with your hobby — don’t miss Breadboard ’80.

COMPUTERS AUDIO RADIO MUSIC LOGIC TEST GEAR CB GAMES KITS
HAMEG

OSCILLOSCOPES

TOP PERFORMANCE,
QUALITY AND VALUE

HM 307 £149
Single Trace DC-10MHz
Plus Built-in Component Test

HM 312 £250
Dual Trace DC-20MHz
5mV/cm, Full X-Y, 30MHz
Trigger, plus TV Trigger

HM 412 £350
Dual Trace DC-20MHz
5mV/cm, X-Y, 40MHz Trigger
plus Sweep Delay

HM 512 £580
Dual Trace DC-50MHz
5mV/cm, X-Y, 70MHz
Trigger Sweep Delay, plus Single
Shot, Sweep Delay and After
Delay Trigger

HM 812 £1,458
Dual Trace as per HM 512 plus
Storage, Automatic Storage and
Variable Persistence

Prices U.K.
List Ex. VAT

For
FULL DETAILS and
DISTRIBUTOR LIST
contact:

HAMEG LTD.
74-78 Collingdon St.
Luton, Beds LU1 1RX
Tel: (0582) 413174

For
FULL DETAILS and
DISTRIBUTOR LIST
contact:

HAMEG LTD.
74-78 Collingdon St.
Luton, Beds LU1 1RX
Tel: (0582) 413174

PRECISION PETITE

MINIATURE DRILLS AND ACCESSORIES
for all your modelling needs

P1
P2
P3
S2
S1

A choice of three power drills
that fit snugly in the hand, so
light they enable you to carry out
the most intricate tasks —
drilling, shaping, cutting, polishing
etc in the minimum of time.
There are two types of drill stand,
S1 for P1 drill, S2 for all drills,
plus all the necessary acces-
sories in a remarkable range
that fills every need. Fully illus-
trated literature is available and
will be

See them on STAND No. 87
MODEL ENGINEER EXHIBITION
Wembley Jan.1 to 10, 1981

Sole UK Distributors PRECISION PETITE LTD
119a HIGH ST. TEDDINGTON, MDX. Tel: 01-977 0878

the indispensable
Bird43

THRULINE WATTMETER
0.45-2300 MHz / 0.1-10,000 watts
The Standard of the Industry
What more need we say...

Exclusive UK representative

aspen electronics limited
2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR
TELEPHONE: 01-868 1188 — TELEX 8812727
WW — 650 FOR FURTHER DETAILS
When will the oil run out?

Practical Computing tells you how to find out...

The November issue, available from leading newsagents, contains a program based on the computer model which gave rise to the Club of Rome's famous "Limits to Growth" report in the early '70s. So if you want to model the world economy on a microcomputer and find out when the oil will run out, buy Practical Computing.

Also in this issue:
Reviews of the 5120, IBM's bid for the microcomputer market, and the Acorn Atom, a £150 micro with high resolution colour graphics facilities.
And on the software side, a review of muSimp — a package that does algebra trigonometry and calculus, and a description of a program for controlling model trains.

All this, plus a Software Buyers Guide and our regular advice columns for users of Pet, Apple and Tandy micros for only 60p. From your newsagents or post this coupon now.

Out October 22nd.
Vero Systems have developed two new British made wire wrapping tools for the electronics industry.

The 'Hobby' is designed to offer the newcomer wire wrapping at a reasonable price. Complete with wire wrapping bit suitable for 30AWG wire and any mini-wrap terminal. Ideal for low volume users.

The 'Verowrap' is fitted with a chuck which will accept any wrapping bits and sleeves, making it adaptable for different terminal sizes where 30AWG and 26AWG wire is in use. Both tools incorporate a power unwrap facility operated by the flick of a switch. The high capacity nickel cadmium batteries are charged in situ by use of a plug-in charger.

Vero Systems (Electronic) Limited
362 Spring Rd, Sholing, Southampton, Hants, SO9 5QJ
Telephone: (0703) 440611 Telex: 477164

FOR FURTHER DETAILS

Keep those Contacts CLEAN
BY USING A DIACROM SPATULA

No other cleaner has all these advantages:
1. Only 100% pure, natural diamond grains are utilised.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains, to obviate loosening or breakaway during use. This process also prevents clogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200, 300 or 400.
5. The chrome gives a very weak coefficient of friction and the rigidity of the nylon handle is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highly delicate relays.

Grain size 200, thickness 55/100 mm., both faces diamonded. For quick cleaning of industrial relays and switching equipment, etc.
Grain size 300, thickness 55/100mm., both faces diamonded. For smaller equipments, like telephone relays, computer relays, etc.
Grain size 400, thickness 25/100 mm., one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive.

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD
81 Piccadilly, London W1V 0HL Phone: 01-629 9556
As supplied to the M.O.D., U.K.A.E.A., C.E.G.B. British Rail and other Public Authorities, also major industrial and electronic users throughout the United Kingdom.

MIND YOUR OWN BUSINESS
WE DO!
'THAT'S WHY WE'RE GOOD AT IT'
SUPPRESSOR DESIGN THAT IS
So you do what you're good at
And let us do what we're good at
SUPPRESSOR DESIGN CIRCUIT PROTECTION
From our Standard range or design to your specification
PHONE
RICK KEENS
RYE (079 73) 3725
ROXBURGH SUPPRESSORS LTD.
EAGLE ROAD, RYE
E. SUSSEX

WW — 072 FOR FURTHER DETAILS

WW — 084 FOR FURTHER DETAILS
BUILD YOUR OWN PROFESSIONAL QUALITY
DMM AS ALREADY USED BY HUNDREDS OF
LABORATORIES, RESEARCH UNITS,
UNIVERSITIES ETC. THE LASCAR RANGE OF
MULTIMETERS IS NOW ALSO AVAILABLE IN
KIT FORM, CONTAINING ALL PARTS NEEDED
TO CONSTRUCT THESE SUPERBLY STYLED
MULTIMETERS - EVEN BATTERIES AND
TEST LEADS. BOTH TYPES FEATURE FIVE
FUNCTIONS (AC AND DC VOLTS, AC AND
DC CURRENT RESISTANCE) WITH ABILITY
TO CHECK DIODES. 0.5" LCD DISPLAY
WITH BATTERY LOW WARNING. AUTO-POlarity,
AUTO-ZERO. FULL PROTECTION AGAINST
OVERLOADS AND TRANSIENTS, CAN WITHSTAND
MAINS ON ANY RANGE. RUGGED ABS CASES AND A
COMPREHENSIVE 1-YEAR WARRANTY.

The LMM 200 has been featured as a project in the July 80
Practical Electronics. It is a compact handheld multimeter with
a 0.5% basic accuracy and 15 different ranges. It measures
AC/DC voltage from 0.1mV to 500V, AC/DC current from 0.1µA
to 2 Amps and resistance from 0.1Ω to 2 MΩ. 200 hours battery life.

The LMM 100 is suitable for field or bench use. It has a basic
accuracy of 0.1% and 25 different ranges. It measures AC/DC
voltage from 0.1mV to 1kV, AC/DC current from 0.1µA to 2 Amps
and resistance from 0.1Ω to 20MΩ. Battery life is over 2,000 hours.
It also features a unique 'digital hold' facility and adjustable carrying
handle.

We also offer a calibration service (£5.00 + VAT = £5.75) and a
trouble-shooting and calibration service (£7.50 + VAT = £8.62).

INSTRUMENT CASES
AND BOXES

Zaerix Electronics Limited
46 Westbourne Grove
London, W2 5SF

PROFESSIONAL
QUALITY

Desk consoles, instrument cases and boxes which feature anodised aluminium extrusions and panels, with
integral facilities to mount sub chassis and PCBs.

Telex: 261306
Tel: 01-727 5641
please refer to "Ordering Int °mullion" before ordering. Official orders from Schools, become available and these ere featured regularly. Prices are exclusive of p&p and VAT -

- 7415221 110p
- 7415195 87p
- 7415161 78p
- 7415155 74p
- 7415153 74p
- 74L5125 74p
- 74L574 74p
- 741547 74p
- 74L530 74p
- 741520 74p
- 74290 74p
- 74157 74p
- 74154 74p
- 7474 74p
- 7432 74p
- 1403 74p

- 4011 40p
- 4010 40p
- 4008 40p
- 4007 40p
- 4023 40p
- 4020 40p

- 120p
- 100p
- 104p
- 85p
- 40p
- 25p

- 95p
- 65p
- 50p
- 39p
- 30p
- 99p
- 78p
- 19p
- 12p
- 90p
- 50p
- 45p
- 35p
- 16p
- 28p

- 70p
- 20p
- 19p
- 55p
- 55p
- 80p
- 75p

- 4577
- 4556
- 4529
- 4526
- 4520
- 4508

- 4094
- 4086
- 41OP
- 4071
- 4050
- 4045
- 4044
- 4043

- 7071
- NE556
- LM13600
- LM1872
- LM380
- L15318
- LM301AM
- iCM72160
- IC) 7107

- 709

- 99p
- 68p
- 60p
- 99p
- 76p
- 68p
- 29p
- 23p
- 25p
- 19p
- 19p
- 16p
- 16p
- 28p
- 18p

- 73p

- 7)071

- GENERATOR

- AND

- 5/0 Inverted Bus
- 0/0 laverled Bus

- LINEAR

- 2995p
- 3495p
- 4995p
- 2995p
- 695p
- 595p
- 3495p
- 700p

- 325p
- 250p
- 175p
- 125p
- 120p
- 75p
- 18p
- 13p

- speaker directly, or the unit can be con-

- and detailed 76477 chip specifications. It

- circuitry. Easily programmed to duplicate

- VCO. Noise.

- pots to pro-

- MINI

- build a pro-

- 93511 2k it B 50 NS
- 93448 512 s 8 40 NS

- Z8002
- 6802
- 6504
- 6502

- CPU'S

- T801209
- 8326
- 75451
- Z1172
- TIL222

- DISPLAYS

- TUNES SYNTHESIZERS

- The $45.00 is a 4 bit microcomputer based, light-sensitive device that can be used to count or measure light level as a function of time. In addition to the 4 bit binary counter and 8 bit register, it also contains a number of clockable facilities to provide a high level of flexibility.

- COMPLETE KIT ONLY £4.99

- P&P 67p

- UNIVERSAL SCR

- C1060 400V 5A Safe

- NEW SPICE

- TUNES NEU-2232A INTEGRATED MOTION DETECTOR

- THE NEW ULN-2232A INTEGRATED MOTION DETECTOR

- LIGHT Sensitivity
- Fast Access Time
- Low Power Dissipation
- Low Operating Current

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.

- 10, 000Ys (b) Fast Access Time

- Features

- Photoemissive diode
- b) Fast Access Time

- The unit has a multiple of applications. It can be used to count or measure light level as a function of time. The main feature is a number of clockable facilities to provide a high level of flexibility.
Quarum Electronics

The 102, shown above, must be the most cost-effective pre-amplifier available, catering for audiophiles, 2 or 3 head tape and providing a perfect match for any cartridge, moving coil or magnetic, by using our unique low-cost matching card to define the sensitivity and cartridge loading. Proven choice of components and elegant circuitry give outstanding objective and subjective performance (see Popular Hi-Fi August). The module, used in the 102, is available separately, as are suitable mains supplies and moving coil head amplifiers. There are two matching stereo power amp kits which are supplied with built-in pre-amplifier circuitry, requiring only straightforward assembly and point to point wiring. The two newly built 12" versions feature separate drive units, allowing for each channel to be driven independently and offering greater flexibility. We quote by return. All equipment can be wired for 110V mains. We will also be retailing selected drive units at competitive prices, e.g. Son Audax 200mm bass, 20 l325J4 E13.50; 25mm tweeter. HD 100025, £89.

POWER AMP MODULES AND SUPPLIES

QE 1708, 1704 £31.96
QE 1004, £20.69
M1504, 1508, £35.79
M2603, £50.28
M854, £26
M2108, £53.96

We offer a wide range of modules to suit virtually any application with a host of specifications available at the price. They are available in both the popular Baxandall (U.S.A.) format for 50 to 170V use and 170V variety (150V r.m.s) and also in high dissipation versions using various heatshrink combinations. Connect the output stage to any of the modules using the small terminal blocks provided. These modules are ideal for use in other power amp designs, including other manufacturers' kits. A selection is available now for immediate delivery. We also offer complete power amp kits with single or dual output stages, allowing the user to choose any suitable output stage for direct connection to 300W load. A wide range of modules (110V, 150V, 220V, 240V) are available in choice of 110V, 220V, 240V, coded appropriately.

NEW DELUXE SPEAKER KITS

SYSTEM 1 £69
SYSTEM 2 £89
SYSTEM 3 £159
SYSTEM 4 £359

PRICES PER PAIR INC. BURRENTS. Have you wondered why the existing sources of speaker kits offer a bewildering choice of systems, particularly component speakers of 1000 to 2000? Don't they know which ones are best? If so, why bother with the rest? We have catered for all tastes, so you can order in confidence, knowing you get our full endorsement of their performance. Which ones are best? We have sorted out these super kits for you. Most suitable for high end systems, the following kits are available:

- **SYSTEM 1**
 - 102 Pre-amplifier module only £63.50; built £92
 - 48W/channel: kit, P2, £100.50; built, 202D £151
 - 110W/channel: kit, P4, £126; built, 204D £185

CHOICE OF 3 PRIMARY INPUTS

I.L.P. Toroidal Transformers are available in choice of 110V, 220V, 240V, coded as follows: (Secondary can be connected in series or parallel)

- For 110V Primary insert 0 in place of "X" in type number.
- For 220V Primary insert 1 in place of "X" in type number.
- For 240V Primary insert 2 in place of "X" in type number.

+ TYPES TO SPECIFICATION CAN BE SUPPLIED TO ORDER IN QUANTITY. AGENCIES IN CERTAIN COUNTRIES AVAILABLE ENQUIRIES INVITED

FREEPOST facility.

We pay postage on U.K. enquries and orders. Simply address envelope to FREEPOST TS to address below. NO STAMP REQUIRED.

TO ORDER

Enclose cheque/Postal Order/Money Order payable to I.L.P. Electronics Ltd or quote your ACCESS or BARCLAYCARD account No. To pay C.O.D. add £1 extra to TOTAL value of order.

MEMBER OF I.P. TRANSFORMERS

A division of I.L.P. ELECTRONICS LTD

FREEPOST TS GRAHAM BELL HOUSE ROOPER CLOSE CANTERBURY CT2 7EP Phone (0227) 54728 Telex 965 780

WW — 022 FOR FURTHER DETAILS
THE LEADING EXHIBITION OF COMPUTERS, PERIPHERALS AND SYSTEMS

will be in the Grand Hall
OLYMPIA, LONDON
November 4, 5 & 6, 1980

CAN YOU AFFORD TO MISS BRITAIN’S BIGGEST COMPUTER EXHIBITION?

TRADE ONLY – NO SCHOOL PARTIES – NO ADMITTANCE UNDER 16

ENTRANCE £2

Sponsored by “Computer Weekly,” “Data Processing,” “Practical Computing” and “Systems International” and with the support of “Electronics Weekly” — all members of IPC Business Press, the world's largest publisher of specialist and business journals.
TUNE IN
to the new-look

PW 'HELFDOR'
A new series giving full instructions on how to construct this Amateur Bands Transceiver.

'SLIM JIM' FOR 28 MHz
By popular request, Fred Judd, designer of the 'Slim Jim', has produced a version for the 10-metre amateur band.

VERSATOWER
BY PROFESSIONALS— FOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover a range of 28ft to 120ft (7.5M to 36M)

Designed for Wind Speeds from 85mph to 117mph conforming with CP3 Chapter V., part 11.

Functional design, rugged construction and total versatility make it first choice for telecommunications.

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, access and ground level maintenance.

A programme of continuous product development has led to a range of over 50 models, all available at highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER
THE PROFESSIONALS' CHOICE

STRUMECHE
VERSATOWER SYSTEM
PORTLAND HOUSE, COPPICE SIDE
BROWNHILLS, WEST MIDLANDS
TEL: (05433) 4321 TELEX: 335243 SEL
WW — 038 FOR FURTHER DETAILS
NEW VALVES
BRANDED &
INDIVIDUALLY BOXED
AVAILABLE FROM:
PM COMPONENTS LTD.
VALVE & COMPONENT SPECIALISTS
CONINGSBY HOUSE WROMTHAM ROAD, MEOPHAM
KENT

<table>
<thead>
<tr>
<th>Model</th>
<th>DC Volts</th>
<th>DC mA</th>
<th>Pmax</th>
<th>Urea</th>
<th>Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>6L6GC</td>
<td>6L8C</td>
<td>6L6C</td>
<td>6L6G</td>
<td>6L6</td>
<td>6L4</td>
</tr>
<tr>
<td>6L6C</td>
<td>6L6G</td>
<td>6L6C</td>
<td>6L6G</td>
<td>6L6</td>
<td>6L4</td>
</tr>
</tbody>
</table>

Many other types available, including special quality & vintage. Please phone or send list of your requirements.

Post & Package 50p on all orders
Pricing subject to change without notice.

Export & trade enquiries welcome.
Phone our sales desk
0474 813225.

 WW — 032 FOR FURTHER DETAILS

FORGESTONE 500 TELETEXT
High quality colour television receiver
NEW INFRARED FULL FEATURE
REMOTE CONTROL TELETEXT

- Pin diode tuner
- Glass splay printed circuit panels
- Full technical construction manual
- Hi-Bit type
- Eleven integrated circuits
- Ready built and aligned IF module

The ultimate in large screen 22" & 26" television receiver kits. Deluxe full spec. Teletext, 7 channel VCR. Also video and audio in/out. 6 models in the 500 range.

Buy as you build. All Forgestone Kits are for the constructor of today, sections of the Kit are available separately. Please send stamp for further details of these quality products.

Telephone or Mail Orders accepted on Access/Barclaycard

Forgestone colour developments limited
Ketteringham, Wymondham, Norfolk NR18 9RY

Telephone: Norwich (0603) 810493

WWW — 544 FOR FURTHER DETAILS

PRINTED CIRCUITS
FOR WIRELESS WORLD PROJECTS

£8.50

$15.50

Audio compressor/limiter — Oct. 1975 — 1 s.s. (stereo)
£4.25

F.m. tuner (advanced) — April 1978 — 1 s.s.
£5.00

Cassette recorder — May 1976 — 1 s.s.
£5.00

Audio computer — July 1976 — 1 s.s.
£4.25

Time code clock — August 1976 — 2 s.s. 3 d.s.
£15.00

Date, alarm, b.s.t. switch — July 1977 — 2 s.s. 1 d.s.
£9.50

Audio preamplifier — November 1976 — 2 s.s.
£8.00

Additional circuits — October 1977 — 1 s.s.
£4.00

Stereo coder — April 1977 — 6 s.s.
£8.90

Morse keyboard and memory — January 1977 — 2 s.s.
£14.00

Synthesizer f.m. translator — September 1977 — 1 s.s.
£3.50

Low distortion disc amplifier (stereo) — September 1977 — 1 s.s.
£2.00

Low distortion audio oscillator — September 1977 — 1 s.s.
£3.50

Synthesizer f.m. translator — November 1977 — 2 s.s. 1 d.s.
£12.00

Morse keyer — June 1978 — 1 d.s.
£4.50

Metal detector — July 1978 — 1 s.s.
£3.75

Oscilloscope waveform store — October 1978 — 4 d.s.
£18.00

Regulator for car alternator — August 1978 — 1 s.s.
£2.00

Wideband noise reducer — November 1978 — 1 s.s.
£5.00

Versatile noise generator — January 1979 — 1 s.s.
£5.00

200Hz frequency meter — January 1979 — 1 s.s.
£7.50

High performance preamplifier — February 1979 — 1 s.s.
£5.50

Distortion meter and oscillator — July 1979 — 2 s.s.
£5.50

Moving coil preamplifier — August 1979 — 1 s.s.
£3.50

Multi-mode transmitter — October 1979 — 10 d.s.
£35.00

Amplification system — October 1979 — 3 preamp 1 poweramp

Digital capacitance meter — April 1980 — 2 s.s.
£7.50

Colour graphics system — April 1980 — 1 s.s.
£16.00

Audio spectrum analyser — May 1980 — 3 s.s.
£10.50

Programmable audio attenuator — May 1980 — 1 s.s.
£4.20

Multiplex equaliser — June 1980 — 2 s.s.
£6.50

Floating-bridge power amp — Oct. 1980 — 1 s.s. (120V or 40V)
£4.00

Boards are glassfibre, roller-tinned and drilled. Prices include V.A.T. and U.K. postage.

Airmail add 20%, Europe add 10%, Insurance 10%. Remittance with order to:

M. R. SAGIN, 23 KEYES ROAD, LONDON, N.7.W.

WWW — 078 FOR FURTHER DETAILS

SAFGAN presents DT-400 series from £159 + V.A.T.
HIGH-QUALITY DUAL TRACING OSCILLOSCOPES
AT PRICES EVERYONE CAN AFFORD

Model DT-410 DUAL TRACING 5mv/div 10MHz @ £159 + VAT
Model DT-412 DUAL TRACING 5mv/div 12MHz @ £172 + VAT
Model DT-415 DUAL TRACING 5mv/div 15MHz @ £185 + VAT

SPECIFICATION FOR ALL MODELS

- Ch1, Ch2, 5mv/div — 20/div in 12 cal 1-2-5 steps
- Bandwidth: 10MHz (DT-410), 12MHz (DT-412), 15MHz (DT-415)
- Time Base: 0.5us/div—200ms/div in 18 cal steps
- X5 Multiplier to 512/div
- X5 Facility Matched inputs X = Ch1, Y = Ch2

Orders to: SAFGAN ELECTRONICS LTD. (Goods + 15% + I.P. & p)
56 Bishop's Wood, St John's, Woking, Surrey GU21 3OB Tel: Woking 68635 or Woking 69560
Official Government and Educational Orders accepted. Distributors required — please enquire

WWW — 015 FOR FURTHER DETAILS

ACR AUSTERFIELD-CLARK RESEARCH, Tel. 0484 48016
42 Blackhorse Road, Huddersfield HD2 1AR (625)
Here's why you should buy just any multimeter instead of an I.C.E.

NEW EQUIPMENT FROM KEITHLEY'S

120 DIGITAL MULTIMETER 3½ digits, 25 Ranges, 5 Functions 100V: 1mA. 0.1ohm. 2000V DC 1000 AC £95.00

189 BENCH MODEL DIGITAL MULTIMETER 3½ digit 25 Ranges, 5 Functions. 100uV: 100V DC: 750V AC. 20Mohms £77.00. Optional Case £7.00.

Cash with Order unless accredited account.

NEW BRITISH OSCILLOSCOPES FROM SCOPEX

4D10 Dual Trace DC-10MHz 10mV sens. 1nA: 0.10hm. 1000V DC 1000V AC 2 Amps 20 Mohms £99.00.

130 DIGITAL MULTIMETER 3½ digit 25 Ranges, 5 Functions. 100uV: luA: 0.10hm sens £10.00.

METERS

HEWLETT-PACKARD 3497A RMS Voltmeter 10Hz-100kHz 1mV-300V. £400.00

MARCONI 820A/1 Power Meter 0-50 10kHz-200MHz. £190.00

RADIO METER BK80 Distortion Meter 10Hz-20kHz £185.00

OSCILLOSCOPES

TEKTRONIX 1L5 50Hz.1MHz 10uV/ cm -2V /cm £450.00

MARCONI 820A/1 Power Meter 0-50 10kHz-200MHz. £400.00

SANYO VCA700 Security T.V. System. Camera Talk £500.00

MARCONI/SAUNDERS 6458 Signal Source 4-12GHz. £1750.00

WAYNE KERR TM.60 Mk. 1 Testamatics £100.00

MONTFORD OP/K82/C/Mk.1 Process Chamber with Thermal Shock -50°C to + 100°C £1000.

MONTFORD UCL/K25/A Test Chamber -70°C to +170°C ± 0.1°C £125.00

MARCONI 2701 Universal In Situ Bridge 80Hz & 1Khz 1% £250.00

WAYNE KERR B.601 R.F. Bridge 15KHz-3MHz 1% £135.00

WAYNE KERR B.644 Autoalligator 4 Digit 0.1% £100.00

WAYNE KERR B.224 Universal Bridge 300Hz-50KHz 0.1%, Mains/Battery £140.00

MARTIN ASSOCIATES

34 Crown Street Reading, Berks. RG 1 2SR. Tel: Reading (0734) 51074

WEST HYDE CLASSIC II

ANOISED INSTRUMENT CASES

Low cost but expensive appearance

Elegant cases in natural and anodised aluminium with gloss black top and bottom panels. Slots provided for PCBs, chasis, etc. Send for our free 80-page catalogue giving full dimensions and prices.

Guide to Broadcasting Stations

18th Edition

Around the world some thousands of radio stations are sending signals. If you're receiving, this standard guide will tell you who's where. It lists stations broadcasting in the long, medium, short wave and vhf bands, dealing with them by frequency, geographical location and alphabetical order. Sections are helpfully cross referenced. The Wireless World Guide to Broadcasting Stations is the eighteenth edition of a publication which has sold over 270,000 copies. In addition to the stations data, it includes much useful information on radio receivers, aerials, propagation, signal identifications and reception reports.

£3.25 inc. postage.

To: General Sales Dept., Room CP34
Dorset House, Stamford Street, London SE1 9LU

Name: ____________________________
(please print)
Address: ____________________________

Registered in England No. 677128
Registered Office: Dorset House, Stamford Street, London SE1 9LU
fact:
five New Shure Cartridges feature unique, state-of-the-art technology

Including...
Unprecedented Stylus Protection

the M97 Era IV Series pickup cartridges

<table>
<thead>
<tr>
<th>Model</th>
<th>Stylus Configuration</th>
<th>Tracking Force</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>M97HE</td>
<td>Nude Hyperelliptical</td>
<td>3/4 to 1 1/2 grams</td>
<td>Highest fidelity where light tracking forces are essential.</td>
</tr>
<tr>
<td>M97ED</td>
<td>Nude Biradial (Elliptical)</td>
<td>3/4 to 1 1/2 grams</td>
<td>Where slightly heavier tracking forces are required.</td>
</tr>
<tr>
<td>M97GD</td>
<td>Nude Spherical</td>
<td>3/4 to 1 1/2 grams</td>
<td></td>
</tr>
<tr>
<td>M97EJ</td>
<td>Biradial (Elliptical)</td>
<td>1 1/2 to 3 grams</td>
<td></td>
</tr>
<tr>
<td>M97B</td>
<td>Spherical</td>
<td>1 1/2 to 3 grams</td>
<td></td>
</tr>
<tr>
<td>78 rpm Stylus for all M97's</td>
<td>Biradial (Elliptical)</td>
<td>1 1/2 to 3 grams</td>
<td>For 78 rpm records.</td>
</tr>
</tbody>
</table>

Shure writes a new chapter in the history of affordable hi-fi by making the latest cartridge technological breakthroughs available in a complete line of high-performance, moderately priced cartridges; the M97 Era IV Series Pickup Cartridges, available with five different interchangeable stylus configurations to fit every system and every budget.

The M97 Series incorporates such vanguard features as the Dynamic Stabilizer—which simultaneously overcomes record-warp caused problems, provides electrostatic neutralization of the record surface, and effectively removes dust and lint from the record—and a unique telescoped stylus assembly which results in lower effective stylus mass and dramatically improved trackability.

Each of these features...and more...has been incorporated in the five cartridges in the M97 Series—there is even an M97 cartridge that offers the low distortion Hyperelliptical stylus! What's more, every M97 cartridge features a unique lateral deflection assembly, called the SIDE-GUARD, which responds to side thrusts on the stylus by withdrawing the entire stylus shank and tip safely into the stylus housing before it can bend!

The performance of the cartridges is highly faithful to the recorded music. Hear it you must!

These two M97 Series Cartridges were selected for review by Hi-Fi Choice and given "Best Buy" ratings.

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU, Telephone: (0622) 59881

WW - 066 FOR FURTHER DETAILS
“Then I was shocked by the feeling that the skin of my face had come off. Then, the hands and arms, too. Starting from the elbow to the fingertips, all the skin of my right hand came off and hung down grotesquely. The skin of my left hand, all five fingers, all came off... Hundreds of people were squirming in the stream. I couldn’t tell if they were men or women. They all looked alike. Their faces were swollen and grey, their hair standing up. Holding their hands high, groaning, people were rushing to the river... Under the bridge were floating, like dead dogs or cats, many corpses, barely covered by tattered clothes. In the shallow water near the bank, a woman was lying face upward, her breasts were torn away and blood spurting... By my side many junior high school students were squirming in agony. They were crying insanely ‘Mother! Mother!’ They were so severely burned and bloodstained that one could scarcely dare to look at them. I could do nothing for them but watch them die one by one, seeking their mothers in vain.”

(Eyewitness account, Hiroshima, 6 August 1945.)

Engineers played their part in the making of these events. Thirty-five years later their role has become central, for the technology of delivering death has been greatly improved. We no longer have to rely on manned aircraft to drop atomic bombs but send them as the warheads of self-guided missiles. This is where electronic engineering makes its particular contribution to slaughter, in the design of the guidance system. Consider, for example, the Trident and the Tomahawk, the two nuclear missiles which the UK Government, without benefit of open Parliamentary debate, has swung on a reluctant nation. Both of these have guidance systems which rely on advanced digital microelectronics to update an inertial navigator. In the Trident, a submarine-launched ballistic missile intended as Britain’s independent nuclear weapon, the electronic system receives reference information from the optical pattern of the stars. The Tomahawk, part of a NATO arsenal that will be owned and operated by US military forces, is a cruise missile; here the electronic system receives reference information on the geographic contours of the desired route from a magnetic-core memory and information on the actual contours over which it is travelling from a radar altimeter. And such is technical progress that as we get more and more devices on a single silicon chip so we are able to kill more and more people with a single missile.

Through work on such weapons electronics engineers in the East and the West have put themselves in the service of politicians, generals and industrialists who have become monomaniacs; who seem to see no way out of the self-perpetuating system of threat and counter-threat into which they have locked themselves and, like drug-addicts, desperately go on with it. The only thing likely to drag them out of their dementia is a threat from another direction—a concerted threat of rebellion from the trapped populations. It becomes increasingly clear, as our distinguished American contemporary Science has said, “that deterrence cannot ultimately be stable, and that the civilian populations of the world are no longer defended by the armed forces for which their taxes pay, but are merely hostages to them.”

None of us can be proud to serve a technology which is being used in the name of “defence” as a means to attain immense human suffering. Because we know what this technology can do we should be among the leaders of dissent.
Simple pick-up arm arm design

Separating vertical and horizontal pivots allows use of longer arm

By David Read, B.Sc. Hons (Elec. Eng.)

Costing between £5 and £10 to make, this arm gives improved tracking performance compared with conventional arms. Increased effective arm length is achieved by positioning the horizontal pivot at the extremity of the arm. Separation of the pivots also makes for easier construction.

Few people can afford either the money or the room for a hi-fi system which is tailor-made by experts with nothing but the excellence of performance in mind. The limits of cost and space, therefore, largely determine the type of equipment to be found in an installation. But even within these limits, it is no more than economic sense to arrange that the assembly contains units each with much the same standard of performance; it is also good engineering practice.

Home construction, properly carried out, obviously offers the best chance of achieving the highest standard of performance for a given outlay. Electronic equipment is well suited to this approach, especially using today’s highly-developed solid-state technology. But the mechanical parts of a system are rarely given the do-it-yourself treatment. The average resources — in engineering know-how and availability of precision tools — are generally thought to be inadequate for this sort of work. I believe otherwise: given a suitable design, any limitations in skill and machinery can be overcome without much difficulty.

One of the items of hi-fi equipment which particularly lends itself to amateur construction is the pick-up arm. Provided that the design is right, only a normal complement of tools handled with average care is needed to produce a mechanism which will match the performance of a top-quality, high-compliance cartridge costing up to ten times as much in outlay.

The pick-up arm to be described is designed with the above thoughts in mind; it would cost between £5 and £10 to make. It mainly differs from commercial arms of conventional design in that the vertical and horizontal pivots are not positioned at the same point along the arm. As the photographs show, the pivot which allows movement in the vertical plane is mounted forward of the one giving horizontal movement. In this way, the horizontal pivot can be placed at the maximum distance from the turntable centre for a given plinth size because it is not then necessary to allow for traverse of the counterbalance weight behind what is normally the common pivot point. Thus there is room for a longer arm, giving improved tracking, and the staggering of the pivots means that, being separate, they are of simpler form and therefore easier to make.

The description deals first with the fundamentals of pick-up arm operation, showing what the requirements are and the ways in which these requirements may be met. The degree of development which could be applied to the basic concept depends on the personal taste, enthusiasm, ingenuity and ability of the builder and, to some extent, on the depth of pocket. As an example of what can be done a mk 2 model, built by the author and in regular use, is discussed to show some of the improvements affecting the appearance and ease of operation rather than performance which may be achieved.

Pick-up arm design is a matter of satisfying a number of conflicting needs and avoiding a few pitfalls. There has been much discussion, in these pages and elsewhere, on the subject of arm operation. It would not serve any useful purpose to go over the ground again in detail, although it is worthwhile listing the main requirements of a fixed-pivot arm of the type to be described, as opposed to the expensive, parallel-tracking mechanisms which so delight the servo-control enthusiasts.

The fixed pivot arm has to be designed for compromise. Ideally, it should carry the cartridge in such a way that this behaves as though it were effectively floating in space. For this to happen, the arm would need to be of zero mass and move without friction. There would also need to be a gradual change in the relative positions of arm and cartridge to match the geometry of the modulated groove being tracked. It is because these are not practical possibilities that compromises must be made to compensate as far as possible for the discrepancies between ideal and real operation.

The main requirements are that

- in the horizontal plane, it occupies the correct position relative to the disc centre
- the end carrying the cartridge moves as freely as possible at a constant distance above the disc surface
- it holds the cartridge so that the stylus is maintained in contact with the groove walls and with the optimum force on both walls
- it maintains the cartridge in its correct position relative to the groove with the minimum variation—random or periodic. The requirement of small random change means, mainly, that the arm should be...
Diagram shows some suggested improvements to the first two versions illustrated in the photographs. Vertical pivot arrangement could be made from a solid block, as shown at 1. Adjustment block for bottom pivot cup allows easy adjustment of bias. RS Components opto switch type 306061 together with blade attached to arm or pivot shaft allows automatic switch off (bottom right). Circuitry can conveniently be fed from 18 volt supply within direct drive turntable unit.
tolerant of external vibration. Small periodic change requires that the arm should not be prone to mechanical resonance at any frequency in the audio band, and of moderate amplitude outside the band.

Turning from the general to the particular the illustrations show that the arm is effectively constructed in three sections - the vertical pivot assembly, formed of a U-frame and a shaft which supports the horizontal-pivot carrier bar, allowing this to traverse in the horizontal plane - the horizontal pivot assembly, incorporating the carrier bar and the horizontal-pivot block - the arm itself, with adjustable counterbalance weight and cartridge-mounting platform.

The principle component of the vertical pivot is a silver-steel shaft of about 3mm diameter (not a critical dimension), tapped at both ends. When the shaft is fitted, each tapered end rests in a dimple seating to form a low-friction pivot of the type often used to suspend the revolving rings of a gimbal assembly (hence such pivots are often loosely called gimbals). The top of the shaft mates with a simple seating formed in a brass boss and screwed into a tapped bush in the centre of the upper angle plate of the U-frame. The dimple seating holding the lower end of the shaft is drilled in a solid brass block or platform held in position on the U-frame (and hence above the turntable) by means of screws, not visible in the photograph, leading through the bar into tapped holes in the block. The tubular section arm passes through an elongated hole in this block, being held there by a grub screw is set to give the recommended (standard) value of 15 degrees, the cartridge then being parallel to the disc surface.

At the other end of the carrier bar, the horizontal-pivot block is fixed in position by means of screws, not visible in the photograph, leading through the bar into tapped holes in the block. The tubular section arm passes through an elongated hole in this block, being held there by a pivot arrangement described below.

The block is shown in enlarged detail in the drawing. Two tapped holes lead into the pick-up arm aperture from opposite sides of the block to form a line along a diameter of the arm when positioned centrally in the aperture. Slot-headed screws, with tapered ends to form pivot points, are threaded into these holes, one from each vertical side face of the pivot block. A brass collar, of about 5mm thickness by 15mm o.d., is fitted to the pick-up arm tube at the point where it passes through the pivot-block aperture, being fixed in position roughly two-thirds of the length of the arm from the end carrying the cartridge by a grub screw threaded through it and bearing onto the tube. This collar has two dimple seatings located centrally on the outside face at opposite ends of a diameter, and clear of the securing-screw hole. When the arm, with its fitted collar, is positioned correctly in the aperture the two pivot screws are tightened so that their tapered ends locate in the dimple seatings. This assembly thus forms a second gimbal mounting and allows the arm to move freely in the vertical plane.

The pick-up arm is simply a maleable aluminium-alloy tube, not hard duralumin, with one end pinched into a flat spade shape for about 25mm with two slotted holes cut into it for securing the cartridge. The slots provide for limited adjustment of the angle between arm and cartridge. At the other end of the arm (in the prototype design), a lead slug is fitted into the tube and held there by a common paperclip. This slug forms the major part of the weight required to counterbalance the combined mass of that part of the arm which is on the opposite side of the horizontal pivot and the cartridge itself. A brass collar passes over the pick-up tube at this end as a sliding fit and held in position by a grub screw is set to give the recommended playing weight.

An alternative counterbalancing arrangement is illustrated in detail 3 which offers some advantages in ease of operation and adjustment, but at the expense of a slight increase in difficulty of construction.

In this modification, the counterbalance weight is a single rectangular block of brass measuring about 30 by 18 by 20mm. As the drawing shows, a hole of 15mm diameter runs between two of the block faces and connects at right angles to a second, smaller hole leading from the centre of the upper face. The lower part of the connecting hole is tapped to take a screw to secure the balance weight in position on the arm. The upper part is counterbored to take the screw head and allow for screwdriver access.

On the end of the pick-up arm adjacent to the vertical pivot, one or two layers of a special self-adhesive flexible foam plastic are wrapped round the tube, over a length of about 20mm. Two thin shells of semi-circular section - made of, say, 3mm material - are fitted round this plastic sleeve to provide mechanical decoupling. The main hole drilled through the counterbalance weight is of suitable diameter to slide over the shell/sleeve assembly so that, with the weight positioned on it, the plastic material is slightly compressed. The weight can then be moved along the sleeve to an appropriate position to give the recommended playing pressure for the chosen cartridge. Having achieved this, the counterweight securing screw is

Second version of arm has vertical pivot situated at ½ along arm with the aim of reducing longitudinal arm vibration.
tightly, care being taken that the weight has its longer axis exactly parallel to the vertical pivot shaft so that it does not touch either this or the carrier bar.

The principal advantage of this alternative counterbalancing arrangement is that the plastic sleeve mechanically separates the arm and the weight and so adds resistance to the mass and compliance of the arm/cartridge assembly and reduces the Q of the natural resonance of the combination. A reduction of about 5dB in the amount of vibration at the resonance frequency is aimed at. Measurements are being taken for a mk 3 arm after experiments with different materials, including Sorbothane (Permali, Plastidic division), Inseal (Dickinson Robinson group), and Eccorsor (Emmerson & Cumming). The emphasis is on plasticity, not elasticity, as elastic material could aid resonances.

The arms are of very light construction, an advantage from the point of view of stability of the gimbal bearing and reduced chances of damage in transit. But it does mean the arms are only suitable for high compliance pick-up cartridges, typically 20 x 10^-6 cm/dyne or better.

Best results are obtained if the pick-up arm is suitably positioned in relation to the turntable (see items 1 and 2, below), has the cartridge properly fitted (item 3) and is correctly adjusted in respect of two other settings affecting the arm itself (items 4 and 5). These five parameters of operation and the necessary adjustments for optimum performance are as follows.

1. The rake angle, otherwise called the vertical tracking angle, is the angle between the cantilever carrying the stylus tip and the surface of the disc being replayed, standardized at 15 degrees for most cartridges. It is the angle set between the cantilever arm and the top face of the cartridge body. This face is held flush with the flattened end of the pick-up arm and if this flattened end has surfaces parallel to the axis of the arm, the vertical tracking angle will be correct when the arm is set parallel to the surface of the turntable. Thus, the only adjustment necessary in the arm mounting is to arrange for the appropriate height of the carrier bar on the vertical pivot shaft.

2. Overhang is the amount by which the effective length of the pick-up arm - the length from the vertical pivot to the stylus tip - exceeds the distance from the vertical pivot to the spindle of the turntable. Overhang is measured as the horizontal distance between the centre of the turntable and the table and when the stylus, spindle and vertical pivot are all in the same straight line. With record and turntable placed at the front left corner of the plinth and the arm base at the far back right, you can then arrive at arm length and overhang using the table.

3. Offset angle is the angle between the axis of the pick-up arm and the longitudinal axis of the cartridge which can be considered as a datum at 90° to the line of correct normal lateral displacement of the stylus. For a reproducing stylus to trace the recorded groove without distortion, the longitudinal axis of the cartridge must be maintained at a tangent to the recorded groove. As the pick-up arm sweeps round a fixed pivot, i.e. does not act as a parallel-tracking mechanism, this ideal condition cannot be met. However, as a combined effect of optimum setting of both offset angle and overhang, tangential tracking can be made to occur at two points along the curve swept by the stylus, i.e. at two values of groove radius. The extent of the tracking error can thus be reduced to an acceptable value on either side of these two points. The optimum value of offset angle (obtained by calculation but summarized in the Table) is set by means of a simple protractor which is usually drawn on a piece of strong card and has the following general form

\[
\text{Turntable centre} \quad \text{Stylus position}
\]

As the figures in the Table show, the magnitude of the tracking error becomes less as the effective length of the pick-arm increases. The vertical pivot in this design is located at a distance from the turntable which is the maximum for a given plinth size, so the effective length of the arm is virtually equal to its overall length.

4. Playing weight is the force exerted by the stylus tip on the disc surface. In this arm, the amount of force is mainly controlled by the weight of the counterbalance slug in the basic form or by the position of the rectangular block in the modified arrangement. Fine adjustment to suit the cartridge installed is obtained by moving the sliding collar to an appropriate position which can easily be determined by measuring the weight at the stylus using one of the small calibrated balance mechanisms readily available for this purpose. The same means of setting adjustment can be used for the modified counterbalance system.

5. Anti-skating bias. As the stylus traces the modulated groove it experiences a side thrust - a component of frictional force acting along a tangent to the curve swept by the stylus round the vertical pivot - which causes it to bear more heavily on one side of the groove than on the other. This can result in a difference in performance between the two channels of a stereo recording; in particular, it can cause the onset of distortion at a lower modulation level in one channel than in the other. This unwanted side thrust can be counteracted by an opposing rotational bias acting at the vertical pivot of the arm. Such a bias is easily provided here by inclining the pivot shaft at a small angle, so slight as to be unnoticeable. This is done by releasing screws in the adjustment block and sliding the block an appropriate distance (to the left as viewed in the illustration, i.e. toward the turntable). A screwdriver blade, suitably angled between the slot on the side of the block and the nearby screw head makes precise adjustment easier.

Table taken from Pickup-arm design techniques, by T. S. Randhawa Wireless World, March 1978.

<table>
<thead>
<tr>
<th>Pivot to stylus length (inches)</th>
<th>Optimum overhang (inches)</th>
<th>Optimum offset angle (degrees)</th>
<th>% 2nd harmonic distortion due to tracking error</th>
<th>Zero tracking error points in inches from record centre</th>
<th>Maximum tracking error (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>0.76</td>
<td>27.62</td>
<td>0.94</td>
<td>2.34</td>
<td>4.61</td>
</tr>
<tr>
<td>8.0</td>
<td>0.69</td>
<td>25.56</td>
<td>0.85</td>
<td>2.31</td>
<td>4.60</td>
</tr>
<tr>
<td>8.5</td>
<td>0.65</td>
<td>24.00</td>
<td>0.79</td>
<td>2.33</td>
<td>4.58</td>
</tr>
<tr>
<td>9.0</td>
<td>0.62</td>
<td>22.70</td>
<td>0.74</td>
<td>2.33</td>
<td>4.62</td>
</tr>
<tr>
<td>9.5</td>
<td>0.58</td>
<td>21.33</td>
<td>0.70</td>
<td>2.30</td>
<td>4.60</td>
</tr>
<tr>
<td>10.0</td>
<td>0.55</td>
<td>20.19</td>
<td>0.66</td>
<td>2.34</td>
<td>4.56</td>
</tr>
<tr>
<td>10.5</td>
<td>0.52</td>
<td>19.24</td>
<td>0.61</td>
<td>2.33</td>
<td>4.59</td>
</tr>
<tr>
<td>11.0</td>
<td>0.50</td>
<td>18.38</td>
<td>0.58</td>
<td>2.33</td>
<td>4.61</td>
</tr>
<tr>
<td>11.5</td>
<td>0.48</td>
<td>17.58</td>
<td>0.56</td>
<td>2.33</td>
<td>4.58</td>
</tr>
<tr>
<td>12.0</td>
<td>0.45</td>
<td>16.67</td>
<td>0.54</td>
<td>2.31</td>
<td>4.58</td>
</tr>
<tr>
<td>12.5</td>
<td>0.43</td>
<td>15.40</td>
<td>0.51</td>
<td>2.31</td>
<td>4.60</td>
</tr>
<tr>
<td>13.0</td>
<td>0.41</td>
<td></td>
<td>0.50</td>
<td>2.31</td>
<td>4.60</td>
</tr>
</tbody>
</table>

Column 4 is for a recorded velocity of 10cm/s r.m.s. The last column is for an arm having the optimum offset angle and optimum overhang.

continued on page 62
Electronic systems in light aircraft and some of the smaller business types are still recognizably concerned with communications and navigation, with perhaps a weather radar and landing aid in the more opulent. The electronics are aids: without them, the aircraft will fly perfectly well, but may tend to fly into "stuffed clouds" and to use more fuel than they should.

Airliners of the more statuesque variety and even some of the smaller ones rely to a far greater extent on electronic assistance for automatic flight control (a.f.c.), fuel management, automatic landing and navigation. Aerodynamically exotic aeroplanes, like the Harrier and the Super Mirage 4000, for example, simply will not stay in the air at low speeds without electronics, being control-configured or, to put it another way, unstable.

Most weapon-carrying military aeroplanes are weighed down with highly complicated locating, aiming, firing and avoiding electronics in an obviously vain attempt to demonstrate to a potential foe that he stands little chance of success in any bellicose adventure. Since, for each bloc, this is only intermittently true, the exercise is ultimately futile, and is of benefit only in the impetus to engineering development it provides. In the absence of civil aviation, Farnborough would be a depressing experience.

Automatic control

Smiths Industries have been involved in engine controls and indicators for many years. Recently, they received a £6 million order from Boeing for autothrottles for the 727 and 737, to be fitted on both new and existing aircraft. The STS 10 ensures, by means of a digital performance-data computer, that the engines are run at the most fuel-efficient speeds to give the required flight pattern. General Electric (US) have their thrust-management system for the new Boeing 757 and 767 airliners, Marconi provide supervisory electronics for the RB211, Delco equipment (not shown) is being installed in Pan Am's 747s (saving 1.5%, or 7.5 million gallons of fuel a year) and a number of companies make completely automatic control systems for both flying controls and thrust management.

The term 'fly-by-wire' has gained currency in recent years, being taken to mean full-authority analogue or digital control of all functions in an aircraft. One loop maintains stability, another responding to pilot's demands for control movements, and enhancing control characteristics. Marconi, for example, make a complete fly-by-wire system for the Tornado and Jaguar, where all attitude and engine controls, flaps and slats are under the supervision of computers.

Marconi are also in the lead with fibre-optic data highways for avionic computers. Multiple, redundant data channels are used, which require the transfer of data between channels for voting to avoid differences between channels and to determine fault conditions. Crosslane data feeds are vulnerable to interference, and fibre-optic links are used to give complete isolation and freedom from electromagnetic transients.

This limited use of optical data highways has been referred to as 'fly-by-light', but one feels that the expression ought really to be reserved for fully optical transmission, as is now being developed by Marconi, and as is used by Bell in a Jet-Ranger helicopter. In the Bell system, movement of the pilot's controls causes a transparent encoder disc to move between a light source and photodiodes, producing 18 Gray-coded bits of information as a position code. The data is latched into a parallel-to-serial data store, from which it is read out serially into fibre-optic cables to a receiver at the servo to be controlled. Two monostable flip-flops are clocked and produce wide pulses for a 1 and narrow ones for a 0, the result being converted back to analogue form for servo operation.

Displays

Both civil airliner pilots and close-support fighter pilots experience moments of concentrated activity when their attention cannot, with safety, be divided between the instrument panel and the view ahead. It is therefore standard practice now to provide the quicker aircraft with either head-up display (HUD) or head-down display (HDD). They ought, perhaps, to be called 'head-in-one-place displays' (HIOPD), since the intention of these devices is to provide the pilot with all the information he needs to fly the aeroplane, including the main instrument readings and the view ahead, in one place — either at the screen or on the panel. The technique is not new.
(WW first reported it nineteen years ago), but it is continuously refined and varied.

In the HUD category, Marconi have their new diffractive unit, which affords a much wider field of view than was previously possible. The principle of a HUD is that a c.r.t. screen in the instrument panel which displays the more vital instrument readings is reflected from a half-silvered mirror in the pilot’s forward view, so that he can see both the view forward and the instrument readings without moving his head and without refocusing his eyes, since the reflected image is collimated. The angle over which the c.r.t. display is visible is fairly narrow.

In the new HUD, convex glass components are combined to form several reflective surfaces, made from special coatings which reflect light only at the wavelength of the c.r.t. phosphor. The shape of the reflective paths and the single-wavelength characteristic combine to provide a wide-angle, bright display, since all light but that from the c.r.t. display is transmitted, this being reflected. For night use, the c.r.t. will display a television forward view, obtained by means of an infra-red camera, and the instrument information. The i.r. camera is part of the American LANTIRN programme, which is to provide Low-Altitude Navigation, Targeting Infrared for Night in the A10 and F-16.

A similar night-vision display, also from Marconi, is intended for the Sea King helicopter. This uses an Intensified Isocon television camera mounted on a stabilized platform under the nose, which can also carry a number of thermal imaging modules developed by Marconi, Rank Taylor Hobson and EMI in the UK’s Thermal Imaging Common Modules programme. The extraordinary feature of the equipment is that the camera follows the direction in which the pilot is looking, its display being projected into the pilot's view by a HUD-type system in his helmet visor. Effectively, therefore, he sees the view he would normally see, in whatever direction he looks, but in the dark as well.

Civil aircraft now use c.r.t. displays to an increasing extent in place of the familiar rows of 'clocks'. Colour tubes increase the amount of information possible in one display: the Penetron, a tube which emits a colour depending on the depth of penetration of the phosphor by the electron beam, is used by C.S.F. and Marconi, and several companies make special shadowmask tubes for this application. It is not possible to obtain a blue colour in the Penetron, and C.S.F. are now developing high-resolution shadowmask tubes with in-line guns and slotted masks. The difficulty here is

Marconi infrared camera for night vision, mounted under the nose of a Sea King helicopter. Camera aligns itself with pilot’s line of sight, and display is mounted on his helmet.

Radar displays show the effect of Plessey’s AMTI clutter suppression. On the left is an unprocessed picture, with aircraft returns lost in clutter. The processed display shows a complete absence of static returns, only aircraft echoes remaining. The system is being evaluated at Farnborough on a Plessey ACR 430 airfield control radar.
that stroke-formed letters and symbols are not easy for a conventional deflection yoke to generate when an in-line gun is used. C.S.F. say they can now do this.

Radar

Secondary-surveillance radar (s.s.r.) was originally very much an afterthought, used during the war to distinguish friends (who had transponders on board) from foes (who hadn't). It is now the chief tool used in air traffic control and is still being developed by, for example, Cossor. The UK's ADSEL (Address-selective) programme has been under way since 1971, in co-operation with the US DABS (Discrete Approach Beacon System). Both work on a common principle of first 'acquiring' all s.s.r.-equipped aircraft and subsequently addressing the required aircraft directly at a lower interrogation rate. This does improve the interference problem, where aircraft respond to the wrong interrogation or to the right interrogation but to the wrong ground station ('garbling' and 'fruit'), but it requires a much narrower beam, so that position information can be obtained from each reply. The narrow beam is achieved by combining the signal from two halves of the aerial in and out of phase to give a sum and difference pattern. The difference has a sharp phase change null in the boresight direction which, when taken in conjunction with the peaky sum pattern, gives effectively a very narrow beam, reducing uncertainty. It is possible to measure the position of an aircraft to within 5 minutes of arc in this way.

The problem of clutter continues to occupy radar designers. There have been many techniques put forward over the years to reject permanent, non-informative returns, based on the fact that the landscape is stationary, while targets are not. One problem has been that, if an aircraft is flying tangentially to the radar pattern, there is no movement in the range dimension and the echo is suppressed, along with the clutter. Plessey's Area Moving Target Indicator (AMTI) uses storage and data-processing methods in the video stages to avoid the problem. The search pattern is divided into a great number of small areas, bounded by pulse-length and bearing, the average level of video in each cell over a number of scans being digitized and stored. Any incoming signal which, on comparison, is found to exceed the stored level is assumed to be worthy of display and is passed, anything below this level being rejected. The storage level is continually up-dated to take account of variations in precipitation, etc.

One of the more depressing sights at Farnborough was the appearance over the Black Sheds of the Airborne Early Warning (AEW) Nimrod, a grotesque derivative of that most beautiful of all aeroplanes, the Comet. This aircraft, a modification of the marine reconnaissance Nimrod, is intended for look-down surveillance of the approaches to the UK so that low-flying intruders will not be able to slink in unnoticed. A Marconi-Elliott S-band, pulse-Doppler, primary radar feeds synchronized scanners in radomes fore and aft, the returns being presented on six synthetic displays, which are controlled by microprocessors to provide all the information on a particular return. A secondary radar (g.f.) is also carried, the whole package being under the management of a main computer, which analyses the radar data and compiles messages to base. The communications system to support all this is suitably complex, using high-speed digital data links at h.f. and u.h.f.

Navigation

Honeywell are to fit ring-laser strapdown gyros for inertial navigation to the AV-8B, McDonnell's developed version of the Harrier. The systems are already specified for the Boeing 757/767 airliners and have also been selected for the Airbus A310. The absence of moving parts means a huge increase in reliability - Honeywell claim m.t.b.fs of over 60,000 hours.

The principle is the Doppler effect, in which a laser sends two beams round a path in which they are reflected to intersect at a detector. When stationary, both wavelengths are the same at the detector, but when the ring turns about an axis normal to the ring, the beam in one direction will appear to increase in wavelength, the other apparently decreasing. The difference is measured digitally and fed, in conjunction with the results of measurements in two other axes to the navigation computer, which continuously integrates the measurements to determine position.

New look in multimeters

American companies have, in recent years, almost completely dominated the low-cost, laboratory-quality multimeter market. Their close liaison with integrated-circuit manufacturers has enabled them not only to learn of new chip developments early enough to gain a lead over European makers, but also, in many cases, to influence the design of the chips to suit their own ideas. One result has been the evolution of the complete converter-plus-logic modules now in use. While this is, no doubt, of great benefit to users, in that it costs less than the use of many components to perform the same function, and also makes for a lower price, it means that a European manufacturer who bases his instrument on these chips is adding scarcely any value and cannot charge an economic price.

Thurlby Electronics, a British firm which began trading in 1979, has decided to attack this market by offering much better performance than is obtainable from single-chip designs and to reap the benefit of EEC membership by selling at a lower price than American makers are able to, since they must allow for import duty and higher support costs.

The Thurlby 1503 uses a single i.c. for logic and display functions, but a greatly improved analogue-to-digital converter. It is more genuinely a 'multi' meter, since not only does it measure alternating and direct voltage and current, resistance and diode characteristics, but frequency up to 4MHz. Measurements are resolved to 15 bits on d.c. measurements and resistance, to form what is termed a '4½-digit' display. A full-house reading would be 3200.0mV, for example. Scale length on alternating voltage is 14 bits and on current 13. Error varies between 0.055% and 0.3%, with a maximum error of 2.5% at 10A.

A crystal is used to determine integration time, which confers a high degree of immunity to mains-frequency interference, and which is also used as time-base generator in the frequency-measurement mode.

Thurlby claim that their a-to-d converter outperforms, with respect to accuracy, drift and noise, anything currently available in i.c. form. They also point out that the use of low-power circuitry not only makes for less heat and, consequently, lower drift than is usual, but enables internal batteries to power the instrument for 200 hours. The instrument costs £139 and is made by Thurlby Electronics Ltd, Coach Mews, St. Ives, Huntingdon, Cambs.

Correction

Graphical communication with microcomputers

To those readers who find Fig. 26 of this article (September issue, p.76) difficult to take in, we have to apologize and admit that it is not an xy tablet. The xy tablet picture had to be left out for space reasons and the captions were mixed. The device shown is a Quest Automation Micropad, which recognizes hand printing, transmitting the characters to a computer.
Intermodulation at the amplifier-loudspeaker interface

Part 1: Analysis of one source of audible difference between amplifiers

by Matti Otala* and Jorma Lammasniemi, Technical Research Centre of Finland

Intermodulation occurs between an amplified signal and a delayed version returned from a loudspeaker through a feedback loop, when open-loop output impedance is high compared to speaker impedance. Part one of this article analyses this and a second part describes a measurement method with results of tests on different types of amplifier circuit and suggestions for avoiding the effect.

The sound quality at the low-frequency end of the audio reproduction chain has often been discussed in such subjective terms as firm, soft, dry and mellow. As far as loudspeakers are concerned, the change in sound impression may be explained as a result of different technical characteristics of the drivers, filters and cabinets. Amplifiers present a more serious problem because the level of harmonic distortion at these frequencies is usually low, the frequency response is relatively flat, and output damping is almost always adequate.

An intriguing question sometimes encountered in practice is why the sound may perceptibly change at the low end of the frequency spectrum when the same listening environment and the same loudspeaker system is used and only the power amplifier is changed. It is our experience that certain power amplifier circuit topologies sound different to others, although no directly explainable difference is noted in the electrical performance of the circuits when tested with resistive load. The following analysis shows that, under certain conditions, the loudspeaker reaction to the drive signal can propagate in the feedback loop of a power amplifier and intermodulate with the drive signal itself. This may partly answer the question.

The dynamic loudspeaker provides a complex load to the amplifier. As much has been written about its behaviour (see, for instance, references 1), it is sufficient here only to present a short list of some of the most important factors affecting the interface between the loudspeaker and the amplifier.

The total compliance of the cone suspension and the loudspeaker cabinet, and the cone mass, form a damped mechanical resonance, typically in the frequency range of 30 to 80Hz for the woofer and at correspondingly higher frequencies for the squawker and tweeter. Other mechanical resonances are created by the different moving parts of the cone, excited by the voice coil, but not necessarily rigidly coupled to it. All these mechanical resonances behave like parallel tuned circuits in series with the voice coil resistance and inductance. The crossover filters also exhibit complex reactive behaviour, especially around the crossover frequencies. Figs 1 & 2 show the impedance of two popular loudspeaker systems manifesting both cone and crossover filter resonances.

Energy is stored in all these reactances, especially in the resonances. Because a reactance cannot dissipate energy, and the internal dissipation in the loudspeaker is low at these resonances, most of the stored energy returns to the amplifier and is dissipated in it. In addition, the loudspeaker terminal impedance is non-linear, and cone break-up, delayed responses and acoustical reflections create generator effects in the loudspeaker. Fig. 3 shows a greatly simplified equivalent circuit of a loudspeaker, taking into account only few of the effects discussed.

Now analyse a feedback amplifier having two different loads, as shown in Fig. 4. A pure resistance R is used when measuring the characteristics of the amplifier. A loudspeaker, represented by the grossly simplified equivalent circuit of Fig. 3, is the true load. It is assumed to have a linear resistance R and negligible voice coil inductance L, to facilitate the analysis. The circuit is far from perfect, but this analysis is to illustrate the basic mechanism of distortion only, not to calculate it to a high degree of accuracy. Similarly, the amplifier is assumed to have an infinite input impedance, and no frequency compensation. All these approximations do not affect the result of the analysis. Note that a new parameter, the open-loop output impedance Z, has been incorporated in the circuit in contrast to prior analyses.

The input signal V_1 is taken to be a step function, so that its Laplace transform...
is \(L[V_i]=v_i/s \). The analysis is based on linear theory.

For the resistive load \(R \), the transforms of voltages \(V_4 \) and \(V_5 \) are

\[
V_4(s) = \frac{A(1+Z/R)}{s(1+Z/R+\beta A)} v_1
\]

and

\[
V_5(s) = \frac{A}{s(1+Z/R+\beta A)} v_1
\]

The inverse transforms are both perfect step functions and the only difference to standard feedback equations is the term \(Z/R \). An adequate damping factor necessitates that the closed-loop output impedance of the amplifier be much smaller than the loudspeaker impedance, i.e.

\[
R \gg Z/(1+\beta A)
\]

which yields a further simplification. Taking the inverse Laplace transform, the voltages are found in time domain

\[
V_4(t) = \frac{A(1+Z/R)}{1+\beta A} v_1 u(t)
\]

and

\[
V_5(t) = \frac{A}{1+\beta A} v_1 u(t).
\]

If now the loudspeaker is substituted for the load, the situation changes markedly. Assuming the damping to be adequate, as by equation 2, equations 1 take the form

\[
V_4(s) = \frac{A}{1+\beta A} -\beta Z(s) + \frac{v_i}{s(1+Z/R+\beta A)}
\]

and

\[
V_5(s) = \frac{A}{s(1+Z/R+\beta A)} v_i
\]

No change has occurred in the transformed output voltage \(V_4 \) of the amplifier. This is to be expected, as the feedback effectively controls the output voltage. However, the internal drive voltage of equation 4 now contains complex terms consisting of the parameters in the loudspeaker equivalent circuit. To study the behaviour of this voltage in time domain, the inverse Laplace transform of equation 4 yields

\[
V_4(t) = \frac{A}{1+\beta A} \left[-\beta Z(t) + \frac{v_i}{1+\beta A} \right]
\]

where \(\omega = (1/LC-1/4R^2C^2)^{1/2} \), the resonant frequency of the loudspeaker cone, terminals short-circuited, and \(Q = \omega_i/RC \), the approximate quality factor at resonance.

The first term corresponds to the effect of any current generated in the voice coil of the loudspeaker by the vibration of the cone. Assuming that the feedback is large, \(1+\beta A \gg 1 \), say greater than 30dB, the first term becomes

\[
V_4(t) = -\frac{Z}{R} Z(t)
\]

showing that the amplifier internal drive voltage necessary to serve as a sink for the loudspeaker generator current is directly proportional to the open-loop output impedance \(Z \). Dividing this equation by the nominal signal level of equation 3 the ratio of the loudspeaker-generated signal to the driver signal can be found

\[
\frac{V_4(t)_{\text{signal}}}{V_4(t)_{\text{generator}}} = \frac{Z}{R + Z} \frac{I(t)_{\text{generator}}}{I(t)_{\text{signal}}}
\]

Similarly, the last term of equation 5 can be divided by the signal level, equation 3 which yields the ratio of the resonant oscillation in \(V_4 \) to the signal in \(V_4 \)

\[
\frac{V_4(t)_{\text{oscillation}}}{V_4(t)_{\text{signal}}} = \frac{1}{1+R/Z} \exp\left(-\frac{\omega_1}{2Q}\right) \sin \omega t.
\]

This represents a damped oscillation at the cone resonance frequency. There are negative minima and positive maxima at

\[
T = \frac{1}{\omega_1} (\arctan 2Q + n\pi)
\]

where \(n \) is an integer, with values

\[
V_4(T) = 1 - \frac{Z}{R + Z} \frac{2}{1+4Q^2} \exp\left(-\frac{\arctan 2Q + n\pi}{2Q}\right).
\]

Assuming \(Z \gg R \), some typical waveforms of equation 7 are plotted in Fig. 5, and the values of the first minima and maxima are plotted in Fig. 6 as functions of \(Q \). The amplitude of oscillation increases with decreasing \(Q \). The reason for this apparently strange behaviour is that, when the \(Q \) of the resonant circuit is lowered, the circuit absorbs more energy from a broadband signal spectrum.
Fig. 7. Measured responses $V_A(t)$ and calculated responses for the AR3a and NS-1000M loudspeaker systems. Only the two first resonances around 35Hz and 400Hz were taken into account in the calculated values. The good match of the responses show that the theoretical model used is satisfactory.

To check the validity of the approximations made, the calculated measured responses $V_A(t)$ are shown in Fig.7 for the two loudspeaker systems of Figs 1 & 2. The calculated results are very close to the measured ones, which is surprising considering the complexity of the real three-way loudspeaker systems. This proves that the simple equivalent circuit of Fig. 3 is satisfactory for this analysis.

To be continued
Designing inductors carrying d.c.

Simple procedure for comparing cores and choosing the optimum

by D. H. Thomas M.I.E.E.

The initial selection of a suitable size of iron or ferrite core for an inductor or transformer with windings carrying direct current is difficult. The author describes a simple procedure which not only enables different cores to be compared for a given application but also enables a basic design to be completed using the optimum core.

The design of transformers and inductors which carry a current with only an a.c. component is relatively straightforward and is based on the well known equation:

\[E = 4.44 BN af \]

However, transformers and inductors whose windings carry a current with a direct component require a different design procedure. This is because the d.c. component can cause the core to saturate, giving a very low incremental inductance. A possible solution is to introduce a gap of non-magnetic material into the core. This gap reduces the effective permeability of the core. Thus with an optimum gap the core can be run somewhere below saturation flux density. Calculating the optimum gap can be a tedious process and also introduces another variable into the choice of the optimum core. The optimum gap chiefly depends on the required inductance, the d.c. and a.c. components of current, the maximum flux density allowable in the core and the core area.

A long while ago C.R. Hanna devised an elegant system to enable the optimum gap to be readily selected. Frequently the final design will be done by transformer specialists but in the early stages of equipment design engineers find it desirable to rapidly compare a range of cores to see if the design is feasible within the available space. A simple design procedure is derived below and outlined at the end of the article.

Inductance can be defined as flux linkages per amp.

\[L = N \frac{d\Phi}{dt} \]

If no saturation occurs \(\Phi \) is proportional to \(I \) and if remanent flux is small,

\[L = N \frac{\Phi}{I} \]

hence

\[N = \frac{LI}{\Phi} \]

where \(a \) is the cross-sectional area of the core. (All dimensions are in metres.)

Equation 4 could have been written as

\[N = \frac{LI}{Ba} \]

where \(I \) is the sum of the d.c. and peak a.c. components and \(B \) is the flux density corresponding to the peak current.

Now \(B \) is available from the manufacturer’s data for the core material, \(a \) is available from the core data (or can be easily measured) and \(L \) and \(I \) are the required parameters. Hence the number of turns, \(N_t \), is known directly. For ferrite cores a parameter, inductance for 1 turn \((A_L) \) is defined. Now, for the inductor being considered,

\[A_L = \frac{L}{N^2} \]

If this value is greater than the value of \(A_L \) given in the core data, we need more turns calculated from the core maker’s value of \(A_L \).

\[N = \frac{1}{A_L} \sqrt{\frac{L}{\mu}} \]

In this case no core saturation will occur. A more likely case is that the value of \(A_L \) calculated in equation 6 will be less than the value given in the core data in which case a gap will be required in the core. In this case the number of turns will be that calculated in equation 5. This equation is very useful as it allows different cores to be directly compared in terms of \(N \).

If the value of \(A_L \) calculated in equation 6 is significantly lower than the value given in the data sheet, then most of the available m.m.f. will be dropped across the two air gaps, each of thickness \(g \). The approximate gap can be calculated as follows:

\[B = \mu H \]

\[= \mu \frac{IN}{2g} \]

\[g = \frac{\mu IN}{2B} \approx \frac{10^{-4}IN}{B} \]

Generally manufacturers provide two types of ferrite core, namely transformer and inductor cores. Transformer cores are ground to fit each other as perfectly as possible, giving high values of \(A_L \), but the actual value of \(A_L \) varies from batch to batch as the permeability of the core material varies. Inductor cores are ground...
so that the middle limb is shorter than the outside limbs, giving an integral air gap. This gap is ground so that the inductance of the core even if the properties of the core material vary. Thus for certain cores it may be possible to choose a member of the family with the required value of \(A_L \) in this case no additional gap is required and if necessary \(N \) can be changed slightly to suit the actual value of \(A_L \) quoted in the data sheet. If this is not practical, a transformer core may be gapped with a suitable thickness of cardboard or mica of thickness \(g \). (It should be noted that the same thickness of spacer should be fitted to the centre and outer limbs of the core to ensure equal spacing and to prevent the cores breaking when clamped.)

The actual choice of peak flux density will depend on the maximum ambient temperature. Some ferrite core materials, unlike steel, have saturation flux densities which depend on core temperature to a considerable degree. For the core material whose characteristics are given in Fig. 2 a suitable peak flux density at 100°C would be 220mT. However if the maximum core temperature was 70°C a suitable peak flux density would be 220mT. In any case the saturation flux density varies widely with core material whether ferrite or steel.

Basic Design Procedure

1. Calculate the required inductance, value of the peak magnetising current, the maximum allowable winding resistance and the maximum ambient temperature.
2. Select a core and list the following parameters:
 - Core flux area \(a \)
 - Core winding area \(A \)
 - Core winding diameter \(D \)
 - Peak flux density at the maximum core temperature \(\hat{B} \) (assume core temperature rises 10°C above ambient temp.)
3. Calculate the number of turns \(N \) from equation 5:
 \[
 N = \frac{L}{\hat{B}a}
 \]
4. Calculate the inductance factor from equation 6:
 \[
 A_L = \frac{L}{N^2}
 \]
 and see if a gap is required. If a gap is not required re-calculate \(N \) from equation 7:
 \[
 N = \frac{1}{A_L}\sqrt{L}
 \]
5. Calculate the winding resistance from equation 9:
 \[
 R = \frac{D}{A} \times N^2 \times 10^{-7} \Omega
 \]
 for an inductor and twice that value for a transformer.
6. See if the resistance estimated in step 5 is similar to the requirement given in step 1. If similar proceed to step 7; if not repeat the above procedure using a larger or smaller size of core.
7. From the value of \(N \) calculated in steps 3 and 4 and using wire tables, choose an optimum gauge of wire which comfortably fits in the bobbin, allowing sufficient space for other windings and insulation if required. Also calculate the gap if required as given in equation 8:
 \[
 g = \frac{1}{2\hat{B}} \times 10^{-6}
 \]
 or use an inherently gapped inductor core.

![Curves of flux density against field strength for Ferroxcube A13 ferrite core material, at temperatures of 20°C, 70°C and 100°C.](image)

Basic Design Procedure

1. Calculate the required inductance, value of the peak magnetising current, the maximum allowable winding resistance and the maximum ambient temperature.
2. Select a core and list the following parameters:
 - Core flux area \(a \)
 - Core winding area \(A \)
 - Core winding diameter \(D \)
 - Peak flux density at the maximum core temperature \(\hat{B} \) (assume core temperature rises 10°C above ambient temp.)
3. Calculate the number of turns \(N \) from equation 5:
 \[
 N = \frac{L}{\hat{B}a}
 \]
4. Calculate the inductance factor from equation 6:
 \[
 A_L = \frac{L}{N^2}
 \]
 and see if a gap is required. If a gap is not required re-calculate \(N \) from equation 7:
 \[
 N = \frac{1}{A_L}\sqrt{L}
 \]
5. Calculate the winding resistance from equation 9:
 \[
 R = \frac{D}{A} \times N^2 \times 10^{-7} \Omega
 \]
 for an inductor and twice that value for a transformer.
6. See if the resistance estimated in step 5 is similar to the requirement given in step 1. If similar proceed to step 7; if not repeat the above procedure using a larger or smaller size of core.
7. From the value of \(N \) calculated in steps 3 and 4 and using wire tables, choose an optimum gauge of wire which comfortably fits in the bobbin, allowing sufficient space for other windings and insulation if required. Also calculate the gap if required as given in equation 8:
 \[
 g = \frac{1}{2\hat{B}} \times 10^{-6}
 \]
 or use an inherently gapped inductor core.
The magnetising current should be calculated from either the core permeability or from the value of \(A_t \) given for the core.

\[
L = N^2 A_t \quad (14)
\]

\[
\frac{V^2 P A_t}{B^2 \times \sigma^2} \quad (15)
\]

and the peak magnetising current is

\[
\dot{I} = \frac{B_0 q_2}{t A_t} \quad (16)
\]

Useful formulae for transformers not carrying d.c. and smoothing chokes are given by T. Roddam in ref. 2.

Evaluation of core characteristics

If the peak flux that a core can accept is unknown, a simple test can be carried out to measure it. A high frequency core can be measured using a test rig similar to that shown in Fig. 3. (A low frequency core could be tested using a similar rig running at a much lower frequency.) The transistor acts as a switch connecting the supply voltage from an adjustable output lab power supply to the winding and \(D, R_1 \) and \(C \) act as a load. \(R_2 \) and \(R_3 \) set the frequency and duty ratio of the transistor “on” time and together with the supply voltage and \(R \), set the current in the core. The core current can be monitored across \(R_1 \). Provided the voltage across \(R_1 \) is triangular, there is no core saturation but if the waveform of the voltage is curved, core saturation is occurring. The peak current can then be varied as explained above and a condition found where no saturation occurs. The core can then be placed in an oven set to the highest anticipated ambient temperature and the corresponding value of peak current for no core saturation found. The inductance of the winding can then be calculated from the supply voltage and rate of rise of current. Thus the number of turns \(N \), peak current \(\dot{I} \) and inductance \(L \) are known and the core area can be substituted into equation 5 to determine the peak flux density \(B \).

This technique gives a rapid procedure for an initial design. Such an initial design could be tried before the design is optimised by a specialist designer who will modify the design somewhat to allow for ease of winding, insulation, leakage inductance and core loss.

It should be noted that if it is known from the start that a gap will be required, a direct comparison of cores may be made in terms of resistance using equation 10.

\[
R = \frac{D \sqrt{L}}{A} \times 10^{-7} \Omega
\]

Literature received

Tape Recorder Spares Ltd have sent us a copy of their Audio Packs catalogue, which contains details and prices of a vast range of audio leads, plugs, adaptors and spares. It can be had from TRS at 206-210 Ilberton Road, London, SE13 INS on payment of £1.25.

Applications for the NOVO range of logic circuits which are all provided with a non-volatile memory on the chip are set out by Plessey in ref. 3.

We have received from Raindirk a brochure on the Status 250W Audio Power Amplifier and control unit. They are intended for professional or public address work and are housed in 19 inch rack-mounting enclosures. Information from Raindirk Ltd., Downham Market, Norfolk.

A programmable sequence controller from Tempatron is fully described in an informative brochure, which can be obtained from Tempatron Ltd., at 6 Portman Road, Battle Farm Estate, Reading, RG3 1JQ.

A complete list of books for the amateur electronics enthusiast is published by Bernard Babani (Publishing) Ltd., The Grampians, Shepherd's Bush Road, London W6 7NF.

References

I would like to thank the Directors of Cossor Electronics Ltd for permission to publish this article and Mullard Ltd for permission to reproduce Figs. 1 and 2.
Matsushita disc for world-wide video market?

Thorn-EMI are setting up a joint venture with General Electric (USA) to support the introduction of the VHD video disc system in the USA.

Three new companies consist of an equipment manufacturing company owned jointly by Matsushita Electric Industrial Co, its subsidiary Victor Company of Japan, and General Electric, a programme management company and a disc manufacturing company, both jointly owned by Thorn-EMI, Matsushita and GE. Plans is to introduce the video disc system by the end of 1981 with 200 programme titles, mainly films but with some original material, followed by introductions in France and Germany at "perhaps six-month intervals". (General Electric is in third place in the US television market with a share of 7.5%, after RCA and Zenith both of whom are already committed to a video disc system.)

The news followed the April announcement of Thorn-EMI and the Victor Company agreeing to "co-operate on a world-wide basis in all aspects of the promotion of the vhd system", suggesting that a software link was needed before GE would commit themselves to VHD. Disc mastering and pressing plants are planned for Europe, Japan and the USA, though locations are not finalized. Neither apparently is the ownership, because a European plant could either be a Thorn-EMI company or a jointly owned company, according to a spokesman. Thorn-EMI say they plan to manufacture the equipment here on a progressive basis, but no timescale is given. (They said this about VHS equipment but have not yet manufactured it.) Thorn clearly look on their VHS collaboration with JVC as very successful, and have undoubtedly been a major factor in helping video recording to reach 2% market penetration in a year less than it took in the USA.

Prices of equipment will be close to the $500 of the RCA video disc player planned for launch early in 1981. $530 to 550 is suggested for the USA and £250 to 280 in the UK, with a separate random access unit at $150. Magnavox - who recently stepped up their initially modest marketing - and now Pioneer have optical players prices at $700 to 775.

The add-on random access unit recently demonstrated offered still play, normal play, fast visual search, quick play of two, three, four or five times normal speed, slow motion of half, quarter, eighth, and sixteenth time for selected addresses and times, sequential play of differing functions, and interrupted mode changes and programme skip. Some of these functions are integrated with a player in one prototype but in the interests of low player cost the specialized functions will be offered separately. But with an NTSC player speed of 900 rev/min and two picture frames per revolution, showing (two) still pictures normally leads to unacceptable picture quality, unless special steps are taken. One possibility is to encode two identical frames next to each other, but done throughout a record this would cut playing time in half. Another is to make use of a memory to delay a frame's worth of picture - as done at the demonstration - but the size and cost of this solution is still prohibitive for consumer use.

The demonstration showed better picture quality than that from video recorders, but a muffled sound quality indicated restricted h.f. response. As the preliminary brochure claimed an audio bandwidth of 20kHz, this left one wondering about the validity of the remaining measure information. Thorn/JVC would not directly compare it with a broadcast picture but claimed instead that it was "competitive" with a Philips-system picture, and making it clear that Philips themselves claim compatibility with a broadcast picture.

Another add-on unit will be a p.c.m. demodulator - which will follow VHD by 6-8 months Thorn say - for use with sound-only records and dubbed AHD (audio high density). A 16-bit linear quantiser and 47.2kHz sampling rate now supersedes the earlier proposal of 14-bits and 44kHz sampling. Another change since VHD was first announced two years ago is a reduction in disc size from 30 to 26cm, aimed at easing manufacturing problems, together with acceptance of the need for a disc case for dust, scratch and fingerprint protection.

Both JVC and Thorn-EMI are still secretive about technical aspects of VHD, in sharp contrast to their rivals RCA and Philips, and only scant details have been issued. The gist of this is that in recording a VHD disc, a rotating glass master coated with photosensitive material is irradiated by a laser beam modulated simultaneously with both tracking and programme signals to produce a spiral of pits. This is used to prepare a metallic master by "the conventional audio process". The conductive p.c.m. pressings made from this are said to require no further processing: obviously the basis for JVC's claim of "highly competitive" disc manufacturing cost. But with around 50,000 turns to a spiral and a pitch of 1.35um - 40 times smaller than an audio disc - one wonders what the rejection rate will be?

Playback relies on a capacitance effect between the conductive disc and an electrode coating on the stylus, much as in the RCA disc system. In the RCA player the stylus is mechanically guided and rests in one spiral turn, whereas in the JVC disc it rests over ten spiral turns (JVC claim 2000 hours stylus life) and is electrically guided. The stylus assembly is servo-controlled by marker pulses on either side of signal information, both laterally to ensure proper tracking and longitudinally to give time base correction. The modulation scheme uses the usual f.m. video carrier, with pedestal at 6.7MHz and a deviation of 1.4MHz (according to the brochure) or 1.8MHz (according to the press data), described as "single carrier composite" - not the "colour-bar" approach they stress - but more than that JVC won't say. Which presumably means that it hasn't yet been finalized.

RCA responded to the Thorn/JVC/GE announcement by claiming theirs was "a unified operation ranging from research and development of manufacture, marketing and programming - not an alliance among individual companies which are diverse both in geography and marketing concepts". Scheduled for US introduction in the first quarter of 1981 with a programme catalogue of 300 titles, the RCA capacitance electronic disc system, CED, is also expected to be made by CBS and Zenith. RCA say they expect to sell 200,000 players alone next year.
Micro-based marine d.f. set for a fast "fix"

High-speed processing, leading to a rapid "fix" and safety at sea, are the two points which receive greatest emphasis in the technical literature accompanying the Syma Offshore Navigation System (the ONS 4000). This equipment has been developed and manufactured by Sysmaster Ltd, of Farnborough, Hants (an offshoot of System Designers of Camberley) in collaboration with the National Research Development Corporation.

The equipment, which is basically a microprocessor-controlled d.f. radio receiver, combines digital, analogue and radio techniques to achieve automatic operation. The unit synchronizes with the six-minute radio beacon cycle, automatically fixing and memorizing up to six compass bearings derived from the built-in electronic compass – this is a gimbaled fluxgate unit which senses the earth's horizontal magnetic field.

Bearings remain in memory until the navigator is ready to "lay them off" onto a standard chart, with frequency, time and bearing indicated digitally on a l.c.d. panel. A small loudspeaker provides positive Morse code identification of each beacon. A motor-driven ferrite rod acts as the scanning sensor, housed in a weather-proof casting with a stainless steel sense aerial mounted on top.

Programming of the unit is carried out by the navigator to preset frequency and programme times of a chosen set of coastal m.f. beacons. A fix can be taken without any intervention by the navigator. Station tuning in the radio unit is by frequency synthesis and beacon bearings are derived from a statistically averaged series of measurements, giving accuracy without the need for high signal strength from each beacon, which may be difficult to achieve in bad weather or poor propagation conditions. This technique, the makers say, enables the navigator to get "the best possible fix at the worst possible time."

The complete unit costs £1,675 excluding vat. and further information can be obtained from Sysmaster Ltd, 30 Invincible Rd, Farnborough, Hants, who can also supply a list of approved Syma agents in the UK.

System X now in service

Britain's first all-electronic telephone exchange has been operating in London for over three months. It is the first example of a piece of hardware in British Telecom's System X family to go into full service, and is what is known as a junction tandem unit, switching telephone calls between some 40 local exchanges in the capital.

Other types of System X units are local exchanges and trunk exchanges. Installed in Baynard House, a new British Telecom building in Queen Victoria Street, the tandem exchange has switched over 2.5 million calls from July 1 to the time of going to press. House in 50 racks, each 7ft high by 3ft wide, it can handle 150,000 calls per hour. An electro-mechanical cross-bar exchange would require about 400 such racks to do the same job. The failure rate so far has been 1 or 2 failures in 4000 calls, but British Telecom expect this to be reduced. Main contractor for the exchange was Plassey Telecommunications.

System X differs from earlier electronic exchanges installed in the UK which use reed relays for the final switching of lines and are therefore not fully electronic. It uses digital semiconductor devices throughout, ranging from discrete transistors, through integrated circuits up to l.s.i. devices. In the Baynard House tandem exchange low power Schottky t.t.l. devices are used widely and there are also m.o.s. devices. Because of the modular design of all System X sub-assemblies, it will be possible to introduce newer devices such as c.m.o.s. logic and magnetic-bubble memories at later stages as the technology develops. All the operations in the Baynard House exchange are controlled by a stored program. Calls are set up, faults are identified and the whole system is managed by computer-like processes. The equipment also uses what is called common channel signalling, a technique in which the signals controlling calls and managing the network are passed between System X exchanges as data transmission.

The transmission and switching functions in the exchange are brought together into a common digital mode of operation. For example, incoming calls from the 40 or so conventional London exchanges first of all have the analogue speech waveform separated from the signalling pulses. Then the speech waveform is converted into 30-channel p.c.m. form and the signalling pulses are transformed into suitable digital information for insertion into a particular timeslot of the p.c.m. system. The combined time-division multiplexed information is then passed at a rate of 2.048 Mbit/s into the main part of the exchange. A converse process takes place, of course, with calls going out from the System X tandem to the conventional local exchanges.

The first all-electronic local exchange in the System X scheme will be installed next year at Woodbridge, Suffolk.
News in brief

Agreement has been reached between Philips of Canada and the Bendix Corporation of Baltimore, Maryland, USA, giving Philips exclusive rights to the Canadian manufacture and sales of Bendix's microwave landing systems, known as MLS.

British Telecom's optical fibre network construction has had another leg completed with the installation of the first 140 Mbit/s section from London to Reading. The eight-fibre cable, which carries data equivalent to 1,920 telephone channels, has been carried out by Telephone Cables Ltd, a subsidiary company of GEC.

The second US/Southeast Asia Telecommunications Conference and Exhibition is scheduled for December 3 and 4 at the Mandarin Hotel in Singapore. Detailed information may be obtained from John Sodolski, Electronic Industries Association, 2001 Eye Street, NW Washington DC 20006, USA.

Electronica 80 is being held at the Munich Fair Grounds from 6 to 12 November 1980 and constitutes the ninth international trade fair for components and assemblies in electronics under this title.

Hitachi is to set up a television components manufacturing company in Selangor, Malaysia. This new arm of the company, to be known as Hitachi Consumer Products (Malaysia), will rest upon the joint investment of Selangor and Hitachi and will make the standard range of TV components such as deflection yokes, line output transformers and tuner units. Operation is scheduled to begin in June 1981.

Greenpar Engineering Ltd, Harlow-based manufacturers of coaxial connectors and r.f. components, have changed the name of the company to Greenpar Connectors, Ltd.

The gold used as plating for contact surfaces in British Telecom's electronic telephone exchanges is to be reduced from its present thickness of 5 microns to only 2½ microns. British Telecom, the telecommunications part of the Post Office, hopes by this action to save about £2 million after the changes, which began in October.

In spite of £450,000 lost on a turnover of £1 million in its second year of trading, Compeda, the company set up by the National Research Development Corporation to market British computer-aided design expertise, has succeeded in selling a £250,000 system chip design system to General Electric of the US. Compeda's managing director said that the projected turnover for 1981/82 was about £3 million and the company should be making a profit by next summer.

IPAT '81, the International Conference on Ion and Plasma Assisted Techniques, is to be held in Aberdeen from 2 to 22 July 1981. The conference will include information of the latest developments in ion plating, ion implantation, ion beam processes, molecular beam epitaxy, plasma deposition, plasma enhanced c.v.d., sputtering, reactive techniques, plasma etching, plasma processing and testing of coatings and coating equipment. Papers are welcomed on the themes outlined and authors should submit abstracts of 200-300 words immediately, the deadline being 11 November 1980. Address entries to the Secretariat, IPAT '81 International Conference, 26 Albany St, Edinburgh EH I SQH.

Times change

BBC2's clock, seen in some links between television programmes, is now generated electronically instead of optically. There is no mechanical clock and no camera or slide scanner. The new display is of a clock face, with hour, minute and second 'hands', and a pattern to indicate the channel, different techniques being used to generate the two.

The channel number display uses a process known as run-length encoding, in which data is stored in a programmable, read-only memory in a form which greatly reduces the amount of memory needed. Each change of colour and width of symbol requires only one byte of data, instead of one byte for every element of the display (the memory-mapped technique). In this way, fixed patterns, such as the Open University logo, which also uses the new technique, are produced with a smaller memory than would otherwise be needed, although movement can be obtained by using a microprocessor to change the data in a random-access memory in real time. The data is then taken directly from the r.a.m.

Data for the 'hands', however, is in p.r.o.m., being read out in synchronism with the television line waveform. Only one quadrant need be stored, since the other three are obtained by symmetry.

For the 'hands', however, is in r.a.m. An erasable p.r.o.m. controls a microprocessor, which determines the time and calculates the angles of the hands. Break-up of almost-horizontal edges is reduced by varying the output waveform to take account of the television line structure.

The BBC expect to generate the BBC1 clock in a similar way next year.

Inmarsat to lease satellites

With a world-wide satellite communications system as its objective, the International Maritime Satellite Organisation (Inmarsat) is to consider supply contracts from satellite organisations, with plans to expand coverage by putting three additional geostationary satellites into orbit, one for each of the world's oceans. Two spare craft, supplementing these three at 65°E, 175°E and 335°E respectively, will also be put into orbit. Although the programme is still under discussion, the choice is likely to include the European Space Agency's Marecs, Intelsat V and Marisat. Marecs has a capacity of 46 voice channels* and is a dedicated satellite, i.e. as it is used exclusively for maritime channels there is no danger of interference with other signal traffic, although such satellites are comparatively expensive.

Part of the leasing programme, which will begin in 1982, will include offers of short-term use of one of its existing satellites with a 7 voice-channel capacity. While existing Marisats were launched in 1976 with a 5-year design life, they are now expected to last for another two years. Olaf Lundberg, of Inmarsat in London, says that at present maritime satellites are relatively under-used, even though use per ship is quite high. On the other hand, he estimates that there will be around 2,500 ship users by 1986. He also contrasted the normally slow rates of information processing through conventional maritime radio communication with the speed of computer-controlled services on land, notably in the case of oil companies, who need fast communication from sea rigs to shore bases. He says that this problem can be solved by the communications power of satellite telephone, telex and facsimile operation and companies will not be slow to recognize the advantages of the system.

*Capacity of one voice channel is equivalent to 22 telex channels.
Monitor device regulates heart-beat

One of the latest medical spin-offs from the NASA space programme is an implantable heart-assist device, developed by Michael Miriowski, MD, of Sinai Hospital, Baltimore, to aid sufferers with a condition known as ventricular fibrillation.

The device is about 7cm square, is encased in titanium and weighs 255g (9oz). It is programmed to continuously monitor the heart, and to recognize life-threatening arrhythmias. If these occur it provides an electric shock through electrodes directly in contact with the heart so as to restore its normal rhythm. The first shock pulse occurs 15 seconds after the fibrillation begins, giving the heart a chance to correct itself. If the first shock has no effect, three more are delivered until a normal rhythm is established, with the last two shocks being increased in intensity. The unit is powered by lithium batteries with a life span of three years or 100 shocks.

Nasa and the Applied Physics Laboratory have developed a monitoring and recording device for the unit which can be worn by the patient and which stores electrocardiographic data, the number of fibrillation episodes, pulse applications and the long-term performance of the implantable device.

The "New England Journal of Medicine" reported on the implant device in a pilot study by a team of scientists from Sinai Hospital of Balti- more, the John Hopkins Medical Institutions and the John Hopkins Applied Physics laboratory, although the automatic defibrillator (its commercial name is AID) is being manufactured by Medrad/Intec Systems of Pittsburgh, Pennsylvania in its evaluative stage. The units are not yet available commercially.

Digital television demonstration

Now that much more studio equipment in television broadcasting is going digital, broadcast- ers throughout the world are trying to establish a common standard for digital information transfer by which this equipment can be interfaced and made compatible. In Europe the EBU is working towards an interface standard for the 625-line system and in the USA the SMPTE is doing likewise for the 525-line system. Both of these organisations are also working together to try to achieve a truly international standard. One problem is what to encode digitally, the composite video signal or its separate luminance and chrominance components.

To help interested engineers understand what is going on the IEE has organised a demonstration and colloquium on "Digital television" on 31st October, in the IEE building, Savoy Place, London WC2R OBL, starting at 10.30am. You have to register beforehand by getting a registration form from the IEE (tel: 01-240 1871).

"Radar-invisible" aircraft? Back to the drawing board!

Fighter planes known as "stealthy aircraft," built and tested by Lockheed Aircraft Corporation for the US Defence Department and claimed to be "virtually invisible" to radar, appear to be less than successful at the basic business of remaining in the air - all three prototype machines have crashed because of their peculiar shape. The Guardian (22 August 1980) reported that many observers have been excited at the prospect of penetrating Russian air space unnoticed and other accounts suggest that the technique being employed in the aircraft is a combination of "rounding off corners" (sharp features produce maximum radar reflections) and that of coating the aircraft with "radar-absorbent" material, which in reality disperses the returning radar signal.

This is not the first time such material has been tried. During the Second World War German U-boats were coated with a compound called Sumpf, which was fairly effective until it was washed away by sea water.

Radio Nottingham now stereo

BBC Radio Nottingham became in September the first BBC local radio station to start a regular service of stereophonic broadcasting. New studio using stereo sound desk equipment have been built in some old offices at the station. Considerable reconstruction was done while the station was actually on the air. Quite apart from the installation of the new equipment, the offices needed acoustic treatment to convert them into studios.

Listeners will find the stereo service on Radio Nottingham's v.h.f. frequency of 95.4MHz, broadcast from the Colwick Park transmitter. The BBC say that most listeners with stereo tuners or music centres should have no problem in receiving the service, and that buffet mono settings on v.h.f. or medium-wave will not notice any change. Aerials set up for the national radio services in stereo may need some adjustment to make the best of the Radio Nottingham stereo service.

Prestel grows, but slowly

"Prestel is now a reality in most of the major cities and regions of the UK," according to Richard Hooper, the director of this British Telecom viewdata service. To understand this claim you have to interpret what he means by "a reality." Although the Prestel service will be available to approximately 10 million UK telephone users by the end of 1980, the number of people who are actually connected as subscribers is pitifully small. At the time of going to press it was 5260. At the present rate of growth (about 500 per month) this could become 8,000 or so by the end of the year. Of the total of 5,260, only 588 were private households, indicating that the principal growth of the service has been among business and professional users.

This must be seen as a disappointing start, particularly after the publicity campaign put on earlier this year and that British Telecom forecast 27,000 users by the end of 1980. Prestel has now been operating for about a year (see December 1979 issue, p.55).

Clearly Mr Hooper's reality means the availability of the service to UK citizens who have telephones. This is certainly good. At the beginning of 1980 Prestel was available only in Lon- don, Edinburgh, Glasgow, Birmingham and Nottingham. By the early autumn Leeds, Brighton, Reading and Sevenoaks had been added. In the coming few months the service will be extended to other important towns including Cardiff, Belfast, Norwich, Bourn- mouth, Chelmsford and Luton.

It seems likely that the slow growth of the Prestel market, relative to the British Telecom forecast, is due to the present high cost of being a subscriber (details of installation and running charges were given in our December 1979 re- port).

This cost will go even higher with the new telephone tariffs recently announced by British Telecom. A related problem here is that the price a user is prepared to pay will depend on the amount of information he can get out of the service, but already the information providers are becoming restive because of the small number of users whom they can reach to sell their information to. There is clearly a chicken-and-egg problem in the growth of the market. However, Mr Hooper may well be committed to the idea of getting the charges down, for last year, before he became director of the service, he wrote "Prestel set prices must come down first to ensure a large residential market..." someone somewhere has got to make a heavy capital commitment to volume production for the costs to come down.

M.Sc. courses in chip design

The Science Research Council has announced that it will be funding three new courses in i.c. design, to be undertaken at Edinburgh University, Manchester University and Brunel and Southampton University. They will consist of one-year courses run in close collaboration with the microelectronics industry and will include substantial practical work, giving students the opportunity to oversee the production of an i.c. from design to fabrication.

Funds are also being provided by the council for necessary equipment and access to comput- er-aided design and electron beam lithography facilities at its Rutherford and Appleton laboratories and to the SRC-supported silicon processing factories in Edinburgh and South- ampton Universities.

An intake of about 16 students per year at each centre is expected, with as many as pos- sible being supported by industry.

UKDAGE work - but when?

Command, control and communications for ra- dar defence of Britain are to be up-dated by a group of companies who have one-third shares in UKSL, which is UK Air Defence Ground Environment Systems Limited. The companies, who announced at Farnborough their victory in a two-way M.O.D. competition to secure the contract are Plessey, GEC-Marconi and the US company Hughes Aircraft, with the French Thomson-CSF taking a sub-contracting role.

ICL, Westinghouse, Signaol of Holland and SINTRA of France comprised the losing group. UKSL are confident that the work, which is said to be worth £100 million, will escape the moratorium on defence spending recently an- nounced by the Secretary of State for Defence, which is to run for three months or longer. This has not yet been confirmed.
Spark gaps

Transient protection in high voltage, medium current applications

Because many electronic circuits are subjected to voltage transients which can destroy delicate components, some form of protection should be provided. A simple and effective method of protection is to use a spark-gap device which reacts more quickly to a high-voltage transient than an electro-mechanical or solid state component. This article outlines the problems and parameters which must be considered when using a spark gap.

Spark gaps vary in style and construction. For low voltage and current applications, the simplest type consists of two wire electrodes moulded into an open plastic frame as shown in Fig. 1. However, more elaborate design is required if high voltage and current are combined with a high spark repetition rate. This type is usually constructed with a ceramic case filled with an inert gas, and high temperature alloy electrodes as shown in Fig. 2.

In a two-electrode spark-gap the insulation is very good at low voltages, and no leakage current exists. As the voltage increases, the few electrons present in the gap, due to cosmic radiation and other ionising effects, are accelerated until they are able to ionise atoms of gas in the vicinity of the electrodes. This causes an avalanche effect as the additional electrons produce further ionisation, and as the current increases the voltage falls as shown in Fig. 3. A further increase in current causes heating of the cathode by ion bombardment, and this creates emission sites and a transitory glow discharge. The increased current eventually produces an arc discharge, or spark, with a peak current determined by the external circuit. After the spark has discharged, ionisation of the gas decays until the gap has returned to its original condition.

In some tv receivers the focusing circuit for the c.r.t. can, under certain fault conditions, expose the focusing electrode to the full 25kV from the e.h.t. supply. Therefore, to protect the c.r.t. from possible damage, the spark-gap must fire and divert the 25kV source before the pulse height reaches a dangerous level, but must also remain in a stable unfired state at the maximum focusing voltage. These two limits are used to determine the breakdown requirements for the spark-gap, and popular breakdown bands are 7 to 9kV, 8 to 10kV and 10 to 12kV.

The breakdown across a gap is determined by a complex and interacting set of parameters such as electrode shape, gap size, gas pressure, composition of the gas and the type of external circuit. To obtain a precise breakdown voltage, the ideal shape for the electrodes is two large spheres, which produces a high degree of field uniformity where the spheres are closest. Therefore, when the voltage is increased, the change from the Townsend or "dark" discharge to the avalanche breakdown occurs quickly across the whole width of the field. If, for example, electrodes with sharp edges are used, a non-uniform field is produced and as the voltage increases, the transition from a "dark" discharge to a total breakdown can be pre-empted by a corona or brush discharge. Although this is a self-sustained discharge, it does not represent a failure of the entire gap and the rest of the gap will continue to carry a "dark" current. A further increase in voltage causes the corona to spread across the whole field and complete breakdown then occurs. For this reason, when wire electrodes are used, care must be taken to form the wire into a smooth curve to avoid pre-breakdown corona. It is also important to use a wire which is free from surface damage, and to ensure that the free end of the electrode is either embedded in the insulating case material or bent away from the gap as shown in Fig. 4.

Unfortunately, simple rules cannot be applied when calculating the gap size required for a given breakdown voltage across wire electrodes. The electrode shape is not ideal, the breakdown will vary with wire diameter, and the field will be modified by the case dielectric. However, it is easy to achieve the required breakdown voltage by trial, and then repeat it by maintaining the electrode geometry and gap size.

For a given electrode geometry, the spark breakdown voltage also varies with pressure. The normal range of pressure variation in the UK is from 728 to 773mmHg (970 to 1030 millibars) which, with a 5mm gap, is equivalent to a change in breakdown voltage of 700V as illustrated in Fig. 5. Therefore, if the spark gap is not totally sealed, and subjected to normal atmospheric pressure variations, it will stay within about 500V of the specified value. In the case of a sealed unit, significant pressure variations will be caused by changes in the ambient temperature. In a tv receiver a 40°C
Contrary to popular belief, contamination of the spark-gap atmosphere with moisture has little effect on the breakdown voltage. Changing the relative humidity from 0 to 100% causes the breakdown voltage to rise by only 3.5% and is independent of electrode shape and gap.

A knowledge of the external circuit is necessary before a realistic test procedure can be defined. Three important facts, essential to optimise the component design and carry out the tests, are the amount of energy to be discharged across the gap, the rate at which this energy is dissipated, dictated by the maximum discharge current, and the expected discharge repetition rate. The test circuit shown in Fig. 7 simulates the conditions in a tv receiver where a 25kV e.h.t. supply charges a 5000pF capacitor through the 40MΩ resistor. The capacitor can be discharged across the spark gap by an igniter which is set to fire at any pre-determined rate. Resistor RL limits the discharge current to around 1000A.

When the energy from the capacitor is discharged across the electrodes, it causes intense surface heating which coats the internal walls of an enclosed device with metal and causes leakage currents. The extent of this effect depends on the volatility of the electrodes and the peak level of energy being dissipated. Because the energy of the discharge is proportional to the square of the voltage, the problem is most significant in high voltage devices. With a 1000A limit on the discharge current, brass electrodes will give intolerable leakage effects after a few tens of discharges. At the other extreme, costly tungsten or platinum electrodes can withstand almost unlimited discharges with no current limitation and without any change in the insulation resistance. A good compromise is a copper-nickel alloy, which is sufficiently hard and of low density to retain the electrode shape once it has been bent, the terminal sections are rigid and allow easy location into a printed circuit board, it can withstand several thousand discharges at 12kV with a 1000A limit, and it is easily tinned by dip soldering.

Fig. 8 shows an internal view of a spark-gap. The walls of the cavity are corrugated to increase tracking distance between electrodes, and so reduce surface leakage.

Reference

Aerial design book
Articles on aerial design, aerial theory and wave propagation, published originally in Practical Wireless, have been collected together in a book, entitled Out of Thin Air. The aerials described are mainly for amateur use, although there is a m.w./w. loop. Additional articles include a survey of propagation modes, a piece on the influence of the sun on propagation, and a discussion of v.s.w.r. at v.h.f., together with a v.s.w.r. meter design. The book is well presented, with large diagrams where necessary, and a useful feature is a directory of aerial suppliers. It costs £1.25 from bookshops or £1.50 by post from Post Sales Dept., IPC Magazines Ltd., Lavington House, Lavington Street, London, SE1 0PF.
Some eight years ago an investigator of the 'defence' scandal said that "this country was being cheated of the talents of many of its finest scientists." This is much more true today.

In the electronics industry the norm is for a technically ignorant and careless customer to accept useless equipment from a technically ignorant manufacturer. The so-called 'trials' are rigged. Corruption is not generally involved; only stupidity and misplaced loyalty to their opposite numbers in the manufacturing company on the part of the treacherous representatives of the long-suffering taxpayer.

If we are to stop this gigantic financial drain on the country, which by the way incites our enemies to arm themselves as one result of our pretended state of military strength, we must have technical auditing on a par with financial auditing. At present it is such that those in case of fraud the transfer of money are applied against those who connive in fraud over the transfer of military hardware.

My proposal is that professional bodies -- the I.P.E., etc. -- audit trials involving equipment where their speciality is relevant. As with cash movements, fraud should come within the province of the criminal law. An obvious sanction is to ban the military budget in electronics as a useful device to allow the colleges and faculties to continue to refuse to teach the rudiments of digital electronic design, by which I do not mean the programming of microprocessors or other trivial surrogate activities. The lecturers and professors do not teach the fundamentals of digital electronics because they do not know them. However, they will not let experienced, knowledgeable people into their faculties to teach the stuff. I have been trying to get such a job for more than ten years, but real experience and knowledge of digital electronic design appears to be a bar to employment in academia. (This was already true years before the recent Tory recession.) So long as this situation continues, we shall continue to have a useless industry funded by government largesse, the so-called defence budget. Of course, since they will never work, the military products will never in fact contribute to our defence. Today we have no defences; to work in the 'defence' industry is a polite way of being on the dole.

The government is happy to fund the 'defence' industry because it masks our true unemployment level. The trades unions like it for the same reason. Industry, the third supporting pillar of this massive fraud being perpetrated on the taxpayer, also supports it because it is a no-risk, guaranteed profit industry. Britain will disintegrate before we can overcome such a powerful triumvirate.

What distinguishes our 'defence' industry from that of other countries, for instance the USA and the USSR, is that it seems invulnerable to economic forces. During recession the expenditure, or more accurately the massive waste, increases. It is a very inefficient way of creating jobs to mask unemployment, but it is the only ideologically acceptable way. We are very like a dictatorship in that we can cut any other expenditure because of lack of government funds, but not 'defence'.

John T. Lloyd

Professor Bell's article "No radio without displacement current" (August 1979 issue) I wrote a letter which appeared under the title "Displacement current" (November letter). A reply by Professor Bell to my letter was published in the same issue. I felt that this reply revealed misunderstandings of a fundamental nature regarding the points I was trying to make and I could not see how this reply would be served by my responding to it. Since, however, Professor Bell has restated his arguments in the August 1980 letters it seems that I must reply.

My original letter contains the following two paragraphs:

"I understand that Aristotelians believed that a force was necessary to keep bodies in motion and that, in the absence of this force, the motion would cease. This theory led them into certain difficulties. For instance a spear once thrown, appeared to continue to move without a force being present. The philosophers rose to this challenge magnificently with a theory that air, displaced from ahead of the spear, pushed to the rear and generated the requisite force -- the theory was saved. Unfortunately they missed the simple point first..."
noted by Newton, that it is in the nature of a moving body to continue to move."

"In the same way I fear that Maxwell invented a complicated explanation for a very simple phenomenon, i.e. that electromagnetic radiation, or energy current, moves at the speed of light — and that’s all, because that is what energy current does. No mechanism invoking E producing H and H, in return, producing E is required."

I would have thought my intention was quite clear — it was to show, by analogy, how a faulty set of primitives can lead to problems in a theory which necessitate the introduction of ad hoc causality relations. In a similar way I believe that the causality relations alleged to reside in Maxwell’s equations (i.e. changing magnetic fields produce electric fields and changing electric field producing magnetic field) are spurious. A moving body continues to move because that is what moving bodies do; an electromagnetic disturbance or energy current, of whatever distribution, continues to move because that is what energy currents do. In other words the statement “energy current travels at the velocity of light” is a primitive assumption in my theoretical framework which requires no further explanation for it to be valid. Moving energy current is the simple situation and ‘static’ electric and magnetic fields are composite.

Before I leave this point I must make two other observations. Firstly Professor Bell not only seems to misunderstand my argument but to compound this by not even having an adequate grasp of his own original article, for he states in both the November 1979 and August 1980 reply that “I mentioned early speculation about the planets because Newton’s theory of gravitation …………” My problem is that I can find no such reference to the planets in Professor Bell’s article. True, he mentions Jupiter in the context of the propagation of radio waves from the vicinity of this planet, but nothing else.

Secondly, the relevance of Hobbes’s ‘The Leisathan’ seems a little dubious. I will admit that my statement that the principle of inertia was first noted by Newton is open to question — I would suggest that it was probably first noted by Galileo and enunciated by Newton at a later stage. But beside the point. Incidentally, I cannot locate the passage in ‘The Leviathan’ which Professor Bell is referring to and wonder whether he in fact means some other reference, perhaps by Hobbes. Possibly Or Corp. I would in any case be obliged if he could let me have a full reference. Since ‘The Leviathan is a work of political philosophy it would be a strange place to make the kind of comments quoted by Bell — but who can tell with philosophers?

Several other points are raised by Professor Bell’s letter. Before Maxwell’s theory can be ‘faulted on experimental evidence’ we require a definitive statement of that theory. Where is this to be found? Certainly not in Maxwell’s ‘Treatise’ since this involves views regarding the ether which would not be acceptable to modern physicists. Perhaps Professor Bell would be able to suggest some experimental tests. Professor Bell states that he does not know what the energy current concept is or how it relates to it seems a little surprising that this is set out in the article by Catt (see “The Heaviside signal,” W.W. July 1979). It surprises me that, having stated his lack of understanding of the concept, and apparently not having seen the above mentioned article, he still tries to apply it to loop antennas, etc.

It is extremely unfortunate that the displacement current debate has been cluttered by so many side issues. I feel great sympathy for the impartial reader of this correspondence who is attempting to decide which side of the debate has the greater insight into the subject. I am more or less resigned to the fact that it is impossible to debate the central issues of electromagnetic theory because of the high ‘noise level’ which is generated by those who defend the established view. Where do we go from here? As Professor Bell says, “Everyone tends to believe what he wants to believe” or, to quote from T. S. Kuhn, (“The structure of scientific revolutions,” University of Chicago):

“Max Planck, surveying his own career in his Scientific Autobiography, notably remarked that ‘a new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it.’ These facts and others like them are too commonly known to need further emphasis. But they do need re-evaluation. In the past they have most often been taken to indicate that scientists, being only human, cannot always admit their errors, even when confronted with strict proof. I would argue, rather, that in these matters neither proof nor error is at issue. The transfer of allegiance from paradigm to paradigm is a conversion experience that cannot be forced. Lifelong resistance, particularly from those whose productive careers have committed them to an older tradition of normal science, is not a violation of scientific standards but an index to the nature of scientific research itself. The source of resistance is the assurance that the older paradigm will ultimately solve all its problems, that nature can be shoved into the box the paradigm provides. Inevitably, times of revolution, that assurance seems stubborn and pig-headed as indeed it sometimes becomes.”

Do we really have to wait for a new generation to grow up before we can countenance changes in the accepted theoretical structure? This is the real problem, not electromagnetism, relativity or mechanics, but how to create a forum in which proper discussion of fundamentals can take place.

D.S. Walton
CAM Consultants

Perhaps Professor Bell (August letters) really should have completed his application of the two “disciplines” of science to both the Maxwell and the Catt, Davidson, Walton theories. CDW’s theory certainly has fewer hypotheses than Maxwell’s (they only need to define what they mean by energy current). From their theory one can deduce Maxwell’s equations (yes, and the famous diD/dt term, which is a mathematical quantity, not a “physical current”) as well as Faraday’s and Maxwell’s laws of electromagnetic induction.

I don’t believe Catt, Davidson and Walton have ever attempted to suggest that Maxwell’s equations are incorrect, merely that they are at best mathematical devices exceedingly useful for setting university examination questions. They may very well be wrong on this point, but that, of course, isn’t what someone supposed to be discussing (see the editorial in the May issue).

L. J. Higgins
Seventon
Wilt.

SATELLITE TV

As someone with a keen interest in the possibilities offered by satellite tv, I was pleased to find an article on the subject in your September issue. This, I hoped, would add to the information provided by Chrict Tiltuler in his book entitled "Televias satellitien", which I dis-covered during a recent visit to Holland (but which is not mentioned in your bibliography). This contains an extract from the famous article by Arthur C. Clarke which appeared in your journal in 1945.

Unfortunately, S. J. Birkill’s article proved to be disappointing. My interest lies in the early availability of a terminal to which a conventional television receiver can be connected with a minimum of intermediate equipment and which will afford a choice of foreign broadcasts, preferably from Western Europe. Having experieneced the benefits of a cable relay system affording 10 channels from five countries, it is impossible to be satisfied with the insular, parochial, bland diet of news and opinions which is served up in the UK. The Americans, it would seem, already have the choice (admittedly at a price) of 36 channels, and home terminals are already on the market in Japan. Why, then, are these not available here? Your article shows clearly that there is no need to wait three or four years until European tv satellites are in operation: there are already plenty of surprises for the enthusiastic DX-er.

D. S. Jordan
Canterbury

There is no direct satellite broadcasting in Western Europe yet. — Ed.

FEEDBACK FOR P.R.B.S. GENERATORS

Mr Wood’s method of determining feedback connections which give maximum length sequences (September Letters) is interesting in that it avoids most of the algebra with which the problem is usually tackled, but unfortunately, although it is certain that the circuits it eliminates won’t give maximum length sequences, it doesn’t follow that those which are left will. For example, it is well known in the trade that if $a+b$ is a multiple of 8 there are no values of a and b which will give a maximum length sequence. Such sequences can be obtained however by using the more complicated circuit shown below, with appropriate values of a, b, c and d.

The problem of finding the appropriate connections is the subject of an extensive literature. A convenient starting point is “Shift Register Sequences” by S. W. Golomb (Holden-Day, 1967). Most of us find in this book a convenient finishing point, too. It contains a table of values of Mr Wood’s a and b for values of $a+b$ up to 36.

For those who do not have access to a microprocessor system, or who have but still haven’t learnt to use it, much can be done with a programmable calculator. You need to know that the output of a two-input exclusive-OR gate, usually designated $a+b$ is also given by $(a-b)^2$ when a and b are substituted, and multiplication is conventional. Shift, if not specifically available, may be obtained by repeated use of the memory exchange facility. The number of memories, rather than the number of program steps, will usually limit the number of stages which can be
The letter from K. Wood on pseudo-random binary sequence generators in the September issue made me wonder what problem he had cracked by simulating a shift register with feedback on Z80. My own problem a couple of years back arose from the need to construct a pink noise generator for electroacoustic work. Having bought a c.m.o.s. 4006 shift register I then had to discover suitable feedback connections in order to get a maximal-length pulse train. The 4006 has 18 stages so the pulse train should be \(2^{18}-1=262143\) bits in length. Only 6 of the 18 stages come out to pins, and the four independent sections of the register may be interconnected in six different ways.

I had no mind to read through all the literature on the subject, but I must comment that I found that tables of irreducible polynomials were of absolutely no help to me whatsoever, apart from a little practice in decoding octal. Is this also K. Wood’s experience, I wonder? It would have been possible to rig some simple hardware that would have taken the 4006 through all possible combinations of interest, and the task was offered as a student project. However, by the end of the session no student had shown interest in such a mundane exercise. So I turned to the ICL1900 series computer and wrote a BASIC program that turned this giant into an 18-stage shift register. This may well rank as the world’s least efficient computer program (if booby prizes are being offered I am interested), for it takes a computer an uncomputable amount of time to perform over a quarter a million shifts from a high level program. The situation was only slightly improved by reprogramming in ALGOL.

Clearly the time had come to rewrite the slowest part of the program, the shifting loop, into machine code. The snag here was that although the PLAN code was well documented, actually learning to use it efficiently requires some weeks of study under expert tuition. Luckily my colleague Tim Fuller took pity on me and wrote and tested a suitable PLAN segment (a matter of 16 instructions) for incorporation into my ALGOL program. I was then at the point which Mr Wood seems to have reached more effortlessly with his Z80 routine, and I proceeded to output sequence lengths for all feasible arrangements of connections, with the register starting from all stages set to ‘true’. For the benefit of posterity I hope the editor will allow me to record here the only six arrangements which gave maximal-length sequences. Numbering the stage output connections from 1 to 18, there was only a single set of 6 feedback connections, namely 4, 8, 9, 13, 17 and 18. With four feedback connections there were five alternative sets:

\[
\begin{array}{cccccc}
 a & b & c & d \\
 1 & 1 & 5 & 1 \\
 1 & 2 & 2 & 3 \\
 1 & 1 & 1 & 4 \\
 2 & 1 & 2 & 3 \\
 2 & 3 & 1 & 2 \\
 d & c & b & a \\
\end{array}
\]

Naturally enough, the output from stage 18 is used in every case. It is more convenient to use one of these five sets, as the four feedback connections can be combined using only three quarters of a 4030 quad gate i.e., leaving the fourth gate available for use as a clocking oscillator. If any readers have constructed the p.r.b.s. generator shown on page 43 of Electronics Today International for March 1974, they should find that it does not give a maximal length sequence, but one which is 262140 bits in length. It is not impossible that this might stick (on start-up) in the four-bit sequence 00110011001101, etc. as far as I can deduce. Can any reader confirm (or refute) this assertion?

Desmond Thackeray
Department of Music
University of Surrey
Guildford

GENERATING THREE PHASES

Your correspondent, E. V. Hurran (August, Letters) recommends one of the Van der Pol oscillators for producing a good sinusoidal output, particularly at very low frequencies. While agreeing that the virtues of some older circuits should not be overlooked, it is our experience that for many practical applications an oscillator with a properly engineered method of amplitude control is needed. Without such control there must be either constant attention to manual control of loop gain, or reliance on some degree of saturation in the amplifier or amplifiers. Van der Pol assumed a 3rd-order non-linear characteristic.

As we have shown (Electronic Engineering, April and May 1957, pp. 164 to 169 and 210 to 213; and Wireless World, March 1970, pp. 134-139) a satisfactory sine-wave oscillator for very low frequencies is obtained by using a two-integrator loop as a selective circuit and adding a feedback path containing a limiter. This produces a two-phase oscillator; but from two phases, three or any number may be obtained by vector addition and subtraction. The distortion introduced by the limiter is readily calculable and can be made small. When variable tuning is required it can usually be obtained more conveniently than with a three-phase oscillator.

F. E. J. Girling
Malvern
E. F. Good
Darlington

TECHNICIANS OF SCIENCE

In reference to your editorial “Producers before Products” in the June/July issue, I must say it is rare in these times to read such an article in a technical magazine. Well done! But although you take a wide and simple view, the fact is that many of us can’t go along with it, or even understand its importance — perhaps because of the very insanity of the society in which we live. Engineers and technicians must become more aware of what they’re actually doing, and not just remain content to satisfy the demands created by people who see everything in terms of money and power. There are alternative ways, and to find them we need open minds. True science and engineering involve more than technical knowledge. Those people who stay at the level of technical knowledge are the technicians of science, no matter what academic qualifications they may have — there are no institutions to give higher degrees than those they have anyway. If only we could obtain a clear view of the whole system, from the small details up to philosophical questions about our existence, there would be a better chance that each of us, in his own job, would be doing the right thing at the right time to abolish aggression, harmful ambition and competition and the other injuries to humanity of which you write.

As a relatively young computer engineer, working to develop electronic systems for agriculture, I try to use techniques which make the processes more accurate — but not automatic unless this is necessary because they consume too much energy or cannot be done manually. I’m not working in mass production now, but since I’ve studied and worked in Britain and have also seen the same problems here in Israel, it’s quite clear to me that we are all engulphed in the industrial system you describe.

There are not many articles published about electronic techniques in agriculture. If any Wireless World readers are involved in agriculture I will be glad to let them know about my current work.

Yehiel Livan
Kibbutz Neer-Oz
Dor-Nea Hanger
Israel.

VARIABLE PHASE ALL-PASS FILTER

Further to the article on page 77 of the May issue by T. G. Izatt and E. Bell describing a variable phase all-pass filter, the circuit performance described is readily obtained using a simple operational amplifier circuit (below) which, due to the higher open loop gain, will give a more precisely defined transfer function (subject to sufficient bandwidth obtainable from the operational amplifier).

The transfer function is defined by

\[\frac{V_{out}}{V_{in}} = \frac{1 - sC_2R_2}{1 + sC_1R_1} \]

or \[\phi = \tan^{-1}(\omega C_2 R_2) \]

where \(\omega \) is a tuning parameter which, given a value, will cause the phase shift to be 90°. Two or more such circuits may be cascaded to provide a wider range of phase variation.

\[\text{V}_{\text{out}} \]
\[\text{V}_{\text{in}} \]
\[\text{C}_{\text{op-amp}} \]
\[\text{Vin} \]
\[\text{Op-amp} \]
\[\text{Vout} \]

F. J. Lidgby
Department of Engineering
Oxford Polytechnic
and
E. A. Warpe
Department of Physics
University of Surrey
COMPUTER CHAOS

I write to express discontent with the general confusion of the world of computing and programming. Many manufacturers think fit to evolve similar systems, or systems for similar ends, that work in entirely different ways. When they use the same interface there is sure to be some minute difference making them incompatible.

Under the unpleasant political systems, of course, computer structure and software would be rigidly restrained. As it is, the working individual is expected to carry the burden of different systems and different operating systems which were originally created in the hope of producing profits which he does not see, and indeed they may well fail to materialise.

Anyone in the tenor of computer engineers can only hope to become really affluent by starting a microcomputer firm which, even if it does not collapse in a few years, will only add to the Tower-of-Babel chaos surrounding us.

Coming now to the home computer, I am still shuddering from an advertisement for a printer containing many complex special L.S.I. circuits 'untested, unguaranteed – what more could you want?' Making a note not to fit a printer, and having to go to cut corners, still needs a microcomputer with high reliability, a correspondingly low cost maintenance service, with easily expandable memory and interfaces. But if you are going between anyone on a computing career and there is a case for having PL/M resident in memory, which raises the question of whether amateurs should not be allowed the use of standard programmes legitimately acquired at small cost. This seems an obvious case for state intervention, involving a package deal for amateurs across the country.

Your correspondent Russell Gad (June/July issue has had to write his own circuit/edited/printed/hand-assembled microcomputer) and this underlines the need for several programs to be provided to run the system properly. Even writing machine code is done efficiently by using high level languages(s) and an assembler.

The amateur computer will simulate the operations of more complex computers, running at uneconomic speeds in complex work, and the best amateurs will need access to large, more efficient, programmes. Since the computer industry can only profit from their activities it is up to them to make programs freely available. It is not for me to suggest that in default of this provision, and until high powered (one quarter of the claimed output) stereo amplifier is available, there should be no incentive for this if proprietary programs are licensed to amateurs at fees reflecting the amount of use they will get.

Bernard Jones
London W1

RADIO AND FREE SPEECH

In relation to the eternal prevarication over citizens' band, we should be quite clear that ours is a representational democracy where free speech does not end. R.A.S.C. alone is not going to ban it can be limited without it. When electrical communication systems were invented, government became terrified that at last anyone who could make a transmitter could be heard without editorial filtering. The government therefore seized the air waves much as it had seized that other means of mass communication, the theatre in Elizabethan times. The method was the same: licensing. Pressure from radio enthusiasts forced the government to permit amateur transmission. The mere achievement of communication over vast distances with watts of power was scientific research. In the long term, however, the most interesting as to what is communicated and most forms of communication were taboo under the terms of licensing. Certainly the two areas where mutual understanding are most in need, religion and politics, are taboo.

One of the most fascinating aspects of professional radio is listening to foreign correspondents assessing the situation in a country. How vastly more interesting to hear a national of that country give his own assessment. Most of it would be organised government but if the right frequencies were kept open, illicit transmitters could be cheap and easy to construct, difficult to pinpoint. Occasionally, it is only by clamping down on these most governments would let them exist. Our country has been as repressive in this field as the Soviet Union and for no valid reason except the desire to keep free speech as a hollow sham.

Even more vital than communication of political, scientific and philosophical views is the ending of the isolation of the car driver. Here the need is for short-range radio communication and the need to make it available. Civilised behaviour is a phenomenon dependent on communication, which is why the car driver is the most uncivilised human being and behaves in a totally egocentric manner.

It seems to me that the laws on radio waves should be concerned with more than protecting commercial and military communication from interference and should not be used to prevent people from communicating. With the ending of the monopoly powers of the Post Office on connecting things to telephone lines it is high time that the silly ban on competing with the Post Office in family communication was ended. Ordinary families just do not spend hundreds of pounds 'phoning each other long distance. Even the Queen has been held to be bound by this silly rule.

Fred Allen
Cambridge

AUDIO KITS

I thoroughly agree with the opinions of your correspondent of many months ago on the variable quality of the current flood of kit-form hi-fi – variable meaning bad to worse – that is with the exception of a certain company who sell kits with pre-assembled p.c.b.s. Generally, kit-form hi-fi is best avoided.

Some months ago I paid £100 plus v.a.t. for a high powered (one quarter of the claimed output) would be quite sufficient in my humble home – even with highly inefficient speakers) integrated stereo amplifier. I estimated no more than forty hours' work. The job absorbed no less than eighty hours, and another fifteen hours sorting out problems. The latter included a special modification that only a highly qualified engineer could have carried out. Oh yes, the supplier described the kit as "easy to build" and "entirely suited to the novice."

In this day and age one hundred hours equates to £100 under tax, so one could say that this appalling piece of equipment cost some £300+ True. sixty per cent of kit buyers are not very fussy people, but I am sure that at least forty per cent do consider returning the kits for a refund. However, they rarely do because they believe that a very high standard of assembly work will compensate for the flimsy mechanical design. This seldom works out, and in the end all one can show for the monotonous labours of kit constructors is a typical trash item – and more often than not a non-working one to boot.

Building a relatively simple device can prove to be highly enjoyable, but a stereo amplifier.

So before you rush out to buy that hi-fi kit with unadulterated enthusiasm, think about it very seriously, and never, never buy a kit without first listening to a built-up example and also having a chat with someone who has built one up even if the latter involves an advertisement in the electronics press.

Be warned – sixty per cent of kit buyers probably end up with a non-working item, and around ninety-five are probably dissatisfied.

I firmly believe that all kit suppliers should be involved, that is, the time taken by a reasonably experienced enthusiast without previous knowledge of the kit in question.

Should all audio kits carry a Government health warning?

M. J. Evans
Worcester

WHEN BOMBING PROLONGED A WAR

The recent commemoration of the 35th anniversary of the second world war's ending coupled with the second printing of Max Hastings' outstanding book, Bomber Command, makes it appropriate to record the following failure in vital communication between the necessary branches of the central intelligence command.

Hasting's book describes how the bombing of Coventry on the night of November 14, 1940 is supposed to have been avenged by inviting Royal Air Force personnel to choose their own targets, and how a certain Bob Dodd volunteered to bomb Eindhoven in Holland although the main option appears to have been Hamburg. It is to be hoped Dodd's navigational skills on this occasion were no better than when (as the book relates) he bombed Epinay in Vichy France in the belief he was bombing Mannheim!

Early in 1941 I was summoned to the London headquarters of the organisation subsequently known as Special Operations Executive, and interrogated by Lt. Col E. Schroeter. I joined a few months later and learned the import of this hypnotically secret body charged with stirring the European Resistance and supplying its peculiar needs.

Following evacuation of Dunkirk by the British, the factories of Eindhoven had gradually developed a major technique in helping to sabotage the Nazi war machine. The communications equipment plants had devised methods of producing programmed short-life thermionic valves and other electronic components on which the German High Command relied. There was also a clandestine plant devoted to the invention and production of simple gadgets guaranteed to immobilise German tyre and track vehicles, such as personnel carriers and tanks. If Dodd's preference for bombing Eindhoven rather than Hamburg had the effect of smashing the former town's communications equipment production, the Germans undoubtedly transferred their orders to manufacturers far less likely to be under surveillance of saboteurs one half as efficient as those of Eindhoven. In fact, by 1945, the Dutch Resistance engineers had so much perfected quantified fail-early electronic components that I and others were being offered contracts to go to Holland, to re-establish techniques of standard equipment production. I opted for somewhat similar duties in Denmark.

"Col. Soeoe" (Name and address supplied)
In a logic circuit, the designer's intention may be to use a gate in a way other than that described by its name. A Norgate can be used to Nand inputs and the author contends that the intention of the circuit designer should be indicated on the diagram.

As the cost of servicing electronic equipment rises, manufacturers are paying more attention to improving the serviceability of their products. There are many ways in which the repair of faulty electronic equipment can be facilitated. Readily accessible circuit boards, good component layout and numbering, and built-in test points are typical areas where great improvements have been made and which make life easier for the hard-pressed service engineer.

Improvements have also been made in the presentation of technical manuals, but there is still much inadequate documentation being produced. One area where there is room for improvement is in the presentation of logic diagrams for digital circuits. There are many drawings that one can only follow with a great deal of effort, involving the following sort of mental monologue: "when that's high and that's low then that will be high and that low; no, that will be high. Or low? Let's start again. When that's low ...". But in the service workshop or at the customer's site, speed of repair is all-important and logic diagrams should do everything possible to show the user exactly what the designer's intention was at every gate in the circuit. Such drawings may be called intentional logic drawings.

Look at the example taken from an engineering manual in Fig. 1. Can you say quickly what conditions are needed to allow a pulse to appear at the output? As it is drawn, it appears that the two X inputs are Anded and the ENABLE signal is being Ored and POS.X.COUNT. If you look at the manufacturer's catalogue for the devices you will see that the symbols for the 7400 and the 7402 are given there in the same form. Where has the drawing gone wrong?

The sense of such logic can be made clearer by recognizing that when we use inverted logic in which the low level is the true or asserted state, the logic symbols do a swap and And gates become Or gates and vice-versa. The equivalent symbols for the common logical gates with conventional and inverted logic representation are given in Fig. 2.

If you don't see this at first write out the truth table for a familiar device, say a two-input Nand gate:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>O/p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Now invert the logic by writing a 1 where there was a 0 and a 0 where there was a 1 to give:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>O/p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

which is the truth table of a Nor gate in conventional logic. The convention used is that when we are looking for an assertion of a "low is true" signal we put a bubble on that input line. The mnemonic for the low signal should either carry a bar over its name or, easier to print, be followed by L. When possible, signals that end on a bubble should begin on a bubble. Fig. 1 is redrawn using this intentional symbolism in Fig. 3, where the designer's intention becomes clear. When either X1 or X2 is low and the ENABLE signal is low then the pulse train POS.COUNT PULSE should appear at the output.

When logic diagrams are drawn out in this way they are more intelligible than when the gates are represented only by the conventional "manufacturer's" symbols. Let us look at another example. The conventional representation of a flip-flop made from two Nand gates has been redrawn using intentional symbolism in Fig. 4. The second drawing makes it clear that the device is normally in the reset state waiting for a low input on pin A to set it.

Of course, there are ambiguities in the intentional symbolism. When we want to use a signal both in its high and in its low state how should we represent it? Mnemonics should be chosen to

![Fig. 1. Conventional logic diagram, in which gates are used for different purposes than their symbols indicate.](image1)

![Fig. 2. Conventional symbols and their equivalents when low-level logic is used.](image2)

![Fig. 4. Flip-flop circuit drawn in the conventional way (top) and in 'intentional' symbols.](image4)
The amount of bias to be applied is best determined using a test record which provides a stereo signal having equal high modulation on each channel. If this signal is reproduced through amplifiers capable of carrying large amplitudes without distortion and the resulting waveforms displayed on a dual-trace oscilloscope, the two outputs may be simultaneously inspected. The correct amount of bias is then established by varying the inclination of the vertical pivot until the two output waveforms are equally free of distortion. In practice, there will be a range of adjustment over which there is no discernible change in waveform shape. It is therefore necessary to find two positions of the block at which the onset of distortion can be seen, first in one channel and then in the other. Having located these points, the best setting is one midway between them.

The two photographed versions were tested for arm resonances using the B & K test record QR2010, band 15. The l.f. arm resonance for the first arm, Fig. (a), is certainly in a suitable position as there is minimum energy from the record near 7Hz and it is clear of the lower recorded modulation limit of 20Hz. The resonance at 7Hz is from the compliance of the stylus cantilever with pickup and arm mass; some new pickup designs have improved damping as part of the cantilever suspension. The peak of 10dB was 2 to 3dB better than two commercial arms measured, and I have recently measured an arm with a 20dB peak at 10Hz.

As this 7Hz 10dB resonance can affect other parameters such as rumble wow/flutter and playing weight, as well as adding intermodulation to tones in the audio band, the resonance can also make the problem of groove jumping from vibrations greater, especially walking and traffic. Modifications were considered but as other arm resonances can occur in the audio band a 20Hz to 20kHz sweep was made, Fig. (b). Similar tests were made on the second arm, Figs (c) and (d).

Close inspection of the first arm showed oscillation about the horizontal pivot, with the two ends as antinodes. I had hoped that moving the horizontal pivot to a 2/3 position instead of half way would reduce the oscillation and result in nodes at both the pickup and pivot. The second arm, built on this basis, did not show an improvement as far as the main arm resonance is concerned; however the small resonance at 33Hz disappeared.

Although it is hoped to halve the 7Hz resonance on the mk 3 arm, some increase in output toward the 20Hz end can be justified as the IEC recording/playback characteristic specifies a 3dB reduction in amplitude at 20Hz. A slight up-turn from arm resonance could therefore help to keep overall response flat to 20Hz.

*As shown by Record warps and system playback performance, by Happ & Karlov, AES Convention 1973.

Fig. 5. Printer circuit, showing that ambiguities can appear.
Spend Less

LP-1 Logic Probe
The LP-1 has a minimum detachable pulse width of 50 nanoseconds and maximum input frequency of 10 MHz. This 100 K ohm probe is an inexpensive workhorse for any shop, lab or field service tool kit. It detects high-speed pulse trains or one-shot events and stores pulse or level transitions, replacing separate level detectors, pulse stretchers and pulse memory devices.

£31.00*

LP-2 Logic Probe
The LP-2 performs the same basic functions as the LP-1, but for slower-speed circuits and without pulse memory capability. Handling a minimum pulse width of 300 nanoseconds, this 300 K ohm probe is the economical way to test circuits up to 1.5 MHz. It detects pulse trains or single-shot events in TTL, DTL, HTL and CMOS circuits, replacing separate pulse detectors, pulse stretchers and mode state analysers.

(Available in kit form LPK-1 £11-92)

£18.00*

*price excluding P&P and 15% VAT

Test More

LP-3 Logic Probe
Our LP-3 has all the features of the LP-1 plus extra high speed. It captures pulses as narrow as 10 nanoseconds, and monitors pulse trains to over 50 MHz. Giving you the essential capabilities of a high-quality memory scope at 1/100th the cost. LP-3 captures one shot or low-rep-events all-but-impossible to detect any other way. All without the weight, bulk, inconvenience and power consumption of conventional methods.

£49.00*

The New Pulser DP-1
The Digital Pulser: another new idea from C.S.C. The DP-1 registers the polarity of any pin, pad or component and then, when you touch the 'PULSE' button, delivers a single no-bounce pulse to swing the logic state the other way. Or if you hold the button down for more than a second, the DP-1 shoots out pulse after pulse at 1000 Hz. The single LED blinks for each single pulse, or glows during a pulse train. If your circuit is a very fast one, you can open the clock line and take it through its function step by step, at single pulse rate or at 100 per second. Clever! And at a very reasonable price.

£51.00*

CONTINENTAL SPECIALTIES CORPORATION
C.S.C. (UK) Limited, Dept. 711, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

Press includes P&P and 15% VAT

Name
Address

I enclose cheque/P.O. for £ or debit my Barclaycard/Access/American Express card no. exp. date

FOR IMMEDIATE ACTION — The C.S.C. 24 hour, 5 day a week service. Telephone (0799) 21682 and give us your Barclaycard, Access, American Express number and your order will be in the post immediately.

C.S.C. (UK) Ltd., Dept. 711, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

Telephone: Saffron Walden (0799) 21682

Telex: 817477
Model C
All ANTEX soldering irons have bits which slide easily on and off stainless steel shafts. Inside these shafts are the heating elements for maximum efficiency of heat transfer. There are no screws or screw threads to corrode and stick to shaft. Bits are heavily iron plated for long life.

* Model C Miniature — 15 Watts Price £4.20
* Model CX — 17 Watts Price £4.40
* Model X25 — 25 Watts Price £4.40
* S.T.3 Stand to fit all irons Price £1.60
* Model S.K. 1 Kit contains a 15-Watt miniature iron with 2 spare bits, a coil of solder, a heat sink and a booklet "How to Solder". Price £6.25
* Model S.K. 3 Kit contains Model CX 230 iron — 17 Watts with the S.T.3 Stand Price £6.00

Model TCSUI. Temperature controlled soldering stations, now made from the toughest of tough plastics, have anti-static earthing connections to protect your MOS devices. They come with either the miniature CTC or the XTC low voltage (24V) iron. Included also is a range of 3 sizes of bits, 2m anti-static cable, jack, crocodile clip, separate sponge tray. Zero voltage switching to prevent spikes or arcing; no magnetic fields. Temperatures can be set between 65°C and 420°C. Current leakage is negligible. Price £38.00

All prices are exclusive of VAT and postage.

Please send me the following:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model CX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model X25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.T.3 Stand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model S.K.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model S.K.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model S.K.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model TCSUI</td>
<td></td>
</tr>
</tbody>
</table>

Please send me the Antex Colour Catalogue.
I enclose cheque/P.O./Cash Value
Name
Address
Telephone

Stacked by many wholesalers and retailers or direct from us

WW—064 FOR FURTHER DETAILS
Satellite broadcasting in the eighties

2 - European satellite projects

by G. J. Phillips, M.A., Ph.D., B.Sc., BBC Research Department

There are a number of satellite broadcasting projects under discussion in Europe. An outline of present proposals is given here but details may, of course, be modified in the course of development.

European Space Agency L-SAT. This project is for a large satellite, to be launched by Ariane-3 in the first quarter of 1984, to carry transponders for a number of different applications including two for pre-operational use in satellite broadcasting. Other transponders will permit trials on business-system communications (up-link in 14 to 14.5GHz band, down-link in 12.5 to 12.75GHz band) as well as propagation and wide-band data-link studies in the 30GHz (up-link) and 20GHz (down-link) bands. The precise details for the two 12GHz broadcasting beams are still to be settled but one beam is likely to be elliptical (approximately 1 by 2.4 degrees), carrying channel 24 with left-hand polarisation to correspond with one of the Italian assignments, and the other a circular beam (1.6 degrees wide) which may carry channel 20 or 28, probably with the opposite polarisation. The intention for the first three years at least is to take advantage of the fact that either beam can be independently steered to cover any European country, so that satellite broadcasting demonstrations and pre-operational experience can be obtained on a time-sharing basis. Most of the experiments are likely to take place with the satellite at the 19° West orbit position. Consideration is being given, however, to operation for extended periods at 31° West and 5° East as may be required to provide pre-operational test transmissions to match plans in the UK, Spain and Scandinavia for operating their own satellite broadcasting satellites in the second half of the decade. The use of the satellite towards the end of its seven-year life is uncertain but Italy has made a strong bid to use it as a starting satellite for its service on two channels until replaced by a purpose-built operational satellite.

The UK has made the largest single contribution so far to the L-SAT project in terms of money and corresponding contracts. At least seven other countries are giving support, notably Italy and the Netherlands. British Aerospace has been selected as principal contractor. The decision in implementing L-SAT will be taken at the end of 1980 following completion of the definition/design stages now in progress.

French and German satellites. France and Germany withdrew their support for L-SAT in 1979 and agreed that they would co-operate in building two satellites, one for each country, each capable of transmitting on three channels. The satellites themselves would be built by Messerschmitt-Bolkow-Bohm in Germany in cooperation with Aerospatiale in France; they are intended to be launched by the Ariane launcher, which is largely a French development, though carried out within the framework of the ESA. Present plans are working towards a launch of the German satellite in December 1983 and the French one in June 1984. The German satellite will operate on channels 6, 10 and 14, and the intention is that two channels
will carry television and the third a multiplex of sound programmes using digital modulation. The details for France are not yet settled.

NORDSAT project. As indicated earlier, the four Nordic countries are in the privileged position of having secured eight channels in the 1977 plan within a beam whose coverage embraces Norway, Sweden, Denmark and Finland. NORDSAT is the joint body set up both to exploit this beam and to include transmissions for Iceland, Faroes and Greenland, the project being based on the use of a satellite at 5° E. The object is to relay the various national television programmes throughout the whole group of countries. For the four major countries eight programmes could be relayed and for the Icelandic beam the assignments permit five.

The participants wish to include sound programmes but are reluctant to forgo one television channel by dedicating one channel for a sound multiplex (as proposed in Germany). They wish to develop suitable means for adding several sound channels to the television channel to cater for a stereo pair for television extra language transmission and international discussion will be facilitated. The dispersed waveform helps in controlling interference to others, lead to more efficient use of the spectrum, and give more channels for interference-free direct reception of the programmes from other countries at will, so that when the 1977 plan did not appear to provide for this, scorn or indignation was expressed at the apparent narrow-mindedness of the planners.3 What must be understood, however, is that there is nowhere near enough frequency spectrum to plan for interference-free direct reception of the 50 or 100 programmes implied. Furthermore there would be political, legal, copyright and advertising problems in widespread international coverage. Within the scope of the 1977 plan there is nothing to stop shared programmes or joint productions and pressure from the public should ensure that the broadcasting authorities provide them with what they want. The plan is perhaps open to criticism because it is a compromise which allows a considerable degree of inevitable overspill between adjoining countries. Perhaps in the next band at 40.5 to 42.5GHz (apart from thinking of higher definition, digital video and maybe stereoscopy) we should use large apertures and make sure that beams are tailored to fit each country or part of a country more precisely. The main turn would reduce interference to others, lead to more efficient use of the spectrum, and give more channels for each country.

Acknowledgement. The author wishes to thank the Director of Engineering of the BBC for permission to publish this article.

References
Coherent audio filters for c.w. reception

Novel filter helps separate Morse signals from interference

by F. Charman G6CJ

The problem of extracting information from a noisy environment has been with us ever since wireless communication began, and over the years many noise-reducing systems have been invented. Today the radio astronomer separates informative noise from background noise, and may now exceed it by 30 dB or more. The author discusses the problem as it affects the radio amateur using Morse-code signalling, and introduces a novel type of filter which uses coherent addition to help separate steady-state signals from interference, and noise man-made or natural. It uses the tapped delay line principle to provide a non-ringing filter which, as well as lifting the signal from its environment, also has a narrow passband with desirably steep sides.

If all the radio amateurs in the world using the h.f. band could be heard together, one operator's share would be about 3 Hz. Fortunately, the possibility is remote but, nevertheless, the packing-density is a severe and ever growing problem, particularly since the most interesting signals are often down in the noise or buried in the 'fourth layer' of interference.

It has often been said that c.w., as it is misnamed, is a dying art. Most professional communication is now carried out by machine systems which are faster and more reliable, though they seldom approach the Shannon ideal as closely as the Morse code: the cost of reliability seems to be very expensive in bandwidth. The argument for keeping Morse alive, given long ago, still holds. The possession of a large body of radio operators is an important national asset, as it was to us during the last world war. In times of emergency, when sophisticated means may fail, the human operator can still carry on some sort of communication with the absolute minimum of gear. One therefore feels justified in continuing to search for ways of improving c.w. communication.

C.w. communication

In hand operating, selectivity takes place in two stages: in the receiver and in the operator's head. After the atmosphere and the external noise have done their worst the receiver does its best, and then the operator does a great deal more. He attunes his brain to the signal and its particular rhythm, and uses his knowledge of the redundancy of the language and maybe his knowledge of the operator at the other end of the circuit. This 'subjective selectivity' can be greatly helped by converting the receiver audio output to a stereo image, particularly in searching, when one needs to be alert to the signal environment. The operator is quite as important as the machine and there is plenty of scope yet for improving the coupling between man and machine. However, the following work is largely on the side of the machine.

Filters and noise

Noise in the present context includes white and transient noise, as well as unwanted signals. The author was encouraged to undertake the present investigation after moving to a location abounding in 11kV power distribution lines, which often produce enough somewhat 'coloured' noise to bury any but the most resolute signals.

The first attempt was a highly selective filter of conventional type, but this was quite useless. The noise particles grew into great blobs in the passband, whilst the weak signals, already modulated by noise in the receiver, actually lost power because they now had a wider spectrum. It became clear that in such a situation it was best to use the widest passband that interfering signals would allow. The transients kicked the narrow-band filter transients into damped oscillations which lasted for at least Q cycles. To prevent this, it would be essential to use heavily damped, non-ringing circuits, but this would normally require a great number of non-interacting sections to produce a narrow-band result.

Some method was sought of securing coherent build up of the wanted signal and it seemed that a delay line several cycles long could provide samples at every half-cycle of the wanted audio frequency, which could be added in phase to enhance the signal at the expense of the incoherent noise, as in Fig. 1. Since the phase must vary with frequency, coherence would degenerate as the frequency moved away from the half-cycle value, and a narrow band might more easily be obtained. This turned out to be the case.

Transversal filters

The tapped delay line, or transversal filter, of Fig. 2 is normally used in the time domain, for generating or recognizing coded pulse trains or shapes, in, for example, security or communication systems or high-resolution radar. The delay line may comprise lumped networks or may be cable or waveguide. In this case it is going to work in the time domain for noise and in the frequency domain for c.w. signals.

For audio applications, network sections are necessary. Several sections are needed to obtain good coherent advantage and they must have low Q in order to prevent ringing. It turns out that all-pass sections make a very good filter and with quite low Q rapidly produce a narrow passband. Second-order sections are required to produce a phase shift of 180° at the mid frequency.

Perhaps one should explain what is meant by the Q of an all-pass filter. In a bandpass filter, of course, Q conventionally determines the rate of fall of amplitude away from centre frequency. An all-pass filter has uniform transmission at all frequencies, but the rate at which the phase changes about the mid frequency is important. The area of the circles represents the power in the signal and the noise. Addition of N signal vectors in phase increases the signal power N^2 times. The noise can only be added as power, so N samples gives only N times noise power, a signal/noise power gain of N.

Fig. 1. Illustrating coherence. The vector S represents the signal whilst the noise is a number of random vectors in the centre. The area of the circles represents the power in the signal and the noise.

Addition of N signal vectors in phase increases the signal power N^2 times. The noise can only be added as power, so N samples gives only N times noise power, a signal/noise power gain of N.
frequency is under control; in a lumped, LC allpass, this is determined by the L/C ratios in relation to the terminating impedance, the loaded Q of the network. In dealing with filters it is more convenient to use the damping factor, m, which is the inverse of Q.

Design

In a T-filter of N stages, theadder sums $N+1$ samples in progressive phase. It is quite easy to reduce the sum to a compact formula (see Appendix). For design, since one is working in phase rather than frequency, the first step is to produce a generalized chart of output amplitude versus phase for various values of N, as shown in Fig. 3(a). The second step is a chart, seen in Fig. 3(b), to convert these responses to frequency scale in terms of the damping factor. Thus m can be chosen to control band-width.

The responses are characterized by steep sides to the passband, followed by sidelobes, as in a conventional m-derived filter or a linear aerial array. These sidelobes are too large for a noisy signal environment, and various means are discussed later for reducing them.

Theory of performance

When a resonant wave enters the filter, each tap in turn delivers one half cycle of oscillation and the output builds up in $N-1$ steps to $N+1$ times the input amplitude; it decays likewise when the signal stops, as in Fig. 4. Of course, this makes the signal sound a little 'woofy' as would a conventional filter, but the rise is linear and quick. Up to eight stages have been used without the effect becoming too unpleasant. At the resonant audio frequency used this slope represents a small fraction of a typical morse dot.

A pulse may in general be treated as a step function or a combination of two or more. Analytically, the output of an ideal allpass to an ideal step is rather alarming - a sharp spike where the components of its frequency spectrum come into phase, followed by a broad pulse representing the intermediate spectrum. But this is not a real situation. The filter sections never pass zero or infinite frequency. The pulses are topped and tailed naturally in propagation through space and through the receiver. What the filter receives is a single, rounded pulse, maybe with some over-swing. This propagates down the chain with very little change if the damping is high and the result is no coherence, but a kind of oscillation lasting $N+1$ half cycles. Thus, a.c. signal is extended in amplitude whilst a transient is extended in time and one can expect the improvement due to coherence of the signal. Similarly, band-limited white noise delivers samples belonging to different epochs, and again there is no coherence.

Filter sections

The use of active networks brings several advantages apart from the avoidance of physical inductors. Modern integrated-circuit amplifiers can provide filter sections with high input and very low output impedances. Thus, there are no interactions between sections; they are unilateral, and reflections cannot run up and down the chain, as they can in passive filters, to produce long-delay echoes on transients. The damping required for frequency response is automatically incorporated in each section of an active filter.

Two active circuits are known which provide complete freedom of choice of damping coefficient, and their basic forms are shown in Fig. 5. In the Holt and Gray circuit (a) looks more complex but is easier to implement, since circuit (b) requires special R-values and an extra amplifier to recover unity gain.

The most critical components are the gain control pair. Because of the
positive feedback arm B, the circuit can become unstable if R_2 exceeds R_1 by more than a few percent, and oscillation may occur at about 10 kHz, where amplifier limitations brings the phase round to 360° too soon. Arm B is next in order of importance and will upset the gain and phase response if too far out of adjustment. Nevertheless, using 2% resistors and 2½% capacitors, many sections have been made without difficulty.

The circuit of Fig. 5(b) looks simpler, but requires difficult resistor values, needing parallel pairs or a stable variable resistor, and therefore much trouble in setting up. Also its gain is $1/(1+m^2)$ which must be brought up to unity with a second amplifier.

The centre frequency of the Holt and Gray filter chosen has been set at 725 Hz. This is a comfortable listening frequency and is also in the most selective region of the hearing mechanism. In addition, the CR product in the networks can be based on 22kΩ × 10nF, and since the E-series component values are approximately logarithmic, other pairs can be found for various m-values. Figure 6 shows the detailed circuit.

Sidelobe reduction

As noted above, the sidelobe level, about -12 dB, is too high. Some 'leak' of the outside world is useful, but it must not let in too much of the noise spectrum, or overload signals; 30 dB is a desirable target. Various schemes have been considered, such as the use of an over-riding bandpass filter or mixed m-values along the chain. Another is to go back to the aerial designer, and use a tapered distribution by weighting the taps to the adder. The first two only give about -20 dB, the taper about -24 dB. A taper much used is the familiar 'cosine-on-pedestal' and together with a quite low-Q input bandpass filter can be made to give -30 dB sidelobes. A Tchebysheff taper could no doubt be made but would require very close tolerances to give the -30 dB, but the input filter has another advantage in that it removes much of the transient energy and thereby improves performance. So the head filter has been used as part of the complete design. (Note that the T-filter passes on in some way all the energy which enters whilst the more conventional filter rejects energy outside its passband).

Four-stage linear-array model

Figure 7 gives details of a four-stage T-filter, using the all-pass sections shown in Fig. 6. A feature is that the operational amplifiers are biased up to $\frac{1}{2}V_\text{sat}$ so that a single, earthed power supply can be used. Type 741 amplifiers are used throughout; other types such as the 709 need an external compensating capacitor.

The input bandpass filter is a well known type in which the bandwidth is constant $(B=1/\pi CR)$ whilst it can be tuned by varying the input shunt resistor R_2. The resonant frequency is given by $1/(2\pi\sqrt{C R_2})$ where R_2 is the parallel value of R_1 and R_2. The gain at resonance is $R_1/2R_2$. It should be tuned to peak at 725 Hz or to balance the two sidelobes of the complete filter. The bias for this stage clamps the non-inverting input to $\frac{1}{2}V_\text{sat}$.

The delay line uses sections as detailed in Fig. 6, the main properties of which have already been given. One adder tap is taken from each input and one from the final output. Bias is applied at the first input, and the amplifiers are good enough to hold this closely all down the chain, though the models made used two stages per board, based on the 747 chip (two 741 in one unit) and each board was provided with one bias and blocking capacitor. The latter should be 1 nF; this already shifts the phase a few degrees and if any less is used the peak frequency of the filter will move.

To test the allpass sections it is...
necessary to check that the output terminals (pin 6) are at about \(\frac{1}{4} V_{os} \), and that the phase shift per section is 180° at 725 Hz. The latter test can be made by connecting both input and output taps of one section to the inverting input of the adder; the output of the adder should zero at the 180° frequency. If these tests are satisfied then all is probably well, though it is advisable to use an oscilloscope to test for self oscillation.

The adder is conventional, and takes its bias from the filter chain. The gain is unity for each input but, since there are five, the a.c. output will be five times that of the input to the main filter, so this is the overload point of the system. With a supply of 18 volts to the amplifiers, the system will handle sufficient level for headphone use. If the adder is to be tested separately it must be provided with bias.

The output of the adder will drive a high-impedance headset direct, but for more general use, an output stage has been added, based on the LM380, which will drive any headphones, or a small speaker of almost any impedance. Its input is tapped down to give an overall gain of about 2 or 3. Input blocking is necessary and the 1000pF shunt is protection against strong r.f. fields.

The LM380 is internally protected against output short circuits, but if less than 12 volts supply is used it may lock out and play possum. It is a lively megahertz bandwidth amplifier, and both the 0.47µF and 0.01µF decouplings are essential: if it does oscillate it may draw enough current to do damage. The main earth and heatsink on pins 3, 4, 5 and 10, 11, 12 should connect at least two square inches of circuit board copper, and for speaker use extra heatsink should be added.

Performance

The overall frequency response (Fig. 8) is characterised by nulls at about 500 and 1000 Hz, i.e. about 2½ bandwidths apart. (If these are not correct, check the adder and the overall flat frequency response of the delay line). With close-tolerance components these notches may be 40 dB or more below peak level, and one can, in fact, tune out a c.w. signal and listen to its spectrum puffing on either side of the notch. Also the transient rejection is sufficient to reduce the apparent strength of signals with a bad spectrum. However, strong hash-type noise tends to whistle near the peak frequency, and reducing this effect led to further development.

Cosine-on-pedestal model

The natural frequency of a second-order filter, at which the transports of the transients abound, is \(\omega_c \sqrt{1-m^2/4} \). With \(m = 1 \) as in the model above, this quite close to \(\omega_c \) and the obvious step is to move toward critical damping with \(m \) approaching 2 and thus push the noise energy towards zero frequency. However, more sections are then needed to retain the 200 Hz bandwidth, which increases cost but gives extra coherent gain. A good arrangement would be six stages with \(m \) about 1.7, but the cosine-on-pedestal with its low sidelobes was attractive and this model was made.

For the taper distribution the shape and ratio of curve to pedestal is not critical, and \(1 + 2 \cos x \) is a good shape. But, as with the aerial, the cost of sidelobe reduction is an increased bandwidth and correspondingly reduced gain. Eight stages with \(m = 2 \) gives a 200Hz bandwidth and a gain of about 6.

The essential differences from the previous design are shown in Fig. 9. One advantage of using \(m = 2 \) is that a second-order filter section can be made using two first-order networks in a much simpler circuit. This doubles the number of amplifiers but the cost is about the same, since an 8-pin 741 now costs no more than two polystyrene capacitors.

The taper distribution is arranged by varying the resistors feeding the adder. Since fractional addition cannot easily be carried out on the positive amplifier input, two adders are needed, one for each phase, with a third to bring them together. The first pair are also arranged to divide as well as add, to reduce signal level, by using low value feed-back resistors. (The gain is the sum of the eight ordinates of the taper curve.)

The frequency response is shown in Fig. 10. In use this filter is noticeably better than the four-stage model, particularly in noise performance. The ability to perceive the signal environment when necessary may be arranged by fitting a switch to cut out the input bandpass filter. In all these filters it is advisable to protect against strong r.f.
fields by screening and filtering both input and output.

Further outlook
It may be considered better to try to apply this filter system earlier in the receiver than the audio stage, before the receiver becomes overloaded by extraneous signals or before the detector has added its contribution of trouble. To do it at i.f. would require a large number of high-Q sections, probably quartz, to produce the narrow bandwidth.* It should be possible however, at an i.f. of say 50 kHz, to use analogue shift registers to give the required delays. However, the devices are expensive, and one would need one with taps at, say, 64-section intervals.

Against this it may be noted that most good receivers have a "CW" filter of about 600 Hz bandwidth in their i.f. amplifier which can deal with much of the overload problem. Also, with recent developments in high linearity detectors and modulators, there is now a better argument in favour of audio filtering.†

∗In regard to transient performance, the demodulator converts the i.f Q to the expected noise improvement was
due to the small overswings 'aliasing' into the next epoch. However, the 3kHz band-limited white-noise behaviour of Fig. 4, though with some irregularity of May 1979 inspired and algebraic trigonometric manipulation, it can be reduced to

in an audio filter. Addendum
Measurements of transient performance confirmed the pulse response of Fig. 4, though with some irregularity due to the small overswings 'aliasing' into the next epoch. However, the 3kHz band-limited white-noise behaviour of Fig. 4, though with some irregularity of May 1979 inspired

Appendix
For the linear filter:

This is a geometrical series with a progression ratio (-e^r) and, using the g.p. sum formula, with Euler's equivalence e^ix = cos x - j sin x, and algebraic and trigonometric manipulation, it can be reduced to

...}

Analytically, the method given for a.p.f. sections leads to hyperbolic functions, but for a hand computer one can use \(x = z \left(e^{\pi} - 1 \right) \left(1 - e^{-\pi} \right) \) where \(1/z = 1 + j(x-1)/x \) and \(x = \omega/\omega_0 \) using the rectangular/polar conversion for the complex \(z \) operations.

References
1 Editorial; QST August 1964.

Party electronics
Over a quarter of a million pounds was donated to the Conservative Party and its supporting organisations in the year 1979/80 by companies prominent in electronics, according to a Labour Party information sheet. Among the largest donations in all the companies listed were those of GEC (£50,000), Lucas (£20,000), Plessey (£48,000), Rank (£53,000) and Thorn (£20,000).

Smaller contributions included £13,700 from BICC and a variety of sums below this from Chloride, Chubb, Comet, Decca, EMI, Morgan Crucible, Smiths Industries and Telefun.

The Labour Party document comments that the total donations made directly to the Tory Party were 104% up on those for the previous year, and that the "obvious reason" for this massive increase was that the General Election of May 1979 inspired a larger number of companies than before to dig deep into their resources in order to support the Conservative cause.

Wireless World index and binding
As announced last month, the index for Volume 85 (1979) of Wireless World is now available, price 75p including post and packing, from our General Sales Department.

Our publishers also offer a service of binding volumes of Wireless World, each complete with the appropriate index. If you wish to use this service send your copies to Press Binders Ltd, 44a Iliffe Yard, Crampton Street, Walworth, London SE17 with your name and address enclosed. Confirm your order to the General Sales Department, IPC Electrical-Electronic Press Ltd, Room 205, Quadrant House, Sutton, Surrey SM2 5AS, and with your letter send a remittance of £6.90 for each volume (this price includes the index). Please allow up to ten weeks for delivery.

In both cases cheques should be made payable to IPC Business Press Ltd.
An acoustically small loudspeaker

2 - Construction of speaker enclosures and active crossovers

by R.I. Harcourt B.Sc., M.I.E.E.

The bass enclosure uses a Dalesford D30-110 5in unit and is 3 litres in volume, giving a 3dB point of 100Hz and a Q of 0.7 (measured values). The KEF B110, which is a rather similar drive unit, could also be used, but has not been tried. The enclosure is constructed of 18mm timber in order of preference hardwood, plywood and chipboard) to ensure a low level of enclosure design. The higher extension (below 100Hz) has a fourth-order filter function. The sub-woofer required for adequate bass response predictions are shown in Fig. 7. The design procedure for the sub-woofer enclosure was similar to that for the bass unit, but using the Son-Audax WFR15S. The theoretical Q for the enclosure system was 0.7: however, when the enclosure had been built the Q was measured as 1, and stuffing the enclosure with long-fibre wood did not significantly reduce it. The effect of the higher Q is to introduce about 3dB of ripple into the response. To lower the Q, the old technique of feedback Q correction was used. If the output resistance of the amplifier is made negative by the introduction of positive feedback, then part of the voice-coil resistance is effectively cancelled, giving a lower Q. A theoretical treatment is found in the Appendix.

A practical treatment is found in the Appendix. The figure of 0.7 was taken for the lower frequency which coupled to the box at 320Hz, by bracing the magnet. The member is deliberately made slightly larger than the available space so that when the front panel is fitted the drive unit and rear panel are stressed. The enclosure is filled with 4oz long-fibre wool.

Sub-woofer

The sub-woofer required for adequate bass extension (below 100Hz) has a fourth-order, band-pass characteristic arising from the second-order, high-pass function of the closed-box enclosure system and a second-order boost filter. The 3dB frequency of the sub-woofer enclosure is made the same as that of the 5in bass unit, which is 100Hz. For analysis, the network functions for the band-pass sub-woofer and for the bass enclosure system were combined to produce a bi-quartic function to determine the Q and gain required from the components for a satisfactory 3dB point and low ripple. Normal analytical techniques were found inadequate for the case of the bi-quartic function, and the magnitude function was taken and explicitly solved using a home computer. These functions are shown in the Appendix.

The ideal Q for the enclosures was found to be 0.5, but this low figure was not practicable for the small enclosures used. The figure of 0.7 was taken for the Q and the method of Small was used for the enclosure design. The higher Q implies some ripple in the response, but the computer prediction is that this ripple amounts to only 1.6dB, which is hardly audible, particularly since it is at 113Hz, where room eigen tones are likely to give rise to much larger ripples. The frequency response of the bass enclosure is determined by the area of the cone and the cone excursion, it is possible to increase the s.p.l. by increasing the number of drive units. The WFR15S has a cone excursion limited maximum s.p.l. of 86dB at 35Hz, the worst case considered here, since this limit increases at 12dB/octave. This may be compared with 88dB s.p.l. available from two KEF B139 units in a closed box, and with approximately 95dB s.p.l. from the full symphony orchestra. The author has considered using two WFR15S units in two closed-box enclosures placed adjacent, which would produce about 6dB more, i.e. 92dB s.p.l. at 35Hz, but space considerations led to the use of a single unit placed in a corner of the room, which gives a 9dB gain when compared with the free-space radiation, at no extra cost.

Clay enclosure

The mid-high frequency enclosure is made of modelling clay (Das) which has the property of setting rock hard without the use of firing. Plastic-wrapped 980g packs are available, and four packs were used for a pair of enclosures. However, the sides were found to be rather thin and six packs would be preferable. The clay is rolled flat with a rolling pin to the required dimensions and moulded round a cylinder of fine-mesh chicken wire. The cylinder is 20cm high and 40cm circumference. Cut a 60mm square hole in the chicken wire for the Jordan 50mm unit, and an appropriate round hole for the tweeter used. (The author has used both the Son-Audax tweeter (available as a smaller-faceplate version, the HD 9 x 8 D25) and the Scan-Speak 2008 pictured in Fig. 4.) The clay can be worked by those with no previous experience in the art, provided that it is remembered that a little moisture is required for smoothing down and for jointing. Avoid too much water.

Use two packs of Das for the cylinder and one for the base and dome. There will be some left over for patching holes and for surrounding the drive units with a fillet to provide a smooth profile. The wet clay will join to dry clay successfully when a little moisture is used, so it is not essential to obtain a perfect finish first time. The base and dome are made by rolling out one pack of Das to about 50cm square and cutting out two circles. One circle is made into the dome by placing the cylinder vertically in a...
Fig. 6. Construction of the bass and sub-woofer enclosures.
mixing bowl and moulding the circle into
the bowl, joining the edges with the end of
the cylinder. The moulding is then placed
upon the other circle and joined to this,
forming the base. It may be found des-
sirable to support the dome from the inside
of the enclosure while it is drying to
prevent sag. The clay takes about two days
to set in an airing cupboard, and when set
the drive units are fixed using silicone rub-
er (bath sealant). Holes are drilled for the
wires to exit the back of the enclosure.
About 4oz long-fibre wool is used as filling
material, before the units are fixed. The
adhesive takes 1-2 hours to set, and the
spare clay (which should be kept in a plas-
tic bag to prevent drying) can be used to
form a smooth fillet around the edges of
the units to reduce diffraction.

For finishing, Declon acoustically transpar-
ent foam is formed into a cylinder and has a
circle fixed to the top. The cylinder of foam is overlapped by
0.5in and stapled together, and the circle
for the top is stapled to the top edge of the
cylinder. When this arrangement is turned
inside out the join is concealed, and the
sleeve can be fitted over the clay enclosure.
The clay can be sprayed black to match the
drive units, and the foam can be sprayed
any desired colour, using aerosol paint.

The author has experimented with the
positioning of the satellite units, and has
found that stereo imaging is best when the
units are placed on stands so that the
tweeter is the height of the seated listeners' ears, and the units are 0.5-1m away from
the walls. This requires stands about 470mm high.

Electronics
The Crimson Elektrik modules for the
bass, mid-range and treble units are
mounted in two Crimson Elektrik metalwork kits, with interconnecting sock-

![Fig. 8. Summing amplifier and filters for sub-woofer drive.](image)

![Fig. 7. Computer-predicted curve (bottom) for combined bass and sub-woofer responses.](image)
between two p.c.bs with screened cable, it is possible that mains harmonics may give rise to hum. To reduce this, use the thinnest screened cable obtainable, and route the cables well away from the mains transformer. The author has found that the screened cables are best positioned by experiment to give the lowest hum.

Listening tests
In each case, the audience was composed of electronics engineers. The first comparison was with the *Hi-Fi For Pleasure Compact Monitor*, a three-way system made from a kit, with much larger enclosures than those of the A.S.L. There was a large difference between the systems and the audience of three were unanimous in preferring the active system. The most noticeable difference was a gain in transient attack on such instruments as guitar, piano and drums, when using the A.S.L.

The second comparison was with Spen- dor BCIs. In this case, the audience of two could just detect a difference, but were unable to tell which was in use. There was slightly more colouration or "warmth" in the lower mid-range (about 500Hz) of the A.S.L. On some material, the greater bass extension of the active system could be heard. Direct comparison of stereo imaging was not found valuable, since the co-sited speakers interfered with each other's sound field.

Other considerations than sonic ones then become important. The larger size of a passive speaker may be a consideration, though price is not since, considering the cost of amplifiers and speakers, the two systems are comparable.

It should be mentioned that high-quality equipment (amplifier, deck, arm and cartridge) was used in the tests, in which analogue, digital and direct-cut records were played. The author is unable to measure or explain the slight 500Hz colouration, and intends to try the effect of lowering the crossover frequency.

References
Appendix: sub-woofer characteristics

A closed box enclosure has network function

\[G_H(s_n) = \frac{s_n^2}{s_n^2 + s_n/Q_\omega + 1} \]

where \(s_n = s/\omega_0 \)

\[s = \text{a} + j\omega \]

The second-order, low-pass with gain \(A \) is

\[G_L(s_n) = \frac{A}{s_n^2/h^2 + s_n/hQ_1 + 1} \]

where \(h = \omega_0/\omega_1 \)

The two functions above in cascade give the fourth-order, bandpass

\[G_B(s_n) = \frac{A_s^2}{(s_n^2 + s_n/Q_\omega + 1)(s_n^2/h^2 + s_n/hQ_1 + 1)} \]

Summing this with the response of the bass enclosure (1 channel only)

\[G_H(s_n) = \frac{A_s^2}{(s_n^2 + s_n/Q_\omega + 1)(s_n^2/h^2 + s_n/hQ_1 + 1)} \]

The magnitude function, which is too long to reproduce here, is then taken and programmed into a home computer. The result of evaluating this function is that, for a filter \(Q_1 \) of 1, an enclosure \(Q \) and \(f_0 \) of 100 Hz, the gain required is \(A = -8 \), the 3dB-down frequency of the system is 33Hz and ripple is 1.6dB at 113Hz. Note that the gain is negative, as is usual with second-order crossovers, when the drive unit is connected out of phase to achieve this. In the case of this design, the negative gain is achieved by the summing amplifier, and the driver is connected in phase.

For the D30/110 an enclosure volume of 3 litres was found to give the necessary \(Q \) and \(f_0 \). For the WFR15S an enclosure volume of 33 litres gave an \(f_0 \) of 100Hz, but the \(Q \) was too high. To reduce the \(Q \) the following expressions are considered from Small.

\[Q_{ts} = Q_{es}Q_{ms}/(Q_{es} + Q_{ms}) \]

\[Q_{es} = \omega_0 C_{me}(R_e + R_g) \]

\(R_e \) is the output resistance of the amplifier and, by making it negative, \(Q_{es} \) can be reduced to the desired value. The required \(Q_{ts} \) is given by:

\[Q_e/Q_{ts} = f_0/\omega_0 \]

\[f_0 = 31 \text{ Hz}, \ f_1 = 100 \text{ Hz}, \ Q_c = 0.7 \]

Therefore,

\[Q_{ts} = 0.22 \]

since \(Q_{ms} = 4.19, \ Q_{es} = 0.23 \) from eqn. 1.

\[Q_{en} \] Q of driver at \(f_1 \), considering electrical resistances \(R_e \) and \(R_g \) only

\[Q_{enm} \] Q of driver at \(f_1 \) considering driver non-electrical resistances only

\[Q_{en} \] total Q of driver at \(f_1 \) considering all driver resistances and \(R_e \)

\(R_e \) d.c. resistance of driver

\(R_g \) output resistance of amplifier

\(s \) complex frequency variable (j\omega=\omega)

\(\omega_0 \) radian resonant frequency of driver in free air

The Author

The author was born in London, and lived as a child in Nairobi, Kenya. He attended Ipswich school, and from there went on to Southampton University, where he obtained an Honours Degree in Electronic Engineering in 1967. Appointed as an Executive Engineer in the Post Office HQ, he spent some time carrying out organisation and methods studies, before moving on to the Experimental Packet Switching System (EPSS) for which he helped to produce a mini-computer-based tester. Currently he is with the Mechanization and Building department of Postal Headquarters, where he is developing a traffic recording system for parcel sorting.

Personal privacy of engineers

Mr F. W. Sharp of the Institution of Electronic and Radio Engineers writes to us as follows:

The suggestion was made in a BBC Radio 4 programme "Reel Evidence" broadcast on the evening of August 26th, that the membership lists of the chartered engineering institutions were freely available and could be used to compile unauthorized information about the work of individuals. As far as the IERE is concerned, this is not so: the Institution's membership list is maintained on a strictly confidential basis. By decision of the IERE Council a "list of members" is now no longer published.

F. W. Sharp
Our main illustration shows just one page from Feedback's new Test Instruments Catalogue: a comprehensive guide to the ten test instruments in the renowned ‘600 Series,' comprising function generators, variable phase generators and measuring instruments, together with another six instruments which also provide the kind of performance and reliability that is synonymous with the Feedback name.

All Feedback test instruments put an emphasis on high performance and value for money. They are rugged and reliable, and carry an unconditional two-year guarantee. Complete the coupon and this important new book is free for the asking.

Please send me my free copy of the new Feedback Test Instruments Catalogue.

Name: ____________________________
Position: __________________________
Company: __________________________
Address: __________________________
Telephone: ________________________

Feedback Instruments Limited, Park Road, Crowborough, Sussex. Telephone (08926) 3322

WW — 077 FOR FURTHER DETAILS
Conquer the chip.

Be it a career, hobby or interest, like it or not the Silicon Chip will revolutionise every human activity over the next ten years. Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

MASTER ELECTRONICS
LEARN THE PRACTICAL WAY
BY SEEING AND DOING
- Building an oscilloscope.
- Recognition of components.
- Understanding circuit diagrams.
- Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

MASTER COMPUTERS
LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.
- Complete Home Study library.
- Special educational Mini-computer supplied ready for use.
- Self Test program exercise.
- Services of skilled tutor available.

MASTER THE REST
- Radio Amateurs Licence.
- Logic/Digital techniques.
- Examination courses (City & Guilds etc.) in electronics.
- Semi-conductor technology.
- Kits for Signal Generators – Digital Meters etc.

The facts of the case

West Hyde have one aim in life, to provide a practical solution to the problem of electronic packaging. The fact of the matter is that in this advertisement it is an impossibility to show our whole range of nearly 1,000 different instrument cases or show you the 250,000 case parts currently held in stock. Our suggestion is that you complete the coupon and, in turn, we will send you our brochure.

Name
Position
Company
Address

WEST HYDE
West Hyde Developments Limited, Unit 9,
Park Street Industrial Estate, Aylesbury, Bucks., HP20 1E7
Telephone: Aylesbury (0296) 20441 / 5. Telex: 83570

WW — 091 FOR FURTHER DETAILS
Audio gain controls

2 — Obtaining equal gains in the two channels of a stereo pair

by Peter Baxandall, B.Sc. (Eng.), F.I.E.E., F.I.E.R.E., M.A.E.S.

Continuing his survey of gain control problems and solutions, Peter Baxandall discusses tracking volume controls in stereo amplifiers, concluding with a proposal for an unusual design of control.

Stereo gain control tracking

Connected with the problem of obtaining a satisfactory scale shape for the volume-control law in stereo control units, is that of achieving an accurately equal gain in the two channels at all knob settings. Preferably, the channel gains, if adjusted to be equal at one volume control setting, by means of the balance control or otherwise, should remain within ±1dB of equality at all other settings of operational significance. This is quite likely not to be the case if cheap types of carbon-track, ganged log. pots. are used.

20, there is clearly much to be said for employing a type of gain control circuit which inherently gives a smooth and nearly logarithmic law without needing pots. with a non-linear resistance law. It ought to be easier to make ganged linear pots. with accurate matching between sections than to make ones with non-linear laws and equally good matching, though unfortunately, limited experience in measuring the departure from linearity of cheap so-called linear carbon-slider pots. has shown that undesirably large errors often occur.

One solution to the problem of obtaining a good scale shape and accurate tracking is, of course, to employ ganged, stud-type volume controls. These should give not more than 2dB per stud, at the most, and should have a click mechanism to make sure they are never left in an unsatisfactory half-way state between one stud and the next. Then, provided their internal resistors are accurate and stable, very accurate tracking will be obtained.

Careful measurements have been made of the resistance versus knob-position relationship for eight specimens of R.S. Components 10kΩ linear “slide tandem” pots, and Fig. 21 shows the results for three of these. It will be seen that:

(a) none of the specimens has a truly linear law;
(b) the departure from linearity, though of somewhat different nature for the three specimens, is nevertheless of fairly accurately the same shape for the two halves of each specimen, and this is the case also for the other five specimens;
(c) there are considerable differences between the absolute total resistance values of the specimens, and, in the case of specimen number 3 particularly, between the two resistance elements in one specimen.

For normal audio control-unit applications, minor departures from the nominal volume-control law are unimportant, provided they are equal for the two channels. Differences in the absolute resistance values for the two elements in a stereo pot. may or may not cause gain mismatching, dependent on the nature of the associated circuit.

Consider first the circuit of Fig. 22(a), which gives a range of gain well suited to most control-unit applications. The circuits of Figs. 12 and 14 are better suited to microphone-amplifier applications, where the higher maximum gain given is advantageous.) It is necessary in practice to insert a resistor R1 in series with the input end of the pot. to limit the maximum value of k obtainable to, say, 0.9 or 0.95, otherwise — see Fig. 8(a) — the characteristic becomes too steep at the high-gain end. Note that k is defined as

![Fig. 20. Approximation to log. law obtained by changing resistivity of halves of carbon-track pot.](image)

![Fig. 21. Samples of characteristics of dual linear pots.](image)
shown in Fig. 9, and is not the same as k' in Fig. 22. The reason for introducing k' is that it enables a more straightforward comparison to be made between the behaviour of the (a) and (b) circuits in Fig. 22 - k' is a measure purely of the knob position, whereas, as shown in Fig. 9, k involves also the value of the fixed series resistor.

The gain of the Fig. 22(a) circuit is given by:

$$V_{out} = \frac{k'R}{(1-k'R+R_1)}$$

and

$$V_{in} = \frac{-1-k'+R_1/R}{1-A}$$

(5)

The gain of the Fig. 22(b) circuit is given by:

$$V_{out} = \frac{-k'}{1-k'} + 1/A$$

(6)

It will be seen that equations (5) and (6) are of exactly the same form, A being a negative number to represent the fact that the amplifier is a phase inverting one. Thus if A is made equal to R/R_1, the two circuits will have identical graphs relating overall gain to knob position.

Circuit (b) has an advantage over (a), however, in that the control characteristic is quite independent of variations in the absolute resistance R of the pot element, whereas in (a) an increase in R requires a proportionate increase in R_1 to return to the same control characteristic. Thus, using a pair of circuits of the (b) type in a stereo system, differences in the element resistances in the two halves of the ganged pot., which, as already mentioned, are found to occur in practice, will not affect the accuracy of tracking between the channels, whereas in (a) an increasing discrepancy will occur as the gain setting is increased. It has been assumed that the amplifier input impedance in circuit (b) is very high, so that there is no significant loading on the pot. slider.

To carry out the Fig. 22(b) scheme in practice, an economical recipe is required for a phase-inverting amplifier of high input impedance and feedback-stabilized gain. The simple arrangement shown in Fig. 23(a) is not very good, for to avoid significant loading of the slider, the resistors R_a and R_b must be made very high in value, which then seriously degrades the noise performance. This problem may be satisfactorily solved by inserting a unity-gain follower between the slider and R_a, R_b now being made of very much lower values. This arrangement is shown in Fig. 23(b).

Amplifier A in Fig. 23(b) has to handle only quite small voltage excursions, even though V_a may sometimes reach levels of several volts. There is no need to use an op. amp. for A, better economy, with little degradation in performance, resulting if a simple emitter-follower is used. A satisfactory practical design is given in Fig. 24. Over a range of gain adjustment of approximately 30dB, the departure from the ideal straight-line graph is no more than ±1dB. The unity-gain op. amp. follower at the left has been included so that the complete circuit presents a high input impedance to the source of V_a at all gain settings - this source may be the tape and radio inputs to a control unit, for example. Without this follower, the input impedance at maximum gain setting falls to 1.09kΩ.

Because the gain of the Fig. 24 circuit is independent of the total resistance of the pot. element, being dependent only on the slider tapping ratio, the tracking error between stereo channels can probably be held within ±1dB limits in production, over a 30dB range of gain, using low-cost carbon pots.

Alternative technique. An alternative technique, which, like the previous one, avoids the necessity to put fixed resistance in series with the pot. to limit the...
maximum gain, is shown in Fig. 25 in its simplest form.

Here a fraction β of V_{oc} is fed back as overall negative feedback in series with V_{oc}. The forward gain, A, of this feedback system is $-k'(1 - A')$, so that applying the usual feedback formula gives:

$$\frac{V_{out}}{V_{in}} = \frac{A}{1 - A\beta} = \frac{-k'(1 - k')}{1 - [-k'(1 - k')]\beta}$$

from which

$$\frac{V_{out}}{V_{in}} = \frac{k'}{1 - k' + k'\beta} \quad (7)$$

Comparing equation (7) with (5) and (6), it will be seen to be not quite of the same form, for the third term in the denominator of (7) involves k', whereas this is not the case in (5) and (6). Suppose we choose β in the Fig. 25 circuit so that equation (7) gives the same maximum gain, i.e. gain at $k' = 1$, as that given by the Fig. 24(a) circuit in accordance with equation (6). This requires $\beta = 0.1222$, and equation (7) then yields the broken-line curve shown in Fig. 24(b). Looking at these two curves, it is very tempting to conclude that the circuits of Figs. 24 and 25 inhere slightly different shapes of characteristic, but more careful thought shows that this is actually not the case.

Referring to equation (7), this may be written:

$$\frac{V_{out}}{V_{in}} = \frac{k'}{1 - (1 - \beta)k'}$$

$$= \frac{1}{1 - \beta} \times \frac{(1 - \beta)k'}{1 - (1 - \beta)k'}$$

$$= \frac{1}{1 - \beta} \times \frac{1}{1 - \beta} - k' \quad (8)$$

Equation (6) may be written:

$$\frac{V_{out}}{V_{in}} = \frac{k'}{1 - 1/A - k'} \quad (9)$$

Comparing (8) and (9), it will be seen that if A and β are so chosen that $(1 - 1/A) = 1/(1 - \beta)$, then the only difference between the equations is that the right-hand side of (8) is multiplied by the constant factor $1/(1 - \beta)$. This means that the curves for the two circuits are exactly the same in size and shape, but that represented by equation (8) is displaced downwards from the equation (9) curve by $20 \log (1/(1 - \beta))$ decibels.

Thus, the real difference in behaviour between the circuits of Figs. 24 and 25 is that when designed to give identical shapes of control characteristic, the Fig. 25 circuit, at all knob settings, gives a slightly higher gain than does that of Fig. 24.

Passive control using linear pots.

A single linear pot. used as shown in Fig. 1 or Fig. 2 gives a control law which is quite intolerable for normal audio purposes. It is well known that by shunting a load resistor from the slider to earth, a characteristic approximating more closely to the ideal uniform decibel spacing may be obtained, though unfortunately only over a range of some 20dB or thereabouts.

Here a fraction β of V_{oc} is fed back as overall negative feedback in series with V_{oc}. The forward gain, A, of this feedback system is $-k'(1 - A')$, so that applying the usual feedback formula gives:

$$\frac{V_{out}}{V_{in}} = \frac{A}{1 - A\beta} = \frac{-k'(1 - k')}{1 - [-k'(1 - k')]\beta}$$

from which

$$\frac{V_{out}}{V_{in}} = \frac{k'}{1 - k' + k'\beta} \quad (7)$$

Comparing equation (7) with (5) and (6), it will be seen to be not quite of the same form, for the third term in the denominator of (7) involves k', whereas this is not the case in (5) and (6). Suppose we choose β in the Fig. 25 circuit so that equation (7) gives the same maximum gain, i.e. gain at $k' = 1$, as that given by the Fig. 24(a) circuit in accordance with equation (6). This requires $\beta = 0.1222$, and equation (7) then yields the broken-line curve shown in Fig. 24(b). Looking at these two curves, it is very tempting to conclude that the circuits of Figs. 24 and 25 inhere slightly different shapes of characteristic, but more careful thought shows that this is actually not the case.

Referring to equation (7), this may be written:

$$\frac{V_{out}}{V_{in}} = \frac{k'}{1 - (1 - \beta)k'}$$

$$= \frac{1}{1 - \beta} \times \frac{(1 - \beta)k'}{1 - (1 - \beta)k'}$$

$$= \frac{1}{1 - \beta} \times \frac{1}{1 - \beta} - k' \quad (8)$$

Equation (6) may be written:

$$\frac{V_{out}}{V_{in}} = \frac{k'}{1 - 1/A - k'} \quad (9)$$

Comparing (8) and (9), it will be seen that if A and β are so chosen that $(1 - 1/A) = 1/(1 - \beta)$, then the only difference between the equations is that the right-hand side of (8) is multiplied by the constant factor $1/(1 - \beta)$. This means that the curves for the two circuits are exactly the same in size and shape, but that represented by equation (8) is displaced downwards from the equation (9) curve by $20 \log (1/(1 - \beta))$ decibels.

Thus, the real difference in behaviour between the circuits of Figs. 24 and 25 is that when designed to give identical shapes of control characteristic, the Fig. 25 circuit, at all knob settings, gives a slightly higher gain than does that of Fig. 24.

Passive control using linear pots.

A single linear pot. used as shown in Fig. 1 or Fig. 2 gives a control law which is quite intolerable for normal audio purposes. It is well known that by shunting a load resistor from the slider to earth, a characteristic approximating more closely to the ideal uniform decibel spacing may be obtained, though unfortunately only over a range of some 20dB or thereabouts.

Fig. 26, based on calculations I did while a student in 1942, shows what happens as the loading is varied.

Very much better results than the above can be obtained with passive circuits using linear pots. if one or more fixed tapping points are provided, and the simplest such scheme is that shown in Fig. 27(a). If the resistors R_R and R_L are made of very much lower value than the pot. element - and low-cost slider pots. can be obtained with this feature - the nearly-linear control range can be extended to about 50dB if required, satisfying the most exacting needs.

For instrumentation purposes, the above technique can be extended much further by feeding back both above and below a linear pot. slider.
characteristic is moved down from the top, the attenua-
tions on the transformer. As the slider is moved, the voltages at these points, since they are determined almost purely by the turn numbers on the transformer, ensures the tappings on the resistance element ensures extreme precision in the ratios of the voltages at these points, since they are determined almost purely by the turn numbers on the transformer. As the slider is moved down from the top, the attenuation at each tapping position increases by successive factors of 2, or 0.02dB. In the absence of the loading resistor on the slider, \(V_{in} \) varies linearly with slider position between tapping points, whereas, for a perfectly logarithmic scale, it is the log of \(V_{in} \) that is required to vary linearly. The error amounts to approximately 0.5dB midway between tappings. By adding the right value of loading resistor as shown, this error is reduced to less than ±0.05dB.

By using a transformer, the attenuation characteristic is made almost perfectly independent of production variations or non-uniformity in the resistance element, provided only that the physical positions of the tappings are accurately maintained. With the Fig. 28(a) type of arrangement, variations in pot. resistance do have some effect, but it may be kept small by making the resistance of the resistor-chain connected to the tapping(s) much less than the resistance of the pot itself.

For high-grade audio control-unit applications, where the use of slider-type controls is considered appropriate, there would seem to be a strong case for using the Fig. 28 arrangement but with two tappings. By using ±2% resistors to feed the tappings, excellent stereo tracking should be obtained with a most desirable shape of control characteristic.

BBC log. attenuator

An interesting and very neat solution to the problem of providing a wide-range gain control having uniformly-spaced decibel scaling was devised in 1946 by C. G. Mayo and R. H. Tanner of the BBC Research Department. It was used in a portable microphone amplifier made by the BBC for acoustic measurements, but was unfortunately not taken up commercially.

The principle is given in Fig. 30, and Fig. 31 shows the actual construction. These illustrations are taken from reference 5. A is a block of resistive material, of which the underside is covered by a conductive electrode B. The input is applied between B and another electrode C, the output being taken between B and a slider D. The various series and shunt paths through the resistive material may be regarded as approximately equivalent to the ladder network shown, the output of each successive section of the ladder being a constant fraction of that of the previous section, giving a scaling with uniformly-spaced decibel divisions. The useful range of the model illustrated was about 70dB.

It is pointed out that the output impedance of this type of attenuator does not become low when the attenuation is large, so that it is very important to avoid appreciable stray-capacitance coupling between input and output. The output connexion is therefore brought out coaxially, with a screening plate as shown in the photograph.

It has occurred to me that there is no essential need to employ a thick block of resistive material, and that an attenuator based on the same broad principle could be made using carbon-coated s.r.b.p. sheet material of the type commonly used in ordinary carbon pots. To test this idea, a quick experiment was done with the set-up shown in Fig. 32, and yielded the rather impressive result shown in Fig. 33. The very first graph obtained was somewhat inferior, apparently because of unsatisfactory contact between the steel vice jaw and the carbon coating. This was overcome by interposing a strip of polished copper foil between the carbon coating and the vice jaw.

Though an attenuator having a very extended range of operation as in Fig. 33 may fulfil some requirements, it is not ideal for use in control units etc., for the range of control needed in practice covers far less than 100dB, except that an "off" position coming soon after the position giving 40 or 50dB attenuation is really desirable. The Fig. 32 type of construction could readily be modified to provide such a characteristic, by shaping the conductive electrode, or metallic coating, somewhat as shown in Fig. 34. Halving the width of the carbon track, for example, would double the slope of the graph.
It is relevant to consider the suitability of attenuators based on the above principle for stereo purposes, i.e. whether sufficiently accurate tracking would be readily obtainable. Since the slope of the attenuation characteristic depends, to a first order at least, on nothing but the width of the resistive track, it would be important, for stereo use, to adopt a form of construction in which production variations in this width are minimized. The Fig. 34 construction does not appear to be ideal, for it relies on cutting the edge of the carbon material accurately in relation to the position of the metallized coating. The arrangement shown in Fig. 35 would seem much preferable, since accuracy of cutting is no longer involved and the metallized coating could be deposited by some form of printing technique with a very high degree of consistency.

The lower impedances usually used in transistor equipment, compared with earlier valve equipment, ease the problem of keeping the input-to-output stray capacitance sufficiently small, but it is still important to adopt a constructional arrangement which aims to minimize such capacitance. Working at 1 kΩ impedance, with a control giving up to 100 dB attenuation, the stray capacitance must be kept to less than 0.1 pF. The connexion "rail" on which the slider moves must therefore be positioned away from the carbon surface and screened from this and the input connexion by an earthed screening plate.

Another advantage of the Fig. 35 arrangement is that, because of its symmetry, unwanted slight lateral movements of the slider during its traversal would be expected to have less effect on the attenuation than with the Fig. 34 form of construction — though it has been found that even with the latter, movements of about 1 mm at right-angles to the direction of traversal produce only a small fraction of 1 dB change in output provided the slider contacts the carbon track within 2 or 3 mm of its edge.

Other methods of log, control and stereo tracking

- Perfect tracking of stereo channel gains at all settings, without the need for precision gain-control circuits, may be obtained by first producing, from the incoming L and R signals (L + R) and (L - R) signals. If the (L + R) signal is fed to one half of a ganged gain-control circuit, multiplying it by a factor α, and the (L - R) signal is fed to the other half of the gain-control circuit, which multiplies it by a factor β, then the sum of the gain-control circuit outputs is given by:

$$\text{sum} = (α + β)L + (α - β)R$$

(10)

and the difference of their outputs is given by:

$$\text{difference} = (α + β)R + (α - β)L$$

(11)

Thus, though the balance as such is perfect, it is obtained at the price of introducing some cross-talk when α is not quite equal to β. The effects of stereo cross-talk are discussed in detail in reference 6.

- Various simple gain-control circuits give a nearly linear relationship between attenuation in decibels and control position over a range of several dB. If a sufficient number of such circuits are put in cascade, and the controls are ganged, an approximately linear relationship may be obtained over any required range. While this technique is not usually very attractive when carried out literally with mechanically-ganged pots, it would appear to be worth bearing in mind in a possible technique for providing electronic gain control with a logarithmic characteristic. The idea is quite old.

- At the present time the most satisfactory technique for wide-range electronic gain control is that which exploits the fact that silicon planar transistors follow with high accuracy the relationship:

$$I_c = I_0 e^{qV_{be}/kT}$$

(12)

where I_c is the collector current and V_{be} is the base-to-emitter voltage. (The other quantities are constants.)

Circuits can be designed in which the gain in decibels is linearly related to the control voltage over a range of about 100 dB, and by using the "log-antilog" or predistortion technique, a performance sufficiently good, with respect to distortion and signal-to-noise ratio, to justify the use of such circuits in very high-quality audio systems, can be obtained. A very sound and clear treatment is given in reference 7.

This type of circuit is at the heart of many amplifier systems of the dbx type. It could be used to provide gain control in audio control units, a single pot. varying the control voltage to a pair of such circuits in the two audio channels. The distortion and noise performance, though good, is not quite up to the highest standards sometimes demanded, maybe unnecessarily, in expensive control units, but some further refinement of i.c. versions of these gain-control circuits, including the reduction of residual even-harmonic distortion by the use of more fully balanced arrangements, may take place.

- In a fully digital audio system, gain control with perfect stereo tracking and any desired control law may be carried out on a purely numerical basis.

References

Reactance circuit
Reactance circuits are not very popular because it is difficult to design a phase-shift network which will work into a low and varying base impedance. This circuit overcomes the problem and gives a greater and more linear frequency swing than common variable capacitance diodes. The 90° phase shift is produced by a resistor in series with the inductor, which produces a voltage in phase with the inductor current and consequently almost in quadrature to the e.m.f. across the resonant circuit. The collector current of Tr1 is in phase with the inductor current and therefore produces the effect of an inductance in parallel with the resonant circuit, which raises the operating frequency. The resistance is chosen to give about 100mV pk-to-pk because there is little advantage in a larger signal at the base of the reactance transistor.

The oscillator is designed to give an amplitude of around 100mV pk-to-pk at the base of Tr1, which is controlled by effective mutual conductance variation. The amplitude changes by only 10% from 480 to 530kHz. If the oscillator level is controlled by collector "bottoming", a much larger frequency swing is possible with little amplitude variation, at the expense of some waveform distortion. The susceptance introduced in parallel by this circuit is $g_m R_{BL}$ where R_{BL} is the susceptance of the inductor and g_m is the effective mutual conductance, which is about half the mutual conductance with an average collector current if the amplitude is 100mV pk-to-pk.

R. G. T. Bennett
Christchurch, New Zealand

Solid-state relay
In radio control applications this solid-state relay can replace a conventional electromagnetic type to save space, weight and provide a faster switching response. The circuit comprises one make and one break contact, but a changeover configuration can be obtained by connecting contact points 1 and 3 together. The relay operates when a voltage is applied to inputs a and b, and D1 prevents damage to Tr1 and Tr2 if the wrong polarity is connected.

When no operating voltage is present, Tr1 is turned off and acts as an open contact. Tr2 is also turned off, but Tr3 is turned on via R3 and acts as a closed contact. Current rating of Tr1 and Tr3 is 750mA at 20V.

B. Lowery
Lincoln

Touch control
One c.m.o.s. counter can be used to provide touch-controlled voltages for the TCA730 or similar circuits. The state of the counter is converted to an analogue voltage by a resistance ladder, and smoothed by a capacitor. When the terminal count in either direction is reached, the clock input is inhibited. Two i.e.d.s, driven by a differential amplifier, show the position of the counter and the control voltage. Output voltage swing is 2-10V with a supply of 15V.

Two cascaded counters provide a suitable resolution for volume control applications. At switch on, the counter is preset to a position set by the parallel load inputs.

N. Istvan
Budapest
Hungary
Digital delay

This circuit was designed to give a relatively long delay in a single-bit stream adaptive delta modulation system. The conventional method uses shift registers, but these are quite expensive and become less economical as the bit requirement increases. A more attractive method is to use the popular and inexpensive 21L02 1024-bit RAM which only requires one +5V supply. The memory is sequentially addressed so that data is initially read from, and new data subsequently written into each successive cell. Data read out in this manner is identical to the input but delayed by 1024 address change periods. To cascade several memories, the write cycles must be progressively shorter for each device, and this ultimately limits the system.

However, this problem can be eliminated by connecting the memories serially and addressing alternate devices by a 10-bit incremental address signal. A second 10-bit address, which is incremented in quadrature to the first, is applied to the remaining memories. Symmetrical read/write signals can now be used to transfer data from one memory to the next in the appropriate manner due to the overlapping address signals.

Numerous memories can be used as long as loading constraints are observed. Delayed data is extracted from the system by clocking the D_in of the last 21L02 through the remaining half of the 4013 flip-flop with either r.w if the number of memories is even, or r.w if it is odd. It is unnecessary for the address wiring for each memory to be coherent because a unique address is only required for each cell.

P. Gladdish
Holbrook
Derbyshire
DX records broken
What is thought to have been the longest
distance two-way 144MHz tropospheric
contact ever to have been made in IARU
Region 1 (Europe and Africa) took place
on August 6. R. V. Thorn, G3CHN in
south Devon made contact with EARRS in
the Canarian Islands, off the African coast, a
distance of over 2600km. At the time
anticyclonic weather conditions extended
from south-west England southwards to
the Canary Islands and westwards almost
to Florida, possibly a near miss for the first
translantic 144MHz contact by means of
ducting, though again suggesting that
some day this may be achieved. Sea
ducting between California and the
Hawaiian Islands has, on very rare occa-
sions, provided American amateurs with
144 and 432MHz tropo contacts over
distances exceeding 4000km.
Many British amateurs made their first
144MHz contacts with Andorra during an
intensive spell of operation by C31RN.
On the 10GHz microwave amateurs,
Italian enthusiasts have bettered their
previous world record distance of 633km
when, during July, 10sny/7 made
contacts with I1W3EQ/3 and I3SOY/3, raising the record to 757km.

More museum stations
Some 300 members of the 1000-strong
Royal Naval Amateur Radio Society (RNARS), formed in the UK in 1960, live
overseas, including 114 in Australia where
a national branch was formed in October
1979. As a result of the successful restoration by RNARS of the bridge wireless
office of HMS Belfast (GB2RN) in the
Pool of London, the Maritime Trust of
Australia has accepted an offer by RNARS
Australia to restore the W/T office of
HMS Castlemaine and to permit the
installation of a modern amateur radio
station with the callsign VK3RN. Most
of the original W/T equipment has been
located and is now being restored.
VK3RN has regular schedules with
RNARS stations in the UK including
GB2RN. A similar project is also being undertaken for HMAS Diamantina which is
to form a naval museum at Brisbane.
Special calls held by RNARS in the UK
include GB3RN at HMS Mercury (shore
station) where the callsign G3BZU is also
used (except on open days at Portsmouth
Naval Dockyard); also GB2FAA at the
Yeovil Naval Air Station ("Fleet Air
Arm").

The London Science Museum has
recently put on a display two off-line
rotor-type cryptographic machines of World
War II vintage: a three-rotor German
Enigma (Geheime Chiffriermaschine) based
on the work of Arthur Scherbius, and
the British Type X Mark III machine
developed in the 1930s by Air Commodore
Oswyn with the help of the RAF
Workshops. This typewriter-like machine
could be used in the field to provide a
ciphered tape at up to 20w.p.m. while
"powered" by turning a handle with the other hand.

Amateur tv news
John Wood, G3YQC is to edit CQ-TV, the
journal of the British Amateur Television
Club. A recent listing of amateur tv
stations in South East England includes
24 stations in south London and along both
sides of the Thames estuary. tv
transmissions across the English Channel
to France, Holland and Belgium are reported,
although activity in Manchester and
the north-west has dropped in recent
years. In the current issue of CQ-TV
Grant Dixon, G8CGK describes his work
with computer-based (Triton) slow scan
television. Digital processing can include
the insertion of a reduced-size image into a
quarter of the transmitted picture: for
example it is possible to store a photograph
of the operator in the computer memory
and then, whenever required, to insert this
into the top right-hand quarter of the trans-
mission. An article by Tom O'Hara,
W6ORG, printed in the American
atv journal A5 describes an arrangement to
interface a home computer (TRS-80) with
televising to enable two non-
synchronous pictures to be readily mixed.

On the bands
Swansea Amateur Radio Society has won
the RSGB's 1980 National Field Day
trophy with the Bristol Trophy (single
station entry) going to the Teesside Contest
Group. Band leaders were: 1.8MHz Farn-
borough; 3.5MHz Harlow; 7MHz
Mansfield; 14MHz Southgate; 21MHz
Guernsey; and 28MHz East Nottingham.
The Gravesend Trophy was won by
Guildford, the Scottish NFD trophy by
Glenrothes; and the Frank Hooosen
Memorial trophy by Southgate.

Amateur licence in the USA at mid-
1980 had risen to 385,625 with the FCC
issuing 12,583 new licences in the first half
of 1980, compared with 6119 during the
full year of 1979. Pass rate in the FCC
examinations has risen markedly although
this has been ascribed by Ham Radio more
to memorization of the "question-and-
answer" with the FCC recently becoming
available rather than better understanding
of the theory by candidates: examination
syllabus has recently been changed.

The New Zealand amateur Fred
Johnson, ZL2AMJ, in commenting upon
the long-standing controversy on the
international requirement for Morse code
proficiency to obtain a licence for amateur
bands below 50MHz, has identified and
listed 75 factors that have been put
forward in support of or against a com-
pulmonary code requirement. The over-
whelming majority appear to be favourable
to the c.w. mode which it is noted
"shows no sign of a diminishing use from
observation on the bands". ZL2AMJ notes
that the critics of the code requirements
"are overwhelmingly drawn from those
who have not experienced the use of the
code on the h.f. bands and hence cannot be
expected to understand the position that
the code has in the amateur radio world"
although "the reason for them not seeing
any necessity for it can be appreciated".
Among his many factors he notes that this
is a skill which is not difficult to learn as
is sometimes claimed and that it takes
about 40 hours of effort to go from zero to
about 12 words per minute proficiency.
Criticism of the code requirement can be
traced back through amateur radio
publications "to when phone operation
first commenced and there is no evidence
to show that the level of criticism is any
more today than in earlier days".
Examination of the QSL cards passing
through the New Zealand bureau "reveals
a surprisingly high use of c.w." and the
number of articles in c.w.-related topics
appears to be increasing.

The potential health hazard posed by the use of polychlorinatetiphenyls
(p.c.b.s) as transformer-oil in 'dummy
loads' etc. has recently attracted increased attention in amateur circles. However
Tom Raynon, VESUK points out that
the main hazard arises when the non bio-
degradable substance gets into the food
chain rather than from skin contact.
Similarly it is recognised that the fumes
from melting polyurethane-coated wire,
used for experimental prototype wiring,
contain the toxic substance di-isocyanate
which can result in severe asthmatic
attacks, particularly to people who have
become sensitised.

In brief
Despite the recent fire, it is expected that
the 1981 RSGB National Amateur Radio
Exhibition will be held in the temporary
building which is being erected at Alexan-
dra Palace, although dates have not yet
been announced Among 1000 search
volunteers for two-year-old Elizabeth Peck
in West Sussex were 34 members of
Raynet, the radio amateurs' national
emergency network. All ended happily
when the little girl was discovered alive
and well 41 hours after wandering off from
her family Approximately 2500
of those who sat the UK Radio Amateurs' Exa-
mination last May passed.

PAT HAWKER, G3VA
The switched-mode power supply operating at television line frequency was chosen for the 70 series because of its inherently low power loss; its ease of obtaining any voltages required; and the possibility of making the chassis isolated from the mains. The alternative approach of a thyristor supply (used successfully for several years in the 80 and 100 series chassis) does not readily lend itself to these requirements. Whilst it can be made to work efficiently, bulky iron-cored chokes are required and these are expensive, heavy and could produce mains frequency fields which could affect the c.r.t.

The 70 series s.m.p.s.u. is a flyback type of convertor (Fig. 16). Tr3 switches the transformer primary across the rectified mains and energy builds up in it in the form of a magnetic field. When Tr3 switches off, its collector voltage rises and so (by transformer action) does the secondary. D1 conducts and feeds all the energy stored in the transformer into the load. Hence the load is only supplied when the transistor is off.

Stabilisation of the output voltage, against mains and load variations, is achieved by taking a sample of voltage from a winding on the transformer and comparing it with a fixed reference voltage. The resulting error voltage is used to correct the drive waveform fed to the output device.

Fig. 17 shows a block diagram of the s.m.p.s.u. circuit. The control unit contains an oscillator to ensure that the output stage remains switching whether it is synchronised or not. There is an input of line drive from the sync processor. This, you may remember, has been synchronised to the line sync pulses on the received video waveform. The other input is a line flyback pulse and is used in a phase discriminator as a phase reference for the oscillator drive pulses which will eventually be used to provide base drive for the line output transistor. This phase reference is adjustable and can be used as a line shift control.

Both these inputs cross the isolation barrier and, consequently, must use double-insulated components: the line drive input uses a small toroidal transformer and the line flyback phase reference is from a small isolated winding on one limb of the line output transformer.

During normal operation the control circuits are supplied from the s.m.p.s.u. t.f. and so, when the set is first switched on, some power must be supplied to the oscillator to start switching the output stage. The start-up circuit supplies this power and then switches off once the voltage from the t.f. has built up sufficiently to drive the control circuits. Fig. 18 shows a simplified version of the complete s.m.p.s.u. circuit and the start-up circuit operation can be seen from this. At switch-on Tr1 is turned hard on by base current through R3. Current flows through R3 and Tr1 to supply the control i.c. TDA2581 and the driver stage Tr2 and Tr4.

As the oscillator commences switching the driver stage, and hence the output stage, the voltage at C1 steadily builds up until D1 turns on. Then Tr2 turns on, pulling down the base of Tr1 which switches off. From then on the power to the control i.c. and the driver stage is
It is essential that the tone is reproduced
Please print this note on all proofs.

supplied through D3. Thus R3 does not need to be on all the time and another source of power wastage is removed.

The heart of the control circuitry is the pulse width modulator. This determines the mark/space ratio of the output waveform and hence the output voltage.

The error amplifier controls the pulse width modulator according to the difference between the adjustable sample of the fed back transformer voltage V and the stable reference voltage across D1. A trip circuit senses the current in the output device and cuts off the output pulses if the current rises above a pre-determined value. It then waits for a short while and then releases the pulses again. If the excessive load or fault still remains then the trip

cuts off the output again. After this cycle has repeated about ten times the output pulses are cut off "permanently" and the supply can only be restarted by switching off the mains, waiting a few seconds and switching on again (assuming the fault or overload has cleared or been corrected).

The i.c. contains other protection circuits, which operate the trip if the fed back sample voltage goes high or if the control i.c. supply goes low or if the reference voltage at D1 goes open-circuit.

The driver stage has two transistors in a push-pull configuration. It will be noticed that the output device is a Darlington transistor. This device is used in preference to an ordinary transistor because it removes the need for a driver transformer.

Reliability

As has been shown, the factors influencing the design of a television receiver are many and varied and often conflict with each other. The solving of the problems thus presented has produced, at least in the 70 series, a receiver which gives an excellent and reliable performance. One of the aims of the design team was to improve on the already good reliability figures achieved by the 80 and 100 series. The low failure rates that were monitored during the 24 hour soak test in the factory indicated that this was achieved with a good margin.

Sixty years ago

Until shortly before 1920 communication between submarines and shore or other vessels was only possible while transmitting or receiving above the waves, due, of course, to the attenuation of electromagnetic waves by water. An article called "The Submarine's Wireless" in the November 27th, 1920 edition described newly found techniques which enabled practical communication while the vessel was under water.

The techniques in question involved the development of extremely sensitive receiving and amplifying apparatus, and more efficient aerial systems, to make possible the bridging of distances of up to three miles while the vessel was submerged under nine feet of water. An aerial current of six amps was required for this feat, but there is no mention of the frequencies used, although long-waves are suggested as they were found to be able to penetrate the water better than short-waves.

In the same issue, a small feature also appeared on a wireless telephone pack-set which was used by RAF officers as far back as the autumn of 1918. Two photos show the set "mounted" on an officer who stands, supported by his bicycle, with a wooden frame aerial projecting from the top of his head. As wireless sets, especially of this type, were not all that common at that time he probably gave some of the locals quite a start.

The need for ships to pass out of unlit harbours during wartime was the necessity that gave birth to the invention of the "radio cable", which was discussed in the "Notes and News" section also in this issue. This guidance cable, through which an alternating current was passed, was laid in the harbour waterways. Ships using the cable were fitted with two detection coils, probably one on either side of the deck, which intercepted the electromagnetic waves coming from the cable. By noting the relative strength of the waves reaching each coil, it was possible for the ship's navigator to determine his position in relation to the cable. The US Navy laid one such cable which was sixteen miles in length, in the main waterway approaching the port of New York.
Microcomputer instructor
A flexible prototyping system, designed to cut the cost of microprocessor evaluation and development, has been introduced by Philips Test and Measuring Instruments. The PM 4300 microcomputer instructor, which is marketed by Pye Unicam, uses interchangeable modules to adapt the system to different 8 or 16-bit processors. Types which can at present be accommodated are the M68000, 8086, Z8002, Z80, 8048, M6801, 8088 and the M6809, and additions to the range are expected in the near future. PM 4300 is claimed to be more powerful than a manufacturer's evaluation board, and allows writing/debugging of programs, checking operation of peripherals, exercising input/output ports and implementing interrupt routines. A hexadecimal keyboard, an 18-function keyboard, switch/LED/i/o displays and a 16-digit alphanumeric display are features of the desktop microcomputer instructor. Use of the function keys enables automatic i/o reading and writing, single stepping, setting hardware breakpoints, timing and memory manipulation to be carried out, and the user has complete control over system operations, including communication with i/o devices and generation of interrupts manually or using the real-time system clock. The RS-232 serial interface allows direct linking to existing development systems and the PM 4300 is compatible with the Philips PM 4421 PDMS microcomputer development system. Pye Unicam Ltd, York St, Cambridge CB1 2PX. WW 301

Switches and pots
Miniature switches for programming via B.C.D. or H.C.Hex., at low cost, are introduced by Ambit International in a new range designated the SRQ series. Uses of the switches include 'on-card' programming of frequency synthesizers, cash registers, timing devices, coin operated machines and computer games. Both horizontal and vertical mounting variations are available at a price of 99 p per unit or 64 p per unit in 100 off quantities. Also introduced by the same firm are potentiometers, the K16A20 series, which are basically standard 16mm types with 300° of rotation, but featuring an integral epicyclic drive. This feature enables improved resolution control as it gives a 5:1 turns reduction ratio of spindle rotation, for applications such as varicap tuning elements and instrument controls. E12 series values ranging from 1000 to 1MΩ are available, but Ambit are stocking a restricted range at present, at a 100 off price of 82 p. Ambit International, 200 North Service Rd, Brentwood, Essex CM14 4SG. WW 302

P.c.b. drill
Unlike most mini-drills, the USA manufactured Dremel Moto-Tool, introduced by Microflame Ltd, is suitable for operation at mains voltage, can supply considerable torque, and has a maximum free-running speed of 27000 r.p.m. Four collet sizes, of 3/32in, 1/8in, 5/32in and 3/16in diameter, and a range of over 100 accessories for drilling, grinding, deburring, engraving etc., make the drill suitable for a wide range of applications other than just the drilling of p.c.b.s. The basic drill with one collet costs £33.60, or it can be bought complete with a set of accessories at a price of £40.35. A drill-stand and a compatible vice are also available at prices of £18.80 and £11.39 respectively. Microflame (UK) Ltd, Vinces Rd, Diss, Norfolk IP22 3HQ. WW 303

"Pocket" computer
Battery powered, fully portable, 1.9Kbytes r.a.m. and a total of 11Kbytes r.o.m., are all features of the Tandy TRS 80 Pocket Computer, due to be released in October, for which eight different software packages will be available to cover varying requirements from civil engineering to computer games. By using a cassette interface, which is not included in the price of £119, programs can be loaded into the computer, one after the other, without the previous program being erased. TRS 80 makes use of a digital-display and a 57 key alphanumeric keyboard, and measures only 175 x 70 x 15mm. Prices of the software will range from £8.95 to £13.95, and the cassette interface will cost £17.95. Tandy Corporation, Bilston Rd, Wednesbury, West Midlands WS10 7JN. WW 304

Cable identifier
Electricians faced with the problem of finding the beginnings and ends of conductors of identical appearance in a cable group should find this product of interest. The Cable
Identifier System, developed by Mason and Morton Ltd, consists basically of two units, a sender and a receiver, to which the cable group to be identified is connected. When switched on, the cables connected to points one and two on the sender are identified at the receiver and indicated by red and green l.e.d.s respectively. Once identified, these two cables are simply connected to special points on the receiver to enable the two units to communicate with each other, after which the other cable points can be identified directly one by one. Open or short circuited cables are also shown up by the system. The basic model can accommodate up to 20 cables, and extensions are available to enable a maximum of forty cables to be identified. The Mason and Morton Group, M&M House, Frogmore Rd, Hemel Hempstead, Herts HP3 9RW.

WW 305

Waveform synthesizer

One of four new instruments recently introduced by Wavetech Electronics Ltd, is a programmable waveform synthesizer, for use either as a bench-top unit, or in waveform synthesizer, for use recently.

Among the types of waveform in its range are sine, offset sine, square, triangle and ramp, at programmable output voltages of up to 20V p.p. into 50 ohms, with frequencies of up to 50MHz. The design techniques incorporated enable synthesized triggering, gating, frequency sweep, burst counts, and advantages such as variphase operation, frequency storage and fixed t.t.l./t.t.l. output. D.c. offset, d.c. biasing, and the ability to retain data for longer than 10 years at 85°C, are among the special features of a new range of solid -state components, which have epoxy encapsulation, and can interface at several different levels to the Realtime Executive, depending on the input/output generalization and software "overhead" the designer wishes to include in his design. Texas Instruments Ltd, say that it is the first of its kind in the world. Dialog Marketing Ltd say that it is compatible with existing equipment, and can interface at several different levels to the Realtime Executive, depending on the input/output generalization and software "overhead" the designer wishes to include in his application. Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA.

WW 309

E.e.p.r.o.m.

With a memory capacity of 16Kbit, this e.e.p.r.o.m., the SN 48016 by Hitachi Ltd, is claimed to be the first of its kind in the world. Dialogue Marketing Ltd say that it is now available through them for sample deliveries, with larger -order capacity expected by the end of the year. Memory organization of the device is 2498 -word x 8-bit, the same as for the 2716 e.e.p.r.o.m. family, but its access time is only 70ns. A series of products called Component Software, introduced by Texas Instruments Ltd, support the TMS9900 family of 16-bit microprocessors and TM9900 microcomputer modules. They complement TI's Microprocessor Pascal products to enable a reduction in the number of software statements and allow designers to add modular software capability to their applications. Component Software products rely on a standard software interface, analogous to the hardware interface in v.l.s.i. components or microcomputer modules, to communicate with language-support and custom software routines. Initial products in the series are the TMSW33OR Realtime Executive and the TMSW340F File Manager, at $850 and $928 respectively, both available either for use on TI's floppy-disc based microprocessor development system or the hard-disc based AMPL system. The Realtime Executive has 6K bytes of software routines that perform the necessary executive functions for a real-time, multi-tasking application program. These functions include system initialization, concurrent process synchronization, inter-process communication, interrupt linkage, memory management and priority scheduling. The File Manager provides device-independent file management capability from assembly language and/or microprocessor Pascal application programs, and can interface at several different levels to the Realtime Executive, depending on the input/output generalization and software "overhead" the designer wishes to include in his application. Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA.

WW 306

Double-balanced mixer

Considering the 1 to 4.2GHz bandwidth of this double-balanced mixer, the Summit model 1307, distributed by March Microwave Ltd, the performance is unusually high. Conversion loss and noise figures are both less than 6dB, and lo.oi isolation is greater than 40dB. During assembly, hot carrier diodes are selected for the quad using a computerized technique to enable good matching and optimum noise performance. The unit, housed in stainless-steel and designed to work under rugged conditions, will probably find its use in such fields as commercial satellite communications. March Microwave Ltd, 112 South Street, Braintree, Essex.

WW 307

Midget capacitors

Suitability for assembly into thin and thick-film circuits, is one of the features of a new range of solid-electrolyte tantalum chip capacitors, type 194D Midget, which is available through Hy-Comp Ltd and manufactured by Sprague Electric. Capacitance values range from 0.1µF to 100µF, with working voltages of up to 50V d.c. for values under 4.7µF. Working voltages for values above 4.7µF fall gradually to a maximum of 4V d.c. for 100µF. The unpackaged devices, which have epoxy encapsulated bodies, are available in eight different sizes, ranging from 1.27 x 2.54mm to 3.8 x 7.2mm, and are compatible with modern hybrid assembly techniques, including soft-soldering, epoxy bonding and thermal compression bonding. Standard operating temperature range is from -55°C to +125°C, and capacitance tolerances of either 20% or 10% are obtainable (also 5% to special order). Hy-Comp Ltd, 7 Shield Rd, Ashford Industrial Estate, Ashford, Middx. TW15 1AV.

WW 308

Software for micros

A series of products called Component Software, introduced by Texas Instruments Ltd, support the TMS9900 family of 16-bit microprocessors and TM9900 microcomputer modules. They complement TI's Microprocessor Pascal products to enable a reduction in the number of software statements and allow designers to add modular software capability to their applications. Component Software products rely on a standard software interface, analogous to the hardware interface in v.l.s.i. components or microcomputer modules, to communicate with language-support and custom software routines. Initial products in the series are the TMSW33OR Realtime Executive and the TMSW340F File Manager, at $850 and $928 respectively, both available either for use on TI's floppy-disc based microprocessor development system or the hard-disc based AMPL system. The Realtime Executive has 6K bytes of software routines that perform the necessary executive functions for a real-time, multi-tasking application program. These functions include system initialization, concurrent process synchronization, inter-process communication, interrupt linkage, memory management and priority scheduling. The File Manager provides device-independent file management capability from assembly language and/or microprocessor Pascal application programs, and can interface at several different levels to the Realtime Executive, depending on the input/output generalization and software "overhead" the designer wishes to include in his application. Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA.

WW 309
PSI COMP 80

Z80 Based powerful scientific computer. Design as published in WIRELESS WORLD

Cabinet size 19.0" x 15.7" x 3.3"

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is complete!

Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2K Basic and 1K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

KIT ALSO AVAILABLE AS SEPARATE PACKS

For those customers who wish to spread their purchase or build a personalised system the kit is available as separate packs e.g. PCB £16.50, Keyboards £34.80, Firmware in EPROMS £30.00, Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 12.5") £43.20. Pair of keyboards £34.80. Firmware in EPROMS £30.00. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, (16" x 2 MICROPROCESSORS

2Z80 the powerful CPU with 158 instruction including all 78 of the 8080, controls the MM57109 number cruncher. Functions include +, -, /, squares, roots, log, exponentials, log functions, inverses, etc. Range 10^-99 to 9 X 10^-99 to 8 figures plus 2 exponent digits.

EFFICIENT OPERATION

Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC

With extended mathematical capability. Only 2K memory used but more powerful than most 8K Basics!

1K MONITOR

Resident in EPROM.

SINGLE BOARD DESIGN

Ordinary keyboards and power supply circuitry on the superb quality double-sided through-hole PCB.

COMPLETE KIT

NOW ONLY £225 +VAT!

ETI VOCODER

COMPLETE KIT

ONLY £195 + VAT

Published in Electronics Today International
individual
250° movements for
original equipment
manufacturers
another original
idea from
Bach-Simpson

Now you can have your own 250° meter movement
to fit in your own case.
Features include:
Sensitivities from 200 μ amps
Top or bottom zero adjuster
Spring loaded pivots
Various pointer styles and lengths available
Supplied in specially designed polystyrene trays
Customised to suit your specification
Can be fitted by us in your case if required.
For full technical information telephone, write or telex
now

Bach-Simpson

Bach-Simpson (UK) Limited,
Trenant Estate, Wadebridge, Cornwall PL27 6HD
Tel. (020881) 2031 Telex 45451
TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

Another superb design by synthesizer expert Tim Orr — published in Electronics Today International

The Transcendent DPX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first output there is a beautiful harpsichord or reed sound — fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a straightforward piano or a honky tonk piano or even a mixture of the two! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the keyboard or you should prefer — strings on the top of the keyboard and brass at the lower end (the keyboard is electronically split after the first two octaves) or vice versa or even a combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitive! The harder you press down a key the louder it sounds — just like an acoustic piano. The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism.

There is a master volume and tone control, a separate control for the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes in only after a short time after the note is struck for even more realistic singing sounds.

POWERTRAN

MANY MORE KITS ON PAGE 95. MORE KITS AND ORDERING INFORMATION ON PAGE 93.

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.

The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is portamento, pitch bending, a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noise generator and an ADSR envelope shaper. There is also a slow oscillator, a new pitch detector, ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.

The kit includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or 1/2% metal film) and it really is complete — right down to the last nut and bolt and last piece of wire! There is even a 13A plug in the kit — you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professional quality fibreglass PCB printed with component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with ready-built units selling for many times the price.

COMPLETE KIT ONLY £168.50 +VAT!
THE ULTIMATE WATCHES

Send 12p for details of these amazing CASIO watches NOW!

AA81 LCD ANALOGUE DIGITAL

Alarm Chronograph with countdown
Analogous, independent hours and minutes with synchronous digital seconds. Dual time ability.
Digital. Hours, minutes, seconds, day and year
Stopwatch. 1/100 second to 12 hours. Set, up and 1st and 2nd place. Start/Stop and 10 minute signals.
Alarm. For 30 seconds with countdown display.
Countdown Alarm. Normal and net times to 1 hour. With amazing "Star Burst" flashing display.

12 MELODY ALARM CHRONOGRAPH

Countdown alarm. Date memories.
Hours, minutes, seconds. am/pm. 12 or 24 hour. Day, date and month auto calendar.
Alarm. 7 melodies. one for each day of the week.
Hourly time signal. With "Big Ben" type tune.
Date memory. Hawaii or "Wedding March" or Trinkhed" to be played.
Birthday and Christmas Memory. March" or Trinkhed" to be played.
Date memory. Choose either "Wedding Memory.
Hourly time signal. Half-hourly and hourly chimes.

Casio

ONLY £29.95 for around 40 functions

100 METRE WATER RESISTANT

Alarm Chronographs with countdown
Amazing 5 year lithium battery life. Hours, minutes, seconds. am/pm, date and month 12 or 24 hour. Time is always visible regardless of display mode.
Stopwatch. 1/100 second to 1 hour. Net, lap and split.
Figuresome moving display of notes played.
Light. Lithium. Glass. Water Resistant. M-12 resin, s/d trim. M-2000 all s/s. 9.00mm thick.

£24.95 £29.95

SEIKO

Alarm Chronographs from £37.50
Duo Display (analogue/digital) from £57.50

Tempus

Dept. WW, Beaumont Centre,
164-167 East Rd.
Cambridge CB1 1DB. Tel. 0223 312866
MPA 200

100 WATT (rms into 8O) MIXER/AMPLIFIER

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplifier.

It features an adaptable input mixer which accepts a wide range of sources such as a microphone, guitar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straightforward.

The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc. — complete down to the last nut and bolt.

CHROMATHEQUE 5000

5 CHANNEL LIGHTING EFFECTS SYSTEM

This versatile system has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it switch all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500W and as the kit is a single board design wiring is minimal and construction very straightforward.

The kit includes fully finished metalwork, fibreglass PCB controls, wire, etc. — Complete right down to the last nut and bolt!

POWERTRAN

SYNTHESIZER KITS ON PAGE 93. MORE KITS AND ORDERING INFORMATION ON PAGE 91.

DE LUXE EASY TO BUILD LINSLEY HOOD

75W STEREO AMPLIFIER £85.00 + VAT

This easy to build version of our world-wide acclaimed 75W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring while distortion is less than 0.01%.

All kits also available as separate packs (e.g. PCB, component sets, hardware sets, etc.). Prices in our FREE CATALOGUE.

T20 +20 20W STEREO AMPLIFIER £33.10 + VAT

This kit, based upon a design published in Practical Wireless uses a single printed circuit board and offers at very low cost, ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit (T30 + 30) is also available for £38.40 + VAT.

MATCHING TUNERS — See our FREE CATALOGUE.

Above 2 kits are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet, cable, nuts, bolts, etc. and full instructions — in fact everything!

BLACK HOLE

MUSIC EFFECTS DEVICE — AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL!

The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mode which gives a 'spacey' feel to the sound achieved by delaying the input signal and mixing it back with the original. Notches (HOLES) introduced in the frequency response, move up and down as the time delay is modulated by the chorus sweep generator. An optional double chorus mode allows exciting antiphase effects to be added. The device is floor standing, with foot switch controls, LED effect selection indicators, has variable sensitivity, has high signal/noise ratio obtained by an audio compander and is mains powered — no batteries to change! Like all our kits everything is provided including a high grade rugged steel, beautifully finished enclosure.

COMPLETE KIT ONLY £49.80 + VAT (single delay line system)

De Luxe version (dual delay line system) also available for £59.80 + VAT

Cabinet size 10.0" x 8.5" x 2.5" (rear) 1.8" (front)
SOFTY Software Development System and Eprom Programmer

SOFTY is intended for the development of programs which will eventually become software residing in ROM and forming part of a microsystem. During the development stage of a microsystem, SOFTY will be connected in place of the firmware ROM via a ribbon cable, terminated in a 24 pin DIL plug.

Data may be entered into the SOFTY RAM via the aerial port, parallel port, direct memory access, or the keypad, and manipulated using the assembler key-functions.

When the program has been entered, the internal microprocessor can be 'turned off', and the external microsystem and its resident microprocessor allowed to access and run the program in SOFTY's RAM and/or programming socket. In this way modification can be made until the required program is complete — the contents of the RAM being clearly visible as a 'page' on TV or monitor. 4 pages are available, 2 of the Data RAM and 2 of the programming socket.

In the end, when the program is complete and working, the DIL plug is removed and replaced by an EPROM device programmed by SOFTY. SOFTY is able to program the 2704/2708/2716 family which have 3 voltage rails.

To help in the process of program development SOFTY has various assembler key-functions, which include — block shift without overwriting, block store, cursor control, match byte and displacement calculations (for jumps, etc.). A high-speed cassette interface is also provided for storing working programs and useful subroutines.

NEW - SOFTY CONVERSION CARD - EX-STOCK

Enables SOFTY to program the single rail EPROMS 2508, 2758, 2516, (INTEL 2716), 2532.
Selection of device type and 1K block are by 4-way pcb slide switches. Programming socket is zero insertion force. Supplied ready built and tested with Dip jumper for connection to SOFTY £68 (inc. VAT p&p).

NEW - SOFTY PRINTER CARD - EX-STOCK

40 column electrostatic printer 5x7 dot matrix software selection of characters per line 1 to 16 bytes ID pushbutton printing of EPROM / RAM / intercursor contents ID Connects to SOFTY card edge ID Well documented ID Supplied ready built and tested, including power supply, edge connector and paper roll for £185.75 (inc. VAT p&p).

Spare paper rolls (28-30 metres/roll) - 4 rolls for £8 (inc. VAT p&p).

MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

- Fast erase times (typically 20 minutes for 2708 EPROM)
- 14 EPROM capacity
- Built-in LED to indicate where all EPROMs are in use
- Interchangeable leads to prevent eye and skin damage
- Convenient slide-out loading of devices
- MAINS and ERASE indicators
- Rugged construction
- Priced at only £99.70 (inc. VAT, p&p)

MODEL UV140 EPROM ERASER

Similar to Model UV141 but without timer
- Low price at only £79.75 (inc. VAT, p&p)

WRITE OR TELEPHONE FOR FULL DETAILS OR SEND CHEQUES / OFFICIAL COMPANY ORDERS TO:

GP Industrial Electronics Limited
(Retail Sales), Skardon Place, North Hill, Plymouth
PL4 8HA. Telephone: Plymouth (0752) 28627
TRADE AND EXPORT ENQUIRIES WELCOME

WW-071 FOR FURTHER DETAILS
| WILMSLOW AUDIO | WILMSLOW AUDIO | KITS FOR MAGAZINE DESIGNS, etc.
KITS INCLUDE DRIVE UNITS, CROSSOVER, ETC.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HIFI DRIVE UNITS</td>
<td>PA GROUP & DISCO UNITS</td>
<td>FOR A PAIR OF SPEAKERS</td>
</tr>
<tr>
<td>PRICE</td>
<td>PRICE</td>
<td>PRICE</td>
</tr>
<tr>
<td>WILMSLOW AUDIO</td>
<td>WILMSLOW AUDIO</td>
<td>BARGAIN OF THE YEAR</td>
</tr>
<tr>
<td>SPEAKER KITS</td>
<td>SPEAKER KITS</td>
<td>SHIPPING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CROSSOVERS</th>
<th>CROSSOVERS</th>
<th>CROSSOVERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRICE</td>
<td>PRICE</td>
<td>PRICE</td>
</tr>
<tr>
<td>WILMSLOW AUDIO</td>
<td>WILMSLOW AUDIO</td>
<td>WILMSLOW AUDIO</td>
</tr>
<tr>
<td>SPEAKER KITS</td>
<td>SPEAKER KITS</td>
<td>SPEAKER KITS</td>
</tr>
</tbody>
</table>

All prices include VAT @ 15%

Send 50p for a 1980 56-page catalogue 'Choosing a Speaker'

Prices per pair

<table>
<thead>
<tr>
<th>DEALER SYSTEM 1</th>
<th>DEALER SYSTEM 2</th>
<th>DEALER SYSTEM 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRICE</td>
<td>PRICE</td>
<td>PRICE</td>
</tr>
<tr>
<td>WILMSLOW AUDIO</td>
<td>WILMSLOW AUDIO</td>
<td>WILMSLOW AUDIO</td>
</tr>
<tr>
<td>SPEAKER KITS</td>
<td>SPEAKER KITS</td>
<td>SPEAKER KITS</td>
</tr>
</tbody>
</table>

ALL PRICES INCLUDE VAT AT 15%

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTOR!

WILMSLOW Audio

The firm for Hi-Fi

5 Swan Street, Wilmcote, Warwickshire.

Tel: 0652 526213 (SWIFT of WILMSLOW for HI-FI & COMPLETE SPEAKER SYSTEMS.)

Lightning service on telephoned credit card orders!

WWW - 040 FOR FURTHER DETAILS

ALL PRICES INCLUDE VAT @ 15%

Send 50p for a 1980 56-page catalogue 'Choosing a Speaker'

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTOR!

WILMSLOW Audio

The firm for Hi-Fi

5 Swan Street, Wilmcote, Warwickshire.

Tel: 0652 529599 FOR MAIL ORDER & EXPORT OF DRIVE UNITS, KITS, ETC.

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTOR!

WILMSLOW Audio

The firm for HI-FI

5 Swan Street, Wilmcote, Cheshire.

Tel: 0652 526213 (SWIFT of WILMSLOW for HI-FI & COMPLETE SPEAKER SYSTEMS.)

Lightning service on telephoned credit card orders!

WWW - 040 FOR FURTHER DETAILS

ALL PRICES INCLUDE VAT @ 15%

Send 50p for a 1980 56-page catalogue 'Choosing a Speaker'

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTOR!

WILMSLOW Audio

The firm for HI-FI

5 Swan Street, Wilmcote, Warwickshire.

Tel: 0652 529599 FOR MAIL ORDER & EXPORT OF DRIVE UNITS, KITS, ETC.

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTOR!

WILMSLOW Audio

The firm for HI-FI

5 Swan Street, Wilmcote, Cheshire.

Tel: 0652 526213 (SWIFT of WILMSLOW for HI-FI & COMPLETE SPEAKER SYSTEMS.)

Lightning service on telephoned credit card orders!

WWW - 040 FOR FURTHER DETAILS
The New SUPER-S has 0dBm power output, 2-tone generator, phase locked VCO and is now reduced in price.

The New FM/AM 1000s with Spectrum Analyser - we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter - and up to five service engineers who could be doing something else!

For further information contact Mike Taylor

FieldTech Ltd
Heathrow Airport
London Hounslow
TW6 3AF
Tel: 01-759 2811
Telex: 23734
FLDTEC G

Get Connected

Multiway connectors from 4 to 35 way with pre-tinned brass or gold hyfen contacts giving 5 and 13 amp rating per contact. The range of accessories includes cable clamps and dust covers.
For full details of "by return" service contact:

VEROSPEED
0703-618525
Stansted Road, Boyatt Wood, Eastleigh, Hampshire. S05 4ZV

IQXO-100 SERIES LOW PROFILE CRYSTAL CLOCK OSCILLATORS

- Hermetically sealed metal package
- DIL compatible
- 20.70L x 13.06W x 5.08H (mm)

The frequency range 600 Hz to 30 MHz is covered by both CMOS (600 Hz - 8 MHz) and TTL (150 KHz - 30 MHz) types having an overall tolerance of ±0.01% from 0 to +70°C. For more stringent requirements, ±0.01% from -55 to +125°C is available.
Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD
29 Market Street, Crewkerne, Somerset TA18 7JU
Crewkerne (0460) 74433 Telex 46283 inface g

WW - 074 FOR FURTHER DETAILS

WW - 075 FOR FURTHER DETAILS
TEST INSTRUMENTS

THE RANGE HAS INCREASED —
THE PRICES ARE DOWN

THE CS1830 30 MHz + Sweep Delay

The CS1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal graticule, PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of 1μS-100 mS and trace bright up to show the delay position. As you can see from close study of the photograph, the CS1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet.

Brief specification

- Rectangular PDA tube 120 X 96 mm, P31 phosphor.
- Bandwidth DC-30 MHz
- Overshoot less than 3%
- Sensitivity 5mV/cm (30 MHz)
- Sweep time 200nS/cm - 0.5 S/cm
- 2mV/cm (20 MHz)
- Linearity better than 3%
- Input R.C. 1 MΩ/23 pF
- Trig. bandwidth DC -30 MHz
- Rise time 11.7 nS
- Sweep delay 1μS-100 mS

CS1830 only £455 + VAT includes 2 probes

THE CS1572 30 MHz for the VTR Lab.

If you are in Video, you need the CS1572

The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video odd and even fields. A truly unique tool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a small advertisement so why not call us and ask for the full story on the CS1572.

Brief Specification

As for CS1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment.

CS1572 only £425 + VAT, includes 2 probes

THE CS1577 30 MHz at 2mV + Signal Delay

The most popular scope in the range.

The CS1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS1577 combines a wide bandwidth DC-30 MHz performance with extremely wide trigger bandwidth (DC-40 MHz) and 2 mV sensitivity over the full bandwidth.

Fixed signal delay is provided by a helix delay line which allows viewing of the leading edges of fast pulses for accurate rise time measurement, and the 130 mm PDA tube gives a bright, stable trace even at the highest sweep speeds (20 nS/cm using X 5 expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS1577 demonstrates this to perfection. Triggering, as in the other 30 MHz instruments can be from CH1 or CH2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays.

Truly an oscilloscope masterpiece. CS1577.

CS1577 only £410 + VAT.

AND TWO NEW ADDITIONS TO THE RANGE

DL705 MULTIMETER

DC to 1000V
AC to 1000V
0 to 20MΩ
1 to 2A
Semi Auto Ranging

£70 + VAT

FC756 500 MHz COUNTER

10 Hz-500 MHz
50mV
Superb instrument

£225 + VAT

LOWE ELECTRONICS

CHESTERFIELD ROAD, MATLOCK, DERBYS.
0629-2430 - TELEX 377482
The range grows bigger...better...

New Profile Amplifiers - Two New Series

MOSFET

CHOOSE AN I.L.P MOSFET POWER AMP when it is advantageous to have a faster slew rate, lower distortion at higher frequencies, enhanced thermal stability, the ability to work with complex loads without difficulty and complete absence of cross-over distortion. I.L.P's specially developed computer-verified "New Profile" extrusions ensure optimum operating efficiency from our new MOSFETS, and are easier to mount. Connections are simple, via five pins on the underside. I.L.P MOSFETS ARE IDENTICAL IN PERFORMANCE TO THE COSTLIEST AMPLIFIERS IN THIS EXCITING NEW CATEGORY BUT ARE ONLY A FRACTION OF PRICES CHARGED ELSEWHERE.

<table>
<thead>
<tr>
<th>Model</th>
<th>Output Power RMS</th>
<th>Distortion Typical at 1kHz</th>
<th>Slew Rate</th>
<th>Rise Time</th>
<th>Signal/Noise Ratio</th>
<th>DIN AUDIO</th>
<th>Price & VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS120</td>
<td>60W into 4-8Ω</td>
<td>0.005%</td>
<td>20V/µs</td>
<td>3s</td>
<td>100dB</td>
<td></td>
<td>£25.88 + £3.88</td>
</tr>
<tr>
<td>MOS200</td>
<td>120W into 4-8Ω</td>
<td>0.005%</td>
<td>20V/µs</td>
<td>3s</td>
<td>100dB</td>
<td></td>
<td>£33.46 + £5.02</td>
</tr>
</tbody>
</table>

BIPOLAR

CHOOSE AN I.L.P BIPOLAR POWER AMP where power and price are first consideration while maintaining optimum performance with hi-fi quality and wide choice of models. From domestic hi-fi to disco and P.A., for instrument amplification, there is an I.L.P Bipolar to fill the bill, and as with our new Mosfets, we have encapsulated Bipolars within our New Profile extrusions: with their computer-verified thermal efficiency and improved mounting lugs, connections are simple, via five pins on the underside and with our newest pre-amps and power supply units, it becomes easier than ever to have a system layout housed the way you want it.

<table>
<thead>
<tr>
<th>Model</th>
<th>Output Power RMS</th>
<th>Distortion Typical at 1kHz</th>
<th>Slew Rate</th>
<th>Rise Time</th>
<th>Signal/Noise Ratio</th>
<th>DIN AUDIO</th>
<th>Price & VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY30</td>
<td>15W into 4-8Ω</td>
<td>0.015%</td>
<td>15V/µs</td>
<td>5s</td>
<td>100dB</td>
<td></td>
<td>£6.34 + £1.14</td>
</tr>
<tr>
<td>HY60</td>
<td>30W into 4-8Ω</td>
<td>0.015%</td>
<td>15V/µs</td>
<td>5s</td>
<td>100dB</td>
<td></td>
<td>£7.24 + £1.09</td>
</tr>
<tr>
<td>HY120</td>
<td>60W into 4-8Ω</td>
<td>0.01%</td>
<td>15V/µs</td>
<td>5s</td>
<td>100dB</td>
<td></td>
<td>£15.20 + £2.28</td>
</tr>
<tr>
<td>HY200</td>
<td>120W into 4-8Ω</td>
<td>0.01%</td>
<td>15V/µs</td>
<td>5s</td>
<td>100dB</td>
<td></td>
<td>£18.44 + £2.77</td>
</tr>
<tr>
<td>HY400</td>
<td>240W into 4-8Ω</td>
<td>0.01%</td>
<td>15V/µs</td>
<td>5s</td>
<td>100dB</td>
<td></td>
<td>£27.68 + £4.15</td>
</tr>
</tbody>
</table>

THE NEW PROFILE EXTRUSIONS

The introduction of standard heatsink extrusion for all I.L.P power amplifiers achieves many advantages. Research shows they provide optimum thermal dissipation and stability. Slotted shoulders allow easy mounting; standardisation enables us to keep our prices competitive. Surfaces are matt black, anodised for lower thermal conductivity. Extrusions vary in size according to module number.
NEW PRE-AMPS

HY6 (mono) and HY66 (stereo) are new to I.L.P.'s range of advanced audio modules. Their improved characteristics and styling ensure their being compatible with all I.L.P. power-amps both MOSFET and Bipolar, giving you chance to get the best possible reproduction from your equipment. HY6 and HY66 pre-amps are protected against short circuit and wrong polarity. Full assembly instructions are provided. Mounting boards are available as below.

Sizes: HY6 45 x 20 x 40 mm. HY66 90 x 20 x 40 mm.

Active Tone Control circuits provide ±12dB cut and boost.

Inputs Sensitivity: - Mag. Pu. -3mV; Mic selectable -12mV; All others 100mV. Tape O/P - 100mV: Main O/P - 500mV. Frequency response: D.C. to 100KHz - 3dB.

HY6 mono £5.60 + 84p VAT Connectors included
HY66 stereo £10.60 + £1.59 VAT Connectors included
B6 Mounting Board for one HY6 78p + 12p VAT
B66 Mounting Board for one HY66 99p + 15p VAT

NEW POWER SUPPLY UNITS

Of the eleven power supply units which comprise our current range, nine have toroidal transformers made in our own factory. Thus these I.L.P. power supply units are space-saving, more efficient and the better overall design helps enormously when assembly building. All models in the range are compatible with all I.L.P. pre-amps and pre-amps with types to match whatever I.L.P. power-amps you choose.

PSU30: 15V at 100mA to drive up to 12 x HY6 or 6 x HY66 £4.50 + 0.68p VAT
THE FOLLOWING WILL ALSO DRIVE I.L.P. PRE-AMPS
PSU36 for 1 or 2 HT30's £8.10 + £1.22 VAT
PSU50 with toroidal transformer for 1 or 2 HY60's £9.75 + £1.46 VAT
PSU60 with toroidal transformer for 1 HY120 £13.61 + £2.04 VAT
PSU66 with toroidal transformer for 1 MOS120 £13.61 + £2.04 VAT
PSU75 with toroidal transformer for 1 or 2 MOS120 £13.61 + £2.04 VAT
PSU90 with toroidal transformer for 1 HY200 £24.20 + £3.63 VAT
PSU95 with toroidal transformer for 1 or 2 MOS200 £24.20 + £3.63 VAT

Freepost facility
When ordering or writing about I.L.P. products, you do not need to stamp the envelope. Mark it FREEPOST and send the code shown in the address below. We pay the postage for you.

NO QUIBBLE 5 YEAR GUARANTEE
7-DAY DESPATCH ON ALL ORDERS
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE

PSU ELECTRONICS LTD.
FREEPOST Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP
Telephone (02271) 54778 Telex 965780
Available also from MARSHALLS, WATFORD ELECTRONICS and certain other selected retailers

BRITAIN'S FASTEST GROWING MODULE SUPPLIERS

1971-1980 TEN YEARS OF PLANNED PROGRESS

When, as a young man in 1971, Ian L. Potts founded his now world-famous company, he realised the need for a different and more rational approach to exploiting to the maximum, the potential of modular construction. New thinking was badly needed. The result was a range of modules completely revolutionary in concept. The rightness of Ian Potts' thinking is shown in the size of the company today. In its new factory, its vast exports, its acceptance as the module to build with. The range grows bigger and better. New lines (in no way replacing existing ones) are well past drawing board stage. This is why I.L.P. are simply ahead and staying there - we don't rest on our laurels.

To: I.L.P. ELECTRONICS LTD. CANTERBURY CT2 7EP
Please supply

Total purchase price £

Enclose Cheque [] Postal Orders [] International Money Order []
Please debit my Access/Barclaycard Account No.

NAME
ADDRESS
Signature

WIRELESS WORLD NOVEMBER 1980
| Ceramic Pak | 16160 | 24 - 3 of each value - 22pf - 0.69 | 16161 | 24 - 3 of each value - 50pf - 0.69 | 16162 | 24 - 3 of each value - 100pf - 0.69 | 16163 | 24 - 3 of each value - 220pf - 0.69 | 16164 | 24 - 3 of each value - 270pf - 0.69 | 16165 | 24 - 3 of each value - 330pf - 0.69 |
| Transistors | 16166 | 24 - 3 of each value - 0.1uf - 0.69 | 16167 | 24 - 3 of each value - 0.2uf - 0.69 | 16168 | 24 - 3 of each value - 0.3uf - 0.69 | 16169 | 24 - 3 of each value - 0.4uf - 0.69 | 16170 | 24 - 3 of each value - 0.5uf - 0.69 | 16171 | 24 - 3 of each value - 0.6uf - 0.69 | 16172 | 24 - 3 of each value - 0.8uf - 0.69 |

Electrolytic Paks

- A range of packs each containing 18 assorted mixed voltage units.
- 16201 - 47mFD-10mFD £0.69
- 16202 - 10mFD-100mFD £0.69

Carbon Resistor Paks

- 16213 - 40 mixed 10 ohms - 250 ohms £0.69
- 16214 - 40 mixed 1K ohms - 10K ohms £0.69
- 16215 - 40 mixed 10K ohms - 100K ohms £0.69
- 16216 - 40 mixed 100K ohms - 1M ohms £0.69
- 16217 - 40 mixed 1M ohms - 10M ohms £0.69

Component Paks

- 16164 - 200 Resistor mixed value packs direct by weight £0.69
- 16165 - 150 Capacitor mixed value packs direct by weight £0.69
- 16166 - 50 Precision resistors Mixed values £0.69
- 16167 - 80 wye reactors Mixed values £0.69
- 16168 - 80 wye reactors Mixed values £0.69
- 16169 - 200mFD-10mFD £0.69
- 16170 - 20mFD-100mFD £0.69
- 16171 - 18 Assorted pack £0.69
- 16172 - 5 metal jacks sockets £0.69
- 16173 - 20 Electronic components £0.69
- 16174 - 1 Pack wire 50 metres assorted value single strand £0.69
- 16175 - 10 Reed switches £0.69
- 16176 - 200mFD-10mFD £0.69
- 16177 - 1 Pack assorted hardwired packaged amplifier boards £0.69
- 16178 - 5 Mains slide switches, assorted £0.69
- 16179 - 20 Assorted tag strips and connectors £0.69
- 16180 - 15 Assorted connectors £0.69
- 16181 - 3 Rotary wave change switches £0.69
- 16182 - 2 Relays £0.69

Metal Foil Capacitor Pak

- 16204 - Containing 50 metal foil capacitor like Milford S200 series £0.69
- Mixed values ranging from 0.1uf to 1uf. Complete with identification chart £0.69

Slide Switches

- 16190 - 6 slider mixed £0.69
- 16191 - 6 slider mixed £0.69
- 16192 - 6 slider mixed £0.69
- 16193 - 2 slider 0.25ma 10k £0.69
- 16194 - 2 slider 0.25ma 10k £0.69
- 16195 - 2 slider 0.25ma 10k £0.69
- 16196 - 6 slider 47k lug £0.69

All prices include VAT: Add 50p per order — Just quote your Access or Barclaycard number.

Terms: Cash with order, cheques, POs, payable to Bi-Pak at above address.
Racal-Dana add a new chapter to the story of test instrumentation.

The 9084 Synthesized Signal Generator.

One of the most advanced signal generators available anywhere in the world, the new 9084 brings you all the latest technology from Racal-Dana's international award-winning design team.

With a frequency range from 10 kHz to 104 MHz (with doubler to 208 MHz), it spans the entire HF radio band, including the specialized LF and low-band VHF areas particularly useful for aviation and marine applications.

Its outstanding features include:
• exceptional spectral purity • GPIB programmable
• high-resolution spin-wheel tuning • automatic display of operator error • optional hand-held store for up to 96 frequency settings.

The 9084 is available now, so find out the whole story by returning the coupon today.
<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Price</th>
<th>Brand</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T101</td>
<td>742222p</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T102</td>
<td>7421</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T103</td>
<td>7460</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T104</td>
<td>74126</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T105</td>
<td>74121</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T106</td>
<td>74283</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T107</td>
<td>74279</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T108</td>
<td>74196</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T109</td>
<td>74193</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T110</td>
<td>74173</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T111</td>
<td>74164</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T112</td>
<td>74161</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T113</td>
<td>74151A</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please send SAE for list.
SUPER BARGAIN TUNER OFFER

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter arrangement used on our Linsley Hood Cassette Recorder 1. This latest version has the following extra features: Ultra low wow-and-flutter of 0.9% — easily meets DIN Hi-fi spec. Deck controls latch-in in front and modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record button for level setting. Dual concentric input level controls. Phone output. Microphone input facility if required. Record interlock prevents re-recording on valued cassettes. Frequency generating feedback serve drive motor with built-in speed control for thermal stability. All these desirable and useful features added to the excellent design of the Linsley-Hood circuits and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest £84.90 + VAT we ask for the complete kit.

LINSLEY-HOOD 30 WATT AMPLIFIER

The very latest amplifier design to be published and in our opinion the best yet. The concept was to produce an amplifier that sounded as good as the authors 75 watt design but which was cheaper and simple to build for applications where the higher power is not needed. This new kit is designed to match the Linsley-Hood Cassette Recorder 2 and a tuner will be available later to make a complete tunable system. A very advanced assembly system has been devised by us to make construction ultra simple and anyone who can solder components in a printed circuit board will find it great fun. Conventional wiring is an irreducible minimum, only being needed to connect the mains transformer and pilot light. For an amplifier of this quality this kit represents incredible value for money.

All parts can be bought separately at a total cost of £79.12 but complete kits are available at a special introductory discount price of only £76 + VAT.

STUART TAPE CIRCUITS

These circuits are just the thing for converting that old valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and replay sections for simultaneous off-tape monitoring. We also stock the heads. This kit is well engineered but does not have the detailed instructions that we give with our more recent designs. We would not therefore recommend it to beginners. Reprints of the original three articles 45p. Post free. No VAT.

CASETTE HEADS

All prices plus VAT

<table>
<thead>
<tr>
<th>CASSETTE HEADS</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS15 SENDUST ALLOY SUPER HEAD</td>
<td>£7.80</td>
</tr>
<tr>
<td>HC20 Stereo Permalloy R/P head</td>
<td>£4.25</td>
</tr>
<tr>
<td>HM30 Stereo R/P head for METAL tape</td>
<td>£7.20</td>
</tr>
<tr>
<td>HD61 Special Erase Head for METAL tape</td>
<td>£4.50</td>
</tr>
<tr>
<td>HS24 Standard Ferrite Erase Head</td>
<td>£1.50</td>
</tr>
<tr>
<td>4-Track R/P Head, Standard Mounting</td>
<td>£7.40</td>
</tr>
<tr>
<td>RAB4 2/1 (Double Mono) R/P Head, Std. Mag</td>
<td>£4.90</td>
</tr>
<tr>
<td>ME151 2/2 Ferriol Erase, Large Mag</td>
<td>£4.25</td>
</tr>
<tr>
<td>CCE 6M 2/2 Erase, Std. Mag</td>
<td>£7.80</td>
</tr>
</tbody>
</table>

Please send 9x4 SAE for lists giving fuller details and price breakdowns.
Read all about home entertainment ideas for the nineteen-eighties in the new Hi Fi Yearbook and Home Entertainment. Still the leading reference book on Hi Fi it's now bigger and better than ever, with over 550 pages and new sections covering other types of home entertainment equipment: radios, electronic organs, colour TVs, video recorders and electronic TV games. There are specifications, prices and illustrations for the equipment covered, as well as informative articles written by experts. Plus directories of manufacturers, suppliers and dealers.

Hi Fi Year Book and Home Entertainment 1980 available at leading newsagents and bookshops from November 1st. Price £3.75.

If in difficulty order direct from the publishers @ £4.25 inclusive.

ORDER FORM

To: General Sales Manager, Room CP34, IPC Business Press Ltd., Dorset House, Stamford Street, London SE1 9LU

Please send me _______ copy/copies of Hi Fi Year Book and Home Entertainment 1980 @ £4.25 a copy inclusive, remittance enclosed.

Name: __________________________

Address: ________________________

Registered in England No. 677128

Registered Office: Dorset House, Stamford Street, London SE1 9LU

RADIO SHACK LTD

TR-7 Transceiver

Ham Bands with 1.5-30 MHz receive with built-in 150 MHz frequency counter plus option of 0.15 MHz receive and/or any transceiving application 1.5-30 MHz.

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear.

We are situated just around the corner from West Hampstead Underground Station (Bakerloo line). A few minutes' walk away is West Hampstead Midland Region station and West End Lane on the Broad Street Line. We are on the following Bus routes: 28, 59, 159. Hours of opening are 9-5 Monday to Friday. Closed for Lunch 1-2 Saturday we are open 9-12:30 only. World wide exports. DRAKE • SALES • SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY

Giro Account No. 588 7151. Telephone: 01-624 7774

WW - 048 FOR FURTHER DETAILS
S-2020TA STEREO TUNER/AMPLIFIER KIT

NEW HIGH PERFORMANCE TUNER

A high-quality push-button FM Varicap Stereo Tuner with pilot cancel decoder combined with a 24W r.m.s. per channel Stereo Amplifier, using Bifet op. amps.

Brief Spec: Amplifier Low Inductance transformer, Mag. input. Tape In/Out facility for noise reduction unit, etc. THD less than 0.1% at 20W into 8 ohms. High Signal:Noise. Low noise op. amps used throughout. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses UM 1181 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC pilot cancel, stereo decoder, LED tuning and stereo indicators. Tuning range 88-108MHz. 30dB mono S/N (o), 0, 70V THD 0.3%.

PRICE: £69.95 + VAT

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase I.F. and 3 state MPX decoder.

PRICE: £74.95 + VAT

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years research by the Ambisonic team. W.W. July, Aug., 1977. The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ. 10 input selections. The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 4 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee £57.70 + VAT or ready built and tested £79.95 + VAT

S5050A STEREO AMP

Very high performance kit

50 watts r.m.s-channels. 0.015% THD. S/N <90dB. Mags/80 dB. Output device rating 360w per channel.

Complete kit only £69.95 + VAT

(Also available our 20W/ch BIFET S2020 Amp)

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 43 seconds and the unit re-arms. 240V ac mains or 12V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells etc.

Complete kit £52.50 plus VAT, or ready built and tested £68.50 plus VAT.

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc.

Complete Kit PRICE: £69.95 + VAT (Q head model available)

Also available ready built and tested

Calibration signals available for open-reel use and for casette (specify which)

Single channel plug-in Dolby (12) PROCESSOR BOARD (92 x 87mm) with gold plated components and all components

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

INTEGREX LIMITED
Alphanumeric Membrane KEYBOARD

FEATURES
* Guaranteed 10^7 Operations Touch or Tactile feel action
* Sealed Wipe Clean Matt Polyester Surface 4 Colour
* Fully Encoded ASCII 8 bit, Parity Externally Selectable
* Two Key Rollover, N Key Lockout, Shift Lock Indicator
* Bleeper Option. Integral Power supply (Needs 24vct AC)
* Miniature 175 x 100mm, Full Size 280 x 140mm, 4mm Thick
* IDC Output Ribbon Cable Supplied
* Full Data Supplied

PRICES (cwo please) Phone for quantity prices
K8090 Mini £29.50 excl VAT
K8190 Full Size £39.50 excl VAT

Other Standard Products : 4 x 4 (hexadecimal), 4 x 3 (0-9, Clr *) Touch sensitive & VANDAL PROOF matrix or common arrays

We Specialise in Custom Keyboard Design and Manufacture on 6-8 week normal Service 10 days priority

Manufactured in the UK by
LAMINA KEYBOARDS LTD
42-45 New Broad Street LONDON EC2M 1QY

Phone 01 628 0898

MEMORIES

<table>
<thead>
<tr>
<th>Memory</th>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2114-300ns</td>
<td>1k x 4</td>
<td>£2.25</td>
</tr>
<tr>
<td>4116-200ns</td>
<td>16k x 1</td>
<td>£2.61</td>
</tr>
<tr>
<td>2708-450ns</td>
<td>1k x 8</td>
<td>£4.39</td>
</tr>
<tr>
<td>2516 +5v</td>
<td>2k x 8</td>
<td>£9.00</td>
</tr>
<tr>
<td>2716 +5v</td>
<td>2k x 8</td>
<td>£9.00</td>
</tr>
<tr>
<td>2532 - 450ns</td>
<td>4k x 8</td>
<td>£23.40</td>
</tr>
</tbody>
</table>

S-100 CPU Board, with disk controller, Z-80 CPU, CTC, S10 and P10 all on board. Disk controller will take up to 4 x 8" disk drives. Single or Double Density. Also has an EPROM PROGRAMMER on board. All this for only £495.50 + VAT.

STRUTT LTD.
3c Barley Market Street
Tavistock, Devon, PL19 0JF
Tel.: 0822 5439/5548. Telex: 45263

DORAM ELECTRONICS LTD
Fitzroy House, Market Place,
Swaffham, Norfolk, PE37 7QH.

New Catalogue
FREE competition entry with catalogue

REF. Dept. WW
Please send me a copy of your new catalogue

NAME
ADDRESS

I enclose cheque/postal order for 40p

WW - 010 FOR FURTHER DETAILS
SERVICE TRADING CO

FT3 NEON FLASH TUBE

WHY PAY MORE?

MULTI RANGE METERS Type M 140, 2 mm, 50, 250, 500, 1000 Ohm 0.9 0.1 0.10 0.5 Sensitivity 200µV per div. 330/200/133/50/46. Price £20.00 plus P&P (£30.43 inc. VAT & P).

3-SYMBOL E.H.T. UNIT

SOLID STATE E.H.T. UNIT

Post 80p (264.17 inc. VAT & P). SAE for constant speed clutch. Size L 8in, W 4in. (Min. 10) N.M.S.

3-PHASE VARIABLE VOLTAGE TRANSFORMERS

200V 1 amp inc. a.c. voltmeter £14.50 0.5% 250V 1 amp inc. a.c. voltmeter £17.50 400V 1 amp inc. a.c. voltmeter £20.50 500V 1 amp inc. a.c. voltmeter £23.50 600V 1 amp inc. a.c. voltmeter £26.50 750V 1 amp inc. a.c. voltmeter £29.50 1000V 2 amp inc. a.c. voltmeter £32.50

230 VOLT AC FAN ASSEMBLY

Powerful continuously rated AC motor complete with 5 blade 59½" or 4 blade 3½" aluminium blades. Price £3.00 + 50p P&P (£3.50 inc. VAT & P).

A.E.G. CONTACTOR

ARROW-HART MAINS CONTACTOR

C.c. £8.00, Past £8.00 (Total inc. VAT £9.00). N.M.S.

SMITH BLOWER

Post 500V inc. 15 amp £11.00, 25 amp £17.50. Price £17.35 + P&P (£20.68 inc. VAT & P).

MINIATURE UNISELECTOR

12V 1.1 way 1 bank (non-bridge) 10 amp £1.50 20 amp £3.00 inc. VAT & P.

MICRO SWITCHES ex. new equip.

Sub Min. Honeywell Refer: m/s type 3115m 9090, 10 for £9.50 post paid (£10.43 inc. VAT incl. VAT & P).

HEAVY DUTY SOLENOID

12V DC Heavy Duty Solenoid 4 Kg pull. Easily removable from bolt plate. All brass construction. 4 x 24V DC Push Solenoid (10 lb average). 5 x 60 amp photo cells. Sub-min Microswitches etc. Ex. equip. London Transport Price £9.50 + 90p P&P (£10.64 inc. VAT & P).

12V DC SOLENOID

Hays by Magnetic Driveways. 24V DC 2 amp continuous, 10 amp open circuit £15.00 12 V, £10.50 Post 35p (£12.65 inc. VAT incl. VAT & P).

12V DC SOLENOID

Hays by Magnetic Driveways. 24V DC 2 amp continuous, 10 amp open circuit £15.00 12 V, £10.50 Post 35p (£12.65 inc. VAT incl. VAT & P).

WASHDOWN DRUM SWITCH

Post £1.50 + 35p (£1.85 inc. VAT incl. VAT & P) R&T

XENON FLASH GUN TUBES

Price £9.00 inc. VAT & P. (Total inc. VAT £10.90).

REED SWITCHES

Price 25p inc. VAT & P. (Total inc. VAT £0.33).

VARIOUS RELAYS

Wide range of AC and DC relays available from stock. Phone for writ or write in your enquiries.

METERS (New) — 90mm DIAMETER

AC Amp, Type 6212: 0-15A, 0-25A, 0-50A, 0-200A DC Amp, Type 620B: 0-15A, 0-25A, 0-50A, 0-200A AC Volt, Type 6212: 0-300V, 0-600V DC Volt, Type 620B: 0-300V, 0-600V AC Volt, Type 620B: 0-300V, 0-600V DC Volt, Type 620B: 0-300V, 0-600V

GEARED MOTORS

9½ rpm KLAAP motors approx. 250W. 11½ rpm WIVKA or CONWAY motors approx. 400W. Post 80p (£1.10 inc. VAT & P). More than motors are already fitted the AC motor supplied with encoder. Price £1.50 + 35p (£1.85 inc. VAT & P).

24 V D.C. Reversible Motor

Triumph type 0212, 24 V.C. direct wound motors. 153mm. 600, inc. VAT. Price £2.00 + 50p P&P (£2.50 inc. VAT & P). Suitable for use on reduced power and speed on DC or AC, etc. 60 mm. Diameter, Width. £500.00. 12 volt 5 amp. Price £10.00 + 50p P&P (£12.00 inc. VAT & P).

24V DC GEARED MOTOR

24 V.D.C. Motor. 180W Heavy Duty continuously rated geared Motor built by either Parcival or Exact. Easily removable from motor and mounted on copper chassis. 24V D.C. Solenoids, microswitches, friction clutch, precision gearing, etc, etc. Motor start, etc. Price £11.00 + 20p & P (£12.60 inc. VAT & P).

200W 1 amp inc. a.c. voltmeter £14.50 0.5% 250V 1 amp inc. a.c. voltmeter £17.50 400V 1 amp inc. a.c. voltmeter £20.50 500V 1 amp inc. a.c. voltmeter £23.50 600V 1 amp inc. a.c. voltmeter £26.50 750V 1 amp inc. a.c. voltmeter £29.50 1000V 2 amp inc. a.c. voltmeter £32.50

RELAYS

230/400V AC Relays:

- 2amp inc. a.c. voltmeter £14.50 (Inc. VAT & P). T.E.C. open type 3c/10amp £10.50 (£14.50 inc. VAT & P). KMK1 Relays, 230V AC/12V inc. VAT & P. Open type 10 amp contact, etc. by Kaysen £15.00/50 (Inc. VAT & P) for £15.35 post paid (£19.85 inc. VAT & P).

3 PHASE RELAYS

- 3 phase 4 bank 3 non bridging, 50 amp £15.00 (£19.85 inc. VAT & P). 125A 3 phase 4 bank 3 non bridging £25.00 (£34.79 inc. VAT & P).

D.C. RELAYS

- 24V D.C. relay 3 amp inc. a.c. or d.c. inc. VAT & P. £6.50 for 2 amp 25p (£6.75 inc. VAT & P).

SUPPORT DIGITAL DISPLAY

- 4 digit 0.56 inc. a.c. voltmeter £5.00 (£6.38 inc. VAT incl. VAT & P). Add 25p for 400V AC insta. Volts, etc, etc.

109
DISC CERAMICS
Over 2 million now in stock, mostly ITT type. Large quantity of high voltage discs, e.g.
210p 8kv, 220p 1kv, 1n 1kv, 1n5 3kv, 2n2
2kv, 4n7 1.5kv, 10n 2kv.
Please send for our Disc Ceramic Stock List

CINCH BARRIER STRIP
6w, 8w, 9w, 10w, 1 2w, 18w in quantity.

SCOOP PURCHASE OF PET 100 SERIES CONNECTORS
Straight plug, rightangled plug, chassis
socket. Enables us to offer these items in
quantity at a fraction of manufacturer's price.

KEYSWITCHES (HEAVY DUTY)
2p 12A 600v AC £1.50
8p 10A 380v AC £3.00
10p 1 2A 600v AC £3.00

ELECTROLYTICS:
20mF 400v
47mF 500v
32 + 32/450v

RESISTORS
Over 2 million metal oxides in stock. 1/4, 1/2, 1
and 2w.
Full range of Carbon 1/4%/2w held.
Good selection of wire wounds 2-200w.
Please phone with your requirements.

PRESETS
Full range of PT10, PT15 held. Particularly
large quantities of the following (P/ther)
22k(V), 47k(V), 100R(H). All PTIs.

CONVERGENCE POTS
Most popular TV values stocked in depth.

SLIDER POTS by Egen
Large quantities of the following values: 2k2
lin, 22k log + sw, 1M Lin

LARGE PANEL METERS
140-0-140mA (107x145mri-)
£5.00
1mA (115x195mm) £5.00

We have good stocks of computer grade Electrolytics, too many
values to mention here. Please phone for details.

The above is a fraction of our stock holding. We also stock a full range of semiconductors, connectors, aluminium boxes, wire and cables,
switches, Vero products, etc. For further details phone, send for our retail price list, or visit our shop.

Get a great deal from Marshall's

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of
components, test gear, tools, etc.

Lots of old friends, but also many new
products including Leader test gear, Crimson
Hi Fi Modules, Rechargeable NI Cad batteries
and chargers (very competitive). More
components including SN74ALS series, new
tools etc.

We are franchised distributors
for Arrow Hart switches;
Mullard; National; Siemens;
Sinclair (Thandor); Texas;
Thomson; CSF etc.

Send for our latest catalogue.
Free to industrial customers:
75p post paid to private
individuals.

A. Marshall (London) Ltd.,
Kingsgate House,
Kingsgate Place,
London NW6. 4TA.
Industrial Sales: 01-328 1009
Mail Order: 01-624 8582 24 hr service
Retail branches: London: Glasgow: Bristol

9.30 a.m.-6 p.m.
MON.-SAT.
CONTINUOUS

AEL CRYSTALS LTD
SATRI CHAIN, HORLEY, SURREY, ENGLAND RH6 951
Telephone: Horsey 2219
Telex 871156 Aelorco

A. Marshall (London) Ltd.,
Kingsgate House,
Kingsgate Place,
London NW6. 4TA.
Industrial Sales: 01-328 1009
Mail Order: 01-624 8582 24 hr service
Retail branches: London: Glasgow: Bristol

AEL CRYSTALS LTD
SATRI CHAIN, HORLEY, SURREY, ENGLAND RH6 951
Telephone: Horsey 2219
Telex 871156 Aelorco

FREQUENCY COUNTERS—OFF/AIR RECEIVERS

250MHz
801 B £250
Crystal oven 3 parts 10`

401A 50MHz 6 Digit £130
801B/M 250MHz 8 Digit £250
901M 520MHzB 8 Digit £325
1001M 1-2GHz 8 Digit £550

20 models available including LED versions

RCS ELECTRONICS
WOLSEY ROAD
ASHFORD, MIDDX.
Phone 53661

Plastic resin, high quality, 11 %.

RCS ELECTRONICS
WOLSEY ROAD
ASHFORD, MIDDX.
Phone 53661

WIRELESS WORLD NOVEMBER 1980
Avoid Danger from Radiation with Our Radiation Detector

BEST VALUE

Crimson have an enviable reputation for supplying the best value amplifier kit. You can prove this to yourself by checking out the competition in the following crucial areas: * professional grade phono sockets for ALL signal connections * Silver (best priced) switch contacts * Adequate heatsinking for full-rated output * Available from stock * Manufactured by a specialist company with a reputation for quality and reliability. You can prove this to yourself by checking out the competition in the following crucial areas: * professional grade phono sockets for ALL signal connections * Silver (best priced) switch contacts * Adequate heatsinking for full-rated output. **Recommended for** * Civil Defence, Fire, Hospital, Medical and general use*.

Features:

BE PREPARED, EVERY HOME SHOULD HAVE ONE

- THESE UNITS WILL READ AUTOMATICALLY THE AMOUNT OF RADIATION IN THE AIR
- THIS INSTRUMENT IS ONLY A LITTLE LARGER THAN A FOUNTAIN PEN
- JUST HOLD TO THE LIGHT
- CLIPS ON TO YOUR TOP POCKET
- WEIGHS LESS THAN 3 OZ.
- CONTAINS THREE LENSES
- FULLY CHARGED, TESTED AND GUARANTEED REFURBISHED BY US
- BRITISH DESIGN AND MANUFACTURE, RUGGED CONSTRUCTION
- MANUFACTURER'S LIST PRICE OF SIMILAR MODEL IS OVER £25
- A SOUND INVESTMENT
- BUT NOW WHAT'S STOCKS AVAILABLE, DELIVERY BY RETURN POST

SECTIONAL DRAWING

ACTUAL SIZE 115 x 14mm

MARKER SLEEVE

EYE LENS

GRATICULE

POCKET CLIP

FIELD LENS

CASE TUBE

MICROSCOPE BODY

OBJECTIVE LENS

QUARTZ FIBRE

ELECTRODE

CAPACITOR

CHARGING BELLOW

PROTECTIVE CAP (CAPTIVE)

CHARGING PIN

Recommended for: Civil Defence, Fire, Hospital, Medical and general use.

Manu facts and Information on radiation and detectors.

Manufacturer's current list price similar model is over £25

£5.95 + V.A.T. 89p

Plus post 70p.

HENRY'S

Mail Order Division
404 Edgware Road, London W2, England I.E.D.

A dual trace 10MHz sensitivity oscilloscope incorporating all the latest high technology developments to bring you all these outstanding features as standard.

- 10cm x 8cm display.
- 2mV sensitivity on both channels.
- Add and invert facility.
- Probe compensation.
- Push button X-Y.
- Trace locate.
- 10MHz (−3dB) over full display.
- Complete with probes.

At a price of £230.00 + VAT. Ensures British leadership in the low cost high performance oscilloscope market.

Please send me full details of the 14D10.

Name:

Company:

Address:

Tel:

I wish to pay by Barclaycard/Trust Card. Please charge to my account.

My Barclaycard/Trust Card No. is

WW — 856 FOR FURTHER DETAILS
Is your name last on the Electrical Times circuit?

Isn't it time you had your own copy of Electrical Times

Every week Electrical Times gives you NEWS on: people, prices, contracts, financial deals, international events & new products.

Regular features are included on: contracting & installation, repair & maintenance, distribution plant & operation, and motor applications and control.

Electrical Times also carries top quality job opportunities for people at all levels in the electrical industry in its appointments pages.

An annual subscription costs £12.00 - not much to pay to ENSURE that you're the first to be plugged in to the power of the Electrical Times circuit.

To: Subscription Dept., IPC Business Press (SD) Ltd., Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH, England.

Please send me ELECTRICAL TIMES every week for a year. I enclose cheque/P.O. for £12.00 (inc. postage) payable to IPC Business Press Ltd.

Name

Address

Position

Company
Available in Kit Form or Assembled. All components available separately.

Houses two 5¼" drives for a compact business system

Professional case will house the complete system

Two keyboard options

Hinged lid for easy access

Stylish finish ideal for office or home

NASCOM PRODUCT LIST + VAT

<table>
<thead>
<tr>
<th>Description</th>
<th>Price (inc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0 board kit</td>
<td>£45.00</td>
</tr>
<tr>
<td>UART + BAUD rate generator + crystal for I/O board</td>
<td>£16.00</td>
</tr>
<tr>
<td>Epromographs kit for additional 128 characters N1 only</td>
<td>£30.00</td>
</tr>
<tr>
<td>2708/2716 Programmer suitable for N1 and N2 under NAS-SYS</td>
<td>20.95</td>
</tr>
<tr>
<td>Nascom 19" rack mounting card frame for N1 and N2</td>
<td>32.50</td>
</tr>
<tr>
<td>New DA-disassembler 3 EPROM for Nas-sys</td>
<td>37.50</td>
</tr>
<tr>
<td>MK36271 8K BASIC in 8K x 8 ROM</td>
<td>30.00</td>
</tr>
<tr>
<td>Naspen VS in 2 EPROM</td>
<td>30.00</td>
</tr>
<tr>
<td>New sys monitor in 2 EPROM</td>
<td>25.00</td>
</tr>
<tr>
<td>A Games Tape</td>
<td>6.50</td>
</tr>
<tr>
<td>Nasbug T4 x EPROM</td>
<td>25.00</td>
</tr>
<tr>
<td>Tiny Basic 2 x EPROM</td>
<td>25.00</td>
</tr>
<tr>
<td>Super Tiny Basic 3 x EPROM</td>
<td>37.50</td>
</tr>
<tr>
<td>Super Tiny Basic upgrade 1 x EPROM</td>
<td>12.50</td>
</tr>
<tr>
<td>Tape Software</td>
<td></td>
</tr>
<tr>
<td>ZAP - tape and documentation for Nas-sys</td>
<td>30.00</td>
</tr>
<tr>
<td>£6 BASIC tape and documentation for N1</td>
<td>15.00</td>
</tr>
</tbody>
</table>

THE HENLEC DISK SYSTEM

For NASCOM and any other machine

With or without uncommitted PALs.

DISKS

- The Henlec controller card plugs directly into a Z80 P10 and controls up to 3 double-sided mini-floppy drivers giving a maximum 48K system.
- General Purpose I/O control software for simple DOS or for CPM.
- Simple DOS software for NASCOM 1/2 under NAS-SYS.
- 80 CB105 for CPM on NASCOM 1/2 incorporating all NAS-SYS features. Maximum 6K CPM system.

TWO SYSTEMS

- MK36255 "Floppy Tape Recorder" with 1 drive PSU, firmware etc. Double Side: £280 + VAT
- CPM System with 1 drive double sided PSU, firmware etc. £450 plus VAT
- Additional Drives £206 plus VAT

APPLE COMPUTER KEYBOARD. 52 key 7 bit ASCII coded positive strobe + 5V.-1-2V. Size 13" x 10½" x 2". Black keys with white legends.

£235 incl. VAT. Post £2.50.

CENTRONICS QUICK PRINTER

List Price £459 incl. VAT

EXCLUSIVE TO HENRY'S 50% OFF MAKER'S PRICE £195

for:

Software selectable 20, 40 and 80 columns using 120mm aluminium based paper roll supplied. 100 lines per minute.

NASCOM compatible parallel data interface for NASCOM, Tandy, etc.

240 volt mains input. ASCII character set. Paper feed, and on/off select switches.

"BELL" signal in drive C.

Size: 13" x 10½" x 4½".

New, boxed and fully guaranteed

POST PAID Price £195.00 + VAT See COMPUTING TODAY Recommendations MARCH/MAY ISSUES

MEMORIES Discounts 10% for 4, 15% for 8, 20% for 16, 25% for 32, 30% for 64, 40% for 128, 50% for 256, 60% for 512, 70% for 1024, 80% for 2048, 90% for 4096, 95% for 8192, 100% for 16384

SEND FOR COMPLETE COMPUTER BROchure FREEPOST TO ADDRESS BELOW

TANGERINE

London Tangerine TUSCAN and NASCOM DISTRIBUTOR

Order. Exports deduct VAT, but add 5% carriage

Official Export & Educational Orders welcome

HENRY'S

Computer Kit Division

404 Edgware Road, London, W2, England I.E.D.

01-402 6822

TUSCAN S100

A Z80 based S100 Computer System.

TUSCAN main board. The heart of the system with 280, video, Ram, Rom, and I/O plus five S100 slots for expansion.

A range of firmware options available.

NEW

Micro-Kit Computer

Power Supply £29.50

Ex-Stock only £335

Full after sales service

With improved 16k B RAM Board

Front & MOS ICs Software. Zeap Assembler (4, £55.

for 16x2708 or 16x2716 or mixed 1x Nascom 8K Basic ROM £14.95.

BASIC PROGRAMMERS AID. Self -locating Tape 48K RAM £210

Nas Pen text editor (2,1 Kx8 EPROMS) £30

16K RAM £140

32K RAM £175

Ex -Stock £325

4118 1K x 8 static RAM £2102 1K x 1 static RAM £4114 1K x 4 Static RAM £7.95

MK4027 4K x 1 dynamic RAM £7.50

MK3880 1NZ801 8K x 8 5.95

4 Games Tape £5.50

Nasbug T4 x EPROM £25.00

Tiny Basic 2 x EPROM £25.00

Super Tiny Basic 3 x EPROM £37.50

Super Tiny Basic upgrade 1 x EPROM £12.50

Tape Software £6 BASIC tape and documentation for N1 £15.00

THE HENLEC DISK SYSTEM

For NASCOM and any other machine

With or without uncommitted PALs.

DISKS

- The Henlec controller card plugs directly into a Z80 P10 and controls up to 3 double-sided mini-floppy drivers giving a maximum 48K system.
- General Purpose I/O control software for simple DOS or for CPM.
- Simple DOS software for NASCOM 1/2 under NAS-SYS.
- 80 CB105 for CPM on NASCOM 1/2 incorporating all NAS-SYS features. Maximum 6K CPM system.

TWO SYSTEMS

- MK36255 "Floppy Tape Recorder" with 1 drive PSU, firmware etc. Double Side: £280 + VAT
- CPM System with 1 drive double sided PSU, firmware etc. £450 plus VAT
- Additional Drives £206 plus VAT

APPLE COMPUTER KEYBOARD. 52 key 7 bit ASCII coded positive strobe + 5V.-1-2V. Size 13" x 10½" x 2". Black keys with white legends.

£235 incl. VAT. Post £2.50.

71 KEY ASCII KEYBOARD INCLUDING NUMERIC KEYPAD £60.00, plus £7.35 VAT TOTAL £67.35

£64.00 incl. VAT. Post £2.50.

71 KEY ASCII KEYBOARD INCLUDING NUMERIC KEYPAD £60.00, plus £7.35 VAT TOTAL £67.35

£64.00 incl. VAT. Post £2.50.

71 KEY ASCII KEYBOARD INCLUDING NUMERIC KEYPAD £60.00, plus £7.35 VAT TOTAL £67.35

£64.00 incl. VAT. Post £2.50.

71 KEY ASCII KEYBOARD INCLUDING NUMERIC KEYPAD £60.00, plus £7.35 VAT TOTAL £67.35

£64.00 incl. VAT. Post £2.50.

71 KEY ASCII KEYBOARD INCLUDING NUMERIC KEYPAD £60.00, plus £7.35 VAT TOTAL £67.35

£64.00 incl. VAT. Post £2.50.

71 KEY ASCII KEYBOARD INCLUDING NUMERIC KEYPAD £60.00, plus £7.35 VAT TOTAL £67.35

£64.00 incl. VAT. Post £2.50.

71 KEY ASCII KEYBOARD INCLUDING NUMERIC KEYPAD £60.00, plus £7.35 VAT TOTAL £67.35

£64.00 incl. VAT. Post £2.50.
From Newtronics

THE NEW EXPLORER/85 SYSTEM

EXPLORER/85 PROFESSIONAL COMPUTER KIT

An inexpensive 8085, S100 Based Computer System designed for maximum flexibility
Now available with 8" Floppies

The EXPLORER/85 offers you real design flexibility — you can build the exact system you require. EXPLORER/85 can be your Beginners System, OEM Controller or IBM formatted 8" Disc System. You don't buy more than you need. Prices start from £85.

Here's the line up:

Intel 8085 microprocessor. 8355 as a really powerful 2K Monitor system. B155 RAM I/O all on one single Mother board with room for RAM/ROM/EPROM and two S-100 pads (expands to six), plus plenty of prototype space.

The 8085 is 100% compatible with the 8080 but 50% faster! The 8355 ROM/2 monitor system includes cassette interface with tape control. Two 8-bit programmable I/O ports, automatic baud rate selection, labelling of cassette files, etc. B155 RAM I/O features UART scratch pad. Two programmable 8-bit and One programmable 6-bit I/O ports plus programmable 14-bit binary counter/timer. Plus many other features which cannot be included due to lack of space.

You can purchase the EXPLORER/85 Mother board (level A) at this point for as little as £85 or we'll supply it with address decoding and date drives plus wait state generator and separate regulators (level B). 4K Workspace (level D). 8K Micro Basic in ROM for £233 in kit form or £293 assembled and tested.

If you don't possess a VDU you can add our Keyboard Terminal (less monitor) which features a full ASCII keyboard with upper and lower case with cursor control. Video Display board which is microprocessor controlled giving 64 or 32 (on TV) characters by 16 lines adding up to a full computer system having 4K workspace at a special price of £299 (less P.S.U. and monitor/TV).

Please add VAT to all prices. P&P extra. Please make cheques and postal orders payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS number.

We are open for demonstrations and Sales Monday-Saturday, 9.30 a.m.-6.30 p.m. Near Highgate Underground on main A1 into London.

SEND SAE FOR COMPREHENSIVE BROCHURE

Please add VAT to all prices. P&P extra. Please make cheques and postal orders payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS number.

We are open for demonstrations and Sales Monday-Saturday, 9.30 a.m.-6.30 p.m. Near Highgate Underground on main A1 into London.

NEWTRONICS

255 ARCHWAY ROAD, LONDON, N.6

TEL: 01-348 3325

CALL:

WW — 988 FOR FURTHER DETAILS
PHILIPS PM3226 D/B. 15MHz. £325.
HEWLETT-PACKARD 1707A. 75MHz. £650.
SOLARTRON CD1740. D/B-Beam 50MHz. £450.
BRUEL & KJÖR 2105. £450.
RADIOMETER Distortion Meter BKF6. £125.
RADIOMETER 210 3-300MHz. AM/FM. £45.
RACAL 8022A £159, 8021A £199
Carriage and Insurance £3

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- Autoranging in both frequency and measured range
- Wide frequency range - 0.1 Hz - 20 MHz
- High sensitivity - 20mV, typically 10nV
- 4-digit LED display with true zero suppression, automatic ammperometric range changing
- 20 programming channels - 10 ranges from 1,000 to 200,000, 10 ranges from 200 to 20,000
- 1,000 point memory, selectable time bases
- Requires only a power source and batteries for operation

Model 1900A and 801B have additional features for increased functionality and accuracy.

DIGITAL MULTI-METERS
DE FOREST ELECTRONICS TYPE MM200.
DC V-0.1KV. AC V-0.700. DC I-0.1A. AC I-0.1A.
Each in 4 ranges. Resistance 0-19.9Kohms. 5 ranges. LED Display.£199
BRAND NEW. SPECIAL REDUCED PRICE OF £99. INCLUDING VAT & P.P.

DC POWER SUPPLIES
- APT 10459/B. 12-14V @ 5 Amps. £25. (E1 p.p.)
- APT 10459/B. 24V @ 5 Amps. £25. (E1 p.p.)
- We can supply the above power supply at any fixed voltage between 5V and 36V at 5A. £25. (E1 p.p.)

- Select Dual supplies are new with handbook
- Power & Neg 12V at 1A and 0A respectively. Dimensions: 9x4x5ins. £10.00 (+E1)

- FARNELL Current limited. Dimensions: 9x4x5ins. Following types available: 5 Volts 3A. £15. 13-17 Volts @ 2A. £18. 20-23 Volts @ 1A £15. Plus £1.00 each package.
- The above power supply units are 230V AC input and are stabilised and regulated and fused. All are fully checked before dispatch and guaranteed in first-class order throughout. As with all our equipment there is a money-back guarantee if not completely satisfied.

- OTHERS IN STOCK. PLEASE RING +

MODULATION METERS
ARICE 210-3-300MHZ. AM/FM.
RADIOMETER A/FM/3-320MHZ. AM/FM.
RACAL 4093-800MHZ. AM/FM.

- ROTRON INSTRUMENT COOLING FANS
- Supplied in excellent condition, fully tested:

- £5. 115V. 4.5 x 4.5 x 1.5" £4.50. 230V
- £5. 115V. 3 x 3 x 1.5" £4 + postage
- 35p.

- BELL & HOWELL MICROFICHE VIEWERS
- Type SRS. Screen size 9 x 9".
- New condition, £75. (E1 before tax)

- DIGITAL MULTI-METERS
- DE FOREST ELECTRONICS TYPE MM200.

- LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- DIGITAL MULTI-METERS
- DE FOREST ELECTRONICS TYPE MM200.

- LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- DIGITAL MULTI-METERS
- DE FOREST ELECTRONICS TYPE MM200.

- LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- DIGITAL MULTI-METERS
- DE FOREST ELECTRONICS TYPE MM200.

- LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- DIGITAL MULTI-METERS
- DE FOREST ELECTRONICS TYPE MM200.

- LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- DIGITAL MULTI-METERS
- DE FOREST ELECTRONICS TYPE MM200.

- LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- DIGITAL MULTI-METERS
- DE FOREST ELECTRONICS TYPE MM200.

- LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- DIGITAL MULTI-METERS
- DE FOREST ELECTRONICS TYPE MM200.
Catronics - SUPER VALUES!

For quality of construction, unfailing efficiency and sheer good value this 200MHz, 7 digit D.F.M. is unequalled for direct readings up the mobile radio VHF Band. Will operate on mains or 12v supply, making it ideal for use with mobile equipment. Manufactured and guaranteed by Catronics Ltd. Write for illustrated leaflet.

Model DFM5 £119.55
£5 Carr. + 15% VAT

HIGH STABILITY OVENED VERSION with better than 1 in 10^7 reference oscillator DFM5/S also available at £154.35

In addition to our famous 290MHz and 500MHz counters we have also produced a 200MHz COUNTER KIT SPECIALLY FOR HOME CONSTRUCTORS

Our new KF200 counter, although small, is a no-compromise design.
- A full 8-digit LED display
- A frequency range of 10Hz to 200MHz
- An accuracy of 10Hz at 30MHz, 50Hz at 150MHz in normal home environments
- 5/6-volt operation from batteries or mains PSU (not supplied)
- Assembled in about 2 hours
- Uses only 4 i.c.s.
- Assembled/tested module form. Prices (INCLUDING V.A.T.):
 - Counter Kit £72
 - Module £85

Barclaycards & Access Welcome. Please quote card No.

METALFILM RESISTORS

1% Tolerance, 1/4 Watt

<table>
<thead>
<tr>
<th>Value</th>
<th>100R</th>
<th>1k</th>
<th>10k</th>
<th>100k</th>
<th>1k1</th>
<th>110k</th>
<th>1k3</th>
<th>120k</th>
<th>1k5</th>
<th>150k</th>
</tr>
</thead>
<tbody>
<tr>
<td>100R</td>
<td>1E1</td>
<td>1E2</td>
<td>1E3</td>
<td>1E4</td>
<td>1E5</td>
<td>1E6</td>
<td>1E7</td>
<td>1E8</td>
<td>1E9</td>
<td>1E10</td>
</tr>
<tr>
<td>1k</td>
<td>1E3</td>
<td>1E4</td>
<td>1E5</td>
<td>1E6</td>
<td>1E7</td>
<td>1E8</td>
<td>1E9</td>
<td>1E10</td>
<td>1E11</td>
<td>1E12</td>
</tr>
<tr>
<td>10k</td>
<td>1E5</td>
<td>1E6</td>
<td>1E7</td>
<td>1E8</td>
<td>1E9</td>
<td>1E10</td>
<td>1E11</td>
<td>1E12</td>
<td>1E13</td>
<td>1E14</td>
</tr>
<tr>
<td>100k</td>
<td>1E7</td>
<td>1E8</td>
<td>1E9</td>
<td>1E10</td>
<td>1E11</td>
<td>1E12</td>
<td>1E13</td>
<td>1E14</td>
<td>1E15</td>
<td>1E16</td>
</tr>
<tr>
<td>1k1</td>
<td>1E8</td>
<td>1E9</td>
<td>1E10</td>
<td>1E11</td>
<td>1E12</td>
<td>1E13</td>
<td>1E14</td>
<td>1E15</td>
<td>1E16</td>
<td>1E17</td>
</tr>
<tr>
<td>110k</td>
<td>1E9</td>
<td>1E10</td>
<td>1E11</td>
<td>1E12</td>
<td>1E13</td>
<td>1E14</td>
<td>1E15</td>
<td>1E16</td>
<td>1E17</td>
<td>1E18</td>
</tr>
<tr>
<td>1k3</td>
<td>1E10</td>
<td>1E11</td>
<td>1E12</td>
<td>1E13</td>
<td>1E14</td>
<td>1E15</td>
<td>1E16</td>
<td>1E17</td>
<td>1E18</td>
<td>1E19</td>
</tr>
<tr>
<td>120k</td>
<td>1E11</td>
<td>1E12</td>
<td>1E13</td>
<td>1E14</td>
<td>1E15</td>
<td>1E16</td>
<td>1E17</td>
<td>1E18</td>
<td>1E19</td>
<td>1E20</td>
</tr>
<tr>
<td>1k5</td>
<td>1E12</td>
<td>1E13</td>
<td>1E14</td>
<td>1E15</td>
<td>1E16</td>
<td>1E17</td>
<td>1E18</td>
<td>1E19</td>
<td>1E20</td>
<td>1E21</td>
</tr>
<tr>
<td>150k</td>
<td>1E13</td>
<td>1E14</td>
<td>1E15</td>
<td>1E16</td>
<td>1E17</td>
<td>1E18</td>
<td>1E19</td>
<td>1E20</td>
<td>1E21</td>
<td>1E22</td>
</tr>
</tbody>
</table>

ORION SCIENTIFIC PRODUCTS LTD.

10 Wardour St., London W1

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono, Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers requirements.

For full details of our service contact Neil Jupp

ROXBURGH PRINTERS LTD.

22 Winchelsea Road
Rye, Sussex
Rye (079 73) 3777

One of the Roxburgh Group of Companies

HOW’S THIS FOR FAMILY PLANNING?

WE’VE GOT AN ADDITION TO OUR FAMILY. WE WANT YOU TO MEET THE TX-80B DOT MATRIX PRINTER.

It’s a complete 80-column dot matrix printer for use with personal computers. It prints a full 96 ASCII and graphic characters at 125 characters per second. Its 100 million character dot head mechanism achieves long operating life by employing a unique ruby-jewelled support.

All for £345 one off (plus VAT) and ex-stock.

THERE’S A BIG FAMILY OF INTERFACES TOO.

Meet the Family
Phone K. Evans

ROXBURGH PRINTERS LTD.

22 Winchelsea Road
Rye, Sussex
Rye (079 73) 3777

One of the Roxburgh Group of Companies
The response to the second exhibition for professional and business people has been overwhelming, justifying the decision to take the whole hall at the West Centre Hotel.

An additional feature to this year’s show will be a Workshop/Forum, where sponsoring company’s will hold an open discussion on the latest related topics. Entry to this will be free.

This year’s event is designed as it’s title suggests, to interest not only those professionally involved with viewdata & teletext, but also those businessmen whose companies are able to use viewdata or are already doing so.

The event has over 40 exhibitors including: Sony, GEC, Information Services, The Post Office, Langton Information Services, CAP CPP, Granada TV Rental, Fintel, Eastel, Cherry Electrical, Centronics, Link House Communication, Ansafone, STC, ITT, Bishopsgate Terminals, Oracle (London Weekend TV), and Barco Video Terminals (C.W. Cameron Ltd), showing a wide variety of exhibits such as:

- Editing equipment basic and advanced,
- Monitors and user terminals, private viewdata systems and equipment, peripherals including printers, magnetic media recorders, light pens, graphic design aids and keyboards, accessories such as camera attachments, anti-glare sprays, screen hoods and masks, telephone timers, microcomputers for telesoftware and other “umbrella” activities and facilities, software services for advanced editing, publications, semiconductor devices and many more.

ENTRANCE TO THE EXHIBITION IS FREE BY REGISTRATION

Advance tickets are available on demand from the organisers at:
Viewdata Tickets
IPC Exhibitions Ltd
40 Bowling Green Lane
London EC1R 0NE

WILL TAKE PLACE
29th-31st OCTOBER 1980
WEST CENTRE HOTEL, LILLIE ROAD, LONDON
10 am to 6 pm
(Closing 5 pm on the last day)
As well as supporting all CP/M based languages, the Mikro 1000 has a full range of business software, including Sales, Purchase and Nominal Ledger, Inventory Control, and Payroll, as well as Word Processing (which is available at even lower cost as a separate system on the Mikro 1000 WP).

For further information on either Mikro 1000 system, please contact:

Unit A2, Longford Avenue, Kilwinning Ind. Est., Kilwinning, Ayrshire, KA22 8NP

Tel: 0294 57755
Telex: 779808
BSR DE LUXE AUTOCHANGER
£20 Post £2
Ready cut Mounting Board £1 extra

GARRARD AUTOCHANGER CC10A.
3 speed stereo cartridge with all sizes of record. 7", 10", 12". (Turntable £8.50) Post £5.50

HEAVY METAL PLINTHS
Cut out for FSR or Garrard decks. Post £2.00
Silver grey finish.
Size 10 x 13 x 4in. £4.50
15 in. x 12 x 4in. £6.00
18 x 13 x 3.5in. with stand up hinges £9.25
Post £2

BSR SINGLE PLAYER DECKS
BSR F182 3 speeds fitted already £10.50
BSR F180 2 speeds fitted already £9.25
Snap arm, cueing device.
Original packaging.
Post £7.00

BSR C142 RIM DRIVE QUALITY DECK
Manual or automatic play. Two speeds, Precise Re-centering Cuing device. Bargain price.
With genuine BSR Record Clamps.
BSR P707 BUDGET SINGLE PLAYER ideal for disco or small systems with built in cartridge and cueing device.
£15

GARRARD 6-200 SINGLE PLAYER DECK
Brushed Aluminium Arm with stereo ceramic cartridge and Diamond stylus. 3 speeds. Manual and Auto. Stand/Stop Large Metal Turntable. Cueing Device and Pause Control. Ready cut mounting board only £1.50.

ELAC HI-FI SPEAKER 10in. TWIN CONE
Large ceramic magnet. 50-16000 c/s. Includes pickup cartridge £29.50
8ohm impedance.
10watts.RMS. £7.95 Post 99p

POTENTIOMETERS Carbon Track 5g4 to 2mg. LOG or LIN. 1/50p. DF 90p. Stereo £1.10, DP £1.20. £1.75 hand set.

EMI 13 in. DECKS LOUDSPEAKERS
With tweeter and crossover. T.o.tal. 8 ohms. 15 watts. 3 or 4 ohm.
£9.95 Post 10.50

SUITABLE BOOKSHELF CABINET £9.50.

THE "INSTANT" BULK TAPE ERASER
Suitable for cassettes, and all sizes of tape
3 or 8 ohm.
£1.40; 10 x 7-£1.55; 12 x 8-£1.70; 14 x 9-£1.90; 16 x 10-£2.10;

AUTO TRANSFORMERS
£1.20 50+50/500 £1.90 100+100/500 £2.60 200+200/500 £3.30 300+300/500 £4.00 500+500/500 £4.70

LOW VOLTAGE ELECTROLYTICS
All 10p
1 in., 2md. 4 md. 5 md. 6 md. 7 md. 8 md. 9 md. 10 md. 11 md. 20 md. 30 md. 40 md. 50 md. 60 md. 70 md. 80 md. 90 md. 100 md. 110 md. 200 md. 300 md. 400 md. 500 md. 600 md. 700 md. 800 md. 900 md. 1000 md. 1100 md. 2000 md. 3000 md. 4000 md. 5000 md. 6000 md. 7000 md. 8000 md. 9000 md. 10000 md. 100000 md.

MAGNETIC CARTRIDGES
£6.50

MULTI-TESTER
A useful multi testing instrument for electronic testing.
Includes: Battery check, Diode test, Continuity test, Terminal test, Voltage/Current test.
£6.50

WIRELESS WORLD NOVEMBER 1980
Please send orders to: Rank Radio International, Watton Road, Ware, Herts.

This offer applies to United Kingdom only.

<table>
<thead>
<tr>
<th>ORDER FORM</th>
</tr>
</thead>
</table>

Please send copies of the SERVICE ENGINEERS GUIDE TO TELETEXT at a special price of £2.00 (1.75+sp P&P).

NAME

ADDRESS

Cheque/PO enclosed value

Please send orders to: Rank Radio International, Watton Road, Ware, Herts.

This offer applies to United Kingdom only.

EXTENSIVE RANGE OF NEW FLUXWAX METAL DROPS FROM ELECTRONIC BROKERS

805DA 4 1/2 Digit LCD DMM with true RMS on AC volts and current. DC volts 200mV-1KV, 10μV resolution AC volts, 200mV-750V, 10μV resolution. DC/AC current 200μA-2A, 0.1μA resolution. Also reads dB direct referenced to 16 stored impedances. Conductance ranges 2mS and 20mS.

£198 mains model
£239 mains battery.

8002A 3 1/2 Digit LCD DMM with true RMS on AC volts and current. DC volts 200mV-1KV, 1μV resolution. AC volts 200mV-750V, 1μV resolution. DC/AC current 200μA-2A, 1μA resolution. Resistance 2002-20MΩ, 0.1Ω resolution. Low resistance 20 and 200, 1Ω resolution. Conductance ranges 2mS-20μS-200nS.

£198 mains model
£239 mains battery.

8010A 3 1/2 Digit LCD DMM Same spec as 8012A plus a 10Amp AC/DC current range, but no low resistance range.

£198 mains model
£215 mains battery.

8002A 3 1/2 Digit hand held LCD DMM with peak hold Level Detector and continuity tester. DC volts 200mV-1KV, 10μV resolution. AC volts 200mV-750V, 10μV resolution. DC/AC current 200μA-2A, 1μA resolution. Resistance 2002-20MΩ, 0.1Ω resolution. Conductance 20mS. Peak hold of AC or DC volts and current.

£198 mains model
£239 mains battery.

8020A 3 1/2 Digit hand held LCD DMM: spec as per 8024A with extra conductance range of 2mS but no peak hold, level or continuity ranges.

£110.00 completes carrying case £7.00 extra.

Also available a range of accessories including current shunts, EHT probe, rf probe, Temperature probe and touch and hold probe. Full details on request. The warranty period on all items shown is 1 year other than the 8020A which is 2 years.
TELETYP.CLASS K TERMINALS

£235 + VAT

Fully-fledged industry standard AS8933 data terminal. Many features including ASCII keyboard and printer for data transfer, data digitiser, RS232 serial interface, 110 baud, 8 bit paper tape punch. Suitable for use with digital regulation, a reliable and valuable data terminal.

ICL TERMIPRINTER 300 BAUD TERMINALS

£225 + VAT

Made under licence from the world famous GE Co. The ICL Termiprinter is a small, attractive unit with so many features it is impossible to list them all. A choice of 62 fonts available. Brief spec: as follows: 300 baud serial interface, switchable baud rates 110, 150, 300, 1200, upper and lower case, capital or non-capital case, spaced or close type face, standard paper, almost silent running. Excellent quality, electronic timing settings, saves for world process applications plus many more features. Supplied in good condition and in working order. Limited quantity.

LED DIGITAL ALARM CLOCK MODULE

£12 + VAT per unit

12 HOUR *50/60 HZ *LARGE DISPLAY *100's OF USES

The same module, NATIONAL MA1012 used in most alarm clocks/radios on the market today, the only difference is our price! GIANT LED characters give extremely clear viewing and readability.

All electronics are self-contained on a P.C.B. measuring only 3" x 3" by 1.2".

Addition of a few switches and 5/16 volts A.C., you have a multi-function alarm clock at a very reasonable cost of fraction of cost. Dozens of functions include snooze timer, am/pm, alarm set, power fail indicators, flashing seconds counter, modulated alarm output, digital clock, etc. Supplied full with new data at full cost only £5.25

DISPLAY I.C. and TRANSISTOR BARGAINS NEVER CHANGED

£5.46

It is never possible to list all the bargains we have on our shelves, but some of the most popular are:

- 2N7055N 25p each 50 for £1.00
- 2N7065N 35p each 100 for £2.00
- 2N7130N 50p each 100 for £4.00
- 2N7130N 27p each 5 for £1.00
- 2C565N 80p each 10 for £7.00
- 2N4353N 50p each 10 for £4.00
- 2N4353 50p each 10 for £4.00
- 2N4353 80p each 10 for £7.00
- 2N4353 60p each 10 for £6.00

We also have stocks of a wide range of other semiconductors, including transistors, diodes, bridge rectifiers, etc. which enables us to bring you the best possible prices.

WIRELESS WORLD NOVEMBER 1980

124
FAST ERECTING
TELESCOPIC
MASTS

For World-wide Telecommunications in the 1980s

Clark Masts are specialists in the design and manufacture of telescopic and sectional mast systems. With over 25 years' experience in supplying masts to meet exacting military and civil specifications we have the expertise you can depend on.

Extended heights 4m-30 metres capable of lifting headload 1-Kg-200-Kgs, sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today.

Clark Masts LTD., BINSTEAD, ISLE OF WIGHT PO33 3PA, ENGLAND Telephone Ryde (0983) 63691 Telex 86686

Incredible Quality
Incredible Performance
Incredible Price!!!

HM312 Dual Trace
Oscilloscope, DC-20MHz.
Sensitivity 5mV-20V/cm
Time base range
0.5μS-0.2S/cm
with x 5 horiz mag to
100μS/cm.
CRT screen 8x10cm. Full
XY using ch II
as X input
Bandwidth 2.3 MHz.
TV trigger.

£250

HM512 Dual Trace
Oscilloscope with delayed sweep.
DC-50MHz.
Sensitivity 5mV-20V/cm
Time base range
0.1μS-2.0S/cm
with x5 horiz mag to
20μS/cm.
Delay ranges 7
decade steps
100ns-15 μS with
fine control CRT
screen 8 x 10cm.
Full XY using ch II
as X input,
bandwidth 4
MHz. Z input.
Delay line allows
viewing of leading edge.
Vertical overscan indicated by 2
LED's.

£580

World-beating Oscilloscope Offers
FROM
Electronic Brokers
61-65 King’s Cross Road
London, WC1X 9LN
Tel: 01-278 3461 - Telex 298694

Prices do not include carriage or VAT.

£149.00
£396.00
£145.00
£149.00

All scopes can be fitted with a long persistence CRT at extra cost.

World-beating Oscilloscope Offers
FROM
Electronic Brokers
61-65 King’s Cross Road
London, WC1X 9LN
Tel: 01-278 3461 - Telex 298694

Prices do not include carriage or VAT.

£149.00
£396.00
£145.00
£149.00

All scopes can be fitted with a long persistence CRT at extra cost.

WW — 977 FOR FURTHER DETAILS
MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM P&P £1 - where P&P not stated please use own discretion

HEWLETT PACKARD

MICROWAVE RADIATION DETECTORS

Type 2312A 2.6-50 GHz £140

Type 8493A 0.6-12 GHz £25

STEPPING MOTORS

6/12 position with additional where the motor is axis. Device can be used as a tact. Diagram supplied. Will actually work on 5 volts. 12/24 recommended.

P&P £1.50 each & P&P 5 or £5 P&P £1.50.

KEYBOARD PAD

Size 3x2x0.2" high with 12 Amp Reed Switch. Blue LED for fixing in ground, a 9" wire and a star with one blank.

P&P £1.25 each & P&P 5 or £5 P&P £1.50.

GARRARD DIRECT

TURNTABLE DRIVE

Turntable Drive with a 150赫兹 internal electronic speed control. 24 volt. Connections supplied.

£12.50 each & P&P 75p

LED X-PRINTER CONSUMER type 9606 (CV 144)

1/4" diameter. Requires simple low current 3KV to 5KV supply individually wired. Brand new.

£12.50 each & P&P 75p

INFRARED LED LAMPS

SMD LEDS Standard White 12p; Standard Yellow 15p; Small White 8p.

L.E.D.s Standard White 12p; Standard Yellow 15p; Small White 8p.

ROCKER SWITCHES 2 pole c/o - 15p each.

LED TYPE TIL 209 RED WITH HOLDER 10p each.

MC7805; 7812; MC14961 70p T1S50 10p each. MC4016 25p each. 74100N 75p each.

REGULATORS - OFF AT 45P EACH

MONSANTO DISPLAY type MANIOIA 0.3" display £1 each.

150..

MOTOR 1 2V DC with pulley and integral semiconductor. Speed

Size lex x 1/4" dia. New 30p ea.

£4.50. Secondhand £2.50..

FANS. 115V 13 Waffs Size 31/4 x 31/4 x 11/2" BRAND NEW

Offset) Bop toe.

AMPHENOL. 17-way chassis mount edge connectors 0.1

TOOL TIL 209 RED WITH HOLDER 10p each.

MC7805; 7812; MC14961 70p T1S50 10p each. MC4016 25p each. 74100N 75p each.

LED X-PRINTER CONSUMER type 9606 (CV 144)

1/4" diameter. Requires simple low current 3KV to 5KV supply individually wired. Brand new.

£12.50 each & P&P 75p

INFRARED LED LAMPS

SMD LEDS Standard White 12p; Standard Yellow 15p; Small White 8p.

L.E.D.s Standard White 12p; Standard Yellow 15p; Small White 8p.

ROCKER SWITCHES 2 pole c/o - 15p each.

LED TYPE TIL 209 RED WITH HOLDER 10p each.

MC7805; 7812; MC14961 70p T1S50 10p each. MC4016 25p each. 74100N 75p each.

REGULATORS - OFF AT 45P EACH

MONSANTO DISPLAY type MANIOIA 0.3" display £1 each.

150..

MOTOR 1 2V DC with pulley and integral semiconductor. Speed

Size lex x 1/4" dia. New 30p ea.

£4.50. Secondhand £2.50..

FANS. 115V 13 Waffs Size 31/4 x 31/4 x 11/2" BRAND NEW

Offset) Bop toe.

AMPHENOL. 17-way chassis mount edge connectors 0.1

TOOL TIL 209 RED WITH HOLDER 10p each.

MC7805; 7812; MC14961 70p T1S50 10p each. MC4016 25p each. 74100N 75p each.

REGULATORS - OFF AT 45P EACH

MONSANTO DISPLAY type MANIOIA 0.3" display £1 each.

150..

MOTOR 1 2V DC with pulley and integral semiconductor. Speed

Size lex x 1/4" dia. New 30p ea.

£4.50. Secondhand £2.50..

FANS. 115V 13 Waffs Size 31/4 x 31/4 x 11/2" BRAND NEW

Offset) Bop toe.

AMPHENOL. 17-way chassis mount edge connectors 0.1

TOOL TIL 209 RED WITH HOLDER 10p each.

MC7805; 7812; MC14961 70p T1S50 10p each. MC4016 25p each. 74100N 75p each.

REGULATORS - OFF AT 45P EACH

MONSANTO DISPLAY type MANIOIA 0.3" display £1 each.

150..

MOTOR 1 2V DC with pulley and integral semiconductor. Speed

Size lex x 1/4" dia. New 30p ea.

£4.50. Secondhand £2.50..

FANS. 115V 13 Waffs Size 31/4 x 31/4 x 11/2" BRAND NEW

Offset) Bop toe.

AMPHENOL. 17-way chassis mount edge connectors 0.1

TOOL TIL 209 RED WITH HOLDER 10p each.

MC7805; 7812; MC14961 70p T1S50 10p each. MC4016 25p each. 74100N 75p each.

REGULATORS - OFF AT 45P EACH

MONSANTO DISPLAY type MANIOIA 0.3" display £1 each.

150..

MOTOR 1 2V DC with pulley and integral semiconductor. Speed

Size lex x 1/4" dia. New 30p ea.

£4.50. Secondhand £2.50..

FANS. 115V 13 Waffs Size 31/4 x 31/4 x 11/2" BRAND NEW

Offset) Bop toe.
WIRELESS WORLD NOVEMBER 1980

NEW KIT

5 WAVE BAND SHORT WAVE KIT. Bandspread covering 13.5 to 82 metres. Complete kit includes case, meters, two printed circuit boards, crystal, case fittings and parts kit. £2.30.

VERSA DRILL

High powered rotating unit with variable speed for drilling, tapping and screwing operations. £3.50.

SAFE BLOCK

Screw type block of hardwood with 1/2" square tapped blocking. £12.50.

PRINTER USB Microswitches

Small panel type switch in 1, 2 and 3 amp ratings. £1.49.

PUNCHED TAPE EQUIPMENT

For controlling mechanical tools etc., moisturised 8 bit punch with matching readers, available in good quality order, any format so be exchanged. £10 the pair. £3.49.

SIREN OR BLEEPER

American Delta mechanical type, works on 6 to 12v or DC to 12 to 24v AC. Price 35p or 60p per 121.

CASSETTE PLAYER/RECORDERS

With record and playback heads, all electronics, switches and switches fitted for £1.75 each. For this must be the bargain of the week.

FRUIT MACHINE HEART

4 wheels with all bars, moisturised and with switches for stopping the wheels, with a little ingenuity you can defy your friends get to the heart. Price 30p.

DESOLDERING PUMP

Ideal for removing components from computer boards as well as for desolder work generally. Price £8.25.

HEADPHONE ADAPTOR

With both 4 and 300 ohms and light switch and speaker. £3.50 each. £2.30.

MUGGER DETERRENT

A high note buzzer, push 'setting switch, plastic case and battery. Will scare away any kitch and flog £2.90 complete kit.

FLUORESCENT TUBE INVERTER

For fitting - car or emergency - your work or home. Price £3.25.

MULLARD UNILINE

A switch operated 4-way stereo system. Band one of the finest phonographs in the stereo field this would make a wonderful gift for almost anyone. Price £11.95. If you need special bulk buy and it's on an expense for one this month we also have a full system complete at only £15 including VAT and postage.

CONTROL ORIEN SPEEDS

Electronic speed control

VENNER TIME SWITCH

Mains operated with 20 amp switch, one on and one off switch. 24 hrs, mains operated. £2.35. £2.95. These are now but with an extra switch to permit remote switching. Available is a kit to convert this into a normal 24 hr time switch but at a reduced advantage of up to 12 on 24 off per 24 hrs. This may be fitted into any existing circuit. Price of adaptor kit is £2.30.

DIAL ORIEN TESTER

Electronic microswitches. Price £9.95. From approximately 10 revs to 5000 rpm. 10 instant ranges measure: -

THE MONTH'S SNIPS

3 CHANNEL SOUND TO LIGHT KIT

Complete kit of parts for three channel controlling over 10,000 watts of lighting. Use this at home if you wish but it is presently regaled and can be used on car. 24 hrs, mains operated. £4.90. This is an accessory to be added on the main switch, the unit is housed in an attractive two-tone metal case and has controls for each channel, a master on/off. The audio input can be second contact opened, and also has a remote switch. HB3 allows remote control of the TV set. Price £7.50. A further accessory is a remote controller for RM2000, which allows remote control of the TV set. Price £12.50. A further accessory is a remote controller for RM2000, which allows remote control of the TV set. Price £12.50.

VERSA DRILL CONTROLLER

Electronic microswitches from approximately 10 revs to 5000 rpm. 10 instant ranges measure: -

MULARD UNILINE

A switch operated 4-way stereo system. Band one of the finest phonographs in the stereo field this would make a wonderful gift for almost anyone. Price £11.95. If you need special bulk buy and it's on an expense for one this month we also have a full system complete at only £15 including VAT and postage.

MINI MICROPHONE

Suits any 4-way switch. Works in a sound enough for a buoying device, with loud-bugs but guaranteed. Price £1.95.

SUB-MINICRIT

Transistorised amplifier suitable for sub-mini microphones. Price £1.95. Suitable for use with the successful 'Bull' line of battery operated units.

CONSTRUCTOR'S SNIP

By 1 amp transformer with 230v mains primary. This has finding faults if it is fixed in a circuit is in fact an automatic circuit breaker, indicators, switch, etc. Nothing else to do, if you have an amplifier by connect it to 0, or a pair of high resistance headphones. Special price is £11.95 inc. VAT.

SURBLAR ALARM CONTROL PANEL

Controlled operation of door, locking relay, test switch, and three moveable key control switch. Stabilises the whole installation. All you have to do is take wires to plug sockets and to alarm bell. Price £8.95 + 90p. With complete diagram.

30V-25v - 750 MA TRANSFORMER

Make your own transformer for any purpose from a transformer variable listed at £5.25. We are offering this at only £1 including postage and VAT and for goods under £10 we are including VAT and postage. Price £1.95. The 0-25v is a very worthwhile addition to the transformer, the 0-30v has new wide range of applications.

15-0-15v - 2 AMP MAINS TRANSFORMER

Make transformer, upright mounting plinths and secondary winding on assembly to suits bobbin with fixing lugs. Price £3.45. Post 45p.

25W MID-RANGE SPEAKER

From a line array or an intense range. Price £2.35. £3.90.

ROTARY SISOLEID

As most customers know we have standard range of the normal type for pulling and pushing through a magnetic assembly. We have now come to distribute some which have been found useful, they are light, they are made to be used in a wide range of applications - in gloves or socks for people with poor circulation or for personal hygiene. A shaft which comes out of the centre, rather like a motor spindle, but at a very small price. Price 90p.

WATERPROOF HEATING WIRE

As usual for electrical work we suggest this. It has dozens of other applications - in gloves or socks for people with poor circulation or for personal hygiene. A shaft which comes out of the centre, rather like a motor spindle, but at a very small price. Price 90p.

TELEPHONE PICK-UP

Attaches by suction to phone body, enabling conversion to be recorded, put through imp or headphones. Price £1.95.

TRANSDUCERS

As usual uses control, T.V. receivers. Price £1.95 + 22p.

0-1 MA PANEL METER

Square shaped for 6法制 for peak level indication, so easy to read to 1-millibf. f.s.d. 0-1. Price £1.75.

VOLT METER

£1.95. Displays measuring range from 0 to 0.01%. Price £2.00.

0-9 AMP PANEL METER

High accuracy meter. Price £1.95.

VU METER

0-1 MA PANEL METER

Price £2.20.

30 AMP PANEL METER

Price £2.95.

30 AMP PANEL METER

Price £2.95.

45 AMP PANEL METER

Price £4.20.

45 AMP PANEL METER

Price £4.20.

30 AMP PANEL METER

Price £4.20.

30 AMP PANEL METER

Price £4.20.

45 AMP PANEL METER

Price £4.20.

45 AMP PANEL METER

Price £4.20.

30 AMP PANEL METER

Price £4.20.

25 AMP PANEL METER

Price £1.49.

30 AMP PANEL METER

Price £1.49.

25 AMP PANEL METER

Price £1.49.
A.C. VOLTMETERS

BOONTON

True R.M.S. Voltmeter 93A £375

FLUKE

AC/DC Differential Voltmeter 883AB £975

HEWLETT PACKARD

Log Voltmeter/Amplifier 7563A £445

MARCONI INSTRUMENTS

A.C. Voltmeter 400EL £225

Valve Voltmeter TF 2600 £175

Valve Voltmeter TF 2604 £250

R.F. Millivoltmeter TF 2603 £525

PHILIPS

A.C. Millivoltmeter PM2454B £225

ANALYSERS

BIOMATION

Logic Analyser 16500 £3600

GENERAL RADIO

Vibron Analyser 1911A £1750

HEWLETT PACKARD

Spectrum Analyser 141T c/w B552A & B554L £4350

Logic Analyser 1600A £1350

Network Analyser System 8407A+8412A c/w 8600A+8610A Sweep Marker Generator 100kHz-110MHz range. £3500

Swept Amplitude Analyser 182T+8755A 15MHz-18GHz. £2500

BRIDGES

BOONTON

VHF '0' Meter 280AP. (210-610 MHz) £650

Inductance Bridge 63H £2750

GENERAL RADIO

LCR Bridge (0.05%) 1608A £1195

MARCONI INSTRUMENTS

Universal Bridge TF 1313 £325

'0' meter TF1245 c/w TF1246 and TF1247 £950

RHODE AND SCHWARZ

Inductance Meter LRT £475

Capacitance Meter KRT £475

WAYNE KERR

A.C. Testmatic A60 £900

Universal Bridge B221 (0.1%) £225

D.V.M.s AND D.M.M.s

DATRON

5½ digit D.V.M. 1051 £995

FLUKE

3½ digit D.M.M. 8020A £99

5½ digit D.M.M. 8800A £899

5½ digit D.M.M. 8800A-01 £850

5½ digit D.V.M. 8300A £199

PHILIPS

Autoranging D.M.M. PM 2514 £125

4 digit D.M.M. PM 2524 £225

Autoranging D.M.M. PM 2527 £400

SCHLUMBERGER

5½ digit D.M.M. A243 £425

Microprocessor D.M.M. 7065 £950

As above with processor option £1250

Microprocessor D.M.M. 7065 £680

As above with processor option £1150

FREQUENCY COUNTERS

ADVANCE

500kHz Counter TC 15 & TC 15 P1 £495

FLUKE

250MHz Multifunction Counter 1911A-01 £325

500MHz Multifunction Counter 1912A £395

125MHz Multifunction Counter 1925A £350

= 61-65 King's Cross Road, London WC1X 9LN. Tel: 01-278 3461. Telex: 298694

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for 3 months.
PHILIPS
5200Hz Unv. Counter/Timer PM6614 £395
80MHz. Freq. Counter PM6664 £250
Oscilloscopes
Cossor
3100 75MHz Portable Dual Trace, Delayed Sweep. 30-day warranty. Only £450
HEWLETT PACKARD
75 MHz Dual Trace 1707A £600
High Sensitivity Single Trace 130C £250
1707B 75MHz Portable Dual Trace, Delayed Sweep. 30-day warranty. Only £650
MARCONI INSTRUMENTS
X-Y Display TF 2213/1 c/w Memory Unit TK 2214 £790
PHILIPS
25MHz Dual Trace PM 3212 £625
FMS260E 120MHz Portable Dual Trace, Delayed Sweep. Only £975
S.E. LABS
6 Channel Monitor SM121 £395
TEKTRONIX
465 100Mhz. Spec. similar to 465B but no alternate sweep. £1195
35MHz Dual Trace T932 £550
W. Diff. Plug In £199
1A6 Plug In £295
TELEQUIMENT
D75 50MHz Portable Dual Trace, Delayed Sweep. 2 Only £715
RECORDERS
BRYANS SOUTHERN.
4000012 channel UV Recorder plus 2Off 40501 galvo amps. 6" chart width. Grid and timing lines. Superb condition. £850
PHILIPS
Single Channel Recorder PM 8110 £195
RACAL
Store 4 FM Tape Recorder, 4 tracks DC-20KHz, 7 speeds. £1950
S.E. LABS.
3006 12 channel UV Recorder. 6" chart width. Grid and timing lines £550
6012 50 channel UV Recorder 12" chart width. Servo paper drive up to 5 Mtr./Sec. Two event markers, Trace identification. 1 Only £1100
WATANABE
6 Channel Chart Recorder MC 641 £2250
YOKOGAWA
Chart Recorder 3047 £450
 SIGNAL SOURCES
HEWLETT PACKARD
Variable Phase, Sine and Signal Generator 203A £495
Oscillator 10Hz-10MHz 651B £415
V.H.F. Oscillator 3200B £400
Decade Oscillator 4204A £750
U.H.F. Signal Generator 612A £850
V.H.F. Signal Generator 608F £450
Phase Lock Synchroniser 8708A £475
RF Sweeper/Marker Generator 8600A+ 8601A, 100KHz-110Mhz. 5 marker frequencies £1500
MARCONI INSTRUMENTS
A.F. Oscillator TF 2000 £325
A.F. Oscillator TF 2100 £150
A.M. Signal Generator. TF8010/85 £550
L.F. Oscillator TF 2102/1M £195
U.H.F. Signal Generator TF1060/3 £650
Two Tone Source TF 2005R £295
H.F. Generator TF 144H/4 £750
TF2002B AM/FM Signal Generator. 10KHz-82MHz. 1 Only £1200
TF2361 c/w TM9692 Video Sweep Generator 26KHz Sweep. Superb condition. £750
Field locks on 405-505-625 lines £750
PHILIPS
Function Generator PM 5108 £250
Function Generator PM 5127 £395
Function Generator PM 5167 £500
TELYCONE
R.F. Sweeper 2003 c/w 3302, 3331, 3341, 3351, 3360, 3370 (1-300MHz) £1150
MISCELLANEOUS
ADVANCE
Off Air Frequency Standard OFS 28 £150
BRADEY
AC Calibrator 125B £475
DC Calibrator 1266 £156 Oscilloscope Calibrator. 1 Only £480
BRÜEL & KJÆR
Sound Level meter 2203 & Microphone 4145 £395
DATALABS
Power Line Disturbance Monitor DLO19 £175
FLUKE
DC Differential Voltmeter 895A £950
332A DC Voltage Calibrator. 0.003% Calibration Accuracy 0.1PPm resolution. £1750
GENERAL RADIO
Sound Level Meter 1933 £1000
Recording Sound and Vibration Analyser 1911A £2750
Hewlett Packard
DC Microvolt -ammeter 425A £250
AC/DC Differential Voltmeter 741B £695
Vector Impedance Meter 4815A £1950
S Parameter Test Set. 8745A £2750
Insulation Resistance Meter 4329A £500
MEASURE TECH
Programmable Phase Meter 755 £2750
METREL
Power Supplies
PMA47. 0-15V @ 3A (Presetable). £37
PMA 50. 0-15V @ 5A (Presetable). £45
PMA 53. 0-15V @ 10A (Presetable). £65
MG 5-60V 50A (Switching). £160
MG 8-20V 50A (Switching). £120
MG 5-60V @ 10A (Switching). £95
MG24-12 24V @ 12A (Switching). £120
MG24-5 24V @ 5A. (Switching). £95
MG 5-10V @ 10A (Switching). £95
MG 5-10V @ 10A (Switching). £120
MG24-5 24V @ 5A. (Switching). £95
MG 24V @ 10A (Switching). £95
MG24-5 24V @ 10A (Switching). £95
MG24-5 24V @ 10A (Switching). £95
Only 9 months old SP3 - 200A Infrared Spectrophotometer. £3950
Also available 15 ton hydraulic Press with Safety Guard S.

12-MONTH WARRANTY
All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated.

WIRELESS WORLD NOVEMBER 1980

Only small Selection of our vast stocks shown here.
Electronic Brokers
No.1 in Second User Minis & Peripherals

ASH 33 Teletype
Input / Output terminal incorporating paper tape punch and reader 84 ASCII upper case character set. 110 baud operation, even parity keyboard, choice of RS232 or 20 mA interface. NOW ONLY £595.00
Options: ICL-type keyboard £50.00, 8th level marking £25.00, remote reader control £50.00, reader step £20.00, Auto reader £25.00, pedestal £30.00

PDP11/04 Processor
10" chassis 16KW MOS GI
NEW £4,500.00

DEC Memory – Bargain offer
MBP 116V Memory (64K) 16 Kbyte
ONLY £399.00

New ASCII Keyboards - LOW PRICE OFFER
KB 771 Superb 71 station ASCII Keyboard incorporating separate numeric / cursor control pad and installed in custom-built steel enclosure with textured blue enamel finish. Ideal for the VDU builder. Case dimensions 17 1/4" x 7 1/2" x 3 3/4". Total weight 4kg. PRICE £89.50

Low Cost Printer Offer
Centronics 101A Heavy duty Matrix Printer with 64 ASCII upper case character set, 165 cps operation, 132 print positions with adjustable tractor feed. 7x9 dot matrix, parallel input. £750.00

Miscellaneous
BALL MIRATEL 9" Monitor with case including space for keyboard. Integral power supplies included. Requires separate horizontal and vertical video input £95.00
CLARE KEYBOARD SWITCHES. Special purchase of top quality Clare SF-type reed switches. BRAND NEW SURPLUS £25p each
DATA GENERAL model 1210 CPU with 4K core £795.00
DIGITRONICS P135 paper tape punch 35cps Solenoid device with 27VDC coil £95.00
EMI MONITOR 15" dia. tube, integral power supplies. Accepts composite or separate video input. BRAND NEW SURPLUS £100.00
FACIT 4070 Paper Tape Punch £675.00
GE TERMINET 1200 RO Printer, 80 columns tractor feed, upper/lower case ASCII. £495.00
HAZELTINE THERMAL PRINTER 80-column 30cps silent RO printer with parallel TTL input £395.00
HUGART SA400 Mini-flipper disc drive £195.00
HUGART SA800 8" Floppy disc drive BRAND NEW £395.00
TALLY 1602 MATRIX PRINTER Parallel input Upper/Lower case. Tractor feed, as new £995.00
TERMIPRINTER 7075 RO Impact Printer. Upper/Lower case. Pin feed. £625.00
TEXAS 725 Portable Terminal with acoustic coupler £625.00
TEXAS 733 ASR Terminal £1375.00
<table>
<thead>
<tr>
<th>VDU PRICES</th>
<th>SHATTERED</th>
</tr>
</thead>
</table>

Hazeltine H-1000
The low, low priced teletypewriter-compatible video display terminal, offering your choice of transmission speeds up to 9600 baud as well as parity generation and checking.

Specification
- **SCREEN SIZE** - 12” diagonal.
- **SCREEN CAPACITY** - 960 characters: 80 per line x 12 lines.
- **CHARACTERS** - 5 x 7 Dot Matrix; 625-line raster.
- **CHARACTER SET** - 64 ASCII alphanumericics and symbols.
- **KEYBOARD** - TTY format.
- **INDICATORS** - Power On, Parity Error.
- **PARITY** - Parity error indicated by Parity Light and question mark (?) displayed in character position.
- **TRANSMISSION** - Asynchronous. Switch-selectable for any two standard rates up to 9600 baud.
- **OPERATING MODES** - Full / Half Duplex.
- **MEMORY** - High Speed MOS refresh.
- **REFRESH RATE** - 50 fields per second.

When ordering please specify your choice of switch-selectable baud rates.

- Standard: Either A) 110/300 baud or B) 300/1200 baud
- Optional: A combination of any 2 of the following transmission speeds can be provided at a surcharge of £25.00:
 - 75, 110, 150, 200, 300, 600, 900, 1200, 1800, 2400, 4800, 9600, (N.B. 900/1800 not compatible with 110/200 respectively).

Price
- £199 + VAT

Hazeltine H-2000

Features include:
- Switch-selectable transmission rates to 9600 baud
- Three switch-selectable operating modes - full duplex, half-duplex or batch
- Direct cursor addressability
- Dual-intensity video
- Tabulation
- Powerful editing capability
- Remote keyboard
- Selective or automatic collation
- Teletype compatible
- Parity select
- Large screen capacity
- Clear 5 x 7 matrix character image
- Full remote command set
- Format capability
- Standard peripheral interfaces.

Specification
- **SCREEN** - 12” diagonal. 1998 characters: 74 per line x 27 lines.
- **CHARACTERS** - 5 x 7 Dot Matrix; 625 lines raster.
- **CHARACTER SET** - 64 alphanumericics and symbols. 32 ASCII control codes.
- **KEYBOARD** - Detachable, solid state. TTY design. 10-key numeric pad plus editing and cursor control keys.
- **TRANSMISSION** - Asynchronous. Switch-selectable for combinations of 5 standard rates, 110 to 9600 baud.
- **OPERATING MODES** - Switch-selectable, full duplex, half-duplex or batch.
- **MEMORY TYPE** - 2048 x 8 RAM.
- **EDITING FEATURES** - Full Cursor Controls plus Insert/Delete Character, Insert/Delete Line, Clear Screen, Clear Foreground Data Only, Tab.
- **REMOTE COMMANDS** - Insert / delete Line, Clear Screen, Clear Foreground Data Only, Home Cursor, Address Cursor, Set Background Intensity, Set Foreground Intensity, Cariage Return, Backspace, Ring Bell, Transmit, Print.
- **AUXILIARY OUTPUT** - Standard printer interfaces; Standard cassette interface.

Price
- £299 + VAT

Hazeltine MODULAR ONE
The Hazeltine Modular One terminal offers the full range of terminal performances - from simple teletypewriter compatibility to enhanced editing and polling capabilities.

The Modular one is supplied in two different versions. The BASIC MODEL provides the following features:
- 1,920 character display (80x24)
- 12-inch bonded
- Incremental and absolute cursor positioning.
- Dual video intensity
- 11-key numeric pad

Price
- £695

Optional:
- Lower Case
- Printer Port (parallel)...
- Printer Port (serial)...
- EIA Data Cable...
- Remote Edit...
- Current Loop Interface...
- Synchronous Interface...
- External Baud & Parity...
- Switch
- Also available: EDIT MODEL...
- POLLING MODEL...

Price
- £695

61-65 King's Cross Road, London WC1X 9LN. Tel: 01-278 3461. Telex: 298694
A MATTER OF LIFE OR DEATH

When an accident occurs involving severe electric shock, people on the spot may be suffering from a kind of shock themselves. The realisation that one has literally only seconds to save a life can itself be momentarily paralysing. That's why Electrical Review has completely re-styled its Electrical Shock Chart. The new chart, prepared in consultation with St. John's Ambulance Brigade, highlights the main points in red, and explains and illustrates the actions to be taken so clearly that they can be grasped instantaneously even in a crisis. It also includes vital instruction on what to do if the casualty does not respond to artificial respiration—with a section on external heart compression.

Action this second could save a life. Post this coupon NOW.

VIVID RED AND BLACK. PLASTIC, CARD OR PAPER.
SIZE 19 in × 13½ in (474 mm × 346 mm)
The best jobs in electronics and communications appear in Electronics Weekly. Trouble is your place on the office circulation list. If you receive the office copy 2nd, 3rd or 4th hand, chances are any good jobs have already gone. The solution's simple. For only 15p a week you can receive not only the best of the latest jobs, but also everything that happens in the electronics industry: new technology, new projects, major policy changes, the battle for markets. The whole electronics business scene is covered week by week — and interviews with leading industrialists provide insights into the way top companies are developing their business. To see Electronics Weekly ahead of everyone, place a regular order with your newsagent or complete and post the coupon...and the news about your industry will always be new!

To: Marketing Department, Room 626A, Dorset House, London SE1 9LU
Please send me Electronics Weekly for a year. I enclose cheque/p.o. for UK £8.00 (inclusive of p&p). Overseas $20.80 payable to IPC Business Press Ltd.

Name
Address
The largest distributors of CB accessories in the U.K. Come and see the biggest and best selection of CB radio accessories from all the leading manufacturers, including:

- Harada
- Sirlen
- Turner
- Telex
- NV Ram
- Mura Corporation

Mura Electronics (UK) Ltd., 79 Church Rd, Hendon, London NW4 Tel: 01 203 5277/8

WW - 085 FOR FURTHER DETAILS

Professional ASCII Keyboards

THE 'APPLE' COMPUTER KEYBOARD

- 52 key 7-bit ASCII coded
- Positive Strobe, +5v — 12v.
- Full ASCII Characters
- Parallel output with strobe.
- Power light on control
- National MM5740 Chip, TTL output
- Superbly made, size 12x5.5x1.5in.
- Black keys with white legends
- Escape, shift, return and reset keys
- Complete with circuit and data

Ideal for use with Tangerine, Trition, Thscan, Apple and most computers.

Ex-stock from Henry's. This is definitely the best buy. Supplied brand new in manufacturer's original packing (anti-static).

Just post remittance, total £35.95 (incl. VAT & Post).

Regulated power supplies

- All models: internal holder, over load, thermal out short circuit protected.
- Superbly made, size 12x5.5x1.5in.
- Black keys with white legends
- Escape, shift, return and reset keys
- Complete with circuit and data

Ideal for use with Tangerine, Trition, Thscan, Apple and most computers.

Ex-stock from Henry's. This is definitely the best buy. Supplied brand new in manufacturer's original packing (anti-static).

Just post remittance, total £35.95 (incl. VAT & Post).

Any make-up or copy queries contact John Gibbon or Brian Chapman 01-261 8353
Appointments

Advertisements

Displayed Appointments Vacant: £12.00 per single col. centimetre (min. 3cm).

Line advertisements (run on): £2.00 per line, minimum three lines.

Box Numbers: £1 extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU).

PHONE: Eddie Farrell, 01-261 8508.

Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Electronic Opportunities

£4,500 - £15,000

Microprocessors — Minicomputers — Digital — Analogue — RF — Audio

Where does your skill and interest lie?

- Our clients are drawn from all sectors of industry:
 - There are opportunities at all levels from Technician to Manager
- Most UK locations and some Overseas
- Make your first call count — Contact MIKE GERNAT on 076-384-676/7

Electronic Computer and Management Appointments Ltd

148-150 High St. Barkway
Royston Herts SG8 8EG

Gloom Recession Unemployment

How does it affect the average electronic engineer?

Our placements show that your salaries are 30% higher than they were this time last year. However, employers do pick and choose — it is definitely a buyer's market.

Current Vacancies Include

Senior Design Engineer to head up a small team in design consultancy. Good degree, lots of microprocessor hardware/software experience. Knowledge of telecommunications an advantage. To £11,000 + car: NW Home Counties.

Microwave Engineers — always at a premium. Salaries up to £12,000. Greater London, South Coast, Berkshire.

Design Engineers. Good knowledge of computer architecture either DEC, IBM or Zilog who wish to work on data communications, pattern recognition and image processing. Surrey. To £13,000.

Design Development Engineers for video camera and video processing equipment. Wide range of applications including Sonar. Dorset to £8,000.

Design Engineer for new generation of hand held Data Entry Computer Terminals. Research on novel components including LSI. Berks to £8,500.

CMOS, LSI, Thick Film, Thin Film Bi-Polamic Designers, Applications Engineers. Now is the time to move. Vacancies in Scotland, West Country and South Coast — to £15,000.

Test Enginers for wide range of data acquisition equipment including digital video products, i.e. frame stores, synchronous standard converters and real time picture manipulators. Berkshire. Good salary.

Commissioning/Test Engineers — data transmission equipment. Duties include testing, configuration of installation and fault finding on customer specials. Berkshire. Salary £7,200.

Computer Engineers — vacancies throughout U.K. in field service, permanent site, technical support and systems test — some excellent salaries.

For further details, please telephone:

(Charles Airley Associates)

We're Moving

Notice to Classified Advertisers

Re: Change of Address

With effect from November 7, 1980, Wireless World will be moving to Sutton, Surrey. From this date, classified advertisers should send their material to the following address:

Classified Department

Wireless World
Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS

Telephone: 01-661 3500
Telex: 892084 BISPRS G
Increased home and export orders for our broadcast TV products mean that we are looking widely to recruit staff to fill new vacancies and others created by promotion of engineers who have been with us some time.

SYSTEMS ENGINEERS — TELEVISION

Experienced engineers are needed to work on design and project management of Outside Broadcast vehicles and television studios. This is an opportunity for engineers to become involved in projects from their initial design concept, through manufacturing to delivery and installation.

Our custom built systems require a high degree of customer contact at engineering level, from the initial design stage to the necessary training of operational staff on completion of the contract, both within the UK and overseas.

You should have a knowledge of TV studio engineering gained from experience in this type of work or from experience in the operational side of television.

DESIGN AND DEVELOPMENT ENGINEERS — VIDEO

An experienced engineer who will be involved in the design of studio products, including a new range of colour cameras, using the very latest analogue and digital techniques. You will have the opportunity to see your designs made in volume production, fulfilling the high technology requirements of the ‘80s.

We are looking for engineers who are qualified to degree or HND level and who have at least four years’ experience in the design of electronic equipment, with some knowledge of video engineering and microprocessor techniques.

DESIGN AND DEVELOPMENT ENGINEER — AUDIO

A senior audio design engineer responsible for the design of custom made studio talkback systems to specifications agreed with customers, for use in television mobiles and studios.

You need to be professionally qualified, and have a background to enable you rapidly to take over the full responsibilities of this product area.

TEST ENGINEERS

We require engineers at intermediate level to assist in the manufacture of our new range of products for the Broadcast studio television market.

You need to have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on broadcast television, or similar sophisticated products, and be capable of faultfinding down to component level.

We are a young, successful Company, well known in international television circles, operating from our modern purpose-built factory in Andover. Salaries offered are very competitive, and supplemented by generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.

PLEASE WRITE GIVING FULL DETAILS OR PHONE JEAN SMITH AT THE ADDRESS BELOW FOR AN APPLICATION FORM.

LINK ELECTRONICS

Link Electronics Limited,
North Way, Andover,
Hants, SP10 5AJ.

Telephone: (0264) 61345
Electronics R&D

Join us in the forefront of technology

R & D Engineers

required to work on digital circuits for micro-processor based industrial and commercial systems.

The candidate should have a working knowledge of TTL and CMOS logic and have experience of programming at assembler language level for micro-processor systems.

Engineers should hold a degree/HNC or equivalent qualifications. Salary will be commensurate with qualifications, age and experience.

If you are seeking an enjoyable position involving both hardware and software development, write giving your career to date or telephone Dr. G. O. Towler (New Product Development Manager) British Relay Electronics Ltd. 32 Biggin Way Upper Norwood London, SE19 Tel. 01-764 0931

Take your pick

HF-VHF-UHF-
Microwave Optics & Acoustics

A challenging and full career in Government Service. Minimum qualification — HNC. Starting salary up to £6,737 (under review). Please apply for an application form to the Recruitment Officer (Dept. WW9) H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.

ENGINEERING OPPORTUNITIES

Telemotive uk Ltd is a company in association with a major U.S.A. manufacturer with world leadership in the radio control of industrial machines, systems and processes, in collision prevention, and in other industrial electronics activities. Our principal products are founded on the Near Field Induction Effect and on other inductive techniques in the 300kHz band. No other U.K. company has a comparable product line and our business therefore offers engineering experience of unusual interest. Training in our techniques is provided.

COMMISSIONING ENGINEER

We currently require an engineer with the ability to work independently, commissioning, servicing and testing systems on customer’s sites. In addition, the engineer would at times work on systems requiring service at base (Hersham). The position involves travelling within the U.K. and will take the engineer into a wide variety of industries. A company car is provided.

ELECTRONICS TECHNICIAN

We also require a technician whose duties would include assembly, wiring and test of complete equipment as well as testing small batches of PCBs. He or she would work with a small team of engineers but must be able to work unsupervised. Previous experience of wiring is essential, preferably to military standards. Previous production testing experience would be an advantage.

Telemotive is a good employer. We look only for above average personnel, and this is reflected in the conditions of employment offered. Please apply in writing, giving details of previous experience and training, to—

Telemotive uk Ltd
Riverdene Industrial Estate, Molesey Road, Hersham, Walton-on-Thames, Surrey Telephone Walton-on-Thames (0932) 47511
A vacancy exists in the Psychology Department for a Grade 6

COMPUTER TECHNICIAN
(Male or female). Duties include the design/development of sophisticated on-line equipment for laboratory control plus routine maintenance of the Department's computer laboratory complex. The laboratory is based on a PDP 11/34 master computer with DEC GT40 and LSI 11 slave computers. Expansion of the system, including microprocessor based developments, is in progress.

Suitable qualifications include HNC (or equivalent) in relevant subject or ONC with appropriate computer experience.

Salary is in the range of £5,478 - £6,543 per annum.

Application forms can be obtained from the Department of Psychology, University of Nottingham (723).

UNIVERSITY OF NOTTINGHAM
Department of Psychology
A vacancy exists in the Psychology Department for a Grade 6

COMPUTER TECHNICIAN
(Male or female). Duties include the design/development of sophisticated on-line equipment for laboratory control plus routine maintenance of the Department's computer laboratory complex. The laboratory is based on a PDP 11/34 master computer with DEC GT40 and LSI 11 slave machines. Expansion of the system, including microprocessor based developments, is in progress.

Design experience with CMOS/TTL devices is essential and previous computer experience desirable.

Salary is in the range of £5,478 - £6,543 per annum.

Application forms can be obtained from the Department of Psychology, University of Nottingham (723).

This is your opportunity to take a look at Kodak and find out about installing, maintaining and repairing an exciting range of equipment used in the photograpic industry, including microfilmers, processors and printers, on customers' premises throughout the U.K.

We are expecting a high standard from you. You will need a sound knowledge of practical electronics coupled with mechanical skills, preferably having had previous servicing experience. In return we can offer the opportunity to take a look at Kodak and find out about installing, maintaining and repairing an exciting range of equipment used in the photograpic industry, including microfilmers, processors and printers, on customers' premises throughout the U.K.

For further particulars ring: 010/4161/377192

RADIO MAINTENANCE ENGINEER
REQUIRED (AGE 25 TO 40)
Capable of maintaining communication networks in various overseas projects. Networks consist of HF-SSB, VHF-FM and VHF-SSB communications systems including repeaters. As from January 1, 1981, we offer initially one-year contract in large agricultural project in the Sudan.

Application with curriculum vitae in English should be addressed to:

CIBA-GEIGY LIMITED
Agro-Projects AG 8.13 /Attn H. Wenk
4024, Basel, SWITZERLAND
NATIONAL BROADCASTING SCHOOL

We are looking for a

BROADCAST ENGINEER

with experience in Local Radio.

The job will involve teaching radio operations and maintenance, and will include maintenance of the School’s studios and facilities. Some travel will be required.

The successful applicant will be responsible to the Chief Engineer and will have had significant experience in broadcasting, preferably with a background in maintenance. Some experience of teaching and of digital technology would also be advantageous.

Excellent staff benefits including 5 weeks’ holiday a year. Salary negotiable.

Please apply with CV and other relevant details to: Chief Engineer, National Broadcasting School, 14 Greek Street, London W.I.

WESTWARD TV

TV BROADCAST ENGINEERS — PLYMOUTH

Westward TV seeks several additional experienced Electronic Broadcast Engineers for their Studios at Plymouth. One vacancy involves the operation and maintenance of Telecine and VTR equipment, including quadruplex 1” helical scan and high band Umatic equipment, together with Rank Cintel telecines.

Additionally, two vacancies are anticipated in the Electronic Maintenance Department, one of which will be a more senior appointment and involve maintenance duties within the Master Transmission Control area. We offer attractive locality and conditions of service including five weeks’ annual holiday (from next year), free life insurance and salaries of up to £9,950 (Senior Engineer), including supplements.

Telephone the Personnel Manager for further details on 0752 69311 or write to Westward Television Limited, Derry’s Cross, Plymouth PL1 2SP.

PHILIP DRAKE ELECTRONICS LTD

Manufacture Audio equipment for the Broadcast Industry and have vacancies for the following staff:

PROJECT ENGINEER

To work in the Project Department. The job includes Project discussion with customers, the design and test of audio and digital circuits is essential.

TEST ENGINEER (as PROJECT ENGINEER)

To test primarily the custom-built products, mainly Communications systems, along with supervision of other staff and Test department load management and planning. Some experience in the design and test of audio and digital circuits is essential.

DESIGN ENGINEER

To work under supervision of the present Design Engineer, to undertake detail circuit design and product development. Experience in the design of audio and digital circuits is essential, and an understanding of product design for manufacture is desirable.

DRAUGHTSPERSON/TRACER (as PROJECT ENGINEER)

To work primarily in the Project Department, to prepare handbook drawings and design system layouts, and also to prepare circuit diagrams and standard products. Experience in control panel layouts and Broadcast audio requirements is desirable.

SENIOR AUDIO TEST ENGINEER

Opportunity to join a London based company producing high quality sound mixing consoles for live media, professional recording and broadcast applications.

The individual most suitable for this responsible and interesting situation would be aged 28+ with HND (or similar) qualification and several years post-qualification experience in fault diagnosis with audio products designed to a high-reliability specification.

Ability to formulate test procedures, to appraise quality standards and coordinate an enthusiastic team of test engineers and technicians is essential.

In return we offer excellent remuneration, good conditions and an opportunity to gain managerial experience in this field.

Telephone Jim Cousins on 01-388 7060 or 01-387 7679 for an application form and further information, or write to him giving remum to career to date.

MIDAS Audio Systems Ltd

54-56 Stanhope St., London NW1 3EX

Radio Communications

Electronics Engineers and Software Designers

Mid-Sussex — S.W. London

Salaries up to £8,000

To join our expanding R&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio nav aids and radio monitoring remote computer-controlled systems.

Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.

Attractive salaries are complemented by excellent prospects and generous benefits.

Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges)

(738) (728) (729) (752) (725) (738) (729) (752)
We offer a Technician the chance of working quote ref. 0761. Closing date 30th October.

Free Hospital, Pond Street, London NW3 available from the Personnel Department, Royal

Applications should have broad based practical experience and HNC equivalent qualification.

The University offers good working conditions, professional and social activities. Salary in the range £4280-£5504 per annum. Ref. 109/d/258.

The minimum qualification required for an Engineer appointment is an appropriate HNC/HND, a C & G, F.T.C. (Telecommunications) or a T.E.C. Certificate and Diploma in Electronics or Telecommunications.

Applicants must have normal colour vision and hearing. Starting salary is in the range £5425 to £5945 depending upon experience plus extra payment for shift working.

For further information and an application form, write to: The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA, or leave your address by telephone on 01-408 0052 at any time, quoting Reference No.80.E.4052/WW.
Professional Careers in Electronics

All the others are measured by us...
At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
If you are interested to hear more, please fill in the following details:

Name
Address
Telephone Work/Home (if convenient)
Years of experience 0-1 1-3 3-6 Over 6
Present salary £3,500- £4,500- £5,500- over
£4,500 £5,500 £6,500 £6,500
Qualifications None C & G HNC Degree
Present job

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St Albans, Herts, AL4 0BR. Tel: St Albans 59292

NORTHERN REGIONAL HEALTH AUTHORITY

ELECTRONICS TECHNICAL ASSISTANT

Electronics Technicians of high calibre are required for the Regional Engineer's Department, which is based at Walker-gate, Newcastle-upon-Tyne.
The appointment will be at Technical Assistant Grade I, on the salary scale £5850-£8900 (currently under review).
These posts offer technologically interesting and varied work, with excellent working conditions, and well-equipped laboratories. They involve visits to hospitals throughout the Region, for which financial reimbursement is made.
Applicants must have had considerable and broad experience with modern electronic equipment.
Minimum qualifications: Higher National Certificate or City and Guilds Full Technological Certificate in Electronic Engineering, or equivalent.
Application form and job description available from the Regional Personnel Officer, Northern Regional Health Authority, Benfield Road, Newcastle-upon-Tyne NE6 4PY.
Closing date for applications: 27th October, 1980.

COMMUNICATIONS

£12,000 p.a.
Tracking Systems experience for Consulting Engineers.

£10,000 p.a.
'Hands-on' Telephone Systems Engineer.

EUROPE
Local and trunk switching systems designers.
£9,000 p.a.
Analog/Digital Multiplexed Modulation Systems development.

U.K. and Offshore
Supervise installation of data networks.

U.S.A.
Graduate/HND Design Engineers.

We have a constant requirement for telephone telecommunications, data communications, radar, radio and microwave engineers at all levels.

STIRLING EXECUTIVE PERSONNEL
International Recruitment Consultants
128 Wigmore Street, LONDON W1H 9FE
Telex No: 298949 SEPOLI G.

ELEKTOR

UP-TO-DATE ELECTRONICS FOR LAB AND LEISURE
requires

A TECHNICAL EDITOR

To be responsible for the edition of our English language (monthly) magazine and books at our Head Office in Beek (L), the Netherlands.
The successful applicant should have English as his/her native tongue, and preferably a degree (or equivalent) in Electronics and considerable experience as an editor.
A good working knowledge of either Dutch or German is essential.
Please send detailed curriculum vitae to:
MRS. VAN DER HORS, ELEKTUUR B.V.
POSTBUS 75, 6190 AB BEEK (L), THE NETHERLANDS
PRODUCT DESIGN ENGINEER

Electrosonic Ltd., a world leader in the fields of audio visual, lighting and control systems, require a Product Design Engineer with professional qualifications, in one or more of the following disciplines:

Audio recording — reproduction, analogue, or digital control circuit design.

The applicant should have at least two years' proven experience for this senior post. The ability to undertake all aspects of a design and development from concept through to production, including initial design, prototype development and A.T.E. programming is essential.

Cross assemblers and microprocessors. Cross assemblers and
devices for digital control circuit design.

The right applicant will enjoy an excellent salary and working conditions at our recently-opened design offices in Swanley. Please write or telephone for an application form to:

Peter Smith—Design Manager—Unit Products Electronics Ltd.
Warwick House
Azalea Drive, Swanley, Kent
Telephone Swanley 60321

USE YOUR IMAGINATION

If you are the Design Engineer who joins us then you must do just that. We have many projects on hand at present covering the whole spectrum of electronics and ideally you will have had a good theoretical and practical background so that you know what makes circuits tick. But knowledge of new digital and analogue techniques and when to use them will be equally important. We do not necessarily want standard solutions to standard problems.

If you can work by yourself and would like the challenge of working for a small growing company, write to us with brief career details.

Mr. R. K. Furness, MINIM AUDIO LIMITED, Lent Rise Road,
Burnham, Slough SL1 7NY.

Minim Audio

Make a note of our name!

Logic and Television ENGINEERS

We are urgently seeking a Logic Engineer with practical experience of fault finding on Micro-Processors and TV Monitors — also a TV Engineer with experience of Logic and/or interest in Logics. Age should be over 25; an excellent salary negotiable with expanding company in leisure field.

Apply in strict confidence to:

J. C. M. Pryde, Managing Director
LONDON COIN MACHINES LTD.
22-24 BROMELLS ROAD
LONDON SW4 0BQ

APPOINTMENTS IN ELECTRONICS

£5 - £10,000

Take your pick of the permanent posts in:

MISSILES
MEDICAL
COMPUTERS
RADAR
COMMS
MICROPROCESSOR
HARDWARE — SOFTWARE

For free expert advice and immediate action on salary and career improvement, phone or write to GRANT WILSON

APPOINTMENTS
IN ELECTRONICS

£5 - £10,000

Take your pick of the permanent posts in:

MISSILES
MEDICAL
COMPUTERS
RADAR
COMMS
MICROPROCESSOR
HARDWARE — SOFTWARE

For free expert advice and immediate action on salary and career improvement, phone or write to GRANT WILSON

Challenging positions at home and abroad

RADIO TECHNICIANS COMMUNICATIONS ENGINEERS

Plessey EAE install and maintain communications systems for the oil industry, at home and abroad.

Due to rapid and continuing expansion in our activities, we constantly require Radio Technicians, with experience of HF, VHF, UHF and Microwave, and Engineers (preferably qualified to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter.

In the North Sea, earnings are in the range £9,000 to £12,000 p.a. Overseas earnings could be up to £20,000 — plus tax concessions and generous home leave.

The work is demanding, but rewarding, offering you the chance to use your skills and your initiative to the full.

The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick — but where relocation is necessary, we will give generous assistance with removal, legal and temporary accommodation expenses.

Please apply, with details of your career to date, to: Personnel Manager, Plessey EAE Limited, Dept WW, Offshore House, 284/285 Southtown Road, Gt. Yarmouth, Norfolk NR31 0JB Telephone 0493 58541
Electronic Engineers - What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £4000 to £8000 p.a.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

Please send me a TJB Appointments Registration form:

Name: ____________________________
Address: ___________________________

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 0892 39388
WIRELESS WORLD NOVEMBER 1980

Television Engineer

We are based in Buckinghamshire and operate a broadcast quality colour mobile unit and studio equipped with Link hand-held and studio cameras. Our Mark III telecine VPR I recorders and a wide range of other facilities.

An experienced television engineer is now required for operational and maintenance work with our small team producing training programmes for the Services at base and on location.

You should have worked on professional colour equipment and some training could be provided, where necessary.

For further information telephone or write to:
Personnel Manager
The Services Kinema Corporation
Chalfont Grove, Narcot Lane
Gerrards Cross, Bucks.
Tel: Chalfont St. Giles 4461 Ext. 221

Electronic Technicians

One in a Million?

Among the million or so leaving school or university this year there is a chance that one — perhaps two — is destined to make a significant development in audio. That person's first decision might well be to join QUAD in Huntingdon. At school, he or she will have realised that amplifier design is not just a matter of having a listen or a fiddle with standard circuits and their variations. Later will come an adolescent stage of great discoveries. "Increase the rise time to eliminate TIM". "Regulate the power supply for better imaging". Following on from such childish things will have come an ability to distinguish between the characteristic impedance of the medium and the three row of the dress circle and between peak flux density and the rather gooey substance fed by spoon to small children. He or she will, nevertheless, be sufficiently down to earth to know that one newton is about the weight of the average apple. Is it in 10? Well, drop us a line anyway.

Mr. P. J. Walker
THE ACOUSTICAL MANUFACTURING COMPANY LIMITED
30 St. Peters Road, Huntingdon, Cambs. PE18 7DB

Electronics Technician

Earn £20 - £100 p.w. in your spare time

by introducing the revolutionary new
Flip-Caller telephone to your friends.
Featuring reverse control, push button dialing and memory recall. Sets start. Original commission for deals to be paid.

147, Liverpool, L69 3BX. Quote ref. RV/580/WW.

THE HOSPI RALA FOR SICK CHILDREN
GREAT ORMOND STREET LONDON WC1 3JH
BIOMEDICAL ENGINEERING DEPARTMENT
TECHNICIAN

To maintain the performance and safety of a wide range of medical, laboratory and electronic equipment in the Institute, with light constructive and wiring work. Some travelling involved.

Minimum qualifications required — ONC or equivalent in an electronics subject. Three years' practical engineering experience essential.

This post is graded as Medical Physics Technician Grade III, with a salary scale of £3,003 rising by seven annual increments to £6,350 inclusive of London Weighting.

Application forms and further details from Group Personnel Department, 01-409 9200, extension 228.

THE UNIVERSITY OF LIVERPOOL
DEPARTMENT OF BIOPHYSICS
ELECTRONICS TECHNICIAN

For servicing and repairing scientific equipment. Applicants should have at least ONC or equivalent qualification in electrical/electronic engineering. Experience desirable but not essential. Salary Grade 3 (£3915-£5580) for 3 years’ experience, Grade 4 (£4431 - £6097) according to qualifications and experience.

Application forms from the Registrar, The University, P.O. Box 147, Liverpool, L69 3BX. Quote ref. RV/580/WW.

THE UNIVERSITY OF LIVERPOOL
DEPARTMENT OF BIOCHEMISTRY
ELECTRONICS TECHNICIAN
GRADE 3 or 4

For servicing and repairing scientific equipment. Applicants should have at least ONC or equivalent qualification in electrical/electronic engineering. Experience desirable but not essential. Salary Grade 3 (£3915-£5580) for 3 years’ experience, Grade 4 (£4431 - £6097) according to qualifications and experience.

Application forms from the Registrar, The University, P.O. Box 147, Liverpool, L69 3BX. Quote ref. RV/580/WW.

WIRELESS WORLD NOVEMBER 1980
UNIVERSITY OF ABERDEEN

TECHNICIAN (GRADE 3)

required for the Department of Bio-Medical Physics and Bio-Engineering for 3-year appointment working as a member of a team developing apparatus for medical imaging: the research project has reached the stage of producing images of sections of the body. Applicants should hold an ONC (or equivalent qualification) and have had about 4 years experience in electronics. Previous experience in imaging is not necessary, as the successful applicant will acquire skill in this and allied fields.

For suitably qualified candidate, salary will be on scale £3,919–£4,590.

Persons interested in being considered for the post and in obtaining further information on the work are invited to contact D. J. M. S. Hutchison, Department of Bio-Medical Physics, Aberdeen AB9 2ZD (Tel. 0224-681818, Extension 3220).

CARDIFF

BROADCASTING requires

An experienced Broadcast Engineer (LR 2 grade) to assist the Chief and Deputy Chief Engineers in the running of this exciting new radio station.

Write with details and phone No. to
The Chief Engineer
Cardiff Broadcasting
P.O. Box 221
Cardiff CF1 5XJ

ELECTRONICS

Design/Development
Test/Inspection
Prototype Wiring

All permanent positions in Greater London.

Tel. 01-493 4856 for details

F & P APPOINTMENTS

RESEARCH & DEVELOPMENT

LEADERS & TECHNICKEN ENGINEER

Applications are invited from suitably experienced electronic engineers and technician engineer to participate in a programme of research and development projects at our new Laboratories at Shrubbery Road, Edmonton. These projects cover a wide range of applications for conventional domestic devices and also systems incorporating microprocessor controls.

Whilst theoretical qualification to HNC standard would be an advantage, applicants with practical experience in the construction and design of electronic products should apply.

Please apply to:
Company Personnel Manager
M. E. ELECTRIC LTD.
Shrubbery Road
Edmonton N9 OPB
Tel. 01-803 3355, Ext. 15

Electronic Development Engineers

(Low Capacity Radio Relay)

Have you R.F design (400 MHz–2 GHz) experience on systems handling baseband traffic up to 132 FDM channels or 2,048 Mbit?

If so, then you could soon be part of our development team committed to the expanding world radio link business.

Pye Telecomm are a major supplier of radio systems to the Public Utilities and offshore activities around the U.K. As a member of the Philips Group we have the world-wide penetration to provide Design Engineers with real career prospects and the opportunity to benefit from our wealth of experience.

We enjoy talking to engineers interested in our field, and will be pleased to show you the professional, social and sports facilities available at our new complex in Cambridge. The successful applicants, male or female, will be offered good salaries, with generous relocation expenses where applicable. Living in Cambridge has its own benefits, not only is it an attractive city, but it offers excellent sporting, recreational and cultural amenities and a large selection of reasonably priced housing.

To find out more about how you could fit into our team please contact: Liz Gray, Personnel Officer, Pye Telecommunications Limited, St. Andrews Road, Cambridge. Tel: Cambridge 61222.
TELEVISION CENTRE, THACKERY ROAD
LONDON SW8

HEAD OF SOUND (ST4)

The television centre produces a range of educational programmes distributed in the form of 16mm film, video-cassettes and sound cassettes. The sound section of five members works with professional equipment (Neve, Studer, Sandor, ITC, etc.) to provide an audio component of high standard.

The head of sound will lead the section and also to mix and process many of the programmes. He/she will be responsible for training new staff, and with the Chief Engineer and others will also undertake responsibility for the equipment and for its purchase and maintenance.

Applicants should have suitable theoretical qualifications with significant relevant experience at senior level. A good working knowledge of all sound operations associated with television and film is essential.

Salary is within the scale £8756.64 to £9593.64.

Further information and application forms available from the Education Officer (EO/Estab. IC), Room 365, I.L.E.A. The County Hall, London SE1 7PB. Telephone 01-633 7456.
HF/VHF Radio

A highly successful company on the South Coast is seeking high calibre, commercially oriented, Graduate Electronic Engineers to form the nucleus of a new team involved in development work on an exciting new generation of tactical radio communications equipment.

The standards are high but then so are the rewards. In particular we are looking for the following men or women.

CHIEF ENGINEER

A position that combines technical expertise with considerable managerial skills, in leading and directing a team of Design Engineers working with the most sophisticated techniques in radio communications applying advanced integrated circuit technology. Candidates must be honours graduates with a number of years post graduate development experience.

TECHNOLOGY SPECIALIST

Reporting to the Chief Engineer you should be an Electronics graduate with a minimum of six years experience of circuit design with a wide ranging knowledge of modern semi-conductor and thick film IC’s, preferably covering both RF and digital applications.

SYSTEMS CO-ORDINATOR

Co-ordinating and preparing technical proposals, specifications and tender bids for new development programmes, this position calls for considerable communication skills and commercial acumen. Applicants should be Electronics graduates with at least 10 years relevant experience.

Salaries of up to £10,500 and beyond are offered plus an excellent benefits package including BUPA membership and generous relocation assistance. Opportunities for further advancement are very good indeed.

Telephone Rod Evans.

Harrison Cowley Executive Selection
35 Queen Square, Bristol BS1 4LU. Tel. 0272 213151 (24 hr. answering service).

The Institut for Radio Astronomy in the Millimeter Wavelengths (IRAM) is interested in employing

RADIO FREQUENCY ENGINEERS (VC12/JC) and

TECHNICIANS (VC13/JC)

to work at Grenoble (France) on intermediate frequency systems (up to 2 GHz) for filter and correlator spectrometers.

Candidates with relevant experience should send a résumé by 30 September, 1980, to:

INSTITUT DE RADIO ASTRONOMIE MILLIMETRIQUE,
(I.R.A.M.), Administration, B.P. 391, 38017 GRENOBLE CEDEX, France.

LEEDS CITY COUNCIL

Department of Education
Leeds Polytechnic — School of Humanities & Contemporary Studies

SENIOR TECHNICIAN

(Ref. 150/2)

T3/4 £4581-£5784 (plus technician qualification allowance). Responsible for the care and operation of two psychology laboratories. Duties will include the design, construction, repair and maintenance of electronic and laboratory equipment. Ideally applicants might hold a City & Guilds Technician Certificate in Electronics or equivalent qualification, although relevant practical experience is equally important, and design and general engineering abilities are desirable.

Application forms, quoting reference number, from the Administrative Services Officer, Leeds Polytechnic, Calverley Street, Leeds LS1 3HE.
SITUATIONS VACANT

Inner London Education Authority
Learning Materials Service
Television Centre, Thackery Road, London, SW8

TELEVISION CAMERA OPERATORS ST1/2

The Television Centre produces a range of educational programmes distributed in the form of video cassettes, sound cassettes and 16mm film. It has a colour studio equipped to professional standards (Link 11 Cameras, Cinefex, New sound mixer, Ampex VPR2s etc.), a mobile unit and a portable camera.

Vacancies exist for television camera operators who work principally in the studio but may be expected to assist in a monochrome training studio, in location video recording, and in the mobile unit. When not required to work with cameras, the operators would be expected to be attached to other technical sections so a general interest in the technical side of television is highly desirable.

Applicants should have had some form of formal training together with practical experience, although consideration will be given to those who lack the latter.

Salary is within the scale £5,072 to £7,631. Progression up the scale is by annual increments subject to satisfactory performance. Progression beyond that point is dependent on a positive assessment.

Further information and application forms from the Education Officer (EO/-Estab. 1C), Room 365, I.L.E.A., The County Hall, London SE1 7PB. Telephone 01-633 7456.

Classified

ARTICLES FOR SALE

With 38 years' experience in the design and manufacturing of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES
Microphone transformers (all types), Microphone Spitter/Combiner transformers, Impedance and Bandwidth Transformers, Direct Injection transformers for Guitar, Multiple-Secondary output transformers, Bridging transformers.
Line transformers, Direct transformers to P.O. Isolation Test Specification.Tension impedance matching transformers, Pedalboard, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting. Experimental transformers, Ultra low frequency and high audio frequency transformers for Valve Amplifiers up to 500 watts, Inductive Loop Transformers. Smoothing Chokes, Filter Inductors, Amplifier Input transformers (from a few watts up to 1000 watts), 100 volt line transformers to speakers. Speaker matching transformers (all powers). Column Loudspeaker transformers up to 3kW.

We can design for RECORINC QUALITY. STUDIO QUALITY. HIFI QUALITY OR P.I.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Most standard types are in stock and normal dispatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORINC STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRM'S new and used in overseas clients in the COMMONWEALTH E.E.C., USA, MIDDLE EAST etc.

Send for our questionnaire which, when completed, enables us to post quotation by return.

SOWTER TRANSFORMERS

Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Mildenhall Road, Ipswich IP2 8EG
Suffolk, P.O. Box 36 Ipswich IP2 8EG
Telephone: 0473 527974 & 0473 219390

THE MODERN BOOK CO.
Specialist in Scientific & Technical Books
19-21 PRAED STREET
LONDON W2 2JU
Telephone: 01-922-9176
Closed Sat. 1 p.m.
TO MANUFACTURERS, WHOLESALEs &
RILK DIVERS ONL
Large quantities of Radio, TV and Electro
Components:
RESISTORS CARBON & C/F $1.5, 1/2, 1/4, 1 Watt from 1 ohm to
10 meg.
CAPACITORS, Silver mica, Polystrylene, Poly Disc, Ceramics, Metal
laminate, C/280, etc.
Conversion Pots, Slider Pots, Electrolytic condensers, Can Types,
Audio, etc.
Transistors, checkers, bips, tuners, speakers, cabinets, screened wires,
connecting wires, screws, nuts, transformers, ICs, Diodes, etc., etc.
All at knockout prices. Come and pay us a visit. Telephone 445 2713.
445 0749.

BROADFIELDS & MAYCO DISPOSAL
21 Lodge Lane, N. Finchley, London, N.12. 5 min. from Tally Ho Corner.

SURPLUS -- BRAND NEW
PRESSURE TRANSDUCERS
Includes Transducer and Demodulator Amplifier instrumentation quality
Range: 0-2 PSI: Linearity: 0.6% combined; Temp. Co.: 0.1% per degree Centigrade
Dial: 1.25” dia x 8” (s/s); 3.75” x 4.5” x 2.25” (Demod).
For QUICK -GLANCE

TELETEXT, TV SPARES & TEST EQUIP.

TELETEXT, Latest kits and kits packs, Marconit Decoders 4013/14/15, Infranord
remote control 2PS, p £5.00 (Turns
decoder panel for remote) or £8.00 for reset kit, £25.00. Offer
TXM11 decoder kit, £25.00. 12V DC
external unit incl. Texas XI11 decoder, £35.00. Remote controller £25.00.

25% DEALER OFFER: KIT (M4K) PAL, UHF aerial input kit, £18.00, £10.00.
V.S.W. - Y, B.Y, grey scale, etc. P/B con

Drives. £1.80. H.R. B.U. £1.00, B.U. £1.00, £1.50.

TELET, £13.00, £5.00, £13.00, £6.00.

G.S.G. BUSTON (F9FT)

P.O. Box 30, London, E.4

STEEL KIT VALVES
HOLDINGS LTD.
29-31 Minerva House, BLACKBRN 852 AF
Tel: (0532) 56639

VT101 VALVES
As used by Yone in production. Manufactured now ceased, stock up while you can.
£6.00 each, in packets of 10. 10972A Type, £6.00 each, 12972A NEC Type, £3.00
each, VAT, post paid.

INPUT/OUTPUT MODULES
Interface directly with MPU/P10, Versatile, Low cost.

G.T. ELECTRONICS
2 Rufford Ridge, Yeading, Leeds, Y.orks. Tel: (0532) 56565

SOLDERING RAGS
Why waste time hand-wrapping RS/M Th. 3.525 inch professional grade shb, PCB
mounts on your prototyping board, looking limp and floppy? RS/ML TAILOR MADE
RAG 13 address lines, B/A dio. tape, write up, 24 copies, 30p per sheet.
Assembled with sockets, pins and caps, just plus £1 5p p/p. RS/ML 308-8.521.
Bare board £1.15, VAT, post paid.

P. G. Hinch, 56 Ninham Hill Drive, Nutton Norris, Stockport, Cheshire.

LARS VALVES
Designed and engineered to the highest standards.

G.W. BLACKBURN 855 ZAF
Tel: (0254) 55690

490x3
CIRCOLEC
THE COMPLETE ELECTRONIC MANUFACTURING SERVICE
Let us realise all or any part of your project from prototypes to production, from artwork design and component sourcing, through assembly and test to final quality assurance, packing and delivery. We also provide a test, repair and modification service to suit your individual requirements.
For competitive prices and fast turnaround contact:
CIRCOLEC, 1 Francisca Road, Tooting, S.W.17
Telephone: 01-767 1233

PRINTED CIRCUIT MANUFACTURE.
Very competitive, reliable service. Wide range of prices, Prototypes welcome. Inhouse photography. Phone 06467-573 for immediate quote or write to: AEC R429P Technology, NICS Ltd., 42/46 Ford Street, Moreton-hamstedt. (259)

SMALL BATCH PCB's produced from your artwork. Also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. - AEC Microtechnology, Hatton Place, London ECIN REV. Tel: 01-190 4137/9986. (275)

DESIGN SERVICE. Electronic Development and Production Service Available in Digital and Analogue Instruments, RF Transmitters and Receivers for control of any function at any range. Telemechanics, Video Transmitters and Monitors, Motorized Pan and Tilt Heads etc. Suppliers to the Industry for 15 years. Phone or write Mr. Falkner, R.C.S. Electronics, 6 Welney Road, Ashford, Middlesex. Phone Ashford 58661. (341)

ELECTRONIC DESIGN SERVICES. MICROPROCESSOR HARDWARE and SOFTWARE design facilities have now been added to our established artwork, etching and test equipment facilities previously available to you for ANALOGUE and COMMUNICATIONS designs. - For full details results please phone Mr. Anderson, Anderton Electronics Ltd, Ridgeway, Hog Back, Scale (nr. Farnham), Surrey 0258-3639. (273)

P.C.B. PROTOTYPE and small batch prototypes. Design layout, assembly and testing. Fast, reliable service. - ACI Components, 4 High St, Lynden, Glos. Tel: Dean (0594) 41207. (385)

PRINTED CIRCUIT BOARDS. Single/ double sided from circuit diagrams and artwork. Design layout and tested board only. Any intermediate stages at minimum charge. - AEC Engineering Ltd, P.O. Box 4, Maldon 15441 (0629) 4929. (278)

PRINTED CIRCUIT MANUFACTURE.
Up to 50cm x 200mm - £24+VAT per side etched only. Up to 125mm x 100mm - £18+VAT per side etched only. - AKTRO-PERFECT, all TV tubes can be seen in our shop. 150 Kingston Road, London SE1 3AL. Cable: CIRCOLEC, EC1R 3AL. (550)

REPLICATION SHEET METALWORK on Wiedemann pressed profiles. Long/ short runs. - Millimark, Coventry Road, Matlock, Derbyshire. Tel: 0629 4929. (279)

RETIRED PCS PROTOTYPES.
Priority glass printed circuit boards up to 250mm x 200mm from your camera ready artwork. Up to 125mm x 100mm - £18+VAT per side etched only. Drilling £6+VAT. - ACR Engineering Ltd., Box 101, Telford 06474-7039. (826)

TUBE REBUILDING PLANTS PROCESS. All TV tubes can be seen in operation. They can be installed Internationally at the best price: 50 Blackhouse Road, Huddersfield HD2 1AR Tel: 0484 46719. (259)

DESIGN AND DEVELOPMENT ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Macmore Limited, Unit 103 Liscoome, Bracknell, Berks. Tel: Bracknell 58023. (265)

SHEET METAL WORKS.
Five off or general front panels chassis, covers, boxes, prototypes. 1 off or batch work fast turnaround. 01-449 2695. M. Gear Ltd. 178A Victoria Road, New Barnet, Herts. (668)

FOR ELECTRONIC INSTRUMENT SERVICE AND CALIBRATION CALL ORION TECHNICAL SERVICE LTD ON ST ALBANS 7639 FOR DETAILS. (667)

P.C.B DESIGNS at competitive hourly rates. Quotes from circuit diagrams at competitive rates. Quotes from circuit diagrams, artwork and design. - For entry forms or catalogue of equipment and components, write to R.M. Bamber 13 Station Road, Littleport, Cambs. (263)

WANTED!
all types of scrap and redundant ELECTRONIC & COMPUTER MATERIALS with precious metal content.

WANTED!!
TRANSISTORS & PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS.
THE COMMERCIAL SMELTING & REFINING LTD.
171 FARRINGDON ROAD LONDON EC1R 3AL
Tel: 01-827 1475
Cables: COMSMELT, EC1
Works: REESKEY, M. LEECE
(205)

WANTED!!
ANGLIAN INDUSTRIAL AUCTIONS
We sell by auction, all radio and electronic components and equipment. Why not let us sell your surplus and end of production materials. All entries must be received at least 21 days prior to sale.
For entry forms or catalogue of next auction contact:
B. BAMBER ELECTRONICS 5 STATION ROAD (LITTLEPORT) CAMBS, CB6 1QE
TEL: (0353) 662615

ARTICLES WANTED
WANTED!!
TEST equipment, receivers, valves, transmitters, components, cable and electronic scrap, any quantity. Prompt service and cash.
Member of a B.A.R. (263)

WANTED.
Marconi Autopace Mark II condition, preferably in working order. - Phone Aberdeen 783937.

WANTED.
Recording equipment of all ages and varieties. (California, U.S.A.). Tel. (415) 223-7933. (6814)

STORAGE SPACE is expensive, why store redundant or obsolete equipment? For fast and efficient clearance of all test gear and electronic supplies, PC boards, components, etc., regardless of condition or quantities.
Call 01-771 9413. (8269)

ARTICLES FOR SALE
THINKING OF RENTING A TELEPHONE ANSWERING MACHINE? THEN STOP!
Did you know that for the equivalent of just one year’s rental you could actually buy one outright?
For details write to: Javal Electronics, 2A (C), 120 Alexandra Road, Burton-on-Trent, Staffs DE16 0J8 or telephone (0283) 472572 any time. (337)

DEAD OR ALIVE
SPOT CASH paid for all forms of electronics equipment and components.
F.R.G. General Supplies 550 Kingston Road, London
Tel. 01-404 5011
Telex: 24224 Quote Ref 3165 (8126)
PCB ASSEMBLY

CAPACITY AVAILABLE

Low or high volume, single or double sided, we specialise in low volume assembly. Using the Zevatron flow soldering system and on line cutting, we are able to deliver high quality assemblies on time, and competitively priced.

Find out how we can help you with your production. Phone or write. We will be pleased to call on you and discuss your requirements.

TW ELECTRONICS LTD.

120 NEW MARKET ROAD
BURY ST. EDMUNDS, SUFFOLK
TEL. 0284 3931

Sub-contract assemblers and wiremen to the Electronics Industry.

I.H.S. SYSTEMS

Due to expansion of our manufacturing facilities we are able to undertake assembly and testing of circuit boards or complete units in addition to contract development.

We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands.

Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quotation.

TEL. 01-253 4562
or reply to Box No. WW 8237

FOR CLASSIFIED ADVERTISING
RING EDDIE FARRELL
ON 01-261 8508

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SE1 9LU

- Rate £2 PER LINE. Average six words per line. Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus £1.
- Cheques etc., payable to "Wireless World" and cross " & Co."

NAME
ADDRESS

REMITTANCE VALUE ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION NUMBER OF INSERTIONS
Here's why you should buy an I.C.E. instead of just any multimeter.

WIRELESS WORLD NOVEMBER 1980

* Best Value for money.
* Used by professional engineers, D.I.Y. enthusiasts, hobbyists, service engineers.
* World-wide proven reliability.
* Low servicing costs.
* 20K Volt sensitivity and high accuracy.
* Large mirror scale meter.
* Fully protected against overload.
* Large range of inexpensive accessories.
* 1 year warranty, backed by a full after service sales service at E. B. Sole U.K. Distributors.

Prices from £16.60 - £32.00 + VAT

Send for full colour leaflet and prices on whole range including accessories.

ELECTRONIC BROKERS LTD.

61-65 King’s Cross Road, London WC1X 9LN

Tel: 01-278 3461. Telex: 298694

INDEX TO ADVERTISERS NOVEMBER

Appointments Vacant Advertisements appear on pages 136-151

OVERSEAS ADVERTISEMENT AGENTS

Telephone: 285 098 - Telex: 22 4525

Telephone: 347081 - Telex: 37342 Kompass.

Japon: Mr Inamichi, Trade Media — IBPA (Ugahori 2, Mito, 612 Ajauu Heights, 1-10 Ropponji, Minato-ku, Tokyo 106.

Telephone: 039 665 0081

United States of America: Ray Barnes, IPC Business Press, 205 East 42nd Street, New York, NY 10017 — Telephone: (212) 869-5661 - Telex: 421740

Mr Victor A. Jauch, Elmatex International, P.O. Box 34607, Chicago, Ill. 60667.

Mr. Tim Parks, Ray Rickles & Co., 3116 Maple Drive N.E., Beach, Florida 33140—Telephone (305) 532 7301.

Mr Jack Mentel, The Farley Co., Suite 650, Ronne Building, Cleveland, Ohio 44115 — Telephone: (216) 621 1919.

Mr Ray Rickles, Ray Rickles & Co., P.O. Box 2029, Miami Beach, Florida 33140 — Telephone (305) 327 7301.

Mr Mike Loughlin, IPC Business Press, 15055, Memorial Ste 119, Houston, Texas 77099 — Telephone (713) 783 6673.

Mr. Inatsuki, Trade Media - IBPA (Japan), B.212.

Printed in Great Britain by QB Ltd, Sheepey Place, Colchester, and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD, Donset House, Stamford Street, London, SE1 RLU, telephone-01-961 8600. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon & Gatch Ltd, INDIA: A. H. Wheeler & Co. CANADA: The Wm, Dawson Subscription Service Ltd, Gordan & Gatch Ltd, SOUTH AFRICA: Central News Agency Ltd. William Dawson & Sons (P.A) Ltd. UNITED STATES: Eastern News Distribution Inc, 14th floor, 111 Eighth Avenue, New York, N.Y. 10011.
Excellent metered parking

- Close to Hammersmith Underground Station for Piccadilly, District & Metropolitan Lines
- Bus no's 260.266-704.27.91 stop outside

Opens Tuesday 16th September, 1980

Opening Hours 9.45 am to 5.30 pm Tuesday to Saturday (Closed Monday)

Maplin mail-order –
Now better than ever!

- Up to 8% discount for use with next order
- All prices include VAT
- Same day service on in-stock lines
- Over 95% of our stock lines in stock
- Large range of all the most useful components
- First class reply paid envelope with every order
- Quality components – no rejects – no re-marks
- Competitive prices
- Your money is safe with a reputable Company

On price, service, stock, quality and security, it makes sense now more than ever to make Maplin – your first choice for components every time!

Stereo Cassette Tape Deck

Utilising the superb JVC deck made for Tandberg and a ready-made pre-aligned, tested and guaranteed module, this cassette deck has a superb sound and a high quality specification. We’ve got everything you need (except cabinet) including full instruction leaflet for only £39.95. Order as XY36P (Cassette Recorder Kit)

Space Invaders

Fight the space invaders, be a polaris captain or a spaceship commander. Full colour action on your own TV set and over 450 games to play.

Basic console with Combat cartridge (ACO0A) £99.50 + £2.50 carriage

All cartridges available including:

- Space Invaders (AC206) £29.95
- Indy 500 (AC24B) £34.50
- Cross (Blows) (AC28F) £34.50
- Golf (Holes) (AC18U) £16.95
- Air Sea Battle (AC181) £16.95
- Space War (AC202) £16.95
- Brass Games (AC165) £16.95
- Outlaw (AC33D) £16.95
- Olympic (AC04E) £16.95
- Breakout (AC15F) £16.95
- Street Race (AC14G) £16.95

All prices include VAT and carriage except where shown.

Maplin Electronic Supplies Ltd

All mail to: P.O. Box 3, Rayleigh, Essex SS6 6LR.

Telephone: Southend (0702) 564159.

Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday)

Telephone: Southend (0702) 564000.

Catalogue now available in all branches of WHSMITH Price £1.00

WW—002 FOR FURTHER DETAILS
When a solder medium for the microprocessor-based circuitry of the new Nikon EM camera was needed, a Multicore Oxide-Free Solder Cream was chosen.

Multicore, the world's leading authority on solder and soldering, has developed its own unique method of producing solder powders so that they are practically oxide-free. This means that the resultant solder cream will melt and flow as cleanly and as quickly as rosin-cored solder wire. Merely a faint residue of flux is left and any risk of solder globules being formed is minimised or even eliminated altogether.

Where the Multicore Oxide-Free Solder Cream differs is in the physical characteristics of its particles. Ordinary creams contain atomised solder powder, with each particle covered with a layer of oxide. This has to be removed by the flux after heating but non-corrosive, rosin-based fluxes cannot do this effectively given the nature of the solder technique used. The particles in Multicore Oxide-Free Solder Cream, as the electron microscope enlargement shown illustrates, are much cleaner and more uniform. The result: cleaner, quicker soldering.

Available in a wide range of alloys and flux combinations, with particle size, flux content and viscosity equally variable, there can be a Multicore Oxide-Free Solder Cream tailor-made to suit your requirements.

If, like Nikon, you need a solder medium that can be applied with a high degree of accuracy, either by syringe or silk screening, will give you a thoroughly reliable joint, and will fully comply with health and safety regulations*, you need to talk to Multicore about Oxide-Free Solder Creams.

To find out more, use the reader reply service, cut the coupon or contact us direct.

*Multicore Rosin-based Solder Creams are safe to use provided certain precautions are observed. Details of these are available on request. Multicore Solder Ltd. is a Registered Supplier of Solder Creams on the U.K. Defence Contractors List and are type approved by the Ministry of Defence to DTD 599A. Multicore Rosin-based Solder Creams are approved on the Qualified Products List QQ-5-ST1E of the US Defense Supply Agency.

The biggest name in solder worldwide

I would like more information on Multicore Oxide-Free Solder Creams []
I would like you to contact me to arrange for a technical representative to call []

Name
Position
Company
Address
Telephone
Telex

WW/LSC

Sales Department, Multicore Solders Limited, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP. Telephone (0442) 3636. Telex 82363.

WW-004 FOR FURTHER DETAILS