

TEK Mastinimeses

The Tektronix 2200 Series. Simply great.

ektronix traditions of excellence in designing and manufacturing oscilloscopes are recognised all over the
world. But rather than rest on past world. But rather than rest on past
laurels, we have veered dramatically laurels, we have veered dramatically
from the well established design paths fre ourselves have laid down. With the 2213 priced at $£ 670^{*}$ and the With the 2213 priced at $£ 670^{*}$ and
2215 at $£ 855^{*}$, these 60 MHz dual trace oscilloscopes are an
new form of instrument.

Their most remarkable characteristic is the way in which major design
advances have provided full-range capabilities at prices significantly below what you would expect to pay,
How has this been accomplished? To begin with, we have reduced the number of mechanical parts by more than half. This not only saves manu
facturing time, it lowers costs and improves reliability.

Board construction has been greatly Board construction has been greatly
simplified and the number of oards
reduced. Board connectors have also reduced. Board connectors have also been reduced substantially and
cabling cut by an amazing 90%.

The 2213 and 2215 have a high efficiency regulated power supply which does away with the need for a heavy voltage adjustments. Just plug the instrument into a power socket supplying anything from 90 to 250 volts, $48-62 \mathrm{HZ}$, switch on and you are
ready to measure. Power saving circuitry has eliminated the cooling
fan resulting in further economies in fan, resulting in f
size and weight.

These scopes have it all. Dual trace Delayed sweep for fast, accurate timing measurements. Single time the 2215. An advanced triggering
system, automatic focus and intensity Beam finder - and much more. Interested? Then why not telephone
your nearest Tektronix office or circle the enquiry number for further information.

erformance Specifications

 BandwidthTwo channels, $\mathrm{DC}-60 \mathrm{MHz}$ to 20 Two channels, $\mathrm{DC}-60 \mathrm{MHz}$ to 20
$\mathrm{mV} /$ div, 50 MHz to $2 \mathrm{mV} /$ div. $\mathrm{mV} /$ div, 50 MHz to $2 \mathrm{mV} / \mathrm{div}$.
Light Weight $6.1 \mathrm{~kg}(13 \mathrm{I} / 2 \mathrm{lbs}) .6 .8 \mathrm{~kg}(15,0 \mathrm{lbs})$ with cover and pouch.
Sweep Speeds
Sweep Speeds
Sweeps from $0,5 \mathrm{~s}$ to $0.05 \mu \mathrm{~s}$ (to 5 ns/div with $\times 10$ magnification). Sensitivity Scale factors from $100 \mathrm{~V} /$ div ($10 \times$ probe) to $2 \mathrm{mV} /$ div ($1 \times$ prode).
Accurate to $\pm 3 \%$. AC or DC coupling Also available from Electroplan.

- Prices subject to change without notice.

Tekironix UK Limited

 рт 206

TEST COMPONENTS on this new oscilloscope!

- Test solid state devices in, or out of, circuit
- Fast location of shorted, open and leaky components
- Test diodes, transistors, LEDs, electrolytics, FETs, MOS and CMOS etc. PLUS .
- Full function, dual trace, 12MHz oscilloscope
- Fine sweep and gain controls
- Differential measurement mode-essential for effective servicing of disc drives and tape recorders

A really versatile 'scope for the test, service or development engineer

NEXT MONTH

 The dosign usess as52 microprocossor. Heroticse guide to modorm physics is 0

 Indetermmery and haziness.
 equirimement oror new mpopersoliting and
methods of training perssonnol ard
 examinadib a connuitant ongeog A hion power morfot amplifier is
 explonetion of tasion prob
folowed by a now modue
Uroemplifier doselan.

 Subusiritions: Oikifild House, Perr-
mount Rood, Harwards
Hoath, suss

 10017 .
USA malling aente: Expediters of the

MAY 1982 Vol 88 No 1556

29 ARMS AND THE MAN

31 ORCHESTRAL SOUND, HALLS AND TIMBRE by Denis Vaughan
34 LAMGMUR THIN-FILM THROUGH FOR MOLECULAR ELECTRONICS
35 METWORKING SMALL COMPUTERS by Philip G. Barker
40 TELEDON VIDEOTEX IN UK
41 DIGITAL TELEVISION STANDARDS by A. Howard Jones
42 COMMUNICATION COMMENTARY
44 MICRO-CONTROLLED LIGHTING SYSTEM
by John D. H. White and Nigel M. Allinson
47 16-CHANNEL DATA ACQUISITION
47 by Pat Hickey
50 CIRCUIT IDEAS
52 DIGITAL FILTER DESIGN
by B. W. G. Cheetham and P. Hughes
57 LETEERS TO THE EDITOR
61 DIEITAL OPTICAL RECEIVERS
by lan Garrett
64 NEWS OF THE MONTH
67 EPROM PROGRAMMER
by H. S. Lynes
70 DISC DRIVE POSITIONERS
by J. R. Watkinson
76 DESIGNING WITH MICROPROCESSOAS
by D. Zissos and Jane Pleus
78 GEPSTRUM ANALYSIS
by R. B. Randall and Jens Hee
NEW PRODUCTS
$120^{\text {Index to advertisers }}$

THE HEADSET THAT'S WAYAHEAD OF ITS TIME.

THE DANAVOX HMT 808.

The Danavox HMT 808 is the most advanced headset of its kind that you can buy today. Employing Danavox expertise and quality throughout, it offers many unique features at a remarkably low price.

Lightweight. Weighs only 35 grams - Comfortable and hygienic. Does not go in the ear so it can be comfortably positioned the ear so it can be comfortably positioned in seconds Versatile. Can be worn under binaurally Multiple version microphone Available with either magnetic
microphone or electret with noise
cancelling feature and pre-amplifier for matching into telephone systems

Technically advanced. Pre-amp employs latest thick film technology-Easy servicing and repairs. Quick changing of earphones, cords, earpieces and switches - Realistically priced Danavox quality engineering and guarantee.

For full details contact John Carter at Danavox

DANAVOX (Gt. Britain) Ltd
1 Cheyne Walk, Northampton NN1 5PT Tel: (0604) 36351 Telex 312395

Hectionic brokers

 Scoond User Teat Equipment. Nakes enginears smile without making accountants cry.Electronic Brokers are Europe's leading
Second User Equipment Company. We'carry large stocks of the very latest test equipment which is refurbished in our own service
ANALOGUE VOLTMETERS

 ANALYSERS

 BRIDGES

- 1750.00 FREEOUENCY COUNTERS
 125 MHz wuth pressales 1. IE.E.E. inerface $£ 975.00$

DVM's AND DMM's

Flukre
$802 A$
$31 / 2$ digit hand neid 565.00

 OSCILLOSCOPES

 Texscan!
outron ispay,
RECORDERS WECORTBE

 SIGNAL SOURCES

manufacturer's sales specifications. When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

 MISCELLANEOUS

 Pe .
 Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G

with
Electronic Temperature Control Circuit contained within
the handle

We supply Huks for molustry

ACCESSORIES

85RF R.F.probe 500MH2.
Y8102 Thermocouple probe
ysio3 Bead thermocouple
Y8104 K प type thercuopoceupil termination
Y8133

Simply Phone or Telex your order for immediate dispatch. Electronic Brokers Ltd 61/65 Kings Cross Road London WClX 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G
ADCOLA PRODUCTS LIMITED ADCOLA HOUSE, GAUDEN ROAD. LONDON SW4 6LH. Telephone: 01-622 0291/4 Telex 21851
Ww - 030 FOR FURTHER DETAILS WIRELESS WORLD MAY 1982

NEW LOW COST
 12 BIT ANALOGUE I/O ε DIGITAL I/O FOR "PET" USER PORT

AT LAST

The "PET" user interface that everyone can afford that provides:-
4×12 BIT ANALOGUE I/P: $4 \times$ TTL I/P 2×12 BIT ANALOGUE O/P: $4 \times$ RELAYS
By using the "PET"s own 6502 Microprocessor, we are able to offer an unheard of ratio of performance vs value for money. Price includes operating program in EPROM which greatly simplifies its use. f195
CALL CIL FOR DETAILS
Coming soon, a suite of applications programs in EPROM to include waveform generation, data acquisition etc.

CIL MICROSYSTEMS LTD DECOY ROAD WORTHING (0903) 210474

Telex 87515
44 FOR FURTHER DETALLS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14
days delivery. Other Ranges and days delivery. Other Ranges
special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London) . 138 GRAY'S INN ROAD, w.c. $1 \quad \begin{gathered}\text { Phone: } 01-837 / 7937 \text { Tele: } 892301\end{gathered}$

This revolutionary New Blue LED, the ESL 50B2, f Anglia Components is a miracle of scientific tena previously thought to be light years away. Its applications in scienc and industry are unlimite Development quantities are available ex-stock. A
 COMPONENTS

THE PARTS YOU NEED

- fast!

Telephone 094563281 Telex 32630 ANG
WW -007 FOR FURTHER DETALLS WIRELESS WORLD MAY 1982

We supply PMMEC for Industry

HM 307
OMCILLOSCOPE
 0.5μ S-O.25. Builit in component tester.
LPSTtechnique provides stable and Lefsicentrique erovides stable and
reiable tiggering up to 30 MHz E 138.00

HM412-5
Dual Trace. DC 10 2OMHH $8 \times 10 \mathrm{~cm}$
display with internal graticule. Rise time
 Adso and inver modes. Timeadese
$0.545-0.25$ with sweep delay 100 ns -15
$\times 5$ expansion $x-y$

HM 203 PORTABLE OSCILLOSCOPE Dual Trace. DC 10 20MH2, $8 \times 10 \mathrm{~cm}$,
display. Rspetime $17.5 n 5$ Senstivity

HM705
Dual Trace DC-70MHz $8 \times 10 \mathrm{~cm}$ display
with interra Variable inport 2mv-2OV. Add and invert
 100055.15×10 expansion. $X Y$.
operation. 7 . The above prices do not include carrlage
or VAT $\mid 15 \%$.

Simple Phone or Telex your order for immediate dispatch.
Electronic Brokers Ltd 61/65 Kings Cross Road London WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G ww - 202 FOR FURTHER DETAILS

Sinclair 2X81 Personal Computer－ the heart of a system

 that grows with you．980 saw a genuine breakthrough he Sinclair ZX80，world＇s first com plete personal computer for under 100．Not surpisingly，over 50，000 In Marc
In March 1981，the Sinclair lead $£ 69.95$ the Sinclair ZX81 more advanced facilities at an even wer price．Initially，even we were 50,000 in the first 3 months！ Today，the Sinclair ZX81 Today，the Sinclair ZX81 is the add 16 －times more memory with the ZX RAM pack．The ZX Printer offers an unbeatable combination of performance and price．And the ZX ow Wither the $\mathbf{Z} \times 81$ higher capability teach yourself computing，but the ZX81 packs even greater working capability than the ZX80．
It uses the same micro－processor， but incorporates a new，more pow intelligence＇of the computer．This chip works in decimals，handles log and trig，allows you to plot graphs， and builds up animated displays． And the ZX81 incorporates other to load and savenamed progrility on cassette，for example，and to drive the new ZX Printer．

Kit： \＆ 49.95

 how＇s it done？ Quite simply，by design．The ZX80 reduced the chips in a working 2×81 reduces the 21 to 4 ！The secret lies in a totally new master chip．Designed by Sinclair and custom－built in Britain，this unique chip replaces 18 chips from the XX 80
New，improved specification －Z80A micro－processor－new
faster version of the famous $Z 80$ chip，widely recognised as the bes ever made．
－Unique＇one－touch＇key word entry：the ZX81 eliminates a great deal of tiresome typing．Key words
（RUN，LIST，PRINT，etc．）have their own single－key entry
－Unique syntax－check and report codes identify programming errors immediately
－Full range of mathematical and scientific functions accurate to eight －Graph－drawi display facilities． numerical arrays． －Uan to 26 FOR／NEXT loops． games as well as serious－useful for －Cassette LOAD and SAVE with named programs．
－1K－byte RAM expandable to 16 K bytes with Sinclair RAM pack． －Able to drive the new Sinclar －Adva Advanced 4－chip design：micro－ processor，ROM，RAM，plus master chip－unique，custom－bu
replacing 18 ZX80 chips．

£69．95

Kit or built－it＇s up to you You＇ll be surprised how easy the ZX81 kit is to build：just four chips to discrete components）－a few hours＇ work with a fine－tipped soldering iron． And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated（supplied with
built version） Kit and buil
Kit and built versions come com－ plete with all leads to connect to and cassette recorder

16K－byte RAM pack for massive add－on memory．

Designed as a complete module to fit your Sinclair $\mathbf{X X 8 0}$ or $\mathbf{Z X 8 1}$ ，the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply you data／program storage by 16！ Use it for long and complex programs or as a personal database of competitive additional memory

With the RAM pack，you can
also run some of the more sophisti cated ZX Software－the Business for example．

Firncleir ZX81

6 Kings Parade，Cambridge，Cambs．，CB2 1 SN

Available now－

 the IX Printer for only £49．95Designed exclusively for use with the ZX81（and ZX80 with 8K BASIC numerics and highly sophisticated graphics．
A special feature is COPY，which prints out exactly what is on the whole TV screen without the need for further intructions

At last you can have a hard copy of your program listings－particularly

How to order your ZX81

BY PHONE－Access，Barclaycard or Trustcard holders can call $01-2000200$ for personal attention 24 hours a day，every day． needed coupon below．You can pay －and we have no doubt that you will be． To：Sinclair Reesarch Ltd，FREEPOST，Camberley，Surrey，GU15 3BR．＂Order | aty | Item | Order | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Code | Itemprice | Total |

 Ready－assemblea Sinclair ZX81 Personal Compute Ready－assembled Sinclair XX81 Personal Computer（s）．
Price includes ZX81 BASIC manual and mains adaportor Mains Adaptors）（ 600 mA at 9 VDC nom minal unregulated） 16 K－BYTE RAM Pack．
Sinclair ZX Printer． BK BASIC ROM to
programs
And of course you can print out your results for permanent records a friend
Printing speed is 50 characters line and 9 lines per vertical inch． The ZXPrinter connects to the rear of your computer－using a stackable connector so you can plug in a RA pack as well．Aroll of paper（ 65 f ong $\times 4$ in wide）is supplied，along

by cheque，postal order，Access Barclaycard or Trustcard EITHER WAY－please allow up to en ays for delivery．And there＇s a 14 －day money－back option．We wan you to be satisfied beyond doubt ーーーーーーーーーーーーフ ーーーー | Code | Itemprice |
| :---: | :---: |
| | |

ease tick if you require a VAT receip ＊enclose a cheque／postal order payable to Sinclair Research Ltd，for £． ＊Please charge to my Access／Barclaycard／Trustcard account no．

Name：Mr／Mrs／Miss
Address：
LREEPO

Memotech's New Memory System for the ZXX81 Itgrowsas youprogress

memopah 16

ПЕМОРАК64ß
IEEE PROGRAMMABLES from TIME
9814 IEEE Phogrammable voltage standand
 9916 IEE PRogrammable voice

9915 IEEE PROGRAMMABLL SCREWDRIVER

9810 IEEEPROGRAMMABLE POWER SUPPLY

9812 Ieee phogrammable switch

9811 IEEE PROGRAMMABLE RESISTANCE

TIME ELECTRONICS LTD. Botany Industrial Est.. Tonbridge, Kent, England TN9 1RS.
WW - 070 FOR FURTHER DETALL

Memopak 16K Memory Extension - £39.95 incl.VAT

It is a fact that the ZX81 has revolutionised home computing and coupled with the new Memopak 16 K it gives you a
massive 16 K of Directly Addressable RAM. which is neither switched nor paged. With the addition of the Memopak 16 K your ZX8 ''s eniarged memory capacity vill enable it to execute longer and more sophisticated programs, and to hold an extended database.
designed and engineered cases which attractive. customback of the $Z \times 81$. giving firm. wobble-free connections.
Coming Soon...

All these products are designed to fit piggy-back fashion
on to each other. and use the Sinclair power supply.
WATCH THIS SPACE for further detals. We regret we are as yet unable to accept orders or enquires concerning these product

- but well let you know as soon as they become available.

[^0]Please make cheques payable to Memotech Limited
Pleasé make cheques payable to Memotech Limited
Please debit my Access/Barclaycard* account number

Memopak 64K Memory Extension -£ 99.00 ind.VAT
The 64 K Memopak is a pack which extends the memory of
the $Z \times 81$ by a further 56 K . and together with the $Z \times 81$ gives a
 ddressable. The unit is user transparent and accepts basic
BREAKDOWN OF MEMORY AREAS
O-8K ... Sinclair ROM
$8-16 \mathrm{~K}$... This section of memory switches in or out in 4 K 8-16K. This section of memory switches in or out in $4 K$
blocks to leave space for memory mapping, holdd its
contents during cassette loads. allows communication contents during cassette loads. allows communication
between programmes. and can be used to run assembly language routines.
$16-32 \mathrm{~K}$. . This area can be used for basic programmes an assembly language routines. $3264 \mathrm{~K} \ldots 32 \mathrm{~K}$ of RAM memory for basic variables and large arrays. With the Memopak 64K extension the ZX81 is transtormed into a eowertul computer. suitable for business. leisure and
Unique 3 monthtrade-in offer!
When your programming needs have outgrown the capacity provided by 16 K RAM. and you find it necessary to furthe
extend your $Z \times 81$'s capacity, we will take back your 16 K extend your 2×81 s capacity. we will take back your 16 K Murchase of our 64 K model."
We resenv the right tor reject for discounting purposes. units which
have been ether opened or damaged in any way.

Nave
We want to be sure you are satisfied with your Memopak - so we offer a 14-day money back Guarantee on all our products.
Memotech Limited, 3 Collins Street, Oxford OX4 1XL, England Telephone: Oxford (0865) 722102/3/4/5 LIRELESS WORIDMAY 1982

Air conditioning

is not enough!
 £117* CAN BE!

Electricity mains cause all sorts of problems, which
 sensitive circuits. Galatrek offfers the most economical
protection against mains variation, high voltage transients, protection against mains variation thigh voltage transients,
momentary breaks and even suply yailure. We have a comprevensive range of Constant Voltage Transtormers (CVT) from 250VA for efficient, trouble free use
of microprocessors, computers, scientific production and of microprocessors, computers, scientific production and
process equipment and instruments. For TOTAL SAFETY AND EFFICIENCY the Galatrek
Voltstabe Uninterruptible Power Supply (UPS) unit offers the Voltstabe Uninterruptible Power Supply (UPS) unit ofters the
ultimate in protection. The output voltage is stabilised, utitimate in protection. The output voltage is stabilised,
transient attenuated and sinusoidal. or when the input varies from
zero to 30% above normal.
zero to 30% above normal
and the frequency starts to drift, the Galatrek sups ensures normal power sup * ${ }^{2} 117$ (ex. VAT) ex works. Mr R Kofilier, Galatrek inte
Scotland Street, Lannwst,

RADIOCODE CLOCKS

are powerful and comprehensive instruments which receive, decode
and analyse time anc analyse time-coded standara frequency transmissions to provide
accurate. secure and completely automatic time/calendar or synchro-
nisation systems.

Applications
Automatic master clock and slave controller Synchronisation of separate equipmentroller.
Programmable energy Compammable energy management system. Data logging and time recording.
Process and equipment contro Process and equipment control.
Braodcasting, Astronomy, Navigation
Satellite tracking.
If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive
Ruislip, Middlesex. Ruislip 76962
WW - 028 FOR FURTHER DETAILS

OLYMPIC TRANSFORMERS LTTD

L.T. TRANSFORMERS PRIMARIES 220-240V FULLY SHROUDED TERMINAL BLOCK CONNECTIONS

STEP DOWN TRANSFORMERS FOR

 AMERICAN EQUIPMENT0-240-110V For use with 50 cycles Non-Motorised Appli$\begin{array}{lll}\text { o-240-100V } & \text { ances } \\ \text { FANE with } 60 \text { cycles Motorised Appliances } \\ \text { RANGE } 1 & \text { Fully Shrouded. Complete with 3-Pin American }\end{array}$ $\begin{array}{ll}\text { RANGE } 1 & \text { Frully Shrouded. Complete wised Appliances } \\ \text { Sopin American }\end{array}$

 RANGE 1

15% V.A.T. TO BE ADOEE TO COST OF AL ITEMS INC. POSTAGE
HOURS OF FUSNES WEEKDAYS, 9 a.m. to 5 p.m.; SATURDAYS, 11 a.m. to 2 p.m.

No.				Pack		
	P86	630	${ }^{6}$	9.75	56	${ }_{\text {Kit }}^{\text {Kit }}$
	${ }^{\text {P8B100 }}$	940	${ }_{10}^{10}$	${ }^{12}$	${ }_{2.31}$	
	${ }^{\text {P10 }} 8102$	+1240	${ }^{12}$	${ }^{24.95}$	30.41 4.57	
6	${ }^{\text {P6104 }}$	3060	${ }_{32}$	49.00	${ }_{58,07}^{58.07}$	
	${ }_{\text {P8105 }}^{\text {P8203 }}$	4580 2250 2250	- ${ }_{24}^{48}$	71.00	(82.95	
10	${ }^{\text {P68203A }}$	${ }_{2250}^{2250}$	${ }_{24}^{24}$	${ }^{89} 1.0001$	${ }_{83,95}^{104.65}$	$5 V+150$
						8 kit

Use with virtually all parts - most
plug in directly, in seconds.
Ideal for design, prototype and hobby

Tomorrow's tools for today's problems

G.S.C. (UK) Limited, Dept. 7u Unit 1, Shire Hill Industrial Estate, Telephone: Saffron Walden (0799) 21682 Telex: 817477

American Experess carc no. ___ exp. date_-_ |
| FOR IMMEDAATE ACTION - The G.S.C. 24 hour 5 day a week service $\left\lvert\, \begin{aligned} & \text { For FREE } \\ & \text { catalogue }\end{aligned}\right.$ Telephone (0799) 21682 and give us your Barclaycard. Access,
American Express number and your order will be in the post immediately

[^1]

sabtronics
Waking Performance Affordable'

 Test our low priced test equipment. It measures and our prices - no-one can beat our price/performance ratio. Full colour illustrated Full colour illustrated
brochure and price list from BLACK STAR LTD., 9a Crown Street,St. Ives Cambs. PE17 4E
\qquad B/ఏc 3 siac Tel: (0480) 62440. Telex 32339

WW - 024 FOR FURTHER DETALL

WW - 053 FOR FURTHER DETAILS

Kontakt 60
Dissolves
oxide

Spray Wash WL

 ALSO AVAILABLE:
A Complete range of industrial aerosol sprays

Dotails from:
Special Products Distributors Ltd.

WW - 046 FOR FURTHER DETAILS

WW - 025 FOR FURTHER DETAILS
WIRELESS WORLD MAY 1982

ELEGTRONALUE

The Professionals \&COMPONENTS for:-

Communications, Displays, Radar, Computer,
Audio etc.
Hall Electric Limited
Electron Huuse

Telephone: Orpington 27099
Telex: 89664141
MIN DEF APPROVAL 0529/0531

TEST COMPONENTS
 ON THIS NEW OSCILLOSCOPE

USE READER CARD FOR DETAILS ww-001 FOR FURTHER DETAILS

WIRELESS WORLD MAY 1982

\square

The NEW KEF Constructor Series

The ideal design of a loudspeaker system involves drive units and scientific study of the enclosure computer aided techniques to the questions of enclosure volume, band width, efficiency, power handling capacity, probable system location and required drectional characteristics, KEF have All this experience is now available to you - to help you build your own system - successfully and
LOUDSPEAKER DESIGNS
Livivistive Model CS5

This floor standing
loudspeaker, based on
the KEF Carlton, can
provide remarkably sharp stereo imaging due to a novel method of minimising inter-unit time delay, and will produce a outstanding clarity and low distortion.
Model CS7
 flat diaphragm loudspeaker. extended bass response and excellent power handling
capability, with the three capability, with combined
drive units being comber through a computer designed crossover network to give a very smooth
frequency response frequency response
characteristic with finel Characteristic with finely
detailed reproduction of

Making it together
KEF Electronics Ltd., Tovil, Maidstone, Kent ME15 6QP. Telephone: (0622) 672261. Telex: 9 Please send me details of KEF Systems Designs
\square
Name:

Address:

Address:

WW - 033 FOR FURTHER DETAIL

wireless world

Editor: PHILIP DARRINGTON
Technical Editor: GEOFF SHORTER, B.Sc. 01-661 8639
Communications Editor: MARTIN ECCLES 01-661 8638
News Editor: DAVID SCOBIE 01-661 8632
Design Editor ALAN KERR
Drawing Office Manager: ROGER GOODMAN
Technical Illustrator: BETTY PALMER
Advertisement Manager: BOB NIBBS, A.C.I.I. 01-661 3130
DAVID DISLEY 01-661 8641
barbara miller 01-661 8640
Northern Sales: HARRY AIKEN 061-872 8861
Midland Sales: BASIL McGOWAN 021-356 4838
Classified Manager: BRIAN DURRANT 01-661 3106
$\begin{aligned} & \text { OPHELIA SMITH } \\ & 01-6613033 \end{aligned}$
Production: BRIAN BANNISTER (Make-up and copy) 01-661 8648

Arms and the man

A great many words have been written in the last year or two on the amorality and
expediency of engineering. On the one expediency of engineering. On the one
hand, some engineers have come to believe hand, some engineers have come to belie
that the responsibility for rendering the that the responsibility for rendering the
bellicose ambitions of political leaders capable of realisation lies squarely with the designers and makers of lethal hardware engineers themselves. If it were not for the complaisance of engineers, they say, the means to wage wat not exist.
wour Those who do not embrace
(or who choose to disregard its (or who choose to disregard its
implications) point out that if "defen implications) point out that if "defence
systems" - a weasel expression, referring to all military equipment, including that to all miitary equipment, including that be seen in a posture of defence - were not available, then one "side" would subdue the other and impose its own ideology on the defeated. The solution to this problem,
the holders of this view assert, is for each camp to arm itself to the teeth at an everincreasing rate, threaten to irradiate the planet if provoked, but only to do so if the other side does it first. The unspeakable, impenetrable folly of such an attitude is almost too obvious to warrant argument: this method of preserving life and liberty is hardly compatible with the pursuit of
It is perfective
It is perfectly true, as apologists for the arms race often point out, that some of accumulate weapons are not at all as
unsavoury as their raison d'être. "Spin-
for example electronics in the last fees for example, electronics in the last few
decades. Innovation and development ar accelerating at such a rate that it is barely possible to see five years into the future, assuming there is one. But to what effect? After the expenditure of so much effort over so many years, with neither East or
West yet persuaded that that an unstable equilibrium is a poor way to avoid catastrophic failure, are we being asked to believe that the possession of home computers, video games and digital wristwatches makes the whole thing worth whistwatches makes the whole thing wo
when
Some of the greatest scientists and engineers in the world, in both East and
West, have laboured their entire working
lives to produce hellish machinery, the whole point of which is that it shall neve. be used. Hospitals, schools, universities are closed or run down so that more weapons can be bought or made and the
only benefits in our own field that we have to show for all this misdirection of effort and resources are a few gadgets. Admittedly, communications have improved immeasurably in response to the good deal of the improvement is taken up by the provision of entertainment. It is a specious argument, which takes no account of the time scale involved: even in the absence of military urgency, the improvements" and engineering their own good time, and who is to say that that sooner is better than later when the pace of progress outstrips our understanding of it?
Much that has
written on this theme has not dwelt on the inconveniently large question of waste. Materials, the efforts of gifted men and women, irreplaceable earth resources, time and the wealth of nations are all squandered to produce equipment which, , manner for which it was designed would have failed in its purpose. And this while millions of people in all continents are deprived of the simplest staples of life The contrast between profligacy in the primitive is too stark for us to contemplate the continuation of useless armed posturing into the indefinite future: for that is the outlook - either a sudden and complete end to humanity or an East and West. Scienrific American has pointed out that there are now more than three TNT - equivalent tons of nuclear explosive for every single person on earth it will bear repeating, that engineers in all the developed countries have made the confrontation possible. It is therefore engineers who are in the best position to bring it to an end, by simply refusing to
work on armaments. Call it rebellion or simply common sense, but since politicians the world over seem bent on killing us all, it is the only way to avoid collective suicide.

ORCHESTRAL SOUND, HALLS AND TIMBRE

 or-'why does it sound so beautiful?'

 or-'why does it sound so beautiful?'}

This article examines aspects of the appreciation of orchestral sound, with particular reference to the transfer characteristics of the outer ear and its influence on timbre in various directions and on our sense of orientation. New subjective criteria are proposed. The Kingsway Hall is used as a model in the discussion
by Denis Vaughan*

For several decades the most sought-after
venue for recording orchestral music in England has been the Kingsway Hall in London: legend has it that Sir Thomas Beecham was the first to identify this hall
as particularly suited for the purpose. Are as particularly suited for the purpose. Are
there some identifiable reasons for its superior warmth and clarity? Could they be applied elsewhere.
My interest in acoustics was stimulated by a request from the Australian
Broadcasting Commission. The quest to broadcasting Commission. The quest to rich string tone in a hall and in a recording has led me to study many halls, and to analyse musical qualitites and our hearing capacities. These analyses have brought
several surprises. First of all come our several surprises.

Timbre

Our localization of sound is based on three main complementary systems: only two of ${ }^{\text {Man }}$ Musical Director, State Opera of South Australia
30

Horseshoe balcony in the Kingsway Hall
only $17 m$ wide, giving early reflections back at the orchestra.
these have been used so far in stereo recording techniques. The first is based on recording techniques. The first is based on
the exact timing of impulses to each ear. A difference of 0.63 milliseconds we interpret as a change of angle of 90° in the direction of the earlier impulse. So we can, miraculously, recognise a timing
difference is small as 0.007 ms , the time necessary to move the sound source one degree to the side. The second is based on loudness and intensity: a softer sound will seem farther away. We apply this in ocalization: just a small change in volume on one channel will shift a stereo picture to brings an instrument nearer to us. But the third system, timbre, has yet to be explored.
We hear a different timbre from every
ngle. Move a small clock around close to angle. Move a small clock around close to
your ear, and you will notice that you can always tell where it is, and that the sound
is never identical. If the clock is near your is never identical. If the clock is near your
ear but always equidistant from it, this test excludes the possibility of the impulse or intensity methods contributing to the effect: we recognize each and every
direction partly by its own particular direction partly by its own particular
timbre. If you change the timbre, the apparent direction changes. The filtering effect of our external ear, illustrated by Fig. 1 and Fig. 2, causes us to hear a very odd balance in sound reaching us face-on. The left-hand column of Fig. 3 shows that,
with 400 Hz as 0 dB , there is a strong peak at 3 kHz of 12 dB and a deep trough at 10 kHz of -10.5 dB . So we hear certain upper-high frequencies (except 14 and 15 kHz) frontally very much weaker than hose at 3 kHz .

simber n. Chanicteristic quality of counte ments, depending on the

FRE QUENCY (kHz)
Fig. 1. Filtering effect of the ear canal, showing peaks near 5 and 10 kHz , common to all that we hear. A/I frequencies above

FREQUENCY (kHz)
Fig. 2. Filtering effect of the outer ear on sounds arriving in the horizontal plane. 0°
corresponds to a point straight in front.

Horizontally to the side at 90° the balance is more even. The upper frequencies become as much as 15 dB stronger than the frontal spectrum and the various peaks at lower pitches are between the extremes to only 15 dB as opposed to the 22.5 dB range of the frontal spectrum. But the sensitivity which we have at 90° for 12 and 13 kHz starts to 4 and 5 summarize the table of Fig. 1 graphically.
You may have noticed another aura characteristic. We tend to identify bass notes as coming from below our ears; also,
the higher we sit in a hall, the warmer it sounds. I believe that we react similarly to loudspeaker placing. Surprisingly, above our heads we can hear a strong peak at 8 and 9 kHz , as shown by Fig. 6. In fact we can only hear 8 kHz as coming from that source. But further up the spectrum, above 10.5 kHz , we hear very little from over our heads. Therefore in a low room or a hall, where the predominant early reflections come from the ceiling, we can
perceive very little refinement, delicacy or texture in the sound. Figure 7 is the graphical representation of Fig. 6. WIRELESS WORLD MAY 1982

Musical qualitie
It is no easy task to prepare a preferentia Celibidachesical qualities in sound several recording engineers and producer have approved the following list, which should only be regarded as tentative, and wide open to improvements:
richness - powerful multiple reflections; density - many reflections across the hall wain second from a single impulse; warmth - a strong bass-heavy frequency
response curve, with a plateau in the tenor octave ($125-250 \mathrm{~Hz}$) tapering off smoothly towards the top;
clarity - medium high frequencies arriving from all directions shortly after the original sound;
intimacy - an adequate supply of arriving early at the ear beteen 54° and arriving early at the ear between 54° and
144° horizontally, and below 60° yertically; weight - low frequencies arriving shortly after the original sound
singing tone - a growth in the reverberation reaching a peak about 100 milliseconds after the original sound, the One reason why richness - and not long reverberation - tops the list is because a variety of reflections coming from many angles close upon each other gives our ears a full frequency coverage. With our aural limitations of timbre in any
one direction, the deficiencies can be made good only by receiving sound from all sides. In Avery Fisher Hall in New York, you can hear that in some upper/fron balcony seats, where richness is present,
any lack of the other qualities is much less noticeable.

Impulses

Another reason for our appreciation of richness is our astonishing capacity for quickly perceiving separate impulses in
sound. Tests have shown that all listener prefer to hear orchestral sound impulse ars - hence arrive simultaneously in bot ears - hence the preference for stereo ove
mono. This scattering of the impulses is called 'binaural dissimilarity'. In a concer hall, it is the extent of the initial time-delay gap between the original sound and the first reflection - often about 40 ms in medium-sized hall - which gives much of been associated with this gap, but my list suggests other requisites,) Our ear appreciate these reflections most when they arrive close to horizontally from the
side. My timbre lists show that the timbrem of a hall is influenced for us first by the angle at which we hear the strongest first reflection, and then by the shape and materials of the hall, or room, and the
reverberant spaces beneath it Werberant spaces beneath it. When we receive a lot of early
reflections, one shortly after another, these impulses come in an arpeggiated form in slow motion rather like the thrumming of a chord on a harp. This sequence of impulses we perceived as being much
richer than an instantaneous reflection. A digital delay unit demonstrates this quickly, by making two or three string instruments sound like a rich chorus. Halls are preferred where the sequence of
impulses, whether first or later reflections, dies away evenly. It is called a 'smooth decay curve'.

Home simulation

These two keys to richness, namely timbre and impulses, are demonstrable in the developed in the phonographic industry, as soon as the field of the external ear is completely measured. The system would need at least ten loudspeakers: one large one on the floor to represent the orchestra,
and the smaller ones set around the room above and below the ear level, with the apposite timbre applied to each speaker

FRONTAL SPECTRUM	Reauencr	0°								$126^{\circ} 144^{\circ}$		$152^{\circ} 180^{\circ}$		$\begin{gathered} \text { OPPOSITE } \\ \text { Sound coming } \\ \text { to righ } \end{gathered}$	$\begin{aligned} & \text { ITE FIE } \\ & \text { ling fro } \\ & \text { ight eo } \end{aligned}$	$\begin{aligned} & \text { TELD } \\ & \text { onleft } \\ & \text { ont } \end{aligned}$
-0.5dB	200 Hz	OdB	1-5	52.5	2	1	2	21		50.5				$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \text { Angle } \\ -3 & -10 \end{array}$		$\begin{aligned} & \text { Angle } \\ & -36 \end{aligned}$
+0.5	500	0		2.5	4					43.5		$2-05$		25-140,60	-	-90
+1	700	0	1	25	3.5	45	5	5		$5 \quad 35$		$1-05$		- $-160-16$	-2	-90
-2	1 kHz	0	2.5	25	45	6.5	7.5	5		555				-6-30	7.5	-90
+10	2	0	2	2	15	1.5	0.5	5		$5-2$	-2	- -35		$12-1101-75$	-7	-90
+12	3	0	1	2	3	2	-1	-2		5-25	-3	- -35		$15-110$	-8	-90
+5	4	0	3	4	35	1.5	-2	-55	-85	5-8		-55		15 -120-75		-90
-1.5	5	0	35	4	5	4.5	3.5			5-9		-8-7.		- 3 - - $1201-75$		-90
-0.5	6	0	4	\%	\%	75	7	\% 5		5) -3		$5-5$		$13-110,-60$	-12	-85
+1.5	7	0	4.5	6.5	10	9	10	8.5		52.5	-1	25		13-110/-50	-10	-90
-2	8	0	4.5	58	11	4				127	3.5	525		-10 -1201-75	-5	-90
-8	9	0	35	55	2	65	15	5.11	8	4		-0.5		7.5-130-50	-5	-90
-10.5	10	0	3	85	?	7	65	-	65	4.5	2.5	5.-25		6:135-90-50	-3	-110-75
-10	11	0	3	3.5	6	75	7	25		65		$2-2$				
-7	12	0	5	1.5	35	7	85	58		$5 \sqrt{3.5}$	1.5	$5-25$		75-1301-90	-3	-75
-2	13	0	2	0	1.5	5	53	6	5	1	0	- 45				
+2	14	0	6s	2	2	2.5	2	1.5		5-25	-6	-7		-11-120-50	-3	-75
+3.5	15	0	15	2.5	3	4.5	0.5	- -1		-35		-75				

Fig, 3. Lateral differences in timbre for one ear, compared to sound reaching us from
straight ahead at eye level (from Mehrgardt and Mellert).
cording to its direction (to help to lock elays on each speaker, equivalent to those we hear in a fine hall like Kingsway. A six ack tape or cassette could probabl upply sufficient source material. A nitial tests I have made in this direction
prove the timbre and richness far mprove the timbre and richness far nd timbre of the quadrophonic system Without dropping hints, we might call the ew system 'decaphonic'. It develops the
ose system of reflections from all sides, hich works best for me in rooms with ittle or no damping. Both point to the creased physical satisfaction when ou rientation filtering system is being fully sound. The main problem lies in fixing the delicate balance between focused image and general immersion in the sound. I have always found a stereo image to mprove greatly when the frontal speaker he timing of the frontal wall reflection seems to give full depth to the image. Thus, under ideal circumstances, an rchestra seems to be the same distance ehind the speakers as the orchestra was ence the need for simple microphon echniques. To obtain this effect in oom, I have often needed to set the peakers parallel and not angled towards e. In genera, and sometimes despit RCA engineer Albert Pulley seems to work well in practice - that is, to set the peakers at a quarter of the width in from he sides and a quarter of the length of the preserved with this obstructive placing if

Fig. 4. Graphical summary of liateral differences in sound pressurure fort the right
iar. Negative angles refer to sound coming ar. Negative angles reter to sound comin
rom the left side of the head. Range is 000 Hz to 3 kHz .
he spe

ong reverberatio

Until such a time as a 'decaphonic' system is common currency, in is halls obviou why very reverberant halls will be
favoured for recording. Present systems use mainly microphones which pick up frontally frequencies that we can never hear there (with our 3kHz peak, 10 kHz above 11 kHz). Also the loudspeakers are usually placed at angles where we canno percive several other frequencies very ell, showing a 20dB range between th way of covering up these two aura mismatches is to add reverberation to dif use and thus beautify the sound.
This has the unfortunate effect of obbing the interpreter of a number of an never achieve a quick silence, until the common 2.5s of reverberation has died way. That would never have done for Verdi, Toscanini or Callas.
Instead we should seek out a true and
atisfying way to give us global $\left(360^{\circ}\right)$ eflections in the reproduction, and thus a natural, full-frequency spectrum, oncentrating on our most sensitive area, between 40° and 140° laterally. Even most headphones are unnatural (save mose with whole of our own aural frequency filter system. The great advances in Kopfbezogene stereophonie' (binaural ecording) fall back at this poin

Architectural prerequisites

The quest for the physical conditions necessary to produce warm, rich string one in a concert hall was sparked off by he decision of my home town, Melbourne, Australia, to spend 33.5 square, virtually all-concrete hall for that purpose. Of the many indications given to me, two of the most revealing were from Villem Jordan and Derek Sugden. Jordan wider than 27 metres, and observed that all the famous halls had smaller widths. ugden stated:
"A hall must have 'presence' so that you oot only preserve clarity in a reverberant powerful sound in the first 100 milliseconds in necessary. This can be achieved preferably with a width of about 18 metres, and if this is not possible then deep balconies must be used, or the
technique of puting the audience in erraces and providing large surfaces for teral reflections. There must be rapidly following early reflections to really achieve intimacy or presence.
A third useful piece of wisdom came Kenneth Wilkinson:
"I have recorded in many halls thoughout Europe and America and have found that halls built of mainly brick, older halls, always produce a good,

Fig. 5. Continuation of Fig. 4in range
 sidid pers
$-75!$
natural, warm sound. Halls built with concrete and hard plaster seem to produce a thin, hard sound and always a lack of
warmth and bass. Consequently, when looking for halls. to record in, I always void modern concrete structures. This the other large record companies.

First reflections

n all the famous orchestral halls, the first lateral reflections come from the side balcony faces. Their timing is exactly
controlled by the width $(1$ foot $\approx 1 \mathrm{~s})$. So a central seat in the Leipzig Gewandhaus, with only 12.5 m between the balcony faces, had an initial time delay gap of round 41 ms . Vienna Musikvereinsaal with 15 m had 49 ms , Boston Symphony Hall Concertgebouw (19.3 m) 63 ms . Those figures give a very good idea of the relative clarity and definition, intimacy and density of sound in each of the above halls. through armospheric absorption after about 15 metres, Leipzig and Vienna must have the best quality.
Looking at the Kingsway Hall, it is easy to see where it satisfies the main
requirements. Its full width is at the upper limit, 27 metres, with inner walls set on pillars at 19 metres width. But the width between the horseshoe balcony faces, with. very useful curved reflecting surface beneath them, is only 17 metres at its
widest point. The balcony surrounds the orchestra at a height of 3.5 metres. To be honest, I think that such a horseshoe would bring any large symphony orchestra good acoustical luck. It gives all the players reflections back early enough, and at the right angle, to allow them to obtain
good ensemble. The unbroken surface lows early bass reflections to come bac ot the microphones (not too strong, mind
you) because the long bass waves are eflected intact, and from a shape consonant to their own. It might be wort opying this reflecting shape in Abbey oad, Maida Vale, Henry Wood Walthamstow, Brent and Watford, to The shape is reminiscent of those marvellous small Italian theatres.
In recent years, the Kingsway lease has een shared by EMI and Decca, also sub letting it to RCA and other companies ownstairs and many upstairs covered ith cloth. At the moment it
 present is about 2.5 seconds.

Hall background noise

Poor Wagner cannot have guessed that in 'Tristan and Isolde', by giving his
shepherd on the rocks a woodwind solo which lasted more than four minutes, he was condemning one of his greatest interpreters - Furtwangler - to recording a duet for English Horn and Piccadilly Line Train. Unfortunately, Underground is not yet such that the engineer's 'red light area' can extent to such nether regions. The rumble of the tube trains would not be so noticeable,
were Kingsway not such a good hall were Kingsway not such a good hall
Moreover the cavernous storerooms and airducts beneath the main floor, which undoubtedly contributes to the warmth of the sound there, develop the tube rumble with equal generosity - a sound which is techniques. The hall is very much alive at all frequencies, even when no-one is in it The presence of 80 musicians is something which you not only feel there, but which gives the indispensable and audible human high-frequency extra-musical sounds. The ease of tone and spaciousness achieved in Beecham's 'Scheherezade' and Furtwangler's 'Tristan' have to my ears yet to be bettered on disc. Both recordings was present during the sessions, and which is an integral part of the greatness of the musical interpretations. A bald silence behind the music is the antithesis of this spell-binding, breathless hush, and
unfortunately I fear that Dolby techniques so far, in their valiant battle to eliminate tape hiss and mechanical noise, have also eliminated some of this integral part of the music. Digital recording is proving to be
one of the better ways, which do not reduce the human element in a performance, and the comment of the acoustic on this human element.

'Singing' decay curve

It would be fascinating to know just why the string sound at the beginning of the third movement of the Beecham article, I went down on my hands and WIRELESS WORLD MAY 1982

Fig. 6. Vertical differences in timbre (equal for both ears) compared to sound reaching us
knees, and with the generous help of the Kingsway caretaker, measured the variou distances, counter-checking them agains the few remaining plans of the hall. S please do not expect total accuracy 'singing' tone, characterized by crescendo in the decay curve. Just as w can all sing better in the bathroom because the acoustic supports us, so the
'singing' curve gives a lift to the performers, and allows the music to the wing, without need for forcing. (I think that adding a short peak of this nature to a dry recording would give more musical results than the general confusion caused
by the usual long reverberation by the usual long reverberation.) No one Guildford thinks that it needs a large area of parallel surfaces above the highest seat, as in Vienna, Boston, Amsterdam, etc. Joan Sutherland (and I) think that it needs also a set of hard surfaces around the hal
at the level of the performers. Schultz that it needs a filigree of smaller surfaces for the very first reflections. It is probably a combination of all three.
For the Beecham sessions, with the orchestra facing the organ, the
microphones were about 2 metres in front of the stage. For an instrument just under the microphone this gives the following sequence of delays in the reflections from various parts of the hall after the original
sounds: Stage frof
Stage front, 14 ms ; upper stage front,
30 ms ; side balconies, 48 ms ; hack 54 ms (first frontal reflection); ceiling, 57 ms (larger); diagonal walls beside organ, 73 ms ; side walls down stairs, 81 ms (larger); arches between side pillars and
inner walls, 93 ms (et seq.); ceiling curves, 100ms (larger); backwall downstairs, 105 ms (larger); curves organ ceiling, 111 ms ; side wall upstairs, 133 ms (larger); back wall upstairs, 147 ms (larger) Some of these figures should be higher,
where the reflection can only come back to
the microphone with the help of secondary surface, such as side wall upstairs/lower ceiling. As the microphon is not very sensitive on top (and fickle
memory suggests that the stereo mimory suggests that the stereo
microphones were hung upside down for microphones were hung upside down for
'Scheherezade'), this means that the Scheherezade'), this means that
effectively larger reflections start abou 18 ms after the original sound. Boston' singing tone is based on a growth up to peak in the decay curve, the peak reaching from 100 to 150 ms . Amsterdam puts even later. By Sugden's standards o 'presence' and 'weight' Kingsway ha
quite a lot of powerful reflections to offe within the first 105 ms , because the larger reflections continue to return up to 14 ms , the substantial and lengthy support of the ping-pong of the subsequent reverberation

Fig. 7. Vertical differences in sought pressure perceived equally by both ears.
90° is overhead 180° beth

Curve

Robert Lloyd, the bass, has observed tha wherever there are a lot of curved surfaces the acoustic tends to be very good. When the curves are concave, they may match
the shape in which the sound waves first reach them, and thus reflect them well When the curves are convex, they distribute the sound waves evenly over wid areas. Kingryay is ich in boh lypes of curved one way or the other, with many interim small reflections, such as curve over doors, etc. I hope sincerely that this article may stimulate others to copy them, above all because of heilitial lons horseshoe curve of the balcony face and it undercurve. For a full symphony orchestra it comes at an ideal moment to break up the sound, and is as worthy of respect as shell in the Boston Symphony Hall. If you wish to copy a Stradivarious, all details are relevant!

Langmuir thin-film trough for molecular electronics

Collaboration between scientific instrument makers Joyce Loebl and a number of research establishments, especially Dur-
ham University, RSRE Malvern and ICI ham University, RSRE Malvern and ICI, world's first commercial ultra-thin film "growing" equipment. The films in question are monomolecular layers of a class of materials floated on a liquid surface,
usually water transferable to a solid surface by passing it through the liquid. The material originally used by the pioneer of this technique - Irving Langmuir of General Electric back in 1917 - was the soap-like fatty acid salt sodium stearate,
but other materials and their deposition on solid surfaces were subsequently investigated by Langmuir and Blodgett, one result being the development of glass anti-reflection coatings. Chief property of the materials used is a rod-like molecule, one
end of which is attracted to water and the onher end repelled so they stand end-on (assuming the material is correctly compressed). But the trough is aimed at possible new appications of L-B films tha arise largely out of microelectronics tech are becoming important in what is called molecular electronics - the "science of

Reversal

It would be interesting to know whethe sharp-eared listeners with refined equipment can detect the differences in
recordings made in Kingsway the other way round mide in Kingsway the othe way round, with the orchestras back to
the organ. Many recent opera recordings use this serup, which puts the singers in a better relationship to the orchestra, and allows them to move as though on a stage It also allows the full depth of the voices to
develop, in the essential $8-10$ metre develop, in the essential $8-10$ metre
distance to the main orchestral microphones.
But this way round, the reflection pattern for the orchestra is changed. The low front of the stage and the small upper stage
must substitute for the 3.5 m high curve of must long back balcony face. The frontal, early deep-bass reflection at microphone height at 54 ms has been replaced by a very early one at about $8-10 \mathrm{~ms}$. The difference ought to be noticeable to keen listeners as
this new reflection is behind the microphones.

Awareness

Awareness
Perhaps the foregoing analyses of several aspects of hearing will help listeners
towards a greater appreciation of colour and texture in sound. The measurement of timbre are far from complete, and more details are due to be published next year, covering the whole of the upper
hemisphere of our field of hearing. When stereophony was introduced analyses of aural localization mentioned the three systems available to our bodygiving the greatest importance to the
timing of impulses, much less to intensity, and virtually dismissing timbre differences as inessential. It remains to be seen whether in fact timbre is not the Cinderella of the trio, ready to blossom into the mos recognized and espoused for its true recognized and espoused for its true
worth.

Further reading

Analyses of musical qualities and hear ing: \mp. Sound and Vibration, 1980 , vol. 6
pp 110-138. Musical Times, Jan Feb ${ }^{\mathrm{pp}}$ 110-138. Musical Times, Jan./Feb./ 62-66.
Timbre lists; Musical Times, Jan./Feb./Mar. 1981

NETWORKING SMALL COMPUTERS

Simply transferring a program or data from one computer to another by telephone is not loo great a problem, but if number of remote computers are to work together regularly efficiently. This article describes such software designed for Pet microcomputers and outlines networking generally.

As personal computers become more popluar, the need for simple methods o exchanging programs and data betwee possible to exchange this informatio through some form of readily accessible global communications network, but a present, we have to make the best possible more important information dissemination techniques currently being explored are: - teletext broadcasts

- viewdata systems, such as Prestel
- Each of these approaches has it advantages and disadvantages. In the UK, experiments have been carried out using Ceefax and Oracle as a means of dis-
tributing software tributing software but these methods from a central point. With Prestel, two way information exchange is possible, but there are two categories of 'user' - the ordinary customer, who can only receive and examine pages of stored material, and
information providers. The major drawback of this method is that not all users can be information providerst. The Council for Education Technology is currently investigating this type of information dissemination in conjunction A truly distributed computing network ${ }^{3,4}$ is the third approach to program and data distribution. Such a system has the advantage of allowing totally unrestricted i-directional data exchange between any
wo parties. In this article I describe using the public switched network (p.s.n.) as a means of distributing programs and data between owners of personal computers.

Source program transmission
The distributed computing system's architecture significantly influences the ype of data it can accommodate. Broadly categories - one in which intermediate data storage is available, and one in which data transfer is direct.
In Fig. 1(a), the microcomputer owner at site X is able to dial the telephone
\dagger British Telecom say that potentially all users
can be information providers so presumably Dr can be information providers so presumably Dr
 Department
Polytechnic.
WIRELESS WORLD MAY 198
by Philip G. Barker* number of the owner at site Y and then context of data exchange, transmission takes place as if the two microcomputers were linked together directly ${ }^{5}$. No intermediate data storage is available so error detection and correction procedures used for receiving the data. Messages passing over the communication network are susceptible to corruption by noise or crosstalk and as a result, if the receiver fails to respond to
transfer is inhibited.
In Fig. 1(b), the microcomputer owner at point X can store material in a mainframe at site V or W for later retrieval. Provided that the computers at
points Y and Z can meet all the necessary
access control requirements, they too can gain access to the data. With this kind of network, information can be shared easily and distribution to other geographica
locations is simplified. Details of using a
interactive terminal, in conjunction wit the public switched telephone network 6,7 and of using a microcomputer as an intelligent terminal ${ }^{8}$ have been presented file transfer between a mainframe and microcomputer are discussed in detail. These files may contain machine-code programs, high-level (source-language) programs or data. Using the software between one microcomputer and another (via a mainframe) is reasonably straightforward but a decision has to be
made regarding whether the programs are
(a) Direct transfer

Fig. 1. In (a), the public switched network is used to link two computers together directly. Messages passing over the network are susceptible to corruption by noise or crosstalk- if the receiver fails to respond to the transmitter, data transfer is inhibited. Data from any of
the three microcomputers shown in (b) may be stored in a mainframe computer and retrieved later. Using this type of network, certain codes can be imposed to restrict acce of information from the mainframes to those microcomputer owners with knowledge of
the code.
to be transmitted in machine-code or source-language form.
Factors influencing the ease with which programs may be communicated are

- the level of language used
accepted language standards and the ability of programmers to keep within limitations imposed by these standards - compatibility of the computers used. sufficient to justify transmitting program files in source language form rather than as machine-code memory images. In this context we have been examining the problems associated with transmitting p.s.n. between microcomputers and mainframes. Some interesting results have beer obtained - a few of which are described here.
Files transmi
Files transmitted between the two
computers consist of a contiguous set of characters. Certain special characters interspersed in the sequence, for example end-of-line $\$ 0 \mathrm{D}^{\star}$, impose a simple record structure on these files. That the files may
not be physically stored in this way in either the source or destination computer is of little consequence as far as this article is concerned.

Loading Basic from secondary
 storage

Once a Basic program has been ransmitted from a remote computer and stored locally on a secondary storage medium such as a tape or disc drive, it is a simple matter to load the program into memory for subsequent execution. How type of microcomputer used. To illustrate the purpose of this article, specific descriptions pertaining to the 3000 series microcomputer are acluded.
The function of a loading program is to secondary storage file, convert them to the appropriate format, and store them at the correct location in the memory - space a program for the PET are summarized in Fig. 2(a), where it can be seen that the storage area for Basic programs starts at
$\$ 0400$ and ends at $\$ 7 \mathrm{FFF}$ where 32 K of $\$ 0400$ and ends at $\$ 7 \mathrm{FFF}$ where 32 K of memory is available. Obviously, the memory will slightly reduce the amount of space available for other programs. One of the loading program's main tasks is to convert the incoming source code to a code which can be stored in the computer's represented in Fig. 2(b). When the source code is stored, each statement consists of a two-byte pointer, a two-byte encoding of the statement number, a sequence of bytes representing the original source line, marker. Further details on how Basic *The 'dollar sign' indicates that the number Thesis is not the standard method of indicating
hexadecimal numbers, but is familiar to most hexadecimal numbers, but is familiar to most
users of the microcomputer concerned. - Ed.
(a). Principle

(b) Comparison of internal and external forms of Basic

INTERNAL FORMAT

$40=$ PRINT"GOODBYE" 0410140059 B2 23001804 $\begin{array}{lllllllll}0410 & 14 & 00 & 58 & B 2 & 33 & \text { AA } & 32 & 00 \\ 0418 & 22 & 04 & 1 \mathrm{E} & 00 & 59 & \text { B2 } & 33 & \text { AC }\end{array}$ | 0420 | 32 | 00 | $\frac{1 E}{2 C}$ | 04 | 28 | 28 | 00 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{lllllllll}3430 & 99 & 22 & 47 & 4 F & 4 F & 44 & 42 & 59 \\ 0438 & 45 & 22 & 00 & 00 & 00 & A A & A A & A A\end{array}$

Fig. 2. The function of a source language loading program. These diagrams art typhic specifically relating to the PET, are typical of most microcomputers. Underlined sections in (b) indicate the
positions in memory of the Basic statement numbers.
programs are stored in memory can usual be found in the computer's manuals ${ }^{9}$. Once a statement has been converted, it has to be placed in the correct memory usually carried out by routines built into the computer's operating system, which in the case of the PET are locations \$C34B to $\$ \mathrm{C} 4 \mathrm{~F}$, and there is no reason why these routines may not be used in the programs
concerned. But for most readers, copying the relevent r.o.m. information into r.a.m. will be more practical than altering the system's roo.m. A simple assembly anguage program will serve this purpose. The loading
tep 0:
borrow code from the operating
Step 1: system
initialize Basic (usually using NEW) read input file (get next source
character)

Step 3: if 'end-of-line', go to step 6 Step 4: if 'end-of-file', go to step 8 Basic store source character
buffer then go to step 2 Step 6: prepare for operating-system enSte 7. try routines
$\begin{array}{ll}\text { Step 7: } & \text { convert source statement held in } \\ \text { buffer, enter into Basic memory }\end{array}$ buffer, then er into Basic memory Step 8: pass control back to Basic command mode with a 'READY' s was sugges
As was suggested earlier, step 7 will
probably be carried out by a 'borrowed probably be carried out by a 'borrowed
code', and the remaining steps will be implemented by the operator, see Fig. 2(c). An assembly-language program for the above algorithm - for Basic source
files on cassette - is shown in Fig. 3, and a complementary flow diagram is shown in Fig. 4. When invoked, the initialization code copies $\$ 94$ bytes, starting from \$C34B, in the slot reserved for it through manipulation of the assembler location
counter. When this is completed, the loading operation starts. The program uses a subroutine called TPREAD to transfer a block of data from cassette into the relevant buffer area. In turn, this routine makes use of the operating utility code
commencing at $\$ F 855$. Characters are then WIRELESS WORLD MAY $\uparrow 982$

い	
88 ¢	

JSR PRINT RTS BYTE $\$ 00, \$ 0 A$, 'FILE NAME? :,$\$ 0$
J

casstris

Fig. 4. Data flow diagram for the source code loading program shown in Fig. 3.
copied one at a time from the tape buffer $\$ 027 \mathrm{~A}$, across to the Basic input buffer, registers respectively as pointers in the indexed load and store operations. Each time an end-of-the-line character, $\$ 0$, is encountered in the input data-stream
(INCHAR) an end-of-statement marker, $\$ 00$, is sent to the output stream (OUTCHAR) for placement in the Basic buffer. Subsequently, at step 6, the pointers at $\$ 77$ and $\$ 78$ are set to point to the memory area containing the new
statement. A subroutine call to the operating system utility CHRGET is then made. This is essentially a line-fetch routine that sets up the next Basic statement for processing. More details on how the routine operates are given
elsewhere ${ }^{00,11,12 \text {. Once the CHRGET }}$ routine has been primed, the code for converting/inserting the new line into the BASIC program area can commence. Further source statements are then code, $\$ 00$ for tape files, detected on INCHAR terminates the loading process and passes control back to Basic direct"READY" mode with the prompt A
A major disadvantage of the loader
shown in Fig. 3 is its lack of identity checking. Inherent in the program is the assumption that the tape will be positioned at the point from which loading is to commence; the first block (program
identity) is then skipped over. If necessary, it would be a simple matter to replace the first reference to TPREAD (line 21) by a call to asubroutine that llows the operator to interact. This WIRELESS WORLD MAY 1982
subroutine could be used to ask the operator for the name of the file to be oaded and then automatically position the tape ready for loading. A routine of this designed for handling source programs designed discs.
To enable the loading program shown in Fig. 3 to handle disc files, two additional subroutines are needed: one to open the disk file, DKOPEN, and another to read and close it, DKREAD. Implementations DKOPEN fulfills presented in Fig. 5. outlined above, that is, it prompts the operator for the name of the file to be loaded, checks its validity and then returns an appropriate message. The DKREAD routine emulates the action of the tape changes necessary to the code listed in Fig 3. Indeed, only three changes are required; the reference to TPREAD in line 21 must be changed to DKOPEN and that to DKREAD. Finally, the device number in line 62 must be changed from 1 to 8. As a means of checking that tape cassette emulation was a reasonable approach use, a second version of the disc loading program was written using a different ap he disc file into memory, storing it, and then processing it as an internal file. Other than the slight modifications needed for he revised input method, no majo in Fig. 3 were required and no detectable difference in performance between the two disk-loading programs was observed Furthermore, as can be seen from the fo
lowing table their load size differed by onl five bytes.

Tape loader Disc loader 1
Disc loader 2 Main
code
257
257
242 -
152

152 \begin{tabular}{ll}
-

\hline

Total

Sore

Sor

\hline onf

\hline 95 \& 504

\hline 1509
\end{tabular} The loading programs can be located in space available for program loading. Whe siting these programs, two importan factors must be considered;

that the programs do not over-write usually caused by locating them to near the low end of memory), and, - that they do not interfere with any of the operating system support software that may be partly in r.a.m. (for
example, DOS support uses r.a.m. above $\$ 7 \mathrm{EAB}$ in 3040 disc-based 32 PET systems).
Each of these restraints can be avoided by using an appropriately structured programs are to be stored in r.a.m. their security and effectiveness depends on finding a suitable memory space into which they may be loaded and run Unfortunately, disc loader 2 is too large fit into the tape cassette buffer areas,
$\$ 027 \mathrm{~A}$ through $\$ 03 \mathrm{F9}$, but its main body and the smaller of the two input routines (DKREAD) easily slot into this area; DKREAD could now reside at the high end of r.a.m. above about $\$ 7 \mathrm{E} 10$, the exact
location depending what other software is present in this area. Because the version of the loading program for handling tapebased source files is too large to be stored in cassette buffer 2, as with the DKOPEN routine, it would also need to be positioned Similar arguments apply in the case of disk oader 1. Whatever parts of high r.a.m. are used, the limit of Basic memory would need to be lowered by suitably adjusting and $\$ 35$.
Each of the software systems described above successfully loads Basic programs from tape/disc files into memory ready for been created by progran unsfer have nother remote computer through the public switched network or a private communication system. Alternatively, they may have been prepared by an editing tape or disc. Because these files are in conventional ASCII form rather than in internal machine-code form they are more easily exchanged between different types
of personal computer.

Comparing load times

Given that there are now several ways of oading Basic programs into memory some consideration of loading times would be comparisons to There
mparisons to make:. the relative speed of loading source with memo the relative speed of tape load compared with those from disc.
out the above comparisons ructed. This consisted of a series of Basic statements which when executed produced
(as output) another Basic program. This (as output) another Basic program. This and/or disk. Furthermore, once processed by either of the loaders described above, this program could also be saved in the mand. The program consisted of 1000 tatements whose average length was about 22 characters. Its load size was 19 K bytes. Measures of the time required to load this program under different conditions are
time to load source program from tape 1037 s
$\frac{\text { time to load source program from disk, }}{260 \mathrm{~s}}$,

- tape load time for SAVEd program,
disk load time for SAVEd program, 10s.
There are two observations immediately pparent. Firstly, loading source programs images; secondly, loading from disc is ver much faster than loading from tape. Thes relationships could have been predicted intuitively and so the only value of the comparisons they permit. From the values shown it can be seen that disc loading is about 35 times faster than tape loading
where memory images are concerned but
only about four times faster in the case of surce-code loading. In the latter case, look only 11 seconds to read the source program into memory from disc. This would suggest that about 96% of the
program loading time is devoted to program loading source statements into a form suitable for storage, and storing them. Similarly, in the case of tape loading, it akem tape into memory. The test progra rom tape into memory. The test program
contained 131 blocks, i.e., 192×131 characters, and so its input/output time ould be about 786 seconds. This mean at only 24% of the program loading tim interesting to note that the time spen converting and inserting programs in memory is the same for both programs 249s for the disc loading program and 251s for the tape version. This means that the program into its disc equivalent do not influence the program's performance characteristics. These results illustrate the advantages of memory-image loading over probably prefer to sacrifice some efficiency to make their programs more compatible with computers of a different type.

References

Hayman, M., Brighton project sets out on
the micro road, P.
1981, pp. $75-76$.

2 Technical Developments Programme Telesoftware Project, paper CID 81.2, 198 Council for Educational Technolog,
3 Cannon, D. L., and Luecke, G., Understanding Communications Systems,
Radio Shack, ISBN: $0-89512-035-6$ Radio Shack, ISBN: 0 -89512-035-6.
Davies, D. W., and Barber, D. L. A. Communications Networks for Computers
Wiley, ISBN: $0-471-19874-9$ Wiley, ISBN: $0-471-19874-9$. Campbell, G., Commodore 8010 modem,
Commodore Club News, July 1981, p. 18 . Commodore C Cub News, July 1981, p. 18 .
Nick Hampshire Publications, 19
Hobhouse COurt, Hobhouse Court, Whitcombe St, London
WC2).
6 Barker, P. G., Using a Microcomputer as an Interactrive Terminal, Interactive Systems Resarch Group Working Paper, Apr. 198
Dept. of Computer Science, Teesside Dept. of Com puter Science, Tees
Polytechnic, County Cleveland). ${ }_{7}{ }^{\text {Polptechnchic, } P \text {. County }}$ Using the PET as an Research Group Working Paper, Jun. 1981. 8 Barker, P. G., Algorithms for Intelligent Terminal Operation, Interactive Systems
Research Group Working Paper, Jul. 1981. Research Group Working Paper, Jul.
9 Donatue, C. ., and Enger, K . K .,
PET/CBM . PET/CBM Personal Computer Guide, 6, pp. $312-314$.
Hampshire, N., The PET Revealed Computabist Letd, pp. $77-78$.
Doyle, D., DIMP: A Machi Doyle, D., DIMP, A Machine Language
Routine for the PET to Handle Algebraic Input, Commodore PET Users Club Newsletter, vol. 2, issue 8, 1980, pp. 19-20,
(ICPUG, 109 York Road, Farnborough, Hants). Doyle, D., DIMP Revisited, Commosore
PET Ussrs Cuib Newseter vol. 3, Issue 2,
1980, p.31.

Teledon videotex in UK

The first private viewdata system based on Teledon technology has been introduced by Poulter Computervision, a new company in the Poulter advertising and marDepartment of Communications, Teledon is an easy-to-use system to enable text and high-quality animated images to be ransmitted to tv sets. It was chosen for audiovisual communication by Poulter capability.
The company have moved fast since they discovered it late last year. In fact Graham Poulter told WW he didn't even
know of it until 14 weeks prior, when know of it until 14 weeks prior, when after seeing it on an Australian NEB trip. They now have sole UK rights to Teledon, negoriated with the CDC licensee Norpak. Two equipments are available, the sim-
plest being a decoder with 64 K of usable plest being a decoder with 64 K of usable
r.a.m. (there is further memory for screen mapping and holding software) controlled by a 6809 microprocessor and fed from a cassette player. Up to 200 frames or each one appearing either instantly order, each one appearing either instantly or pro-
gressively. With a modem attached, 10 gressives of information can be recorded in 60 seconds - ten times faster than other viewdata systems of the alpha-mosaic provider's graphic creation unit with digitizing tablet, colour monitors, two floppy disc drives and PDP11/03 computer. With 40
about ten minutes' learning time, it is claimed, images can be created by retrieving an image from a library to edit, by sketching or tracing drawings on the defined as geometric elements. Animations of any length are possible and the combinations of colours with grey shades are unlimited. A page of text takes about 5
minutes to assemble while a chart might take 10 to 15 minutes
Secret of Teledon is the picture descripion instruction coding that describes
lines and rectangles, three for arcs, more or polygons, hence the name alpha-geometric. Images can also be described by scanning point-to-point, and they are re-
constructed to whatever resolution the receiving equipment allows. Among claims made for it are future equipment compatibility as well as future information compatibility, easy conversion to alpha-mosaic
or d.r.c.s. and it is said to handle more CCITT videotex-attributes than any other scheme. Teledon is in regular use in Canada, on trial in the USA, and European rights have been bought by Siemens.

WIRELESS WORLD MAY 1982

DIGITAL TELEVISION STANDARDS

Towards a worldwide compatibility for broadcasting studio equipment at recen meetings of the CCIR in Geneva, decisions were taken which will have an important bearing on the introduction of digital systems into television studios throughout the world.

Discussions on digital video coding have been going on for many years; in Europe hey have taken place mainly in the EBU. fact, the CCIR was largely responding for extensive consultations among its members and with industry, other broadcasting unions and the American MPTE.
It had long been accepted that to obain the maximum benefit from digital omponents of the video signal (eg lu inance and colour-difference signals) separately throughout the digital studio PAL, SECAM or NTSC composite form as in most of the analogue studio operaons of today. The use of component coding will also ensure commonality of quipment design throughout the 625 line world and to a valuable degree with ment on the basic parameters defining he video signal.
There may be a case for establishing in ue course a compatible family of coding quirements, e.g. of ENG at one extreme

by A. Howard Jones BBC Research Departmen

and high-definition television at the as to specify the standard that will b used within all of the main studio equipment and at the inputs to the recording and transmission equipment used for inItnational programme exchange.
It was agreed at Geneva that the main of 13.5 MHz for luminance and 6.75 MHz for each of the two colour-diference signals. This corresponds to 864 25432 samples per line respectively in mples per line respectively in 525 -line ountries.
8-bit linear p.c.m. coding will be used nd it was agreed by most delegations hat the coding rang There is a goo gures will have been fore that these into the Recommendation by the time of The author is chairman of EBU Specialist Group VI.-
IID in which much of the discussion on standardizaYID in which mucho
tion has taken place.
coding ranges

255 - (11111111)	$255-$ (1111111)
235-white - (11101011)	239-Maximum - (11101111)
	128-2ero
- Black - (00010000)	
-100000000)	$0-100000000$
luminance	colour difference

Fig. 1. Coding ranges for the 8-bit linear p.c.m. system

Fig. 2. The EBU proposal for 625 -line signal and nominal analogue timing for reference WIRELESS WORLD MAY 1982
he Plenary Assembly next year, together ith a statement to the effect that in both 625 - and 525 -line areas the circuits which process only the active part of the televiance and 360 colour difference samples per line. 360 colour difference samples At a sampling frequency of 13.5 MHz , 20 samples occupy somewhat more than ther of the nominal active line periods. efined by a blanking operation to be arried out when the signal eventually merges into the analogue composite vorld. Meanwhile, an appropriate posiioning of the 720 samples (Fig. hows the EBU proposal for 625 -line sigiming for reference) will ensure that the sstem will accept the whole of an analue active line at its input regardless of e actual timing within permitted tolerances. ensure maximum coms specification will ent throughout the world and will lay he foundation upon which further specifications, covering studio interfaces, digitructure to be used on international digital links, can be built.

Corrections

Remote control for a hi-fi system. Unmarked components in Steve Kirby's article in th Fig. 1 and $3.9 \mathrm{k} \Omega$ for its base-epitter resistor Transmitter diodes are high-power types - RS Components
"standy" "and "S12 or equivalent. Labels
"normalise" should be transposed on the keyboard. Notes on settin
up the link, a simplified tone control summing up the link, a simplified tone control summin
circuit, and p.r.o.m. listing will be publishe circuit, and p.r.o.m. listing will be published
next month In the mean time they can be b-
tained by sending sind tained by sending a stamped, addressed enve-
lope to Steve Kirby at the Department lope to Steve Kirby at the Department of
Electronics, Universiry of York, Heslington, Yocr YO1 SDD.
Heating-fuel saver. The introductory sensor is not essential but in fact, the scheme would not work without it. The non-essentia part is the meter to indicate the reading of the
sensor. If this is not required, the milliameter sensor. If this is not required, the milliameter
and IC
2 b can be omited. In the first paragraph of the main text a d-to-a converter has been misprinted as a 'data-a converter' Digital, multi-track tape recorder. Contrary to
the impression by the April part of this article it was not the final section. A further part on the playback facility will be published in the next issue.
BBC mi

Tracking vehicles

Disclosure of hitherto secret Home Office guidelines on the police use of "bugging" and other electronic equipment has drawn attention to a form of surveillance that has of suspect vehicles by the attachment of a miniature transmitter which can then be located using sophisticated fixed or mobile Doppler-type v.h.f. and u.h.f. directionthe usual problems of accurate d / f in builtup areas. Equipment of this type is made in several countries, and indeed two years ago Rohde \& Schwarz specifically des-
cribed their PA002 and PA005 systems as cribed their PA002 and PA005 systems as
suitable for "specialized applications in the field of personal protection or even in trailing 'prepared' vehicles". From fixed bases such equipment can locate an urban transmission to within about 100 metres.
At least one American firm makes mobile At least one American firm makes mobile in following a vehicle at a discreet distance. Direction-finding, the first application of a radio navigational aid early this century is once again in vogue. Marine v.h.f.
d / f systems in the English Channel supplied by Racal have proved their use in sea rescues. American portable (man-pack) d / f equipment is currently being promoted for military detection and tracking of

Broadcast relays

For several years, some of the European external broadcasting services have been
using satellite circuits to carry programmes to their overseas relays. But most of these built primarily for telecommunications services.
However, Marconi Communication Systems have recently announced
£500,000-plus order from the Foreign and Commonwealth Office for a 10 -metre, re-ceive-only, Standard B earth station to be located on Masirah Island, off the east coast of Oman, to be completed this year. This station is expressly to receive the BBC Overseas Service programmes fo
retransmission on the high-power FCO retransmission on the high-power
transmitters forming the Middle East Re lay Station, including two 750 kW m.f. transmitters.
The users of extremely high-power h.f over-the-horizon radar and broadcasting stations may have noticed with some
concern a report of recent joint-work of the Max-Planck-Institut für Aeronomie and the University of Leicester (Nature, 25 February 1982). This shows that the ionos-
phere has non-linear characteristics such phere has non-linaar cparacteristics sum nals received at remote sites decrease with 42
additional power. The optimum power is usually not much more than about 6.5 Mently used by some broadcast and radar stations.

Mobile radio and s.s.b.

The outlook for the use of v.h.f. single heand whe kHz channeling in the private-mobile radio or in the bright - and seems to depend on whether the fast-acting, companding-type a.g.c. system being developed by Dr McGeehan at Bath University proves suitable for incorporating into s.s.b. mobile phones. The intensive work in the UK over the
past few years on the Wolfson project for past few years on the Wolfson project for
mobile s.s.b. has failed to produce the moar-cut results needed to convince users. Completely independent user-trials by British Telecom Research and by the
Home Office, and related trials by manufacturers, all seem to have shown that on frequencies of the order of 160 MHz , s.s.b. equipment (without companding) does not provide fully equivalent performance to that of 12.5 kHz channelling f.m.
systems and is significantly degraded in systems and wis
comparison with 25 kHz channelling f.m. The British Telecom results suggest that s.s.b. also requires a much higher co-channel interference protection ratio (about 20 $\mathrm{dB})$ which would mean that there could be
much less re-use of channels, substantially reducing the theoretical spectrum-saving advantages of s.s.b. The earlier Home Office trials highlighted the problem of Doppler frequency shift and the need for an extremely good a.g.c. system if speech
quality is to be maintained above 200 MHz with vehicles travelling at more than 30 km / h.
The BT trials (Electronics Letters, October 29,1981) used s.s.b. equipmen
specially designed to assess the suitability of the mode as a replacement for f.m. in the Radiophone service, with tests carried out under carefully controlled conditions. Speech of a well defined level was
transmitted simultaneously over three transmitted simultaneously over three
radio links ($12.5,25 \mathrm{kHz}$ f.m. and s.s.b. radio links ($12.5,25 \mathrm{kHz}$ f.m. and s.s.b.)
and recorded in a moving vehicle. The recordings were later carefully assessed in an acoustic room with simulated vehicle noise, under conditions of fading, interference and signal level. The conclusion was
that s.s.b. subjectively degraded the per that s.s.b. subjectively degraded the per-
formance compared with 12.5 kHz f.m. by as much as a change from 25 to 12.5 kHz f.m. With co-channel interference, "mean scores" were: s.s.b. $1.8,12.5 \mathrm{kHz}$ f.m
. Unless the Bath University work on a.g.c. reverses the situation, early widespread adoption of s.s.b. seems unlikely.

Marine communications

The official opening of the Marecs-A mari time satellite communications system on cup. The planned inaugural call by Kenneth Baker, Minister for Information Technology, had to be called off at the last moment due to the aftermath of "intense solar activity".
While we all know how easy it is for press and public demonstrations to go
adrift, this incident cularly galling for those promoting a sophisticated system that seeks to high light and then supersede the radio propaShippires of traditional marine radio proved eager companies have seldom proved eager to introduce new commu
nications or navigational systems unless the costs can be off-set by lower marine insurance rates - so that 24 -hour reliabil ity must be counted a vital consideration.
There can be little doubt that marine satellite systems offer many advantages for deep-sea vessels, and will eventually supersede long-distance h.f., just as marine v.h.f. has gradually won through
for short-range operations. But I wonder it I am alone in recalling the high communications efficiency of the old pre-war passenger ships using "long waves" above 2000 metres?
When static was not too bad the highly professional radio officers and coast sta pronssional radio officers and coast, stadom heard on the other marine frequen cies. Today, with few large passengercarrying ships, marine traffic tends to be of the ships or personal messages of the "rew. As with all radio communications "progress" seems to be a matter of everhigher frequencies - though marine ra-
dars have long paved the way to microwaves.

Topics in the air

M. Hansen and J. P. Loughlin of the American Naval Ocean Systems Center, San Diego have described (IEEE Trans.
Vol. AP, No 6, November 1981) a four element adaptive aerial array that automat ically minimizes multipath reception Typically, at frequencies between 3.4 and 9.3 MHz over a 234 km over-ocean path than 15 dB . George J. Flynn of Washington Univer-
sity, St Louis, Missouri has forecast that if sity, St Louis, Missouri has forecast that if the rate of increase of objects in orbit con-
tinues to increase, the first collision betinues to increase, the first collision be 10-15 years. He warns: "A reversal of this trend is required to prevent a serious WIRELESS WORLD MAY 1982
hazard to orbiting satellites in the twenty first century". Although the number of objects in near-Earth orbit decreased be creased rapidly to an all-time high of 4,740 objects, in October 1981. 137 new object were associated with the US Landsat 3
satellite, launched in 1978, and 118 with satellite, launched in 1978, and 118 wit
Cosmos 1275 , launched in June 1981 .

$$
\text { Cosmos } 1275 \text {, launched in June } 1981
$$

AMAAEEUR RADHO

Licence snafu

Following meetings between the R.S.G.B and the Home Office, the Home Office confirmed officially that the new amateur
radio licence schedule, as published in T London Gazette on February 12, containe errors and a revised schedule would be published with a minimum of delay. The
Home Office also issued a statement they had had "no intention of changing the basis of amateur radio operation in the U.K."

In other words, the sensation caused by
the February 12 schedule was the February " 12 schedule was ascribed to yet another "snafu" on the part of the
licensing authorities - although to the credit of the officials concerned they reacted promptly and fairly when the consequences of the error-prone schedule were brought to their notice by the R Perhaps a light-hearted side of the incident was that, by omitting a key line, the Gazette unwittingly deleted all regulatory differences between Class A and Class B legally operated on h.f. etc., until an amending notice was hastily published on February 26. The Home Office has accepted that the introduction of new power restrictions and mode restrictions errors and may revert to traditional power errors and may revert to traditional power
regulations above 1 GHz at least while the question of "equivalent isotropic radiated power" is reconsidered further

The world scene

No firm announcement about the release, on a non-interference basis, of the 18 and
24 MHz bands had been made tat the times these notes were written. All three new bands, $10 .$, , uary 18.
American c.b. licences are reported to have fallen from 16 million to about 10 million during the past two years. There WIRELESS WORLD MAY 1982
are just over 400,000 amateur licences in
the USA. A recent survey indicates tha only about one-in-eight instances of radio froquency int typerference of transmitters (but basicall due to inadequate electromagnetic compa tibility in consumer electronic appliances etc) are reported officially to FCC ratio that is believed to be roughly compa rable wi.
A 16 -year-old instructor for the December 1981 Radio Amateur's Examination John Morris, GU6BG1, of the Guernsey Amateur Radio Sociery - coached six candidates. Five passed both sections while passed, Tim Hodkinson, will have to wait for his licence until his 14th birthday next June, when he is likely to become (at leas for a time) the UK's youngest licensed amateur.

Here and there

Fifty-years ago, during 1932, the internati-
nal Madrid conference resulted in the first nal Madrid conference resulted in the firs clear recognition of amateur radio by de-
fining in the international radio regulations what amateurs could and could not what amateurs could and could not do
The Madrid conference was one of the las of the international conferences in which no major changes were made to the frequencies allocated to radio amateurs although it was already clear that pressure on their frequencies from rival users was
more intense in Europe than in North America and only with difficulty was the " 1.7 MHz " band retained in Europe. At that time the major ITU conferences wer held every four years.

Detailed observations on and conclusions about the remarkable 5000 -mile 145 MHz Euro-Asia to Africa paths by transequato rial ionospheric reflection during Solar Cy
cle 21 have been reported by Ray cle 21 have been reported by Ray
Cracknell, Z22JV in Zimbabwe, Fred Anderson, ZS6PWV in Pretoria, and Costas Fimerelis, SV1DH in Athens (QST, December 1981). They show that high-den-
sity, ionized zones exist 10 to 15 degrees sity, ionized zones exist 10 to 15 degrees
north and south of the magnetic dip equator capable at times of providing circuits between stations up to 5000 miles apart at frequencies up to 432 MHz . They believe unique opportunity to engage in pioneer research".

Amateur satellites

Ivan James, G51J has described, in Oscar Nerossed-delta a arial of 145 MHz uplinks to amateur satellites in low orbits. The aerial is based on the principles of the
broadband, apex-fed, polygonal loop described by T. Sukiji and Tou (IEEE
Trans AP-28, No 4, July 1980). The Trans AP-28, No 4, July 1980). The
system provides some horizontal gain, resystem provides some horizontal gain, re-
quires no impedance transformer and can quires no impedance transformade from soft 8 mm diamete copper tubing. It has been tested on Oscar
9.

The six Russian amateur satellites, RS3 to RS8, launched last December have all
been transmitting telemetry data but RS3 and RS4 are not expected to be fully activated until later in the year. The satellites are in a nearly circular orbit about 1700 km above. Earth (periods of about 118.5 to lites in relatively low orbits it is proving difficult to provide accurate predictions for more than a few days at a time. The Rus sian transponders have uplink frequencies in the band 145.86 to 146 MHz and down
links 29.36 to 29.5 MHz .

In brief

The 10.1 MHz band has still not been released to American amateurs and there is opposition from other users... A "dia-
mond jubilee hamfest" to mark the setring mond jubilee hamfest"" to mark the setting
up of the original "Lincoln \& District Amateur Wireless \& Scientific Society" in
February 1921 is being organized by LinFebruary 1921 is being organized by Lincoln Short Wave Club (GSFZ, G6COL) at the Lincolnshire Showground, 4-5 miles
north of Lincoln north of Lincoln on the A15, on Sunday
May 9. The Club is aiming at a 5000 at tendance, with trade and "bring and buy" stands plus family attractions... Derby Dale \& District Amateur Radio Society has its 2nd mobile rally at Shelley High has its annual radio rally on July 11 club High School, Ombersley Road, Droitwich ...The RSGB has forecast 80 trade stands at the 1982 National Amateur Radio Exhibition at the New Alexandra Pavilion,
Alexandra Park, north London from April 15-17... Mobile rallies at Harrogate and Barry (May 23), Hull and Plymouth (May 30), Elvaston Castle, MHS Mercury (June 13).. With the legalization of c.b. radio users of 27 MHz have moved elsewhere. Recent reports indicate that an illegal group of so-called "International Breakers" have been active on about 6.6 MHz , a frequency that was a "pirate-
haunt" several years ago ... The Marconi Group recently noted the 60th anniversary of the 2 MT Writtle broadcasts in 1922 paying tribute to the efforts of the amateurs, grouped in wireless clubs, recognizing that it was their petitioning of
the Post Master General that helped set off regular broadcasting in the UK.
PAT HAWKER, G3VA

MICRO CONTROLLED LIGHTING SYSTEM

Hardware for the input side of the lighting system - the control desk. Modular construction is suggested to allow for variations in total system size

The input portion of the lighting system he control desk - transforms the positions of the numerous faders into data in
the processor memory. To maintain rocessing speed and hence the interactive perations are designed so that no proces or WAIT states are required. This is read ily achievable in the output to the dimmers by ensuring that the access time to each
dimmer is less than 410 ns (the maximum data bus access time permitted by the processor) and the use of a mappedmemory input technique was chosen. However, the analogue-to-digital converlow of the fader positions is inherenis low, and so some metrion speed is required. Three possible methods can be considered.

- Allocate a slow a-d converter to each fader which continuously tracks the analsor addresses each converter in turn to obtain data. The large number of faders in a lighting desk means that this would probably be a very expensive solution. Use an a-d converter which is fast maximum access time of 410 ns . The practical conversion time must be much shorter than this to allow for the multiplex-

John D. H. White and Nigel M. Allinson

ing of the faders and the sampling of the analogue levels. The cost of high-speed converters and multiplexers means this olution is also expensive.
Rather than set the conversion speed by he processor requirements, set the speed
by the desk operator's requirements. For instance, the maximum useable "response ms. Hence use a converter which is fast enough to perform all the conversions required in this maximum response time. The faders can then be scanned by an analogue multiplexer, converted to digital code and stored in a block of memory access this block of memory. The major difficulty with this method is the unambiguous access to a block of memory by both he processor and the converter
The final method was chosen for use in the control desk because of its lower cost. were designed on a modular basis. Each multiplexer connects one of 16 faders to a The authors are at Keele University

fig. 11. Address decoding is performed by a 4 -bit code.
common analogue bus and the faders ddressed via a 4-to- 16 line decoder by a 4 bit digital address bus. One a-d converter wodules; however, the converter and sample-and-hold circuit used have a total conversion time of $26 \mu \mathrm{~s}$ at a 500 kHz
clock frequency so one converter can lock frequency so one converter can time of 20 ms . The input circuits can be split into three parts - an analogue multiplexer which
connects the faders to the a-d converter, the converter itself and associated sampleshared memory with access control logic.

Analogue multiplexer module

 The fader connected to the common analogue bus is determined by a four-bit code, and address decoding is performed by a $4-$to-16 line demultiplexer (74154), Fig. 11 . to-16 line demultiplexer (74154), Fig. Iu. fered by level-shifting inverters. Fader potentiometers are connected to a bipolar reference bus derived from the a-d converter internal reference voltage, Fig.
As the lighting system scales the channel presets by a master preset control, as mentioned in the first article, this requires the multiplication of stored data. For any reasonable interaction time between fader
position and light output, software multiplication by the processor is out of the question. As described in the final article, fader levels are stored in log form; multiplication and division become simple addition and subtraction, and an anti-log
look-up table r.o.m. is used to provide the correct code for each output dimmer. Unusually, log-law potentiometers are used for the faders.
The potentiometers can be considered as a voltage source with an internal impedance which varies with slider position. The highest internal impedance is (track resistance) $/ 4$, that is $25 \mathrm{k} \Omega$ in this case. As the output capacitance of each c.m.0.s. switch is about 5 pF , the worst-case a common analogue bus is $2 \mu \mathrm{~s}$. With a sample time for the a-d conversion of $6 \mu \mathrm{~s}$, this gives a significant sampling error. The solution is to introduce a capacitor C_{S} to the input side of each switch. The percent age error in the final output voltage
$100 \% \times C_{0}\left(C_{s}+C_{0}\right)$ so for $C_{o}=100 \mathrm{nF}$ the error is only 0.08%. The switching time constant is now about 25 ns ; τ

WIRELESS WORLD MAY 1982

enabled, by holding OE (pin 2) low. The LF398 sample-and-hold circuit has mor than adequate specifications for 8 -bit accuracy at $6 \mu \mathrm{~s}$ sample time.
The 2.55 V a-d conv
voltage is used to bias the fader referencence eters. To reduce processing time, fader codes (positions) are first checked to deter
mine if they are zero (i.e. channel not in mine if they are zero (i.e. channel not in
use); only if they are nonuse); only if they are non-zero will further processing be performed. Contact and
end-resistance in the potentiometers gives a small d.c. offset, even when the channel is not being used. Hence a bipolar voltage reference is supplied to the faders to give a
small "deadband", for which the output small "deadband", for which the output
code is zero. These references are obtained by buffering and inverting the converter by buffering and inverting the conver

Shared memory and access control

 The memory can be accessed by either the microprocessor or the a-d converter, and multiplexed between the microprocessor and converter. It differs from conventional direct memory access techniques in that the converter and processor have separatebuses and operate independently, Fig. 13 . The shared memory consists of two AM27S07 (16-word $\times 4$-bit Schottky .a.m.), and as these devices have separate data inputs and outputs and the a-d the processor-only reads from it, no data bus multiplexing is required. Data outputs are tri-state which allows direct connection to the processor data bus. Address bus multiplexing is performed by two 74125 tri-state buffers; the appropriate one is
enabled for read or write operations. For large systems standard 250 ns memory chips may be used instead of the AM27S07's, but they will require addiional data bus multiplexing.
The eight high-order bits of the proces-
sor address bus are compared with a bit pattern set by eight wire links to determine the page location in the memory map of the input data addresses, Fig. 14. This is achieved in the same manner as the output
addressing decoding described in Part 1 . When the processor needs to read from the shared memory, a read request signal is generated before the system enable signal Egoes low, achieved by AND-ing the signals. The output is latched by the 8085
module
The ZN427E 8 -bit converter of Fig. 12
is clocked at 500 kHz , derived from the is clocked at 500 kHz , derived from the clock (generated from the 3 MHz microprocessor clock in the Quarndon de elopment system). The various contro signals and associated sample-and-hold ter, comprised of two D-type flip-flops (7474). This type of counter was chosen for its simplicity and that all states can be first state of the sequence gates. The first state of the sequence enables the
sample-and-hold circuit, the second state is used as a write request for the memory access logic, and the final state is used to clock a third D-type flip-flop. The outpu WIRELESS WORLD MAY 1982

address latch enable signal ALE to ensure got he read request signal is low before E read request signal enables the appropriate address buffer and sets the memory to read mode.

The absence of a read request signal sets The absence of a read request signal sets a-d converter address buffer. A write request signal from the converter timing control enables the memory and data is

Fig. 14. Eight high-order bits of address bus are compared with bit pattern set by eight
wire links to determine page location in memory map.
enable, E. The duration of the write re quest is long enough to ensure that any data is always stored in the memory. Since
the processor controls access to memory at all controls access to the taneous access requests occur

Continued

The authors ask us to point out that E_{1} and
E_{2} in Fig. 9 should be inverted, for which E_{2} in Fig. 9 should be inverted, for whic the two spare 7400 gates may be used

Fig. 15. READ REQUEST enables the appropriate address buffer and sets memory to read mode.

16-CHANNEL DATA ACQUISITION SYSTEM

The article concludes with a continuation of the circuit description, its operation and a sample program for scanning through sixteen channels.

Figure 8 is the timing diagram for the listening sequence. On power-up, the approximately 150 ms via R_{3} and C_{2} to reset the address latch IC_{7} and the addressenable flip-flop ICs.
To select a channel and start an a-to-d conversion, the Basic statement below is executed:
where DN is the device number ($0-30$) * is the ASCII character "* n is the ASCII equivalent of the required channel " 0 " to " F ". When the system receives a device number
DN) corresponding to that selected address switches ($S_{5}-S_{1}$ in Fig. 7), the
and 96 LS 488 will initiate a timing sequence, as shown in Fig. 8 (not to scale). The r.o.m. $\left(\mathrm{IC}_{6}\right)$ decodes ASCII information to binary data, its contents being outlined in Table

1. Four outputs of the r.o.m. give the binary data obtained by converting ASCII 0 " - "F" to binary 0000 - 1111 and additional outputs are used to detect a "太" character and a carriage return (CR) purpose.
When the first " "" character is sent (2 in Fig. 8) the * line goes low (3) and the RXST and RXRDY are pulsed (4) and (5) in accordance with Fig. 5. As the data is emoved (6), * detect goes high and sets The next data byte is presented (9), representing one of 16 address channels, and as RXST goes high (10), CLK goes high (11) and latches the address latc (14), and data is removed (15).

A Carriage Return is now presented at the data bus (16) and the CR detect (or GO ignal) goes low (17), and starts conversion in the AD7555 (to be discussed later). This signal also resets the address enable F-F
(18), while RXST pulses (19) and (20) CRD is removed (21) and GO is returned
high.
The result of all this activity is that one 16 channel multipleker) and a conversion cycle of the appropriate channel is started.

Talking sequence

The AD7555 is a $41 / 2 / 51 / 2$-digit a-to-d conversion subsystem. A free-running朝 (D) AD7555 in a 4 bit bic.d. da * Analog Devices, Limerick, Ircland

by Pat Hickey*

this application, the DMC signal is controlled by the 96 LS 488 handshake signals to transmit the information to the
GPIB. Each b.c.d. data byte is signalled by a digit line which goes low when that byte is being outputted, D0 going low for the most significant digit (sign and first digit), D5 for the least-significant digit. In this application, D5 going low is used to send a carriage return code on the IEEE-488 bus. Although this loses one digit of resolution, it considerably eases the interface Figur iming sequence. Upon receipt of a GO signal (2) (from the listening sequence in Fig. 8) HOLD goes high (3) which the free-running DMC clock is also

Fig. 9. Conversion cycle timing sequence.
RESET
$\overline{\text { CO }}$
$\overline{\text { HOLD }}$
DMC
SCC
$\overline{\text { DAV }}$
SRQ

nabled (4). Upon comparator crossing at the end of phase 0 , (the beginning of the quad-slope a-to-d conversion procedure) SCC goes low (5), enabling the 1.024 MHz lock to pin 12 .
At the end of the conversion, SCC rising edge (7), DAV goes high and remains high for two DMC pulses (9): during this period, the internal buffers are Dpdated with the latest data. After this, Low (11). This is known as the master reset and disables the free-flowing DMC clock. From this point control of DMC is taken over by the TXST handshake during read-back.
At this stage, the data presented by the TXRDY is high, indicating that data is ready; and SRQ has been brought low (12) elling the controller that a conversion has
scc
$\overline{\mathrm{DAV}}$
SRQ

Fig. 8. Timing diagram for the listening sequence.

\qquad

Readback cycle
Data is transferred to the controller via the input instruction INPUT \# DN, R\$ where DN is the device number, and $R \$$ is executed, the 96 LS 488 checks tha TXRDY is high (indicating that the first character is ready). It takes the byte and brings TXST in Fig. 10 high (1) to show hat it has received the data. This clock and loads the next data byte (4), and bring TXRDY low (5), acknowledging that the last byte has been received. TXST goes low (6), completing the sequence. This clocks DMC low (7) which brings D1 low
(8). TXRDY goes high (9) indicating that the second data byte is ready.

The sequence is repeated for D1, D2 D3 and D4 (10)-(23). TXRDY goes low received, and TXST goes low (24) to complete the handshake. This clock DMC low (25) and brings D5 low (26) The output from the AD7555 is D5 at this stage (the last and unused digit of the $51 / 2$
digits). However, a carriage return is transmitted to the controller instead, indicating the end of the string, via the data selector (IC_{11}). As D5 goes low, carriage refurn (ASCII 13) is presented to the 96LS988 (27) and TXRDY goes high
(28), indicating that it has a byte (CR) to send. D5 going low also resets the SRQ

Fig. 10. Timing of the readback sequence.
flag (29). The CR is loaded during the rising edge of handshake follows.
The data string received by th controller is a 5 character string encoding a $41 / 2$ digit word. The first character is an encoded version of the sign and most significant digit as outlined in the table. converting the input string $\mathrm{R} \$$ to a number R. A positive or negative over-range (caused by a voltage greater than ± 1.99 volts) is transmitted as " $0 \lll \ll$ " an " $2 \lll \ll$ " respectively

IF R\$ = " $0 \lll<$ " THEN IF R\$ = " $2 \lll \ll$ " THEN PRIN "-VEOVERRANGE": END
X $\$=$ LEFT $\$(\mathrm{RS} \$$,
IF X $\$="$ " THEN X $\$="+1$

IF X $\$=$ " ${ }^{\prime}$ "THEN X $\$="-0$
$\mathrm{R} \$=\mathrm{X} \$+\mathrm{RIGHT} \$(\mathrm{R} \$, 4)$
PRINT "READING = ";R; "VOLTS" PRINT
END.

Service request and status byte Service request and status in 6 of the status byte, shown in Fig. 11 Bit 6 of the status byte, shown in (nee. the case of a serial poll), high when a service is requested. The rest of the status byte contains information as to why a
service was requested. (In this case there is only one reason, an end of conversion caused by Bit 4 high.) The four 1.s.bs contain the address of the last selected channel. The status byte is read during a serial poll and handshaking is performed

System performance

As discussed, the a -to-d converter is operated as a $51 / 2$-digit system, but only
$41 / 2$ digits are used. The a-to-d conversion time varies from 1.3 seconds for full-scale negative input, to 1.7 seconds for full-scale

Fig. 11. Service request and data byte
positive input. The conversion time can be reduced by a factor of ten by operating the a-to-d converter in the $4 / 2$ digit mode.
pin-straps are necessary. - Change

- Disconnect wire from pin 22 of $I C_{9}$ to
$-\quad \underset{-}{\text { pin } 1\left(\mathrm{IC}_{11}\right) \text { and pins } 2,5,\left(\mathrm{IC}_{24}\right) \text {. }}$
- Connect wire from pin 23 (IC.IC) to pin
- Disconnect pin 8 ($\mathrm{IC} \mathrm{C}_{9}$) from +5 V and connect to GND.
In the $41 / 2$ digit a-to-d conversion mode only $31 / 2$ digits of information are
transmitted on the bus. The a-to-d converter
nals in the range ± 1.9999 volts. Resolution is 100 NV and accuracy of the prototype wire-wrap system was $\pm 200 \mu \mathrm{~V}$. The
converter exhibits no flicker or offet. Acconverter exhibits no flicker or offset. Ac-
curacy would be improved by using a printed-circuit board and by paying more attention to leakage paths through i.c. sockets, etc: it is also recommended that

Sign and most significant digit	Output of AD7555	Input to controller	ASCII equivalent
+1	0000	00110000	0
-1	0010	00110010	2
${ }^{+0}$	11100	0011100	
-0	0111	00110111	7

the operational amplifiers and reference - Adjust RP2 until pin $2\left(\mathrm{IC}_{20}\right)$ is at $\left(\mathrm{IC}_{17}-\mathrm{IC}_{21}\right)$ be kept as close to the AD7555 as possible, and as far as possible from the gives information on appropriate p.c.b. layout. Calibration procedure: +4.096 V . Correction. Four errors occurred in Fig. 7 of the April part of the article: diode D_{4} should got to +5 V , instead of ground; IC_{11} should go to +5 V , instead of ground; $\mathrm{IC}_{4} 11$
is a 74 C 157 ; IC2 on pin 42 of IC_{3} should be is a 74 C 157 ; IC2 on pin 42 of IC_{3} should be
C_{3}. It is not clear on the drawing that R_{15}
. R_{20} go to +5 V .

Two programs, for Commodore Pet and Fluke
Two programs, for Commod
1720 A , to scan 16 channels.


```
lol
```

 Elements of Microprogram ming, by D. K.
Baneriit and J. Raymond. 434 pages, hardback.
Prentice-Hall, $£ 18.70$. Prentice-Hall, $£ 18.70$.
The advantages of microprogramming over hard-wired contron logic systems are described
from a historical viewpoint prior to a thorough treatment of the theory, practice and application. A microinstruction is at a lower
level than a machine-code instruction; an Add, level than a machine-code instruction; an Add
for example, requires four microinstructions. Microprogrammed control possesses the advantages of flexibility and economy and the possibility of changing the instruction set or
architecture of a computer by altering the microprogram.
WIRELESS WORLD MAY 1982

Digital Control Using Microprocessors, by P.
Katz. 293 pages, hardback. Prentice-Hall, E16.95. Differences in emphasis between digital
processing of processing of signals and the digital control of processes are stressed in this book, which is at a
suitable level for final- year degree sudents and suitable level for f
engineers who are analogue control. Sample 8085 programs are included.
Computers and the Redio Amateur, by P Anderson. 208 pages, hardback. Prentice-Hall,
E14.20. A thorough and well presented introduction
computers in amateur radio. Presents a very readable explanation of Basic and assemblylevel programming, and goes on to describe interfacing to amateur equipment and to detail electronic keying and Morse reading.

World's Radio Broadcasting Stations, by C. J.
Both. 214 pages, paperback. Newnes Technical European f.m. radio and television transmitters are included in this comprehensive listing of stations. The book, first published in Holland,
presents the relevant information to enable a presents the relevant information to enable a
listener to identify or locate stations in the long, medium and short wavebands, giving frequency and wavelength, power, co-ordinates of the transmitters and their place names. In the case of television and f.m. radio, there are columns and whether the station transmits in stereo. A number of appendices list the addresses of
broadcasting sations and $D X$ clubs and there is a five-language glossary, a frequency/ wavelength conversion table and a table giving

CIRCUTT IDEAS

Waveform synthesizer
Here, an X/Y matrix is used to plot a given sized is divided into a number of time domains and the voltage at the end of each domain is set on a diode-chain potentiomeer. If the length of the time domain is less quency present in the waveform and the number of discrete levels is large, accurate reproduction of the original can be chieved. This circuit lends itself to computer control and expansion
By varying the 555 -clock
output waveform frequency may be adusted proportionally. A 7493 counter converts the clock signal into 4-bit binary o drive a 4 -to-16-line decoder, which in turn drives 16 output transistors through o a common point through a resistor. For certain waveforms, an integrating capacitor may be connected accross the output to filter out steps and switching pulses.
D. Somervile

Sussex

NiCd battery protection

Essentially a fold-back current limiter with low-voltage detection capability, this cir035 V on full 30 HA ad han 0.35 V on full transmit load
battery applications, is due to the use of germanium as the control element. Only ne control transistor is shown in the sim plified diagram although two in parallel are Tr_{1} is held on by a silicon transistor, Tr_{2} whose base current flows through zener D and R_{1}. With a 12 V battery D_{1} is 9.1 V . In the event of an overload or short circuit the is detected by silicon transistor Tr_{3} with mitter-base connected across the emittercollector of the germanium control transistor. Tr_{3} turns on, raising the junction of D_{1} and R_{1} to battery voltage. This action urns off $\mathrm{Tr}_{1,2}$ and they remain off while A similar action oc
or of load falls below $1 \mathrm{~V} /$ cell, i.e. below $\mathbf{0 V}$. In this case the battery voltage fails to support a current through Tr_{2} (requiring tarts to turn off, initiating the same fold back action. C_{1} is included to damp the old-back loop. A low-value resistor R_{2} is used to control thermal run-away of Tr_{1}. . B. H. Stead Zimbabwe

Glitch detector

Using two fast monostable multivibrators, such as e.c.l. MC10198's, it is possible to detect extremely short glitches. These de-
vices provide a very short pulse, but although the pulse is short, it is at least twice as long as anticipated glitches. As the iming diagram shows, normal pulses are Vied using an AND gat
Dastellanza
Italy

Wideband f.m
 demodulator

Operation of the demodulator relies on the inear relationship between power consumpuion ($I_{D D}$ where $V_{D D}$ is fixed) and operating frequency of c.m.0.s. logic cir-
cuits. A 4013 B D-rype flop-flop is used because the internal clock elements have a igh clock rate capability which extends beyond the normal range of usage. Measurem works satisfactorily from d.c. up to and will work satisfa
The flip-flop is clocked by logic level transitions and the resultant current flow converted to an output voltage by the curent mirror and output components. The

Constant-current supply
This circuit is extremely simple, uses no special components, yet has a very wide range of output currents, $2 \mu \mathrm{~A}$ to 100 mA in sis ranges. The only limitation to output formance that is comparable to more expensive equipment.
$\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ and IC_{1} comprise a constantvoltage supply that can be varied from 0 to 100 V by varying $\mathrm{V}_{\text {ref. } 1 .}$. When testing this section, no change in the outpul voitage
could be detected on both analogue and $31 / 2$-digit voltmeters with change of supply voltage from 150 V to 250 V and with sudden application of a 100 mA load. Tr_{3} and IC_{2} comprise the constant-cur rent section, R_{c} is the current sensing re-
sistor. By choosing the appropriate value of R_{c} or switching different values, the required current range is obtained.
The voltage drop across R_{c} which equals
$V_{\text {re }}$ was chosen to be about 0.7 V so that $V_{\text {ref. } 2}$ was chosen to be about 0.7 V so that exceed this value plus the drop in the amWIRELESS WORLD MAY 1982
current mirror ensures a minimal interacion between supply voltage and current in he flip-flop - a higher performance miror could be constructed using spare de ices in the 3046 array if required mum input frequency (the output can swing the full supply voltage, limited only be quiescent device consumption and $V_{c e}$ saturation) and the capacior provides low noise. Values shown have been used in a 0.7 MHz f.m demodulator prior to "birdy" filtering and stereo decoding. G. C. Hammond Nuneaton
meter circuit, a total of less than iV A multi-turn potentiometer less than 1. enabled accurate current adiustment. Capacitors C_{1} and C_{2} suppress oscilladions that would otherwise occur; D_{1} and D_{2} protect Tr_{2} and Tr_{3} from possible negaive voltages that may occur due to switching transients. Switching R_{c} during $\underbrace{\mathrm{Tr}_{1}}_{-1}$

peration proved to be of no harm, but IC C_{2} may need some extra protection if in than 30 V is used frequently (a diode betrueen pins 3 and 7 might help. Ed).
Hussein A. Eassa
Cairo University
Egypt

DIGITAL FILTER DESIGN

In the next few years digital filters will be increasingly used in place of their analogue counterparts, not only on account of their accuracy and versatility but also their rapidly declining cost. Authors Cheetham and Hughes introduce the basic theory in this article, give design techniques for a useful class of filters in the next, and describe their implementation by special-purpose microprocessor in a third article.

The conversion of an analogue signal into digital form requires a process of sampling equal intervals, say T. Each sample is then converted to a binary number proportional
to the sampled voltage. The sampling process requires that the analogue signal be bandlimited to below the Nyquist frequency $1 / 2 f_{\mathrm{s}}$, where $f_{\mathrm{s}} \approx 1 / T$. This may be achieved to an acceptable accuracy by lowpass filtering the analogue signal before
sampling. Failure to do this will result in frequency components above the Nyquist frequency being folded back into the range below $1 / 2 f_{s}$, causing a form of distortion kuown as aliasing.
Further distortion is introduced by the finite wordlength or number of bits; the true voltage must be truncated or rounded to one of the discrete levels which corresond to a permissible binary number. The may be reduced to acceptable levels by a judicious choice of wordlength and sampling rate.
The discrete-time signal produced by sampling an analogue signal is defined to corresponding to a sampling point at time $t=n T$ for $-\infty<n<\infty$. Such a sequence is always referred to by its value at $t=n T$. Thus the sequence $\{x(n)\}$ is defined as
$\{\ldots x(-2), x(-1), x(0), x(1), x(2), \ldots\}$
with element $x(n)$ occuring at $t=n T$. By his definition, $\{x(n-k)\}$ denotes the sequence whose value at $t=n T$, is $x(n-k)$. Hence $k>0,\{x(n-k)\}$ is a delayed ver-
sion of $\{x(k)\}$ where each element is sion of $\{x(k)\}$ where each element is
shifted k places to the right and is thus delayed by k sampling intervals. It is often assumed, and arranged in practice, that elements of a discrete-time signal are zero case. A discrete-time signal ways be the digital signal when its elements are represented by fixed-wordlength binary numbers. Not all signals encountered in he study of digital fiters originate as analogue signals. Many digital signals, such as trated, are readily generated in digital form but would be unlikely to occur in that precise form as sampled analogue signals. Further, a perfectly rectangular digital version of a bandlimited analogue square wave. Conversion from a digital to an analoge signal involves reconstituting the sampled 52

by B. M. G. Cheetham and P. Hughes*

The importance of digital filters as

 devices for processing digitized sigintroduction of special-purpose microprocessors and integrated circuits specifically designed for signal processing. Using the numerical processing power of such circuits,digital filters are able to perform digital filters are able to perform analogue filters. For example, the Inel 2920 analogue signal processor with its analogue/digital converters cts as a one-chip replacement for an analogue filter. ing the frequency responses of estab ished forms of analogue filters, digial filters have a wide range of other applications which take advantage of
the much greater power and flexibility of numerical processing as compared with analogue methods, and the filter may not easily be described as having particular type of frequency res originate from analogue sources, and numerically generated signals are encountered in many applications. In eveloping the basic theory of digital fiters, therefore, it is best to consider them as general devices for processing han as digital realisations of analogue filters. But before doing this, this article briefly considers the sampling pocess often used to produce digita representing such signals.
voltage levels as electrical pulses at the ampling instants, and low-pass filtering to quist limit. In practice, the sampling rate mployed for analogue to digital conversion is normally considerably greater than wice the highest frequency of interest to equired may be relatively simple and inexpensive.
A digital signal may be subjected to umerical operations such as addition, subtraction and multiplication by passing the sequence of numbers (referred to as
samples) through some form of digital

processing system. Such a system could be a program implemented on a main-frame scientific research computer normally
used to process blocks of stored digital used to process blocks of stored digital signal samples for analysis some time later
Alternatively, the system may be a piece of special-purpose hardware consisting of some digital integrated circuits and/or microprocessor. With such a dedicated hardware system the processing may be carried out in real time so that an outpu stream of samples with at most a smal fixed delay between each input sample and its corresponding output sample. In this case the digital system, with associated direct replacement for such as a filter or a modulator. Digital processing systems can be designed to carry out a very wide range of operations on digital signals. A digital ates the output sequence $\{y(n)\}$ from an input sequence $\{x(n)\}$
$y(n)=\sum_{i=0}^{M} a_{i} x(n-i)-\sum_{j=1}^{N}$
$b_{i} y(n-j) \quad$ (1)
at time $n T$ for $-\infty<n<\infty$. This is a difference equation of order M or N, whichever is the larger. When $N>0$ the filter is said to be recursive as previous output samples are used in the calculation $a_{0}, a_{1}, \ldots a_{\mathrm{M}}$ and $b_{1}, b_{2}, \ldots b_{\mathrm{N}}$ are fixed (time invariant) multiplication constants which characterize the effect of the filter. The design of a useful digital filter requires he selection of these constants using design techniques corresponding to those
adopted for calculating component values in analogue filters, and an example for a class of digital filters is given in a subsequent article. As a simple example, conorder difference equation

$$
y(n)=x(n)+b y(n-1)
$$

where b is a constant. This filter is shown in diagrammatic form in Fig. 1, illustrat-

FIg. 1. First-order digital filter applies signal $X(n)$ to produce an output $y(n)$.

Fig. 2. The discrete-time impulse $\delta(n)$ is
defined only at sampling points $t=n T$ $\delta(n)=\left\{\begin{array}{l}0, t=n T, n \neq 0 . \\ 1, t=0\end{array}\right\}$
ing the three basic operations required for any digital filter: addition, multiplication equence $\{x(n)\}$ equal to the discrete-time impulse sequence $\{\delta(n)\}$ of Fig. 2, with

$$
\mathcal{\delta}(n)= \begin{cases}1, n=0 \\ 0, & n \neq 0\end{cases}
$$

The output from this simple filter may be calculated by hand. Assuming $y(-1)$ to be zero, then

$$
y(0)=x(0)+b y(-1)=1
$$

Following on from this

$$
\begin{aligned}
& y(1)=x(1)+b y(0)=b \\
& y(2)=x(2)+b y(1)=b^{2},
\end{aligned}
$$

b^{2}, and so on.
Hence the output will be the real exponen tial sequence:
$\{y(n)\}=\left\{\ldots, 0, b, b^{2}\right.$,
., $\left.b^{r}, \ldots\right\}$ (3)
illustrated below in Fig. 3 for $b=0.7$. If $|b|>1$, the sequence $\{\cup(n\}$ would would then be said to be unstable. A stable filter is one which produces a bounded elements do not increase without limit as increases or decreases (looking backward in time) for any bounded input sequence. As the input signal in the example above is the discrete-time impulse $\{\delta(n)\}$ the out put obtained is termed the impulse res
ponse of the filter. If the input had been $\{\delta(n-k)\}$, a delayed version of th discrete-time impulse, the output would have been $\{y(n-k)\}$ a similarly delayed version of $\{y(n)\}$.
e response of a general filter, as given by equation 1 , to be
the sequence $\{h(h)\}$, consider its response to an arbitrary input sequence $\{x(n)\}$. Such a sequence may be expressed as th weighted sum of delayed unit impu

$$
\{x(n)\}=\left\{\sum_{k=-\infty}^{\infty} x(k) \cdot \delta(n-k)\right\}
$$

If only bounded input and output sequences are allowed, it may be shown that the digital filter defined by equation 1 is $\left\{x_{1}(n)\right\}$ and $\left\{x_{2}(n\}\right.$ produce outputs $\left\{y_{1}(n)\right\}$ and $\left\{y_{2}(n)\right\}$ respectively, the res ponse to $\left\{\lambda x_{1}(n)+\mu x_{2}(n\}\right.$ will be $\left\{\lambda y_{1}(n)\right.$ $\left.+\mu y_{2}(n)\right\}$ for any values of λ and μ. By of scaled impulses as given by (4) one de duces that the response to $\{x(n)\}$ is WIRELESS WORLD MAY 1982

$$
\{y(n)\}=\left\{\sum_{k=-\infty}^{\infty} x(k) \cdot h(n-k)\right\}
$$

The right hand side is the convolution of $\{x(n)\}$ with $\{h(n)\}$, often denoted by variable it may be shown that an entirely equivalent expression is

$$
\begin{aligned}
& \{\varphi(n)\}=\{h(n)\} \\
& =\left\{\sum_{k=-\infty}^{\infty} h(k) x(n)\right\}
\end{aligned}
$$

given earlier sequence $\{y(n)\}$ with

$$
y(n)=1 / 2 A\left(H\left(e^{j \omega}\right) e^{j \omega n}+H\left(e^{-j \omega}\right) e^{-j \omega n}\right)
$$

Denoting by $\phi(\omega)$ the argument of $H\left(\mathrm{e}^{(\omega)}\right)$ and noting that since all values of $h(k)$ in equation 3 are real, $\left(H\left({ }^{j \omega}\right)|=| H\left(e^{-}\right.\right.$
the argument of $H\left(\mathrm{e}^{-j \omega}\right)=-\phi(\omega)$:

$$
y(n)=1 / 2 A\left|H\left(e^{j \omega}\right)\right| \times
$$

$\left(\mathrm{e}^{j\left(\omega_{n}+\phi(\omega)\right)}+\mathrm{e}^{-j\left(\omega_{n}+\phi(\omega)\right)}\right)$
$=A\left|H\left(\mathrm{e}^{j \omega}\right)\right| \cos (\omega n+\phi(\omega))$
Hence the modulus and argument of the complex-valued frequency response H (ei ${ }^{j}$) output relative to a sinusoidal input of radian frequency ω. Bearing in mind that

$$
\int_{-\pi}^{\pi} \mathrm{e}^{j \omega(n-k)} \mathrm{d} \omega= \begin{cases}2 \pi & \text { if } n=k \\ 0 & \text { if } n \neq k\end{cases}
$$

it may be deduced from equation 3 that
\qquad
The transformation from the sequence $\{h(n)\}$ to the complex function $H\left({ }^{j \omega}\right)$ of
ω defined by equation 5 is a Fourier transform; the reverse process given by equation 6 is an inverse Fourier transform. As an illustration of frequency response, consider again the simple digital filter defined by equation 2 . By equations $3 \&$

$$
H\left(\mathrm{e}^{j \omega}\right)=\sum_{k=0}^{\infty} b^{k} \mathrm{e}^{-j \omega k}
$$

which may be summed for $|b|<1$ as a geo metric series, giving

$$
\begin{equation*}
H\left(\mathrm{e}^{j \omega}\right)=\left(1-b \mathrm{e}^{-j \omega}\right)^{-1} \tag{7}
\end{equation*}
$$

The function $H\left(\mathrm{e}_{\mathrm{j}}\right)$ is defined as the frequency response of the digital filter and is a complex number for any value of ω (subject to the convergence of the series in
equation 5; by the definition of stability

Fig. 3. Output sequence obtained by feed in Fig. 1 with, $b=0.7$ is the real exponential sequence $y(n)=0.7^{n}$ for $n>0$.

Evaluating this expression for $b=0.7$ gives $\left|H\left(\mathrm{e}^{j \omega}\right)\right|=(1.49-1.4 \cos \omega)^{-1 / 2}$ and $\phi(\omega)=\tan ^{-1}\left(\frac{0.7 \sin \omega}{0.7 \cos \omega-1}\right)$

Frequency response graphs of gain, $H\left(e^{\omega}\right)$, and phase $\phi(\omega)$ over racian frefrequencies from zero to the Nyquist, are shown in Fig. 4(a) and (b).

z-transform

Analysis and design of digital filters is greatly simplified by the use of the z transform which is analogous to the
Laplace transform for analogue filters.

Fig. 4. Frequency response of a digital
filter (in this case Fig. 1 with $b=0.7$) chara filter lin this case Fig. 1 with $b=0.77$ charac-
terizes its response to sampled sinusoidal inputs of the form Acoswn. Amplitude response at top, phase response bottom.

The z-transform of the sequence $\{x(n)\}$ is defined as the infinite sum

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

for a complex variable z. Notice the similarity between this expression and equation 3 ; setting $z=\mathrm{e}^{\mathrm{j} \omega}$ gives $X(z)$ as the
Fourier Fourier transform of $\{x(n)\}$. The $z-$ is $H(z)$ and hence the setting of $z=\mathrm{e}^{(\omega)}$ in this case gives the frequency response already defined as $H\left(e^{j i \omega}\right)$. The equation above may therefore be thought of as a Also, the z-transform of the delayed sequence $\{x(n-1)\}$ is $z^{-1} X(z)$ as each coefficient of z^{-n} is shifted along by one place. n general the z-transform of $\{x(n-k)\}$ is ${ }^{-k} X(z)$. Also notice that the z-transform f the impulse $\{\delta(n)\}$ is $\Delta(z)=$ a digital filter as defined by equ output gives
$Y(z)=\sum_{i=0}^{M} a_{i} z^{-i} X(z)-\sum_{j=1}^{N} b_{j} z^{-j Y(z)}$
hich may be rearranged and expressed in he form

$$
Y(z)=\left[\left(\sum_{i=0}^{M} a_{i} z^{-i}\right) /\left(1+\sum_{j=1}^{N} b_{j} z^{-j}\right)\right] X(z)
$$

The expression in square brackets above is 54
$\{x(n)\}=\{\delta(n)\}$ then $Y(z)$ becomes equal to the z-transform of the impulse response Hence $H(z)$ may be expressed directly terms of the multiplier coefficients, and directly from this expression by setting $z=\mathrm{e}^{i \omega}$. This may be verified for the simple filter defined by equation 2 wher $H(z)=1 /\left(1-b z^{-1}\right)$ and hence an expres sion for H (e ${ }^{j \omega}$) identical to equation 7 . The transfer function of a filter, $H(z)$, polynomial expressions in z^{-1}, the roots of which are the poles and zeros of $H(z)$. Hence

$$
H(z)=a_{0} \prod_{i=1}^{M}\left(1-z_{i} z^{-1}\right) \int_{j=1}^{N}\left(1-p_{j} z^{-1}\right)(8)
$$

assuming $a_{0}=0$, where the poles are p_{i} and the zeros by z_{i}. Expanding by partial frac tions (assuming there are no repeated roots other than at $z=0$,

$$
H(z)=\sum_{i=0}^{M-N} B_{i} z^{-1}+\sum_{j=1}^{N} A_{j} /\left(1-p_{j} z^{-1}\right)
$$

which expresses $H(z)$ as the weighted sum of sequences whose z-transforms are z^{-1} and $1 /\left(1-p_{i} z^{-1}\right)$. Clearly z^{-1} corresponds o a delayed impulse $\{\delta(n-i)\}$. By referfilter whose transfer function is $1 /\left(1-b z^{-1}\right)$ it may be deduced that $1 /\left(1-p_{;} z^{-1}\right)$ is the z-transform of an exponential sequence of the form
$\left\{\ldots 0, \ldots 0,1, p_{\mathrm{i}}, p_{\mathrm{i}}^{2}, \ldots p_{\mathrm{i}}^{r}, \ldots\right\}$
The roots of a polynomial may of course be complex numbers and therefore the sequences above may be complex. As complex roots occur in conjugate pairs, the sequ-
ence obtained for $\{h(n)\}$ is always real. A non-recursive filter, i.e. one with $N=0$, will have an impulse response with $h(n)=B_{\mathrm{n}}$ for $0 \leqslant n \leqslant M$ and zero otherwise. Such an impulse response is termed finite
as only a finite number of elements are

5. Argand diagram shows pole and wich determines the frequr repig. 1 which determines the frequency response
non-zero. The impulse response of a recur sive filter ($N>0$) will include at least one therefore be of orm in equation 9 and ca a filter to be of infinite duration. For such correspondingeto e, the above sequence must be a decaying exponential. Hence stable filter must have $\left|p_{j}\right|<1$ for all its poles.
Considerable insight into the behaviou of digital fileters may be gained by plottions of poles and zeros as values z. Such a diagram is shown in Fig. 5 for the transfer function $H(z)=1 /\left(1-0.7 z^{-1}\right)$ which has pole at $z=0.7$, and a zero at $z=0$. The points for which $z=\mathrm{e}^{j \omega}$ on this plane corre-
spond to the unit circle with centre $z=0$ and radius 1. The frequency response $H\left(\mathrm{e}^{j \omega}\right)$ is obtained by an evaluation of $H(z)$ for values of z on this unit circle, where ω is the angle subtended from the real axis to the point corresponding to $z=\mathrm{e}^{i \omega}$. Fre opposite sides of the unit circle on the real axis.
A stable filter will have all its poles in side the unit circle $\left(\left|p_{i}\right|<1\right)$. From equation o the value of $H\left(e^{j 0}\right)$ at multiplied by the product of the distances from that point to each of the zeros, divided by the product of distances to the poles. The phase of $H(z)$ may also be readily calculated. Consequently zeros close to
the unit circle correspond to frequencies for which $\left|H\left(j^{j \omega}\right)\right|$ is close to zero. Poles close to the unit circle produce large values of $\left|H\left(e^{i \omega}\right)\right|$, the closer the pole, the larger the modulus. Such poles can also affect $\phi(\omega)$ resulting in severe The design of digital filters with specified frequency responses is often car-
ried out by locating zeros and poles at appropriate points on the z-plane. Design non-recursive filters: refer for details to any of the standard references, some of which are listed below. Non-recursive filters have certain advantages of guaranteed stability and easily specifiable phase char-
acteristics, but tend to involve a large number of arithmetical operations which could make them more difficult to implement. Recursive filters are perhaps still more commonly used, and therefore the dure for this class of filters. continued

Further reading

Digital Signal Processing, by A. V. Oppenheim and R. W. Schafer, Prentice-Hall, 1975 . Theory and Application of Digital Signal
Processing, by L. R. Rabiner and B. Gold, Prentice-Hall, 1975.
Digital and Kalman Filtering, by S. M. Bosic,
Edward Arnold, London 1979 dward Arnold, London, 1979 . Macmillan, 1980 . igital Signal Processing Thorry, Design and mplementatio
Wiley, 1976 .

What brings home the world's best broadcasting system at the touch of a button?

Simple.

The OUADFM4

Simply write or phone for more information to

EP4.000 bpron banuator

Programs 2704/2703/2716(3)/2508/2758 2516/2716/2532/2732

* Emulates same devices with a single keypress
$\star 300$ ns access time in emulation mode
\star Editing facilities - data entry, match, display,
shif, move, clear, define, block program, et.
Input/output as standard - RS232 (ASC11-hex)
20mA, printer, cassette a DMA
\star Video output for memory map display
* Expandable with 2764 adaptor \& Bipolar Prom
module
\star Fully buffered cold ZIF socke
\star Price $£ 545+$ VAT $+£ 12$ deliver

P4.000 Proouction

\star Program 1-8 devices simultaneously \star Programs same devices as EP4000
\star No personality cards needed
\star Simple operation
Ł Blank check \& verify functions
\star Powered down master \& copy sockets
\star Individual socket LED indicators
\star Mode indicators for blank check, program verify, and socket power down
\star Price $£ 545$ + VAT + £12 delivery

- 14 EPROM capacity

\star Safety interlocked
\star Convenient tray loading of devices
\star UV141 (with timer) £78 + VAT

- UV140£61.50 + VAT

WE HAVE MOVED

GP Industrial Electronics Ltd.
Unit E, Huxley Close
Newnham Industrial Estate
Plymouth PL7 4JN
Tel: Plymouth (0752) 332961

EETTERS

A Charter for

 SOLATION "It leaves us, says Hartley, with a conception of the engineer as no more than a high-grade
technician, a functionary not fully professional

This conforms to a view held in this country a a previous age - 1920-50. But it surprises me that you did not correlate the holding of this
view with the photo on page 37 of that issue, where "engineers practice climbing on these short poles". By our defimitions, if British engi-
neers still spend time climbing poles then we neers still spend time climbing poles
would have to say they are technicians.
The engineering profession down-graded it elf for too long be accepting such jobs, even in starting salaries of US $\$ 22,000$ or thereabouts? J. D. Ryder,

Michigan State University

THE DEATH OF

ELECTRIC CURRENT

Ivor Catt's letter in the February issue only
serves to ellustrate the deficiences in his knowledge of mathematics and conventional CM theory and the confusion of his own theory. Can he not see that $E / H=\sqrt{\mu / E}$ is wrong and
$H=B / \mu$ is right for mathematical reasons?
There is indeed a small chance that the latter There is indeced a smanl chance thatical reasons?
does not describe correctly the true physiter does not describe correctly the true physiss of magneius
sound.
His diff
His difficulty with step waveforms on transmission lines becomes clearer. Of course the
conduction and displacement currents are both present in the line together, but only as the wave advances. The displacement current $d D / D / T$ is associated with the wave front only (D is constant elsewhere). It the wave reaches a coorrect)
resistive termination d $D / d T$ ceases, the step is erminated and the resistor begins to absorb the energy in the wave. It is precisely because the
displacement current flows across the transmisdisplacement current flows across the transmis-
sion line that the wave is called a transverse EM wave and the displacement current is distinct from the conduction current. The energy asso-
ciated with the displacement current is stored and can be recovered later (cf. radar pulse generators). It can be seen from Mr Catt's own E vector ($\mathrm{d} B / \mathrm{d} T$) and the displacement current vector (dD/dT) are at right angles, therefore $E \times H$ is purely reactive. This is analogous with are 90° out of phase. The H vector associated with the conduction current is also at 90° to the E field and again no energy is dissipated; the
power flow is in the direction of the conduction current. In a third case, the transmission line is resistive and there is a component of the E field along the line in a direction opposite to the
current flow. Here some of the power is dissipated.
Mr Catt is further confused with regard to electric charge. The existence of electric charge is not a theory; it is a fact like the sun and cool in
South Wales. Since one of the manifestations of electric charge is electric potential, any theory of electric waves that dispenses with electric
charge must be rubbish. It is the objective of WIRELESS WORLD MAY 1982

En theory to exp
aceri to explain the various manifestations
Mr Catt's mathematics is wrong; he does not
understand the application of vectors to TEM waves and he does not distinguish fact from
I'm sorry if he believes his version of Maxwell
In is correct; it isn't. If he was right in his belie some changes would indeed be needed and radios would not wo
Antwerp,

RECHARGING DRY

CELLS
With reference to the letter from Mr D. F. Caudrey (Lenter, August 1981 I I should like to
offer my findings on the subiect, and also beg offer my findings on the subject, and also beg
more information from the author. more information from the author.
I have been using the same four SP2 cells for about 11 weeks, five days a week, approximately 1 hour per day. At first I would recharge hem (using the circuit and method due to Mr
Caudrey) for an hour or two, twice a week but now Ineed to re-charge every day for about $2-3$ hours to get an hour's use from the cells. Al-
hough I Im convinced that the method is feasthough I am convinced that the method is feas-
ible in practice, I do not seem to have had the same success as Mr Caudrey, and so I would like to hear from Mr Caudrey his recommendation
about charging, i.e. when and for how long. S. P. Narey,

Idle,
Bradford.
MILLIMETRE-WAVE

LENS AERIALS

have read Dr K. L. Smith's article on millimestralkia as I was in the lens business in the early 1950s) and congratulute him on an excelent reintroduction to an almost forgoten topic. Has it occurred to Dr Smith that his method
of fabrication would be equally applicable to of fabrication would be equally applicable to pentine lens? This form of lens can be assem-
bled from a set of plates which have been bled from a set of plates which have been
crimped into sinusoids. Propagation is in the crimped inde and the quasi-refraction index is
TEM mode simply the ratio berween the widths of crimped
ind uncrimped sheets. Dr Smith has ooly to and uncrimped sheets. Dr Smith has only to
stack a set of crimped sheets and machine a stack a set of crimped sheets and machine
prorile to produce see of pathlength lenses. The serpentine lens has two advantages over
the H_{01} wave-guide lens. It is unaffected by the spacing betweern plates, so tolerances are easier, spacing between plates, so tolerances are easier,
and by arranging for the surfaces of the sinusoiand by arranging for tha surfaces of the sinusoi-
dal sheest to be normal to the phase surface of the lens where they meet this surface, the lens-
medium will be matched to free-space, avoiding the alternating $\lambda / 4$ and $\lambda / 2$ transpormers which
degrade the side-lobe performance of a wayedegrade the side-lobe performance of a wave-
guide lens in which the refractive index has been pushed too far from unity.
The part-length lens may have disadvantages
as well, but since to the best of my knowledge as well, but since to the best of my knowledge
one has never been produced for operational one has never been produced for operational
use, perbaps Dr Smith will identify them by investigating the first thirteen models? S. S. D. Jones Worcestershire

The author replies:
was pleased to hear that Mr Jones enjoyed the very interesting point regarding the development of the serpenine plate lens aerial,
which he is right in ascribing to Winston Koch which he is right in ascribing to Winston Koch, 1 agree on the added advantages of the corru--
gated conductor planes, but I did not consider employing them in the lens I made. Mr Jones raises a very interesting possibiility, as I also
agree with him that there would not be any fundamental problem in turning out such modfied lenses by the same method I originated. It would be most interesting to see an attempt
made practically on such a design. We should thank $M r$ Jones for the suggestion.

LINEAR POWER

AMPLIFIER

Operation of the output transistors at an approximately constant low voltage, at recom1982, p.40), can be used to give (Letter, Jan. fier which retains to a considerable extent the efficiency of a class-B amplifier.
The low-voltage transistors are operated in class A from a low-voltage supply, perhaps +2 ,
$0,-2$ as suggested by Mr Rawson-Harris, and this supply is carried up and down by a slave class-B amplifier of gain +1 . The class-B amplifier may produce noticeable crossover distor-
tion; but as the effect of the distortion (or error) is only a small modulation of the almost constant c -e voltage of the class-A transistors its
effect on the performance of the complete amfffect on the performance of the complete am-
plifier may be expected to be very small. An plifier may be expected to be very small. An
outline of the system is shown in the diagram. As a piece of engineering the system cannot be rated very highly: Peter Walker's Qurd amplifiers are much simpler, and their distortion is he economics of producing an amplifier may be different for the amateur constructor and expetimenter, and this alternative class-AB system may herefore be of interest. It his been used in new to many Wirreless World readers

Mr Rawson-Harris calls his triples curren amplifiers. Certainly their current gain is high; but it is poorly defined, having at least the
current-gain spread of their first transistors, they have high inlet resistance. I feel that current amplifier should approximate to a sho circuit and present a low resistance. To me the ain of many hundreds as a common-mitter main of many hundreds as a common-emitter voltage gain $\rightarrow 1$ very closely.
E. F. Good
O. Durhar

CLANDESTINE RADIO
Pat Hawker's review in the January and Feb to technical people which is noticeably omitted the many books dealing with Resistance an telligence activity in World War III Inrors appear and among many statements of fac one finds items which are the opinions or deduc tions of a particular source. Some correction
which I am qualified to make, will, I hope, contribute to a valuable summary. SOE began to design and make radio equip
ment before mid-1942, ment before mid-1942, particularly the Type A
Mk1 and the B Mkl in 1941. The "early French Resistance suitcase ser" illustrated in p .82 of the February issue was indeed the Type A MkII
which I designed in late 1941 , just after the completion of the B MkI. This set was produced completion of the B MkI. This set was produced
by Marconi, first at Writtle then at Hackbridge in quantiry believed well over 1000. Many wer allocated to Russia as well as to France and
other areas of Occupied Europe, but details of distribution and usage are not available so far The moduar form of the A MkII, like that of
the later B MkII, was to assist in assembly onto the later B MkII, was to assist in assembly onto
various housings, transport and concealment, as well as service by substitution.
Operational demand for a one-piece unit of
the smallest size led to the reengineering of the the smallest size led to the re-engineering of the
A MkII into the A MkIII, by Marconi production engineers. The main difference in the de-
sign was in the replacement of sign was in the replacement of the TT11 TX
valve by the $7 C 5$, which had then become availvalve by the P, which had then become avail-
able. Volume production from about the end of 1942 onwards totalled, I believe, over 4000 .
The " A " series was designed for short " A " series was designed for short to medium-range communication particularly to
UK from France, Belgium, Holland, Denmark and Norway. While the "ß" series was intended
for medium to long range in Balkan, Middle for medium to long range in Balkan, Middle
East and African countries as well as Southern France. A "C" series. was considered
but not developed, but a B MkIII was produced especialy for the Frir East and long-range jungle
patrols. The transmitter was c.w. and a.m.r.t. and like the receiver, was hermetically sealed, positively buyyant, and entirely powered by a
pedal-generator. The station was pedal-generator. The station was in two man-
packs. The tendency of technical people to contract tites led to the general use of "A A ", "B II" etc., but the term " B 2 minor" is a SOE development was. not centred on Gor-
hambury at St. Albans, which was only one of many large country houses used, but at of the Frythe in Welwyn. Producton of the B MkI Stonebridge Park, employing mainly Services
personnel: RAF, Royal Signals, REME, ATS
output reaching 400 per month in 1944 I will not contest the relative merits of SIS Pat Hawker is to another, following our one ive wartime employment and loyalties, bu would beg to differ, since the operatuiosal, re
quirements differed. The SOE sets were essenn ially para-military, with far wider applicatio han to agent use in Northern France, anplication for a greater variety of operators. Too litte, has been id of the Polish sets and the Polish contribu The OSS started development of suitcase sets
The from about mid-1942, learned rappidyly, from
British and their own experience, and made Britsh and their own experience, and made historian tends to present the story as seen
hrough the records and reports of his counhrough the records and reports of his countrymen, and frequendy dates are omitted, so
that the order in which facts are presented im that the order in which facts are presented im-
plies their precedence. Reading G3V's account
of air-to-ground links (February, p.83) he of air-t--ground links (February, p. 83) h
quotes first MI- 6 une of "early American f . quipment on 30 MHz " "then "SOE develope 450 MHz S-Phone" and gives one date en American RT sets before 1944 , the use the American RT sets before 1944, about th
time of the "Joan-Eleanor" proiect, but the S. phone was working in 1941, and my colleague Charles Bovill tested the first airborne equip
ment on a flight in Wellington No L7772 on October 6th 1941. The air-set was a prototyp superhet tuning through $60-70 \mathrm{~cm}$. It was use in Operation "Claude" on October 28sth in Whitley Mk.V. The S-Phone ground-set wa Maior Hobday, both of Royal Signals. The airet was destroyed in a crash later in 1941, bu replaced by a asper-regenerative air-sesten days
later, by a rapid development by FLLt Bovill.
This remand This remained standard operational equipmen by 138 and 161 Squadrons until the productio
of the Homing Aircraft-superhet in 1943. I anuary 1944, a USAF Liberator was fitted with Homing S-phone gear, and in summer of that year F/Lt Bovill equipped and flew with thirt C47 aircraft of the American 60 eth Group Troop
Carrier Sqdins, at Brindisi. These a aircraft used s -phone continuously in operations until th
end of the war, mainly over Albania, Yugos and N. Italy. This is only a small part of the S phone story, appropriate now in context wit John I. Brown , G3EUR
John I. Brown, G3EU
S. Ockendon,
(late Major R. Signals),

THENEW

ELECTRONICS

am afraid that my own experiences with inMr Jaques in the January 1982 issue. I could hear an echo of my own
iences as I read it through.
I like to finish an interview with a few simple technical questions, not to cuuse the interviewee any difficulty but to ensure that his understanding of the fundamentals of the subject is
dequate. In the situation, slick, polished textbook answers are not expected but the right
taproach to achieving a satisfactory anser is approach to achieving a satisfactory answer is
expected. At this stage of the interview the is expected. At this stage of the interview the in-
terviewees are likely to be reasonably relaxed, and frequently have done a good job on selling

themselv

looks good.
My open ceeding a a capacitior througha a resistor and aswitcy in series. Assuming the capacitior is discharged arime zero, tell me how the capacitor voltage et on to the second part frequently we do not et on to the second part (adding a series induc-
or) or the third part (replacing the battery with a sine-wave generator). Perhaps the interview
third part (replacing the battery wid situation is too upsetting, I try to provide not loo serious help and guidance. Nevertheless one
hopeful believed that the linear network with a inusoidal input produced squarewaves. It is very difffcult explaining to the MD that, in spite of the excellent paper qualifications of
hose already interviewed, further interviewing will be necessary.
will be necessary
N. A. Haran,
St. Albans,
St. Albans
Herts.

\section*{INTENTIONAL LOGIC

SYMBOLS

SYMBOLS

In reply to Christopher Hudson (Letters, Feb-
ruary 1982) the question as to whether a NAND gate is performing the function of positiv NAND or negaive NOR is to me as daft as empty. The answer is both, not merely because the truth table says so but because, as an exper ienced logic designer I can, and do think of it a requently I think of a gate in terms of its murt table. If then I, as the designer of a circuit, one?
Logic 1 and 0 are two states of complete
equality: one is not merely the absence of th equality: one is not merely the absence of the example, may be responsive to one state example, may be responsive to one state rathe
than the other, but this is a function of the inpur not of the signal feeding it. Mr Hudson does no

WIRELESS WORLD MAY 1982

define what he means by the assertive state, I can only assume that he means the state which sserrs itself, but that gets me no further. Even in the case of flip-flop 'clear' inputs, one could
have an active-high and an active-low flip-flop connected to the same signal. How can the sig. nal itself be thought of as having an assertive
state? Mr Hudson illustrates the point himself in the mess he gets into over his Fig. 2. Essenrially a 1 or 0 on the select are equally assertive nd I maintain that, far from
represents the general case.
In a practical design what may start out in the
raft design as Fig. 1(a) may finish up as Fig . (b). The question is, is the fwo-input Nor performing the function of low-assertive
NAND or high-assertive NOR? If Fig. 1(a) represents the intention then it is performing
both. Should we draw it twice? Well why not, oth. Should we draw it twice? Well why not,
we are already being asked to show the outputs we are aready being asked to show the outputs
on flip-flops twice, use twice as many logic symbols as before, accept that identical devices may have different symbols, that a connection
may be shown broken with a naming ceremony in between and even to accept that an inherendly ymmetrical device like a two gate latch should be drawn so as to make it look asymmetric, (see
Cassera, November 1980) all inthe name of sim-
plification.
The AND and OR names are a useful aid to memory as to the truth table of the gates so
described. The predominance in practical logic of NANDS and NORs spoils the essential simplicity of the concept to the point where the logic symbols are an attempt to restore the logic symbols are an attempt to restore the
original simplicity. Mr Hudson's letter is in my opinion ample proof that they opinion ample
ably to do so.
My propos
My proposed logic symbols exploit the fact
hat if one is forced to live with negative and positive logic, one does not need to also live with
both AND and OR because we can redefine the OR as a negative AND. As we now have only one type of function that function does not need name, it is only necessary to define whether it is positive or negative logic, inverting or non-
inverting. This is most easily achieved by puting the simplified AND truth within the symbol, thus nothing need
memory: it speaks for itself. By way of a field toest t introduced my 10 year
old son to my logic symols. Within half an old son to my logic symbols. Within half an haur he could derive the waveforms out of any
gate combination II. gave him. (Previous
knowledge of logic nil), With intentional logic it gate come nation nil). With inten. (Hall logic it
knowledge of lo
is necessary to define eight types of gate, with is necessary to define eeight types of gate, with
ruth-table logic symbols, Fig. 2 gives a full definition. Simpliciry is the name of the game. J. E. Kennaugh,
Callington,
.

Callington,
Cornwall.
disagree with your correspondent, C. Hudson, ro

Consider for instance, a 7400 NAND gate
split up in a circuit such that part in used split up in a circuit such that part is used
as NAND, part is used as low-active OR, and the remainder as inverters.
Under Mr Hudson's instructions, this Under Mr Hudson's instructions, this
results in three different drawings for the same device. A service technician trying to relate the drawing tor a particulur chip pack would have
difficulty, without a great deal of cross-referenclifficulty, without a great deal of cross-referencing. In addition, an increasing number of com-
plex devices have inputs in which clock high
and low could be equall and low could be equally considered to be ac-
tive, since important but differing instuctions tive, since important but differing instructions
are conveyed by each polarity. How would such an innut be drawn?
Even if the
Even if the traditional method of drawing
diagrams is for some reason to be deplored diagrams is for some reason to be deplored, I
consider that it should be retained on the basis consider is at it least an established standard. To change symbols every time someone has a new dea is a recipe for annoying confusion.
To sum up, I would say that I consider Mr Hudson's proposals a cayange for the sake of Hudson's proposals a change for the sake of
change - rather like using Hertz for the
perfectly acceptable eld, and changing the speling of enquiry to inquiry.
Ling of enqua
Warehwar
Dorser

TWINS PARADOX OF

RELATIVITY

I refer to L. J. Higgins' letter (April 1981) in which I am accused of addressing myself to a "miraculous coincidence". The first is easily disposed of, since the accu-
sation is quite false and originates in Mr Higsation is quite false and originates in $\mathrm{Mr} \mathrm{Hig}-\mathrm{y}$ sins failure to pay close atention to the text
being discussed, in particular W.W.. Oct. 1980
p.56., the first column of which cites Einstein's p.56., the first column of which cites Einstein's
.wn activities and his words to which the second paragraph of my letter (January 1981) alluded. Thus Mr Higgins accuses Einstein, not me, of contriving a fundamental flaw.
I come now to the matter of coincidence and Ill thame ensues.
The equation $F L / 1 / 2 v=m v$ shows how monentum is achieved. Unfortunately Newton did
not know that material particles are held separate by interatomicic forces and that, in consequence, all force acts at a distance, but today
any competent radio engineer knows that the any competent radio engineer knows that the
1.h.s. of the bavove equation represents the cumulative Doppler modification to an impressed orce acting from a distance and having its
origin fixed to some arbitarily stationary datum, origin fixed to some arbitarily stationary datum,
motion and energy being of course related to hat datum.
So we have So we have rwo methods of obtaining the KE
equation, the classical which is based upon an nalogue with friction and this present one mhich depends upon Doppler. Being a physical description, the latter represents the application
of negative feedback to ancient hypothesis, serving to convert that hypothesis into the form of ing to convert that hypothesis into the form of
unassailable physical description and andowing
direct comparison with modern experimental direct comparison with modern experimental
results. This is an addition to the scientific ressilts. This is an addition to the scienuific
method.
Even though the two methods of obtaining the KE equation differ so widely, each not
mentioning what the other contalns, they yield
the same result which in its turn accords with experimen. . hat act that the original cerivation
of the KE equation is in accord with experimen and also with the physical description is pure
and coincidence, nothing more.
II come next to the experimental facts which
lead to the falsification of both the concept o variable time and the light postulate concept of putting an end to the twins controversy. When referring to J. C. Maxwell (Letters, February 1982), P. G. .. Dawe tells us that the
mass increase hypothesis has been verified by experiment. He also inverts history by purting E
$=M C^{2}$. $=$ acelerator the origin of the. In a linear particle
rest rela rest relative to the machine and since the force
acts acts at a distance its effect must be subject to first-order Doppler. This is a physical fact
which is never which is never mentioned. If the force travelled
at infinite velocity then the experiment at infinite velocity then the experiment would
yield the Newtonian energy equation as its result. However, in reality the force is known to
move at the lesser velociry C and hence the move at the lesser velocity C and hence the
declining effectiveness of the force with relative velocity is modified by a second-order term coincilly identical to the Lorentz transform.
Electron
Electron beam and linear particle accelerato
experiments prove quite conclusively that mas experiments prove quite conclusively that mass
is velocity-invariant. If, as Mr Dawe would have us believe, mass increase can be derived from E
$=M C^{2}$ then either the mathematic or the derivation or the equation itself is wrong. The
falsenood is proven by experiment falsehood is proven by experiment. Let us now
Lhese things.
Mass increase is justified by the consideration
of the elastic collision of of the elastic collision of two proiectiles. Within
this scenario the conclusion this scenario the conclusion that mass is veloc
ity-variant rests solely upon the stationary observer 'knowing that the clock of the moving participant of the experiment runs slower'.
If, as has earlier been shown, mass is velocity If, as has earlier been shown, mass is velocity
invariant then time is, inevitably, velocity-invariant as well. In its turn the derivation showing time to be
velocity variant rests entirely upon the assumpvioccith variant rests enirely upon
tion that the light postulate is true.
Because time is in fact velociry invariant there is no alternative but to accept that the light The fact that
Tpear to confirm the experimental result can of a flight of
pure fancy is indeed pure fancy is indeed a miraculous coincidence
Should anyone question the fact that $E=M C$ Should anyone question the fact that $E=M C^{2}$
is disproven, other than in the limited sense of mathematic equivalence, I would point out that the marter has never been tested diriectly due to I suggest that Prof. H. Dingle's misgivings
about atomic experiments were entirely justified about atomic experiments were entirely justified
because it has been shown that matter has because it has been shown that matter has
never, on this planet, been converted into
energy. We are left with the distinct risk that never, on this planer, been converted into
energy. We are left with the distinct risk that
interconversion might one day accidentally interconversion might one day accidentally
occur and there exists neither mathematic nor experience to predict the outcome.
A valid alternative has been provided to re-
place S.R.T. and it is to be hoped that the place S.R.T. and it it is ofe hoved that the
scientists will emerge from behind their wall of icy silence and discuss the matter in terms which do not involve the double standards that thave been observed by I. Catt (Leeters, Feb ruary Alex Jones, Swanage, Swanage,
Dorset.
Reference
J. Chappell. S.S.T. Vol. 2., No. 3, p. $316-317$.

LETHERS

AMATEUR LICENCES IN GERMANY
Just in case nobody else objects, may I correct $\underset{\text { Licence }}{\text { Class }} \underset{\text { requirement }}{\text { Morse }}$ Amateur bands

B 60 leters All amateur ban most modes
including telepho including teleppony
except $1815-1832$
and the new and the new
$10,18,24 \mathrm{MHz}$ bands
which ar
(A1A) on which are telegraphy
(A1A) only

A 30 letters $\begin{array}{ll}3520-3700 \\ 3600-3700 & \text { telegraphy }\end{array}$ $3600-3700$ also
felephony
$21090-21150$ telephony
$21090-21150$
telegrapy telegraphy
$28.0-29.7 \mathrm{MHz}$ also
telephony
\qquad
C
. Borsutzky,
W. Germany

POWER TRANSISTOR FAILURE I have some pulse-width-modulated switching output power amplifiers which deliver up to
18 A at $\pm 17 \mathrm{~V}$ into a d.c. motor and inductor of about 5 mH . The amplifiers have been unrelia ble over a long period, apparently random
power-transistor failures occurring even after several hundred hours of operation.
The output stage uses parallel pairs of
2N6547 transistors (others have been trid) witching the load altermately beeween thed withing the load altermately between the kHz , rise and fall times are typically $5 \mu \mathrm{~s}$, and he collectors are clamped at the total supply
.e. 340 V . During part of the cycle the collector .e. 340 V . During part of the cycle the collector-urn-off of the transistors.
Any light on the possible causes of failure will
E. Shepherd

Hydraulics Research Station
Wallingford
Oxfordshire

ORIGINS OF THE HIGHPOWER TRANSMITTER
It is now 90 years since Nicola Tesla delighted
the eyes of engineers in Europe with demonstracions' of high-frequency discharges in gases. T tions of high-frequency discharges in gases. T we now recognise as a lolose-coupled transfor
mer with tuned primary and self-resonan mer with tuned primary and self-resonan
secondary, to step up the more modest level obtainable from a high-frequency alternator and
power transformer. To the more critical eye sday his circuit with its two spark gaps may simpler arrangement with only one spark gap powered from a low-frequency generator. Read ansmitters, for example, that of Poldhu de signed by Fleming ca 1900 , would undoubtedly ecognise some antecedent features. It may no sted such an alternative application for his discharges: "I think that it may find practica would be possible to send dispatches across th Atlantic (sic). .." It is clear from the contextual
wording that Tesla was thinking more in term of an ion or plasma beam than of any "etheric of anc", 10 or plasma beam than of any "enheric
force"; and his later patent ${ }^{2}$, though it includes what is recognisably an antenna, confirms this He was probably aware of the telegraph base
on atmospheric conduction proposed by Loomis on atmospheric conduction proposed by Loomi
and WFard in the previous decade, which would ertainly have benefited from a transmitter o phenomenal power. Though Tesla here seems
o have had his head in the clouds, the practica ty of his transformer engineering shows that his eet were certainly well grounded. Hard on his heels we find another America (though Tesla was in fact Yugoslav), the engi-
neer Elihu Thomson, describing ${ }^{4}$ a similar ci cuit capable of providing the high potential
needed for testing electrical needed for testing electrical apparatus. This cir
cuit appears to correjpond to the simpler one of Tesla, and actually yses an air-blast at the spark gap as suggested in Tesla's paper. As neither o
these wo engineers acknowledges the work the other, we are left in some doubt as to which of them invented what. Unless earlier contenders appear, it is not unreasonable to allow them both to share the honours. Again, there is n,
mention of etheric telegraphy in Thomson's paper, nor in his subsequent patent ${ }^{s}$. And this indifference to the communication potentialitie of his apparatus is the more surprising in that he
had himself (it is alleged by Snyder experience of "Maxwell Electro-Magnetic Waves", and also had published ${ }^{7}$ a joint acAlleged Etheric Force" demonstrated by Edison's
Wireless,
experiments.
therefor
Wireless, therefore, waited for others to his "syntonized" tuning and the entrepreneurial Marconi with an aerial. And only then, as wire less took off, did companies in search of highe spark power embody features of Tesla and
Thomson circuits in almost every transmitter o consequence. With the subsequent demise of spark telegraphy, these features eventually va
nished from wireless transmitters, though the blown spark-gap surfaced again in radar mod blown spark-gap surfaced again in radar mod-
ulators in World War II 8 , 9 and later still in
photographic flash-ear 10 Where photographic flash-gear 10 . Where then can w
look today for the Tesla-Thomson "coil". Ope up a "tickler" vacuum tester and you will find one; start up a xenon arc lamp and you will be
using another. "Tesla Lives" is my centennial using ant
toast! toast!
Desmond Thackeray
Music Department
University of Surrey

References

References:

1. Jour. I.E.E. 21, (1892), Lecture of 3 2. U.S. Patent 645,576 of 20 March 1900 2. U.S. Patent (filed 2 Sept. 189757) 20 March 1900 (filed 2 Sept. 1897)
2. E N. Sivowitch, Jour. Broadcasting, 15 ,
(1970), Pp. 3 to 5
3. E. Thomson, Electrical World, 19, (1892),
4. U.S. Patent 500,630 of 4 July 1893 (filed 18

July 1892)
6. M. B. Snyder, General Elec. Rev. 23,
(1920), 208
7. E. J. Houston \& E. Thomson, Jour

Franklin Inst. (April 1876), 270
8. J. D. Crags, M. E. Haine \& J. M. Meek
8. J. D. Crags, M. E. Haine \& J. M. Mee
9. K. J. R. Wikkinson, ibid, 1090

1. R. H. J. Brown
2. R. H. J. Brown \& J. A. Popple, Med. E
Biol. Ilustr. 5, (1955), 23

HORN LOUDSPEAKER

 DESIGNBernard Jones' thoughfful letter (January, 1982) prompted me to re-examine my 1974 articles ol
horn loudspeaker design${ }^{\star}$, and in particula Fig. 13. The intention of this figure was
illustrate tow illustrate how a treble horn could be given a egree of directivity in the horizontal plane modiying the standard circular cross section to
be rectangular, with aspect ratio $2.5: 1$, but stil
ensuring that the area profie from ensuring that the area profile from throat to
mouth followed a true exponential law (it could nouth followed a true exponential law (it could
have been a tractrix law, but there are good reasons for avoiding tractrices at high audio
frequencies) requencies)
I have re-checked my design calculations, and
must agree with Mr Jones that on stricty m must agree with Mr Jones that on strictly ma-
thematical grounds, neither vertical nor hori zontal profilie should fall inside the circular hor profile (in fact, the two sides of the rectangl radius of the circular horm). I began this particuar design of horn with a circular throat to suit a at "fairing" from circular to rectangular cross section has resulted in this anomaly. In practice can see that my artwork with damp plaster-0 Paris probably made the profile even more ap-
proximate at this point, but horns and ears are emarkably tolerant, and I doubt whether an olorations thus produced are audible, or if audI can confirm Mr Jon
Ins give disappi Jones' suspicions that treble on baffles (hemisphere loading) to minimise faction effects. The sound quality from smal piezo-electric tweeters (those fitted with integral plastic horns a few inches across) is very de endent on the mounting topography within Jack Dinsdale
Jack Dinsdale
Carlfon
Bedfordshire
${ }^{*}$ March, May and June, 1974. Reprinted in

CARTRIDGE

ALIGNMENT
Good grief, Mr Frost (Letters, January), how ing the concept of pickup arm rigidityulgating the concept of pickup arm rigidity as an
over-riding design concern if you want to intro-over--iding design concern if you want to intro-
duce further, unneecessary bearings? It's not
quite so specious an ideas quite so specious ini idea a s the infamous thread
suspended pickup arm, but . As a fina suspended pickup arm, but \ldots As a final
touch, perhaps the APT design team should
develo develop it.
Keith Howard Teddington
Middlesex

DIGITAL OPTICAL RECEIVERS

Dr Garrett concludes his review of receivers for optical fibre communication with the theory of digital reception and gives practical achievements with p-i-n diode/f.e.t. receivers

In a receiver for a binary digital system, the aim is to process the signal in such a way as to be able to distinguish between wo hypotheses, which we label zero and this way we seek the best estimate of the original message from the attentuated, distorted and noisy signal in the receiver. Commonly the signal is detected, amplidecision gate which is opened for a short interval at the centre of each bit period by a pulse from a clock circuit. This interval is called the decision time. Assume that, or a received zero bit, the receiver output value m_{0} and variance s_{0}, while for a received one, the mean is m; and the variance s_{1}, Fig. 9. Because the quantum noise is signal-dependent, s_{0} and s_{1} are
different, in contrast to microwave transdifferent, in contrast to microwave transity that $v(0)$ has a Gaussian distribution, although the multiplied quantum noise has in fact a compound Poisson distribution. The error probability is then
where $m_{1}-m_{0}=Q\left(s_{1}+s_{0}\right)$
(1)

Graduating from Trinity College,
Cambridge in 1965, lan Garrett completed 1969. He joined the Post Office Research Department, now British Telecom Research Laboratories, as a Research Fellow working on the theory of chemical
transport reactions. In 1971 he became group leader responsible for the preparation of compound semiconducting
films and crystals. Since 1976 he has lead section responsible for optical transmitters and receivers and integrated optical devices.
by lan Garrett

This says what difference there must be in optical power between the zero and one Q, which is related to the signal-to-noise ratio (in fact, $4 Q^{2}$). The equation gives the error rate. For example, $Q=6.00$ for $P_{\mathrm{e}}=10^{-9}$; small changes in Q produce large changes in error rate. For design error rates of this magnitude, errors arise from the far tails of the noise distribution - six standard deviations away from the noise statistics are important in optical systems. In fact the Gaussian approximation used here is successful at predicting error rate as a function of mean signal
power, but is poor at giving the correct power, but is poor at giving the correct
signal threshold level and the optimum avalanche gain, for this reason.
The theory of optical receivers enables calculation of m_{0} and m_{1}, so and s_{1}, in terms of the received optical waveform and the then predict the sensitivity of the receiver and model how it is affected by changes in receiver or system parameters. Details theoretical analyses are listed in the bibliography, and is only the very simplest case power $p(t)$ is p during a one-pulse and zero during a zero-pulse, the pulse energy for a one-pulse b_{1} is $p T$ and for a zero-pulse b_{0} is zero. The photocurrent (i_{p}) is then ing a zero pulse. This current is filtered by the receiver front-end
A typical circuit is shown in Fig. 9 with the equivalent circuit for noise analysis. The photocurrent is then amplified and passed through an equalizing and banp-
limiting filter $H(f)$ resulting in an output voltage $<v_{\text {out }}>$, which corresponds to m_{1} voltage
or m_{0}.
The
${ }^{\text {or }} m_{0}$ The noise sources which contribute to s_{0} and s_{1} are the amplifier thermal noise, the multiplied quantum noise and excess ava photodiode dark current. The mean square noise voltage at the receiver outpu may be expressed as
$\left\langle v_{n}^{2}\right\rangle=(h v \eta)^{2}\left[M^{x} T I_{2}\left(\left\langle i_{p}^{2}\right\rangle+I_{d} / q+Z / M^{2}\right]\right.$
in which T is the bit-ime, M is the current gain of the photodiode, I_{2} is a dimensionis the dark current, and Z is a dimensionless parameter characterizing the amplifier noise. In fact, Z is the r.m.s. amplifier
noise voltage normalized with respect to
 Fig. 9. In the unfiltered output pulse from
an optical receiver, the shaded region indicates the variance (meaden-squarre noise
voltage) shown to depend on signal level. voltage), shown to depend on signal level.
Mean levels m_{1} and m_{1} correspond to zero Mean ievelit m_{1}, and m_{1} correspond tozero
and one bits (spaces and marks). Pulse is slightly disporsed so that some energy is
outside the bit-time T
the receiver's response to one photo electron. Typical values are 10^{5} at a few
Mbists to 10^{7} at a few hundred $\mathrm{Mbits} / \mathrm{s}$. This equation also assumes that m_{1} ha been normalized to be equal to b_{1}, th optical energy for a one pulse.

Shortly before this article went to Laboratories at Martlesham Heath announced the transmission in the aboratory of an optical signal cap able of carrying nearly 2000 simul m of optical fibr calls over 102 need for intermediate repeaters. Operating at 160 Mbaud , this is the ongest single-span fibre system vet demonstrated. Many of the British Telecom's were made in Martlesham, including the very low-loss fibre and the receive which is the most sensitive in the ond 16 wavelens betwe dione of the sort described in this rticle, with a Plessey GAT4 .e.s.f.e.t. Were used for the itical first-stage amplifie

Fig. 10. In this typical circuit for an optical receiver the broken-line connections and the pea control the gain. Noise model of the receiver shows principle noise sources and equalizing filters (see text)

More detailed treatments listed in the More detailed treatments listed in the the received pulses, pulse spreading into neighbouring bit-times because of dispersion, and other system impairments, and
give detailed expressions for Z in terms of give detailed expressions for Z in terms of
the receiver components. Here consider a simple case first and then look at some of the results of the detailed theories.
Consider a p-i-n photodiode which has nity gain only. The quantum noise is insignificant, so from equation 2 :

$$
s_{1}=s_{0}=\frac{h \nu}{\eta} \sqrt{Z}
$$

so from equation 1 :

$$
m_{1}=b_{1}=2 Q \frac{h v}{\eta v} \sqrt{Z} .
$$

With typical component values, Z might e 10^{6}. So with $Q=6$, we need 12,00 phreement with the earlier rough calcuation. Using discrete components, a unity-gain photodiode provides a receiver sensitivity typically 10 to 15 dB worse than
an avalanche diode. However, by hybrid integrating the p-i-n diode with the first amplifier stage using a gallium arsenide m.e.s.f.e.e.t., the input capacitance of the receiver can be reduced so that Z falls to

Fig. 11. Hybrid p--i-n f.e.t. integrated
ptical receiver for high data rates, optical receiver for high data rata
say $30 \mathrm{Mbits} / \mathrm{s}$ upwards in a standard 14 -pin d-i-1package is the
s. most sensitive so far for the range
1 to $1.6 \mu \mathrm{~m}$. Input fibre tail, visible t the top left, enters package an passes through glass block
supporting the photodiode vertically so that it can be Muminated through the substrate The thick-film circuit comprises a bipolar shunt feedback a

10,000 or less. The receiver noise parame er Z is proportional to C^{2} / g_{m} at high da rates where C is the total input capacitance (photodiode, gate-source and stray capaci ance) and g_{m} is the transconductance. In 0.5 pF and g_{m} is 20 ms . Such receivers have a sensitivity of -44.2 dBm at 160 Mbaud and -40.1 dBm at 294 Mbaud , at $1.3 \mu \mathrm{~m}$ wavelength, and similar sensitivity at 1.55 mm , better than that of a.p.d. realso offers the advantages of low-voltage operation, no need for feedback to control the avalanche gain, simpler device technology and probably greater reliability ypical photodiows in the first part of this receivers are shown in the frist part of his (integration) front-end amplifier for the est performance, although a trans-impedance amplifier could be used with a ic (time constant typically 1000 times the bit period) has to be equalized, which can be done simply by differentiating with a capacitor-resistor arrangement. Fig. 11
shows a typical receiver module.
Look now at how the sensitivity is rephotodiode. Fig. 12 shows some theoretical results for the mean number of photoelectrons required per bit time n and optimum avalanche gain M as a function of the
number N_{d} of dark current electrons per bit-ime. Parameter x is the excess noise exponent of the a.p.d. and Fig. 12 is calculated assuming $Z=10^{6}$, typical of a receiver using discrete components at a few
hundred Mbaud, and with zero optical power on zero-pulses and no pulse spread-
ing. rent is negligible, we need about 300 to the noise properties of the photodiode. When the dark current is large, the number of photons per bit-time which is geeded is roughly proportional to the square root of the number of dark current
electrons. The noise properties of the diode become far less important. This is hardly surprising as the dominant noise is then the shot noise on the dark current, and both are subject to the excess noise of the photodiode. The optimum gain de-
creases markedly once the dark current becomes a significant noise source.
Clearly it is important to minimize N_{d} and to a lesser extent to reduce x. Note that a leakage current of 160 nA gives N_{d}
of 1000 at 1 Gbaud which is large enough to affect the optimum gain and the receiver sensitivity. At lower data rates the effect would be greater still.
Fig. 13 shows how n and M vary with extinction ratio ϵ and pulse spreading
(extinction ratio is the mean power on zero-pulse divided by the mean power on one-pulse; if it is not zero the optical power on the zero level contributes to the noise

Fig. 12. Receiver sensitivity and optimum avalanche gain as functions of the number of dark current electron per bit-time (see text)

Flg. 13. Receiver sensitivity and optimum avalanche gain as functions of the source
extinction ratio, assuming a value of unity for the excess noise factor exponent x. Parameter axtinction ratio, assuming a value of unity for the excess noise factor exponent x. Parameter α is the r.m.s. width of the impulse response of the fibre normalized to the bit-time 1 , and
assumed to be Gaussian for convenience in calculation, ie it is a measure of the bandwidth assumed to
of the fibre.
s_{0}). The pulse spreading is represented by ${ }^{5}$). The pulse spreading is represented by mpulse response, assumed to be gaussian. The pulse originally launched into the fibre is taken to be rectangular and to
occupy half the bit-ime, and the dark current is assumed to be zero. Notice that the receiver sensitivity is strongly affected by pulse spreading and by non-zero extinction, and the optimum gain is reduced by zero-level noise and by fibre dispersion,
the effect being greatest when x is small. This type of calculation, which assumes gaussian noise statistics, tends to over-estimate the optimum gain although relative magnitudes are predicted more accurately. Obviously, combinations of appreciable considerable dark current ($\boldsymbol{N}_{\mathrm{d}}=100000$) reduces the receiver sensitivity very much, and also reduce the optimum avalanche gain to near unity.

Future developments

There are some obvious approaches to improving the sensitivity of present optical receivers. The p-i-n f.e.t., currently the most suitable for the important wavelength
range 1 to $1.6 \mu \mathrm{~m}$, can be improved by reducing c^{2} / g_{m}; that is by developing small-area photodiodes (30μ m diameter), very short f.e.t. gates ($0.3 \mu \mathrm{~m}$), and by increasing the transconductance. The
mixed compound InGaAs may be a better mixed compound InGaAs may be a better
f.e.t. material than GaAs in the future because of its high carrier mobility, particularly if it can be cooled, and it would also permit monolithic integration of the f.e.t. WIRELESS WORLD MAY 1982
he photodiode, and eventually other reeiver components. Between 5 and 8 dB could be gained here. Avalanche photoleast over present day p-i-n fe ts if a lowleast over present day p-i-n f.e.t.ts, if a low-
noise material could be found. Recent work on (CdHg) Te looks promising, although it is at a very early stage of development yet.
A third possibility is to amplify the optical signal before detection, using a Fabry-
Perot or a travelling-wave amplifier. These devices would be similar in structure to injection lasers; their biggest problems are noise due to spontaneous emission which can be reduced only with a very narrowthe case of the Fabry-Perot amplifier. An optical amplifier is an almost essential component for optical integration of any useful complexity, so there is considerable incentive to overcome these problems. cal transmission systems with heterodyne detection. The outstanding problems here are: divising an optical source and local oscillator with sufficiendy narrow linewidth; tracking the local oscillator; ob-
taining spatial coherence of the signal and local oscillator when they are mixed on the photodiode; and controlling the polarization of the receiver optical signal. The payoff for overcoming this daunting list of problems is not only increased receiver
sensitivity (10 to 15 dB possibly), but the familiar advantages of using the frequency and phase information on the carrier which is present optical communication systems is lost.

Further reading Physics of Semico
Sze. Wiley, 1969. Sze. Whiley, 1969 .
Otical Fibre Communications, S. E. Miller and A. G. Chynoweth. Academic Pr tress, Ter99.
Optical Fibre Communication, by the Tecnica Optical Fibre Communication, by the
Staff of CELT. Mciraw-Hill, 1980. Staff of CSELT. McGraw-Hill, 1980.
Receiver Design for digital fibre optic communication systems, by S. D. Personick.
Parts 1 and II, Bell Sys Tech 9 vol. 521973 p. Parts 1 an
$843-86$. Simplified approach to digital optical receiver
design, by D. R. Smith, R. C. Hooper and I. Garrett. Opt Quant Electrvol. 101978 p. 211 -

Properties of avalanche photodiodes, by P. P.
Webb, R. J. McIntyre and J.Conradi. RCA Rev, July 1974 .
Receivers for optical communications: Receivers for optical communications: a
comparison of avalanche photodiodes and p-i-n
f.e.t. hybrids, by D. R f.et. hybrids, by D. R. Smithe, R. .C. Hooper
and I. Garret. Opt Quant Electr vol. 10 1978p. and I. G
293 . 300 .
InGaAs pp-i-n photodiodes for long-wavelength
fibre-optic systems, by R. F. Leheny, R.E. fibre-optic systems, by R. F. Leheny, R. E. 1980 P. 713 -5.
III-V alloy herero structure high-speed
avalanche photodiodes, by H. D. Law, K
avalanche photodiodes, by H. D. Law, K.
Nakano and L. R. Tomasetta. $I E E E \mathcal{F}$ Quantum Elect vol. QQ-15 1999 p. $549-58$.
InGASSPhetrostructure avalanche InGaAsP heternstructure avalanche
photodiodes with high avalanche gain, by photodiodes with high avalanche gain, by K.
Nishida, K. Takaguchi and Y. Matsumoto. Appl Phys Lett vol. 351979 p. $251-3$.
Avalanche multiplication and noise Avalanche multiplication and noise characteristics of low dark-current GainAss Mns avalanche photodetectors, by V.
Diadiuk, S. Groves and C. E. Hurwitz. Appl Phaduk Letr vol. 37 Ge8s P. 807-10
Band structure dependenc
Band structure dependence of impact ionization
by hot carriers in semiconductors: GaAs, by T. by hot carriers in semiconductors: GaAss, by
P. Pearsal, F. Capasso R. E. Nahory, M. A. P. Plaasal, and. C. R. Chasselikovsky. S.
Electron vol. 21 1978 p. 297-302. Electron vol. 211978 p . $297-302$.
Required donor concentration of epitaxial lay Required donor concentration of epitaxial lay
for efficient InGaAsP avalanche photodiodes, by Y. Takanashi, M. Kawashima and Y. Horikoshi. Japan f Appl Phys vol. 191980 P. PIN-FET hybrid optical receivers for longer wavelength optical communications systems, R. C. Hooper, M. A. Z. Rejman, S. T. D. European Conference on Optical
Communications, York, Sept 1980.

In brief...

Technician engineers change their image. The term 'technician engineer' was coined to cater
for the non-chartered electrical and electronics for the non-chartered electrical and electronics
engineer. But the IEETE feel the name has become confused with the general descripion
'technician' and that this may be a stumbling 'technician' and that this may be a stumbling block to the understanding of the role played by
their corporate members. So they will call themtheir corporate members. Se cect ine will
selves the Insitution of Electrical and Electron-
iics ics Incorporated Engineers, as a reflection of a
professional body incorporated other than by professional body incorporated other than by
chartrer, and which requires a specific level of chievement and qualification for its membership. Corporate members are now entited to
call themselves Incorporated Engineers (Electricall themselves Incorporated Engineers (Electri-
cal and Electronics) and to use the letters FIEle-
cIE or MIElecIE.

NEWS

Cables and politics

A broadband cable system connected to all
houses in urban areas and covering about half houses in urban areas and covering about half
the population is the recommendation of the Government's IT Advisory Panel. Although all
the services to be provided are not specified, it is the services to be provided are not specified, it is
suggested that the system should include tv suggested that the system should inclue tv also recommends that thenesystem should have a
two-way link which would allow any informa-two-way link which would allow any informa-
tion service to be interactive, to include such ton service to be interactive, to in include such
facilities as links with bank account or
electronic shopping. There could also be electronic shopping. There coull also be moni-
toring of premises against burlary or fire and toring of premises against burglary or fire and
the emergency services could be summoned automatically if needed.
The scheme involves. an entirely new network
as the existing telephone network does as the existing telepponone network does not offer British Telecom networks which are of suffi-

Satellite tv gets go-ahead

On the fourth of March, the Home Secretary,
William Whitelaw, announced in the House of William whitelaw, announced in the House of
Commons that the country should make an
early start with direct broadcasting by satellite (DBS), with the aim of having a serviece in
(and operation by 1886. Because of the importance of
making this early sarat, the Government had
cond concluded that the bestr course would be to start with two channels initially, though h his could be
incrased hater to te maximum of five channels prreased later to the maximum of five channels vices would be transmitted at powers sufficent or individual reception and for community reThe system is to be financed there were indications that there were interested participants in the aerospace wend electronics Asustries who were ready to pay a part. had been decided to award bort DBS channels
to the BBC as they had o the BBC as they had already formulated proposals for the programming of such chanvice including a substantial element of feature films and major sporting, cullural and other
events not presently available for transmission events not presently available for transmission
through the usual channels. The other would be a service which would draw on the best tv programmes from around the world, and would
probably be financed by licence fee.
The Home Secretary said that although the IBA and commercial television companies had
also shown some interest in providing DBS services, "their plans were less well advanced.
ver vices, "their, plans were less well advanced.
Additionaly, more time would be needed to
devise the right framewor, devise the right framework, which would be But the IBA say that their lite broadcasting are as well prepared as any from the BBC. Following the Government
study document on DBS last year, the IBA has study document on DBS ast year, the IBA has
argued for the use of satellites to improve picargued for the use of sateliltes to improve pic--
ture quality and for the need to have uniform
standard standards throughout Europe, because of the
overlap of satellite footprints. IBA engineèrs overlap of satellite footprints. IBA engineers
have developed the multiplexed analogue componeitit techntiquè for satellite broadcasting
which overcomes the problems of incompatibil ity between the different colour systems in 64

Europe, providing a single 625 -line system with clearer pictures than are presently available on sound. Only one design for an adaptor unit would be required throughout Europer They
also argued that they had more commercial exalso argued that they had more commercial ex-
perience which would be useful for organising perience which wour
subscription service.
Following immediately on the Home Secrelary's announcement, British Aerospace, Mar-
coni and British Telecen coni and British Telecom made a joint an-
nouncement that they would take equal shares in a new company, United Satellites, to provide Britain's first national broadcasting and tele.
communications satellite system. The communications satellite system. The three
companies had already investigated potential markets, and the technical and operational means needed both in the long and short term. The system would probably have the capacity
for two tv channels and three or four communications channels. There could be sufficent bandwidth to transmit high-definition tv and
digital sound channels and the possibility of digital sound channels and the possibility of
transmitting a Prestel-type service this way could also be possible. Discussions with broadwill define the facilities to be provided. The satellites will be leased to the users. The satellite, to be known as Halley 1 , as the
1986 launch will coincide with the apera 1986 launch will coincide with the appearance of to the European Communications Satelitite (ECS) and it is planned to have two satellitese in on the ground ready for launching. United Satellites hope to sell their satellites
around the world and believe ther is potential around the world and believe there is a potential
market for up to 100 of them.

- The IBA is participating in the experimental The five-week tvexperiment, to start at the end The five-week ty experiment, to start at the end
of this month, includes four sound channels, each with a different language and the IBA's
teletext system for sub-itilige. The closed-cireeletext system for sub-itiling. The closed-cir-
cuit service is to be transmited cuit service is to be transmitted using a mobile
dish antenna via the ESA orbital test satellite. A Pan-EEropean serfive is duu to to beluunched
in 1986 and the IBA has suggested that the British satellite should carry that service.
cient bandwidth and thus be provided with
packet switching. Each home would be fed packet switching. Each home would be fed
through a cable, probably coaxial, with channel selection provided at the distribution point
which would have the full which would have the full bandwidth service and would be able to serve up to 100 houses.
In arguing for urgency, the panel say that exis aring cable distribution networks are ceasing
to have much value when the country is well to have much value when the country is well pronied believes throatcasting transmitters. Th panel distributing the direct broadcasts from satel-
lites; the PAI system lites; the PAL system comes out of patent res-
trictions at the end of 1983 and could lead to flooding in the large-screen tv market of cheap sets from the Far East, leeading to the downfall
of our domestic tv manufacuring of our domestic tv manufacturing industry. If
decision were decision were taken for an early launch of the
cable system, the telecommunications industries
involved would get a boost and a world tead One of the pre-requisites for such a system is
that current restriction should that current restrictions should be withdrawn and that potential information providers or
broadcasters be allowed to transmit whatever broadcasters be allowed to transmit whatever
they like, within the bounds of decency or sedithey like, within the bounds of decency or sedi
tion. There should be a self-regulating body similar to those in advertising and in newspap
ers.
ers.
But as the panel believes that the system
should be self-financing, requiring no public should be selff-inancing, requiring no opybtem
funds at all, it sees a further need for urgency funds at all, it sees a further need for urgency.
The system should be at an advanced stage of The system should be at an advanced stage of
planning before the next General Election be-
fore a possible change of Government could lead planung before the next General ene could lead
fore a possible change of Governent
to a change in policy, so that pootential investors to a change in policy, so that potential investors,
especially y programme providers, can be assured of a return on their investment.

Maritime satellite gets sunstroke

What was to have been a blaze of publicity when the Minister for Information Technology, Mr
Kenneeth Baker, was to have made the first Shore-to-shiper, was to have made the first Marecs-A maritime satellite, turned into a bit of a damp squib when it was announced that the
satellite had certain anomalies which needed to be sorted out certain anom omalies which needed to The anomalies had been caused by an over-
active sun which had produced an unusually high number of sunspots. Sunspots emit highenergy particles which when they encounter a
satellite can electrostatically charge the outer satellite can electrostatically charge the outer
thermal blanket of the spacecraft. As different surfaces are charged at different levels, this can
give rise to arcing and if any electromagnetic give rise to arcing and if any electromagnetic
disturbance penetrates the screening this disturbance penetrates the screening this can
cause spurious pulses in the electronics. The cause spurious pulses in the electronics. The
first occasion on which this happened in Ma-
recs-A, it caused the orientation system to recs-A, it caused the orientation system to think
that it had lost contact with the earth. It autothat it had lost contact with the earch. It auto-
matically went into a 'search' mode when it matically went into a scarch' mode when
rotated slowly to find the earth again. This manoeuvre took eight hours before contact was re-
established and this caused a whole series of established and this caused a whole series of
checks to be carried out to assure the ground
controllers and users that all controllers and users that all was well. I I was not
possibe to complete these checks before the possible to complete these checks before the
official inauguration of the service. Since then,
there have been further small 'glitches' caused there have been further small 'glitches' caused
by sunspot activity. by sunspot activity.
A major event
A major event during the initialisation of the
satellite was the failure of two modules in the battery discharge regulator. Standby modules were swischadged in, but there is no further re-
lacenents for placements for these components. A spokesman
from British Aerospace told us that althout it was worrying to lose the redundancy factor so early into the mission they were confident that his would have no effect on the planned life of
the satellite of seven years and more. They were he satellite of seven years and more. They were
investigating the cause of the failure, and of the anomalous behaviour of the vehicle in order to
build additional safeguards into Marecs-B

Marecs - A maritime communications satellite suffering from
which is to occupy
a geosynchronous orbit over The two Marecs spacecraft in conjunction ship an Ito-shore telecommunications system which covers all the oceans. Marecs-A is the first Eellipean Space Agency's communications sateilite to enter commercial service. It is also the the first to be leased by ESA to an international rganisation, Inmarsal.
Marecs offers some 40 telephone circuits,
four times the capacity of the Marisat satellite it

3-D spectacle

The first British broadcast of 3-D tv takes
place on May 4h at 19.00h over the transmitters place on May 4th at 19.00 h ver the transmitters
of TVS, the Southern region ITV company. of TVS, the Southern region ITV company.
This follows the four 3 -D tv programmes transmitted over Norddeutscher Rundfunk in
West Germany, the first of which was on Febwary 28th. TVS is negotiating rights to some of he German material, and also producing some original British material. The British pro-
gramme, one of the weekly series The Real World, deals with three-dimensional images in llustrative purposes.
The system being used for these transmis-
sions is the old and imperfect method of 'anaglyph stereo': that is, separation of the two lyph stereo. Uhat is, separation of the two
mages is achieved by colour coling, and the
viewer has to wear red-and-green spectacles. viewer has to wear red-and-green spectacles.
This is clearly not asystem with any prospect of
future acceptance as a practical method for future eacceptance as a practical method for
broadcast stereo. It is however at the present broadcast stereo. It is however at the present can be broadcast, pending future technical de-
velopments. Consent has accordingly been given by the IBA to TVS transmission as a oneof experiment.
WIRELESS WORLD MAY 1982
replaces. It is also 11 degrees further west than Marisat and so can cover the western part of the Gulf of Mexico and some of the eastern Pacific.
In addition to telephone contact the satellite can be used to receive and transmit telex, facsimile
and digital data links. There is also a special and digital data links. There is also a special
emergency siganal link.
In order for the satelite to operate efficiently In order for the satellite to operate efficiently,
anch attention needs to be made to as much attention needs to be made to to system. Europe's first maritime communica.
tions station has been inaugurated at Eik, southwest Norway. Eik is the fifth in the global satelite system of earth stations and another 14 are planned including one at Goonhilly, Co
which will be commissioned by mid 1982 .

IBA consent was required because the anag yph system is non-compatible: 3 -D can only be
seen by viewers with colour receivers. Viewers with black-and-white sets will merely see a pair
of overlapping images, whether or not they look of overlapping images, whether or not they look' have the anaglyph specs will also see merely a pair of flat images.
Colour scenes
Colour scenes cannor be transmitted, since
the colour-coding is already being used for 3 -D separation. The left-eye image is put out on the ed channel and the red tube phosphors, and the ight-eye view in green plus blue.
a certain sensation of the colours of the scene is retained even through the reddgreen glasses, as
the brain attempts to add together the differing information received from each eye. But ambiguity and some discomfort is caused by any
brightly-coloured objects; for instance a red brightly-coloured objects; for instance a red
dress will appear bright to the left eye but derk do the right eye. Without spectacles however the scene appears relatively normal in colour values. Experiments are now being made in the transfes
of colour scenes, but none are expected to be of colour scenes, but none are expected to
included in the first British transmission. The research behind the German pro-
grammes has been carried out in the Eindhoven
laboratories of Philips Ltd. Anaglyph image separation on tv is at best imperfect, since the
green phosphors on tv tubes have quire a high
 duced: the left eye sees some of the green image,
which should be confined to the right eye. In which should be confined to the right eye. In
addition, colour coding within the PAL transadidition, colour coding within the PAL trans-
mission system is itself imperfect, and allows some spread of colour information to the wrong
cuns. Philips have developed a method of codguns. Philips have developed a method of cood-
ing the master vide tapes, which at present
remains secret, to eliminate this overlap and ing the master video lapes, which at present
remains secret, to eliminate this overap and
ensure the best possible separation of the two ensure the best possible separation of the two
images that can be obtained within the PAL images
The greatest problem remains the provision
of the red/green anaglyph spectacles. TVS has btained half a million of these cardboard lor nettes, and are distributing one in every copy, sems there will be at best one viewing device each set, so the programme is being scripted to
allow time for it to be passed from hand to hand The programme cannot of course be nerworked
outside the Southern region, because of the lack f sufficent spectacles. Lucky viewers outsid rammes will have to make their own arrange Vins to get hold of a pair of anaglyph specs. Viewers who have seen the German pro
grammes agree that in spite of the limitations the results are remarkably successfull; the cross talk or double-imaging only becomes worrying when the normal, rather restricted, depth range particularly in the 'live' studio sequences, are certainly good enough to serve as a glimpse in the future. The people in the studio scenes,
ven in black-and-white, look much more like ounded human beings than the usual 'flat' to images.

Mercury and
 British Telecom

The consortium of Cable and Wireless, British een given licence to Merchant Bank ha been given a licence to operate a private tele
communications system in the UK. The system, to be known as Mercury, will have access to the public switched network when 'appropriat vide an earth station for business telecommun cations via satellite. The licence has bee granted for a period of up to 25 years with of State for Industry said that "the Britis elecommunications Act 1981 and the licenc have been structured in a way to enable th
Government to ensure that both Britis Government to ensure that both British
Telecom and the licensee co-exist and compete ogenerate new services and job opportunitic and to enhance customer choice within the UK telecommunications market".
It seems that the competition has already he main trunk lines joining the main busines the main trunk lines joining the main busines
and industrial centres. The principal reason for instiutuing Mercury was the high cost of trun
All this may be thrown into the melting pot i the relecommunications network is to be bound with the proposed tv cable system. lain Car

EWS
is to introduce a new Telecommunications Bil
towards the end of the year. The Bill will pro towards the end of the year. The Biill will prothe public and to establish a new telecommunications authority to oversee the provision
cable tv, telephone, data and electronic cable tv, telephone, data and electronic ma
links. The so-called Busby Bonds, announce links. The so-called Busby Bonds, announced
by the Chancellor in the Budget with which it ${ }^{\text {was }}$, planned to inject public investment into BT, are now likely to be replaced by the much
wider de-nationalisation. BT say the report is "pure speculation".

Bildschirmtext

At the heart of Prestel is the GEC 4080 compu a five-year lead over any rivals, GEC must hav felt that they had a very good chance in the Their confidence received a severe blow, however, when the West German Bundespos Placed an order worth several millions with have not demonstrated any system in public. The GEC equipment has undergone a field trial in Germany, and the Bundespost has selecmended by the CEPT, but the selection of an mended by the CEPT, out the selection of an all the software by the contract deadline in 1983 .

Sweden in space by 1984

Sweden's Space Corporation is likely to be give tearch' programested for this year's space re$1979 / 80$ figure. About half of this will be contributed to the European Space Agency wher buted to the European Space Agency wher
Sweden collaborates actively in the programme of research. But its national programme in cludes its own space research where the largest
proiect is the viking satellite, to be launched proiect is the Viking satellite, to be launched b
Ariane in 1984 for North Pole magnetospher Ariane in 1944 for North Pole magnetosphere Due for launch in 1986 from Guyane Spac Centre, South America, Tele-X is an experi-
mental telecommunication satellite that will have pre-operational direct broadcast applica
tion. And it will provide high tion. And it will provide high-speed digital com-
munication for inter-office links, a teletype sermunication for inter-office links, a telectype ser
vice to mobile stations in vehicles, an propagation measurements in the $20-30 \mathrm{GH}$ band for high-speed digital dat
tion, as well as wideband services. Monitoring oil spillages is the chief application of the Corporation's other main programme - in remote sensing. Marine surveillance from
aircraft determines oil thickness and volume aircraft determines oil thickness and volume,
microwave radiometer while a laser fluorosensor classifies oil type, this information being
transmitted to oil combat vessels. sors also monitor ocean ice distribution and sors also monitor occan ice distribution an
thickness, atmospheric pollution and map vege

Auditoria designers are often "very surprised" with the results they obtain, said Hugh
Creighton, acoustical consultant about reverberation time turning ou London's latest concert hall in answer to our question science" he reminded us, "but design guided by science". For although r rt nad themple calculated from the hall's volume and absorbencies to be 1.8 seconds, it turned out to measure only 1.4. But the simple expedient of adding hardboard to the backs of the (fixad)
seats increased the figure to 1.6 seconds, or 1.9 with an audience. And that sems to seats increased the figure to 1.6 seconds, or 1.9 with an audience. And that seems to satisfy
the LSO, according to a spokesman, for whom it was designed. A height restriction meant that the concrete roof beams protrude into the auditorium, their disruptive effect being
reduced by the suspension of reduced by the suspension of some 1,000 diffusing spheres (some also acting as biginting
tittingsl) popen at bott ends to prevent undue aborption. And while siting the hell close fittings) open at both ends to prevent undue aborption. And while sititg the hell close to
the foundations of the Barbican complex may reduce the vibration due to the nearby underground railway, it didn'tobviate the need to re-lay the tracks and mount them on
rubber.
changes.
The Corporation manages the Esrange station which receives, processes, stores and distributes
mages from ESA satellites in the Earthne scheme, and regularly collects data from in conospheric soundings to give investigate electron de
profile (see WWW February issue, page 37).

Where is

Chernobilsky?

The position of the Russian electronics engineer tober 1981, page 70, was being harassed by the KGB, is giving his wife Elena great cause fo alarm. After his harassment and arrest on relatively trivial charge (hirting a policeman
Chemobisky was sentenced to one year's im prisonment in a corrective labour camp, much against the wishes of the court, who came unde a great deal of public pressure to relax the in
tended five-year sentence. The court sentenc was that Chernobilsky be taken to the labour camp immediately, but instead was held in prison for two months, whereupon he disappeared
According to our informant, he started his journey to the camp many weeks ago, but neither his destination nor present whereabouts are
known, in spite of a telegram from his wife to L . known, in spite of a telegram from his wife to L .
Brezhnev, and other Soviet leaders, to which she has had no reply. His wife and friends fear that the KGB are victimizing Chernobilisky be cause he was awarded a light' sentence, and
that his health will be damaged by the extremely severe conditions on the journey and in the
labour camp.
BBC micro
The gremlins got into the BBC micro program
listings at the Paisley Microelectronics Educational Development Centre, John Gordon tells
us. Routine (f) on page 82 , March isue, should be

500 proctaxcaicc 450,100$)$	
1000 der Proctaxcact (total	
	${ }_{\text {Reprem }}$
	${ }_{15}$
	${ }_{\text {pay }}^{\text {pay }}$ (left
	${ }_{\text {pay }}+$ rate $^{\text {atm }}$
	rat

It is useful to use lower-case characters for datanames he points out: this gets round the prob-
lem of BASIC keywords appearing at the beginning of a dataname.

[^2]
EPROM PROGRAMMER

Most commercially available e.p.r.o.m. programmers are expensive as they include oftware and other facilities to enable them to be used on their own. The cost of a programmer can be significantly reduced if it is designed for use with an existing號 for 2708, 2716 and 2532 e.p.r.o.ms, but with small modifications other devices may be programmed.

On entering the program one is given the system options and prompted to reply
either Y (yes) or N . Next the addresses are requested in hexadecimal numbering, starting from 0000 . If the e.p.r.o.m. al ready has data in the first 256 locations the even though it is intended to reside at say, DCBO. Options and addresses are displayed on the monitor screen. When sufficient information has been given the program repeats the e.p.r.o.m. type and the scratchpad has been loaded with data relevant to the e.p.r.o.m. selected and whether it is in read or write mode, as defined by the options on entering th program. (A changeover d.i.l. switch is nience this was fitted to the plug-in card carrying the socket together with a jack for the program voltage.
Scratchpad data is loaded by the index register as though it represented addresses
this seems to be the quickest method of loading for the 6800 . Data stored in the scratchpad is given in the panel and ex plained as follows. The device code in AS CII enables it to be displayed on the monitor screen and serves as a check that the Number 04 signals the end of the ASCII data. The term "pin profiles" is one I'v coined to define the logic levels on a port which are independently varied within program. The existing address port is inneeds 12 lines, so some are borrowed from the control port. By OR-ing the pin-profile with the other data the port will suppor the two functions. For example, during a will be changing and the levels on the control will be static, during write the control part will change from pulseoff \rightarrow pulse-on \rightarrow pulse-off during each changed address. The loops will normally
$=1$, except when the 2708 is being pro $=1$, except when the 2708 is being pro-
grammed which requires 200 loops. It is not permissible to apply N pulses to on location and move on. The number of loops may be varied in the range 100 to 1000 , depending on the pulse width; $N=$ 200 was chosen for convenience in generat number which is used with the index regis ter and decremented to zero. The time at the pulse output (port) should be mearate 'scope since it depends on the softwar route taken by the programmer, as well as the system clock frequency. Random WIRELESS WORLD MAY 1982
by H. S. Lynes
access memory addresses determine the area of the system memory that will be start/finish enables part-used ones to.m added to. This is not to be done with 2708 as already explained. The control word is either 80 (port B is output, so writ e.p.r.o.m.) or 82 (port B is input, so rea e.p.r. 8255 in mode 0 . (Other numbers in the control register will cause all kinds of trouble).
The shorthand CAD and CAP were use ful since they are frequently referred to is with the value of the loops at location A and decremented on starting at the first e.p.r.o.m address, i.e. when CAP is set to the address at 14,15 . In the case of a 2708 dis will now represent a value greater tha 1 so the same addresses must be pro reading an e.p.r.o.m. whether dumpin the contents into r.a.m. or checking program cycle, the loop facility is not needed as the program will exit when addresses in 12,13 or 16,17 . Thus the pro grammer should ensure that whichever is the smaller number of locations will caus the program to exit. The last three loca-
tions are loops-left, as explained, and th error address, to be explained late errort control. Since the software contro the 8255 it is essential to check that all is well before proceeding. The sequence is a
follows. Select the e.p.r. follows. Select the e.p.r.o.m. type, the
mode (read/write), as well as the addresses mode (read/write), as well as the addresse
for both e.p.r.o.m. and system r.a.m. Th program responds by displaying the typ in four decimal figures followed by th prompt to press G. There are two chance to get this right: it's frustrating to enter the touch the space-bar. Before the program starts the control port is checked for eithe 80 or 82 , since other numbers will caus chaos. At this point the scratchpad has
been checked twice; once visually by the user and once in software to fairly tigh margins (2/256). Any error should be resolved by starting again. After a progran sequence the 8255 is put into the read mode and the data is compared with th r.a.m. area specified. Any error will store
the error address at the scratchpad $1 \mathrm{~F}, 20$ locations. A message is written on the screen to invite inspection - the system 'errors' each time at the last address (which proves it's working) since to program one e.p.r.o.m. location, say $01 F 2$, requires the
user to enter ep.r.o.m start $=01 F 2$ and, logically, e.p.r.o.m. finish 01 F3. Reading an e.p.r.o.m. Tis is the easiest
part. Select the appropriate pin supplies

Scratchpad data defined. Location of the scratchpad is at the option of the programmer
$0,1,2,3$
4,5
4,5

| Device code in ASC\|| EOT code and blank | - $\begin{aligned} & 32373038 \text { for } 2708 \\ & 0400\end{aligned}$ |
| :---: | :---: |
| 'read' ${ }^{\text {d }}$ ' | |
| 'progam' | pin profiles e.g. as in T |
| 'pulse-on' | |

Loops $=1$ except for $2708=$ hex equivalent of 200 - (normally biank, except during verify)
\} Maximum bytes, could be used to check 'space available'
delay $=$ pulse time Error arddress - in hex (could be converted to ASCll if screen display
required)

10,11
12,13
12,13
14,15
16,17
18
r.a.m. start address
r.a.m. finish r.a.m. finish
e.p.r.o.m. start
and e.p.p.t.i.m. tinish
e.p.r5
825 control word

Current address data (CAD)
Current address p.r.o.m. (CAP) Loops left

Entered by user; 'start' must be lower Entered by user; 'start' must be lower
number than the 'finish' number
required)
using the small d.i.1. switch next to the socket, and enter the necessary informa set-up the 8255 ports by sending 82 (hex) o the control register at X503. Th tarting address of the e.p.r.o.m. is placed in-profile is OR-ed with the address in ort C and the data read by the c.p.u. from the address of port B. This is stored in the rea of r.a.m. pointed to by CAD using th AP mode of addressing. CAD an utside limits and only then will they be incremented until the e.p.r.o.m. data placed in system r.a.m.

The time taken is quite short, but it is possible to run a program from an e.p.r.o.m. in the programmer without
some considerable delay and a dedicated program to do it. In my system a facility xists to move some of the system r.a.m. having set up the new start address o witch the r.a.m. can be made to behave as though it was a programmed e.p.r.o.m., residing at the same address as the e.p.r.o.m will in the finished system. This ay be write-prorect ing.

Programming. This is more difficult ance the e.p.r.o.m needs to be given rogram pulse for a defined time. A alow for voltagese is required, about 27 V to earures this voltoge med system a circur e.d. if it is correct. Thus the light indicates that the e.p.r.o.m can be pro grammed. The use of a built-in program oltage is left to you; if the ports are likel o be used for general use I think it is safe witch, address entry; etc is as explained or reading. After pressing G the e.p.p.o.m placed in the write condition using the pin-profile described. A program pulse is pplied by OR-ing CAP with the pulse This is timed using the delay routine, after which the address is OR-ed with the write puise-off pin-profile and stored at the port. Thus the port is in the write mode all th me, some of which is in the pulse-o changed when the port is in plain write mode.
The choice of software timing for the pulse or the use of a monostable is left clock frequency is not important: but monostable is another i.c. to wire and

Fig. 6. In this transistor interface and reset impedance state after reset occurs. This prevents unwelcome voltage appearing on the e.p.r.o.m. socket. Normal operation $P C 5=$ logic 1 . Notes . 0 is $V_{P}=26 \mathrm{~V}$ with
checked at is critical and should be Measurements must be from eprata. Measurements must be from e.p.r.o.m.
 50 MHz 'scope TLL input waveform 1:3

The CS/WE pin needs to be taken low ddress is changed Since PC4 is onlv sed with 2708 this can be done at the nd of any programming sequence, as forerunner to the verify routine.
. Test poin is a convenient place to drive
LED is on when V_{p} is high. If no 'scope is vailable V_{p} should be set to 26 V using
$20 \mathrm{k} \mathrm{N} / \mathrm{V}$ multimeter. Test point $=3.5 \mathrm{~V}$ with link 1 open.
culd be susceptible to interference. Software timing has its critics too, but when cher e.p.r.o.ms as well as 2708 s are to be
cat is justified in my view. Programming does take time - typically one 4 K e.p.r.o.m the processor is tied-up for at least four minutes. If any interference occurs during this time it could cause rouble, so there may be some advantage to ge gained by switching off any well-known this can include anything with a thermostatic control inductive load.
Software development. Some of the de velopment, done in hex machine code, was made easier by using the sub-routines vailable in the monitor, such as the "print ASCII string" sub-routine, and the "input etting-up the scratchpad data. If you wish to develop your own programs for any c.p.u. type, I recommend that you include a facility for additional features you may wish to try. For example, my program asks
if the user wants to "read?" and if the response isn't 59 (ASCII for Y) it goes to write?", after which it exits. There would be some advantage in writing "extra faciliLes; enter facility number"; you then enter different routines, to be developed later,
without rewriting the remainder of the software. What you do is to reserve two memory locations at the end of the program (in the final e.p.r.o.m. for the moment a 2716) and set the index register the address of the first, less two. Thus will be incremented by 1×2, so by going this location a new starting address may e inserted. By leaving say six memor locations all FF they may be programmed later. Arrange the address routines as a developments.
Infrequent users may find some advan age in making use of a 37 -way D onnector and a small plug-in p.c.b. with the socket on it. This is only plugged in when an e.p.r.o.m. is to be programmed
or read. The diagrams show the wiring fo the d.i.1. switches connected to pins 18-21 ig. 6 It is essential that such switches ar suitable for the low-power duty that is required. Protect the wiring on this p.c.b. from handling; an unetched piece of cop may be connected to 0 V .
Erasing e.p.r.o.ms. It is essential that Erasing e.p.r.0.ms. It is essential that ramming is started. This means exposing them to "hard" ultra-violet light for a period of between 5 and 20 minutes, dea suitable source. So-called u.v. tubes with luorescent coatings inside glass will not be atisfactory; this rules out disco black-ligh ubes and soft tubes used to generate ar ork. The correct tubes are usually small, ow-wattage with a quartz tube th pour radiation of 254 nm wavelength. Although satisfactory erasers are availabl commercially, you may be tempted to make your own using a replacement tube

WIRELESS WORLD MAY 1982

Take care in the design of a close-fitting lid or drawer to prevent the incidence of u.v. burns to eyes or skin. It is a sine qua non to include an interlock which breaks the tube-current in the event of the lid (o period. The addition of a timer is a useful refinement as the tube has limited life. Clean the i.c's window before erasure afterward it may be covered to guard against possible loss of data when it ha e.p.r.o.ms in conductive foam whenever

possible to prevent electrostatic charg causing degradation or destruction Whilst this programmer satisfies the in tial design requirements there is no reaso why other e.p.r.o.o.m. types should not be altering the pin requirements is to brin those pins which are likely to need changes to a separate header which may be used as a patch-board, in the same way that th d.i.1. switch was necessary in Fig. 6.
The 26 V transistor interface, tolerant of the value of output capacitance

Aprii 29-30

Spectral analysis and its use in underwate conference. Imperial College, London $\mathrm{SW7}$ Details from: Dr T. S. Durrani, Department of Electronic Science and Telecommunications, University of Strathclyde, Glasgow G1 IXW Up-to-date applications of dataview systems: IEE colloquium
May 3-6
Video 82 : Trade fair and Congress: Video 82: Trade fair and Congress:
International Congress Centre, Berlin. Organised by AMK Berlin, Postfach 191740 , Messedamm 22, D-1000 Berlin 19. May 4 factors in word processing: IEE May 5-7
May 5-7 ${ }^{\text {Videotext Systems '82: Conference and }}$ Videotext Systems ' 82 : Conference and
Exhibition. Cunard International Hotel, London. Organised by IPC Exhibitions Ltd, Surrey House, The 6 Digital tv effects: IEE Younger Member's Digitial tw effects: IEE Younger Member's
lecture. Ship Hotel, Duke Street, Reading,
Berks.
although I recommend that the outpu
waveform is checked. The 1.e.d. is illumi nated when the output is at high potantial which should be typically 26 V to ensure that the miminum swing of 25 V is met. Reset logic prevents unwelcome voltage
appearing on the e.p.r.o.m. when an outappearing on the e.p.r.r.o.m. When an out-
put port is arranged so that logic $0=0 \mathrm{~V}$. I this is inverted then the problem may be resolved and the port PC-7 becomes spare and could be used to perform some othe function. Personally I like to have ports a
logic 0 meaning no output.

May 11-13

May 11-13
Micro City '82: Information technology exhibition. Bristol Exhibition Complex. Details
from Tomorrows World from Tomorrows World Exhibitions Ltd, 9
Park Place, Bristol BS8 IJP.

May 12

Microprocessor projects for the plastics
industryy Seminar at the National Computing
Centre, Manchester. Organised by the British Centre, Manchester. Organised by the British
Plastics Federation, 5 Belgrave Square, London ${ }_{\text {May }} 12 \mathrm{PWH}$
Electrostatics and optical effects: IOP Meeting. Institute of Physics, 47 Belgrave Square,
London Londor 12
Time delay systems control: IEE colloquium.
May 12 May 12 Effects of obstacles and dielectric structures in the near-field on antenna performance: : IEE colloquium. May 12
Teletex and its protocols: IEE lecture.
May 13 Development environments for microprocessor
systems: IEE colloquium.
\square

$$
\underset{\text { socket }}{\substack{2 \text { tif } \\ \hline}}
$$

n any positioning system the most crucia components are the prime mover and the ransducer used to describe the position Here, the main features of disc-drive posi tioners, including feedback loops and ontrol circuits, are described.
With the exception of fixed head and Winchester type disc drives, the read/writ called the carriage. This carriage has one degree of freedom radial to the drive spindle and is restricted by guideways, sually in the form of rails or bars; in mo cases, the carriage runs on ball bearings, ake up play and ensure that the bearings roll instead of skidding. Not all carriages run on ball bearings - some run directly on the guideway - but the way in which shown in Fig. 1. Rotary positioners uch as those used in Winchester dis drives, will be described in a subsequen article.
In multi-platter drives, the heads are platters to reduce the overall height of th pack and minimize the weight of the car lage. The part of the carriage to which th eads are attached is often called the T lock because more often than not it is he T-block are designated \mathbf{A} and \mathbf{B}, and each side will have upward and downward facing heads. So in this case there are four cad write had labels, A-up, A-down, B or and B-down. A and B heads designed pearance but if they are mistakenly in erchanged, slipper aerodynamics will be
B.Sc., M.Sc., Digital Equipment Co.
by J. R. Watkinson*

"

ig. 1. Four methods used for mounting disc-drive positioner carriages. Common purpose

Fig. 2. Mounting read/write heads side-by-side in multi-platter drives reduces height of the entre line and disc wradius becomes more critical. Here, the heads are aligned at track A and the error caused by carriage/track-radius crisalical. Here, the heads are aligned acomes apparent at B.
affected, so the head type is usually clearl marked. Slots in the T-block allow radia Adjustment of the heads. rows, it is vital that the centre line along which the car riage travels is precisely on the disc radius Figure 2 shows why. Alignment fixtures
provided with the drives allow the heads to be accurately aligned and, equally important, keep the head adjustment standard between drives using interchangeable discs.

Motive power

There are three main methods of driving the carriage

- hydraulically
- by moving coil.

Hydraulics. The first moving-head disc drives stored data at very low density b modern standards, so if large amounts of used. Some of these discs measured several feet in diameter. The carriage was equally large, and the only practical way of moving it was by hydraulics. Much research into hydraulic systems for applications such as
power-operated gun turrets on military aircraft had already been carried out so the design of a system for driving the carriage of a disc drive was simplified.
Figure 3(a) shows the essentials of an hydraulically powered positioner, in which spindle motor or by a separate motor. The accumulator is required for rapid seeks, when the peak-flow requirement is greater than the pump can deliver; the analogy with a power-supply capacitor is clear
Fluid pressure is regulated by a bypas valve, the fluid equivalent of a zener diode and a series of solenoid-operated valve with calibrated orifices are used to move

-
the carriage at different speeds. Some move from their position in the compute room, because of the reaction compute carriage acceleration, and had to be moved back into place from time to time. Behe moth drives had two parallel spindles with

WIRELESS WORLD MAY 1982

Fig. 3. Essential elements of an hydraulic positioner are shown at (a), in which the pressure from the fluid pump is regulated by a bypass valve and control signals from the drive logic
operate solenoid valves in the control block. Accumulator operate solenoid valves in the control block. Accumulator permits high peak-flow rates
without large pressure fluctuations. In (b) tho without large pressure fluctuations. In (b), two opposed positioners are used to cancel out
reactions caused by fast carriage acceleration
opposed positioners between them to can
cel out this effect, Fig. 3(b).
Moving coil. As head and medium design improved the storage density increased This made the carriage smaller and lighter so less power was required to move it. At the same time, advances in semiconducto technology brought down the price of power transistors. It thus became feasible
to use a moving coil to drive the carriage, to use a moving coil to drive the carriage,
with the further weight reduction of the carriage that the principle allows being used to reduce access time.
A typical coil has a diameter of three inches and works in the radial flux from a pounds. Smaller drives use a copper wir coil on a glass fibre former, but larger units may use self-supporting coils wound from rectangular-section aluminium strip. Alumainium has a higher strength-to-weight outweighs the disadvantage of higher resis tance. The coil frequently requires forced air cooling in large units. The assembly is usually described as an e.m.a. (electro
magnetic actuator), Fig. 4 .

Electric motor drive. There are two main types-one is as shown in Fig. 5. In the first, the motor drives a leadscrew which
moves the carriage as it turns. In some cases a stepping motor is used, where the stable positions of the rotor correspond to the positions of disc cylinders.

Fig. 4. Essentials of a disc-drive positioner.

Fig. 5. One type of motor-driven positioner. This assembly illustrates how a
positioner using steel wires to drive the carriage looks.

Fig. 6. Mechanical detenting. Detent pawl is split and has two sets of teeth at 180° to each other. At (a), the carriage is detented to an odd numbered cylinder and the upper pawl teeth are engaged. The lowerpawl, represented by the broken line, rests against the tops of the
arct rack teeth. In (b), the carriage is detented at an even
Tooth pitch on the rack is twice the cylinder spacing.

Fig. 7. Carrier-wave cylinder transducer. Oscillator feeds the transducer primary coil and the wo secondaries are connected in opposite phase. Output signal phase, determined by the Three examples are given with associated waveforms.
e Parallel bar and Moire type grating used to modulate a light beam produce triangle and sine-wave outputs respectively. These gratings are used to

The motor in the second type drives a drum which imparts linear motion to the carriage through flexible steel wires. These two types are normally used only in small drives.

Detenting

When the carriage is held at rest with the heads correctly aligned above the disk tracks, it is said to be detented. Early
drives used mechanical detenting where drives used mechanical detenting where
pawls on a detent actuator move to engage a rack on the carriage. Figure 6 shows a two-phase detent mechanism, where the spacing between cylinders is one half the rack pitch. Mechanical detenting can be found on both hydraulic and moving coil positioners, and the pawl will be operated
by a ram in the former case, or by a solenoid in the latter. The teeth on the rack are asymmetrical so that after the detent has engaged, some forward drive can be applied to take up any backlash without fear The detent actuator is a fine piece of precision engineering, and as such is expensive. Recent drives take advantage of the falling cost of electronic circuitry and employ
electronic detenting, where the carriage is held by a feedback loop using a position transducer. Should for any reason the positioner find itself off track, the position transducer generates an error voltage which will drive the carriage until the error is cancelled. When operating in this way
the carriage servo system is said to be in detent mode, track following mode, fine mode or linear mode, depending on the specific documentation consulted. During a seek, the servo system changes to velocThese are the two major operating modes of the servo.

Transducers

The purpose of a transducer will be one or more of the following

- to count the number of cylinders crossed during a seek, to generate a signal proportional to carriage velocity,
- or to generate a position error proporthe desired track.

WIRELESS WORLD MAY 1982

Fig. 9. Optical velocity transducer. Four quadrature signals are produced from the twopa ta time by analogue switches. This process sesults in a continuous analogue-output
voltage proantional to the siop of the transducer waveform voltrage proportional to the slope of the transducer waveform, whish is itself proportional to
carriage velocity. In some drives one of the transducer signals may also be used to count cylinder crossings during a seek and to provide a position error for detenting.

Sometimes the same transducer will be used to provide all three signals, For this
reason, transducers are principle of operation, rather than by func tion.
Magnetic transducers. There are three - moving coil

- moving magne
- carrier wave.

The first two types simply give an outpu proportional to the rate of change of flux The only difference is whether the coil or
the flux moves. Moving-magnet types of ten have the coil concentric with the actua tor, which provides good noise shielding Moving-coil types sometimes have a buck ing coil connected in phase opposition which does not link the magnetic circuit two types of transducer can only generate a velocity signal, but have the advantage that no precision alignment is necessary; working clearance is all that is required. The flux path of the transducer is completed by a rack on the carriage, often the WIRELESS WORLD MAY 1982
sensitive rectifier gives a binary outpu ings during a seek. As no accurate positio error or velocity information can b tricted to use in mechanical detent drive in conjunction with a magnetic-velocity transducer. Adjustment of carrier-wav transducers is critical, as the signal be from the rack is too great but the from the rack is too great, but the
transducer may be damaged by the rack teeth if the clearance is too small
Optical transducers. These devices con sist of gratings, one fixed and one mova ble. The relative positions of the two will control the amount of light from an 1.e.d. bul which can pass Rere photo-transistors
Referring to Fig. 8 , gories

- Moire-fringe
- parallel-grating.

In a Moire-fringe transducer the bars on the moving grating are not parallel wit
the bars on the fixed grating. Relative movement causes a fringe pattern which travels at a right angle to the direction of motion. This results in sinusoidal modula tion of the light beam.
In the second type, all the bars are parallel so the sensor's output is a triang
wave. In both types of sptical transduce the spacing between the two gratings is critical.
whether the waveform used counting cylinder crossings is sinusoidal triangular is not important, so the choic between the two transducers is governed by whether a position error or a velocit signal is required. The slope of a sine wav is steeper in the zero region than an equidetecting position error. Conversely the constant slope of a triangle wave is easily differentiated to produce a velocity signal. Because the differential of a triangle wave changes sign twice per cycle, a two-phase tinuous velocity-output signal. Th stationary grating has two sets of bars with a 90° phase relationship and the resultan
same one as is used by the detent actuato As the rack moves, the reluctance of the
two limbs will rise and fall, and as the secondary coils are wound in opposition to each other, the output will be alternately is and out of phase with the input. A phase

(a)

Fig. 11. In example (a), dissipation in the positioner is continuous, causing a heating
problem. The effect of limiting the sche duled velocity above a certain cylinder difference shown in (b), where heavy current only flows during acceleration and deceleration. In between, only enough cur
curver acceleration slope.
waveforms are referred to as \sin and cos, ven if they are triangle waves. The two waveforms and their complements, known as - sin and -cos, are differentiated and imes when there is no sign change. This process of commutation is achieved by f.e.t. analogue switches controlled by comparators looking for points where the input output signal proportional to velocity. Where one transducer has to generate all three of the required parameters, Moiré ype gratings are preferable because of heir better position-error detecting perthe velocity output derived from a sinusoid has to be accepted
Optical transducers often contain addiional light paths to aid carriage-travel be used during the head-loading sequence to position the heads at cylinder zero, as the sine or triangle outputs are cyclic and o not give an absolute cylinder address. echanical detent drives pose the problem lic output from the rack transducer. One solution is to drive the carriage forward lowly until it contacts the forward stop, and then to preset the cylinder count to wo or three cylinders more than the maximum.

Seeking

A seek is a process where the positioner moves from one cylinder to another. The peed with which a seek can be completed ime of the drive. The main parameter controlling the carriage during a seek is the cylinder difference:
cylinder difference $=$
desired address - current address.
The cylinder difference is a signed binary number representing the number of cylinders to be crossed to reach the target ign. The cylinder difference is loaded into
(b)

Fig. 13. Staircase from a d.-to-a. smoothed by adding a sawtooth waveform.
velocity error, and the servo amplifier is now driving a reverse current through the actuator to decelerate the carriage in accordance with the scheduler. The
scheduler deceleration slope can never be steeper than the saturated acceleration slope. Areas A and B on the current graph will be almost equal, as the kinetic energy put into the carriage has to be taken out. Any difference will be due to friction and
other losses. The current through the coil is continuous which would result in a heating problem, so to counter this the d.-to-a. converter is made non-linear so that above a certain cylinder difference no inThis results in the graph of Fig. 11(b). The actual-velocity graph is called a velocity profile, and consists of three regions: acceleration, where the system is saturated, a constant-velocity plateau, where only friction, and the scheduled. run-in to the desired cylinder. Dissipation is only significant in the first and last regions. The effect of carriage velocity on dissipation is as follows.

Fig. 12. Voltage-dependent feedback around the operational amplifier permits a piecewise
linear approximation to a curved velocity profile. This speeds up short seeks without causing dissipation problems on long seeks.

Carriage acceleration, a, is \propto actuator cur-

$$
a=\frac{2 s}{t^{2}}
$$

where t is the seek time. Dissipation is where t is the seek time. Dis $I^{2} R$, which is proportional to $a^{2} R$

$$
a^{2} R=\left(\frac{2 s}{t^{2}}\right)^{2} R=\frac{4 s^{2}}{t^{4}} R
$$

Average carriage veolocity $v \propto 1 / t$,
As a result, it is necessary to limit the maximum velocity of the positioner ver accurately or severe overh A consequence of the critically damped run-in to the target cylinder is that shor seeks are slow. Sometimes further non linearity is introduced into the velocity scheduler to speed up short seeks. The
velocity profile becomes a piecewise linear approximation to a curve by using nonlinear feedback. Figure 12 shows the effec of using a shaper or profile generator, as
this device is known.

Servo amplifiers

In small disk drives the amplifier is usually linear in all modes of operation, resem bling nothing more than an audio output stage. As the scheduled velocity signal
comes from a d.-to-a. converter, the deceleration ramp is depicted by a staircase waveform. When the staircase is compared with the actual velocity signal, the resulting velocity-error signal contains an a.c.

WHAAMN

In this photograph of a moving-coil transducer, the magnetunder the coil can be seen
component due to the steps. This increases e.m.a. dissipacion and can cause an audible sometimes solved by adding a saw-tooth waveform, at the same rate as the steps, to the shaper output. This approach is shown in Fig. 13.
Larger units employ pulse-width modulation to reduce dissipation in the servo
amplifier. The duty cycle is established typically by comparing the velocity erro with a sawtooth waveform. A simplified example of this process is shown in Fig. is caused by p.w.m. servo systems, but this is generally of no consequence as no data transfer takes place during a seek. In track following mode, p.w.m. servos re
vert to a linear amplifier configuration which is why the term linear mode is often

The input of the servo amplifier no mally has a number of analogue switche which select the appropriate signal according to the mode of the servo. As the output of the position transducer is a
triangle or sine function, the sense of the position feedback loop has to be inverted on odd numbered cylinders, to allow de tenting on the negative slope. In some cases a different velocity transducer is used the pack. Figure 15 shows a typical servoamplifier input-selection circuit.

п

Fig. 14. Comparison of velocity error with a sawtooth waveform results in a pulsewidth modulated output which can be used
to reduce dissipation in the servo amplifier

Fig. 16. Alignment disc has flux patterns displaced alternately about the centre line of the reference track. In the resulting
oscillograph at (a), the head is too close the spindle, at (b) too far from the spindle,
and at (c), in the correct position.

Head alignment

On drives where interchangeable discs ar used, the distance between the read/write heads and the spindle axis is critical. So to (sometimes called a 'custom engineer') containing prerecorded flux patterns at reference cylinder is used. Figure 16 shows a typical alignment-disc pattern and resulting oscilloscope waveforms for correct and incorrect head alignments.
supplies and safety will be discussed in th next chapter.
WIRELESS WORLD MAY 1982

DESIGNING WITH MICROPROCESSORS

Linking a mocroprocessor with a printer directly is wasteful: much time can be saved by sending data to a buffer for reading at a slower rate. Professor Zissos concludes his series with two articles on programmable ilo chips, this first on basic concepts, and the second on design procedure and implementation.
t is not always necessary or indeed de sirable for two devices to communicate directly, particularly if one device is much
faster than the other. For example, a microprocessor transmitting data directly to a slow character printer will be idling while a character is being printed. In this situation much time can be saved by the fast device transmitting each item of data allowing the printer to read the data from he port in its own time - see Fig 1. Such a scheme would release the microprocessor from the unproductive lask of waiting and llow it to look afte priner is prinung
mented with program are normally imple hips whose operations within limits by the user. Designing such stems involves two steps. First the it up is programmed. And second, the in erface between the $1 / \mathrm{o}$ chip and the per pheral unit is designed. Although th second stage presents no difficulty, pro gramming the chip in practice is not al-
ways a trivial task, because of lack of a ways a trivial task, because of lack of a
systematic method. This often prevents one from taking full advantage of the main property of such chips - that their term nal characteristics can be specified to som xtent by the designer
must not send data to he port until it can accept it. For this pupose the port sends a signal (hl) to the urce indicating its status, namely whether it is empty or full. Signal hl mus from reading old data that it has already read, as shown in Fig. 2 ($\mathrm{hl}=0$ indicates that the port is empty, and $\mathrm{hl}=1$ that the port is full). Reference to Fig. 2 shows tha catus signal hl must be turned on by the turned off by the acceptor when it read the data; variables h 2 and h 3 denote these "handshake" signals.
In practice signal hl is generated by ip-flop, the status flip-flop. A JK flippulling its J terminal high and the K terminal low, a pulse on its clock terminal sets it (hl $=1$) and pulsing its clear terminal rese That is, a pulse on line h2 sets the flipflop and a pulse on line h3 resets it. The the clear signal (CLR) immediately after he flip-flop is reset, CLR $=$ hl.h3 $=$ when $\mathrm{hl}=0$. In practice, the port is buffer which requires a strobe pulse wit

by D. Zissos

 and Jane Pleusvery new item of data before it accepts it: the pulse on handshake line $h 2$ can be used In summary the
In summary the step-by-step operation of the handshake system in Fig. 2 is as
follows. The source monitors status line hl
oo determine whether the port is full or empty. If empty, it outputs the next item of data and pulses line h2, which strobes flip-flop $(\mathrm{hl}=1)$ by pulsing its clock terminal. This constitutes the write operation; the read operation is initiated by the cceptor when line hl is high. When the pulsing its clear terminal.

Fig. 1. Fast device feeding a slow device needs buffer stage to avoid microprocesso Fig. 1. Fast de

Fig. 2. Handshake signals are exchanged before data is transferred from source to buffer ntrokes to acceptor. Soure mortion is intended by the acceptor when h1 is high.

fig. 3. Status flip-flop generates signal h. With J high and K low, pulse on line h2 sets
circuit and on $h 3$ resets it.

40. A handshate system requires two interfaces, one to coordinate source/buffer activit and the other acceptor/buffer activity.

Fig. 5. Microprocessor-based syster with input port and source (paper tape reader), top,
output port and acceptor (printer), bottom.

To implement a handshake system re quires two interfaces, one to coordinate the activity of the source with the activity of butiv, and a secoto with that buffer, Fig. 4
Because most commercially-available microprocessor systems are normally pro ded with ports which are already is erfaced to them, one need only consid WIRELESS WORLD MAY 1982
interfacing peripheral devices to the ports. Therefore microprocessor-base systems with io ports can be represented paper tape reader and printer act as source and acceptor because their action is easy to visualize - they can clearly be replaced by ny other device, equipment or process mentation.

IN OUR
 EXT ISSUE

80-100-watt

aucio amplifier

plifier is dey hood's new am-

 plitier is described in a three-part article, beginning with an explanation of design problems in relation to the characsign will be closely followed by a new, modular preamplifier, the pair forming possibly yet described in these pages. Microprocessor-controlled Microprocessor-controlled
radiocode clock. Using the 60 kHz standard-frequency time-code transmission from
Rugby, this clock provides date and time information display is continually corrected by the transmission. Particular attention to receiver effects of interference, and to perform the excoding funcon
Heretics gulde to modern phya is a controversial review the dorine, set ar th educated layman Enor mous gaps exist in our understanding of Nature and many are not very crental theories A S Murray who in says W. A sinvestiontes electroma netic theory, photons, duality quantization, matter waves
and haziness, and reviews the state of physics today.
Control technology and on large systems - oil rios nuclear power stations, aircraft - to control engineers is not a simple matter of laying large panel. The psychology of crisis control, the requirement for new types of equipmemtors of training personnel are examined by R. E. Young
Radio in tunnels by leaky feeder D I R. Martín, speciallist in underground e leaky, or radiating, cables.
ON SALE
MAY 16

CEPSTRUM ANALYSIS

This final part of the review gives uses in speech analysis and machine diagnostics, as well as calculation with an FFT analyser using the digital form. Part 2 gave application to signals containing echoes (March), while part 1 derived the cepstrum as the spectrum of a logarithmic spectrum.

The applications of the cepstrum to speech analysis are mainly connected with its ability to separate source and transmission quefrency contents. This is usually the case with speech where the source spec trum is very flat, containing a larg number of harmonics of the voice pitch,
but is modified by the resonance character but is modified by the resonance character-
istics of the vocal tract, the so-called for mants, which determine which vowel is being uttered. Fig. 13 shows spectra and cepstra for the vowels "oh" $|0|$ and "ee" i and illustrates how the differences mainl trum, which is dominated by the formant characteristic. Non-voiced sounds, such as many consonants and whispered speech, do not give peaks in the cepstrum corresparliest applications of the cepstrum was to separate voiced and non-voiced sounds and to measure voice pitch ${ }^{10}$
It is also possible by editing in the cepstrum to remove one effect completely, for
example the voice, and thus simplify the example the voice, and thus simpiry
tracking of the formants. Fig. 14 from ref tracking of the formants. Fig. 14 from ref
11 shows a typical situation, a three-di mensional representation of the section "ea" from the word "Montreal". The picture is confused but by short-pass liftering
each of the spectra to remove the voice each of the spectra to remove the voice
components, as shown in Figs 15 and 16 only the formants are left and the picture becomes much clearer.
The cepstrum can be used for efficient vocoding and transmission of speech. low quefrency part of the cepstrum so only this is transmitted, along with information as to whether the speech is voiced and if so the voice pitch. At the receiver end the speech is reconstiuted using the low quef

Fig. 13. Spectra and cepstra for "ee" II vowel

by R. B. Randall. and J. Hee

acteristic or impulse response for a source which would either be a variable frequency pulse generator for the voiced sections or a noise generator for the unvoiced sections reported as sounding natural.
It can also be useful to include it along with spectral and other information in pat tern recognition algorithms for speake identification. Inclusion of the cepstral in
formation improved the ability of the tech nique to exclude impostors. ${ }^{13}$
Machine diagnostics
The applications of the cepstrum to machine diagnosis are mainly based on it ability to detect periodicity in the spectrum, e.g. families of harmonics and uniformly spaced sidebands, while being in-

Fig. 14. Scan spectrum of "ea" in "Montreal"
sensitive to the transmission path of th signal from an internal source to an exter signal from an internal
nal measurement point
The cepstrum technique has been proposed to aid detection of missing blades in turbines. Such blade anomalies give rise to a large number of harmonics of the shaf rotational speed in measurements ${ }^{14}$ made
both internally and externally on the casing in the vicinity of the affected blade row. Even though the harmonic pattern can be seen by eye, the whole family of harmonics is reduced in the cepstrum easier to monitor easier to monitor.
Similar reasoni
box diagnosis; tooth a applicable to gearsimilar influence on gearbox have a very nals, as do blading anomalies on tion sig nals, as do blading anomalies on turbine
signals. ${ }^{15}$ A very detailed discussion is given in reference 15 of the application of cepstrum analysis to gearbox diagnosis and so here the discussion is limited to a couple of typical examples.

In gearbox vibrations deviations from exact uniformity of each toothmesh show up partly as harmonics of the shaft speed and also as sidebands around the toothmeshing harmonics caused by modulation of the toothmesh signal by the lower rotatonal frequencies. The sideband spacing the source of the modulation and can be extracted using the cepstrum. The cepsrum has the two advantages of being able detect periodicity not immediately apparent to the eye, and of being able to the average sideband spacing over the whole spectrum.
The first advantage is illustrated in Fis
WIRELESS WORLD MAY 1882

c) short pass lifter characteristic a) log power spectrum of vowel
b) magnitude of cepstrum

Fig. 16. Short-pass liftered scan spectrum of "ea"in "Montreal"
17 and was made using an FFT analyser type 2033 in conjunction with an HP9825 desk-top calculator. A 2000 -line spectrum includes the first three harmonics of the wothmeshing frequency of a single reducion gearbox (a). It purposely excludes the low harmonics of the shaft speeds since toothmeshing. The spectrum was obtained by performing five 400 -line zoom analyses on the same data and storing the intermediate results in the calculator memory. Th back into the 10 K input memory of the analyser and frequency analysed once more using the scan average procedure with 75% overlapping Hanning windows to obtain the cepstrum. Fig. 17 (b) repre though it is difficult to see any periodi structure in the spectrum, it is apparen from the cepstrum that there are two fami les of sidebands with spacings of 85 Hz and 50 Hz respectively, the rotation components in the cepstrum stem from one or other of these two shaft speeds. The other advantage is illustrated in WIRELESS WORLD MAY 1982

Fig. 17. Example of a cepstrum analysis on gearbox vibration signal (a) 200--line logarithmic power spectrum

It was traced to the rotational speed of econd gear, even though this was idling because first gear was engaged.

References

10. Noll, A.M. Cepstrum pitch determination
J.A.S.A. vol.41. 1967, pp. $293-309$. Schafer, \mathbf{A}.W. Rabiner, L.R., Disitital representations of spee signais. Proc. IEEEE. 19755, pp. $662-77$ signals. Proc. IEEE. 1975. pp. 662 - 77 .
11. Thrana, N . Application of a a ong memory FF analyser in speech analysis. B\&KK application not
$066-81$. O66-81.
12. Schafer, R.W. \& Rabiner, L. .R. System for
automatic formant analysis of voiced speech. automatic formant analysis of ov.iced ssem for
J.A.S.A. 1970 . pp. $634-48$. Oppenheim, A.V I.A.S.A. 1970 , pp. $634-48$. Oppenheim, A.V.
Speech analysis-synthesis system based on ho momorphic filtering. J.A.S.A.A. 19699 , pp. 458-65. 13. Luck, J.E. Automatic speaker verification
using cepstral measurements. J.A.S.A. 1969 , pp. 1026G-32.
13. Sapy.
14. Sapy, G. Une application du traitement
numerique des signaux au diagnostic vibratoir numérique des signaux au diagnostic vibratoir
de panne: La détection des ruptures d 'aubes mo biles de turbines. Automatisn
10, October 1975, pp. 392-9.
Randell P 5. pp. 32 . 15. Randill, R. B. Cepstrum Analysis and Gearbox
Fautit Diagnosis. Bruel \& Kjaer application note
no. 233-80. 16. Thrane, N. Discrete fourier transformer and
FTT analysers. $B \& K$ Techical Revien no FFT analysers. B \& K Technical Review. no. 1 .
15.

Fig. 18. Spectra and cepstra from truck gearboxes in good and bad condition

ppendix A

Calculation using FFT analyser and calculator.
Even though the analyser basically performs a
forward transformation of 1024 real data points the results can be modified in the calculator so as to obtain the inverse transform of up to 1024
ceal or complex values thus giving the possibilty of calculating both power cepstra and comlex cepstra. The actual algorithms used are more generally applicable and so are detailed
in Appendix B.
The digital version of eqn 3 for the power The digital version of eqn 3 for the power epstrum is
$C_{\mathrm{p}}(n)=F^{-1}\left\{\log F_{x x}(k)\right\}$
where n stands for $n \Delta t(\Delta t)$
where n stands for $n \Delta t$ (Δt is the sampling
interval) and thus indicates the time. n runs from 0 to 1023 . Likewise k represenss the frequency $k \Delta f(\Delta f$ is the line spacing in the frequency spectrum) and in principle also runs
from 0 to 1023 even though only the values from 0 to 512 are calculared. Because of the implicit periodicity of all functions calculated by the
FFT process the values of k from 512 to 1024 also represent the negative frequency components (from -512 to 0) and can usually be be
derived from the positive frequency values. 16 As $F_{v y}(k)$ is a real even function, the inverse trans $F_{\mathrm{xx}}(k)$ is a real even function, the inverse trans
formation can be replaced by a forward transfor mation (Appendix B1). In general only the onsded power spectrum is given, and the simpl vantageous. With this method, only the one ided spectrum is transformed, and the real par
of the transform gives the desired cepstrum of the transform gives the desired cepstrum.
Another advantage of this method is that the envelope cepstrum (amplitude cepstrum of the one-sided spectrum) of Fig. 4 may be obtained at the same time. In fact the analyser itself
automatically calculates this and displays it as the instantaneous spectrum, which can be vewed on a linear amplitude scale. The enve-

$$
00
$$

$C_{\mathrm{e}}(\boldsymbol{n})=\mid \boldsymbol{F}^{-1}\{\log G(k)\}$
where $G(k)$ is the one-sided power spectrum
,
$C_{c}(n)=\mathcal{F} \quad\left\{\log _{e} A_{x}(k)+j \varnothing_{x}(k)\right\}$. Because the logarithmic spectrum is a coniugate
even function, the calculation method of Appendix B3 may be used. Note that the phase unction $\phi_{x}(k)$ must be unwrapped to a contin cipal values modulo 2π which are calculated from the real and imaginary parts of the complex spectrum. Moreover the log amplitud
must be scaled in nepers (natural log of the mplitude ratio) to correspond to the radians of the phase spectrum.
The analysers in general are a.c. coupled, so the zero frequency value in the power sary to insert a value before calculating the cepsrum. In practice best results are obtained by setting the zero frequency compe.
As the FFT algorithm used in the Analysers ypes 2033 and 2031 is optimized for signals with no d.c. component, it is advantageous to
subtract the mean log spectrum value before calculating the cepstrum. This optimizes the
signal noise conditions in the cepstrum. and is ignal noise conditions in the cepstrum. and is particularly valuable when editing and transfocalculation of the complex ceppstrum it dvisable before attempting to unwrap the hase spectrum to remove any simple delae
hich gives a linear slope to the phase specrum. This should be done to the maximum extent possible in the time signal before trans-
formation, and then in the phase spectrum itself formation, and then in the phase spectrum irself
by varying the linear component until the by varying "the linear component until
number of "iumps" over 2π is minimized.

Appendix B

Calculation of inverse Fourier transform The forward and inverse discrete Fourier are defined as
$X(k)=\frac{1}{N} \sum_{n=0}^{N-1} x(n) \exp -\mathrm{i} 2 \pi k n / N$
and $x(n)=\sum_{k=0}^{N-1} X(k) \operatorname{expi} 2 \pi k n / N$
where $\boldsymbol{X}(\boldsymbol{k})$ the discrete complex spectrum $x(n)$
the sampled time function and N number of me sles in the time record.
The Fourier transform implemented in
he analysers types 2033 and 2031 is designed to he analysers types 2033 and 2031 is designed to ime signals, but by using some of the properties of the Fourier transform, as listed in the
tabes, it can also be used for forward and inverse transformation of any cormplex signals.
The inverse transformation of the three types of The inverse transformation of the three types of
signals: real-valued, real and even, and coniusignals: real-valued, real and even, and conju--
gate even are described in the following. The

components of the original spectrum are given spectrum for negative frequencies. It follows that $\mathcal{F}^{-1}\{X(k)\}=N \operatorname{Re}_{\mathrm{e}}[\mathcal{F}\{\tilde{X}(k)\}]$ where $\tilde{X}(k)= \begin{cases}2 X(k), & 0<k<512 \\ X(k), & k=0, k=512 \\ 0 & , 512<k<0\end{cases}$ $\tilde{X}_{\mathrm{e}}(k)=X(k)$.
The calculation procedure, Fig. B2, is thus - form $X(k)$ - forward transform

- extract and scale the

A. Coniugate ever spectuan

Any complex spectrum can be inverse-transcomponents separately by the procedure B1.
However, shis requires two Fourier transformations as well as some extra storage capacity
for the intermediate results. In the situation sponding to a real time sigmal, the fillowing
$\{X(k)\}=\mathcal{F}^{-1}\left\{X_{\mathrm{R}}(k)+\mathrm{j} X_{I}(k)\right\}$ $\left\{X_{\mathrm{R}}(k)\right\}-\mathrm{i} \mathscr{F}\left\{X_{\mathrm{I}}(k)\right\}$

$$
\text { where } \xi_{\mathrm{R}}(n)=\mathcal{F}\left\{X_{\mathrm{R}}(k)\right\}
$$

$$
\begin{aligned}
\text { here } \xi_{\mathrm{R}}(n) & =\mathcal{F}\left\{X_{\mathrm{R}}(k)\right\} \\
\text { and } \mathcal{\xi}_{1}(n) & =\mathcal{F}\left\{X_{\mathrm{I}}(k)\right\}
\end{aligned}
$$

The calculation procedure, illustrated in Fig. Add the real and imaginary parts for positive
and negative frequencies. In practice this means adding the imaginary parts to the real parts (of half of the record and subtracting the same maginary parts from the real parts for the

Forward transform. Add the real and imaginegative time section will be located in the its correct position before the first half. Zero WIRELESS WORLD MAY 1982

NEW PRODUCTS

SPECTRUM/ NETWORK
ANALYSER

 enerator, a four-channel memory, ight tunable markers and is GPIB
compatible. Facilities for meacompatible. Facilities for mea-
suring phase and group delay, with a simultaneous display of ampli-
ude, are included. This instrument is for use in both production and esearch and development applicaions. Chase Electronics Ltd,
Church Lane, Teddington, Middx WW301

BLUE L.E.D
he.d. intended primarily as nitride reference source in chromatography applications. Light output, in a lewing angle of 4 , is typically maximum forward-current rating. Forward voltage varies between ound 4.5 V at 0.5 mA and 7.5 V at andard 1.e.d. package. Anglia Components Ltd, Burdett Road, Wisbech, Cambs PE13 2PS.

WAVEFORM
MONITOR
The V.098, designed for broadcast and professional video applications,
is a waveform monitor that can be set to give a flat response, an IRE
(Institute of Radio Enineers) response, or display waveforms subjected to a 4.43 MHz bandpass

filter. In addition, two line and
field sweeps can be selected and various orher adjustmentss made.
This monitor is from Hitachi In-
Thriments struments, anew division of Hitanounting in a cl9n be obtained for or as Portable unit running off batteries.
Hitachi Denshi (UK) Ltd, $13-14$ Garrick Industial Estate, Garrick WW303

PORTABLE VIDEO RECORDER
pport the Technicolor 212E who "the world's smallest, lightest and
implest" video cassette recorder. much larger than a standard audio cassette, for either 30 or 45 minutes
of play, and weighs around 3.2 kg
with rechargeable battereies with rechargeable batteries. Made
by Funai and designed by Futcc of Osaka, the mechanism is similar to
the one used in the Grundig VP100 fecorder and mentioned in last December's issue (New Products,
page 87). But Grundig now way they page 88. But Grundig now say they
will not market their recorder in
the UK because of supply shortage. the UK because of supply shortage.
The 212E two-head recorder uses The 212E two-head recorder uses
an Hitachi-made colour camera, an Hitachi-made colour camera,
though almost any other can be
used via a simple adapter, with an used via a simple adapter, with an
electronic viewfindet, zoom lens, electronic viewfinder, zoom lens,
and close-up $\times 6$ "macro" setting. A u.h.f. $\left.\begin{array}{l}\text { television tuner will be } \\ \text { available shortly. Sulkin (UK) Ltd }\end{array}\right]$ ${ }_{73}{ }^{\text {avalarosestoror Street, London Wix }}$ 9DD.

TEACH YOURELF An introduction to digital electronics suitable for beginners is given
by a kit from Cambridge Learning covering such subjects as boolean igebra, gating, flip-flops, shift re ders. Problems, with solutions, and
diple count and half n appendix covering basic prinpples are included in the manual.
At $£ 19.90$, the kit comprises logic i.cs, a solderless' breadboard,
i.e.ds, a handful of ocher compo1.e.ds, a handful of other compo-
nents and, of course the manual -
all in a pocket-sized wallet (for 14 cm -wide pockets). A power Supplementary kits delving further into digital electronics are , pro-
posed. Cambridge Learning Ltd, Kivermill Lodge, St Ives, Hunting-
don, Cambs PE17 1 EP . ww305

NEW PRODUCTS

		MINIATURE HIGH-QUALITY FANS"Whisper Model" by Ro-ton. Low-power consump-tion Hess than 10 watis).Silent running. 115 . (twoin series for 230 V .1.$50 / 60 \mathrm{~Hz}$ Size $4 / 2 \times 4 / 2 \times$$11 / 2 \mathrm{in}$ ONLY 56.50 EACHincl. V.A.T.BRAND NFW50% less than manufactur-er's price				
QUANTITY DISCOUNTS on ALL items (unless stated), 15% per $10,20 \%$ per $50,25 \%$ per 100. All items BRAND NEW (unless otherwise state DELIVERY from stock - Add post 35p per order. TELEX 262284 EXPORT enquiries Transonics Mono 1400						
01 -723 1008/9 WARE ROAD LONDON WZ 1ED IES 1112						

${ }_{84}$

Tel: 01-677 2424 Telex: 946708										
BASES B7G skirted B9A unskirted B9A skirted Int Octal Loctal Nuvistor vase 8 pin DIL 14 pin DIL 16 pin DIL Valve screeni cans all sizes										
Terms of business: Cwo. Postage and packing valves and semiconductors 58p per order. CTTs E1.73. All prices include VAT. Telephone 01 Telex 946708 Telex 946 $E, \&$. E. Open to callers Monday-Friday										

VIDEOTEX:

CUNARD HOTEL, LONDON MAY 5-7, 1982
Opening Times: $10.00 \mathrm{hrs}-18.00 \mathrm{hrs}$
(closing 17.00 hrs on the last day)

Specially designed for businessmen who are aware of the need to make their company more efficient!

This three day event, running parallel with the major conference, is designed to show the hardware and area of Information Technology.
All aspects relating to the practical issues of purchasing and installing, operating and applying videotex Systems wili be covered.
Exhibits will range from large "Turnkey" packages to the terminals, printers, subscribers and telecommunications interfaces:
This is the 5th in the highly successtul serles of viewdata and videotex exhiblitions sponsored by IPC Business Press, the world's largest business publlshers. In the past these exhlibitions have been successfully used in launching the latest adaptors and complete systems. These systems are the modern tools of the new era in Information Technology

```
Don't mlas out on this opportuntiy
o make your company more efficionth
```

Flll out and return the form below.

TELETEXT AND PRESTEL VIEWDATA

Universal single plug-in board

WW - 091 FOR FURTHER DETALLS

6 ft dia. for use in satellite reception and microwave transmissions. Please send S.A.E. for full details and data sheet

Farrison Bros.
22 Milton Road, Westcliff-on-Sea, Essex SSO 7JX Tel: Southend (0702) 32338
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS

IEST INSTRUWENTS

 THANDARQuality British-made Portable Instruments MULTIMETERS:
MM50.........19

 TG102
Freg. Range: $0.2 \mathrm{~Hz}-2 \mathrm{MHz}$
Carriage for all

FREQUENCY METERS: 8 digit LED

FREQUENCY METERS: 9 digit LED

SAFGAN BRITISH-MADE SCOPES

 Frequency range up to 100 MHz (300 MHz Hz o
\qquad A highly efficient impedance briage for
measuring resistance, capacitance and

ADD 15\% VAT ON ALL PRICES CAILERS WELCOME OPEN MONDAY TO FRIDAY Gam-5.30pm DAROM SUPPLIES 4 SANDY LANE
STOCKTON HEATH WARRINGTON
 (ase)
-075 FOR further detail

 267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone: ${ }_{0}^{01-7471555}$

Happy Menories
Part Type
411620 ns
4116250 ns
4116250 ns
2114200 ns Low power
2114450 ns Low power
4118250 ns CMOS
6116 150ns CMOS

2708450 ns
271650 n

271645 ns 5 volt
2716 450ns three rail
2732
2732 450ns Intel type
2532 450ns Texas type
Z80A-CPU $£ 4.75$ Z80A-P10 £4. 2

Low profile IC sockets: Pins \quad| 8 | 14 | 16 | 18 | 20 | 22 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 28 | 40 | | | | |
| 10 | 11 | 14 | 15 | 18 | 19 | 25 |

$74 L$ series TLL, large stocks at low prices with DIY discounts
starting at a mix of just 25 pieces. Write or telephone for list.
Please add 30 post \& packing to orde
under $£ 15$ and VAT to total Access \& Barclaycard welcome
24-hr. service on 1054 422) 618
Government \& Educational orders welcome.f15 minimum ounts operated: Telephone or write for
Prices are still tending to drop
Telephone for a quote before you buy
Happy Memories (WW) Gladestry, Kington Herefordshire HR5 3NY Telephone: (054 422) 618 or 628

-and compatibility of TV sets with TV games and home computers sor that matter. Proberms anise
when a set doesn't 1 ike a non-standard inputsignal. Television's special feature sets out to solve this problem and also features a detailed list of
facturers suggested modifications. LOPT TESTER
Line output transformer failure is a common enough failura- with some makes more than
others-butit's not alwayseasy to be sure that the others-but tit's not always easy to be sure that the
transformer is defective. This useful, easy -totransformer is defective. This useful, easy-to-
construct tester will help to solve the problem and save you time.

STABILISED POWER SUPPLIES

FARNELL A15: $210 / 240 \mathrm{~V}$ 1p. Dual Op. 12 - i 7 v per rail at 100 mA .
Remote sensing, current limit protection. $164 \times 130 \times 38 \mathrm{~mm})$, with Remote sensing, current limit protection. ($164 \times 130 \times 38 \mathrm{~mm}$), with
manual. f12.
COUTANT OA2: Op. am, psu, $120 / 240 \mathrm{~V}$ IP. Dual Op. 12-15v at COUTANT OA2: Op. amp, psu, $120 / 240 \mathrm{~V}$ IP. Dual Op. $12-15 \mathrm{v}$ at
100 mA . $138 \times 80 \times 45 \mathrm{~mm}$.) $£ 12$ ea. or 2 for $£ 22$. BRANDENBURG Photomultiplier PSU. 19in. rack mounting.
Metered current limit protection.
 All models $£ 40$.
PIONEER MAGNETICS POWER SUPPLIES
input 115 vac. (Switchmode) Price $£ 120$ each. 150 amp , output Various other makes of power supplies in stock.

D TO A CONVERTERS

By Micro Consultants Ltd. 50Ω cable drive op. Linearity 0.25%, max.
0.125% typ. Sentling time. 2 step $70 n$ Styp. 2 MV step $50 n \mathrm{c}$ colour
otevision transmission standard Dif television transmission standard. Dift. gain 0.5\% diff. phase shift
0.5° types rad 802 and MC2208/8. Unused. Ex-maker's pack. NEWINSTOCK SPECIAL OFFER PRICE: E20

NEW IN STOCK

A range of high quality transformers SPECIALLY WOUND for us. By
buyig direct we can offer these superb SPLTT PRIMARY \&
SECONDARY transformers at highly

$0-9 \mathrm{~V}, 0-9 \mathrm{~V}$
CASED AUTO RANSFORMERS
240V Cable input. American outle
240 V Cable input. American outlet socket.

SPECIAL OFFERS

 Muality 5 W LS E 1.60. . Brand now and boxed
Multiturn Pots. We have large stocks, all makes, multitum met, etc.
Bpote 329×1 1/50K
Bens... 30p each

 Discounts available on quantity
Full range available of Plossey moulded track presets, screwdriver or
knob operation 25 each
 Vu Motors: $40 \times 30 \times 23 \mathrm{~mm}$ deep. White/red scale on black backround.

SPRAGUE: Series 36D Computer grade electrolytics 3,300 at 40 V . Brand new and boxed ...35p ea. Quantity available

VIDEO GAME BOARD

FIELD GOAL VIDEO GAME, BY TAITO. A top quality board complete with 6800 CPU system with 2716 eproms with circuit diagram, plus all connections for either colour or black and
white monitors (TV sets). Price f20 + VAT E3. P/P $£ 2.55$. white monitors (IV sets). Price E20 + VAT E3. P/P $£ 2.5$
POWER SUPPLY KIT TO SUIT + circuit diagram.
Price $15+$ YAT
remar goldit
2×22 WAY GOLDPLATED DOUBLE-SIDED 0.156" EDGE
CONNECTORS to SUit videoboards. CONNECTORS to suit videoboards.
Price 1.60 pair + VAT 24 p . P/P included.
THE COMPLETE KIT $£ 46$ INCLUSIVE. Full details on application.

WE PURCHASE

Surplus component stocks, redundant materials, obsolete computers; for cash.
We also collect - distance no object. Just call:

C. T. Electronics (Acton) Ltd.

 267 \& 270 Acton Lane, London W4 5DG Telephone 01-747 1555; 01-994 6275 Telex 291429

Mucence DFAIMPHCHS

Over 65 Models Available Class A wide band Linear R.F. Amplifiers or VCO's in the range D.C. to 4 GHz ; with power output up to 100 W
and gains to 60 dB ; you can't do better than Nucletude and gains to 60 dB ; you can't do better than Nucletude.
Modular D.C. powered and mains operated bench units available. Get full details from Telonic Berkeley U.K.
π
TELONIC/BERKELEY U.K 2 Castle Hill Terrace Maidsenhead. Berks s.6. $4 . / \mathrm{R}$
Telephone: Maidennead (10628) 739333 Telex: 849131 (Telber G)

WW - 073 FOR FURTHER DETALSS
TIME WRONG?
MSF CLOCK is ALWAYS CORRECT- never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours,
Minutes and Seconds, auto GMT/BT Minutes and Seconds, aut, Wekdays and Millisecond
expand to Years, Months, Wo and parallel BCD output
STOPCLCK and audio to record and show time oin
Sto playback, receives Rugby 60 KHz atomic time signals, built
n antenna, 1000 Km range, GET the TIME RIGHT, only ${ }_{60} \mathrm{EGHZ}^{\mathrm{K} 2.80}$ RUGBY RECEIVER, as in MSF Clock, serial data outpu 60KHZ RUGBY RECEIVER, as in MSF Clock, se
for computer, etc., decoding details, $£ 17.90$.
Each fun-ti-build kit (ready made to order) includes all parts,
printed circuit, case, postage eetc., instructions, money-back
assurance so GET yours NOW.
assurance so GET yours Now. CAMBRIDGE KITS
45 (We), Old School Lane, Milton, Cambridge. Tel: 860150

TAMERRINE -TAMGERINE -TANGERINE -TANGERIME -TANGERINE TAMGERINE - TAMGERIMR -TAMGERIME

All orders pre-paid and official advertised here to be
Porwarded DIRECTLY to.
COMPUTER DEPT., 11/12 PADDINGTON GREEN, LONDON W 2

METALFILM RESISTORS 1% Tolerance, $1 / 4$ Watt

ONLY 3p EACH Minimum in oriof efive ve

ORION SCIENTIFIC PRODUCTS LTD. 4 Golden Square, London, W. 1 ww - 081 FOR FURTHER DETALLS

The Profesional Choice

Amcron 붕

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power
amplification. For power you can depend on - choose AMCRON, the professional choice.

For further details contact the UK Industrial distributor:

G.A.S. ELECTRONICS

16, ST. ALFEGE PASSAGE, LONDON SE10
TELEPHONE: 01-853 5295
TELEX: 923393 LASER G

PRICE ON APPLICATION?

We also manufacture servo amplifiers, and cont
FLIGHT LINK CONTROL LTD
TURK STREET, ALTON, HANTS GU34 1DL
hone: 042087241 (24 hours). Telex: 858623 TELBUR G

 controls
detais
too low!
Don't make that mistake - please send for full details, judge the
ovsticks on their merit, and only then give yourself a pleasant surprise by joysticks on their m
reading the prices.
By specialistion, volume production and controlled overheads we are
 ne-off triple axis force-fedback system, including to
fiers. Our current ranges cover most combinations of:

weeks, and build special requirements into standard its within days.
DISTRIBUTORS:
Australia: Tecnico Electronics, Lane Cove, Sydney, N.S.W., Australia
Syrnel 473444 .
USA USACanade:. P. Controis Inc., 71 Dolphin Road, Bristol, Connecticu
O6010 USA (203) 583 6994.
 380,
Singapore: Innovative Design Systems PTE Ltd., 50 Orchard Road, Singapore e9233382922.
Holland Howell International b.v., Postbus 1262170 AC Sassenheim,
Holland $02522-11509$.

ww - 098 FOR FURTHER DETALLS

96
details of any o the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete on or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

BUSINESS REPLY SERVIC
WIRELESS WORLD
Reader Enquiry Service
429 Brighton Road
South Croydon
Surrey CR2 9PS

```
Enquiry Service for Professional WIRELESS WORLD Wireless World, May 1982 WW \(265 ~\)
Readers Reader
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{WW....
ww...}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{ww.} \\
\hline \multicolumn{2}{|l|}{ww. .} \\
\hline \multicolumn{2}{|l|}{ww.} \\
\hline \multicolumn{2}{|l|}{ww. .} \\
\hline \multicolumn{2}{|l|}{ww.} \\
\hline \multicolumn{2}{|l|}{ww.} \\
\hline \multicolumn{2}{|l|}{ww} \\
\hline \multicolumn{2}{|l|}{ww} \\
\hline \multicolumn{2}{|l|}{ww} \\
\hline \multicolumn{2}{|l|}{ww. .} \\
\hline \multicolumn{2}{|l|}{ww....} \\
\hline \multicolumn{2}{|l|}{ww....} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Ww . . . } \\
& \text { Ww . . . }
\end{aligned}
\]}} \\
\hline & \\
\hline
\end{tabular}
ww
ww
ww
\(w w . ~\)
\(w w . ~\)
\(w w\).
```



```
Please arrange for me to receive further details of the products listed the appropriate reference numbers of which space provided.
Name
Name of Company .
Address
```



```
company
Nature of Company/Business
No. of emnloyees at this establishment.
wish to subscribe to Wireless World \(\square\)

\section*{Wireless World:}
``` Subscription Order Form
```

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

Enquiry Service for Professional WIRELESS WORLD Wireless World, May 1982 WW 265
Readers ONLY. Readers ONLY.



Reader Enquiry Service
429 Brighton Road
South Croydon
Surrey CR2 9PS

Wireless World Subscription Order Form Wireless World, May 1982 WW 265

UK subscription rates
1 year: $£ 12.00$
Overseas 1 year: $£ 15.00$
Please enter my subscription to Wireless World for 1 year

I enclose remittance value ...made payable to IPC BUSINESS PRESS Ltd

USA \& Canada subscription rates 1 year: $\$ 39.00$

Name
Address $\qquad$
$\qquad$
$\qquad$

Avo Sales and ServiceFarnell International
Famell International Instruments Ltd Sandbeck Way, Wetherby
West Yorkshire LS22 4DH
Tel 093761961 Telex 55478 Farint G


WW - 010 FOR FURTHER DETALLS


PROGRAMME \& DEVIATION CHART RECORDERS

 nd Ermest Turner Movements.

EV88 - A low-cost evaluation system for the 8088 microprocessor
EV88 is a single board microcomputer that is ideal for
evaluating the 8088 -bit $/ 16$-bit microprocessor. EV88 can evaluating the 80888 -bit/ $/ 6$-bit microprocessor.
also be used as a powerful controller, and, with a suitable cross-assembler running on a standard microcomputer, and
an EPRMM programmer, for low-cost development of 8088 -
based systems. an EPROM pro
based systems.

EV88 is supplied fully assembled and tested, with compre-
hensive documentation, and a copy of The 8086 Book, by Rector and Alexy. All you need is a 5 V 1A power supply and terminal or a suitable microcomputer.
$\star 8088$ microprocessor in minimum mode
Comprehensive monitor in 2 K EPROM.
© Cassette intertac
$\star$ Eight levels of interrupt
※ RS-232 compatible serial interface (300 baud to 9600 *Three-channel counter/timer

$\star$ On-board expansion to 16 K EPROM/RAM (sockets pro $\star$ vided).
¿ Breadboarding area.
A All bus signals vavaila
\# Single 5V supply.
$8088 / 8086$ design service available (software and hardware)
LFH Associates Ltd.
40A
Stong Stratford
Milton Keynes
Milton Keynes
$(0908) 566660$
W - 077 FOR FURTHER DETALL

## CHILTERN ELECTRONICS

## B.C.M., Box 8085, London WC1N 3XX. Tel: 049471448

## THIS MONTH SPECIAL OFFER






$$
\begin{gathered}
\text { MAIL ORDER BARGAIN: } \\
\text { clude } V \text { AT and defivery: }
\end{gathered}
$$


 -







FOR MORE DETALLS TEEEPHONE NIGGE DUN DNON OASA 714433 , ANY TME
For ragular copies of our catalogue plases send poatcard with addrass.
WW-065 FOR FURTHER DETAILS
WIRELESS WORLD MAY 1982

Superior Quality Precision Made NEW POWER RHEOSTATS	VARIABLE VOLTAGE TRANSFORMERS
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{k} \Omega / 1.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega$ / Eleek Siner skirted Knob calibrated in Nos. $1-9 \mathrm{k}, \mathrm{i} 1 / 2 \mathrm{in}$ dia. Gress bush. ldeal for above Rheostats 24p en. +VAT.	
	3-PHASE VARIABL
SOLID STATE E.H.T. UNIT     	
	va
	ampr
	,
240 V A.C. SOLENOID VALVE , Inefouter 38", Forged  	
METES (Now) - 90 mm DIAMETER     	
	quiries or send SA
FLUORESCENT TUBES 4ft 40 watts 28.70 inc. VAT e10 (callers only).   .57 inc VAT \& P)	FROM STOCK AT
	ACGEARED MOTORS
	SOLLNOIDS SYNCHRONOUS
	Phone in your enc


















N.M.S. Naw Manturatuorsis Surpu:


ACCOUNT CUSTOMERS MIN. OROER £IO London WC2H 7J Tel: 014370576

11 MARKETING Ltd.


## SERIES 600

The D\&R SERIES 600
range of professional
mixing consoles has found
its way into
(hospital) broadcast studios,
discotheques, clubs, entertain-
ment and outdoor Public Address systems and recording studios.
Available in $6,12,18$ or 24 channel configuration with, as standard, separate balanced mic. and line inputs, insertion points, gain, three band tone controls, two auxiliar lines, pan-pot and linear fader, plus pre-fade-listening and overload LED return and phones controls and holars $V$ U meters. echo Optiona channels with R.I.A.A. correction talkback fader controle switches, balanced outputs and 24 volt D.C. mains powering are available.

Visit our stand at Communications 82 - National Exhibition
Centre, Birmingham - 20th, 21st, 22nd, 23rd April 1982
D.S.N. MARKETING LTD. Westmorland Road, London NW9 9RJ
TTeephone:01-2047246. Telex: 895 5243.

WW - 066 FOR FURTHER DETALLS

D\&R Electronica was tounded over 10 years ago with the oim of diveloping manufuacturing high quality mixing
consoles for the studio and entertinment
industry with
 tor money design engineering. The re
is arange of five basic models with a large number of channel contigurations
and options. All models are highly flexible and oplions. Al Imodels are highly fletible
in use and give the best tuality poosible at todays state of technolegy.
SERIES $200-A$ A small mixer specialli, designed or to tour track recording. SERIES 5000 - A range of mixers for live
 Eurget 4,8 or 16 track recording.
ERIES 1000 - A range of comprehen In-Line
econsolestor
ecor protessional
 consoles with integral patch bay for to anciliary signal processing units complement the D\&R programme. Please complete this coupon for futh
detoilis.
DDRR Series 200 -D\&R Series 600 Dar Series 200 DRRR Series 600
D\&R Series 400 DDRR SEries 100
D\&R Series 8000 DD\&R Ancllity BULIET loudspeakequipment GULLET IOudspeaker components HELLIOS mirror balls
NAME
ADDRESS



## B. BAMBER ELECTRONICS

Airmec Millivolt Moter Typa 301 A...... Pre UHF Sivnil Generator Type SGiU Pye UHF Signal Generator TYpe SG1U...7F Marconi AM/FM Signal Generator Type T1066 B/6
Motors suitabie for driving cam swithes 120 voirac
8 boxed..........].].
240 voit $c$.T. output housed in metal box but less lid
Volstat Constant Votage Transformer $190.2600^{15}$ voach it in
5 mp (1]yy
AVOVIVIVC Characterisic meer MKIV
Schomand Fraquency Moter Type Foi 30.900 mHz E50
Signal Generator TYpe MG6-230E 16 kHz
95
${ }_{\text {cen }}$





























 Elifini Michospoo cartoog Ray Tubes Thpe



## We are open all day S Saturdyy. Hundrads of bargains tor callers. Stockisi of of swithos, <br> 

GOOD SECONDHAND EQUIPMENT
ALL PRICES QUOTED EXCLUDE P/P ALWAYS WANTED FOR CASH

AND VAT UNLESS OTHERWISE STATED
5 STATION ROAD, HTHLEPORT, CAMBS CB6 10 E


POWER BANDWIDTH DC to $100 \mathrm{KHZ}+1 \mathrm{db}$ OUTPUT POWER IN EXCESS OF 500 WATTS PER CHANNEL INTO 2 OHMS
OR IN EXCESS OF 1 KW SINGLE CHANNEL IN BRIDGE MODE INTO 6 OHMS
haRMONIC DISTORTION LESS THAN $0.01 \%$ DC TO 100KHZ AT 1 KW INTO 6 OHMS
INTERFACE BOARDS CAN BE CUSTOM DESIGNED AND BUILT TO CATER FOR A WIDE RANGE OF SPECIALISED USES
OUTPUT MATCHING TRANSFORMERS AVAILABLE to match virtually any load
UNCONDITIONALLY STABLE INTO ANY LOAD basic price including bridge mode SWITCHING AND HANDLES $£ 455$

> S \& R AMPLIFICATION 6 Tanners Hill, London S.E. 8 Telephone: $01-692$ 2009


Cotswold Electronics LTD. TT1, Kingsille Road, Kingsditch Trading Estate, Cheltennam GL51 9NX
Tel: $0242-41313$
Telex: 897106

WW - 086 FOR FURTHER DETALS

MARCONI   TF995B/2 AM FM S Signal Generator.       TH1.52A/ 1 . Poower meter. 25W. 500 MHz TF1370A RC Oscillator £135.
BECKMAN TURANS COUNTER DIALS Miniature type ( 22 mm diam.). Counting up to 15 turn "Helipots". Brand new with to 15 turn Helipots. Brand new mounting instructions. Only $£ 2.50$ each.
$\star$ VIDEO EQUIPMENT SALE $\star$ CONTENIS OF COMPLEIE MARCONI Video/Audio mixing desks.       tion orfers invited for complete lot.
SEALED LEAD ACID bATteries  
20.WAY Jack socker strips 3 polot trpe f. 50  


10 Chapel street, londón, nwi TEL: 01-723 8753	
	SPECIAL PURCHASE   BDA POWER SUPPLIES
     DERRITRON 1 Kw Power Ampififer with control equipment   Tir viration nessina eici.         WANEE KRRAF Signag geneater 1	
SPECIAL PURCHASE OF TEKTRONIX 45A PORTABLE OSCILLOSCOPES	
-	ancosi tryidem deviaion mier.
TEKTRONIX $\begin{gathered}\text { OSCILLOSCOPES } \\ 500 \\ \text { SERIES } \\ \text { SCOP } \\ \star\end{gathered}$ BARGAIN PRICES:	
	100V DC ELECTROLYTIC CAPACITORS  



## P.\&R. COMPUTER SHOP <br> IBM GOLFBALL PRINTER 3982 , £70

 EPSON MX-80 80.GPs 3982 IBM I/O PRINTERS DOT EPSTRIX PRINTER WITH SPECIAL INTERFACES. VDUS, ASCII KEYBOARDS, ASR, KSR, TELETYPES,PAPERTAPE READERS, PAPERTAPE PUNCHES,
 SUPPSIISSTETOREORES. TESTEOUIPMENT AND.
MISCELLANEOUS COMPUTER EQUIPMENT. MISCELLANEOUS COMPUTER E CUIPMEN.
OPEN: MONDY TO FRIDAY 9 a.m. 5 P.m., OPAN: MONDAY TO.
SATURAY TLLL 1 p.m.

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440
Ww - 018 FOR FURTHER DETALLS

## BRITAIN'S BETTER BARGAIN STILL IN WORLD-WIDE DEMAND

WIRELESS WORLD CIRCARDS at 1976 prices $10 \%$ discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).


Fill gaps in your circuit files with these sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.


1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled) 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits. 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs. 21 Voltage-to-frequency converters
22 Amplitude modulation $\begin{array}{llll}22 \text { Amplitude modulation and detection } & 23 \text { Reference circuits } & 24 \text { Voltage regulators } 25 \mathrm{RC} \text { oscillators }-126 \mathrm{RC} \\ \text { oscillators - }-2 & 27 \text { Linear cmos }-1 & 28 \text { Linear cmos }-2 & 29 \text { Analogue multiplies } 30 \mathrm{Rms}\end{array}$ multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications $-1 \quad 35$ Analogue gate
applications -2 .

To IPC Electrical - Electronics Press Ltd. General Sales Department,
Room 205,
Quadrant House,
Sutton, ${ }^{\text {Surrey }}$ SM2 5AS

Company registration in England
Quadrant House The Quadrant, Quadran House, The Quad
Sutton, Surrey SM2 5AS
Reg. No 677128

Please send me the following sets of Circards: . . . . . . . . .
Remittance enclosed IO IPC BUSINESS PRESS IT ......... . payable Name (Please print). Address (Please print)


POWER SUPPLIES POWNER SUPPLIES $\quad$ (1)


## Multi Direct Drive Cassette Mechanism



3 Motor Direct Drive • High Reliability - Wide Speed Range, 1.2.19cm/s • Desigined for Full Remote Control
Dual Capstan: $0.16 \%$ Wideband Wow/Fiutter
$0.07 \%$ DiN Pk Wid. Wow Flutter Motion Sensors and Tachogenerator: Intelligent Control of Applications:Studio Quality Recording Equipment . Applications.
Compoct Transportable Equipment - Industrial Recording
and Monitoring

## PRPST


WW - 088 FOR FURTHER DETAILS EDMUND SCIENTIFIC
ILLUSTRATED CATALOGUE At last this famous range of products is now available in the K. and Ireland from RHEINBERGS SCIENCES LIMITED. Over 2000 products or industry, education and the enthusiast.


$\substack{\text { Poliarizin } \\ \text { Toors } \\ \text { OEM }}$


Tools
OEM
OEM





## RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME Full range available to replace 1.5 volt dry cells and 9 volt
PP type batteries, SAE for lists, and prices. $£ 1.45$ for PP type batteries, SAE A. $\star$ New sealed lead range no

SANDWELL PLANT LTD
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-3549764
Ww - 047 FOR FURTHER DETAILS
EPROM PROGRAMMER
2716 HEXKEYPAD
anerfledior
2732 : TVMMONTORRDISPLAY
2532 CASSETTEBACK-UP
SOFTY STANDS ALONE
E169+ VAT, EX-STOCK, BY RETURN DATAMAN DESIGNS, LOMBARD HOUSE, WW - 013 FOR FURTHER DETAILS

## PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS


WIRELESS WORLD MAY 1982


Barrie Electronics Ltd.
3,THE MINORIES, LONDON EC3N 1BJ TELEPHONE: O1-488 33168

## Appointments

> Advertisements accepted up 12 noon Tuesday, May 4, for June issue, subject to space being available.

DISPLA YED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre ( $\mathbf{m i n} .3 \mathrm{~cm}$ ) LINE advertisements (run on): $£ 2.50$ per line, minimum 5 lines. (Prepayable.)
BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.) Cle

## ITN

## SENIOR MAINTENANCE ENGINEERS

Independent Television News Ltd. has vacancies for Senior Engineers in the following Maintenance Sections at ITN House, London W1.

## Dngineers\& Scientists £8,589 <br> Communications R\&D... ...the leading edge

## ELECTRONIC ENGINEER RESEARCH \& DEVELOPMENT

We are a medium-sized company emplóying approximately 20 in the Cambridge Electronic Industries group of com-
panies, specialising in producting television distribution panies, specialising in producting television distribution
equirment and associated electronic products. An enthusias-
tic Electronic Engineer is souhht to join our existing de equipment and associated electronic products. An enthusias-
tic Electronic Engineer is sought to join our existing de-
velopment team. He/she will work in a modern, well-
equinent veloment team. He/she woill work in ar modern, well-
equipped laboratory and will be responsible for seeing proequipped laboratory and will be reskonsible for seeing pro-
jectsthrough from initial conception to final production. We
envisage that the successful candidate will envisage that the successful candidate will be $23-35$ years of
age, with a d degree in electronics and at least two years
experience in a research and development environment. Applicants should have detailed experience, or a keen in terest, in one or more of the following areas:
$\star$ Digital and analogue circuit design from D.C. to 1 GHz
$\star$ Digital and analogue circuit design from
\$
Television signal processing.
Cable distribution of television signals.
$\star$ R.F.communications.
The company offers good working conditions, a a 37 -hour
week, 25 days ${ }^{\text {a }}$ annual holiday and a contributor week, 25 days annual holiday and a contributory pension appropriate.

Please send full C. V. to
MrC. G. Houghton
Mr C. G. Houghton
Personnel Manager
Lersonn Limited
Abbey Walk, Cambridge

Senior
Electronics Engineer
A Senior Electronics Engineer is required to join a small but expanding team working on a variety of projects in the fields of Robotics, Im
telemetry. The successful applicant will be qualified to degree level and will have relevant experience in analogue and digital design techniques.
A thorough knowledge of at least one current microprocesso is required, and a high level of enthusiasm and self
The company is situated in a pleasant part of Avon, a few minutes drive from Junction 21 of the $M 5$. Working conditions are excellent and salary is negotiable
according to qualifications and experience. according to qualifications and experience.

Contact G.S. Chewins, Senior Personnel Officer, (Recruitment)
BAJ Vickers Limited, Banwell, Avon, BS24 8PD.

## BAJ Vickers

A Vickers company

## VTR \& Telecine Maintenance <br> (Ref 000009)

Responsible for the maintenace of VTR and telecine equipment, including ACR25B, VPR2B, VR1200C, BVU200/800, standard U-Matics and Rank Cintel Mk III's and associated editing and
control systems.

## ENG/OB Maintenance

(Ref 000010)
Responsible for the maintenace of all the ENG and OB transportable equipment including BVP330 cameras, BVU50 and 110 recorders, VPR2 and VPR20 C-format machines, TBCs and editing systems.

## Radio Links Maintenance

(Ref 000011)
Responsible for the maintenance of our radio link equipment and extensive radio telephone network. Equipment includes frequency agile 2.5 GHz video links and numerous UHF and

## Sound Maintenance

(Ref 000012)
Responsible for the maintenance of a varied range of audio equipment, including sound mixing desks and associated studio sound equipment, film and video sound dubbing suites
and a wide variety of audio recorders including $r$

## Central Maintenance

(Ref 000013)
Responsible for the maintenance of not only all our studio equipment, including Marconi Mk 9 cameras, CD480 mixers, Quantel DPE5001, Aston Character generators and the usual ancillaries but also such equipments as DICE and ACE digital converters, Oracle and graphics computer systems.
The above vacancies offer a challenge to experienced engineers wishing to join an extremely active company expanding to meet its Channel 4 commitments.
Applicants should have qualifications to HNC level or equivalent and be experienced in
maintaining the relevant broadcast TV equipment. microprocessor systems. Good prospects exist in all the above posts for promotion, with experience, to Supervisory Engineer.
Generous pension scheme, free life assurance.
Applications should be made in writing giving qualifications and experience to:
THE MANAGER, ENGINEERING MAINTENANCE
INDEPENDENT'TELEVISION NEWS LTD
ITNEPENDE
48 WELLS STREET
LONDON W1P 4DE


## Television Intemational

Television International is a large elevevision facilities company serving the broad cast industry. It supplies both staff and equipmen
in the fields of video Tape, Telecine, Television Stucios and Television in the field sor
It is at present expanding these facilities and has vacancies
for substantive engineers in the following departments:
ubstantive engineers in the following departments VIDEO TAPE OPERATIONS
Engineers are required with a wide knowledge of broadcast video tape work and who are capable of undertaking simple editing
and front-line machine maintenance.
telecine operations
Engineers here should be experienced in the operation and front-line maintenance of Cintel MK IIIT Telecine machines and
a thorough knowledge of auxiliary units such as TOPSY and a thoroug
Digiscan.

VISION CONTROL AND MAINTENANCE
Engineers are required with experience of the maintenance and alignment of electronic equipment. They must be prepared to operate as $a$ Vision Control Engineer in both studio and outside broadcast locations.

Salaries and conditions for the above will be in accordance with the ACTT grade plus local supplements. The Company benefits
from an attractive contributory Group Pension Scheme, which Trom an attractive contributory raroup Pension Scheme, which
includes free Life Assurance. Training will be provided to keep staft incluces tree Lire Assurance. Training wiil be provided
abreast of current developments within the industr.

Written applications, together with CV should be sent to: Mr. Alan Edwardss. Director of Operations,

Television intemationa
$9-11$ Windmill Street,

London WiP 1HF:
Tel: $01-6372477$.
$\chi^{-6}$ A memberof the RANK PHICOM VIDEOGROUP ${ }_{(1576)}$

## Electronics Technician

An experienced Electronics Technician is required to work within the Microprocess
Section of Computer Science, as a broad-based support and service engineer. The Section is responsible for providing micro-based equipment throughout the research The Section is responsible for providing
organisation in laboratory environments.
Candidates should be qualified to Ordinary/Higher TEC level in Electronics, or possess Candidates should be qualified to Ordinary/Higher TEC level in Electronics, or possess
C \& G full certificates for Electronics Technicians and should be capable of working on their own initiative.
Previous professional knowledge of microprocessor-based equipment is essential. Candidates must be able to read and interpret modern digital circuit diagrams for both fault finding and the layout of prototype printed circuit boards and be able to generate such documentation
As much of the work of the Section is involved with computer peripherals a knowledge of interface standards and techniques would be useful. Candidates must hold a current -
A competitive salarl will be paid commensurate with qualifications and experience and will pension scheme and flexible working hours are in operation. Consideration will also be given to relocation expenses in appropriate cases
Please write or telephone for an application form to: Miss. E. M. Butler, Glaxo Group 2707. Please quote reference number $\mathrm{ZH} / 424$.

## G/aXO Group Research Ltd.



DOLBY SYSTEM
Dolby Laboratories Inc.
Quality Control Engineer c. $£ 9000$

We manufacture a wide range of professional audio
noise reduction systems which are noise reduction systeds which are used throughout dustries. The quality and reliability of our products is of prime importance
An engineer is require
An engineer is required who will be responsible to the
QA Manager for all aspects manufacturing and test areas and for the development of the quality control function.
The successful applicant will pron
The successiul applicant will probably be a graduate
with experience of quality control in the industry. A background in audio engineering would be an advantage.
The attractive salary is supplemented by competitive
benefits including a non-contribute bend relocatuding a non-contributory pension scheme

For more information and an application form For more
contact: Contact:
Dolby Laboratories Inc.
346 Clapham Road
London SW9 9AP
Tel: 01-720 1111
WIRELESS WORLD MAY 9982

Rediffusion Consumer Manufacturing Limited Group Leader Test Equipment
$\qquad$













REDIFFUSION

## ELECTRONIC TECHNICIANS

AND ENGINEERS

 salary and excellefinallowances

## Installation and

 CommissioningWorldwide - Permanent



Marconi
Communication Systems

## TEST DNGINEFRS

microprocessor controlled business systems, optical fibre and microwave transmission systems Maior advances in the telecommunications field have yieldededexceptionalgrowth and Created additional opportunities for engineers in this expanding technolooty. ange of digital equipments. So you will need qualitications to at least third year City and Guilds in industrial electronics or telecommunications.
Salaries will be in the range e $55.6-8 \mathrm{k}$ according to experience, with overtime and shift Solanes aviabe. We can arrange accom modation and offer a generous relocation
wack avaee, where appropriate.
To: Mr Z.K. Flizak, GEC Telecommunications Ltd., PO Box 53, COVENTRY CV3 1HJ.
Name
Address
Qualifications Present Employer Present Emp
Experience
scc
relecommunications

CAMBRIDGESHIRE COLLEGE OF ARTS Lecturer II in Radio Communications Engineering Requirad for Sepiember 1982 to teach Radio coims and mathematics on ine ine






Lecturer I in Electronics Practice


 elestroniciss senvicing deparment is
essential and ieaching experience Temporary Lecturer I In Electronics







Furthe detailis and forms from Head,
of Department of Enginearing, CCAT.




WIRELESS WORLD MAY 1982

## Electronic Engineers for O.A.Department Wembley Middlesex.

Racal BCC are members of the highly successful Racal Electronics Group and are world leaders in the design and manufacture of tactical We require two experienced electronic engineers to fill position at Intermediate grade within the Quality Assurance department. Preference will be given to engineers who are familiar with the requirements of Def-Stan 05-21 and Q.A. functions including defect analysis, quality costs, and the
monitoring and control of Company systems.
Applicants aged $26-50$ must be ducated to HNC/HTC level or knowledge of communications quipment would be a distinct advantage.
We offer excellent conditions of service including a good basic salary and Group Productivity Scheme, 27 lays annual holiday, a contributory pensiơn sche
assurance.

## Wordi leaders in electronics



## Radio Operator Technicians

 for British Antarctic SurveyThe British Antarctic Survey requires Radio Operator Techni Alintarcicic bases. The appointments will cover two consecutive
Antarctic wite Kingdom of about 32 months.
Applicants must be able to maintain SSB transmitting and re-
ceiving equipment as well as aerial arrays ceiving equipment as well as aerial arrays. Communication be
tween the Antarctic Stations and the United Kingdom is by radio teleeprinter through a cable and wireless station. Teleproniter,
morse and voice communication is also maintained between foreign Antarctie ctations, ships and aircraft. Qualifications: MRGC or better and a capability of sending and
receiving morse at a minimum of 20 wpm.
Exprerience in maintaining Experience in maintaining communication equipment is essen-
tial. A knowledge of teleprinters and touch typing an advantage. tial. A knowledge of telepprinters and touch typing an advantage.
Applications from amateur and armed service trained personnel Appications from amateur and armed service trained personnel
will be considered provided that the necessary expertise can be
demonstrated Applicants to work óverseas should be single, aged between 2235, physically fit and male.
Salary: From $£ 5,410$ erer
Salary: From $£ 5,410$ per annum plus a pay addition and gratuity.
Clothing, messing and canteen are provided former and free messing aboard ship. Free accommodation whilst over-
seas. Low income tax. seas. Low income tax.

Application forms may be obtained from: The Establishment
Officer, British Antarctic Survey, High Cross, Madingly Road, Cambridge CB3 OET.
Pease quote Ret: BAS 57.
Natural Environment Research Council

HAMMERSMITH AND FULHAM HEALTH AUTHORITY
CHARING CROSS HOSPITAL

## MEDICAL PHYSICS

 TECHNICIAN GRADE 1Salary scale: $£ 8968$ - 10319 per annum inclusive
An Electronics Technician with considerable experience
of maintenance of electronic and biomedical equipment of maintenance of electronic and biomedical equipment technicians engaged in the repair, calibration and safety
checking of a wide range of medical and laboratory equipment.
Applicants should have previous experience of personnel
supervision and an extensive knowledge of the electrical safety aspects of medical equinnent

Opportunities will exist for the development of electronic
instrumentation and a knowledge of microprocessors would be desirable. The successful candidate will be expected to participate in the activities of the medical
electronics section of the department of
Ideally, the successful candidate will have an HNC or HND in electronic engineering.
For an application form and job description, please
contact Mrs J . Cordery, District Personnel Department Charing Cross Hospital, Fulham Palace Road, London W6. Charing Cross Hospital, Ful ham P
Telephone $01-7482040$ ext. 2992.

## Technical Training Officer

Marconi Avionics are one of the world's leading companies in the research,
systems.
We are now seeking a Training Officer to take responsibility fo
Wer identifying the changing skill needs throughout our Borehamwood
location through close and dontinuing liaison with development, test and production management, followed by the planning and development of suitable practical courses. This will be particularly mportant in the areas of test equipment application and wiring and soldering skills. Applicants should have a good training background, supported by an Applicants should have agood training background, supported by an and fault diagnosis of analogue/digital equipment. On a personal level, act, diplomacy, and an ability to communicate effectively at all levels are
essentials.
This in exceillent opportunity for a man or woman to make a
meaningful contribution to the training needs of a world leader. Salary meaningful contribution to the training needs of a world leaad
will be competitive and accompanied by first class benefits. will be competitive and accompanied by irst class benefits.
For further information, please write or telephone: Tony Elliott For further information, ple
Marconi Avionics Limited, Els
WD6 1RX. Tel: $01-9532030$.

## SOLE DISTRIBUTOR for U.K.

Our range of products covers loudspeakers and accessories for $\mathrm{Hi}-\mathrm{Fi}$, Musician and Car Stereo.

The applicant should have good connections to the electronic shops and manufacturers of cabinets, to whom our products should be offered with priority.

We are seeking a serious experienced Sales Representative with proven record of success.

Please apply in writing enclosing career details to:


## Kingdom of Lesotho

## TransmitterEngineer

Up to $£ 11,500$ p.a. plus benefits A challenging post in this beautiful and
mountainous kingdom in southern Africa.
Applicants must possess an engineering degree and have at least five years experience in transmitter engineering and maintenance.
Duties will include operation and maintenance of
two tookw shortwave transmitters identifying two 100kw shortwave transmitters, identifying
operational needs, and staff supervision and training. Appointment will be on contract for two years. Salary includes a substantial tax-free allowance paid ander Britain's overseas aid programme.
Benefits include:
$\star$ Free passages
$\star$ Generous paid leate
$\star$ Generouspanid leatve allowances
$\star$ Subsidised housing
$\star$ Appointment grant and interest-free car loan For full details and application form write quoting
YC $/ 202 / W W$ or telephone $01-2227730$ Ex 3639 .

Crown Agents


The Crown Agents for Oversea Governments \& Administrations, Recruitment Divisio
4 Millbank, London SW 1P 3JD.

## EIECTRONIC DEVELOPMENT ENGINEER

 We are seeking to expand our development team by recruiting young Graduate with two to three years' experience of designing analogue and digital circuitry Our range of products includes Modulation Meters, SSB in any in any of these fields would be an advantage but is not strictlyWe are offering an excellent working envis
 Please contact H. M. Evans - M.D. by letter or phone Anstey Mill Lane, Alton Hants GU3420Q Tel: (0420) 84500

## U.S.A.

British-run company near New York seeks Electronic Engineer (B.Sc. or equivalent) for design of medica and industrial instruments. Could probably represen
us later in UK. Starting salary $\$ 15,000(£ 8,000)$. Please us later in send résume of training and experience to Bailey send résumé of training and experience
Instruments Inc., Saddle Brook, NJ 07662.


## SALES ENGINEERS

For 1. West Midlands 2. South East 3. West of England

Required by Townsend-Coates, leading franchised distributor of electronic components
The successful applicants will have component knowledge, be already selling to industry or have salēs flair.
We offer competitive salaries plus bonus, company car, non-contributory pension and private health schemes.

Please sent C.V. to:
Managing Director
Townsend-Coates Ltd.
Lunsford Road
Leicester LE5 OHH

Appointments
GARDLINE SURVEYS
ELECTRONICS ENGINEERS
Due to continued expansion, we need personnel to operate and maintain the following
types of equipment aboard our survey vessels:
DFS III/V QUANTUM DAS 1A shallowdigitalseismic SIDE SCAN, MAGNETOMETER, SB PROFILER BOOMER/SPARKER
ANALOGUE EQUIPMENT
Good salary, sea-going allowances, leave arrangement and company pension scheme
benefits. Promotion prospects excellent. beneeits. Promotion prospects excellent. fast-growing company involved in all aspects of
this is an opportunity to join a dynamic,
shallow marine geoophysical surveys. Please write, quoting WW106, to:

THE MANAGING DIRECTOR
GARDLINE SURVEYS GARDLINE SURVEYS
ADMIRALTYROAD GREA YARMOUTH
OR TELEPHONE: 0493 50723, EXT. 200, MRS. GOFF Joint Scheme)





 and



## Zehrtel Ltd

AUTOMATIC TEST EQUIPMENT


## APPLICATION ENGINEERS

Zehntel are world leaders in in-circuit test technology,
and we need good quality APPLICATION ENGINEERS to assist with our further expansion plans.
If you would like to join a young progressive team of
people at our Milton Keynes office, write with your CV to:
PAUL SMITH
Zehntel Ltd
62 Tanners Drive
Blakelands
Miltor Keynes
MK14 5BP


## SALARY RISES DISAPPOINTING?

 AMBITIOUS CIRCUIT DESIGNER CONSULTANT PROGRAMMERS




Charles Airey Associates Tempo House, 15 Falcon Road, Battersea tel: 01-2237662 or 2286294


DIGITAL EXPERIENCE? FIEL SUPPORT
R\&DANSALS
VACANCIES IN. COMPUUERS
NC, COMMS..MEDICAL
VIDEO ETC.
registratio
0453883264
$01-2900267$
LOGEX


> TELEVISION SERVICE
> ENGINEER
> $\begin{aligned} & \text { We are an expanding Television } \\ & \text { Rental and Retail company with a }\end{aligned}$ $\begin{aligned} & \text { Rental and Retail com } \\ & \text { vacancy for an adoiti. } \\ & \text { sion Sevice Engineer. }\end{aligned}$
> $\begin{aligned} & \text { Suitable applicant will pre- } \\ & \text { ferably hold an R.T.E.B. certificate }\end{aligned}$ $\begin{aligned} & \text { ferably } \\ & \text { or be rar } \\ & \text { oction. }\end{aligned}$
> $\begin{aligned} & \text { The post is directly responsible } \\ & \text { To the Service Manager. }\end{aligned}$ $\begin{aligned} & \text { A clean driving licence is essen } \\ & \text { Al. }\end{aligned}$ $\begin{aligned} & \text { tial. } \\ & \text { A spacio } \\ & \text { quired. }\end{aligned}$

IRELESS WORLD MAY 1982

## CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wanis
please insert the advertisement indicated on form below


- Name ind a adoditess int. be ADDRESS ...........................................................................


SATCOM

Red OPRoRTUNITIES. Senior level vacal


 Hole


## IONISER KIT


 your room. The result? Your air feels fresh, pure, crisp and wondeffully refresh ing. ${ }_{\text {Al parts, PCB and full instructions }}^{\text {A. }}$

HoURS
$\begin{array}{l}\text { Monday to Friday } 9 \text { am-5 } \\ \text { Saturday } 9 \text { amm. } 4.30 \text { pm. }\end{array}$ Pr. $\begin{array}{l}\text { Price includes post \& VAT } \\ \text { Barclay/Access Welcome }\end{array}$






## INDEX TO ADVERTISERS MAY

Appointments Vacant Advertisements appear on pages 108-119



# The Tektronix 2200 Series. Simply great. 



Tektronix traditions of excellence in designing and manufacturing oscilloscopes are recognised all over the world. But rather than rest on past laurels, we have veered dramatically from the well established design paths we ourselves have laid down.

With the 2213 priced at $£ 670^{*}$ and the 2215 at $£ 850^{*}$, these 60 MHz dual trace oscilloscopes are an entirely new form of instrument.

Their most remarkable characteristic is the way in which major design advances have provided full-range capabilities at prices significantly below what you would expect to pay. How has this been accomplished? To begin with, we have reduced the number of mechanical parts by more than half. This not only saves manufacturing time, it lowers costs and improves reliability.

Board construction has been greatly simplified and the number of boards reduced. Board connectors have also been reduced substantially and cabling cut by an amazing $90 \%$.

The 2213 and 2215 have a high efficiency regulated power supply which does away with the need for a heavy power transformer. There are no linevoltage adjustments. Just plug the instrument into a power socket supplying anything from 90 to 250 volts, $48-62 \mathrm{HZ}$, switch on and you are ready to measure. Power saving circuitry has eliminated the cooling fan, resulting in further economies in size and weight.

These scopes have it all. Dual trace. Delayed sweep for fast, accurate timing measurements. Single time base in the 2213, dual time bases in the 2215. An advanced triggering
system; automatic focus and intensity. Beam finder - and much more.
Interested? Then why not telephone your nearest Tektronix office or circle the enquiry number for further information.

## Performance Specifications <br> Bandwidth

Two channels, DC-60 MHz io 20 $\mathrm{mV} / \mathrm{div}, 50 \mathrm{MHz}$ to $2 \mathrm{mV} / \mathrm{div}$.

## Light Weight

$6: 1 \mathrm{~kg}(131 / 2 \mathrm{lbs}) .6 .8 \mathrm{~kg}(15,0 \mathrm{lbs})$ with cover and pouch.
Sweep Speeds
Sweeps from $0,5 \mathrm{~s}$ to $0.05 \mu \mathrm{~s}$ (to 5
$\mathrm{ns} /$ div with $\times 10$ magnification).
Sensitivity
Scale factors from $100 \mathrm{~V} /$ div (10x
probe) to $2 \mathrm{mV} /$ div ( $1 \times$ probe).
Accurate to $\pm 3 \%$. AC or DC coupling.
Also available from Electroplan.

* Prices subject to change without notice.


## Tektronix UK Limited

PO Box 69, Harpenden, Herts. AL5 4UP
Tel: Harpenden 63141 Telex: 25559
Regional Telephone Numbers: Maidenhead 062873211 , Manchester 061.428 0799 , Livingston 32766, Dublin 850685/850796

PT 206


[^0]:    How to order your Memopak.

    | By Post: | $\begin{array}{l}\text { Fill in the coupon below and enclose your } \\ \text { chequelP.O. Access or Barclaycard number }\end{array}$ |
    | :--- | :--- |

    By Phone: Access/Barclayceard holders please ring
    By Phone: Access/Barclaycard holders please ring
    Oxtord (0865) 722102 (24-hour answering service).

[^1]:    WW - 069 FOR FURTHER DETAILS

[^2]:    Also in this issue Book notes 49 Communication news 42 Corrections 41
    n our next issue 77
    "molecular electronics" 34 for
    Teledon videotex in the UK 40

