Receiving Meteosat II

Computing insertion loss

Circuit modelling by home computer
Low-cost voice-logging for people with more important things to do.

The problem: logging telephone and radio messages without spending a fortune on equipment or hiring an expensive technician to operate it.

The solution: the new Racal Recorders Autostore.

SIMPLICITY
With its automatic cassette-loading and fully automatic changeover from one deck to another, Autostore can – quite literally – be operated by whoever happens to be around.
And it provides over 24 hours of unattended continuous recording on eight channels.

VERSATILITY
Able to log radio and telephone messages simultaneously, Autostore can form part of a new system—or fit just as easily into an existing one.
And its uses vary from ambulance, fire, police and security applications to the recording of financial transactions, conferences, oil installation communications and taxi services.

Racal Recorders
Tel: (0703) 843265 Telex: 47600

RELIABILITY
Available in 4 or 8 channel versions, and with integral micro-processor controlled automatic TimeSearch capability to enable rapid message retrieval, Autostore is engineered to the very highest standards by the company which pioneered air traffic control recording techniques.

FULL DETAILS
For full details of Autostore send off the coupon today.

I am interested in recording my communications accurately and reliably. Please:
☐ send me full details of Autostore
☐ arrange for a demonstration at my own premises

Name
Position
Company
Address
Tel:

WW-001 FOR FURTHER DETAILS
Front cover is a montage of an electronic watch circuit superimposed on an Aztec calendar wheel. Picture by Paul Brierley.

NEXT MONTH

Erpm emulator/programmer—enables program evaluation without constant alteration of erpm. When testing is finished, emulator transfers its contents to erpm.

Selective call for c.b. radio — allows keypad-generated data frame to modulate c.b. carrier and call designated receiver.

Simple low-frequency oscilloscope — suitable for audio work. Vertical bandwidth is 1 MHz at 50mV/cm — triggered or free-running sweep. Costs around £40.

Current issue price 70p, back issues (if available) £1, at Retail and Trade Counter, Units 1 & 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm: please contact editor.

Telegram: Binary BISP RS G. Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 0444 59188. Please notify a change of address.

USA: $39 surface mail, $98.30 airmail. US subscriptions from IPC B.P. Subscriptions Office, 205 E. 42nd Street, NY 10017.

** POWER RESPONSE DC – 45KHz ± 1dB.
** OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
** D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA.
** HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1kW INTO 6 OHMS.
** PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS.
** UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
** OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
** FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
** TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW.
** INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
** 3-YEAR PARTS AND LABOUR WARRANTY.

** Model – M600 **

** Analogue Associates **

** INSTANT PRINTED CIRCUITS!! **

Make your own – to professional standards – within minutes using either “Fotolak” Light-sensitive Aerosol Lacquer or Pre-coated board.

Fotolak aerosol... £2.50 (30p) Developer... £0.30 (15p)
Ferric Chloride... £0.60 (45p) Acetate Sheet... £0.15 (15p)
Copper-clad Fibre-glass Boards: Single-sided... £2 ft. sq. (45p) Double-sided... £2.25 ft. sq. (60p)

Pre-coated Fibre-glass Board:
8"x4½... £1.75 (25p) 16"x9... £7 (60p) 24"x18... £18 (£1.70)
8"x9... £3.50 (45p) 24"x12... £13 (£1.20) Eurocard £1.25 (25p)

Postage Individual items in brackets. Maximum charge £2 per order.

** TV TUBE REBUILDING **

Faircrest Engineering Ltd. manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers’ requirements.

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CR0 2XX
01-684 1422/01-684 0246

** L & J COMPUTERS **

192 HONEYPOUT LANE, QUEENSBUY, STANMORE, MIDDX HA7 1EE. 01-204 7525

THE "PET" SPECIALISTS

WE HAVE A DAZZLING ARRAY OF CONNECTIONS WITH THE OUTSIDE WORLD!
A TO D CONVERTERS (8, 12 & 16 BIT)
DATA ANALYSIS/STATISTICAL PACKAGES
WE CAN SUPPLY ENGINEERING TOOLS AE ON-MACHINE TOOLS
AND ALL SORTS OF OTHER CHIPS

** WIRELESS WORLD AUGUST 1982 **
THE SOURCE
OF ALL HIGH QUALITY
USED TEST EQUIPMENT

Electronic Broker's new catalogue of current Used Test Equipment is hot off the press. Send for your FREE copy now!

Name
Company
Address

Position
Department
Tel No

Post To: Electronic Brokers Ltd., 61/65 Kings Cross Road, London WC1X 9LN. Tel: 01-278 3461. Telex 298694

FOR FURTHER DETAILS
Hilomast Ltd

HILOMAST SYSTEMS

PNEUMATIC
TELESCOPIC
MASTS

Hilomast Limited
The Street
Heybridge
Maldon
Essex CM9 7NB England
Tel: Maldon (0621) 56480
Telex No: 995855

Toroidal Transformers

THE COTSWOLD
"BUDGET RANGE" OFFERS
BUILT-IN QUALITY COUPLED
TO A RELIABLE
DELIVERY SERVICE
MOST TYPES
FROM STOCK

IEC 65
VDE 0550
BS 415
TO ORDER

PHONE
TELEX, WRITE
FOR DATA SHEET
AND PRICE LIST

Budget Range Stockist
BARRIE ELECTRONICS LTD.
3 The Minories, London EC3N 1BJ. 01-488 3316

Cotswold Electronics LTD.
Unit 1, Kingsville Road, Kingsditch Trading Estate, Cheltenham GL51 9NX
Tel: 0242 41313
Telex: 897106

WW - 040 FOR FURTHER DETAILS

RADIATION DETECTORS

BE PREPARED
VIEW THRU LENS

Ideal for the experimenter
- THIS DOSIMETER WILL AUTOMATICALLY
- DETECT GAMMA AND X-RAYS
- UNIT IS SIZE OF FOUNTAIN PEN & CLIPS
- ONTO TOP POCKET
- PRECISION INSTRUMENT
- MANUFACTURERS CURRENT PRICE OF A
- SIMILAR MODEL OVER £25 EACH
- 0-5 F

Built design & manufacture
Tested and fully guaranteed. Ex-stock delivery.
As approved to Fire, Services/Civil Defence

FREE RECHARGE SERVICE
AFTER PURCHASE

£ 6.95
Mix, Meas. Post & Packaging
COMPLETE WITH DATA

Henry's
01-723 1008/9

CALLERS: 404 EDGWARE ROAD, LONDON W2 1ED
Mail Orders/Export Enquiries to: 11-12 Paddington Green, London W2

CLEN ELECTRONIC MUSIC

PIANOS

SPECIALISTS SINCE 1972
DOMESTIC OR STAGE
SIX OR 7½ OCTAVES
KITS OR MANUFACTURED

The most advanced
form of touch sen-
sitive keyboard
simulating piano key inertia
by patented tech-

ique

Four mixable voices
for serious tone
variation plus
electronic chorus
and flange effects.

Component Kits
include:
Keyboard
Full kit:
896
£274

Full Kit:
558
£442

Domestic Prices

£
600
£441

MFD
£442

400
£359

Colours, Har-
ness, Power Amp
and Specialist Kit

MFD
£439

VOCAL & INSTRU-
MENTAL SOLIST!

MASTER RHYTHM:
User Programmable
Drum Machine.
Eight parallel tracks.
Twelve instrument
sequence operation.

Write or Phone for full details of our range of
high-quality Kits and manufactured Electronic
Musical Instruments. Kits, Parts, Cables and we operate Telephone BARCLAY-
CARD ACCESS.

Clef Products (Electronics) Ltd.
Dept W, 44a Bramhall Lane South
Bramhall, Stockport, Cheshire SK7 1AF
061-439 3297

WW - 044 FOR FURTHER DETAILS

4
The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidal offers in size, weight, lower radiated field and, thanks to ILP, PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

TYPES TO CHOOSE FROM:

- **Orders dispatched within 7 days of receipt for single or quantity orders.**
- **Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd.**
- **How to order Freepost:**
 - Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to
 - **Regulation:**
 - **Secondry voltage to obtain off load voltage.**

OPTIONAL ACCESSORIES

- **Abi - 230 V battery eliminator**
- **C60 carry case for hand held 801-600 Amp clamp**
- **812-10 Current Shunt Kit**
- **80K-40.V, Probe 480V**
- **80K-40.V, Probe 46K**
- **80T-150 Temperature probe**
- **80TH Touchhold probe**
- **880F, F Probe 1000V/AC**
- **885F, F Probe 500V/AC**
- **8320 Thermocouple probe**
- **89103 Bead thermocouple**
- **89104 K type thermocouple termination**
- **8913 Deluxe test leads.**

ORDER SCHEDULE

- **Orders dispatched within 7 days of receipt for single or quantity orders.**

PRICE

- **Total:** £275.00
- **Total:** £210.00

EXPRESS DELIVERY SERVICE

Simply Phone or Telex your order for immediate dispatch.

Electronic Brokers Ltd
61/65 Kings Cross Road
London WC1X 9LN
Telephone: 01-278 3461
Telex: 29869 Elebro G

WIRELESS WORLD AUGUST 1982

WIRELESS WORLD AUGUST 1982

New Fluke 4 1/2 Digit Hand-held D.M.M.s

Now in Stock

Basic dc accuracy 0.04% 10 µA, 10 nA and 10 mV sensitivity.
Display annunciators for low battery (LT) and special functions: frequency (kHz), ohms continuity, (…, II) and relative reference (REL).
Autoranging M D measurements from 2 M Ω to 300 MΩ.
Conductance functions for resistance measurements to 10,000 M Ω. Separate constant current source diode tested function for checking semiconductor junctions.
Full range capability for voltage, current, resistance (200 µA, 200 mV and 200 Ω range).
Wideband True RMS AC measurements to 100 kHz.
Overload protection to 750 VAC or 1000 VDC on voltage inputs and 500V on resistance. Protection on current inputs provided by a 2A-250V fuse in line with a heavy-duty 3A600V fuse.
Sophisticated self-test diagnostics provided for all range and function selections plus LCD display, battery and CMOS circuitry.
Fluke's 8062A makes many of the same measurements as the 8060A, at a lower price.
Continuity and relative reference functions identical to 8060A.
True RMS measurements to 30 kHz.
Basic dc accuracy 0.05% 10 µA, 10 nA and 10 mV sensitivity.

Fluke 8060A

- **Fluke 8062A**
 - **£275.00**
 - **£210.00**

ACCESSORIES

- **£14.00**
- **£10.00**
- **£8.00**
- **£22.00**
- **£56.00**
- **£40.00**
- **£72.00**
- **£36.00**
- **£40.00**
- **£69.00**
- **£41.00**
- **£18.00**
- **£8.00**

Full Spec. on Request.

The above prices do not include carriage or VAT (15%).

POST: ILP Electronics Ltd, Freepost S, Graham Bell House, Noper Close
Canterbury CT2 7EP, Kent, England
Telephone numbers (0227) 54778: Telex (0227) 14723: Telex 965780 (a division of ILP Electronics Ltd)
NEW POWER Rheostats

- New ceramic construction, heavy-duty, finish as required.
- Continuous adjustment.
- 25 WATT 10/20/30/40/50/60/75/100/150/250/500/1Kfl 1.5Kw
- 2000V l amps, 200Volt, 0.6V 150/250V
- 0.6V (5 amp MAX) £15.00
- 1A (5 amp MAX) £25.00
- 2A (10 amp MAX) £41.00
- 3A (15 amp MAX) £79.00
- 5A (25 amp MAX) £174.00
- 10A (50 amp MAX) £770.00
- 15A (75 amp MAX) £1,050.00

FOR FURTHER DETAILS

- 230/240V AC, 0.5kH/1kfl, 0.1-50/50-100/100-250/250-500/500-1Kfl 1.5kfl
- 0.5kW £29.50 (Total incl. VAT £33.36). Suitable case £11 + £2 P&P (Total incl. VAT £14.95).
- Also available Sangamo Weston 60 amp and AEG 80 amp. Phone for further details incl. Super Hi-Lyght.
- HY-LY-GHT STROBE KIT Mk IV

INSULATION TESTERS NEW

- 1000 VOLT 1000V £55.00
- 5000 VOLT 5000V £108.00
- 10000 VOLT 10000V £161.00

PARABOLIC DISHES

- 6ft dia. for use in satellite reception and microwave transmissions. Please send S.A.E. for full details and data sheet.

HARRISON BROS.

Electronic Distributors

22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX

Tel: Southend (0702) 332338

WW - 005 FOR FURTHER DETAILS
METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C.1
Phone: 01/837179371
Telex: 892301 HARTROG

10 OUTLET DISTRIBUTION AMPLIFIER 3

A compact mains-powered unit with one balanced input and ten A.C. and D.C. isolated floating line outputs:
- Built-in R.F. breakthrough specifications giving trouble-free operation in close proximity to radio telephones and links
- Excellent figures for noise, THD, static and dynamic IMD
- Any desired number of outlets may be provided or microphone level to suit
- Serial video and audio recorders used at press conferences
- Meets EC05.2, BS415 safety and I.B.A. ‘signal path’ requirements
- Also available as a kit of parts less the case and all XLR connectors for one or ten outlets

Broadcast Monitor Receiver 150kHz-30MHz 6 x 10cm display with internal graticule. Timebase 0.5µS -0.2S with sweep delay 10ns-1S x 5 magnifier. X-Y operation ± modulation. Trigger CH1, CH2, CH1/2, Line or EXT £350.00

HM203 PORTABLE OSCILLOSCOPE

Dual Trace. DC to 20MHz 8 x 10cm display with internal graticule. Rise time 17.5ns. Variable input 2mV-20V/cm. Add and invert modes. Timebase 0.5µS-0.2S with sweep delay 100ns-1S x 10 expansion. X-Y operation. £580.00

HM307 OSCILLOSCOPE

Single trace. DC to 10MHz, Rise time 35ns. 5mV/cm to 20V/cm. Timebase 0.5µS-0.2S. Built-in component tester. LPS technique provides stable and reliable triggering up to 30MHz £138.00

HM412-5

Dual Trace. DC to 20MHz 8 x 10cm display with internal graticule. Rise time 17.5ns. Variable input 2mV-20V/cm. Add and invert modes. Timebase 0.5µS-0.2S with sweep delay 100ns-1S x 10 expansion. X-Y operation. £350.00

HM705

Dual Trace DC-70MHz 8 x 10cm display with internal graticule. Rise time 5ns. Variable input 2mV-20V. Add and invert modes. 95ns Signal Delay Line. Timebase 50ns-15cm with sweep delay 100ns-15 x 10 expansion. X-Y operation. £580.00

The above prices do not include carriage or VAT (15%).

Simple Phone or Telex your order for immediate dispatch.

Electronic Brokers Ltd
61/65 Kings Cross Road
London WC1X 9LN
Telephone: 01-278 3461
Telex: 298694 Elebro G

WW - 018 FOR FURTHER DETAILS
Introducing two new hand-held digital multimeters
28 Ranges, each with full overload protection

10 amp AC/DC

SPECIFICATION 6010 & 7030
BATTERY: Single 9v dry cell. BATTERY LIFE: 200 hours. DIMENSIONS: 170 x 89 x 38mm. WEIGHT: 400g incl. battery. MODE SELECT: Push button. AC DC CURRENT: 200μA to 10A. AC VOLTAGE: 200mV to 750V. DC VOLTAGE: 200mV to 1000V. RESISTANCE: 200Ω to 20MΩ. INPUT IMPEDANCE: 10MΩ. DISPLAY: 3½ Digit 13mm LCD. O/LOAD PROTECTION: All ranges.

OTHER FEATURES:
Auto polarity, auto zero, battery-low indicator, ABS plastic case with tilt stand, battery and test leads included, optional carrying case.

Please add 15% to your order for VAT. Postage and packing is free of charge.

ARMON ELECTRONICS LTD.
Cottrell House, 53-63 Wembley Hill Road
Wembley, Middlesex HA9 8BH, England
Tel. 01-902 4321 (3 lines). Tlx: No. 923985

WW - 051 FOR FURTHER DETAILS

Happy Memories

<table>
<thead>
<tr>
<th>Part type</th>
<th>1 off</th>
<th>25-99</th>
<th>100 up</th>
</tr>
</thead>
<tbody>
<tr>
<td>4116 200ns</td>
<td>.89</td>
<td>.72</td>
<td>.66</td>
</tr>
<tr>
<td>4116 250ns</td>
<td>.75</td>
<td>.65</td>
<td>.60</td>
</tr>
<tr>
<td>4816 100ns for BBC comp</td>
<td>2.95</td>
<td>2.70</td>
<td>2.50</td>
</tr>
<tr>
<td>4164 200ns</td>
<td>6.15</td>
<td>5.25</td>
<td>4.65</td>
</tr>
<tr>
<td>2114 200ns Low Power</td>
<td>1.15</td>
<td>1.00</td>
<td>.90</td>
</tr>
<tr>
<td>2114 450ns Low Power</td>
<td>.95</td>
<td>.85</td>
<td>.80</td>
</tr>
<tr>
<td>4116 250ns</td>
<td>3.25</td>
<td>2.85</td>
<td>2.65</td>
</tr>
<tr>
<td>6116 150ns CMOS</td>
<td>4.25</td>
<td>3.85</td>
<td>3.35</td>
</tr>
<tr>
<td>2708 450ns</td>
<td>2.60</td>
<td>2.25</td>
<td>2.10</td>
</tr>
<tr>
<td>2716 450ns 5 volt</td>
<td>2.60</td>
<td>2.25</td>
<td>2.10</td>
</tr>
<tr>
<td>2718 450ns three rail</td>
<td>5.75</td>
<td>5.00</td>
<td>4.85</td>
</tr>
<tr>
<td>2732 450ns Intel type</td>
<td>3.95</td>
<td>3.45</td>
<td>3.25</td>
</tr>
<tr>
<td>2532 450ns Texas type</td>
<td>3.95</td>
<td>3.45</td>
<td>3.25</td>
</tr>
</tbody>
</table>

Low profile IC sockets:

Pins: 8 14 16 18 20 22 24 28 32
Pence: 9 10 11 14 15 18 19 25 33

Valradio

POWER UNITS

Now available with 3 OUTPUTS

OUTPUT 1: 0-30v, 25A DC
OUTPU 2: 0-70v, 10A AC
OUTPU 3: 0-250v, 4A AC

ALL Continuously Variable

LOW profile IC sockets:

8-pin SSSD £17.00
8-pin SSSD £19.25
8-pin SSDD £21.00
8-pin SSSD £23.65
8-pin SSDD £25.50

74LS series TTL: Large stocks at low prices with D.I.Y. discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 30p post and packing to orders under £15 and V.A.T. to total. Access and Barclaycard welcome. 24-hour service on (054-422) 618. Government and Educational orders welcome; £15 minimum. Trade accounts operated - phone or write for details.

HAPPY MEMORIES (WW)
Gladestry, Kington
Herefordshire HR5 3NY
Tel: (054-422) 618 or 628
FIRST IN THE WORLD
The ICM-12, synthesized, marine hand-portable radio

FEATURES:
- 12 channels – 6 and 16 fitted as standard.
- No waiting for crystals, can be diode programmed between 156-164MHz.
- Automatic semi-duplex for private and link calls.
- Slide-on nicad pack recharges from mains or 12V.
- Lots of options, speaker mics, alternative battery packs, 12V leads, and desk chargers.
- Complete with nicad battery pack, mains charger, belt clip, earphone, rubber antenna.
- Home Office type approved. RTD HP 105.
- PRICE £199.13 + VAT. Free carriage.

Also IC-M250 25W, synthesized 25 channel VHF marine transceiver £207.83 + VAT.

Thanet Electronics
143 Reculver Road, Herne Bay, Kent
Tel: 02273 63859. Telex 965179

QUARTZ CRYSTALS

Stocks of standard items exceed a quarter of a million.

This technology is available now from

This is technology is available now from

I Q D

29 Market Street
Crewkerne
Somerset TA18 1DT

Crewater (0460) 74233
Telex 46083 indac g

WW – 038 FOR FURTHER DETAILS

525.2x782.9
[Image 0x0 to 595x843]

HazelTINE VDUS
SAVE UP TO 51%

P.O.A.

HazelTINE 1510
[MLP £880]...

Only £550

HazelTINE 1520
[MLP £1050]...

Only £625

HazelTINE 1552
[MLP £800]...

Only £395

HazelTINE 1410
[MLP £475]...

Only £295

Carriage and Packing extra

Electronic Brokers Ltd., 61/65 Kings Cross Road,
London WC1X 9LN. Tel:01-278 3461. Telex 298694

WWW WWW
hi! performance hi! competitive hi!

FULL HOUSE OF MULTIMETERS

TRIO

- 3½ and 4½ digit LED
- Rugged and Reliable
- 2 YEAR GUARANTEE
- Simple Operation - Auto Ranging
- Mains or Batteries
- 7 Digit Frequency Counter
- Resolutions 1 and 0.1 mV
- DCV, DCA, ACA and OHMs
- Basic accuracy 0.8, 0.25, 0.1 and 0.05%

Prices from £92 include FREE batteries, hand look and Test Leads

KEITHLEY

- 3½ and 4½ digit Large LCDs
- State of the Art
- Full One year warranty
- DCV, DCA, ACA, OHMs, Temp and Comp Tester
- Switched 'AUDIO' bleep with variable threshold
- Basic accuracy 0.5, 0.25 and 0.05%
- Rotary Controls - single hand operation
- Non slip feet and Tilt stand
- 10 Amp capability - High MTBF
- Many optional accessories
- Prices from approx £89 inc FREE Batteries and Test Leads

BBC GEEE

- Digital and Analog - Hand HeId and Bench
- Huge LCDs - Many Safety Features
- Black, Rugged and Reliable
- 1 Year Guarantee
- 3½ and 4½ Digits
- Variable Viewing Angle - Hand free operation
- DCV, DCA, ACA, OHMs,Capacitance, Temp and Logging
- Meet DIN 40050, 43780, 57410 or 57411

Requirements
- Prices from approx £26 inc FREE Batteries, Manual and Test Leads

HC

- 3½ digit LCD and Analogue
- Colour coded front panel and edge switches
- High impact ABS with tilt stand
- Safety features meet UL 1244
- Basic accuracy 0.6 and 0.2%
- Full Range of DCV, ACV, DCA, DCmA, ACmA and Ohms
- Switched HI and LO ohms
- FREE Battery, Manual and Test Leads
- Analogue from approx £5 - Digital from approx £37

House of Instruments

 Clifford Chambers, 62 High Street
 Saffron Walden, Essex CB10 1EE
 Tel: (0279) 2422 Tele: 818750

w w w - 016 FOR FURTHER DETAILS
SPECIAL OFFER

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2114L-200nS</td>
<td>100p</td>
</tr>
<tr>
<td>2114L-450nS</td>
<td>90p</td>
</tr>
<tr>
<td>2771 (5v)</td>
<td>250p</td>
</tr>
<tr>
<td>2532</td>
<td>400p</td>
</tr>
<tr>
<td>2772</td>
<td>400p</td>
</tr>
<tr>
<td>6116P-3</td>
<td>150p</td>
</tr>
</tbody>
</table>

CONNECTOR SYSTEMS

<table>
<thead>
<tr>
<th>I/O. CONNECTORS</th>
<th>D CONNECTORS</th>
<th>DIP PLUGS</th>
<th>FLAT CABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>#20 10MHz Logic Pro</td>
<td>No. of Pins</td>
<td>No. of Pins</td>
<td>No. of Pins</td>
</tr>
<tr>
<td>5020A</td>
<td>1MHz-200MHz Function Generator</td>
<td>10 15</td>
<td>15 20</td>
</tr>
<tr>
<td>#8110A</td>
<td>1MHz-20MHz Function Generator</td>
<td>20 25</td>
<td>25 30</td>
</tr>
<tr>
<td>#8000B</td>
<td>1MHz-200MHz Function Generator</td>
<td>30 35</td>
<td>35 40</td>
</tr>
<tr>
<td>#8700</td>
<td>1MHz Universal Frequency Counter/Timer</td>
<td>40 45</td>
<td>45 50</td>
</tr>
<tr>
<td>#8000B</td>
<td>1MHz Universal Frequency Counter/Timer</td>
<td>50 55</td>
<td>55 60</td>
</tr>
</tbody>
</table>

JUMPER LEADS

<table>
<thead>
<tr>
<th>24" Cable w/ DIP Headers</th>
<th>16 pin</th>
<th>18 pin</th>
<th>20 pin</th>
<th>22 pin</th>
<th>24 pin</th>
<th>26 pin</th>
<th>28 pin</th>
<th>30 pin</th>
<th>32 pin</th>
</tr>
</thead>
</table>

EDGES CONNECTORS

<table>
<thead>
<tr>
<th>Male/Female Connectors</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 15 edge</td>
<td>145p</td>
<td>135p</td>
</tr>
<tr>
<td>4 x 20 edge</td>
<td>160p</td>
<td>150p</td>
</tr>
<tr>
<td>6 x 30 edge</td>
<td>185p</td>
<td>175p</td>
</tr>
<tr>
<td>8 x 40 edge</td>
<td>210p</td>
<td>200p</td>
</tr>
</tbody>
</table>

ACORN ATM

Built 8K + 2K £115.50 + Coloured Card £175, 12K + 12K £250. (p & p £115.50 + £250)

PRINTERS

SEIKOSHA GP100A dot matrix printer, full graphics double width characters, up to 10" wide paper, self testing parallel interface.

BBC COMPUTER UPGRADE

MEMOR

IC61-68 16K RAM 1000 £25.60

PRINTER & USER PORTS

IC69, 70, 10B £85.00 SK10 with 36" Cable £2.20

36" Printer Connector Lead Complete £5.00

F.D. PORT

IC77-87 + PL8 £44 SK8 with 36" Cable £3.50

BUS PORT

IC71-72 + PL11 £3.30 SK11 with 36" Cable £3.50

SOFTY II EPROM PROGRAMMER

The complete microprocessor development system for both Engineers and Hobbyists. You can develop programs, debug, verify and commit them to EPROMs. Will accept most +5V EPROMs. Can also be used as a ROMULATOR. Full review in September '81 P.E. Built unit complete with PSU and TV lead £169

* * *

TECHNOMATIC TECHNOHOMATIC

NEW COLOUR ENCODER CARD £39.00

Ask for our ATOM list for details on Sound Board and Atom Vision.
<table>
<thead>
<tr>
<th>PARTS SERIES</th>
<th>PARTS</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNOMATIC LTD.</td>
<td>MAIL ORDERS TO: 17 BURNEY ROAD, LONDON NW10 1ED</td>
<td>SHOP AT 17 BURNEY ROAD, LONDON NW10</td>
</tr>
<tr>
<td></td>
<td>(Tel: 01-452 1500, 01-450 6597, Telex: 922800)</td>
<td>305, EDGWARE ROAD, LONDON W2 Tel: 01-723 0233</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRELESS WORLD AUGUST 1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DATA SHEETS:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FD1771</td>
</tr>
</tbody>
</table>
Carstottn
Electrore Ltd
01-2675311
Shirley House, 27 Camden Road, London NW1 9NR. Telex: 23920.

MULTIMETERS
AF120 Dual Hi Pass/L Pass active
filt 20 Hz - 2 MHz
PHILIPS
PM 5601 Colour TV Pattern Generator
PM 5159 Colour TV Pattern Generator
PM 5640 Stereo FM Pattern Generator
RADIOMETER
SM 01 Stereo FM Generator
ROHDE & SCHWARZ
8N252 Transistor Y Parameter Test Set
SCHLUMBERGER
8506/LUHF Radio Telephone Test Set

SPECIAL OFFER
WAVELET 157 D
Programmable Waveform Synthesizer
100 MHz - 1 MHz sine, square and triangle waveforms. Output voltage 1 mV to 10 V P.P. into 50 Ω. Clear digital readout of front panel frequency and voltage setting. Frequency sweep facility, B.C.D. Programmable.

£1200

HEWLETT PACKARD
427 A
Analogue AC/DC Volt/Ohm-Meter
Compact, battery operated unit.
DC - 100 mV - 1 kV AC - 10 mV - 300 V
10 Hz - 1 MHz
10 - 10 MHz
£99

PHILIPS
PM6631/4 152 MHz 9 Digit Counter/Timer
PM6634/4 252 MHz 9 Digit Counter/Timer
PM6637 200 MHz 9 Digit Counter
RACAL-DANA (E.I.P.)
371 18 GHz 11 Digit Counter with Source
locking facility
810 15 GHz 8 Digit Counter
903 25 GHz 10 Digit Counter
900 200 MHz 7 Digit Counter
SYSTRON DIONNER
503 3.5 GHz 9 Digit Counter BCD/D/P
50385 Smp Printer for 503/650/04
TEKTRONIX
DC501 7 Digit 100 MHz Counter
TM500 Plug-in
COMARK
593/15 Thermocouple 10m 87 + 1000°C typ K
N.B. Thermocouples not included
CROWCON
9111T Inflammable Gas Detector/Alarm
Storage
FLANN
16/11 Rotary Valve Attenuator WG16
HEWLETT PACKARD
4283 A Noise Dosemeter
METER
BMS 200V 0 - 200 mV tester. Bld op
M4J 1 kV - 200 mV tester. Hand Drive

£99

COMPUTER EQUIPMENT
90 day guaranteed
CENTRONICS
701a printer
HEWLETT PACKARD
9034a Logic Analyzer 16 ch 20 MHz
9015 Logic Analyzer 32 ch 20 MHz
9032a Logic Analyzer 16 ch 10 MHz
9034a Logic Analyzer 24 ch 20 MHz
TEKTRONIX
4610-1 Hard copy printer for 4010 series
computer display terminals
COUNTERS & TIMERS
FLUKE
1712 520 MHz 7 digit Counter
9192A 25 MHz 9 Digit Counter inc. BST.
mode
HEWLETT PACKARD
5300A/5305B 1300 MHz 6 Digit Counter
51344 27/0 base plug-in 50 MHz Trig for 5000
485 350 MHz 2mV 2 Trace 2T base
PM3207 15 MHz 5mV 2 Trace TV trig
PM3208 120 MHz 5mV 2 Trace 2T base

£99

[Table of equipment prices and details]

All items have a 12 month guarantee unless otherwise stated.

Carston
buy carston
sell carston
buy carston
sell carston
buy carston
sell carston
buy carston
sell carston
sell carston
buy carston

ICCILSCOPES (STORAGE)

VLETT PACKARD

- 100 MHz Multifacade 5cm/h, 1.8 MHz
- 1.8 MHz UV chart C" 25" 16 speed
- 1500 BPP

TEXMEN

- 94x100 160 Mhz 6 In CRT disp

SOLARRON

- 1750 Waveform Synthesiser 100 kHz – 1 MHz
- 1500 BPP

TEXTRONIX

- 875 Transistor Curve tracer

LOW COST CUSTOM

Items in this box have 30 day guarantee only.

- **AIRM** 210 AM/PM Modulation meter from 2.5-300 MHz
- **CEL** 122 Environmental noise Analyser. Digital readout of level in dbA, c/w Mic and leather carry case. Battery operated
- **CEL** 2773 Kiva – wide range inductance bridge
- **GOULD** DM-10 EL Eco-D.E.D. compact bench multimeter ac/dc/10V/1Ohm
- **HEWLETT PACKARD** 3420A 5 1/2 Digit ac/dc/vi/o Auto Range
- **M.L. ENGINEERING** 850 – DC sensitive x Volt/amp meter
- **TRMS** 16.3 Digit x Volt/Amp meter – centre zero

CROTECH Oscilloscopes

- **TEKTRONIX**
- **HEWLETT PACKARD**
- **RACAL -DANA**
The lightweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with Power Pack for extension and retraction. Available in a range of heights up to 15 metres, the QTM mast can provide the ideal answer for:

- Mobile Radio Telephone
- Police Mobile HQ (UHF)
- Field Telecommunications
- Floodlighting
- Anemometer and Wind Measurement

Environmental - gas sampling collector
High level photography
Meteorology
And a host of other uses

CLARK MASTS

Find out more about the QTM series by writing or phoning:

U.K.
CLARK MASTS LTD. (W.W.)
Evergreen House, Ringwood Road.
Binformal, Isle of Wight.
England PO33 3PA
Tel: Isle of Wight (0983) 63591
Telex 86586

U.E.
GENK TECHNICAL PRODUCTS N.V. (W.W.)
Woudstraat 21, 3600 Genk.
Belgium
Telephone 011-380831
Telex 39364 Genant B.
It's the chance every constructor wants

It's something you have always wanted... something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U.'s, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisements without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

I.L.P. ELECTRONICS LTD.

FREEPOST 5
GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP
Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780

FREEPOST
Mark your envelope clearly FREEPOST 5 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

SEND COUPON (NO STAMP NECESSARY)

FOR YOUR FREE I.L.P. CATALOGUE AND OPEN UP TO A NEW WORLD OF QUALITY & VALUE

Did you know

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?

I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?

There are TWENTY power amplifiers from 15 to 240 watts RMS including the very latest super-quality Mosfets to choose from?

TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?

I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?
BY ORDER OF B. BAMBER ELECTRONICS AND OTHERS

SALE BY AUCTION

TO BE SOLD BY

ANGLIA INDUSTRIAL AUCTIONS

SPECIALIST AUCTIONEERS TO THE RADIO AND ELECTRONICS INDUSTRY

LOTS INCLUDE:
Resistors, capacitors, pots, connectors, switches, diecast boxes, plastic project boxes, vero board, transformers, relays, bulbs and neons, tools, transistors, valves, panel meters, digital watches, calculators, car radio speakers, intercom units, multimeters, cable, test equipment, radio telephones and spares, amateur radio transceivers, Weller spares.

Over 900 lots - Catalogues available

TO BE HELD ON WEDNESDAY, AUGUST 18, 1982

ON THE PREMISES OF
B. BAMBER ELECTRONICS
5 STATION ROAD
LITTLEPORT
CAMBS. CB6 1QE
TEL: ELY (0353) 860185

THE MOST
ECONOMICALLY - PRICED
PROFESSIONAL EPROM
PROGRAMMERS AROUND

SUITABLE FOR EPROMS:
2708, 2516, 2716, 2532, 2732, 2732A
plus option for 2564, 2764

STARTING AT £395 + VAT
Albetros (Products) Limited Frances Road Basingstoke Hampshire RG21 3DA
Telephone (0266) 57551

ELECTRON GUNS
TV TUBE COMPONENTS
If you are Rebuilding or Manufacturing TV Tubes – We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.
Our product range includes more than 250 gun types for Colour, Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all customers Worldwide.
Please request our current catalogues and Data Information.

2 SWAN STREET
ALCESTER
WARWICKSHIRE
B49 5DP
ENGLAND

Telephone: (03785) 764562/764100. Telex: 312354 Grifern G

20

FURTHER DETAILS

WIRELESS WORLD AUGUST 1982
DIGITAL MULTIMETERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Held Models</td>
<td>3-pin, digit LCD</td>
<td>£65.10</td>
</tr>
<tr>
<td>601-F</td>
<td>2-channel push button 2A</td>
<td>£36.50</td>
</tr>
<tr>
<td>2033A</td>
<td>Similar to above by Bonsun</td>
<td>£39.95</td>
</tr>
<tr>
<td>703-5</td>
<td>10 channel push button 10A</td>
<td>£54.00</td>
</tr>
<tr>
<td>2033B</td>
<td>1-channel push button 10A</td>
<td>£43.50</td>
</tr>
<tr>
<td>2035A</td>
<td>2-channel push button</td>
<td>£71.00</td>
</tr>
<tr>
<td>2035A-3</td>
<td>Auto-ranging, 2-trma, +, -</td>
<td>£77.00</td>
</tr>
<tr>
<td>220</td>
<td>1-channel push button</td>
<td>£89.95</td>
</tr>
<tr>
<td>220A</td>
<td>1-channel push button</td>
<td>£110.95</td>
</tr>
<tr>
<td>220B</td>
<td>2-channel push button</td>
<td>£120.95</td>
</tr>
</tbody>
</table>

AUDIO equipment

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRI500</td>
<td>Triode, 500W, 2-ch</td>
<td>£146.00</td>
</tr>
<tr>
<td>2010A</td>
<td>Multi-channel, 10A</td>
<td>£115.00</td>
</tr>
<tr>
<td>2010B</td>
<td>Multi-channel, 10A</td>
<td>£125.00</td>
</tr>
</tbody>
</table>

ACCESSORIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>201A</td>
<td>Multi-channel, 10A</td>
<td>£115.00</td>
</tr>
<tr>
<td>201B</td>
<td>Multi-channel, 10A</td>
<td>£125.00</td>
</tr>
</tbody>
</table>

INSULATION AND CLAMP METERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST300</td>
<td>30A, 600V, 10A, 9 ranges</td>
<td>£28.95</td>
</tr>
<tr>
<td>K2600</td>
<td>30A, 600V, 10A, 9 ranges, (optional)</td>
<td>£18.95</td>
</tr>
<tr>
<td>K2800</td>
<td>30A, 750V, 10A, 8 ranges</td>
<td>£17.75</td>
</tr>
<tr>
<td>LE3000</td>
<td>Multi-range, 10A, 8 ranges</td>
<td>£11.00</td>
</tr>
<tr>
<td>AE1040</td>
<td>Multi-range, 10A, 8 ranges</td>
<td>£9.00</td>
</tr>
<tr>
<td>M590</td>
<td>1000V, 1000P</td>
<td>£7.50</td>
</tr>
<tr>
<td>K3031</td>
<td>110V/100V phase tester</td>
<td>£23.50</td>
</tr>
</tbody>
</table>

ELECTRONIC INSULATION TESTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E8000</td>
<td>E8 series, 0.1 to 10 MΩ</td>
<td>£47.95</td>
</tr>
<tr>
<td>N1000</td>
<td>100 Ohm, 3000 count</td>
<td>£9.95</td>
</tr>
<tr>
<td>E3000</td>
<td>E9 series, 0.1 to 10 MΩ</td>
<td>£22.95</td>
</tr>
<tr>
<td>LMP800</td>
<td>LMP8 series, 3000 count</td>
<td>£15.00</td>
</tr>
</tbody>
</table>

OSCILLOSCOPES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR500</td>
<td>10 range, +, -</td>
<td>£149.95</td>
</tr>
<tr>
<td>K3000</td>
<td>10 range, +, -</td>
<td>£129.95</td>
</tr>
<tr>
<td>ST5303</td>
<td>10 range, +, -</td>
<td>£138.95</td>
</tr>
<tr>
<td>N3500</td>
<td>10 range, +, -</td>
<td>£185.00</td>
</tr>
</tbody>
</table>

VARIABLE POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKS560</td>
<td>20 range, +, -</td>
<td>£145.95</td>
</tr>
<tr>
<td>N3500</td>
<td>10 range, +, -</td>
<td>£129.95</td>
</tr>
<tr>
<td>N3500</td>
<td>10 range, +, -</td>
<td>£185.00</td>
</tr>
</tbody>
</table>

FREQUENCY COUNTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1001</td>
<td>Digital, 1000 MHz, 1 MHz, 10 MHz</td>
<td>£77.00</td>
</tr>
<tr>
<td>D1003</td>
<td>Digital, 1000 MHz, 1 MHz, 10 MHz</td>
<td>£137.00</td>
</tr>
</tbody>
</table>

DIRECT READ HV PROBE

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D210</td>
<td>Direct read, 100 kV, 25 MHz</td>
<td>£119.00</td>
</tr>
</tbody>
</table>

OSCILLOSCOPE PROBE KITS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>Oscilloscope probe, 200 MHz</td>
<td>£112.00</td>
</tr>
</tbody>
</table>

DECABOXES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>32 value, 10 kΩ, 100 kΩ, 1 MΩ</td>
<td>£7.95</td>
</tr>
</tbody>
</table>

PORTABLE TV COLOUR GENERATORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC101</td>
<td>Multi-purpose generator</td>
<td>£10.50</td>
</tr>
</tbody>
</table>

VARIABLE POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKS560</td>
<td>20 range, +, -</td>
<td>£145.95</td>
</tr>
<tr>
<td>N3500</td>
<td>10 range, +, -</td>
<td>£129.95</td>
</tr>
<tr>
<td>N3500</td>
<td>10 range, +, -</td>
<td>£185.00</td>
</tr>
</tbody>
</table>

FURTHER DETAILS

- **Generators**
 - Available in 400W & 1kW AC
 - Available in 200W & 400W DC
 - Available in 200W & 400W DC

- **Insulation and Clamp Meters**
 - Available in 200W & 400W DC

- **Electronic Insulation Testers**
 - Available in 200W & 400W DC

- **Amateur Radio and CB Testing**
 - Available in 200W & 400W DC

- **Have a Banana!**
 - Available in 200W & 400W DC

- **Variable Power Supplies**
 - Available in 200W & 400W DC

- **Oscilloscope Probe Kits**
 - Available in 200W & 400W DC

- **Direct Read HV Probe**
 - Available in 200W & 400W DC

- **Decabeoxes**
 - Available in 200W & 400W DC

- **Portable TV Colour Generator**
 - Available in 200W & 400W DC

For further information, please contact...

WIRELESS WORLD AUGUST 1982

Retail-Mail Order-Export Industrial-Educational

TEST EQUIPMENT CENTRES

WIRELESS WORLD AUGUST 1982
10 intoi D

Complete audio measuring system see the 10 features...

Already in use from the small service workshop to Audio Equipment manufacturers to professional studio to IBA Broadcast station to the “BBC”.

AMS1 provides the solution.

Saves time, saves space, saves capital equipment cost, saves earthing problems. Transportable and easy to use. This low cost comprehensive audio workshop meets the latest specifications for Audio Measurement with accuracies equivalent to many of its stand-alone counterparts.

10 Instruments, 15 Measurements for the price of One. That's the AMS1... from Wayne Kerr.
PRINTED CIRCUITS
FOR WIRELESS WORLD PROJECTS

Audio compressor/limiter—Dec. 1975—1 s.s. (sterio) £4.25
Cassette recorder—May 1976—1 s.s. £5.00
Audio amplifier—July 1976—1 s.s. £4.25
Audio preamplifier—November 1976—2 s.s. £6.50
Additional circuits—October 1977—1 s.s. £4.00
Stereo decoder—April 1977—1 s.s. £8.50
Low distortion disc amplifier (stereo) —September 1977—1 s.s. £2.00
Low distortion audio oscillator—September 1977—1 s.s. £3.50
Synthesized f.m. transmitter—November 1977—2 s.s. £12.00
Modelmaker—June 1978—1 s.s. £4.50
Metal detector—July 1978—1 s.s. £3.75
Oscilloscope waveform store—October 1978—4 s.s. £18.00
Regulator for car alternator—August 1979—1 s.s. £22.00
Wideband noise reducer—November 1978—1 s.s. £5.00
Versatile noise generator—January 1979—1 s.s. £5.00
20MHz frequency meter—January 1979—1 s.s. £7.00
High performance preamplifier—February 1979—1 s.s. £5.50
Distortion meter and oscillator—July 1979—2 s.s. £5.50
Moving coil preamplifier—August 1979—1 s.s. £3.50
Multi-mode transistor—October 1979—10 s.s. £35.00
Amplification system—Oct. 1979—3 preamp 1 poweramp £4.20 each
Digital capacitance meter—April 1980—2 s.s. £7.50
Colour graphics system—April 1980—1 s.s. £18.80
Audio spectrum analyser—May 1980—3 s.s. £10.00
Multi-section equaliser—June 1980—2 s.s. £8.00
Floating bridge power amp—Oct. 1980—1 s.s. (12V or 40V) £4.00
Nanopower 682 or 680—Jan. 1981—1 s.s. £3.00
Cassette interface—July 1981— £1.50
Eprom programmer—Jan. 1982—1 s.s. £4.50
Logic probe — Feb., 1982—2 s.s. £6.00
Modular frequency counters—March, 1981—8 s.s. £20.00
Opto electronic contact detector (Delco)—April, 1981—2 s.s. £4.00
CBS synthesizer—Sept.—3 s.s. £6.00
Electronic ignition—March, 1982—1 s.s. £4.00

Boards and glass fibre roller-tinned and drilled. Prices include VAT and UK postage. Airmail add 30%. Europe add 10%. Insurance 10%. Remittance with order to:

M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL

WW – 037 FOR FURTHER DETAILS

SAFGAN DT-400 Series BRITISH MAKE DUAL TRACE 'SCOPES

DT-410, 10 MHz
- OR, CH1, CH2 Moulded—20div.
- Gate Base 1 sec/div—10ms/div.
- XY Facility, Mixed XY inputs.
- Trigger, Level control, ±500.
- Auto, Normal, TV Triggering.
- Weight, 4kg.

DT-415, 15MHz
- OR, CH1, CH2 Moulded—20div.
- External Trigger
- Gate Base 1 sec/div—10ms/div.
- XY Facility, Mixed XY inputs.
- Trigger, Level control, ±500.
- Auto, Normal, TV Triggering.
- Size, H215mm, W165mm, D280mm.

DT-420, 20MHz
- OR, CH1, CH2 Moulded—20div.
- Gate Base 1 sec/div—10ms/div.
- XY Facility, Mixed XY inputs.
- Trigger, Level control, ±500.
- Auto, Normal, TV Triggering.

ACTIVE COMPONENTS
MAIL ORDER SPECIALISTS
Lowest Prices – Fastest Delivery

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N8310</td>
<td>0.20</td>
</tr>
<tr>
<td>N8311</td>
<td>0.25</td>
</tr>
<tr>
<td>N8312</td>
<td>0.28</td>
</tr>
<tr>
<td>N8313</td>
<td>0.30</td>
</tr>
<tr>
<td>N8314</td>
<td>0.35</td>
</tr>
<tr>
<td>N8315</td>
<td>0.40</td>
</tr>
</tbody>
</table>

DATA CONVERTERS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AY-3-1376</td>
<td>5.99</td>
</tr>
<tr>
<td>AY-3-1377</td>
<td>5.99</td>
</tr>
<tr>
<td>AY-3-1378</td>
<td>5.99</td>
</tr>
<tr>
<td>AY-3-1379</td>
<td>5.99</td>
</tr>
</tbody>
</table>

COMPUTER COMPONENTS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW 0510</td>
<td>3.07</td>
</tr>
<tr>
<td>CW 0520</td>
<td>3.25</td>
</tr>
<tr>
<td>CW 0530</td>
<td>3.45</td>
</tr>
<tr>
<td>CW 0540</td>
<td>3.65</td>
</tr>
</tbody>
</table>

MICROPROCESSORS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4004</td>
<td>0.20</td>
</tr>
<tr>
<td>4006</td>
<td>0.25</td>
</tr>
<tr>
<td>4007</td>
<td>0.30</td>
</tr>
<tr>
<td>4008</td>
<td>0.35</td>
</tr>
<tr>
<td>4009</td>
<td>0.40</td>
</tr>
</tbody>
</table>

WIRELESS WORLD AUGUST 1982

WW – 055 FOR FURTHER DETAILS
OTHER MARCONI SUPPORT STRUCTURES

Include the MATHWEB* Lattice Antenna Mast Type R1010, and the Triangular Section Tubular Steel Supporting Tower Type R1060.

For details of these and other Marconi Antennas products please contact Chris Pettitt, Marketing Manager, Antenna Systems Division.

*MATHWEB is a registered trademark of the BP Group

Marconi

Marconi Type R1020 Hinged antenna column.

Easy to raise
Easy to lower

* Immensely strong, corrosion resistant MATHWEB* g.r.p. column in a rugged steel tisernacle

Lightweight, easy to install, and can be safely lowered by one man

Can support a number of VHF/UHF antennas

Column supplied in range of colours including ICAO orange/white, and requires no painting or maintenance

Available in heights from 11 to 19.5 metres

Marconi

Marconi Communications Systems Limited

Lanare Works, Waterhouse Lane, Chelmsford CM1 2QX, England

Tel: 0245 671111 Telex: 99108

A GEC-Marconi Electronics Company

WW - 014 FOR FURTHER DETAILS
STOP WASTING TIME TESTING BOARDS
MD will pin-point microtroubles in seconds.
Portable and simple to use by non-technical staff
in the REPAIR SHOP or on the PRODUCTION LINE.
MD tests ROM, RAM & I/O and prints diagnostic reports.
MICRODOCTOR can be plugged into an unknown system
to perform a general diagnostic and print a MEMORY-MAP.
The ENGINEER may enter sequences
doing many tasks to test:
shorting tests on DATA and ADDRESS LINES,
PRINT-OUTS of memory in ASCII or HEX.
These sequences are retained in CONTINUOUS MEMORY,
available always at the push of a key.
* FREE Z80 DISASSEMBLER with each MD
(other disassemblers soon to retrofit at low cost).
Get a DISASSEMBLER LISTING of ROM in any microsystem!
MICRODOCTOR — £295.00

INTELLIGENT EPROM PROGRAMMER
Good tools need not be expensive. SOFTY 2 is the latest
version of the engineer’s favourite EPROM HANDLER
for anybody who uses 2516, 2716, 2532 and 2732 EPROMS.
SOFTY will program any of these EPROMS
or copy any type into another.
SOFTY puts out a TV picture of memory contents,
with many code-manipulating and editing facilities.
There is also a fast cassette data storage system.
SOFTY is also a ROMULATOR (a lead is supplied
which may be inserted into a board under development
to emulate the ROM using SOFTY’s internal RAM.
This procedure can also be used on the single-chipper
piggy-back type MPU.) SOFTY is complete in itself
as a PRODUCT DEVELOPMENT SYSTEM.
Code may be entered in HEXADECIMAL via the keyboard
also SERIAL and PARALLEL inputs and outputs
allow downloading of object code from your computer
or printing EPROM contents on your printer.
SOFTY 2 — £169.00
TEX UV EPROM ERASER — £39

Z80 DEVELOPMENT SYSTEM
MENTA puts out a TV PICTURE of memory in hexadecimal.
The 40 key keyboard will accept inputs,
in hexadecimal and Z80 mnemonics;
there is a quick cassette data storage system,
a powerful editor which permits program debugging
by showing contents of registers and stack.
Also there are 24 bits of I/O
for external control. A Z80 disassembler
is also available which outputs to any RS232 device
such as a printer or terminal.
MENTA was designed as a low-budget device
for teaching microprocessing in schools: professional
pre-release course-material is available to teachers
together with add-on boards for a variety
of control functions and robotics.
MENTA — £115.00
SERIAL DISASSEMBLER — £19.50

NEC PC 8000 PERSONAL COMPUTER.
The brand-leader in Japan; gaining ground rapidly in America; this
beautifully made, reliable system has all the features you could want at
the right price. See it! Try it!
8001 Keyboard Unit
(24K BASIC, 32K RAM, colour graphics, function keys etc.) £599
8011 Expansion Unit
(32K RAM, RS232, IEEE-488, CLOK, 34 pin I/O etc.) £489
8023 Dot Matrix Printer
(100 CPS, up to 136 columns, proportional spacing, greek and math) £389
8031 Dual Disk Drive
(5669 8043 Colour Monitor £579
All CP/M software is available.

THANDAR TA2080 — £1950
20MHZ LOGIC ANALYSER
A value-for-money instrument with both TIMING and STATE capture and display
and excellent triggering from 23 bits.
Thandar is designing RS232 and IEEE interfaces, 280 and 8048 disassemblers for
our own use, which will be available when tried and approved by Thandar.
PLEASE PHONE FOR PRICES

Dataman Designs
LOMBARD HOUSE, CORNWALL ROAD, DORCHESTER, DT1 1RX
Telephone: Dorchester (0305) 68066
Prepaid or credit card orders normally shipped by return. Prices include first-class recorded post in UK
Securicor, Red Star, etc at extra cost. VAT should be added at current rates.
Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother-and-daughter arrangement used on our Linsley-Hood Cassette Recorder 1. This latest version has the following extra features: Ultra low wow-and-flutter of 0.09% – easily meets DIN Hi-Fi spec. Deck controls latch in record modes and do not have to be held. Full automatic track to track anti-aliasing filter. All wiring is taut and neatly run, no spiralling. 12 volt operation. Fitted 3-digit memory counter and Hall IC Motion Sensor. Standard ferrite. Fantastic frequency response. Complete with data shell. Reprints of the 3 original articles describing this design 45p. No VAT.

Invaluable when fitting new heads. Only £2.70 plus V.A.T. and 50p postage. One inexpensive test cassette enables you to set up VU level, head azimuth and tape speed. A bulk of amplifiers in the commercial market place and even exceed the high standard set by his earlier 75-watt design. These versions are offered, a 30-watt with Dallinger output transistors, and a 35- and 45-watt, both with Mosfet output transistors. All are of identical outside appearance which is designed to match and stack with our Linsley-Hood cassette recorder 2.

As with all Hart kits the constructors interests have been looked after in a unique way by reducing the conventional (and boring) wiring almost to the point of extinction.

Any of these kits represents a most cost-effective route to the very highest sound quality with the added bonus of the enjoyment of building a sophisticated piece of equipment. Any of these kits would make a great addition to your Hi-Fi setup, or match and stack with our Linsley-Hood cassette recorder 2.

Three versions are offered, a 30-watt with Darlington output transistors, and a 35- and 45-watt, both with Mosfet output transistors. All are of identical outside appearance which is designed to meet and stack with our Linsley-Hood cassette recorder 2. These latest designs from the drawing board of John Linsley-Hood, engineered to the very highest standard, represent the very best that is available on the kit market today. The delicacy of detail, the fastidious selection of components, the care in construction and design excellence are evident in everything that Hart can offer. This is matched by the price which is competitive with the very highest quality equipment.

To order please telephone your nearest outlet or order direct from us. Please quote the model number.

These massive savings in labour time and material enable these amplifiers to be offered at a cost price which is perfectly balanced by the top-quality components used makes this new kit comparable with built-up units of much higher cost than the modest, £94.90 a V.A.T. we ask for the complete kit.
Bigger and Better for 1982
the colourful Wilmslow Audio brochure
—the definitive loudspeaker catalogue!

Everything for the speaker constructor – kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speackercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

* Lowest prices — Largest stocks *
* Expert staff — Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our *
 two listening lounges
 (Customer operated demonstration facilities)
* Ample parking *

Send £1.80 for catalogue
(support, M.O. or stamps — or phone with your credit card number)
* Access — Visa — American Express accepted *
also HiFi Markets Budget Card.

RADIocode
CLOCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.

Applications
- Automatic master clock and slave controller.
- Synchronisation of separate equipment and events.
- Programmable energy management system.
- Computer clock/calendar with battery backup.
- Data logging and time recording.
- Process and equipment control.
- Satellite tracking.

If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive
Ruislip, Middlesex. Ruislip 76662

I'd like to know more . . .
Name _____________________________
Position ___________________________
Company __________________________
Address ___________________________
Telephone __________________________

WW — 007 FOR FURTHER DETAILS
WW — 014 FOR FURTHER DETAILS

WW — 028 FOR FURTHER DETAILS
The over and outperformer

For the address of your nearest dealer together with full details of the Shure Microphone range, write to:
Shure Electronics Ltd., Eccleston Road, Maidstone ME15 6AU or telephone 0622 59881.

WW 050 FOR FURTHER DETAILS
By any other name...

In a recent Letter to the Editor, a reader described his feelings at seeing a copy of Wireless World for the first time after a long interval. On seeing the content, he felt impelled to write and suggest that the journal might benefit from a change of title, to take account of the fact that the World is now rather more computer-shaped than it was when wireless was the current miracle.

The letter constitutes cast-iron evidence to support the assertion, made by WW staff for seventy years, that one simply cannot produce a journal like this - the whole thing is logically impossible. Philosophy and printed boards, audio amplifiers and microcomputers, exposure meters and clocks do not, it must be admitted, appear to share much common ground. Neither, indeed, do the types of reader to whom our articles are addressed: the enthusiast making an amplifier on the corner of the kitchen table experiences but modified rapture at the prospect of an article on Rademacher-Walsh functions, though he may read it and be interested. The professional engineer does not require instruction in the design of an a-to-d converter, but he might want to build the digital voltmeter to which the article is an introduction. And one of the continuing arguments on basic physics possibly leaves both of them glassy-eyed, but nonetheless entertained.

The fact is, of course, that Wireless World is a hybrid in so many senses that it almost defies description. Both professionals and amateurs read it; the articles it contains are theoretical, or practical, or both; its topics cover the field from logic design to a discussion of the best material with which to stuff loudspeaker enclosures and from descriptions of optical-fibre communications systems to a design for an electronic cat-door.

In all this, the one common factor is electronics, in its wider sense. It leads us into any subject in which it is used - optics, chemistry, motoring, aviation - in addition to the more familiar area of telecommunications. Computers happen to be an important manifestation of electronic engineering and are therefore completely within our field of interest. "Wireless" as a word disappeared in the forties or thereabouts, at around the time when "electronics" was born. But even then, Wireless World had been in existence for thirty-five years and its title was far too well known for Iliffe to risk causing an outcry by changing it.

Forty years on, computers, microprocessors and a mass of other digital circuitry have edged out the more traditional forms of electronic design - even sound reproducing is becoming digital in form. As this happens, it is clear that the content of the journal must change to meet new requirements, which is why a newcomer glancing at our contents page immediately after a look at the Wireless World logo might justifiably feel puzzled.

If, however, a change of name after thirty-five years was felt to be too much of a shock for readers to bear, how much more of a jolt would it be after seventy-one?

The name is unimportant, except inasmuch as it sometimes misleads the casual bookstall browser and, perhaps, the not very well informed advertising agent. What is important is that the content should treat all aspects of electronics, which it will continue to do, no matter in what unexpected directions the subject leads us.
The final section of this three-part article describes the complete amplifier circuit in detail, with the addition of a loudspeaker protection circuit.

In the earlier parts of this article I discussed some of the design requirements of power mosfet audio amplifiers and described the evolution of a high-gain, symmetrical, class 'A' driver stage suitable for use with a power mosfet output. Inevitably, the final design of the gain stage, as shown in the completed power amplifier circuit of Fig. 14, shows some minor differences in comparison with the basic voltage-amplifier circuit, which underlines the point that any final design represents only the small tip of a large submerged iceberg of design effort. Unless one is lucky, or one's target performance is relatively modest, or one has considerable experience with closely similar designs, there is always a large amount of work necessary to convert a reasonably satisfactory basic design into a final version having, as nearly as possible, a blameless performance under all conceivable test conditions.

Design considerations

The choice of output power rating for any power amplifier is, inevitably, somewhat arbitrary and depends on the voltage ratings of the available components, and on the cost of the power transformer, smoothing capacitors and heat sinks which one is prepared to afford. However, in practical terms, the major considerations which limit the possible output power are the voltage ratings of the output devices, and of the available electrolytic reservoir capacitors.

The output power mosfets I decided to use are the complementary n-channel and p-channel devices from Hitachi, since they are readily available, are reasonably inexpensive, appear to be adequately rugged, and have useful power ratings. These particular mosfets are available in peak working voltages up to 160V. However, there are other similar devices, either available now or promised in the near future, from Fairchild, Motorola, Ferranti, Supertex, International Rectifier and Intersil, so it seems likely that a design based on complementary power mosfets will not restrict the user to a single source of components.

Some earlier experiments with mosfet-output audio amplifiers had shown that the r.m.s. power output could be related to the available supply voltage in the manner shown in Fig. 15, over the range 25-100 watts. Since it had been decided, for various reasons, to use a symmetrical positive and negative supply, 63V electrolytic capacitors on each half would allow a safe working voltage, overall, of 120 volts, equivalent to a ±60V supply. In practice, the limited regulation of a simple rectifier/capacitor power supply is likely to reduce this, on load, to some ±55V, giving an overall power output of 80 watts.

This output power requires a voltage swing of 25.3V r.m.s. across an eight ohm load, and if it is desired to drive this from an input voltage of 'OVU' -- which in audio-engineering terms implies 0.775V r.m.s. at a 600 ohm source impedance -- the gain will require to be 32.6, which gives a suitable feedback resistor combination of 33k and 1041 ohms -- though, in the event, for other considerations, it was decided to make this 1012, made up from a 1k and an 12 ohm series chain.

In the interests of d.c. symmetry, the input-circuit resistance should be also of the order of 33k. The values suggested are adequately close to this.

The performance of any feedback ampli-
fier under transient (step-function or square wave) input conditions is helped if the input rise time can be limited. This can be done most easily by an input RC integrating network, $R_C\cdot C_2$, which gives a $-3\,\text{dB}$ point at about 30kHz, allowing an adequate bandwidth for audio use.

A 470 ohm trimmer potentiometer in the emitter circuit of the input long-tailed pair allows accurate d.c. balance to be obtained with transistors having normal commercial spreads in V_{BE} values and current gain. This is bypassed by a 100μF tantalum bead capacitor to avoid loss of open-loop a.c. gain. The output d.c. potential may be adjusted by means of this potentiometer to 0V, ±20mV.

Circuit performance depends strongly on the characteristics of the 'tail' of the 'long-tailed pair'. For correct operation of any such circuit, the dynamic impedance of the tail should be very large in comparison with the impedance as seen at the emitters of T_1 and T_2. Also, ideally, to minimize common-mode problems, the current from this source should be largely independent of the dynamic emitter potentials. Finally, the tail circuit should provide an adequate isolation from unwanted signal components on the supply line. A junction fet satisfies all these requirements very fully, and also allows, as explained above, control of the operating current in the second-stage class A amplifier. To allow a wider range of negative supply-line voltages, the negative-line supply to this fet is derived from a Zener-diode-stabilized −12 volt source. The use of a separate power supply for the driver stages is of considerable assistance in avoiding the performance degradation which can occur due to the intrusion of distorted signal potentials from the high-current output stage.

The second stage, class 'A', voltage amplifier is similar to that shown earlier in Fig. 13, except that conventional, two-transistor, constant-current sources are used as the loads for each half, and that a small amount of a.c. positive feedback is derived from the output of T_6, through R_4 and R_7, in addition to the current stabilizing d.c. negative feedback path through R_8 to T_3. The positive feedback restores the op-amp a.c. gain to the 500,000 figure, over the frequency range 100Hz–3kHz, obtainable from the less d.c. stable configuration of Fig. 12.

The output power mosfets require a quiescent current value of 100mA for optimum performance — although it is difficult, because of the efficient operation of the n.f.b. loop, to see any significant change in the distortion residues, as this is adjusted, at any frequency below 10kHz. This quiescent current is largely independent of the output device temperature. The 'amplified diode' circuit of T_{10} is not, therefore, used to sense the output transistor temperature, but used simply to generate a reasonably constant voltage drop.

Although the output devices present a very high i.f. input impedance, the effect of the 1200pF total gate-source capacitance cannot be ignored, and the current through T_5 must be enough to avoid any slew-rate limiting within the rise-time levels allowed by the input CR network, $(R_C\cdot C_2)$. A current of 7mA is adequate for this, and permits worst-case dissipations of 900mW for $T_{4,7}$ and 450mW for $T_{5,6}$, which are within their limits.

Since the Hitachi output devices are not protected by internal Zener diodes, it is unnecessary to exclude the possibility of reverse gate biasing, provided that this is within the ±14V gate-source breakdown voltage limits. This gate breakdown protection can therefore be provided by a pair of back-to-back 8V zeners, while the gate-source capacitance and the 680 ohm gate 'stopper' resistor will exclude the possibility of very rapid extraneous noise pulses which could escape Zener limiting due to lead inductance or turn-on time delays. Ideally, $R_{17,19}$ and the Zeners should be mounted close to the power mosfet pins.

Feedback loop, and loop stability

Although the use of a two-stage voltage amplifier will not automatically guarantee, under all load conditions, that the internal phase shift will not approach 180° until the open-loop gain is negligible, the necessary conditions for an adequate phase margin, at unity gain, are very much easier to contrive in circuits in which only two successive gain stages are employed — provided that the additional phase shift of any other element in the feedback path is small enough to be neglected.

Unfortunately, in the case of the conventional junction-transistor Darlington or compound (p-n-p/p-n-), emitter follower this additional phase shift is significant, even at a few hundred kilohertz where the loop gain is still high, so this loop gain must be artificially reduced at higher frequencies to preserve closed-loop stability. Two basic methods exist for this, of which the first, and simpler, is simply to connect an external capacitor across the whole of the gain stage so that this acts as an integrator network with a gain decreasing linearly by 20dB/decade from some i.f. break point. This has the advantage of allowing a wide phase margin of stability, and predictable performance characteristics. The second method is to tailor the h.f. performance so that it is maintained at as high a level as possible up to the point at which the loop phase shift approaches 180°, and then to reduce the gain rapidly, and in a manner chosen not to exceed the 180° stability threshold, until it is less than unity. This method is commonly employed in
commercial transistor amplifier designs, often by the simple artifice of a capacitor between collector and base of the second stage amplifier transistor, because it allows better h.f. t.h.d. figures — and consequently better reviews in the 'Hi-Fi' journals. It does, however, carry with it the penalty that the phase margin of the amplifier is less good, with a consequently inferior transient response — manifest in respect of a less good 'settle time' and a less predictable performance with differing loudspeaker load characteristics. In addition, the internal slew-rate limiting imposed by the second-stage collector-base capacitance (which is the mechanism by which the h.f. gain is reduced) leads to the predictable problem that signals accompanying large transient inputs will be blotted out during the period in which the amplifier is slew-rate limited. This is the phenomenon called 'Transient Intermodulation Distortion' by Otala. This problem does not exist with the first method of h.f. compensation. A very good analysis of this problem was given by Jung (with a small addendum by myself).

The biggest advantage, in this respect, conferred by power mosfet output devices, is that the inherent phase-shift of the output emitter-follower impedance conversion stage is sufficiently small that it may be neglected up the megahertz region. This means that, with care, feedback audio amplifiers having high orders of negative feedback (open-loop gain) can be designed without the need for any external control of h.f. gain, and which will exhibit the desirable characteristics given by systems in which the gain decreases with frequency at 20dB/decade, and the loop phase shift does not significantly exceed 90°.

Influence of negative feedback

The use of negative feedback is, unfortunately, not as well understood, even among electronics engineers, as one might sometimes wish, and this misunderstanding has spilled over into the more emotive, and less logical, realm of the 'Hi-Fi' fraternity, where the ill effects attendant upon the improper use of this technique have encouraged the attempt to design amplifiers believed by their authors to employ no negative feedback whatever — a case of discarding the baby along with the bath water, if there ever was one.

The necessary conditions which must be satisfied if the potential benefits are to be gained have been examined both by Baxandall, in his series on audio amplifier design in this journal, and also, from a different angle, by Wireless World's own Cathode Ray. The message from these contributions, if I may presume to precis, is that the amplifier in question must be made as linear as possible before negative feedback is applied; that the gain — at the frequency under consideration — must be enough, or the customary simplification of the mathematics will be inappropriate; and that a small amount of n.f.b., by injecting into the input an additional distorted signal, will worsen the harmonic distortion which would have been present without it.

Translated into design requirements, this implies that a high stage gain, coupled with good linearity and the lowest practicable phase shift, is the necessary design objective — most easily attained if not more than two gain stages are employed. The inclusion of a positive feedback path within the overall n.f.b. loop as a means of increasing the loop gain brings with it some supplementary requirements. These are that the phase shift within the positive feedback loop must be very small over the range of interest, since the p.f.b. will worsen it, and that the linearity of this part of the circuit must be much better than that of the remaining circuit outside the p.f.b. loop, or the benefits will be negated. Looked at in this light, the use of a bootstrap driver load in an audio amplifier is not well advised, since the loop containing the 'bootstrap' will include the output devices whose linearity it is desired to improve.

In the particular case of the feedback loop built around Tr3, Tr5, R4 and R6, the linearity of this is very good because it is only driving a high-value resistive load, and the dominant phase shifts are those due to C6 at the l.f. end, and the circuit stray capacitances in Tr5 collector circuit at the h.f. end of the pass band. This gives a phase-linear bandwidth which is greater than that of the overall n.f.b. gain loop, and therefore satisfies the conditions for
improving the overall amplifier performance.

Because of the capacitive nature of the load presented to Tr6 by the gate-source capacitance of the power mosfets, the h.f. loop gain of the amplifier falls below unity at about 30MHz, which is sufficient to give an adequate margin of stability, while still allowing some 60dB of negative feedback at 30kHz, the chosen upper operating frequency limit. No additional h.f. roll-off components are required.

Stability with capacitative loads

A minor problem associated with power mosfets, discussed by Hitachi in their design note is that the very high-frequency -3dB point of the mosfet used as a source follower (typically 30-40MHz for the Hitachi devices) allows the inductance of the internal gate-contact lead - some 70nH - to produce a negative resistance condition, with consequent parasitic oscillation, under conditions of small capacitative load (0.01-0.24F). Oscillation, under these conditions, but due to other causes, is not uncommon in audio amplifiers, and can be the cause of amplifier failure when used with the so-called low-impedance loudspeaker cables, even when the amplifier is completely stable under the 8ohm/2µF load combination frequently chosen by reviewers. Needless to say, this possibility of parasitic oscillation should be avoided and this is most easily done in this type of design by the inclusion of a small inductor of some 5µH inductance, (20 turns of 24s.w.g. enamelled wire, wound round the case of a 10ohm, 1watt carbon-rod resistor) in the output lead to the loudspeaker load.

This output inductance has two practical effects, apart from the avoidance of parasitic oscillation. The first of these is to reduce the total harmonic distortion of the circuit, as measured at the output at high audio frequencies, simply because it acts as an output low-pass filter. The second effect, due to the same cause is a 'ripple' on the square-wave/reactive-load test waveform, which is an inevitable effect of any steep-cut low-pass filter. Without this output inductor, the 8ohm/2µF test waveform is smoothly rounded and free of any overshoots.

Output stage protection

Because of the freedom of power mosfets from secondary breakdown, and because they have an inherent positive temperature coefficient of resistance, output stage protection can be much simpler than is the case with normal junction transistors, and a simple fuse in the output circuit is quite adequate. This has a practical advantage over many of the electronic protection methods normally employed, in that it avoids hard clipping under dynamic conditions when the amplifier is required to drive fast h.f. transients into loudspeakers having a low h.f. impedance.

Overall performance and sound quality

The power bandwidth, the t.h.d. as a function of output power, and the t.h.d. as a function of signal frequency are shown in Figs. 16-18, and the distortion waveforms and 1kHz reactive load waveform, with and without the output inductor, are shown in the oscilloscope photographs of Figs. 19 and 20.

Inevitably, the question must be asked whether, in the event, the sound quality given by a well designed power mosfet amplifier is better than, or indeed noticeably different from, that given by an equally well designed power amplifier using junction transistors. The designer is not a good person from whom to seek an answer to this question, if only because his awareness of the inevitable design compromises in the circuit, and of the imperfections which remain as a result of the impossibility of achieving all design objectives simultaneously, colour his expectations in respect of its perceived performance. However, having said this, I believe that power mosfet output devices, in appropriately designed circuitry, can offer an improved performance in the upper-middle and top end of the audible spectrum, which is apparent as an improved clarity and transparency in tonal quality, particularly at low output levels, in comparison with equivalent junction transistor designs.

Fig. 21. Printed-board for power amplifier.

Overall performance and sound quality

The power bandwidth, the t.h.d. as a function of output power, and the t.h.d. as a function of signal frequency are shown in Figs. 16-18, and the distortion waveforms and 1kHz reactive load waveform, with and without the output inductor, are shown in the oscilloscope photographs of Figs. 19 and 20.

Inevitably, the question must be asked whether, in the event, the sound quality given by a well designed power mosfet amplifier is better than, or indeed noticeably different from, that given by an equally well designed power amplifier using junction transistors. The designer is not a good person from whom to seek an answer to this question, if only because his awareness of the inevitable design compromises in the circuit, and of the imperfections which remain as a result of the impossibility of achieving all design objectives simultaneously, colour his expectations in respect of its perceived performance. However, having said this, I believe that power mosfet output devices, in appropriately designed circuitry, can offer an improved performance in the upper-middle and top end of the audible spectrum, which is apparent as an improved clarity and transparency in tonal quality, particularly at low output levels, in comparison with equivalent junction transistor designs.

Fig. 21. Printed-board for power amplifier.

WIRELESS WORLD AUGUST 1982

![Diagram of power amplifier circuit](image-url)
Power supply
A suitable power supply circuit is shown in Fig. 22. As mentioned above, the output power of the amplifier depends almost entirely on the supply line voltages, and the original design was based on a conventional 'E' and 'I' cored transformer with a nominal 50-0-50 secondary winding, which gave a quiescent output d.c. voltage, after rectification, of ±62V. This was subsequently replaced by a 250VA 50-0-50V toroidal cored unit, in the interests of a lower residual 50Hz field, and this gave a d.c. output of ±65 volts, and increased the power output, at 1kHz across an 8ohm, water-cooled, resistive load, from 83 watts/channel to some 105 watts/channel. It was thought prudent to uprate the reservoir capacitors to 80V types, but no other changes are necessary.

Loudspeaker protection circuit
Although the use of direct coupling between loudspeaker and amplifier output, together with the use of split positive and negative h.t. rails, undoubtedly helps in the economical design of high-powered audio amplifiers by limiting the necessary voltage rating of the reservoir capacitors, it does carry with it the implicit hazard that, in the event of a component failure within the power amplifier, the whole output of one or other of the supply lines may be switched into the output circuit, with expensive consequences.

The most elegant way of avoiding this hazard is to employ a small supplementary circuit to monitor the average d.c. potential of the amplifier output terminals, and to disconnect the loudspeakers in the event that an averaged d.c. offset of more than a volt or so is detected. Experiments over a period of time have shown that the loudspeaker can be connected through a pair of gold-plated relay contacts without audible or measurable signal degradation. Silver-plated contacts are excellent when new and clean, but tend to become partially rectifying if sulphided by exposure to urban atmospheres, and should therefore be avoided if possible.

An inevitable problem in the use of an ‘average d.c. potential’ monitoring circuit is the necessity for some compromise between speed of response, in disconnection following a fault condition, and the need not to diagnose a large but legitimate v.l.f. signal – especially if asymmetrical – as such a fault. My own choice is an integrating time-constant of about 2 seconds. This ignores all the normal i.f. signal components, at least at the largest signal levels I have so far used, but allows a switch-off in better than 80 milliseconds in the event of a large direct voltage being applied to the input. This should be adequate to avoid thermal damage to the loudspeaker.

In order to accommodate a fairly long integrating time-constant with the use of non-polarized capacitors, a high-input-impedance offset-detection logic circuit is essential. C.m.o.s. logic elements of the 74C or CD4*** series are well suited to this task, especially since the switching potentials are well defined in relation to the supply voltage line employed. Typical gate transfer characteristics are shown in Fig. 23. Because of this, if the gates are biased by an input resistor chain, as shown in Fig. 24, so that one sits above this threshold level, a pair of Nor gates will effectively act as an input-threshold d.c. monitor circuit, in which the output will only be high so long as input A is high and input B is low. With the resistor values quoted, this condition will be met while input C is within ±2V d.c., for a 10V supply line. The circuit also will provide a switch-on delay of a few seconds while C1 charges up through R3 to a potential above the ±Vce level.

The complete, two-channel, loudspeaker protection circuit based on this arrangement needs only one Quad 2-input Nor gate, and a pair of switching transistors. The final circuit is shown in Fig. 25. It is ‘fail-safe’ in the sense that the relay contacts are normally open, and can only operate if the h.t. supply is present and both transistors are energized. The relay used is an RS Components p.c.b.-mounting, 24V unit, with 5A, 250V a.c.-rated gold-plated contacts, of d.p.d.t. operation. H.t. supply for this is best obtained from the output stage +65 volt line.

References
DISC DRIVES

When a read/write head's position is determined by information on the disc surface, data-storage capacity can be greatly increased. As shown here, there are different methods of applying this technique which, in the case of a drive with ten discs in one pack, can increase the storage capacity four times despite a loss of 5% in data storage area.

Possibly the most significant event in the history of disc storage was the introduction of the servo-surface drive. Through the virtual elimination of thermal effects on head positioning, servo-surface drives, in which the head's position relative to the disc is determined by information on the disc surface, allow great increases in data storage density.

Changes of temperature in relatively simple disc-drive positioners, such as those discussed in the June issue of Wireless World, do not only affect accuracy through expansion and contraction in mechanical components such as head cantilevers. Thermal drift in the cylinder transducer and associated circuits also causes problems. How temperature changes limit the number of tracks on a given disc is illustrated in Fig. 1.

Because the position-error signal in a servo-surface disc drive is derived from a head reading the disc, these problems are drastically reduced. In a multi-platter drive, one surface of the pack holds servo information, which is read by the servo head. All of the read/write heads move with the servo head. In a ten-platter pack, this means that 5% of the usable data storage area is lost, but this is unimportant since the track density in a drive with a servo surface can be typically four times greater than in a drive without one.

Using one side of a single-platter cartridge for servo information would be unacceptable as it represents 50% of the usable data storage area so, in this case, servo information is interleaved with sectors on the read/write surfaces. Disc drives using this technique are usually referred to as 'embedded servo' drives.

Figure 2 shows the essential features of these two main categories of servo-surface drive, which will be described in turn.

Servo surface
As stated, one surface of the disc pack contains information to control the positioner. This surface is written when the disc is manufactured and, should it become corrupted, must be rewritten on special machine known as a servo writer.

The key to the operation of the servo surface is the way in which it is recorded by the servo writer. Recorded transitions are in adjacent pairs known as dibits, separated by a space, and Fig. 3 shows that there are two distinct types of servo track. On an A-type track, the first transition of the pair will be negative. In addition, the A-track dibits are shifted by one half cycle with respect to the B-track dibits. The width of the magnetic circuit in the servo head is equal to the width of a servo track.

During track following, the correct position for the servo head is with half of each type of track beneath it. The read/write heads then will be correctly centred on their respective data tracks. This relationship is illustrated in Fig. 4.

The amplitude of dibits from A tracks with respect to the amplitude of dibits from B tracks depends on the relative areas of the servo head which are exposed to the

Fig. 1. At (a), misalignment x has little effect on the output signal, but at (b), the same misalignment in a system using four times greater track density causes unacceptable errors in the read signal. Distance x is not to scale.

Fig. 2. In a multi-platter disc pack, one surface is dedicated to servo information, left, but as the number of platters in a pack falls, the percentage of data storage area lost to servo information rises. For this reason, some discs have servo information embedded in the data on the same side, as in the case of the single platter, right.

Fig. 3. The servo surface, left, has two types of track, A and B, which are 180° out of phase with each other and have opposite polarities. Waveform (a) results when the servo head is directly above track A, and waveform (b) appears when the head is above track B. When the head is correctly positioned, waveform (c) results.

by J. R. Watkinson
B.Sc., M.Sc.,

Digital Equipment Co.

Wireless World August 1982
Fig. 4. When the servo head is straddling two servo tracks, the data heads are correctly aligned with their respective tracks.

respective tracks. As the servo head has only one magnetic circuit, it will generate a composite signal whose components will change with respect to one another as the position of the servo head changes. Figure 5 shows several composite waveforms obtained at different positions of the servo head. The composite waveform is processed by using the first positive and negative pulses to generate a clock. From this clock are derived clamping signals which permit only the second positive and second negative pulses to pass through. This resultant waveform has a d.c. component which, when filtered, gives a voltage proportional to the distance from the track centre. The position error reaches a maximum when the servo head is entirely above one type of servo track and further movement will cause it to fall. The next time the position error falls to zero will be at the centre line of the adjacent cylinder.

Cylinders with even addresses (l.s.b. = 0) will be those where the servo head is detented between an A track and a B track. Cylinders with odd addresses will be those where the head is between a B track and an A track. It can be seen from Fig. 5 that the sense of the position error becomes reversed on every other cylinder. Accordingly, an inverter has to be switched into the track-following feedback loop in order to detent on odd cylinders. This inversion is controlled by the l.s.b. of the cylinder difference at the beginning of a seek, such that when the heads arrive at the target cylinder, the sense of the feedback will be correct.

Seeking across the servo surface results in the position error signal rising and falling in a sawtooth. This waveform can be used to count down the cylinder difference which controls the seek. As with any cyclic transducer there is a problem in finding an absolute position. This difficulty is overcome by making all servo tracks outside cylinder zero type A, and all servo tracks inside the innermost cylinder type B. These areas of identical servo tracks are called guard bands, and Fig. 6 shows the relationship between the position error and the guard bands. During a head load, the servo head generates a constant-maximum positive position error in the outer guard band. This drives the carriage forward until the position error first falls to zero. This, by definition, is cylinder zero. Some drives, however, load heads by driving the carriage at low speed across the disc until the inner guard band is detected, and then find cylinder zero by performing a full-length reverse seek.

Another, less common form of servo surface is shown in Fig. 7. In this type, there is a common sync. bit in both tracks, and subsequent servo bits at different times afterwards. The position error is derived by opening sample and hold gates at different delay times after the sync. bit. As three distinct transitions can be seen in one cycle, the resultant waveform is known as a tribit signal.

We have seen that a position error and a cylinder count can be derived from the servo surface, eliminating the conventional cylinder transducer. The carriage velocity could also be derived from the slope of the position error, but unfortunately such a signal is only available while the servo head is above the disc, and velocity feedback is needed when the heads are retracted. Some form of velocity transducer is still therefore necessary.

As there are exactly the same number of dibits on every track, it is possible to describe the rotational position of the disc simply by counting them. All that is required is a unique pattern of missing dibits once per revolution to act as an index point, and the sector transducer can also be eliminated.

Unlike the read/write circuits, the servo circuits are active during a seek as well as...
when track following, and so must be constructed in such a way that they do not suffer interference from pulse-width modulated e.m.a. drivers. The main problem comes when the index is due, where the presence of a noise pulse during a “missing” dibit could inhibit recognition of the index. There are two solutions to this problem. In the first, a preamplifier i.c. is incorporated in the servo-head cantilever, so that the servo signal leaves at high level and low impedance, making it noise immune. In the second approach, the sector counter predicts when an index pattern is due, by counting slightly less than the number of dibits in one revolution, and inhibits switching in the e.m.a. driver until index has been detected.

An advantage of deriving the sector count from the servo surface is that the number of sectors in the disc can be varied. Any number of sectors can be accommodated for by feeding the dibit-rate signal through a programmable divider, so that the same drive may be used for storing, say, 22 sectors of 16-bit data for a minicomputer or 20 sectors of 18-bit words when connected to a main-frame (2 disc words are the same as 1 memory word).

In a non-servo disc drive, the write clock is usually derived from a crystal oscillator. As the disc speed can vary with supply voltage fluctuations, a tolerance gap has to be left at the end of each disc block to cater for the highest anticipated speed, to prevent overrun into the next block on a write. In a servo-surface disc drive, the write clock is obtained by multiplying the dibit-rate signal with a phase-locked loop. The write clock thus obtained is locked to the disc speed, and the recording density will be independent of supply fluctuations.

Most servo surface disc drives offer an offset facility, where a register written into by the system controls a d-to-a converter, which injects a small voltage into the track-following loop. The action of the servo is such that the heads move away from the theoretical track centre line until the position error is equal and opposite to the offset voltage. The position of the heads about the track centre line is thus program controlled, Fig. 8. Offset is only employed for the purpose of reading, if a write is attempted, the drive will return to the track centre line.

Head alignment. The servo-surface technique is also used for head alignment. On the data surfaces of the alignment disc, dibit patterns are written at the reference cylinder. A special test box is required for head alignment, and this usually contains an exact copy of the circuit board used by the drive to obtain a position error signal from a dibit signal. The module in the test box is fed not by the servo head, but by the data head to be adjusted. The position-error output drives a centre-zero meter which gives a direct reading of the head misalignment in micro inches. The selected head is adjusted radially in the carriage until the meter reading is within the specification. Precautions are taken to ensure that the alignment disc is not written over.

Program-controlled head-alignment measurement. In some test boxes, the position-error signal from the selected data head is compared with zero volts, to create a binary signal depending on the head position relative to the track centre line. This signal is fed back into the disc-control logic and becomes a bit in a register accessible to the system, known as 'sign change'. Under program control, the positioner is set to maximum offset, and then brought back until the sign-change bit changes state. The amount of offset needed to cancel the alignment error is equal to the error itself, Fig. 9. After sequentially testing all of the heads, the program can print out a table of the alignments. By comparison with the specification, an engineer can decide which, if any, heads need adjustment. The head alignment can also be checked at further reference tracks on both the innermost and outermost cylinders, as a check on carriage alignment accuracy.

Embedded-servo drives

In drives with few platters, the use of an entire surface for servo information gives a high percentage loss of data recording area. In the embedded-servo drive, servo information is interleaved with data on the same surface, causing a smaller loss of data storage area.

The embedded-servo drive heads will be reading data at some times and alignment information at others as the disc rotates. A sector transducer is required to generate a pulse which is true when the head is reading servo information and false when reading or writing data. Figure 10 shows the principle. On all disc drives, the width of the read/write head is less than the track spacing to prevent crosstalk. As the servo head is also the read/write head here, it is slightly narrower than the spacing of the servo information. This has the harmless effect of rounding off the peaks of the triangular position-error waveform. During the pulse from the sector transducer, the head sees alignment information, and the servo circuit develops a position-error signal in much the same way as any servo drive. Within the servo area there are two sets of alignment patterns, the second be-
ing positioned to a position error of zero when the first is at a maximum. The two bursts of information are known as S1 and S2. Sample-and-hold circuitry is used to carry over the position error when the head is traversing read/write data.

The discontinuous nature of servo information means that cylinder crossing cannot be counted directly during a seek, as the positioner is fast enough to cross several tracks between servo bursts. With reference to Fig. 11, the cylinder crossings are established as follows. During the S1 period, the position error is compared with zero volts to generate one data bit, whose state depends on whether the head was inside or outside the S1 null point. A similar process takes place during the S2 period, and the position of the head relative to the servo pattern is described as being in one of four places by the two bits. These bits are stored, and at the next servo bursts, two further bits are generated, describing the new position of the head.

Fig. 8. Representation of servo-surface disc drive's feedback loop. The offset register drives a d-to-a converter which can modify the feedback loop, allowing the heads to be offset from the track centre line under control of the operating system.

Fig. 9. Head alignment. An alignment disc with 'dibits' on its data surfaces is used in conjunction with a duplicate of the position-error circuit driving a head-alignment meter. Using offset, the program can move the servo head off track until the read/write head is in the correct position. The amount of offset necessary to achieve this is equal to the alignment error.

Fig. 10. In an embedded-servo drive, the same head is used for both servo information and data. During a sector pulse, the read signal is treated as servo information.

Figure 12 shows that there are a number of cases which can satisfy the same initial and final conditions. The only difference between the cases is the carriage velocity, so the output of the carriage-velocity transducer is digitized and used to resolve the ambiguity.

At every sector pulse, the two bits from the previous bursts, the two bits from the current bursts and the digitized velocity are fed into a rom which is pre-programmed to return the theoretically correct number of cylinders which must have been crossed for all combinations of inputs. This number is then subtracted from the cylinder difference counter which controls the seek. The calculation will only be valid for one disc rotational speed, so the disc motor requires a speed control. This is achieved by counting controller-clock pulses during the time between sector pulses, and developing a loop error by comparison with the desired number of pulses.

As the cylinder crossing count is deduc- tive, there will be the odd occasion when the count is in error and the positioner comes to the wrong cylinder. In a conventional disc drive, this would be a mispositioning error which would warrant an en-
The earliest organized investigation of the physical properties of light was undertaken in the seventeenth century by Sir Isaac Newton. Despite the evidence of some of his own experiments, Newton himself remained convinced throughout his life that light consisted of showers of particles, or "corpuscles". His authority among scientists was such that much philosophical argument arose before Thomas Young's famous experiment — on the mutual interference of light rays after passing through a double slit — was accepted as conclusive evidence for the wave nature of light, largely through the mathematical ingenuity of Fresnel. Incidentally, the most convincing demonstration that I know of in favour of "light waves" is due directly to Fresnel, and lies in the fact that the shadow of a one-penny piece has a bright spot at its centre.

That light behaves as a wave system is one of the most thoroughly researched and supported conclusions in all science. By assuming waves of a definite wavelength one can calculate numerically how light will behave in optical apparatus of any complexity one chooses and, lo and behold, that is precisely the way light does behave in practice. The accuracy of the prediction seems to be unlimited, and to depend only on the accuracy with which we can measure the result. I want to place special emphasis on the precision with which the wave theory describes the behaviour of light as observed in Nature, because it is primarily that precision which makes the wave theory of light so convincing. As long as we stick to light which is bright enough to be seen, and of ordinary visible wavelengths, the theory works perfectly every time.

The next major step in the wave theory was taken in 1862 by James Clerk Maxwell, on the basis of his formulation of Michael Faraday's ideas of electricity and magnetism. Faraday had come to interpret his observations in terms of electric and magnetic fields of force, which Maxwell found could be expressed by exact analogy with the mathematical formulations of hydrodynamics — that is, the behaviour of incompressible fluids. Faraday's field concept conveniently bypassed the fundamental problem of action-at-a-distance (namely, how can one electric charge repel another when there is no connecting rod between them?). It suggested that the electric field permeated everything and everywhere, like a fluid throughout all space, so that such actions really took place locally, within the field, rather than "at a distance".

By this means action-at-a-distance came to be regarded as a non-problem, the first of many difficulties so handled in physical science. Note that the non-problem technique does not solve the philosophical problem to which it is addressed, but evades it. It is clearly legitimate as a technique, to permit us to maintain our momentum and get on with the next phase of the job, provided we put up a marker flag to remind ourselves that we have left behind us a fundamental problem unsolved. It is philosophically dangerous to omit this precaution. For example, there are those who have specialized in field theory so strongly that they believe in an electric field, as if it were a physical entity having an independent physical existence in its own right — like an electron perhaps, or a filing cabinet. Such folk do not envisage an electric field merely as a convenient mathematical trick for integrating a set of inverse-square-law forces.

I am discussing this concept of a "force field" at some length because it is the first instance we have encountered where an attractive product of romantic imagination has come to be treated, with no basis of experimental evidence whatsoever, as though it corresponded to an established or even a self-evident truth. It is in this romantic, unscientific way that doctrines arise in physics (When a doctrine is subjected to criticism that it cannot withstand it usually turns into a dogma; it is then to be believed by faith rather than by evidence). In the present case the truth is that we know nothing of how or why one electric charge should be influenced by the distant presence of another, but only that it is so influenced and by precisely how much. It is another miracle.

These ideas may seem far removed from waves and light, but the connection between them was Maxwell's very great invention: he showed that a particular combination of his changing electric and magnetic fields, which can be written, down mathematically in the form of a "wave equation", would propagate through space at the velocity of light. Thence it needed but one further, obvious step to the postulate:

"Light consists of electromagnetic waves".

That step was taken. Combining as it did the three topics of electricity, magnetism, and light under the single concept of wave motion, it was extraordinarily satisfying aesthetically and it seemed to remain true when tested to any depth. It came to be...
believed by all scientists at the turn of the century and it is still believed by nearly all scientists today. Heinrich Hertz went on to show by generating radio waves electrically and showing that they belonged to the same family of phenomena.

Thus at the end of the "classical" period in physics all appeared superficially tidy. It was generally accepted that the entire spectrum of light from long-wave radio through and beyond the ultraviolet was a manifestation of electromagnetic waves of defined, invariant velocity, whose "colours" were determined by their frequencies and corresponding wavelengths in accord with the general axiom of wave motion, frequency \(\times \) wavelength = \(c \). Those must have been happy days of self-satisfied Victorian complacency before the storms broke.

A couple of minor points arose. First, the physical energy transported by the light waves, which propagated at the speed of light, was taken to be the energy contained in the electromagnetic field as described by a simple formula of the theory. Once launched into space, this energy had an inexhaustible source, even though it would later explode as a supernova. So here one had an electric field and a magnetic field, neither of which (according to the theory itself) could exist without continuous connection to a source and a sink of flux, while their combination, the electromagnetic field, had an independent existence. These static and dynamic fields were therefore quite different in their intrinsic natures, yet there was nothing in Maxwell's equations to suggest that one type of field was more physically "real" (that is, had any more independent, objective and existence) than the other.

Second, and on a slightly larger scale of discrepancy, Maxwell's formulation of electric and magnetic fields was mathematically equivalent to the behaviour of incompressible fluids, as has been mentioned already; yet the waves in his electromagnetic field were transverse waves, of a type which in the mechanical case required a solid substance to transmit them and which could not exist in a fluid medium. Thus the medium involved, which became known as the ether, was required to exhibit physical properties which differed from moment to moment, according to whether the field it was supporting was static or in motion. This gave rise to much trouble.

In view of the intellectual triumph of Maxwell's work it would indeed have been churlish to have raised such apparently insignificant points as these at the time. Yet in retrospect one can see that they were real discrepancies whose incidence formed part of a pattern of discrepancy in electromagnetic theory. (Remember, please, that we are not attacking the theory even by examining a miracle: a physical occurrence for which we can offer no physical explanation.) For physical waves as normally understood are mechanical waves; they are waves in something — in air, or water, or at the air-water interface, or in solid rock, or what-have-you. Their velocity is determined in relation to the medium in which they travel. Hence a careful measurement of the velocity of light would have revealed this assumption of the constancy of light velocity in its ether medium should, it was believed, reveal the velocity of the laboratory through the ether.

That experiment was duly performed, most famously by Michelson and Morley in a basement in the University of Chicago in 1887. The date is most interesting, being 25 years after the first publication of Maxwell's postulate of the electromagnetic nature of light, and 18 years before the publication by Einstein of the special relativity theory with which it is usually connected. That connection is something of a mystery. Einstein did not refer to the Michelson-Morley experiment at all but assumed the velocity of light to be universally constant as a fact of nature (it was not tested in Michelson-Morley!). His other starting-point, the principle of relativity in the form of the denial of absolute motion, was in no sense new but had appeared in Newton's Principia just 200 years before.

Thus for contemporary thinkers the really shocking implication of Michelson and Morley's result was not that it might lead towards a new relativity theory some two decades later, but that it asserted, unmistakably and immediately, that there was no ether for the electromagnetic light waves to undulate in. It was of secondary importance that the medium in which electromagnetic waves travelled did not reveal any reference of zero motion, or absolute rest. It was an equally red herring to say that it was merely the postulated electromagnetic waves that had no ether, because the experiment as performed was a straightforward experiment in light, having no reference to electricity or magnetism. The really crucial experimental result was that light waves, whatever their form, could not be waves in a physical medium. And if they were not waves in a physical medium, how could they be said to be waves at all? The answer to that question is not straightforward.

There was an immediate and almost instinctive reaction against the Michelson-Morley result. Some physicists (like Sir Oliver Lodge) simply refused to accept it, while others up to the present day have repeated the experiment with progressively more refined apparatus in the hope of proving it wrong. All such attempts so far have failed. Most of those experimenters believed in the ether, and were taking issue with Einstein and special relativity; only a discerning few have understood that they were really trying to save the electromagnetic theory, and with it the whole of the concept of fields of force of nineteenth-century physics. The Michelson-Morley experiment denies the existence of an ether, and there is no doubt about its finding: space is empty. There is nothing there.

In view of the admittedly overwhelming evidence that light consisted of waves (and very probably electromagnetic waves), physics at the turn of the century refused to face the consequences of the Michelson-Morley result. Two lines of experimental evidence that seemed to be equally valid seemed also to be in absolute conflict. The philosophical crisis was acute, and it has never been resolved. One approach has been to ignore the problem in the hope that in due course and in the light of later knowledge it will go away — this is the "don't care" or "too busy" reaction, which really means "too difficult" but unfortunately this is a problem that doesn't go away. Another approach is to ask why a physical ether should be necessary for the waves to propagate in. Why does it demand a physical medium? The answer would seem to be that according to the theory these "waves" carry physical energy in readily measurable amounts, so that they must be physical waves; and physical waves cannot be waves in nothing, unless we are to believe in miracles . . .

Then there are the semantic approaches, which seek to show that the problem is one of wording only and has no philosophical depth. "Very well", it has been said, "we have been denied a luminiferous ether; let us call the medium in which the waves travel "space", or 'an inertial frame of reference". The trouble with such proposals is that space, insofar as we can measure it, is a vacuum, having no physical content. (Do not let us get bogged down with arguments about the "permissivity" or "im-

Summary

History of the scientific concepts of light: Newton (corpuscles), Young and Fresnel (waves), Faraday (fields of force). Maxwell (electromagnetic theory). The philosophical problem of "action-at-a-distance" was not solved but bypassed, setting a precedent; this raised the question of the nature of a field theory and led to the emergence of related doctrine and dogma. Some minor discrepancies were inherent in electromagnetic theory as propounded: depending on some factor they appeared differing degrees of physical reality, and differing properties were required of the medium, or ether, in which the electromagnetic phenomena occurred. A major problem arose in consequence: when the issue was put to the test, the famous philosophical experiment unequivocally denied the existence of a physical ether for electromagnetic waves to undulate in. Attempts were made to evade this philosophical crisis by ignoring it, by semantic arguments, and by attributing physical properties to physical, mathematical equations. The last of these ideas, which began to take root in the 1890s, re-introduced mysticism into natural philosophy after a banishment of only 350 years. An alternative approach (which was not acceptable in the climate of those times) might be to regard electromagnetic theory as an analogy of Nature which although extremely useful may not always be a perfect analogy.
Yet another approach - and this one had far-reaching philosophical consequences - arose from the remark that the mathematics of wave propagation predicted results in accord with observation even though the physical requirements for wave propagation were not satisfied. The temptation became very strong to say that these light waves were not physical waves at all, but mathematical waves. Here at a stroke light waves were not physical waves at all, but mathematical waves. Here at the same time (b) the waves are not physical waves in a physical ether (c.f. Michelson and Morley), but of a purely mathematical nature.

This was the first move in the takeover, by default, of theoretical physics by the Mathematicians' Union. It wasn't a complete takeover until the 1930s when the mathematics of the new quantum mechanics became so obscure and esoteric that the ordinary physicist gave up trying to follow the wilder ramifications of the theory. The nature of the physicists' default was their failure to insist sufficiently strongly on the physical reality of the physical world. In the case of light, energy is transmitted at a definite speed through a vacuum, and this energy is a physical entity which gives rise to measurable physical effects at its destination. Mathematical waves, being abstract and non-physical, cannot give rise to physical effects. If we accept mathematical waves as the basis for light, we are accepting miracles; for by our definition a miracle is a physical occurrence for which we can offer no physical explanation.

Mathematical explanations of physical events will not do. For those who believe that mathematics can take the place of physics, or who have merely failed to think about the suggestion deeply enough, I offer the following little mnemonic: Nobody ever became sunburnt as a result of exposure to a differential equation!

Thus in addition to being the first move in the general mathematical takeover, this was the beginning of the return of mysticism into Natural Philosophy after a banishment which had lasted no longer than 350 years. The evidence we shall put together will show that the process has continued steadily, until today the whole fundamentals area has become so permeated by mysticism that one can scarcely distinguish where the physics ends and the metaphysics begins. There is a way of making the distinction, but it calls for a certain old-fashioned ruthlessness in complying with physical discipline and rejecting unsupported mathematical speculation, however superficially attractive the latter may appear. The process will become easier and more sure as our long-neglected critical faculty is gradually re-developed and applied to these problems.

What other alternatives do we have for dealing with the quandary in which the Michelson-Morley result has placed us? There is one approach which always carried a budding promise, although in the face of the mystical takeover it has received little more than lip-service. It is that light does not in fact consist of electromagnetic waves but behaves like a system of electromagnetic waves. The distinction here between "is" and "behaves like" is not merely tautological or semantic, but fundamental. It tells us to treat the great electromagnetic theory as an analogy or mathematical model of nature, which probably reflects some features of physical reality but not necessarily all features, and which may prove to be a more accurate model of nature in some circumstances than in others. Therefore we do not say that electromagnetic theory is wrong; indeed, we make use of it successfully every day of our lives. We simply say that the area of its applicability may be limited.

Armed with that kind of philosophical background, which is much more restrained and cautious than that of our predecessors at the turn of the century, we are far better placed than they were to withstand the next shock to physical thinking, which was about to be delivered (in 1899) by Max Planck.

Next month

2Kbyte eprom emulator/programmer

A design for an emulator for 2516/2716 eproms, in which a ram, loaded with software by keypad, carries out the function of a rom and allows a program to be run and tested without the need for eprom reprogramming. Ram contents are easily modified, and the emulator plugs into the system eprom socket. When the program is satisfactory, the emulator transfers to eprom the tested ram contents.

Selective call for c.b. radio

To call any one of 64K similarly equipped c.b. receivers, enter a number on a keypad to generate a 16 data-bit frame to modulate the carrier. Only the selectively called receiver will respond. The device is easily modified for high-security applications, such as remote access and data interrogation.

Simple, low-frequency oscilloscope

A very simple design, using a surplus radar tube. It uses easily obtained components, is straightforward and costs only around £40.

Vertical bandwidth is up to 1MHz at 50mV/cm and the timebase is either astable or triggered.

Op-amp development

As a preliminary to a full description of his new, modular preamplifier, John Linsley Hood traces the development of the operational amplifier, from the early 741 types to the mosfet-input CA 3140 and the bipolar/fet TL071/2/4/ series, designed for use in audio work.

On sale August 18.
A previous article on this subject led me to implement circuit modelling on my home computer. I prefer to reserve the word 'analysis' for analytical, normally algebraic, methods such as complex variable theory. As home computers cannot do algebra, I have called the process 'circuit modelling'.

For the design of a 16-node active filter, I used a program to plot frequency responses on a printer, giving simultaneously gain and phase. The reduction of the infinite admittance determinant to a second step is to reduce the number of operations in Basic.

The code for the multiplication is not shown but whenever MPY is used that is defined by saying:

\[
\text{MPY X,Y,Z is equivalent to Z=X*Y}
\]

IF A=0 THEN 1600

Clearly any operation contained in the \text{FOR . . NEXT Q loop} is carried out a far greater number of times than in any other position. The first step in reducing the running time is to move as many operations as possible outside this loop. The second step is to reduce the number of array references, as these take the longest time. Thirdly to eliminate any unnecessary computations: the determinant being evaluated is normally sparse because few nodes are interconnected. This causes many zero entries to appear and the computer dutifully subacts zero for each unused node. This can be avoided by including a test for zero. For a typical 16-node circuit, these changes have reduced the number of computations ten-fold. The Basic interpreter code used is shown under. It uses the notation of A. S. Beasley's article and cuts the time for a 50 frequency graph to 27 minutes, a saving of 77%. Note that the use of the exponentiation operator (** has been avoided. I have used

\[
A=\text{Y1**2+ Y2**2.}
\]

and phase shift simultaneously on a lineprinter or v.d.u. Examples are shown. It should be noted that both frequency and gain are plotted using logarithmic scales. Gain and phase axes are drawn so as to completely fill a page, with automatic scaling of axes. A gain point is plotted as a letter G, a phase point as a P, but if both coincide the letter B is used at that point.

The code is as follows:

\[
\text{MPY X,Y,Z}
\]

which is the equivalent of \[Z=\text{x*y}\], and \text{MPY X,Y,X} this is the same as (LET) \[X=X*Z\]. The macro-codes for use in the FOR . . NEXT Q loop are shown in the appendix.

\text{Plotting graph}

Here is a Basic program for plotting gain and phase shift simultaneously on a lineprinter or v.d.u. Examples are shown. It should be noted that both frequency and gain are plotted using logarithmic scales. Gain and phase axes are drawn so as to completely fill a page, with automatic scaling of axes. A gain point is plotted as a letter G, a phase point as a P, but if both coincide the letter B is used at that point.

The code is as follows:

\[
\text{MPY X,Y,Z}
\]

which is the equivalent of \[Z=\text{x*y}\], and \text{MPY X,Y,X} this is the same as (LET) \[X=X*Z\]. The macro-codes for use in the FOR . . NEXT Q loop are shown in the appendix.

\text{Plotting graph}

Here is a Basic program for plotting gain and phase shift simultaneously on a lineprinter or v.d.u. Examples are shown. It should be noted that both frequency and gain are plotted using logarithmic scales. Gain and phase axes are drawn so as to completely fill a page, with automatic scaling of axes. A gain point is plotted as a letter G, a phase point as a P, but if both coincide the letter B is used at that point.

The code is as follows:

\[
\text{MPY X,Y,Z}
\]

which is the equivalent of \[Z=\text{x*y}\], and \text{MPY X,Y,X} this is the same as (LET) \[X=X*Z\]. The macro-codes for use in the FOR . . NEXT Q loop are shown in the appendix.

\text{Plotting graph}

Here is a Basic program for plotting gain and phase shift simultaneously on a lineprinter or v.d.u. Examples are shown. It should be noted that both frequency and gain are plotted using logarithmic scales. Gain and phase axes are drawn so as to completely fill a page, with automatic scaling of axes. A gain point is plotted as a letter G, a phase point as a P, but if both coincide the letter B is used at that point.

The code is as follows:

\[
\text{MPY X,Y,Z}
\]

which is the equivalent of \[Z=\text{x*y}\], and \text{MPY X,Y,X} this is the same as (LET) \[X=X*Z\]. The macro-codes for use in the FOR . . NEXT Q loop are shown in the appendix.

\text{Plotting graph}

Here is a Basic program for plotting gain and phase shift simultaneously on a lineprinter or v.d.u. Examples are shown. It should be noted that both frequency and gain are plotted using logarithmic scales. Gain and phase axes are drawn so as to completely fill a page, with automatic scaling of axes. A gain point is plotted as a letter G, a phase point as a P, but if both coincide the letter B is used at that point.

The code is as follows:

\[
\text{MPY X,Y,Z}
\]

which is the equivalent of \[Z=\text{x*y}\], and \text{MPY X,Y,X} this is the same as (LET) \[X=X*Z\]. The macro-codes for use in the FOR . . NEXT Q loop are shown in the appendix.
FREQUENCY RESPONSE CURVE - FIFTH ORDER LOW-PASS FILTER

GAIN dB (G) :

108.0 Hz
100.3 Hz
117.3 Hz
127.1 Hz
137.6 Hz
149.1 Hz
161.4 Hz
174.9 Hz
189.4 Hz
205.1 Hz
222.2 Hz
240.7 Hz
260.7 Hz
282.3 Hz
305.8 Hz
331.2 Hz
358.7 Hz
389.5 Hz
428.8 Hz
455.8 Hz
493.7 Hz
534.7 Hz
579.2 Hz
627.3 Hz
679.4 Hz
735.9 Hz
797.1 Hz
863.3 Hz
935.1 Hz
1012.8 Hz
1096.9 Hz
1188.1 Hz
1286.9 Hz
1393.8 Hz
1509.7 Hz
1635.1 Hz
1771.0 Hz
1918.2 Hz
2077.6 Hz
2250.3 Hz
2437.3 Hz
2639.9 Hz
2859.3 Hz
3096.9 Hz
3354.3 Hz
3633.1 Hz
3935.1 Hz
4262.1 Hz
4616.3 Hz
5000.0 Hz

PHASE DEGREES :

-88.7 -79.9 -71.1 -62.3 -53.6 -44.8 -36.0 -27.2 -18.4 -9.7 -0.9 7.9 16.7 25.5 34.2 43.0 51.8 60.6 69.4 78.1 86.9

Graphs produced by the program. The frequency axis is vertical, so the curves may make more sense if viewed from the side.
device with the property of 'losing' any non-existent circuit element. I have called this an 'inverter' which is a two terminal device with the property of losing any current flowing into it while taking in an equal current at its other end which is also lost. This violates Kirchhoff's law and the method has admittance determinant:

\[\frac{1}{1+5} \]

and the value used (always a positive value added to the YR array) was +1E5, so that the net effect was of a small resistor added to the YR array) was +1E5, so that the net effect was of a small resistor added to the YR array.

Having cut the time for our typical 16-node circuit frequency plot to 16 minutes from two hours, I then tried the effect of a node circuit frequency plot to 16 minutes connecting an out-of-phase speaker to the output node.

Hence the cut time for our typical 16-node circuit frequency plot to 16 minutes from two hours, I then tried the effect of a BASIC compiler and used the Microsoft BASIC compiler. This produces true machine code and the time for 50 reductions from 16 nodes, if 2 by 2 was now 2 minutes 48 seconds. With the addition of the macro assembler codes to the two inner loops (P and Q), this was cut to 2 minutes 6 seconds, a saving over the original running time of 98%.

So it can be seen that with a little effort, much time can be saved. The purchase of a Basic compiler compatible with the interpreter can turn the home computer into a useful designer's tool.

Appendix

Macro-codes for fast reduction

The macro-code used was as follows:

Each operation is shown with its equivalent in Basic:

<table>
<thead>
<tr>
<th>Macro</th>
<th>Code</th>
<th>Equivalent in Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>T1</td>
<td>T1 + T2</td>
</tr>
<tr>
<td>SUB</td>
<td>T1</td>
<td>T1 - T2</td>
</tr>
<tr>
<td>MPY</td>
<td>T1</td>
<td>T1 * T2</td>
</tr>
<tr>
<td>DIV</td>
<td>T1</td>
<td>T1 \div T2</td>
</tr>
<tr>
<td>EQU</td>
<td>T1</td>
<td>T1 = T2</td>
</tr>
<tr>
<td>MOV</td>
<td>T1</td>
<td>T1 \rightarrow T2</td>
</tr>
</tbody>
</table>

All other macro definitions (ADD, SUB, MPY, DIV) are machine dependant, and are not shown here.

References

Orchestral sounds, halls and timbre—a correction

Denis Vaughan has kindly pointed out to us one or two misprints which crept into his article in the May 1982 issue: Just under the heading 'First reflections' on p.32, the phrase should read: “Their timing is exactly controlled by the width (1 foot = 1ms).” In the middle of page 33, reference is made to Guildford and this should read Gilford. In the third column of the same page, there are two references to reflection times which should read: “this means that the effectively larger reflections start about 81ms after the original sound,” and “Kingsway has quite a lot of powerful reflections to offer within the first 105ms. Because the larger reflections continue to return up to 147ms, the substantial and lengthy support of the musicians is assured.” The figures printed (18 and 14ms) could be misleading, especially to those interested in modelling electronically the initial reflection pattern of the hall.
DIGITAL DIVIDERS WITH SYMMETRICAL OUTPUTS

The author uses Johnson counters with controlled feedback to give symmetrical even and odd-numbered divisions of a clock pulse.

Time and again, in literature on digital circuitry, ideas are published on the problem how to obtain a 50% duty cycle when a regular pulse train is divided by an odd number. Some clever (and less clever) methods are proposed, e.g. the use of exclusive-or gates in the clock pulse lines, a separate flip-flop with a delay of half a pulse period, the output of which is combined with the normal flip-flops, etc.

In my opinion, the use of EXOR-gates in clock lines should be avoided, since spikes on the output-signals of the flip-flops may occur; a better way is to combine the outputs signals of the flip-flops. The ideas, found in Refs. 3 and 4 are broadened in this paper, and a generalized scheme is proposed which may be easily expanded. Moreover, the control input is pure binary and there is no attempt to change the (odd or even) sequence length. Standard i.cs are used.

The Theory

When a Johnson or Möbius ring counter is fed back, a sequence length of n or 2n is derived, depending on whether a straight or twisted loop is used. The maximum sequence-length is 2n for n bits, and sequences of 2(n-1) etc, are derived when outputs, other than the last, are chosen. When two adjacent outputs are fed back via an AND-gate and negated, (Fig. 1) any length between 2n and 2 may be obtained.

If an auxiliary flip-flop is connected to the chain and is switched on the opposite pulse edge, the output is shifted over 1/2T, where T is the clock pulse period. It is necessary for the incomming pulse train to have a duty cycle of 50%; if not, a divider is needed which will halve the frequency. In Fig. 2, the outputs of 2 flip-flops, FF1, the last in the chain, and FF2, the extra flip-flop, are combined in an OR-gate to obtain an odd sequence length (9) with a symmetrical output. In this case, D and E are fed back (see Table 1).

When an even sequence length is chosen, a symmetrical output is derived from the last flip-flop in the chain, only one (negated) output is fed back and no OR process is needed. In the Table 2, a list is given of all possible combinations; I through VIII are the controls signals which switch the (negated) I for A, II for B, ... VIII for H.

<table>
<thead>
<tr>
<th>Control inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>1 1/2+1 1/2 = 3</td>
</tr>
<tr>
<td>1 1</td>
<td>2 3 = 6</td>
</tr>
<tr>
<td>1 1</td>
<td>3 3 1/2+3 1/2 = 7</td>
</tr>
<tr>
<td>1 1</td>
<td>4 4 = 8</td>
</tr>
<tr>
<td>1 1</td>
<td>5 5 = 10</td>
</tr>
<tr>
<td>1 1</td>
<td>6 6 = 12</td>
</tr>
<tr>
<td>1 1</td>
<td>8 8 = 16</td>
</tr>
</tbody>
</table>

Table 1. Feedback signals and sequence length.

Sequence/length

A

B

C

D

E

F

G

H

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

By Cornelius van Holten

In Fig. 3, the complete diagram is given, consisting of 8 flip-flops (a shift register), a pulse circuit, an output, feedback gates controlled by the inputs I to VIII, and a decision making circuit with 4 full adders for odd and even lengths.

The latter operates as an EXOR-gate with 8 inputs: Y = I @ III @ IV... @ VIII and therefore Y = '1' for odd and '0' for even lengths; the unused input of the full adder at the bottom is permanently held at a logical '1' level.

In the output circuit, the function H + YZ is realized. For Y = O, the output becomes H (for even length sequences) and for Y = 1, the output is H + Z (for an odd length) as shown in the time charts in Fig. 4a and 4b respectively.

The flip-flops A to H are D flip-flops, operating in the leading clock pulse edge and Z (auxiliary flip-flop) reacting on the trailing edge of it. The P flip-flop is needed when the input pulses are not symmetrical, and a buffer gate is used for amplification.

The correction and enabling circuit is described in the Appendix. In normal circumstances, this circuit is inoperable and the shift register is loaded with all zeros by the enabling input, and cycles via 00000000, 11111111, etc. back to the all zero condition. This is the "normal" sequence, 1 out of the 16 possible cycles. Of course, other values of n than 8 are possible, this number has been chosen for comparison with the circuit described by Girolami and Bamberger the

Modification

In Fig. 3(a), there are 8 control inputs which are used separately (for even lengths) or in groups of adjacent pairs (for odd lengths). If one wishes to control the sequence length via a binary weighted control input, a decoder is needed as described in Table 3.

In Fig. 3(b), a read only memory is programmed as a decoder, and the input 1 may be used to control the output circuit: even or odd; the output function is H +...
Fig 3. A symmetrical output divider with a self-correcting Johnson counter.

- Pulse circuit
- Shift register circuit
- Feedback circuit
- Correction and enable circuit
- Output circuit
- Binary input (see table 3)
- Sequence length control circuit

Clock 21Hz
Buffer

Input (see table 2)

rom 16x8
Table 3. Binary weighted control inputs and corresponding signals and sequence lengths.

<table>
<thead>
<tr>
<th>Input</th>
<th>Decoded input</th>
<th>Sequence length</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 4 2 1</td>
<td>I II III IV V VI VII VIII</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>no sense</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>1 0 0 0 0 0 0 0</td>
<td>2</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>1 1 0 0 0 0 0 0</td>
<td>3</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>0 1 0 0 0 0 0 0</td>
<td>4</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>0 1 1 0 0 0 0 0</td>
<td>5</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>0 0 1 0 0 0 0 0</td>
<td>6</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>0 0 1 1 0 0 0 0</td>
<td>7</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>0 0 0 1 0 0 0 0</td>
<td>8</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>0 0 0 1 0 0 0 0</td>
<td>9</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>0 1 0 0 0 0 0 0</td>
<td>10</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>0 0 1 1 0 0 0 0</td>
<td>11</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>0 0 0 0 1 0 0 0</td>
<td>12</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>0 0 0 0 1 1 0 0</td>
<td>13</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>0 0 0 0 0 1 0 0</td>
<td>14</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>0 0 0 0 0 0 1 0</td>
<td>15</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>16</td>
</tr>
</tbody>
</table>

YZ, realized by NAND gates via the formula H . YZ

Conclusion
A method is proposed by which in a straightforward manner any sequence length may be chosen via a binary weighted input. The circuits are normal s.s.i. or m.s.i. i.cs; for an 8 bit integrated shift register, the clock input is buffered as is the clear input. The buffers may be left out. The output is symmetrical and no spikes occur, since the Johnson principle is in fact a Gray code of sorts, changing only 1 output per clock pulse.

The number of flip-flops is \(\frac{1}{2} n \), when \(n \) is the sequence length, whereas for a normal counter \(\log_2 n \) flip-flops are needed. There is little disadvantage, however, with low prices. In both cases the sequence is nonbinary.

Appendix
With \(n = 8 \), there are 256 possible zero-one bit patterns, of which only 16 (8 \(\times \) 1 and 8 \(\times \) 0 in groups of 8) are valid. All other sequences have to be detected and corrected; since 00000000 is a valid combination, resetting of all flip-flops is an easy way to correct.

If one wishes to correct any invalid combination immediately, a rather complex circuit is needed; it turns out, however, that with certain combinations, the register may be reset; within 16 clock pulses any error will be removed.

In the normal sequence, no '0' is present between '1's; so 101 looks a good bit pattern to detect. However, not all sequences contain this combination; 1001 also occurs.

To check these sequences we write down any non-normal sequence, economizing space by writing the notation in a row, as follows:

\[e.g. \ 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 \]

Cornelius van Holten holds an honours degree in electrical engineering from the Technical College at Rotterdam and a degree from the Delft University of Technology. He is in charge of a digital engineering laboratory for undergraduates in the Applied Physics Department of the Delft University, and lectures in measurement methodology. He has written a self instruction course in digital circuitry and some 20 papers in periodicals.

Cornelius van Holten holds an honours degree in electrical engineering from the Technical College at Rotterdam and a degree from the Delft University of Technology. He is in charge of a digital engineering laboratory for undergraduates in the Applied Physics Department of the Delft University, and lectures in measurement methodology. He has written a self instruction course in digital circuitry and some 20 papers in periodicals.
The ends are in fact connected, so by checking 101 and 1001 "over the edge" if needed, the result is: 101: (3x) and 1001: (1x)
This means that FGH and EFGH have to be used; simplification gives:
\[(E + F) \cdot G = (E + F) \cdot G \text{ or rewritten in NAND-form:} \]
\[E \cdot F \cdot G \cdot H \]
Since reset is a '0' signal, we invert this to:
\[E \cdot F \cdot G \cdot H \]
Detection and correction follows: there is no reason, to choose EFGH; any group of 4 consecutive outputs is valid. The reset is asynchronous, i.e. not controlled by the clock pulse, but within one period T the counter is ready and starts again, whatever the sequence length may be.

References

Fig. 12. Here, a seek is being carried out and value 11 from a servo sector has been stored for comparison with two bits from the next servo sector. As can be seen, there are many positions on the subsequent sector where the positioner appears to be on the correct cylinder. To avoid this ambiguity, digitized information from the carriage velocity transducer together with the two stored bits and two bits currently being read address a prom which returns the cylinder crossing count.

Fig. 13. Flow chart for an embedded-servo positioner system. An absolute cylinder-address register is not used, so all seeks are relative. Seek errors simply cause an extra execution of the loop.

Cylinder addressing, which made it necessary to read headers to discover the head position, it is also possible to abandon the fixed index concept, as the sector number is contained in every header read. There is no index point on the disc, and all of the sector pulses are identical. The format of adjacent tracks is displaced to allow enough time for a seek or head change, and for a header to be read to confirm the position, before sector zero of the new track comes around. In the case of a long data transfer of many blocks, a significant transfer-time reduction achieved, since rotational latency is eliminated.

It is possible to build two versions of the drive. In the first, only the position error developed during S1 is used for track following. In the second, the position error from S1 is used for track following on even cylinders, and that from S2 used on odd cylinders. The second version obviously has twice as many cylinders as the first, but in other respects is basically the same.

Winchester technology and floppy discs and their drives are discussed in the next part of this series.

WIRELESS WORLD AUGUST 1982

continued from page 36

try in the system error log, as it indicates a malfunction. In the embedded-servo surface drive, however, the condition is handled differently. Figure 13 shows a flowchart for the control of the drive, which has no absolute cylinder-address register, and in which all seeks are relative. The system only knows where the heads are by reading a header. In order to reach a particular cylinder, the program has to read the first header it sees on the current cylinder, and calculate the cylinder difference required to get to the desired cylinder. This cylinder difference, which may be positive or negative, is sent to the drive, which performs a deductive seek. When this is complete, the program again reads a header. Most of the time the header will contain the desired cylinder address, proving that the seek was successful, but in the odd case where the cylinder count deduction was in error, the program simply loops and calculates a new difference value until the correct cylinder is reached.

Since each surface has its own embedded-servo information, the heads may be aligned using a normal data disc pack. As a new head is selected, it becomes the source of the position error, and as the heads are only aligned to one another within a certain tolerance, the positioner will adjust itself to eliminate any position error when head switching takes place. This process takes time, and further time is necessary to read a header to confirm that the desired cylinder is under the new head. The time taken by this process is the same as that needed to perform a one cylinder seek, such as might be necessary when all tracks of a cylinder have been written but there is still data to transfer. With a conventional disc drive format, both of these processes would cause the loss of an entire revolution of the disc, waiting for sector zero to come under the heads again. Having abandoned the concept of absolute
Three types of operation are required for digital filters: multiplication of samples by constant coefficients, addition, and temporary storage for delaying samples. The digital filter shown in Fig. 1, a bi-quadratic section, represents the sequence of mathematical operations that must be carried out for each input sample \(x_n \) referred to as \(X \) to produce an output sample \(y_n \) referred to as \(Y \). The sequence of operations may be summarized as:

1. Calculate \(W \) by adding \(W \) multiplied by \(-b_1\) and \(W\) multiplied by \(-b_2\) to \(X \). \((W \text{ and } W' \text{ are values of } W \text{ stored during previous executions of this algorithm})\)
2. Calculate the output \(Y \) by adding \(W\) times \(a_1 \) and \(W\) times \(a_2 \) to \(W\).
3. Set \(W'\) to the number currently stored in \(W\) for next time.
4. Set \(W\) equal to the number currently stored in \(W\).

Recursive digital filters are generally implemented as cascades of biquadratic sections i.e. the required transfer function \(H(z) \) is expressed as the product of second-order transfer functions \(H_1(z), H_2(z) \ldots \) each being realised by a distinct digital filter section of the type illustrated. A practical digital filter, therefore, would be a device or devices capable of performing the calculation sequence listed above for all biquadratic sections, for each input signal sample \(x_n \). These calculations must be carried out accurately and within the timespan available between samples in real-time applications. Before looking at real-time digital filters, however, consider briefly their implementation on general-purpose digital computers.

Real-time processing

Although digital filters have been studied for many years, their use has until recently been mainly confined to research applications and computer simulations. This is likely to change rapidly with the development of special-purpose microprocessors and V.L.S.I. devices for signal processing. Such devices essentially execute the type of program discussed in the panel, but where the programmed filter is to be used for continuous signals sampled in the Nyquist rate, all numerical calculations must be completed for each input sample before the next one becomes available; otherwise an increasing backlog of samples would be built up. This imposes a speed requirement which is not present when processing blocks of sampled data on a general purpose computer. Such processing would normally use the highly accurate floating-point arithmetic operations provided by high level languages but at great cost in processing time, typically 100\mu s per multiply or add. The necessary increase in processing speed required for real-time filtering is currently possible only at the expense of accuracy through the use of fixed-point arithmetic. It is thus necessary to represent all samples, coefficients and results of additions and multiplications by binary numbers of limited wordlength with the equivalent of the decimal point, i.e. the binary point, assumed fixed at some position within the word. For example, the 16-bit number \(0.110000000001101 \) with fixed binary point represents the decimal number 0.75040 correct to about five significant figures, whereas 0.0075040 must be written as 0.00000001110110 which gives only about three significant figures of precision. In contrast to floating-point numbers, the accuracy to which a fixed-point number represents a given number depends on its magnitude. Care must be exercised in positioning the binary point lest the addition of two numbers be allowed to overflow, producing a result too large for the chosen format. Negative numbers may be represented in two's complement form with a value obtained by subtracting 1.XXX... from the fractional part of the binary number. In this representation, the fixed-point numbers outside the range \(\pm 1 \) are not allowed and all numbers likely to appear within a digital filter would have to be scaled accordingly.

The use of fixed-point number representations clearly introduces complications in the design of digital filters and introduces

Programming on general purpose computers

Digital filters are often programmed in high-level languages such as FORTRAN or BASIC and run on general-purpose computers or microcomputers to process blocks of signal samples stored as data arrays. This approach may be used to allow experimental data where unwanted effects must be filtered out or where particular features must be extracted. You may use the "trapezoidal rule" for numerical integration \(y_f = y_0 + \frac{1}{2}(a + a_f) + \frac{1}{2}y_0 \), where \(y_0 \) is the formula represents a type of digital filter.

Programming a digital filter on a desk-top computer is a very useful way of testing its design before building it. In this application the programmed filter is a simulation of the system to be built, which may be tested by feeding in special test signals generated or captured as blocks of data by the computer. Programming digital filters in high-level languages is straightforward and a good way of learning about their capabilities.
Fig. 1. Recursive digital filters are generally implemented as cascades of biquadratic sections, above. Diagram shows sequence of mathematical operations that must be carried out for each input sample \(x_n\) to give output sample \(y_n\).

inaccuracy which will tend to degrade performance as compared with the theoretical ideal. Some of the most important effects are next considered.

Quantization noise. The conversion of an analogue signal into digital form introduces a degree of distortion as a result of representing the sampled voltages as fixed-point binary numbers. This distortion effectively adds on error signal known as quantization noise to the original signal, as illustrated in Fig. 2. The level of this unwanted noise signal is determined by the wordlength available and the dynamic range allowed for the analogue signal i.e. its expected maximum and minimum voltages. It may be shown that an n-bit analogue-to-digital conversion (with \(n > 4\)) results in a quantization noise signal of r.m.s. value \(\Delta/2\sqrt{3}\), where \(\Delta = (V_{\text{max}} - V_{\text{min}})/2^n\), is known as the quantization step. In theory, the noise is spread evenly over the frequency spectrum 0 to \(f_s/2\). For a zero-mean input of r.m.s. value \(v_0\), the signal to quantization noise ratio is

\[
20\log_{10}(\frac{2\sqrt{3}v_0}{\Delta}) = 20\log_{10}(\frac{2\sqrt{3}V_{\text{rms}}}{\Delta}) = 6.0 + 10.8 + 20\log_{10}(\sqrt{\text{V}_{\text{max}}/\text{V}_{\text{rms}}}) \text{ dB.}
\]

For this formula to be valid, input signal must not exceed the prescribed dynamic range. Ensuring that \(c \leq V_{\text{max}}/4\) achieves this to reasonable accuracy for noise-like signals, giving a maximum s-n ratio of

\[
6.0 + 10.8 + 20\log_{10}(0.25) = 6.0 - 1.2 \text{ dB}
\]

This formula may be used as a rule-of-thumb for a wide range of different types of input signal although higher ratios may be obtained by reducing \(\alpha V_{\text{max}}\) for specific signals such as sinusoids. Clearly the maximum value depends on the number of bits in the digital representation, and increasing this number improves the figure by 6dB per bit.

Data wordlength. With fixed point number systems both the range and precision of the numbers which can be represented is limited. For convenience it is usual to think of all the signals within a digital filter as being in the range \(-1\) to \(1\). Such signals require only one bit in front of the binary point, this being used as the sign bit to differentiate between positive and negative numbers. The precision of the number representation is determined by the number of bits available for storing data. A sixteen-bit data word, for example, with one bit used for the sign, gives a quantization step size of \(2^{-15}\). All data must therefore be rounded to the nearest integer multiple of \(2^{-15}\). In practice it is difficult to determine exactly how many bits are needed to satisfy particular performance requirements. The present generation of special-purpose signal processing devices employ basic wordlengths of between 16 and 25 bits.

Coefficient quantization. When a digital filter is implemented in real time its coefficient values as well as its samples must be quantized and stored to limited precision. The effect is to degrade the frequency response as illustrated in Figure 3. A wordlength of about 12 bits is typically used for coefficients. The second program listed calculates the amplitude-frequency response of a digital filter with original unquantized coefficients and with quantized values, as they would be represented in the filter. The maximum difference over the relative frequency range 0 to 0.5 is printed out as a measure of the degree of degradation suffered.

Dynamic range limitations. Signal overflow, which occurs when the result of an addition or multiplication within a filter is out of range, will cause incorrect operation. The errors generated can cause self-sustaining oscillation of large amplitude which are highly undesirable. The simplest way of avoiding overflow is to multiply the input to each biquadratic section by a suitable scaling factor \(S\). The aim is to reduce the input signal level sufficiently to ensure that the largest internal number likely to be generated is within range. For a sinusoidal input, \(S\) may be set equal to \(1/G_{\text{max}}\) where \(G_{\text{max}}\) is the maximum gain between the unscaled input and any point in the second-order section. This ensures that no internal signal exceeds the input in amplitude. In practice, it is sufficient to examine only the overall gain of the section \(G(\omega)\), and the gain \(G_{1}(\omega)\) between the input and the internal signal \(W\). It can be shown that

\[
G_{\text{max}} \leq 2\max(G(\omega), G_{1}(\omega)) = 2M
\]

with \(G(\omega) = |H_{1}(e^{j\omega})| = \frac{1 + a_{1}e^{-j\omega} + a_{2}e^{-2j\omega}}{1 + b_{1}e^{-j\omega} + b_{2}e^{-2j\omega}}\)

and \(G_{1}(\omega) = \frac{1}{1 + b_{1}e^{-j\omega} + b_{2}e^{-2j\omega}}\).

\(M\) may be calculated by evaluating \(G(\omega)\) and \(G_{1}(\omega)\) over the range \(0\leq\omega<\pi\) and searching for the maximum modulus.

A basic program for doing this is provided, see third listing. Choosing \(S = 1/2M\) will eliminate the possibility of overflow for sinusoidal signals, and in practice will normally prove satisfactory for other types of signal. In many cases this result may be unduly pessimistic and larger scaling factors \(S\) may be used depending on the particular filter being implemented and the type of arithmetic used. If \(G_{\text{max}}\) is significantly greater than the maximum value of \(G(\omega)\) (overall gain) it may be necessary to scale up the output of a section to bring the overall passband gain to unity. Scaling factors are often approximated to the nearest power of two so that the required multiplication may be carried out by simply shifting the signal representation an appropriate number of bits to the left or right.

Example. Consider the scaling required for the first section of the bandpass filter whose impulse response is shown in the panel opposite. The coefficients \(a_{1}, a_{2}, b_{1}, b_{2}\) for this section are \(-2, 1, -1.0524, 0.6232\) respectively. By means of the program the maximum values of \(G(\omega)\) and \(G_{1}(\omega)\) found to be 2.57 and 3.56 and hence \(G_{\text{max}} \leq 2M = 7.12\). A suitable scaling factor is therefore \(1/7.12 = 0.1404\). This would often be approximated to \(2^{-3}\), the nearest power of two, requiring the input to be shifted three bit positions to the right. As \(G(\omega)\) is greater than \(G_{1}(\omega)\) in this example, it would be necessary to scale up the output signal if a maximum gain of unity were required for the whole section.

Microprocessor implementation

In addition to its filtering task, a microprocessor may be required to control a-d and d-a converters, or alternatively interface with other digital devices as a means of signal input and output. When controlling converters it is necessary to provide some means of accurately maintaining a fixed sampling frequency.

The choice of microprocessor type depends mainly on the required sampling rate. The present generation of general purpose eight-bit microprocessors can provide digital filters with sampling frequencies of at most a few hundred hertz, the more powerful 16-bit microprocessors enable this to be increased to about 5 kHz.
phasized by the introduction of a digital signal processor by NEC and the fad, an LSI digital filter designed by British Telecom. Details of other microprocessors intended for digital signal processing have been published by Texas Instruments and Bell Laboratories.

The Intel 2920 incorporates both a-d and d-a converters on-chip and when programmed as a typical eighth-order digital filter has a sampling rate of approximately 30kHz. As such, the device can be used simply as a one-chip replacement for audio-bandwidth analogue filters. More recent devices differ from the Intel 2920 in that they do not incorporate the converters, but provide the means for interfacing with external converters. These provide more powerful arithmetic facilities than the 2920, including fast high precision multiplication. Large program and data memories are provided by the NEC, Texas and Bell devices which should allow them to implement not only fixed filters, but also adaptive digital filters which automatically modify their frequency response as the characteristics of the input signal change.

The Plessey/British Telecom fad (filter and detect) is not strictly a microprocessor, but sacrifices flexibility for simplicity of operation. It contains on one chip all the circuitry necessary to implement the bi-quadratic filter section shown in Fig. 1. Used as a single second-order section, by using on-chip memory, the fad can be used in a multiplexed fashion to implement a cascade of eight second-order sections, providing a sixteenth-order filter with a sampling rate of 8000 samples per second. Cascades of between two and seven second-order sections can be implemented by modifying external connections.

To illustrate the full capabilities of microprocessor-implemented digital filters and to demonstrate how the techniques described may be applied to their design, consider in more detail the use of the Intel 2920. This device is now generally available, at gradually decreasing cost, and may be programmed by Intel users with a knowledge of digital filters without recourse to expensive design packages.

Intel 2920

Shown schematically in Fig. 4, the Intel 2920 consists basically of a high-speed microprocessor connected to a 9-bit d-to-a converter. The output is connected to a one-to-eight line multiplexer which is under software control. Eight signal output channels are therefore available. The output, as a single second-order section, by using on-chip memory, the fad can be used in a multiplexed fashion to implement a cascade of eight second-order sections, providing a sixteenth-order filter with a sampling rate of 8000 samples per second. Cascades of between two and seven second-order sections can be implemented by modifying external connections.

Program to implement fourth-order digital filter on general-purpose computer used in example on page 47

```
10 DIM F(IOH),Q(IOH)
20 PRINT "NO. OF SECTIONS:"
30 INPUT N
40 PRINT "IDEAL COEFFS:"
50 CUSB=170
60 FOR I=0 TO 100
70 P(I)=O(I)/1000
80 PRINT "DURNTISED COEFFS:"
90 CUSB=170
100 PRINT "FREQUENCY IDEAL AC 
110 PAR=I TO 100 F=I/200
120 PRINT USING "B .0D7.02.6D7.
20 " F=P(I),O(I)
30 FOR 1=0 TO 100 C F=I/200
40 PRINT "IDEAL COEFFS," 
50 CUSB=170
60 FOR I=0 TO 100 
70 PRINT "FREQUENCY 
80 FOR I=0 TO 100
90 CUSB=170
100 PRINT "FREQUENCY 
```

Fig. 4. Intel 2920 is basically a high-speed microprocessor connected to a nine-bit d-to-a converter, with eight multiplexed output channels under software control.

Fig. 3. Amplitude response of an eighth-order Butterworth bandpass filter shows effect of coefficient quantization.
put is also connected to one input of a signal comparator, the other input being derived from a sample and hold network driven by one of four multiplexed analogue input channels. This arrangement allows high up to four analogue inputs to be sampled and converted to digital form using the converter and the comparator under software control.

The microprocessor section of the device contains an eprom with space for 192 processor instructions, 40 words of ram and a microcontroller, 400 bytes of data space. The arithmetic unit consists of a microprocessor module and four add or subtract operations. All arithmetic operations provided, which include add and subtract but not multiply or divide, are performed in two's complement form. A special feature of the device which allows coefficient multiplication to be performed efficiently without a multiplication instruction is the binary shifter (sometimes known as a barrel shifter). Before being loaded into the arithmetic unit, one of the operands in an add or subtract operation passes through the binary shifter, which can be programmed to shift the number up to two places to the right or up to thirteen places to the left in one operation. Hence, a 'shift and add' process which can be used for programmed multiplication is combined into one instruction. Other features which simplify the programming of the device include a fixed instruction execution time (600 or 800 ns depending on device) and the absence of conditional jumps which are replaced by unconditional operations. The latter ensures that there is only one path through the program and hence that the program execution time is constant. An 'end of program' instruction is included, which causes program execution to transfer to the first instruction in memory, providing continuous repetition of the program. As the input signal is normally sampled on each pass through the program, the sampling interval is equal to the product of the number of instructions and the instruction execution time. For example, a program containing 40 instructions runs on a 600 ns device produces a sampling interval of 2400 μs i.e. a sampling rate of approximately 41666 samples per second giving a signal bandwidth of almost 21 kHz. This represents the theoretical upper limit and it is prudent in a practical system to allow some measure of oversampling and limit the signal bandwidth to say one third of the sampling frequency.

A technique based on the canonical signal digit code used for coefficient multiplications on the 2920 together with details of digital filters implemented using this device will be given in a subsequent article.

References

References in June article

Appendix to June article
To calculate V_x where $x = a + jb$, convert x to Euler form $x = re^{\theta j}$, where $r = \sqrt{a^2 + b^2}$, $\theta = \arctan(b/a)$. Take square root $V_x = \sqrt{r} e^{\theta j}$. Convert V_x to Cartesian form $V_x = V_x \cos(\theta) + j V_x \sin(\theta)$.
Hangover, a rather loose term to describe the stored energy resonance in a loudspeaker, the principal cause of colouration that immediately tells you you’re listening to a loudspeaker.

Take it away and there’s a new world – the loudspeakers have nothing more to say – instead there’s just the orchestra and the magic of the music.

If music is an important part of your life, then a pair of ESL-63 loudspeakers could be the best investment you’ve ever made.

Perhaps even something to celebrate about.

For further details and the name and address of your nearest Quad ESL-63 retailer write or telephone The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs., PE18 7DB. Telephone: (0480) 52561.

WIRELESS WORLD AUGUST 1982

WW - 009 FOR FURTHER DETAILS
The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), 2508, 2758, 2516, 2716, 2532 and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:
- As a stand alone unit for editing and duplicating EPROMs.
- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300ns).

Data can be loaded into the 4k x 8 static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a 1k x 8 RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

Also available (not shown): VM10 Video monitor – £99; UV141 EPROM Eraser with timer – £78; GP100A 80 column Printer – £225; PI100 interface for EP4000 to GP100A – £65.

VAT should be added to all prices

DISTRIBUTORS REQUIRED

GP Industrial Electronics Ltd.

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN
This is the second of two articles describing an interface for driving a 40-column dot-matrix printer mechanism from Z80 signals. With the mechanism, addressing and interrupt sections covered, the author explains the controller i.c., power circuits, running the printer and modifications required to drive a 12V mechanism.

Turning now to Fig. 3, the rest of the controller circuit can be considered. IC2 is a bidirectional buffer designed to isolate the controller-board internal data bus from any noise on the system data bus, and vice versa. It is enabled only when the controller board is addressed, and the direction in which it passes data is determined by the WR line buffered by IC1a and IC3a. To reduce noise problems, IC1a is a Schmitt trigger, and similar buffers are used on the other control bus lines.

The control bus is connected to the printer controller chip, IC14, and through three-state buffers, IC13, to the status outputs of the controller i.c. It is also connected to IC9, the interrupt reply byte circuit. Note that D0 from IC9, pin 18, should go to D0 on IC2, pin 2, and so on up to D7, pin 9 on IC9 to pin 9 on IC2.

A 6.0MHz clock for the controller i.c. is provided by an HC18/U or HC25/U crystal, XL1. IC14 contains the character generator for the printer, and the output infor...
The circuit was constructed in two parts: the first is the interface board which was built to fit into a slot in one of the computer’s cards. The solenoid and motor drivers were built on a second board which, together with the 24V supply, was mounted in the base of the box containing the printer mechanism.

The interface board should be carefully laid out, i.e., with a good ground mesh, and with the ground pin of each i.c. connected to that of the i.cs around it. A decoupling capacitor is needed for each i.c., 10μF tantalum-bead capacitors alternating with 10μF ceramic disc capacitors being suitable.

The layout of the driver board is a little more difficult as it carries both t.t.l. signals and the heavy currents associated with the solenoids. Because of the solenoid surge currents mentioned earlier, a substantial cable is needed to connect the emitter of each driver transistor to the ground side of the 24V power supply. To avoid noise caused by the solenoids getting back into the interface, the digital ground return should be separate from the 24V-supply return, although it need not be as heavy. Once again, everything should be placed in the base of the box containing the printer mechanism.

The interface board should be carefully laid out, i.e., with a good ground mesh, and with the ground pin of each i.c. connected to that of the i.cs around it. A decoupling capacitor is needed for each i.c., 10μF tantalum-bead capacitors alternating with 10μF ceramic disc capacitors being suitable.

The layout of the driver board is a little more difficult as it carries both t.t.l. signals and the heavy currents associated with the solenoids. Because of the solenoid surge currents mentioned earlier, a substantial cable is needed to connect the emitter of each driver transistor to the ground side of the 24V power supply. To avoid noise caused by the solenoids getting back into the interface, the digital ground return should be separate from the 24V-supply return, although it need not be as heavy. Once again, everything should be
Table 1: Program to display printer character set. This program was written to
demonstrate the operation of the printer, and act as a confidence test for it. It is
loaded at location 4000 (hex.) in memory, and should be entered after the stack
pointer has been set up, using a CALL instruction. This listing was produced on the
printer described in this article, as was its result, shown in Table 2.

Table 2: The printer’s character set. This program was written to
display printer character set. The results of this
assembly language, which is designed to test

Table: | Program to display printer character set. This program was written to
demonstrate the operation of the printer, and act as a confidence test for it. It is
loaded at location 4000 (hex.) in memory, and should be entered after the stack
pointer has been set up, using a CALL instruction. This listing was produced on the
printer described in this article, as was its result, shown in Table 2.

Table: | The printer’s character set. This program was written to
display printer character set. The results of this
assembly language, which is designed to test

Table: | Program to display printer character set. This program was written to
demonstrate the operation of the printer, and act as a confidence test for it. It is
loaded at location 4000 (hex.) in memory, and should be entered after the stack
pointer has been set up, using a CALL instruction. This listing was produced on the
printer described in this article, as was its result, shown in Table 2.

Table: | The printer’s character set. This program was written to
display printer character set. The results of this
assembly language, which is designed to test

The two boards (interface board and
driver board) were interconnected by
multi-core cable and sub-miniature 25-way
'D' connectors. The precise allocation of
the pins to the various signals does not
matter too much provided that there are
ample ground-return lines. Cable length
should not matter too much, as the
signals are all relatively low in frequency,
but anything over 1m in length could cause
noise problems. The screen of the connect-
ing cable should be earthed to improve
reliability.

Demonstration program
Table 1 is a program, written in 280 as-
sembly language, which is designed to test
the printer by causing it to display its com-
plete character set. The results of this
program are shown in Table 2. The program
is loaded into memory at 4000 (hex.), a
convenient location in my system, and
is entered from a system monitor
which first sets up the stack pointer (SP
register), and then pushes a return address
onto the stack (e.g. by the use of a CALL
4000 instruction). The test program exe-

 well decoupled for best performance,
 using 20µF, 36V electrolytic capacitors
 connected between the 24V side of each
 solenoid and ground.

Connections to the matrix printer itself
 are through a pair of non-reversible
 connectors, the mating halves of which are
 supplied with the printer. One of the
 connectors is 14 way and supplies the sole-
noids, while the other is 10 way and carries
 the motor, paper feed and timing signals

Conversions for a 12V printer
mechanism
After this article had been completed, a
version of the printer mechanism for use
with a 12V supply, the DP-82AF-12,
associated controller, the DPC-4A, were
introduced; this section describes modifications required to accommodate these.

Pin connections on the 12V mechan-
ism are exactly the same as those on the
24V model. The DPC-4A I.c. can be used
to control either version of mechanism by altering the signals on certain pins.

On the 12V mechanism, the sole-
noids require a 780µs pulse, as op-
opposed to 400µs for those of the 24V
version. This pulse length is deter-
dined by the controller and depends
on the logic state at pin 28, the "printer
type" terminal (PT). When this pin

is tied to the +5V rail, as shown in Fig.
3, the pulse length is 490µs. For the 12V mechanism, R31 must be changed
to 1kΩ and wired to ground instead of
+5V.

Current requirements for the 12V mechanism’s solenoids and motor are
higher because of the lower supply
voltage, hence, R90 of Fig. 4 should
be replaced by 2.2kΩ, and the signal
driver circuits, and R95 of Fig. 5
reduced to 3.3kΩ.

Finally, the voltage doubler used in
the 24V supply, Fig. 6, can be replaced
by a bridge-type rectifier and single
smoothing capacitor (say, 10 000µF,
25V). The zener diode, D307, should be
replaced by a 36V type.

Both the 24V and 12V mechanisms
mentioned are supplies-only types but
the "jack-fast" versions, available from
the same manufacturer, may be used:
Solenoid driver board. Mounted in the base of the printer box is a driver for each of the matrix needles, the paper advance relay and motor. There is also a 24V power supply.

cuts a RET instruction when finished.

This article is not the place to introduce assembly language programming, and so instead of a detailed description of the program, notes are given to assist those wishing to use all, or part, of the program for their own purposes.

The port address of the printer is declared in an EQU pseudo instruction at line 14. This address must correspond with the address used by the hardware.

There are three interface driver routines of interest, namely RESET, PUTPRT and NEWLIN. Starting at line 118 is a subroutine called RESET. The purpose of this is to 'set' the printer controller should a previous program error have left it in an unacceptable state. The same effect may be achieved by using the RESET bus signal. As good practice, a CALL to RESET should be made at the start of each program which accesses the printer. No

registers are modified by this subroutine.

The second subroutine of note, PUTPRT at line 96, may be regarded as causing the character sent to it from the 'A' register to be printed. PUTPRT waits until the printer is ready, then transfers a character from the 'A' register to a print buffer in the printer controller i.e. If the printer error bit is set, the subroutine will halt at address 405B. Normally this point would contain a code to alert the operator to a printer problem. If there is no error the subroutine returns, leaving all registers unmodified.

The third and final subroutine to inspect is NEWLIN, at line 60. The purpose of this is to cause printing of the line in the controller print buffer, which it does by sending an OA character (line feed) to the printer. Once again, this routine does not change any registers. It should be noted that this subroutine must be called at least once every 40 characters to avoid the print buffer becoming full, in which case, overflow characters will be lost.

Conclusion

In this article it has been shown that it is possible to build a low-cost printer for a home-computer system. Although this design was originally intended as a means of printing programs from a Z80-based system, it may easily be adapted to make it compatible with any popular microprocessor and for use in any application where a permanent printed record is required, such as data logging. That the controller only allows uppercase graphics characters to be printed is not a problem for the majority of applications.

BOOKS

Computing

From Hardware to Software
by Graham Lee
454 pages, paperback/hardback
MacMillan, £8.95/$16.00

This is an introductory text, albeit an extremely thorough one, and covers both equipment and programming at a level suitable for A level or first-year university courses. The author has used a computer model — the Simple Digital Computer — throughout, with which to illustrate his points more generally than would have been possible with a commercial design.

Advanced 6502 Interfacing
by J. M. Holland
190 pages, paperback
Prentice-Hall, £9.05

This book is practical in its approach to the subject of persuading 6502 microprocessors to perform useful functions in timing, control, data acquisition and high-current load driving. It is written for those who are already familiar with microprocessors.

Introduction to 6800/6802 Microprocessor Systems
by R. J. Simpson and T. J. Terrell
238 pages, paperback
Newnes £6.95

For readers who may not be versed in the language of logic and binary arithmetic, the authors have included a useful first chapter on basics before embarking on a description of the 6800/6802 devices and their use. This is followed by chapters on programming and on input/output signals, the practical approach being the province of the final two chapters on the MKE6802DS evaluation system, with some investigations to carry out with its help.

Microcomputer Data Communications Systems
by P. J. Derfler, Jr.
129 pages, paperback
Prentice-Hall, £9.70

Micro-computers can serve as terminals in a data communication network to provide information at home, as an alternative to what the author calls the 'time tyranny' of radio, television and newspapers. The book describes such systems, including sections on modems and terminals, and going on to show how Apple, TRS-80s and others can be employed in this way. There is also a piece on using the CPM disc operating system with S-100 bus computers and others.

Video

Video-Tape Recording
by J. F. Robinson, revised by S. Howe
362 pages, hardback
Butterworth, £12.00

The third edition of a well known text, this covers the whole field of professional and domestic video tape recorders from the engineering point of view. New information is presented on the helical B and C formats, and the domestic type of machine, with additional coverage of timebase correction. Those familiar with television engineering are led easily into the subject by the way of a first chapter on tape recording in general terms.

Video Techniques
by G. White
299 pages, hardback
Butterworth, £10.95

Although the blurb says that this is for the technician in television or ancillary industries, it hardly seems detailed enough for that purpose. It is a descriptive book, which is well suited to readers in other fields who want to obtain a working knowledge of television, both broadcast and recorded, studio equipment, transmission, reception (including teletext and viewdata) and digital techniques.
BRITISH HI-FI
I'm informed by John Crabbe of Hi-Fi News/Record Review that the Acoustical manufacturing company's claim that the QUAD FM4 brings 'Home the world's best broadcasting system at the touch of a button' is ethically justified, as Acoustical, in contributing to the support of the Philharmonica, helps to pay the piper.

Most other British high fidelity manufacturers do not, and insist upon music making of all kinds parasitically, and thus have no prestige or reputation internationally amongst serious consumers of reproduced music.

By and large, British high-fidelity products are not materially competitive or competitive in terms of dazzling or convenient features. But they are perhaps more competitive qualitatively. Unhappily, however, recognition of their qualities is pretty well reserved to engineers, technicians, and 'hi-fi fans'. Most serious consumers of reproduced music, here and abroad, don't know about them, and have precious little opportunity to learn.

Thus, while the programming and technical quality of the world's best broadcasting system is revered and envied internationally, British high-fidelity products are known about and coveted only by the membership of tiny audiophile cults, here and abroad.

I have at hand No 1 of the 1982 Edinburgh Festival newsletter. It's publication was apparently entirely supported by the advertisement of hostlers, restaurant-keepers, one or two insurance companies, and a bank or two. Many people who will attend Festival events, or wish to, and many who - due to privation or remoteness - are dependent upon broadcast reception and recordings for musical enjoyment during most of the year, will remain in ignorance of the products of Linn, Syrix, Strathclyde Transcription Devices, the makers of the Systemdek, and even Tannoy - not to mention KEF, B&W, Sugden, Castle, Celeef, Mitchell, Acoustical, Naim, Raga, C&J Walker, MB Creek, Boothroyd, Stuart-Meridian, and even Wharfedale, south of the border.

It would be too charitable to say that the British high-fidelity industry has its head in the sand. A harsher but more appropriate judgement would suggest that it is contemplating its own navel from the inside, is unw hvisomely involved and beguiled subjectively by its own enthrails.

John F. Withey
189 Trent Valley Road
Oakhill
Stoke-on-Trent, ST4 5LE

SCIENTIFIC COMPUTER
Please could you note in your records that I am the new Editor of The Sci. Comp. 80 monthly newsletter for users of the scientific computer designed by John Adams, M.Sc., details of which were published in your magazine.

Any of your correspondents who bought the SC80, who are members of the group, would find it well worth joining. Back issues, still available, contain a plethora of hardware, software and firmware. Mr Adams contributes articles monthly, and has developed no less than five versions of the BURP high level language, an excellent 64K d.o.s. (CP/M compatible), a standard Basic interpreter and some excellent hardware improvements. These include a 32K dynamic memory expansion, 64K mapping circuits, interrupt vector circuits, ASCII character generator modification and a floppy disc controller p.c.b. Details of all these are in the newsletter. One year's subscription is £6.50 for U.K. members, £8 for the continent, and £8.50 for elsewhere. Cheques sent to the address begins with.

I would like to take this opportunity to thank Mr Philip Proberts for the past two years of excellent newsletters under his editorship. I hope I can do as well.

John Hodson
Post Office
Oakhill
189 Trent Valley Road
Oakhill
Stoke-on-Trent, ST4 5LE

AMATEURS AND CB
C. G. Howard's comments in the June issue of IQW under 'Amateurs and c.b.' highlighted the indifference of the Home Office towards illegal c.b. amateur operations. But what about the specific identifiable violations where the Home Office attitude is downright irresponsible?

I am referring to the illegal pirate radio stations that flagrantly operate in the v.h.f./f.m. broadcast band. There are a number of them, but two examples serve to illustrate the general case: 'Thameside Radio' and 'Liberation Radio'.

I asked British Telecom why these stations were not closed down and imagine my surprise, as a legal broadcasting operator, when I was told that the Home Office would not give the necessary authorization for British Telecom to do so.

Must a campaign be mounted privately to ensure that the law of the land is upheld when a government department refuses to do so? Con- tinual violation of the law in this way is a form of anarchy, in principal every bit as bad as other, more subversive, movements.

The Home Office, in supporting the violation of statutory laws by its non-action is encouraging further escalation. This is yet another of a plethora of hardware, software and improvements. These include a 32K dynamic memory expansion, 64K mapping circuits, interrupt vector circuits, ASCII character generator modification and a floppy disc controller p.c.b. Details of all these are in the newsletter. One year's subscription is £6.50 for U.K. members, £8 for the continent, and £8.50 for elsewhere. Cheques sent to the address begins with.

I would like to take this opportunity to thank Mr Philip Proberts for the past two years of excellent newsletters under his editorship. I hope I can do as well.

John Hodson
189 Trent Valley Road
Oakhill
Stoke-on-Trent, ST4 5LE

HERETIC'S GUIDE TO MODERN PHYSICS
I was delighted to see you are still providing a forum for open and constructive criticism of modern theory.

That Dr Murray should need to assure his colleagues that he has "no wish to cause you offence" is a sad comment on the state of physics. Doubtless his article is the result of a long and critical investigation of modern theory, and he would welcome any constructive criticism of his article. Equally doubtless, a few of his colleagues know his investigation is a deliberate attempt to revive the flat earth theory and Maxwell's wave theory of light - an insult to Newton's corpuscular theory of light.

I predict Dr Murray will soon learn to appreciate the truth of the supreme investigator, A. E. H. Murray's, better response to the hostility to his theories of the self-satisfied mathematicians of his day - "A man who makes assertions, or draws conclusions, regarding any given case, ought to be competent to investigate it".

Many Nobel prizes were awarded for contributions to the basic premise of relativity - that nothing in the universe can travel faster than the speed of light. Cerenkov received the 1958 prize for his experimental proof that "when charged atomic particles pass through water or other media at a speed in excess of that of light itself, a bluish light is emitted."
FUNCTION OF FUNCTIONS

With reference to Mr Sutherland's letter (June), I think that the view of sidebands as mathematical fiction is not entirely unfounded. I believe that a periodic complex waveform and its Fourier series expansion are not one and the same thing in the sense of somehow being freely interchangeable without the active involvement of suitable physical devices to perform the complex series and conversion and vice versa. On this view a modulated radio transmission propagates in its complex form and there is no need to postulate any sidefrequencies at the transmitter end. The sidefrequencies are generated at the receiving end by tuned circuits. These have the capability to store energy and thus perform integration, thereby generating the continuous waves known as Fourier series components or sidefrequencies. The physical process by which a sidefrequency is generated can be understood by considering the following experiment:

Suppose that a high "Q" tuned circuit is adjusted for resonance at 110kHz and placed near a 100kHz oscillator. Clearly, the tuned circuit will not begin to oscillate since any such oscillations would move in and out of phase with the oscillator, thus receiving just as much help as hindrance. However, should the amplitude of the oscillator be decreased whenever out of phase with the tuned circuit and increased when in phase, then the tuned circuit would receive more help than hindrance and would build up oscillations. It would oscillate at 110kHz whilst receiving its energy in bursts of 100kHz. Assuming a very high "Q", the inertia of the tuned circuit would be large enough to smooth out any amplitude variations and it would appear to receive a continuous wave input (i.e. one of the sidefrequencies). In fact it would be generating the continuous wave.

For the above process to take place the amplitude of the oscillator would have to be altered (i.e. modulated) at 10kHz which is, of course, the appropriate modulating frequency for the 110kHz sidefrequency.

It is interesting to note that it would not be essential to alter the amplitude of the oscillator in order to generate the 110kHz response. The same effect could be achieved by alternating the phase of the oscillator at 10kHz, which suggests how sidefrequencies are generated in the case of suppressed carrier, frequency and phase modulation systems.

So, although the sideband concept is very useful, even essential part of radio theory, it is not necessary to assume that sidefrequencies have physical existence prior to the complex waveforms arriving at the receiving equipment. As explained by the Wireless World contributor Cathode Ray (September 1955, under the heading "Fourier - Fact or Fiction") continuous sinewaves are not the only possible form into which complex waveforms may be "decomposed", and hence it makes sense to assume that the sine form occurs simply because of the sine-wave nature of oscillations in tuned circuits at the receiving end of transmitter - receiver link.

G. Berzins

Frimley
Surrey
THE NEW ELECTRONICS

It is at least eight years since I shared the responsibility for selecting graduates for employment in an electronics development laboratory, and I read with interest and dismay Mr. Jacques' article in the January issue.

I was interested in that some of Mr. Jacques' questions were similar to the ones I put to interviewees, and dismayed because the responses were obtained mirrored so closely those that I obtained all too often. True, my own efforts were rewarded by the occasional interview who did understand some of the principles with which he had been presented and could perhaps even describe his final-year project clearly and accurately! Indeed a few such went on to become much respected colleagues.

However, it is not Mr. Jacques' article which prompts the writing of this letter, but rather the contradictions and inconsistencies in the letters about this article which appeared in the March and April issues. In a letter of reasonable length I can only draw attention to a few of these.

There is much written in Mr. Graham's letter - I too would reach for my text books to deal with Tensor analysis etc., etc., etc., and must agree entirely with his reference to "learning by rote" - but what is the relevance to Mr. Jacques' article?

Mr. Jacques' questions are all of an elementary nature - for example, surely a qualified electronics engineer might reasonably be expected to derive the expression for the gain of the amplifier configuration in thirty seconds flat, even if didn't remember "R/\text{Rd}". Does it really require a text book on op-amps to deal with this? (Why does it have to be an op-amp anyway?)

Perhaps Mr. Graham would tell us - I really would love to know - which text book does he reach for when he wishes to remind himself about Ohm's Law?

Surely the point is that an elementary understanding of circuit theory and device fundamentals is all that is required to answer most of Mr. Jacques' questions? That is, are they not nearly all designed to avoid testing the mere ability to recall tabulated data from the candidate's memory?

Even if a graduate cannot recall a precise expression governing the current/voltage relationship for a semiconductor device, is it not reasonable to expect him to understand that it is a function of temperature, for example?

On the subject of final year projects, my experience was that students got involved in too complex systems without any hope of fully understanding them in the limited time available! Whilst I am sure that Exeter students have written many good final year reports, does Mr. Graham really believe that the result of a few weeks project work is to produce an "expert specialist"?

Turning to Mr. Wehner's letter, I will ignore the first part as being totally irrelevant, and in any case, highly suspect. However, he goes on to make some points which while they take Mr. Jacques to task for not drawing his (Mr. Wehner's), "standard" amplifier circuit. One might quibble with the precision of Mr. Jacques' "the gain between X and Z" since there is no ambiguity. Mr. Wehner wants to define the gain referred to some point not even present in the circuit - why? Even if "input impedance" is not given its normal meaning, the circuit shown has an infinite "source" impedance - so why the complication?

Whilst I do not see any ambiguity in Mr. Jacques' Figure 2, surely a graduate might be reasonably expected to spot and question any such ambiguity?

In my own belief that extraordinary progress in electronics has led to the very thing that Mr. Graham objects to: learning and examination by rote. Inadequate emphasis is given to understanding and applying fundamentals. This may not matter for certain systems "designers".

However, one would hope that some of the electronics engineers we are educating might actually be capable of designing the "guns" of those fascinated multilegged black boxes we all love so dearly. Now processes, new devices, new circuits, all require an understanding of, and an ability to use, the fundamentals of which Mr. Graham is so scornful - or have we already left to design the "guts" of those fascinating multilegged black boxes we all love so dearly? New processes, new devices, new circuits, all require an understanding of, and an ability to use, the fundamentals of which Mr. Graham is so scornful - or have we already left to design the "guts" of those fascinating multilegged black boxes we all love so dearly? New processes, new devices, new circuits, all require an understanding of, and an ability to use, the fundamentals of which Mr. Graham is so scornful - or have we already left to design the "guts" of those fascinating multilegged black boxes we all love so dearly?

C. W. Ward, Yelverton, Devon

THE DIFFICULTY OF ELECTRIC CURRENT

After Desmond O'Reilly's second blistering attack, May 1982, perhaps Ivar Cott should slink away with his tail between his legs.

When discussing a TEM wave, it is common practice to use the formula O'Reilly objects to, \(\mathbf{E} / \mathbf{H} = \mu / \varepsilon \). See for instance Bell, Wireless World, August 1979, page 44, and also A. F. Kip, "Electricity and Magnetism", page 324, equation 12.34. Kip uses the popular convention, where vectors are written in bold type and the amplitudes of vectors are written in faint type. In Wireless World, July 1979, page 73, the diagram immediately above my equation (a) that O'Reilly objects to makes it clear that amplitudes are being discussed.

Para. 3. Where is it said by anyone but O'Reilly that a wave is called transverse EM because displacement current flows across it? On the contrary, a wave is described as TEM because \(\varepsilon(\text{not } \varepsilon_0) \) and \(\mu \) are transverse. \(\varepsilon_0 \) has nothing to do with it, and will not even appear in the case of a steady TEM signal. O'Reilly makes this very point earlier in the same paragraph, that the bulk of a steady TEM wave contains no displacement current.

Following your publication in the December issue of my article "A new interpretation", you published a letter by R. T. Lamb and my reply to his letter, both in the March 1981 issue. The following quotations from my reply show that I found Lamb's letter muddled,
I think Mr Lamb has reversed physicists and engineers.

"Lamb seems to call Theory N 'the current model' and Theory H 'e-m theory.'

Lamb himself wrote, among other things; "This is the latest generalization and, like all such, has exceptions, so please don't rush to quote them at me!"

You then published R. T. Lamb's reply to my reply in September 1981. Here the plot thickens, because it is clear that Lamb himself has no idea what "principal assertion" he refers to in his first sentence: "I was pleased to note that Ivor Catt, in his reply to my letter (March issue), gave yet another example of the truth of its principal assertion."

Presumably he is promoting a particular philosophical position in the matter of theory, fact, hypothesis, truth and so on. If he is, then he should give us references to the originator of his philosophical view, or if it originates with himself, he should state it clearly.

Which model of Kepler's is he discussing in his second paragraph, September 1981, when he says: "Kepler's problem was that the central construct of his model..."?

There should have been more information, or references, where the particular activity of Kepler is discussed. Lamb may be talking about the ellipse, or the Harmony of the Spheres, or something else. Again, we see Lamb's ability to pitchfork confusion into a discussion.

In the December 1981 issue, you published my reply to Lamb's September letter. Then in April 1982 you published his reply. Again, Lamb raised the issue. Even though in my latest reply, December 1981, I wrote, "If Lamb thinks (unlike me) that a mere model is in dispute, why the tenacity?", Lamb comes back with the reply, April 1982; [Ivor Catt] seems to acknowledge that we are discussing models of reality and not reality itself.

A dialogue, or debate, between two parties is of little value if the debaters ignore what the other man is saying.

Lamb's apparent assertion in paragraph three that it can be experimentally established that RC discharge current does not continue for ever I find astonishing. Also, in the last sentence of that paragraph, what does he mean by "an e.m. wave model"? Is that phrase yet another misnomer for a theory of mine? I don't know. I always name my theories clearly.

In his second paragraph, April 1982, it is unacceptable, because muddling, if he does not clearly specify which "other correspondents" have shown that the "intransumable difficulties" introduced by p and J exist only in Mr Catt's mind. No one has retrieved classical electromagnetism from the death-blow dealt to it by the question in my letter of August 1981. It is of crucial importance to establish whether classical electromagnetism collapsed in August 1981 and I am sending a personal request to each of the following experts to submit an answer to Wireless World; Professors Mott, Dirac, Salam, Brown, Lindsay, Bleaney, Gosling and Mr G. G. Scarratt.

The internal contradiction in classical electromagnetism is contained within this set of axioms:
1) A transverse electromagnetic wave (TEM) travels without change at the speed of light in a vacuum, guided by two perfect conductors.
2) Lines of electric flux terminate on electric charge. (This is one of Maxwell's equations.)
3) Electric charge cannot be created or destroyed.
4) Electric charge travels slowly in a conductor significantly slower than the velocity of light in a vacuum.

Now consider a TEM voltage step travelling to the right between two perfect conductors. Behind the step, the D lines from the upper (more positive) conductor terminate in electrons, n per cm length of conductor, in (on) the lower conductor. These electrons are in addition to the electrons, m per cm, which neutralize the holes in the molecules of the lower conductor.

Ahead of the voltage step, m electrons per cm length of lower conductor are present, neutralising the holes. During the next 1/40 nanosecond, the voltage step moves (forward by 1 cm (approx.), so that new electrons appear in this section of the lower conductor, to terminate the newly appearing tubes of D flux between the two conductors. Where do they come from? Not from the upper conductor, because by definition, displacement current is not the flow of electrons. Not from somewhere to the left, behind the voltage step, because such electrons would have to travel at the speed of light in a vacuum. Ergo, classical electromagnetism, which for this purpose includes both Theory N and Theory H, is dead.

Ivor Catt
C.A.M. Consultants
St. Albans

AMATEURS AND BAND

My attention has just been brought to the fact that the BBC is planning to use high frequencies, channels B1 and B2, for schools broadcasting. As a radio amateur with a keen interest in the 50MHz band I find this very unsettling. It leads me to believe that there really is something wrong with the way frequencies are allocated in the UK, since if the whole 88 to 108 MHz band were available for broadcast, the BBC could have far more suitable channels tunable on existing receivers with existing antennas.

I had very much hoped that radio amateurs in the UK would eventually get an allocation at 50MHz. We would not require a band MHz wide; 50 to 50.5 MHz would be quite adequate. If, however, the BBC intends to use these frequencies, I would ask that they leave a "listening hole" from 50.0 to 52.0 at least, and 50.5MHz if possible, since these frequencies are of scientific value.

I and many others have spent a lot of time, money and effort in the study of this most interesting part of the spectrum, and propagation there is not confined to the sunspot maximum; only the other day I was able to hear the PYZAA beacon in Brazil for the first time. Therefore it would be very sad indeed if all of our efforts were to come to nothing and we were unable to even listen on 50MHz in future.

BBC please take note.
Mr G. M. Pheasant
Great Wyrley
Walsall

BLUMLEIN AND STEREO

I have followed with interest the correspondence in your columns relating to the invention of stereophonic disc recording.

It seems that the earliest existing stereophonic discs are by Arthur Keller at Bell labs in America made using dual groove techniques in December 1932.

The earliest known orthogonal monogroove stereophonic discs were cut at EMI for A. D. Blumlein in 1933 and early 1934. This work was covered by his classic patent 394.325 which was applied for in December 1931.

On recording this document I was drawn to the conclusion that Blumlein probably had carried out research on stereophonic disc recording before its application was made. As a result I have made some effort to find whether work was done by Blumlein before the merger of the Columbia Graphophone Co and the Gramophone Co to form EMI in 1931. Unfortunately I found that his co-workers at Columbia are no longer with us and EMI were unable to confirm or deny the possibility of such earlier work. There are however to my knowledge seven references to such work and among these there are which I feel are important.

One by James Moir was based on a discussion between Moir and Blumlein during World War II and the other by Clark, Dutton, Vanderlyn who were co-workers of Blumlein. H. A. M. Clark worked with Blumlein at Columbia from 1929 and was therefore in a position to write with authority.

I have found it most frustrating that the work of probably Britain's finest electronic electronic engineer is not proclaimed to the world at large and that his long promised biography has not yet appeared.

It does no credit to EMI that they have done so little to publicise the work of Blumlein whose efforts so enriched our knowledge in such fields as sound recording, television, radar, measurements, and electronic circuitry that we still make use of his ideas forty years after his tragic death.

References
3. Donald Aldous 'HiFi News & RR' Supplement 1977 '100 years Recorded Sound' Chronology p85.
R. F. Maude
Huddersfield
This article describes additional equipment required to receive Meteosat primary data on the basic Tiros high-resolution receiving system outlined in a recent article. Meteosat-2, which is in geosynchronous orbit at zero degrees longitude, transmits digital data in shared time with the analogue Wefax service.

The Wefax service transmits data by means of an amplitude modulated 2400Hz f.m. subcarrier, and the reception of this has been described before. It is, however, important to understand how the Meteosat system as a whole operates, and how each service fits in. The spacecraft has a mirror radiometer similar to that used in the Tiros series, but because of its stationary position, the mechanics of the scan system are different. The spacecraft spins about its vertical axis at a rate of 100 rev/min. The radiometer looks out of the side of it and thus the spin provides the line scan. The frame scan is obtained by tilting the mirror from south to north over a period of about 25 minutes. There are five sensors; two are infra-red, two are visible-light sensitive, and one is sensitive in the water-vapour band. Their spectral bands are visible (vis.) 0.4 to 1.1μm infra-red (i.r.) 10.5 to 12.5μm water vapour (w.v.) 5.7 to 7.1μm

Since the amount of data that may be transmitted in 25 minutes is limited, only one of each type of sensor, or one infrared and two visible-light sensors may be used at once. The basic image format is

infra-red 2500 lines × 2500 pixels
water vapour 2500 lines × 2500 pixels
visible 2500 lines × 2500 pixels or 5000 lines × 5000 pixels

This data, called the raw image, is sent in digital form to the Meteosat ground computer system at the European Space Operations Centre (ESOC) at Darmstadt in West Germany. Here it is stored and certain processing carried out, such as the registration of the two visible channels. The images are then sectored and retransmitted using Meteosat's S-band transponders as analogue Wefax data for secondary data-user stations (s.d.u.s), and as full-resolution digital data to p.d.u.s.

There are two types of digital images sent from ESOC — 'A formats' which cover the full earth disc, and 'B formats' which cover the eastern Atlantic and Europe. Both A and B formats are sent at regular times throughout the day according to the current Meteosat dissemination schedule and contain, at various times, data from all the sensors. The transmissions are coded on the schedule by A or B followed by the sensor data that they contain; for example A1 contains full-disc infra-red data and B1V contains sectorized data from the infra-red and both visible sensors. BIVW contains infra-red and only one visible channel because the water-vapour image is also transmitted.

Transmission duration varies, depending on the amount of data being sent, from a few minutes to 29 minutes. The shortest format at present is BIW and the longest AV. In general terms BIV and AI are sent every half hour during daylight, with water vapour replacing visible during darkness. AV is sent four times a day. This schedule is however subject to changes. These transmissions can occupy up to six consecutive four-minute slots in the schedule and normally take place on only one of the transponder channels. The general characteristics of the p.d.u.s. transmissions are shown in Table 1.

Table 1. General characteristics of the p.d.u.s. transmissions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission frequency</td>
<td>(ch.2) 1691.0MHz (analogue and digital)</td>
</tr>
<tr>
<td></td>
<td>(ch.1) 1694.5MHz (analogue only)</td>
</tr>
<tr>
<td>Polarization</td>
<td>linear</td>
</tr>
<tr>
<td>Effective radiated power</td>
<td>18.2dBW</td>
</tr>
<tr>
<td>Modulation type</td>
<td>digital split-phase-L</td>
</tr>
<tr>
<td>Modulation index</td>
<td>1.2 radians</td>
</tr>
<tr>
<td>Bit rate</td>
<td>166.66kbit/s</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1MHz</td>
</tr>
<tr>
<td>Bits/word</td>
<td>8</td>
</tr>
<tr>
<td>Words/frame</td>
<td>364</td>
</tr>
<tr>
<td>Frames/subframes</td>
<td>8 (A formats), 4 (B formats)</td>
</tr>
<tr>
<td>Frame sync.</td>
<td>first three words</td>
</tr>
<tr>
<td>Recommended G/T</td>
<td>11.5dB/K</td>
</tr>
</tbody>
</table>

The gain of a parabolic dish is given by approximately

\[
G = \frac{4\pi AE}{\lambda^2}
\]

where \(A = \text{aperture area, } E = \text{efficiency (usually about 0.5) and } \lambda = \text{wavelength}.

Rearranging this, to obtain a gain of G (expressed as a real number), the required diameter is

\[
\sqrt{\frac{G\lambda^2}{E}}
\]

or for this frequency, approximately 9.0766V/G metres. For a gain of 33dB this gives a diameter of 3.4 metres.

This size of dish is recommended for commercial use, but a significantly smaller one may be used without a large increase in error rate. The prototype uses a 2.1 metre dish, which gives a gain of about 29dB, (G/T = 29 - 21.6 = 7.4dB/K).

The exact design of the prime feed for
the dish will depend on the focus-to-diameter ratio which determines the beam width that will fully illuminate the dish, but without spill-over. Figures 1 and 2 show a design which was optimized for a f/d ratio of 0.33. A smaller ratio presents an almost impossible design problem. A square section wave guide was used rather than a circular one because a slightly wider beam width can be obtained before the wave guide becomes too small to support wave transmission. If a dish with a larger f/d ratio were used a suitable circular section, sometimes known as a 'beer can feed' could be used. Construction of the preamplifier is identical to that used on the Tiros h.r.p.t. station except that the small amplifier is identical to that used on the p.d.u.s. Careful adjustment of the interdigital filter is needed if it is required to pass s.p.l. data to the h.r.p.t., as well as the Meteosat transmissions, without significant differences in performance on the four frequencies.

If the maximum benefit is to be gained from the lower bandwidth of the Meteosat transmission, the i.f. bandwidth should be reduced to about 1MHz. The simplest way to do this is to remove the 2.2kΩ damping resistor across the tuned circuit in the mixer mosfet drain. The remainder of the wideband i.f. amplifier may be used without modification.

Phase demodulator
The method of modulation and the modulation index are identical to those used on the h.r.p.t. transmission and so the phase-locked loop demodulator may be used without change. The base bandwidth of the p.d.u.s. signal is considerably lower than the h.r.p.t., for which the post-detection filter was designed, and therefore a further filter must be added before the signal is applied to the p.d.u.s. decoder. This filter is placed after the existing filter output, in parallel with the existing connection to the h.r.p.t. decoder, and has a 3dB cut-off point of 280kHz, Fig. 3.

Data decoding
At this point in the system it is convenient to separate the p.d.u.s. chain from the h.r.p.t. system because the differences between the two become progressively more extensive. As before, the next step is to convert the s.p.l. data to n.r.z. and clock, in a manner that avoids most of the noise. The principle of s.p.l. decoding was covered before and the same definitions apply here. The h.r.p.t. system uses a digital integrator as a bit conditioner, and although this method could have been used again, because of the lower data rate a more conventional analogue implementation was used. Far simpler methods could be used to decode s.p.l., but it is well worth making the extra effort at this point because the decoder and front-end performance determines the overall error rate.

A complete circuit diagram of the decoder is shown in Fig. 4, and it operates as follows. Raw s.p.l. data is divided into two chains, one of which is clipped, and both positive and negative transitions used to regenerate the clock by pulsing a tuned

Table 2: P.d.u.s. frame format. The first three words of each 364-word frame are always the same.

<table>
<thead>
<tr>
<th>3 words</th>
<th>1 word</th>
<th>24 words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync. Format number Label 40 words in A 8 words in B Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync. Format number Label 40 words in A 8 words in B Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etc. etc. Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-frame Spare A formats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A formats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync. Format number Label 40 words in A 8 words in B Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync. Format number Label 40 words in A 8 words in B Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etc. etc. Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-frame Spare A formats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A formats</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The method of modulation and the modulation index are identical to those used on the h.r.p.t. transmission and so the phase-locked loop demodulator may be used without change. The base bandwidth of the p.d.u.s. signal is considerably lower than the h.r.p.t., for which the post-detection filter was designed, and therefore a further filter must be added before the signal is applied to the p.d.u.s. decoder. This filter is placed after the existing filter output, in parallel with the existing connection to the h.r.p.t. decoder, and has a 3dB cut-off point of 280kHz, Fig. 3.

Data decoding
At this point in the system it is convenient to separate the p.d.u.s. chain from the h.r.p.t. system because the differences between the two become progressively more extensive. As before, the next step is to convert the s.p.l. data to n.r.z. and clock, in a manner that avoids most of the noise. The principle of s.p.l. decoding was covered before and the same definitions apply here. The h.r.p.t. system uses a digital integrator as a bit conditioner, and although this method could have been used again, because of the lower data rate a more conventional analogue implementation was used. Far simpler methods could be used to decode s.p.l., but it is well worth making the extra effort at this point because the decoder and front-end performance determines the overall error rate.

A complete circuit diagram of the decoder is shown in Fig. 4, and it operates as follows. Raw s.p.l. data is divided into two chains, one of which is clipped, and both positive and negative transitions used to regenerate the clock by pulsing a tuned
Table 3. The 24-word frame label broken down.

<table>
<thead>
<tr>
<th>Word number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8</td>
<td>Number of frames per subframes</td>
</tr>
<tr>
<td>9-12</td>
<td>Number of subframes in transmission</td>
</tr>
<tr>
<td>13</td>
<td>Current subframe number</td>
</tr>
<tr>
<td>14</td>
<td>Image line number (headers are zero)</td>
</tr>
<tr>
<td>15</td>
<td>Frame indicator: A = 00, B = FF (hex)</td>
</tr>
<tr>
<td>16</td>
<td>Vis 1 indicator: 00 = Data not present</td>
</tr>
<tr>
<td>17</td>
<td>Vis 2 indicator: 00 = Data not present</td>
</tr>
<tr>
<td>18</td>
<td>IR indicator: 00 = Data not present</td>
</tr>
<tr>
<td>19</td>
<td>180° Indicator</td>
</tr>
<tr>
<td>20</td>
<td>Scan direction: 00 = No grid present</td>
</tr>
<tr>
<td>21-24</td>
<td>Spare (all zeros)</td>
</tr>
</tbody>
</table>

Circuit at twice the data rate. Two c.m.o.s. phase-locked loop i.c.s provide logic level clocks both in phase, and at 90° to the s.p.l. "bits". Two D-type flip-flops generate clocks at data rate both in phase and at 90° to the incoming data. The two clock dividers can be initialized externally by the clock-error signal which goes high if a phase error is detected by the frame synchronizer. The clock signals are gated to produce the enable and reset pulses that operate the integrators and sampling circuits. At the end of each data bit the integrated values of both associated s.p.l. bits are held at the inputs of a comparator, the output of which is clocked into a further D-type flip-flop. This forms the n.r.z. output. Both 180° and 90° clocks are used by the sync. detector. The waveforms marked on the circuit diagram are timed over a single data bit.

P.d.u.s.-frame format

Like the h.r.p.t. from Tiros the data stream is divided into blocks of words called frames. Each frame consists of 364, eight-bit words and the first three words of each frame are always the same; they form the synchronizing sequence. The transmission is structured as a number of sets of the frames, each set containing four frames in a B format and eight in an A format. These sets can be initialized externally by the clock-error signal which goes high if a phase error is detected by the frame synchronizer. The clock signals are gated to produce the enable and reset pulses that operate the integrators and sampling circuits. At the end of each data bit the integrated values of both associated s.p.l. bits are held at the inputs of a comparator, the output of which is clocked into a further D-type flip-flop. This forms the n.r.z. output. Both 180° and 90° clocks are used by the sync. detector. The waveforms marked on the circuit diagram are timed over a single data bit.

Background

The launch of Meteosat-2 on 19 June, 1981, began a new era of European space exploitation. It was the major part of the first active payload for Ariane, the European Space Agency's launch vehicle. After launch, the satellite was placed in a transfer orbit and then lifted into a near geosynchronous orbit by the apogee boost motor. On 20 June it was 86° W and drifting slowly eastwards at a rate of 2.8° per day. During the drift-phase, test transmissions were carried out and by the time it arrived on station on the morning of 21 July, 90% of the telecommunications system had been checked out. The first image scan in visible light was performed at 1030 GMT on 28 July, and in infrared on 30 July. The scheduled Wefax analogue service commenced on 17 August and the primary-data user station (p.d.u.s.) service on 15 September.
sets are rather confusingly referred to as subframes. There are three types of subframes:
- **heading**, which contain identification and interpretation information
- **data**, which contain the image, and the grid-coastline bit map
- **conclusion**, which are similar to heading subframes but may contain updated information.

Table 2 shows the construction of a data subframe for both A and B formats. Each subframe has a 'label', consisting of 24 words, and its contents are shown in Table 3. The data from one line of infra-red or water vapour is sent in one subframe, but one line of visible data requires two consecutive subframes. When formats containing more than one image are sent the lines are interleaved in the following priority:
- infra-red line one
- visible line one
- visible line two or water-vapour line one
- infra-red line two
- visible line three, etc.

Note that when both visible channels are scheduled and only one channel is available, lines are duplicated.

All digital transmissions are preceded by a series of frames containing random data (with the label zero) to synchronise the receiver. The heading is then repeated 42 times in an A format and 84 times in a B format. Data then follows and the sequence is ended by one or two conclusion sub-frames. There is insufficient space here to describe fully the contents of the identification and the reader is referred to the ESA publications for this essential information.

References

3. Meteosat dissemination schedule, (published regularly) ESA.
5. Meteosat high-resolution image dissemination, ESA.
6. Definition of h.r. format interpretation data, M. Jones, 79 06 11, ESA
7. Meteosat calibration reports, (published occasionally) ESA
8. Special response data for Meteosat-2, Meteosat systems guide annex B1, ESA

To be continued
Communications crisis

A pressure group, consisting members of companies and associations connected with the communications industry, has been set up to try and persuade the Government to speed up their liberalization of telecommunications. Many of the companies have invested money in anticipation of the liberalization and are now suffering financial hardship. The group calls itself the Communications Crisis Committee and its members include: Professor Lou Schnurr of the Chelmer Institute of Higher Education; The Mobile Radio Trade Association (MRTA); The Independent Telephone Supplies Association (ITSA); The Federation of Communications Services (FCS); The Mobile Radio Users Association and the National Committee for the Legalization of Citizen's Band Radio (NATCOL-CIBAR).

They have put their opinions together into a document called the Report of the Communications Crisis Committee which consists of contributions from each of the corporate members of the Committee.

Professor Schnurr sets the scene by decrying the self-perpetuating monopoly of the present system. Even where free enterprise agreements exist, they are bound by licensing and technical approval procedures. A particular area for discontent is the allocations of the radio-frequency bands, especially the constraints on commercial development of the spectrum “controlled by an organization insensitive to market demand and without the philosophy of optimizing available spectral bandwidth for the purpose of services development. So long as such practices are contained within the moated walls of establishment privilege and internal decision making, the marriage of telephony and wireless cannot exist”. This, he implies, impedes the whole of the diffusion of information technology throughout commerce.

Contributions from the other committee members also press for the liberalization of the use of British Telecom’s network, to give access to mobile radio users, so that advanced data services for communication to mobile traffic. MRUA suggests that mobile services should have access to frequencies below 1,000MHz, frequencies above that being reserved for radio location and navigation. They also press for private network communications which would also have access to the public switched networks.

In a specific case study, Godfrey Wilson of Digital Paging Ltd bitterly complained about the inability to gain from BT the exchange facilities required for direct dial-in capability, available on his companies paging service. The unrealistic pricing of BT’s radiopaging service; the “extortionate delays in obtaining services, and servicing from BT; excessive delays from the Home Office in obtaining frequencies.” Wilson feels it is unacceptable to be forced to compete with the body that issues the licences.

In conclusion, the committee puts forward several points for “direct, immediate action”: Government departments should be asked to take steps to break the cycle of “time wasting tactics by BT and the Home Office Radio Regulatory Department; licensing powers should be transferred from BT to the Department of Industry; BT management to give fair and equitable access to BT competitors of the same facilities enjoyed by BT’s own services and at the same price; require BT to set up self-accounting in all areas where there may be competition, ensuring public accountability. Pending the division of such areas, BT should suspend further commercial development; The Cabinet Office should take action to allocate some 60MHz of the radio frequency spectrum below 960MHz for private sector mobile radio services in conformity with the allocations of the 1979 WARC. There should be support and funding available to a private sector coordinating group. This would assist the administration and allocation of radio communications services, enabling medium-term commercial development of information technology and telecommunications services.

Old brain, new hat?

First announced as long as two years ago, the “hand-held” Newbrain personal computer emerged recently under the new parentage of Grundy Business Systems. Following Newbury Laboratories dropping of the project in 1980 — itself then only three years old — Bob Smith and colleagues left to seek new backing, ending up with a Grundy:BTG share arrangement of 70:30%. At the same time, the specification of the machine was improved so that Grundy now claim it is designed for “business, scientific and educational use as well as home computing”. Now with its resident random-access memory increased to 32K (plug-in modules of 64, 128, 256 or 512 can take it to 2M) and 28K of read-only memory, it is designed to operate with a range of interchangeable and expandable program modules, or firmware.

The hand-held claim is based on the built-in 16-character 14-segment vacuum fluorescent display together with optional one-hour battery module of the AD version, designed chiefly to occupy minimum desk space. But an MDB model with on-
board nickel-cadmium cells will allow display in its editing mode for four hours and preserve memory for 20 hours and should be available in six months time. The cheapest version, model A at £199 + vat, comes without this display but with tv and monitor ports instead, as well as dual cassette port, RS232/V24 printer and bidirectional ports. The screen display can provide, unusually, 40 or 80 characters per line and a resolution of 250 dots vertically by up to 640 dots, and may be mixed with a separately scrollable character-mode display. The 512 character font includes viewdata mosaics, upper and lower case Greek letters, arc, and line drawing graphics, as well as the 96 ISO printing characters.

Firmware consists of interchangeable modules, communicating via hardware-independent interfaces, and may be expanded without interference with the hardware. The enhanced-ANSI Basic allows for user proofing of programs, direct interrupt handling, device-independent i/o, chaining and external calls. The screen editor claims novelties for a microcomputer: backwards scrolling, multi-screen ability and direct cursor addressing. The operating system provides for peripheral device drivers to the processors - the cassette device involves a second processor which uses a learning algorithm to accommodate tape speed fluctuations. Additional rom slots are available in a buffer expansion module that accepts Z80 assembler, Comal structured Basic, statistics and text processing packages. The buffer module also has memory paging circuitry, parallel i/o ports, analogue ports, two multi-speed V24 ports, as well as rom space, which will be included on-board in the M models available later. Proprietary software packages may be used from cassette or via disc under control of the CP/M module, available September. A communications module, also available September, contains 32 V24 ports to give flexibility in sharing peripheral devices and connecting computers together. Unfortunately, a videotext module takes only low priority, and is planned for "some time next year".

Meeting Grundy's price targets meant adopting n.m.o.s. circuits instead of the more expensive c.m.o.s. types. Switch-off circuitry was incorporated to keep the circuits cool and power consumption within reasonable limits. "Other machines do have problems in this respect," says Grundy's Mike Wakefield, who is pleased to be able to claim a 0 to 45° C temperature range.

Welsh Dragon

The Dragon 32 computer is the first product of a new company, Dragon Data Ltd, a subsidiary of the toy manufacturers, Mettoy. Aimed at the first user, Dragon Data have concentrated their publicity in marketing a 'family home computer' where the children might use it for learning and games playing while the parents can compute family budgets, or index a collection.

The Dragon 32 is based on a Motorola 6809E which has an internal architecture so designed that it needs far fewer instructions to operate it than many other microprocessors and is very fast. It has a 16K rom with extended Microsoft colour Basic, which gives high-resolution graphics of up to 256 x 192 pixels: there is a modulated output to a domestic tv and there is also a monitor output. The basic computer includes a Centronics-type interface, so a 'professional' printer may be plugged in directly. The keyboard is similar to that used on DEC equipment and offers typewriter-style keys, guaranteed for 20 million key depressions. There is a 32K ram with the ability to expand to 64K. In addition there is a games cartridge slot with sockets for two joystick controls for the playing of games;
Banking on video

Barclays Bank has found that the best way to keep their staff informed is through video programmes, shown on tv sets at the place of work. They have invested in a £1M recording studio and insist that their programmes should be of the highest quality both in content and presentation. So they have hired tv producers and popular tv performers to make the programmes look as much like the programmes the staff might watch at home, as possible. Such subjects as 'How to spot fraudulent use of Barclayscard' or the implications to the staff on the opening of the banks to the public on Saturday mornings, have been produced and are examples of the training and information functions. In order to generate enough copies of the video films for distribution, Barclays have a computer-controlled copying suite with Prestel and teletext facilities. Other operating languages can be added, including Pascal, 'C' and Basic compilers.

Programme cassettes and cartridges are planned for a wide range of applications. The Dragon is all British, designed by Dragon Data with the co-operation of the PATS Centre, and Motorola, whose chips, manufactured in Scotland are used in the computer.

Comparisons are always difficult but the nearest competitor to the Dragon is the Sinclair ZX Spectrum. The Dragon 32 has more memory and a particular advantage in having a 'professional' keyboard. The Centronics interface is also a big advantage. The Sinclair has more colours available at high resolution and the big (so far theoretical) advantage of the Microdrive; the miniature, low cost disc memory. However, there is a big difference in 'feel' with the ZX Spectrum feeling like a toy computer and the Dragon and its keyboard with the touch of a 'real' computer.

The Dragon 32 is in production at the Mettoy factory in Swansea, it will be on sale in the High Street early in August for just under £200.

Future expansions and developments include a disc operating system, an RS232 port, a second microprocessor and an operating system together with Prestel and the client's shoulders so that they can 'get on with producing and distributing the programmes'.

The Soundcraft deal is claimed to be the biggest contract by a corporate organization in Europe.

New technology and the graduate

The Department of Education and Science has approved the co-operation between the Science and Engineering Research Council and the Open University for a series of programmes of 'technological topping-up' courses. It is intended to provide a re-education for those graduates who have been working in industry for periods of 5 to 15 years. The SERC became aware of a need for such courses and have commissioned the OU to produce them.

The courses will use the OU's techniques for home study with tutorial support and study centre facilities for practical work. Two areas in particular have been identified for priority treatment, which are computer applications (including real-time monitoring and control systems), and manufacturing.

The computer applications course is expected to consist of a 'foundation' module on software engineering, computer systems architecture, and operating systems. This would be followed by a number of 'core' modules on monitoring systems, systems modelling, control systems and project management. There would also be optional modules on robotics, man/machine interactions, and computer-aided design. The full course will be the equivalent of one year's full time study. Certificates would be awarded for each module of the course and a diploma for the successful completion of the whole course. Students may then be able to undertake a further project in a related area which would lead to a M.Sc.-level qualification.

Telecom showcase

British Telecom's new exhibition centre is not a museum, stressed Peter Benton, the Deputy Chairman of BT, although it does trace the history of telecommunications from the early days of telegraphy. The centre's full title is Telecom Technology Showcase and in addition to the historical aspect which is well covered with many working examples of, for example, a Strowger telephone exchange of 1940s vintage, there is an exhibition of BT's latest equipment and techniques. Currently these include many digital techniques, displays about optical fibres and satellite telecommunications with examples of some of the latest equipment. It is planned to change the displays regularly to keep them up-to-date.

The Showcase is situated in Queen Victoria Street, London, in part of BT's Baynard House and is next door to the Mermaid Theatre. Lord Miles, formerly Sir Bernard Miles, officially opened the showcase and pointed out the role that the Mermaid's Molecule Club had played in educating young people in science and technology. He hoped that the Showcase would also contribute towards the edification of the young. He also looked forward to the micro revolution which he felt would release us from the 'work ethic' and allow us to get on with living, without the encumbrance of work.

Projects Editor

Wireless World needs a Projects Editor, who will be responsible for running the laboratory. The work consists of design and development of equipment subsequently to be described in Wireless World, commissioning articles on construction and testing pieces of commercial equipment. The successful applicant will be experienced in both analogue and digital techniques and will be able to express himself clearly in writing.

If the post appeals to you, please write to the Editor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS or telephone 01-661 3128.

WIRELESS WORLD AUGUST 1982
Extended addressing for the Z80

Current 40-pin memory-mapping i.c.s are expensive and difficult to obtain. As this circuit shows, it is possible to extend the addressing capability of a Z80 to more than 16 bits using readily available 74S189, 64-bit t.t.l. rams.

The microprocessor's four most significant address lines are not used for memory access, but instead address one of 16 stores of eight or 12 bits which are used as most significant address lines; in essence the same function as carried out by dedicated memory-mapping i.c.s.

Each store is loaded using an OUT(C),r instruction which, with the Z80, results in the contents of the B register being placed on the upper half of the address bus. To load a particular store, the program has to put the eight address bits into the A (or D, E, H or L) register, the store addressing the top four bits of B, then load C with the i/o address of the mapping circuit and issue an OUT(C),A (or D, E, H or L) instruction. If 12 address bits are to be generated, the top four bits must also be placed in the bottom four positions of B.

Sixteen different stores are used so that various parts of the program can be allocated one or several locations, allowing each store to work on its own ram. For example, interrupt routines may be run without upsetting background pointers.

Initially, bistable IC₂ disables the stores, whose outputs are held high by resistors until a switch-on signal is generated using a spare i/o line. This gives a fixed value on start up while the initializing program loads the 16 stores.

Brian Dillon
Dublin

Low-current voltage regulator

Standby consumption and output rating of this low-power regulator are 50μA and greater than 10mA respectively. Current limiting is included, brought about by gate-to-source voltage starvation in the 4007, and the output is short-circuit proof. Components used are cheap and readily available.

With the components shown, the output voltage is 12.78V, given by

\[V_{\text{out}} = V_{\text{BR(7)}} + V_R \]

where \(V_R = V_S - V_T \) and \(V_T = 1.5V \). And

\[V_R = V_{\text{BR(11)}} + V_{\text{BR(11)}} - V_T \]

such that \(V_{\text{out}} = V_{RA} + V_{RB} \). In this case, assuming a typical BC109 breakdown voltage of 8.2V for \(Tr_1 \), a forward voltage for \(D_1 \) of 0.4V and a threshold voltage of 1.5V, \(V_{RA} = 7.1 \) and \(V_{RB} = 5.68 \). Therefore

\[V_{\text{out}} = V_{RA} + V_{RB} \]

With a maximum input voltage of 20V, with \(V_R \) at around 4V, the c.m.o.s. device will be operating at around 16V which is inside its rating.

D. Roffey
Bromley

Programmable frequency divider

The 74163 4-bit binary counter may be used to divide the clock frequency by \(N \), where \(2 < N \leq 16 \), by applying binary \((16 - N)\) to the data inputs and connecting the load input to the inverted carry output.

N. H. Sabah
American University of Beirut
Pulse-generation using t.t.l.

Variable-pulse control using t.t.l. ICs is not unusual, but most circuits use non-retriggerable monostables since they are less prone to false triggering from noisy supply lines and stray signals. However, when a 100% duty cycle is reached, output jitter occurs and above 100%, the pulse repetition frequency is reduced.

This circuit uses separate retriggerable monostables and is not prone to false triggering. Jittering near the 100% duty cycle does not occur and at and above 100%, an LED lights and the output becomes static. Further stages may be added.

A. R. Millichope
Birmingham

Window discriminator
Two op-amps and numerous close-tolerance resistors used in conventional window discriminators are replaced by this circuit at the expense of convenient adjustment.

Designed to lift the pen of an X-Y recorder when the Y input exceeded the range 0.5 to 4.5V, the circuit uses the 555's control-voltage input to trim the trigger level. A potential divider was used at the input to change the voltage range to between 0.4 and 3.6V. Predictable operation is ensured by tying the threshold input to the positive rail and if a t.t.l. output is required, the open-collector output, pin 7, can be used in the conventional manner.

R. M. Jones
County Durham
Howard Hughes

I watched the recent two-part EMI film on Howard Hughes (BBC 2) with interest — though it seemed a great pity that so much emphasis was placed on his extraordinary idiosyncrasies, so little on the remarkable contributions made to technology by the companies controlled by his secret telephone calls in the middle of the night. Hughes was undoubtedly the fruitiest of fruit-cakes — though if he had been born in Chipping Sodbury, rather than Houston, Texas, he might have passed as the last of the great eccentrics. Fruit-cake or eccentric he has the distinction of being one of the few men ever to take on and defeat the European telecommunications “establishment” led by the British Post Office.

Wireless World has always been proud of the fact that the potential of the geostationary orbit as a unique parking place for microwave and broadcast relay stations was first pointed out in its columns in 1945 by Arthur Clarke. But the means of implementing this in 1963 by a transfer orbit and position-keeping jets were entirely the work of the Hughes Aircraft team led by Harold Rosen, Tom Hudspeth and Don Williams. An equally difficult job was to convince this in 1963 by a transfer orbit and position-keeping jets were entirely the work of the Hughes Aircraft team led by Harold Rosen, Tom Hudspeth and Don Williams. An equally difficult job was to convince the Post Office. BPO were ranged solidly behind the concept of a series of station-keeping satellites somewhat more modest meeting in the Texas factory. At that time the intention was to increase receiver output power from 400 kW to 500 kW. The transmitters now in use are delivering more than 30 mW output power at 10.8 GHz with a frequency drift better than 1 p.p.m/K from -20°C to 80°C, and a maximum chip efficiency of about 20 per cent. The oscillator measures 1.2 by 1.4mm² with a chip thickness of 300µm. It can be used as a voltage-controlled oscillator.

Long waves, high power

The BBC is currently carrying out a £2.5 million refit to the Droitwich 300 kW (1500 m) long-wave station at Droitwich, taking the opportunity to increase transmitter output power from 400 kW to 500 kW. The transmitters now in use are two of the four 200 kW units originally supplied by Marconi for the special wartime 800 kW station near Hull. The use of the Marconi “Pulsam” high-efficiency technique will make the higher power units more economical to run.

500 kW is a long way from the first long-wave (1600m) BBC station at Daventry. This was completed in 1924 and had a power of 25 kW following tests on a Marconi 15 kW long-wave transmitter in the Chelmsford factory. At that time the intention was to supplement the local regional transmitters (1.5 kW plus 0.12 kW relays) by a single transmitter providing “a reasonable field strength over most of the British Isles” — as indeed it appears to have done at a time when most listeners used oscillator-stabilised electrical interference was reasonably low and there were none of those infuriating signals emanating from the line time-bases and switched-mode power supplies of colour television sets. Indeed in the 1930s it was firmly recognised in the UK that high-power stations of the order of 500 kW "may be a doubtful blessing".
American broadcasters, who have never used the long-wave broadcast band, have been limited even on medium-wave “clear channels” to a maximum of 50 kW and yet have traditionally achieved extensive and excellent night-time coverage using directional aerials to minimize mutual interference.

However, this coverage is now under severe threat from Cuba who have stated their intention to install two 500 kW transmitters with omnidirectional aerials, plus over 180 other transmitters of various powers – and have withdrawn from a key Region 2 planning conference. It could be argued that the Americans have brought this problem on themselves by their intention to transmit programmes to Cuba on medium-waves – yet another example of how it is often external broadcasting for government agencies that has been the prime cause of the transmitter power race and excessive interference.

Vintage valves

A few months ago the turning over by Mullard Ltd of their Blackburn factory from television to communications valves to other products led to nostalgic backward glances to the heyday of the “red” EF50 of wartime radar, the EF39 used in many communications receivers, and other once familiar small-signal valves.

Across the Atlantic the process of closing down production lines of “vacuum tubes” has been going on for several years, without many tears being shed. But surely a note in QST will touch the hearts of every old-time amateur and professional communications man: RCA have discontinued manufacture of a further batch of glass-envelope transmitting valves including such famous types as the 807, 811A, 815, 829B – valves that found their way into innumerable transmitters since they were first introduced well over 40 years ago – and still do yeoman service in many transmitters even today, although presumably the demand for replacements has dipped.

Transmitters needed to be large to accommodate them and the ceramic types with (often noisy) forced-air cooling were displacing them, years before the semiconductor era began to deliver the knock-out blow. The 813 needs a hefty 5 amps at 10 volts just to keep the filament energized; but was – and remains – a magnificent workhorse for Class C service. Show me a transistor that will provide a comfortable 300 watts r.f. output at 20 MHz with a similar freedom from parasitic oscillation and ease of design – but until then many will regret the gradual passing of the thermionic era.

Perhaps not quite passing – Mullard, for example, tell me they have no plans to discontinue their range of transmitting valves, including near equivalents of a number of the axed RCA types. Indeed I hear rumours of European manufactured valves being sent across to the States and then returning to find sockets in European transmitters.

Here and there

The regulations introduced by the FCC on January 1, 1981, limiting the amount of r.f.i. generated by new computing devices marked for the home to limits calculated not to interfere with broadcast reception are having an effect on manufacturers. Although initially many manufacturers applied for waivers, the regulations must be complied with. In consequence of domestic and as recently the FCC laboratory has been rejecting less than 15 per cent of devices compared with 25-30 per cent in early 1981. FCC are now investigating the amount of interference produced by other digital devices including digital clocks using synthesized speech.

A number of candidates who took the Radio Amateur’s Examination in May appear to have been less than happy with the multi-choice paper and support the view, expressed on a number of previous occasions in this column, that the City & Guilds Institute should carefully consider updating the aims and scope of the examination – and contributing to the reduction of the administrative time it takes in the UK to sit the exam and acquire a licence.

With the help of a small grant from the Science Research Council, the R.S.G.B. Propagation Studies Committee is to assist in the collection over the next four to five years of data on Sporadic E propagation on frequencies above 100 MHz. North/south propagation paths on 50 MHz were open on many occasions during March and April 1982. An unusually large number of South African stations were received in the U.K. on April 12.

In brief

The boom in walkabout audio tape cassette players has encouraged the marketing in Japan of miniature 50 MHz “walkie-talkie” units, such as the Standard “Talkman” with headphones and miniature boom microphones. In future someone “talking to themselves” in the street may or may not be a first sign of madness . . .

David Adams, VE3BHF (G4NWA) of Sutton West, Ontario has been walking the length of Britain, from the Scilly Isles to the Orkneys with a backpack that includes a 144 MHz hand-held transceiver. Call sign of the 70.05 MHz beacon transmitter on Harpur Hill, near Buxton, Derbyshire has changed from GB3SU to GB3BUX as part of the plan to use two-letter GB callsigns for repeaters and three-letter ones for beacons. Similarly, for example, the beacon high on the IBA’s concrete aerial support tower at Emley Moor, West Yorkshire has changed from GB3EM to GB3MLE . . .

Tropospheric 10 GHz contacts across the English Channel to amateurs in France and Holland continue to be reported over distances up to about 250 km . . . A “very slow rise” in membership is reported by the R.S.G.B. who state that of members resigning “the vast majority gave the present economic climate and unemployment as the main reason” . . . Forthcoming mobile rallies include: July 25, Anglian Mobile Rally, Stanway School, Colchester; Scarborough A.R.S. at Spa Ocean Room. August 1, R.S.G.B. National Mobile Rally at Woburn. August 8, 25th annual Derby Mobile Rally. L.,ver Bemrose School, off Derby Ring Road. August 15, Preston A.R.S. at Walton-le-Dale County High School, Brindle Road, Bamber Bridge, Preston. August 22, Bromsgrove A.R.C. picnic at Avoncroft Art Centre, Bromsgrove.

PAT HAWKER, G3VA
The specification of the ZX81 reveals that it is also potentially a 'super-calculator' capable of handling much more extensive programs at a far higher computing speed than, for example, the Texas TI59. The 9½-digit accuracy is admittedly less but nevertheless perfectly adequate for a wide range of practical problems. The program described was written not only to fulfil a professional requirement, but also to test the capabilities of the ZX81 fitted with the 16K ram.

The menu it provides is as follows.

- Compute and display the insertion loss and group delay of a passive ladder network with up to 10 branches, excluding the terminations. For a frequency base in MHz the group delay is computed over an increment of 1kHz.
- Each branch can consist of a single inductor or capacitor, or a series or parallel tuned circuit. More complex structures can be handled by means of a simple device.
- A chosen value of dissipation can be assigned to the components.
- Component values entered can be listed and corrections made before computation starts.
- At the end of a calculation, individual frequencies and element values can be modified without re-starting the program from the beginning. This is invaluable for estimating the effect of component tolerances or for 'zooming in' on any particular area of the network response.
- Up to five group-delay equalizer sections can be added and the total resultant delay displayed. The display is in the form of the zero-frequency delay, followed by the differences from that value at the other points.
- Because the group delay values of the network are held in an auxiliary array, re-computation of the group-delay response after changes to the equalizer parameters is fast.
- Added dissipation in the equalizer can be displayed.

To give an idea of the running time, the ZX81 in the fast mode displays the insertion loss and group delay of a seventh-order elliptic-function filter at 15 points in around 75 seconds. Each successive attempt at group-delay equalization takes around 12 seconds, not including the time taken to enter values.

Because many users will not need the group-delay equalization routine, the procedure for use is conveniently divided into two portions.

Computation of network response

First some general remarks. As I am principally concerned with video filters, the units chosen are Ω, μF, μH, MHz and μs. These can be replaced by any other self-consistent set, but obviously minor changes to the print statements will be needed.

It is assumed that the network is unbalanced and contains no bridged-T sections. The group-delay equalizers are dealt with quite differently. The branches are numbered from the input to the output, and the component values are entered in the same order so that for example, the fourth branch will contain L(4) and C(4), or perhaps L(4) or C(4) alone. As shunt and series branches alternate in a ladder network it is only necessary to specify the nature of one of these. This is chosen to be the branch facing the input termination.

The dissipation is expressed by D, which is the reciprocal of the Q factor, and must be specified at some frequency. This will often be the cut-off frequency or possibly one of the points of nominally infinite rejection. Because of the simplification in the expressions for the impedances, the standard device is employed of assuming that both the inductors and capacitors have the same dissipation, and that in a resonant circuit D is the sum of these. However, experience shows that provided D is less than about 0.02 (Q>50) the individual dissipations do not need to be equal. It follows that if the capacitors can be considered as dissipationless, D can be taken as one half of the value which would otherwise apply. This may not sound very satisfactory but in practice it works surprisingly well.

With such a long program and only 16K of storage the display prompts necessarily have to be kept very short, so it seems desirable to set out the procedure in detail. Each input will, of course, be followed by NEW LINE.

Prompts

- L?
- C?
- R?
- F?
- D?
- F?

Inputs

- NO. OF BRANCHES?
- Starting frequency
- Maximum frequency
- Frequency step
- Dissipation constant
- Dissipation frequency (if D=0 then a nominal positive value must be entered)
- Input termination
- Output termination
- YES for a resonant circuit, NO for a single resistor or capacitor
- When previous input was YES, input SER for a series and PAR for a parallel resonant circuit
- If only one L or C the other must be entered as zero

L. E. Weaver, B.Sc., M.I.E.E. is the author of three well-known books on television measurements, and of a number of monographs and papers both on that subject and on aspects of network design. Now a television engineering consultant, he was previously head of the measurements laboratory in the BBC design department. While in that position he also used the experience previously gained in network design at STCs transmission laboratory to produce high-quality video filters, some of which have been commercially manufactured on a considerable scale.
This process will continue until the last branch has been entered. Then

SHUNT IN? YES for a shunt input, NO for a series

9/695

GOTO CHECK. This will then list the entered values. Modify by, for example, LET L (4) = 5.25. Do not enter RUN or CONT. When satisfied enter GOTO LOSS, which starts computation. After completion values can be modified and the network re-calculated by again using GOTO LOSS.

Group delay equalization

The insertion loss of a filter is usually required over a frequency range wide enough to cover both the pass and stop bands, but with delay equalization the situation is totally different. As a rough guide the important area in that instance lies between zero frequency and the 6dB point for a lowpass network, and between the 6dB points for a bandpass. It follows that a new set of frequencies must be selected up to the allowable total of 15, achieved by entries such as LET FM = 6 and LET FD = 0.5. The initial computation is then repeated by means of GOTO LOSS, which takes very little time as the component values do not have to be re-entered. The read-out must be completed, indicated by a 9 code.

The program allows for one first-order equalizer section followed by up to four second-order. Alternatively, up to five second-order sections may be used. Each is defined by a resonant frequency and a shape factor K, which must be made zero for the first-order section. The first-order section, if present, must be entered before the others.

The procedure is then as follows.

<table>
<thead>
<tr>
<th>Prompts</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/1590</td>
<td>CONT</td>
</tr>
<tr>
<td>V?</td>
<td>Total number of sections</td>
</tr>
<tr>
<td>FR? M=1</td>
<td>Resonant frequency of first section</td>
</tr>
<tr>
<td>K?</td>
<td>K-parameter of first section</td>
</tr>
<tr>
<td>FR? M=2</td>
<td>Resonant frequency of second section</td>
</tr>
<tr>
<td>K?</td>
<td>K for second section</td>
</tr>
</tbody>
</table>

As soon as the parameters for M=V have been entered the computation starts.

The initial attempt is not likely to be successful, so it will then be necessary to modify the equalizer parameters by inputs of the form LET F(2) = 2.2 and LET K(3) = 1.2. This must be followed by GOTO EQU, which repeats the calculation with the new values.

At the end of the equalization process, GOTO DISS will provide a read-out of the equalizer dissipation corresponding to the value of D. This does not need to be the same as the D used for the insertion loss but may be re-entered before calling up the DISS routine.

Fig. 1. Component values of a 5MHz elliptic function lowpass filter in the form recommended for program entry. Suggested initial parameter values are included for a three-section group delay equalizer.

Fig. 2. Use of a dummy shunt branch where a series arm contains more than two components. Values shown are for a 10MHz bandpass filter with midband frequency 12MHz and rejection points at 6 and 24MHz. Original configuration at (a), dummy shunt branch inserted at (b).

Fig. 3. Use of a dummy series branch where a shunt arm contains more than two components. Values shown correspond to a 3MHz bandpass filter with midband frequency 2MHz and a single rejection point at 0.8MHz. Original configuration at (a), dummy series branch suitable for bandpass structures only (b) and universally applicable dummy series branch (c).

In the absence of enough ram to run an optimization program, a graphical method has been found effective. This consists in plotting the combined group delay responses for successive parameter changes from some initial set of values, taking care not to try to deal with too many simultaneous changes. Some of these will inevitably be in the wrong direction, but one quickly gets a feel for the way in which moves have to be made. Remember that the aim must be to minimize the absolute error, that is the positive and negative deviations must tend to equality, subject to the condition with video filters that the error may be allowed to increase with frequency. The display provides the deviations directly, which saves a great deal of
Communications crisis—a reply

On our news pages this month is a criticism of the Government’s liberalisation programme for the telecommunications industry. John Butcher, the Parliamentary Under Secretary of State for Industry has made the following reply, listing the progress made to date.

A licence was granted in February to Cable and Wireless PLC on behalf of the Mercury Communications Limited to run a telecommunications system in the UK the first independent system of its kind outside North America. By the middle of next year the first subscribers should be connected to Mercury, surely an astonishing achievement in the time.

On the liberalisation of attachments progress has been remarkable. Already some 50 attachments, including about 25 telephones, 20 modems and five telex teleprinters can be supplied competitively which under the old regime would either have been completely unavailable or supplied only through BT.

November 1981 – Interim approved scheme for extension telephones from BT’s special range. The latter have been added to since then and all of BT’s special range telephones can now be supplied in competition with BT. The first approvals under this interim scheme have now been made and more will follow shortly.

May 27 – An extension of this scheme to include callmakers, repertory diallers and apparatus incorporating integral moderns. The Department is now considering applications for further evaluation. Now that BSI’s new laboratory can undertake some of the test work, it should be possible to deal with more telephones more quickly.

March 31 – Orders made requiring apparatus to be marked to tell customers whether or not it is approved for connection to BT’s networks. This is vital information for users if they are to choose apparatus that will not cause damage and produce inferior service.

Six draft standards have been written and made available for public comment in record time and further drafts will follow shortly. So far all standards are meeting their target dates.

May – The British Approvals Board for Telecommunications (BABT) was incorporated and will begin to accept applications for approval when the first standards are published.

The Department and BT have agreed on arrangements allowing BT’s present suppliers of teleprinters to supply the models they now sell to BT direct to customers. This makes five models available competitively if the manufacturers wish to take advantage of this arrangement.

“The Government has a duty” he continued “to make sure that apparatus connected to BT’s network does not endanger consumers who use this equipment or BT’s engineers and does not impede the quality of service that the network is able to provide to all. Much of the preparations that have been made over the past 12 to 18 months have been aimed at avoiding such dangers.

“In many cases little of this progress is visible to the outside observer but all of it is necessary if liberalisation is to be successful and to work. Critics do not do justice to the immense amount that has already been achieved.”

“Since April private operators have been able to apply to the Department of Industry for a licence to provide services over the network. The provision of these value added network services (VANS) will help to satisfy the demand more quickly than at present and encourage the growth of a wider range of services, providing jobs and helping business in Britain to become more competitive.”

References

To be continued.
The popularity of Rod Cooper's ignition circuit design, published in the March issue, led to many requests for a component location diagram. In response, here is a component layout — regrettably held out of the last issue — designed to complement the board pattern originally given. A resistor and decoupling capacitors were omitted from the published circuit, so a corrected version is reproduced herewith, which now corresponds with the board design.

Printed boards to an alternative layout, with components horizontally arranged, is available from M. R. Sagin (see advertisement), who may also be able to supply wound transformers and discharge capacitors. Ferrite and bobbins are also available from Mullard stockists.

The graphs showing the relation between combustion efficiency and spark were originally published in an article entitled Ignition Design Trends by K. Garrett, in Automotive Engineering, April-May 1977. Oscilloscope traces were produced from equipment kindly loaned by Hewlett Packard.

Components for ignition circuit

Resistors

1. 180
2. 10k
3. 180
4. 33M
5. 270
6. 180
7. 4.7k
8. 2.2k
9. 27k
10. 2.2k
11. 22k
12. 1.2k
13. 1.2k
14. 330

Transistors

1. TIP3056, MJE3056
2. BFY52
3. 2N3903
4. 2N3903
5. TIP2955, MJE2955
6. BFY52

Capacitors

1. 470n 1kV polypropylene (RS)
2. 10n
3. 1n 1kV polypropylene
4. 470p
5. 5n polyester
6. 5n polyester
7, 8. 100 to 5000V electrolytic

Diodes

1. 1N4001
2. 1N4007
3. 1N4007
4. 1N4001
5. 1N4148
6. 1N4001
7. 1N5402 or similar 3A rect.

Zeners 4.7 and 10V 400mW
DESIGNING WITH MICROPROCESSORS

Step-by-step procedures for implementing microprocessor systems with commercially-available i/o chips – illustrated by a design problem – conclude this series of articles.

The most effective design strategy is to choose those i/o chips whose terminal characteristics can be programmed to match those of the peripheral in question. But such an objective however would be unrealistic because in practice the microprocessor system will have its own programmable i/o chips already interfaced to the microprocessor chip, as illustrated in Fig. 1. In situations like this a good starting point is to derive a simplified programming model of the i/o chip, omitting those features that are not likely to be used. Initially, a programming model should contain the ports, typically two per chip, the control and status registers. Programming models of the Intel 8155, p.i.a. and v.i.a. are shown in Fig. 2, 3 & 4.

The next items to be specified are
1 - how the interface initiates an m.p.u. read operation for moving data into a microprocessor (from peripheral 1 in Fig. 1)
2 - how the p.i.o. chip signals that the requested read operation has taken place.

For example in the case of the p.i.a., when programmed with control word 26 to move an item of information from a peripheral into the microprocessor, all the interface has to do is to pull terminal CA1 high. When the microprocessor reads the item the signal on terminal CA2 is pulled low.

The third and fourth items to be specified involve the reverse process, namely moving data from the m.p.u. into a peripheral, in which case the designer needs to know

by D. Zissos and Jane Pleus

3 - how the interface initiates an m.p.u. write operation for moving data from the microprocessor to a peripheral m.p.u. (peripheral 2 in Fig. 1)
4 - how the p.i.o. chip signals that the requested write operation has taken place.

In the case of the Intel 8155 chip, when programmed with control word 99 data is requested from the m.p.u. by pulling the STROB terminal in Fig. 2 low when the m.p.u. responds when the requested item of information has been loaded into the 8155, the signal on terminal BBF changes to 1.

5 - the final item to be specified is the status flip-flop for each of the ports, as this is the signal looked at by the programmer in the test-and-skip mode.

For example in the case of the 8155, SFFA

Fig. 2. Programming model of the Intel 8155 p.i.o. chip.

Fig. 1. Microprocessor-based system with programmable i/o ports.
Mnemonic and hex listings of the PRINT problems using programmable i/o chips and test-and-skip.

<table>
<thead>
<tr>
<th>8085 & 8155</th>
<th>6800 & PIA</th>
<th>6502 & VIA</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mnemonics</td>
<td>Machine code</td>
<td>Address</td>
<td>Opcode</td>
</tr>
<tr>
<td>LI X, C0</td>
<td>20 20 00</td>
<td>31 C8 20</td>
<td></td>
</tr>
<tr>
<td>CALL IOPRT</td>
<td>23 CD 00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>LI X, 2080</td>
<td>26 21 80</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>MVI B, n</td>
<td>29 06 n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0: DCR B</td>
<td>2B 05</td>
<td>X0: DEC B</td>
<td></td>
</tr>
<tr>
<td>JM X2</td>
<td>2C FA 3D 20</td>
<td>B1 X2</td>
<td></td>
</tr>
<tr>
<td>X1: IN 20</td>
<td>2F DB 20</td>
<td>X1: LDA F003</td>
<td></td>
</tr>
<tr>
<td>ANI 10</td>
<td>31 E6 10</td>
<td>AND #80</td>
<td></td>
</tr>
<tr>
<td>JZ X1</td>
<td>33 CA 2F 20</td>
<td>BEQ X1</td>
<td></td>
</tr>
<tr>
<td>MOV A, M</td>
<td>36 7E</td>
<td>LDA #00, X</td>
<td></td>
</tr>
<tr>
<td>OUT 22</td>
<td>37 D3 22</td>
<td>ANDA #80</td>
<td></td>
</tr>
<tr>
<td>INX H</td>
<td>39 23</td>
<td>INX</td>
<td></td>
</tr>
<tr>
<td>JMP X0</td>
<td>3A C3 2B 20</td>
<td>JUMP X0</td>
<td></td>
</tr>
<tr>
<td>X2: RST 1</td>
<td>3D CF</td>
<td>X2: SWI</td>
<td></td>
</tr>
</tbody>
</table>

Initialize

decrement character count
if no more characters, go to X2
read status register port
erase all but status flip-flops
if data not printed, go to X1
print
dummy clear to clear SFF of PIA
point to next character
and SFFB are bits 1 and 4 of the status register – see Fig. 2. Status flip-flop signals are normally made available on terminals for use as interrupt flags if desired. Such flags can be disabled by program; bit 2 in Fig. 2, when 0 disables interrupt flag IRQ(A).

Programming models of the 8155, the p.i.a. and v.i.a. are shown in Figs 2 & 3.

Design problem
Objective: to consolidate the design steps described in the previous article.
Using programmable i/o chips, design a test-and-skip system that would allow the programmer to print a block of characters stored in consecutive memory locations.
Implement the design using an action/status character printer and (a) the 8155 interfaced to the 8085 and (b) the p.i.a. interfaced to the Motorola 6800.
Solution

Handshake signals Fig. 1

h1 - 1 indicates that the port is full (has new data) and 0 that the port is empty (data has been read).

h2 - 0-to-1 change requests an m.p.u. read cycle.

h3 - 0-to-1 change requests new data from the m.p.u.

A test-and-skip system that transfers blocks of data of specified length, byte-by-byte, from memory to a peripheral device through an i/o port using a microprocessor-based system with at least one programmable i/o port is shown in the block diagram of Fig. 4, derived directly from Fig. 5 of the previous article. Its step-by-step operation is shown in the flow chart of Fig. 5. The hardware design consists of implementing the interface equations derived for each of the p.i.o. chips. The software design is the self-explanatory programming flow chart of Fig. 6. Ignore at this stage the statements to the sides of the boxes.

8155 implementation

By direct reference to the data sheet of the Intel 8155 and to the definitions of handshake signals h1 and h2, we obtain

h1 = BBF

and

h3 = STROB.

The implementation of these equations constitutes the hardware component of our solution, Fig. 7.

Next refer to the 8085 instruction set to derive the mnemonic statements that implement the flowchart in Fig. 6. For ease of reference we list them to the left of each box. Finally, we tabulate these statements with the corresponding machine codes and comments on page 77.

8155 data

Programming model, Figure 2. The control word 0A disables the interrupt terminals and to program the 8155 i/o chip to function in the following way.

Section A - input port

An m.p.u. read is requested by a 1 to 0 change in STROB. When m.p.u. responds (reads) ABF changes to 0

ABF pulled high by a 1 to 0 change on STROB

ABF pulled low by an m.p.u. read of port A

Status flip-flop (bit 1 of the status register) set by a 1 to 0 change on STROB, reset by an m.p.u. read of port A.

Section B - output port

New data requested from m.p.u. by a 1 to 0 change on STROB. When m.p.u. responds (writes) BBF* changes to 0

BBF* pulled high by an m.p.u. write operations

BBF* pulled low by a 1 to 0 change on STROB

Status flip-flop (bit 4 of the status register) set by an m.p.u. write operation, reset by a 1 to 0 change on STROB.

*ABF = 1 indicates new data in input port.

BBF = 1 indicates new data in output port.

PIA implementation

Referring to the p.i.a. data sheet and the definitions of handshake signals, we obtain

h1 = CB2

and

h2 = CB1.

Implementing these equations gives the pia implementation of our solution, Fig. 8.
ELECTRIC FIELDS IN A SOLENOIDAL COIL

— often forgotten, more often misunderstood

The time-varying magnetic field in a coil gives rise to electric fields that in turn determine the terminal or circuit properties of the coil.

Since the time of Michael Faraday’s experiments, researchers have sought to understand the electromagnetic behaviour of the solenoidal coil, but a complete field solution has proved a difficult and elusive goal. While it is well known that the magnetic field within a long, multi-coil is predominantly axial and azimuthally symmetric, the associated electric fields are less clearly defined. However, a few fundamental points can be made regarding these electric fields without having to resort to a complete boundary-value solution.

When excited by an alternating current, the time variations of the axial magnetic field within the coil must, in accordance with Faraday’s law of induction, produce an electromotive force around any closed loop linking the magnetic field. The result is an induced electric field in the circumferential direction, and it is just this field that gives rise to the eddy current that circulates whenever the coil is wound around a core of lossy material. However, the existence of this circumferential electric field at the surface of the coil causes a redistribution of charge along the helical conductor forming the coil, such that the negative charge is concentrated towards the opposite end of the coil. This separation of charge creates a secondary electric field within the coil. In other words, the time-varying magnetic field gives rise to electric fields in the direction of the winding.

Neglecting end effects, an average value for the electric field at radius a, can be obtained by dividing the terminal voltage by the length of the coil. Thus,

$$E_{za} = \frac{V}{l}$$

where E_{za} is the average value of the axial electric field at radius a. Taking the ratio of E_{za} and E_{oa} yields

$$E_{oa} = \frac{V}{2\pi a}$$

where E_{oa} is the average induced circumferential electric field. Alternatively, since the terminal voltage, V, of the coil is just N times this e.m.f.

$$E_{oa} = \frac{N}{2\pi a} \Phi_a$$

where Φ_a is the magnetic flux through the ring. The phase angle ω is commonly referred to as the phase angle of the winding.

*by F. S. Chute and F. E. Vermeulen

*Department of Electrical Engineering
University of Alberta

In some earlier work, the authors describe a technique for visually displaying electrostatic fields and electromotive force by utilizing the heat-sensitive liquid crystals in this technique, Mylar sheets coated with encapsulated liquid crystals are bonded to a sheet of Teledelto resistive paper. Currents induced in the resistive paper in the presence of an electric field will cause heating, and produce a temperature variation that is characteristic of the distribution and intensity of the electric field. A typical example is shown in Figure 1 where the liquid crystal sheets used by the authors are black below about 25°C. Between 25°C and 30°C, the colour of the sheet changes with temperature from red, through yellow and green, to blue at about 30°C. Above 30°C, the apparent colour is again black. Regions of a uniform colouration represent regions of constant temperature or field intensity. While the limited thermal sensitivity of the liquid crystals and their nonlinear temperature response make serious quantitative measurement impractical, the liquid-crystal display does serve to provide the viewer with an immediate appreciation of the overall electric field distribution.

To display the axial and radial electric fields of a coil carrying a time-varying current, a sheet of resistive Teledeltos paper was bonded to a 3.2 mm thick, 60 x 60 cm sheet of Perspex with spray adhesive. Four 30 x 30 cm sheets of liquid crystal were then similarly bonded to the resistive paper. This three-layer sandwich combination was then carefully drilled with 40 holes of 2.5 mm diameter to serve as support points. A continuous length of copper wire was then threaded through the holes in the support plate to create a coil of length 40 cm, diameter 10 cm, and turn spacing 2 cm, having a pitch angle such that $cot\alpha = 15.7$. The coil, which has an induc...
Figure 1. Equipment used by the author to show the electric field distribution on the coated perspex sheet on the right.

The interior region is a uniform shade of blue except near the coil extremities, clearly indicating the uniform nature of the field within the coil. Indeed, the temperature differs by less than 2-3°C over the entire central region of the photograph, which ranges through various shades of blue to shades of green in the original display. Near the ends of the coil, where all the field solutions quoted in this paper are modified by end effects, and hence, are only approximate, the axial electric-field intensity has decreased just enough so that not enough heating is produced to cause a perceivable liquid crystal response.

References

continued from page 78

The Motorola 6800 statements that implement the flow chart are obtained by referring to the 6800 instruction set (see Sept. 1980 issue). As in the case of the 8085, we list them in mnemonic form to the right of each box, and then tabulate them with their machine code, page 77.

Note that a write operation does not reset the status flip-flop, so in the case of the p.i.a. we need to execute a dummy read to clear SFF.

Invitation. Additional problems and solutions in this area are available from Professor D. Zissos, Department of Computer Science, University of Calgary, Calgary, Canada T2N 1N4.

Fig. 8. PIA implementation of the PRINT problem.
LOW-COST PRINTER FOR HOME COMPUTERS

Graphics and lower-case letters are possible on the Amber 2400 printer costing £69.95 excluding v.a.t. The unit prints 24 characters per line on a 58mm-wide plain-paper roll some 90 feet long. Data rates are selectable between 75 and 9600 bits/s. Four horizontally-aligned print solenoids oscillate from side to side, each covering 1/4 of the paper width, under control of the unit's microcomputer, which also handles software routines and allows data input options. The 2400 is primarily intended for use with home computers. Amber Controls Ltd, Central Way, Walworth Industrial Estate, Andover.

FREQUENCY MEASURING D.M.M.

The main difference between this and Fluke's previous hand-held digital multimeters is the inclusion of a frequency measurement function - one of a number of additional facilities made possible by the inclusion of a Sharp 4-bit microprocessor and a cmos measurement-processing circuit designed and manufactured 'in house'. Frequencies from 12Hz to 200kHz are measured on the 8060A in four automatically-selected ranges, with 0.01Hz resolution on the lowest range (200Hz), and indicated on a 4½-digit l.c.d. Alternating voltages may be displayed directly in V r.m.s., in dBm (referred to 600 ohms), or in volts or decibels relative to a previously stored reference. This offset facility may be used with other measurement functions. Direct and alternating voltage, a.c. and d.c. functions are in five ranges, resistance in seven, and decibels in four. Basic d.c. accuracy is 0.04% and sensitivities are 10µV, 10nA and 10mA. A 200mS range may be used to measure resistances up to 10GΩ. Further functions include diode test, audible/visual continuity test and self test. Normally, input impedance on the direct-voltage ranges is 10MΩ, but on the 200mV and 2V ranges, an input impedance of greater than 1GΩ may be selected. Fluke (GB) Ltd, Colonial Way, Watford, Herts WD2 4TT.

ANALOGUE/SWITCHING INTERFACE

This IEEE-bus-controlled interface, manufactured by CIL Microsystems, provides eight analogue inputs, four analogue outputs and four relay-activated change-over switches, for general-purpose control and monitoring applications in research and industry. A concise set of ASCII commands are handled by a 6502 microprocessor, which can also run specific operating programs loaded from the main computer into an optional 4K of ram. Two versions of the PCI 6000 are available, one with eight-bit resolution and one with 12-bit resolution. Facilities include differential inputs and programmable gain, and the relay-contact ratings are 240V and 1A. CIL Microsystems Ltd, Decoy Road, Worthing, Sussex BN14 8ND.

64K EPROM PROGRAMMING ADAPTER

Any eprom programmer suitable for Texas 2532-type devices may be used to program 64K eproms by adding an adapter made by Elan Digital Systems. The E6 adapter has a z.i.f. socket for 2564 or 2764 devices and a ribbon cable terminated by a plug which fits into the existing programmer. Each half of the 64K, selected by a switch, is programmed separately by the existing programmer in the usual manner. All automatic test or editing functions of the existing programmer are retained and an additional feature allows Intel 2732 or 2732A i.c.s to be read through the adapter. Elan Digital Systems Ltd, 16-20 Kelvin Way, Crawley, West Sussex RH11 2TS.

CMOS R.F. SWITCH

The IH3341 is a dual-channel r.f. and video switch with t.t.l. and c.m.o.s.-compatible control inputs, manufactured by Intersil. Each channel has three switch elements, connected in a series/shunt formation, giving an Rmax of less than 75Ω, flat response from 0 to 100MHz and 70dB isolation at 10MHz in the off state. Isolation between the two channels is greater than 60dB at 10MHz. Supply current is less than 1µA and switching speeds are 150ns, on and 80ns, off, giving break-before-make operation. A TO-100 package is used. Intersil Datel Ltd, 9th Floor, Snapprogetti House, Basingstoke, Hants.
EPROM ERASER
Both models in Northern's eprom eraser range cost under £60 excluding vat and can be used to erase up to six devices at once. The latest of these, the UVIT, is basically the same as the earlier UV1B, but with a 10 to 60-minute time switch fitted. Lamp life is quoted as being in excess of 5000h and all models, i.e., those mentioned for 220 to 240V operation and two others for 110 or 240V mains, comply with appropriate British Standards.
Northern Electronics Ltd, 51 Arundel Street, Mossley, Lancs OL5 OLS.
WW306

CODED ROTARY SWITCHES
Miniature rotary switches with ten or 16 positions, giving b.c.d. or hexadecimal outputs, have been added to the Elma range of ceramic wafer switches marketed by Radiatron. Measuring 10 by 10 by 11mm, these switches can be obtained for mounting either horizontally or vertically on a p.c.b. and with either a screwdriver slot or spindle. Gold-plated contacts are used, giving a contact resistance of less than 50mΩ and the contact rating is 50V at 0.2A between -40 and 85°C. Radiatron say that these switches have a life expectancy of more than 10⁴ rotations. Radiatron Components Ltd, 76 Crown Road, Twickenham, Middx.
WW307

32 x 8 BIPOLAR PROM
A 'washed emitter' process has been used to produce two 256-bit Scanzak bipolar proms with typical access times of 9ns. One, the 63S080 has open-collector outputs and the other, the 63S061 has three-state outputs. Applications of these 32 x 8-bit proms include address decoders, priority encoders and random-logic elements in high-speed systems. Monolithic Memories Ltd, Lynwood House, 1 Camp Road, Farnborough, Hants GU14 6EN.
WW308

DISPOSABLE TEMPERATURE INDICATORS
Adhesive dots and strips for recording maximum temperatures are available from Cobonic Ltd. Within a second of reaching the temperature marked on it in both °C and °F, one of five different areas on the labels, or one area on
the dots, changes irreversibly from white to black. There are 40 different temperature levels in the range, from 40 to 260°C, and each sensitive area changes colour at within 1% of the specified temperature. These products are useful for monitoring and recording maximum temperatures in hazardous and inaccessible areas. Cobonic Ltd, Lantern Yard, Ludlow Road, Guildford, Surrey GU2 5NW.
WW309

BROADBAND R.F. PREAMPLIFIER
An r.f. preamplifier providing 9dB gain and suitable for use with low-power transceivers in the range 5 to 200MHz can be obtained from Datong. Send/receive switching is automatic, using r.f. sensing and an internal bypass relay, and the unit is claimed to handle large signals well (intercept point + 20dBm). Applications of the model RFA include private mobile v.h.f. transceivers, marine and aeronautical band reception, scanning receivers and antenna-loss compensation. Datong Electronics Ltd, Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE.
WW310

NON-INVASIVE X-RAY METER
An electronic system for non-invasive measurement of radiation intensity and exposure time in diagnostic X-ray equipment has been developed in Sweden by three researchers at the Chalmers Institute of Technology. The equipment, produced by HB Innova Electronic and called Digi-X, consists of a measurement unit, with parameters, threshold and mode controls, and a detector which is attached to the patient. Peak kilovolt readings are indicated digitally and actual exposure time is calculated from previously stored threshold values selected by the operator. The system may also be used to check beam quality and, with an option, be used to calculate current and mAs values. HB Innova Electronic, Box 25062, S40031 Gothenburg, Sweden.
WW311

METALLIZED-FILM CAPACITORS
Extensions in Rifa's range of metallized polypropylene capacitors have been made to include the PHF425 series. These components, with values ranging from 1.5 to 135nF, are relatively small since they incorporate a 4µm-thick metallized film. Capacitance tolerances are 1%, 2%, or 5% and insulation resistance is claimed to be better than 200GΩ at 20°C, 10V. Working voltages, dependent on value, may be 200, 100 or 63V, direct. Rifa AB, Market Chambers, Shelton Square, Coventry.
WW312

T.T.L.-OUTPUT PATTERN GENERATOR
A hand-held pattern generator providing t.t.l.-compatible red, green and blue signals for servicing monitors and video displays is manufactured by Sedela. Eight patterns are produced, colour bars, red, green, blue and white rasters, grey scale, cross-hatch and vertical lines, and the unit may be used for
up to four hours from one battery charge. The RGB11 is intended for servicing of commercial and hobby v.d.u.s, including video games, and c.c.t.v. monitors. House of Instruments, Clifton Chambers, 62 High Street, Saffron Walden, Essex CB10 1EE.
WW313

Professional readers are invited to request further details on items featured here by entering the appropriate WW reference number(s) on the mauve reply-paid card.

82
WIRELESS WORLD AUGUST 1982
The Professional Choice

AMCRON

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide – wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power amplification. For power you can depend on - choose AMCRON, the professional choice.

For further details contact the UK Industrial distributor:

G.A.S. ELECTRONICS
16, ST. ALFEGE PASSAGE, LONDON SE10
TELEPHONE: 01-853 5295
TELEX: 923393 LASF.R G
MEMOTECH Explores the Excellence of your ZX81

MEMOTECH's Memopak Range

All five of the currently available Memopaks are housed in elegant black anodised aluminium cases, and are styled to fit wobble-free onto the back of the ZX81, allowing more add-ons (from Memotech or Sinclair) to be connected.

MEMOPAK 64K MEMORY EXTENSION
The 64K Memopak extends the memory of the ZX81 by 56K, and with the ZX81 gives 64K, which is neither switched nor pagged and is directly addressable. The unit is user transparent and accepts commands such as 10 DIM A(0000).

Breakdown of memory areas: 0-8K Sinclair ROM. 8-16K. This area can be used to hold machine code for communication between programmes or peripherals. 16-64K-A straight 48K for normal Basic use.

MEMOPAK 32K and 16K MEMORY EXTENSIONS
These two packs extend and complete the Memotech RAM range (for the time being)! A notable feature of the 32K pack is that it will run in tandem with the Sinclair 16K memory extension to give 48K RAM total.

MEMOPAK HIGH RES GRAPHICS PACK
HRG Main Features — * Fully programmable Hi-Res (192 x 248 pixels) * Video page is both memory and bit mapped and can be located anywhere in RAM. * Number of Video pages is limited only by RAM size (each takes about 6.5K RAM) * Instant inverse video on/off gives flashing characters * Video pages can be superimposed * Video page access is similar to Basic plot/unplot commands * Contains 2K EPROM monitor with full range of graphics subroutines controlled by machine code or USR function

MEMOPAK CENTRONICS TYPE PARALLEL PRINTER INTERFACE
Main Features — * Interfaces ZX81 and parallel printers of the Centronics type * Enables use of a range of dot matrix and daisy wheel printers with ZX81 * Compatible with ZX81 Basic, prints from LLIST, LPRINT and COPY

MEMOPAK RAM, HI-RES GRAPHICS, CENTRONICS I/F

£68.70
plus VAT

£43.43/£26.00
plus VAT

£52.00
plus VAT

£34.70
plus VAT

£68.70 + £10.30 VAT
£68.70

£43.43 + £6.52 VAT
£49.95

£26.00 + £3.90 VAT
£29.90

£52.00 + £7.80 VAT
£59.80

£34.70 + £5.20 VAT
£39.90

PACKAGING & POSTAGE £2.00 per unit

£79.00

£49.95

£29.90

£59.80

£39.90

Coming Soon...

A complete range of ZX81 plug-in peripherals

Please make cheques payable to MEMOTECH Ltd.

We regret we are as yet unable to accept orders or enquiries concerning the above products, but we'll let you know as soon as they become available.

Please send me

<table>
<thead>
<tr>
<th>Please Debit my Access/Barclaycard account number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please delete whichever does not apply</td>
</tr>
<tr>
<td>SIGNATURE</td>
</tr>
<tr>
<td>Total ENC</td>
</tr>
</tbody>
</table>

Please Debit my Access/Barclaycard account number

Please make cheques payable to MEMOTECH Ltd.

We want to be sure you are satisfied with your Memopak - so we offer a 14-day money back Guarantee on all our products. Memotech Limited, 3 Collins Street, Oxford OX4 1XL, England Tel: Oxford (0865) 722102 Telex: 837220 Orchid G

WIRELESS WORLD AUGUST 1982

WW - 019 FOR FURTHER DETAILS

85
MINI-MULTI TESTER NEW

Time's running out... for Ni-Cads!

NEW NEC SUPERCAPS

Available from stock now!

- **1.0 FARAD**
- **1.0 FARAD**
- **1.0 FARAD**

19" Rack Mounting Cabinet — Or Free Standing

OFFER ENDS SOON

£23.95

£19.50

Ask for our FREE Catalogue

Slide switches

1P2T	10p
2P2T pcb	12p
2P2T	12p
2P3T	
1P4T pcb	26p
4P2T pcb	28p
4P3T pcb	35p
8P2T pcb	40p
8P3T pcb	50p
8P4T pcb	55p

Bridge WO-006 16p

SLIDE SWITCHES

- e - 102D x 56H x 83L (mm)
- b - 150D x 81H x 103L (mm)
- c - 150D x 76H x 134W (mm)
- d - 146D x 70H x 160L (mm)

There are beautifully manufactured cabinets with an aluminium front and 18 gauge steel sides. They come fitted with rubber feet that provide perfect stability. They have an attractive two tone finish. They make excellent cabinets for power supplies, remote control units and many more projects.

Mains Isolators

- **40/440V Isolators**
- **190-220V Isolators**
- **380V Isolators**

CASED AUTOS

240V cable input up to 15A output

- **7-5-7.5V 15WCT**
- **10-10W 15WCT**
- **15-15W 20WCT**
- **20-20W 25WCT**
- **25-25W 30WCT**

TRANSFORMERS

- **Despatch by return**
- **Continuous Ratings**

New Parts You Need

Components

TORRIDONS NOW AVAILABLE

EX-STOCK

30VA 60VA 100VA 160VA 230VA 330VA 530VA

Send stamp for list

OTHER PRODUCTS

- **AVO TEST METERS**
- **Avo Meter**
- **Antex Soldering Irons**
- **BRIDGE RECTIFIERS**

- **Mains Battery Eliminators**
- **Panel Meters**
- **Metal Oxide Resistors**

Barrie Electronics Ltd.

3 THE MINORIES, LONDON EC3N 1BJ

WIRELESS WORLD AUGUST 1982

WW -062 FOR FURTHER DETAILS
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HARRITT PACKARD RMS Voltmeter type 3640A, 10K-204MHZ</td>
<td>£75</td>
</tr>
<tr>
<td>2</td>
<td>BRANSON SIGNAL GENERATOR type KSR201 1-100KHZ</td>
<td>£25</td>
</tr>
<tr>
<td>3</td>
<td>REWINETT PACKARD AUDIO SIGNAL GENERATOR type KSR201 1-100KHZ</td>
<td>£25</td>
</tr>
<tr>
<td>4</td>
<td>CLARKS VIBRATING AUTOMATIC VOLTAGE STABILIZER 250V, Compuad</td>
<td>£25</td>
</tr>
<tr>
<td>5</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>6</td>
<td>250 MHz Dual Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>7</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>8</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>9</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>10</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>11</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>12</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>13</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>14</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>15</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>16</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>17</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>18</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>19</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>20</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>21</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>22</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>23</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>24</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>25</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>26</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>27</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>28</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>29</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>30</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
<tr>
<td>31</td>
<td>TESLA DUAL Trace oscilloscope type TDM 1-100MHZ. 50 Watts 50 units.</td>
<td>£25</td>
</tr>
<tr>
<td>32</td>
<td>TESLA DUAL Trace oscilloscope. 250 MHz Dual Trace oscilloscope</td>
<td>£25</td>
</tr>
</tbody>
</table>

INDUSTRIAL MUSCLE
AT A REALISTIC PRICE

- POWER BANDWIDTH DC to 100KHz + 1db
- OUTPUT POWER IN EXCESS OF 500 WATTS PER CHANNEL INTO 2 OHMS OR IN EXCESS OF 1KW SINGLE CHANNEL IN BRIDGE MODE INTO 6 OHMS
- HARMONIC DISTORTION LESS THAN 0.01% DC TO 100KHz AT 1KW INTO 6 OHMS
- INTERFACE BOARDS CAN BE CUSTOM DESIGNED AND BUILT TO CATER FOR A WIDE RANGE OF SPECIALISED USES
- OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
- UNCONDITIONALLY STABLE INTO ANY LOAD
- BASIC PRICE INCLUDING BRIDGE MODE SWITCHING AND HANDLES £455

S & R AMPLIFICATION
6 Tanners Hill, London S.E.8
Telephone: 01-692 2009

HF ANTENNAS

- MODE: Full half wave operation
- BANDS: Up to 4 spot frequencies.
- POWER: Receive to 800W (PEP).
- SWR: Better than 1.5:1 on channel.

THE SMC TRAPPED DIPOLE ANTENNA

has been developed to satisfy the needs of commercial and military users. It is capable of operation between 2 and 30 MHz on as many as four spot frequencies – each capable of accommodating many channels. Excellent matching and efficiency with a single coaxial feed is offered by the use of SMC H10 traps and the incorporation of a ferrite balun in a full half wave design. NB: Power absorbing terminating resistors are not employed. The antenna may be deployed using one or two support masts, installation incorporating SMC light duty portable masts can be easily effected by two people in half an hour.

SOUTH MIDLANDS COMMUNICATIONS LTD.

OSBORNE ROAD, TOTTON
SOUTHAMPTON SO4 4DN

Tel: Totton (0703) 867333

VIDEO TECHNIQUES

by Gordon White

- AN INTRO. TO THYRISTORS AND THEIR APPLICATIONS
- by M. Runnymarey
- DIGITAL ICs—HOW THEY WORK AND HOW TO USE THEM
- by A. W. Barber
- SERVICING RADIO, HI-FI AND TV EQUIPMENT
- by D. J. King
- W/B OF PRACTICAL ELECTRONIC CIRCUITS
- by D. Lank
- ELECTRONIC TEST EQUIPMENT OPERATION AND APPLICATION
- by A. M. Rudo
- ELECTRONIC COMPONENTS AND SYSTEMS
- by W. H. Dawning
- TOWERS’ INTERNATIONAL TRANSISTOR SELECTOR
- by F. D. Towers
- ELECTRONIC CIRCUITS AND APPLICATIONS
- by R. Grab
- INTRODUCTION TO RADIO FREQUENCY DESIGN
- by W. H. Hayward

THE MODERN BOOK CO.

Specialist in scientific and technical books

19/21 PRAED ST., LONDON W2 1NP

Telephone: 01-402 9176 (Closed SUNDAY) 10am.

WIRELESS WORLD AUGUST 1982

FANS - BLOWERS

Small type blower with inset mains motor, Smiths...
Extraction fan, 8", Wood, ex computer...
Tangential blower, 10 x 3" air outlet, Dual speed,...
Condenser operated...Main motor...

LIGHTING & POWER CABLES

Cooper Clad, PVC sheathed, Made to Volex to BSS...
1.5mm flat single per 100 metres...
1.5mm flat 3 core & E per 100 metres...
6mm flat 3 core per 100 metres...
6mm flat twin & E per 100 metres...
Telephone and multiway cables, Reliance as used by GPO...
10 core per 200 metres...
5 core per 200 metres...

THERMOSTATS & HEAT SWITCHES

Thermostat: 3 level, contact type...
10 amp appliance type thermostat, Spindle adjust...
Contact type with changeover, 10 amp switches, 0 - 100°C...
Wall mounting, metal case, c/o contacts low voltage...

TIMERS & CLOCK SWITCHES

Time and set switches, Smiths, Glass fronted 26 Amp, 230 volts...
24 hour time switch, 100 amp...
Smalls with clockwork reserve...
Ex Electricity Company, £5.50...
Cocke clock switch, Smiths...
12 hour...
Clockwork operated switches:...
15 amp, 230 volt, On time up to...
10 minutes...
20 minutes...
120 minutes...
260 minutes...
OMRON timer, rel STP, MFI...

WIRES & CABLES

3 core and screened power flex cable...
3 cores each 10.025 gauge, 2.5mm per metre...
3 cores each 30.025 gauge, 1.5mm per metre...
3 cores each 40.02 gauge, 1mm per metre...
Armoured Cables: 1.5mm, 3 core...
Extension Leads: Twin, 5mm rubber covered 1000 metres...
2 core 100 metre...
FIGURE 8 FLEX Heavy Duty: 75mm 100 metre...
FIGURE 8 FLEX per 100 metres...

FAN, BLOWER & BLOWERS

Tangential Blower. 10 x 3" air outlet. Dual speed, Smiths...
Snail type blower with inset mains motor, Smiths...
Omron mini timer, 120 minutes...
Clockwork operated switches...
Cooker clock switch, Smiths...
Ex - Electricity Company...
Smiths with clockwork reserve...
24 Hour time switch...
Time and set switches, Smiths, Wall mounting, metal case, c/o contacts low voltage...
Thermostat: 3 level, contact type...

PROJECT BOXES - CASES - CABINETS

Black plastic boxes, 2 7/8 x 1 1/8 x 1 3/4 deep...
Ditto, 2 1/2 x 2 3/4 x 1 1/8 deep...
Ditto, 2 1/2 x 2 3/4 x 3 1/2 deep...
Ditto, 5 1/2 x 2 1/2 x 3 deep...
Ditto, 5 1/2 x 2 1/2 x 4 deep...
White plastic box ideal for touch switch, transformer, etc...
Through top is square hole, 3 x 3 x 3/8...
Loudspeaker cabinet for 6 1/2" speaker...
PORTABLE RADIO CASE - 5", speaker, size approx 6 1/4 x 3 3/4 x 2 3/4 deep...

COUNTERS

6 digit counter, Mains operated, Not resettable...
Ditto, But even numbers only...
6 digit counter, 16v DC, 11v AC, Re-settable...

SOLENOIDS - BATTERY & MAINS

Mains operated with plunger, Round small...
Oblong small...
Round small...
Loudspeaker cabinet for 6 1/2" speaker, 3 7/8 x 3 3/8 x 1 deep...
3 5/8 x 2 3/4 x 1 3/4 deep...
4 5/8 x 2 5/8 x 1 deep...

MOTORS - MAINS & BATTERY

3 - 6 volt battery motor, very small...
3 - 12 volt battery motor, very low current...
Mains motor with gear box...
90 rev minute...
110 rev minute...
200 rev minute...

Mains motor, double ended fan motor...
Ditto, single ended fan motor...
Fan trade for the above...
Mains motor, double ended, very powerful 1 1/2" stack...
Mains instrument motors...
1 rev 24 hours...
1 rev 1 hour...
4 rev minute...
2 rev minute...
1 rev minute...

MOTORS - MAINS & BATTERY

3 - 6 volt battery motor, very small...
3 - 12 volt battery motor, very low current...
Mains motor with gear box...
90 rev minute...
110 rev minute...
200 rev minute...

Mains motor, double ended fan motor...
Ditto, single ended fan motor...
Fan trade for the above...
Mains motor, double ended, very powerful 1 1/2" stack...
Mains instrument motors...
1 rev 24 hours...
1 rev 1 hour...
4 rev minute...
2 rev minute...
1 rev minute...

MOTORS - MAINS & BATTERY

Mains motor, double ended fan motor...
Ditto, single ended fan motor...
Fan trade for the above...
Mains motor, double ended, very powerful 1 1/2" stack...
Mains instrument motors...
1 rev 24 hours...
1 rev 1 hour...
4 rev minute...
2 rev minute...
1 rev minute...

MOTORS - MAINS & BATTERY

Motor, clockwork, set up to 1 hour...
Motor, clockwork, set up to 1 hour with ringer...
Mains motor with end stop switches...
12 volt motors...
Smiths, single ended 3/4" spindle...
12 volt motors...
Smiths, double ended 3/4" spindle...
12 volt motors, P Magnet type, single ended...
1/6 h.p. motor 4350 rpm 100 volt, 50Hz...

RELAYS & RELAY BASES

Standard open relays 3 x 8 amp c/o contacts...
6 volt ac coil...
110 volt ac coil...
24 volt dc coil...
26 volt ac coil...
50 250 volt ac coil...
50 50 volt ac coil...
90 110 volt ac coil...
24 volt ac coil...
50 volt ac coil...
60 12 volt ac coil...
110 volt ac coil...
12 volt ac coil...
60 12 volt dc coil...
110 volt ac coil...
12 volt ac coil...
30 6 volt dc coil...
110 volt ac coil...
12 volt ac coil...

INTERFERENCE SUPPRESSORS

Supressor, 1 mfd 250v 50Hz side tap metal case...
Condensors: 1 mfd x 2 x 0.0005 mfd side tap Metal Gasket...
2 mfd x 2 x 0.0005 mfd metal case...
Choke/appliance combination, stops mains interference...
To equipment, up to 15 amps, Stud or clip mounted...

MOTORS - MAINS & BATTERY

Motor, clockwork, set up to 1 hour...
Motor, clockwork, set up to 1 hour with ringer...
Mains motor, h.p. 4.125, ex computer...
Vent opening motor with end stop switches...
12 volt motors...
Smiths, single ended 3/4" spindle...
12 volt motors, Smiths, double ended 3/4" spindle...
12 volt motors, P Magnet type, single ended...
1/6 h.p. motor 4350 rpm 100 volt, 50Hz...

POWER SUPPLY UNITS

In car, 12 volt for radios 6 volt equipment...
Mains to 24 volt Mullard, Stereo...
Mains to 12 volt...
Mains to 50 volt 120 volts...

WIRELESS WORLD AUGUST 1982
Approximately 100 tons of stock has to be cleared right away from our big store, hence these very low price offers. Prices quoted are for bulk orders, minimum order £100, minimum any item £25. VAT and carriage are extra, although large orders not too far away will be delivered free. Contact us on this point.

Should you want a small quantity of any of the items as samples, for instance, then send listed price x 2, which will cover the VAT and postage on letter post items. For heavy items, add the amount you think, bearing in mind that the smallest parcel now costs £1.35 and a 10 kilo parcel £3.25.

We have managed to list most of the items in the store we have to empty. All goods are offered subject to being unsold and the conditions of sale are as stated, but should you want more information, please contact Mr. Bull or Mr. Stepney at Haywards Heath between 12 and 4pm. On Haywards Heath (0444) 454663.

J. BULL (Electrical) Ltd.
(Dept. WW), 34 - 36 America Lane, Haywards Heath, Sussex RH16 3QW.

We have managed to list most of the items in the store we have to empty. All goods are offered subject to being unsold and the conditions of sale are as stated, but should you want more information, please contact Mr. Bull or Mr. Stepney at Haywards Heath between 12 and 4pm. On Haywards Heath (0444) 454663.

J. BULL (Electrical) Ltd.
(Dept. WW), 34 - 36 America Lane, Haywards Heath, Sussex RH16 3QW.

We have managed to list most of the items in the store we have to empty. All goods are offered subject to being unsold and the conditions of sale are as stated, but should you want more information, please contact Mr. Bull or Mr. Stepney at Haywards Heath between 12 and 4pm. On Haywards Heath (0444) 454663.

J. BULL (Electrical) Ltd.
(Dept. WW), 34 - 36 America Lane, Haywards Heath, Sussex RH16 3QW.

We have managed to list most of the items in the store we have to empty. All goods are offered subject to being unsold and the conditions of sale are as stated, but should you want more information, please contact Mr. Bull or Mr. Stepney at Haywards Heath between 12 and 4pm. On Haywards Heath (0444) 454663.

J. BULL (Electrical) Ltd.
(Dept. WW), 34 - 36 America Lane, Haywards Heath, Sussex RH16 3QW.

We have managed to list most of the items in the store we have to empty. All goods are offered subject to being unsold and the conditions of sale are as stated, but should you want more information, please contact Mr. Bull or Mr. Stepney at Haywards Heath between 12 and 4pm. On Haywards Heath (0444) 454663.
Machine Intelligence

In more ways than one, human intelligence and judgement are being built into software. Predictions from time series data, games strategies, pattern recognition... we look at these three examples of “intelligent” programs in our August issue, out now.

We review the Televideo 802 (a hard disc computer for businessmen), and the Sharp PC 1500 (a pocket micro for engineers and scientists).

And we examine stock control on an Apple and a portable version of the ever-popular Invaders game.

FOR ALL THIS AND MUCH MORE BUY PRACTICAL COMPUTING, BRITAIN'S LEADING PERSONAL COMPUTER MAGAZINE.

AUGUST ISSUE OUT NOW
80p AT YOUR NEWSAGENT'S – BUT HURRY
WIRELESS WORLD AUGUST 1982

D&M MARKETING Ltd.

SERIES 600

The D&M SERIES 600 range of professional mixing consoles has its way into hundreds of (hospital) broadcast studios, discotheques, clubs, entertainment and outdoor Public Address systems and recording studios. Available in 6, 12, 18 or 24 channel configuration with, as standard, separate beltel Street, main line, mini line, microphone inputs, gain, three band tone controls, two auxiliary lines, pan-pot and linear fader, plus pre-fade-listening and overload LED per channel. The output section includes four master faders, echo return and phones controls and two large V.U. meters. Optional XLR-3 connectors, 48 volt phantom powering, stereo channels with R.I.A. correction, talkback, fader controlled start switches, balanced outputs and 24 volt D.C. mains powering are available.

D&M Electronica was founded over 10 years ago with the aim of developing and manufacturing high quality mixing consoles for the studio and entertainment industry with a special emphasis on value for money design engineering. The result is a range of five basic models with a large number of characteristics, specifications and options. All models are highly flexible in use and give the best quality possible at today's state of technology.

D&M SERIES 600 — A small mixer specially designed for four track recording
D&M SERIES 600 — A range of mixers for live amplification, broadcast studios and two track recording.
D&M SERIES 400 — In-Line" mixing consoles for budget 4, 8 or 16 track recording.
D&M SERIES 1000 — A range of comprehensive "In-Line" consoles for professionals.
D&M SERIES 8000 — Top of the range "In-Line" consoles with integral patch bay for top configurations.

Please complete this coupon for further detailed information.

D&M ELECTRONICS LTD. 9-10 Chapel Street, Marylebone London NW1 5DN 21-23 Bell Street, London, NW1 026-7252 & 01-723-7651

WIRELESS TRADE AUGUST 1982

D.S.N. MARKETING LTD, Westmorland Road, London NW9 9RJ Telephone: 01-204 7246, Telex: 994 4243, Trade, Wholesale, O.E.M. & Export enquiries welcome.

Please add VAT.

SERIES 600/12 CONSOLE

D&M Electronica was founded over 10 years ago with the aim of developing and manufacturing high quality mixing consoles for the studio and entertainment industry with a special emphasis on value for money design engineering. The result is a range of five basic models with a large number of characteristics, specifications and options. All models are highly flexible in use and give the best quality possible at today's state of technology.

D&M SERIES 200 — A small mixer specially designed for four track recording
D&M SERIES 400 — A range of mixers for live amplification, broadcast studios and two track recording.
D&M SERIES 400 — In-Line" mixing consoles for budget 4, 8 or 16 track recording.
D&M SERIES 1000 — A range of comprehensive "In-Line" consoles for professionals.
D&M SERIES 8000 — Top of the range "In-Line" consoles with integral patch bay for top configurations.

Please complete this coupon for further detailed information.

D&M ELECTRONICS LTD. 9-10 Chapel Street, Marylebone London NW1 5DN 21-23 Bell Street, London, NW1 026-7252 & 01-723-7651

WIRELESS TRADE AUGUST 1982

D.S.N. MARKETING LTD, Westmorland Road, London NW9 9RJ Telephone: 01-204 7246, Telex: 994 4243, Trade, Wholesale, O.E.M. & Export enquiries welcome.

Please add VAT.

SERIES 600/12 CONSOLE
FREQUENCY METERS

- 8 digit:
 - Convenient single input for entire range
 - Big easy to read LED display
 - Excellent sensitivity
 - 10 MHz crystal controlled timebase
 - Battery or mains operated
 - 3 switch selectable gate times
 - Leading zero suppression

8110A... 20Hz-100MHz... £67
8610A... 20Hz-500MHz... £82

9 digit:
- 9 digit resolution for more precise readings
- Excellent 30mV sensitivity up to 1GHz
- 3 switch selectable gate times
- 10 MHz crystal controlled timebase
- 2 separate inputs for added sensitivity
- Front panel sensitivity control
- Battery or mains operated

8610B... 10Hz-600MHz... £99
8000B... 10Hz... 1000MHz... £155

VHF FM MOBILE RADIO

* And it's British!

MODEL

- CT210
 - APPROVED TO MPT 1301
 - MODULAR CONSTRUCTION
 - RANGE OF ACCESSORIES

Export and Dealer Enquiries Welcome

COM-TEK (MIDS) LTD.

506 Alum Rock Road - Birmingham B8 3HX

Telephone: 021-326 6343 Telex: 337000

UNITS

- **TYPE 9045**
 - VMS WIDEBAND LINEAR POWER AMPLIFIER.
 - 30 MHz - 60 MHz, without tuning; 8 watts max. RF output. Increases gain by 10 times.
 - POST AND PACKING £2.00

- **TYPE 9050**
 - VMS WIDEBAND LINEAR POWER AMPLIFIER.
 - 20-200 MHz, 9 watts max. RF output.
 - POST AND PACKING £4.50

- **TYPE 9054**
 - VMS LINEAR POWER AMPLIFIER, 20 watt RF output.
 - POST AND PACKING £6.50

- **TYPE 9030**
 - WIDEBAND RF PREAMPLIFIER, 1.0 kHz - 100 MHz. N.F. 1.0 dB. Gain 40 dB.
 - POST AND PACKING £22.50

- **TYPE 9055**
 - 1500 MHz. FREQUENCY Divider by 10. Divides input frequencies by 100 times.
 - POST AND PACKING £1.50

- **TYPE 9025**
 - RF PREAMPLIFIER. Adjusted to your specified frequency in the range 1-250 Mhz. N.F. 1.0 dB. Gain 40 dB.
 - POST AND PACKING £1.50

- **TYPE 9025/FM BAND II** 88-108 MHz. N.F. 1.0 dB. Gain 40 dB.
 - POST AND PACKING £1.50

COMPONENTS

- **GAMSET Transistors NEC NE 72089 N.F. 0.6 dB, at 500 Mhz. 0.8 dB, at 1.3 Ghz. 1.3 dB, at 4 GHz.
- **HF Dual-Gate Mosfet BF 160 N.F. 2.5 dB, at 800 Mhz. Gain 18 dB.
- **RCA 40873 Model 50p Varicap.
- **BF 181**
 - Thomson-CSF BB204 80p
 - Motorola MV 104 80p
 - TISBBA 50p

HANDHELD MULTIMETERS

High quality, precision 3½ digit LCD DMMs with excellent performance value 2033... £36.75
- AC/DC 100V-1000V
- AC/DC 10V-2A
- Ohms 1(1-20MΩ)
- 2035... £62
- AC/DC 100V-1000V
- AC/DC 0.1(1-2A)
- Ohms 0.1(1-20MΩ)

Add 15% V.A.T. on all prices - prices correct at 1-5-82 - E&OE cash with order or credit card - carriage £5 for Express Delivery

If you are interested in a particular article/ special feature or advertisement published in this issue of WIRELESS WORLD why not take advantage of our reprint service. Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)

For further details contact Michael Rogers, Reprints Department, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

To Michael Rogers, Reprints Department, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

I am interested in copies of the article/advertisement headlined featured in WIRELESS WORLD on page(s) in the issue dated.

Please send me full details of your reprint service by return of post.

Name
Company
Address
Tel No

WIRELESS WORLD AUGUST 1982
LEVELL ELECTRONICS have a range of OSCILLATORS covering frequencies from 0.02Hz to 2MHz. There is a DECADE OSCILLATOR with digital frequency tuning and a FUNCTION GENERATOR providing sine, square, triangle, pulse, sawtooth, ramp and asymmetrical sine waves. Various RC OSCILLATORS are available as detailed below.

TG200 SERIES

| FREQUENCY, 3Hz to 300kHz in 5 decade ranges. | ACCURACY, ±2.0% ±0.1Hz to 100kHz, increasing to ±3% at 300kHz. |
| SINE OUTPUT, 2.5V r.m.s. down to <200mV. |
| DISTORTION, <1% at 1Hz and 1MHz. |
| SQUARE OUTPUT, TG200D, DM & DMP only, 7V peak down to <200mV. |
| SYNC OUTPUT, 2.5V peak down to <200mV. |
| SYNC INPUT, <1V r.m.s. sine in phase with output. |
| METER SCALES, ±1% freq. lock range per volt r.m.s. |
| SINE OUTPUT, TG200D, DM & DMP only, 7V peak down to <200mV. |
| DISTORTION, <1% at 1Hz and 1MHz. |
| SQUARE OUTPUT, TG200D, DM & DMP only, 7V peak down to <200mV. |
| SYNC OUTPUT, 2.5V peak down to <200mV. |
| SYNC INPUT, <1V r.m.s. sine in phase with output. |
| METER SCALES, ±1% freq. lock range per volt r.m.s. |

TG152 SERIES

| FREQUENCY, 3Hz to 300kHz in 5 decade ranges. | ACCURACY, ±2.0% ±0.1Hz to 100kHz, increasing to ±3% at 300kHz. |
| SINE OUTPUT, 2.5V r.m.s. down to <200mV. |
| DISTORTION, <1% at 1Hz and 1MHz. |
| SQUARE OUTPUT, TG200D, DM & DMP only, 7V peak down to <200mV. |
| SYNC OUTPUT, 2.5V peak down to <200mV. |
| SYNC INPUT, <1V r.m.s. sine in phase with output. |
| METER SCALES, ±1% freq. lock range per volt r.m.s. |

LEVELL ELECTRONICS LTD.

Moxon Street, Barnet, Herts. Tel. 01-449 5028/440 8686

WW - 006 FOR FURTHER DETAILS
ELECTRIC SHOCK

2 WAYS TO RECOVERY

ACT AT ONCE - DELAY IS FATAL

Display the ELECTRICAL REVIEW shock first aid chart (356x508mm) supplied in thousands to destinations world-wide. Recent deliveries include consignments to companies in Papua New Guinea, Dubai, United Arab Emirates, The Philippines, apart from UK commercial and industrial, educational, Central Government, Local Authorities’ orders.

Carry the ELECTRICAL REVIEW pocket-size shock card (92x126mm) designed to help safety and training officers, medical and welfare personnel; all who might find themselves called to save a life. Always pocket your card; there’s a useful two-year calendar on the back.

GET IT – READ IT – PRACTISE 1-4

BE READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS.

ACT AT ONCE—DELAY IS FATAL!

To IPC Electrical-Electronic Press Ltd., General Sales Department, Room 205, Quadrant House, Sutton, SM2 5AS, Surrey, England.

Company registered in England No 677128. Registered Office Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Please send copy/copies as indicated
Pocket Card @ 70p each inc VAT
Paper Chart @ 70p each post free
Card Chart @ £1.40 each post free
Plastic Chart @ £2.10 each post free

Discounts: 100 + copies 10%
500 + copies 15%

(Overseas surface and air mail rates supplied on application.)
BRITAIN'S BETTER BARGAIN STILL IN WORLD-WIDE DEMAND

WIRELESS WORLD CIRCARDS at 1976 prices 10% discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

Fill gaps in your circuit files with these sets of 127 x 204 mm cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)

To IPC Electrical – Electronics Press Ltd. General Sales Department, Room 205, Quadrant House, Sutton, Surrey SM2 5AS

Please send me the following sets of Circards: ..£2 each, £18 for 10 post free. Remittance enclosed payable to IPC BUSINESS PRESS LTD.

Name (Please print) ..
Address (Please print) ..
WIRELESS WORLD AUGUST 1982

- **Numeric Pad**
 - VP506 Serial, RS232, 20MA and TTL
 - VP611 Same as VP601 with definable keys, upper/lower case, rollover including full ASCII 128 character set, user Guaranteed in excess of 5 million operations.

- **Free Standing Keyboards**
 - Meet all requirements of the most exacting user, right down to the freestanding keyboards.
 - Made by the world compatible brand new from £2,950.

- **ASCII Coded Keyboards**
 - Post, Packing and Insurance price £32.00 our price £12.95
 - Uses a brushless DC servo motor almost silent.
 - BUHLER 69.11.22 micro miniature 8-16 v DC motor £9.95
 - Complete with finger guard. Makers price £16.95 + VAT.

- **Cooling Fans**
 - Keep your “Hot Parts” cool and reliable with our COOLING FANS.
 - RCA FULLY CASED CENTRONS
 - PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition. Outputs give 5v @ 11 amps, +"15-17v @ 8 amps. -"15-17v @ 8 amps. Crowbar overvoltage protection and current limit. Fully tested. Dim 70 x 165 x 320 mm. Complete with Circuit only £/2.95 + VAT. POWER ONE CP143 super compact unit giving continuous output of 5v @ 5 amps. +5v @ 2 amps. -"12v @ 300 ma. Crowbar overvoltage protection and trip switch, ‘power on’ and ‘run’ LED’s, aluminium heat sink and twin fan cooling. Mainsfiltering and twofan cooling. £11.50 + £9.50 carrier.
 - DOUBLE SIDED 2.5kIsE £4425 + pp £1.25
 - 10kΩ±1% 100 ma 5v £11.50 + pp £4.75
 - 10kΩ±1% 10 ma 5v £11.50 + pp £4.75
 - 10kΩ±1% 100 ma 5v £11.50 + pp £4.75
 - 10kΩ±1% 10 ma 5v £11.50 + pp £4.75

- **Semiconductor 500 DATA MODEMS**
 - Join the communications revolution with our standard EX GPO 29A/2b DATA MODEMS.
 - Power supply £55.00 + £4.50 carrier.
 - MINI SYSTEM PSU Ex Equiment unit ideal for the small micro. Outputs give 5v @ 3 amps, +12v @ 1 amp and -12v @ 300 ma. Crowbar overvoltage protection and current limit. Fully tested. Dim 70 x 165 x 320 mm. Complete with Circuit only £12.95 + VAT. SEMI 1950A. 8400 double sided £64.26 + £11.75 carrier.
 - IT’S THE FIRST FREE of charge, 24 hr, public access data base. Get information on 1000’s of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON’T MISS THOSE BARGAINS CALL NOW, IT’S FREE. 0-1-683-1133. 7 days per week. 8.45 pm to 6.45 pm.

- **COMPUTER ‘CAB’**
 - All in one system computer cabinet.
 - Interchangeable with most ASCII. Ideal for use with DEC PDP computers. System costing 100’s of pounds, and designed to run 24 hours per day. The PSU is fully recessed and will deliver a mains filtered +11v DC at 15v and 15v at 15v. The unit is fully guaranteed with no problems. PDA 15v will be used for data filtering, trip switch, ‘power on’ and ‘run’ LED’s, aluminium heat sink and rear cable entry panel. Full professional finish for only £49.95 + VAT. - Dimension 19” deep 10.5” wide 11” high. The front panel is hinged on the right hand side to allow full access to the front panel with 8.10” wide 10.2” deep. Paper and line 120 columns. Features include: 1024 x 1024 x 1024 columns. Open heart software surgeon. Copies, ASCII CODED KEYBOARDS and SEMICONDUCTOR LAYERED Cadmium.

- **Rechargeable Batteries**
 - CYCLONE type DOE sealed lead acid maintenance free 2.5v 2,500mah. Will deliver up to 3 years on short circuit and New at only £24.95 + VAT.
 - $15.00 £2.95 + VAT. Battery 12v 2.5kIs £11.50 + £9.50 carrier. Contents 110 cc.

- **Data Pumps**
 - EXPERIMENTORS Pitt, Ex -GPO unit all silicon electronics. Outputs give +5v @ 2 amps. -"12v @ 300 ma. Crowbar overvoltage protection and filter circuitry. RS232 serial interface. 110v 50/60 Hz operation. £25.00 + £9.95 carrier.

- **Tangerine Ohio etc**
 - IDEAL PRINTERS
 - DATA MODEMS
 - Flexible package安宁 for most ASCII. Ideal for use with DEC PDP computers. System costing 100’s of pounds, and designed to run 24 hours per day. The PSU is fully recessed and will deliver a mains filtered +11v DC at 15v and 15v at 15v. The unit is fully guaranteed with no problems. PDA 15v will be used for data filtering, trip switch, ‘power on’ and ‘run’ LED’s, aluminium heat sink and rear cable entry panel. Full professional finish for only £49.95 + VAT. Dimension 19” deep 10.5” wide 11” high. The front panel is hinged on the right hand side to allow full access to the front panel with 8.10” wide 10.2” deep. Paper and line 120 columns. Features include: 1024 x 1024 x 1024 columns. Open heart software surgeon. Copies, ASCII CODED KEYBOARDS and SEMICONDUCTOR LAYERED Cadmium.

- **Softy**
 - The amazing SOFTY 2. The complete “toolkit” for the open heart software surgeon. Copied Displays. Emulates ROM and EPROMS of the 2516,2532 variety. Many other features including multi clock, multi language, hardware interface etc. Functions exceed capabilities of unit as new. £149.00 + VAT. Data sheet on request.
AMPEX
SYSTEM MAINTENANCE ENGINEER

to join a resident team at a site of EXCEPTIONAL INTEREST situated in the St. James’s Park area of London. The team is responsible for round-the-clock maintenance of a large INFORMATION STORAGE AND RETRIEVAL SYSTEM WHICH COMBINES both VIDEO AND COMPUTER TECHNOLOGY.

Ampex requires an Engineer with:
- Sound knowledge of Electronics/HNC or equivalent
- At least three years’ experience of maintaining ANALOGUE and/or DIGITAL electronic equipment
- Preferably, specific experience with:
 - VIDEO equipment, such as cameras, VTRs, etc, and/or
 - DIGITAL equipment such as disk/tape drives, mini computers.

Good salary plus generous shift allowance.
Company car plus travel allowance.
Pension and Life Assurance and Permanent Health Schemes.

Please write or phone for an application form from Maureen Brake, Reading (0734) 875200, Ampex Great Britain Limited, Acre Road, Reading, Berkshire.

ST BARTHOLOMEW’S HOSPITAL, LONDON EC1A 7BE

Electronic Engineer in Radiation Physics Department required

to assist in the servicing of a modern 20 MeV Linear Accelerator and a 6 MeV Linear Accelerator which is about to be installed and in the manufacture of dosimetry equipment and devices required for development and research.

Experience in Radar or Radiation Physics would be advantageous but not essential as appropriate training will be provided.

Support given to obtain relevant higher qualifications.

Applicants should possess ONC/HNC (Electronics) or other appropriate qualifications and at least three years’ relevant experience.

Salary on Medical Physics Technician Grade III scale: £6,468 to £8,087 per annum inclusive

For application form and job description please write to the Personnel Department or telephone 01-600 9000 Ext. 2271, Ref. no. TG/10.

Closing date, 4 August, 1982.

The National Broadcasting School, an independent organisation under the auspices of the IBA, provides training for Independent Radio. As well as running full-time engineering courses, the Engineering Department also teaches the non-technical courses and maintains 6 broadcast-capable studios and ancillary areas.

PART-TIME LECTURERS IN ENGINEERING

Two part-time lecturers are required to contribute to 3-month Engineering Course starting 21 September. They must have considerable experience in radio broadcasting and the ability to pass on that experience. Salary negotiable.

BROADCAST ENGINEER

A Broadcast Engineer with several years’ experience in maintaining modern sound broadcasting equipment and a recognised technical qualification is required. In addition to the maintenance of the school’s studios, the job includes teaching Broadcast Engineers. A desire to teach is therefore essential and previous experience in this and local radio would be an advantage. Salary negotiable.

Applications, which will be treated in confidence, should be made to the Chief Engineer, NBS, 14 Greek Street, London W1.
ELECTRONICS TECHNICIANS

Total involvement across the spectrum of advanced communications

The Government Communications Headquarters at Cheltenham is one of the world’s foremost centres for research, development and production in the fields of voice and data communications and communications security. Its comprehensive facilities, some of them unique, are geared towards producing creative solutions to complex communications problems using state-of-the-art techniques including computer/microprocessor applications.

There are currently opportunities for those with proven practical experience in electronics to become totally involved in complex systems spanning the whole spectrum of electronics technology. As a Telecommunications Technical Officer you will supervise a team of technicians involved in the management, construction, installation, testing, commissioning and maintenance of traditional and advanced technology communications and computer systems. Alternatively you will provide support for project engineers and scientists involved in the planning, research and engineering development of state-of-the-art systems.

You will work in one or other of the following fields:-

- Telecommunications at HF, VHF and microwave frequencies, including satellite communications, computers and digital processing.
- Data Transmission
- Communications Security

Where necessary, in depth training will be provided and there are opportunities to attend familiarisation and management courses.

Posts are at two levels:-

At the lower level, the successful candidates will provide first line technical and supervisory control of a number of technicians involving work of a practical nature requiring ‘hands on’ participation. They may also undertake individual work of a highly technical nature with or without supervisory responsibilities.

The higher level posts involve the management of 2 or more teams as mentioned above. In many areas there is a close technical involvement requiring a high level of technical competence. With a multi-disciplinary team, the successful candidates will be expected to apply their knowledge and experience to the broader fields of work planning and management, including the implementation of medium to large scale projects.

Cheltenham

A significant advantage for people working at GCHQ in Cheltenham is its location in this elegant Regency town set in the heart of the Cotswolds. You can choose to live in the town itself, or in one of the delightful villages that surround it. Either way, you will have easy access to good shops, schools, sports facilities and cultural amenities in Cheltenham and nearby Gloucester, and also enjoy fast road/rail links to London, the Midlands and the West Country. RELOCATION ASSISTANCE MAY BE AVAILABLE.

Qualifications

Candidates must possess a TEC/SCOTEC Certificate in Electronics, Telecommunications or similar discipline; or a City and Guilds Part II Telecommunications Technicians Certificate, or Part I plus Mathematics B, Telecommunication Principles B, and either Radio Line Transmission B or Computers B; or equivalent. Preference may be given to candidates with higher qualifications. Senior ex-service personnel with formal approved Service technical training may also be considered.

In addition, all candidates must have had appropriate training and will normally be expected to have about 4 years (lower level) or 7 years (higher level) experience in either radio communications transmitters or receivers, radar, data transmission, computers or similar electronic systems. High technical competence and/or proven managerial experience is also required.

Salaries up to £9085

Higher level posts: £8065 — £9085; lower level posts: £5980 — £8180. Level of appointment and starting salary according to qualifications and experience. There are good prospects of promotion to posts with salaries of up to £12,650.

For further information and an application form (to be returned by 12 August 1982) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref: T/5792/2.
LECTURERS AND TECHNICAL AUTHORS

The Engineering Training Centre situated near Evesham in Hereford and Worcestershire, trains the Corporation's technical staff, both on first appointment and thereafter in the technology of broadcasting. The site is residential for students and some 400 BBC staff normally work or are in training there.

LECTURERS

Duties will involve contributing towards the operational training of Technical Staff in Television and/or Radio Broadcasting. This includes instructing Technical Operators who are responsible for sound coverage, audio mixing, camera work and lighting in Television and/or Radio Broadcasting. The Training Centre has Radio and Colour Television Studios using the latest broadcasting equipment.

Candidates, male or female, should have recent experience in some aspect of Technical Operations or Engineering in the Broadcast or Closed Circuit field and a good technical knowledge of audio or video equipment. They should preferably have a qualification of HNC, C & G Full Technological Certificate in Telecommunications, and a good grasp of a significant area of broadcasting technology or of a closely related field of electronics. Increasing versatility across the whole field will be expected as experience grows. Appropriate training, including areas of broadcasting technology, will be provided if necessary.

The successful applicant will hold a degree in electronics or a reasonable equivalent such as a Higher National Certificate, have good experience of technical documentation and a good grasp of a significant area of broadcasting technology or of a closely related field of electronics. Increasing versatility across the whole field will be expected as experience grows. Appropriate training, including areas of broadcasting technology, will be provided if necessary.

Salary on appointment, for both positions will be between £9,435 and £10,293 rising to £11,000 – Herts. Consideration will be given to providing appropriate training to otherwise suitable applicants who do not hold these qualifications.

TECHNICAL AUTHORS

Engineering Training Department includes a Unit, consisting of one Senior Author and four Authors, which provides overall systems descriptions for major installations throughout the Corporation and publishes technical standards and procedures. The unit is supported in-house by a drawing office and printing facilities, together with computer-based phototypesetting, word processing and graphics.

The technologies covered by Technical Publications Unit are Radio, Television, Transmission and, increasingly within these fields, computers. Authors have substantial personal responsibility to assemble and present their material accurately and in a form acceptable to users.

The successful candidate will hold a degree in electronics or a reasonable equivalent such as a Higher National Certificate, have good experience of technical documentation and a good grasp of a significant area of broadcasting technology or of a closely related field of electronics. Increasing versatility across the whole field will be expected as experience grows. Appropriate training, including areas of broadcasting technology, will be provided if necessary.

Salary on appointment, for both positions will be between £9,435 and £10,293 rising to £12,254.

Excellent welfare and club facilities. Pensionable posts. Relocation expenses considered.

For an application form and further information about the Technical Author vacancy, please contact Head of Training Section (Engineering), Mr D G Enoch. BBC Engineering Training Centre, Wood Norton, Evesham, Worcs WR11 4TF. Telephone Evesham 45123.

Closing date for return of application forms is 14 days after publication.
Electronic Engineers salaries up to £13k

VIDEO is one of the World’s fastest growing industries, and McMichael Ltd. is in the forefront of advanced video technology. We need young dynamic electronic engineers at all levels to join prestigious high technology project teams.

As an analogue or digital video engineer, you would be involved in such projects as, video conferencing, broadcast effects, laser video transmission, precision displays, and other projects.

Our project teams are based at our new research and development Laboratories in Stoke Poges, Bucks., set in 37 acres of ground, with extensive sports and social facilities.

If you are experienced in high speed digital processing or analogue video, write or phone for an application form today.

McMICHAEL LIMITED
Selton Park, Bells Hill, Stoke Poges, Slough SL2 4DY
Telephone Fulmer (02816) 2777 Telex 849212
Appointments

THE UNIVERSITY OF PAPUA NEW GUINEA

SENIOR TECHNICAL OFFICER (ELECTRONICS)

Applications are invited from suitably qualified persons for the above position in the University of Papua New Guinea.

DUTIES:
The successful applicant will be expected to join a technical group involved in carrying out electrical/electronic maintenance to scientific departments and faculties within the University. A proven record of experience is required covering maintenance and servicing in a wide range of teaching and research instrumentation commonly used in Bio-Medical/Dental Sciences. The Department of Physics houses modern and well-equipped electronics and technical workshops to facilitate the work envisaged.

The successful applicant will be required to supervise and to provide on-the-job training to national Papua New Guinean technical staff.

QUALIFICATION:
Applicants should hold a Higher National Certificate in Electronics/Electrical Engineering or equivalent qualification. Possession of a current and valid driving licence will be desirable.

SALARY: K15625 per annum plus 24% gratuity.

Further details may be obtained from the Chief Technical Officer in Physics Department on telephone 245243 or the University of Papua New Guinea, P.O. Box 320, UNIVERSITY, Papua New Guinea.

Applications together with names and addresses of three professional referees should reach the Secretary, University Post Office, Papua New Guinea, not later than 9th July, 1982.

SECRETARY
UNIVERSITY OF PAPUA NEW GUINEA

Commissioning/Engineering Support

Broadcast Television Equipment

Tremendous growth and success has resulted in an excellent career opportunity in the QA Department of Sony Broadcast, a world leader in professional broadcast television equipment. The Company has an expanding range of high technology products which include video cameras, VTRs and editing control systems.

An experienced engineer, who should ideally have a background in broadcast television equipment supported by a relevant qualification, is now required to join a small team responsible for the evaluation of product performance. Key activities will also include commissioning, assistance in product customisation and the establishment and maintenance of ATE, including software. Full product training will be given where necessary.

This position carries an attractive salary, first class conditions of employment and considerable prospects for personal development.

If you are interested, please write, giving brief details of your qualifications and present salary, to Mike Jones, Personnel Officer, Sony Broadcast Limited, City Wall House, Basing View, Basingstoke, Hants RG21 2LA. Tel: 55011.

Sony Broadcast Ltd.
City Wall House, Basing View, Basingstoke Hampshire RG21 2LA
Telephone (0256) 55011

(1731)

ELECTRONIC SERVICE ENGINEER

Due to the rapid growth of our In-Car Entertainment Division we seek an additional engineer to service our range of products.

Experience of both analog and digital systems is essential as complex microprocessor based units are handled.

The ideal candidate will have been employed for a minimum of 3 years servicing car audio or domestic Hi-Fi equipment, together with 2 years' microprocessor-based hardware experience. Due to the nature of our products, persons without this experience are unlikely to be suitable.

Some administrative capability would be considered an advantage.

Applications in writing with full c.v. to:
The Technical Manager
Autocar
ELECTRICAL EQUIPMENT CO LTD
Chantry Road Industrial Estate
Kempton, Bedford MK42 7SD

(1693)
At HM Government Communications Centre, we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, designed to enable and protect the flow of essential information.

The work is of the highest technical challenge, offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest:—

- **RADIO** - from HP to microwave, including advanced modulation systems, propagation studies, applications of Microcircuitry.
- **ACOUSTICS**
- **SIGNAL ANALYSIS**
- **MAGNETICS**
- **SYSTEMS ENGINEERING**

Applicants, under 30 years of age, should have a good honours degree or equivalent qualification in a relevant subject, but candidates about to graduate may also apply.

Appointments are as Higher Scientific Officer (£6,840–£9,126) or Scientific Officer (£5,422–£7,399) according to qualifications and experience. Promotion prospects.

For an application form, please write to the Recruitment Officer, (Dept. W/W8), HM Government Communications Centre, Hanslope Park, Milton Keynes, MK19 7BH.
FIELD SERVICE ENGINEER

LKB Instruments Limited, the U.K. subsidiary of a major international medical/scientific instrument company require a Field Service Engineer for their Customer Service Department.

Applicants should have a sound knowledge of digital and analogue electronics, with preferably some field experience in the scientific instruments world.

The work entails the repair and maintenance of instruments situated mainly in Hospitals and University Laboratories. Preference will be given to applicants living in the Gloucester to South Birmingham area.

Conditions of employment are excellent and in addition to a good basic salary and company car, the company have a profit sharing scheme, BUPA participation and 4 weeks annual holiday.

Contact Mrs S. Francis for application forms:
LKB Instruments Limited,
232 Addison Road,
Selsdon,
South Croydon,
Surrey, CR2 8YD.
Tel: 01-651 5313

(1716)

MANY FIRMS ARE THROUGH THE RECESSION AND RECRUITING AGAIN

PROJECT MANAGER

VLF and LF equipment for helicopter systems. Control, integration of program and cost data. Liaison with clients, etc. Experience in radio communications environment essential. Greater London. To £12,000.

SOFTWARE ENGINEER

For new high technology computer peripheral equipment with a resident basic interpreter. Many advanced design concepts. Experience 286/8750 SW essential. Berks. To £10,000.

YOUNG ENGINEERS

For designs associated with processing low-noise signals, displays and control circuitry for a new thermal imaging system. Essex. £6,300-£8,000.

RF ENGINEERS

To design non-broadcast TX up to 5 MHZ 20 KW for very advanced medical diagnostic instrumentation. Greater London. To £11,000.

ASSISTANT COMMUNICATIONS MANAGER

For large international L Comms. network, including PDM, TDM, Facciname and voice staff supervision and hardware development client liaison - European travel. London. To £12,000.

Whatever your experience send your CV or ring:

Charles Airey Associates
Tempo House, 15 Falcon Road, Battersea
London SW11 2PJ
Tel: 01-223 7662 or 228 6294

A Professional Audio Company situated in central London require a TECHNICAL ENGINEER interested in working with a wide range of studio equipment from video to 24-track digital recorders. Previous experience is not necessary but a good practical knowledge of electronics including digital techniques is essential. Please write giving information about yourself and for further details.

BOX NO. 1727

(1727)

UNIVERSITY OF OXFORD
DEPARTMENT OF ENGINEERING SCIENCE

GRADUATE ENGINEER
IN CHARGE OF THE ELECTRONIC SERVICES DIVISION

A graduate engineer is required to direct the Electronic Services Division, which provides the supporting services for the Department's research and undergraduate teaching. The person filling the post should have a proven knowledge and experience of advanced electronic technology, the ability to anticipate future developments in this field, to supervise the design of both analogue and digital electronics, including the hardware and software associated with the development of microprocessor-based instruments, and to advise research staff on how best to use this technology to advance their research.

The position also involves the management and administration of the electronic services staff, comprising at present three research assistants (Electronic Design Engineers) and five technicians, who are responsible for:

(i) design and construction of electronic circuitry;
(ii) servicing and modification of existing equipment;
(iii) operation of the departmental electronic stores.

The person appointed will also be required to supervise any laboratory stewards working in this field, the safety checking of electrical equipment and the control of the electronic section of the inventory. He/she will be expected to contribute to the teaching and future development of the microprocessor laboratory.

The position is on the University Research Support Staff Grade II Scale with a salary range from £9,750-£12,860 with superannuation on the USS Scheme.

Application should be made to the Administrator, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, enclosing a detailed curriculum vitae and the names and addresses of three persons to whom reference may be made.

(1692)
The Institution wishes to recruit a Theatre Manager to replace the present manager who will retire shortly. The Institution of Electrical Engineers arranges approximately 200 meetings, seminars, colloquia and conferences a year in its lecture theatres at Savoy Place, London.

These lecture theatres are equipped with modern lighting and audio visual aids. The latter includes large screen with modem lighting and audio visual equipment during lectures.

The Lecture Theatre Manager, in addition to being professionally and technically competent, should have a personality which inspires confidence in the audience.

We offer a competitive starting salary and other conditions of employment include: 35 hour flexible working week, generous leave entitlement, subsidised staff restaurant, and pension and life assurance scheme.

Candidates (male or female) should apply in confidence, detailing career and salary progression to the Director of Administration, Institution of Electrical Engineers, Savoy Place, London, WC2R OBL.

THE INSTITUTION OF ELECTRICAL ENGINEERS

ELECTRONIC TEST ENGINEERING

Having introduced an extended new product range many of which are micro-processor based, Marconi Instruments has once again confirmed itself as Europe's leading manufacturer of measurement systems and automatic test equipment. Our products are selling throughout the world to all leading users in the electronics and aerospace industries and we are naturally developing further innovated designs.

A key role in our organisation is that of test engineering, where a group of professional engineers are responsible for the development of sophisticated methods and software for the manufacture of our products. We are now looking for experienced Engineers and are particularly interested if you have experience in the following disciplines:

IEEE Bus Control Systems • ATE Programming Test Techniques

Whatever your level of experience we would like to hear from you. We can offer an excellent salary plus a wide range of company benefits, including relocation expenses where appropriate.

For further details contact Mr. J. Procter, Recruitment Manager, Marconi Instruments Limited, Longacres, St. Albans, Herts. Telephone: St. Albans (0727) 59292 ext. 369.
Video Engineers

Sony are looking for a high flier - do you fit the bill?

Everyone knows our reputation for high quality domestic TV, audio and VCR equipment, but that's only part of the Sony success story.

We also lead the field in industrial video and other commercial and industrial applications. Video cameras, professional and digital audio, dictating machines, language laboratories - these are just some of the areas in which Sony is out in front.

Products like these are amongst the most sophisticated on the market and the Engineers who provide the back-up service need to have the highest level of technical competence if they are to maintain the standard of service which our customers have come to expect - second to none!

We're expanding fast to meet the growth of our business and as part of that expansion, we now wish to recruit an additional Engineer for our National Service Centre at Feltham, Middlesex.

Although we provide initial and on-going product training, you must have several years good fault diagnosis experience on the kind of products we have described. In particular, experience of industrial video (U-matic format) is essential, as is qualification to at least City & Guilds 222 (with Colour Endorsement), 224 or equivalent.

If you are the high flier we're looking for, we'll offer you a very competitive salary and a range of benefits which is everything you would expect from a company which places great importance in looking after its staff.

For an application form, you should contact Rosemary Browne, Personnel Department, Sony (UK) Limited, Pyrene House, Sunbury-on-Thames, Middlesex. Telephone: Sunbury-on-Thames 81211.

THE OPEN UNIVERSITY
FACULTIES OF
TECHNOLOGY AND SCIENCE
ELECTRONICS COMMON FACILITY

Assistant Electronics Design Engineer

Applicants are invited for an Assistant Electronics Design Engineer, to work on a wide variety of electronics work in the Interfaculty Electronics Facility.

The design will involve both analogue and digital circuitry, including a growing involvement in microprocessors and the associated software.

The work will appeal to someone with a keen interest in electronics, who is eager to learn new techniques and who already has some experience in design.

Qualifications required are minimum design experience of one year with at least TEC III or ONC and preferably working to a higher qualification. The salary will be on the T5 scale £5695-£6650.

Further particulars and an application form are available from: Mrs. B. McBrearty (498/1), Faculty of Technology, The Open University, Walton Hall, Milton Keynes MK7 6AA, or telephone Milton Keynes (0308) 653841; there is a 24-hour answering service on Milton Keynes (0308) 653868.

This is a re-advertisement and previous candidates do not need to apply.

Closing date for applications: 30th July.
Electronic Engineers – What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines – right through from design to marketing – at salary levels from around £4000 to £12000 p.a.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you.

All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

RF DESIGNER
WITH INVENTIVE FLAIR AND A TASTE FOR RURAL LIFE

Our clients are a small, cheerful and highly motivated company who are sole manufacturers of a socially essential paramedical product. They are in the throes of moving to a Georgian manor house with eight acres of land, in rural England (with low housing costs!).

The need is for an engineer, probably between 25 and 45, with a genuinely radical and inventive approach to design and a sound knowledge gained in the radio frequency (ideally, low power) field. The successful candidate will work in a small specialist team. The potential and prospects attached to the position are second to none.

Apart from a competitive, negotiable salary, the company offer excellent relocation expenses to this attractive low cost housing area.

To discuss this position or any other specialist Communications vacancies we may have, telephone Paul Hecqquet on 044 46 47301/2/3/4 or write with a brief CV.
Pathology Laboratory Maintenance Engineer
c.£17,500 p.a. tax-free Saudi Arabia

In Jeddah, on Saudi Arabia's west coast, a 500-bed hospital is being commissioned. It has been built and equipped to the highest international standards, incorporating some of the most advanced medical facilities and high technology support systems available.

IHH International Hospitals Group, the British-based health care organisation managing the project, has given the task of finding all the specialists to IAL.

We now have an opportunity for an Engineer to maintain and repair a wide range of automated laboratory equipment made by Technicon, Beckman, Coulter, LKB, Corning and equipment made by Technicon, Beckman together with the full range of standard laboratory equipment.

Applications are welcome from qualified Saudi Arabian nationals and Arabic speaking personnel.

The tax-free salary will be paid in Saudi Riyals*. Benefits include free accommodation, 49 days annual holiday, free return flights to the UK and free medical care. Facilities include shops, gymnasium, theatre, swimming pool, tennis courts and restaurants.

"Salary SR108,000 p.a. – the conversion to sterling has been effected at the rate SR6.05 = £1. For further details please send your cv to John Innes, IAL, Aeradio House, Hayes Road, Southall, Middlesex, UB2 5NJ. Tel. 01-574 4960. Please quote Ref. M357."

MEDICAL SERVICES
COMMUNICATIONS SYSTEMS
COMPUTER SYSTEMS AND SERVICES
AVIATION SYSTEMS AND SERVICES-WORLDWIDE

IAL

Channel Four

which will be transmitting nationally from November 1982, requires a

Sound Supervisor

Applicants should have had previous broadcast operational experience.

Please write enclosing a c.v. to Ellis Griffiths, Channel Four Television Company Ltd., 60 Charlotte Street, London W1P 2AX or telephone 01-631 4444 for an application form.

Channel Four is an equal opportunity employer: applications are welcome from candidates regardless of marital status, race, nationality, ethnic or national origins and from registered disabled persons.
CAPACITY AVAILABLE

TW ELECTRONICS LTD.
THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a professional subcontractor. Such an undertaking requires certain assurances. TW are able to satisfy all of them - quality, competitive pricing, firm delivery and close co-operation with the customer.

Assembled boards are 100% inspected before flow soldering and re-inspected after automatic cropping and cleaning. Each batch of completed boards is issued with a signed certificate of conformity and quality - our final assurance.

For further details, contact us at our new address:

Blenheim Industrial Park
Bury St. Edmunds
Suffolk IP33 5JT
Tel: 0284 3831

BATCH PRODUCTION wiring and assembly by sample or drawings.

McDeane Electricals Ltd., 1A Eva Road, Gillingham, Kent. Tel: Medway (0634) 77854.

BATCH PRODUCTION, printed circuit or wiring assembly by sample or drawing. O’Quinn’s Fine, Contact: Rose, Kempoy Ltd., P. & A., Mile Cross Lane, Norwich, Norfolk NR6 6SY. Tel: 066343949. (1665)

SITUATIONS WANTED

ELECTRONICS TECHNICIAN with ten years’ experience in television broadcast equipment maintenance and another ten years’ experience in telecommunications testing and repair workshops positions. Replies Box No. 1708.

(1708)

FOR THE BEST PCB SERVICE AVAILABLE

- Circuit Design & Development
- Digital and Analogue
- Artwork Layout
- Work of the highest standard by experienced draughtsmen. No minimum charge.
- Board Manufacture
- Prototypes to semi-production, excellent rates.
- 24-hour prototype service from filmwork.
- Wiring & Assembly
- PCB assembly, wiring and cable forming by qualified staff.
- Test
- Full test facilities available.

One of all services available, no order too small. Please telephone: Quadrant 5613 (London), HICR, 1 Bankside, off New Street, Chelmsford, Essex.

(1169)

DESIGN AND DEVELOPMENT, ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. Advance Limited, Unit 103 Liscrome, Bracknell, Berks. Tel: Bracknell 5203.

SINTER SERVICES

INTERNATIONAL SERVICES

FOR THE BEST PCB SERVICE AVAILABLE

- Circuit Design & Development
- Digital and Analogue
- Artwork Layout
- Work of the highest standard by experienced draughtsmen. No minimum charge.
- Board Manufacture
- Prototypes to semi-production, excellent rates.
- 24-hour prototype service from filmwork.
- Wiring & Assembly
- PCB assembly, wiring and cable forming by qualified staff.
- Test
- Full test facilities available.

One of all services available, no order too small. Please telephone: Quadrant 5613 (London), HICR, 1 Bankside, off New Street, Chelmsford, Essex.

(1169)

WIRELESS WORLD AUGUST 1982

111
INDEX TO ADVERTISERS AUGUST

Appointment Vacant Advertisements appear on pages 100-111
WE'RE MAKING A STAND FOR BETTER SOLDERING!

And including it in the NEW Antex all-in-one pack!

The new ST4 stand with the big sponge on its own or in the SK5 and SK6 kits with the new CS and XS low-leakage soldering irons. These new models have tougher, cooler handles, detachable hooks, the well known Antex doubleshaft insulation, the big range of push-on bits and fitted with or without moulded-on safety plugs.

SK5 Soldering Kit Contains Model CS230 iron and the ST4 stand R.R.P. £6.25

SK6 Soldering Kit Contains Model XS230 and the ST4 stand R.R.P. £6.35

SK5-BP and SK6-BP Fitted with safety plugs. SK5-BP kit R.R.P. £7.10 SK6-BP kit R.R.P. £7.20

Model XS-BP - 25 Watts
Fitted with safety plug
240 volts
R.R.P. £5.55

Model X5 - 25 Watts
Available for 240 and 115 volts
R.R.P. £4.70
50, 24 and 12 volts
R.R.P. £4.90

Model CS - 17 Watts
Available for 240 and 115 volts
R.R.P. £4.80
50, 24 and 12 volts
R.R.P. £4.80

Model CCN - 15 Watts
Ceramic shaft only 240 volts
R.R.P. £5.00

Model C - 15 Watts
Stainless steel shaft only.
240 and 115 volts
R.R.P. £4.60
50 and 24 volts
R.R.P. £4.80

Model ST4 Stand
R.R.P. £1.60

TCSU1 Soldering Station
for safe 24 volt temperature-controlled miniature soldering iron, variable tip temperature 65 - 430°C, antistatic earth connection, with XSTC or CSTC iron.
R.R.P. £40.50

Excluding V.A.T.
(1501a) and
Postage & Packing

Our products are widely distributed by wholesalers and retailers throughout the U.K. Please try your local dealer.
Now, at last, real portable computer power. The new Sharp PC1500 pocket computer. A pocket-sized genius that will travel with you to conferences, seminars and business breakfasts.

The PC1500 has the capacity and BASIC language usage that is very nearly that of the desk-size Personal Computer. When fitted with the optional 4-colour graphic printer, it is one of the most powerful pocket computers on earth.

Chores can be handled swiftly and accurately any time of day, wherever you happen to be. Estimates, records and charts of sales, billings and other important data can be re-programmed, calculated and summoned at the touch of a button. It can even play blackjack, analyse your biorhythms or give you a beeped reminder of a scheduled meeting.

Large memory capacity, up to 11.5K bytes. 4-colour print-out. Six user-programmable keys. The incredible new PC1500. A revolution in pocket computers.

SPECIFICATIONS

PC1500 Pocket Computer

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>C-MOS 8-bit CPU</td>
</tr>
<tr>
<td>ROM Capacity</td>
<td>16K bytes</td>
</tr>
<tr>
<td>RAM Capacity</td>
<td>3.5K bytes to 11.5K bytes</td>
</tr>
<tr>
<td>CE150 Colour Graphic Printer/Cassette Interface (Optional)</td>
<td></td>
</tr>
<tr>
<td>Printing Digits</td>
<td>Standard 18 digits (36, 18, 12, 9, 7, 6, 5, 4 digits selectable)</td>
</tr>
<tr>
<td>Printing System</td>
<td>X-Y axis plotter system</td>
</tr>
<tr>
<td>Printing colours</td>
<td>Red, blue, green, black</td>
</tr>
<tr>
<td>Printing directions</td>
<td>Right, left, up, down</td>
</tr>
<tr>
<td>Cassette Interface</td>
<td>Up to two cassette tape recorders can be connected</td>
</tr>
</tbody>
</table>

The world of Sharp, where great ideas come to life.

Sharp Electronics (UK) Ltd, Computer Division, Sharp House, Thorp Road, Newton Heath, Manchester M10 9BE. Telephone: 061-205 2333

Design and specifications subject to change without notice.

WW—003 FOR FURTHER DETAILS