lectronics computing communcations broadcasting audio and video

wireless

Eprom emulator/programmer C.b. selective call unit

TRANSMITTER TEST SET,TTS520

Tests transmitters up to 100 watts rating

For testing base stations; mobile or fixed radios: pockef phones: pagers, etc

Instrument incorporates: r.f. counter • modulation meter • directional power meter • a.f. voltmeter • a.t. synthesizer distortion analyser • a.f. counter • weighting filters • r.f. power load/attenuator

Transmitter measurements include: Frequency • power modulation (a.in. or f.im.) level, frequency. distortion. sensitivity. bandwidth. capability - call tone modulation check - aerial efficiency

Many measuring functions automatic-fewer controls, easier to understand and operate

Reduces operator error and tatigue

Compatible with Farnell SSG520 synthesized signal generator to provide full transceiver testing facilities

Split concept (receiver/transmitter testing) ofters distinct advantages over dedicated test sef or discrete instruments

Programmable. Also IEEE488 option available for low cost computer controlled A.T.E.

Releases skilled engineers from routine tests. More time for repairs and other tasks

Pre-service diagnostic tool. Use printer to record condition of radio as received and to verify performance to specification after repair or recalibration

Helps speed up test throughput

Front cover is a laser gyro, used in strap-down inertial navigation systems. Picture supplied by SFENA, Villacoublay, France.

NEXT MONTH

Modular preamplifier. The first of three articles in which John Linsley Hood describes his new preamplifier, which is modular in form and which features several novel ideas.
Electronic compass. Design by Neil Pollock for all-solid-state compass for small boats, using a flux-gate sensor. A microprocessor will process the sensor output or a hardwired system, which is described, can be used.
Low-frequency oscillator. A sine-square oscillator, with tone-burst switching, which covers the $10 \mathrm{~Hz}-\mathbf{2 5 0 K} \mathrm{Hz}$ frequency range.

Current issue price 80p, back issues (if available) £1, at Retail and Trade Coun ter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1 Available on microfilm; please contact editor.
By post, current issue $£ 1.23$, back issues (fif available) £1.80, order and payments to EEP General Sales Dept., Quadrant House. The Quadrant, Sutton, Surrey SM2 5AS
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Telephones: Editorial 01-661 3500. Ad vertising 01-661 3130.
Telegrams/Telex: 892084 BISPRS G.
Subscription rates: 1 year f14 UK and £17 outside UK.
Student rates: 1 year £9.35 UK and £11.70 outside UK.
Distribution: Quadrant House, The Distribution: Quadrant House, The
Quadrant, Sutton, Surrey SM2 5AS Quadrant, Sutton, Sur
Subsciptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 044459188 Please notify a change of address.
USA: $\$ 39$ surface mail, $\$ 98.30$ airmail. US subscriptions from IPC B.P., Subscriptions Office, 205 E.42nd Street, NY 10017.

USA malling agents: Expediters of the Printed Word Ltd, 527 Madison Avenue Suite 1217, New York, NY 10022. 2nd class postage paid at New York.
© IPC Business Press Ltd. 1982 ISSN 00436062.

31

CLASS ' S^{\prime}

by A. Sandman

LETIERS

DIFFERENTIAL DIRECT CONVERSION
by P. E. GIIISIMPLE LOW-FREQUENCY OSCILLOSCOPEby R. Taylor

57 NEWS

TRANSMITING AERIALS
by J. Wiseman
64 CES Chicago
by G. Tillett
67 COMMUNICATIONS
69 CIRCUIT IDEAS
71 NETWORK ANALYSIS BY ZX81
by L. E. Weaver
73
DISC DRIVES
by J. R. Watkinson
77 DIGITAL FILTERS FOR SOUND REPRODUCTION by Y. Hirata
RCA 3140 AND TI TLO71
by J. L. Linsley Hood

NEW PRODUCTS

As supplied to
International Telecommunications Companies Uninterruptible Power Supplies - UPS CVT Reliability 125 va to $50 \mathrm{kva}, 50$ or 60 hz .
STANDBY POWER. Invaluable for winding down a computer programme on mains failure and wherever continuous power is essential.
STABILISATION. 土5\% Vital to combat mains voltage fluctuations and ensure the operation of equipment at peak efficiency. Frequency stabilised $\pm 0.1 \% 47$ to 65 Hz .

TRANSIENT ATTENUATION. Provides suppression of mains born interference (spikes).
An unbeatable power package at a price to suit all budgets from Galatrek International, UPS are DOWN to unbeatable prices.
For more information, cut the coupon.
Galatrek International, FREEPOST, Scotland Street, Llanrwst, nr. Llandudno, Gwynedd LL26 OAL, BRITAIN, Tel No: 0492-640311/641298, Telex: 617114 A/B Galahu Made and Designed in Britain by Galatrek.
 Nitanational

Please send me full details of your range of voltage stabilisers, filters, cutouts, generatorsandCVT's
Please send me fulldetails of UPS
Please send mea requirement check sheet
Consultation with Galatrek Engineer
Name
Position
Company
Address
TelNo
Telex
Trade \square OEM \square (please tick where appropriate)

WW - 072 FOR FURTHER DETALLS

pantechnic

THE POWERFET
SPECIALISTS

POWERFET AMPLIFIER MODULES

The people at Pantechnic have been designing with powerfets since they first became commercially available. Their experience of powerfet amplifiers, coupled with their insight into the sources of non-linearity often neglected by others, has resulted in a new range of powerfet amplifiers that are fast, tough, linear and cheap.

MODEL	POWER RANGE (Continuous RMS)		
PFA 100	50W-150W	$4 \Omega, 8 \Omega$	Physically small
			$30 \mathrm{~mm} \times 79 \mathrm{~mm} \times 108 \mathrm{~mm}$
PFA 200	100W-300W	$4 \Omega, 8 \Omega$	High Watts per $£$ ratio
PFA 500	250W-600W	$2 \Omega, 4 \Omega, 8 \Omega$	25A continuous output
PFA HV	200 W -300W	$4 \Omega, 8 \Omega, 16 \Omega$	5 dB dynamic headroom

Key features:

- RELIABLE - Powerfet freedom from thermal runaway and secondary breakdown
- LINEAR - TID zero, IM/THD < 0.01\% full power, (mid band THD
- QUIET - Signal to noise ratio 120 位
- BRIDGEABLE - $1100,200,500$ with 120 dB
- STABLE - Unconditionally hout extra circuitry)
- LOW COST - 10watts to 20 watts per $£$, depending on model and quantity
As they stand these modules sult most P.A. and industrial applications and satisfy all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low cost customising is often a possibility. Alternatively entirely new boards can be produced.
Pantechnic make more than just PFAs. Loudspeaker protection boards and the quietest, lowest distortion preamp boards currently available are just two of an ever-expanding range.
Pantechnic sell high quality power supply and other components at excellent prices.

CHECK US OUT

WW - 039 FOR FURTHER DETAILS

 UV1T
Powerful, compact unit to erase up to six EPROMs quickly and safely. $10-60-\mathrm{min}$ ute electronic timer. $\Sigma 59.13$ + V.A.T.

UV1B

As above but without timer. $\Sigma 46.95$ + V.A.T
Carriage paid (U.K.)
Send cheque or official order for prompt delivery.

Also available in London from: Technomatic Lid
Henrys Radio Ambit International

IN USE IN DESIGN
LABS \& EDUCATIONAL
ESTABLISHMENTS
AROUND THE WORLD

NORTHERN ELECTRONICS
SI Arundel Street, Mossley, Lancashire Tel: Mossley (04575)4119 WW - 040 FOR FURTHER DETAILS

RADATMCN DETDCYIOBS

BE PREPARED
VIEW THRU LENS
Ideal for the experimenter

- THIS DOSIMETER WILL AUTOMATICALLY DETECT GAMMA AND X-RAYS
UNIT IS SIZE OF FOUNTAIN PEN \& CLIPS ONTO TOP POCKET
PRECISION INS TRUMENT
- MANUFACTURERS CURRENT PRICE OF A SIMILAR MOOEL OVER f25 EACH
- 0-5R

British design \& manulacture
Tested and fully guarante ed. Ex-stock delivery. As sumpliad to Fire! Services/Civil Defence
HENRYE
\qquad
WITH DATA

THE SOURCE
OF ALL HIGH QUALITY USED TEST EQUIPMENT

LINSLEY-HOOD PEAK DRIVE INDICATOR

A very useful device, connected to loudspeakers piving a 4 light readouts of peak power delivered for the protection of both the
loudspeaker and the perceived quality of sound. Gives instant indication even for peaks of only five microseconds' duration. Unit uses CMOS fechnology, is self-contained and battery powered. Complete Kit except betteries. Only $£ 17.40$ plus VAT
J. L. Linsley-Hood Amplifier designs have always led the field. The latest and greatest is the this magazine. We are of course preparing kits for this and the matching separate Pre-amplifier obe described later. the " 300 Series" consisting of a 30 watt Darlington output version znd a 35 and 45 watt variant with MosFer output. A matching FM tuner will be svailable shortly. 30 watt Amplifier Kh 35 watt MosFet Kit. \qquad 5 Witt MosFer Kh

‘P. W. WINTON' TUNER \& AMP.

Abstract

Snazry matching slimline tuner and amplifier in beautiful uner cabists. These uner covers LW, MW, SW, FM and TV soundl Digitai frequency and and switchable bandwidth for exceptional fringe area perormance. Amplifier has Toroidal transformer, Moste! output stages, 50 watts per channel and got e cracking review from Gardon King. Tuner. Complete Kit...... \qquad $\begin{array}{r}\mathbf{£ 1 6 3 . 0 0} \\ -. ~ \\ \hline 109.00\end{array}$

LINSLEY-HOOD CASS. REC.

We have done two kits to this design, one using the original cor cassette mechanism and the newer version using a very high $1 \begin{aligned} & \text { qualit } \\ & \text { perto }\end{aligned}$ performance and firted with our latest Sendust Alloy Super Head gives an incredibl).
can see 23 KHz on ours

Unsley-Hood Cassetre Recorder 1 775.00 Linsley-Hood Cassette Recorder 2 574590 Reprints of "WW' Articles No VAT

VERTICAL FRONT LOADING CASSETE DECK VFL. 10

This deck is used in our Linsley-Hood Cassette Recorder 2 and has every possible feature to ensure top notch performance. Pecently leatured in this magazine in a "Digital Multi-Track Tape Recorder by A. Ewins.

VFL910 Deck. Fitted with HS 16 Sendust Alloy Super Head $£ 31$. 99

FEED YOUR MICRO BYTES WITH OUR SOLENOID CONTROLLED CASSETTE DECK

Front loading deck with full solenold control of all functions ncluding optional read in fast wind modes. 12 volt operation Fitted 3-digit memory counter and Hall ic Motion Sensor. Siandard erase and stereo R/P Heads. Cheapest price ever for all
hese features. Only E38. 90 plus VAT. Full technical specification included
high quality replacement CASSETTE HEADS

Do your tapes lack treble? A wom head could be the problem Fiting one of our replacerment heads could restore performance ootter than newl Standard mountings make fitting easy and our CCt rast Cassefte helps you set the azimuth spot-on. We are prices for prime parts. Compare us wlth other suppliers and see The following is a list of our most popular heads, all are suitabl
for use on Doby machines and are ex-stock.
HC20 Permel
riginal equiloyent on most deck HMiso High Eeta Permalloy Hels, A hard wearing, higherer per ormance has with metal capability....................... EE 2
IS16 Sendust Alloy Super Hoad, The best head we can onger life than Permalloy, higher output than Ferrite, fantastic rosiency response .. 88.2 HO551 4-Track Haed for auro-reverse or quadrophonic use. Fu specification record and playback hesd..............................7.40 Special Purpose Heads.

SPECIAL OFFER

Replacement heads for SONY machines.
Frist Quality Stereo head with special base to fit Sony decks. keep in. Only E5.9s

HART TRIPLE-PURPOSE TEST CASSETIE TC1

One inexpensive test cassette enables you to sat up vu level, asa arimuth and cape speed. Invaluable when fitting new heads. Only $\mathbf{E} .80$ plus VAT and 50 p postage

Tape Heed Demegnetiser. Hendy cassette size mains oper ated unt prevents build up of residual head magnetisation causing

Full detalls of the entire range of MART products is contained in our ilfustrated lists.
Ask for your FREE copy NOW
Enquiries for lists are also welcome for us heve threa IRCs to cover the cost of surface post or please le In a hurry? A telephone order with credit card number placed belore 3 p.m. will be despatchea That DAY
inland
Orders up to $£ 10-50$ p

overseas
Postage at cost plus fa
documentation and handling
ALL PRICES PLUS VAT

Telephone: Oswestry (0691) 2894 Personal callers are always very welcome but please note that we are closed all day Saturday

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive range of equipment for processing all types of picture tubes colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailorea to customers requirements.

For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CRO 2XX 01-684 1422/01-684 0246

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTER 3982, £70 EACH + VAT

NEW CENTRONIC 779 PRINTERS, $£ 325$ + VAT
NEW CENTRONIC 781 PRINTERS, $£ 350$ + VAT
LA DECK WRITERS MODS. 35,36 \& 180, FROM $£ 325+$
VAT. ALL NEW
NEW CIFA VDUs. 1 ONLY £300 + VAT
POWER UNITS 5 VOLT 6 AMP, $£ 20$ EACH
FANS, PCBS, KEYBOARDS AND LOTS OF ODDS \& ENDS .
COME AND LOOK AROUND
SALCOTT MILL, GOLD́HANGER ROAD
HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)

Phone: 01-837/7937
Telex: 892301

RADRCOD= 드몽

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.

Applications

- Automatic master clock and slave controller.
- Synchronisation of separate equipment and events.
- Programmable energy management system.
- Computer clock/calendar with battery backup.

Data logging and time recording

- Process and equipment control.
- Broadcasting, Astronomy, Navigation

Satellite tracking.
If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

New Fluke $41 / 2$ Digit Hand-held D.M.M.s

Now in Stock

Basic oc accuracy $0.04 \%: 10 \mu \mathrm{~V} .10 \mathrm{nA}$ and $10 \mathrm{~m} \Omega$ sensitivity Display annunciators for low battery (BT) and special functions: frequency $|\mathrm{kHz}|$. dB , contunuity $\mid \rightarrow \leftarrow$. I| and relative reference (REL). Autoranging $M \Omega$ measurements from 2 $\mathrm{M} \Omega$ to $300 \mathrm{M} \Omega$
Conductance functions for resistance measurements to $10,000 \mathrm{M} \Omega$.
Separate constant-current source diodetest function for checking semiconductor junctions.
full range capability for voltage, current resistance $1200 \mu \mathrm{~A} .200 \mathrm{mV}$ and 200Ω ranges).
Wideband True RMS AC measurements to 100 kHz .
Overload protection to 750 VAC or 1000 VDC on voltage inputs and 500 V on resistance. Protection on current inputs provided by a $2 \mathrm{~A} / 250 \mathrm{~V}$ fuse in line with a heavy-duty 3A600V fuse. Sophisticated self-diagnostics provided for all range and function selections plus LCD display, battery and CMOS circuitry.
Fluke's 8062 A makes many of the same measurements as the 8060 A . at a lower price.
Continuity and relative reference
functions identical to 8060 A.
True RMS measurements to 30 kHz . Basic dc accuracy $0.05 \%: 10 \mu \mathrm{~V}$. 10 n A and $10 \mathrm{~m} \Omega$ sensitivity

Fluke 8060A
£275.00
Fluke 8062A
£210.00
$\Sigma 85.00$
£95.00
£125.00
£155.00
Fluke 302 IB. With 2 year warranty Fluke 8020B. With 2 year warranty. Fluke 8024B. With 2 year warranty. Fluke 8050A
Fluke 8012A
Fluke8010A

ACCESSORIES

A81-230 Battery eliminator.
C90 Carry case for hand held
801-600 Amp clamp
80J-10 Current shunt 10A
$80 \mathrm{~K} \cdot 40 \mathrm{H} . \mathrm{V}$. probe 40 kV .
$80 \mathrm{~K}-6 \mathrm{H} . \mathrm{V}$. probe 6 kV
80T-150 Temperature probe 80T-H Touch hold probe 83RF R.F probe 100 MHz 85RF R.F. probe 500 MHz .
Y 8102 Thermocouple probe

PORTABLE MAINS DISTRIBUTION NOW WITH EARTH LEAKAGE

FOR INSTANT MAINS DISTRIBUTION IN OFFICES, LABORATORIES, WORKSHOPS and for maximum safety

£61, £2.25 P\&P + VAT

13A/5/R £25.30, £1.50 P\&P + VAT

13A/6SW Slopina £26: £1.50 P\&P + VAT

PEL 1
$£ 44.50, £ 1.50$ P\&P + VAT

N13A/6
£23.40, £1.50 P\&P + VAT

13A/4SW $£ 22.40, £ 1.50$ P\&P + VAT

PEL 3

WEL 2

T13A/5
£21.75 £1.50 P\&P + VAT

N13A/3
£16.77, £1.50 P\&P + VAT
DELIVERY EX-STOCK

PAN EACTORY NO. 8, 5-7 LONG STREET LONDON E2 8HJ Tel: 01-739 2343

WW - 067 FOR FURTHER DETAILS

Keenthase Contacts CLEAN

 BY USING A DIACROM SPATULAManufactured in France British Patents applied for

No other cleaner has all these advantages:-

1. Only 100% pure, natural diamond grains are utilised.
2. Blades are tre 3 ted with hard chrome to reinforce the setting of the diamond grains. 10 obviate loosening or breakaway during use. This process also prevents clogging of the diamonded surface by residues resulting from use
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating damond grains which may rise above the surface. This eliminates all excessive
scratching during use.
All diamond graths are rigidly calibrated to ensure a perfectly uniform grain size of either 200,300 or 400 .
4. The chrome gives a very weak co efficient of friction and the rigidity of the nylon handle is calculated to permit proper utilisation and vet pliant enough to avoid undue pressures on
highly delicate relays.

- Grain size 200 . thickness $55 / 100 \mathrm{~mm}$. both faces diamonded. For quick cleaning of industrial relays and switching equipment, etc.
- Grain size $\mathbf{3 0 0}$, thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like telephone relays, computer relays, etc.
Grain size 400 , thickness $25 / 100 \mathrm{~mm}$.. one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned. because only one face of the spatula is abrasive.

Sole Distributors for the United Kingdom

SPECIAL PRODUCTS (DISTRIBUTORS) LTD
81 Piccadilly, London W1V OML. Phone: 01-6299556
As supplied to the M.O.D., U.K.A.EA., C.E.G.B. British Rail and other Public Authorities: aleo major industrial and electronic users throughourt the Unted Kingdom

EV88 - A low-cost evaluation system for the 8088 microprocessor

EV88 is a single board microcomputer that is ideal for evaluating the 80888 -bit/16-bit microprocessor. EV88 can also be used as a powerful controller, and, with a suitable cross-assembler running on a standard microcomputer, and an EPROM programmer, for low-cost development of 8088 based systems.

EV88 is supplied fully assembled and tested, with comprehensive documentation, and a copy of The 8086 Book, by Rector and Alexy. All you need is a 5V 1A power supply and a terminal or a suitable microcomputer.

* 8088 microprocessor in minimum mode (software compa. tible with the 8086 16-bit microprocessor).
* Comprehensive monitor in 2K EPROM.
+ 2 K CMOS RAM.
* Cassette interface.
+24 lines of I/O.
\star Eight levels of interrupt.
* RS-232 compatible serial interface (300 baud to 9600 baud).
- Three-channel counter/timer.
* Buffered data, address and control lines.
* Double Eurocard.
* On-board expansion to 16 K EPROM/RAM (sockets provided).
\star Breadboarding area.
All bus signals available on 64-way DIN 41612 connector.
\& Single 5 V supply.
* Price $£ 300$ plus VAT. Includes delivery.

8088/8086 design service available (software and hardware).
LFH Associates Ltd.
40A High Street
Stony Stratford
Milton Keynes
(0908) 564271

The lightweight mast with 101 applications

The smoothly operated OTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres. the OTM mast can provide the ideal answer for

- Mobile Radio Telephone Environmental - gas
- Police Mobile HQ (UHF) sampling collector
- Field Telecommunications
- High level photography
- Floodlighting
- Meteorology
- Anemometer and Wind - And a host of other uses Measurement

CLARK MASTS

Find out more about the QTM series by writing or phoning:

[^0] Hivise for Industry

HM 307

OSCILLOSCOPE

Single trace. DC to 10 MHz . Risetime 35 ns . $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$. Timebase $0.5 \mu 5-0.25$. Built in component tester LPS technique provides stable and reliable triggering up to 30 MHz E1 38.00

HM41 2-5
Dual Trace. DC to $20 \mathrm{MHz} 8 \times 10 \mathrm{~cm}$ display with internal graticule. Rise time 17.5 ns . Varrable input $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{Cm}$ Add and invert modes. Timebase $0.5 \mu \mathrm{~S}-0.25$ with sweep delay 100 ns -15 $\times 5$ expansion. X-Y operation Z modulation. Trigger $\mathrm{CH} 1 . \mathrm{CH} 2 . \mathrm{CH} 1 / 2$. Line or EXT. $£ 350.00$

HM 203 PORTABLE OSCILLOSCOPE

Dual Trace. DC to $20 \mathrm{MHz} .8 \times 10 \mathrm{~cm}$ display. Risetime 17.5 nS . Sensitivity $5 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$. Timebase $0.5 \mu \mathrm{~S}-0.2 \mathrm{~S}$ $\times 5$ magnifier. X-Y operation. Auto or variable trigger. Channel I. Channel 2. line and external. Coupling AC. or TV low pass filter. Weighs only 6 Kg . Size (m.m.JH. 145, W. 285. D. 380 £220.00

HM705

Dual Trace $\mathrm{DC}-70 \mathrm{MHz} 8 \times 10 \mathrm{~cm}$ display with internal graticule. Risetime 5 ns , Variable input $2 \mathrm{mV}-20 \mathrm{~V}$. Add and inver modes. 95 ns Signal Delay Line Timeebase $50 \mathrm{~ns}-1 \mathrm{~s} / \mathrm{cm}$ with Sweep delay 100 ns - 15×10 expansion. XY
operation. Z modulation. Trigger CHI CH2. CHI/2 line or EXT 580.00

The above prices do not Include carriag VAT (15\%).

Simple Phone or

 Telex your order for immediate dispatch.Electronic Brokers Ltd 61/65 Kings Cross Road London WClX 9LN
Telephone: 01-278 3461 Telex: 298694 Elebro G ww - 202 For further detalls

STOP WASTING TIME TESTING BOARDS

MD will pin-point microtroubles in seconds
Portable and simple to use by non-technical staff in the REPAIR SHOP or on the PRODUCTION LINE MD tests ROM, RAM \& 1, O and prints diagnostic reports. MICRODOCTOR can be plugged into an unknown system to perform a general diagnostic and print a MEMORV-MAP. The ENGINEER may enter sequences
of CHECKSUMS and RAMTESTS.
READS and WRITES to specific MEMORY and I'O locations SHORTING tesis on DATA and ADDRESS LINES. PRINT-OUTS of memory in ASCII or HEX.
These sequences aie retained in CONTINUOUS MEMORY. available always at the push of a key.

* FREE 280 DISASSEMBLER with each MD (other disassemblers soon to retrofit at low cost) Get a DISASSEMBLER LISTING of ROM in any mićrosystem MICRODOCTOR - £295.00

Michodoctor - E295.00

INTELLIGENT EPROM PROGRAMMER

Good tools need not be expensive. SOFTY 2 is the latest version of the engineer's favourite EPROM HANDLER for anybody who uses $2516,2716,2532$ and 2732 EPROMS. SOFTY will program any of these EPROMS or copy any type into another. SOFTY puts out a TV picture of memory contents, with many code-manipulating and editing facilities.
There is also a fast cassette data storage system. SOFTY is also a ROMULATOR (a lead is supplied which may be inserted into a board under development to emulate the ROM using SOFTY's internat RAM. This procedure can also be used on the single-chipper piggr-back type MPU.) SOFTY is complete in itself as a PRODUCT DEVELOPMENT SYSTEM. Code may be entered in HEXADECIMAL via the keyboard also SERIAL and PARALLEL inputs and outputs allow downloading of object code from your computer or printing EPROM contents on your printer.
SOFTY 2 - £169.00

Z80 DEVELOPMENT SYSTEM

MENTA puts out a TV PICTURE of memory in hexadecimal.
The 40 key keyboard will accept inputs.
both in hexadecimal and $Z 80$ mnemonics;
there is a quick cassette data storage system,
a powerful editor which permits program debugging
by showing contents of registers and stack.
Also there are 24 bits of 1/0
for external control. A $Z 80$ disassembler
is also available which outputs to any RS232 device such as a printer or terminal.
MENTA was designed as a low-budget device
for teaching microprocessing in schools: professionai course-material is available to teachers together with add-on boards for a variety of control functions and robotic applications.
MENTA - $£ 115.00$
SERIAL DISASSEMBLER - $£ 19.50$
Manufactured by Dataman Designs, sold by dealers in UK, USA. France, etc, TRADE ENQUIRIES INVITED - TELEX 418442 DATAMAN

NEC PC 8000 PERSONAL COMPUTER.

The brand-leader in Japan; gaining ground rapidly in America; this beautifully made, reliable system has all the features you could want at
8001 Keyboard Unit
(24K BASIC, 32 K RAM, colour graphics, function keys etc.) £599
8011 Expansion Unit
(32K RAM, RS232, IEEE-488, CLOCK, 34 pin I/O etc.) £489
8023 Dot Matrix Printer
(100 CPS, up to 136 columns, proportional spacing, greek and math) È399 8031 Dual Disk Drive £669 8043 Colour Monitor All CPM software is available

THANDAR TA2080 - £1950

20MHZ LOGIC ANALYSER

A value-for-money instrument with both TIMING and STATE capture and display and excellent triggering from 23 bits.
We are designing RS232 and IEEE interfaces, 280 and 8048 disassemblers for our own use, which will be available when tried and approved by Thandar. PLEASE PHONE FOR PRICES

[^1]

Bigger and Better for 1982

the colourful Wilmslow Audio brochure -the definitive loudspeaker catalogue!
Everything for the speaker constructor - kits, drive units, components for HiFi and PA
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

* Lowest prices - Largest stocks *
\star Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities) * Ample parking *

Send 1.50 for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)
Access - Visa - American Express accepted
also HiFi Markets Budget Card

8

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders!

WW - 032 FOR FURTHER DETAILS

Scoop purchase of factory refurbished Anderson Jacobson AJ832 daisy wheel printers complete with full keyboard, integral stand, and RS232 interface. Utilising the famous QUME Printer Mechanism
NOW ONLY 5750
\square SAVE UPTO 51\%
hazeltine 1510 [MLP £880]

Only£550
haZELTINE 1520 [MLP £1050]

Only£625
HAZELTINE 1552
[MLP £800]
Only $E 395$

ADD 15\% VAT TO ALL PRICES
Electronic Brokers Lttd.,61/65 Kings Cross Road, LondonWC1X 9LN. Tel:01-2783461.Telex 298694

TEST COMPONENTS
 ON THIS NEW OSCILLOSCOPE

USE READER CARD FOR DETAILS
WW - 027 FOR FURTHER DETAILS

Type 250VRU/30/25

OUTPUT 1:0-30v, 25A DC
OUTPUT 2: 0-70v, 10A AC
OUTPUTं 3: 0-250v, 4A AC

ALL
Continuously Variable

Valradio

VALRADIO LIMITED, BROWELLS LANE, FELTHAM MIDDLESEX TW13 TEN Tolophone: $01.8904242 / 4837$

WW - 031 FOR FURTHER DETAILS

With 1,100 instrument cases in

 Bor case parts currently in stock, we certainly enable you to box clever.A practical solution to every electronic packaging requirement, without the problem of high tooling costs, that's our aim at West Hyde. By being able to supply an 'off the shelf' enclosure for just about any electronic or electrical instrument, we can certainly make sure when it comes to enclosing your particular product, we can help you to box clever! For more information send for our catalogue, price $£ 1.00$ inc. P\&P.

West Hyde Developments Ltd., Unit 9, Park Street Industrial Estate, Aylesbury, Bucks. HP20 1ET. Telephone: Aylesbury (0296) 20441. Telex: 83570 W HYDE G.
WW - 053 FOR FURTHER DETALLS

THE MOST
 ECONOMICALLY - PRICED PROFESSIONAL EPROM PROGRAMMERS AROUND

SUITABLE FOR EPROMS:
2708, 2516, 2716, 2532, 2732, 2732A plus option for 2564, 2764

The Professionals

VALVES,SEMICONDUCTORS \& COMPONENTS for:-

Communications, Displays, Radar, Computer,
Audio etc.

Hall Electric Limited
Electron House
Cray Avenue, St. Mary Cray
Orpington, Kent BR5 30J
Telephone: Orpington 27099
Telex: 896141
MIN DEF APPROVAL 0529/0531

CX80 colour MATRIX PRINTER

New low price

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

> Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.

Dot Addressable +15 user programmable cháracters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.
Interrek limited

DAROM SUPPLIES Dept. AW - Tel: (0925) 64764

4 Sandy Lane, Stockton Heath, Warrington, Cheshire WA4 2AY
SAFGAN British Made Scopes A range of high-performance, economically priced scopes featuring:

Dual Trace 5 mV /div Sensitivity	
¢ X Y Facility	
Z Modulation	
* Solid Trigger with	
Auto., Normal and TV	
* Portable/Lightweight	
T 410101	f17
DT 41515 MHz	£185
DT 42020 M	£198.00
REF-X10	

OSCILLOSCOPES me FUTURE sems
 BY LEADER

All Models feature:

* Dual Trace
* 6-inch rectangular CRT
* Max. sensitivity $500 \mu \mathrm{~V}$
t TV-V. TV-H sync.
* ALT trigger
t Hold OFF variable
* X Y Facility
* Preset Sync.
* Z Modulation
* Includes 2 XI/XIO Probes

LBO 524 features Delayed
Sweep and Dual Time Base

Add 15% V.A.T. on all prices - prices
correct at 1-5-82-E\&OE cash with order or credit card - Carriage 55 for

Express Delivery

WW - 077 FOR FURTHER DETAILS

ELECTRONIC VALVES WANTED

All Types Receiving, Transmitting, Industrial

$$
\begin{gathered}
\text { PL504 - PL802 - PCL805-CV131-CV136- } \\
\text { CV138 - CV329-CV345-CV450-805-807- } \\
813-2 K 25, \text { etc. } \\
\text { Phone/write to: } \\
\text { PYPE HAYES RADIO LTD. } \\
\text { 606 Kingsbury Road } \\
\text { Birmingham, B24 9PJ } \\
\text { 021-3734942 }
\end{gathered}
$$

WW - 013 FOR FURTHER DETAILS

6 ft dia. for use in satellite reception and microwave transmissions. Please send S.A.E. for full details and data sheet.

FTarrison Bros.

Electronic Distributors
22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX Tel. Southend (0702) 332338

MICROCOMPUTER COMPONENTS

LOWEST PRICES - FASTEST DELIVERY

MEMORIES $\dagger \star$ N 2708 450ns
 2716 450ns (5v)
 2716 (3 raill) 450 ns
 2732450 ns
 732350 ns
 2532 450ns

EW LOWER PRICES t.
0.1
0.80
2.79
2.10
3.59
5.95
3.90
8.40
3.60
 6116LP3 150ns
BBE MICHO UPGRADE KITS \rightarrow NEW LOWER PRICES t
As some pants are still in shon supply please check availability before ordering.
8BC1 4516/4816×8100ns $\quad 25.50 \quad$ BBC21 Printer cable complete BBC2 Printer/User I/O kit (IC69, $70+\mathrm{PL9}, 10$) 88C4 Analogua input kit (IC73, $77+$ SK6) BBC5 Serial $1 / 0$ and RGB kit (IC74, 75 + SK3, $\begin{array}{r}670 \\ \text {, }\end{array}$ 8BC6 Expansion bus and tube kit (IC71, 72, 76

BBC22 Connector for user port with 36 in 2.00 B8C44 Analogue input plug with cover 2.25 BBC55 5 and 6 pin DIN plugs for Serial $1 / 0$ and RGB input
BBC66 Connector for Bus port with cable

We ve done it again

WW - 029 FOR FLRTHER DETAILS

SMG1 Stereo FM Generator
ROHDE \& SCHWARZ BN252 Transistor Y Parameter Test Set SCHLUMBERGER 4010A VHF/UHF Radio Telephone Test Set S.T.C.

74600 J Attenuator $0.9 \mathrm{~dB} 50 \Omega$ in 1 dB steps

ACOUSTIC \& VIBRATION

BRUEL \& KJAER
1621 Tunable Band Pass Filter
2113 Audio Frequency Spectrometer
2215 Sound Level Meter Inc. Oct. Filter
2218 Sound Level Meter inc. Lea. 23058 Level Recorder inc. 50 dB po
2625 Vibration pick-up amplifier
2808 Power Supply/Mains Adapter
2972 Tape Signal Gate
4423 Noise Dosemeter
4424 Noise Dosemeter
CASTLE ACOUSTICS
CS181 Sound Level Meter \& Calibrator
C.E.L.

144 Environmental Noise Analyser
DAWE
419C Audio White Noise Generator
1461CV Vibration Analyser
$1463 \mathrm{~B} / 1 /$ Octave Filter
1465 Ocrave Band Filter
WAYNE KERR
B7318 Vibration Meter inc. probe
BRIDGES \& V and I STAND
HEWLETT PACKARD
4261A Digital Automatic LCR Bridge 4342 QLC Meter $22 \mathrm{KHz}-70 \mathrm{MHz}$
MUIRHEAD
D30A DC Bridge 0.15\%
WAYNE KERR
B224 RCL Bridge 0.1\%
B521 LCR Bridge
COMMS \& CABLE TEST
EQUIPMENT
DYMAR
BC282 Battery charger for 883 Radio
Telephone
883 Radio Telephone - VHF band - hand 883 Ra
MARCONI
TF2091 White Noise Generato (exc. filters) 1000
TF2092 White Noise Receiver (exc. filters) 1000
TF2809 Data Line Analyser
NORTHEAST ELECTRONICS
TT537B Psophometer/VU Meter
SEIMENS
U2033 Psophometer
S.T.C.

74106 Bridge Unit
741848 Selective L.evel Measuring Set
74216A Noise Generator
74261A Psophometer
742628 White Noise Generator \& Receiver
74307C Level Measuring Set
74834C Distortion Measuring Set
96016 Selective Null Detector
GTA-2 Quantization Distortion Tester
GTA4B Pattern Generator
COMPUTEREQUIPMENT
(90 day guarartee)
CENTRONICS
702 matrix printer
HEWLETT PACKARD
9835A Desktop Computer 64K + expanded I/O ROM + HP - IS interface. Includes C.R.T. Cartridge Tape Drive - Full documentation test tapes etc.

Carston Electronics Ltd 01-267 5311

Shirley House, 27 Camden Rood, London NW1 9NR. Telex: 23920.

975

TEKTRONIX
4610-1 Hard copy printer for 4010 series 550 1400 1050 1475 1350 350
90 90
900 200 350
375

COUNTERS \& TIMERS

FLUKE

1912520 MHz 7 digit Counter
1912A01 As 1912A but Inc. re-charging
batteries
1920A 520 MHz 9 digit Couriter inc. Brst mode
HEWLETT PACKARD
$5300 \mathrm{~A} / 5305 \mathrm{~B} 1300 \mathrm{MHz} 6$ Digit Counter 5345500 MHz 11 Digit Counter Timer MARCONI
TF 2432560 MHz 8 Digit Counter
PHILIPS
PM6614/02520 MHz 9 Digit Counter TCXO PM6624/02520 MHz 9 Digit Counter Timer TCXO
PM6661 80 MHz 8 Digit Counter
RACAL-DANA.(E.I.P.)
37118 GHz 11 Digit Counter with Source Locking facility
811050 MHz 8 Digit Counter Time
90251 GHz 8 Digit Counter

Prices
frome

MAINS TEST EOUIPMENT DATALAB

1150 DL019 Mains Interface for DL905 DRANETZ
606 3ch Volts Av/Spike/Time/Printer
Prices
steps
TEKTRONIX
184 Time Mark Generator
521PAL Vectorscope
300528 TV Waveform Monitor
575 Semiconductor Curve Tracer
1485C TV Waveform Monitor PAL/NTSC TELONIC
35006001 RF Detector with Log Amplifier Analogue display \& recorder O/P. 0.4-130 $\mathrm{MHz}-80 \mathrm{~dB}$ range
180 YELLOW SPRINGS
YS157 Water Pollution Measurement System

NETWORK ANALYSERSI

PHASEMETERS

DRANETZ
825 301A Analogue Phasemeter $5 \mathrm{~Hz}-500 \mathrm{KHz}$ HEWLETT PACKARD
50 8405A Vector Voltmeter $1-1000 \mathrm{MHz}$ $8407 \mathrm{~A} / 8412 \mathrm{~A} / 8601 \mathrm{~A} 100 \mathrm{KHz}-110 \mathrm{MHz}$
complete Network Analyser system
comprising Analyser, Phase/Magnitude display and Sweep Generator. 50Ω or 75 ת systern available. 80 dB dynamic range 8745A S Parameter Test Set 0.1-2 GHz
11570A Accessory Kit for 8405A 11600A Transistor Test Fixtures TO18/TO-72

SPECIAL OFFER GUIDO GAY Model MTA

Memory Voltmeter/ Transient Monitor

For peak voltage measurements of single or repetitive pulses down to 50 ns or less. Ideal for measuring fast transients, spikes, noise and interference, on AC or DC lines. 1 V to 1 KV ranges (protected to 3 KV). Fully variable threshold level. Measurements can be gated.
Complete with compact strip printer that records data that is above the user adjustable threshold level. Prints peak voltage, day, hour, min, second. Max print rate 40 I.p.m.

£1500

990350 MHz 7 Digit Counter Timer 9905200 MHz 8 digit Counter Timer SYSTRON DONNER
60533 GHz 9 digit Counter BCD O/P 51038 Strip Printer for 6053/6054 TEKTRONIX
DC501 7 Diglt 100 MHz Counter - TM500 Plug-in DIGITAL TESTING EOUIPMENT HEWLETT PACKARD
1600A Loglc Analyser 16 ch 20 MHz 1600 S Logic Analyser 32 ch 20 MHz 1602A Logic Analyser 16 ch 10 MHz 1615A Logic Analyser 24 ch 20 MHz TEKTRONIX
832 Datacom Tester R5232/V24 833 As 832 plus BERT/BLERT feature

310
360
360 FLANN
6/11 Rotary Vane Attenuator WG16 HEWLETT PACKARD
790 342A Noise Figure Meter
X382A Rotary Vane Attenuator WG 16 $536 \mathrm{~A} 0.96-4.2 \mathrm{GHz}$ Cavity Frequency Meter MEGGER
BM6 500V 0-200 m』 tester. Batt op. MJ4 1 kV 0-200 m Ω tester. Hand Drive MULTIMETRICS
1160 AF120 Dual H/Pass L/Pass active
2250 filter $20 \mathrm{~Hz}-2 \mathrm{MHz}$
900 PHILIPS
PM 5501 Colour TV Pattern Generator PM 5519 Colour TV Pattern Generator PM 6456 Stereo FM Generator

WW - 055 FOR FURTHER DETAILS
Full details and specification of equipment listed, available. Because of long copy dates this list is not comprehensive - ring for inventory update or tell us your SPECIFIC NEEDS. Hours Monday to Friday 9.30 am -5.00 pm (lunch, $1-2 \mathrm{pm}$). Prices exclude delivery and VAT. We take Access or Viso.

Carston Electronics Ltd 01-2675311

practical, -uthoritative books

 from Prentice-Hall Intemational
Alan Clements
 Microcomputer Design and Construction : Building Your Own System with the Motorola 6800

Both the theory and practical aspects of designing and constructing a general-purpose microcomputer are explained in this book in an informal and lively style. If describes the design of a micropracessor system in detail, with full circuit diagrams using the Motorola 6800 as an example. Since much of the text is processor independent it will be of value to designers of systems based on other CPU's.
$\square £ 18.95600$ pages July 1982
A Motorola Approved Product (M)
Ed Klingman

Microprocessor Systems Design, Volume 1

This thorough introduction covers information devices, CPU's, memory, languages, structure and microprocessor architeclure. Delailed diagrams and design sections are provided.
\square £22.35 416 pages 1977

Microprocessor Sysfems

 Design, Volume 2Volume 2 gives full details on the concepts and techniques required to utilize array logic devices or bit slice devices for the architectural design of a special purpose digital system.

Three complete design examples are included: a two-dimensional filtering problem; a floating-decimal-point computation system; a facsimile transmission syslem
\square £22.00 368 pages July 1982

Book Orders

These books can be ordered from your usual bookseller or in case of difficulty from: Department 30, Prenfice-Hall International, 66 Wood Lane End, Hemel Hempstead, Hertfordshire, HP2 4RG, England
Please mark the number of books you wish to order in the boxes beside each title and return the advertisement to the address above

Name

Address

I enclose a chequelP.O. for \mathcal{E}
Please add $\mathbf{£ 1 . 0 0}$ per book for postoge and packing Payment should be made out to Infernational Book Disíributors. Please allow 28 days for delivery.

Prices and publication dates are correct of the time of going to press but may be subjecl to change.

WW - 073 FOR FURTHER DETAILS

"Sympathy, Love and

 Understanding are not enough"Sir Douglas Bader C.B.E., D.S.O.,D.F.C

The Wings Appeal Fund helps to maintain the RAF Association Home for Disabled and Chronic Sick. Care is essential for those who have served their country and who are in need. So please help by giving all you can for an emblem in WINGS WEEK in September or send a donation to show that you care.

To: Royal Air Forces Association, Appeals Dept., (DS) Portland Rd. Malvem, Worcs. WR 14 2TA.
I enclose a donation of
for the Wings Appeal Fund.
Name
Address

Please tick if receipt is required. \square
Space donated by 'Wireless World'

The Professional Choice

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power amplification. For power you can depend on - choose AMCRON, the professional choice.

For further details contact the UK Industrial distributor:

HF COMMUNICCIIONS RECEVVERS

 FORPOINT TO POIHT/TRAMSPORTABLE

AND
 MaRIIIE SYSTEMS

DESIGNED AND MANUFFICTURED TO HIGHEST IHTERMATIOMAL SPECS

FULLY SYNTHESISED -10 Hz or 100 Hz STEPS
CONTINUOUSLY TUNED-50KHz to 30 MHz
MODES
-LSB/USB/CW/AM/FSK or TELEX
$- \pm 1$ PARTIN $10^{7} /{ }^{\circ} \mathrm{C}$
-SPIN WHEEL or DECADE
$-110 / 240$ A.C. and 24V D.C.
POWER SUPPLIES

OUTSTANDING PERFORMANCE
AND RELIABILITY
HIGHLY COMPETITIVE PRICES

WORLD WIDE AGENTS NOW BEING ESTABLISHED

SEND FOR TECHNICAL BROCHURES TO:
YIGILANT COMMUNICATIONS LTD, UNIT 5, PONTIAC WORKS, FERNBANK ROAD, ASCOT, BERKS, ENGLAND TELEPHONE: (0344) 885656

TELEX: 849769 VIGCOM G

WW - 059 FOR FURTHER DETAILS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2X0
Telephone 077257560

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchiey, London, N. 12.5 mins, from Tally Ho corner Telephone 445 2713/0749
19461)

WW - 033 FOR FURTHER DETALLS

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF. SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST, leap year and parallel BCD (including WEEKDAY) output, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, GET the TIME RIGHT, £69.60.
LOSING DX? Make them HEAR YOU with a Speech Compressor, between your microphone and transmitter, BOOST your POWER up to four times, 60 dB agc, MORE DX, £15.30.
 $10-150 \mathrm{KHz}$ Receiver $£ 19.40,200 \mathrm{KHz}$ Converter $£ 19.80$.

Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, postage, etc., instructions, money back assurance so GET yours NOW

CAMBRIDGE KITS

45 (WJ) Old School Lane, Milton, Cambridge. Tel. 860150

[^2]
KEF
 IT'S
 Have fun, save

ConstructorSeries Speakers
 money, building a Kef design with a
Wilmslow Audio CS Total kit. No electronic or woodworking knowledge necessary and the end result is a proven top-
quality design
that you'll be proud of.
Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units, crossovers, wadding, grille fabric,
terminals, nuts، bolts, etc.
The cabinets can be painted or stained or finished with iron-on veneer or self adhesive woodgrain vynil.
Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E

Prices: CS1 (As 101) £110 pr. inc. VAT, plus carr./ins. £ 5.50 CS1A (simplified LS3/5A) £103 pr. inc. VAT, plus carr./ins. £ 5.50

CS3 (as 103.2)
CS5 (as Carlton II) CS7 (as Cantata) E 129 pr. inc. VAT, plus carr./ins. £ 10.00 £192 pr. inc. VAT, plus carr./ins. £15.00 £250 pr. inc. VAT, plus carr./ins. £18.00

疋

0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS
1982 Catalogue - £ 1.50 post free
Lightning service on telephoned credit card orders!

WW - 063 FOR FURTHER DETAILS

We have the UK manufacturing facilities, experience and skills to give you the panel meter you want. With all aspects of panel meter construction under our control it means you can specify and get the sensitivity, movement ballistics and scale you want. It all adds up to greater flexibility and a wider choice. You want them quickly? - of course! Low quantities or large quantities present no problems. Next time why not give us a call - ask for Colin Williams, tell him what you want - you could be surprised at what he may have to tell you!

Trenant Estate, Wadebridge, Cornwall, PL276HD Telephone: (020881) 2031 Telex: 45451 WW - 009 FOR FURTHER DETAILS

The Keithley 179A

AM Fisuiter ACHIV:W:NI.

Specification... Versatility . . Accuracy Price. In almost every major area the new 179A - a 41⁄2 digit bench/portable DMM from Keithley Instruments sets some pretty impressive standards

- 20 amp capability O Full function: 27 ranges including true RMS AC Measurement - Year's guarantee on spec O.04\% DC accuracy IEEE option Large display and $10 \mu \mathrm{~V}$ dc resolution.
For those requiring 10 times more sensitivity and an analogue output there's the 177, a unit with similar specification to the 179A. Both models are part of a vast range of test equipment from one of the world's leading manufacturers.
For more information fill in the coupon at the bottom of the page.

0Alternatively, phone our Instant Information
Service on
0734864784 now.

KEITHLEY

Keithley Instruments Litd
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (0734) 861287
Telex 847047

I'd like to know more ...
Name
Position \qquad
Company \qquad Address \qquad

Telephone

WW - 023 FOR FURTHER DETAILS

resting Testing. Testing...

FM/AM 1000s with Spectrum

Analyser - we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests.
The FM/AM 1000 s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!

A PRACTICAL TOP UP! MM-100 MULTI-METER

Simply replaces the protective lid of the FM/AM 1000s. It includes a modified probe. PB-114, and a built in speaker unit with independent volume control for audible response to signal measurement. This practical 'top up' will perform the following functions.
Sinad: Measurements for 1 kHz tone ($\pm 20 \mathrm{~Hz}$)
Distortion: To 30\%
DC Volts: Up to 300 volts and up to
800 volts when the $\times 10$ probe is used

f.C Volts: 600 VRMS maximum for frequencies between 25 Hz and 25 kHz
Ohms: Using the modified probe, part number PB-114,
Ohms can be measured on scales X1 to X10 K
\% AM Measured on the RF signal applied to the
FM/AM-1000 unit
OPTIONAL ACCESSORIES
A choice of R.F. power attenuators and protective carrying cases.

For further information contact Mike Taylor


```
Fieldtech Heathrow
```

Fieldtech Heathrow Ltd: Huntavia House 420 Bath Road West Drayton West Drayton Middlesex
Tel: 01.8976446 Telex: 23734 FLDTEC G

IFR precision simulators
FIRST IN THE WORLD
The ICM-12, synthesized, marine hand-portable radio
FEATURES:

- 12 channels - 6 and 16 fitted as standard.
- No waiting for crystals, can be diode programmed between $156-164 \mathrm{MHz}$.
- Automatic semi-duplex for private and link calls.
- Slide-on nicad pack recharges from mains or 12 V .
- Lots of options, speaker mics, alternative battery packs, 12 V leads, and desk chargers.
- Complete with nicad battery pack, mains charger, belt clip, earphone, rubber antenna.
- Home Office type approved. RTD HP 105. PRICE $£ 199.13$ + VAT. Free carriage.
Trade enquiries very welcome - Ask for Phil Hadler
 We can also supply 'the ICOM IC100E and IC410A VHF \& UHF. PMR Base and Mobile transceivers. Fully approved, very compact, built-in CTCSS and at very competitive prices.
Also the first synthesized hand portable ICH2. Two channels, high band, Simplex or Duplex.
Dealer outlets required, ask for Dave Stockley.

Thanet Electronics ICOM

143 Reculver Road, Herne Bay, Kent
Tel: 02273 63859. Telex 965179
WW - 16 FOR FURTHER DETAILS

"..the quality of the colour display is excellent". Popular Computing Weekly. "The graphics facilities are great fun". Personal Computer World. "...the Spectrum is way ahead of its competitors". Your Computer. "The world's best personal computer for under $£ 500$."

Sinclair ZX Spectrum 16K RAM $£ 125,48 K$ RAM $£ 175$.

This is the astonishing new $\mathbf{Z X}$ Spectrum - a powerful professional's computer in everything but price!

There are two verslons -16 K or a really powerful 48 K . Both have a full 8 colours, sound generation, a full-size moving-key keyboard and high-resolution graphics. Plus established Sinclair features such as 'one-touch' keyword entry, syntax check and report codes!
Key features of the Sinclair

ZXSpectrum

Full colour - 8 colours plus flashing and brightness-intensity control.

Sound - BEEP command with variable pitch and duration. Massive RAM - 16 K or 48K.
Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.

High resolution-256 dots horizontally x 192 vertically, each individually addressable for true high-resolution graphics

ASCII character set - with upper- and lower-case characters.

High speed LOAD \& SAVE - 16 K in 100 seconds via cassette, with VERIFY and MERGE for programs and separate data files.

The ZX Printer - available now The printer offers ZX Spectrum owners the full ASCII character set including lower-case characters and high-resolution graphics.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.
ZX Microdrive - coming soon
Each M:crodrive will hold up to 100 K bytes on a single interchangeable microfloppy - with a transfer rate of 16 K bytes per second. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum - they're available later this year, for around $£ 50$.

[^3]

IEEE PROGRAMMABLES from TIME

9814 IEEE PROGRAMMABLE VOLTAGE STANDARD
A higher performance voltage standard with 4 ranges from 0.1 volt to 10 volt output. Accuracy is 0.01% and the resolution of setting is 1 in 200,000. Output resistance is less than 0.01 ohms, and output current adjustable $20 \mathrm{~mA}-200 \mathrm{~mA}$. Temperature coeff is less than $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and long term stability better than 50 ppm per year. Full manual control is avallable via front panel controls. Available for benchtop use or 19 " rack mounting.

9816 IEEE PROGRAMMABLE VOICE
A high quality speech synthesizer which has a 280 word vocabulary. By suitable programming via the IEEE bus it is possible to output single words, phrases and sentences. The vocabulary has been chosen to be applicable to many ATE applications.

- 9815 IEEE PROGRAMMABLE SCREWDRIVER

The unit has been designed to overcome the problems of adjusting large numbers of multi-turn trimmers in ATE systems. The screwdriver Is fully programmable via the IEEE bus with 3 speeds of rotation and 2 selectable torque values available. The unit. is supplied complete with a flexible drive shaft and drill chuck into which varlous adjusting tools can be located.

9810 IEEE/PROGRAMMABLE POWER SUPPLY
$0-33 \mathrm{~V}$ in 0.1 V steps Local or remote (IEEE) operation. Fully programmable on the IEEE bus with 3 settable current limits $1 \mathrm{~mA}, 10 \mathrm{~mA}$ and 1.1 A . A dual version of the 9810 is also available. The unit is 3 Euro units high and standard $19^{\prime \prime}$ rack mounting width.

9812 IEEE PROGRAMMABLE SWITCH

24 double pole changeover switches are avallable with full IEEE control. Each switch is rated at $1 \mathrm{Amp}, 30 \mathrm{~V}$ dc or 100 Vac . Thermal emfs have been minimised to less than 1 uV per switch. All outputs are on the rear panel along with the IEEE address selector switch and bus connector. Manual control of the switches is also provided via a set of front panel switches which also incorporate LED indicators.

9811 IEEE PROGRAMMABLE RESISTANCE
0-1 Megohm in 1 Ohm steps, fully programmable via the IEEE bus. Accuracy is 0.1% over most of the resistance range. Resistors are rated at 1 watt each. An attractive feature is the option to switch to local operation when the output resistance can be set up manually via front panel switches.

TIME ELECTRONICS LTD, Botany Industrial Est., Tonbridge, Kent, England TN9 1RS. Tel: (0732) 355993. Telex: 95481
WW - 024 FOR FURTHER DETAILS

WW - 025 FOR FURTHER DETAILS

CALL IN AND SEE FOR YOURSELF
OPEN SIX DAYS A WEEK AL MODEES

DIGITAL MULTIMETERS All models complete with leads and batteries

Hand Held Models $31 / 2$ digit LCO (UK C/P 65p) 60126 range push button 2A AC/OC Basic 0.5\% 2033A Similar to above by Sabtronics
703 As 601 but 0.2% basic $188 \mathrm{~m} / 6011 \mathrm{~A} 15$ range . He tester push button 10A OC 189 m 30 range plus He lester. Rotary switch IDA AC/OC 2035A 28 range 0.1% basic 2A AC/OC push buttion |Sablronics) 2037A As 2035A plus 2 -temp. ranges 12925 range 0.8% basic 10 A AC/OC rotary switches (Keithley) $£ 79.35 \quad 1503 \mathrm{Ha}$ As arove but 25 A 130 As modell 29 but 0.5% basic e $102.35 \quad 0.03 \%$ basic

8ench Madels $31 / 2$ digif LCO unless stated (UKC/P 90p) 20104 LEO 31 range. $10 A$ AC/
£36.50 OC basic 0.1\% (Sablronics)
£39.95 basic 0.15\% | Sinclair) c86. 25
$\mathbf{8 5 . 0 0}$ basic O LO (Sabtronics) $\quad \mathbf{8 9 . 5 0}$ basic 0.1% (S abironics)
TM351 LCO 29 range 10A AC/ OC basic 0.1% (Sinclair) £113.85 £69.95 2001 LCD 28 range plus 5 range capacitance meter IOA AC/OC $£ 71.00$ Baslc 0.1\% (Pantec) \qquad 1503A 43/d digit LCO 30 ranges £77.00 10A AC/OC 4 MHZ counter, 4 KHZ

accessories

AC Adaptors (2010A \& 2015A only) £5.69 Cases TM351/353 £6.84 $\begin{array}{llll}2001 & £ 7.50 \quad 1503 & £ 20.45 & \text { Touch and hold probe THP20 } £ 14.95\end{array}$

GENERATORS

R-C: Pulse: Rf funciion: Audlo [UK C/PEI)
All models $220 / 240 \mathrm{~V}$ AC
AUDID 4 band Sine/Sp output TE22D Maxdlstortion 1\% $20 \mathrm{~Hz} / 200 \mathrm{KHz} \quad £ 69.95$ Lag27 Maxdistortion 0.5.1\% (LEAOER) 10 Hz -1 MHz 866.25 (LLEAOER) MG202A Max distortion 0.5% (TR10) 20Hz-200KHz $£ 78.20$ (TR10) 20Hz-200KHz $£ 78.20$ SIne/Sq $0.05 .0 .8 \%$ dlst. $£ 146.00$

OSCILLOSCOPES

tRIO CS1566A

dual race Iriggered 5 SAVE $<$

19 sweep ranges.
Limited ofter
imitedotier was c363.40
OW E320.00 (UK C/P £4.00)
HM 307 Singie trace $10 \mathrm{MHZ} 5 \mathrm{mv}: 0.5$

 3030 Single trace $15 \mathrm{MHZ} .5 \mathrm{mv}: .5 \mathrm{Smicro}$ Sec. Plus Dull in in Componenin tester. 95 mm . Tube. Trig. Th 20 MHZ [CROTECH| $£ 172.50$ 3035 Single trace 15 MHz . 5 mv . Frig 1020 MH2 plus built in component tes ser $0.2 \mu \mathrm{Sec}$. 130 mm Tube |CCROTECH| $\quad 189.75$ hm203 Oual 20 MHz : Trig 10 30 MHz | 5 mV V:.5.5 micro secs. $8 \times 10 \mathrm{~cm}$ display. |
| :--- |
| IHAEG |
| E253.00 |

 3131 Oual Irace 15 MHZ rifg. 1035 mhz 5my 0.5 micra sec. 130 mm Iube. Sec. 10 Oum 5 MnZ Imv0.5 E3ec. scope. IThiol csis6nall Ous 15 Muz 10 my
 3034 日athery malns dual lrace 15 MHz 3034 Baltery-malns dual irace 15 MH2 rig to 20 MH2 Duill In
micro secs. .CROTECHI

Dual trace E4 ea. SC110 £1.00) HM412-5 Dual 20 MHZ dela yed sweap:

 SCI IOA New Model 10 MHZ batier portable. $10 \mathrm{mV} 0.1 \mu \mathrm{Sec} 2$ trace
All lacilties (THANOAR)
E171.00 $\begin{array}{ll}\text { Options: Carry case } & \text { E6.84, } \\ \text { AC Adaplor } & \text { E5.89. }\end{array}$

CS 1820 Dual 20 MH2 25 Delay sweep. 140 mm tube |TR10| £483.00 CSI577A Oual 35 mhZ. 2 mV .

(Elliminator charger optional £28.75) Scope probes all models - see below

SIne/SO $0.05-0.0 \%$ dlst. $£ 146.00$ Trlangle/TTL etc.l

INSULATION AND CLAMP METERS Multi-ange clamps all with resistance range carry
case and leads. Also digital and DC clamp in stock.

ST300 300A. 6000 V AC. 9 ranges. K. l0ptional lemp. probe £13 801
K 2903900 A $50 V$ AC. 9 ranges.

ELECTRONIC INSULATION TESTERS
 $K 3103$ 600y $/ 100$ Mes Pus 0.2550 onm 265.00 H3106500V \& 1000 V . 1000 \& 2000 Meg E1 19.00 K4 101 Earlh restslance lesties M500 Hand cr
$500 \mathrm{~V} / 100 \mathrm{Meg}$ $500 \mathrm{~V} / 100 \mathrm{Meg}$. L1 19.00
E14.00 E79.50 $\mathbf{8} 9.50$
$\mathbf{~} 23.50$

HAVE A BANANA!

Low cost rellable maters (All suppliad with KRT5001 16 range 10 amp OC Datts/leads) [UKC/P 55p)
BANANA 15 range pocket 20K/Voit plus cont. buzzer (lilus) £20.64 T10L 12 range $1 \mathrm{~K} /$ Voll + overlead
NH55 10 range pocket $2 \mathrm{~K} /$ Volt $\begin{aligned} & \mathbf{£ 5 . 7 5} \\ & \mathbf{£ 6 . 5 0}\end{aligned}$ ST5 11 range pockel 4k/Volt $\mathbf{E 7 . 5 0}$ NH56R 22 range pockel 20K/Volt

N3G0TA 19 range plus He tes 20K/Volt

301 EDGWARE ROAD,LONDON, W2 1BN, ENGLAND. TEL 01-724 3564 ALSO AT HENRYS RADIO, 404/406 EDGWARE ROAD, LONDON W2 WE ARE OPAN 6 MAX' A NEEK -CALL NANDSEE FOR YOURSELF!

FREQUENCY COUNTERS

$.1 \mu$ Sec. Single sw
40 mm tube. (IR10]
CS1830II Dual 30 mHz .2 mV $.2 \mu$ Sec flititer delay linel. Deia
 HM705 Dual 70 MHZ delayed sweep: Single sweep: Delisy line
Trio to $70 \mathrm{MHZ}: 2 \mathrm{mV}: 0.1$ micro
sec. $8 \times$ locm display |HaME 6667.00
Range ol low cost Oual Trace
Scopes malns operated. Made in UK to
$£ 523.25$

15 MHZ . or 20 MHZ . 111 teate as 5 MV MZ.
Sensilivity. 0.5 micro sec. $54 \times 8 \mathrm{~m}$ ensilivily. 0.5 micro sec. $6.4 \times 8 \mathrm{~cm}$ display aptioms
IPTIONS HM203/412/705 View Hoods
07410 Oual 10 MHZ
T415 Oual 15 MHZ

(All models bathery operated]
8000 B 9 digit LEO 3 range 1000 PF 200 A

1267 Max $5050 \mathrm{MHz} 6 \mathrm{dlgj1}$ LEO Pocket IASC \quad E56. 3 LED Pocke 6 digit

 8610 A 8 digit LEO3 range GOO TTHANOAR] $£ 43.13$ MHZ Bench|SABTRONICSI E94.00 OPTIONS

 MHZ Bench |SABTROMICSj $£ 113.85$ All models probe kils | 25. 95 |
| :--- |

 UKK $\mathrm{CR} / \mathrm{P} \mathrm{El}, 2 \mathrm{ZO}$ All fealuring AC/OC Votts/Cur
ranges.
MAJOR 20K 29 range $20 \mathrm{k} / \mathrm{V}$

 $0 C^{£ 33.90}$ 12 12 A ACIPANTEC PAN3001 34 range $40 \mathrm{~K} / \mathrm{W}$. 5 A AC/DC 50 Mog. [PAMTECI
Also 50 OMHZ-50CM Also 500 KHZ - 500 MHZ signal linjection end 3 range cap. meter
PAH3003 42 ra
\qquad
\qquad
for and 1 WA FSO PA A \qquad Protectlon Mir ror Scales) K1400 26 range large scale 20 N
AC/OC. 20 Mes ohm. 5KV AC/OC AC/OC. 20 Meg ohm. SKV AC/OC ${ }_{20} 20039$ range 10 Meg. ohim input. 25 HZ 1 M HZ
M1500 43 range $20 \mathrm{~N} / \mathrm{N} .9$
AC- 10 A 12 range $D C-10 \mathrm{~A}$

 DIRECT READ HY PROBE (UK C/P 65p) $0 / 40 \mathrm{KV}: 20 \mathrm{~K}$

VARIABLE POWER SUPPLIES
Mains input - Volis/Amps meter
PP241. $0 / 12.12 / 24$ VolL

PP241. $0 / 12.12 / 24$ Voll.

PP243 0/12. $12 / 24$ voll | $0 / 3 \mathrm{amp}$ |
| :--- | \qquad PS1 307S Iwin meter 8.15V 2.7 A

£35 2 E
C 59.95

'SCOPE ADD ON UNITS

[ZaCer [lilus) |LEAOER| $£ 95.45$ Uacer (ilisz) |UKC/P $850 \mid$

HZ65 Component tester [MAMEG]

DIRECT READ TEMPERATURE

LOELC PROBES/MONITOR
Sabtronics LP10 10 MHZ
probs
E28.50
Crobe LP2 1.5 MHZ probe $£ 19.95$ LEADER LDPO76 50 MHZ |with

 GSC DPI Difital pulser. Singlef

EP4.000

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), $2508,2758,2516,2716,2532$ and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.
The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.
- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a $1 \mathrm{k} \times 8$ RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

Items pictured are: © EP4000 Emulator Programmer - $£ 545+£ 12$ delivery; BSC buffered simulator cable - $£ 39$; MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - $£ 64$; - 2564 Programming adaptor - £64;

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): © VM10 Video m'onitor - £99; UV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - £225; Pl100 interface for EP4000 to GP100A - $£ 65$.

VAT should be added to all prices

P8000 - THE PRODUCTION PROGRAMMER THAT HANDLES ALL NMOS EPROMS

- Checks, Programs, Compares up to 8 devices simultaneously
- Handles all NMOS EPROMS up to projected 128K designs with no personality modules or characterisers - See list
- Easy to use, menu driven operation for blankcheck, program, verify, illegal bit check, checksum, self-test
- Constant display of device type, mode and fault codings
- Individual socket LED indicators for EPROM status
- Comprehensive EPROM integrity checks - IIlegal bit check, data and address shorts, constant power line monitoring
- Full safeguard protection on all sockets
- Automatic machine self-test routine

Powered down sockets

- Cost effective price - £695 + VAT
- Available from stock

Write or phone for more details

GP Industrial Electronics Lid.

 EXPORT ENQURIIES WELCOWEUnit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

RADIO AND TELEVISION SERVICING

1981-82 MODELS

Editor: R. N. Wainwright, T. Eng (CEI), F.S.E.R.T.

This latest volume in the series covers more makes than ever before and continues to provide an invaluable reference book for all service engineers. The first section contains circuit diagrams and service information for a wider group of colour and monochrome TV receivers than previously attempted, the second contains a selection from an enormous range of available audio equipment, including portable and clock radios, tape recorders, audio centres and in-car entertainment.

Price: $£ 19.50$
 Publication Date: 26th August

Previous volumes are still available. Enquiries to the Publicity Department, Macdonald \& Co.

From booksellers, or in case of difficulty, please use the coupon below:-

To: Cash Sales Dept. Macdonald \& Co., Maxwell House, Worship Street, London EC2A 2EN.

Please send me.... Copy(ies) of RADIO AND TELEVISION SERVICING 1981-82 MODELS.

I enclose a cheque/PO made out to Macdonald \& Co (Publishers) Ltd for

Name
Address

Three of the best intest

 몬
Model 260

Model 467
The $31 / 2$ digit hand portable True RMS DMM with LCD digital and analogue display - another Simpson first in the UK.

The Simpson analogue multimeter that is the world's largestselling AMM. 27 ranges cover $A C$ and $D C$ volts,
$D C$ current, resistance and dB.
 Testers The new 296-2 for foster testing of motors, transformers and circuits. All models measure up. to 300 Amps ACRMS. now see the rest
Write now for technical information on our full range of precision instruments

Bach-Simpson (U.K.) Limited Telephone: (020881) 2031 Telex: 45451

WW - 052 FOR FURTHER DETAILS

PRINTED CIRCUITS FOR WIRELESS WORLD PROJECTS

Audio compressor/limiter-Dec. 1975-1 s.s. (stereo) Cassette recorder-May 1976-1 s.s
Audio compander-July 1976-1 s.s
Audio preamplifier-November 1976-2 s.s
Additional circuits-October 1977-1 s.s.
Stereo coder-April 1977-1 d.s. 2 s.s.
Low distortion disc amplifier (stereo)-September 1977-1 s.s
Low distortion audio oscillator-September 1977-1 s.s.
Synthesized f.m. transceiver-November 1977-2 d.s. 1 s.s. Morsemaker-June 1978-1 d.s.
Metal detector-July 1978-1 d.s
Oscilloscope waveform store-October 1978-4.d.s Regulator for car alternator-August 1978-1 s.s. Wideband noise reducer-November 1978-1 d.s. Versatile noise generator-January 1979-1 s.s. 200 MHz frequency meter-January 1979-1 d.s. High performance preamplifier-February 1979-1 s.s Distortion meter and oscillator-July 1979-2 s.s. Moving coil preamplifier-August 1979-1 s.s. Multi-mode transceiver-October 1979-10 d.s. Multi-mode transceiver-October 1979-10 d.s.
Amplification system-Oct. 1979-3 preamp 1 poweramp Digital capacitance meter-April 1980-2 s.s. Colour graphics system-April 1980-1 d.s. Audio spectrum analyser-May $1980-3 \mathrm{~s} . \mathrm{s}$ Multi-section equalizer-June $1980-2 \mathrm{~s} . \mathrm{s}$ $£ 4.25$ $£ 5.00$ 84.25 $\varepsilon 8.50$ E4.00 $\varepsilon 8.50$ $£ 2.00$ $£ 2.00$
53.50
512.00 $E 12.00$ 44.50 E3.75 E18.00 £2.00 $\$ 5.00$ 85.00 $£ 5.00$
$\varepsilon 7.00$ $\varepsilon 7.00$
$\varepsilon 5.50$ $\varepsilon 5.50$
$£ 5.50$ $£ 5.50$
$\mathbf{8} .50$ £ 35.00
. $£ 4.20$ each £7.50 £18.50 $£ 10.50$
Floating-bridge power amp-Oct. $1980-1$ s.s. (12 V or 4 OV) ... $£ 4.00$ Nanocomp 6802 or 6809 - Jan., July, 1981 - 1 d.s. 1 s.s..................................... $£ 9.00$
Cassette interface - July, 1981 - 1 s.s. 89.150
Eprom programmer - Jan 1982-1 ds
Logic probe - Feb., 1981 - 2 d.s
Modular frequency counters - March, 1981 - 8 s.s. ... $£ 20.00$
Opto electronic contact breaker (Delco) - April, 1981-2 s.s
CB synthesiser - Sept. - 1 d.s... £4.00

Boards and glassfibre roller-tinned and drilled. Prices include VAT arid UK postage. Airmail add 30%, Europe add 10%. Insurance 10%. Remittance with order to:
> M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL

cJTOUR TiNDOMA रीयमIन 130

The pocket Digital Multimeter by which others are judged.

289\%

And generous discounts start at 10 units; 5\%.

Everything about the 130 is right. Easy to operate, large clear read-out. Compact, robust and reliable. With a specification few can equal in machines costing twice the price:
Only one calibration adjustment.One year guarantee on spec.25 ranges and five functions: ohms, DC and AC volits and amps.10 amp range.100 V, 1 A, 0.1 s sensitivity.
20,000 hour M.T.B.F.
All this is backed by the immense knowhow of a specialist company with an enviable reputation for test equipment spanning almost all requirements from $31 / 2$ to $51 / 2$ digits.

How do you get one? Simple. Just send off the coupon enclosing cheque or postal order. And see for yourself how the 130 measures up.
The Keithley 130 - the D.M.M. that won't stretch your pocket!

KEITHLEY

they Insiruments Ltd
18 Telionninad Reading Berkstive AG2 ONL

Ameron industrial

 - POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$$\star$ OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
\star D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA

* HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW INTO 6 OHMS
* PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS.
* UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION

GENERATORS, AND MANY OTHERS

* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
* FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
* INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS
* 3-YEAR PARTS AND LABOUR WARRANTY
t UNITS AVAILABLE FROM 100VA-12KVA.

Model - M600
For full details on all Amcron Products write or phone Chris Flack
P.O. BOX 3 ATTLEBOROUGH NORFOLK NR17 2 PF Tel: 0953-452477

Analogue Associates

PROFESSIONAL INDUSTRIAL ELECTRONICS

WW - 020 FOR FÜRTHER DETAILS

192 HONEYPOT	NE, QUEENSBURY, STANMORE, MIDDX HA THE "PET" SPECIALISTS	E. 01-204 7525		
4016 16K Computer 403232 K Computer $£ 460$ 2031171 K Single Drive Floppy Disk $£ 575$ 4040343 K Dual Floppy Disk $£ 350$ 4022 Tractor Feed Printer $£ 575$ 803232 K Computer $£ 350$ 809696 K Computer $£ 750$ $£ 995$	WE HAVE A DAZZLING ARRAY OF CONNECTIONS WITH THE OUTSIDE WORLDI D TO A CONVERTERS 18,12 \& 16 BIT A TOD CONVERTERS RESOLUTIONS X/V PLOTTERS (A3 SIZE UPWARDS) DIGITAL INPUTS/OUTPUTS RS 232: IEEE : CENTRONIC INTERFACES	COME AND SEE THE NEW f165 FULLY WORKING AND OPERATIONAL ASK US ABOUT ALL THE ADD-ON-GOODIES THAT GO WITH THE VIC		
8096 96K Computer 8050 950K Dual Drive Floppy Disk 8023 Tractor Feed Printer	AS WELL AS BUSINESS SOFTWARE, WE ALSO CAN SUPPLY ENGINEERING REOUIREMENTS, LIKE: DATA ANALYSIS/STATISTICAL PACKAGES TAPEPREP FOR ONC MACHINE TOOLS SECTION CALCULATIONS FOR DRAWING OFFICES ANALYSIS FOR CONTROL SYSTEMS	MASSES OF BOOKS ON THE PET \& VIC + INTERFACING \& CONTROL		
842222 Megabyte Winchester Disk 9000 SuperPet 134 K Multilanguage Computer £1295		SEND US Ā LARGE STAMPED ADDRESSED ENVELOPE (12×9) AND WE WILL BE DELIGHTED TO SEND YOU ALL OUR CURRENT INFORMATIONI		
TOOL KITS (BASIC $2 \& 4$). SUPERCHIPS AND ALL SORTS OF OTHER CHIPS		- PRICES do not include vat		
FEASONAL SHOFPERS WELCOME fhone \& Mall Orders eccepted	ALL GOOOS SENT SAME DAY WHEAEVEA FOSSIBLE LARGE S A.E. FOH LUSTS ETC.			\cdots

Hangover, a rather loose term to describe the stored energy resonance in a loudspeaker, the principal cause of colouration that immediately tells you you're listening to a loudspeaker.

Take it away and there's a new world the loudspeakers have

If music is an important part of your life, then a pair of ESL-63 loudspeakers could be the best investment you've ever made.

For further details and the name and address of your nearest Quad ESL-63 retailer write or telephone The Acoustical Manufacturing Co. Ltd, Huntingdon, Cambs, PE18 7DB. Telephone: (0480) 52561. nothing more to say instead there's just the orchestra and the magic of the music.

Perhàps even something to celebrate about.

ONIY H: =LEMIONICS CFFER SUCHAHCHCUAVTRANCE ATSUCHUN: $=A / A: 1$ EPMCES

Whatever your requirements in

 soldering and desoldering equipment,you won't find better value at such competitive prices.

Just take a look
at these:

SOLDERINE ACGESSOAIES

HANDLE (71)
HANDLE (71)

HEATER $(76 / 77 / 78)$
¢ 43 (+ £1.72 VAD)

Temperature Ranges $\quad 77370^{\circ} \mathrm{C}\left(700^{\circ} \mathrm{F}\right)$ $76315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right) 78430^{\circ} \mathrm{C}\left(800^{\circ} \mathrm{F}\right)$

TIPS Long Life interchangeable

 Iron-clad, chrome plated and pre-
tinned.

For further details and comprehensive literature on all our products contact this number today 0204386361 or fill in the coupon.

HB Electronics

 EANNINE Lever Street, Bolton, LancsDESOLDERING SYSTEMS\&ACCESSORIES DESOLDERING PUMP (7872)

Lightweight Anodised Aluminium

Designed for
operation with one hand
DESOLDERING KIT (50DK)
Kit includes: 95 Tip Adaptor 6948 Slotted DIP 6982 Spring loaded desoldering extractor bar tip

5013 Super-Wick т.M. desoldering braid.

HEAT GUN (6966G)

Please add VAT to prices shown

Post to HB Electronics (DEPT D.S.) Lever St, Bolton, Lancs | QUANTITY | PRODUCT NO. | UNIT PRICE | TOTAL PRICE |
| :--- | :--- | :--- | :--- |

CHEQUE \square POSTAL ORDER \square TOTAL
NAME
ADDRESS
ALL PRICES INCLUDE POST AND PACKING

wireless world

Editor:
PHILIP DARRINGTON
01-661 3128
Deputy Editor: GEOFF SHORTER, B.Sc. 01-6618639

Technical Editor:
MARTIN ECCLES
01-661 8638
News Editor:
DAVID SCOBIE
01-661 8632
Design Editor
ALAN KERR
Drawing Office Manager: ROGER GOODMAN

Technical lllustrator: BETTY PALMER

Advertisement Manager:
BOB NIBBS, A.C.I.I. 01-661 3130

DAVID DISLEY
01-661 8641
BARBARA MILLER 01-661 8640 .

Northern Sales:
HARRY AIKEN
061-872 8861
Midland Sales:
BASIL McGOWAN
021-356 4838
Classified Manager:
BRIAN DURRANT
01-661 3106
OPHELIA SMITH
01-661 3033
Production:
BRIAN BANNISTER
(Make-up and copy)
01-661 3500×3561
I.T. and M.I.S.S.

One of the aims of Information Technology Year and the Microelectronics Education Programme is to involve schoolchildren in the use of microcomputers and related electronic devices. There are the M.E.P., the Micros in Schools Scheme, exhibitions and events throughout the year and beyond. It is, perhaps, fortunate that Mr Callaghan happened to be watching television on the evening the programme "Now the Chips are Down" was broadcast and was spurred into action then, or we would probably find the propaganda even more frenetic than that now being put out by the energetic Mr Baker, the prophet of IT.

Information Technology is a curiously diffuse name for a Year. The official definition, "the acquisition, processing, storage, dissemination and use of vocal, pictorial, textual and numerical information by a microelectronics-based combination of computing and telecommunications" appears to encompass most of the activities of the average person, except eating and one or two other processes, although the use of a computer is not often considered essential to the more basic of these.

So far as its involvement of schoolchildren is concerned, the publicity is decidedly shrill, the Minister's aim being to have a computer in every secondary school by the end of the year and even to think about providing them for primary schools.

There can be no argument that young people must be aware of computers and how to use them, but it does seem possible that the present blaze of publicity tends to obscure the point that computers are a means, not an end. There is also the question of how the micros are to be used in schools.

According to the fifth edition of the Concise Oxford Dictionary (now, admittedly, modified), a computer is "a calculator - an electronic calculating machine" - an unfortunate description, taken too literally by at least some of those responsible for introducing youngsters to
computing, with the result that the school micro is often given to the senior maths teacher to guard with his life, presumably on the grounds that computers are electronically mathematical and possess no relevance to any other subject.

In other schools, the computer is treated as a kind of totem, and the pupils are taught "Computer Studies". As a subject, computing (meaning programming) is a singularly empty one, unless the pupil learning it intends to become a programmer. A computer is an aid to the process in which it is used - in this instance, learning - and an element of transparency to the user rather than an obscuring of the subject by undue attention to the computer must be the aimi.

Clearly, an overnight transformation, after which every teacher would be using a micro as to the manner born, is hardly feasible. But, until the school micro (or one of its terminals or even a micro owned by a pupil or teacher) can be used naturally, as is a dictionary or pocket calculator or a video recorder, it will dominate the learning process. Utmost priority should be given to teachers from all disciplines, from home economics to athletics, to use the computer as an aid, rather than as a distraction, so that pupils who are not to specialize in science or engineering can see that it is of advantage to them to be at ease with computers, but no more than that.

The Inner London Education Authority is aware of these problems and is educating teachers in the use of computers so that, even though there may be only one micro or terminal in the classroom, the pupils will learn the place of a computer by, to use ILEA's word, "osmosis". However, there is evidence aplenty that education authorities in other areas are either hypnotized or revolted by the new equipment and, accordingly, either enshrine it or pass it to the school computer fanatic to impress people with.

In short, a computer is a useful tool, but that is all it is: it can help or it can dangerously hinder learning, and only the education of teachers in its natural use as an aid can decide which.

DIGITAL FREOUENCY STABILIZATION OF A V.F.O.

> Using a single crystal, the unit stabilizes the output of a variable-frequency oscillator at a large number of points by means of a counting technique. This article traces the development of the design and points out further avenues to explore

Most radio receivers and transmitters use at least one variable oscillator, coupled with the turning dial. Such an oscillator, usually called a v.f.o., must be easily tuned, exhibit high frequency stability and provide a pure sinusoidal output. For s.s.b. communication, the stability requirement cannot be met with LC oscillators, at least not in the higher h.f. bands or the v.h.f. frequencies. Use is often made of a mixing scheme, the variable oscillator running at a lower frequency, but purity of output and simplicity suffer with this method. Ease of tuning has always been the hall-mark of good communication receivers, leading to the familiar looks and appreciable cost of a very long tuning dial, with very fine divisions, coupled to the tuning capacitor by means of slip-free reduction gear without backlash.

Of course, a digitally-set frequency is very useful in a test-oscillator, but useless when one wants to tune in with the 'handwheel'.

A simple stabilizer

Proposals have therefore been made to accomplish the old-fashioned continuous tuning while stabilizing the generated frequency at discrete spots. A simple method, now well known to amateurs, is given in Fig. 1. Since we are not interested in displaying the frequency digitally, only the first decade from the usual chain of counters is needed and its output used to correct the v.f.o. frequency.

To get a good mental picture of what happens, consider an example. The measuring period is exactly one second, the v.f.o. frequency is about 5 MHz , say, $5,123,456.78 \ldots \mathrm{~Hz}$. The counter, being reset before the measuring time starts, contains after one second a 6 or 7 . Because the digital output is taken from the fourth flipflop, a 1 only results when the counter contains an 8 or a 9 , all other numbers giving a 0 at this point. The 1 may be regarded as the 'too high' signal, the 0 standing for 'too low'. This digit is stored in a buffer, so the counter can be reset and a new measurement initiated. A large timeconstant smoothes the control signal from the buffer to the Varicap v.f.o. In the working system, the frequency of the oscillator is kept around $5,123,457 / 8 \mathrm{MHz}$ and wobbles around this value. The next points for stabilization are $5,123,467 / 8$ when tuning upwards and $5,123,447 / 8$ when going downwards. Any drift of the v.f.o. is taken care of by changing the ideal equal number of ones and zeros to some

by W. Trapman, jr.

other proportion, for instance five ones against four zeros in a sequence like 01010110101 , etc. (To say any drift is compensated for is fine, so long as it is taken to mean 'any small drift'. A very bad oscillator equipped with the stabilizer will not 'creep' but 'jump'. It is a very simple system, compared with other possibilities.
Besides a crystal-controlled (one-second interval) time-base, few i.cs are required and its elegant simplicity appeals to constructors.

There are drawbacks, however, all connected with the long measuring time: to get a reasonably smoothed control signal, the integrating time-constant has to be very large. A further point to think about is the delay in the system - even if the large RC product could be avoided, the information about the frequency becomes available every second and this is a somewhat elusive way of saying that some of it is almost one second old. The system just described needs at least several seconds to stabilize after the tuning knob is touched.
So, the first thing one tries to do is to shorten the measuring time to 0.1 s . This is

Fig. 1. Simple frequency-stabilized v.f.o.. When crystal-derived one-second period ends, 'high' or 'low' information from the decade counter is stored in the flip flop until next measuring period is completed. Clock and logic to provide the timing and controlling pulses not shown. R and C give large time constant.

Fig. 2. Connecting high-frequency clock directly to gate and dividing v.f.o. output down gives a varying distance between successive stabilized frequencies on the dial. Because high-frequency crystal oscillators give no probems, resolution and stability can be high. Integrator is now connected to \bar{C} on storage flip flop. Speed of logic elements forms limit for higher clock frequencies.

Fig. 3. (a) Shows 5 Hz square wave giving six positive going slopes per second, seen as pulses by the counter. In (b) only five pulses are seen. With some regularity this situation may alternate or not with (a). All depends on the relative position of the two waveforms. (c) shows that even an input frequency of 4.1 Hz gives five pulses to counter.
not a good idea, however, because the digit now contained in the buffer store represents not Mertz but tens of Hertz. In our example, with an initial frequency of is, $123,456.789 \ldots \mathrm{~Hz}$, the counter contains that five and the feedback will arrange to make it alternate between 7 and 8 as before. The next higher stabilization (centre) point will be $5,12357 / 8$, which is no less than 100 Hz from the previous one. The resolution of measurement is ten times reduced and the 'ripple' on the v.f.o. frequency is the same factor enlarged. The integrator time-constant can be ten times smaller now and the speed of response is subjectively very much improved - the only benefit of the change in measuring time.

The problem still remains: how to improve the resolution without lengthening the time' for each measurement. When discussing this point with friends (one of them the prototype of Homo digitalis) one answer came up again and again: raise the frequency, so that the relative accuracy remains high enough when you shorten the gate time. In theory this is a way-out, because the high and stabilized frequency of, say, 51 MHz is divided by ten to get our original 5.1 MHz and the frequency variations are divided too. In practice, if you can build an oscillator that does not drift 10 Hz in 0.1 second at 50 MHz , frequency stabilization is probably not necessary. This approach did not seem attractive. Instead I pondered for some time, wondering whether it is at all possible to measure a frequency with an accuracy of 1 Hz in less than a second.

Period counting

Just to be complete, one may recall the 'period counting' method of measuring low frequences. When the rôles of the clock and the unknown frequency in a
frequency counter are reversed the unknown period is measured in units of the clock period and this takes only one period of the unknown frequency. If the unknown is about 5 MHz we could count off 500000 periods in about 0.1 second, during which time the gate would be open. The single decade connected to its output would receive the clock signal, let us say 10

even when the incoming frequency is perfectly stable since there is no phase relationship between the reference oscillator and the v.f.o. This is most disturbing and leads to noise on the correcting voltage to the oscillator.
To get a clear picture I drew a few pulses on graph paper, as in Fig. 3, which represents a 5 Hz signal as it appears before and after the gate of a frequency counter. The flip-flops in the counter toggle on the posi-tive-going slope. When a window of exactly one second moves over the 5 Hz pulse train, we see immediately what happens: half a pulse has just the same posi-tive-going slope, which is what is counted,
when the two waveforms glide past each other. Only when the situation is exactly stable (no gliding) do we get consistent answers from the counting process. Figure 3 (c) shows that stretching the pulses out (by lowering the frequency to 4.5 Hz) does not produce a different result; even 4.1 Hz does not make the fifth pulse 'fall out of the window'.

The only way to make this one-pulse ambiguity less important is to count more pulses, for instance by counting during ten seconds or by making ten, separate, onesecond counts and averaging the answers. The last method was used very often when counters had no switch position for

Fig. 6. Block diagram of frequency-stabilized v.f.o. Each of odd number of counters gets a slightly different 'cut' from continuous pulse train from the oscillator. Counters work simultaneously.

Flg. 7. Frequency variation of output is reduced when corrections come faster, drift being equal in both cases. Even a three times faster correction rate is a worthwhile improvement.

Flg. 8. Adding digital information without clipping is much better. Digital store is 'frozen' when switch is open.
'multiple frequency' and the resolution was just one decimal place too low.

A new method

All this may be interesting but does not look very promising for our v.f.o., until a new idea is brought in. It is not necessary to do the individual one-second measurements one by one: the measuring times may overlap. The aim is to average out the one-pulse variation and obtain the high resolution that may be expected from a long counting time, but before placing endless rows of decades on the breadboard it might well be asked why one should use four flip-flops to get a single 0 to 1 out of them? Well, it depends largely on the stability of the oscillator when the controlling loop is disabled, and on the nature and magnitude of any impulsive noise that might enter the system. With a simple four-bit counter there is plenty of margin on both sides of the dividing line between 7 and 8, but with a decade counter one side is limited; two pulses extra make a zero from that 8 to give a 'correction' in the wrong dirction.

Because the decade on the breadboard worked well once the starting time was over, I decided that two-bit counters were all I needed. There were times I wished I had used the SN 7493 four-bit counter, but some of the problems turned out to be hardware-oriented and not so much a system fault.

Voting logic

The majority-vote is taken by the analogue circuit of Fig. 4, which works easily with 21 inputs - an odd number to get a majority in all situations. The input resistors are of the carbon-film type, selected for close tolerances for a larger batch with the circuit of Fig. 4 itself (without $R_{1}-R_{9}$). A voltmeter at point P indicates output voltage during the selection; the setpoint and sensitivity potentiometers are partly incorporated for this occasion. Even this circuit is a simplification from the breadboard circuit, where the digital outputs of the counters were stored by 'buffer' flipflops. These buffers are not required if a reasonable amount of time is available for the voltage at P to take on the proper value. If take over and reset must take place in 1 or $2 \mu \mathrm{~s}$, it becomes necessary to use the buffer store.
Counting in the parallel, but delayed, counting operation, it is immaterial

Fig. 9. Push button is pressed 10 seconds after power is switched on, reducing loop gain while charging capacitor to average value. H.f. decoupling of control line not shown.

Fig. 10. Block diagram of improved version. The more counters give a 'too high'signal, the greater the control voltage to the oscillator. Beware of h.f. on control line.
Transistors with 20 V supply amplify the digital signals to avoid varying levels in t.t./. i.c.s.

whether the clock is delayed or the v.f.o. signal. For oscilloscope testing, it is very pleasant to be able to delay the highest frequency (the v.f.o.): it would take a storage oscilloscope or one with dual time base to display 10 Hz signals with small delays. The end of the counting, take over and reset and start can now be the same for all counters, which keeps matters simple. The last question to resolve is, with a 5 MHz v.f.o., over what period must the delays be extended and how many counting systems are needed? In a practical system, with cheap t.t.I. building blocks, there are only two possibilities for building a delay line. The first one to think of is a series of 'monostable' delays, SN 74121 being the monostable block. A second way to achieve delay is the use of the intrinsic propagation delay of logic elements, the standard inverter SN7404 giving, in pairs, a delay of about 20 nanoseconds, according to the data sheet, although measurement shows the delay of n pairs often to be shorter than n times 20 ns . To get a maximum delay of at least one period of the 5 MHz , the delay line consists of a series string of inverters with outputs every two pairs, which takes six blocks, one more being used to make sure the input to the delay line has the appropriate switching times.

Complete system

A block diagram of a complete system gives Fig. 6. The v.f.o. frequency of $5,123,456.789 \mathrm{~Hz}$ is counted during 0.1 second in a modulo-four counter which is another way of saying that it contains, when the counting is over, the remainder of the division-by-four of the number of input pulses. if the remainder is 0 or 1 a 0 level is presented to the analogue weighing network, a count of 2 or 3 producing a 1 . The nine counters get a 0.1 second gate signal, the closing of the gates immediately being followed by storing a 0 or 1 in the flipflop, depending on the dominance of the counts 0 and 1 ('too low' signal) or 2
and 3 ('too high' signal). The integration time constant is related to the repetition rate of the measurements, which is ten per second.
The stabilization points (the grid on the tuning dial) have such frequency values that the average remainder in the counters wobbles between 1 and 2 . The next grid point is one cycle of the counters further, or four more counts. Four counts in one tenth of a second means 40 in a second, so the grid points have 40 Hz spacing: the $+0 /+1$ irregularities are not so well averaged out as I had hoped. A little calculation and comparison with other processes where a random disturbance is reduced in prominence by a form of averaging leads to the unpleasant conclusion that these variations are reduced by $\sqrt{ } \mathrm{N}$, where N is the number of counters. This is disappointing and means that the nine counting systems give only three-fold reduction in 'randomness'.
This should be regarded as a by-product of the process, the main advantage being the faster response of the loop. In the system of Fig. 6, drift of the oscillator leads to all counters giving the same signal, e.g. 'too high', and this leads to a consistent 1 in the buffer, which is something different from the random 1 appearing occasionally. Before examining this more closely, it is necessary to remember that the v.f.o. stabilizer is not perfect - not only is the number of counters \mathbf{N} very low, but the delay-line sections do not have equal delays. Then there is the question of the length of the delay line: one feels by intuition that the discrete length of the line is important, and the same intuition tells us that when N is really high, this discreteness is not quite so important.

Another point to remember is the fact that the 'feel' of the turning knob is so much better, because of the improvement in response speed, compared with a onesecond gate period. The ripple on the frequency is probably as shown in Fig. 7 and even a $3 \times$ improvement looks good.

Further development

At this stage of the experiments a set of flipflops was in place, and for a reason I cannot remember now these storage flipflops were reinserted between the counters and the weighting network. Instead of the v.f.o. a crystal oscillator was connected to the input and a digital-to-analogue converter with a set of equal resistors feeding an indicator in the form of a $50 \mu \mathrm{~A}$ meter (Fig. 8). The frequency of this oscillator can be varied slightly by varying the supply voltage so, by breaking the line controlling take-over of information at certain times by means of the switch and changing the oscillator frequency by small amounts, the effects of a drifting oscillator can be seen on the meter. There is no closed loop and we see just the informa-tion-gathering part of the process.

The demonstration was set up without thinking very much of it, but it became apparent that this 'analogue' method of adding the information from the counters is very good; the occasional $+0 /+1$ variation is much smaller than the swing of the pointer when a small frequency shift occurs, several counters responding in the same direction. It really come down to the fact that the limiting applied by the 709 in Fig. 4 to the sum signal should be avoided. What is needed is linear amplification, which can be done with the left-hand part of Fig. 4, the storage in the right-hand part now being redundant. The control line to the v.f.o. may not go negative, but little d.c. amplification is required.

Some amplification can be had before the d-to-a conversion takes place by providing a higher voltage difference between logic levels. The SN 7406 or discrete transistors may be used, connected between the buffer flip-flops and the summing resistors. This was not tried, but seems an easy way to get some gain when a well-regulated supply of 20 V or more is already available. This method gives welldefined voltage levels for 'high' and 'low', but the system is very tolerant of faults in

Fig. 11. Delaying clock (with gates) is easy but does not lead to anything useful.

Fig. 12. Command pulses are derived with monostable delays. Exact value of gate time is not important and any odd crystal may be used.

Fig. 13. Further possibilty is number of crystal oscillators.
the logic levels and even a distinct fault of one of the t.t.l. blocks feeding the resistors must be more than 0.3 volt to become a nuisance. (I know this very well as a user of out-of-specification i.cs.)

Starting-up

There is a small problem to be solved in connexion with the starting conditions: the integrating capacitor should be charged to the average value on the line and the loop disconnected when starting up. The large drift of the oscillator in the first minute or so after the power is switched on is often not due to the oscillator itself, the transistor taking only a few milliwatts, but to settling down of the regulated power supply, where more power is dissipated, the threshold voltages being temperaturedependent.

During the experiments, a push button was used, as shown in Fig. 9, its contacts connecting the capacitor to the slider of the $1 \mathrm{k} \Omega$ preset potentiometer across the power supply. The low impedance of the potentiometer reduces the loop gain when the button is pressed. When the voltage on the slider is set to the average value of the voltage on the capacitor the loop gain can be adjusted with the impedance across the button without undue frequency shift. Further refinements like suppressing the output of the v.f.o. during warm-up are possible.

Delayed clock

The combination of Figs. 6 and 8 (shown in Fig 10) work well. There is still the feeling left, however, that the subject of the parallel working counters should be looked upon from another point of view. This is stimulated by a remark made by one of my friends that the number of packages is not very high, after all. Besides, a v.f.o. with several frequency bands and a long dial is always a fairly large part of any telecommunications apparatus, and who would object to the number of i.cs used if a better performance is obtained? So I started to trace the decisions made (and reported here) and found a badly argued one in the preference for a delay line connected to the v.f.o. signal.

Knowing now it can be done that way, I wondered if I could delay the clock with equally good results. Schemes using a long delay, like the one with the timing diagram of Fig. 11, all seem to use more time without any improvement in performance, compared to that of Fig. 10. The idea behind such schemes is that when the first gate closes, some information about the unknown frequency is available, this information getting improved every time a gate closes. Here is still an opportunity for thought and experiment as I can see no practical way to achieve something useful along these lines.

Clock oscillator

The clock used in the experiments consists of a crystal oscillator, buffer amplifier and pulse shaper, followed by a chain of counters. When experimenting with longer or shorter gate times, complicated switching
to get the command pulses at the right times was avoided by taking the exact repetition frequency used from the divider in question (e.g. $0.1 \mathrm{~Hz}, 0.2 \mathrm{~Hz}, 0.4 \mathrm{~Hz}$, etc.), and triggering a 74121 monostable block with it. The time between monostable pulses is used as the gate time. A few more monostables produce the command pulses 'take over' and 'reset' as in Fig. 12. The gate time is now not exactly 0.1 second, etc., but this is unimportant. The stability of the gate time is still good, as the 1μ s from the 74121 is only a small part of it and a drift to 1.1μ s is unlikely to happen in a short time.

Further possibilities

Next to waiting for the proper integrated circuit to appear on the market, containing a large number of fast gates and counters, the most straightforward approach would be to use a number of nominally equal crystals, as in the scheme of Fig. 13. This is especially attractive in countries where ex-second world war supplies are available and cheap. Of course, very efficient decou-
pling and buffering is necessary to prevent the oscillators from locking on to each other. The v.c.o. frequency may be chosen freely, taking into account the divisior ratio N of the divider chain.

This should preferably be a power of 2 , providing symmetrical output waveforms from all intermediate tap points. The number of flip flops in the divider should be such that the output frequency of the divider is, say, 10 to 20 Hz . As outlined before, there is no need for separate flipflops controlling the gates, this being done just as easily with monostable circuits.

The use of 27 MHz crystals was not successful, these being probably less stable than the surplus types, which were around 5 MHz . The lower oscillator frequency makes the isolating problem less severe, too. It is not necessary to make the frequencies of the crystal oscillators very nearly equal when the weighing network is large, as it is here. Starting from a nominal v.c.o. frequency (e.g., the one that gives exactly 0.1 s gate time) it is easy to find out what is the maximum allowable spread in
crystal frequencies, the limits being given by the size of the counter. Obviously, one requirement is that all counters overflow the same number of times. as can be expected, a better alignment of the crystal oscillators makes it possible to reduce the number of resistors in the network.

Reducing the size of the counter from modulo 16 or modulo 10 to modulo 4 or even modulo 2 is worth thinking over, if the v.c.o. is extremely good. Starting up -and locking is going to be much more troublesome; this makes other components necessary (automatic loop gain reduction when turning the v.c.o. wheel). With modulo 2 counting no working system is obtained, however, because in theory no frequency difference is allowed that leads to a zero in some counters and a one in the others. In this case there is no discrimination between a higher and a lower v.c.o. frequency. For some frequencies, or grid points, this is not true, a form of stabilization is taking place near certain points of the dial - more a drift reduction than true stabilization.
wiv

Computing

Apple Interfacing, by J. G. Titus, D. G. Larsen and C. A. Titus. 206 pp., paperback. Prentice-Hall International, £7.65. ISBN 0-672-21862-3.
Interface control signals between the Apple II and external devices are thoroughly explained in theory and practice by the use of experiments. A general-purpose breadboard assists in circuit construction and there is enough information to enable the experimenter to build a printed-board type. Only a nodding acquaintanceship with digital electronics is assumed.

The Logic Design Of Computers, by M. P. Chinitz. 413 pp., paperback. Prentice-Hall International, £11.15. ISBN 0-000-218-006.
Neither hardware nor software are the province of this book, but rather the logical processes which are performed by the former when instructed by the latter. A short historical section and a piece on number representation are followed by chapters on programming and switching theory. Logic elements are treated in outline and the final chapter deals with microprogramming.

The 6809 Companion, by M. James. 88 pp., paperback. Bernard Babani, £1.95. ISBN 0 -85934-077-5.
A discussion of the characteristics of the 6809 microprocessor from the programmer's point of view. This is a small book, but nonetheless a very useful contribution. A slight drawback is that the text was produced by a Centronics printer, which is good for its purpose but not, perhaps, for a book.
16-bit Microprocessor User's Manual. 231 pp., paperback. Prentice-Hall International, £11.20. ISBN 0-13-566695-3.
This is the third edition of what is effectively Motorola's handbook for the MC68000
series of microprocessors. Full information on all aspects of instruction, signal and bús operation and memory management are provided, with all characteristics.

The Explorer's Guide to the $\mathbf{Z X 8 1}$, by M . Lord. 120 pp., paperback. Timedata, £4.95. In the words of the author, this "attempts to carry the reader on from where the ZX 81 manual leaves off". There is no introduction to Basic or the $\mathbf{2 \times 8 1}$, although the first chapter does provide some programming aids which help to use the limited r.a.m. available more economically. A number of games are included as illustrations of techniques. There is a chapter on machine language, which is included to help the inexperienced, and the final section deals with practical matters, such as loading from cassettes and connecting a monitor. Timedata Ltd, 57 Swallowdale, Essex SS15 5BZ.

Analogue design

Analog Instrumentation Fundamentals, by V. F. Leonard, jr. 318 pp., paperback. Pren-tice-Hall International, f13.95. ISBN 0-672-21835-6.
Anyone looking for an explanation of the principles of a.c. and d.c. pointer-type instruments, bridges, transducers, RC filters and attenuators will probably find this book useful. Those needing practical help will not find it here since, as the title clearly states, these are fundamentals, which are attractively treated in a readable style.

Applications and Design with Analog Circuits, by J. M. Jacob. 498 pp., hardback. Prentice-Hall International, E22.45. ISBN 0-8359-0245-5.
Essentially practical design information on the use of operational amplifiers in most of their relevant roles, including power supplies, active filters and non-linear circuits. Although written for engineering degree students, the treatment is such that less advanced readers will find it accessible.

Operational Amplifiers and Linear Integrated Circuits, by R. F. Coughlin and F. F. Driscoll. 376 pp., hardback. Prentice-Hall International, £16.45. ISBN 0-13-637785-8. Written at a slightly less advanced level than the previous book, this is even more practical and a little wider in scope. It is intended for a one year course, all the circuits described having been tested. Students not specializing in electronics will find the book helpful and the practical approach is ideal for amateurs.

Radio frequencies

Introduction to Radio Frequency Design, by W. H. Hayward, 383 pp., hardback. Pren-tice-Hall International, f20.95. ISBN 0-13-494021-0.
Students and amateur electronics engineers commonly find their way into electronics by way of digital circuitry and components, r.f. design being well in the background. This is an attempt to do for r.f. what thousands of texts at this level do for digital design. It is practical, with many examples, mathematics up to about A level being used. A working knowledge of simple circuit theory is needed to make full use of the book. All the components of a modern receiver are described in detail, including a chapter on transmission lines and the Smith chart.
H. F. Antennas for All Locations, by L. A. Moxon, G6XN. 260 pp., hardback, RSG1. £5.00. (E6.67 by post, from RSGB, 35 Doughty Street, London WC1N 2AE. ISBN 0-900612-57-6.
This is a remarkably helpful book, which deals with a subject often regarded as being akin to black magic, in a throrougly practical manner. That is not to say that theory is neglected - it is not - but it is kept in its place. The author has been well served by his publishers, who have turned out a well-produced book at an extremely low price - well under half the price of many technical paperbacks of half the size.

A novel approach to amplifier distortion

If the load presented to the voltage amplifier by the power output stage appears very high, crossover distortion can be reduced and the voltage amplifier is much easier to design.

A basic cause of distortion in power amplifiers is quite simply that they have to drive loads, something which is clearly seen in Fig. 1 (b), when the higher resistance load of 2.4Ω can have ± 25 volts of swing generated across it whilst the low resistance load of 0.8Ω can have only ± 10 volts across it before it limits. Another way of looking at the situation is to try and generate ± 25 volts across the 0.8Ω resistor, when severe distortion in the form of limiting will occur. In other words, it is much easier to drive a high-resistance load than a low-resistance one.
The object of Class ' S ' is to perform the task of making a low-resistance or impedance load appear to the voltage amplifier as a high, ideally infinite impedance.

Basic configuration

Let V_{o} (Fig. 2) represent the voltage output of the voltage amplifier and $I_{L^{\prime}}$ the

by A.M. Sandman,
M.Phil.(London),M.I.E.R.E.

output of the subsidiary current amplifier which also provides load power. \mathbf{R}_{m} is a small resistor which develops a voltage V_{m} proportional to the load current $\mathrm{I}_{\mathrm{L}} . \mathrm{R}_{\mathrm{L}}$ is the load resistance.
If V_{m} is used to make the subsidiary amplifier develop a current $I_{L^{\prime}}$ as close in value to I_{L} as possible then $I_{L}-I_{L^{\prime}}=0$ and $\mathrm{Z}_{\text {in }}$ will tend to infinity.

This is the simple idea behind a whole family of circuits, one of which will now be described.

Basic circuit

This consists, as seen in Fig. 3, of a voltage amplifier, comprising a standard operational amplifier with feedback (A_{1}, R_{1}, R_{2})
and a voltage-controlled, high-impedanceoutput current amplifier (\mathbf{A}_{2} with its associated bridge of $\left.\mathrm{R}_{\mathrm{m}}, \mathrm{R}_{\mathrm{m}^{\prime}}, \mathrm{R}_{\mathrm{G}}, \mathrm{R}_{\mathrm{G}^{\prime}}\right)$.
As the non-inverting (+) and inverting $(-)$ inputs to A_{2} are virtually at the same potential, irrespective of what this potential is (a basic property of operational amplifiers), it follows that the bridge must be in balance and that, ideally, since $I_{L}=I_{L^{\prime}}$, A_{1} sees an infinite load.

Demonstration circuit

The circuit of Fig. 4 works on the principle of the basic circuit, with the addition of a complementary push-pull pair at the output ($\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$) to provide more current than the second 741 and its voltage follower Tr_{3} is a capable of.
During the crossover region time when, say, Tr_{1} stops conducting and Tr_{2} has not yet started to conduct, Tr_{3} provides the output voltage and the impedance it sees

Fig. 1. In the basic voltage-amplifier stage, a high-resistance load provides a larger swing with less distortion.

Fig. 2. If the current from the current amplifier equals that into the load R_{p}, the voltage amplifier sees an infinite impedance. Voltage V_{M} controls the current amplifier.

Fig. 3. Basic circuit of Class A amplifier. A_{2} is current amplifier.

The author
Mr Sandman was born in 1933 of Jewish parents and almost become a tailorl After gaining City and Guilds Full Technological Certificate in 1957, he obtained his M.Phil. degree from London University in 1978.

Many years ago, he published a scheme for automating the railways as part of a scheme for road traffic automation - he tells us that his chief pleasure lies in the invention of new schemes such as a bandwidth compression system, currently in the pipeline, and "Error Take Off," à method of reducing amplifier distortion published in Wireless World in October 1974.

A deeply held, though hardly novel, belief is that we shall never resolve our problems as a country until, we pay our engineers about twice as much as we do now.
drops from, ideally, infinity to 122Ω. However, this is only for a small excursion voltage and current and so Tr_{3} can easily handle it . What is more important is that when the transition is completed, the impedance seen switches from low to high impedance, which will produce a voltage spike at the output.

However, this spike is of very low amplitude due to the low output impedance of the first 741 and its voltage follower and, more to the point, at least one other class ' S ' circuit, which will not be described at this time, exists in which this minor problem does not occur to a measurable degree.
Resistor \mathbf{R}_{2} may be taken to the junction of the $22 \Omega, 100 \Omega$ and $6.2 \mathrm{k} \Omega$ resistors, so reducing the output impedance to zero.

The crossover distortion of $\mathrm{A}_{2}, \mathrm{Tr}_{2}, \mathrm{Tr}_{1}$ (W1) has a very small effect on the output (W2) and this effect (W3) is less than 6 mV (spike voltage) at the virtual earth of A , corresponding to 12 mV at the output (allowing for attentuation by the two $10 \mathrm{k} \Omega$ resistors). That is 12 mV in 24 V p-p, or 0.05\%.

Circuit analysis

Referring to Fig. 3,

$$
\begin{equation*}
V_{M^{\prime}}^{\prime}=V_{M}\left(\frac{A_{2}}{1+A_{2} B}\right)-V_{M} \tag{1}
\end{equation*}
$$

where $\beta=\frac{R_{G}}{R_{G}+R_{G}{ }^{\prime}}$,
whence $V_{M^{\prime}}=V_{M}\left(\left[\frac{1}{\beta\left(1+\frac{1}{A_{2} \beta}\right)}\right]-1\right)$
and $\mathrm{I}_{\mathrm{L}}{ }^{\prime}=\frac{\mathrm{V}_{\mathrm{M}^{\prime}}}{\mathrm{R}_{\mathrm{M}^{\prime}}}$

$$
=V_{M}\left(\left[\frac{1}{\beta\left(1+\frac{1}{A_{3} \beta}\right)}\right]-1\right)\left(\frac{1}{R_{M^{\prime}}}\right) .
$$

$$
\text { But } \mathrm{V}_{\mathrm{M}}=\mathrm{V}_{0}\left(\frac{\mathbf{R}_{\mathrm{M}}}{\mathbf{R}_{\mathrm{M}}+\mathbf{R}_{\mathrm{L}}}\right)
$$

$$
\text { therefore } \mathbf{I}_{\mathbf{L}^{\prime}}=\mathrm{V}_{0}\left(\frac{\mathrm{R}_{\mathrm{M}}}{\mathbf{R}_{\mathrm{M}}+\mathrm{R}_{\mathrm{L}}}\right)
$$

$$
\left(\left[\frac{1}{\beta\left(1+\frac{1}{A_{2} \beta}\right)}\right]-1\right)\left(\frac{1}{R_{M^{\prime}}}\right) .
$$

Now

$$
\begin{aligned}
& I_{L}=\frac{V_{0}}{R_{M}+R_{L}} \\
& R_{\text {in }}=\frac{V_{0}}{I_{L}-I_{L^{\prime}}}
\end{aligned}
$$

whence $\mathbf{R}_{\text {in }}=$

$$
\begin{equation*}
\frac{\mathbf{R}_{M}+\mathbf{R}_{\mathbf{L}}}{1-\left(\frac{\mathbf{R}_{M}}{\mathbf{R}_{M^{\prime}}}\right)\left(\left[\frac{1}{\beta\left(1+\frac{1}{A_{2} \beta}\right)}\right]-1\right)} \tag{2}
\end{equation*}
$$

Approximations

$\mathrm{A}_{2} \beta \gg 1$

$$
\beta=\frac{R_{G}}{R_{G}+R_{G^{\prime}}^{\prime \prime}}
$$

Fig. 4. Addition of power stage to augment A_{2} output current forms working circuit.

Let $R_{G}=R_{G}{ }^{\prime}$ and $R_{M}=R_{M}{ }^{\prime}$
whence $\mathbf{R}_{\text {in }}=\frac{\mathbf{R}_{M}+\mathbf{R}_{G}}{1-\left[\left(\frac{1}{1 / 2\left(1-\frac{2}{A_{2}}\right)}\right)^{-1}\right]}$. (3)
Therefore $R_{i n} \approx \frac{A_{2}\left(R_{M}+R_{L}\right)}{4}$
from (3), and applying Binomial Theorem. $\mathrm{A}_{2} \rightarrow \infty$

$$
\begin{equation*}
\mathbf{R}_{\text {in }}=\frac{\mathbf{R}_{M} \mathbf{R}_{G^{\prime}}=\mathbf{R}_{M}^{\prime} \mathbf{R}_{G}}{1-\left(\frac{\mathbf{R}_{M}}{\mathbf{R}_{\mathbf{L}}^{\prime}}+\mathbf{R}_{\mathbf{L}}\right.}\left[\left(\frac{1}{\beta}\right)-1\right] \quad \text { from (2), } \tag{5}
\end{equation*}
$$

whence

$$
R_{i n}=\frac{R_{M}+R_{L}}{1-\frac{R_{M} R_{G}^{\prime}}{R_{M} R_{G}}},
$$

therefore

$$
\mathbf{R}_{\mathrm{in}} \rightarrow \infty
$$

$\mathrm{A}_{2} \rightarrow \infty$

$$
\begin{aligned}
& R_{G}=R_{G^{\prime}}(1+\Delta) \\
& R_{M}=R_{M^{\prime}}(1+p)
\end{aligned}
$$

whence, from (1) and (2),

$$
\mathbf{R}_{\mathrm{in}}=\frac{\mathbf{R}_{M}+\mathbf{R}_{\mathrm{L}}}{1-\left(\frac{\mathbf{R}_{M}^{\prime}(1+\mathrm{p}) \mathbf{R}_{\mathrm{G}^{\prime}}^{\prime}}{\mathbf{R}_{M^{\prime}} \mathbf{R}_{\mathrm{G}^{\prime}}(1+\Delta)}\right)}
$$

and thus, by binomial approximation,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{in}} \approx \frac{\mathbf{R}_{\mathrm{M}}+\mathrm{R}_{\mathrm{L}}}{\Delta-\mathrm{p}} \tag{6}
\end{equation*}
$$

which, for $\Delta=-p=0.01$ (1% resistors), gives $R_{\text {in }} \simeq\left(R_{M}+R_{L}\right) / 0.02=50\left(R_{M}+R_{L}\right)$, so that for $R_{M}+R_{L}=8+1=9 \Omega$, the load appears as 450Ω to A_{1}. The formulae (4) (5) and (6) are useful as initial design guides, but the full formula (2) should be used for the final calculations.
The circuit is a stable one and has the great advantage of dealing with the problem of crossover distortion whilst not needing any setting-up, even though a class B amplifier is employed in the sub-

Fig. 5. Waveforms in circuit of Fig. 4. Top shows crossover distortion at output of driver stage, middle picture showing that output of current amplifier is clear. Bottom trace shows small spike at input of voltage amplifier caused by both output transistors coming back into conduction after being cut off during crossover.
sidiary amplifier. It is also insensitive to the effects of temperature, specimen and ageing variations on cross-over performance, unlike the standard class B amplifier.
~NO

TOUCH-SENSITIVE V.D.U.

I read with interest News of the Month, Wireless World, p.69, July 1982, to be informed that Tony Booth and his engineering staff of British Telecom, London, have 'invented the system' called City Business System, described as a v.d.u. terminal with a touch-sensitive screen, the senitivity being obtained using a matrix of infra-red beams which can sense which part of the screen is being touched.

Worthy of note as this may be, I feel I should bring to your attention that an identical system to that described was designed and built (invented?) by myself as part of a computercontrolled system on a large research particle accelerator called Nimrod back in 1971, and was in use until the machine shut down in 1978.
A report containing sufficient information to make such a device was available to anyone, price 20 p., from HMSO or through any good bookseller entitled:

A Transparent Touch-Screen Device for Interactive Computer-Graphic Displays. R.H.E.L./R 2481972.

Sorry, it's all been done before.
E. M. Mott

Rutherford and Appleton
Didcot Laboratories
Oxfordshire

LAWS OF MOTION

Mr Frost (July 'Letters') should consider the difference between science and poetic imagination. The views of Lucretius were unsupported by experiment, not open to test by others, (there being in any case no instruments about at the time to test them with) and, as matters of opinion, have in fact about the same scientific status as the views of flying saucer nuts; perhaps less. If Mr Frost will read Aristotle he will rapidly realise that sloppy theorizing is sloppy even when 2,000 years old, and that good science is good even when five hundred years older still.
I suggest that the briefest survey of human history shows up the truth that an idea may be said to have arrived when the engineers stop using rule of thumb and apply mathematics. Cannon had been around for hundreds of years before Newton, demonstrating all three of his laws with classical elegance. The ballistics ex. perts had it all in front of them but missed it. Newton didn't. Newton was a genius. Even so, he needed an intellectual climate in which to function; Galileo, perhaps the greater scientist, just missed it.

Newton's great work is called the Mathematical Principles of Natural Philosophy, and that is the indicator of his achievement; he synthesized the known physical world in mathematical terms. It may be that the central problem of modern physics is either that 1) we are thinking about everything all wrong, or 2) the right maths has not yet come along, or 3) the right maths is available but lying about unnoticed. For Mr R. G. Young, however, the rot has. already set in. He doubts Special Relativity because he thinks of electrons as peas in a drainpipe bouncing around at c. Peas aren't charged, electrons are.
M. D. Bacon

New Milton
Hants

DESIGN EXHIBITION

I have been asked to help organize an exhibition of 'Design' Since 1945', and as one of the exhibits, I require a 1948 Ekco P63 'Princess' personal portable valve radio in green plastic case. I wonder if any of your readers could perhaps help me to locate one of these radios. Gordon Bussey,
64 Pampisford Road,
Purley,
Surrey.

LEAKY FEEDER RADIO SYSTEMS

I have read with interest the recent articles on underground radio systems by my former colleague, Dr David Martin.

Whilst I am in general agreement with most of his paper, I feel that it would be desirable to clarify the position of the National Coal Board.

There are about 130 leaky feeder radio systems installed underground, the majority of which are of the daisy-chain type. This technique, which requires separated transmitter and receiver, and which makes spurs difficult to achieve is now considered obsolescent. Over the past few years, experimental installations have been made of a number of alternatives, including the BDR system (one installation) the back-. i.f. system (one installation) and the forwarddrive system (two installations). The two-way repeater is, however, now being installed routinely, and there are currently 15 installations of this type operating successfully underground, the largest being at Easington Colliery with a total length of about 10 km . The repeaters used are more expensive than comparable unidirectional repeaters, but the difference does not significantly effect total system costs; and their performance is entirely adequate even in terms of cumulative noise and intermodulation distortion for any NCB requirement expected over the next few years. In addition, the technique is conceptually simple and needs only two types of line module; a normal repeater, and a splitting repeater at each branch point.

In the medium term (say 5 to 10 years) underground mobile communications systems may need to provide additional services such as high speed data or vision signals. Such requirements
would involve considerable changes to our current systems, which fully meet present needs. It is our intention to embark on further development as future needs become clearer.
R. J. Parsons,

Head of Communication
Applications Group,
National Coal Board.

3D TELEVISION

The publication of your article on 3 D tv , following the 'Real World' programme on TVS on May 4th prompts me to write and reiterate that this country could have had 3D tv 30 years ago, without the need for colour spectacles.

You published a letter of mine on the subject some three years ago when I mentioned that my father (the late Granville Bradshaw who, though designing in many fields, was better known in that of the internal-combustion engine, examples of which are to be seen in the Science and other museums) had developed in the 1930 s a system of 3D photography, which was widely used in advertising displays.

With this system in mind I designed for him a system for television. Both the BBC and the ITA were extremely interested but had to admit in the end that they had no brief to proceed with 3D, let alone the money with which to experiment.

The result - another British invention stifled at birth for being, so it would now appear, at least 30 years ahead of its time.
Geoffrey Bradshaw
Leatherhead
Surrey

INTENTIONAL LOGIC SYMBOLS

Referring to the latest Letter (July '82), why keep bickering about old BS symbols, now defunct or otherwise unknown this side of the Channel? There exists a set of ANSI/IEEE/IEC approved logic symbols, that provides throughout diversification, ease of drawing (no circles, no bows) and intentionality if one wishes. Please refer to e.g. the 1981 Supplement to The TTL Data Book by Texas Instruments (2nd edition), pp. 318/343.

Of course, in a manufacturer's handbook, all of the functions provided should be fully documented, so the schematics look a bit weird. But practice shows that a little pruning here and there yields drawings that are very intentional indeed, and easy to read.
Ing. J. Eyckmans
St.-Truiden,
Belgium.

S-100 BUSES

Do you know if anyone has made a comparison chart between the various S100 computers in terms of the bus definition? Some of the early 'S100' equipment differs with that designed after the specification was finalised. Can your readers help?
S. B. Hayes,

Toltec Computer,
Cambridge.

IT'LL DO - OR WILL IT?

I am involved in various aspects of electronics including design, application, trouble-shooting, repair and construction. Like many people who have a general knowledge of the subject, I have an appreciation of the principles of each aspect and a respect for experts in each field. Some of my spare time is given to private repair work, tv, calculators, electronic musical instruments, hi-fi, etc, so that I consider myself not inexperienced in the area of consumer electronics. Recently I completed two jobs that provided real food for thought.
The first was a Goodman's 'One-Ten' tuner amplifier, which sports a very elaborate power amplifier with several transistor stages in d.c. connection. Only the output pair proved to be damaged, but the underying cause was the fuseholders, one of which had become high resistance, due to oxidation. This is not incomparlable to a safety belt causing a car crash.

The other job involved a Ferguson (Thorn) 'Revolver' radio/cassette player, given as a Christmas present only six months ago. This had become erratic and finally stopped altogether. The problem was simply traced to the amplifier power switch, which had simply burnt itself out. The machine boasts a very large power-output stage requiring (I calculate) about an amp. of current, but this was switched by a small-signal switch just not up to the job.
These exemplify the Great British "It'll do" atritude that has made Japan what it is today. While years of soak testing are clearly not feasible for such products, only a little more care would result in machines as dependable as the valve radios of the ' 50 s that I still use, and worthy of the remarkable development that has gone into the i.cs that are put into products of amateurish design.
Mike Feeney
North Gosforth
Newcastle-upon-Tyne

Presumably Mr Feeney is aware that depending upon environment, possible mis-use of equipment and any number of other variable factors, it is possible for oxidation to occur in similar situations which have nothing to do with "amateurish design". This is the only such case that we have been made aware of on this product and many thousands are still in operation, providing excellent performances to their very satisfied users.
I would further point out that the last OneTen tuner/amplifier was manufactured some eight years ago.
T. E. W. Bennett

Goodmans Loudspeakers Ltd

I have total sympathy with the point that Mr Feeney is making. The recent sad contraction of the British consumer electronics industry is generally acknowledged as having been considerably influenced by lack of attention to quality matters. By the same token I believe it is also widely acknowledged that Ferguson were one of the first to read the signs and, later with their 'Queen's Award for Technological Achievement', were one of the more successful in reversing the trend. At least we are still here to respond to his letter!

Having said this, I do not feel that Mr Feeney illustrates his case well. The Goodmans unit to which he refers was engineered by one of the country's leading hi-fi designers of the period, the late Frank Rodwell, no less than 12 years ago. Perhaps more significantly the last ones were actually made about 8 years ago. If corroded fuse holders were a general fault on these models, then it would worry me more, but they are not, and I am sure that there must be many reasons apart from intrinsic bad quality why isolated cases of contamination might emerge over so long a period.
The 'Revolver' falls into an entirely different category. This is an o.e.m. product sourced for Ferguson by a leading Japanese-owned manufacturer. This is not to say that we divorce ourselves from its technical standards; quite the reverse, and as it happens power and switch areas always get particular scrutiny for safety reasons apart from anything else.
It is quite impossible to judge the rating of a switch merely by looking at it. Approval specifications run to many pages, and tests take hundreds of hours to conduct over tens of thousands of cycles of operation. A switch handling an amp. or so on low voltage in a small audio product would very likely be lighter in appearance than a television mains component which could be rated at over 100 A surge; but it should not be condemned for it.
This failure may well be a symptom of Far Eastern manufacturers having chinks in their armour too!
D. R. Topping

Director of Engineering
Thorn EMI Ferguson Ltd.

THEORIES AND MIRACLES

My initial reaction to the article by Dr Murray in the June issue of Wireless World was 'Why all the fuss?'. All scientific theories can be shown to generate anomalies if pushed far enough, indeed one would be suspicious of one that did not. Anomalies are not the catastrophe that Dr Murray seems to think, they serve only to indicate the limits of present theories and are therefore the starting point for the next development. Dr Murray also attacks 'pragmatism' in science; as I shall show below it is the only measure, of which we can be certain, that can be applied to a scientific theory.
Dr Murray seems to believe that there is an absolute truth or ultimate scientific theory towards which we should be moving, that we can measure our theories against the real world, and so improve and up-grade them, that one day we will achieve this absolute truth. In this he is sadly mistaken, for two reasons. Firstly in testing our current theories we must observe the world, and in doing so we must also accept as true other theories that explain the operation of our observing apparatus (including the physical bases of our own sense organs), and those theories may in turn depend on the truth of other theories, including in some cases, the theory we are testing. Secondly (and much more fundamentally) not only must we observe via our senses (and other apparatus) but we must also interpret what we observe, and these interpretations are, at base, limited by our human psycho-
logy, we are, as it were, bounded by our humaness. We can never observe the world directly, but only a human version of it.
There is nothing we can do about this limitation, no advance in our observing apparatus can affect it. Any interpretation we care to put on our observations, no matter how obtained, must be human centred, but there will always be the possibility that the same observations could be interpreted by a non-human thinking entity in another but equally valid way. Even if we extend our mental capacities by building artificial or machine intelligences that can interpret observations of the world in other ways, they could not explain what they perceived directly to us without translating it into human terms.

Dr Murray may have, if he wishes, his belief in the simple truths of nature, but as I have shown above, they are (and must always be) limited and biased truths.
John W. T. Smith
Hatfield
Herts

RF RADIATION HAZARDS

I read with interest the two articles referring to r.f. radiation hazards; the first, WW, October 1981, page 42 and the more recent article WW, April 1982, page 58.

There are, in Australia, many hundreds of small craft fitted with microwave radar. The majority would be professional fishing boats. However, privately owned pleasure craft are being equipped in increasing numbers. Many of the installations that I have seen have been installed with the rotating antenna barely above the head of the helmsman. This applies in particular to those vessels which have a fly bridge above the main super-structure.

I would be interested to know if any of your readers have observed, or have knowledge of, any adverse effects resulting from exposure to micro-wave radiation in the situation outlined above.
John Allan, VKSUL
Ovingham
South Australia

NIKOLA TESLA

Nikola Tesla is a fascinating subject for study and I join with Desmond Thackeray (May 'Letters') in the toast "Tesla Lives!". But surely the centennial for Tesla was in 1956 and wasn't the Tesla Society formed for the celebration?

As for Tesla's claim to having invented wireless telegraphy, his patent 645,576 was upheld by the US Supreme Court against the claims of the Marconi Wireless Telegraph Company of America on June 21st 1943. Ironically, Tesla had died in January of that year.

A factual account of what Tesla accomplished, particularly towards the wireless transmission of power would make most interesting reading; may we hope for an article along these lines?
Martin W. Berner 9Y4TAM
Trinidad, W.I.

COST EFFECTIVE IGNITION

Far from being criticised (Letters, June), Mr Cooper is to be congratulated on producing a design for electronic ignition using components that can be obtained by the home constructor.
Wireless World has never claimed to be a magazine merely catering for the amateur constructor and in the course of demonstration the latest technology has, quite rightly, published circuits using components not generally available, and requiring alignment equipment found in only the privileged laboratories.

However, certain designs are still clearly intended to be built even though articles with the constructional detail of, for example, the Dinsdale high-quality audio amplifier of January/February 1965 are no longer published. Designers should therefore consider carefully whether any component they are fortunate enough to have available may not be available to the majority of readers.
Before quoting past numbers, Mr Pickavance should consider the attitude of many firms, and perhaps also his, to requests from private individuals for the less-common components in small quantities.
C. G. Gardiner

Chelmsford
Essex

I have read Mr Cooper's article on electronic ignition in March Wireless World and wonder if I might be permitted to summarize my own experiences and views on alternative ignition systems?
If the cause of bad starting is not in the ignition system but, say, in the fuel supply, as it often is, no alternative form of ignition system will help. Unless you want to be able to start your car with a nearly flat battery, I do not think changing the ignition system will help. It is not in starting the car that the failings of the Kettering system have most effect.
As Mr Cooper points out, if your engine only has a $6,000-6,500$ r.p.m. maximum (as most have), there is nothing the Kettering system can't achieve if kept in good order.
I have used many different systems for many years but have never really noticed any significantly better fuel consumption. I have not made any detailed tests but over say a tank full, no change is noticeable. I would love to think that better consumption resulted - it is a tangible and worthwhile benefit in these days of high fuel costs - but I have grave doubts whether it exists.
In their freedom from maintenance, alternative systems can, I think, produce benefits. The first task is to relieve the contact breaker of the high current demanded by the Kettering system. Contrary to Mr Cooper's opinion, I believe this alone is worthwhile. If the system chosen also obviates adjustment of the dwell angle, so much the better. This leaves any residual mechanical weaknesses of the ordinary contact breaker. These do not manifest themselves under say 7,000 r.p.m. - probably more - save for wear. The contacts may not wear but the fibre block on the cam can and does and this wear is not compensated for by contact wear. The contact gap may not be important in alternative systems but there must be one! Do alternative systems affect the plugs? Those which produce more energy in the spark (i.e. C.D. systems) do but only in the sense that the plugs
will go on working long after they would misfire with the Kettering system. I have never noticed any reduced wear and it would be interesting if Mr Cooper could elaborate on the short paragraph in his article on this aspect (what is an electronic spark?) I have noticed that wide gaps (up to $60-70$ thou) still work and so do sooted plugs - due, I have always assumed, to the greater energy available with C.D. Incidentally, has anyone noticed smoother running at minimum throttle openings just to maintain speed, with wide plug gaps?

On the subject of current consumption, does it really matter (within limits) how much current the ignition system uses unless you are in the habit of leaving it on without the engine running?
C. E. H. Benson

Market Drayton
Shropshire

I had to abandon any idea of constructing Walkinson's Opto-electronic contact breaker (WW, April 1981) simply because I was unable to obtain the i.c. specified through normal retail channels. In the light of Rod Cooper's remarks about using readily available components contained in your letter in the June issue, I approached the construction of his ignition system with more hope. Alas, I have come up against the same problem of supply in respect of the Mullard FX 3720 ferrite power transformer.

Of two main stockists tried, Phillips and Marshalls, the former would only supply for their own equipments, and the latter, whom I rang, said they did not stock the item! So far as I can see none of the usual suppliers who advertise in WW and elsewhere stocks the FX 3720, and I am beginning to suspect that it is again one of those desirable components available only to industrial users and electronic engineers through privileged channels of supply.
As to the circuit itself, this seems to have suffered somewhat in the reproduction process for publication and I would appreciate your help in my difficulties of intepretation. You will have noticed that D_{7}, unlike D_{1-6}, has not been specified. This may be a misprint for a 3A fuse, or possibly a decoupling capacitor. The capacitor values in the multivibrator have been omitted. Perhaps Mr Cooper would confirm that $1 / 2 \mathrm{~W}$ resistors were intended throughout. the circuit.
J. E. Stevenson,

Purley, Surrey.

The author replies:

1 agree with Mr Stevenson's comments about components for construction articles: such components should be available through accessible supply channels and not just to professionals, but it's a fact that some of the most interesting items remain relatively obscure because they are only available via the privileged chainels, which 1 think is a pity. It needs a change of heart on the part of certain British component suppliers and manufacturers to alter this situation.
However, this is not the case with the FX3720, which is a Mullard ferrite available through their stockists. My local Mullard stockist is Hawnt Electronics Ltd., Firswood Road, Garretts Green, Birmingham B33 0QT, and they will be pleased to supply this ferrite, which they stock in depth. The FX3720 is 44 p per piece (you need two pieces to make a transformer) and the bobbin DT2723 to suit is 35p. This firm has a minimum charge of $£ 2$, which
should cover a transformer, bobbin, v.a.t. and postage.
There is a world of difference between the non-availability of silicon diodes as discussed in the WW 'Letters' column and the limited availability of a more specialized component through manufacturers' selected agents, such as Hawnt Electronics. Unfortunately it is all too easy for an author to slant his constructional project towards the professional supply channel without realising it. In this case, I checked that the FX3720 was available without spotting that there might be a problem for people like Mr Stevenson who may not know the supply channel.

Regarding the other comments, corrections appeared in the August issue. As for resistors, I did not give wattage ratings for resistors because I think most readers of $W W$ will see at a glance what is needed; it is quite easy to use the formula $\mathbf{V}^{2} / \mathbf{R}$ and then make an allowance for ambient temperature and duty cycle. My view is that a constructional project should not be a cookery-book type recipe to be followed blindly, but should involve at least a little thought by the constructor about what he is doing. In the same vein, I hope you will read about r.f. suppression before winding a transformer, as suggested in the article.
The 3 A rectifier diode, D_{7}, was not specified because it is non-critical; its only function is to provide reverse-polarity protection and it can be by-passed with a shorting link once the unit is installed and working correctly.

POOR DEAL FOR AMATEUR RADIO

I feel I must reply to G3DRN's letter criticising my own letter 'A poor deal for amateur radio'. Like him, I shall endeavour to answer and comment on his 'points' in turn.
Firstly, his 'All Fools' comment - Is this the best he can manage? Likewise, his claims to impartiality can be dismissed with little (or better still) no comment.
As a member of the RSGB (fighting from within) I feel that I have every right to question its actions and expect a reply. As regards my claims to speak for many others, for three evenings after the publication of my first letter I was inundated with 'phone calls agreeing with my comments, including four suggestions that I should stand for a Regional Rep. post.
His comments on the RSGB's neutrality are no more valid to me than mine are to him. As I see the facts, the RSGB is an anti-c.b.; they will not even allow the advertising of c.b. sets in Rad Com.
The fact that 70 MHz is a national allocation is hardly relevant to the morse argument - and what about 28 MHz I acknowledge the introduction of the new u.h.f. bands and one of the new h.f. bands. With regard to the American case, G3DRN is comparing bad with worse never a good defence. Remember, the Americans have 220 MHz and 50 MHz , easy repeater licencing, sel. call, third-person message rights. etc., etc.
His analogy of 'phone abuse and repeaters is quite amusing. We, as a society, have come to need 'phones: we do not need repeaters, nice as some of them are.
His comments on the RAE, in general reinforce my own. However, his attack on my standing as a licenced amateur is quite unjustified. Firstly, my RAE was obtainable under the
old system and I am an engineer by profession. Many A licencees (possibly G3DRN included) never took the RAE, which was introduced in about 1947. Any person who held an experimental licence before the war (as G3DRN said he did) was exempted from the RAE. His contention that morse makes you a better operator defies comment - the first 'Squeaky' on GB3LO was a G3. Japan has no morse test and few would disagree that the Japanese are impeccable operators.

Amateur radio is a technical hobby and a statement implying this is included in the licence. I do not say that amateurs must build their own equipment, but 1 do believe they should take a serious interest in how it works. The RAE (even now) does not include p.1.1s and it certainly did not in 1947. In my view, some amateurs have their licences under false pretences.
I do not deny that the RSGB is strong and vigilant, but I also believe it does not pursue the interests of the majority of amateurs, just the select few who run it. His 'wood and trees' comment - well soon, if not already, the majority of amateurs in this country will be B licencees, many of them discontented. Soon, the new trees will outnumber the old.
B. Reay, B.Sc., G8OSN

Woolwich
London S.E. 18
From recently published letters it would seem that a number of RSGB members are becoming sufficiently frustrated with the Society to consider recording their dissatisfaction elsewhere, in journals unaffected by RSGB inertia. Surely the Sociery's behaviour has been at its most astonishing, but probably most revealing, over the lamentable, and inexcusable radio regulations farce. One might have expected that the Society journal, Radio Communication, would have been filled with expressions of digust that the Home Office should perpetrate such a blunder. Many a society in such circumstances would demand that heads should roll. However, in the pages of "Rad Com" there was not to be found the gentlest rebuke; instead they were filled with much mutual back slapping and an account of the splendid way the Society machine sprang into action, to rectify the faults of the Home Office. One might well ask why a society watching over the interests of its membership was not making itself involved with production of regulations from the outset. The Society gives the impression of a lackey who fears to offend his master.

The Society seems constantly to proselytize for new members, stressing the great benefit membership will confer. The new RAE is producing vast numbers of amateurs, but since most will continue to operate on v.b.f. they will, in general, find little use for a QSL card bureau. Moreover, the majority may be expected to use "black boxes" and would make little use of the constructional projects found in Rad Com. In its present form it would seem that the Society will be seen by new amateurs as benefitting them only by producing a journal containing a few advertisements, which could probably be found elsewhere.

We are told that a country gets the government it deserves. It certainly looks as if the Radio Society of Great Britain has got the Government Department it deserves.
Peter Naish
Reading
Buckinghamshire

THE RIGHT FORMULA

Two points of information. First, regarding Mr Young's letter in the July issue "The Right Formula", the super-luminal velocities he mentions in astronomical objects are adequately explained as illusions created by high-energy beam phenomena (see, for example, Scientific American June 1982).

Secondly, having consulted several dictionaries of a range of authorship, even one dating back to 1932 (Nuttall's Popular Dictionary of the English Language), I find that every one gives the pronunciation of "patent" as being acceptable with either long or short " a ". I object to Mr Fox's tone in his article in the same issue and will continue to pronounce "patent" similar to "latent".
K. Wood,

Ipswich,
Suffolk

Ronald G. Young of Peacehaven asks in his July 1982 Letter to you "How come wires don't weigh heavier when current flows?" In Einstein's Special Theory of Relativity one of the end results is that mass is energy, gravity is acceleration and time is space. Units of mass and units of energy are therefore related and it comes about that 1 gram is $9 \times 10^{20} \mathrm{ergs}$.
Now, if one passes 1 amp through a wire of resistance 1 ohm with a potential difference of 1 volt the energy required to do so is 1 watt, which is equal to 10^{7} ergs per second.
According to physicists, 1 gram is equivalent to 9×10^{20} ergs. Now 10^{7} ergs are expanded by 6.2×10^{18} electrons per second and this corresponds to a mass of 1.1×10^{14} grams per second. The confusion between mass, amps and ergs lies in their "Relativiry" and different frames of reference perhaps. One may measure the distance of a star from earth in feet, miles, seconds or light years or even angles. Mass is a measure of resistance to a change of velocity. .
O. B. Balean,

Chatham,
Kent

In July, R. G. Young wrote, ". . . . all such 'theories' [e.g. Theory C, WW Dec. 1980] are purely human artifacts, designed to make predictions of the way things work!"
Young is describing the reigning philosophy in science today, called "instrumentalism" byKarl Popper, see "Conjectures and Refutations", RKP, 1963, plo0. As Popper says on page 101 , instrumentalism is used in a defensive mood - to rescue the existing theory. The instrumentalist view is that the winning theory is the theory which has produced practical results, and that since there is no such thing as absolute truth (which last remark is held to be absolutely true!), we should not modify our theories if they are serving well enough.
The flaw in the instrumentalist argument is that the decision on whether the old theory serves well enough is a value judgement based on experience, and if (as is the case) the guardians of the faith - professors, lecturers, Nobel prize winners and text book writers - have no experience of high speed logic (and have never used a sampling oscilloscope), they will reject (and in my case suppress) theories which help in that field. Instrumentalism is the philosophical rationale for a general clamp-down on progress in science into new fields by those whose exper-
ience, careers and prestige are based on the old (analogue) experience.
Young writes, "Does Mr Catt find his theo.ries enable him to do better design work?"
The pre-Catt pot-pourri which served as electromagnetic theory (see for instance D. B. Jarvis, "The effects of interconnections on highspeed logic circuits," IEEE Trans. Electronic Computers, vol. EC-12, pp476-487, Oct. 1963), could not help me to successfully design high speed systems (see Fall Joint Computer Conference, 1966). The new Catt theories were developed in order to make possible the reliable interconnection of high speed (1 ns) logic gates.
The refusai to publish my theories by instrumentalists in the IEE, the Institute of Physics and elsewhere led to a collapse in the use of fast (1 ns) logic gates already available in 1964 and a decline back to slower t.t.1., and then to the very slow microprocessors of today. The computer industry has paid a heavy price for the suppression of theoretical advances by means of instrumentalist arguments. Still today, hardly anyone can successfully assemble 1 ns logic as I did in 1964.
Similarly, in the field of computer architecture, the suppression of the content addressable memory by instrumentalists who only know (and who live off) von Neumann has blocked advance towards more practical machines for a third of a century.

References.

1. I. Catt et al., "A High-Speed Integrated Circuit Scratchpad Memory", Proceedings Fall Joint Computer Conference, 1966, pp315-331
2. M. H. and B. R. MacRoberts, "The Scientific Referee System", Speculations in Science and Technology, Vol. 3, No. 5 (1980) -p573-578
3. I. Catt, "The scientific reception system as a servomechanism", Journal of Information Science 2 (1980) pp 307-308
Ivor Catt
St Albans
Herts.

FIRE SHIPS

The Falklands conflict has shown up a fire problem in some of our war ships. Part of the trouble is caused, we are told, by the p.v.c. insulation on the cables. This must mean the multi-core signal cables, since the power cables would be mineral insulated.

Silicone rubber would clearly be better than p.v.c. It remains an insulator after it is burnt, and it contains no chlorine, so cannot produce phosgene.

However, it occurs to me that it might be possible to use fibre optics for communications between the different locations in the ship. This may seem at first a silly suggestion for distance of a few metres, because the cost of the terminations would be large. But if the idea proved practicable, there would be great advantages. A single fibre could carry all the signals for the whole ship, and there could be many parallel routes, so that if several were damaged, the signals could still get through. And of course the fibre cannot burn, though it would melt in a fire.
C. Q. Keiller

Heathfield
Sussex

MICROCHIPS AND MEGADEATHS

As both an electronics engineer and occasional disarmament activist, I have been following the correspondence inWW on military electronics and the responsibility of the engineer, both before and since the November 1980 editorial, with more than a passing interest. The Falklands/Malvinas crisis has thrown the issues raised in your May 82 editorial into sharp focus.
10\% of Argentina's armaments, including a great deal of radar and communications equipment, came from British companies. In the media this is usually described as "ironic" but it is no irony, merely the logic of the international arms trade. The Defence Sales Organisation, a 400 -strong government department, exists purely to ensure that whenever someone is blown up, burned, drowned or maimed, it's done with quality British equipment and none of your foreign rubbish. And still it goes on, with WW readers (unless they've all cancelled their subscriptions) making their own contribution - for example, Plessey, Racal-Decca and Ferranti berween them supplying systems for four new Brazilian corvettes, and Marconi selling China $£ 14 \mathrm{~m}$ of electronics for their fighter aircraft.
Much of the correspondence opposing the theme of the 'Microchips and megadeaths' editorial has dwelt on the well-worn bogey of the Perceived Soviet Threat, with various refinements such as Defending our Democracy (what democracy?) and Maintaining Technological Superiority. In fact, the motivation which keeps these people beavering away at improving their killing capacity, and which keeps their opposite numbers in the U.S. and the Soviet Union doing the same, has little to do with any of these. It has to do with lack of imagination. They cannot. imagine the reality of a.full-scale nuclear war, or even a full-scale "conventional" one; the most they can stretch to is a brace of foreign tanks rolling down the High Street, and they cling to this image with patriotic fervour. The Russians (or any other aggressor) can have no desire for Britain powerful enough to justify invading it. We have enough trouble managing it ourselves, and we live here; imagine how a foreigner would fare.
Where do engineers stand in all this? The usual prescription - to refuse as a matter of principle to work on military electronics - is glib, and not so easy to put into practice. (Though the if-I-don't-do-it-someone-else-will argument is no more than a cop-out, at individual or national level.) Where do you draw the line between military and non-military work? Does the manufacture of Mil-spec components count as a crime? How about production control systems for weapons factories? Or for the nuclear fuel cycle, which has a dual-purpose role?
This is not to denigrate those (of whom I am one) who will not work in overtly military industry. But it should be realised that often the main effect of such an individual stand is simply the amelioration of the individual's conscience - and to achieve an end to the technological arms race we need much more than that.
One aspect that needs constant effort is information. Much, if not most, military work is shrouded in secrecy, some of which may be justifiable but a great deal of which is not. For example, how many people know that France is still conducting nuclear weapons tests on the Muroroa atoll in the Pacific (the most recent on

December 8, 1981) and that in March 1981 several pounds pf plutonium and other radioactive wastes were swept out to sea by a tropical storm? This information was leaked to the Australian press by a group of French engineers working on the island, who were concerned about their government's apparent decision to ignore the problem. Closer to home, Jock Hall's letter in June 1981 WW cites another example of this kind of action; part of the social responsibility we are talking about is a willingness to take the risk in exposing such harmful activities.

Another aspect that needs more work is conversion - the conversion of military companies to manufacturing socially useful products, with a concomitant increase in job security and job satisfaction. The classic example here is the Lucas Aerospace Shop Stewards Combine, who devised a detailed plan for such a move for their company. Predictably perhaps, the management were uncooperative, eventually sacking the most active figure in this project. This has not deterred employees of other firms from producing similar plans.

Finally, there is the most positive action of all - applying your engineering skills to relieve the real needs of the world and the human race. H . M. Butterworth, in November 1981 letters, described agricultural electronics as an order of magnitude more difficult, and two orders of magnitude more satisfying, than military electronics. Professor Meredith Thring, in his recent James Clayton lecture Engineering for Humanity, argued that planners of the future can only plan with the machines that engineers have already developed; he went on to say that "it is the prime responsibility of the engineer to envisage the machines that will be needed to give our grandchildren a stable peaceful world in the twenty-first century." (Digital watches and video games?) He identified appropriate technologies for the energy, food and transport requirements of the Third World to be the urgent priority.
There is no shortage of prognoses. Why then, since the problem is generally accepted, do we still have the arms race, are there still starving billions? From the engineering point of view, a clue can be found in Dr Peter Hartley's excellent piece "Educating engineers" in December 1981 WW, where he argues that engineering has been dominated by humanist values which are inherently antisystemic - the system in this case being global in nature. In the context of the arms race and the North/South divide, political and technical forces have concentrated on fragmented solutions, usually nationalist or economic, without reference to the global system in which they are embedded - as a direct result of the humanist world-view. But the solution he proposes, that of educating future engineers towards an ecological outlook, is far too longterm. The problems are with us now. If we do not face them now, by educating ourselves towards ecology and a systemic view and acting from that perspective, we won't have to worry about educating a future generation.
Tim Williams,
Wadhurst,
East Sussex

As a subscriber to Wireless World for over 30 years, I read with interest the correspondence on Microchips and Megadeaths, but had no intention of entering into the debate, but the
letter in your April issue from R. Whitehead was more than I could take without reply.
Perhaps I could plead in mitigation for my unreasonableness, the excuse, that I was born soon after the first world war, and in common with most of my generation, watched the rise of Hitler and Mussolini, and then served in the 3945 war albeit in a non-combative job with the R.A.F.

I doubt if any member of my generation would subscribe to the view that the Japanese were on the point of surrender when the atom bomb was dropped. We all thought, perhaps wrongly in Mr Whitehead's view, that we were fighting for our survival, and there were times when I wondered if we would win or be subjugated. It should also be remembered that in 1945, that our enemies were also working on the atomic bomb - recall our raids on Norway to destroy heavy water plants - and a delay in ending the war might have given Japan the advantage in dropping the bomb first.
However, my main point is that I believe there is no record, official or otherwise, which pointed to the possibility of the Japanese being on the point of surrender. This word was not in their dictionary, and though they treated many of our prisoners most cruelly, their own courage and patriotism was never in doubt. If they fought well on foreign soil their tenacity in defending their homeland was expected to far greater. It should also be recalled that they did not sue for peace when the first bomb was dropped. Despite its devastation, it took another bomb to convince them to surrender.
G. S. Curry,

Ashley, New Milton, Hampshire.

The wisdom of your editorial ('Arms and the Man', May 1982) is not to be doubted by anyone who has an intelligent concern about the future of our species and the environment we inhabit. But how are we to escape from the senseless militarist cycle which our society, East and West, is caught in? You suggest that it is the responsibility of engineers to refuse to work on the production of armaments. This proposition misses the fundamental problem of our present social order which is that engineers, and other producers of wealth, do not own or control the means of production and distribution, i.e. factories, mines, farms, docks, offices, etc. Wealth producers can only begin to seriously use productive machinery for rational uses when we commonly own and democratically control it. Such a transformation of sociery (which I would call a socialist revolution) would have two direct consequences: firstly, it would put an end to rivalries over the possession of property and thus eliminate one of the principal causes of war; secondly, it would allow humanity to produce wealth solely for use, not for profit. Political organisation to establish a society of common ownership and free access seems to be a more scientific and less risky course than to rebel against employment in the armaments industry and gain for oneself a place in the dole 'queue.
Stephen Coleman
Clapham
London

This correspondence is now closed. - Ed.

DIGITAL PHASE CONTROL OF THYRISTORS

Easy computer interfacing for power control devices is provided by this digital circuit. Adjusters are eliminated and a definite off-case ensures no motor creep or light flicker,

Phase control of thyristor and triac devices using analogue techniques is a wellestablished method. The input analogue signal may be generated by a rheostat or a digital-to-analogue converter. This input is compared with a ramp and a pulse generated when the ramp voltage is greater than the input. Such circuits are usually provided with two adjustments, one for absolute level of the ramp and one for the rate of rise. This circuit eliminates these potentiometers and makes the control circuit easy to interface to a computer.

The power supply circuit, see diagram, is a conventional design, except for D_{1}, giving a stabilized 12 V output. Diode D_{1} ensures a full-wave rectified signal appears at the output of the bridge rectifier. This is attenuated by \mathbf{R}_{9} and \mathbf{R}_{8} with \mathbf{R}_{9} also acting as a current limiter to an input of IC_{6}. The output at IC_{6} pin 3 is broad pulse with long rise and fall time. This signal is differentiated by the next two gates combined with R_{6} and C_{3}. The output, IC_{6} pin 10, is a positive-going pulse with duration τ where $\tau \approx C_{3} R_{6} \log _{c} 2$. The duration must be sufficient for gate output IC_{5} pin 10 to discharge capacitor C_{1}. The discharge takes time $\approx 1000 C_{1}$ in a c.m.o.s. circuit running on 12 volts. The sync-generator and power supply are only required once per line phase in a system

by B. H. Pardoe
PhiD., M.I.E.E.

where there could be many triacs running off each line phase.

The sync-generator pulse occurs every 10 ms on the zero crossing of the mains supply and clears bistable IC_{5} which removes the reset signal from the counter IC_{2} and the hold signal from the oscillator. The oscillator drives counter IC_{2} whose eight least-significant bits are connected to an eight-bit comparator made up from two four-bit comparators. A second eight-bit input to the comparator comes from the eight-bit store IC_{1}. The input to this is fed in asynchronously and may give an incorrect pulse in the first half cycle in which the data has been placed in the store by the external strobe pulse.

The counter output value rises until it equals the store output. This creates a one on the equal line which turns on the transistor TIP121 and sets the bistable IC_{s}. The bistable clamps the oscillator thereby holding the equal signal at the comparator output. The bistable output causes the reset to IC_{2} signal to rise exponentially. When the reset passes the threshold, the counter output goes to zero and the equal signal disappears. The

.output to the power amplifier is switched for a time set by R_{1} and C_{1}

$$
t_{\mathrm{on}}=R_{1} C_{1} \log _{\mathrm{e}} 2
$$

The counter IC_{2} remains reset until the next sync pulse arrives at the end of the half cycle. This hold ensures only one pulse is generated per half cycle.

The case of zero in the store is used as turn-off guarantee. When the counter reaches zero for the first equality a positive transition is sent to the power amplifier. The bistable $\mathrm{IC}_{5_{2}}$ stops the oscillator and after a delay a reset level appears on the input to IC_{2}. This tries to create zero which already exists and reinforces the equal signal. The sync pulse removes the reset at the end of each half cycle, but not for long enough to give one half clock cycle. The counter therefore remains at zero and there is no output as the d.c. signal is blocked by C_{7} and R_{10}.

The clock must go through 256 cycles in 10 ms which sets the frequency at 25.6 kHz and the standard values for \mathbf{R}_{2} and C_{2} are given by*

$$
R_{2} C_{2}=1 / 2.2 \times 25600 .
$$

The choice of both triac and pulse transformer require some care. The pulse length required on the triac gate depends on the holding current of the device and the load. This circuit was designed to handle 500 to 2000 watt loads. The supply voltage and load can be used to predict the time taken from the zero crossing for the current to rise to the holding current. This gives a worst case figure and turns out to be about 135μ, set by $R_{1} C_{1}$.
The pulse transformer connections are arranged to give the most sensitive operation of the triac device. The pulse transformer has 12 volts switched across it by Darlington transistor TIP121 for a time equal to $t_{\text {on }}$. The final current in the primary is

$$
I_{\max }=\frac{12}{2 r}\left(1-\mathrm{e}^{-\mu \tau L}\right)
$$

where $\tau_{L}=4 \pi / 2 \tau L$ is the inductance of one primary winding and r its resistance. For the coil specified $I_{\max }$ is 133 mA , whilst the saturation current is 200 mA which ensures there is no excessive collector current. Collector current of the TIP121 will be 133 mA plus half the gate current. The value of R_{s} can be fixed by the minimum gain of the TIP121 and its maximum collector current. Components C_{7} and R_{10} are only used for d.c. blocking and should be chosen to be transparent to a 135μ s pulse feeding the load R_{5}. *RCA Data Handbook, 1977.

DIFFERENTIAL DIRECT CONVERSION

Abstract

Poor pre-detection selectivity, second-order mixer intermodulation and high-gain amplification problems are all reduced by using differential circuitry for direct frequency conversion

In single-ended transmission systems, the signal voltage is taken with respect to a reference (usually "ground") which is assumed common to all stages of the receiver. Unfortunately this assumption cannot be realized in practice. In the differential mode, by which I mean that connections from one stage to the next are made with two wires and the signal information is contained in their voltage difference, with proper device selection and circuit design, push-pull type circuits naturally evolve which reduce secondorder intermodulation products and untuned signal detection. Induced hum and power supply ripple can similarly be reduced by using the high common-mode rejection ratios available in modern opamps. The beneficial side-effects are at least these three

- a balanced receiving antenna such as a small directional loop can be directly: interfaced to the receiver without the phase and gain inaccuracies attendant with baluns
- r.f. circuit layout problems are drastically reduced because in a differential mode we don't worry about maintaining a constant impedance to ground (there is no "ground")
- if we ever cared about transmitting with a balanced antenna we would need both + and - drive signals --these are automatically available with a differential layout.
I have built the receiver whose block diagram appears in Fig. 1, and found that it does indeed achieve all of the advantages outlined above. I wouldn't waste your time describing something that doesn't work, so at this point you can either go ahead and duplicate my circuit, shown in Fig. 2, or read on and find out why it works.

I used a tuned-loop antenna to differentially drive the balanced inputs to IC_{1}, an MC1590 untuned video amplifier with a voltage gain of about 10 and a $10 \mathrm{k} \Omega$ differential input impedance. A collection of small loop-antenna design equations is given in the appendix, which also explains why you should be using a loop antenna on the h.f. bands. The receiver's first stage performs two functions: it provides constant input and output impedances and acts as a buffer between antenna and mixer, and it provides about 20 dB gain for the inefficient loop antenna. Due to atmospheric noise in the h.f. bands for which this receiver was designed, noise figure and antenna efficiency or \mathbf{G} / T are unimportant factors. The important consideration is dynamic range, and for the direct

by Paul E. Gili, WA1waH

conversion receiver, second-order intermodulation products. They must be low to reduce untuned signal detection. In the circuit, the MCl 590 operates in a pushpull mode which suppresses this type of non-linearity by generating two equal and opposing non-linearities (when the device is driven non-linear) and cancels evenorder harmonics.

After the antenna is amplified, it is differentially converted to the audio frequency range by a doubly balanced mixer circuit incorporating a CA3049. In fact, this circuit could be considered "triplybalanced" as there are no unbalanced ports at all (don't fall over on that one). The CA3049, to be described later, operates as a differential amplifier with its outputs switched in polarity at the local oscillator rate. The fact that gain is available in the upper switching transistors whose bases are at pins $1,4,7$ and 10 and also the fact that the l.o. signal is a square wave ensures fast switching transitions from positive gain to exactly the same but negative gain. Lack of symmetry during the short switching transition time is known to cause intermodulation products. At h.f. relatively faster switching can be achieved with active devices using squared-up drive waveforms than can be achieved with diode ring-type balanced mixers. Up to 30 MHz , therefore, I think that the integrated bipolar transistor type of balanced mixer driven by a square wave is superior to other types of mixers. It will, however,
respond to signals at odd harmonics of the l.o. almost as well as it does to the fundamental; these can be easily filtered out as they are widely separated in frequency.

At points C and D of Fig. 2, then, there is a differential audio signal which is amplified differentially by IC_{2}. These are the two op-amps connected in the classical differential instrumentation amplifier configuration with a differential gain of 40 dB . This is where power line hum gets rejected and the amount of rejection depends on how closely you can match the gains to maximize common-mode rejection. You might want to make the, gain of $\mathrm{IC}_{2 \text { (b) }}$ slightly variable ($\pm 10 \%$) by using a 910 ohm feedback resistor in series with a 200 ohm potentiometer instead of the fixed $1 \mathrm{k} \boldsymbol{\Omega}$ resistor shown. Residual power supply ripple from the 6.2 -volt zener diode is in-phase at the inputs to IC_{2} but the desired signals are 180° out of phase with each other at these points. With the circuit shown, differential signals get amplified by 40 dB , whereas changes in the zener diode reference voltage come through unchanged. A 40 dB improvement in signal-to-ripple ratio over a single-ended design is therefore effected

At the output of IC_{2} the signal has been amplified and filtered to a level where it is relatively impervious to the interference effects important to a direct-conversion receiver. From here on, we can use standard single-ended operational amplifier circuitry with one input, one output, and ground as a reference. I used a three-section Tchebychev 0.1 dB ripple lowpass active filter with cutoff at 500 Hz for c.w.

Fig. 1. Block diagram of differential direct conversion receiver

operation to drive the output stage. The lowpass filtering results in better c.w. copy than a high-Q, narrow-band-single, section active filter because of less ringing.

The local oscillator has to be stable, yet simple. In this circuit, oscillator transistor and integrated circuit provide an adequately stable differential local oscillator signal over about a 30% bandwidth centred at 3.6 MHz . As the circuit shown is electrically tuneable, frequency stability depends on how stable a tuning voltage you can generate. After building and using, the receiver, I came to the conclusion that unless some type of closed-loop frequency synthesis technique is used to stabilize a free-running wide-band v.c.o. mechanical tuning is preferable. I am, therefore, presently looking at electronically switched LC networks which may be the subject of a future article.
With the differential signals available, we can take a very different perspective on circuit layout. By maintaining relatively high common-mode impedances compared with differential-mode impedances, we can do without a ground plane. Actually, the presence of a ground plane may negate some of the advantages achieved by the differential concept. If you intend to build a circuit of this type, feel perfectly confident that you can do it on perforated board with no decrease in the performance attributes outlined here. In fact, the further away you can get the balanced r.f. circuitry from a ground plane, the better off you will be.

Integrated circuits should still be bypassed at their supply voltage terminals. All differential signal leads should be tightly twisted pairs, as short as possible, and as far away from chassis or circuit ground as possible. This applies particu-

Fig. 2. Differential direct conversion receiver shown uses only five i.cs and three discrete transistors.
larly to the following four transmission paths:
-connections from the balanced antenna outputs to pins 1 and 3 of IC_{1}
-connections from pins 5 and 6 of IC, to the A and B inputs of the mixer
-connections from points C and D of the mixer to pins 6 and 2 of IC_{2}
-1.0 . connection from pins 5 and 6 of IC 5 to points E and F of the mixer.
The CA3049 should be laid out and wired as shown in Figs 3 \& 4 which relate to the terminal connections of Fig. 2. This device is a high-frequency, layout sensitive component and we are using its high frequency capabilities to reduce intermodulation distortion, as described earlier. (The no-

Ig. 4. Mixer block in fig. 2 and shown in Fig. 3, can best be laid out as shown above. This will result in good high frequency performance and intermodulation reduction as discussed in the text. Using this layout will also insure a stable non-oscillating active h.f. mixer.
menclature of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc, on the mixer of Fig. 2 has been generated mainly to reduce the clutter which would appear on a detailed circuit schematic, but which is much more simple in an actual physical realization, as Fig. 4 shows.)

Appendix

Small loop antennas are useful for receiving systems in the h.f. band because their dipole-like directional characteristics are preserved even though their size is orders of magnitude smaller than an actual dipole at these frequencies. Their efficiency is extremely low, but at h.f. where most of the receiver noise is due to random atmospheric disturbances, it doesn't matter if you have a lossy, noisy receiver front end. A small loop's main attribute is its ability to easily null out a coherent manmade interfering signal by simple physical re-orientation of the loop. A 3.5 MHz receiving loop antenna can be as small as two feet in diameter and have the same directional properties as a rotatable 80 -metre dipole which would be about 130 feet long. Null depths of around 20 dB can be achieved if phase and gain of the balanced antenna output are preserved. Naturally, you'll need a differential direct conversion receiver to do a good job at this.

For convenience in building small loop antennas, I've put together a number of design equations from various sources, shown on the right. Included is one relationship assembled by me which allows you to calculate the approximate r.f. voltage received from a transmitter as a function of the transmitter's range, power, frequency, and your receive loop antenna parameters. Of course the range depends on how the signal got to you, i.e. how many ionospheric bounces it took and how high the reflecting ionospheric layer was at the time. Polarization of the received wave also plays a part, as does the angle of arrival from the sky with respect to the loop's orientation (elevation as opposed to azimuth). One can easily get carried away trying to account for more variables than can be measured or even defined; however, the equation does give an answer which probably is within an order of magnitude of the actual number.

The small loop antenna has an equivalent circuit which may be derived from its physical parameters.
$\mathrm{R}_{\mathrm{r}}=31,200\left(\mathrm{nA} \lambda^{2}\right)^{2}$ ohms
$\mathrm{R}_{\mathrm{w}}=2.61 \times 10^{-7} \sqrt{ } \mathrm{f}(2 \mathrm{nR} / \mathrm{d})$ ohms for copper
$\mathrm{L}=\mathrm{n}^{2} \mu_{0} \mathrm{R}\left(\log _{\mathrm{e}}(8 \mathrm{R} / \mathrm{a})-2\right)$ nanohenries
$\mathrm{V}_{\mathrm{r}} \approx(\lambda / 4 \pi \mathrm{D}) \sqrt{8 \mathrm{P}_{\mathrm{t}} \mathrm{R}_{\mathrm{r}}}$ volts

Definitions

R mean radius of loop
A area of loop, πR^{2}
d wire diameter
n number of turns in loop
a radius of bundle of wires in loop or $\mathrm{d} / 2$ if $\mathrm{n}=1$
V_{r} peak amplitude of received signal
R_{r} radiation resistance
R_{w} conductor loss resistance with skin effect
L inductance of loop (nH)
f frequency (Hz)
λ free space wavelength
$\mu_{0} 12.56 \mathrm{nH} / \mathrm{cm}$
P_{t} transmitted power (watts)
D range (same units as λ)

"Phase-locked Upconverters for Pulse-compression Radar" is the title of a booklet containing three re-printed papers by Microwave Associate's principal engineer. The articles are extremely well presented and form a useful collection of information on the subject. Publication available free from Microwave Associate Ltd, Dunstable, Bedfordshire LU5 4SX.

WW401
Timers, controllers, relays and connectors are all fully illustrated and described in a 60 -page Tempatron catalogue, now freely obtainable from the Sales Department, Tempatron Ltd, 6 Portman Road, Reading, Berkshire. WW 402

Characteristics and mechanical details of microwave and r.f. power transistors, working in the range 1 MHz to 4 CHz at up to 500 W peak pulse power are given by a catalogue for Acrian. There are, in addition, paged on reliability, testing and a glossy of transistor terms. March Microwave Ltd, 112 South Street, Braintree, Essex.

WW403
A leaflet on relays and timers of all types, which provides both electrical and mechanical information, is available from Appliance Components Ltd, Cordwallis Street, Maidenhead, Berkshire SL6 7BQ.

WWW404
A selection guide giving brief details of all transistors and integrated circuits made by Raytheon can be obtained from Raytheon distributors and sales offices. Raytheon Semiconductor UK, Howard Chase, Pipps Hill Industrial Area, Basildon, Essex SSI 4 3DD.

WW405
The Philips LDK 14SL colour television camera system is briefly described in a colour leaflet, available from Pye TVT Ltd, P.O. Box 41, Coldhams Lane, Cambridge CBI 3JU. WW406

Semiconductors made by Plessey are listed, with salient characteristics, in a short catalogue, obtainable from Plessey Semiconductors Ltd, Cheney Manor, Swindon, Wiltshire SN2 2QW.

WW407
Test signals for audio equipment are described in a Standard from the International Electrotechnical Commission. A weighted noise test signal with a mean power spectral density is close to the average mean power of programme signals is described. The Standard includes the specification of the frequency weighting, together with filters for deriving signals from pink-noise and white-noise sources. Publication 268-1C available from IEC, 1 Rue de Varembe, 1211 Geneva 20, Switzerland.

WW408

National Semiconductors have issued a leaflet describing their NSC $800 \mathrm{P}^{2} \mathrm{CMOS}$ microprocessor and associated devices. The double layer of polysilicon connections (hence the P^{2} are claimed to provide very high speed at low power consumption for the 8 -bit m.p.u. family. Details from ITT Electronic Services, Edinburgh Way, Harlow, Essex.

WWW 409
The Pro-Audio Yearbook 1982/83 contains 686 pages of information and pictures to do with the various aspects of professional recording and sound broadcasting. Link House Magazines, Dingwall Avenue, Croydon CR9 2TA. WW410

High power thyristors in small packages are detailed in Bulletins E2515 and E2516 from International Rectifier. Bulletin E2746A describes the IRK series of thyristor/diode combinations. Details from IR, Holland road, Hurst Green, Oxted, Surrey.

WW411

Electrically-Small HF Transmitting Antennas is the title of a Technical Note from Technology for Communications International Lid, Kingston House, Stephenson Way, Three Bridges, West Sussex RH10 ITN. WWW12

Wilmslow Audio charge $£ 1.50$ for their new catalogue which includes details of their $\mathrm{d}-\mathrm{i}-\mathrm{y}$ loudspeaker kits and components as well as a range of ancillary equipment. There is a lot of useful information about loudspeakers and enclosures. Wilmslow Audio Ltd, D.A.T.A. books have published new editions of their Transistor, Diode and Thyristor D.A.T.A. books. along with the listings of the available devices and their characteristics, there is a new section which lists the replacements for components. Any replacement listed can, of course, be compared in detail in the device listings. Other recent additions to the 24 -volume D.A.T.A. series are ones on Modules and hybrid i.cs and others on discontinued linear devices. D.A.T.A. International Inc., Portman House, 16-20 Victoria Road, Romford, Essex RM1 2JH.

WW414

BS 6204 is a new British Standard for Safety of Data Processing Equipment. It specifies the requirements of data processing and associated electronics units intended to be connected to a supply system having a maximum nominal system voltage of 600 V and designed for continuous operation. The Standard has been drafted to avoid the risk of personal injury or damage to equipment or buildings arising from electric shock, fire, energy hazards, mechanical and heat hazards, radiation and, chemical hazards associated with the installation of such equipment. British Standard Institution, 2 Park Street, London W1A 2BS.

WW415

A massive catalogue of Linear Integrated Circuits lists the products of Precision Monolothics Inc. It includes op. amps, comparators, voltage reference, d-to-a converters, multiplexers, telecommunications chips and much more. Each entry gives a full specification, a schematic diagram and applications notes. The PMI 1982 Catalogue is available in the UK from Bourns Electronics, 17 High Street, Hounslow TW3 $1 T E$.

LE, LOW-FREOUENCY
ILLO SCO

The circuit was designere performance suritable 4 low-frequency measuremos. If 0 , far as possible, components thich readily available, and the cint is straightforward with no critical iadystments or line-up. The total cost of compo nents including the tube should not be more than about $£ 35-£ 40$.

Circuit description
The tube is run at about 2000 V e.h.t., which gives adequate brightness and spot size and at the same time eases the deflec-tion-plate drive requirements. The \mathbf{X} and Y amplifiers drive the deflection plates directly at a mean voltage of +100 V and the tube cathode is at a potential of -2000 volts.
For good focus, the potential on A_{3} of the tube must be the same as the deflection plate potential and therefore a preset control is used to set A_{3} potential, and acts as a second focus control.

The e.h.t. is generated by a voltage tripler, driven by a 500 V transformer winding.

The A_{2} and A_{3} focus controls are preset potentiometers. A_{2} focus should be suitably insulated, since it is at about -1500 V . Similarly, the brightness control should have a nylon spindle and the body should be fixed to an insulating mounting.

Y amplifier and input attenuator
The Y amplifier is a fully balanced, d.c.coupled circuit with the Y input connected to one side and the Y shift to the other. The LF357 operational amplifier was chosen to drive the long-tailed pair, as it has a

Fig. 1. Basic form of sawtooth generator. Circuit is seen in final form in main circuit diagram, where logic gates are used to inhibit free-running mode for triggering.

Fig. 3. Square-wave calibration oscillator.
discharging the timing capacitor through the $1 \mathrm{k} \Omega$ hold-off resistor. The positive input of the amplifier is now at +4 V . At the point at which the negative input is the same as the positive input the output voltage switches to the positive rail again and the whole cycle repeats. In the final circuit, a logic gate is used between points A and B, so that the sawtooth oscillator can be inhibited, ready to trigger.

The emitter resistor R_{T} is used to set the sweep speed and is replaced in the final circuit by the sweep-speed switched resistors, which vary the current supplied by the transistor into the timing capacitor between about $0.8 \mathrm{~mA} 0.2 \mu \mathrm{~A}$.

The \mathbf{X} amplifier takes the same form as the Y amplifier. There is a voltage gain of 2 to the output of each operational amplifier (8 V p-p sawtooth) and a further gain of about 30 to each X plate (240 volts p-p).
Trigger circuit
This circuit, comprising the three integrated circuits 4011, 4070 and 4013, takes
continued on p. 87
Specflieation
8 Emosp speods 5 /af/cm $1020 \mathrm{~ms} / \mathrm{ch}$.
Fertical $0.05 \mathrm{~V} / \mathrm{cn}$ to $\mathrm{E} 0 \mathrm{~V} / \mathrm{cm} \mathrm{ac} / \mathrm{dc}$ andwidth: 1 NHUZ ate .05 Vicm

$200-100$ litlz at pther set ings

Thipeuthing free run or trigeper from + ve or tre ofige of input
Conbompe wevetorm : yolt pels squarewave, 1 hele
*The bendividtt could be improved to 1 MHz on all settings using a more corlplax imput stranuztor with eompenseting capmators. However, the simple input stienumber shovin gives eccurate low-leqquency performatice.

SELECTIVE-CALLING UNIT

Abstract

Designed for use with citizens'-band radio, this pocket-sized unit can be programmed to accept one of 65536 different four-digit codes, and can call as many individual stations from values entered on a hexadecimal keypad. Coupling to the transceiver may be acoustical in both directions or through the radio's external loudspeaker socket for receiving. This unit could be adapted for use in electronic combination-lock applications.

The concept of selective calling for privatemobile, citizens'-band and amateur radio is not new, but existing systems are usually incorporated in the transceiver and often use expensive components. Also, the number of individual codes available is more often than not inadequate, especially where citizens' band is concerned.
Described here is a unit housed in a calculator-sized case, which can handle up to 65,536 different codes and uses readily available components. The received signal can be acoustically coupled to the selective-call unit by placing the latter near to the receiver's speaker, should the preferable method of connecting the unit directly to the receiver's external loudspeaker socket be undesirable.
Basically, a four-character hexadecimal number entered on the unit's keypad results in the generation of a sixteen-bit serial signal which is used to modulate the transceiver's carrier. This allows the user to selectively call any of up to 16^{4} receivers, and means that potential recipients only need to listen for a 'bleep' rather than having to constantly monitor conversations on what may be a busy shared channel.
All the i.cs used are c.m.o.s. types, the main element being the Intersil IM6402 uart (universal asynchronous receiver/transmitter), so operation from nickel-cadmium cells small enough to fit into the calculator-sized case is practical. Also, the components used are readily available and at moderate cost. The unit was designed to be small and versatile to allow it to be modified for other purposes, particularly in security applications, where it might be used to permit access to information, or to a telephone-answering machine, or; say, to unlock a garage door. In transpond mode, the unit may also be used for remote data interrogation.

Circult description

Board A. This board, shown in Fig. 1, provides an interface between the keyboard and main logic board, board B, which is described separately. Hexadecimal codes are entered on a 16-key matrixtype keypad which is connected directly by eight wires to a keyboard encoder, IC_{2}. This i.c. responds to closed-contact resistances of up to $5 \mathrm{k} \Omega$, and provides a contact-debounce period proportional to the value of C_{1}; here, $1 \mu \mathrm{~F}$ is used, giving a debounce period of around Ims.

A clock signal applied to pin 5 of the keyboard encoder determines the key-board-scan rate. The frequency at pin 5 in this case is 3.2768 kHz , derived from a

by Brian Drury

crystal oscillator, IC_{5}, and divide-by-ten circuit, IC_{1}. Half of a dual D-type flipflop, IC_{4}, further divides this signal to provide the main 1.6384 kHz clock used on the second board. The remaining half of IC_{4} is used to steer the keyboard encoder's strobe output either into the 4 -bit latch, IC_{3}, or off board A as $\overline{\mathrm{STB}}$.

When the unit is switched on, circuit elements R_{2}, D_{1} and C_{3} ensure that the steering logic starts out in the correct state, and provide a system-reset signal, RST,
for the second board. Immediately after power-up, the first hexadecimal character entered on the keypad will be held at the Q outputs of IC_{3}. Entry of the second character will result in an eight-bit byte being shifted off board A by the STB signal. This board, while specifically designed for use with the 6402 uart, could be used in any application requiring manual entry of an eight-bit-wide data byte.
Board B. The main component on this board, shown in Fig. 3, is the previously mentioned 6402 uart, IC_{6}, which is used in its eight-bit mode, with even parity and

Flg. 1 Board A. This board produces an eight-bit parallel word from two entries on a hexadecimal keypad and may be used in any application requiring such. IC divides by ten and $I C_{4}$ by two, to produce a clock signal of 1.638 kHz for use on board B, Fig. 2.
one stop bit. More information on this can be obtained from the appropriate Intersil data book.
IC_{4} divides the 1.638 kHz clock signal from board A by two to provide receiver and transmitter clocks for the uart. Within the 6402 , these clocks are divided by 16 , giving a bit rate of 51.2 baud.
In transmit mode, a zero at the bufferregister load input, pin 23, transfers data at inputs $\mathrm{TBR}_{1}-\mathrm{TBR}_{8}$ to the transmitter buffer register. A low-to-high transition on pin 23 results in a request to transfer data to the transmitter register. If the register is free, the two hexadecimal characters are sent to the TRO output, pin 25, in the form of an 11-bit frame consisting of eight data bits, one parity bit and two framing bits.
For receiving, the unit may be electrically coupled to the loudspeaker output of a radio, or acoustically coupled, when the unit is placed near to the radio's loudspeaker. As an aid to testing both transmitting and receiving functions, the unit may also be connected so that it monitors its own transmissions.

Although the signal source may vary, amplification in each case is provided by Tr_{1} and $\mathrm{IC}_{5} . \mathrm{Tr}_{1}$, used as a grounded-base voltage amplifier, has a low input impedance well matched to the moving-coil transducer and its parallel resistor, \mathbf{R}_{9}. When a jack plug is inserted in socket 2, however, switch S_{2} opens and the source
impedance rises, reducing the gain of the amplifier.
Capacitor C_{5} couples the output of Tr_{1} to the inputs of one quarter of a c.m.o.s. Nand gate, IC_{5}, used as a linear amplifier. The resulting modulated square-wave version of the carrier signal is then applied to Tr_{2}, where data is recovered by removal of the carrier.

Recovered serial data is fed directly into the serial input of IC_{6}, pin 20. When a complete frame has been received, a dataavailable signal, DR, appears at pin 19. This signal is used to gate the parity and framing error signals, hence, if a valid, errorless frame is received, pin 10 of IC_{1} will go high while DR is high; in practice, this period is around 10 ms long, determined by R_{18} and C_{4}.

A monostable, half of IC_{3}, is triggered by the 10 ms pulse to give an output for 2.2s. This signal, the duration of which was found by experiment to be the most convenient, is required in the event that a valid two-character data frame is received, but not followed by a second within 2.2 s . The Q output at pin 6 of IC_{3} is connected to one clock input of a dual D-type flipflop, IC_{4}. On the rising edge of the signal at this input, the D input's state is transferred to the Q output, pin 1.

Logic used to compare a 'call number' stored in a diode memory with the firstreceived, valid data byte determines states at the flip-flop's D input. Figure 3 is used

to help explain how the comparison circuit works. In the example, the diodes are drawn to represent a stored call number of 55 hexadecimal, and any binary-bit pattern other than 55 applied to the data input will result either in a logic 1 at point A or a logic 0 at point B. In either case the output will be 0 . But when 55 is applied, point A will be at 0 and point B at 1 , resulting in a 1 at the output.

Two such roms are used to store the 16 bit call word. If the first byte of the selective-call signal is equal to the value stored in the first rom, which has its output connected to point X, Fig. 2, the Q output of $\mathrm{IC}_{4}, \operatorname{pin} 1$, will go high. If a

Fig. 2. Main board B, based on the 6402 u.a.r.t. Here, eight-bit parallel words are turned into serial words and used to modulate an audio carrier in transmit mode. On receive, serial words are demodulated, converted to parallel and compared with hexadecimal values set on diode roms. If two received eight-bit words correspond with two words stored in dlode roms, an audible alarm is sounded for $10 s\left(C_{3}\right)$. Pins 5-12 of $/ C_{6}$ should be reversed.
second byte is received within 2.2 s of the first, it will be compared with the second diode rom, whose output is connected to point Y of Fig. 2. Where the stored and received bytes are equal, the second monostable of IC_{3} will be triggered for around 10s and gate the 1.638 kHz carrier to produce an alarm.

Power for the rechargeable batteries is supplied through a jack socket to a bridge rectifier, so that a.c. or either polarity of d.c. may be used. R_{1} provides current limiting and D_{21} overvoltage protection.

Construction

A small, calculator-sized plastic case is used to house various components of the unit, as shown in Fig. 4. An aluminium facia, supplied with the case specified, must be accurately drilled according to the dimensions given in Fig. 5, especially in the case of the retaining-stud holes, as the studs are only 1 mm away from the keypad. A position for an on/off switch is not given since the type of switch used and its placing are not critical. If rechargeable batteries are not used, the on/off switch may be omitted.
The moving-coil transducer is pressed into place and fixed using one or two drops of an epoxy-type adhesive applied from behind. A $1 / 4$ in drill was used to remove the plastic supporting pillars in the plastic case and the keypad was fixed in place on the facia by 'riveting' the retaining studs using a warm soldering iron. Dimensions for the jack-socket holes are given in Fig. 6 and for board A in Fig. 7. Board B measured 4.15 in by 2.35 in.

Components on board A must be mounted as close to the board as possible, otherwise, problems will be encountered when attaching the facia assembly. When assembling board B, the batteries should be mounted last because an accidental short will probably cause damage to either the batteries or components.
When determining diode positions for the roms, it is best to write the bit pattern of the chosen number with the most signi-

Fig. 3. Diode roms for storing two eight-bit words in hexadecimal form. Two of these circuits are used, with their outputs connected to the appropriate points on board B, Fig. 2.

Fig. 4. Cross section of the selective-calling unit. Components on board A must be carefully mounted as height is limited.

Large holes $34.9(13 / 8 \mathrm{in})$
Small holes $2 \cdot 38(3 / x)$
Fig. 5. Dimensions for the facia are critical. Four of the small holes are for the keyboard's mounting studs, which are riveted using a warm soldering iron. The transducer should preferably be a push fit in its hole, and fixed from behind using one or two drops of epoxy adhesive.
by the alarm signal.
This additional socket could be used to activate any remotely controlled device requiring a high degree of security. A transpond signal could be used to relay information relating to the status of the remote device.

During tests, whether or not squelch was used made no difference to the unit's operation. It is advisable to radiate an unmodulated carrier for about 3 s during transmission to ensure that the first-monostable section is clear. Modulation depth and deviation will be determined by the distance between the unit and the radio's microphone, so some experimentation may be required to determine optimum positions.

$x=7.15 \mathrm{~mm}(1 / 32$ in $)$
Fig. 6. Dimensions for the jack-socket holes. A third jack socket may be used, as described in the text.

Fig. 7. Dimensions for board A and positions of the keyboard connection holes. Board B measures 4.15 in by 2.35 in .

Although it is not advisable to use the unit when the background-noise level is high, a degree of success has been obtained under adverse conditions, including operating the unit from a noisy mini-van using simple moving-coil microphones.

If microphones with automatic-gain controls are used, it is possible that noise during the 'quiet' period preceding the first data byte will be sufficient to trigger the uart. Should the noise initially provide the correct parity and framing signals, it is unlikely that further noise will follow with the same correct parity and framing signals, in which case, the monostable will be reset through a negative-going signal at its CD input. Such a microphone was not available to test this theory.

Components

Board A Resistors		Board B		56	4011 IM6402IPL	
		Resistors				
	10 M	1	1,5k			
2	100k	2	470k	Diodes		
		3	10M			
Capacitors		4	470	1-20	1 N 4148	
1	1μ tantalum	5,6,13,		2122	10 V zener, 400 mW 5,1V zener, 400 mW	
2	10μ tantalum	14,16,17	1M			
34,5	100 n	7,12	10k	Transistors 1,2 BC109C		
	220p	8,18	100k			
		8,18	1k			
Integrated circuits		10	10			
	4018	11	see below			
2	MM74C922N	15	33k	Other components Batteries, MP3-100 from Ever Ready Case, 75-3018C from Verospeed Ltd		
	4042					
5	4013	Capacitors				
5	4011		4,7 μ tantalum			
Dlodes 1	1N914	$4-9$10	10μ tantalum	Ltd Moving-coil transducer 3T from		
			100 n	Besson, Hove, Sussex Koypad, Grayhill 838B1-002 Highland Electronics Ltd, 8 Old		
			10 n			
Crystal	32768 Hz type QRT-38 from Interface Quartz Devices	Integrated circuits 1 4081 2 4001 3 4538 4 4013		3.5 mm jack sockets For continuous charging, R11 should be chosen to provide 1 mA charge current, or 10 mA for rapid charging.		

Table 1. Mnemonics for the 6402 universal asynchronous receiver/transmitter.

VCC	positive supply
N/C	no connection
GND	ground
RRD	receiver register disable
RBR	receiver buffer register outputs
PE	parity error
FE	framing error
OE	overrun error
SFD	status flags disable
RRC	receiver register clock
DRR	data received reset
DR	data received
RRI	receiver register input
MR	master reset
TBRE	transmitter buffer register empty
TBRL	transmitter buffer register load
TRE	transmitter receiver empty
TRO	transmitter register output
TBR	transmitter buffer register inputs
CRL	control register load
PI	parity inhibit
SBS	stop bit select
CLS	character length select
EPE	even parity enable
TRC	transmitter register clock

Comments

This selective call unit was designed with the sure knowledge that the facility it would provide could not be relied upon in the same way that the telephone service can. However, tests so far conducted suggest that the unit is useful even in less than ideal conditions, and generally the operational range is the same as that achieved with normal speech. Further improvement could no doubt have been achieved had a filter been added to bandpass the 1.638 kHz carrier signal, but this idea was rejected because of the extra test equipment needed to align the unit. Also, the bulky components required for a passive filter would not fit in such a small case. A phase-locked-loop was rejected because of the need for passive pre-filtering and power-supply dependent oscillator frequency problems.

The design was based upon a standard c.m.o.s. uart in view of its low cost and availability; also, the use of eight-bit bytes provides for easy interface to microcomputers should the need arise. Modular construction allows the unit to be used as a byte-wide parallel-data entry terminal for microprocessor applications when board B is omitted. Alternatively, the unit may be used for serial data-entry applications using both logic boards, but with some components omitted.

000

Photo-copies of the p.c.b.foil patterns and components positions can be obtained by sending a s.a.e. to Wireless World, Selcall, Room L303, Quadrant House, The Quad drant, Sution, Surrey SM2 5AS. Requesss for printedcircuit, boards, whose price will depend on demand, should be sent to the same address.

Fifth-generation computers
 The government has recently announced
 tecture, we come to the multi-processor

that it will be financing research into the development of ' F ifth generation computers'. The need for this is illustrated by the peculiar effect of the tumbling cost of large-scale integrated circuits. The very cheapness of the hardware means that we are using computers to solve bigger and more difficult problems and this results in an escalating cost in the writing of the programs. The situation has been referred to as the 'software crisis'.
The principal reason for the software crisis is that the internal structure of the computer allows it to operate on one piece of data at a time, using only one instruction at a time - the von Neumann architecture. The next step is to allow the computer to operate by overlapping the various stages that make up the execution of an instruction, so that a number of consecutive instructions are simultaneously active in various stages of partial execution. This is called 'pipelining', first used in Manchester University and is employed in large, fast computers such as the Cray 1. From a programmer's point of view there is little difference - it just runs faster.

An 'array processor' uses an array of similar processing elements but still has a single stream of instructions emanating from a central point. Each instruction is simultaneously carried out by all the processing elements in the array. Finally in this catalogue of existing computer archi-
multi-instruction machine. These are still at the experimental stage. The CYBA-M computer, built at UMIST has a number of independent processors arranged around a common memory. Each processor has its own tasks to perform and is coordinated with the others through the shared memory. The shared memory when built normally can cause a bottleneck as it can only be accessed by one processor at a time. This may be overcome by having a number of separate memory elements, connected to the processors through a switching network.

This brings us to the Dataflow computer, the next, 5th, generation. The basic plan for a dataflow machine is that there are two main components; a block of processing units and an activity store (where the program is kept). They are interlinked by a high bandwidth communications path in the form of a ring. At any given time the processing units will be performing a number of tasks, each of which might be quite simple such as a multiplication. A packet of data complete with its instruction arrives at the processor from the activity store. The processed result is transmitted back to the activity store and its arrival there triggers the release of further tasks to be transmitted to the processing units. Many of the tasks may be performed independently and therefore asynchronously, the only time
that operations need to be sequential is when one operation depends on the results of another. A program consists of a very large number of small tasks, coordinated only through their data dependencies.
As all the existing program languages are based on von Neumann architecture, completely new programs need to be developed. One such is KRC, The Kent Recursive Calculator, developed at the University of Kent. An interesting distinction is that once a value is a assigned to a variable (i.e. $X=A+B$), this cannot be altered as there is no sequential order. So an assignment such as $\mathbf{X}=\mathbf{X}+1$ is not valid. The left-hand side of each assignment equation must be unique. In KRC there is a SORT operation and if we want to sort the elements of list X we could write $\mathrm{Y}=$ SORT $\mathrm{X} . \mathrm{Y}$ is the name for the new sorted list while X remains unaltered. All data structures are built using lists including such elements as 'infinite lists' for example ($1,3 .$.), the list of all odd numbers. Many such lists constitute mathematical sets so elements of the language can be built by obeying the rules of set theory.

Such languages have still a long way to go as at the moment they actually take longer than conventional programs.

Much of the above has been extracted from a paper presented by David Turner of the University of Kent, presented at a recent seminar on the Fifth Generation.

This micro-cassette drive comes from Hungary and is a low-cost alternative to many rivals. Each $21 / 2$-inch disc is housed in a rigid plastic cassette which offers some advantages in that it is better protected from the environment and can be provided with a solid core to improve the drive. It is claimed that the single-sided disc can hold up to 200 Kbytes of data and can read or write its entire contents in less than a second. The bare drive costs $£ 60$ for one-off or is available in an applications kit with five discs, a head tuning disc, instructions and an interface cable for $£ 100$ (+ v.a.t.). The UK agents are BATS-NCI Ltd, in London.

For OWERTY read QPYCB

After an exhaustive computer analysis of the frequency of the use of letters in keyboard operations, and of the ease finger movements, PCD Maltron Ltd. have rearranged the positions of letters on the keyboard. They claim that their keyboard has 90% of the letters of the 100 most commonly used words on the 'home' row, whichon the usual typewriter is ASDFGHJKL. On the Maltron keyboard this becomes ANISFDTHOR. The analysis also suggested that the distribution of the letters could be arranged so that the same finger is used less often successively and that there could be a lot less hopping up and down the rows of keys. In these two respects the improvement claimed is in the ratios of $9: 1$ and $256: 1$ respectively. Not only are the keys altered in their relative positions but they have been arranged so that the keys operated by each hand are physically separated and instead of being on a single plane are adjusted so that the keys operated by the longer fingers are sunk into the plane of the keyboard and all the keys require a

Peter Wheeler, one of the National Coordinators of the Microelectronics Education Programme, is seen using an ergonomically designed Malton Keyboard with an RM $380 Z$ computer. minimum of movement to be operated.
New learners can be trained faster than on traditional keyboards, according to trial tests. Even those already skilled in QWERTY operation can be supplied with the ergonomically moulded keyboard but with the traditional order of the keys. Er-
ror rates have been shown to be reduced to one tenth while speed can be increased by up to 40%. This could be very important as the keyboards for computers seem to be invading every aspect of our lives, at least until there is an efficient voice recognition system.

BT up for sale

As predicted in our May issue, the Government has at last announced its plans for the 'privatization' of British Telecom. The process started with the granting of a licence to Project Mercury. Then there was the opening of the doors to allow pri-vate-sector selling of telephone apparatus direct to the public. Patrick Jenkins, in a Statement to the House of Commons, said that the liberalisation of telecommunications had started and that he intended to see it through.

He pointed out that 90% of BT's investment programme was financed by BT, or rather by their customers. Consequently, costs to the customer had risen to an 'unacceptable level'. Selling BT would generate capital for investment: the proposed sale would take place after the next General Election. Any legislation would keep BT as a single enterprise.

The Board of British Telecom has been very cautious in its response. Until detailed proposals are put forward, the Board is unwilling to express any general view on the proposals. They welcomed the Secretary of State's commitment to full consultation and would be seeking to ensure that BT would have a stable basis for future development.

Engineers surveyed

The Institution of Electrical and Electronics Incorporated Engineers (formerly the IEETE) have conducted a salary survey of their members which showed that there has been an average increase in income of 30% over their last survey two years ago. The most noticeable difference is that the difference between salaries in the public and private sectors of industry has increased with Incorporated Engineers now taking home an average of $£ 1,190$ more than their counterparts in the private sector, compared with a difference of $£ 410$ in 1980. For the technician who was better off by $£ 50$ in the private sector, he is now worse off by $£ 300$ compared with his publicly employed peer.
Incorporated engineers can expect to break the five-figure barrier. Technician Associates on average get $£ 8,000$ in the public domain and for graduates the figure is $£ 8,400$ (their private-sector counterparts get $£ 1,000$ less).

The best paid members work in General Administration, the next best in Broadcasting, Telecommunications and Postal Services. After them come the workers in Electricity Generation and Distribution (and for technicians the Armed Forces). Where they used to earn most, in the chemical and processing industries, they have now been relegated to fourth place.

The predominant qualification for members is still the HNC.

British Rail's R\&D Division at Derby is using a Dataport 5 hand-held microcomputer to record the measurements of the effects that vehicles have on rails. The Dataport can retain the data and then at a later stage transmit it to a host computer, by telephone if needed. It is hoped that the research will lead to improved passenger comfort and into a better understanding of rail and wheel maintenance. The Dataport 5 is produced by Data Recognition in Earley, Berkshire.

The 50th ACR 430 airfield control radar has been installed by Plessey at the British Aerospace private airfield in Hatfield. The cost-effective X-band system is easy to install and maintain and will be used in connection with the flight testing programme of the new BAe HS 146 Feediner aircraft.

24-track digital recorder

Sony have launched their PCM 3324 recorder which offers many of the advantages usually associated with analogue machines. Spliced joins or punch-in recordings are simplified by means of a computer-generated cross-fade over the join to give a continuous signal round the insert or edit point.

At a recent demonstration, Sony transferred a recording from the first track to the second and then to each of the 24 tracks in turn and then played the 24th
recording in stereo with the original. There was no audible difference. In addition to the $\mathbf{2 4}$ digital tracks there is a stereo pair of analogue tracks, a control track and a time-code track. There is a long catalogue of features and operations; one that appealed to us was the ability to rehearse an edit; to be able to hear what it would sound like without losing the originals.
There is a claimed dynamic range in excess of 90 dB and all 28 tracks fit onto $1 / 2$ in tape.

quirk of nature it is found to improve the coercivity.

This leads to a tenfold increase in the bit density. 100,000 bits per inch is already achieved and experiments have shown that 400,000 will be possible. This may be compared with 25 k b.p.i. for an optically read laser disc and in terms of bits per square inch can even compare favourably with a 64 K , random-access memory, which can hold 10^{6} bits in a square inch while the vertical magnetic recording can have 10^{10}.
Vertimag are concentrating their development into the production of computer memory discs. First the 'floppy' variety where a disc will offer three to five times the capacity of an equivalent conventional
disc. One drawback is that the medium is produced by using a sputtering technique to deposit the chromium cobalt crystals on to the backing. This is expensive and discs are likely to cost up to 75% more than the conventional ones.

Further advantages will become apparent when the technique is applied to hard disc memories of the Winchester type. With their sealed environment and more precise mechanisms it is possible not only to improve the linear density but also the number of tracks on the disc. Similar advantages will accrue to digital tape and disc recording for audio and video applications.

The vertical magnet idea was developed

Satcom 1200 is a 12 GHz receiver for direct broadcasts from satellites. Signals received from the dish aerial are amplified by a low noise downconverter using Gallium Arsemide fets and hybrid i.cs. To give a stable low-drift performance across a minimum 500 mHz bandwidth. The signals are fed to an indoor tuner with a further downconversion to normal broadcast frequencies, which are demodulated to PAL -G/625 line standard. For use on future DBS the dish size may be as small as 700 mm but for current satellite transmissions, dishes of 2 to 3 metres are offered. The system is marketed by March Microwave in Braintree, Essex.
in Japan but Vertimag are hoping to beat the Japanese at their own game and be able to sell products ahead of them.

News in Brief

British Aerospace has been appointed prime contractor for the European Space Agency's Giotto scientific satellite which will intercept Halley's Comet in 1986. Giotto will be Europe's first space explorer when it begins its eight month journey to the interception some 150 million km from Earth. Data will be transmitted back in the s and X bands.

Other news from the ESA is that the Ma-recs-B Inmarsat satellite and Sirio-2 the Italian communications satellite are to be launched together from Ariane L5 - the first fully operational launch of Ariane. The two satellites will be put into orbit by a dual launch system developed by Aerospatiale known as Sylda.

Video coverage of the attempt at the land speed record is to be provided by lightweight tv colour camera and a portable tape recorder to be installed in the cockpit of the jet-powered Thrust 2 car, driven by Richard Noble. The equipment supplied by Sony will be subjected to foces up to $61 / 2 \mathrm{G}$ and it is not yet known if it can stand up to it. Sony are quietly confident.

Two fibre-optics experts, Dr George Newns and Dr Keith Beales have been awarded the Martlesham Method by their employers, British Telecom. They developed a method of cladding one type of glass in a sheath of another type to improve its internal reflectivity along the fibre. Their 'double-crucible' technique is a versatile process, capable of producing most types of fibre.

After seven years of producing professional audio equipment Monogram are seeking a buyer. Don Purkis, the company's founder, says the unexpectedly high development costs, spent on an as yet unexploited new product, have lead to the downfall of Monogram. Now Mr Purkis is looking for a buyer prepared to spend, we believe, around $£ 12000$. He can be contacted by ringing London 5733362.

The Home Office has set up an Independent Review of the Radio Spectrum under the chairmanship of Dr. J. H. H. Merriman. The first area of enquiry is to be the use of tv Bands I and III once the 405 line services are withdrawn.

Channel 4 commences broadcasting in November and already some 31 transmitters are ready to provide the service to about 87% of the population. The task of converting all the main IBA transmitter and 600 relay station will not be completed until 1984.

TRANSMITTING AERIALS ON MODERN MERCHANT SHIPS

Following a lengthy correspondence in our Letters pages on the deficiencies of modern marine communications, John Wiseman presents photographic evidence of what he calls "the insanities of ships'aerials".

In the early days of marine radio, almost every merchant ship had two tall masts for the very practical purpose of supporting the cargo derricks, the principal method of cargo handling of those days. This fortunate circumstance provided, at no extra cost, a ready made means of supporting a transmitting antenna for operation in the band 400 to 525 kHz , a band chosen to take advantage of the 24 hour, longdistance, ground-wave propagation characteristic of low frequencies, while still permitting the erection of a reasonably efficient aerial in the space available onboard ship.

The aerial provided was invariably a capacitive "flat-top", inverted "L" or " T ", resonating with the transmitter tank inductance at the transmitted frequency, heaviest current up, and omni-directional radiation from, the vertical section, rising to a good height and clear of the superstructure.

Textbooks of those days had whole chapters on antenna theory. For example, the Textbook of Wireless Telegraphy, by Rupert Stanley, 1919, makes the following observations: ". . . . the range of transmission, or the energy radiated, depends on the (height) ${ }^{2}$ for a given aerial current ..." and ". . the greater the capacity of the aerial the less will be the maximum voltage strain on its insulation for a given

Five mast aerials. From the left: Greek flag, 14,383 g.r.t., B. 1966, taken W.Africa, Sept. 1980; Japanese flag, 15,967 g.r.t., B1979, taken W.Africa, Sept. 1981; U.S.A. flag, 11,000 g.r.t., B. 1963 , photographed W.Africa, Sept. 1981; German flag, taken W. Africa, Aug. 1981; Liberian flag, 20,713 g.r.t., B. 1972, taken Nagoya, Oct. 81. Latter is of Japanese design, perhaps inspired by a Japanese lantern - note the rope propping it up. Other aerials in this strip have extraneous ropes or wires hanging from their radiating parts.

by J. Wiseman

Mr Wiseman is a freelance marine radio officer
aerial current and frequency . . . the capacity of the aerial is increased by having two or more wires in parallel . . . the greater the capacity of the aerial, the more energy it will take from the closed circuit for a given voltage strain . . ".

The wisdom of Stanley's words is echoed by the Admiralty Handbook of Wireless Telegraphy, 1931, according to which: ". . . the greater the capacity of the aerial, the less inductance will be required for tuning to any particular wave, and consequently the less will be the oscillatory potential of the aerial above that of the deck insulator. $\mathrm{V}=\mathrm{I} / \sqrt{\mathrm{L} / \mathrm{C}} \ldots{ }^{\prime}$. and ". . . . defective insulation will account for a considerable loss in efficiency, especially on long wave . . . leakage to earth in this way is equivalent to having a resistance in parallel across the aerial capacity, and this can be replaced by an equivalent series resistance, whose value (approx) is given by $1 \omega^{2} C^{2} R$, where R is the resistance of the leakage path . .".
The following table will illustrate that aerials of low capacity are less tolerant to problems of parallel leakage. It is compiled for antennas of 500,250 and 150 pF operating at 500 kHz .

parallel	series equivalen	series	series
		uivale	uivale
	at 500 p	at 250p	at 150p
$10 \mathrm{k} \Omega$	40.5Ω	162Ω	450Ω
$100 \mathrm{k} \Omega$	4.05Ω	16.2Ω	45Ω
$1 \mathrm{M} \Omega$	0.405Ω	1.62Ω	4.5Ω
$10 \mathrm{M} \Omega$	0.0405Ω	0.162Ω	0.45Ω

I only mention these elementary matters to show that all necessary information on good aerial design has been readily available for 50 or 60 years.
Times have changed: only passenger ships have long aerials now. Since the early

Australian flag, 21,731 g.r.t. B.1974, pictured Yokohama, October 1981. ". . . a few years ago a ship would be fitted with a good T or inverted L aerial, often extending the entire length of the ship and as high as the masts would allow. Nowadays, we are lucky to have 80 feet of wire round the funnel . . .". (Letter to the Editor, Nov. 1979). Insert shows size of ship in relation to space for aerials.

Liberian flag, 10,430 g.r.t. B. 1974. Photograph W. Africa, March 1981. Efforts to increase capacitance offset by wet weather leakage offered by 11 insulators on one aerial and seven on the other. Does not rise above funnel, a vertical ground.

1960s, bulk-carriers, container ships, supertankers, chemical and gas tankers, with their specialized, shore-based loading gear and gantries, have done away with masts, changed the shape of ships, and created a whole new menagerie of aerials. Some of the problems they have given have

Fig 1. Collection of diagrams on sound marine aerial design from early textbooks. Inverted L and T aerials at (a) and (b) are from "The Maintenance of Wireless Telegraph Apparatus", P.W. Harris, 1917. Diagrams (c) to (f) show 'capacity aerials', taken from "Wireless Principles and Practice", L. S. Palmer, 1928, and the insulators at (g) and (h) come from "Handbook of Instruction for Wireless Telegraphists", Hawkhead and Dowsett, 1918.

British flag, 11,897 g.r.t., B. 1973, taken at Kobe, Oct. 1981. Parts of aerials radiating most are two horizontal wires, hanging from bottoms of whips below furinel and optimistically described as 'feeders'. Whips look very 'modern'. Insulators are inaccessible for inspection and maintenance. These are really mini inverted L aerials rotated through 90 degrees. To obtain sufficient capacity for full power operation, both are operated in parallel, frustrating the concept of main and reserve aerials. No use is made of signal mast to obtain good eerial height. Works well at h.f.
been discussed in the Letters to the Editor columns of WW over the past three years, under the heading "Failure of distress signals at sea". The photographs reproduced here have not been specially selected. They are by no means an exhaustive collection, but they are typical enough. There is a 'Murphy's Law' about photographing aerials: the most interesting and splendid examples sail past during a tropical thunderstorm, or are seen in ports where persons with telephoto lenses are likely to be shot on sight.
There are neither "good" flags nor "bad" flags. The "designers" of these aerials appear to be (a) d.i.y. enthusiasts, (b) practitioners of black magic, (c) persons who have not heard of Rupert Stanley, and who believe that "a more powerful transmitter will compensate for an inefficient aerial", or, in too few cases, (d) real radio engineers.

The commentary accompanying thê photographs will refer in general to operation at 500 kHz . The Home Office 'Code of Practice for Ships' Wire Antenna Systems for Radio Telegraphy Transmissions in the Frequency Band 405 to 535 kHz^{3}, MPT 1270, published 1974, gives; as the "major objectives at the design stage", the following criteria: ", . . in order that the required antenna shall

From left: British flag - plywood lead-in-trunk for minimum shunt capacitance - brass bells shield lead through insulators from spray and rain, but they are shunted by unprotected strain insulators; Italian flag - steel mesh offers neither protection from weather nor reduction in shunt capacitance; British flag - no trunk at all - cheaper and quicker to cut holes in wall, but efficiency of shielding bells on horizontal insulators is doubtful - bells shunted by unprotected strain insulators (seems to be universal practice).

USSR flag, 3236 g.r.t., B. 1963. Photographed in W.Africa, Sept. 81. Maximized capacity, minimized leakage on a 19-year-old ship. Return to the basic principles, of 1919 and rational design.

East German flag, 11,127 g.r.t., B. 1976.
Photographed at Yokohama, Oct. 81. High capacity 'sausage' aerial with good height and only three possible points of leakage. Many splendid examples of this type can also be found on French, Belgian and Soviet vessels. The mast aerial in the background is a standard model widely used on eastern bloc merchant ships.
radiate efficiently, it is necessary that:
(1) It should be suitably dimensioned.
(2) The electrical connection between the radio transmitting apparatus and the antenna is of such design that only a small part of the radio energy is 'lost'.
(3) a principal part of the antenna is vertical or near vertical.
(4) the principal part of the antenna is not in close proximity to any substantial part of the ship's superstructure.
(5) the uppermost part of the antenna is of adequate height above the topmost deck or superstructure.
(6) the antenna is not shielded unduly by parts of the ship's superstructure.
(7) the radioroom be situated on the top deck or second deck so the feeder connecting the radio apparatus to the effective part of the antenna is short.
(8) the vertical part of the antenna, which is of principal importance for radiating energy, is close to the radio room.
(9) attention be especially given to the means necessary to avoid the high loss of radio energy which can occur when the lower part of the antenna includes a substantial amount of open conductor in close proximity to metallic portions of the ship. In such cases the measurement of antenna

British flag. Receiving whip bends in strong wind, almost touching transmitting aerial.
current at the radio transmitter could be misleading and would not give a good indication of the radiation from the antenna.
(10) the radio installation is efficiently earthed to the ship's hull.
How would the aerials depicted measure up to these requirements?
~~N

Linsley Hood 100W amplifier - corrections

Several errors and omissions made the circuit diagrams of the amplifier given on p. 28 of the August issue misleading. We apologize for them and give the corrections below.
Ordinary small-signal transistors (high-voltage, where necessary) are suitable for the carly stages, and it was not intended to tie them down too specifically, but the types used in the prototype are: Tr_{1}-BC447; Tr ${ }_{5,6}$-MPSA93; $\mathrm{Tr}_{4,7}$-MPSA43; TR_{13}-BC212; $\quad \mathrm{Tr}_{10}-\mathrm{BC} 182$; Tr_{11}-2SK134; Tr_{12}-2SJ49. The output transistors should be n-channel $\left(\mathrm{Tr}_{11}\right)$ and p -channel (Tr_{12}).
The negative supply to Tr_{3} should be negative, the Zener and C_{3} being shown upside down. Capacitors C_{9} and C_{10} can be reduced to $100 \mu \mathrm{~F}$.
Resistor values in Fig. 25 are not shown, since they are the same as those in Fig. 24: $\mathbf{R}_{5,8}$ are $1 \mathrm{M} 5, \mathbf{R}_{6,7}$ are 3 M 9 and R_{1-4} are 2 M 2 . Care should be taken to connect the pins of Tr_{3} to the correct pads on the p.c.b., since the case outline is shown 'twisted' from the correct position.

A thousand exhibitors demonstrated the consumer electronics they will sell to America this year

This year, a record number of well over 72,000 visitors attended the Consumer Electronics Trade Show in Chicago. There were more than 1,000 exhibitors dispersed in the huge McCormick Center and various hotels in the city. In general, the mood was one of cautious optimism and most dealers were looking for increased business in the future when the political and economic climate improves.

As with the last three Shows, the emphasis was very much on video - which in this context includes computer-based electronic games, many now embellished with "speech".

Video discs

Big news from RCA was the introduction of a new video disc player which features an infra-red remote control, a fast search speed ($16 x$) in both directions, rapid access ($120 x$) and stereo audio tracks with CX noise reduction. Similar models using the RCA CED system were being demonstrated by Zenith, Toshiba and Hitachi. RCA's Vice-President, Thomas Kuhn said: "Despite the recession, US consumers spent more than $\$ 90$ million for CED players and discs in the product's first year". Although the VHD players were being heavily promoted by Panasonic and JVC with programs in NTSC, Pal and Secam formats, release has been post-poned-again. Rumour has it that work is proceeding on a recordable disc although many experts believe this is unlikely. However, it is known that the Japanese broadcasting Corporation (NHK) has developed a video dise that can be recorded and erased any number of times. It uses a thermomagnetic principle for recording and the Kerr optomagnetic effect for laser playback. Prototypes have a carrier-tonoise ratio of only 38 dB but work is proceeding on methods of improving it.
The third system-LaserVision, was represented by Pioneer and Magnavision among others and the new models also use CX noise suppression. At the January Show in Las Vegas, Kenwood caused a minor sensation with the introduction of the first audio-video amplifier which features a video enhancer circuit, switching for VCR's and V-Disc players, provision for mic dubbing and more, all combined with a 50 watt integrated amplifier. This model really heralded the coming audiovideo 'marriage' caused by the enormous number of potential video program sources and the need for better sound quality.

Television

Although as yet there is no stereo tv in the US, apart from some cable systems, most of the new VCR's and video disc players have this facility, usually with some kind of noise reduction system, so the tv set

By G. W. Tillett

with its poor quality loudspeaker is just not good enough. In addition there are the electronic games, computers and satellite tv signals - all requiring connections to the tv. There is no question that the tv of the future, the near future, will be just a monitor, part of a component system needing only a video signal for direct application to the tube. Sony's Profeel system is one of the first and similar units were shown by nearly all the other tv manufacturers. Some have amplifiers built in to the monitor while others like Jensen, offer a combined audio-video receiver. Model AVS-1500 combines a a.m.-f.m. digital tuner, a 133 -channel tv tuner and a stereo 50 watt amplifier with a microprocessor controlled switching unit - all in a single unit. There is a choice of 51 cm or 67 cm colour monitors. The smallest monitor comes from Hitachi: it has a 10 cm screen and there are two built-in 6.5 cm loudspeakers.

There is a definite trend towards larger tv screen sizes: Sony were showing a prototype with a new 80 cm picture tube and there were a number of new projection models. GE unveiled a 110 cm rear projection model which has a built-in stereo amplifier rated at 10 watts per channei plus two loudspeaker systems. A switch panel allows connection to external video sources. Other rear projection systems with similar size screens were shown by RCA, Sony and RCA. Pioneer's LS-501 is. a forward projection model and the screen size is about 130 cm . Zenith claim to eliminate picture distortion in their 100 cm projection models. The red, green and blue tubes are mounted side by side but the faceplates of the left and right tubes are tilted to cancel out distortion caused by the angle of projection.

Video cassettes

Now for a look' at some of the new video cassette recorders. With the appearance of the T-160 long-playing tapes, most of the

Fig 2. Before and after curves for the AR room acoustic adjuster below
new VHS recorders can record up to eight hours. At the other extreme, a number of mini-portables were seen using a new format called UCM, for Ultra Compact Machine. These mini-VHS models were shown by RCA, Sharp and JVC, the average weight being only $41 / 2 \mathrm{lbs}$. Playing time of the cassettes - which are slightly smaller than a cigarette pack - is 20 minutes. Adaptors permit them to be used with standard VHS machines as $1 / 2$ inch tape is used. Apparently the UCM format was developed to meet competition from Grundig, Funai and Technicolor who make small portables using 6 mm tape. Discussions are being held among some Japanese manufacturers concerning an entirely new format employing 8 mm tape for portables but production might be two, or even three years away.

Marantz were demonstrating a Beta VCR which was specially designed for high quality sound reproduction and among the features is Dolby C and stereo sound. Panasonic's VHS model PV-1780 also has a similar specification with Dolby and Stereo but, like many VHS models it employs four video heads. This means that field-byfield scanning is used for the "still" mode instead of frame-by-frame.

Sony had a new Video Special Effects Kit which includes an effects generator, a monochrome video camera which, when

Fig 1. The AR room-acoustic adjuster
combined with a colour camera and VCR can provide such effects as superimposition, colour keying alteration in up to six colours, monochrome reversal, plus remote control of VCR transport functions. The kit also has a close-up lens, camera stand and title holder. For the professional, Sony introduced a, waterproof "marine pack" designed to protect portable Betamax video equipment during under water shooting. It is equipped with a built-in microphone.

Audio

Although audio seems to be taking second place to the more glamorous video products, there were plenty of new items in all price ranges. Here are some of the most interesting: AR were demonstrating their new digital signal processor which compensates for loudspeaker-room acoustic deficiencies. Figure 1 shows the basic circuit: the listener presses the re-set button and a random noise-like signal from the m.p.u. memory is sent to the loudspeakers via the a-to-d convertor. This signal is picked up by a microphone located in the remote hand-held module and stored as ram data under control of the m.p.u. The data is analyzed and compared with the original to produce a filter which is then inserted into the preamp circuit. Each channel is analyzed separately so there are really two filters. The system operates to 1 kHz and a typical pair of before-after response curves are shown in Figure 2.

Last year Onkyo introduced a double cassette deck, this has now been joined by a "second generation" model with other twin decks from Sansui, Hitachi, Sharp, JVC and Technics. Most offer a fast speed for dubbing so a single side of a C. 60 can be copied in 15 minutes. Perhaps the most significant development in cassette decks is a revival of interest in microcassettes. Panasonic make a miniature model using dbx , while Sony's TC-MR3 is described as "the first home microcassette deck." One of its advertised functions is to make tapes for the Sony Walkman and similar models. Few pre-recorded microcassetes are available at present but this situation is likely to change soon. Meanwhile, blank cassettes using metal formulations are being marketed by Sony, Fuji, and TDK among others.

Denon were showing a 'Pure Class A, No-Feedback' 200 watt amplifier last year and now they have a matching preamplifier. This is the PRA-6000 which also uses no feedback. Equalization and tone controls use passive circuits while input switching is electronic. The price is pretty steep at $\$ 3,000$. Another interesting amplifier comes from Harman-Kardon, the Citation XX which was designed by the Finnish engineer, Matti Otala. It includes an instantaneous current capability of 200 amps so the amplifier can deliver 14,000 watts per channel into a 0.35 ohm resistor under transient conditions; a low value of negative feedback; dual power supply with a total capacitance of $80,000 \mathrm{mfd}$; three thick copper plates are used to form a low impedance transmission line from the power supply to the output transistors.

Flg. 3. The Southern linear tracking

Rated output is 440 watts per channel into 4 ohms with no more than 0.1% THD. A special feature is a three-position switch for bias so the current can be adjusted according to the power level desired.

The new Quad ESL was attracting a lot of attention - so was the latest electrostatic loudspeaker from Acoustat, the Model Eight which stands 94 inches high. It has a radiating area of over 23 square feet and is capable of a s.p.1. of 125 dB at a distance of 25 feet. The impedance is said to be "an extremely peaceful 6 ohms". At the other extreme; in terms of size B \& W were making some impressive sound with a new mini system measuring 240 mm by 155 mm by 190 mm which was designed for domestic or car use.
New turntables caused no great excitement among dealers; although there were several new linear tracking designs from manufacturers like Sansui, Luxman, JVC and Technics. The most unusual was a precision linear arm from Southern: unlike all the other models now on the market, it doesn't use a servo-drive mechanism as the record groove pulls the cartridge across, just like a conventional pivoted arm. In order to do this, arm friction needs to be very low indeed, as does the mass. The arm is actually made from a glass composition and weighs only $11 / 4$ grams. A threepoint suspension is used with stainless steel and sapphire bearings and it runs on pure quartz rods. Price is about $\$ 600$. Yet another unusual arm was the Townsend Elite which is a pivoted design with a difference. An extension section near the cartridge floats on an arc-shaped trough filled with silicone to provide damping and the turntable base can be hit quite hard before mistracking occurs.

Radio

One of the issues causing some arguments among engineers is the proposed a.m. stereo transmissions. There are no less than five systems contending for acceptance: Magnavox, Kahn, Belar, Harris and Motorola. All employ some kind of phase modulation but the Kahn system has independent left-right sidebands. The Belar approach is to frequency modulate the carrier while the other three systems phase modulate the carrier. Most of the Japanese manufacturers appear to favour the Magnovox system although the Harris system which was demonstrated at the Show has
several advantages. These include a wider bandwidth, separation up to 15 kHz and the smallest occupied bandwidth. As shown in the block diagram, (fig 4) the Harris system amplitude modulates two RF carriers separated by 30 degrees and 90 degrees phase difference. The left channel modulates one of the signals while the right modulates the other. A pilot tone is varied from 55 to 96 Hz to enable the receiver to track this varying phase difference and provide normal stereo decoding. Although this means that channel separation can only be maintained down to 200 Hz , this is not considered a serious drawback. The block diagram shows the decoder arrangement: unmodulated i.f is generated with the phase locked loop to quadrature detect the 1 -r stereo difference information. After attenuating the $L+R$ to match the L-R, both are fed to an audio matrix to recover the left and right audio channels. The basic circuit will be available in a 24 pin ceramic DIP (HS-3604) later this year. Harris say that orders for over 150 transmitter adaptors have already been received, but these will obviously be cancelled if one of the other systems is adopted. It is now up to the broadcasters to make a decision. At the Show, Sansui were demonstrating a receiver equipped to receive signals from a local transmitter in the Kahn, Harris and Magnavox modes.

Arguments are still going on concerning the compatibility of the CBS CX noise reducing system. Fewer than two dozen CX records have been released although some 200 are promised by the end of the year. Several receivers were to be seen featuring CX and a number of decoders are now available while the system is being used in video disc players and VCR's.

I counted 17 compact digital disc players at the Show but only one company, Cybernet, claim that units are being actually produced. The software situation is not too clear although Polygram claim that they will release 200 to 300 records by the end of the year.

Electronic music

Casio's new musical keyboard lets the user create 1000 different sounds which are stored in 10 memories. Arpeggio patterns can be programmed to match the music by reading in up to 127 steps, 9 note pitches and rests. There is a built-in "sequencer" which allows the user to program a series
of notes, play the sequence and create other sounds - all at the same time. Other features include digital frequency display, vibrato, sustain, delayed vibrato and preset sounds for such instruments as a bassoon, pipe organ and flute. The keyboard is a full-size 61-key model and the instrument has a built-in loudspeaker. Another musical instrument from Casio is the CT701 computerized electronic player piano. It uses a "miracle scanner" and the user just passes a wand over a printed bar code music sheet and the tune is instantly put into the keyboard's memory for instant playback. The instrument can store up to 345 melody notes and up to 201 accompaniment chords.

Home computers

The Commodore MAX machine uses a new m.p.u., the 6510, to produce a variety of music and sound effects. There are three "voices" each with a 9 octave range and the instrument is said to, "command amazing orchestration when used with a good quality audio system" With a BASIC language cartridge, MAX users can learn the fundamental language of computing and write their own programs which can include maths functions. Commodore also introduced a home computer, the Model 64, which the American Express said, "could be the m.p.u. industry's outstanding new product introduction since the birth of the industry" It can use VIC 20 peripherals and the addition of an IEEE-48 cartridge will enable it to run other peripherals including CBM printers and disc drives. Another feature is its capability of using a Z-80 add-on processor board to run CP/M. The 40 column by 25 line screen and 16 colours, plus its 64 K of RAM help to give it one-third more computer power than the Apple II at $\$ 595.00$ - less than half the price.

The most inexpensive computer at the Show was the Timex-Sinclair, which sells at less than $\$ 100$. It is a modification of the Sinclair ZX81 and manufactured in Scotland.

An interesting telephone adaptor was shown by International Mobile Machines Corporation and it is intended to screen phone calls, tell you who is calling and it also features a memory. It works like this: whenever someone dials your number, the phone will not ring but a pleasant synthesized female voice asks the caller to enter their personal access code by pressing the appropriate buttons. If the code you've authorised is entered, the number appears on a digital display so you know who is calling and who the caller wants to speak to. A touch of a button and the Access codes of all those callers who tried to reach you will be displayed. The system is called "Privecode" and one of its uses is to stop people from being bothered with wrong numbers, obscene calls and slick salesmen.

Mitsubishi were demonstrating what they called a "Micro Robot Minicomputer system" which consisted of a keyboard computer with display, plus a "mechanical arm". This was a jointed structure mounted on a base and powered by six

Flg 4. The Harris system for receiving stereo a.m. radio
drive motors. There are five degrees of freedom with independent rotation around six independent axes and a multi-location memory. The device, called a Move-Master can be controlled by a number of standard computers but the Mx-6000 was specially designed to interface. It has a 5 inch green display, 64 K dynamic RAM, floppy disc, 640 character display and an impact type dot matrix printer. Programming languages include BASIC, assembler and a new robot-oriented language called M-Roly. What can this robot be used for? Well, the makers say it is useful for getting practical experience in robotics either for the hobbyist or for educational.

Etc.
Do you play gol? If so, Mitsubishi have just the gadget for you - the GL-500 Golf Trainer. It consists of a computerized display unit mounted on an artificial grass

mat base. As the club passes over this base, the shot is detected by four sensers and the data displayed. This includes head speed, head angle, hitting area of club, stot direction and the difference in distance between the aimed and actual point at which the ball would land. Now if they would only make a similar device for cricket . . . Prize for the smallest radio must go to Sony's wrist watch model which uses on-chip technology. A four-function LCD displays time, alarm time and AM station frequency. Loudspeaker is a one-inch model ... Marantz were demonstrating the "Sing Along System" which uses a cassette deck with special tapes so the lyrics of popular songs are displayed on a screen . . . Texas Instruments were showing the "Magic Wand" reader designed for young children. It features an optical scanner built into a "Magic Wand" to read talking book codes which are translated into "human-like" voices. The vocabulary cohsists of 200,000 words and there are various sound effects and music songs.

Air data links

During recent years there have been several major disasters that appear to have been brought about, or at least assisted to happen, by misunderstanding of air traffic control messages in circumstances which suggest that poor speech intelligibility may have played some part. The hazard, if hazard there is, occurs less on routine messages than where there is some marked departure from message formats that follow a pattern familiar to the pilot.

Voice communication with aircraft involves achieving intelligibility in a very difficult environment, and it is this factor rather than basic distortion that appears to account for some of the problems. Whatever the cause, aircraft communications still fall a long way short of high fidelity.

One approach would be to replace voice communications with a data link, provided that this would not add to the load already imposed on the eyes of a pilot. An alternative would be voice assisted by data. G. Bennelli of Florence University has put forward proposals for simultaneous voicedata links over a simple radio channel by using combined amplitude-phase modulation of a single carrier, rather akin to some of the proposals for medium-wave stereo broadcasting in America. He suggests (Electronics Letters, June 24, 1982) that this could provide a simple and economic method of introducing a certain degree of automation into air-trafict-control functions without the need for entirely new equipment, so opening the way to extend data-link operations to small as well as large aircraft.

Computer studies suggest that problems of mutual interference between voice and data in a narrow bandwidth need not be excessive with AM-MSK (m.s.k. minimum shift keying, or in other words f.f.s.k. - fast frequency shift keying) modulation systems which, it is suggested, have greater potential than AM-PSK (p.s.k. - phase shift keying).

Engineers at the Nippon Telegraph \& Telephone Public Corporation have reported the fabrication of a single-chip c.m.o.s. coherent demodulator for m.s.k./f.f.s.k. working at an i.f. of 455 kHz at bit rates up to $32 \mathrm{~Kb} / \mathrm{s}$, a considerably higher bit rate than proposed by the Italian team for ground-air-ground communications, for which bit rates of from 300 to $2400 \mathrm{~b} / \mathrm{s}$ were considered in the simulation tests.

E.m.c. and c.b.

The Home office radio interference report for 1981 underlines the large increase of complaints made by viewers and listeners during the year, many relating to the operation of illegal 27 MHz amplitudemodulated transceivers in the months leading up to the licensing of 27 MHz f.m. equipment. However, a reading of the re-
port shows that many of the arguments publicly used for a number of years by the Home Office to oppose allocating 27 MHz for c.b. were based on the false premise that the prime cause of r.f.i. to domestic equipment is harmonic radiation. The report shows that not harmonics but "direct audio break-in arising from the close proximity of the c.b. transmitters" is the main problem. It could thus be argued that c.b. operators have been (and still are being) blamed for the poor electromagnetic compatibility of modern domestic electronic equipment.
Of the 14,359 complaints ascribed after investigation to illicit c.b.; over 3000 referred to m.f. radio and more than 9200 to Band IV-V u.h.f. television - few of these appear likely to have been caused by "harmonic radiation". The statistics do, however, lend support to the view that f.m. transmissions cause less problems than a.m. (though listening in the London area reveals that widespread use of illegal a.m. is continuing).

There can be no doubt that there are many home-entertainment equipments, such as cassette recorders, that are vulnerable at distances up to $50-100 \mathrm{ft}$ or so to interference from low-power a.m. (or s.s.b.) transmitters of the type marketed for c.b. operation. The vulnerability undoubtedly increased significantly when solid state devices replaced valves in domestic equipment; it was also made worse by "unit" audio equipment with interconnecting leads that act as aerials. Yet there is also little doubt that domestic equipment could have much improved electromagnetic compatibility at relatively little added cost. For many years, British and American manufacturers have resisted suggestions that tv sets could be made far more resistant to r.f.i., although some European firms have been more responsive.

The recent showing at CETEX of "unitvideo" systems by Sony and Phillips may raise the question once more, since there is evidence that a number of separate units tends to be more vulnerable to r.f.i. than a single unit; for example the combination of a video recorder with a tv set tends to increase e.m.c. problems.

Interference complaints in 1981 rose sharply over 1980 - from 35,790 to 70,452 . This near doubling in numbers appears to have overwhelmed the system with 28,490 uncompleted cases carried over to 1982. Nevertheless the number of completed investigations rose by 47 per cent from 41,086 to 60,571 . Although much of this large increase is due to 27 MHz c.b. operation, there appears to have been a general increase in complaints of interference from other causes, although there was a significant drop of 16.57 per cent in complaints identified as due to contact devices, from 10,684 in 1980 to 8,914 in 1981 - almost wiping out the
very large jump in such interference recorded in 1979.

Despite the increase, the complaints amounted to less than one for every 500 tv licence holders; on the other hand, over 11 per cent of licence holders for the two-way land mobile radio services reported interference, though it should be stressed that 18,048 licences cover 340,830 l.m.r. receivers.
Radio complaints were sharply up $(24,648$ compared with 20,345$)$ but this puts radio back on the ascending curve of the past decade with 1980 the odd-manout. The v.h.f./f.m. service accounts for about half the number relating to l.f./m.f.

In the news

British Aerospace are building the largest solar generator yet announced for nonmilitary space applications. Designed to provide 5 kW of electrical energy, using almost 50,000 solar cells made by AEGTelefunken, it represents a cost of about $£ 300,000$ per kilowatt, underlining the limitations on the number of d.b.s television channels that could be provided in the near future on a single satellite.

The firm of Daini Seikosha, Tokyo, is reported to have developed a new photolithographic technique for the manufacture of GT-cut quartz crystals to provide tiny crystal resonators in the megahertz region.

With a number of British communications and electronics firms noticably absent from the 1982 British Army Equipment Exhibition (more from megacost than megadeath considerations) it is interesting to note that Racalex '82, the private exhibition of the Racal Electronics Group, is to be opened by the Secretary of State for Defence, John Nott, MP, next October. But Racal continue their unbroken record of expansion, announcing a pre-tax profit to March 1982 of over $£ 100$ million from a turnover that has climbed in ten years from $£ 25$ million to $£ 644$ million.

The recent joint presentation by NHK and RTE (with encouragement from CBS) of the NHK-developed high-definition television system having 1115 lines, 5:3 aspect ratio and 60 fields per second undoubtedly impressed all those who saw the excellent quality pictures at Killarney. It should encourage the use of electronic techniques in the production of cinema material (remember the 1000 -line black-and-white system developed by High Definition Films in 1951?) but it would set broadcast engineers the almost impossible task of finding spectrum space transmitting 20 MHz of luminance plus 7 MHz and 5.5 MHz of chrominance - and keeping these as separate components! Electronic production for cinemas could undoubtedly reduce costs but it may prove difficult to conviñce film production teams that they. should switch to video.

AMATEUR RADVO

Solar upset

Sunspot Cycle 21 developed a square wheel during June that gave a very bumpy ride on the h.f. bands - and posed the interesting question once again of what triggers off Sporadic-E propagation conditions. From early to mid-June there was a succession of solar flares, sudden ionospheric disturbances, magnetic storms and the largest X-ray event for several years. These gave rise predictably to very disturbed h.f. conditions including some daylight "black outs".

This period also witnessed two Spo-radic-E openings extending up to 144 MHz , the first on May 25 when Scandinavian amateurs, including many in Finland, were heard and worked by British amateurs. The second on June 5 when the 144 MHz band opened to the Central Mediterranean area, including Malta, Sicily, Southern Italy, Corsica etc. Although it is not common for Sporadic-E conditions to extend as high as 144 MHz , there seems little reason to link these openings with the solar disturbances on h.f.

50 MHz

Long-distance openings in a generally north-south direction continued to occur in early June on 50 MHz , including reception by Gordon Pheasant, G4BPY of the Brazilian beacon station PY2AA, in the afternoon of June 4 and the FY7THF beacon on June 5. A number of South African signals also continue to come through on 50 MHz .

British amateurs have for long sought use of the 50 MHz band available in the other WARC Regions, and have recognised that such an opportunity could arise in the UK with the phasing out of the BBC 405 -line television service in Band 1 (due to be completed about 1986). This objective has become a live issue with the setting up of the independent review, under the chairmanship of Dr J. H. H. Merriman, charged with producing an interim report by September on the future use of Bands 1 and 111 "taking account not only the need to provide for expansion of the land mobile services but also of various possibilities for the continued use of these bands for broadcasting". The main review, by June 1983, is to examine the present occupancy and utilization of frequencies from 30 to 960 MHz , and thus covers the $70 \mathrm{MHz}, 144$ MHz and 430 MHz amateur bands. The RSGB will make a submission to the Merriman committee.

Less formally, it is hoped by many amateurs that the committee will note how much more generous are the frequency allocations to amateurs and broadcasters in

North America than in Europe, with not only the 50 to 54 MHz band but also the allocation of $220-225 \mathrm{MHz}$ and the much wider 430 MHz band; yet at the same time extending the v.h.f./f.m. broadcast band right up to 108 MHz and continuing to use Band 1 (except Channel 1) and Band 111 as the main television bands plus 55 u.h.f. television channels. The sometimes-heard premise that the valid needs of the land mobile service can be satisfied only by whittling away the frequencies allocated to existing non-military users needs to be challenged.

CO out?

Those who, like myself, operate c.w. on h.f. bands normally listen until we hear a reasonable signal calling CQ and then reply. It is considered bad form to reply to European stations calling "CQ DX" or "CQ Africa" etc. Just occasionally one puts out a CQ call.

On s.s.b. much the same procedure applies although the growth of multistation "nets" means that there are far fewer CQ calls than on c.w.
But from an editorial by Gary O'Neil, N3G0 in Ham Radio one learns that launching a CQ call on 144 MHz f.m. is now regarded in the States as an unusual and peculiar event. Instead a station announces it is listening "on channel" in a rather forbidding manner that does not invite a random reply but suggests only a wish to be called by known friends or members of a particular organization or someone with a positive reason for seeking contact. The tendency for amateurs to form élitist coteries, cold-shouldering all outsiders, is not entirely unknown this side of the Atlantic.

Here and there

The effects of inflation, the less-strong exchange rates, the growing use of frequency synthesizers, up-conversion, digital readout and the like have all combined to push up the price of amateur radio equipment. The Yaesu "FT-ONE" h.f. transceiver retails around $£ 1300$, the latest Trio (Kenwood) TS930S is over $£ 1000$, and some American-built models such as the KWM380 and the Signal/One (built to a military specification) tend to be well over $£ 2000$. One notes that more and more advertisers, particularly in the USA, are becoming very coy about disclosing prices and this appears to conceal substantial discounting as the market becomes rather more sluggish. Though it would seem that sales of the lower cost transceivers, both h.f. and v.h.f., are suffering more than the "top-of-the-range" models.

The GB3SWH 10.368 GHz beacon at Bushey, North London, has been rebuilt and now provides 22 mW output to an omnidirectional aerial (6 dBi gain). It has been heard in Hampshire over a difficult 80 km
path. The 10 GHz beacon at Martlesham, like the British Telecom Research laboratories with which it is associated, is changing away from GB3BPO that linked it with the British Post Office.

A Scottish Amateur Convention will be held at Aberdeen University (Nat.Phil.Dept), St. Machar Drive, Aberdeen, on September 11 , from 10 a.m. to 5 p.m., with trade stands. Among the speakers will be Professor R. V. Jones, M. C. Hately, GM3HAT, John Nelson G4FRX and members of the Moray Firth Amateur Television Group.

A Midlands VHF Convention is planned for October 9 and will be at Wolverhampton Polytechnique, near the centre of the town.

Reminder of the British Amateur Television Club convention at The Post House, Leicester on September 5 and the British Amateur Radio Teleprinter Group rally at Sandown Park Racecourse, Esher, Surrey on August 29.

In brief

Launch date for the Phase 3B satellite could be any time between September and March 1983 depending on the completion of the main load for the Ariane launcher . . . Proposals for five amateur television repeaters in Leicester, Luton, Stoke-onTrent, Bath and Worthing are being put to the Home Office. . . The Home Office is introducing an annual fee for "experimental v.h.f. licences" which permit holders to use powers up to 1 kW and are considering the provision of other forms of experimental licence Members of the Barry College of Further Education Radio Society are to operate GB2F1 on Flatholme island in the Bristol Channel from August 27 to 30 . Flatholme was the site of Marconi's first radio transmisson across water in 1897. Since the island is administered from South Glamorgan it also represents the southernmost point of the Principality . . . Mobile rallies: August 22 Avoncroft Art Centre Bromsgrove. August 29 ITT Social Centre, Old Brixham Road, Paignton. September 12 Telford New Town Centre Malls, Telford, Shropshire and Nicholas School, Basildon, Essex. September 19 Wirrina Sports Stadium, Bishops Road, Peterborough. . . Chris Chisholm, G2CX, who died recently, played a prominent role in R.S.G.B. activities in the 1930s including a long spell as QSL Manager and also as a Council Member. He was also one of a number of radio amateurs who played a role in secret radio activities during World War II. He was licensed in the 1920s. Another loss has been Jack Box, G6BQ for long an outstandingly successful 1.8 MHz contest operator.

PAT HAWKER, G3VA

Simple divider

The GAP-01 general-purpose analogue processor, primarily intended for synchronous demodulation, may be used as the basis of a versatile divider.

In the first circuit diagram, two CA3080 transconductance amplifiers are shown, each with a gm_{m} of $\mathrm{I}_{\mathrm{B}} / 2 \mathrm{~V}_{\mathrm{T}}$, where I_{B} is the bias current and V_{T}, the thermal voltage at $23^{\circ} \mathrm{C}$, is 26 mV . Given that $\mathrm{I}_{\mathrm{B} 1}=\mathrm{aV}$ 婧 $\mathrm{I}_{\mathrm{B} 2}=\mathrm{aV}_{2}$, and further, $\mathrm{V}_{\mathrm{x} 1}=\mathrm{V}_{\text {in }} \mathrm{k} /(\mathrm{k}+1)$ and $\mathrm{V}_{\mathrm{x} 2}=\mathrm{V}_{\text {out }} \mathrm{k} /(\mathrm{k}+1)$, where a and k are constants, the equation

$$
g_{m 1} V_{x 1}+g_{m 2} V_{x 2}=0
$$

yields

$$
\frac{V_{\text {in }}}{V_{\text {out }}}=-\frac{I_{B 2}}{I_{B 1}}=-\frac{V_{2}}{V_{1}}
$$

and hence

$$
V_{\text {out }}=-V_{\text {in }} \frac{V_{1}}{V_{2}}
$$

This equation demonstrates the advantages of this circuit over others, i.e., that errors resulting from temperature variations do not influence the output voltage.

The first circuit may be simplified by replacing the two amplifiers by a GAP-01, as shown in the second diagram. This i.c. consists of two differential-input transconductance amplifiers, two 'low-glitch' cur-rent-mode switches, an output buffer and a comparator. Values for \mathbf{R}_{1} and \mathbf{R}_{2} are 50 and $15 \mathrm{k} \Omega$ respectively and k is 0.01 .
Kamil Kraus
Rokycany
Czechoslovakia

$$
R_{2}=10 \mathrm{k}
$$

$10+1 \mathrm{MHz}$ comb generator

A 1 MHz frequency comb with every tenth spectrum line raised by 10 dB is very convenient for use as a spectrum analyser calibrator or sweep generator marker. It can be generated using the simple logic and pulse shaping shown, by gating out every tenth pulse of the incoming 10 MHz clock. The resulting pulses, of nearly 1.4 ns duration, ensure an essentially flat spectrum to 250 MHz into 50 ohms. A faster, largersignal p-n-p transistor such as BF479 or MM4018 and a higher supply voltage for the second transistor might raise this limit to 400 or 500 MHz .

The principle works for any other ratio N, with the exception of $N=2$, by having the counter divide by N and selecting its outputs to enable gate 3 during $\mathrm{N}-1$ clock pulses.
J. C. Baumeister
Chantraine, France

CRRCUIT IDEAS

Analogue-channel switching

Logic signals to control analogue gates in channel select/mixing applications are provided by this circuit. A series of single-pole push-buttons are arranged to operate either independently in push/push (latching) mode, or as an interlocking bank. When the mode switch is set to "interlocking", a common-reset pulse is generated by pressing any switch, resulting in the appropriate channel flip-flop being clocked high, thus ensuring break-before-make operation. In push/push mode, the reset signal is gated off and each flip-flop is toggled by its associated pushbutton. The $330 \Omega / 100 \mu$ F RC network, together with the 74121's Schmitt input, provide switch debouncing. The circuit may be expanded to any reasonable number of channels and only minor modifications are required if c.m.o.s. i.cs are to be used.
Tim Williams
Wadhurst
East Sussex

Improving adjustableregulator performance

Three-terminal regulators in general function best when their input/output-voltage differential is just above the specified minimum, especially where high currents are being drawn and the device is subject to large temperature changes. On average it is simpler, more economical and more practical to design a regulator-input supply so that it just exceeds the regulator's minimum input/output differential requirement when the anticipated load is maximum, but with adjustable regulators, such as the LM317 shown, the minimum requirement can only be obtained for one output voltage when the supply voltage is fixed.

The circuit shown keeps the variable regulator's input voltage close to its output voltage throughout the circuit's operating range using a preregulator consisting of an op-amp and series-pass transistor, keeping the regulator's performance optimal. Curves given are for an output current of 1 A .
Supply voltage to the 741 must not exceed 36 V ; for the circuit shown, V_{E} is 30 V and the op-amp's negative supply is -5.1 V , determined by the zener. As can be seen from the graph, without the negative supply, the circuit still performs fairly well.
Czeslau L. Barczak
Escola Federal de Engenharia de Itajuba Brazil

NETWORK ANALYSIS WITH A ZX81

This second part details the method used to compute insertion loss and group delay of a network.

First it is desirable to define what is meant by insertion loss. The concept arose in communication engineering where there is a frequent need to break a circuit to insert a filter or other network. More recently, it has given its name to a class of filters designed so that the response when inserted between the correct resistive terminations can be accurately predicted. Because of the great advantages this brings, many of the filters for video purposes, for example, belong to this type.
For the sake of simplicity assume that the input and output terminations are equal. Although this is not necessary, it is by far the most common situation. A morecomplete treatment will be found in chapter 2 of Skwirzynski ${ }^{3}$.
Now consider the illustration in which a generator with e.m.f. e_{i} and source resistance \mathbf{R} feeds a network also terminated in R. The loss from input to output is $\left|\mathrm{e}_{\mathrm{i}} / \mathrm{e}_{\mathrm{o}}\right|$, but if the network is removed and the junctions reconnected the output is $\mathrm{e}_{\mathrm{i}} / 2$. Hence
insertion loss $=20 \log _{10}\left|\mathrm{e}_{\mathrm{i}} / 2 \mathrm{e}_{0}\right|$
insertion phase shift $=\angle \mathrm{e}_{\mathrm{i}} / \mathrm{e}_{0}$.
The use of the reciprocal ratio to determine the phase shift has no effect other than to make a lagging angle positive instead of negative, as is the more usual convention.

For computational purposes the circuit shown needs to be considered in terms of

by L. E. Weaver

Equation 1 can be written in matrix form

$$
\left|\begin{array}{c}
e_{i} \\
i_{i}
\end{array}\right|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \times\left|\begin{array}{c}
e_{0} \\
i_{0}
\end{array}\right|
$$

The array of a's is known as the A-matrix of the system. Its particular virtue is that the combined response of two networks in series is given by the product of their individual A -matrices.

In the simplest case this second network can take the form of a single series or parallel network branch. Then for a network with an A-matrix having coefficients $z_{11}, z_{12}, z_{21}, z_{22}$:
addition of a series branch z_{s}
$\left|\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right| \times\left|\begin{array}{cc}1 & z_{3} \\ 0 & 1\end{array}\right|=\left|\begin{array}{ll}z_{11} & z_{12}+z_{5} \cdot z_{11} \\ z_{21} & z_{22}+z_{5} \cdot z_{21}\end{array}\right| 3$
addition of a shunt branch z_{p}
$\left|\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right| \times\left|\begin{array}{ll}1 & 0 \\ 1 / z_{p} & 1\end{array}\right|=\left|\begin{array}{ll}z_{11}+z_{12} / z_{p} & z_{12} \\ z_{21}+z_{22} / z_{p} & z_{22}\end{array}\right| 4$
The A-matrices of a single series or shunt arm can be determined by inspection from equations 1. The method of matrix multiplication appears in a wide range of standard texts ${ }^{4}$.

Equations 3 \& 4 can now be considered as recurrence relationships from which z_{11}

the input and output voltages and currents, in fact it is completely described by the Kirchhoff equation

$$
\begin{align*}
& e_{i}=a_{11} e_{0}+a_{12} i_{0} \tag{1}\\
& i_{i}=a_{21} e_{0}+a_{222} i_{0}
\end{align*}
$$

provided the system is linear. In general, the a's are complex numbers. The next step is to consider the output termination as forming an integral part of the network, which is perfectly justifiable. Then the system is open-circuited at the output making $i_{0}=0$, and the above equations reduce to

$$
\begin{align*}
& e_{i}=a_{11} e_{0} \\
& i_{1}=a_{21} e_{0} \tag{2}
\end{align*}
$$

and
It follows that the insertion loss and phase angle are now

$$
\begin{aligned}
& \text { insertion loss }=20 \log _{10}\left|a_{11} / 2\right| \\
& \text { insertion phase }=\angle a_{11}
\end{aligned}
$$

and z_{21} may be determined, starting from the input termination R_{i}. As this is always in series, see illustration, its A-matrix is

$$
\left|\begin{array}{ll}
1 & R_{i} \tag{5}\\
0 & 1
\end{array}\right|
$$

The process can be continued for any number of branches, limited only by the capacity of the program. Finally, the output termination R_{0} must be added as a shunt branch, otherwise equations 2 become invalid.

Although it has not so far been mentioned specifically, the coefficient z_{21} is not unimportant for some purposes. From equations 2 we have $z_{11} / z_{21}=e_{i} / i_{1}$, that is the input impedance as seen through R_{i}, giving the input impedance of the terminated network. The original program listing in fact included this facility.

Nevertheless the input impedance is not always needed, and if the computation of the insertion loss only can be accepted then a considerable simplification can be introduced. Equations 3 and 4 reveal that the lower row of the A-matrix does not enter in any way into the calculation of z_{11}. It can therefore be removed entirely with a consequent halving of the amount of complex arithmetic which needs to be performed.

Equations 3 \& 4 now reduce to the extremely simple recurrence algorithms
addition of series arm z_{s}

$$
\left(\mathrm{z}_{11}, \mathrm{z}_{12}\right) \rightarrow\left(\mathrm{z}_{11}, \mathrm{z}_{12}+\mathrm{z}_{\mathrm{s}} \cdot \mathrm{z}_{11}\right)
$$

addition of shunt arm z_{p}

$$
\left(\mathrm{z}_{11}, \mathrm{z}_{12}\right) \rightarrow\left(\mathrm{z}_{11}+\mathrm{z}_{12} / \mathrm{z}_{\mathrm{p}}, \mathrm{z}_{12}\right)
$$

Incidentally, even including the complex: arithmetic the first only occupies two program lines and the last three lines.

Now that the basic algorithm has been established, it becomes possible to examine the actual program listing. Although the number of REM statements has been kept small for obvious reasons, some notes have been added to the listing which should make it possible to follow most of the procedure without too much difficulty.

The component values of the ladder are stored in sequences as $L(N)$ and $C(N)$ where N is the branch number. The auxiliary arrays $G(N)$ and $T(N)$ indicate the type of impedance in branch N , and direct execution to the appropriate one of the four routines contained in lines 900 through 1140. The output in each case is in the form $\mathrm{Re}+\mathrm{jIm}$, where these are the real and imaginary parts of the branch impedance.

The single reduced matrix row corresponds to the two-dimensional array $A(I, 4)$, i.e. $z_{11}=A(I, I)+j A(I, W)$, and $z_{12}=A(I, 3)+j A(1,4)$ where $I=1$ and $W=2$. Accordingly the initial matrix line has $\mathrm{A}(1,3)=\mathrm{RI}$ and $\mathrm{A}(\mathrm{I}, \mathrm{I})=\mathrm{I}$ (lines 750,760). The indispensable information on whether the first network branch is series or parallel is provided by $M(N)$ being I or $-I$ respectively. Subsequently, M(N) reverses sign with successive values of N so as to ensure alternating series and parallel branches.

The next step after N has reached its maximum value MN is the addition of the output termination RO (lines 1330, 1340), which completes the computation of z_{11} and allows the insertion loss in dB to be derived in lines 1400,1410 . The insertion phase shift is also available in the form of $\arctan \beta=A(I, W) / A(I, I)$, and is stored in the array $\mathrm{P}(\mathrm{S})$ as this is only part of the necessary information.

The group delay is defined as $\mathrm{d} \beta / \mathrm{d} \omega$ which is not calculable by purely numeri-

Ladder analysis and group delay equalization

cal methods. The best one can do is to replace it by the approximation $\Delta \beta / \Delta \omega$, where $\Delta \beta$ is the change in insertion phase shift resulting from a small increment in angular frequency $\Delta \omega=2 \pi \Delta f$, achieved by adding a small quantity to the current frequency value and computing $\beta+\Delta \beta$ (line 1450). The fact that this doubles the running time is unfortunate but inevitable, and it is a credit to the ZX81 that nevertheless the total execution time is still remarkably short.

The choice of the frequency increment poses a difficult problem. In principle one would like to make it extremely small, but too small a value would be self-defeating because the accuracy gained by approaching the theoretically infinitesimal d ω would certainly be outweighed by the arithmetical limitations of the ZX81. When two almost equal numbers are subtracted, rounding-off errors can result in a very large percentage error in the difference quality. On the other hand, too large an increment will give rise to inaccuracies where the rate of change of the group delay is high.

The compromise adopted was a frequency increment of 0.001 , i.e. a 1 kHz difference when frequencies are in MHz . It was checked by comparing the com-

```
inper m*
```



```
If wi=-No. TMEN LET n(I)=1
I5 wh - - - 
CLS
LNT x = 100 
lol
L45%:% % 
LEN&:I
LETA - M*P&OP
```



```
Mon N-IT To %ov
IFT(N)=I TMEN coro su0
```



```
lvG(N)=1 TKEN coro 1020
l
LET RL=FDOL(N)\cdotDMM (roal pazE)
LET In=L(m)-A
COTO 1130
MEM C ONLP
LET RE=D(W-RDOC(N))
LET RL=D/(W.rDOC(N))
LET 1mM":
LuT RE = D/IW+PDC(N))
LT5 5m 0-1E0
coro n150
LET H= son(ty(LIN) ctN)]
Luth=\operatorname{son(ty/L(N) ce[N)]}
8F A - 0 THEN LET x
LET RX= K-DPL(N)
\,
coro 1130
REM PARALLEL. LE
ir Liv) =0 TMEN coro 2150
```



```
IF A = O TMEN LET x - (z-z
LET 3-(N-1/n)\cdot(x-
LET n% = 21.0/J
```



```
If M(N) - & TNEN сNMO 1230
```



```
LET m(noz) =-n(x)
LET x(H0I)=
conc:130
```



```
LET A(1,4)=A(1,4)&A(1,1)*IM\bulletAA(1,*)*RE
LET }n(x+8)=-x(s
NERT :
LET Rz=m
LET OE = nEPN
```



```
LET A(1,w)=A(8,m) & A(I,A)*RE/Dz
LIT
LTM
```



```
LTE - B+8
if s = wor twen coto 2s00
M% (a)
```



```
(radeat computation)
Laxt,%:%-.001
```


puted group delay with the calculated values in some special cases where it is available in closed form. This suggested a likely accuracy of 1 or 2 nanoseconds, which wouldbe acceptable. Nevertheless, such a compromise cannot be optimum for all cases, and simple modifications can be made to lines 1450,1500 and 1510 to suit individual needs.

One possible source of inaccuracy could however be avoided. Truncation errors in the ATN algorithm might have a large effect on the value of $\Delta \beta$ if it were derived from expressions of the form arctan $A-\arctan B$ where A and B differ only slightly. It was replaced by $\arctan (A-B)$ $=\arctan (\tan A-\tan B) /(1+\tan A \cdot \tan B)$, executed in line 1510.
Such difficulties do not arise with the group delay equalizer sections whose group delay is available as closed expressions. These are

first order

$$
d \beta / d \omega=1 / \pi f_{r}\left(1+x^{2}\right)
$$

second order

$\left.\mathrm{d} \beta / \mathrm{d} \omega=1 / \pi \mathrm{f}_{\mathrm{r}} \mathrm{K}\left(1+\mathrm{x}^{2}\right) /\left(\left(1-\mathrm{x}^{2}\right)^{2}+\mathrm{K}^{2} \mathrm{x}^{2}\right)\right)$
where in each case $x=f / f_{r}$. These correspond to lines 1840 to 1860 and lines 1880 to 1900 respectively.

Furthermore, they are constant-resis-

tance all-pass networks, so that in principle it should be possible to connect them between the filter and a termination with no change in loss, only added group delay. For convenience the filter group delay is held in the array $\mathbf{X}(\mathbf{R})$ and transferred to the working array $\mathbf{Z}(\mathbf{R})$ each time the EQU subroutine is called by GOTO EQU. Each pass is therefore executed very quickly.
The performance of these equalizer sections deviates from the ideal for two reasons. Assuming the component values are correct and that strays are negligible, the alignment may not be correct and the components will not be dissipationless. In point of fact the strays are usually by no means negligible, but this is too extensive a topic to be entered into here.
However, the extra loss due to dissipation in the delay equalizer components can easily be calculated by a little known, but extremely useful theorem due to Mayer ${ }^{5}$. This states that provided the dissipation is reasonably small, say no greater than about 0.02 , then the loss is
$\Delta \alpha \propto 8.686 \mathrm{D} . \mathrm{d} \beta / \mathrm{d} \omega . \omega$ decibels.
As in the loss program, D is the sum of the capacitative and inductive dissipations, assumed to be equal, but in practice this condition need not be obeyed at all rigidly.

Continued on page 79

DISC DRIVES

Winchester technology

Abstract

Winchester drives are totally-sealed, high-density storage units, as opposed to floppy disc drives that provide low-cost data storage on a medium similar to ordinary magnetic tape. Electronic, electrical and mechanical aspects of these two quite different types of drive are discussed in two sections, starting with Winchester technology.

These offshoots of the conventional ex-changeable-pack disc drive described in five preceding articles satisfy quite different requirements, as will be seen. First, Winchester technology is covered, followed by a description of floppy-disc drives in the next article.

Servo-surface disc drives, as dealt with in last month's article, permit a great reduction in disc-track spacing since the read/write head's position is determined by information on the disc's surface, rather than by an external reference. Winchester technology - initially developed near the Hampshire town of Winchester - is the next step forward.

Briefly recapping, there are two ways in which storage density may be increased

- by increasing the number of bits stored per unit length of track
- by increasing the number of tracks within a given radius.

It was shown in the second article (April) that an increase in writing density must be accompanied by a reduction in the head's flying height. But reducing the flying height magnifies the problem of providing a contaminant-free environment. A conventional disc is well protected while in its drive, but outside the drive, even when the disc is protected by a cartridge, the effects of contamination become intolerable.

In last month's article it was explained that the difficulty of aligning the heads increases as the tracks become closer together. There comes a time when it is not physically possible to make a mechanism which can provide the microscopic adjustments necessary, and compatibility between drives could not be achieved.

The essence of Winchester technology is that each disc pack has its own set of read/write and servo heads, with an integral positioner. The whole is protected by a dust-free enclosure, and the unit is referred to as a head/disc assembly, or h.d.a.

As the h.d.a. contains its own heads, compatibility problems do not exist, and no head alignment is necessary or provided for. It is thus possible to reduce track spacing to about one half that of exchangeable servo-surface drives. The totally enclosed assembly can ensure a clean environment for the heads and disc, permitting a reduction in flying height without loss of reliability, which leads in turn to an increase in the number of bits which can be

[^4]by J. R. Watkinson *

recorded per unit track length. If the rotational speed is maintained, this increase in density leads to an increase in the data transfer rate. Ways in which high transfer rates are accommodated will be covered in a subsequent article.
The h.d.a. is completely sealed except for a small port covered by a filter, which equalizes pressure changes due to temperature and/or air transport. Into this sealed volume of air the drive motor delivers the majority of its power, and the resulting heat is generally dissipated by fins on the h.d.a. casing, in conjunction with an external fan. The disc is designed to circulate the air inside the h.d.a., Fig 1. Some h.d.as have a temperature sensor to monitor this dissipation. An alternative, for where it is not intended that the h.d.a. be exchanged by the operator, is to use a conventional blower and absolute filter for cooling. An exhaust filter is also necessary to protect the h.d.a. when no power is applied, Fig 2.
An exchangeable-pack drive must retract the heads so that the disc can be removed. With an h.d.a., retraction is not necessary as the heads are integral. An area of the disc surface is reserved as a landing strip for the heads. The disc surface is lubricated, and the heads are designed to withstand landing and take-off without damage. When the term retraction is used in this context, it refers to the process of positioning the heads over the landing area.
Disc rotation must be started and braked as quickly as possible to minimize the time for which the heads are in sliding contact. A motor with good starting characteristics is required. On small units, an extra winding may be used for starting, whereas on large units a three-phase motor will be necessary, consuming perhaps 10A per phase during startup. Running current will, of course, be much less - of the order of 1 A per phase. Eddy-current braking cannot be used, since in the event of a power failure, the unbraked discs would turn for an extended period with the heads in sliding contact, resulting in damage. A mechanical friction brake is commonly used, actuated by a spring. The brake is held off by a solenoid, which makes the system failsafe in the event of a power failure. Figure 3 shows motor-brake assembly.
An advantage of contact start/stop technology is that the provision of more than
one head per surface is easier in the absence of mechanisms for retraction and alignment. This leads to two gains, firstly that travel of the positioner is reduced in proportion to the number of heads per surface, reducing the average access time, and secondly that more data can be stored at a given detented position of the carriage, increasing efficiency on long transfers.

Fig. 1. The sealod-head disc-assembly has to dissipate the power of the spindle motor. The hollow disc stack in this design circulates the air and brings it into contact with the finned case, whose exterior is fan colled. Note the vent which allows the internal pressure to equalise. The vent contains a filter to prevent dust ingress.

Fig 2. A contact start/stop drive utilising a full flow air cooling system. The exhaust filter protects the medium from dust ingress when no power is applied.

Fig. 3. Contact start/stop drives require mechanical brakes to prevent damage to the disc or heads in the event of a power failure.. The h.d.a. of this unit has a capacity of 500 megabytes, and is turned by a threephase motor which has on the lower end of the shaft a brake.

Figure 4 illustrates the relationship between various areas of servo and read/write surfaces.
Positioning velocity and rotation sensing. In preceding articles, several types of transducer used to monitor the velocity of the positioner and the rotation of the disc have been described. Whatever the principle of operation, these devices all share the drawback that they require both mechanical adjustment and electrical cali-

Fig. 4. When more than one head is used per surface, the positioner still only requires one servo head. This is often arranged to be equidistant from the read write heads for thermal stability.

Fig. 5. To generate a velocity signal, the position error from the servo head is differentiated and rectified.
bration, with consequent demands upon the skill and training of those who maintain them. With contact start/stop technology, the servo head is always over the disc surface, and can be used for posi-tioner-velocity and disc rotation sensing.
Figure 5 shows the position-error signal generated by servo circuitry during a seek, which rises and falls as the servo head crosses servo information, and that the position-error signal's slope is proportional to the positioner velocity. The position error signal is differentiated and rectified, the resulting signal representing the magnitude of the positioner velocity. The process of differentiation exaggerates any

Fig. 6. The intermittent nature of the differentiated position error is eliminated from the output by the use of the integrated e.m.a. current signal which is less accurate, but continuous. At high seek velocities, the bandwidth of the input filter must be raised. The control signal for this purpose can be derived from the cylinder difference.
h.f. noise present, and a low-pass filter is placed before the input to the differentiator to combat this. At high seek velocities, however, the filter would attenuate the position-error signal, and is therefore switched out when the velocity exceeds a certain threshold; since the differentiated signal is large at this time, the absence of the filter is of no consequence.

Owing to the sign change of the differentiated signal, the output waveform contains troughs where the position-error slope falls to zero at the peaks. These troughs prevent direct use of the signal by the velocity-feedback loop during a seek, as they would be interpreted by the servo amplifier as momentary, large-velocity errors, causing saturation of the output. The troughs cannot be filtered out, since this would introduce an extra pole into the open-loop response of the servo, causing instability.

In April's article covering read/write beads, it was shown that the area under a graph of electromagnetic actuator (e.m.a.) current against time represents the energy put into the positioner. As the mass of the positioner is almost constant, the velocity of the positioner is proportional to the integral of the e.m.a. current, neglecting losses due to friction and air resistance. Despite errors resulting from these effects, integrated e.m.a. current is sufficient to carry over the velocity signal when the troughs in the differentiated position error occur. Figure 6 shows that the e.m.a.-current integrator has a finite output impedance, whereas the differentiator has low output impedance in series with an analogue switch. When the position-error signal exceeds a reference voltage, the switch is opened and the trough is blocked. Now, the integrator signal is used. When the position error falls below the reference, the switch is enabled, and

Fig. 7. This type of servo surface pattern has a second pulse which may be omitted to act as a data bit. This is used to detect the guard brands and index.

Centreline of cylinder zero

Fig. 8. The plateau in the position error known as the reference gap which is used to locate cylinder zero.
the differentiated position-error signal overrides the integrated e.m.a.-current signal by virtue of its low output impedance. Any difference between the two signals appears across the integrator's output impedance.
Having obtained velocity information from the servo surface, it is necessary to ensure that velocity feedback is available over the entire positioner travel. In the last article, it was shown that conventional servo-surface guard bands result in steadymaximum position-error signals at the extremities of the data area. Clearly this approach cannot be used when velocity feedback is derived from the servo surface, as there is no slope to differentiate in the guard band. With contact start/stop, the head landing area is defined by a guard band, and the servo must be capable of operating there and identifying its position.
A modification of the usual servo surface is used, shown in Fig. 7, where there are extra transitions, identical in both type A
and type B servo tracks, along with the familiar dibits. The repeating set of transitions is known as a frame, in which the first dibit is used for synchronization, and a phase-locked oscillator is made to run at a multiple of the sync. signal rate. The p.l.o. is used as a reference for the write clocks, to open windows to extract a position error from the composite waveform and to provide a window for the frame's second dibit, which may or may not be present. Each servo frame thus contains one data bit, and successive frames are read to build up a bit pattern in a shift register. The parallel output of the shift register is examined by a decoder which recognises a number of unique patterns. In the guard bands, the decoder will repeatedly recognise the guard-band code as the disc revolves.. An index* is generated in the same way, by recognizing a different pattern. In a contact start/stop drive, the repetition rate of index pulses is used to monitor safe rotational speed. eliminating a further transfucer. It must, however, be
possible to detect index anywhere in the travel of the positioner, if speed errors are to be avoided. For this reason, index is still found in the guard bands, simply by replacing the guard-band identification pattern with the index pattern once per revolution.

An exchangeable-pack servo-surface drive locates cylinder zero using the steady position-error generated in the guard bands. In a contact start/stop drive, this form of guard band has been abandoned because of conflict with the requirements of velocity feedback, so the cylinder-zero position has to be established by different means.

A common solution uses a unique area of the servo surface known as the reference gap.
In the reference gap, which is adjacent to cylinder zero, there is a servo track which is three times the width of all others. In the reference gap and in several servo tracks outside it, is a third data pattern which is decoded by the index/guard-band circuits to indicate that the reference gap is close. Figure 8 shows position error in the cylinder zero area, which is generated as the servo head crosses that part of the disc. Note that there is a plateau in the positionerror waveform. During the head load, which in the context of contact start/stop refers to the process of positioning the heads at cylinder zero, the heads move inward at fixed speed away from the headlanding area. When the reference code is detected, positioner velocity is reduced to typically $2 \mathrm{in} / \mathrm{s}$, and the position error is sampled repeatedly. When successive samples of position error are the same, the plateau due to the reference gap has been found, and if the servo is put into track following mode, the positioner will detent at cylinder zero.
Rotary positioners. Figure 9 shows the geometry of a rotary positioner with two heads per surface. As the positioner moves, the spacing between tracks will be different from one head to the other, and there will be a certain amount of skew between the flux gap in the head and a true radius of the disc. The tolerances involved in the manufacture of the cantilever are such that no two would generate the same pattern on the disc surface with both heads. None of these effects is of consequence with contact start/stop drives, since data is always read by the heads that wrote it; they are however reasons why ex-changeable-pack drives are not found with rotary positioner, as compatibility would be impossible.

Having established that rotary positioners have no fundamental drawbacks for contact start/stop drives, advantages can be detailed. Firstly size - the rotary positioner can be tucked into a corner of the h.d.a. where it can easily be cooled by air thrown out by the disc. Secondly cost - a rotary positioner requires only two ballraces on the shaft, compared to six or more on a linear positioner, and a precision

Whe term index reters to a once-per-revolution signal used to locate sector positions on the disc and was fully described in the
July issue of WW.

Fig. 9. A Mini-Winchester disc drive having a capacity of nearly 10 megabytes shown with a rotary positioner having two heads per surface. The tolerances involved in the spacing between the heads and the axis of rotation means that each arm records data in a unique position. That data can only be read back by the same heads, which rules out the use of a rotary positioner in exchangeable pack drives. In a head disc assembly the problem of compatibility does not arise.
carriageway is unnecessary. Figure 10 shows an h.d.a. with a rotary positioner, which functions in the same way as a moving-coil ammeter. Other aspects of the associated circuits are almost identical to those required by a linear positioner, with the exception that rotary positioners suffer from windage due to- the spinning disc having a component which tries to turn the positioner inwards. In linear positioners, windage is almost at right angles to the positioner axis, and can be neglected. Windage is overcome in rotary positioners by feeding the current cylinder address to a r.o.m. which sends a word to a d-to-a
converter for inserting an offset voltage into the track-following circuit.

As has been stated, it is possible to make a Winchester-type disc drive with an operator exchangeable h.d.a. The h.d.a. is ejected by a motorized mechanism, and a system of levers disengages the drive belt from the stack pulley and removes electrical connections. The machinery involved adds to the unit cost, and to avoid this, many drives have fixed h.d.as, only replacable by an engineer. Head/disc assemblies, like all human artefacts, can fail, but unlike a conventional disc pack, which can often be put in another drive, a failure can

take place in electronic circuitry inside the h.d.a., which means that the data is essentially lost. This places added emphasis on the necessity to back up data stored on disc. Back-up is however made more difficult by a fixed h.d.a. and it is necessary to use high-speed magnetic tapes or conventional disc drives to perform the necessary copying. One useful technique is known as 'journaling', where a permanently mounted magnetic tape records all of the changes made to the disc since it was last backed up. In the case of a failure, the tape and the backup disc can be merged to create an up to date working disc. Contact start/stop technology offers extremely low cost per bit, rapid access and high transfer rate with the inherent reliability of the sealed medium. It is these desirable features which override the above problems in many cases.

Fig. 10. A head disc assembly with a rotary positioner. The adoption of this technique allows a very compact structure.

Last month's article showed that the introduction of the servo surface permitted a great reduction in the cylinder spacing, but that each read/write head was assumed to be at the same temperature as the servo head. At extremely small cylinder spacings, small differences in head temperature become significant, and it is necessary to combine the principle of the servo surface with that of the embedded servo. In this approach, the servo head generates velocity feedback and coarse positioning information for the carriage, but when in the vicinity of the desired track, the selected head adjusts itself perfectly to the embedded servo information on each surface. This permits several thousand tracks to be accommodated on one surface.

At the-small end of the capacity scale, the mechanical simplicity of contact start/stop yields a low cost product. The nature of the market rules out advanced positioners such as have been described, on grounds of cost. Current 'Mini-Winchester' have simple open-loop stepping positioners, in conjunction with moderate track spacing. Despite this, the price-toperformance ratio of these drives is still impressive. Figure 9 shows a typical MiniWinchester disc drive with a capacity of almost 10 megabytes. The disc diameter is , about five inches.

SIMPLE DIGITAL FILTERS FOR

 SOUND REPRODUCTION

 SOUND REPRODUCTION}

Filters for disc recording equalization, tone control, channel dividing and notch filtering, as well as graphic equalization can be obtained by combining first-order digital filters

Many methods of designing digital filters have been proposed, but most from the point of computer-based filtering for speech-signal processing. In audio, digital techniques have entered the field of recording and p.c.m. recorders are being developed, and it is expected that digital processing such as filtering will be incorporated. For this purpose, digital filters using second-order digital filters as the basic building block have been described by McNally ${ }^{1}$, but the realization requires a large table for storing filter coefficients and a large filter word length, i.e. more than 30 bits for the arithmetic operation of digitized audio input signals to avoid errors occasioned by overflow and coefficient truncation. What is needed is a digital filter of least filter word length and the minimum number of coefficients to obtain the desired spectrum shaping of input signals ${ }^{2}$.

Basic filter

The design of digital filters is simplified by the z transfer function which can be realized using adders, coefficient multipliers and delay elements. The z transform operator, which corresponds to a unit delay in the discrete time sequence, is related to a frequenty f by

$$
z^{-1}=e^{-\mathrm{i} 2 \pi f / F}
$$

where $j=V-1$ and F is the sampling frequency. As usual, suppose in the following discussion that the frequency response of the digital filter is considered in the region $\mathrm{f}<\mathrm{F} / 2$ and that the frequency of an input signal is limited to half the sampling frequency.

Figure 1 (a) shows the structure of a basic digital filter for low-frequency shelving, which consists of a non-recursive filter with a coefficient A and a first-order recursive filter which comprises a coefficient B. The transfer function is

$$
\frac{1-\mathrm{Az}^{-1}}{1-\mathrm{Bz}^{-1}}
$$

in which the numerator corresponds to the non-recursive filter and the denominator to the recursive filter.

The processing required to implement the basic digital filter is two adders, two multipliers and one unit display element. But to avoid overflow, the digital filter structure shown in Fig. 1 is preferable, with impulse and frequency response of the filter shown in (b) and (c). The maximum slope of the frequency response is + $6 \mathrm{~dB} /$ octave when $\mathrm{B}=1$ and the minimum slope is -6 dB /octave when $\mathrm{A}=1$.

by Yoshimutsu Hirata

Figure 2(a) shows the structure of another basic digital filter for high-frequency shelving. This consists of a nonrecursive filter which comprises a coefficient G, a first-order recursive filter which comprises a coefficient H , and two multipliers which multiply the input signal by $(1-H)$ and $1 /(1-G)$. The transfer function is

$$
\frac{1-\mathrm{H}}{1-\mathrm{G}} \cdot \frac{1-\mathrm{Gz}^{-1}}{1-\mathrm{Hz}^{-1}}
$$

Impulse and frequency responses of the filter are shown in (b) and (c). The maximum level is given by $H=0$ and the
minimum by $G=0$, provided that a turnover frequency f_{2} is kept constant.

Tone controller

A tone controller can be obtained by the serial combination of the first and second basic digital filter shown in Figs 1 \& 2. The transfer function of the tone controller is
$\mathrm{D}(\mathrm{z})=\frac{1-\mathrm{Az}^{-1}}{1-\mathrm{Bz}^{-1}} \cdot \frac{1-\mathrm{Gz}^{-1}}{1-\mathrm{Hz}^{-1}} \cdot \frac{1-\mathrm{H}}{1-\mathrm{G}}$
with the low-frequency shelving characteristic defined by two coefficients A and B, and the high-frequency shelving by two coefficients G and H. For example, when the sampling frequency is 44 kHz and the turnover frequency f_{1} is chosen as 500 Hz ,

Fig. 1. Easic digital filter for low-frequency shelving comprises two adders, two multipliers and two unit delay elements (a), impulse response (b), and amplitude response (c).

Fig. 2. Basic digital filter for high-frequency shelving comprises twe adders, four multipliers and two unit delay elements (a), impulse response (b), and amplitude response (c).

Fig. 3. Family of measured curves obtained by tone controller implemented as hardware.

Fig. 4. Amplitude response of complementary low and high-pass filters expressed by equations 1.

Fig.5. Frequency response of complementary low, band and high-pass filters expressed by equations 3 .
a low-frequency boost is obtained by putting $A=0.93$ and selecting B so that $\mathrm{L}_{1}=0.07 /(1-B)>1$. Similarly, a low-frequency attentuation is obtained by putting $B=0.93$ and selecting A so that $\mathrm{L}_{1}=$ $(1-A) / 0.07<1$.

Figure 3 shows a family of measured curves obtained by the digital tone controller. When $f_{1} \approx 500 \mathrm{~Hz}, f_{2} \approx 2 \mathrm{kHz}, \mathrm{F}=$ 44 kHz , and $-18 \mathrm{~dB}<\mathrm{L}_{1}, \mathrm{~L}_{2}<+18 \mathrm{~dB}$, the addition of four bits (experimentally three bits) in the arithmetic operation of the tone controller can prevent overflow. In practice, selecting the level steps L_{1} and L_{2} and the turnover frequencies suitable for binary values, the additional ten bits, four for headroom and six for the coefficient word-length (filter word-length is given by ten bits plus the input signal bits), will be sufficient to avoid overflow and coefficient trüncation.

The digital tone controller discussed above is well suited for a digital audio system based on microprogramming where minimum instruction steps and a maximum dynamic range for a given word length are required. The filter of equation 1 has been accomplished by hardware controlled by the microprogram of six instructions using about $1 \mu \mathrm{~s}^{3}$.

Record equalization

The recording characteristic is specified by three time constants $\mathrm{T}_{1}=3180, \mathrm{~T}_{2}=318$ and $\mathrm{T}_{3}=75 \mu \mathrm{~s}$ which correspond to turnover frequencies $50.05,500.5$ and 2122 Hz . For example, when $F=44 \mathrm{kHz}$, applying 88 kHz as the sampling frequency of the high-frequency shelving process, the RIAA coefficients are

$$
\begin{aligned}
& \mathrm{A}=\mathrm{FT}_{1} /\left(1+\mathrm{FT}_{1}\right)=0.993 \\
& \mathrm{~B}=\mathrm{FT}_{2} /\left(1+\mathrm{FT}_{2}\right)=0.933 \\
& \mathrm{G}=2 \mathrm{FT}_{3} /\left(1+2 \mathrm{FT}_{3}\right)=0.868 \\
& \mathrm{H}=0 .
\end{aligned}
$$

In practice the quantization error of coefficients will cause certain deviations from the ideal curve. For $F=44.056 \mathrm{kHz}$ $(88.112 \mathrm{kHz}$ for the high-frequency shelving), we have $A=0.9921875$ (binary 0.1111111), $\mathrm{B}=0.9296875$ (0.1110111), G $=0.875(0.111)$ and $\mathbf{H}=0$. In this case, the deviation from the ideal curve is within $\pm 0.5 \mathrm{~dB}$ and the additional ten bits (three bits for headroom and seven bits for coefficient word-length) are sufficient to avoid both overflow and coefficient truncation.

Channel dividing filter

Complementary low and high-pass filters in a parallel combination have a linear response in amplitude and phase, expressed by

$$
\begin{align*}
& \mathrm{L}_{1}(\mathrm{z})=\frac{1-\mathrm{B}}{2-\mathrm{B}} \cdot \frac{1}{1-B z^{-1}} \\
& \mathrm{H}_{1}(\mathrm{z})=\frac{1}{2-B} \cdot \frac{1-A z^{-1}}{1-B z^{-1}} \tag{2}
\end{align*}
$$

$$
\left(1>A>B>0 \text { and } \dot{A}=2 B-B^{2}\right)
$$

respectively. $L_{1}(z)$ and $H_{1}(z)$ satisfy the identity

$$
\mathbf{L}_{1}(z)+\mathbf{H}_{1}(z)=1
$$

Figure 4 shows the frequency response of $\mathrm{L}_{1}(\mathrm{z})$ and $\mathrm{H}_{1}(\mathrm{z})$, whose crossover is

$$
f_{c} \approx(F / 2 \mu)(1-B)
$$

These complementary digital filters can be used for a digital two-way limiter analogous to the conventional analogue twoway limiter. Incidentally, a digital limiter can be realized by either a variable coefficient multiplier, where a digital input signal is multiplied by a coefficient whose magnitude varies with an appropriate time constant according to the amplitude of an input signal, or an s-type non-linearity which can be realized by a simple arithmetic operation of the input signal ${ }^{4}$.

Squaring the identity $\mathrm{L}_{1}(\mathrm{z})+\mathrm{H}_{1}(\mathrm{z})=1$, we have complementary low, band and high-pass filters

$$
\begin{align*}
& \mathrm{L}_{2}(z)=\mathrm{L}^{2}(z) \\
& \mathrm{B}_{2}(z)=2 \mathrm{~L}_{1}(z) \mathrm{H}_{1}(z) \tag{3}\\
& \mathrm{H}_{2}(z)=\mathrm{H}_{2}(\mathrm{z})
\end{align*}
$$

respectively. They satisfy the identity

$$
\mathrm{L}_{2}(\mathrm{z})+\mathrm{B}_{2}(\mathrm{z})+\mathrm{H}_{2}(\mathrm{z})=1
$$

Figure 5 shows the amplitude response of these three filters, while the phase response of $\mathrm{L}_{1}(\mathrm{z}), \mathrm{H}_{1}(\mathrm{z}), \ldots$ and $\mathrm{H}_{2}(\mathrm{z})$ is shows in Fig. 6.

Notch filter

The z transfer function of the simplest notch filter is
$N(z)=1-\frac{N\left(1-z^{-1}\right)}{\left(1-B z^{-1}\right)^{2}}, N \simeq 2(1-B)$ which is realized by the digital structure shown in Fig. 7. If $B \approx 1$, the response of this equation is approximately

$$
\begin{gather*}
N(f)=1-\frac{1}{1+(j / 2)\left(f_{d} / f-f / f_{d}\right)} \tag{4}\\
\text { where } f_{d}=(F / 2 \pi)(1 / B-1)
\end{gather*}
$$

Graphic equalizer

The z transfer function of the simplest filter which can control a mid-band level is expressed by

$$
\begin{align*}
M(z)= & 1+\frac{K(1-B)\left(1-A z^{-1}\right)}{\left(1-B z^{-1}\right)^{2}} \tag{5}\\
& (1>A>B>0)
\end{align*}
$$

where K is a variable coefficient. If $\mathrm{A}=1$, a peak-level occurs at

$$
f_{p} \approx(F / 2 \pi)(1 / \sqrt{ } B-\sqrt{ } B),(K>0)
$$

and a dip-level occurs at the frequency f_{p} of equation 4 when $0>K>-4$. The dip-

Fig. 6. Phase response of $L_{1}(z), H_{1}(z)$... and $H_{2}(z)$

Fig. 7. Digital filter structure of $N(z)$.

Fig. 8. Measured curves obtained by the simple graphic equalizer whose transfer function is given by equation 5 .
level becomes minimum at $K \approx-2$ (notch filter). When $B \approx 1$ and ≈-4, the amplitude of $M(z)$ is approximately equal to 1 (all-pass filter). Adjusting $\mathrm{A}=2 \mathrm{~B} /(1$ $+B^{2}$), gives
$f_{p}=f_{d}=(F / 2 \mu) \cos ^{-1}(A+1 / A-B / 2-$ $1 / 2 \mathrm{~B}$).
The mid-band level is controlled by the single variable coefficient K .

A family of measured curves of equation 5 obtained by a hardware filter is shown in Fig. 8, where $F=44.056 \mathrm{kHz}$ and $\mathrm{A}=1$. The difference between f_{p} and f_{d} at $f_{d}=$ 10 kHz is theoretically given by 3.58 kHz . If the maximum level is limited to 15 dB , for example, the additional two bits (theoretically and experimentally) can prevent overflow.

The z transfer function capable of control for a narrow-band level using a single variable coefficient can be obtained also by the combination of first-order digital filters. This allows implementation of the filter as hardware with a relatively small word-length, i.e. the additional bits are less than eight.

MN

References

1. McNally, G. Computer-based mixing and filtering system for digital sound signals, BBC RD 1979/4.
2. Hirata, Y. Digitalization of conventional analogue filters for recording use, J. Audio Eng. Soc., vol.29, no.5, 1981, p.333-7
Ishida, S., Nagatani, S., Hirata, Y. \& Itow, T. Digital filter for tone control and spectrum shaping, Acoust. Soc. Japan Convention Report, May 1981, p. 577-8
3. Sekiguchi, K., Ishizaka, K., Matsudaira, T. K. \& Nakajima, H. New approach to highspeed digital signal processing based on microprogramming, Audio Eng. Soc., 70th Convention Report, 1841 (A-1), 1981.
4. Hirata, Y. Digital limiter, IECE Japan, Technical Report EA79-67, Dec. 1979.

September 6-12
SBAC Show - 25th air show and exhibition, society of British Aerospace Companies Ltd, 29 Kings Street, St Janes, London SWIY 6RD.

September 8-10
Auditorium Acoustics and Electro Acoustics Conference at the David Hume Tower,
Edinburgh University. Details from Institute of Acoustics, 25 Chambers Street, Edinburgh EH1 1HV.

September 13-17

12th European Micro Wave Conference in Helsinki. Details from LPL, Convex House, 43 Dudley Road, Tunbridge Wells, Kent TN1 1LE.

September 14

Power Control Seminar. A one-day event on Motorola solid-state power control. Cavendish Conference Centre. Details from Motorola Ltd, York House, Wembley, Middlesex HA9 OPL.

September 21-23

International Conferenicé on Electromagnetic
Compatibility. IERE Conference at University of Surrey, Guildford, on radio interference problems. Details from Conference
Department, IERE, 99 Gower Stréet, London WCIE 6AZ.

September 28
7th Sound Broadcasting Show. Albany Hotel, Birmingham. Details from Audio and Design Recording, North Street, Reading, Berkshire RG1 4DA.

September 19-24
Human Aspects of Computer Systems. Course on Ergonomics and Computers Systems in commercial organizations, at Loughborough University. Details from Rachel Shattock on Loughborough (0509) 212041.

October 5-6-7
Electronic Displays '82. Conference and exhibition on displays at Kensington Exhibition Centre, London. Details from Network Exhibitions Ltd, Printers Mews, Market Hill, Buckingham MK18 1JX.

October 6

Radio and TV interference. IEEIE. At Royal Star Hotel, High Street, Maidstone, at 7.30 pm . Details from IEEIE; 2 Savoy Hill, London WC2R 0BS.

October 7

Auto Electronics. IEEIE meeting at Conference Centre, Friargate Hill, Preston, at 6.30 pm . Details from IEEIE, 2 Savoy Hill, London WC2R OBS.

Publication delays

Production problems have meant the late publication of Wireless World in July and August. We apologise for the delays and expect to be on time in September with the October issue.

Continued from page 72

The theorem is useful not only quantitatively, but also qualitatively. For example it predicts that a second-order delay corrector should have a loss maximum in the neighbourhood of its resonant frequency, which is true.

The corresponding subroutine is called up by GOTO DISS, which in the listing starts at line 2100.

Man

References

3 J. K. Skwirzynski, Design theory and data for electrical filters. Van Nostrand, 1965
$4 \mathrm{~J} . \mathrm{W}$. Head, Mathematical techniques in electronics and engineering analysis. Iliffe, 1964.

5 H. F. Mayer, Über die Dämpfung von Siebketten im Durchlässigkeitsbereich. E.N.T., vol.10, no.2, pp.335-8.

THIRD-GENERATION OP-AMPS

 RCA CA3140 and TI TL071/2

 RCA CA3140 and TI TL071/2}

Abstract

John Linsley continues his series of articles on i.c. design with a look at the operational amplifiers which succeeded the versatile 741. The TL072 is the type used in the modular preamplifier, to be described in the next three issues.

I made the comment in the first article of this series, last October, that I felt the advent of the 741 integrated-circuit operational amplifier was the turning point in the conversion of many linear circuit engineers to the use of i.cs. However, useful though the 741 and other similar contemporary i.c. op-amps were, they were relatively slow and their input impedance was low enough to make it necessary to consider the likely effects of the flow of the input bias current in the input circuitry.

CA3140

It is understandable, therefore, that the advent of the RCA 'mosfet-input' op-amp, the CA3140, with an input impedance of more than $10^{12} \Omega$ and a slew-rate of some $9 \mathrm{~V} / \mu \mathrm{s}$ in comparison with that of the $0.5 \mathrm{~V} /$ us typical of the 741 in the mid1970s, should have been greeted with great enthusiasm by the industrial electronic-engineering fraternity, for whom a lot of rather awkward jobs now became very much easier to accomplish. Examination of the circuit, drawn in simplified form in Fig. 1, shows a very great similarity in general structure to that of the 741, except that the complementary-pair output stage emitter followers have been replaced by a single emitter-follower Darlington pair ($\mathrm{Tr}_{17,18}$) with an active emitter load built up from $\mathrm{Tr}_{15,16}$ and Tr_{21}.

The input stage is conventional, consisting of an input long-tailed pair of p-channel mosfets driving a current mirror $\left(\operatorname{Tr}_{11,12}\right)$ and a single class-A amplifier (Tr_{13}) with a constant-current source as its collector load. High-frequency compensation is again conventional in form, with a collector-base capacitor (C_{c}) connected across Tr_{13} to impose a dominant-lag type reduction in h.f. gain.

The major advantage of this circuit arrangement stems from the replacement of the relatively poor 'lateral' p-n-p transistors which would have to be used in a conventional, bipolar only type of i.c., with p.m.o.s. devices, which have an exceedingly high input impedance and very good h.f. characteristics. Unfortunately, in this circuit, there is an inevitable load mismatch so that, in spite of the currentmirror load, the gain of this input stage is only about $10 \times$. Also, the need to protect the input gates from inadvertent breakdown due to electrostatic charges

by J. L. Linsley Hood

forces the use of internal Zener diodes, whose leakage currents effectively limit the input impedance to some 1.5×10^{12} ohms at $25^{\circ} \mathrm{C}$.
In order, therefore, to get the gain up to the 100,000 mark expected from his type of device, some ingenuity has been applied to the design of the second class- A gain
stage and the output circuitry, shown in full in Fig. 2. In this, the most obvious feature, apart from the four p.m.o.s. devices ($\mathrm{Tr}_{8,9,10,21}$), is the most elaborate biassing circuitry, with its ladder of cur-rent-mirrors built up from $D_{1}, \mathrm{Tr}_{1}, \mathrm{Tr}_{6}$ and Tr_{7}, all fed from Tr_{8}, whose geometry is organized to make it act as a current source. This ladder of current-mirrors is used to control the cascade-connected current sources (Tr_{2} and Tr_{5}) in the 'tail' of

Fig. 1. Simplified CA3140 circuit, showing general similarity to 741 structure.

Fig. 3. Gain/frequency plot for CA3140.

Fig. 4. Output swing plotted against frequency for CA3140.
the input long-tailed pair (Tr_{9} and Tr_{10}) and in the load circuit (Tr_{3} and Tr_{4}) of the class-A amplifier transistor (Tr_{13}). This second 'pair of cascade-connected current sources is used as an ingenious output overload protection device, in that if the current through the output transistor (Tr_{18}) exceeds some 30 mA at $25^{\circ} \mathrm{C}$ (or less at higher temperatures), Tr_{19} will be turned on, and will steal the current from the driver stage.

The maximum current available from the lower half of the output stage $\left(\operatorname{Tr}_{16,15}\right)$ is already limited by the current fed into the two output current-mirrors $\left(\mathrm{Tr}_{15}+\mathrm{D}_{2}\right.$, $\mathrm{Tr}_{16}+\mathrm{D}_{6}$ and R_{7}) from Tr_{8} and R_{12}, which is itself fed from a semi-fixed voltage source arranged around the zener diode D_{8} and Tr_{20}.

All in all, it is a rather elaborate circuit arrangement, which has always been somewhat expensive to produce and has demanded a relatively large chip size. Nevertheless, the performance of the i.c. is very satisfactory, and it has retained its place in instrumentation use, where its good high-frequency performance, its high input impedance, and its ability to operate over the supply voltage range $\pm 2 \mathrm{~V}$ $\pm 18 \mathrm{~V}$ has made it a useful circuit component. Characteristic gain/frequency and output swing/frequency graphs are shown in Figs. 3 and 4.

TL071

From the point of view of the audio circuit engineer, the remaining requirements which remained to be satisfied in the field

Fig. 5. TL071 in simplified form, showing return to complementary-pair output and apparently rudimentary short-circuit protection.
of i.c. operational amplifiers were guaranteed low noise and low distortion parameters. These residual requirements were amply met in mid-1977 when Texas Instruments introduced their TL0** series of 'BiFET' devices, based on a combination of bipolar and junction fet technologies, which were now capable of fabrication on the same chip.

Of these, for reasons of personal interests, the one which was most immediately attractive was the TL071, 072, 074 series of single, dual and quad op-amps which are characterized for use in audio circuitry, with a noise specification of $18 \mathrm{nV} / \mathrm{VHz}$ and a total harmonic distortion, just below clipping, of typically less than 0.01%. In addition, the typical input impedance was still of the order of 10^{12} ohms, and the unity-gain slew rate was typically $13 \mathrm{~V} / \mu \mathrm{s}$. The use of junction fet input devices has also allowed a somewhat simpler circuit configuration, shown in its basic form in Fig. 5.

Once again, the circuit architecture is of
familiar form, with an input long-tailed pair of p-channel junction fets driving a current mirror to add the signal components of both halves, a single class A amplifier stage (actually a Darlington-pair connected stage), and a complementary pair of $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ output transistors biased into class AB1 operation. The only curious feature to the professional op-amp watcher is the apparently complete absence of any formal positive-excursion output short-circuit protection, other than the use of an output resistor, R_{10}, and the adoption of relatively high-value emitter resistors for the output emitter-follower pair. However, the makers claim that such an output short-circuit can be sustained indefinitely.

I have shown the full circuit of the TL071 in Fig. 6, in which there are a few further details not apparent from the simplified diagram. It will be seen that the input circuit load is formed from a more highly developed form of current-mirror $\mathrm{T}_{4,5,6}$ and $\mathbf{R}_{1,3,4}$) than the simple, two-

Fig. 6. Full circuit diagram of TL071

Fig. 7. Comparison between TL071 and LF351 from National Semiconductor, showing variatlons in input stage and overload protection.

Fig. 10. Harmonic distortion plotted against frequency.

Fig. 11. Equivalent input noise voltage.

Fig. 8. Open-loop gain and phase characteristics of TL071-4.

Fig. 9. Output voltage swing as function of supply voltage and frequency in TLO71.

Fig. 12. Typical application of CA3140 is as ionization chamber amplifier at high impedance.
transistor circuit employed in the 3140 , and a catch-diode is connected across the compensation capacitor (D_{1}) to bypass the amplifier stages Tr_{7} and Tr_{8} if Tr_{13} is driven into saturation. This assists in output overload protection, and also speeds up recovery from any swing which drives the circuit into negative line clipping.

Transistors $\mathrm{Tr}_{2,11,14}$ form a current-mirror group fed from the constant current source $\operatorname{Tr}_{16,15}, \mathrm{R}_{11}$, with transistors 2 and 11 acting as the input 'tail' and the class ' A ' stage load, respectively. The transistor pair Tr_{10} and Tr_{9}, are merely a passive biassing network for the output emitter followers, in which Tr_{10} acts simply as a forward-biassed diode. Because of the relatively large proportion of the total (1.52 mA) quiescent current consumption

Continued on page 87
4 Fig. 13. Low noise and low distortion of TL071 make it very useful in small-signal audio circuitry.

EPROM EMULATOR

A 2K-byte 2516/2716 emulator to aid software development. Designed for use in a secondary school, the unit is simple yet provides eight control funtions, including two for storing and recalling data on cassette. A directly compatible eprom programmer is to be described in a subsequent article.

Microprocessor system design requires some facility for transfering software from paper to semiconductor memory. Often, an eprom programmer is used, but it is extremely useful to be able to evolve and test a piece of software without having to repeatedly erase and reprogram an eprom - a process required even if only one byte needs altering.

An emulator provides the facility to load software into ram using a keyboard and display, and then to use that software to control an external microprocessor system. Any byte in ram may be changed at will, making for easy testing and correction of the software and breakpoint insertion. A 24 -way jumper and 'header' plug connects the emulator to the external system through its eprom socket.
This article describes an emulator for 2516/2716 eproms, designed for use in secondary schools with cheapness and simplicity in mind. At the same time a range of useful facilities are provided making the emulator suitable for the 'serious' system designer. Manual input to the emulator is through eight control keys and a hexadecimal keypad. A description of the control key functions should help one understand how the circuit operates, Table 1.
The eighth control key is spare and may be used to add another function, such as a

by Peter Nicholls, M.A.

print command, which might allow the emulator ram's contents to be recorded on a printer. At present, the unmodified monitor program, to be shown, causes a jump to the start when the eighth key is pressed, resulting in a display of ' a ', $000, \mathbf{X X}$.

To make the unit easier to use, the following features have been added to supplement the single-character prompts for constantly monitoring the emulator's operating mode.

- If \uparrow is pressed at addresses 7 FF or 000 , resulting in an attempt by the system to go to an illegal address, an error message is displayed for one second, after which the monitor jumps to the start.
- When recording of the memory contents on tape is finished, the display 'sent' is given until the ' a ' key is pressed.
- The cassette-recorder interface used is not RS232, but a software interface called Transwift. With this, a check-byte is included at the end of each transmission and checked when the data is read back. If the received parity is correct, the display will show 'read', and if incorrect, will give an error message. This display is held until the ' a ' key is pressed.
- When eprom programming is com-

Table 1. Control-key functions and prompts

Control key Prompt Function

Address entry. When display shows this character, an address may be entered on the keypad. This address is displayed together with ram contents at the address.

Data entry. This function allows data to be entered at the displayed address.
Increment address. With this function, the system remains in data-entry mode.

Decrement address. Here, again the system remains in data-entry mode.
Transmit to tape. On display of this character, ram contents are transmitted to cassette recorder through a 'software interface'.
R \quad R Receive from tape. Reads data recorded using previous function.
Eprom progrām. This function programs.a 2716 with the emulator contents using a small external board.

plete, the display shows 'burnt'.
If the software to be programmed does not fill an eprom, further data bytes sent by the emulator must be FF if remaining eprom locations are to be left free. Without software this is a tedious business but it was felt that a separate function key for filling superfluous locations would lead to students loosing their software by accidentally pressing the wrong key.

So, to overcome this, the software is designed so that if the ' e ' key is pressed within one second of a first depression, the prompt will show ' f ' and all ram displayed from the address when ' e ' was pressed will be filled with FF.

Fig. 1. A typical display. The 8060 processor has only 12 address lines, hence the hexadecimal address display consists of only three digits.

Fig. 2. The emulator's memory map in load mode. Additional logic is used to rearrange the memory map so that an external system áddresses the emulator between 000 and 7FF:

Table 2. The 24-way jumper lead that plugs into the external system's eprom socket should be connected to the emulator board by a transition socket to provide strain relief. A 26 way socket was used with the following pin assignments.

Point on	Pin	Pin name (2716)
boerd	number 24	(2716) +5 V
2	1	A7
3	23	A8
4	2	A6
5	22	A9
6	3	A5
7	21	Vpp (+5 V)
8	4	A4
9	20	($\overline{O E}$ to $\overline{C S}$
		on emulator)
10	5	A3
11	19	A10
12	6	A2
13	18	$\overline{\mathrm{CE}}$ (OV)
14	7	A1
15	17	D7
16	8	AO
17	16	D6
18	9	DO
19	15	D5
20	10	D1
21	14	D4
22	11	D2
23	13	D3
24	12	GND
25 not used		
26 not used		

The reset button functions in the usual way and can be useful when, for example, a badly corrupted dáta transfer from tape occurs, the error message will not be displayed until 16 K -bits of data of some sort have been received. A Schmitt trigger inverter is used to provide a clean pulse for 8060's reset input.
Operation of the load/emulate switch should be self explanatory.

Use of the emulator

Normally, the emulator is operated as follows.

- With the header plug disconnected from the external system and the load/emulate switch in the load position, the required software is loaded into the emulator.
- After loading, the system is switched to emulate mode.
- Now the header is connected to the external microprocessor system, which may need resetting so that it fetches from the emulator's first location.
Care must be taken with power supplies. For example, if the system connected to the emulator has to be powered by the emulator, it is not advisable to use the 24 way connecting cable for this purpose. Generally, if the external circuit has its own supply, it may be connected to the emulator's supply, provided that both are regulated and nominally 5 V .

If the system under development has a microprocessor that will relinquish its buses in response to a control command, this facility may be used so that the two systems may remain connected together while the emulator is in load mode. An appropriate control command could be de-
rived from the load/emulate switch and connected through a separate lead to the microprocessor of the system under development.

Circuit description

As stated, the prime considerations for a piece of school equipment are complexity and cost, so an attempt was made to eliminate the need for buffers on the buses. This influenced the choice of processor for the emulator; the 6502, for example cannot be switched to a high-impedance state on all its buses. The INS-8060 can, and also has the following features that make it suitable for this application.

- no external clock is required
- the device may be rendered static for 50 ms in the eprom-programming cycle
- control lines are available that simplify implementation of the emulator's ' t, r, e ' and ' p ' functions:

Referring to the main circuit diagram, Fig. 4, the processor is linked to an 8154 parallel-interface adapter - which provides 128 bytes of 'scratch-pad' ram and two sets of 8 -bit input/output lines for display and keypad control - to a 2716 eprom containing the monitor program, and to a 2 K by 8 -bit cmos ram. This static ram, the HM6116, is more compact than the slightly cheaper equivalent of four 4114s, simplifying p.c.b. design, and it consumes only $20 \mu \mathrm{~A}$ in standby mode. A p.c.b.-mounting nickel-cadmium battery will power the 6116 in standby mode for some 200 days. This makes the emulator more reliable and allows one to develop a piece of software over extended periods with minimal use of the cassette-storage facility.

When the main-power supply is used, Tr_{1} conducts, allowing the ram's chipselect input to be controlled by the NAND gate. When the main supply is removed, R_{13} holds the input high without excessive battery drain. Provided that the board is used on average for about a half an hour each day, the back-up batteries will be sufficiently trickle charged through R_{12}.

Figure 2 shows the memory map, which is implemented by most of the low-power Schottky gates. When the ram is addressed by the outside world though the header, data appears in memory between addresses 000 and 7FF. Since the processor only has

Fig. 3. To keep costs to a minimum, the crystal section controlling the 8060's clock. may be replaced by an RC circuit as shown.

Peter Nicholls studied natural sciences at Trinity College, Cambridge in the middle of a "thick sandwich" apprenticeship with AEI Telecommunications. In 1967, after a brief period engaged in quality control on a production line for early electronic telephone exchanges, he left to set up an electronics department at Oundle School in Northants. Then, in 1973, Peter moved to Belper High School to establish electronics at all levels in the new school's curriculum, subsequently becoming head of the sixth form. Recently, he left to work for the Microelectronics Education Programme in the East Midlands.

12 address lines, which is adequate addressing capability for this application, a fourth hexadecimal digit is not found in either the display or the memory map.

A further small economy may be made when the crystal used for the 8060 clock is replaced by an RC circuit as shown in Fig. 3. The only section of the emulator likely to be affected by the small reduction in timing accuracy caused by this modification is the cassette interface.

Switch S_{1} on the main circuit diagram, the load/emulate switch, applies either or logic 1 or a logic 0 to the processor's NENIN input. At this input a logic 1 disables the processor, setting all the address and data lines and control lines NRDS and NWDS to their high-impedance state. In this condition, the external system may control the emulator buses without impediment. The signal at NENIN is also used to rearrange the memory map so that the 6116 appears at the bottom of the map as far as the external system is concerned.
Tape interface Data is sent to the tape by the processor as a series of 16 K bits preceded by a header and ended by a par-ity-check byte. The value of each bit is conveyed as the time interval between two successive changes in magnitude of the output signal. When reading, the signal from the tape is squared using two Schmitt trigger inverters, and the data is then recovered by software.

Transwift, the name given to this interface by its designer, Barry Savage, requires very few components, yet it is relati-
vely insensitive to changes in tape speed and output level and is fast, taking about nine seconds to load the emulator's 2 K ram contents.
Keyboard/display. Functioning of the display and keyboard is straightforward, as the second circuit diagram shows. A 7445 decodes three bits of part B and provides sufficient current to drive the multiplexeddisplay cathodes. Seven bits of port A control the display anodes through a dar-
lington driver i.c., IC_{3}. This technique is slightly wasteful of current, but it is a practical solution as $\mathrm{p}-\mathrm{n}-\mathrm{p}$ - driver i.cs are difficult to obtain.
The keypad is connected to port B in such a way that no software decoding is necessary. Lines B_{3} to B_{0} carry the hexadecimal value of the key pressed. Depression of a control key results in a low transition on B_{7}, which is easily detected by the software using a jump if positive command.

Diodes one to seven may be replaced by wire links if the emulator is to be kept basic, but they were included in my design to allow printer heads to be driven by IC_{3}.

Construction and testing

Wire wrapping was used for the prototype, resulting in a compact unit, and later, a single-sided board was made measuring 233 by 220 mm . A 26 -way transition connector was used to join the 24 -way rib-

Fig. 5. Diagram of display/keyboard section. Port B and the keyboard are connected such that no soffware decoding is necessary and the hexadecimal value appears on lines B3 to BO. A logic O on B7 indicates to the software that a control key is pressed.

bon cable to the board. This method is preferred since the transition connector provides strain relief.

When construction is complete, the load/emulate switch should be set to the load position and the power applied. If the display is blank, pressing reset should result in a display of ' a ', $000, \mathbf{X X}$. If this does not happen, a fault must be assumed as there are no adjustment points on the board. Should a close visual inspection fail to reveal the fault, checking the circuit from i.c. pin to i.c. pin with an analogue multimeter which uses a 1.5 V battery for its resistance range will usually locate the fault, without risking the semiconductors.

Operation of the address and data entry and address increment and decrement functions may easily be checked by referring to the previous description of functions. Next, connect a cassette recorder to the interface, set the displayed address to 000 and press the ' e ' key twice (if an eprom programmer board is to be used with the emulator it should not be connected for this test). This should fill the whole of the ram with FF and after a few seconds, the display will show 'burnt'. Now, when ' a ' is
pressed, the usual display will be restored.
Set up the cassette recorder for recording, then press ' t '. When the display shows 'sent' the recording is complete, and should consist of a steady tone of about 1.3 kHz for a few seconds after a short leader. This recording can be used to set up the tape interface using an oscilloscope. First, connect the oscilloscope to pin 18 of the 8060 and start replaying the tape. Play back the recorded data and adjust the $4.7 \mathrm{k} \Omega$ variable resistor on the main circuit diagram to give a $1: 1$ mark-to-space ratio. After pressing the ' r ' function key, a further replay of the recorded data should result in the acceptance message 'recd' being displayed.

Should 'error' appear, or the display continue to show the ' r ' prompt, it should first be checked that the whole message has been sent and received, and that part of it has not been lost on the cassette's leader. Minor adjustments to the cassette recorder volume control and to the setting of the variable resistor may be made to ensure that the signal at pin 18 of the 8060 is 5 V peak-to-peak.

Without an oscilloscope, the voltage at
pin 18 of the 8060 may be set to 2.5 V using an analogue meter, provided that the cassette recorder input is grounded and that one is certain that noise is not falsifying the reading.
As a final test of the cassette interface, switch off the emulator-power supply and touch pin 24 of IC_{6} to ground. This will fill the 6116 with random data which can then be recorded on tape and played back again, the display confirming accurate reception and transmission.
Single-sided printed-circuit boards (233 by 220 mm) and monitor eproms for the emulator, at $£ 8$ and $£ 5$ respectively, will be available from PKG Electronics, Oak Lodge, Tansley, Derbyshire.

Acknowledgements

The Transwift interface, designed by Barry Savage and incorporated in Softy I and Softy II, is used by kind permission and is the subject of a patent. Acknowledgments also go to the Microelectronics Education Program, without whose financial support this project would not have been possible, and to Denys Gaskell for his patience and skill.
continued from p. 50
the vertical signal from the Y amplifier and triggers the sawtooth oscillator if the switch on pin 2 of the 4070 is in the 'Trig' position (closed). In the 'Free Run' position, the sawtooth oscillator runs continuously.

Two exclusive-Or gates form the clipper circuit, the $2.2 \mathrm{M} \Omega$ feedback resistor across the two gates preventing the trigger waveform having multiple edges due to noise on the vertical signal. The polarity of the trigger waveform may be inverted by the following ex-Or gate when the switch is in the negative position. The first of the two Nand gates in the feedback path of the sawtooth oscillator is used to inhibit the oscillator when Q of the 4013 is logic 0 .
With the circuit waiting for a trigger edge, and the switch in the 'Trig' position, logic levels are:
4011 pin 8 - logic 1
4011 pin 9 - logic 0

4011 pin 1 and 2 - logic 1
4011 pin 12 and 13 - logic 4070 pin 3 - logic 1
4013 pin 4 - logic 0 (reset is off)
4013 pin 8 - logic 0 (set if off)
When a positive-going trigger edge clocks pin 11 of the 4013, the Q output pin goes to logic 0 , the 4011 pin 3 goes to logic 1 and resets the $4013, \bar{Q}$ pin 2 to a logic 1; this allows the sawtooth oscillator to run. Further trigger waveform edges cannot now inhibit the oscillator until it has reset and the positive-going edge following flyback clocks the 4013 at pin 3. The circuit is then ready to accept a further trigger pulse.
Note that when the sawtooth generator is waiting for a trigger edge, the CA3130, pin 6 , is at +12 V (the fet is therefore off) and the 4011 pin 4 is logic 0 , so that the current transistor is off. The timing capacitor therefore floats from a starting voltage of +4 V and, depending on the
leakage, would gradually drift over a period of tens of seconds. However, this drift has no effect when the circuit is operating normally.

Flyback suppression

This is a.c. coupled to simplify the coupling to the tube grid, which is at about -200 V . The pulse amplitude is about 35 V negative-going at the collector of the 2N2369. A.c. coupling results in a spot at the left-hand side of the trace when the circuit is waiting to trigger.

Calibration oscillator

The squarewave oscillator generates an accurate 1 kHz squarewave at 1 volt p-p.

Cathode-ray tubes for this design can be obtained from: Colomor (Electronics) Ltd, 170 Goldhawk Road, London W12; Langrex Supplies Ltd, Climax House, Fallsbrook Road, Streatham, London SW16 6ED.
continued from p. 82
which is routed through the last class ' A ' stage ($\mathrm{Tr}_{8}-\mathrm{Tr}_{11}$), a very high slewing rate $(13 \mathrm{~V} / \mu \mathrm{s})$ is attained in spite of the relatively large value of C_{c}. An offset nulling adjustment, for the output d.c. level, is provided on the TL071 only, by which an adjustment may be made with a centretapped trimmer potentiometer between the 'offset adjust' pins and the $-V_{d d}$ line.
In spite of the relatively simple circuit layout (for an i.c.) the performance of this device is excellent, and is becoming adopted as the industry standard for lownoise, low-distortion, high-input-impedance amplifiers of this type.

As is fairly typical, the National Semiconductors design engineers have 'second-sourced' this device with their own version (known as the LF351 and LF353 for the single and dual units) incor-
porating a few design improvements, which I have shown in side-by-side comparison in Fig. 7. Although these design changes allow a somewhat improved published specification, my own tests suggest that the performance differences between the TI and NS units are less than the small random variations between one device and the next, so the performance characteristics for the TL07* devices shown in Figs. 8-11 can be taken as representative of the LF351-353 as well. The basic differences in the circuitry concern the 'tail' of the input stage, and in the output stage overload protection, which is done much more formally in the NS design by the addition of the protection transistors Tr_{18} and Tr_{19}. Because Tr_{19} is a low gain 'lateral' type of device, it is used to rob base current from Tr_{7} by way of an addi-
tional amplifier transistor Tr_{20}. Other circuit differences between these two types of i.c. are trivial.

As examples of the types of circuit which can be built very satisfactorily using these types of op-amp i.c., I have shown two typical applications in Figs. 12 and 13. In particular, the low noise and very low distortion of the TL07* family makes its use in high quality audio preamplifier systems a very natural development. It is unlikely that developments of such i.cs., in this type of TO99 or DIL package, will rest at this level of performance, and straws in the wind are the Mullard/Signetics NE5532-5534 series and the Precision Monolithics OP-27, which have noise figures in the range $3-5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, though as yet, only with relatively low input impedance characteristics.

020

Next month

Modular preamplifier. John Linsley Hood begins his description of a new, modular preamplifier, designed for use with the 100 W power amplifier recently featured. Among its features are a noise-blanker stage to minimize scratch 'clicks', a pushbutton, eight-octave tone-control, a four-input mixer, a rumble filter with a 22 dB /octave cut and a signal-strength
meter
Electronic
compass. This is a 'no-moving part' design, by Neil Pollock which uses a fluxgate sensor, the construction of which is described. The output of the sensor can be processed by a microprocessor to provide a numerical display, or the hardwired circuit shown in the article can be used.

Low-frequency oscillator. A sine-plus-square
oscillator, working in the $10-\mathrm{Hz}$ to 250 KHz range, which provides a toneburst output for loudspeaker testing. There is octave switching and a RIAA pre-emphasis network, and the instrument is built in the modular manner.

500MHZ FREQUENCY SYNTHESIZER

Internal or external references may be used to determine output frequencies from 1 to 500 MHz in steps of 0.1 Hz on the PTS500 synthesized-signal generator. All functions may be programmed using either binary-coded decimal signals or the IEEE488 bus. Switching between frequencies takes from 5 to $20 \mu \mathrm{~s}$, output levels are between +3 and +13 dBm , and resolution may be selected. Wessex Electronics, the manufacturer's representatives, say that the instrument introduces little phase noise (-63 dBc from 0.5 Hz to 15 kHz) and that the simple synthesizing method used involves fewer components than competitive instruments do, resulting in a reduction in power consumption of up to 50%. A wideband-h.f. linear amplifier from RF Power Labs is since recently also available from Wessex Electronics. This 150W instrument may be used at frequencies from 1 to 30 MHz with an average gain of 50 dB , within $\pm 1.5 \mathrm{~dB}$.
Comprehensive circuit protection is incorporated in the design. Wessex Electronics Ltd, 114-116 North Street, Downend, Bristol BS 16 5SE.
WW301

MONITORS FOR PORTABLE USE

An uncased 5 in monitor from Kent Modular Electronics has 25 MHz bandwidth and is claimed to be suitable for displaying up to 80 columns by 36 lines. Designated the MC500, this monitor is suitable for displaying characters, in point-of-sale terminals and computers for instance, or for use in picturedisplay applications including surveillance and closed-circuit tv. It requires a 12 V d.c. supply, may be driven by either composite video or separate t.t.1.-level signals, and has line and field-scan rates of 15.6 kHz and 50 or 60 Hz respectively. Resolution is 700 lines at screen centre and 500 lines at the corners. Different phosphors can be obtained. Kent Modular Flectronics Lid, Maidstone Road, Rochester, Kent ME1 3QL.
WW302

12-by-12-BIT MULTIPLIER

What is claimed to be the fastest unsigned-magnitude 12-by-12-bit

multiplier, the MPY112K from TRW LSI Products, multiplies in under 50ns. This 48 -pin device, available through MCP Electronics, has dual-input registers, a multiplier array and a 16 -bit output-product register with threestate t.t.l.-compatible output buffers. Applications include realtime video-signal processing, digital filtering, FFT calculations and geometric transformations. MCP Electronics Ltd, 38
Rosemont Road, Alperton,
Wembley, Middx HA0 4PE.
WW303

BYTE-ERASABLE EEPROM

Limited samples of National Semiconductor's 2K-by-eight electrically-erasable prom can be obtained for evaluation purposes. Two versions are available, the NMC2816 and the NMC9716, the difference being that the latter device may be erased or written using a t.r.l. pulse on the chip-
enable input while the
programming-pulse input is held at 21 V . The erase/write cycle is similar to that of the industrystandard 2716 eprom. To erase or write a byte takes 10 ms , or alternatively the whole device may be erased at once in 10 ms . Apart from the difference mentioned, the devices are pin and function compatible with each other. Prices for 250 ns and 450 ns versions are between $£ 30$ and $£ 40$ for small quantities. National Semiconductor (UK) Ltd, 301 Harpur Centre, Horne Lane, Bedford MK40 1TR. WW304

MICROWAVE TRIMMERS

Four microwave trimming capacitors from Waycom cover 0.3 to $1.2,0.4$, to $2.5,0.6$ to 4.5 and 0.8 to 8 pF ranges respectively and have minimum- Q values of between 1000 and 5000 at 250 MHz Self-resonant frequencies are between 5 and 13 GHz . The MTRX2X series can directly replace the company's MTMX0X trimmers. Waycom Ltd, Wokingham Road, Bracknell, Berkshire RG12 IND.
WW305

DIL PREFORMING TOOL

As many readers will be aware, integrated-circuit pins are intentionally splayed so that the device stays in place when mounted on a board by an automaticinsertion machine or tool. If manual insertion is preferred, the pins must be preformed in some way. Kam Circuits sell two small preforming fixtures, one for 0.3 inwide devices and one for 0.6 in-wide types, which can quickly preform i.c. pins. One-off prices are $£ 15$ for the DHPT3 and $£ 18$ for the DHPT6, excluding vat. Kam Circuits Ltd, Porte Marsh Road, Calne, Wilts SN11 9BW.

WW306

LED MOUNTINGS

Glass-filled polycarbonate holders for mounting 5 mm leds either horizontally or vertically on a p.c.b. are available from Zaerix Electronics Ltd. These holders may be end or stack mounted on a 3 mm pitch, used between - 50 and $+125^{\circ} \mathrm{C}$ and serve as a guide for led lead forming. Zaerix Electronics Ltd, Electron House, Cray Avenue, St Mary Cray, Orpington, Kent BRS 3QJ.
WW307

CONTROL COMPUTER

This single-board microcomputer which, it is claimed, can function as its own development system, uses the Zilog Z8671 'single-chip microcomputer' - a microprocessor with a Basic interpreter, two timers, a uart, four i/o ports, vectored interrupts and 144 bytes of ram. The Arc computer, designed for control applications, can be set to initiate itself on power up so that it may be used as a stand-alone controller. Built on a Eurocard, by Arcom Control Systems, the computer has a real-time clock/calender with battery back-up, 4 K bytes of ram and a 2 K byte eprom containing demonstration programs written in Basic, and an RS232 interface, rate selectable from 110 to $19200 \mathrm{bit} / \mathrm{s}$. Space is available on the board to extend the memory capacity to 20K. Excluding vat, the Arc's price is $£ 135$. Arcom Control Systems Ltd, 38 Grantchester Road, Newnham, Cambridge CB3 9ED. WW308

COMPUTER
 SPEECH

Keyboard entries may be converted into speech on most computers using the Votrax Type-and-Talk, claim Intelligent Artefacts (a company name). Typewritten words are translated into electronic speech by the unit's microprocessor-based text-tospeech algorithm. Suggested applications include education for, say, spelling tests, and in aiding blind and dumb persons. Communication with the computer is through an RS232 link and the device gives its verbal response according to the English language, but possibly with an American accent since it originated in the US. It can be obtained for $£ 275$ excluding vat. Intelligent Artefacts, Cambridge Road, Orwell, Royston, Herts SG8 5QD.
WW309

WW310

LARGE G.T.O. THYRISTOR

A gate turn-off thyristor capable of handling 50 to 150 kW in uninterruptible power supplies, inverters, variable-speed a.c. motor drive circuits etc., is manufactured by International Rectifier. The 160PFT is a 250A r.m.s., 600A peak device with a 1200 V maximum repetitive peak off-state rating and a turn-off time of 8us. International Rectifier Co. (GB) Ltd, Hurst Green, Oxted, Surrey RH8 9BB.

WW310

CONTINUITY TESTER

Some find it difficult to imagine what a continuity tester costing $£ 54.40$ might feature. The Buzzbox, from Kelvin Electronics, can locate p.c.b. short circuits since, claim its makers Kelvin Electronics, it is possible to resolve resistances lower than $10 \mathrm{~m} \Omega$ with the aid of the unit's ten-turn potentiometer and audible-signal
generator. A similar method using a medium-resistance range of 0.5 to 30Ω can be used to identify and check multiple cables. Here, a built-in intercom may be of use should the cable ends be far apart. The instrument is also claimed to give consistently more reliable indications than most multimeters where general continuity testing is concerned. Internal calibration resistors are included, and the unit may be used to check capacitor leakage current, as a simple signal generator for audio-amplifier testing, and for alternating and direct voltage checks. In shortcircuit location mode, current through the circuit under test is about $20 \mu \mathrm{~A}$ and the alternating test voltage too low to turn on a silicon junction. Kelvin Electronics, 18 Exeter Close, Tilgate, Crawley, Sussex RH10 5HW.
WW311

POLYPHONIC-SOUND GENERATOR

An integrated circuit for simplifying the construction of polyphonic keyboard instruments, the M112, is manufactured by SGS. The device contains a microprocessor interface, eight sound-generating channels and output-control logic. Each generator consists of gating logic to select required tones and harmonics, and an a.d.s.r. envelope shaper to determine the sound's dynamics. Twelve-bit words are sent to the i.c. through a six-bit data bus to determine pitch, a.d.s.r. and output options such as 'hold' and 'pedal'. The device has fifteen outputs in all and includes an input to provide a percussion effect. Cascading of the M112 is possible. Sample quantities of the device should be available in September. SGS recently introduced a 28 -pin version of the M3870 microprocessor, the M2870, which will sell in large quantities at 'significantly' under $\$ 3$. The device is identical to the 3870, except in the number of i/o lines. Both have a 2 K rom, 64 bytes of ram, a counter/timer, programmable i/o, externalinterrupt facility, internal clock, and require a single 5 V supply SGS-ATES (UK) Ltd, Walton Street, Aylesbury, Bucks.
WW312

> Professional readers are invited to request further details on items featured here by entering the appropriate WW reference number(s) op the mauve reply-paid card.

THREE DIMENSIONS

There is an advertisement in my paper for one of those new Sony television outfits made up from a set of separate units. It has a separate picture monitor, a separate receiver/demodulator, teletext unit, video cassette unit, etc. It's the logical video extension of the audio hi-fi philosophy, and I'm sure it will be a winner with the "video" enthusiast. It makes good sense in terms of flexibility and must have considerable prestige value.

It is clear from the advertisement picture that Sony intends the tv sound to be handled by the hi-fi stereo system, a small loudspeaker being shown placed at each side of the picture monitor. Of course, British tv sound does not come in stereo, so the system would have to operate in mono for broadcast entertainment. Perhaps some video cassettes have twotrack sound, and broadcast television with stereo sound is being developed in Germany.
Personally I have my doubts about the advantages of stereo sound on television. Even with a very large picture tube, I find it hard to believe that the stereophonic illusion can pinpoint the sound source image to coincide with the visual image accurately enough to improve the realism. But I'm probably wrong. Even with real sound sources I find it difficult to locate them aurally. I have very little aural sense of direction, and I am usually unable to tell whether a two-speaker system is providing stereo sound or just doubling up on the monophonic.
Had I not made this admission, however, I am sure I could pursue the argument on the futility of the combination of television and stereo sound and convince a significant following. But there is bound to be a large number of viewer/listeners who can locate the direction of a sound source within a tenth of a second of arc or even less. Indeed, I'm probably the only person who can't do it.
I made the mistake some years ago after a demonstration 3D film at the local cinema. It was based on the use of a different colour filter for the left and the right eye, with appropriately coloured images on the screen.
I found that the stereoscopic effect was far greater than I was accustomed to in real life, and I was easily able to persuade a large number of my colleagues that we were only able to detect the three dimensions visually to a range of about 10 feet. I frequently heard my opinion voiced by others, and each occasion reinforced my conviction of the truth of the statements.
Then I got some new spectacles. The moment I put them on out-of-doors my
whole flat world leapt into 3D, and I realized that my disciples were preaching a false doctrine. I was not too penitent, for some were, presumably, normally sighted and should have known that the $10-\mathrm{foot}$ limit was nonsense, even if the film's stereoscopic effect was somewhat exaggerated.

The moral of this story is that, if you believe what you are saying, you can probably fool some of the people most of the time, even in contradiction to the evidence of their eyes.

MARKING TIME

Quite recently a kind lady gave me an electronic ball-point-pen - all-solid-state with quartz-crystal frequency control - a high-technology writing instrument if ever there was one.
Actually it was not really intended as a gift so much as a prize for ordering more stationery than one really needs. It is what our supplier calls a "promotion"; and there are, I know, folk who regard the acceptance of such gifts as not quite proper, especially as they are nearly always received by somebody else. Anyway I'm quite pleased with mine. It is not everyone who has an electronic ball-point pen.

It's just the same as any other ball-point pen really, except that it has a tiny digital clock built into its upper half, with an 1.c.d. readout on the side giving the time in hours and mminutes. It has been quite well engineered - in Hong Kong - and it has some attractive features; e.g., it takes Parker refills, which are readily available outside Hong Kong, and it is fat enough to hold comfortably when writing

I'm not too fond of digital timepieces in general. I find it easier to relate time intervals to distance round the circumference of my wrist watch than to do the arithmetic with digital information. This is particularly true first thing in the morning, when it comes to the nice assessment of time for a final doze before crawling out of bed. Although the digital characters on our clock radio are large and bright, the concentration needed to subtract 6:33 from a quarter to seven is such that I find I'm wide awake and the pleasure is lost; so I still squint bleary-eyed at my old fashioned watch.
Of course, my analogue mind lasts all day and, in common with the rest of the human race, I find it easier to absorb diagrammatic information than to interpret characters. But that little digital timepiece in the stem of my ball-point has one important advantage over the wrist watch. It is easy to read when holding the pen in the
normal writing position.
This means that, when I get involved in one of those boring office meetings, I am able to keep track of the time without the more obvious frequent reference to my wrist watch. It is perfectly natural to look in the direction of one's pen when taking notes, and I can look as often as I like without upsetting anyone.

Terry Wogan has just announced that it is coming up to eighteen minutes to ten. Is that later than $9: 41$?

STRANGER THAN FICTION

So it's arrived at last. There it is on the front page of the Financial Times complete with a full-size photograph - the world's first wristwatch television. Needless to say, it's Japanese; and i must admit it upstages my electronic ball point pen. It must have impressed the FT, because I cannot recall ever having seen a new-product photograph on the front page before.

According to the paper it is all made possible by the development of a liquidcrystal display with a matrix of 32,000 dots covering a 1.2 -in screen. It says, "the tv is part of a slightly oversized electronic wristwatch with digital time display, calendar, stop-watch and alarm."

Fantastic; but how do they manage to pack the receiver circuit and all the video signal processing etc. into the wristwatch case? Well, actually, they don't. The watch tv is connected by a thin cable to a pocket-sized receiver unit, weighing just under half a pound, complete with batteries and all the normal controls. An earphone is also attached by a lightweight cable; so it seems that the wearer of the wristwatch tv must be wired for vision and sound.

The manufacturer expects to start mass production in Japan in six months' time, and perhaps we shall see them here in time for Wimbledon 1982. It should be fairly easy to spot the wristwatch television viewer out of doors watching the tennis. With a viewing screen about half the size of a 35 mm negative, it will be necessary to hold it about eight inches from one's eyes to keep an eye on the ball; and, no doubt, an aerial will be needed for all but the highest field-strength areas, suggesting some interesting headgear.

So if, next July, you should see a man in the park with a deaf-aid and an antenna on his hat, staring intently at his wristwatch, you'll know what he's doing, won't you? You could be wrong, of course. If he talks to his wristwatch and then slowly fades away to nothing, it could mean that he's been "beamed up" to a 25 th century space ship.

Chiltern Electronics

HIGH ST, CHALFONT ST. GILES, BUCKS Telephone: 0240771234

MICROPROCESSOR SYSTEMS

A complete Microprocessor subsystem on single PC card, complete with 2650A CPU, four 2758 EPROMS and 12 RAM chips, all in DIL sockets. Loads of other components including TTL chips, xtal, ribbon connectors. Unfortunately we have no circuit or data, so we are offering the complete units with ribbon cables and plugs for only£23 each

SELF-SCAN DISPLAY UNITS

These state-of-the-art displays can replace a VDU, and measure only $12 \times$ 4×2 inches. Display all ASCII set 40 characters by 6 lines. As used on latest mainframe terminals. But again no data or circuit so only.... $£ 23$ ea.

MEMORY CARDS
A full size circuit board ex new equipment containing 644 K Dynamic RAM chips in sockets, and complete with all decoding circuitry. Organised as $32 \mathrm{~K} \times 8$ bits. A complete memory system for your micro, but again we have no data, so it will be necessary to spend an hour circuit tracing... Only £11.50 ea.

POWER SUPPLY UNITS
Ideal for your micro system, and at a quarter of usual price, these units give a fully regulated and filtered DC $5 v$ supply, complete with over voltage protection and standard mains input.
$5 \mathrm{v} 3-\mathrm{amp} £ 1 \mathrm{~L} .50 \quad 5 \mathrm{v} 6-\mathrm{amp} £ 23$

AMPHENOL 36-WAY CENTRONICS PLUGS

Genuine Amphenol plugs with gold-plated contacts that are standard for all parallel printers and usually cost around $£ 6$ each. New ex-equipment. With cable top and clamp.

Our price $£ 11.50$ for 6 , or $£ 115$ for 100
ALL ABOVE PRICES INCLUDE VAT AND POSTAGE. SAMEDAY DESPATCH
We also stock fult range of DEC Systems from PDP11/04 to VAX 11/780, and full range of spare cards - please telephone for details or catalogue.

REDCLIFFE magtronics

ARE PLEASED TO ANNOUNCE

A

MAGNETIC EQUIPMENT EXMIBITION

AT THE
CREST HOTEL, BRISTOL
2 nd November 1982

On show will be -

Magnet chargers

Magnet processors

Instrumentation

Special Test and Analysis Systems

BRING YOUR MAGNETICS PROBLEMS TO US FOR PROMPT SOLUTION

For further details please write to REDCLIFFE MAGTRONICS LTD., 24, EMERY RD, BRISLINGTON, BRISTOL. [O272| 771404

Sixmonthsin the life of someone like you

Apriliz)	fiareed to enter hospital for tishs to discuver roil of illiness
M̧al	Doetor tells of a suspected lumpur. An operation is icceded
May 4	(Iperation successful, hut warning given of several months incapacity.
fune is	Properes is slow. Wife finding it hurd to maki emts ineen soldy on Sick ness and Supplenentary Buncifis
fuly 4	Huspital recommends a recup crataive lioliday Nore andity ower where the money will conice (run)
July 16	A collcypuc contacts FiEIBA
Iuly 25	An ElilBA wilfarculficer visitsfamily top discuss the problemils.
Auşusi 7	Elil3A pays for halidiy. .
August 24	Keturn to frind a pilc ol unpaid bills. Inability to cupr caumes desperation
Augisi 24	are groing Sluc offers reassurance and the premise of hedp
August 30	
isctuher 34	Fuil ricowerv elleeted. Return tos work and drim up letter of thanks

```
This is lust one cype of case out of the 800 EEIBA deals with every yeak To tell us of any cases you might know where help is required. And to heip us with reqular donations.
We're not asking for a fortune, we're simply asking you to appreciate how lucky you are, and to send what you can spare.
```


The Electrical and Electronics Industries Benevolent Azuxi tilion.

"Sympathy, Love and Understanding are not enough"

Sir Douglas Bader C.B.E., D.S.O.,D.F.C The Wings Appeal Fund helps to maintain the RAF Association Home for Disabled and Chronic Sick. Care is essential for those who have served their country and who are in need. So please help by giving all you can for an emblem in WINGS WEEK in September or send a donation to show that you care

To: Royal Air Forces Association, Appeals Dept., (DS) Portland Rd., Malvern, Worcs. WR 14 2TA.
l enclose a donation of
for the Wings Appeal Fund.
Name
Address

Please tick if receipt is required. \square
Space donated by. 'Wireless World'
 PM COMPONENTS LTD VALVE \& COMPONENTS SPECIALISTS
\square

PHONE

A SELECTION FROM OUR STOCK OF BRANDED VALVES

ZENER DIODES
B2X61 0.15

BZX61 0.15 6 V 27 V 58 V 2 gV 110 V 11 V 12 V 13 V 15 V 16 V 18 V 20 V 22 V 24 V 27 V 30 V 33 V 36 V 39 V 47 V 51 V 56 V 68 V 75 V BZY88 0.07 2 V 73 V 3 V 33 V 63 V 94 V 34 V 75 V 1 5 V 6 VV 2 8V8 7 V 5 8V2 9V1 10V 11 V 12 V 13 V 15 V 18 V 20 V 24 V 2 V 30 V	
THERMIST0R8	SATERIES
VA1040 0.23 VA1056S 0.23 VA104 0.70 VA860 0.45 VA1097 0.25	7V Power Mike batteries TR175 £1.40 ea other prices on request

BASES ETC.
${ }_{87}^{87 G}$ Skirted

B8G	0.30
B9A	0.70

0.30

8108
8138
8 8in DIL 0.10
14 Pin DIL 0.12
14 Pin DILio
16 Pin OIL 0.3
${ }^{0} 15$
0.15
0

VLSE	12.50	287	1.50
VLPB	12.50	2821	0.95
VP4	4.50	$2221 w$	

WIREWOUND RESISTORS
$\begin{array}{cc}\text { PREFERRED VALUES } \\ & \\ 4 R 7-1 \mathrm{K8} 8 & 0.15 \\ 2 \mathrm{~K} 2.6 \mathrm{~K} 8 & 0.18\end{array}$
4 Watt
7 Watt
11 Watt
17 Watt

2

2K2-6K8	0.18	B8G $\quad 0.70$	
10K	0.24		
R47 -4K7$5 \times 6.12 \mathrm{~K}$		B9A Skirted	
	0.18		0.30
5K6.12K	0.19	81088138	0.16
15K-22K	0.20		0.50
1R-10K	0.20	14 Pin DIL 0.12 14 Pin DIL/O	
15K-22K	0.24	9 Pin Oll	0.30
1R.10K	0.26	16 Pin OIL	0.15
		CANS	0.27
95K-22K	0.28	B9a PCB	0.15
		B5	0.75

CALLERS WELCOME

* ENTRANCE ON A227

50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE

* HOURS: MON.-FRI. 9.00-5.30. SATURDAY 9.30-12.00

ACCESS AND BARCLAYCARD ORDERS WELCOME
UK ORDERS P\&P 50p PLEASE ADD V.A.T. AT 15\%
EXPORT OROERS WELCOME. CARRIAGE/POST AT COST

PCI 1002 IEEE THERMOCOUPLE CONVERTER

The PCI 1002 is a 12 Channel IEEE compatible thermocouple converter having two input ranges of $\pm 10 \mathrm{mV}$ or $\pm 100 \mathrm{mV}$ F.S.D. selected by an internal switch. It has 12 Bit resolution of the A to D converter giving a resolution of 0.06 deg. C on 10 mV range and covers all common thermocouple types.

Cold Junction Compensation is provided giving a resolution of $0.2^{\circ} \mathrm{C}$ on 100 mV range and $0.02^{\circ} \mathrm{C}$ on 10 mV range.

Linearising software in Basic using optimised coefficients for ranges and thermocouple types.

Two other channels are provided via BNC input sockets on the front panel. Input ranges are I/V for 10 mV range and $\pm 10 \mathrm{~V}$ for 100 mV range.

CIL MICROSYSTEMS LTD

DECOY ROAD, WORTHING, SUSSEX.
TEL: 210474.

ELECTRONICS EMPORIUM

 nals, Connectors, Relays, Switches, Wire and Cable, PCBs, Transformers, Measuring Instruments, Nibbler and Measuring Instruother Hand Tools.

Ex-M.O.D., British Aerospace Surplus: Cambridge A.C. Test Sets, Marconi Moisture Testers, Savage Amplifiers, Dightal Voltmeters, Oscilloscopes, Oscillators, Power Supplies, Gyroscopes, Propeller Test Rigs.

A. C. TOWNLEY LTD.

Harehill, Todmorden, Lancs, OL14 5JY
Harehill, Todmorden, Lancs, OL14 5JY
off the A646 Todmorden-Burnley Road Open Monday to Friday, 8.30 a.m. to 5.30 p.m. Saturday by arrangement
Tel: Todmorden 4931 (070-681 4931)

$$
\begin{aligned}
& \text { Largest range? } \\
& \text { Superior paint finish? } \\
& \text { Bestex-stock delivery? }
\end{aligned}
$$

Familiar claims? Study the Sarel range and decide for yourself. You'll find answers to all your own questions on enclosures - small, large, metal, plastic, glass-fibre reinforced polyester, monobloc, modular, with every imaginable accessory from gaskets to swing racks, chassis to brackets, locks, handles, glands and ventilators.

Sarel's range answers all your questions. No fuss, no bother, no compromise.

WW - 015 FOR FURTHER DETAILS

THE RELAY RACE IS ON!

We have relays of all types, to cater for most of your requirements. Listed is a selection.

PLUG-IN (BPO 3000), BPO 1000 MINIATURE LEVER KEYS, CRADLE TYPE DIL REED, PC SERIES 65 POWER RELAY MR16 SERIES, PCB MOUNTING RP SERIES, SR26 TYPE, B15 TYPE, 07 + 12 SERIES, KL SERIES, 5G SERIES, 35 SERIES CRADLE TYPE, 29 SERIES.

SAFEBLOC 250V. A.C. (single phase mains) ONLY £5.45 - NO EXTRAS!

Contact us for detailed stocklist

Trade and Export enquiries welcome

Access and Barclaycard Accepted

BAYDIS

LOW DISTORTION AUDIO SIGNAL GENERATORS

Also available in kit form and alternative versions, l.e.: battery or mains. With or without frequency meter.
Lherature on these units, R.F. Sig. Gen., T.H.D. meters, MVMT, Function Generators and many other instruments is available on request

TELERADIO ELECTRONICS, 325 FORE STREET, LONDON N9 OPE Telephone 01-807 3719 Closed Thursdays

Audio Measuring Instruments Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD

 WESTON-S-MARE, AVON BS23 2 AUTEL. 0934416033

SALES DEPT
GOULD ADVANCE LIMITED
ROEBUCK ROAD
HAINAULT
ESSEX IG6 3UE

BUSINESS REPLY SERVICE
Licence NO EDO 1033

I\＆くL $3 \times$ ON әวuә！！

ह
高
a
0

POWER AMPS

PRE-AMP
MODULES

> SEND COUPON (NO STAMP NECESSARY) FOR YOUR FREE
> I.L.P. CATALOCUE AND OPEN UP TOA NEW WORLD OF OUALTYY \& VALUE

It's something you have always wanted. ...something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

(

FREEPOST 5

GRAMAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP
Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780

FREEPOST

Mark your envelope clearly FREEPOST 5 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

To: I.L.P. ELECTRONICS LTD.

 please send me i.l.p. catalogue, POST PAID BY RETURNI HAVE/HAVE NOT PREVIOUSLY
BUILT WITH I.L.P. MODULES
I.L.P. are the world's largest designers and manulacturers of hi-fi audio modules?
I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?
There are TWENTY power amplifiers from 15 to 240 watts RMS including the very latest super-quality Mosiets to choose from?
TWENTY pre-amp madules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

HF ANTENNAS

* MODE; Full half wave operation.
- BANDS; Up to 4 spot frequencies.
- POWER; Receive to 800W (PEP).
* SWR; Better than 1.5:? on channel.

THE SMC TRAPPED DIPOLE ANTENNA
has been developed to satisfy the needs of commerical and military users. It is capable of operation between 2 and 30 MHz on as many as four spon frequencies - each capable of accommodating many channels. Excellent matching and efficiency with a single coaxial feed is offered by the use of SMC H1Q traps and the incorporation of a ferrite balun in a fuilenna wave design. NB: Power absorbing terminating resistors are not employed. The light duty portable masts) can be easily effected by two people in half an hour.

FT180 "PIONEER" HF SSB TRANSCEIVER. 1. $\mathrm{B}-18 \mathrm{MHz}, 6$ channels 100 watts RF output measuring only $95(\mathrm{H}) \times 240(\mathrm{~W}) \times 310(\mathrm{D})$ mm and weighing bkg. May be operated menting our trap dopole and HW4 mobile merials. Prices start at $£ 500$, making this unit not only very attractive but highly competitive.

SOUTH MIDLANDS COMmUNICATIONS LTD.

Dwight Cavendish

So why do we put a protection circuit indicator on our amplifiers?

Well you see, the amplifier is inherently so robust that you might never know that it was operating into an adverse load, in fact it copes with anything in between a dead short and open circuit. And once you have corrected the load the amplifier automatically reverts to "normal" working.

This is just one of many features on our new range of 19 " rack mounted or stand alone audio power amplifiers. The system comes complete in powers up to 500 W with a variety of options and at a price which won't shock you.

For further details about our new range of f.e.t amplifiers. drop us a line or phone 0480-215778.

[^5]

UPGRADE KIT MODEL A \rightarrow MODEL B £65

MEMORY PACK
$8 \times 4816 A P-100 \mathrm{nS}$
27160

PRINTER \& USER
C69,70 PL9, 10 c9. 50 $36^{\prime \prime}$ Printer Lead Complete $£ 13.50$

ANALOGUE PORT

IC73, SK6 $£ 7.30$
ALL BBC CONNECTORS AVAILABLE IN STOCK
SEND FOR OUR LEAFLET
Telephone for availability of Models A \& B

PRINTERS

SEIKOSHA GP100A Dot Matrix Printer, Full Graphics, double-width characters, up to $10^{\prime \prime}$ wide paper, self-testing parallel interface. $\mathbf{E 1 8 9}+56$ Carr
EPSON MX80 F/Till. This is an upgrade of $F / T 2$ featuring improved graphics, auto underline, super and subscripts. $£ 340+£ 8$ carf.
NEC PC 8023 BE-C 80 Cols. 100 CPS bi-directional, Logic seeking printer with forward reverse line feed, Hi-Res \& Block Graphics, Intemational and Greek charc. Auto-underline. E375+£8 carr.

FULL DETAILS ON REQUEST

FLOPPY DISC DRIVES

Single TEAC FO 50A in cabinet with PSU
£190 + f6 Carr. $£ 360+£ 8$ Carr.
Single Drive for Appla ilv
Siems FDD 100-5 Drive housed in attractive case. Drlve complete with track 2ero micro switch, motor control pcb, read, write and control electronics + cable $£ 270+£ 6$ carr.

MONITORS

BMC $12^{\prime \prime}$ Green Screen 18MHz Gandwid
f99+£6 Carr.
BMC 14" Colour Monitor (25 x 40 chars.)
E240+f6 Carr.

SOFTY II EPROM PROGRAMMER

The complete microprocessor development system for both Engineers and Hobbyists. You can develop programs, debug, verify and commit them to EPROMs. Will accept most +5 V EPROMs. Can also be used as a ROMULATOR. Full review in September, 1981 P.E. Buih unit complete with PSU and TV lead £169.

MENTA

A sophisticated $Z 80$ development system and trainer. Direct interface to TV \& cassette recorder. Powerful keyboard assembler and program debugging facility - ideal for both recorder. Powerful keyboard assembler and program debugging facility - ideal for both
engineers and students. Audible feedback on keyboard input. Menta + PSU + TV Lead engin
f115.

UV1B up to 6 Eproms $\mathbf{4 7 . 5 0}$ UV1T with Timer $£ 60$ (Carr £2/eraser)
All erasers are fitted with mains switches and safety interlocks.

Technomatic Ltid.

THE COMPUTER SHOW FOR EVERYONE!
 CITY HALL, GLASGOW September 7-9, 1982

COMPEC SCOILAND:B?

As a professional computer user, or first time user, you need to see and compare the whole range of equipment and services available for today's specifiers and purchasers - and what better way is there than spending a day at the first Compec exhibition in Scotland COMPEC SCOTLAND - the most effective way of bringing yourself up to date with everything the computer industry can offer.
COMPEC SCOTLAND offers a truly comprehensive range: mini- and micro-computers, small business systems, printers, software, terminals and other peripherals, telecom equipment, word processors - as well as the many ancillary services and equipment available.
For computer users, suppliers, systems and software houses, the OEM industry, consultants - and particularly those considering the
use of a computer system for the first time - this must be the exhibition for you.
Apply now for as many FREE advance registration tickets that you will need. Clip the coupon now!

DAROM SUPPLIES Dept. AW- Tel: (0925) 64764

4 Sandy Lane, Stockton Heath Warrington, Cheshire, WA4 2AY

sabtronics

FREQUENCY METERS

8 digit:

* Convenient single input for entire range
* Big aasy to read LED display

Excellent sensitivity
t 10 MHz crystal controlled timebase * Battery or mains operated

+ 3 switch selectable gate times
* Leading zero suppression

8110A........ 20Hz-100MHz
....f67
. 882

9 digit:

* 9 digit resolution for more precise readings
Excellent 30 mV sensitivity up to 1 Ghz
3 switch selectable gate times
* 10 MHz crystal controlled timebase * 2 separate inputs for added versatility \star Front panel sensitivity control Rattery or mains operated

86108 10Hz-600MHz 599
8000B.... 10Hz-1000MHz......£155
I.C.E. Mullitester

Add 15% VAT on all prices correct at 1-5-82 E \& OE cash with order or credit card Carriage $\mathbb{E} 1$ for all orders

WW - 078 FOR FURTHER DETAII

QUALITY REEL TO REEL \& CASSETTE TAPE HEADS
FITTING A NEW TAPE HEAD CAN TRANSFORM THE PERFORMANCE OF YOUR TAPE RECORDER OUR FULL CATALOGUE (PRICE 50p) ALSO INCLUDES TAPE TRANSPORTS, DISC DRIVES, PRE.AMPLIFIERS AND ACCESSORIES

WW - 034 FOR FURTHER DETAILS

MARKETING Ltd.

Bullet

LOUDSPEAKER COMPONENTS N-4500 FILTER KIT
A 12 dB /octave, 3 component, high pass filter kit especially designed for the K-3050 Supe Tweeter. 50 Watts, 8 Ohms, -3 dB point at 4,500 Hertz. Comes complete with full connection instructions.

T-8065 TERMINAL PANEL
The two recessed, colour coded, terminals will allow easy connection of any loudspeaker cable by simply inserting the stripped cable ends into the spring loaded terminals.
D.S.N. Marketing is a newly established subsidiary company, part of a group of companies centred around one of the U.K. market leaders in electroacoustic equipment, established for over 50 years. We make use of the extensive research facilities on our premises, which include a large anechoic chamber and B \& K measuring equipment, to ensure the highest quality of our products.

K-3050 SUPER TWEETER

This is a highly efficienthorn loaded mid and high frequency tweeter with a large magnet system, a mylar diaphragm and a cast aluminlum horn. Power rating with a $12 \mathrm{~dB} /$ octave filter at 5,000 Hertz is 15 Watts (sine wave), 50 Watts (programme), impedance 8 Ohms, frequency response 2,000-20,000 Hertz, S.P.L. 100 dB (1W (a 1m), dimensions $78 \times 78 \mathrm{~mm}$ front, 69 mm depth.

AT-SERIES L.PAD CONTROLS

A range of constant impedance loudspeaker level controls. By employing a twin-track wire wound power polentiometer in an L-circuit configuration a constant impedance of 8 Ohms within $\pm 25 \%$ is achieved over the whole attenuation range of 0 to -40 dB . The ' H ' models are stand ard potentiometers with a 10 mm long M9 threaded shatt. The 'S' models come
complete with a recessed indication panel and contol knob.
AT- $40 \mathrm{H} / \mathrm{S}-15$ Watts (-dB), 10 Watts (-6 dB). 6
AT-50H/S -30 Watts (-2 aB), 25 Watts (-6 CB), 15 Watts (-12 OB)
AT-60H -50 Watts (-2 AB), 35 watts (-6 CB), 25 Watts (-12 dB)
Use one AT- $40 \mathrm{H} / \mathrm{S}$ for each $\mathrm{K}-3050$, or one AT- 60 H for four K-3050. For heavy duty applications, use one AT-50H/S for each K-3050 Super Tweeter

To order: send this coupontogether with cheque, postol order, pavable to D. N . number. Access Visa car holders also can phone thel orders through tor extra last service. All prices include Val th 15%, subjec servee.ablity
Please supply the tollowfing:

Access Viso Number
Ww/9/82

umbic
 ambit
 INTERNATIONAL

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A FRACTION HERE, GET THE CATALOGUE AND FIND THE REST. CMOS-TTL

CM	-:						
4007	0.13	${ }_{4516}$	0.60	74LSt1	$\begin{aligned} & 0.12 \\ & 0.12 \end{aligned}$	24LS 138 74 LS 139	0.30 0.30
4009	0.25	4518	0.35	74 LS	0.12	74.51	20
40	0.30	4520	0.60	74LS ${ }^{\text {3 }}$	0.20	74.5	30
40	0.11	4521	1.30	74.51	0.30	74151	27
4012	0.14	4522	0.89	744520	0.12	7415154	0.99
40	0.25	4526	0.60	74Ls21	0.12	74 LS 1	0.35
4016	0.22	4527	0.80	74LS22	0.12	74.51	0.37
4017	0.40	4528	0.65		0.14	74.5157	0.30
4020		4531	0.65	74.528	0.15	7415160	${ }^{0.37}$
4021	0.55	4532	0.80	${ }^{7} 41530$	0.12	7445161	0.37
	0.	${ }_{4}^{4534}$	4.00	${ }_{74}$	0.12	74416162	0.37
4024	0.33	4538	2.85	74 LS38	0.14	74 LS164	0.40
4025	0.15	4539	о. B о	741540	0.13	744S165	60
4027	0.26	4543	0.80	744542	0.30	7415168	0.70
4030	0.35	4549	3.50	741547	0.35	744S169	. 85
4043		4553	2.70	74 LS48	0.45	7445170	90
4044		4554	1.20	74 LS49	0.55	7415173	0.60
4046	0.60	4555	0.35	74.551	0.13	74.5174	0.40
4049	0.24	- 4555	\% 0.40	${ }^{7} 74$ 4554	0.14	74.5175	+0.40
4051	0.55	${ }_{4558}$	0.80	741573	0.27	7445190	0.80
4060	0.75	4559	3.50	741574	0.16	$74{ }^{\text {LS } 191}$	0.60
${ }_{4068}$	- 0.30	${ }_{4}^{4560}$	2.50	${ }_{741575}$	- 0.22	7415192 7415193	- 0.45
4069	0.14	4562	2.50	741578	0.19	7415194	0.35
	0.16	4566	1.20	74.58	40	S195	35
4071	0.16		1.45	74.585	0.6	74.5196	55
${ }_{4073}^{4072}$	0.18	${ }^{4} 5689$	1.70	74.586	0.14	7455221	50
4075	- $\begin{aligned} & 0.16 \\ & 0.15\end{aligned}$	${ }_{4572 \text { UB }}$	${ }^{0} 0.18$	744592	${ }^{0.281}$	74.515241	0.80
4076	0.55	4580	3.25	744593	031	7415242	0.70
4077	0.18	4581	1.40	74.595	0.40	74 LS243	. 70
4078	0.18	4582	0.70	74.596	2	74 LS244	. 60
4081	0.12	4583	. 8.80	${ }_{7415109}$	10	${ }_{7}^{7415245}$	80
4175	0.80	${ }_{4585}^{4584}$	0.27	74LS112	0.20	$74 \mathrm{LS258}$	0.37
4502.	0.60	40174	1.05	74.5113	0.20	7445260	0.50
4503 4506	0.50 0.70	${ }_{741500}$	1.08	74.5122	0.35	${ }_{7415273}$	(e.22
		741501	0.10	7415124	1.80	7445279	0.35
4508	1.50	741502	0.11	7415123	35	7415365	32
4510	0.55	744503	0.14	74ts125	0.24	74 TS366	-
${ }_{4512}$	0.45	${ }_{7} 7+151505$	0.12 0.13	${ }_{7415132}$	0.42	74 LS368	${ }_{0} 0.35$
4514	1.25	741508	0.12	74.5133	0.24	74LS373	0.70
		Mem	Mi	Os L			
LM100	3.88	SL1611	1.60	K84433	1.52	4265	3. 16
L149	1.86	SL1612		K84433			
${ }^{2} 2378$	1.28	SL1613	2.06	K84436	1.75		19.50
$\checkmark 2578$	1.28	SL1621	2.17	KB4995	1.29	iCM7216C	95
U2678	1.28	SL1623	2.44	KB4446	2.75	ICM7217A	
LM324	0.45	S. 1625	2.17	NE5044	2.26	SP8647	6.00
LM339N	0.66	SL1630	1.62	MC5229	9.60	95 H 90	7.80
LF347	1.60	SL1640	1.89	SL6270	2.03	HD10551	2.45
LM348	0.90	SL1641	1.89	SL6310	2.03	HA12009	6.00
LF351	0.	TDA2002	1.25	SL6440	3.38	H04401	4.45
LF353	0.76	ULN2242	3.05	SL6800	3.75	MO44752	8.00
LM380	1.00	ULN2283	1.00	SAS6510	1.48	MC145151P	6.00
2N419CE	1.98	CA3	1.84	SL6640	2.75	${ }_{280} 88$	3.75
2Nater	6.28	CA3130T	0.90	SL6700	2.35	280 A CTC	4.00
NE555N	1.80	CA3140E	0.46	SAS6710	1.48	Z80A DN	9.95
SL560C	1.98	CA3189E	2.20	LS7225	3.65	z80A DART	50
NE564	4.29	CA3240E	1.27	ICM7555	0.94	280a 51011	00
NE567	1.30	MC3357	2.85	ICL8038CC	4.50	280A S1012	11.00
UA7410	0.20	ULN3859	2.95	Yk10)70	1.87	280a S10/9	9.95
TBA820	0.78	LM3900	0.60	TK1032	2.75	28001	65.00
ZNA 1034	2.10	LM3909N	0.68	HA1323	2.15	8255	2.58
LM10	50	LM3914N	2.80	HA11225	1.45	6800p	2.90
TDA1062	1.95	K84412	1.95	HA12002	1.22	6809	8.75
TDA1083	1.95	K844208	1.80	HA12411	1.95	68A00	3. 25
TDA 1090	3.05	K84423	230	HA12412	. 55	68B00	4.65
HAY197	1.20	KB4424	1.65	LF13741	0.33	14.L2	49
HA1370	1.90	KB4430	2.30	MK50375	3.85	4116.2	1.59
HA1388	2.75	K84431	1.95	MM53200	3.90	2732	4.00
SL1610	1.60	K84432	1.95	U264	2.27	2716	3.00

AND THERE'S PLENTY MORE IN THE CATALOGUE 7Opinc.
Coils, Filters: Toko, Murata, NTK, Cathodeon.

SFE6.0MA	0.80	CDA10.7MA	0.70	10M15D	14.50
CFSE10.7	0.80	SFE27MA	0.94	LFB4	1.95
SFE10.7MA	0.45	SAF10.7MC-Z	3.75	LFB6/CFU455H	1.95
CFSB10.7	0.50	MF45510AZ12118.65	LFB8	1.95	
SFE10.7MJ	0.50	MFL45501L	11.95	LFB10	1.95
SFA10.7MF	0.75	10M15A	1.99	LFB12/CFU455F	1.95
SFE10.7ML	0.70	$2.1 \mathrm{M15A}$	3.45	LFH6S/	
SFE10.7MX	0.95	$45 M 15 A$	5.95	CFW455HT	2.45
CFSH10.7M1	0.50	10M22D	17.20	LFH8S	2.45
CFSH10.7M2	0.50	10M8D	15.50	LFH12S/	
CFSH10.7M3	0.50			CFW455FT	2.45

TOKO FIXED VALUE CHOKES (E12 Values)
10R8. 1 to 120 mH
78A-1 10 1000uH 16p
$9 p$
$10 \mathrm{R} \cdot .15$ to $1.5 \mathrm{H} \quad 43 \mathrm{p}$
RETAIL SHOP OPENING HOURS
NOW IN STOCK
Monday to Thursday 8.30-6.30
MF10 - National's new Du
Friday 8.30-8.30 Saturday 9.00-5.30 Switched. Capacitor Filter:
(Access + Barclaycard orders accepted)
ALL PRICES SHOWN EXCLUDE VAT. P\&P 50p per order
AMBIT INTERNATIONAL DEPT. WW
200 harth Fervire Road, Brentwand, Essek
TELEPHDNE (STD 0277) 230909 TELEX 995194 AMBIT G POSTCOOE CM14 4SG

TRADE COUNTER CALLERS WELCOME.

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER £18

HEAVY METAL PLINTHS Post E 2

 Cut out for most BSR or Garrard decks.Silver grey finlsh, black trim. Size 16×13 /3in. DECCA TEAK VENEERED PLINTH. Post $£ 1.50$ Superior finish with space and panel fo small amplifier. 183in.
boards cut out for Garrard E 3 . Tinted plastic cover E 6

TNTED PLASTIC COVERS
$17^{7 / 6} \times 13^{1 / 8} \times 3^{1 / 4 i n}$.
$171 / 4 \times 93 / 4 \times 31 / 2 i n$
$133 / 4 \times 12 \times 21 / 2 i n$.
$15^{1 / 4 \times 131 / 2 \times 4 i n}$.
$181 / 4 \times 121 / 2 \times 3 \mathrm{in}$.
$14 / 3 \times 12^{1 / 2} \times 2^{7 / \mathrm{sin}}$.
$16^{5} / 4 \times 13 \times 4 \mathrm{in}$.
$14^{1 / 2} \times 13^{1 / 8} \times 2^{3 / 4 i n}$.
$17^{1 / 4} \times 13^{3 / 4} \times 4^{1 / 8 i n .}$

Callers Oniy (not suitable for post)

BSR SINGLE PLAYER DECKS BSA P170 RIM DAIVE QUALITY DECK
 Manual or automatic play

Black with silver trim, stereo ceramic cartridge
BSR P204 SINGLE PLAYERS SPECIAL OFFERS Two speed $33 / 45$ r.p.m. hi-fi decks with ster cartridges, cueing device and snake arm
Ceramic -240 V © $£ 15$ or 9 V DC $£ 18$
Magnetic - 240V AC £20 or 12V DC £24 Post £2 ea
GARRARD 6-200 SINGLE PLAYER DECK $£ 22$ Post $£ 2$ Brushed Aluminium Arm with stereo cerarnic cartridge Stop/Start. Large Metal Turntable, Cueing Device Ready cut mounting board $£ 1$ extra
GARRARD SP25 Mk 4. Less cartridge. Balanced arm. Few only. 3-speed single player £30 Post £2

BATTERY ELIMINATOR MAINS to 9 VOLT D.C. Stabilised output, 9 volt $400 \mathrm{~m} . \mathrm{a}$. U.K. made in plastic case with screw terminals. Safety overload cut out. Size
$5 \times 31 / 4 \times 21 / 2 \mathrm{in}$. Transformer Rectifier Unit. Suitable Radios, Cassettes, models, £4.50. Post 65p
DE LUXE SWITCHED MODEL STABILISED. E7.50. PP £1. $3-6-7 / 2-9$ volt 400 ma DC max. Universal output
and lead, Pilot light, mains switch, polarity switch.

DRILL SPEED CONTROLLEALIGHT DIMMER KTT. Easy to build kit. Controis up to 480 watts AC mains, E3. Post 65 p .
DE LUXE MODEL READV-BUILT 800 Watt.

EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS

Model 450, 10 watts R.M.S. with crossover; 3 ohm or 80 ohm.
"Final Clearance", Sale Price
SUITABLE BOOKSHELF CABINET 28

RELAYS. 6 V DC 95p. 12 V DC $£ 1.25 .18 \mathrm{~V} £ 1.25 .24 \mathrm{~V} £ 1.30$ BLANK ALUMINIUM CHASSIS. $6 \times 4-£ 1.45 ; 8 \times 6-£ 1.80$ $10 \times 7-£ 2.30 ; \quad 12 \times 8-£ 2.60 ; \quad 14 \times 9-£ 3 ; 16 \times 6-£ 2.90$
$16 \times 10-£ 3.20 .14 \times 3 £ 1.80$. All $21 / 2 \mathrm{in}$. deep. 18 swg .
ANGLE ALI. $6 \times 3 / 4 \times 3 / \mathrm{ain} .18 \mathrm{swg}$. 30p
ALUMINIUM PANELS, 18 swg. $6 \times 4-45 p$; $8 \times 6-75$ p 14×3-75p; $\quad 10 \times 7-95 p ; \quad 12 \times 8-£ 1.10$; $12 \times 5-75 p$ 16×6-£1.10; 14×9 - $1.45 ; 12 \times 12-£ 1.50 ; 16 \times 10-£$ PLASTIC AND ALI BOXES IN STOCK. MANY SIZES ALUMINIUM BOXES. $4 \times 4 \times 11 / 2 \mathrm{£} 1.4 \times 21 / 2 \times 2 \mathrm{f} 1.3 \times 2 \times 1 \mathrm{£} 1$ $6 \times 4 \times 2 £ 1.60$. $7 \times 5 \times 3$ £2.40. $8 \times 6 \times 3 £ 2.50$. $10 \times 7 \times 3 \mathrm{E} 3$. $12 \times 5 \times 3$ £2.75. $12 \times 8 \times 3$ £3.60. All with lids.
TOCGE SWITCHES SP 40 DPST 50 . 1.50 . 6 a $£ 2.50$ MINIATURE TOGGLES SP 40 p . DPDT 60 p .
RESISTORS. 10Ω to $10 \mathrm{M} .1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{p}$: 2 W 10 p . HIGH STABILITY. 1/2w 2\% 10 ohms to 1 mieg. 10p.
Ditto 5\%. Preferred values, 10 ohms to 10 meg, 3 p.
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt $20 p$. PICK-UP CARTRIDGES SONOTONE 9 TA E2.50. BSR Stereo Ceramic SC7 Medium Output £2. SC12 es. PHILIPS PLUG-IN HEAD. Stereo Ceramic. AU1020 (G306 GP310-GP233 -AG3306, E2. A.D.C., QLM 30/3 Magnetic 55 LOCKEX SOIDERING RIRON 240 V 15 W 3 mm bit E 5.25 JACK PLUGS Mono Plastic 25p; Metal 30p. JACK PLUGS Mono Plastic 25p; Metalal Sterao Plastic 30p; Metal 35p. JACK SOCKETS Mono Open 20p; Closed 25 p. JACK SOCKETS Stereo Open 25p; Closed 30p. FREE SOCKETS - Cable end 30p. Metal 45p. 2.5 mm and 3.5 mm JACK SOCKETS 25p. Plugs 25 p. DIN TYPE CONNECTORS
Sockets 3 -pin, 5 -pin 15p. Free Sockets 3-pin, 5-pin 25p Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p. PHONO PLUGS and SOCKETS ea, 20p.
Free Socket for cable end 20p. Screened Phono Plugs 25p. 300 ohm TWIN RIBBON FEEDER $10 \mathrm{p}, \mathrm{Yd}$.
U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25p Yd. COAX PLUGS 30p. COAX SOCKETS 20p.
NEON INDICATORS 250 V , round 30 p . Rectangular 45p.
POTENTIOMETERS Carbon Track
$5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S
£1.10. DP £1.30. Edge Pot 5 K . SP 45p.

\%MINI-MULTI TESTER NEW De luxe pocket size precision moving coil in strument. Impedance +
-4000 o.p.v. Battery included. 11 Instant ranges measure IOC volts $5.25,250,500$. $£ 6.50$ DC amps 0-250, $2 a, 0-250 \mathrm{~mA}$. Post 50p Continuity and resistance 0 to 600 K ohms De Luxe Range Doubler Model,

NEW PANEL METERS $£ 4.50$

$50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}$,
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$,
$500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}$
25 volt, VU Meter.
$21 / 4 \times 2 \times 11 / 4$
Post 50p

RCS SOUND TO LIGHT CONTROL KIT Kit of parts to build a 3 channel sound to light
unit. 1,000 watts perc channel. Sintable for home 15 Easy to build. Full instructions supplied. Post 95p Cabinet $£ 4.50$ extra. Operates from 200 MV to 100 W .
200 Watt Rear Reflecting White Light Bulbs. Ideal for
Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for
Post 65 p. Suitable panel mounting holders 85 p.
RCS "MINOR" 10 watt AMPLIFIER KIT £14 This kit is suitable for record players; guitars, tape playback, electronic instruments or small PA systems.
Two versions available: Mono $\varepsilon 14$; Stereo, $£ 20$. SpeciTwo versions available: Mono, $£ 14$; Stereo, $£ 20$. Speci-
fication 10 W per channel; size $91 / 2 \times 3 \times 2$ in. SAE details. Full instructions suppliad. 240 V AC mains. Post $£ 1$.
RCS STEREO PRE-AMP KIT. All parts to build thi pre-amp. Inputs for high, medium or low imp
per channel, with volume control and PC Boara
£ 2.95
Posi 65 p Can be ganged to make multi-way stereo mixers Post 65p
MAINS TRANSFORMERS
 GENERAL PURPOSE LOW VOLTAGE
 LOW VOLTAGE ELECTROLYTICS Wire ends $1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ $1 \mathrm{mf}, 250 \mathrm{mf}$. All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$ $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{~m} / \mathrm{f} / 6 \mathrm{v} ; 68 \mathrm{~m} / 6 / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / \mathrm{c} / \mathrm{m}^{2} \mathrm{~m}$
$25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220$ $\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mf} / 6 \mathrm{v} ; 680$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v}: 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v} ; 1500 \mathrm{mf}$ $6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$ $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V}$
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$.
$2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$; $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}:$ HIGH VOLTAGE ELECTROLYTICS $\begin{array}{llll}2 / 500 \mathrm{~V} & 45 \mathrm{p} 8+8 / 450 \mathrm{~V} & 75 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p} \\ 8 / 450 \mathrm{~V} & 45 \mathrm{p} 8+8 / 500 \mathrm{~V} & \mathrm{P} 100+100 / 275 \mathrm{~V} & 65 \mathrm{p}\end{array}$ $\begin{array}{lllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} \\ 32 / 500 \mathrm{~V} & 75 \mathrm{p} 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} 220 / 450 \mathrm{~V} & 95 \mathrm{p}\end{array}$ $\begin{array}{llll}32 / 500 \mathrm{~V} & 75 \mathrm{p} 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} & 220 / 450 \mathrm{~V} \\ 32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathrm{E} 1.80 \\ 32+32+32 / 325 \mathrm{~V} & 95 \mathrm{p}\end{array}$ $\begin{array}{llr}32 / 350 \mathrm{~V} & 50 \mathrm{p} 32+32 / 500 \mathrm{~V} & \mathrm{E} 1.8032+32+32 / 325 \mathrm{~V} 75 \mathrm{p} \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} 50+50 / 300 \mathrm{~V} & 50 \mathrm{p} 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p}\end{array}$ CAPACITORS WIRE END High Voltage
$001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 5 \mathrm{p}$.
1 MF 200 V 5 p .400 V 10 p .600 V 15 p .1000 V 25 p. .22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 50 p.
47 MF 1500 V 10 p .400 V 20 p .630 V 30 p .1000 V 60 p. .47MF 1500 V 10 p .400 V 20 p .630 V 30 p .1000 V VALVE OUTPU Transformers (small) 90p. 20 . 50 pF 30 p MICROSWITCH SINGLE POLE CHANGEOVER 40 p . SUB-MIN MICROSWITCH, 50 p, Single pole changeover. TWIN GANG, 120pF 50 p . 500 plus 200 pF £1.
GEARED TWIN GANGS 25 pF 95p.
GEARED $365+365+25+25$ pF f1.
IRANSISTOR TWIN GANG. Japanese Replacement £1 SOLID DIELECTRIC 100 pf $£ 1.50,500 \mathrm{pf} £ 1.50$

HEATING ELEMENTS, WAFER THIN

Size $11 \times 9 \times 1 / 8 i n$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx. Suitable for Heating Pads, Food Warmers, Convector Heaters, Propagation, etc. Must b
two sheets of metal or ceramic, etc.
ONLY 60p EACH (FOUR FOR E2) ALL POST PAID.

NEW baker Star sound

high power full range quality loudspeakers produced to give exceptional reproduction. Ideal for $\mathrm{Hi}-\mathrm{Fi}$, music P.A. or discotheques. These loudspeakers are recommended where high power handling is equired with quality
 results. The high flux
ceramic magnet ens

MODEL	INCHES	OHMS	Watts	TYPE	PRICE	P0ST
MAJOR	12	4-8-16	30	HI-FI	¢14	
DELUXE MK II	12	8	15	MI-FI	114	62
SUPERE	12	8-16	30	HI-FI	$E 24$	$\underline{\square}$
AUDITORIUM	12	8-16	45	Hi-Fi	57	$\underline{2}$
AUDITORIUM	15	$8-16$	60	HI-FI	E34	$\underline{2}$
GROUP 45	12	4-8-16	45	PA	114	22
GROUP 75	12	4-8-16	75	PA	18	$\underline{2}$
GROUP 100	12	8-16	100	Guitar	524	$\underline{12}$
DISCO 100	12	8-16	100	Disco	524	62
GROUP 100	15	8-16	100	Guitar	437	12
DISCO 100	15	-16	100	Disco	532	12

BAKER 150 WATT MIXER/POWER

AMPLIFIER $£ 89$ Post 12
For Discotheque. Vocal, Public Address. Three speaker outlers ior 4,8 or 16 ohms. Four high gain inputs, 20 mv , 50 K ohm.
individual volume controls "Four channel" mixing. 150 watts 8 ohms R.M.S. Music Power. Slave output 500 M.V. 25 K.ohm. Response $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~d} 8$. Integral $\mathrm{Hi}-$ Fi preamp separate 8ass \& Treble. Size $-16^{\prime \prime} \times 8^{\prime \prime} \times 51^{\prime \prime}$. Wt - 141b: Master volume control. British made. 12 months' guarantee. 240v A.C. mains or 120 V to order. All transistor and solid state.
MONO SLAVE VERSION E75. 100 Volt Line Model f104.
New Stereo Slave Model $150+150$ watt f125. Post £4
BAKER'S NEW PA150 MICROPHONE PA AMPLIFER E129. PP E3 4 channel 8 inputs, dual impedance, 50K-600 ohm 4 channel controi, echo/send/return sacket. Slave inputloutput soctets.

BAKER £69 Post $£ 2$

50 WATT
AMPLIFIER
Ideal for PA systems, Discos and Groups. Two inputs, , Volue, Controls, Master Bass, Treble Gain RCS offers MOBILE PA AMPUFIERS. Outputs 4-8-15 ohms 20-watt RMS 12v DC, AC 240v, 3 inputs. 50 K 4-8-15 ahms $£ 46$ PP $£ 2$. Mic 1; Mic 2; Pheno; aux. outputs 4 or 8 or 16 and 100v line 60 -watt RMS, Mobile 24 volt DC $\& 240$-volt AC mains. inputs 50 K . 3 mics +1 music. Outputs $4-8$-16 ohm +100 volts line f9s PP $£ 2$ Battery only Shoulder PA Amplifier 10w max. Includes mike and speaker, OK for meetings, crowd control, stalls, tetes, traders,

FAMOUS LOUDSPEAKERS

 "SPECIAL PRICES| AKE | MODEL | SIZE | WATTS | OHI | PRICE | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEAS | TWEETER | 4 in | 50 | 8 | f9. 50 | E1 |
| GOODMANS | TWEETER | 31/2in | 25 | 8 | f4 | |
| AUDAX | TWEETER | 4 in | 30 | 8 | E6. 50 | E1 |
| SEAS | MID-RANGE | E 4 in | 50 | 8 | 67.50 | 51 |
| SEAS | MID-RANGE | 5 in | 80 | 8 | 172 | 1 |
| SEAS | MID-RANGE | (412in | 100 | 8 | 512.50 | 1 |
| gOODMANS | HIFAX | $71 / 2 \times 41 / 4$ | 100 | 41/16 | $f 2$ | 2 |
| GOODMANS | WOOFER | 8 in | 25 | 4/8 | f6. 50 | 1 |
| G000mANS | HB | 8 in | 60 | 8 | f12.50 | 1 |
| figonda | GENERAL | 10in | 15 | 8 | E5 | 2 |
| SEAS | WOOFER | 10in | 50 | 8 | 16 | |
| GOODMANS | HPG | 12in | 120 | $8 / 15$ | $\underline{28.50}$ | |
| GOODMANS | GR12 | 12 in | 90 | $8 / 15$ | ¢27.50 | |
| GOODMANS | HPD | 12in | 120 | $8 / 15$ | f29,50 | |
| SPEAKER COVERING MATERIALS. Samples Large S.A.E. B.A.F. LOUDSPEAKER CABINET WADDING 18 in wide 35 pt . | | | | | | |
| MOTOROLA PIEZO ELECTRIC HORN TWEETEA, 33/3in. square 100 watts. No crossover required. $4-8-16$ ohm, $73 / \mathrm{m} \times 3^{1 / \mathrm{sin}}$. | | | | | | |
| CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt 8 or 150 hm E 3.
 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt rating. $£ 4.3$ way 60 watt f5.
 LOUDSPEAKER BARGAINS
 $3 \mathrm{ohm}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}, \mathfrak{£ 2 . 5 0} ; 61 \mathrm{hin}, 8 \times 5 \mathrm{in}, \mathfrak{E 3} ; 8 \mathrm{in}, \mathfrak{£ 3} 50.10 \mathrm{in}, \mathrm{E5}$.
 $8 \mathrm{ohm}, 2^{5} \times \mathrm{in}, 3 \mathrm{in}, \mathcal{E} ; 5 \mathrm{in}, \mathcal{E} .50 ; 61 / 2 \mathrm{in}, \ldots 3 ; 8 \mathrm{in}, \mathbf{E 4} .50 ; 10 \mathrm{in}, 25 ; 12 \mathrm{in}$, . 16.
 $15 \mathrm{ohm}, 31 / 2 \mathrm{in}, 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 67.50$.

 © CASSETTE MONO REPLAY. Complete working $\mathbf{5 1 2 . 5 0}$
 CAR CASSETTE MECHANISM. 12V Stereo Head es | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| TME "INSTANT' BULK TAPE ERASER E9.50 Post 95p | | | | | | |
| Suitable for cassettes and all sizes of tape reels. | | | | | | |
| AC mains $200 / 250 \mathrm{~V}$. Hand held size with switch | | | | | | |
| and lead (120 volt to order). | | | | | | |
| Will also demagnetise small tools. | | | | | | |
| Head Demagne | tiser only E 5. | | | | | |

R.
 R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS
E3.95. Post 65p
All parts and instructions with Zener diode printed circlit,

POWER AMPLIFIERS

POWER AMPLIFIERS

PRE-AMPLIFIERS

ACTIVE CROSSOVERS

HEAVY DUTY POWER AMPLIFIERS

WHAT ARE YOU DRIVING?

INDUCTION LOOP TRANSMITTERS VIBRATOR/SHAKERS SERVOMOTORS MAGNETS

CRIMSON ELEKTRIK POWER AMP MODULES HAVE DONE IT ALL

CHOOSE our acclaimed Bipolar Modules for the best in $\mathrm{Hi}-\mathrm{Fi}$. These modules have been widely used by professional bodies. They are high slew, low t.h.d. devices without need for the output fuses that spoil fidelity. They have instantly resetable 'electronic fuse' and are L-bracket mounting for flexi installation.
CHOOSE Our Mosfet Modules for the most difficult loads. These modules are rugged and make ideal line step-up transformer drivers. They respond down to d.c. and make excellent servo-driving devices. They have low d.c. offset drift due to j fet inputs.

B	TYPE	MAX. O/P	SUPPLY	VOLTAGE		PRICE INC.
I	POWER	TYP.	MAX.	THDTYP.	V.A.T. \&POST	

Export - no problem. Please write for quotation or quote your Visa/Master Charge card number.

INSTANT PRINTED CIRCUITS!!

Make your own - to professional standards - within minutes using either "Fotolak" Light-sensitive Aerosol Lacquer or Pre-coated board. No Darkroom or Ultra-violet source needed!

Fotolak aerosol. \qquad $£ 2.50$ (30p) Developer

\qquad £0.30 (15p) Ferric Chloride £0.60 (45p) Acetate Sheet \qquad £0.15 (15p)

Copper-clad Fibre-glass Boards:
Single-sided £2 ft. sq. (45p) Double-sided $\quad £ 2.25 \mathrm{ft}$ sq. (60 p)
Pre-coated Fibre-glass Board:

Double-sided Board (all sizes) add 20\%
Postage individual items in brackets. Maximum charge $£ 2$ per order.
WHITE HOUSE ELECTRONICS
P.O. Box 19, Praa Sands, Penzance TR20 9TF

Telephone: Germoe (073-676) 2329

ScheTronics Limited

For repair and calibration of test equipment. We also have the following second user LF/HF equipment for sale.
Siemens including Pegamat - W \& G - H.P. - Hatfield Anritsu - Marconi-Fluke - STC - etc ...

> Unit 10, Dunstall Estate
> Crabtree Manorway Belvedere, Kent DA17 6AW

Teleohone: 01-3119657

WW - 093 FOR FURTHER DETAILS

Britain's BARGAIN B STLL IN WORLD-WIDE DEMAND

WIRELESS WORLD CIRCARDS at 1976 prices 10% discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

Fill gaps in your circuit files with these sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

[^6][^7]Company registration in England Quadrant House, The Quadrant,
Sutton, Surrey SM2 5AS
Reg. No 677128

Please send me the following sets of Circards: £18 for 10 post free. Remittance enclosed.................. payable to IPC BUSINESS PRESS LTD.

Name (Please print)
Address (Pleâse print)

MULTIPURPOSE DIGITAL THERMOMETER $\{59$ ex-works

Sensors are $£ 5$ to $£ 14$ for Air, Liquid Immersion, Surface and Penetration measurements.

Total range -50 to $1100^{\circ} \mathrm{C}$ with $1.0^{\circ} \mathrm{C}$ resolution. Type $\mathrm{K} \mathrm{Ni-Cr/Ni-Al} \mathrm{Thermo-}$ couple input. Suitable for applications from the workshop to the laboratory Somperatures needing to be measured. Send for Product Details. Calibration Certificates can be supplied, details on request.
Phone our Technical Enquiry Service for Assistance No. 02434-77743. We have many other products and sensors including Non-contact Infra-red Thermome-

PROLAB INSTRUMENT COMPANY
GREENSIDE HOUSE, LISLE WAY
EMSWORTH, HAMPSHIRE, ENGLAND
Telephone: 86626 Mynews

WW - 079 FOR FURTHER DETAILS

Happy Memories

Part type 4116200 ns
4116250 ns
4816 100ns for BBC comp 4164 200ns
2114 200ns Low Power 2114 450ns Low Power 4118 250ns 6116 150ns CMOS 2708 450ns
2716450 ns 5 volt 2716 450ns three rail 2732 450ns Intel type 2532 450ns Texas type
Z80A-CPU £4.35
6522 PIA £3.98

1 1off	$25-99$	100 up
.83	.72	.66
.75	.65	.60
2.95	2.70	2.50
6.15	5.25	4.65
1.15	1.00	.90
.95	.85	.80
3.25	2.85	2.65
4.25	3.65	3.35
2.60	2.25	2.10
2.60	2.25	2.10
5.75	5.00	4.65
3.95	3.45	3.25
3.95	3.45	3.25

Low profile IC sockets:
Z80A-P10 £3.25
7805 reg .50

Z80A-CTC £3.25 7812 reg. 50

Pins.......... 81416182022242840 Pence...... $9101011 \quad 14151819 \quad 25 \quad 33$

Soff-sectored floppy discs per 10 in plastic library case:
5-inch SSSD $£ 17.00$ 5-inch SSDD $£ 19.25$ 5-inch DSDD $£ 21.00$
8-inch SSSD $£ 19.25$ 8-inch SSDD $£ 23.65$ 8-inch DSDD $£ 25.50$
74LS series TTL: Large stocks at low prices with D.I.Y. discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 30 p post and packing to orders under $£ 15$ and V.A.T. to total. Access and Barclaycard welcome. 24hour service on (054-422) 618. Government and Educational orders welcome; $£ 15$ minimum. Trade accounts operated-phone or write for details.

> HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY Tel: (054-422) 618 or 628

Despatch
by return
CONTINUOUS RATING

MAINS ISOLATORS
Prio-120:0-100-120V. Sec 0-CT-115V x 2 Ref, VA (Watts) $£ \quad$ P\&P

07	20	5.32	1.50
149	60	8.84	1.60
150	100	10.06	1.84
151	200	13.69	2.12
152	250	16.31	2.64
153	350	20.34	2.12
154	500	25.02	2.90
155	750	35.91	OA
156	1000	45.89	OA
157	1500	60.52	OA
158	2000	72.43	OA
159	3000	101.12	OA
161	6000	203.65	OA
7			

the 115 or 240 V
Prio-220-240V.
50 VOLT RANGE $2 \times 25 \mathrm{v}$ tapped secs. Volts available 5, 7, 8, 10, 13, 15, 17, 20,
$25,30,33,40$ or $20 \mathrm{~V} \cdot 0-20 \mathrm{~V}$ or $25 \mathrm{~V} \cdot 0.25 \mathrm{~V}$

Amps				
Ref.	50 v	$\mathbf{2 5 v}$	E	P\&P
102	0.5	1	4.13	1.40
103	1	2	5.03	1.40
104	2	4	8.69	1.84
105	3	6	10.36	1.90
106	4	8	14.10	2.12
107	6	-12	18.01	1.84
118	8	16	24.52	2.70
119	10	20	30.23	OA
109	12	24	36.18	OA

12 or $24-$
12 or 24-VOLT RANG Separate 12 V windings Pri $220-240 \mathrm{~V}$
Ref. 12 v Amps 24 v P\&P
 $\begin{array}{llllr}242 & 300 \mathrm{~mA} & 150 \mathrm{~mA} & 2.41 & .90 \\ 213 & 1 & 0.5 & 3.19 & 1.20\end{array}$

> Pria- $120 \mathrm{~V} \times 2$
$2 \times 30 \mathrm{~V}$ tapped secs volts available
$6,8,10,12,16,18,20,24,30,36,40$,
48.60 V, or $24 \mathrm{~V}-0.24 \mathrm{~V}$ or $30 \mathrm{~V} .0-30 \mathrm{~V}$
> Ref. 60 v
> $\begin{array}{ccrcc}\text { Ref. } 60 \mathrm{v} & 30 \mathrm{v} & \text { £ } & \text { P\&P } \\ 1240.5 & 1 & 4.70 & 1.50 \\ 126 & 1 & 2 & 7.15 & 1.50\end{array}$

SCREENED MINIATURES Pri 240 V

Ref.	mA	Sec Volts	$£$
238	200	$3-0-3$	3.11
212	$1 A, 1 A$	$0-6,0-6$	3.45
13	100	$9-0-9$	2.59
235	330,330	$0-9,0-9$	2.41
207	500,500	$0-8-9,0-8-9$	3.36
208	$1 A, 1 A$	$0-8-9,0-8-9$	4.27
236	200,200	$0.15,0.15$	2.41
239	$50 M A$	$12-0-12$	3.11
214	300,300	$0-20,0-20$	3.39
221	$700(D C)$	$20-12-0-12-20$	4.13
206	$1 A, 1 A$	$0-15-2000-15-20$	5.60
203	500,500	$0-15-27,0-15-27$	4.83
204	$1 A, 1 A$	$0-15-27,0-15-27$	7.30

AUTOTRANSFORMERS				
Voltages available 105, 115, 190, 200, 210, 230,240. For step up or step down.				
Ref.	VA	Watts) TAPS	E	P
113	15	0-10-115-210-240V	2.39	1.20
64	80	0-10-115-210-240V	4.84	1.40
4	150	0-10-115-200-220-240 V	6.48	1.60
67	500	0-10-115-200-220-240V	13.30	2.24
84	1000	0-10-115-200-220-240V	22.70	2.80
93	1500	0-10-115-200-220-240V	28.17	OA
95	2000	0-10-115-200-220-240V	42.14	OA
73	3000	0-10-115-200-220-240V	71.64	OA
80	4000	0-10-115-200-220-240V	93.01	OA
57	5000	0-10-115-200-220-240V	108.30	OA

CASED AUTOS

240 V cable input USA 115 V outlets			
VA	Price	P\&P	Ref
20	$\underline{87.21}$	1.25	56W
80	£9.35	1.50	64W
150	£12.10	1.84	4W
250	£14.73	1.60	69W
500	£22.14	2.24	67W
1000	£33.74	2.80	84W
2000	£60.47	OA	95W
INVERTERS			
Cased 12 V input 240 V a.c., 13			
amp socket outlet. Continuous 100 W .			
(Tool rating 150W.)			

CONSTANT VOLTAGE
THANSFORMERS
For 'clean' mains to computers, peripherals 250VA £137.36 500VA £159.43 $\}$ + p\& lkVA $\left.\begin{array}{lll} & \text { E213.12 }\end{array}\right\}+$ VAT

Tap Changing Type. Cased. $400 \mathrm{VA}, \mathbf{£ 9 7 . 5 0}+$ f2 $p \& p+$ VAT

COTSWOLD TOROIDALS

 OFF THE SHELF$30 \mathrm{VA}, 60 \mathrm{VA}, 100 \mathrm{VA}, 160 \mathrm{VA}, 230 \mathrm{VA}, 330 \mathrm{VA}, 530 \mathrm{VA}$ Send for list
PLEASE ADD 15\% VAT AFTER P\&

OTHER PRODUCTS

No MAINS BATTERY ELIMINATORS

```
颜
MEMLETT PACKAAO RMS VOLTMETER पpe 3400A ImV.300V;10HZ-10MHZ. F150
BOONTONSIGNAL GEN POWER AMPUPER NPO 230A 10.5SOMMR
MEWETY PACKARO AUOLO SIGNAL GENERATOR YDE 2OSAG - Compact 
M,
TEETRONXPLUG-N Fyoe D Single Trace Migh Gain OC Oifferentia
TEKTRONXPLUG-NYpo ESingle Trace Low Level AC Oilferential
LEKHONX PLUG-N Npee Single Trace Wide Band dC Din
TEKTRONX PLUG.IN ype M4 Trace OC-20MHZ
```



```
TEKTRONXP PUG-IN Ype W O.fferential Comparato
TEMTRONX PLGG-IN Ype ZDIfferenial Compara
```



```
HEWLET PACKARD AUDIO DSCLILATOR TPPE ZOU 
HEWLETT PACKARO PULSE GENERATOR Model 212A..
```



```
Mrace Ollyyd STeep.co CT1 150.122 valve basas)
MO TANNINOA AL SIIGE TOO THES
GENERAL RAOIO OGGITLL TMME & FFEDUENCY METER YDPE 1151-
MARCONI ISANOERSIMICROWAVEPOWER MEEER \\P 559%
MARCONU UHF SIGNAL GENERATOR TyPE FFOOG
```



```
M,
```



```
MARCON AMTMM SIGNAL GENERATOA TF9SABSS (CTAD2) 1.5-22OMHZ
MAC ACCELEMOMETEAPREAMPLIFIER \PQ 282O
8 & KDEVATION BRIDGE Type 1503.
8& K MCROPHONE AMPPIIIER FPe 2002
B
M }88\mathrm{ KECCIER CON TROL PAEAMPLIFIER TVP 150% 
SOLARTRONISCHLUMGERGEA SYNTH. SSB GENERATOR ITPE SSBOO with 
```



```
49 MOSEEY WAVEFRMM TAANLATOR %Pe 101-
```



```
l
```

BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome
CALLERS VERY WELCOME STRICTLY BETWEEN $9 \mathrm{am}-1 \mathrm{pm}$ and $2-5 \mathrm{pm}$ Monday to Saturday inc

```
SANOERS OSCILLATOR type CLC2-A
BANOEELCTRONIC VOLTMETER WDE 2409 2HZ-200KHZ
GENERAL RADOMICROWAVE OSCLLLATOR R TVE 1360B 1,-4.1GH
GEMERAL
HEWLETT PACKARD MEMORY DISPLAY Type S480A with CONTRDL Nype $488B B
TWO Channal Inguit Y年 S485A A
782 and IMPEDANCE COMPARATOR 1654
STODDARI RADIO IN IERFRRENCE& FIELD INTE NSITYY METER TyPE N-M 52A.
KETHLEY REGHLATED HIGH YOLTAGE SUPPLY पp\rho 241
BRANOENBURGHHIGHVOLTAGE GENERATOR TYPE MRSO
BELIX POWER UNIT YPe CMT 3001. +i- Model 705 Metered Q-15NV. +i-.._-_,
PLESSEY TLLEGRAPH SIGNAL GENERATOR TSGG 10 with TOMS type 70. Speod SO.75
*)
    A A AbOYE buI SPEED 45.5-50-73,
    RACALUHF FREOUENCYMLEER TVPe S8939 10-560MHZ
    RACAAGOOMHZ DECADE IIIIDER WPP SOOO- 
    RHODE S SCHWARZ NOISE GENERATOA SKTU BN451:260 3-1000MHZ
    R& S UHF TEST RECENER BNI523 280.400MHZ
    & SFRELUENCY METER VHF.UHF 30-300MHZ HDE WIO BN442
    A& SRESONANCE EREOUENCY METER 30.500M MZ WAM BN43122
```



```
    A& S SIGNAL GENERATOR TPP SMAR EN4123 3OHZ-30MHZ
    8 SAPACTIANCE METER EN5201
    ISOLATING TRANSFORMER 240V Input 240V Outpul 130 Wams
    OC SERVD MOTOR IOV 25A Com.Double Shatt 4wrre 4 brush
    ILT TRANSISTOR AC.VOLTAGE AEGULATOR MODELLT-TUOD.2S RNUMg 1000V
    WAYNE KERR AUTOBALANCE CAPACLANCE BRIOGE TYe B541,
    PHLLPS FM STEREO GENERATOR YyPe PMG456. Separate L& R Signals CImmer F
```



```
    PPHLPS AUTOMAIC ELECTRONIC VOLY OHMMEEER rpe
    B& KAUT PACKABBRATONEXCILER CONTAOL TyPe 1016.
```



```
    BRANUNNBUG REGULTED HGHHOTTAGE
    AOVANCE PULSE GENERATOR tyP PG5002O
    ADVANCE SIGNAL GENERATOR LF. HPe 81A IFHZ-200kHZ
    ADANCE SIGNAL GENERAOOR LF, पYe
```



```
    ADVANCE SIGNAL GENERATOR WPE E2 IOOKHZ-IOOMHZ
    PYE SCALAMP #OKV RMS Max ELCLROSTATIC VOLTMETER
    RANK ABENA EHT MGTERO-3OKY
    SINE & SQUARE WAVE AUDIO GENERATOR Npe TE-22 2OHZ-2OOKHZ.,
```

 PLease checr avallablury qefore oroering
 WAYNE KERR COMPONENT BRIDGE TYPE B521 (CT 375) Resistance $1 \mathrm{mOhm}-100$
Meg hm Capacitance. $1 \mathrm{pF}-5000 \mathrm{Kuf}$ Induc Megohm Capacitance. $1 \mathrm{pF}-5000 \mathrm{Kuf}$ Induc-
tance $1 \mathrm{HH}-500 \mathrm{kH}$. With copy of manual tance $1 \mu \mathrm{H}-500 \mathrm{kH}$. With copy of manua
ONLY 40 each ONLY £40 each. Carriage $£ 6$.

AVO VALVE TESTER type CT160 122 valve bases) with copy of manual E 20 each. Carriage £6.
AVO TRANSISTOR ANALYSER type CT446 with copy of manual $£ 20$ each. Carriage $£ 6$.
AVO SIGNAL GENERATOR No. 2 AM/FM AN $0.45-225 \mathrm{MHZ}$; FM $20-100 \mathrm{MHZ}$ with copy of manual $\mathbf{f} 75$ each. Carriage $\mathbf{f} 6$

MARCONI COUNTER/FREQUENCY METER TF1417/2 with Convertor type TF 2400/TM7265 - 500 MHZ £ 35 each. Carriage $\mathrm{C6}$.

TELETYPE PRINTERS KSR33 board 550 . ASR 33 - as above with 8 -bit Punch and Reader $\mathbf{E 7 5}$. Carriage $£ 6$ each unit.

MULTIMETER

 Russian Type 4324 $A C / D C$ volts; $A C / D C$ current; ohms, etc.Brand new, boxed £ 12.50 each. P\&iP £ 12.50 each. P\& f
f2.50

ISOLATING TRANSFORMER 240 V input 240 V £15 each Carr. f6
£15 each. Carr. £6

> SINE \& SQUARE WAVE AUDIO GENERATOR type TE-22, 20 HZ . 200KHZ. Portable as ONLY £35 each. P\&P

> IKEGAMI MONITOR 20"' Black \& White Solid state. Video in, f65 each. Carriage $\mathbf{E f}^{6}$

PLEASE NOTE:
WE WILL BE CLOSED TO CALLERS MONDAY AUGUST 9th UNTIL SATURDAY, AUGUST 21st INCLUSIVE

All units $\mathbf{£ 6}$ carriage. Plus V.A.T. on tota
(2nd turning left past Reading Technical College in King's Road then first right - look on right for door with "Spoked Wheel")

JOYSTICK CONTROLS

$0.6 \times$ actual size
New Contactless Inductive dual axis joystick $£ 17.50$ less quantity discoums

Comecon Countries. Addresses on
Applications invited for distributorsheps in or
FLIGHT LINK CONTROL LTD.
UNRK 12, THE MALTINGS
Tel. 042087241 (24, hours). Telex: 858623 TELBUR G
WW - 100 FOR FURTHER DETAILS

- SINGLE, OUAL or TRIPLE AXIS

MODES-CENTRED OI DETENT MODES
CONTACTLESS, POTENTIOMETER WAFER SWITCH OF MICROSWITCH TYPES

- AVAILABLE IN THOUSANDS HUNDREDS, TENS OR ONES
NO MINIMUM ORDER. NO PRO HIBITIVE SMALL QUANTITY PRICES * RAPID DELIVERY (usually 1-3 daya fo samples)
SCHEDULED ORDERS OVER SPECIALS AND PROTOTYPES OAYS, EVEN IN 1 OFF
PRICES FROM E1 (TV game typea) to 550
Tens of thousanils of our joysticks are in use worltwide in applications such as elecric
wherteharts flight simulators in machine tool rnititils romputer graphics, servo controls. CCTV controls. 15 years experience of joy-
sticks is available to you at the cost of a phone RECENT ADDITIONS to our range include Dual axis inductive contactlese joystick isee photol giving infinite resolution zero noise and
merhanical life exceeding 10 million full cycles ideal for any application where inpotrintinmeter lypes VERY HEAVY-DUTY TYPES. The full PO
CONTROLS range of conirollers for with rugged construction for outdoor, dockside and consiruction sites Specialising in poysticks. and producting subble prices and delivery of con unbeat NEW! Electronic level sensor/alarm

wide range of types and price

A REAL TIMESAVER FOR ONE-OFFS AND SHORT RUNS
 NEW STICKY TEMPLATES ${ }_{\text {(Pan. Pending) }}$

-

STICKY OUTLINES

INEXPENSIVE self-adhesive clear acetate TEMPLATES - especially designed to ELIMINATE TEDIOUS MARKING OUT of panels and instrument cases when Mounting POPULAR CONNECTOR TYPES. Simply peel off protective backing and APPLY DIRECTLY to the surface to be worked, then cut and drill to outlines and CONNECTOR ARRAYS so EASY, as vertical and horizontal centres are printed on Stickies. Will not harm existing finishes, in fact PROTECTS AREA around cut-out and PREVENTS punches and drills skidding. INVALUABLE on LAYOUT SKETCHES and drawings too.
Send E5.40 incl. VAT P\&P for selection pack (90 templates) or ask for leafiet, sample and order form to

FUTRONICS TECHNOLOGY (UK) Ltd.
15 North Avenue, London W13 8AP
Or telephone 01-991 0070 (Answerphone service)
WW - 95 FOR FURTHER DETAILS

EMHCLITHAN XLR CONNEGTORS	
(1T) NEUTRIK	
XLR LNE MAIN SERIE	
KELSEY ACOUSTICS LTD. 28 POWIS TERRACE, LONDON W 11 1JH	

instru

- Colour Bar Pattern Generators
- Sweep and Marker Generator
- CRT Tester
- Field Level Checker
- Signal Level Meter
- High Voltage Metered Probe
- Signal Generators

Audio Test

- Generators
- Attenuators
- System Analyser
- Audio Tester
- Distortion Meter
- Equaliser Amp
- Wow and Flutter Meter
- Frequency Response Recorders
- Millivoltmeters
- Log Amplifier
- Speaker Analyser

When you select an instrument from the Leader range, you get more than just sound engineering. That's guaranteed - by rigorous quality assurance at manufacture, and a one year warranty.
A broad range that covers most areas of test, measurement and calibration, with advanced features and high specification as standard. Prices that are lower than you'd expect are the bonus. Probes, covers, hoods and pouches are all available to enhance the application potential and ensure that Leader instruments set the pace for others to follow.

ELECT ONICS Y

Oscilloscopes

- 4 to 50 mHz
- Single, Dual and Quad trace
- Delayed sweep
- Wide bandwidth
- High sensitivity
- High accuracy
- Battery operated

General Test

- LCR Bridge
- Semiconductor Curve Tracer
- Transistor Testers
- Logic Probe

Power Supplies

- Laboratory bench type
- 5 models
- 500 mA to 5A
- Overload Protected

Thandar Electronics Ltd, London Road, St. Ives, Huntingdon, Cambridgeshire PE 17 4HJ England. Tel: (0480) 64646.

Electricity Supply Handbook - Your Guide to the Industry!
 An un-10-dane copro of he Electricity Supply handhook is the best referemee

for knowing whos who and whats what in the electricilv indestre:
The 1982 edition contains:-

* Over 2,000 names and locations of executive personnel in the Electricity Council, C.E.G.B., Area Boards and other organisations.
* Major authorities, government departments associated with the electrical industry.
* U.K. power stations, Area Board statistics, electricity tarifis, electrical associalions.
* Pull out map of C.E.G.B. regions, powerstations and transmission lines.
* Bound in maps of Area Boards.

so make sure of your coper loglay, using the coupon heloni

पPUS SUPPLIES BRING YOU AN RGB COLOUR MONITOR

LIMITED QUANTITY

AVAILABLE FOR USE WITH
B.B.C., MICRO, VIC, APPLE, DRAGON, etc

Specification: The VMC 22 Colour Monitor is designed to meet the high reliability and perform-
ance standards asso-
ciated with the games,
data and computer
Input levels: Video-TTL compatible either +ive or -ive going for RGB (IC37416 -ive going 7417 +ive goingl.
Composite Sync: TTL compatible either + ive or
-ive going set by PCB link. Separate sync:
(Frame and line) TTL compatible +ive going =
video response 10 MHz .
Deflection: Scanning systems, 625 line 50 Hz and
525 tine 60 Hz .
Scan linearity: Errors less than 5\%.
Scan geometry: Errors less than 3%.
High voltage: 25 KV .
Xigh voltage: 25 KV . $0.5 \mathrm{MR} / \mathrm{h}$.

ISOLATING TRANSFORMER ON FIRST 100 ORDERS
A fabulous 22 inch
colour monitor.
Featuring: Mullard
22 inch 110° C.C.R.T.
Controls: Brightness, RGB video amp bias, height, width, vertical hold, horizontal hold, linearity east-west correction, phase, focus,
H.T. adjust, beam cut-off switch
st, beamergence controls.
De Gaussing: Automatic on switch on.
Power requirements: $155 \mathrm{VAC}, 44-60 \mathrm{~Hz}$
120VA (isolated suplly).
Temperature: Storage $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Operating $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Overall sizes: Height 40.3 cm , width 51.0
cm , depth 39.5 cm (inc. tube neck P.C.B.)
Weight 19 kgms .

After months of negotiation we have finally secured the computer user's dream. We have bought the complete manufacturer's production of these superb British made R.G.B. Colour Monitors and can offer them to you at this unrepeatable price. This offer, available to readers of "Wireless Wortd" also includes a FREE isolating transformer. So with a little of your time and our buying power - you can save pounds. For shipping purposes the C.R.T. and scan coil assembly are separate from the chassis. The lugs of the C.R.T. allow it to be mounted in a standard $22^{\prime \prime}$ colour TV cabinet or a unit of your own design. The unit is assembled by plugging the wires from the chassis to the tube, soldering the input connector, power connector and isolating transformer. The monitor has been fully tested and adjusted prior to packing this simplifying assembly. A comprehensive instruction sheet will be supplied with each unit.

A computer supplies company have established an enviable reputation for reliable service and value for money - so pick up your telephone and discuss your supplies requirement with us.

LOCKABLE DISC FILING BOXES:
To hold 40 Minis $£ 16.00$ 80 Minis $£ 21.00$
To hold $408^{\prime \prime}$ Discs $£ 21.00$ ${ }^{808^{\prime \prime} \text { Dises }} \mathrm{E} 28.00$
OISC MAILERS: $\quad{ }^{228.00}$
DESK TOP LECTERN - ${ }^{\text {901 }}$
ADJUSTABLE WITH
MOVABLE CURSOR

ONLY 19.95

how To
 ORDER

ATHANA FLOPPY DISCS

MINIS WITH FREE PLASTIC LIBRARY CASE \& HUB RINGS

S/S S/D	$£ 17.95$ for 10
S/S D/D	$£ 19.95$ for 10
D/S D/D	$£ 23.50$ for 10
S/S 77 Track	$£ 26.5$ for 10
S/S 96 Track:	$£ 28.50$ for 10
$8^{\prime \prime}$ OISCS	
S/S S/D	£15.50 for 10
S/S D/D	$£ 24.5$ for 10
D/S D/D	E25.50 for 10
HARD SECTORED AND ALL	
OTHER DISCS AVAILABLE	

MANUFACTURED BY OPUS IN U.K.
AVAILABLE FROM OUR CENTRAL WAREHOUSE
DESKY
+5 MODELS AVAILABLE CHOOSE WITHIN YOUR BUDGET * - CREAM \& BROWN CO-ORDINATING PANELS \star \star DRAWER FOR DISC STORAGE \dagger
\star MOBILE \star
\star AMPLE SPACE FOR HARDWARE AND PERIPHERALS $\boldsymbol{*}$
\star THROUGH SHELF
FOR DISC DRIVES, PAPER FEED, FILES \dagger

SEND S.A.E. FOR YOUR FREE COLOUR BROCHURE

See us at the

Personal Computer World Show, Stand 255 The Bartican 9-12 Sept, 1982

Carriage should be added to prices at the following rates: Monltor $£ 10$; Discs 85p; Rams 50 p; Filing Boxes/Lecturns £2; Desks $£ 10$. Please add carriege as applicable and then VAT at 15% to total and send Cheque/P.Order payable to "Opus Supplies" to Dept. W.W., Opus Supplies, 10 Beckenham Grove, Shortlands, Kent BR2 OJU. Telephone order Hotline: $01-4645040$ (24-hour service) or $01-4641598$. Access and Barclaycard accepted, If you are not completely satisfied return the goods within 14 days and your money will be refunded.

ELECTRUC

2 WAYS TO RECOVERY

ACT AT ONCE - DELAY IS FATAL

GET IT - READ IT - PRACTISE 1.4
BE READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS.

Display the ELECTRICAL REVIEW shock first aid chart ($356 \times 508 \mathrm{~mm}$) supplied in thousands to destinations world-wide. Recent deliveries include consignments to companies in Papua New Guinea, Dubai, United Arab Emirates, The Philippines, apart from UK commercial and industrial, educational, Central Government, Local Authorities' orders.

Carry the ELECTRICAL
REVIEW pocket-size shock card ($92 \times 126 \mathrm{~mm}$) designed to help safety and training officers, medical and welfare personnel; all who might find themselves called to save a life. Always pocket your card; there's a useful two-year calendar on the back.

ACT AT ONCE—DELAY IS FATAL!

To IPC Electrical-Electronic Press Lid., General Sales Department,
Room 205
Quadrant House,
Sutton, SM2 5AS,
Surrey,
England.
Company registered in England
No 677128. Registered Office Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Please send..... copy/copies as indicated
Pocket Card@ 70p each inc VAT
Paper Chart @ 70p each post free
Card Chart@ £1.40 each post free
Plastic Chart @ £2.10 each post free
Discounts: $100+$ copies 10%

$$
500+\text { copies } 15 \%
$$

(Overseas surface and air mail rates supplied on application.)

PORTABLE COMPUTERS

plus FREE software

SHARP PC-1500
Approaches the Personal Computer in ability

With 16 K bytes of ROM and up to 11.5 K bytes of RAM memory, with battery protection. Up to 36 program storage capacity. BASIC program language with two dimensional arrays and variable strings. QWERTY keyboard with upper and lower case. Full range of science tone generator; mini graphic 7×156-dot matrix display; all under BASIC program control. Line width 26 characters.
CE-150 Four-colour Graphic Printer/Two Cassette Interface (for saving/loading) has 8 K bytes of Graphics BASIC. Prints virtually any drawing, with complete control of up, down, left and right printing. Variable line length from 41036 characters. Wint $\left.16 \times 1 \times 3^{3 / 6}\right)$,

Wi 375 g CE $-150 ; 330 \times 50 \times 50 \times 115 \mathrm{~mm}(13 \times 2 \times 41 / 2)$. Weight $900 \mathrm{~g}(1.981 \mathrm{l}$.$) .$
Optional add-ons include: CE-151 4K memory module, CE-155 8K memory module CE-153 40 -key custom keyboard (summer '82), RS232C communicatlons interface (Autumn '82

COLOUR BROCHURE ON REQUEST
PRICES including VAT:
PC-1500 COMPUTER $£ 169.95$. Plus FREE $£ 20$ software voucher
CE-150 PRINTER $£ 149.95$. Plus FREE $£ 20$ software voucher.
CE-151 4K RAM MODULE £49.95. Plus FREE $£ 10$ software voucher
CE-155 BK RAM MODULE £79.95. Plus FREE £ 10 software voucher.
Vouchers on request with order only
PC-1500 PROFESSIONAL SOFTWARE ON TAPE
SHARP CE-15A Fourteen Applications Programs $£ 14.95$.
MiCROL 1500 PROCOS 'Visicalc-type' system $£ 34.95$.
MiCROL 1500 I.M.S. Information Management System $£ 34.95$
MiCROL 1500 STATIX Adds statistics to the $1500 £ 9.95$.

THE SCIENTIFIC PORTABLE COMPUTER

CASIO FX-702P only $\mathbf{E 9 9 . 9 5}$
Plus FREE MiCROL Professional Programming Pack (RRP £9.95) or we will beat any lower price by 5\%
The widest range of math, science and statistics (55 in all, including Regresslon and Correlation). BASIC programming. Up to 1,680 program memory steps, up to 226 data memories. Subroutines; 10 levels. FOR/NEXT looping; 8 levels. Edit, debug and trace modes. 240 hours lithium battery life. Dimensions: $17 \times 165 \times 82 \mathrm{~mm}$. Weight 176 g . MiCROL 702 PROCOS
Professional computing solutlons on tape. Save up to 90% of programming time with this electronic equivalent of pen and paper. 'Visicaic-type' system answers 'what if . . 'ques electronic equivalent on pen and
tions and analyses trends. $£ 24.95$.

Peripherals for the FX-702P, 602P, 601P and 502/501P
FA-2 Remote control cassette interface $£ 19.95$
FP-10 Permanent hard copy printer, mains or battery powered $£ 44.95$

702 PACKAGE DEALS

PACK A: FX-702P + MICROL PPP $£ 99.95$
PACK A: FX-702P + MICROL PPP £99.95 + MICROL PROCOS £129.90
PACK C: FX-702P + FP-10 + FA-2 + MiCROLPPP + MICROL PROCOS £164.85

THE WORLD'S FASTEST PROGRAMMABLE?

CASIO FX-602P

Only $£ 74.95$
With FREE MiCROL Professional Programming Pack (R.R.P.E9.95)

$$
\text { Or we will beat any lower price by } 5 \%
$$

50 scientific functions. Up to 512 program steps, up to 88 memories, all protected when switched off. 10 subroutines, nestable up to 9 levels. 33 parentheses at 11 levels.
Peripherals
FA-2 Interface \qquad $£ 19.95$
$\mathbf{£ 4 . 9 5}$
CASIO FX-601P
Now Only $£ 39.95$
Similar to the FX-602P but with 128 program steps; 11 memories; 18 (), up to 6 levels; up to 9 subrou tines, nestable up to 4 levels.

Price includes VAT, P. \& P. : Delivery normally by return post Send cheques. P.O., or phone your Accesavise/Barclaycard number to:

Dapi. WW, 3 Burloigh Streat Combridge. CB1 106

TORODDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

TYPE	$\begin{gathered} \text { SERIES } \\ \text { NO. } \end{gathered}$	SECONDARY Volls	$\begin{aligned} & \text { Rus } \\ & \text { Current } \end{aligned}$	PRICE	* 294 TYPES T0 CEOOSE FROM!				
30 Va	1×010	6+6	2.50			ORDERS DLSPATCEED WITHIN 7			
$70 \times 30 \mathrm{~mm}$	18011	$9+9$	1.66	¢5. 12		DIYS OF RECEIPT FOR SINGLE OR			
Regulation	1×012	12 $2+12$	1.25			ISLL	QUAF		R
Regulation 184	-	$13+15$ $18+18$	$\begin{aligned} & 1.00 \\ & 0.83 \end{aligned}$	-0/ocioe	* S YEAR NO QUIBBLE GUARANTEE				
	${ }_{1 \times 215}$	$22+22$	0.68	Hotm					
	1x016	$25 * 25$	060						
50	$1 \times$	-3030	50		TYPE	SERES	$\begin{gathered} \text { SECONDARY } \\ \text { Volls } \end{gathered}$	$\begin{aligned} & \text { RMS } \\ & \text { Current } \end{aligned}$	PRICE
	20070	$6+6$	416						
$\times 35$	2x01?			$£ 5.70$ - orpsim - virt cy Totnt L8 OS		6×012	12+12		
$\begin{gathered} 0.9 \mathrm{~kg} \\ \text { Requation } \\ 13 \% \text {. } \end{gathered}$	2×012	12+12	2.08					$\begin{array}{r} 938 \\ 750 \\ 7525 \end{array}$	
	2×013	15+15	1.66			6x013	15* 15		f9.20
	2×014	${ }^{18}+18$	1.38			6x014	$18+18$		
	20015	22-22	1.13			${ }_{6}^{6 \times 015}$	$22+22$ $25 * 25$	5114.50	
	27016	$25+25$	1.00			6×015 6×017	$25 * 25$		
	2×017	30 30	0.83			6×017 6×018	$30+30$	3.75 3.21 2.1	29.20
	2×028	110 220	0.45 0.22			6×018 6×026	$35+35$ 40		-vater 68
	2×29 2×030	220 240	0.22 0.20			6x026	$40+40$ $45+45$	281 2.50	
$\left\|\begin{array}{c} 80 \mathrm{VA} \\ 90 \times 30 \mathrm{~mm} \\ 1 \mathrm{Kg} \\ \text { Reguation } \\ 12 \% \end{array}\right\|$	3n010	$6 * 6$	6.64				$50+50$110	2.25 2.04	
					($\begin{gathered}300 \mathrm{VA} \\ 110 \times 50 \mathrm{~mm} \\ 2.6 \mathrm{~kg} \\ \text { Regualion } \\ 6 \%\end{gathered}$				
	$\begin{aligned} & \left.\begin{array}{l} 3 \times 012 \\ 3 \times 013 \\ 3 \times 013 \end{array} \right\rvert\, \end{aligned}$	12+12	3.332.66				220 240	1.02	f10.17
		$15+15$					240$15+15$	093	
		18.18	2.22	£0. 08 *Bjefl 59 - VAl EP 15 Teral ce 91		7x013			
	3x015	22-22	1.81			7x014.	18*18	833	
	3×016 3×017	$25+25$ $30+30$	1.50 1.33			78015 7×015 8018	$22+22$ $25+25$	6.82 6.00	
	34028	110	0.72			7×047	$30 * 30$	5.00	
	31.029 3×030	220	036			${ }_{7} 7 \times 18$	$35 \cdot 35$	428	-6/0 6700 - vaicic ej
	4×010	240				7×026 7×025	$40 \cdot 40$ $45+45$	375	
120 Va		6×6	1000	f6.90	500 VA$140 \times 60 \mathrm{~mm}$4 KRegulation4\%	${ }_{7 \times 033}$	S0- 50	315 300	16
$90 \times 40 \mathrm{~mm}$	4×011	$12+12$	6.665.004.00			78028$7 \times 029$$7 \times 030$	$\begin{aligned} & 110 \\ & 220 \\ & 10 \end{aligned}$		
$\begin{aligned} & 1.2 \mathrm{~kg} \\ & \text { Regulation } \\ & 111 \% \end{aligned}$	4×012							2.72 135	
	4×013	$15+15$	4.00 3.33				240	1.25	
	$4 \times 015$$4 \times 016$$4 \times 017$$4 \times 018$$4 \times 028$$4 \times 028$$4 \times 029$$4 \times 030$	$\begin{aligned} & 18+18 \\ & 22022 \\ & 25+25 \\ & 30+30 \\ & 30+35 \\ & 10 \\ & 120 \\ & 220 \\ & 240 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 2.72 \\ & 2.40 \\ & 2.00 \\ & 1.71 \\ & 1.09 \\ & 0.54 \\ & 0.50 \end{aligned}$			88076			
							$25+25$ $30+30$	833	¢13.53
						8×018	$35 \cdot 35$	714	
						8 E 026	-10+40	6.25	
						8 Bx 025	45*45	5.55	-ratere
				£7.91 pra解 67 - vaif 514 porat sil or		8802880029$8 \times 030$	110220240	454227	
	5x011	- $12+9$	8.89		625 VA$100 \times 7 \mathrm{mmm}$5 K,Requation4\%				
	5×012							208	
	5×013	$15=15$				$\left\|\begin{array}{l}9 \times 017 \\ 9 \times 018 \\ 9 \times 206 \\ 9 \times 265 \\ 9 \times 23 \\ 9 \times 23 \\ 9 \times 02 \\ 9 \times 028 \\ 9 \times 2029 \\ 9 \times 030\end{array}\right\|$			
	5x014	$\begin{aligned} & 18+18 \\ & 22+22 \end{aligned}$	$\begin{aligned} & 4.44 \\ & 363 \\ & 363 \end{aligned}$						
		25*25	$\begin{aligned} & 3.20 \\ & 2.66 \\ & 2.28 \\ & 2.00 \\ & 1.45 \\ & 0.72 \\ & 0.60 \end{aligned}$				$340+40$ 40	898 781	
	5 5017	$30 \cdot 30$					45-45	694	
	5×018.	35×35					50+50	625	
	$5 \times$	40×40					55+55	5.68	
		110 220					110	568	
	5x030	240					220	2884 2.60	

IMPORTANT: Regulation - All voltages quoted are FULL LOAD. Please add regulation flgure 10 secondary voltage to obtain off load voltage.
The benefits of ILP toroidal transformers
ILP toroidal transformers are only half the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows: For 110 V primary insert " 0 " in place of " X " in type number. For 220 V primary (Europe) insert " 1 " in place of " X " in type number. For 240 V primary (UK) insert " 2 " in place of " X " in type number.
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders.
Also avallable at Electrovalue, Mapilin and Technomatic.

Please send
Total purchase price
1 enclose Cheque $\square \quad$ Postal Orders $\square \quad \mathrm{int}$. Money Order \square

Name
Address

Slgnature
Post to: ILP Electronics Lid., Freepost 5, Graham Bell House, Roper Close
Canterbury CT2 7EP. Kent. Englano
Telephone Sales (0227) 54778: Technical (0227) 64723: Telex 965780.

WW - 022 FOR FURTHER DETAILS

ambit

THE MOST COMPREEENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A FRACTION HERE, GET THE CATALOGUE AND FIND THE REST

BAND 2 TUNERHEAOS (Varicap Tuning)
2 MOSFET of stages MOSFET Mixer
2 MOSFET Of stages MOSFET Mixer,
 Uutpur. AGC inpur
$145 \times 70 \times 24 \mathrm{~mm}$ $\begin{array}{llll}\text { Stock No. } \\ 40.05804 & 1.24 & 25, \\ & 24.95 & 19.65\end{array}$

7255 Tha latest complete FM
tunarhead from AF F in out to tunerhead from RF input to
stereo output MOSFET RF stages, HA1 1225 if and
KB4437 stereo decoder, 7255 spec
£30.00 plus VAT

£ 30.00 plus VAT

911225A The 911225 A is the 7230 edited and shrunk into a screened
metal case, $97 \times 56 \times 24 \mathrm{~mm}$. The unit ts ideally sulted to use wing
synthesised tuner systems. $\begin{array}{llll}\text { synthesised funer systems. } & \\ \text { Stock No } & \\ \text { Sto.24 } & \\ 40.91225 & \text { Bulht } & 20.82 & 16.25\end{array}$ 944378 'Hyperti' series decoder module with the TOKO KB4437 pilot cancel
 $\begin{array}{llll}\text { Stock No. } & & 1.24 & 25+ \\ 40-04378 & \text { Bulh } & 19.95 & 18.05\end{array}$ DFCM500 Wide range digital frequenc
 Stock No. Kains or Ni-Cad battery operal 1.24
40.01500 Kit 95.95
 ronging power meser, Completa Kit: All (undrilled). transformer etc.
Stock No: $40.40400 \mathrm{E} 2.86+\mathbf{~} 1.50 \mathrm{P} \mathrm{\&}$

FET DIP OSCILLATOR
An essential pieca of test oxuipmont for the RF
constructor. GOO or WM function covering 215 MHzz in five ranges. Audio and coverering 1.6 ponents Kit includes; fibre glass PCB, all com printed case, witre ste, punch, painted and screen $\begin{array}{llll}\text { STock No: } & & 1.24 & 25+ \\ 40.16215 & \text { Kir } & 17.90 & 16.20\end{array}$ 10. MHZ SSB GENERATOR PCB, All components, eight-oole erystàl
filter.
Stock No.
40.10700

R\& EW PROJECT AND OATABRIEF PCB, High quality glass fibre Printed circuit bourds
for proiects and Databriefs published in Radio

\& Electronies World.	
27 MHz Deviation Metor	¢1.98
PA105	
TV Pattern Generator	£5. 70
MC145151	£2.57
$2 \mathrm{mPre-amp}$	f0. 97
KB4417 (Undrilled)	20.60
030 V PSU	E3. 92
2 mPAMk II	¢5. 14
UL N3859 (Undrilled).	f0. 84
SSB Exciter	¢3.37
HA12017	£2.16
Up Convertar	£4.75

$2 \mathrm{mPRE} \cdot \mathrm{AMP}$

 Verv compact low.noise MOSFET 2 m pre.vmp. Gein $22 d 8$. Noise 1 thure; less than 1.50 B , T/P and of impodance: 50 ohm size; 34×9
R 15 mm . From Aprll 82 RE 8 EW . 1.24
Stock No.
$40-14400$ $\begin{array}{llll} & \text { Kit } & \mathbf{2 . 5 5} & 2.30 \\ 40-14400 & & \end{array}$

70 cm PRE-AMP

Compact low-nolse pre amp. Gain at 433 MH $50 \times 10 \times 17 \mathrm{~mm}$. From March 82 REAEW
1.24
Sock No. $\begin{array}{llll}\text { Srock No. } & \text { Kit } & 1.24 & 25 t \\ 40.07000 & 3.90 & 3.60\end{array}$ 2 m POWER AMP 20 watt 144 MMZ linear power amplitier. 10 CB gain, 2W input - 20W output. Autamatic
switiched relay. By-passes power amp in receive mode. Develodeo trom original class C version in Dec 81 R\& EW. High power outout relay. $\begin{array}{lll}\text { Only. } & 1-24 & 25 *\end{array}$ Slock No. 0-14421 Less Pream $\begin{array}{ll}28.50 & 25.65 \\ 30.40 & 27.36\end{array}$

AND THERE'S PLENTY MORE IN THE CATALOGUE 70pinc. RETAIL SHOP OPENING HOURS
Monday to Thursday 8.30-6.30
NOW IN STOCK Friday 8.30-8.30 Saturday 9.00-5.30 Switched - Capacitor Fitter:
(Access + Barclaycard orders accepted)
ALL PRICES SHOWN EXCLUDE
ALL PRICES SHOWN EXCLUDE VAT. P\&P 50p per order

AMBIT INTERNATIONAL DEPT. WW

TELEPHONE (STD 02771230909 TELEX 985194 AMBIT G POSTCODE CM14456

ANY MAKE-UP

 OR COPY QUERIES CONTACT BRIAN BANNISTER 01-661 8648

If you are interested in a particular article/ special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)

For further details contact
Michael Rogers, IPC Electrical-Electronic Press Ltd. Phone 01-661 3036 or simply complete and return the form below.

To Michael Rogers, Reprints Department Quadrant House, The Quadrant Sutton, Surrey SM2 5AS
I am interested in
copies of the article /
advertisement headed
featured in

WIRELESS WORLD

on page(s) in the issue dated
Please send me full details of your reprint service by return of post
Name
Company
Address
Tel. No

COOLITG FANS

 range of professional fansETRI 99XUO1 MIniature ETRI 99XUO1 MIniature equipment tan 240 complete with finger guard Makers price £16 ourprice 9.95
BUHLER 69.11 .22 micro miniature 8-16VDC reversible fan. Measures only $62 \times 62 \times 22 \mathrm{~mm}$.
Uses a brushless DC servo motor aimost sllent Uses a brushless DC servo motor aimost sllent running ideal portable equipment, life in excess
of 10.000 hours. BRAND NEW manufactures price £32.00 our price E12.93
$120 \times 38 \mathrm{~mm}$ tested ex equipment 240 v £ 6.25 $115 \mathrm{v} 3.95+\mathrm{pdp}$ 民
KOOLTRONICS gives massive a Powertul snail type biower
 ac working ONLY $£ 9.95+£ 1.90$ p $\$ \mathrm{p}$

SOFTY 2

The amazing SOFTY 2. The complete "toolkit" for the open heart sottware surgeon. Copies, Displays, Emulates ROM, RAM and EPROMS
of the 2516,2532 variety. Manyotherfeatures include keyboard, UHF modulator. Cassette interface etc. Functions exceedcapabilities of units costing 7 times the price! Only
£ 169.00 pp $£ 1.95$ Data sheet on reques
BCA FULIY CASMD

ASOI CODED KJYBOARDS

TAMOERINE OWIOETC

Straight from the USA made by the world
famous RCA Co the VP600 Series of cased ramous RCA Ca, the VP600 Series oi cased rreestanding keyboards meet all requirement of the most exacting user, right down to the price! Utilising the latest in switch technology.
Guaranteed in excess of 5 million operations. Guaranteed in excess of 5 milion operations. including full ASCII 128 character set, user definable keys, upper/lower case, rollover protection, single 5 V rail, keyboard impervious toliquids and dust, TL or CMOS outputs, even an on-board tone generator for keypress feedback and a 1 year full RCA backed
guarantee. strobe, etc.
VP611 Same as VP601 with numeric pad
Vp506 Serial £ 43.95 E54.95 outputwith6selectable Baud Rates $\mathbf{6 4 . 2 6}$ VP616 Same as VP606, with numeric pad ع84.34 Plug and cable for VP601, VP611 £2.25 Plug for VP606, VP616 £2.10
Post, Packing and Insurance $£ 1.95$

"8, $8^{\prime \prime}$ HLOPPY DISK DRIVISS disk drives utilise the finest technology to

 SUPER SCOOP
CHNTRONICS 739-2

 being our PRICE and the superb manufacturing available today, the only difference位 double slded drive accept hard or soft sectoring. IBM or ANSI standard giving a massive $0.8 \mathrm{MB}(7100)$ \& $1.6 \mathrm{MB}(7200)$ of storage. Absolutely SHUGART, BASF SIEMENS etc compatable. Supplied BRAND NEW with user manual and 90 day warranty.$\mathbf{£ 2 2 5 . 0 0}+9.50+$ vat
7200 double sided
$£ 295.00+9.50$ carr + va
difference on purchase
full technical manual $£ 20.00$ alone $£ 9.00$ with drive, refund of difference on purchase of drive.
SHUGART s/h $800-28^{n}$ Drive's $110 v 50 \mathrm{~Hz}$ motoor $£ 160+£ 9.50$ carr.
Removed from working equipment but untested. SA120 Alignment disk's£9,95

The "Do everything Printer" at a price that will NEVER be repeated Standard Centronics interface, full graphics, 4 type fonts with high definition \& proportional
spacing for word processor appllcation columng single sheet roll or appocket pations, 80-132 much more. Available onlyfromDISPLAYELECTRONICSat a ridiculous price of only $\mathbf{2 9 9 . 0 0}$

Options: carriage $\&$ insurance $\$ 10.00$
Interface Cable $E 10.00$
RS232 Converter $\$ 45.00$

CHISTYPS ASRB31~ $\Rightarrow 1$

 I/O TMRMMITATSFully fledged industry standard ASR33 3 data terminal. Many features including ASCII keyboard and printer for data I/O auto data detect circuitry. RS232 serial interface. 110 baud, 8 blt paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Suppli
good condition and in working order Options: Floor stand $£ 12.50$ +VAT Options: Floor stand $\mathbf{£ 1 2 . 5 0}+$ VAT
KSR33 with 20 ma loop interface£ $\mathbf{1 2 5 . 0 0}+$

RECHARGMABLE BATTERIES

Professional type mains fiters as used by "Main Frame" manufacturers. Ideal for Curing
those unnerving hang ups and data glitches fit one now and cure your problems. Suppression Devices SA5A
upto 5 ampload E5. 95
orcominc F1886 up to 20 amp load 89.50

D.C. POWFR SUPPLY SPRECLALS

\section*{| Experimentors |
| :--- |
| $+12 v @ 800$ |}

$+12 \mathrm{v} @ 800 \mathrm{ma}$. $12 \mathrm{v} @ 800 \mathrm{ma}+24 \mathrm{v} @ 350 \mathrm{ma} .5 \mathrm{v} @ 50 \mathrm{ma}$. floating. Dim 160 amps . 350 mm . All outputs fully regulated and short circuit proof. Removed from working equipment, but un E $14.50+\Sigma 2.50$ pp
POWERONE CP
POWER ONE CP143 super compact unit giving continuo us output of 5 v @ 5 amps . dim. $215 \times 67 \times 80 \mathrm{~mm}$. BRAND NEW and guaranteed Only $£ 21.00+£ 1.50 \mathrm{pp}$. CUSTOMPOWERCOS55v@3amp. Very compact unit dim. approx60x90 190 mm .
Semi open chassis, full crowbar overvoltage protection. Tested Ex Equipment. £11.95 + pp£1.25 £1t.95 + Pp £1.25
MINISYSTEM PSU Ex equipment unit ideal for the small micro. Out puts give 5 v @ $3 \mathrm{amps} .+12 \mathrm{v} @ 1 \mathrm{amp}$ and $-12 \mathrm{v} @ 300 \mathrm{ma}$. Crowbar overvoltage protection and
current limit. Fully tested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. Complete with Circult only $£ 12.95$ current limit. Fully tested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. Complete with Circult only $\mathbf{1 2 . 9 5}$
$+£ 2.00$ pp. PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition. Outputs give $5 \mathrm{v} @ 11$ amps " $+15-17 \mathrm{v} @ 8$ amps. " 5 " $15-17 \mathrm{v} @ 8$ amps requilated. Fan cooled. Supplied tested, with circulte55.00 + $£ 8.50$ carr.
MAIN FRAME SUPPLY. A real beefy unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps. +12 v @ 5 amps. $-12 \mathrm{v} @ 10$ amps. All output are fully outputs give 5 volts @ 50 amps $+12 \mathrm{v} @ 5$ amps. $-12 \mathrm{v} @ 10 \mathrm{amps}$. All output are fully
regulated with crowbar overvoltage protection on the 5 v output. Supplied with circuit and tested. Ex-Equip. 110 v AC input. Only $£ 49.95$ + carr. $£ 10.50$.

66% DISCOUNT

ELECTRONIC COMPONENTS \& EQUIPMENT
Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap's, P.C.B.'s,
Sub-assemblies, Switches, etc, etc. surlplus to our requirements. Because we don't Sub-assemblies, Switches, etc. etc. surlplus to our requirements. Because we don't
have sufficient stocks of any one item to include in our ads, we are packing all these have sufficient stocks of any one item to include in our ads, we are packmponents at
items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of compone giveaway prices! Guaranteed to be worth at least 3 fimes what you play plus we always giveaway prices! Guaranteed to be worth at least 3 fimes what you play
include something from our ads, for unbeatable value!! Sold by weight
$2.5 \mathrm{kls} \mathrm{E} .25+$ pp E1.25
5kls E5.90 + pp E1.80
20kls£ 17.50 + pp $£ 4.75$

9" Monitors

OT10 Monito a complete MOTOROLA housed in an attractive metal case DIM approx
high. The monitor and 11
video input with a bandwidth composite seperate internal PSU delin or 5 vmh external use and 12 vDC forvideo monitor. The oase has sunicient such as $5^{\prime \prime}$ disk drives etc Interna other units such as 5 " disk drives etc. Interna Supplied in a tested, as new or little used condition. 240vAC operationE55.00 Carriag and Insurance $£ 10.50$

Abstract

MOTOROLA $9^{\prime \prime}$ open chassis monitor.

 Standard 240 V AC with composite 75 ohm video input, bandwidth in excess although unguaranteed they are all tested prior to despatch, and have no visible burns on the screens. Dim approx. $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied complete with mains and input lead. Ideal ZX81 etc or giving the tele back to the family!!Black and White phosphor $£ 35.00+£ 9.00$ Carr

SEMCCONDUCTOR

'GRAB BAGS' Mixed Semis amazing value contents
include transistors, digital, linear, I.C.'s triacs diodes, bridge recs, etc. etc. All with manufacturer's markings, fully guaranteed $50+E 2.95100+E 5.15$ TTL 74 Series A gigantic purchase of a "across the board" range of 74 TL
series I.C.'s enables us to offer $100+$ mixed "mostly TL" grab bags at a price which two or three chips in the bag
would normallv cost to buy. Fully guaranteed all I.C.'s full spec. $100+86.90$ guaranteed all I.C.'s full s

300 BAUD DATA MODFMS

 standard EX GPO 2a/b data MODEMS. Modem operates on standard CCITT tone with full auto answer facillities. Will switch to ANSWER orORIGINATE. StandardRS232 i/o Complete with data. Untested but good condition $£ 55.00$ carr. £8.50.
1200 BAUD
 DATA PUMP MODEMS

is at any baud rateupto 1200 full duplex (4 wirecircuit) orhalf duplex (2 wire circuit). Features include remote test facillties. RS232 i/o lines etc Supplied with data in working order, but less case cover $£ 65.00+£ 4.50$ carr.

OLIVEITII THFSOO

 REDUCED TO CLEART Complete input output terminal with integral8 operates at 150 paud in standard ASCII. Ideal as a cheap printer for a MICRO etc. 120 columns, Serial data i/o. Supplied complete with data, untested, unguaranteed $\mathbf{£ 5 . 0 0}$ + £ 11.50 carr.All prices quoted are for U.K. Mainland, paid cash with order in Pounds Stirling PLUSVAT. Minimumordervalue E2.00, Minimum Cred It Card order $£ 10,00$. Minimum BONA FIDE account orders from Government depts, Schools, Universities and established companie E. 20.00 Where post and packing not indicated please ADD wip + VAT Warehouse open MonFri 9.30-5.30. Sat. 10.1
We reserve the right to change prices and specifications without notice. Trade, Buik and Export enquiries welcome.

64-66 Melfort Road, Thornton Heath, Near Croydon, Surrey

 01-689 7702-01-689 6800 Telex 27924| METERS
 leads, accessorien in stock, also probes
 PANEL MOUNTING in | | |
| :---: | :---: | :---: |
| | | RESISTORS |
| | | |
| | | POTENTIOMETERS
 S.IDERS 58 mm , low cost $10 \mathrm{~K}-1 \mathrm{M} \log$ only 29 p ; Std 58 mm mon $4 \mathrm{~K} 7-1 \mathrm{M}$ lin or $\log 79 \mathrm{p}$, stereo matched f .29 ; Graduated bezels 34 p PRESET min. 10 mm dla. Horizontal or vert. 100 ohms 1 M ea. £1.08; Plessey MPWT moulded carbon 47 ohms 2 M 2 ea. $59 p$. DISCOUNTS ON ALL PRICES EXCEPT PRICES MARKED N |
| | | |
| | | |
| | | |
| SOLDERING IRONS
 Sill | ALITEMS BAANO NEW ANO GUARANTEED TO SPEC. | |
| | CAPACITORS | |
|
 | | |
| | | ACLES, VISA |
| NICAD CHARGERS
 \qquad |
 | acteidy |
| | | |
| BOXES

 | | |
| | | ord orders and shop
 ELECTROVALUE LTD
 28a St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB Telephone Egham (ST0 0784; London 87) 33603 : Telox 26475
 Northern Branch (Personal shoppers only) 680 Burnage Mancter
 Computing at:
 Computing at: |
| | | |

Hilachi Oscilloscopes
 performance, reliability, exceptional value and immediate delivery!
 Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, in a newly-extended range that repesents the best value for money available anywhere.
 V-152F 15MHz Dual Trace V-202F $\quad 20 \mathrm{MHz}$ Dual Trace (illustrated)
 V-203F 20 MHz Sweep Delay
 V-302F $\quad 30 \mathrm{MHz}$ Dual Trace
 V-352 35 MHz Dual Trace V-509 50 MHz Dual Timebase, Mini-Portable Prices start from under $£ 250$ (ex. V.A.T.) including 2 high-quality probés and a 2 year warranty. We hold the range in stock for immediate delivery.
 For colour brochure giving detailed specifications and prices ring (0480) 63570.
 Reltech Instruments, 46 High Street, Solihull, W. Midlands, B91 3TB
 V-353F 35 MHz Sweep Delay
 V-650F 60 MHz Dual Timebase, Trigger View V-1050F 100 MHz Quad Trace, Dual Timebase
 V-209 20 MHz Dual Trace, Mini Portable ini

WW - 098 FOR FURTHER DETAILS

WW - 083 FOR FURTHER DETAILS

VIDEO TECHNIOUES

ANINTRO. TO THYRISTORS AND THEIR APPLICATIONS
by M. Ramamoorty
DIGITAL ICs-HOW THEY WORK AND HOW TO USE THEM by A.W. Barber
SERVICING RADIO, HI-FI AND TV EOUIPMENT
byG. J. King
H/B OF PRACTICAL ELECTRONIC CIRCUITS

by J. O. Lenk

ELECTRONIC TEST EQUIPMENT OPERATION AND APPLICATION by A.M. Rudkin
byW.H Dennis
by W. H. Dennis by T.D. Towers
by T. D. Towers
ELECTRONIC CIRCUITS AND APPLICATIONS
by B. Grob by W. H. Hawward

Price: $£ 7.50$ Price: $\mathbf{£ 6 . 5 0}$ Price: $\mathbf{\varepsilon 7 . 5 0}$ Price: $\mathbf{£ 1 7 . 4 5}$ Price: $\mathbf{£ 2 1 . 0 0}$
Price: $\mathbf{E 1 3 . 5 0}$
Price: $£ 10.50$

- Price: $£ 17.00$

Price: $£ 22.00$

THE MODERN BOOK CO.

AP DIP JUMPERS LOWEST PRICE IN THE UK. NEW AP LOW-PROFILE "D" SUB MINIATURE JUMPERS ALL RS232 COMPUTER LINK UP PROBLEMS SOLVED FREE TC16 WITH EVERY SUPERSTRIP SOLD

PART NO	CONTACTS	LENGTH	DESCRIPTION	PRICE
924 229-18	25	18	25 PIN MALE SINGLE END 18' LONG	5.97
924 222-18	25	18	25 PIN FEMALE SINGLE END 18* LONG	6.04
924 269-36	25	36	25 PIN MALE TO MALE DOUBLE END $36^{\prime \prime}$	11.73
924 299-36	25	36	25 PIN MALE TO 24 PIN DIP 36"	8.35
924 339-36	25	36	25 PIN MALE TO 26 PIN SOCKET 36"	10.50
924 262-36	25	36	25 PIN FEMALE TO FEMALE DOUBLE END 36"	11.50
924 292-36	25	36	25 PIN FEMALE TO 24 PIN DIP $36{ }^{\prime \prime}$	8.75
924 332-36	25	36	25 PIN FEMALE TO 26 PIN SOCKET	8.75
924 382-36	25	36	25 PIN FEMALE TO 25 MALE 36'	11.50

$A P$ sub-miniature " D " jumpers have the lowest front to back profile in the world and come to you fully assembled, tested and ready to use. They are directly replaceable with existing "D" connections.

DIP-DIP-DIP-DIP-DIP JUMPERS
AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK
 \square EX STOCK DELIVERY $6,12,18,24,36^{\prime \prime}$ - WITH 14, 16, 24, 40 CONTACTS - FULLY ASSEMBLED AND TESTED - INTEGRAL MOULDED ON STRAIN RELIEF - LINE BY LINE PROBEABILITY

SINGLE-ENDED

CONTACTS	24"	CONTACTS	6"	12"	18"	24"	36*
14	£1.67	14	£2.11	E2.21	£2.31	£2.43	£2.63
16	£1.89	16	£2.33	E2.45	£2.58	£2.66	£2.97
24	£2.74	24	£3.45	£3.62	E3.78	E3.94	£4.30
40	¢4.38	40	$£ 5.31$	¢5.61	$£ 5.91$	¢6. 22	£6.81

We can supply DIP, SOCKET, PCB, CARD-EDGE RS232, assemblies made-up,
tested, ready for use, cheaper than you can buy the parts, ask for quote.

TEST-CLIP TEST-CLIP

Clip an AP TEST-CLIP over an IC and you immediately bring up all the leads from the crowded board into an easy working level. 22 NEW AP TEST-CLIPS TO PICK FROM
examples: TC 14923695 £2.76 TC $16 \quad 923700 \quad £ 2.91$ TC $24 \quad 923714 \quad £ 8.50$ TC $40 \quad 923722 \quad £ 12.88$

TOTAL PRICE ONLY £19

incl VAT post \& packing ANYBODY CAN BUILD ELECTRONIC PROJECTS WITH EBBO BOARDS. We supply EBBO block, adventures with electronics book which gives step by step instructions to build 16 projects including: chip radio, two transistor radio, electronic organ etc. and every component needed. Nothing else to buy.

SUPERSTRIP SS2 THE BIGGEST SELLING BREADBOARD IN THE WORLD

When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you for ever, we give you a LIFETIME guarantee. SUPERSTRIP is the most used breadboard by hobbyists, professionals and educationalists because it gives you more for your money . . With 840 contact points SUPERSTRIP accepts all DIP's and discrete components and with eight bus bars of 25 contact points each SUPERSTRIP will take up to nine 14 -pin DIP's at any one time. You should only buy a breadboard once so buy the biggest seller with a lifetime guarantee. SUPERSTRIP SS2 923252 PRICE INCL VAT E9.78

All prices shown are recommended retail incl. VAT
In difficulty send direct, plus 50 p P \& P
Send S.A.E. for a free copy of colour catalogues detailing our complete range
AP PRODUCTS, PO BOX 19, SAFFRON WALDEN, ESSEX, (0799) 22036

Appointments

> Advertisements accepted up to 12 noon Wednesday, August 25th, for October issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 15.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3$ per line, minimum $£ 20$ (prepayable).
BOX NUMBERS: $£ 3$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable wo IPC Business Press Ltd.

ENGINEER

TVor Telecomms

We have avacancy for an experiencedtelevision or telecomms engineer to work in the central apparatus area at our Birmingham studio centre: this area forms the technical centre of the station, and the interface with British Telecom and the I.B.A. network. The work involves the operation, monitoring and maintenance of equipment concerned with pulsegeneration, signal switching and distribution, quality control and testing.

Applicants must have a good knowledge of the PAL 625 system, and the application of advanced technology in video and audio signal processing and transmission. Education to HNC/HND or TEC Higher Diploma standard would be an advantage.

The salary will be at an appropriate point on an automatic scale, up to about $£ 11,000$ p.a. (under review). The work pattern involves a seven day fortnight.
Application forms are available, in writing, from:The Head of Staff Relations,
Central Independent Television plc.,
Central House, Broad Street, Birmingham B1 2JP.
Please quote Vacancy No: 36 (WW)

TEST ENGINEERS

Required by professional audio manufacturers.
Applicants must be aged between 24 and 35 years approx, and have a proven background in analogue and digital electronics. As we are a rapidly expanding company we are looking for persons who are self-motivated and able to work under pressure.
We offer an excellent salary and good prospects. Write to Mick Newman with career details and salary.

Soundcraft Magnetics Ltd

5-8 Great Sutton Street, London EC1

A small but expanding S. Worcestershire based company specialising in C.C.T.V. research and production requires the following staff:

\star Production Manager

who will be expected to organise a production team of approx. 6. Previous experience essential.

\star Electronlc Test 8

Sarrice Englneer

with a good understanding of analogue and digital techniques. in particular a thorough knowledge of C.C.T.V. and some broadcast video is required.
Applicants should be able to work off their own initiative and to set up their own work procedures. Salaries will be commensurate with experience.
Please apply in writing, enclosing C.V. 10 Box No. 1755

DIGITAL EXPEREIENCE? FIELD SÜPPORT R \& D AND SALES VACANCIES IN COMPUTERS NC, COMMS., MEDICAL VIDEO, ETC.
For free registration ring 0453883264 01-290 0267

ELECTRONICS RECRUITMENT SERVICE LOGEX HOUSE, BURLEIGH, STROUD GLOUCESTERSHIRE GL5 2PW TEL. 0453 883264, 01-290 0267

Opportunities in Professional Audio

World leaders in the marketing and distribution of professional broadcast equipment throughout Europe, the Middie East and Africa, we are currently undergoing a significant planned expansion programme. Applications are now invited for the following challenging opportunities within our Audio Department.

Sales Engineer

A young and dynamic sales professional is required to join a small team engaged in the sale of digital audio equipment, analogue tape machines, mixing consoles and RF communication products. Applicants should have a proven track record in audio sales, a high degree of self motivation and an ability to work on their own initiative. Candidates must be prepared to undertake overseas travel when necessary.

Audio Support Englneer

(RF/Analogue Products)
This new position would suit anengineer experienced in RF communications. The successful applicant will provide in-depth technical sales support on a wide range of audio products. Particular emphasis will be on wireless microphone systems but will also include microphones, analogue tape machines and mixing consoles. This will involve travel throughout our marketing area and full product training will be given. Candidates should be qualified to Degree/HNC level Electronics although direct relevant experience is equally as important

Service Engineer

(Professional Audio Products)
To be responsible for the service and repair of an expanding range of high technology products. Applicants should be experienced engineers who ideally have a background in sound recording or broadcast equipment, together with a relevant qualification in Electronics. Some travelling to customers will be involved and full product training will be given where necessary
We offer attractive salaries, first class conditions of employment and considerable prospects for personal development.
If you are interested please write, giving brief delails of experience and current salary, to Mike Jones, Senior Personnel Officer, Sony Broadcast Limited, City Wall House, Basing View, Basingstoke, Hants RG21 2LA. Tel:55011

Sony Broadcast Ltd. City Wall House

The Polytechnic of North London

Department of Electronic

and Communications Engineering

LABORATORY TECHNICIAN Grade V (Electronics)

[^8]
Electronic Engineering

Dolby Laboratories, the world famous audio noise reduction company, was founded by an engineer. We are a company that believes in engineers and engineering. Small enough for you to make a contribution, we have the minimum bureaucracy, are well established, and have a track record of innovation and quality.
A graduate with experience of audio electronics, or a related discipline, is needed to lead a small section auditing product quality. There is considerable scope for initiative and innovation in this position, which will involve all aspects of the manufacture of our professional products
An excellent benefits package is offered, including a salary in the range of $£ 8-10,000$.
For more information about the position and the company, contact: Steve Matta
Dolby Laboratories Inc.,
346 Clapham Road,
London SW9 9AP
01-720 1111

Radio/

 Electronic TechnicianLondon based organisation seeks enthusiastic Radio Electronic Technician with a broad knowledge of Communication Techniques and associated systems. Applicants should preferably be aged between 25 and 40 with desirable qualifications of City and Guilds Certificate T.E.C. in Telecommunications or equivalent in experience. Some overseas travel is a possibility in this position.

Salary according to qualifications and experience but not less than $£ 7,300$.

Please write with personal and career details to Confidential Reply Service, Ref. AMR 8482, Austin Knight Limited, London W1A 1DS.

Applications are forwarded to the cliett concerned. therefore companies in which you ate not interested should be listed in a covering

Apponnments

Research and Development Engineers

Your opportunity to advance broadcast television technology to the era of the 'all digital television studio'.
The Advanced Developments department of Sony Broadcast Ltd is part of an international R\&D team committed to pioneering new techniques and technologies. Established four years ago, the department has already made significant contributions to digital television development.

Further expansion is planned to broaden the range of our activities. Applications are invited from well qualified engineers to contribute to the following:-

- Digital Video/Audio Processing
- Digital Recording
- Theoretical Analysis
- Analogue Video Processing
- Digital Fillering
- PictureStorage \& Manipulation
- Error Correction \& Detection
- Coding Techniques

As a successful candidate you will joina department of highly skilled engineers responsible for projects from concept to realisation. This highly innovative work requires good theoretical knowledge coupled with the application of the most up-to-date techniques and devices. These developments will influence the future of television broadcasting.

Whilst directly relevant experience is advantageous, candidates working with digital signal processing techniques applied to other fields are encouraged to apply. Appointments will be made at all levels and applicants should have a good honours degree or equivalent qualification.

Attractive salaries are offered together with first class conditions of employment and a pleasant working environment. Relocation assistance will be given where appropriate.
Please apply, giving brief details of career to date and present salary, to Mike Jones, Senior Personnel Officer, Sony Broadcast Limited, City Wall House, Basing View, Basingstoke, Hants RG212LA. Tel: 55011

Sony Broadcast Ltd. City Wall House Basing View, Basingstoke HampshireRG212LA United Kingdom Telephone (0256) 55011

Professional Television Engineers

RCA is seeking engineers to work in the field servicing operation of the Broadcast Division.

The work will involve travel in the Europe, Africa and Middle East region, and will be with one inch ' C ' format V.T.R.s and the new exciting "Hawkeye" VTR/Camera combination.
If you are looking for a stimulating job with high technical content and a lot of travel and you have HND or equivalent qualifications then find out more about it by phoning Des Chalkley, Manager of Broadcast Field Services on Sunbury on Thames 85511 Extension 3150.

If you want to "Go places"
R
B

LABORATORY ENGINEERS/ TECHNICIANS

The BBC Engineering Designs Department in Central London requires Laboratory Engineers and Technicians, male or female, to assist engineers in the design, development, construction and testing of sound and television broadcasting equipment.
LABORATORY TECHNICIANS who will probably be in their mid 20's, will have a keen, interest in electronics with one to two years' practical experience. They will have at least TEC Certificate, ONC or C\&G Part II. Salary according to qualifications and experience in the range $£ 5,451-£ 6,418$ p.a. More experienced technicians may be appointed at a salary scale in the range £6,538-£7,044 p.a.
LABORATORY ENGINEERS will have had several years' experience of electronic development work and will have an appropriate degree, TEC Higher Certificate, H.N.C., or C\&G Full Technological Certificate (271, Telecommunications or 281, Electrical Technicians). Salary in the range $£ 7,454-£ 8,044$ p.a., progressing to £10,573.
These are pensionable posts and re-location expenses will be considered.
Requests for application form to: the Engineering
Recruitment Officer, BBC Broadcasting House,
London W1A 1AA quoting reference 82.E.4047/ WW. For further information please contact Mr. I. Millar on 01-580 4468 Ext 4593.
Completed forms should be received within fourteen days of publication date.
BBG

ThePolytechnic of NorthLondon

Department of Electronic and Communications Engineering

LABORATORY TECHNICIAN ${ }_{(\text {Grade } 4)}$

Applications are invited for the above post. The duties involve assistance in our Teaching Laboratories.
Applicants will be required to construct, modify and maintain experiments and electronic equipment. Greater consideration will be given to those with experience in servicing equipment to component level.
Qualifications: OND or ONC or 2 'A' levels or Ordinary City and Guilds or equivalent. At least 7 years' relevant experience (including training period).
Salary Scale: $£ 6,371-£ 7,165$ inclusive of London Weighting.
Further details and application form from Mr. E. W. Bowman, Departmental Superintendent, Department of Electronic and Communications Engineering, The Polytechnic of North London, Holloway Road, London N7 8DB.
Closing date for the receipt of applications 14 days from the appearance of this advertisement.
(1739)

Electronics Design Engineers
 Take your career a step in the right direction

Having introduced an extended new product range, many of which are microprocessor based, Marconi Instruments has once again confirmed itself as Europe's leading manufacturer of test equipment and measurement systems. Our products are selling throughout the world to all leading users in the Telecommunications and Aerospace industries and we are naturally developing further innovative designs. That is why we are now looking for more Design Engineers with experience in any of the following areas:
RF, Microwave, Analogue, Digital, Software, ATE, Microprocessor Applications.
Whatever your level of experience we would like to hear from you. We offer excellent salaries plus a wide range of large company benefits including relocation expenses where appropriate.
marcon instruments
\qquad HOME

YEARS OF EXPERIENCE:	0.1	1.3	3.6	OVER 6

PRESENT SALARY: $£ 5,500$ £8,000 $£ 10,000$ OVER $\begin{array}{cccc}\text { to } & \text { to } & \text { to } & \\ £ 8,000 & £ 10,000 & £ 12,000 & £ 12,000\end{array}$

QUALIFICATIONS: HNC DEGREE OTHERS

PRESENT JOB: \qquad

So take a positive step in the right direction and join us in developing tomorrow's technology today. Cut the coupon and send it to John Prodger, Recruitment Manager, Marconi' Instruments Limited, FREEPOST, St. Albans, Herts AL4 0BR. Tel: St. Albans (0727) 59292.

A GOOD MAN NOWADAYS IS HARD TO FIND BUT OUR CLIENTS WILL APPRECIATE HIM (SORRY, OR HER)
 \section*{DESIGN/DEVELOPMENT ENGINEERS}

To design microprocessor systems, VLSI and analyse CAD systems for process control. New graduates considered, and experienced men appreciated up to the tune of E14,000 pa in rural
Berkshire.

PROGRAMMER

To write process control software for on-line manufacturing systems in Fortran and Basic for DEC LSI 11. Graduate with relevant software experience for up to $£ 10,000$ pa in Wiltshire.

SENIOR PROGRAMMER

To program hand held 64 kbram 8 bit micros based on 8080 and $Z 80$ and do it in classic fashion with elegance. Degree or equivalent, at least four years' experience to include assembler level and knowiedge of Basic interpreters would be helpful around $\mathrm{F} 10,000$ pa in Hampshire.

SENIOR PROGRAMMER

To lead a team designing software and hardware for wire and wireless data communications based on 280 and junior to write machine code. Senior must be graduate with at least 3 years' data communications experience, junior graduate with some experience. For the senior up to $£ 11,000$ pa in Wiltshire.

Charles Airey Associates

Tempo House, 15 Falcon Road, Battersea, London SW11 2PJ Tel: $01 \cdot 2237662$ or 2286294

CAPITAL

APPOINTMENTS LTD

CAPITAL HOUSE 29-30 WINDMILL STREET LONDON W1P 1 HG TEL: 01-6375551

THE UK's No. 1 ELECTRONICS AGENCY

Design, Development and Test to $£ 14,000$ Ask for'Brian Cornwell

SALES to $£ 15,000$ plus car Ask for Maurice Wayne

FIELD SERVICE to $£ 12,000$ plus car Ask for Paul Wallis
We have vacancies in ALL AREAS of the U.K.
Ask for a Free Jobs List
Telephone: 01-6375551 (3 lines)
(2991)

Appointments

Assistant Chief Telecommunications Technicians (two posts) ZIMBABWE

Required to provide on-the-job training for Technician Staff on the maintenance of Radio Communication Systems, Navigational Aids and Radar. Applicants should be UK citizens holding Part II City and Guilds Telecommunications Certificate or equivalent with at least 7 years' experience in Civil Aviation equipment.

Appointments

2 years, posting Harare Airport. Salary will be in accordance with qualifications and experience subject to UK income tax plus a variable tax-free overseas allowance.

The posts are wholly financed by the British Government under Britain's programme of aid to the developing countries.

In addition to basic salary and overseas allowances other benefits normally include paid leave, free family passages, children's education allowances and holiday visits, free accommodation and medical attention.

Application Details:

For full details and application form please apply, quoting ref. AH372/AL stating post concerned, and giving details of age, qualifications and experience to:

Appointments Officer, Overseas Development Administration, Room 351, Abercrombie House.

Eaglesham Road,
EAST KILBRIDE,
Glasgow G75 8EA.
OVERSEAS
DEVELOPMENT
BRITAIN HELPING NATIONS: TO HELP THEMSELVES

Electric Circuit C.A.D.

We are currently engaged in setting up engineering CAD facilities for use by University and Polytechnic R. \& D. groups. An important part of this provision concerns the design and small-scale production of electronic devices and systems to be realised as printed circuits or as integrated circuits using the Laboratory's electron beam microfabricator.

A considerable amount of modern circuit-analytic software is a necessary background to this activity and we need a circuit analyst to run the section that provides it.

The successful candidate will:
(1). Lead a small section concerned with the implementation of recommendations to set up and run a network-based suite of programs for the analysis of electrical, electronic and microelectronic devices and systems.
(2). Interact with University and Polytechnic R. \& D. groups who will use this software on the SERC computer network.
(3). Supervise the running of short courses in the use of this developing software provision.
Applicants for this post should have a degree or equivalent qualification, in
electrical/electronic engineering or physics. Experience in the analysis of electrical or electronic net works - preferably by means of digital computers - is essential.

The appointment will be in the grade of Senior Scientific Officer within the salary range $£ 8,599$ to $£ 10,967$. Some assistance with house sale/purchase may be available.

The Rutherford Appleton Laboratory is a friendly community with its own restaurant and sports facilities nearby, Benefits include a local transport service, generous holidays and a non-contributory pension scheme.

Application forms from: Recruitment Office, RAL, Science and Engineering Research Council, Chilton, Didcot, Oxon OX11 0QX. Tel: Abingdon (0235) 21900 Ext. 510, quoting ref. VN. 069.

Closing date: Closing Date: Xth September, 1982

HULL COLLEGE OF HIGHER EDUCATION

MARITIME TECHNICIAN VACANCIES

Following a major review, applica tions are now invited for the fol lowing posts:

PRINCIPAL TECHNICIAN

£7,371- $\mathbf{7 7 , 8 7 5}$

This is a key appointment to man. age technical support staff and services. Applicants will have considerable experience and a high level of expertise, preferably in the level of expertise, preferab
area of Marine Electronics.

SENIOR TECHNICIAN

E5,652-£7,137
To lead a small group of technical staff dealing specifically with aspects of marine electronics. Applicants must have considerable experience and will hold relevant qualifications, e.g. ONC or Tech. Cert. in Electronics or Electrical Engineering or MRGC or equivalent

TECHNICIAN ELECTRONICS
 TECHNICIAN -
 NAVIGATION/SIMULATOR
 £5,064-£5,526

To work specifically in areas of marine electronics and with the College's advanced computer navigation simulator. Applicants must hold relevant qualifications, e.g. Dot Radar Maintenance Certificate.
Application forms and further details from:
The Personnel Office
Hull College of Higher Education
Inglemire Avenue
Hull HU6 7LU
Tel: (0482) 446506
Closing date for receipt of completed applications - 6th September 1982

UNIVERSITY OF KEELE COMPUTER CENTRE JUNIOR MICROPROCESSOR ENGINEER

Required for the Microprocessor Unit. This unit provides a general support service for all academic departments. The appointee will be required to collaborate with researchers on the installation and commissioning of microprocessor systems, to give hardware and software support for such systems and to contribute to the project work and teaching within the unit.
Äpplicants should hold a degree or equivalent qualification. It is expected that this post will be most suited to someone recently qualified.
The appointment will be on Grade IB within the salary scale £6,070-£6,880.
Application forms and further particulars from the Registrar, The University, Keele, Staffs ST5 5BG.

Occasional Freelance Work

 available revising short technical arti-cles about Computers, Electronic Circuits. Device Fabrication, Power Switchgear, etc. Please send details of your qualifications to: Box No. 1752

TRAINEE RADIO OFFICERS

First-class, secure career opportunities.

A number of vacancies will be available in 1982/83 for suitable qualified candidates to be appointed as Trainee Radio Officers.

If your trade or training involves Radio Operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation.

Candidates must have had at least 2 years' radio operating experience or hold a PMG. MPT or MRGC certificate, or expect to obtain this shortly.

On successful completion of between 36 and 42 weeks specialist training, promotion will occur to the Radio Officer grade.
Registered disabled people may be considered
SALARY \& PROSPECTS
TRAINEE RADIO OFFICER: $£ 4,357$ at 19 to $£ 5,203$ at 25 and over. On promotion to Radio Officer: $£ 5,968$ at 19 to $£ 7,814$ at 25 and over. Then by four annual increments to $£ 10,662$ inclusive of shift working and Saturday and Sunday elements.

For full details please contact our Recruitment Officer on Cheltenham (0242) 21491 Ext. 2269 or write to her at:
Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire
GL52 5AJ
THE OPEN UNIVERSITY
FACULTIES OF SCIENCE AND TECHNOLOGY

MICROPROCESSOR MAINTENANCE ENGINEER

Applications are invited for the post of microprocessor maintenance engineer in the Interfaculty Electronics Facitity.
The successful candidate will be a senior member of a team of electronic engineers and technicians in the facility. He/she will complement the team by providing the major input for maintenance and servicing of micros. There is both analogue and digital expertise in the team, the latter including microprocessor experience. The successful applicant will work largely on his/her own on the servicing of micros, with back-up where possible.
The work will appeal to someone who is keen and interested in keeping up to date in the fast moving world of micros and associated technologies.
Appropriate training will be arranged as necessary. Qualifications of HNC level or equivalent are expected, although proven experience will be given full consideration.
Salary will be on the $T 7$ scale: $£ 7,605-£ 8,542$ per annum Further particulars and an application form are available from Mrs S. McBrearty (4355/1), Faculty of Technology, The Open University, Walton. Hall, Milton Keynes, MK7 6AA, or telephone Milton Keynes (0908) 653941: there is a 24-hour answering service on Milton Keynes 653868.
Closing date for applications: 14 th September
(1635)

2-WAY RADIO SERVICE TECHNICIAN

Experienced in servicing V.H.F. and U.H.F. Land Mobile Equipment, required for expanding COMMUNICATIONS COMPANY in STAINES.
SALARY: Commensurate with experience.
CONTACT: Chris Turner,
FRANK CODY ELECTRONICS LTD STAR HOUSE, GRESHAM ROAD, STAINES, MIDDLESEX
Or telephone Staines 62682 for an appointment

Clossified

Electronic Engineers salaries up to £13k

VIDEO is one of the World's fastest growing industries, and McMichael Ltd. is in the forefront of advanced video technology. We need young dynamic electronic engineers at all levels to join prestige high technology
project teams.
As an analogue or digital video engineer, you would be involved in such projects as, video conferencing, broadcast effects, laser video transmission, precision displays, and other projects.

Our project teams are based at our new research and development Laboratories in Stoke Poges, Bucks., set in 37 acres of ground, with extensive sports and social facilities.

If you are experienced in high speed digital processing or analogue video, write or phone for an application form today.
McMICHAEL LIMITED
Sefton Park, Bells Hill, Stoke Poges, Slough SL2 4DY
Telephone Fulmer (02816) 2777 Telex 849212

£25,000?

1. PROJECT MANAGER To lead the development of a program mable controllers - Intel based. Circa £12,000.-Berks.
2. RF DESIGN ENGINEER To develop software packages for PDPIILS 111 Computers as part of ATE Pascal needed. Circa $£ 10,000$. - Herts.
3. PROJECT LEADER To lead team with background of radar sonar or EW systems. f , 16,000 overseas allowance. - Holland.
4. DEVELOPMENT ENGINEER Design and develop communications systems with RF, Analogue and Digita experience. Circa $£ 12,000$, Essex.
5. SOFTWARE ENGINEER To develop software packages for PDPII S 111 Computers as part of ATE Systems. Experience in Macro 11,
Fortram. £10.000. - Herts.
6. ELECTRONIC ENGINEERS To develop and test analogue circuits with digital computer interface for electron suscroscopes
E11,000.-Sussex.
100 s of other electronic and compute vacancies to $\mathbf{£ 2 5 , 0 0 0}$

Phone or write: Roger Howard C.Eng., M.I.E., R.E., M.I.E.E.

CLIVEDEN CONSULTANTS

87 St. Leonard's Road Windsor, Berks. Windsor (07535) 57818/58022

ARTICLES FOR SALE

THE SCIENTIFIC WIRE COMPANY P.o. Box 30, London, E. 4				
emameleo Copper wire				
SwG	116.	b. Boz.	402.	202.
81029	2.76			60
301034	3.20	1.80	. 90	. 70
351040	3.40	2.00	1.10	80
411043	4.75	2.60	2.00	1.42
47	8.37	5.32	3.19	2.50
481049	15.96	9.58	6.38	3.69
SILVER PLATEO COPPER WhRE				
141030	6.50	3.75	2.20	1.40
TIMNEE COPPER WIRE				
Prices include P\&P. YAT and Wire Data PaE lor list Dealer enquiries welore.				
Aeg Ottice: 22 Coningsty Gardens.				

STOCK SURPLUS

$35,000 \quad 0.2$ inch red leds available as 1 lot or in 1000 s . Offers to:
Box No. 1760

TELEVISION SERVICE ENGINEER

We are an expanding Television Rental and Retail company with a vacancy for an additional Television Service Engineer.
Suitable applicant will preferably hold an R.T.E.B. certificate or be training towards this qualification.
The post is directly responsible to the Service Manager.
A clean driving licence is essential.

A spacious flat is available if required.
Hydes of Chertsey Ltd., 56/60 Guildford Street, Chertsey, Surrey. KT16 9BE. Chertsey 63243.
(1434)

11, Westbourne Grove London W2.01-229 9239 112961 APPOINTMENTS ELECTRONICS to $£ 15,000$ MICROPROCESSORS COMPUTERS - MEDICAL DATA COMMS - RADIO

Design, test, field and

 support engineers - for immediate action onsalary and career ad vancement, please contact.

Gechnomark

Westbourne

[^9]John-F.-Kennedy-PI. 10. 3300 Braunschweig. Tel. (05 31) 45535

Vollgummi-Gittermatte

Die beste Werktischauflage antistatisch, $2 \mathrm{M} \Omega / \mathrm{cm}$ Modell I 540×380 Gitter 90×100 Modell II 625×375 Gitter 45×50 Modell III 700×450 Gitter 45×50 Dicke 25 bzw. 20 mm 1738
175

RTTY/CW DECODER - Low cost kit with alphanumeric LED display, 45 and 50 baud, $5-30$ $£ 2.95$ (refundable). Sae enguiries, Macritehie Micros, 100 Drakies Ave, Inverness.
(1736)

BRIDGES, waveformutransistor analysers. Calibrators, Standards. Millivolimeters. Dynamomenal generators - sweep, lowi distortion, true RMS, audio, FM, deviation. Tel. 040376236

GARDLINE SURVEYS SEISMIC ENGINEERS

Required for high resolution shallow seismic work with this leading Hydrographic and Marine Geophysical Company. Must be experienced on:

DFS III, DAS 1A or MDS 10

Good salary, sea-going allowances, leave arrangements and Company Pension Scheme Benefits.

EXCELLENT PROSPECTS

Golden opportunity to join a dynamic, fast-growing Company. Please write, quoting WW200, to:

The Managing Director, Gardline Surveys
Admiralty Road, Great Yarmouth or telephone 0493 50723, ext 200, Monica Goff

WEST YORKSHIRE METROPOLITAN COUNTY COUNCIL

The Directorate's radio communication system presently consists of a network of approximately 650 vehicle-mounted radios, 5 VHF transmitter sites and numerous land lines.

A RADIO ENGINEER

(Post ref: ES76 006)

is required to work from Chantry House, Wakefield, to be responsible for the planning and maintenance of the system. Applicants should have an appropriate professional qualification, (e.g. M.I.E.R.E.), and experience in design, maintenance and repair of radio communication equipment is essential.

Salary $£ 9,528-£ 10,581$ (award pending)

2 RADIO TECHNICIANS

(Post ref: ES37 010/011)
are also needed to assist the Engineer in providing an effective service of operation, maintenance and repair of the system. Applicants should hold a technician qualification and experience in the maintenance and repair of radio communication equipment is essential.

Salary £6,501-£7,137 (award pending)
Further information from Mr J. H. James, tel: Wakefield 367111, ext 4406.
Applicatiorıs welcome from disabled people.
Application forms from the:
Directorate of Traffic, Highways and Engineering, Room 238, County Hall, Wakefield WF1 20W
to be returned by 10 September, 1982.

Perforated Metals - Screens Plastics, Wire Meshes, Sifting Media, Cable Tray, Gratings, direct from Manufacturer's Stock. We can cut to size.
We specialise in one-offs or large quantities.

GRAEPEL PERFORATORS

 LTD.Unit 1-8, Charles Street. Dept. Ws, Walsall, Staffs WS2 9LZ.Tel. 0922 611644:611414. Telex 335291.

ARTICLES FOR SALE
INSTRUMENT BARGAINS SCALE AMP Multi Rana Gatvo EI5, MICROMETER
SOLIO DIALECTIC TESTEA

 NEW HALEPAICE BANKRUPT STOCK. Sae for details.
CTC DEW POINT MYGROMETER PRT Non optical 52

 mutiplexed LED Displays. ER, SO Instruments, Old H 81
 (173n

TELERADIO

For low cost instruments. Freq meters, audio \& RF generators. Distortion analysers, etc. Assembled \& kits. Illustrated lists sent on request.

325 Fore Streat, Edmonton London NS OPE
Tel: 01-807 3719

TO MANUFACTURERS, WHOLESALERS BULK BUYERS, ETC.
 LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
 SEMICONDUCTORS, all types, INTE GRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERA MICS, PLATE CERAMICS, etc
 ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
 ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE TELEPHONE: 445 0749/445 2713
 BROADFIELDS \& MAYCO DISPOSALS
 21 Lodge Lane, North Finchley, London, N. 12

BUNG NEW ALUMINUM

storage cases, 2 sizes available: $26^{\prime \prime}$
$15^{\prime \prime} \times 13^{\prime \prime}$ and $30^{\prime \prime} \times 14^{\prime \prime} \times 16^{\prime \prime}$
Many uses from $£ 49.95$ including VAT Carriage $£ 5$ per box
Tel: Southampton (0703) 431323

POWER V MOS-FET

 TECHNOLOGYWe specialise in all aspects of this important subject. A comprehensive service is offered to individual or OEM users, including: * Hitachi Supertex and RCA V MOOS-FET from stock.

+ VMOS.
- V MOS.FET power modules from stock. * Competitive prices (120 watt modules £15.45, 1 off).
* Printed circuits and kits.
* Data books and apolication notes. * Design, evaluation and advice service. Catalogue/sample data sent free (50p
appreciated towards post and packing). appreciated towards post and packingl
Phone 0251422303 and ask Richard about your application requirement or write:

AUDIO TECHNOLOGY
Freepost, Church Crookham
Aldershot, Hants. GU13 0BR

WORLD'S BIGGEST INFORMATION SERYICE

By return poat - service/workshop manuats. Over 2.000
Sony - over 300 difterent CTV plus huge stocks VCF/VI Audioforeign and UK. Any single service sheot $\mathrm{f} 1+$ sae Repair data named
TV $£ 6.50$ (with circ. $£ 8.501$ SAE
 azine:price ins
publications.
nswn

(8493)

EXIDY SURPLUS SALE

We have thousands o these parts for $1 / 2$ PRICE \& UNDER NO REASONABLE OFFER REFUSED ALL ITEMS BRAND NEW

$$
\begin{array}{lll}
\hline \text { 74LSO4 } & \text { 741S157 } & \text { 3130 OP AMP } \\
\text { 74LS05 } & \text { 74LS373 } & \text { 6850 ACIA } \\
\text { 74LS32 } & \text { 74LS373 } & \text { 6502 Processo } \\
\text { 74LS10 } & \text { 74LS365 } & \text { 4027 RAM }
\end{array}
$$

7805 1 AMP 5 V RE
LSI Breakour TV Game Chip PCB for Breakout TV Game 4700 MFD 10 V IK Resisitors $1 / \mathrm{WW}$ Sockets: 40 PIN, 24 PIN. 20 PIN, 16 PIN, 14 PIN loystick Piastic Holders (Over 1.000 sets) Transformers for Commodore Pet: 8:0:8 SAMP. $16 \mathrm{~V} / \mathrm{AMP}, 22 \mathrm{~V} / \mathrm{AMP}, 240 \mathrm{~V}$ Primary Telephone Ånswering Machines - All faulty

TEL: 01-440 7033

INVERTERS
High quality DC-AC: Also "no break' (2ms) static switch, 19" rack. Auto Charger.

COMPUTER POWER SYSTEWS interport Mains-Store Ltd. POB 51, London W11 3 BZ Tél: 01-727 7042 or 0225310916 (9101)

STYLI ALL TYPES supplied, send SAE for price list. Watts Radio, 8 The Apple Marker,
Kingston, Surrey.
(1709)

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone cransformers, components, degassing sulicons
rubber, resin, epoxy. Lost wax casting for brass bronze, silver, etc. Impregnating coils, transformers, compenents. Vacuum equipment, low cost, used and new. Also for CRT regunning metallising. Research \& Development. Barratts, Mayo Road, Croydon CR0 2QP. 01-684 9917. (9678)

RACAL COMMUNICATIONS

 RECEIVERS$500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}$ wide. RA17L - £175. $500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}$ wide. Rair -E 175.
RA117E - f 225. A few sets avallable as new at 1 1175 extra. All receivers are air tested and cali-
£ $\mathrm{f75}$ extra. All receivers are air tested and carmanual, dust cover, in fair used condition. New black metal louvred cases for above sets $£ 25$
each. RASB0 - ISB - \$SB - $\mathbf{1 7 5}$. RMZ18 SSB - ISB and fine tune for RA117 - E50. TRANSMITTER DRIVE UNIT RAT9. $1.5 \mathrm{mc} / \mathrm{s}$ $30 \mathrm{mc} / \mathrm{s}$ - SSB - ISB - DSB - FSM - CW £150. AERIAL TUNING UNIT and protection unit MA197B - C25 to E50. DECADE FREQUENCY GENERATOR MAB506 Solid state synthesiser for HAA79 or RA117 - RA217 - RA1217 - £150 to $£ 200$. MA250- $1.6 \mathrm{mc} / \mathrm{s}$ to $31.6 \mathrm{me} / \mathrm{s}-£ 150$ (New). MAX59G - precision frequency stan-
dard - $5 \mathrm{mc} / \mathrm{s} 1 \mathrm{mc} / \mathrm{s} 100 \mathrm{khz}-\mathbb{E} 100$ to $£ 250$. dard - $5 \mathrm{mc} / \mathrm{s}$ imc/s
RACAL MA152 - Standing wave ratio indica. tor. FX2mc/s - $25 \mathrm{mc} / \mathrm{s}$ Power up to 1000 watts - 50 ohms - Auto trip switch - Transistor mains $100-250 \mathrm{AC}$, new and boxed - $£ 40$. RACAL COUNTER 836 (9036) $32 \mathrm{mc} / \mathrm{s} 7 \mathrm{~m}$ circuit design - tested with manual - f 50 to $\mathrm{f75}$. OSCIUOSCOPES COSSOR COU150-35mc/s Twin Beam - Solid State - f 175 with manual. TEXTRONIC OSCILLOSCOPE 647 and 647A Solid State $-50 \mathrm{mc} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ bandwidth - $£ 250$ and $£ 350$. Tested, circuit and instructions. Racal counter $801 \mathrm{M}-125 \mathrm{Mc}-\mathrm{S} £ 50$.
IMAGE INTENSIFIER ASSEMBLY - XX 1060 (Mullard). Very high-gain seff-focusing image luminance gain 35,000 . $£ 12$ (used).

All items are bought direct from H.M. Government. being surplus equipment. Price is exworks. SAE for all enquiries. Phone for appointment for demonstration of any item. John's Radio, Whitehall Works, 84 Whitehal Road East, Birkenshaw, Bradiord BD11 2ER. Tel. (0274) 684007. V.AT. and Carriage extra.

CAPACITY AVAILABLE

TW ELeCtronics LTD.

THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a professional subcontractor. Such an undertaking requires cerain
TW are able to satisfy all of them quality, competitive pricing, firm delivery, and close co-operation with the customer.
Assembled boards are 100% inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completad boards is issued with a signed certificate of conformity and quality - our final assurance.
for further details, contact us at our new works:

> Blenheim Industrial Par Bury St. Edmunds Suffolk IP33 3UT Tel: 02843931

BATCH PRODUCTION wiring and assembly o sample or drawings. McDeane Electricals Ltd, 19b Station Parade, Ealing Common, London

PCB ASSEMBLY/wiring from drawings or sample. Very competitive rates, free or sample. Very competitive rates, free
delivery and collection. Swift, quality serdelivery and collection. Swift, quality ser-
vice. - Ring Julie 01-603 7311 .
ELECTRONIC DESIGN SERVICE. Immedi ate capacity available for circuit design and development work, PC artwork, etc. Srnall batch
and prototype production welcome. - E.P.D.S. Lid., 1 A Eva Road, Gillingham, Kent. Tel: Medway (0634) 577854 .

WANTED!

all types of scrap and REDUNDANT ELECTRONIC 8 COMPUTER MATERIALS

th precious metal cont

TRANSISTORS $\&$ PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS

THE COMMERCIAL SMELTING \& REFINING Co. Ltd. 171 FARRINGDON ROAD LONDON ECIR 3AL Tel: 01-8371475

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
 86 Bishopsgate Street
 Leeds LS1 4BB
 053235649

WANTED
 Scrap and re-usable mainframe computer and industrial electronic equipment
 E.M.A. Telecommunications Engineers, Offord, Woodbridge, Suffalk. Tel. 039-45 328.
 (1720)

WANTED: Redundant test equipment - receiving and transmitting equipment - valves -
plugs and sockers - syncros, etc. Phone: John's Radio, 0274 684007, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER.

WANTED FOR CASH: 7F7, 7N7, 53, 6L6 metal, 304 TL , 4 CX 1000 A , all transmitring,
special purpose valves of Eimac/Varian. DCO, special purpose valves of Eimac/ $\operatorname{Vrian.}$,
NC, 10 Schuvler Avenue, North Arlington, New NNC, 10 Schuyler Avenue, North Arlington, New
Jersey 07032 , USA.

PHONE YOUR CLASSIFIEDS TO IAN FAUX

ON 01-661 3033

Classified

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy,

 Prototypes, Final AssemblyQuality workmanship by professionals at economic prices.
Please telephone 09.767 1233 for advice or further details.
1 FRANCISCAN ROAD
TOOTING, LONDON SW17
(1391)

Micro Processor Design
Our team of experts offer the complete sarvice from Design to Manufacture
Artwork Prototype Development Teating Board Manufacture Assombly Packaging

DESIGN SERVICES. Electronic design development and production service available for digital and analogue instruments. RF Transmit systems. 20 years' experience. R.C.S. Electronics, Wolsey Road, Ashford, Middlesex. Phone Mr Falkner 53661.
(8341
DESIGN AND DEVELOPMENT, ANAL OGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Adenmore Limited, Unit 103 Liscombe, Bracknell, Berks. Tel: Bracknell 52023. $(656$
SMALL BATCH PCBs produced from your artwork. Also DIALS, PANELS, LABELS. Camwork. Also DIALS, PANELS, LABELS. Camera work undertaken. FASI Details: Winston Promotions, 9 Hatton Place, London ECIN 8RU. Tel. 01-405 4123/0960.

London ECIN 8RU. Tel. 01-405 4123/0\%0, (9794)

	CIP CONTPACTAC
	VICES
A small Company with experienced staff can offer the following sub-contract services:	
Printed circuit board assembly from free	
- procurement	
Hand soldering	
- Chassis wiring and cable harnesses	
Printed circuit layout and artwork production	
* Testing facilities	
* Modifications and repairs	
* Small or large production quantities	
Let us know your requirements - well show you our quality.	
LONGBOW ELECTRONICS LTD 21 Clifford Road. London SE25 5.JJ	
	(1742)

BOARDRAVEN LTD.

PRINTED CIRCUIT BOARDS

 Manufactured to your specifications. Single/double sided. Very speedy deliverles on prototypes Comact:J. K. Harrison, Carnaby Industrial Estate, Brido ington. North Humberside YO15 30Y. Tel. 10262) 78788 .
(1198)

SHEET METAL WORK, fine or general fron panels chassis, covers, boxes, prototypes, 1 off or batch work, fast turnround. - 01-449 2695. M Gear Ltd., 179A Victoria Road, New Barnet
Herts.

For more information contace Macro Control, 1 Cherrywood Drive. Asplay. Notts NG8 3NN. Telephone 0802 288281 (24 hour service). (1597)
control systems

- Video character \& image generation'systerns
- Micraprocessor controlled video systems
- Prototype \& small batch production capacity

20 Trenches Road,
Crowborough, Sussex.
Tel. (08926) 5069

30,000 SERVICE SHEETS IN STOCK

 COLOUR MANUALS ALSO AVAILABLE TV Monos £2, Transistor Radios £2, Tuners E.2, Tape Recorders, Record Players and Stereograms E2. Stamped addressed envelopes with all quota$53+$ stamped addressed envalope All valve radios $¢ 2$ Stamped addressed envelope please. Quote advert. no. with order. C.CARANNA 71 Beaufort Park, London NW11 6BX 01-4584882 (Mail Order) (1325)PROTOTYPE PLASTIC CASINGS, vacuum formed to yoursrequirements. Four-D Lta., 25 Burnett Park, Harlow, Essex. Phone 027929246
(1725)

AGENTS

AGENTS/DISTRIBUTORS REQUIRED

Leading manufacturer of digital

 multimeters seeks agents/distributors for new low cost range of instruments. Attractive margins available. Coverage required for all areas of UK andIreland. Ireland
ideal products for hobbyist/electrical outlets.

Please apply for detail to:
Box No 1747
Wireless World Classified
Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS
(Vacancy also exists for direct sales person)
11747

SPECIALIST

manufacturer of electrical and electro-mechanical joystick controls seeks UK representation

Flight Link Control
Alton (0420) 87241
Unit 12, The Maltings
Turk St, Alton

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and Wants
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £3 PER LINE. Average six words per line. Minimum £20 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 3$
- Cheques, etc., payable to "IPC Business Press Ltd." and cross "\& Co."

INDEX TO ADVERTISERS SEPTEMBER

Appointments Vacant Advertisements appear on pages 118-127

PAGE
PAGE PAGE
Acoustical Mfg. Co. Lid. 29

Albetros (Products) L 10
Ambit International	102, 114
Analogue Associates	28
Anglia Components	
Antex (Electronics) Lid.	Cover iii
AP Products	117
Armon Electronics Lid.	110
Audio Electronics	23
Autotype	95
Avel Lindberg (Cotswold	

Bach-Simpson (UK) Lid. 19,26
Barrie Electronics Ltd.
Baydiss
Beckman Instruments
Broadfield \& Mayco Disposals

Cambridge Kits
... 18
Carston Electronics L
14, 15
Chirern Electro
CIL Microsystems
Circuit Services.
Clark Masts Ltd.
Clef Products (Electronics) Lid
Compec Scotland
Crotech Instruments Lid

Darom Supplies
12, 101
Dataman-Designs
115
Display Electronics
101
Dwyatt Cavendish Co. Ltd. .. 98

Electricity Supply Hand Book
......................... 110
Electronic Brokers Ltd
3, 5, 7,9
Electrovalue Lid.
Electrical Review Shock Cards
........................... 112
Essex Electronics

OVERSEAS ADVERTISEMENT

AGENT

France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris.
Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22 -4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan
Telephone: 347051 - Telex: 37342 Kompass.

Galatrek International Ltd.................................... 2
GAS Electronics... 17

GP Industrial Electronics Ltd.............................. 24,25
Greenwood Electronics Ltd.

Hall Electric Ltd. .. 11
Happy Memories .. 107
Harris Electronics (London)................................... 5
Harrison Bros Electronic Distributors 13

Hart Electronic Kits Lid.
... 30
Hemmings Electronics and Microcomputers 96
Henry's Radio ... 2, 22

Labgear Ltd. .. 56
LFH Associates ..
Lion Viewdata TV
L\&J Computers..
92

MacDonald \& Co. (Pub) Ltd.
Midwich Computer Co. Ltd.
Modern Book Co.
13
Monolith Electronics Co. Id …........................... 116

Japan: Mr. Inatsukl. Trade Media - IBPA (Japan), B. 212. Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106. Telephone: (03) 5850581

United States of America: Ray Barnes, IPC Business
Press, 205 East 42 nd Street, New York. NY 10017 - TelePress, 205 East 42 nd Street, New York
phone: (212) 867 -2080. Telex: 238327.
phona: (212) 867-2080. Telex: 238327. . 1584 . 25 East Mr Jack Farley Jnr., The Farley Co., Suite 1584, 35 East 63074 .
Mr Victor A. Jauch, Elmatex International, P.O. Box 34607 , Los Angeles, Calif. 90034, USA - Telephone (213) 821.

Northern Electronics 2
Olson Electronics Lid. 6
Opus Supplies
1116
Orion Scientific Products Lid.
2
Pantechnic 92.93
PM Components4
.16
Pype Hayes Radio Ltd. 12
Radford Laboratory Ind. 96
Radio Components Specialists Redcliffe Magtronics Led. 91
Reprints 114
Research Communications Ltd. 105
Safgan Electronics Lid. 16
Sagin, M. R 26
Sandwell Plant Lid
Sarel Electric Ltd.95Sche Tronics Ltd

Sescom. Inc.
Sinclair Research LidSouth Midlands Communication
ion..$\begin{array}{r}28 \\ 21 \\ \hline\end{array}$
Special Products (Distributors) Lid 98
.6
Surrey Electronics Ltd. 12
Technomatic Lid $.98,99$
.. .96
Teloman Electronics Lta 104Tempus
Thandor Electronic113
.109
Thanet Electronics 20
Thurlby Electronics (Reltech Instruments) 116
Time Electronics Ltd 22
94
Valradio Ltd 10
Veco Electroforming/Photo-Etching Ltd 18
Vigilant Communications.
10
West Hyde Developments Lid 9, 19
Wilmslow Audio 16,92
Wireless World CircardsLoose Inser
White House Electronics 104

Mr Jack Mentel, The Farley Co., Suite 650, Ranna Bulld-

 ing, Cleveland, Ohio 4415 - Telephone: (216) 6211919 Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miam Beach, Florida 33140 - Telephone (305) 5327301 Mr Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E. Atlanta, Georgia 30305. Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055, Memorial Sie 119, Houston, Texas 77079 - Telephone \{713) 7838673.Canada: Mr Colin H. MacCulloch, International Advertis. ing Consultants Ltd., 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269 * Also subscription agents

Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 1NE. Telephone: (0734) 595844. Telex: 848659

The TC82-a significant development in temperature controlled soldering

The new Oryx TC 82 has feafures unique to any temperature controlled precision soldering iron. Available in $24 \mathrm{~V}, 50 \mathrm{~V}, 115 \mathrm{~V}$ and $210 / 240 \mathrm{~V}$ models, the TC 82 has a facility allowing the user to accurately dial any tip temperature between $260^{\circ} \mathrm{C}$ and $420^{\circ} \mathrm{C}$ by setting a dial in the handle without changing tips.

This eliminates the need for temperature
measuring equipment. You get faster and better soldering.
For 24 V models a special Oryx power unit connects directly to the iron and contains fully isolated transformer to BS3535, a safety stand, tip clean facility and illuminated mains socket switch.
The Oryx TC 82 is also extra-safe. Removing the handle automatically disconnects the iron from power source. Other TC 82 features include: Power-on Neon indicator in handle; burn proof cable; choice of 13 tip styles.

And more good news

The Oryx TC 82 iron costs only $£ 13.00$ (+VAT) and the power unit for 24 V operation $£ 23.00$ (+VAT).
The TC82 240 volt is also a vailable as a 30 watt general purpose iron at only $£ 4.95$ (+VAT).

Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 INE. Telephone: (0734) 595844. Telex: 848659

YOÚ́E LOOKING AT 31 ANTEX SOLDERING IRONS!

* The secret is in the range of bits for each odel, from 19 mm down to 0.5 mm ! No. "screws to seize up - push-on bits which over the elements to save time and energy.
The new range of Antex irons come with or without safety plugs fitted. They are tougher than ever, and about twice as efficient as conventional designs.

Specify low wattage, low leakage Antex Irons now.

ANTEX (Electronics) Ltd.

Mayflower House, Plymouth, Devon.
Tel: 10752) 66737718 Telex: 45296

[^0]: U.K.

 CLARK MASTS LTD...W.W.).
 Evergreen House, Ringwood Road,
 Binstead, Isle of Wight.
 England PO33 3PA
 EUROPE

 Tet: Iste of Wight (0983) 63691
 Telex: 86686

 GENK TECHNICAL PRODUCTS N.V.IW.W.) Woudstraat 21, 3600 Genk, Belgium.
 Telefoon 011-380831
 Telex 39354 Genant B

[^1]: LOMBARD HOUSE, CORNWALL ROAD, DORCHESTER, DT1 1RX
 Telephone: Dorchester (0305) 68066
 Prepaid or credit card orders normally shipped by return. Prices include first-class recorded post in UK
 p
 eslgns
 Securicor, Red Star, etc. at extra cost.
 VAT should be added at current rates.

[^2]: WW - 028 FOR FURTHER DETAILS

[^3]: WW - 042 FOR FURTHER DETAILS

[^4]: *B.Sc., M.Sc., Digital Equipment Co.

[^5]: Owight Cavendish Company Limited, Paxlort Hall. Ge North fod. LI Paxton. Huntingdon Can
 Tel O480 $215778215 / 53$ Tetex 32744 DWICAV G
 \qquad

[^6]: 1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled) 6 Constant current circuits, 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circults 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - 126 RC oscillators - 227 Linear cmos-1 28 Linear cmos-2 29 Analogue multipliers $30 \mathrm{Rms} / \mathrm{log} / \mathrm{power}$ laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - 135 Analogue gate applications - 2 .

[^7]: To IPC Electrical - Electronics Press Ltd. General Sales Department,
 Room 205,
 Quadrant House,
 Sutton,
 Surrey SM2 5AS

[^8]: Applications are invited for the above post in one of our speciatist laboratories for microprocessors.
 The work is interesting and varied involving the construction, development and maintenance of electronic equipment, mainly in a laboratory associated with Z80, 8085 and 8086 microprocessors. Candidates must be experienced in fault finding on digital equipment.
 Qualifications; HNC or HND or Advanced City \& Guilds or' equivalent. At least 7 years' relevant experience (including training period). Salary scale: $£ 6,782-£ 7,737$ inclusive of London Weighting.

 Further details and application form from M. E. W. Bowman Departiiental Superintendent, Department of Electronic and Communications Engineering, The Polytechnic of North Lohdon Holloway Road, London N 78 BB .

[^9]: P- ARTICLES FOR SALE

 Alleinvertrieb: Willy Kronhagel KG

 280A USERS. Compare our prices. All items ex
 stock cwo: Z80 AC PLI stock cwo: Z80 AC PL1, $£ 2.95 ;$ 280ACTC,
 E2.50;
 Z80 APIO
 2 INSTINCT ELECTRONICS, No. 7 Hogarth Ave., Ashford, Middz. 51519. Plus VAT and 50p P\& P .

 LIGHT METRE, 'Centronic' Model 110. New-unused. Cost $£ 678.50$, sell $£ 350$ or nearest offer. - Ring Mr Sturgess on Dartford (0322) 77457.
 (1751)

