

The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to 8 k $\times 8$ sizes, and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs, Bipolar PROMs, single chip microprocessors with external modules.
Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 \mathrm{k} \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes.

FEATURES

- Software personality programming/emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes including 2704 , 2708, 2716(3), 2508, 2758A, 2758B, 2516, 2716, 2532, 2732, 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764. Programs 25128, 27128 with adaptors.
- No personality cards/characterisers required.
- Use as stand alone programmer, slave programmer, or EPROM development system.
- Checks for misplaced and reversed insertion, and shorts on data lines.
- Memory mapped video output allows full use of powerful editing facilities.
E Built-in LED display for field use.
- Powerful editing facilities include: Block/Byte move, insert, delete, match, highlight, etc.
- Comprehensive input/output - RS232C serial port, parallel port, cassette, printer O/P, DMA.
- Extra $1 \mathrm{k} \times 8$ scratchpad RAM for block moving.

EP8000 8k x 8 Emulator Programmer $£ 695+£ 12$ delivery BSC8 Buffered emulation cable - £49 SA27128 Programming adaptor - £69 SA25128 Programming adaptor - £69 EP4000 4k $\times 8$ Emulator Programmer - £545 + £12 de-
livery BSC4 Buffered emulation cable f39 BP4 (TEXAS) Bipolar PROM Module - £190 - Prinz video monitor - £99 UV141 EPROM Eraser with timer - $£ 78$ GP100A 80 column printer - £225 GR1 Centronics interface - £65

Rather than try to show how electronics could help disabled people this month's cover by Geoff Harrold depicts the things you might choose to surround yourself with in entering our design competition.

NEXT MONTH

Compact electronic typewriter can be equipped with an RS232 interface to enable it to be used as a printer for computer output at a total cost for both typewriter and interface of just over half that of the lowest price commercial alternatives.
Loudspeaker measurement techniques designed to avoid the vagaries of personal prejudice and room acoustics normally require a calibrated microphone. But using the principle of reciprocity Peter Dobbins shows how three transducers can be calibrated with no specialized equipment.
Simple ultrasonic transmitters and receivers with appropriate control by 6502 or $\mathbf{Z 8 0}$ can give a robot distance-measuring capability, even in a noisy environment.
Current issue price 80p, back issues (if available) £1, at Retail and Trade Counter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
By post, current issue $£ 1.23$, back issues (if available) $£ 1.80$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Tel:01-661 8668
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5 AS.
Telephones: Editorial 01-661 3614. Ad vertising 01-661 3130. See leader page.
Telex: 892084 BISPRS G.
Subscription rates: 1 year $£ 14$ UK and £17 outside UK
Student rates: 1 year £9.35 UK and f 11.70 outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephoné 01-661 3248.
Subscriptions: Oakfield House, Perrymount hoad, Haywards Heath, Sussex RH 16 3DH. Telephone: 0444459188 Please notify a change of address.
USA: $\$ 44$ surface mail, $\$ 93.80$ airmail Business Press International,
Subscriptions Office, 205 E.42nd Street NY 10017.
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue Suite 1217, New, York, NY 10022. 2nd class postage paid at New York.
© Business Press International Ltd 1983 ISSN 00436062

DESIGN COMPETITION Last chance to enter

29 COMMUNICATIONS COMMENTARY
Spectrum battles Worid tv Black broadcasting
24 PLANNING FOR PLENTY by N. McLeod
90 MIXED LOGIC 20 by M. B. Butler
33 300BAUD FULL-DUPLEX MODEM by D. Richards

NEWS OF THE MONTH

934 MHz moves Digital VCR 4mbyte microfloppy disc
27 ORGAN INTERFACE FOR MICROCOMPUTER
by D. R. Easson
42
DIGITAL FILTER DESIGN PROCEDURE
by J. T. R. Sylvester Bradley
45 CHECKING OP-AMPS
by B. L. Hart
RESISTANCE MEASURING UNIT by W. J. Hornshy
BOOKS
Satelite tv reception Amateur tv

LETTERS TO THE EDITOR

Gate symbols Electromagnetic Doppler Design competition
53 evenis
33 Conterences Courses Exhibitions

54	ASPECTS OF AUDIO AMPLIFIER DESIGN by Y. Miloslaysky
57	LITERATURE RECIEVED Application notes and equipment data
58	FORTH COMPUTER - DISC INTERFACING by B. Woodrotte
62	CIRCUIT IDEAS 16 bil 280 Non-linear adc C-mos ram back-up
65	THEVENIN-NORTON TRANSIENT THEOREM by H. E. Stockman
66	CRAFT AND TECHNOLOGY by K. L. Smith
68	SINGLE CHIP PRINTER CONTROLLER by S. J. Pardoe
70	FREQUENCY CONTROL OF TURNTABLE MOTORS by P. A. Stockwell
72	NEW PRODUCTS Computing 'scope Tuneable low-pass filter Games joustick
74	RANDOM ECHOES

And then buy from us! Electronic Brokers, a leading supplier of Electronic Test and Measuring Equipment, has been established for over sixteen years. Our Distribution Division handles the major names in the industry: Philips, Fluke, Hameg and I.C.E. These products are stocked in depth at our premises in Central London, ready for

Philips Electronic Test \mathcal{E} Measuring Equipment

Philips PM6667-01 Count High resolution. 7 digit LCD display, computing counter ranging from 10 Dz to 120 MHz . Auto triggering on all waveforms and duty cycles. Sell diagnosis

Philips PM5712 Pulse Generator Small light weight, compact and portable unit suitable for laboratory use. Range 1 H to 50 MHz . Three pulse modes plus normal or inverted selection. Repetition, delay, compatible Extensive facilities for externa triggering and synchronous gating c846

Full Product range

PM2517X OMM - portable 4 diglt, autoranging PM3207 Oscihloscope, 15 MHz , $5 \mathrm{mV} /$ div, dual trace with TV triggering. PM32190 50MHz PM3219 Oscilioscope, 50 MHz . $2 \mathrm{mV} / \mathrm{div}$. dual trace,
storage, delayed sweep, alternate time base
c2675

Philips PM2521 DMC
Multi-function test bench DMM for lab and workshop use DC accuracy 0.03%, with resolution to $10 \mu \mathrm{~V}$. 1 nA and 10 ms on a 41 digit LCD display. Auto ranging, truc RMS. relative reference. dB. frequency and time measurements. Optional accessories extend the measurement capabilities. C338

ع172
£ 385

- Philips PM3217 50MHz Oscilloscope
High $2 m V$ sensitivity, dual trace $8 \times 10 \mathrm{~cm}$. display with small spot size, high light output and illuminated graticule, auto trigger mode, TV triggering on line and frame. Full $X-Y$ display facilities. Comprehensive second time base facility. Compact dimensions and low weight $£ 933$

Philips PM3254 75MHz
Oscilloscope -
Performance packed scope that you can carry into tough service environments. Fast trigger circuits meet all applications to over 100 MHz . TTL triggering is standard. A triggerview 3rd channel and full X - Y display facilitıes. Tough light weight compact package with shoulder strap E1092

- Philips PM5131 Function Generator
High performance, 0.1 Hz to 2 MHz generator with sine, triangular and square waveforms. Stepped and variable output attenuation. Vernier frequency adjustment. Variable DC offset. Internal and external sweep facilities. ML output. Ideal for educational, service and genera purpose laboratory use.

£ 395

£1196 sweep and alternate time base PM5107function Generator - sine, square, wave low PM5132 Function Generator - as PM5131, plus pos. and neg pulses, adjustable duty cycle

PM5501 Pattern Generator - 5 different PAL
pasterns for colour and black/white TV PM5519 I Pattern Generator - 20 combination PAL patterns, electronic tuning
PM5 705 Pulse Generator, $0.1 \mathrm{~Hz}-10 \mathrm{MHz}, 10 \mathrm{~ns}$, general purpose
£595 Supporting accessories available

prompt despatch to all parts of the Country. Electronic Brokers offer full technical support and expert advice on all aspects of electronic test and measuring. Visitors are welcome to our showroorns where all products are on display and demonstration. For customers wishing to order by phone, we offer a 24 hour answering service.

RF LINEAR POWER AMPLIFIERS

TYPE 9045
YMOS WIDEBAND LINEAR POWER AMPLIFIERS
4 watts and 20 watts max. RF output. Without tuning. Power gain 10 dB

TYPE $904510 \mathrm{KHz} .-100 \mathrm{MHz} .4$ watts

tts.

YPE 905610 KHz . 100 MHz 20 watts
TYPE 9064 As above with integral mains power supply unit TYPE $906720 \mathrm{MHz} .-200 \mathrm{MHz} .20$ watts
TYPE 9065 As above with integral mains power supply unit
\qquad f49.50 + f2.50 p\&p

TYPE 9052
TELEVISION LINEAR POWER AMPLIFIERS Bands IV or V. Channel group ' A ' 21-34, ' B ' 39-51, or 'CD' 48-68.

TYPE 9061150 mV . input, 10 mW . output. Adjustable gain

TYPE 905210 mW . input. 500 mW . output. Adjustable gain

TYPE 9054
YMOS LINEAR
POWER AMPLIFIERS
Tuned to your specified frequency in the range $1-250$ MHz .
TYPE $9054200 \mathrm{~mW} .-2$ watts input, 20 watts output. Gain adjustable $10-20 \mathrm{~dB}$
 TYPE 9068 A 1 -8 watts input, 80 watts output. Gain adjustable $10-20$ dB. 180+£10 p\&p TYPE 9057 As above with integral mains power supply unit

TYPE 9002 IN 9010
TWO STAGE GASFET
STRIPLINE PREAMPLIFIERS
Television bands IV or V. Channel group ' A ' 21-34, ' B ' 39-51 or 'CD' 48-68.

TYPE 9002 Two stage Gasfet preamplifier. N.F. 0.7 dB . Gain 25 dB . High Q filter TYPE 9004 UHF two stage Gasfet preamplifier. N.F. 0.6 d. . Gain 25 dB. Aligned to your pecified frequency in the range $250-500 \mathrm{MHz}$. High 0 filter.................................. $585+£ 2 \mathrm{p} \& \mathrm{p}$ TYPE 9012 Gasfet preamplifier mains power supply unit50+£2 p\&p TYPE 9010 Masthead weatherproof unit

TYPE 9026

GASFET/MOSFET

RF PREAMPLIFIERS

Aligned to your specified frequency in the range 1-250 MHz .
Masthead/local use.
TYPE 9026 N.F. 1.0 dB . Gain $10-40 \mathrm{~dB}$. variable \qquad f39.50 + f2 p\& p TYPE 9026 FM As above. Band II $88-108 \mathrm{MHz}$. \qquad £39.50 + $\mathrm{E} 2 \mathrm{p} \% \mathrm{p}$ TYPE 9035 Mastet. N.F. 0.6 dB. Gain tower supply unit for above

TYPE 9031

WIDEBAND RF

PREAMPLIFIER
$1 \mathrm{KHz} .-100 \mathrm{MHz}$, without tun ing. TYPE 9031 N.F. 3.0 dB . Gain 40 dB £ $\mathrm{E} 9.50+\mathrm{E} 2 \mathrm{p}$ \& p E $59.50+£ 2 p \& p$ TYPE 9084 FM TRANSMITTER $88-108 \mathrm{MHz} 100-1500 \mathrm{MHz}$. by $10 \ldots \ldots .$. $695+f 15 p \& p$ TPE 9085 As above with integral main

WW - 041 FOR FURTHER DETAILS

The vast range of available options allows you to customise the FM/AM 500 MicroMonitor to suit your specific needs. and weighing in at just 16 lbs your ‘field-tests can now be precisely that!
For a practical demonstration to prove our point contact:
Mike Dawson on 01-897 6446.

Fieldtech Heathrow Limited Huntavia House 420 Bath Road Longford Middlesex UB7 ()LL Telex: 23734 FLDTEC G

ESTABLISHED RADIO COMMUNCCATIONS BUSIIESS FOR SALE

as going concern. Home Office licensed. East Midlands situation. Business comprises: Large pur-pose-built radio control room, two-year-old 140 ft . radio mast. Business conveniently situated in town centre location adjoining large car park. Existing base station users. Operating radius 40 miles.

> For full details contact
> Messrs. Kirk Ogden 23 High Street, March Cambs, PE15 9JA
> Telephone number 3187

Electronic Brokers are Europe＇s leading Second User Equipment Company．We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer＇s sales specifications． When you buy used equipment from Electronic Brokers，it can be yours in just days．No waiting for manufacturers lengthy production schedules．All equipment is fully guaranteed．

ANALYSERS
 Dranetz

606－3 Line Oisturbance Monitor E2500．00 Hawlett Packard
141 T／8552B／B555A 10MHz－18GHz
 5420A Digital Signal Analyser E21，000．00 E407AB4 CA Nework Analyser 1800.00
Merconi
TF2303 Mod Meter
TF2337 Automatic Distortion Analyser．．． Bolartron
1972 TFA． £480．00 £250．00

Taktronix E4000．00

AA501 opt 01 Distortion $10 \mathrm{~Hz}-100 \mathrm{KHz}$ DAS 9103 opt 01 U2．Logic Analyser $\mathbf{~ 1 1 , 0 0 0 . 0 0}$ DF1 Display Formatter For 7001 ． $\mathbf{E} 50.00$ 308 Portable 8 Chennel 20 MHz Data 491 Spectrum Analyser 10MHz－40GHz $492[00 t 01,08]$ Spectrum Analyser
50 KHz 220 GHz $50 \mathrm{KHz}-220 \mathrm{GHz}$ ，3］Programmable Version
$492 \mathrm{O}[$ opt 01，2．
of 492
E20000．00 1401A Spectrum Analyser 1.500 MHz 7 L 5 Spectrum Analyser with opt 25
［Tracking Gen］and L3［ 50Ω input］ 20 H 5 MHz 7 L 12 Spectrum Analyser $100 \mathrm{KHz}-1 . \mathrm{GGHz}$
$\mathbf{E 8 0 0 0 . 0 0}$ 7L1 3 Spectrum Analyser 1 KHz －1．日GHz 7 L 14 Spectrum Analyser $10 \mathrm{KHz-1}$. 7 L 18 Spectrum Anatyser $1.5 \mathrm{GHz}-60 \mathrm{GHz}$ TR502 Tracking Generator（for 7L12， 138 14） TR503 Tracking Generator［for $492 / 496$ series］ 1001．．．．．2350．00 700116 Channel 100 MHz Sample Rate

BRIDGES

Boonton
63 H Induct
63 Inductance Bridge £2000．00 Marconi TF1313A O．1 \％LCR Bridge ．．．．．．．E775．00 TM4520 Set of Inductors． 5350.00 Wayne Kerr Wayne Karr
B642 LCRO．$\%$
SR26日 Source $\&$ Detector ．．．．．．．．．E7855．00
EB75．00

DVM＇s AND DMM＇s

Fluke 8022A 3 $1 / 2$ digit 0．25\％ Basic DC Accuracy 6 functions	
Basic DC Accuracy biunctions	
－bozen $3^{1 / 2}$ digt	
\％ 1 Accuracy 7 functions	
SEDM＇S	

Datron
1059 Be
MMS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．E700．00
Fluke
8502A $61 / 2$ digit DMM．．．．．．E1250．00日921 A Wide Band DVM ．．．．．．．．．．．E885．00

OSCILLOSCOPES

Hewlett Packerd | 1332 High Quality CRT Display |
| :--- |
| $9.6 \times 11.9 \mathrm{~cm}$ |
| $\mathbf{1}$ |
| 12.00 | 1720 a Dual Trace 275 MHz with Deiay

T＇Base and probe power
E250．00 1809A 100 MHz 4 Chemel Plug In $£ 2000.00$ 1821 A Timebase Plug in ．．．．$£ 1000.00$ Philipe
PMЗ232 Dual Beam 10MHz ．．．．．．£485．00 PM 3234 True Dual Beam Storage 1000 Taktronix．

Taktronix．
 05 Portable battery scope／DMM．D T

 delay T＇Base ．．．．．．．．．．．．．．．．．．．．1300．00 468 Oual Trace 100 MHz with Oigital
Storage 10 MHz Delay T＇Base $\mathbf{2 4 9 5 0 . 0 0}$
 200C Trolley for 400 Series ．．．．．．．E120．00 313 603100 MHz Mainframe ．．．．E1850．00 5223 Digital Storage $10 \mathrm{MHz} \ldots$ ． 52000.00 544050 MHz Mainframe ．．．．．．．．．£1000．00 544150 MHz Variable Persistance Storage
Mainframe． M704A Scope DC－200MHz Mainfreme． 7613 Storage Scope Mainframe $\mathbf{5 8 0 0 , 0 0}$ DC－100MHz
7633 Multimode Storage Scope Mainframe
E4500．00 DC－ 100 MHz Scope Mainframe $£ 4500.00$ 7834 Storage Scope Maintrame
$0 \mathrm{C}-400 \mathrm{MHz}$ 7 744 Dual Beam 400MHz Mainframe $\mathbf{\Sigma 7 7 5 0 . 0 0}$ 7854 Waveform Processing Scope
DC－400MHz 7904 opt $02,03500 \mathrm{MHz} \ldots 5350.00$

TEKTRONIX PLUG INS

We atock a complete range of Plug ine
for use with 7000 and 5000 eoriee Mainframes．

SIGNAL SOURCES

Hawlett Packerd．
612 A 450 1 230 MHz ．AM or Pulse
Modulation．Dutput $0.1 \mu \mathrm{~V}-0.5 \mathrm{~V} . \mathrm{E} 1500.00$ $616 \mathrm{~B} 1 . \mathrm{B}, 2 \mathrm{GHz}$ int or ext PCM／FM $1 \mu V-0.224 V$ valator 10 Hz 10 M 1000.00 $651 \mathrm{mV}-3.16 \mathrm{~V}$ ．
0.1320 A
3 3320A Frequency Synthesizer 0.01 Hz －
13 MHz ．日640日／01／02 AM／FM 1024 MHz ． 4950.00 9690 B Seeper Mainframe with 8698 B Plug In． $0.4-110 \mathrm{MHz}$ ．．．．．．．£4000．00 Marconi．
F2000 $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Low Distortion with $0-111 \mathrm{~dB}$ Attenuator in 0.1 dB steps $\mathbf{5 5 7 5 . 0 0}$

TF2002B with TF21 70 Synchronuzer $10 \mathrm{KHz}-88 \mathrm{MHz}$ AM／RM Modulation TF2120 0．0008Hz－100KHz Waveron．00 Generator．．．．．．．．．．．．．Es00．00
 Sweeper．Output $0.2 \mu v-200 \mathrm{mvess} 00.00$ ilipe
Philipa．Stareo Generator
E250．00

TEKTRONIX TM500

SEATE

AF501 Bandpass Fiter／Amplifier ．$£ 400.00$ AM501 Op Amp Gain 10，000 £300．00 DM502A True AMS $31 / 2$ digit DMM
 DC503A 125 MHz Counter $\quad £ 475.00$ DC505A 225 MHz Counter 8800.00 OC509 Counter／Timer 135 MHz £950．00 FG501 Function Generstor 0.001 Hz － $\mathbf{£ 3 7 5 . 0 0}$
1 MHz 1 MHz
FG501A Function Generator $0.002 \mathrm{~Hz}-\mathbf{8 2 5}$ 2 MHz FG502 Function Generator $0.1 \mathrm{~Hz}-11 \mathrm{MHz}$ FG503 Function Generator $1 \mathrm{~Hz}-3 \mathrm{MHz}$
PG50150 MHz Pulse Gen $\quad \mathbf{2 7 5 . 0 0}$ PG502 250 MHz Pulse Gen ．．．．$£ 1,450.00$ PG505 Pulse Generator $1 \mathrm{~Hz}-100 \mathrm{KHz}$ PG506 Calibration Generator ．．．$£ 1850.00$ PG507 Pulse Gen 50MHz ．．．．．\quad E 900.00
PG500 50．00 SC502 15 MHz Dual Trace Scope \quad ． 1000.00 ©504 B0MHz Dual Trace Scope 1250.00 SG503 Sinewave Generator 250 KHz SG504 Sig Gen $1050 \mathrm{MHz} \ldots \quad £ 1,850.00$ TG501 Tumemerk Generator ．．．．E950．00 TM515 Mainframe［5 wide）＿．．．．E350．00

TEKTRONIX TV TEST

EQUIPMENT
148 PAL Insertion Test Generator E4000．00
Please note：Prices shown do not include VAT or carriage．

1485C PAL／NTSC Dual Standerd Waveform Monitor

E3150．00 651 HA 12 ＂PAL Colour Monitor［Mint ］ 0.00 655HP－1 TV Cotour Picture Monitor
［NTSC＋PAL＋RGB］．．．．．．．．．．．． 3800.00 656HAPAL／SECAM Monitor ．．．E3900．00 671 PAL Monitor

MISCELLANEOUS

Bruel C Kjaer
2209 Sound Level Metar
E850．00
Datelabs
DL901 Transient Recorder ．．．．．．．． $\mathbf{5 5 0 . 0 0}$ DL905 Transient Recorder caes． 00 Ferropraph
ATS1 £298．00
Fluke
515 A Portable Calibrator DC／AC and
Fesistance with OC Resolution 0．24V $\mathbf{\Sigma 1 7 5 0 . 0 0}$
7604 Meter Calibrator ．．．．．．．．．．E2950．00
760A Meter Lalibrator ．．．．．．．．．．．E2950．00
845 AB NuH Detector ．．．．．．．．．．．．．．．．．E810．00 931 B Diff V＇Meter ．．．．．．．．．．．．．．．．．．．E1，000．00 2020A－46 Printer …．．．．．．．．．．E500．00 2020A－3－6 Printar＿．．．．．E500．00 Portable．Full Spec．on Request ．EB500．00 Hewlote Packard．
3552A Trans Test Set＿．．．．．．．1，500．00 5340A Counter 10Hz－1 日GHz B Digit 3403 a Modulator Fitted With 87320000 67 45 A S Perameter Test Set．Fitted with 11604A Universal Arms 0．1－2GHz

E2750．00 59308A HP－I Timing Generator E300．00
Recal
9301 A FF Millivoltmeter ．．．．．．．．．．．．．． $\mathbf{~} 485.00$ Tektroniz

595．00
106 Square Wave Generator 1 nS risetime $1 \mathrm{OHz}-1 \mathrm{MHz}$ without accessories．E175．00日32 Oata Comms．Testar．．．．．．．．．E825．00日33 Dats Comms．Testar ．．．．． 1350.00 2701 Step Attenuator $50 \Omega 0.79 \mathrm{~dB}$ in 1 dB Steps．DC to 2GHz ．．．．．．．．．．．．．．．．E895．00

Electronic Brokers Limited 61／65 Kings Cross Road LONDON WC1X 9LN Telephone：01－278 3461 Telex： 298694 Elebro G
WW－20？FOR FURTHER DETAILS

Fully Synthesised
10 Hz or 100 Hz steps Continuously Tuned 50 KHz to 30 MHz Modes LSB/USB/CW/AM/FSK Stability $\quad \pm 1$ part in $10^{7 / 0} \mathrm{C}$ Tuning Keypad/Spin/Decade Power Supplies $110 \mathrm{~V} / 240 \mathrm{~V}$ AC and 24 V DC

WE ANNOUNCE NEW MODELS

(a) SR 520 To meet new C.E.P.T. Spec for Ships Main Receiver.
(b) SR 522 with Preselector for Point to PointTTransportable.
(c) SR 530 As (a) above but MICROPROCESSOR/KEYPAD controlled, 200 channel memory, Scanning.
(d) SR 532 As (c) above but for Point to Point/Transportable.

OPTIONS. Full Remote Control by VHF Radio or Telephone Line, Dual Diversity, FSK Demodulator and 600 ohm Line Amplifiers.

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF-SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds; 24-hour format, auto. GMT/BST and Leap Year; STOPCLOCK, parallel BCD (íncluding weekday) output for alarm, etc., and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 km range. GET THE TIME RIGHT. $£ 69.60$.
LOSING DX UNDER QRM? DIG it OUT with a Tunable Audio Notch Filter, between your receiver and speaker. BOOST your DX/QRM ratio; 40 dB notch. Hear WEAK DX. £16.40.
HURRY! Prices go up at end of July. Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, by return postage, etc. Money-back assurance. So GET yours NOW.

CAMBRIDGE KITS

45 (WU) Old School Lane, Milton, Cambridge Telephone: 860150

PIBOTDIOR \& EALİRTIEE	COST EFFECTIV
ASSEMBLY LANGUAGE TRAINER The ideal way to learn machine language and become acquainted with the new "single chip" control oriented microprocessors. 1.8K of EPROM, 20 I/O lines, 112 bytes of RAM and a timer all in a single 28pin I.C. As featured in this, and subsequent issues of WW. COMPLETE KIT $£ 39.87$ 68705 DATA $£ 1.95$	
	Complet kit for this efficient C.D. system featured in March ' 82 WW . Includes: Case, improved PCB, ferrite transformer core, winding wire, all components, hardware and instructions.$\mathbf{£ 1 4 . 9 2}{ }_{\text {Capp }}^{\text {Pap }}$
ANALOGUE INTERFACE COMPLETE KIT $£ 9.39$ 16 WAY LEAD $\mathbf{E} 2.35$ extra	All prices include VAT. Add 45p P\&P. Mail Order only.
MAGENTA ELECTR 135 Hunter Street, Burton-0n-T	CS LIMITED (W19) Stafts. DE14 2ST, 2233 65435

EEEGTROVALUE

FOR THE LARGEST RANGE OF WORLDFAMOUS SIEMENS COMPONENTS IN THE U.K. INCLUDING ‘SIPMOS’ MOSFET POWER TRANSISTORS FROM 0.75 to 125 WATIS

Type	Case	\checkmark	A	w	PRICE
Buz 10	TO22	50	12	45	£4.78
Buz 10A	TO 22	50	12	45	¢4.78
Buz 15	T03	50	45	125	£18.70
Buz 20	TO220	100	12	45	66.25
Buz 23	T03	100	10	62.5	¢8.82
Buz 24	T03	100	32	125	¢16.20
Buz 30	TO220	200	6.5	0.75	E5.68
Buz 32	TO220	200	8.8	62.5	¢8.11
Buz 33	TO3	200	7.2	78	${ }^{68.11}$
Buz 35	TO3	200	9.9	78	£ ${ }^{10.52}$
Buz 36	TO3	200	22	125	£23.60
Buz 41A	TO220	500	4.3	62.5	¢7.77
Buz 43	T03	500	2.8	78	¢8.11
Buz 44A	TO3	500	4.8	78	£11.57
Buz 45	TO3	500	9.6	100	£18.18
Buz 46	TO3	500	4.2	78	¢9.32
Buz 48	TO238	500	7.3	83.3	¢23.30
Buz 50A	TO220	1000	2.3	75	£10.42
Buz 54A	T03	1000	4.6	125	£20.45
Buz 60	TO220	400	5.5	62.5	
Buz 64	TO3	400	11.5	100	£22.69
Buz 80	TO220	800	2.6	75	¢9.78
Buz 80A	TO220	800		75	£16.23
Buz 83	TO3	800	2.9	78	£14.58
Buz 83A	TO3	800	3.4	78	£15.29
Buz 84	TO3	800	5.3	125	¢26.45
Buz 84A	TO3	800	6	125	£23.58
SUMMER PRICE LIST - FREE					
Write, phone or call for latest EV price list packed with thousands of items. I.Cs, semiconductors, components, boxes, meters, tools, etc. at BETTER PRICES WITH BETTER CHOICE AND BETTER SERVICE from a capacitor to a computer					
ELECTROVALUE LTD.					
Head Office, Mail Order and Shop: 28 St Judes Road, Englefieid Green, Egham, Surrey TW20 OHB Egham (STD 0784: London 87) 33603: Telex 264475. North4945). Piease mention Wireless World when ordering or writing					

-

a selection from our huge stocks. All items reconditioned unless otherwise stated.

Visit our stand No. 507 at

DEXPO"/Europe 83

est Centre Hotel, London

DEC PDP 11/70

EQUIPMENT
SPECIAL BULK PURCHASE OF 11/70 PROCESSORS, PERIPHERALS AND OPTIONS EX DEC-MAINTAINED SITE enabling us to offer a wide variety of configurations and add-ons. Please let us know your requirements

DEC PDP11/60

SYSTEMS special offer 11/60 Processor with 256KB $2 \times$ RK06 Disk Drives + control LA36 Console Rack Cabinet OUR BARGAIN PRICE $£ 5250.00$

All items
ex DEC-maintained site

PDP8A/RL01 SYSTEMS

special purchase -- immaculate
as new condition 8A400-BR
Processor complete with
KK8A CPU
MM8AB 16KW Core
KCBAA Programmers Panel
KMBAA Option module
DKCBA Option module
$2 \times$ RLO1AK Disk Drive
RLBA Controller
H967 4ft. cabinet
$£ 4750.00$
DEC LSI PROCESSORS
11/03LXKD11HACPU,
KEV11 EIS/FIS, BDV1 1 AA
Terminator/Bootstrap
BA11N51/4 Chassis with Backplane and Power Supply No memory included
NEW £1200

11/O3NKD11QCPU.
KEV11 EIS/FIS, BDV11AA
Terminator/Bootstrap. BA11R
514" Chassis with Backplane and Power Supply, MSV11DD 32KW MOS

NEW E1495

DEC DISK DRIVES

RLO1A 5MB $\mathbf{E 9 9 5}$
RL8A RLO1 + 8A Ctl £2,245
RL11 RL01 + Unibus ctl
£2,495
RMO2AD [NEW] 67MB
88,500
RJMO2 RMO2 + Ctl £11,500
RP06AB 176 MB
£7,500
REP06 RPO6 + VAX ct
£11,000
RWPO6 RPO6 +
$11 / 70 \mathrm{ctl}$
£10,500 RX11 BD Dual Floppy $\mathbf{6 9 9 5}$ RX211BD Dual Floppy $£ 1,450$

DEC PRINTERS

AND TERMINALS

LA34 DECwriter IV EIA 300 baud
$£ 425$
LA36 DECwriter II 20mA
£295
LA36 DECwriter II RS232
£325
LA180-PD DECprinter [NEW]
£495
LS120 DECwriter III
EIA 1200 baud $\mathbf{£ 7 5 0}$ VT50 DECscope 20mA £199 VT50 DECscope RS232 £225 VT105 Graphics Terminal
$£ 950$
VT131AB
$£ 995$
VT132
$£ 875$

TEKIROTXICRAPHICS DSPLAYTEMMNAS

Special Purchase of Ex-Damonstrator Stock

TEKTRONIX 4014, 4015 and 4016 HIGH

RESOLUTION BIG SCREEN DISPLAY TERMINALS
19" Screen providing 4096X by $3120 Y$ displayable points or 8512 alphanumerics [models 4014 and 4015]

* 25 " Screen providing 4096X by 3120Y displayable points or 15,000 alphanumerics [model 4016]
* APL Character Set [model 4015]
\star Plot-10 compatible
* Prices include Enhanced Graphics Option, Extra Mernory Option and Programmable Keyboard Option 4014-1 £6950 4015-1 £7250 4016-1 £8950

Other Tektronix graphics equipment currently
available includes
4006-1, 4010-1
4027, 4051, 4952,
606/606A/606B
and 611

Electronic Brokers Ltd., $61 / 65$ Kings Cross Road, London WCIX 9LN. Tel::01-2783461. Telex 298694 Electronic Brokers

RADIOCODE CLOCKS
 SOLVE PROBLEMS

ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

NEW PHASE-MODULATION SYSTEMS

Until recently, atomic time and date information was only available on v.l.f transmissions using amplitude modulation. The RCC 8000 AM series of equipment uses these transmissions to offer high noise immunity and high accuracy, particularly at very long range.
The new RCC 8000PM series of equipment uses, for the first time, phase modulated tranmissions with massive radiated powers of up to 2 MegaWatts to offer long range, excellent noise immunity and no scheduled maintenance periods.

HEW PRODUCTS

The AM and PM series of Radiocode Clock equipment has been further expanded to include seven new models (from top) $8000 S$ - combined clock, frequency standard and optional stopclock. Internal standby power supply - with dual rate constant current charger. Time-event log - prints hours, minutes, seconds, milliseconds and day of year, on receipt of a log pulse. Speaking clock - time announcement or audio recording. Slave controller - total control of single-standard master/slave systems ie one pulse/sec. Dual standard slave controller - total control of two different and independent slave systems, ie. one pulse/sec and one pulse/half min. Slave distribution amplifier - maximum flexibility for the largest master/slave installations requiring dual standard operation, multiple circuits and complete master/slave backup.

NEW OPTIONS

A continuously expanding range of fully integrated software and hardware is available for both series of Radiocode Clock equipment. Standard opions now include
IRIG B precision serial o/p Time code generators
RS232/V24 1 mS resolution General purpose parallel o/p FSK record/replay system Keypad entry of alarm times Keypad entry of time/date

- Intelligent slave systems - Standard frequency outputs Stopclock operation
- Calibrated systems for increased accuracy

Circuit Services

Unit 19, Parkengue, Kernick Road Industrial Estate Penryn, Falmouth, Cornwall. Tel: Falmouth 76007

Accurate Digital Hultimeters at Exceptional Prices new analogue meter with continuity buzzer and battery scale

28 RANGES, EACH WITH FULL OVERLOAD PROTECTION

SPECIFICATION MIODELS 6010 \& 7030

- 10 amp AC/DC
- Battery: Single 9 V dry cell. Life: Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$ Weight: 400 g inc. battery. Mode Select: Push Bution AC DC Current: $200 \mu \mathrm{~A}$ to 10 A AC Votrage: 200 mV to 750 V - Resistance: 200Ω to $20 \mathrm{M} \Omega$
- Resistance: 200Ω to 20 Ms
- Input Impedance 10 MS LCD - O/load Protection: All ranges

OTHER FEATURES: Auto polarit auto zero, battery low indicator, ABS plastic case with tilt stand, battery and test leads included, optional carrying case.

HM 101 POCKET SIZE NIULTIMETER SPECIFICATION

- DC \& AC Voltage: $0.10,50,250,1000$ volts,

Decibels 2000 ohms/vo
Decibels: $\quad-10$ to +22
DC Current
Power Supply: One 1.5 V size ' A ' battery (incl) $\begin{array}{ll}\text { Power Supply } \\ \text { Size } \& \text { Weight: } & 90 \times 60 \times 29 \mathrm{~mm}, 92 \mathrm{gr} \text {. incl. battery }\end{array}$
Price battery
$\mathbf{E 5 . 5 0}$

Quantity discount for trade on application.

Add 15% to your order for VAT. P\&P is free of charge. ARMON ELECTRONICS LTD.

Cottrell House.53-63 Wembley Hill Road. Wemblev, Middlesex HA988H. England

The European name of Aerosol Excellence. Special cleaners for all
electrical contacts and switches.

Kontakt 60

Dissolves oxides and sulphides, emoves dirt, oil, resin and traces gainst erosion. Ensures perfect contacts.

Kontakt 61

Special cleaning, lubricating and anti-corrosion fluid for NEW (non oxydised) and specially sensitive contacts. An excellent lubricant for all electrical and electro mechanical systems

Spray Wash WL

A rapid cleaner for reliable washAng and degreasing of electrical equipment and components. For removal of dirt, grease, oil, solder ing residues and ot her impurities.

ALSO AVAILABLE:

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK10 Soldering Lacquer, K75 Cold Spray, K70 Plastic Spray, K88 Oil Spray, K701 Vaseline Spray, K90 Video Spray, K33 Graphite Spray, K100 Antistatic Spray K101 Fluid Spray and, of course, Positiv 20 positive photo resist for printed circuits.

Details from
Special Products Distributors Lid.
Tel: 01-629 9556. Telex: $\begin{gathered}86500 \text { (answerback RACEN). Cables: Speciprod, London, }\end{gathered}$

$5=10$

6 ft . dia. dishes, feed horns and electronics for use in 4 GHz satellite reception. GaAs Fet transistors, SMA connectors, P.T.F.E., etc. available. Please send s.a.e. for full details and data sheets.

Harrison Bros.

22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX
Tel. Southend (0702) 332338

GET aic
 powne

Module Number	Outpur Power Watts rms	$\begin{gathered} \text { Load } \\ \text { Impedance } \\ \Omega . \end{gathered}$	$\begin{aligned} & \text { DISTO } \\ & \text { T.HDD } \\ & \text { TYo at } \\ & \text { IKHz } \end{aligned}$	ORTION IMM 60Hz 7 KHz 41	Supply Voltaye Typ	$\begin{aligned} & \mathrm{S}_{129} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { WT } \\ & \text { gms } \end{aligned}$	$\begin{aligned} & \text { Prics } \\ & \text { ime. } \\ & \text { Vat } \end{aligned}$
-17.3)	15	ब. ${ }^{\text {a }}$	0.015%	<0.006\%	2 18	$76 \times 68 \times 40$	240	¢8.40
-14851	30	4.8	0.015\%	<0.006\%	± 25	$76 \times 68 \times 40$	240	¢ 9.55
trebtige	30 + 30	4.8	0.015\%	<0.006\%	± 25	$120 \times 78 \times 40$	420	¢18.69
+1ヶ124	60	4	0.01\%	<0.006\%	± 26	$120 \times 78 \times 40$	410	¢20.75
14Y128	60	8	0.01%	<0.006\%	± 35	$120 \times 78 \times 40$	410	£20 75
HYP24	120	4	0.01\%	<0.006\%	135	$120 \times 78 \times 50$	520	f25.97
-1v>48	120	8	0.01\%	<0.006\%	± 50	$120 \times 78 \times 50$	520	¢25.47
HY 364	180	4	0.01%	<0.006\%	± 45	$120 \times 78 \times 100$	1030	£38.41
HY 368	180	8	0.01\%	<0.006\%	± 60	$120 \times 78 \times 100$	1030	[38.41

Frequency response $(-3 \mathrm{~dB}$) $15 \mathrm{~Hz}-50 \mathrm{KHz}$. Input sensitiviev. 500 mV ims.
Ingut impedance $100 \mathrm{k} \Omega$. Damping facior $100 \mathrm{~Hz}>400$.
PRE.AMP SYSTEMS

Mordule Number	Module	Functions	Current Required	Price inc. VAT
HYG	Monu pre amp	Mc/Mag. Cal widge/Tuner/Tape/ Aux + Vul/Bass/T/eble	10 mA	f7.60
HY66	Steren pre ame	Mic/Mag. Cart, idge/Tuner/Tape/ Aux $+\mathrm{Vol} / \mathrm{Bass} / \mathrm{T}$ /eble/8alance	20 mA	¢14.32
HY73	Guitar meamp	Two Guitar (Bass Lead) and Mic 4 separate Votume Bass Treble + Mix	20 mA	¢15.36
11×78	Stereo pre amp	As HY66 less tone contro's	20 mA	$[14.20$

Most pre amp modules can be driven by the PSU driving the main power amp A separate PSU 30 is avalable purely for pre amp modules if required for
Please send tor details.
Mounting Boards
For ease of construction we recommend the $\mathbf{B 6}$ for modutes HY6-HY 13 fl.05
tinc. VAT) and the $\mathbf{B 6 6}$ for modules HY66-HY 78 £ 1.29 linc. VAT).

Moded Number	for Uro With	$\begin{gathered} \text { Price inc. } \\ \text { VAT } \end{gathered}$
PSU $21 \times$	1 or 2 HY30	£11.93
PSU41x	1 or 2 HY60, \times HV6060. $1 \times$ HY 124	¢13.83
pSU 42 x	$1 \mathrm{xHY} \mathrm{Cl}^{28}$	¢15.90
PSU 43x	$1 \times$ MOSt28	¢16.70
PSU 51x		£17.07

Model Number	For Use with	Price inc. VAT
PSU 52x	$2 \times \mathrm{HY} 124$	£17.07
PSU 53 X	$2 \times \mathrm{MOS} 128$	£17.86
PSU 54x	1. HY248	£17.86
PSU 55x	$1 \times \operatorname{MOS248}$	¢ 19.52
PSUJ $71 \times$	$2 \times$ HY244	¢21.75

[^0]| Modal Number | For Use with | Price inc. VAT |
| :---: | :---: | :---: |
| PSU $72 \times$ | $2 \times \mathrm{H}^{2488}$ | ¢22.54 |
| PSU $73 \times$ | $1 \times$ HY364 | ± 22.54 |
| PSU $74 \times$ | $1 \times$ HY 368 | \{24.20 |
| PSU $75 \times$ | $2 \times \mathrm{MOS} 248.1 \times \mathrm{MOS} 368$ | ¢24.20 |

Protection: Able to cope with complex ioads without the need for very special

Frequency resoonse (-3dB) 15 H - 100 kHz .
Inout impedance: $: 00 \mathrm{~K} \Omega$ Damping factor $100 \mathrm{~Hz}>400$.
'NEW to ILP' In Car Entertainmens
C15
or cassette niayer to a nominal 15 watls rms.
Very easy to use.
£9. 14 (inc. VAT
Mounts anywhere in car
Auromatic switch on
Outpul power maximum $22 w$ peak into 4Ω
Frequencer response $\{-3 \mathrm{~dB}) 15 \mathrm{~Hz}$ to 30 KHz , T.M.O. 0.1% at 10 w 1 KHz
S/N ratio IDIN AUDIO 800 B. Load Impedance 3Ω
Size $95 \times 48 \times 50 \mathrm{~mm}$. Weighi 256 gms .
C1515
Stereo version of C15
$£ 17.19$ (inc. VAT)
Size $95 \times 40 \times 80$. Weight 410 gms .

WITHALOT OF CHELP rnom ELECTAONICS LTD

PRofissional Il. IT THAT EVERY ENTHUSIAST CAN HANDIL...
 Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC 1	Preamp				£29.95
UP1X	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFi	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	$\mathrm{H}_{1} \mathrm{~F}_{1}$	$£ 54.95$
UP3X	$60 W / 8 \Omega$	Bipolar	Mono	$H_{1} F_{1}$	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	$\mathrm{H}_{1} \mathrm{~F}_{1}$	£74.95
UPSX	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mano	HiF_{1}	£74.95
UP6X	60W/4-8	MOS	Mono	$\mathrm{H}_{1} \mathrm{~F}_{1}$	£64.95
UP7X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiF_{1}	£84.95
Power Slaves					
US1X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	$£ 59.95$
US2 X	$120 \mathrm{~W} / 4 \Omega$	Brpolar	Power	Slave	£79.95
US3 x	$60 W / \Lambda-8 \Omega$	MOS	Power	Slave	£69.96
US4 X	120N/4-8ת	MOS	Power	Slave	¢89.95

Please note X in part number denotes mains voitage. Please insert ' O ' in place of X for 110 V , ' q ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay pos tage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D please add $£ 1$ to TOTAL value of order

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

WW - 010 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-$ 14 days' delivery. Other Ranges and special scales can be made to order.

Full Information from

HARRIS ELECTRONICS (London)
 138 GRAY'S INN ROAD, W.C. 1
 Phone: 01-837 7937 Telex: 892301 HARTO G

WW - 019 FOR FURTHER DETAILS

The Keithley 179A

sel

AM Jisurien AGHITAM:

Specification...Versatility ... Accuracy. . Price. In almost every major area the new 179A - a $41 / 2$ digit bench/portable DMM from Keithley Instruments sets some pretty impressive standards:

- 20 amp capability O Full function: 27 ranges including true RMS AC Measurement - Year's guarantee on spec 0.04\% DC accuracy O IEEE option Q Large display and $10 \mu \mathrm{~V}$ dc resolution.
For those requiring 10 times more sensitivity and an analogue output there's the 177, a unit with similar specification to the 179A. Both models are part of a vast range of test equipment from one of the world's leading manufacturers.
For more information fill in the coupon at the bottom of the page.

0Alternatively, phone our Instant Information
Service on
0734861287 now.

KEITHLEY

Keithley Instruments Lid
1 Boulton Road Reading Berkshiverga ONL
Telephone (0734) 861287
Telex 847047
l'd like to know more . . .
Name
Position \qquad
Company
Address \qquad

Telephone

WW - 007 FOR FURTHER DETAILS

Sowter Transformers

With 42 years' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE
 YOU NAMEIT! WE MAKEIT!
 OUR RANGE INCLUDES:

Microphone transformers (all types); Microphone Splitter/Combiner transformers, Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental trañsformers, Ultra low frequency transformers, Ulira linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop transformers. Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching
transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal despatch times are short and sensible. OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSTASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by return.
E. A. SOWTERLTD. (Established 19411, Reg. No: England 303990

The Boat Yard, Cullingham Road, Ipswich, P1 2EG, Suffolk, P.O. Box 36, Ipswich, IP1 2EL, Engfand Phóne: 047352794 \& 0473219390 : Telex: 987703G SOWTER

WW - 017 FOR FURTHER DETAILS

ANTENNA INSULATORS

SMC/CCJ1 Dipole Centre Junction, high strain capability (600 KGs) power rating up
to 2 KW P.E.P. Standard unit fitted with to 2KW P.E.P. Standard unit fitted with S0239 sockets, other connectors available.

SMC/CCJ2 Lighter duty version of CCJ1 moulded in carbon-loaded polypropylene, supplied with all hardware, in S0239 and BNC connectors. Weight 120 grammes.

SMC/P1 Strain insulator $81 / 2^{\prime \prime}$ OA in carbonloaded polypropelene, very light (80 grammes), virtually indestructible.

SMC/P2 Strain insulator as P1 but $31 / 2^{\prime \prime}$, weight 20 grammes.

SMC/AJU light duty centre junction designed for use with twin wire type feeders, $31 / 2^{\prime \prime} O A$.

A complete range of porcelain and pyrex strain, egg, and feedthrough insulators ex-stock.

SMC also stock a complete range of antenna wires, coaxial cables, connectors and rigging accessories, stocked in commercial quantities at competitive prices. Export enquiries welcome.

SOUTH MIDLANDS COMMUNICATIONS LTD.

RUMBRIDGE ST., TOTTON
SOUTHAMPTON SO4 4DP

Telex: 477351 SMCOMM G Tel: Totton (0703) 867333

SSU P.\&R. COMPUTER SHOP IBM GOLFBALL PRINTERS from $£ 70$ EACH + V.A.T.
 INTERFACE FOR IBM GOLFBALL $£ 40$ + V.A.T
 *BRAND-NEW LA36 DEC WRITERS - SALE £200 EACH + V.A.T CENTRONIC 779 PRINTERS - $£ 325$ + V.A.T
 CENTRONIC 781 PRINTER - $£ 350+$ V.A.T. POWER UNITS, 5-VOLT 6-AMP-£20 EACH FANS, PCBs, KEYBOARDS AND LOTS MORE 8-INCH IBM FLOPPY DISC DRIVES.
 COME AND LOOK AROUND
 SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, MALDON, ESSEX PHONE MALDON (0621) 57440

WW - 025 FOR FURTHER DETAILS

CLEFElectronic MUSIC

Count on quality
 THE NEW 듣ㅌ 6000 FREQUENCY COUNTER

5 Hz to 650 MHz range

- Switchable low-pass 60 kHz filter
- Selectable 0.1, 1.0 and 10-second gate times

Accurate frequency measurements need no longer cost the earth. Because the GSC 6000 now offers precision measurement capabilities, plus simplicity and flexibility, at a cost of only £274.25.
The Model 6000 is a high-precision 650 MHz frequency counter aimed fairly-and-squarely at any section in the electronics marketplace where accurate frequency measurements are required.
The 6000's combination of accuracy, versatility and state-of-the-art design makes it ideal for those difficult measurements in engineering labs., quality-control departments and service centres, and its attractive price places it firmly within the scope of the hobbyist market.

- Easy-to-Read 8-digit LED display
 - Simple touch-button controls
 - Streamlined front panel

GLOBAL SPECIALTIES CORPORATION

GSC (UK) Limited
Freepost-Saffron Walden, Essex CB11 3AQ Tel: Saffron Walden (0799) 21682 Telex: 817477

Just look at the Model 6000's basic specification - a full 650 MHz frequency counter boosted by such facilities as a switchable low-pass filter to prevent interference from high-frequency noise, a bright LED display with a built-in contrastenhancement filter and leading-zero blanking, aind simple pushbutton-activated selection of inputs, gate times, and filters. Applications? You name them - anything from measurements on transmitter frequencies to timebase checks on microprocessor systems. If you're not yet convinced that the Model 6000 is the state-of-the-art frequency counter for all electronics applications, call us today. Even if you are, still call us - you'll be delighted with the results.

CX80 colour MATRIX PRINTER

New low price
$\mathbf{£ 7 9 5}$ + V.A.T.
At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.

Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

Building a microprocessor board dedicated to a specific machine or task is just one of the many projects that can be undertaken with the ELE microelectronic and microprocessor teaching system.

A complete range of projects can be taught, from building simple electronic circuits to advanced engineering applications such as intelligent robotics.

Features

- Expandable - buy what you want when you want
- Modular - interchangeable components throughout
- Structured - provides a complete educational programme
- Ready to use - no extras to buy
- Comprehensive - over 50 items of equipment in the system

Our system is ...

For further
information and a free brochure, contact ELE at the address below:

ELE International
Eastman Way
Hemel Hempstead
Hertfordshire
HP2 7HB
England
Tel: (0442) 50221
Telex: 825239

PRINTED CIRCUITS

for wireless worlo projects

Audio compressor/limiter-Dec. 1975-1 s.s. (stereo) Cassette recorder-May 1976-1 s.s
Audio compander-July 1976-1 s.s
Audio preamplifier-November 1976-2 s.s
Additional circuits-October 1977-1 s
Stereo coder-April 1977-1 d.s $2 \mathrm{~s} . \mathrm{s}$
Low distortion disc amplifier (stereo)-September 1977-1 s.s
Low distortion audio oscillator-September 1977-1 s.s
Synthesized f m . transceiver-November 1977-2ds. $1 \mathrm{~s} . \mathrm{s}$
Morsemaker-June 1978-1 d.s
Metal detector-July 1978-1 ds
Oscilloscope waveform store-October 1978-4 d. s
Regulator for car alternator-Augusi 1978-1 s.s.
Wideband noise reducer-November 1978-1 d.s
Versatile noise generator-January 1979-1 s.s.
200 MHz frequency meter - January 1979-1 d s
High performance preamplifier-February 1979-1 s
Distortion meter and oscillator-July 1979-2 s.s
Distortion meter and oscillator-July $1979-2$ s.
Moving coil preamplifier-August $1979-1$ s.s.
Multi-mode transceiver-October 1979-10 d s
Amplification system-Oct. 1979-3 nreamp 1 poweramp
Digital capacitance meter-April 1980-2 s.s
Colour graphics system - April 1980-1 d.s
Audio spectrum analyser-May $1980-3 \mathrm{~s} \mathrm{~s}$
Multi-section equalizer-June $1980-2$ s.s.
Floating-bridge power amp - Oct $1980-1 \mathrm{ss}(12 \mathrm{~V}$ or 4 OV$)$
Nanocomp 6802 or 6809 - Jan.، July, 1981 - 1 d.s. 1 s.s
Cassette interface - July, 1981-1 s.s....
Eprom programmer - Jan., 1982
Modular frequency counters - March, 1981 - 8 s s.s.
Opto electronic contact breaker (Delco) - April, 1981-2 s.s
CB synthesiser - Sept. - 1 d.s..............................
CB synthesiser - Sept. - 1 d.s.
Boards and glassfibre roller-tinned and drilled. Prices include VAT and UK postage. Airmail add 30%, Europe add 10%. Insurance 10%. Remittance with order to

M. R. SAGIN, NANCARRAS MILL, THE LEYEL CONSTANTINE, FALMOUTH, CORNWALL

WW - 013 FOR FURTHER DETAILS

WW - 005 FOR FURTHER DETAILS

WW - 044 FOR FURTHER DETAILS

01-452 1500 Tbohnonatic Lid 01-450 6597

OFFICIAL DEALER

BBC Micro Computer System

Please phone for availability

BUSINESS, EDUCATION AND FUN SOFTWARE IN STOCK
BBC Model B £399
(incl. VAT)
Carr £8/unit Model A to Model B upgrade kit $\mathbf{f 5 0}$ Fitting charge $£ \mathbf{1 5}$ Individual upgrades also available
TELETEXT ADAPTOR $£ 195$ WORDWISE 8K ROM $£ 39$ TORCH $Z 80$ DISC PACK $£ 780$ WORD PROCESSOR 'VIEW' 16K ROM £52

FLOPPY DISC INTERFACE

incl. 1.2 Operating System £95 \& £20 installation

BBC FLOPPY DISC DRIVES

Single Drive $514^{\prime \prime}{ }^{\prime \prime} 100 \mathrm{~K} £ 235+\mathrm{f} 6$ carr Double Drive $514^{\prime \prime}{ }^{\prime \prime} 800 \mathrm{~K} £ 799+£ 8$ carr.
BBC COMPATIBLE DRIVES
These drives are self-powered and supplied in BBC matching colour cases
SINGLE: 100K £180; 200K £250; 400K £330 DUAL: 200K £350; $400 \mathrm{~K} £ 475$; 800K $£ 590$ DRIVE CABLES: SINGLE $£ 8$ DUAL $£ 12$ DISC MANUAL \& FORMATTING DISKETTE £17.50
Phone or send for our BBC leatied

CASSETTE RECORDER

BBC Compatible Cassette Recorder with Coun
ter and Remote Control
£26.50 + $£ 1.50$ carr.
Cassette Leads $£ 3.50$
Computer Grade Cassettes
S.

Sanyo Data Recorder Model DB1 101
$£ 39+£ 1.50$ carr.

MONITORS

MICROVITEC 1431 14in Colour Monitor $\mathbf{£ 2 4 9 + £ 8}$ carr MICROVITEC 203120 in Colour Monitor $£ 319+\mathbf{£ 8}$ carr KAGA 12 in RGB Monitor $£ 255+\mathbf{£ 8}$ carr ead for KAGA/SANYO RGB £10
ANYO HI RES GREEN MONITOR £99+£6 car SANYO HI RES RGB MONITOR $£ 445+£ 8$ carr.

BBC BOOKS
 (no Vat)

Basic on $\mathrm{BBC} \mathbf{£ 5 . 9 5}$
30 House Basic $£ 5.95$
Programming the BBC Micro $£ 6.50$
BBC Micro An Expert Guide $\mathbf{f 6 . 9 5}$
Assy Lang Prog. for BBC $£ 8.95$
6502 Machine Codes for Beginners $£ 6.95$

NEC PC 8023 BE - C

$100 \mathrm{CPS}, 80$ cols Logic Seeking, Bidirectional. Forward and Forward a
Line Feed, Line Feed, Auto Underline, Auto Underline,
Hi-Res and Block Hi-Res and Block
Graphics, Greek Char. Graphics, Greek Char
Set.
Only $£ 345+£ 8$ carr.

PRINTERS

SEIKOSHA GP 100A 80 cols 30 CPS Full ASCII and Graphics $10^{\prime \prime}$ wide paper Now only $£ 180+£ 6$ carr Now only $£ 180+\mathbf{£ 6}$ carr
GP250A $£ 235+\mathbf{~} \mathbf{8}$ carr.

EPSON RX80 and FX80

RX80 100CPS 80 col Tractor Feed $£ 298$ FX80 160CPS 80 col F \& T Feed $£ \mathbf{8 8 9}$ MX100 F/T3£425 (Carr./printer $\mathbf{E 8}^{\text {8 }}$)

Full specifi-
cation on request

Parallel Printer lead for $\mathrm{BBC} /$ Atom to most printers $\mathbf{£ 1 3 . 5 0}$ Variety of interfaces, ribbons in stock.
2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 13.50+£ 3$ p\&p

CONNECTOR SYSTEMS

RUGBY ATOMIC CLOCK

This $\mathbf{Z 8 0}$ micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 indepen-
dent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided.

> See July/August ' 82 ET1 for details. Built and tested $\mathbf{£ 1 4 5 + £ 2 \text { p\&p. }}$

MICROTIMER

6502 Based Programmable clock timer with * 224 switching times/week cycle 24-hour 7-day timer

* 4 independent switch outputs directly
interfacing to thyristor/triacs
* 6 digit 7 seg. display to indicate real time,

ONJOFF and Reset times

* Output to drive day of week switch and status LEDs.
Full details on request. Price for kit $\mathbf{£ 5 7}$

CONNECTOR SYSTEMS				
			Ls ${ }^{2} 5$ 	RIBBON CABLE $\begin{array}{lr}\text { 10-way } & 40 p \\ 16 \text {-way } & 60 \mathrm{p} \\ \text { 20-way } & 85 p \\ 26 \text {-way } & 120 \mathrm{p} \\ 34-\text { way } & 160 \mathrm{p} \\ \text { 40-way } & 180 \mathrm{p} \\ 50-\text { way } & \mathbf{2 0 0 p} \\ 64 \text {-way } & \mathbf{2 8 0 p}\end{array}$
	RS 232 JUMPERS	CONNECTORS		
TEXTOOL				既
	DIL HEADERS	$\underbrace{3 \times 2}$		

DISC DRIVES FOR THE FORTH COMPUTER

51/4"' Teac FD55 Slim Line Mechanisms.
FD55A 40 track SSDD 250kbytes unformatted
Bare: $£ \mathbf{1 3 5}$; Cased: $\mathbf{£ 1 5 5}$
$2 \times$ FD55A 40 track SSDD 500kbytes unformatted
Cased \times psu £350
FD55E 80 track SSDD 500kbytes unformatted
Bare: $£ 180$; Cased: $£ 205$ $2 \times$ FD55E 80 track SSDD 1 Mbyte unformatted

Cased + psu $\mathbf{£ 4 7 5}$
51/4" Mitsubishi M4853 Slim Line mechanism 80 track DSDD 1 Mbyte unformatted Bare: £225; Cased: $£ 245$ $2 \times$ M4853 2 Mbytes

Cased + psu £590
Single drive cable $£ 8$; Dual Drive cable $£ 12$
Other parts for FORTH COMPUTER available send SAE for details.

NEW COMPREHENSIVE CATALOGUE AVAILABLE
PLEASE SEND FOR PRICE LIST

SOFTY II INTELLIGENT PROGRAMMER

The complete microprocessor development system for Engineers and EPROMS or use in host computer by using softy as a romulator. Powerful editing facilities permit bytes, blocks of bytes changed. deleted or inserted and memory contents can be observed on ordinary TV. Accepts most $+5 v$ Eproms.
Softy II complete with PSU. TV Lead and Romulator lead $£ 169$

UV ERASERS

UV18 up to 6 Eproms $£ 47.50$ UV1T with Timer $\mathbf{E 6 0}$ UV140 up to 14 Eproms
 (Carr f2/eraser) All erasers are mains switchas fitted with terlocks.

'WIRELESS WORLD' PROJECTS

Semiconductors inc I.Cs., Transistors Displays, Connectors and Sockets for most projects are stocked by us
\star Special offer \star

2532	350p
2732	350p
$2764-25$	$450 p$
$27128-25$	£25
$4116-2$	$80 p$
$4164-2$	450p
6116 P	$\mathbf{3 5 0 p}$

BOOKS

CMOS Cook Book

 CRT Controller H/Book Z 80 Microcomp Handboo Programming the 6502 6502 Assy. Lang.... 6502 Applications 6502 Software Design 6502 Games..Large selection of databi........... $\mathbf{£ 1 0 . 2 5}$ ing books, books on BBC Ask for our list.

PLEASE ADD 40p p\&p \& 15\% VAT Stock items are normaly by return of post.

WW - 057 FOR FURTHER DETAILS

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR12X0
Telephone 077257560

WW - 018 FOR FURTHER DETAILS

Editor:
PHILIP DARRINGTON
01-661 3128

Deputy Editor:
GEOFFREY SHORTER, B.Sc.
01-661 8639

Technical Editor:
 MARTIN ECCLES

01-661 8638

News Editor:
DAVID SCOBIE
01-661 8632

Drawing Office Manager:
ROGER GOODMAN
01-661 8690
Technical Illustrator: BETTY PALMER

Advertisement Manager:

BOB NIBBS, A.C.I.I. 01-661 3130

BARBARA MILLER 01-661 8640

JULIAN BIDLAKE 01-6618641

Northern Sales:
HARRY AIKEN
061-872 8861

Midland Sales:
BASIL McGOWAN 021-356 4838

Classified Manager:
BRIAN DURRANT
01-661 3106

IAN FAUX

01-661 3033

Production:

BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director
DAVID MONTGOMERY
01-661 3241

Design competition

Although it is too early yet to know whether the outcome of our design competition will be successful, it is at least possible to say that the number of entries and variety of devices under development give grounds for encouragement.

From boxes intended to identify the contents of tins of food to quite exotic equipment concerned with cars, a great deal of imagination is being demonstrated by those who have registered their intention of entering the competition: there are more examples on page 67. It is possible, of course, that some of the ideas will remain exactly that - ideas. But the spur of a rather large money prize and the somewhat more intangible satisfaction of making people's lives more convenient and pleasurable will, without doubt, convert a significant number of nebulous notions into hardware.

It is not going to be easy. One of the hardest parts of a wide-open competition of this kind is to decide exactly what to design. Many needs can be better satisfied by a simple mechanical device than by a complicated piece of electronics: good judgement in this decision can be the most telling aspect of an entry. The next hurdle comes when it is discovered that the realization of an idea is not as straightforward as it was at first imagined, and the temptation to change one's mind
appears. There is nothing wrong with that, if there is still time before October to complete the work, but it is often the case that this approach leaves one with two half-baked projects instead of one welldone one. It is surprising how a little gentle research in the literature can straighten one out, when to all intents and purposes stuck fast.
The last date for registration is June 30. You do not have to present entries at that time: simply register your intention to do so before October. A panel of judges experienced in both engineering and user aspects of devices to assist handicapped people will take some time to arrive at their decisions, during which some entrants will be asked to come to London to discuss their designs and perhaps take part in a prize-giving ceremony, which may well be televised.
There are six prizes, but we expect to describe many more entries than the winning six during the subsequent year, so that even one of the designs not chosen as a winner could attract attention and may be adopted as a commercial proposition.
This is an interesting, socially valuable and possibly profitable competition. A large number of readers have already entered: there is still time for a great many more. You have a couple of weeks left to make up your mind.

Spectrum battles

Although the US Congress agreed late last year to the ratification of the WARC 1979 "Radio Regulations", many influential American groups continue to express disenchantment with the whole process of international frequency allocation and ITU procedures. Among the critics have been members of FCC who were most unhappy at the proceedings at the ITU Plenipotentiary Conference at Nairobi in Autumn 1982, and the "needless politicization" of the decision making. Although it is being suggested that the US should remain in the ITU it is being urged that, if "politicization" continues, the US should have available "a fully developed and workable alternative organization". However Kalmann Schafer, international affairs adviser to the FCC, believes that few important US interests have been surrendered and that "the day will come when the Third World realizes that disruption of ITU conferences will be against their own best interests".

The sort of problems that face the forthcoming ITU Conference on DBS planning for Region 2 is shown by the fact that both the UK and Argentina have listed the Falkland Islands - with 1800 residents and a lot of sheep - as an area they intend to serve by DBS. One suspects it might be less costly to provide every home with a v.c.r. and a large number of cassettes, or cable every habitation! Meanwhile the mere idea of having two different international spectrum regulatory bodies would seem the sure path to chaos.

World television?

That chaos is already close on h.f. was emphasised recently by Douglas Muggeridge, m.d. of BBC External Services when he delivered a blistering attack on the jamming of the broadcast bands by the Soviet Union and Eastern Bloc countries. He claimed that up to 80 per cent of usable frequencies are currently affected during peak listening hours and warned of an imminent breakdown of "law and order on the airwaves". Root of the trouble, of course, is broadcasting across frontiers without the agreement of the target country.

By 1986 the question of "world television" whereby direct broadcast satellites will send pictures across frontiers will be of practical concern: and despite what is sometimes suggested deliberate jamming of DBS transmissions is possible and would affect viewers in the whole of the coverage area. For years, international organizations have been discussing questions of "cultural or economic imperialism" and the potential cultural damage and loss of the "unique identity of a population after exposure to outside ideas and lifestyles". On the other hand Article 10 of the European Convention states: "Everyone
has the right to freedom to hold opinions and to receive and impart ideas without interference by public authority and regardless of frontiers". But what is a right to free speech to some, is malevolent propaganda to others!

In reality, of course, international regulation of the radio spectrum and the use of the airwaves to broadcast to other than your own people have been inconclusively debated for over 50 years. Did not the old International Broadcasting Union in May 1933 - on the initiative of a BBC plagued by Radio Luxembourg and Captain L. F. Plugge's Radio Normandie - resolve that the systematic diffusion of programmes or messages specifically intended for listeners in another country should be considered an "inadmissible act" - though such a resolution must have seemed a poor breakwater against the rising flood of transmissions from Zeesen, Radio Roma and Radio Moscow. It was not long before the UK was plunging into foreign-language broadcasting. Even today some countries argue that there should be no transmissions of "politically subversive or culturally disruptive material" across frontiers "without the prior consent of the receiving State", and defend their right to jam transmissions they find offensive while themselves engaging in massive external broadcasting. The USSR has ground-wave jammers in all Soviet cities of more than 200,000 people and rather less effective skywave jamming in rural areas. The Western Nations, it would seem, are attempting to counter jamming by engaging in the power race and multiple-frequency techniques that in themselves contribute to the destruction of orderly spectrum planning. The BBC, for example, is currently seeking planning permission to install at the former Post Office receiving station at Bearley, Warwickshire six 300 kW h.f. transmitters primarily for serving Eastern Europe. Today few people distinguish between h.f. and/or m.f. broadcasting in your own language (e.g. BBC World Service), surely a laudable service, and the one-time "inadmissible" practice of foreign-language broadcasting!

Black broadcasting

Governments are not always content even with straight-forward external broadcasting, as witness the take-over of one of the 250 kW transmitters on Ascension Island last year and similar action during the Suez affair in 1956. A detailed study of radio skulduggery has recently been published by Ellic Howe, an eminent typographer whose special skills were used in World War 2 to forge leaflets and other printed material on behalf of the Political Warfare Executive. His book "The Black Game" (Michael Joseph, 1982) provides much new information on P.W.E.'s many "black" radio services and the building in

1942 of the 600 kW "Aspidistra" m.f. transmitter at Crowborough, a transmitter that was finally retired last year. Much of the technical detail has been provided by Harold Robin who for many years was chief engineer of the Diplomatic Wireless Service but who previously worked for Sir Richard Gambier-Parry's wartime "Special Communications".
Ellic Howe lists no less than 48 different P.W.E. "black" services directed at 15 different enemy or enemy-occupied countries. Many of the programmes were recorded at "Simpon's'" (Wavendon Towers) and later Milton Bryant. Transmissions were made over four RCA 7.5 kW h.f. transmitters at Gawcott and Potsgrove, near Bletchley. In "black" broadcasting it is made to appear that the station is located in the target country. In the early days some French scripts were written by Lisa Towse, G-P's personal secretary and future wife. GP himself, moved out of Whaddon Hall into Wavendon Towers. "Aspidistra" was a 500 kW RCA transmitter that had been built for WJZ, New Jersey but refused an FCC licence under the 50 kW maximum-power rule. Harold Robin managed to get it up to 600 kW and it was installed at a 70 -acre site high in the Ashdown Forest, in an underground building. A Canadian Army road-building unit, kept going by copious supplies of beer, with six bulldozers and a lot of explosives, made the necessary "very big hole" in the ground. Elsewhere Aspidistra proved a constant source of inter-deparmental squabbles, not least with the BBC who wanted to run it.
G-P, ex-BBC, ex-Philco, supported by Harold Robin, who had been endeavouring immediately pre-war to set up a commercial station in Liechenstein directed at English audiences, were not disposed to hand over their "raiding Dreadnought of the Ether" to the Corporation's engineers - and indeed Aspidistra remained in the control of the FCO for its 40 years of operational use, though much of the time carrying the BBC External Service programmes.

E.m.p. bomb?

In the December 1981 issue of $W W$ Kenneth Cook of the M-O Valve Co. Ltd drew attention to his company' gas-filled protection devices that operate in less than one nanosecond. Such devices he claimed "will protect solid-state receivers and telephone equipment in a simulated e.m.p. (electromagnetic pulse) environment". E.m.p. is the massive pulse that follows the explosion of a nuclear device high above ground.

Despite this assurance that effective protection against e.m.p. is available, there can be little doubt that the potential threat to radio communications, computer installations and telecommunications posed by

high-altitude (40 to 400 km) nuclear explosions is still being taken very seriously in many parts of the world. Even if military installations can be effectively "hardened" there remains the problem of the enormous number of civilian installations.

Now, according to recent press reports from Washington, the US Government is investigating the possibility of developing an atomic weapon designed specifically to provide enhanced e.m.p. as "a defensive system that would hurt the enemy without necessarily hurting his people". E.m.p.bombs could be launched to black-out enemy communications; the Americans are also reported to be currently providing additional shielding against e.m.p. on their B-52 long-range bombers. Similarly scientists at the University of Minnesota are reported to be working on techniques that would not only counter the effects of e.m.p. but could also reduce the effects of solar flares, which can cause radio blackouts, auroral propagation etc, particularly in northern latitudes.

DX-disaster

For several decades, there have been an increasing number of "DX-peditions" mounted by radio amateurs in remote and out-of-the-way places. The object has been to permit a well-equipped team of operators to activate one of the rare country callsigns and then make thousands of brief contacts with amateurs all over the world. Funds for such expeditions are often donated by amateurs eager to increase their "countries worked" totals, although there has always been opposition to the technique of making a charge for QSL cards.

Since there is "resident" amateur radio operation in most countries of the world, DX-peditions have increasingly been directed towards smaller, more remote islands some of which are little more than reefs.

In mid-April a German DX-expedition to Spratly Islands, a group of small islands in the China Sea between West Malaysia (Borneo) and Vietnam, ran into problems that caused the death of at least two members of the party. The islands are territories politically in dispute by several countries and appear to be under military occupation by more than one country. As the German vessel approached the islands it was fired on with fatal consequences, and sank, although some survivors were later picked up about 100 miles away in a small boat by a Panamanian ship.

New callsigns

Before long the Home Office expect to be issuing callsigns in the G0, GM0 etc sequences for Class A, and G1, GM1 etc sequences for Class B. The figures 0,1 are the only remaining unused digits since G7, G9 are used for commercial "test and development" licences. The present G6 class B sequence is already up to " W " and G4 class A to " T ". When the 0 and 1 sequences are used up it would be possible for the Home Office to issue British amateurs calls with an M-prefix. Both GAA to GZZ and MAA to MZZ are internationally allocated to the UK.

One internationally-recognized radio amateur, Ray Cracknell, Z22JV of Zimbabwe (formerly G2AHU) would welcome either a G or an M callsign when he returns soon to the UK. Ray Cracknell has been, over several decades, one of the most successful pioneers of transequatorial propagation (t.e.p.) and has been responsible for uncovering, with the help of his equipment and a series of "beacons" which he has built, a wealth of information about the tropical inonosphere, much of it previously unknown and unsuspected by both professional and amateur researchers. Yet recently when he sought to renew his British licence it was indicated, presumably as the result of a dispute over reciprocal licensing with Zimbabwe, that he would be required to sit an RAE and take a Morse test. One can think of few people deserving of an unhindered re-issue of a licence than Ray Cracknell. Let us hope by the time these notes appear the Home Office will have graciously rescinded such an apparently bureaucratic ruling.

lonospheric focusing

Although it is now generally accepted that many low-power h.f. transmissions travel long-distances without intermediate ground-reflection by what is termed chordal hop propagation, amateur operators have paid less attention to antipodal-type mechanisms that result in enhanced signals at a point precisely on the opposite side of the globe. Signals travelling along great circle paths all converge on the antipodal point. Amateurs in the UK have no exact antipodal point with which to exchange signals, since this point is in the Pacific Ocean, although UK amateurs have long recognised the consistency of the longdistance paths to Australia and New Zealand, the nearest land-mass to the antipodal point.

Brian Austin, ZS6BKW, writing from the University of the Witwatersrand, Johannesburg notes that South Africans are more fortunate in that they have Hawaii as the antipodal point. He comments: "Over many years I have listened, on and off, to WWVH mainly on 15 MHz . What has struck me lately is that the Fort Collins,

Colorado station, WWV, runs the same power (10 kW) and I assume uses similar antennas. Yet WWVH is by far the stronger signal of the two in this country. Could it be because of antipodal focusing or would the fact that Hawaii is a relatively small land mass, and hence the signals may be launched more effectively over the sea water "groundplane" be the reason? "He believes there is still much to be finally discovered about h.f. ionospheric propagation.

Code-free in USA?

Although in late 1982, the president of ARRL, Vic Clark, W4KFC, asked FCC to defer for at least 18 months any action that might lead to a class of amateur licence not requiring a test in the international Morse code, the FCC has subsequently issued a "notice of proposed rule making" for two forms of code-free licence. The first would eliminate the 5 wpm test for existing "Technician" licences (above 50 MHz). The second would be an "Experimenter class" licence rather akin to the Canadian "Digital Amateur Class Certificate" but conveying all normal operating priviledges on frequencies above 144 MHZ . There are no proposals for any form of code-free h.f. licence. Comments on the FCC proposals were due by April 29 .

In brief

Harold Ling, G4CCH has made several e.m.e. ("moonbounce') contacts. on 1.3 GHz using only an 8 ft aerial dish and 100 watts of transmitter output. . . . In CQ-TV, R. Platts, G8)ZP comments on the "anti-social and selfish" behaviour of some amateur television enthusiasts who make broadband transmissions on 430 MHz "in excess of two hours duration". He feels no transmission should last more than 15-20 minutes. . . . John Wood, G3YQC of Rugby, in association with G8VBC, has succeeded in exchanging pictures on 1255 MHz with F1EDM at Le Havre, a distance of about 200 miles.
The paid-up membership of AMSAT-UK increased from about 1300 to 1700 during 1982. . . . Launching of the Phase IIIB Oscar amateur satellite, set for June 3, has been delayed. . . . Amateurs in north-west England have been experiencing considerable interference on 432 MHz from Syledis. . . . Forthcoming mobile rallies: June 26 Longleat Park, Warminster; July 10 Droitwich High School, Omberslex Road, Droitwich; July 17 RAIBC Picnic ât The Fairground, Broadlands Estate, Romsey, Hants, and Camborne Technical College, Camborne, Cornwall; July 24 Anglian rally, Stanway School, Colchester, Essex and McMichael rally, Bells Hill, Stoke Poges, near Slough; July 31 Rolls-Royce Sports \& Social Club, Barnoldswick; August 7 RSGB National rally at Woburn.

PAT HAWKER, G3VA

Fig. 2. Experiments to determine the degree of protection needed to separate signals transmitted on the same frequency. The first connects a generator, tuned to the same frequency as a local station, directly to the aerial of a receiver tuned to the same station. It is possible to adjust the level of the generator signal so that the received broadcast signal is heard with little or no interference from the generator. The second experiment is similar but the generator is connected to a transmitting dipole. Orientation of the receiver's aerial can find positions where the generator signal does not interfere with the received signal even with the generator at full power.
the target area, and that their maximum height should be restricted to no more than, say, 15 metres above ground level. In this way, geographical screening outside the service area will be maximised, while the service within the designated area should be adequate in most locations.

We considered that with careful siting of transmitting aerials along these lines, it should be possible to re-use any frequency successfully at a distance of just five times the service radius - i.e. 10 km should separate adjacent neighbourhood stations on the same frequency. This is backed up by two very simple but useful experiments which we carried out into practical levels of co-channel interference.

Co-channel protection ratios

The first experiment involves hooking the output of an f.m. signal generator via a crocodile clip to the telescopic aerial of a portable v.h.f. receiver (Fig. 2). The receiver should then be tuned to a local programme, and the generator tuned to the same frequency, and modulated with an alternative programme (or tone). With the radio operating in mono, adjust the level of signal emitted from the generator while listening to the output from the radio. The object of the experiment is to determine the degree of co-channel protection needed to obtain subjectively satisfactory suppression of the weaker signal.

One assumption may be made about the programme content: it may be taken that the modulation is compressed or otherwise kept reasonably constant in depth (such as the signals from Radio 2 or commercial radio). Under these circumstances, we consider that acceptable levels of unwanted interference can be obtained with a co-channel protection ratio of as little as 20 dB . The total range covered on the generator's attenuator, between virtual inaudibility and almost complete 'capture' of the frequency, is never much more than 40 dB , in our experience.
A development of this experiment is shown in Fig. 2. Here, instead of having

Table 1. Vital statistics of various low-powered m.f. stations operating in London.

TX power	70dB μ		Population '000s		40dB μ radius	$\begin{gathered} \text { sky wave } \\ 100-400 \mathrm{~km} \end{gathered}$
	radius	area	inner city	suburbs		
1W	2.5 km	$20 \mathrm{~km}{ }^{2}$	155	70	20 km	$21 \mathrm{~dB} \mu$
2W	3.3 km	$34 \mathrm{~km}{ }^{2}$	260	114	23 km	$24 \mathrm{~dB} \mu$
4W	4.0 km	$50 \mathrm{~km}{ }^{2}$	400	170	28 km	$27 \mathrm{~dB} \mu$
8W	5.0 km	$79 \mathrm{~km}^{2}$	620	260	33 km	$30 \mathrm{~dB} \mu$
16W	6.0 km	$112 \mathrm{~km}{ }^{2}$	870	375	38 km	$33 \mathrm{~dB} \mu$
32 W	7.2 km	$162 \mathrm{~km}^{2}$	1260	542	44 km	$36 \mathrm{~dB} \mu$
64W	9.0 km	$254 \mathrm{~km}^{2}$	1970	850	50 km	$39 \mathrm{~dB} \mu$
128W	11.0 km	$380 \mathrm{~km}^{2}$	2960	1270	61 km	42dB μ

the generator connected directly to the receiver, it is connected instead to a dipole aerial of appropriate length (about 1.5 m). The attenuator of the signal generator should be set for maximum output, and the receiver moved away from the dipole aerial until a point is reached where the signals from the local generator and the more distant broadcast transmitter are competing - in space - for its attention.

You should find that very minor movements of the receiver and/or its aerial will produce nearly complete elimination of one signal or the other, as far as the audible output from the receiver is concerned.

The conclusions which we draw from these two experiments are: (a) that 20 dB co-channel protection ratio is just adequate for mono reception; (b) that where two or more signals are present, moving the receiver and/or its aerial very slightly has a marked effect on the relative signal strengths picked up from the melange.

In the case of our idealised lattice (Fig. 1), free-space attenuation alone will provide a 12 dB ratio between a transmitter 2 km distant and one 8 km away. We then have geographical screening and receiver positioning available as factors to ensure that at least a further 8 dB difference is introduced between the wanted and the total unwanted signals. On the face of it, this does not seem too implausible, though practical tests would be interesting to carry out.
We suggest that the total power radiated by each transmitter should be of the order
of 2 to 10 W e.r.p. - the idea being to ensure that 2 km distant the service is limited more by co-channel interference than by failing signal strength. The unattenuated field 2 km away at this level of power is several millivolts per metre, but we are assuming that we ought to be reaching portable receivers in less-than-advantageous domestic locations.

Medium wave

We also looked at medium-wave, and carried out a number of exploratory calculations to see what would happen when the medium-wave transmitters of various powers were operated. The first step towards performing these calculations is to draw up a mean propagation curve from published data ${ }^{8}$. This curve is shown in Fig. 3, and is compiled from the average of two CCIR recommendations for signals at 1500 kHz - one for a ground conductivity of $3 \mathrm{mS} / \mathrm{m}$, and the other for a ground conductivity of $10 \mathrm{mS} / \mathrm{m}$. This curve may be taken to be valid, within a few dB either way, for frequencies between 1251 and 1602 kHz and for the range of ground conductivities present in and around London.

We restricted our calculations to the high-frequency end of the m.f. band because it seemed that this was the most fruitful place to search for relatively quiet channels - in daytime at least - and also because fairly efficient aerials can be constructed on these frequencies without the need for great height.

If the signal strength 1 km from the

Norman McLeod (28) splits his time between designing equipment for small broadcasting stations, and writing about developments in broadcasting for technical and consumer publications. At the moment he is a partner in Wireless Workshop - a small firm dealing in hospital and student radio transmitters and studio equipment. He has also been technical consultant to the National Association of Student Broadcasters since 1978. When not immersed in some radio-related activity, he enjoys cycling, travelling and listening to music.
transmitter is known (and this can be inferred from the effective monopole radiated power) then the predicted signal strength at any distance up to 60 km from the transmitter can simply be read off the graph. The vertical axis of Figure 3 is scaled in decibels relative to the signal strength at 1 km .

Figure 3 shows how this curve is used to predict the 'service' $(70 \mathrm{~dB} \mu)$ radii of transmitters using various amounts of power. Also shown on this curve is the 'impact' radius - defined by the $40 \mathrm{~dB} \mu$ contour, and representing the minimum radius, at which the occupied frequency could be reused.

The IBA transmitter on 1548 kHz is also shown on the diagram to provide a sense of perspective. All three London 'local' radio stations use high-power channels - channels which could (and in the view of the author should) be used for network levels of power and coverage. Our proposals cannot run to the tens of kilowatts used by the BBC and the IBA because international clearance for such powers would not be forthcoming. Indeed, after contemplating 'impact' radii and sky-wave propagation

Fig. 3. Curve of the mean propogation taken from the average of two CCIR recommendations for m.f. signals at 1500 kHz , for ground conductivities of 3 and $10 \mathrm{mS} / \mathrm{m}$. The service $(70 \mathrm{~dB} \mathrm{\mu})$ radii of a number of low-powered transmitters are shown with continuous lines while the broken lines represent the 'impact' radii, defined by the $40 \mathrm{~dB} \mu$ contour, representing the minimum distance at which an occupied frequency could be re-used.
estimates (Table 1), we decided that we could keep effective monopole radiated power down to a few hundred watts on any frequency, while providing London-wide coverage on a pair of channels.

We take the view that new community radio services should take the lead in applying an approach to broadcast engineering which seeks to maximise the efficiency with which every watt or radiated power is used. It is clear from the data which we have generated from our exploratory calculations that using a large number of smaller transmitters is much more effective than using one large one with the same total power. For instance, eight two-watt transmitters will cover an area of $272 \mathrm{~km}^{2}$ with a field strength of $70 \mathrm{~dB} \mu$ or more; one sixteen-watt transmitter covers just $112 \mathrm{~km}^{2}$ to the same effect. Clearly, there are economic imperatives which ultimately point us in the other direction. But maximising the number of listeners per watt is probably the most important task facing broadcast engineers in the all-too-crowded spectrum.

The hypothetical m.f. transmitters which we have analysed may either be used independently, or as part of a network of fully-synchronous transmitters using two frequencies per service - in much the same way as Radio 1 and Radio 2 already
cover the country. We suggested that between eight to ten transmitters, each with an effective monopole radiated power of about 50 to 80 W , should be assigned to the two frequencies in such a way that good reception on one channel co-incided with poor reception (due to multiple signals) on the other. The problem of cyclic fading, due to imperfect synchronisation between carriers, and of modulation distortion due to unequal time-delays in the distribution network are both easier to solve on this smaller scale. Cyclic fading can be tacked by locking each transmitter to a common frequency source (such as one of the Brookman's Park m.f. transmitters), while the time dealys in any distribution circuit are sufficiently small for correction circuits to be easy and practical.

We did suggest (perhaps rather optimistically) that frequencies at v.h.f. or u.h.f. (possibly old broadcasting frequencies released by the Merriman Spectrum Review Committee) should be made available for point-to-point links across the city, thus saving the expense and bother associated with land-lines.

Conclusions

For the moment, all this can be dismissed as just an amusing piece of speculation. Continued on page 44

Fig. 4. Frequencies for the v.h.f. lattice plan (above) and possible low-power m.f. operation (below). Outside London the frequencies used may differ particularly on v.h.f. but the number of channels available for low-powered use should be about the same.

First came nand and nor, their functions being a product of the technology of the time. Circuit synthesis procedures evolved which regarded these devices as actually performing nand/nor logic functions. We now inherit a system which automatically generates obscurely-intentioned circuit schematics. But all is not lost . . .

A circuit diagram is a medium of communication and is one of the most important items of documentation linking the designer with the user.

The circuit diagram of a digital system should convey the original logic intentions of the designer of the circuit. It should do this directly, with no requirement for elaborate transformations.

- Circuit symbols should represent combinational logic directly in and-ornot terms.
- Correspondence between logic value (true and false) and physical voltage counterpart (high and low) should be evident at any point in the circuit.
- Notation should clearly indicate type of physical device used at any point in diagram.

The reality

A manufacturer produces a device with the following response to applied input voltage signals

$$
\begin{array}{ll|l}
A & B & C \\
\hline L & L & H \\
H & L & H \\
L & H & H \\
H & H & L
\end{array}
$$

Fig. 1

Using positive logic convention, the manufacturer suggests a logic truth table for this device

$$
\begin{array}{ll|l}
A & B & C \\
\hline 0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
\hdashline 1 & 1 & 0 \\
\hline & A \cdot B=\bar{C}|\overline{A \cdot B}=C|
\end{array}
$$

Fig. 2
And assigns a symbol to the device . . .

Fig. 3

Highlighted sector of Fig. 2 is the only region that most customers consider. As a result, a whole tradition of logic synthesis has evolved which concerns itself with forcing reduced expressions into a fixed format (network of nand gates) by tortuous

by M. B. Butler

manipulation, De Morgan's rule being constantly invoked.
Examination of Fig. 2 however reveals that it conceals another logic identity . . .

Fig. 4
Now make a full analysis with the aid of Fig. 5.
"Duality. - Given a physical device characterised by a table of combinations, the logic function performed by the device is determined by the specific choices of the 1 -state at its inputs and outputs . . ."

Mike Butler, M.S.E.R.T., joined Marconi International Marine Co. as a Radio Officer in 1961. After $61 / 2$ years he went ashore to head office in Chelmsford as a test engineer. Work in the engineering division led to his current position as a radar development engineer in the company's laboratories.

Fig. 5

Definition extracted from BS3939, section 21. In Fig. 5, left, we may recognize two pairs of 'duals', i.e. (b) i \&-ii and (c) i \& ii. Examine another physical device:
tion.
The above illustration does however raise a nasty doubt in the mind! Are the two gates in the example, physical nor gates using

It is evident from Figs 5 and 6 that one physical device may have its logic function interpreted in four ways, i.e. two pairs of logic duals.

We must regard an example to reinforce our bewilderment.

Fig. 7
Fig. 7 above illustrates a standard schematic representation of a logic function. Without the transformation shown, it is not possible to directly interpret its function. Re-draw the circuit, using the logic dual concept (intentional logic):

Fig. 8

From Fig. 8

- the 'negation indicator' (circle at input/output) may be regarded as a DeMorgan operator
- two negation indicators at each end of a connective line, cancel the effect of each other
- use of the logic dual clarifies interpretation of a schematic representa-
negative logic representation Fig. 6 (c)? And are the two gates in the example, physical nand gates using positive logic representation Fig. 5 (b)?

We are left with the problem of identifying the physical implementation of the above circuit, with no clues to conjure with!

Summary so far

- Classical logic synthesis procedures tend to generate unreadable circuit schematics. - A logic function may be synthesized directly in and-or terms using logic duals (intentional logic).
- The 'not' function may be implemented easily by manipulation of the negation indicator on connectives.
- Logic diagrams below do not directly relate logic state to voltage level at each node in the circuit, a factor which can be of extreme significance in field servicing.

Fig. 9

Mixed logic

We must abandon the fixed convention of positive and negative logic and mix them! Conventional methods emphasize close
parallel between logic and voltage; mixed logic will emphasize the distinction between the two, eliminating the confusion introduced by forcing a fixed relationship between logic and voltage.

Back to basics

The functions 'and' and 'or' are represented by the customary symbols BS3939.

Fig. 10
Following conventions are stated
Logic validity defined as true symbolized by 1 or false symbolized by 0
Voltage level is described as high symbolised by H or low symbolised by L
A new symbol is introduced to indicate application of a convention: the 'flag' or polarity indicator.

Fig. 11
This is applied as shown below.

logic	voltage
1	equivalent to
0	H
0	equivalent to
(no polarity indicator)	
1	equivalent to
0	L
0	equivalent to
(polarity indicator used)	

For example

Fig. 12
Presence or absence of polarity indicator serves only to define which voltage convention in force at interconnection input or output interface of basic logic symbol, and does not indicate reversal of logic state.

To reinforce this concept, study the following examples. Note that they include two truth tables to emphasize the crucial distinction between logic and voltage.

From Fig. 13, over,
Logic truth table remains same for each basic identity, whether flagged or unflagged.
Relevant section of voltage truth table modified where flag is applied.
The voltage truth tables above can be taken to describe the action of a physical device which would be used to implement
(i)

	$\frac{2}{l}$ Logic	
A	B	M
0	0	0
1	0	0
0	1	0
1	1	1

Voltage		
A	B	M
L	L	L
H	L	L
L	H	L
H	H	H

(ii)

A	B	M
0	0	0
1	0	0
0	1	0
1	1	1

\(\left.\begin{array}{ll|l}A \& B \& M

\hline L \& L \& {[H}

H \& L \& 1

L \& H \& H

H \& H \& H

L \& L

L\end{array}\right]\)| Flag alters |
| :--- |
| convention |
| i.e. |
| $0 \equiv H$ |
| $1 \equiv L$ |

(iii)

A	B	M
0	0	0
1	0	1
0	1	1
1	1	1

A	B	M
L	L	L
H	L	H
L	H	H
H	H	H

(iv)

Fig. 13
the function. The voltage truth table of (ii) describes a t.t.I. 7400 nand gate, while the voltage truth table of (iv) describes a t.t.1. 7402 nor gate.

Two more examples are shown in Fig. 14.

Logic duality

If you now compare the voltage truth tables in Fig. 14 with the voltage truth tables of the previous four examples in Fig. 13, you should come to a startling
(v)

	Logıc	
A	B	M
0	0	0
1	0	0
0	1	0
1	1	1

Voltage			
A	B	M	
	H	H	

Flag alters
convention
18
$0 \equiv H$
$1 \equiv L$
(vi)

A	B	M
0	0	0
1	0	1
0	1	1
1	1	1

	B	M
r-	-	
	H	L
	H	H
		H
	,	
		H
Flag alters convention		
18		
$0 \equiv H$		
$1 \equiv \mathrm{~L}$		

Fig. 14
conclusion, Fig. 15, right.
The same physical gate may perform an 'or' or an 'and' logic function under certain conditions, a physical nand gate may perform a logic 'or' function, and a physical nor gate may perform a logic 'and' function. This is the law of Logic Duality.
We now introduce the non-equivalence and equivalence logic functions. Figure 16 shows the gate symbols and truth tables for these two functions.
You are now left to prove the Fig. 17 duals, using the procedure outlined earlier.

Figure 18 summarizes logic duals.

Voltage level changing

Given the following problem, what do we do?

Fig. 19
To validate the voltage truth table in physical terms, we require of course a physical device called a voltage inverter, symbolized below.

Fig. 20
Our solution to the above problem is therefore

Fig. 21

Note carefully that no logic change has occurred; the same logic signal is present on both sides of the voltage inverter. Sole function of the voltage inverter is to change voltage representations for logic truth.
As further example for emphasis, consider implementation of equation $M=A+B$, where
input A is flagged (l ' $\equiv \mathrm{L}$)
input B is un-flagged (l ' $\equiv \mathrm{H}$)
output M is flagged (l ' $\equiv \mathrm{L}$).

Fig. 22

Fig. 15

Fig. 17

$O R \rightarrow=1$
Fig. 18

We obviously require a voltage inverter at the A input.

Fig. 23
The same logic signal is present on both sides of voltage inverter on A line. The voltage inverter may be implemented in a variety of other ways.

Fig. 24
All of these variants will be encountered in practical circuits.

Logic inversion

What is the physical implementation of logic 'not'? Consider the circuits of Fig. 25.

Logic variables A and B are being physically implemented by the same voltage on wire. The logic tables above are derived

Fig. 25
from voltage on line (H or L), logic states depending on the presence or absence of flags at A and B. In cases (a) and (b) no inversion occurs. However, in cases (c) and (d) the logic truth table indicates logic inversion (logical not).
To summarize: logical not operation occurs over a piece of wire on which voltage convention is 'switched'.

To guard against any tendency to wonder about an error in the circuit diagram, an oblique 'slash' . . .

is placed across any line over which logical not operation has occurred.

The logical not operation is thus clearly identified on the diagram, and shows that voltage convention has been switched:

Fig. 26

The presence or absence of a 'polarity indicator' also serves to define voltage convention in force at a 'labelled' input or output to combinational logic network, and is associated with validity of 'label' at these
points, Fig. 27.

Last words

Adoption of the system presented means total reversal of an outlook drilled into a generation of students by basic classic textbooks, and I confess to performing many mental gymnastics in the process of re-conditioning my thinking. During this procedure however, many nasty rule-ofthumb habits were discarded.
With regard to design of combinational logic circuits, the technique is very powerful and results in economical design. Greatest advantage lies in the fact that the designer works in pure logic and only reverts to the physical world when choosing devices to implement the design; at which point a few voltage inverters transform the circuit into the real world.

Use of duals in circuit diagrams appears to upset users who encounter this representation for the first time, and the response is very typical: "This is all very nice and academic of course, but how will the p.c.b. layout draughtsman and service technician be able to identify the physical type of, say, IC_{30} and IC_{31} ?"

The answer lies of course in the fact that manufactured devices are always in 'and', 'or' nand or nor form, i.e. they don't have flagged inputs. Therefore on encountering a gate with flagged inputs a mental dual transformation is all that is necessary, Fig. 28.

Continued on page 35

INPUTS

OUTPUTS

Fig. 27

Fig. 28

300baud full-duplex modem

Abstract

Most designs featured in magazine articles have been acoustically coupled and have not met any previously adopted standard for frequencies. This design directly couples to the telephone line, giving better security and lower error rates, and uses standard data channel frequencies

The unit has been designed to meet British Telecom specifications but as these include the standard of construction and layout it cannot therefore be said to be BT approved. But if all the layout instructions are followed the unit should meet with BT approval. This can be done locally through the Transmission Efficiency Officer or by submitting an application to

Telecom HQ
Marketing Executive
R.C.S.D.
Tenter House
45 Moorfields
London EC2Y 9TH

The modem offers the facility to originate or answer the call manually, or by using the auto answer unit it can be used as an auto-answer modem. The unit is designed to be compatible with the BT Datel 200 service to give data rates of up to $300 \mathrm{bi} / \mathrm{s}$. Duplex transmission over two wire circuits is achieved by using frequency-division techniques, as shown in the table. Two channels are used with the following frequencies

Channel 1	$980 \mathrm{~Hz}-$ binary 1 Channel 2
	$180 \mathrm{~Hz}-$ binary 0
	$1850 \mathrm{~Hz}-$ binary 1
	$1850 \mathrm{~Hz}-$ binary 0

A protocol must be established so that one channel is used in one direction of transmission and vice versa, by creating

by Des Richards

call and answer modes of operation.

Call mode	Frequency designation	Answer mode
	980 Hz -binary 1	
Transmit	Channel 1	Receive
	1180 Hz -binary 0	
Receive	1650 Hz -binary 1	
	Channel 2	
	1850 Hz -binary 0	

Using this convention the contention of two modems trying to transmit to one another on the same frequencies will not arise provided that each modem is in the complementary mode.
To enable duplex transmission over a twowire circuit the transmit and recieve signals must be separated by the use of a hybrid transformer and transmit and receive filters. The hybrid transformer also provides a d.c. loop on the telephone circuit to hold the call. This is required on both the originating call and the answering call to indicate to the exchange equipment that the line is in use. The transformer must be able to carry a primary direct current of up to 120 mA and not saturate, thus enabling a.c. signals to be sent and received through the transformer without attenuation. Both the transmit and receive

signals are buffered by zero-gain amplifiers to give a stable impedance of 600 ohms to the hybrid and they also provide a degree of protection to the filter against high voltage transients which could be induced into the transformer from the telephone circuit.

The filter consists of a single integrated circuit specifically designed for modem use. It is the Reticon R5631, a monolithic i.c. containing two ten-pole switchedcapacitor band-pass filters fabricated in nmos technology with a 16 pin dual in-line package (see below for pin connections).

Included in the chip is a receiver gaincontrol stage which is externally variable from 0 to 20 dB , a separate limiter for use with the receive output, a clock oscillator and t.t.l.-compatible switch inputs for selftest and mode selection, Fig. 3. The selftest mode gives the ability to loop the modulator and demodulator together via the filter and thereby enable local testing to be carried out.

The mode select and self-test gives the following combination of filters.

Modulator

The modulator is built using the XR2207 f.s.k. modulator i.c. which gives phase continuous output, the frequency of which is determined by C_{f} and the resistors $\mathrm{R}_{1}-\mathrm{R}_{4}$ selected by the logic combinations on pins 8 and 9.
The XR2207 provides two outputs, one a square wave on pin 13 and the one used in this application is a triangular waveform on pin 14. Use of the channel-select input on pin 8 gives the ability to change channel when the modem is switched between the

call and answer modes.
To set the frequencies of the modulator follow this procedure. Apply a logic 1 to the data input and select channel one by applying a logic 0 to pin 8 , this can be done by switching to originate mode. Adjust R_{VI} to give an output frequency of 980 Hz . Then apply a logic 0 to the data input and adjust $\mathrm{R}_{\mathrm{V} 2}$ to give 1180 Hz at the output. The adjustments must be done in this order as $\mathrm{R}_{\mathrm{V}_{1}}$ affects both the low and the high frequency whereas $\mathrm{R}_{\mathrm{V} 2}$ only affects the high frequency.

The same procedure applies to set channel 2 frequencies. This is done by selecting the answer mode and applying logic 1 to the data input. Resistor $\mathrm{R}_{\mathrm{V} 3}$ is then adjusted to give a frequency of 1650 Hz . The data input is then set to logic 0 and $\mathrm{R}_{\mathrm{V}_{4}}$ adjusted to give an output frequency of 1850 Hz . The output level is adjusted to give -10 dB into 600 ohms at the two-wire line side of the hybrid transformer. This completes the alignment procedure for the modulator.

Demodulator

The demodulator is built using another Exar circuit, the XR2211 which is a monolithic phase-locked loop device. It consists of a basic phase-locked loop for tracking a signal within the passband, a quadrature phase detector that provides carrier detection, and an f.s.k. voltage comparator circuit that provides f.s.k. demodulation. It will detect a signal between 2 mV and 3 V and has a built in a.g.c. preamplifier. The centre frequency, bandwidth and output delay are set by external components, centre frequency being determined by C_{f} and R_{f}. Adjustment of R_{f} is as follows.
Open R_{5} and monitor pin 13 or 14 with a high impedance probe. Don't try to adjust the centre frequency by monitoring C_{f} with everything connected and no input signal applied.
The two centre frequencies are adjusted in the same way. Select call mode and

Self-test mode allows modulator and demodulator to be looped together through the filter for local testing. Diagram shows mode and self-test filter combinations.
adjust the frequency to 1750 Hz and then select the answer mode and adjust the frequency to 1080 Hz . This completes the alignment of the demodulator.

The carrier detect output drives the hold relay on the auto-answer board, and also gives a status indication of carrier being present on the circuit. The complementary
output to this is connected to the data output circuit to hold the output to a logic $1(-12 \mathrm{~V})$ when no carrier is present. This prevents spurious data from appearing on the output when no carrier is present. The output of the demodulator is unipolar and is converted to RS232 by an op-amp buffer to give ± 12 volts.

To be continued

Continued from page 32

With regard to servicing, one is only concerned with reading the logic action and checking voltage levels at specifically numbered pins on labelled i.c. packages (assuming a silk-screened p.c.b., and suitable documentation). It is only when replacing a defective package that one must identify its physical type, and this information should be present in the documentation.

Example

With (a), (b) and (c) representing spare gates, which two of three shown can be connected to fulfill the function of the network illustrated ?
How will the network be represented in mixed logic notation? (For maximum clarity of operation.)

More micros for minors

Eight million pounds of Government money is to go toward new computing equipment and up-grading existing computers in schools and colleges of further education.

The extension to the Micros in Schools Scheme consists of 50% funding to allow RM380Z and BBC Model A computers to be converted. The Research Machines computer will be provided with 56 K of memory (formerly 32 K) and the graphics board with software, while the BBC design in its Model B form is to have disc drives and an Econet interface. Both computers can be supplied with a Microvitec colour monitor and a Walters printer. As an extra to the computers, the Government will also assist schools to buy a Buggy, which is a three-wheeled robotic device by Economatics, controlled by the computer, which will adaptively follow set paths, detect and delineate objects, operate a pen and find its way towards a given point. There is also Vela, which is effectively a multipurpose measuring instrument for voltage, frequency, waveform generation, transient capture and data analysis, being a central-

hardware, programmmable-function device.

A further scheme - CNC Machine Tools in Further Education - has as its aim the equipping of colleges with computer numerically controlled tools of various types, again on a 50% basis.

Announcing the CNC programme, Kenneth Baker MP, Minister for Information

Technology, said "This scheme follows the enormously successful micros for school schemes, as a result of which the UK has achieved the greatest progress of any country in technological education for young people."

More than 6500 secondary schools have already received microcomputers under the scheme.

934 MHz changed to meet European plans ...

UK 934 MHz citizens' band is to be moved downward by $121 / 2 \mathrm{kHz}$ following a Home Office decision to fall in line with a recent international channelling agreement for Europe reached by the Conference of European Posts and Telecommunications Authority, CEPT. Other technical requirements for 934 MHz remain unchanged and existing sets may be used for the present. Dates by which existing sets must be modified and sets being manufactured must conform to the new channel requirements have yet to be fixed. Amendments to Home Office performance specification MPT1321 are being made to reflect the new channel plan.

for whom?

Currently only one UK manufacturer, Reftec, makes sets for 934 MHz and according to the company's main distributor, 934 Communications, some 500 transceivers have been sold since Reftec first started manufacturing some 15 months ago. But a second company, Beeware of Harrogate, is about to break the
monopoly by selling a 934 MHz transverter that can be used with existing 27 MHz sets. Beeware expects to sell around 1800 transverters in the first 12 -18 months, a figure representing $21 / 2 \%$ of the existing 75000 official and unofficial c.b. operators.
Prices of a basic Reftec transceiver and a Beeware transverter with a 27 MHz set are almost the same, working out at around $£ 250$, but the second option is more attractive to those who already have 27 MHz sets and to those who want to operate on both bands. But according to Don Lane, a spokesman for 934 Communications, "Beeware cannot be serious. Japanese companies need an order of 10000 before they will manufacture anything and there just isn't the market for that number of sets." Technical Director of Beeware, Bill Dewhurst replied "Of course we are serious. We have carried out a feasibility study, spent money and liased with the Home Office on the specifications - had it not been for the recent changes, our product would be on the market now." Sanwa make the company's 27 MHz set but Mr Dewhurst could not tell us who was manufacturing the Grandstand transverter expected to be available by the end of July.

Sets conforming to a European standard can potentially be exported. When approached on this subject, Dewhurst said "the snag is that the Japanese like to do
things their own way. Exporting Japanese sets from the UK would not be easy but we have plans to manufacture in the UK, in which case we would be looking into exports. We have a design for a complete 934 MHz transceiver and are looking into other fields of communications like marine and land-mobile radio and satellite tv."

Lasers and radiation safety

Rapid increase in the use of lasers in both industrial and commercial has led to a complete revision of the BSI standard on laser radiation safety which has been in effect since 1972. Radiation safety of laser products and systems, BS 4083, has been published in advance of an international standard, which is an infrequent occurrence, and it could be that ISO in Geneva will base their standard on its content.

BSI says "It is impossible to regard laser products and systems as a single group since hazards vary according to factors such as wavelength, power and energy of the beam and duration of the emission. Eyes are the organs most at risk because the incoming visible or near infrared beam may be focussed on the retina to a 10 to $200 \mu \mathrm{~m}$ spot which raises energy density by
up to half a million times. High irradiance, either direct or reflected, may cause skin damage. Other potentially dangerous sources are power supplies and cooling agents sometimes used." The standard is in three parts, one covering determination of maximum permissible exposure levels in a summary of biological considerations, one specifying manufacturing requirements, and a user's guide covering safe operation, maintenance and servicing of lasers.
NRPB, who are more concerned with biological effects of lasers rather than with mechanical construction which is BSI's
main concern, plan to publish a review of maximum permissible limits for exposure to laser radiation in about six months at the request of the Health and Safety Executive. This information is used by BSI as a basis for its standard. A further consultative document on laser radiation hazards from NRPB is due in about a year.

- Finalization of the consultative document concerning non-ionizing radiation limits summarized in Wireless World, April 1983 has been delayed "slightly" due to an unexpected influx of comments and questions at the NRPB, particularly concerning' e.l.f. radiation.

Racal gets $\mathbf{2 5}$ years in cells

Racal Millicom has received a 25 -year licence to run a mobile telephone service based on cellular-radio technology but according to the DoI, the competing licence to be held by the BT/Securicor consortium "is still to be issued." The licence requires that the service must start no later than 31 March 1985 - unless the holder has a good excuse - and that 95% of the population must be served by 1989.
When asked why BT hadn't got its licence yet, a spokesman said: "We are working toward providing a cellular radio service in early 1985 - the licence is inci-
dental, and there's no need to have it immediately." On the other hand, Racal could not tell us anything more than what is in the licence and how much it costs ($£ 1,000$ initially then $£ 1,000$ p.a.). When asked when production of equipment might start - or indeed when anything concerned with cellular radio might start - Racal replied "we'll let you know." But as we write, the election looms and one can say that it is likely to be more embarrassing for a Government to retract a licence than it would be to refuse to issue one in the first place.

In brief

An agreement to support European Computer Manufacturers' Association work towards proposed CCITT electronic mail standards was signed on 29 April by seven companies - ICL, Rank Zerox, Ferranti, CII Honeywell Bull, Olivetti, ITL and Logica.

City \& Guilds Radio Amateur course 765 starts at Oak Farm centre, Chaucer Road, Farnborough, Hants on 22 September. For further details telepl one 0252540084.

Incorporated Practitioners in Radio and Electronics, IPRE, is reborn under the wing of the Society of Electronic and Radio Technicians. Providing professional services to engineers involved in domestic and industrial electronics servicing, IPRE bases its entry levels on City and Guilds courses and is the only institution open to the many service technicians whose study is not normally recognized because of its practical nature.
Infrared astronomical satellite IRAS spotted a comet approaching us at $28 \mathrm{~km} / \mathrm{s}$ on 11 April and estimated that it would miss Earth by 4.5 million kilometres on 11 May, appearing faint but several times the size of the moon.

Digital v.c.r. with metal powder tape

Using recently developed metal-powder coated tape and a modified domestic video cassette recorder, researchers at NHK laboratories have demonstrated that highdensity digital recording can give better results than conventional analogue v.c.rs. The researchers say that given some improvement in head sensitivity and tracking accuracy, the digital v.c.r. will consume less tape than its analogue counterpart and produce good picture quality.

Digital circuits used are the same as those developed for NHK's 1979 digital

Calculated results of recording density for metal powder vs conventional tape. With good head sensitivity and tracking accuracy, recording density for metal tape is $5.5 \mathrm{\mu m}^{2} / \mathrm{bit}$.
v.t.r. experiments but using trial samples of Fuji's metal powder tape has allowed recording density to be more than doubled, to $3 \mathrm{kbit} / \mathrm{mm}$. With the same tape
consumption as a conventional recorder, digital rates of $216 \mathrm{Mb} / \mathrm{s}$ were achieved. This experiment is outlined in NHK Laboratories Note No 218.

General specifications for NHK's experiments in high-density digital recording for video signals. Digital circuits for both experiments are the same but using metal powder tape has double recording capacity. Characteristics of reproduced digital video signal are also given. "There were many dropouts because a trial production metal-powder tape was used, but error rate could be reduced to one tenth of this value by using a massproduction coater in the tape manufacturing process."

	High-density recording experiment, 1982	$\begin{aligned} & \text { Experimental v.t.r., } \\ & 1979 \end{aligned}$
Tape	Fe metal-powder coated (trial product)	Cobalt iron oxide, $\mathrm{CoFe}_{2} \mathrm{O}_{3}$
Head	Sendust metal head	Ferrite, single crystal MnZn
Recorder	Domestic VHS cassette video recorder	One inch helical v.t.r. (SMPTE C)
Tape-to-head		
relative speed	$11.6 \mathrm{~m} / \mathrm{s}$	$25.6 \mathrm{~m} / \mathrm{s}$
Bit interval	$0.33 \mu \mathrm{~m}$	$0.73 \mu \mathrm{~m}$
Density	$3 \mathrm{kbit} / \mathrm{mm}$	$1.4 \mathrm{kbit} / \mathrm{mm}$
Track width	$45 \mu \mathrm{~m}$	$40 \mu \mathrm{~m}$
Track pitch	$58 \mu \mathrm{~m}$	$60 \mu \mathrm{~m}$
P.c.m. coding	$3 \times \mathrm{f}_{\text {sc }}$, 6bit/sample	$3 \times \mathrm{f}_{\text {sc }}$ 8 $8 \mathrm{bit} /$ sample
Recording	2 channel	3 channel
Reproduced signal s/n ratio	35 dB -4	31 dB
Bit error rate	2.5×10^{-4} 3×10^{-3}	1×10^{-6} 3×10^{-4}
Block error rate	3×10^{-3}	3×10^{-4}

MOS power device with thyristor on resistance

A mos gate-controlled power switch with an on resistance comparable to that of a thyristor has been developed by RCA. On resistance of v-mos power devices rises with increasing drain-source voltage capability, limiting their high-voltage applications, but the newly structured device exhibits an on resistance ten times lower than standard state-of-the-art mosfets with the same size and voltage rating. RCA scientists have manufactured several hundred of the devices, called Comfets (conductivitymodulated fet), some $1.5 \mathrm{~mm}^{2}$ and some $3 \mathrm{~mm}^{2}$, and nearly all of the larger chips had on resistances of less than 0.1Ω at 20A.

Typical experimental Comfets with 8A anode current took $1 \mu \mathrm{~s}$ to turn on but between five and 20μ s to turn off, which is relatively slow. The n-p-n-p structure of the device is similar to that of a thyristor and it can be made to latch using high drive currents. In the larger devices latching occurred at between 10 and 30A, depending as one would expect on temperature and anode voltage. But an interesting feature of the device is that latching current is also strongly influenced by gate turn-off time. Slow gate turn offs of around $10 \mu \mathrm{~s}$ permit anode currents up to 30 A without latching but a rapid gate turn off of less than 1μ s leads to latching at

Comfet - a new mos gate controlled power switch with an on resistance comparable to that of a thyristor. Experimental devices produced by RCA researchers have on resistances lower than 0.1Ω at 20A.
much lower anode-current levels in the region of 10 A . The Comfet is detailed by J. P. Russel, A. M. Goodman, L. A. Good-

Obituary

Lawrence Henry Hewes Cooper, 'Dick' Cooper to his many friends and associates, died in hospital last February following an operation.
Born in 1912 and educated at Dulwich College, he spent a lifetime in electronic engineering. In his early career he worked with P.G.H. Voight at the Edison Bell Company, where he was involved in sound recording and reproduction. In 1933 he joined British Acoustic Films and worked on the design and installation of recording equipment at the Gaumont British Studios -in Shepherds Bush. By 1935 he was working independently on the design of battery charging equipment using wet tantalum rectifiers, work which, coupled with other developments, led to the formation of Correx Communications and Correx Amplifiers. During this period he took out a patent for a modified form of pushpull drive circuit using a double-wound choke in place of the resistance or transformer feed circuit then in current use.

In June 1948, Transformer Equipment Ltd was founded and was soon serving many of the best known names in the electrical engineering industry. In addition to a wide range of other transformers, from 1958 the company made well known and widely used ultra-linear output transfor-- mer designed by J. Somerset-Murray.

Lawrence Cooper's phase-splitting circuit was the subject of an article in the 22 October 1937 issue of Wireless World. At that time, centre-tapped inter-valve transformers had been widely used for driving push-pull output stages but the demand for high-fidelity reproduction had led to resistive phase splitting circuits being introduced which became inefficient with low h.t. supplies. Mr Cooper's solution was to use a double-wound choke in place of the phase-splitting resistors to give a greater anode voltage with a lower potential difference between heater and cathode at low h.t. supplies.
man and J. M. Nielson in IEEE Electron Device Letters, vol. EDL4, no 3, March 1983.

4Mbyte micro-floppy
 Using a different approach to perpendicu-

 lar magnetic recording, Sony claims to have produced the highest density magnetic recording ever, with a linear density of $2.58 \mathrm{kbit} / \mathrm{mm}$. This represents an improvement of 31 times that of a $51 / 4$ in floppy disc or eight times that of a high-density microfloppy. Toward the end of last year Toshiba claimed a 27 -fold improvement over conventional floppy discs for their p.m.r. technique (February News) and although this figure is lower than the latest claim, Toshiba indicated their disc and drive was ready for manufacture whereas Sony's development is still in the experimental stage.Effects of magnetic properties and thickness of single-layer cobalt-chromium media on perpendicular recording with a ring-shaped head are discussed in IEEE Transactions on Magnetics, vol. Mag-18, no. 6, November 1982. In this experiment Sony researchers achieved a recording density of $4.5 \mathrm{kbit} / \mathrm{mm}$ using a ring-shaped head but the disc drive more recently described uses a w-shaped head to give a recording density of $2.58 \mathrm{kbit} / \mathrm{mm}$. Toshiba uses a ring-shaped head in its drive.

Corrections

High-impedance electronics. In the first paragraph of this article, which appeared in the April issue, a line was dropped. The relevant section, nine lines into the paragraph, should read ". . . it saturates at 500 to 600 mV as the junction becomes forward biased (Fig. 2). If the diode is connected between 'real' earth and the virtual earth . . .".

Domestic alarm system. Several errors occurred in this article, published in the March issue. In Fig. 1, $\mathrm{V}+$ should go to the right of the fuse, and C_{2} (unlabelled) is connected to pin 4 of gate A. The Disarmin line should continue to the disarm switch, bypassing pin 5 of IC_{2}, and the $1 \mu \mathrm{~F}$ capacitor across IC_{2} should still go to pin 5. Diodes across the relays are 1N4001, and the resistor on pin 4 of $\mathrm{IC}_{7(\mathrm{a})}$ is 680 k not $220 \mathrm{k} \Omega$. The caption to Fig. 2 shows a 25 s delay, not 20 s.

In Fig. 3, the capacitor on pin 4 of $\mathrm{IC}_{7(\mathrm{a})}$ is $47 \mu \mathrm{~F}, 16 \mathrm{~V}$ and IC_{10} is a 7555 . The switches should be S_{3} and S_{4}, not S_{1} and S_{2}, which are fire and disarm in Fig. 1. Capacitor C_{x} is on pin 2 of $\mathrm{IC}_{7(\mathrm{a})}$. Lines 14 and 15 of the first paragraph of page 30 should refer to FIRE, not FIRE, and line 2 of this page should say " IC_{2} input".

The third line of paragraph two of the section headed 'Control unit' should refer to a 30 s delay.

Organ interface for microcomputer

Principles used for each section of the software for the Nascom 2 organ interface and music editor, described in the June Issue, with source code listings for the critical elements.

The software is described in four sections, see panel. The first enables the microcomputer to repeat a performance made on the organ, with variation of speed, whilst the second provides the edit functions. The third section allows music to be typed into the microcomputer, and the fourth (in Forth) provides simple polyphonic extemporization.
The first section comprises only about 150 instructions. Only the first two sections were conceived when the interface was originally designed but to date the software has obstinately refused to stop growing.

Read and play routines

The system now has 24 register pairs. Two groups of 24 bytes of ram are designated console fields 1 and 2 . When the read and play modes are entered, the console fields are set to represent the console switches with all keys off (status 0) and all stops cancelled (status 1). The PIO is then set up to mode 01 (input) and the interrupts are enabled, as described by the source listings given in List 1. It is worth commenting that four levels of interrupt have to be set: c.p.u. interrupt mode 2, PIO port B interrupt, c.p.u. enable interrupt, and pending interrupt disable. The last of these was particularly vexing: even Mostek did not seem to know about it when they wrote the provisional data sheet on the MK3881 PIO. It was finally laid to rest on page 109 of the Mostek 1979 Microcomputer Components Data Book. The address of the routine which services the interrupt is kept at the vector address.

Once the PIO and c.p.u. are ready to accept an interrupt, the microcomputer enters a wait loop which includes a scan of its own keyboard for the read-mode direct commands. On the Nascom 2 with NASSYS 3 this is accomplished very simply with the routine "in" (DF62H) which transfers the ASCII code for any character typed to the A register. When the interrupt arrives from the interface hardware, operation moves to the interrupt service routine (List 1) and the first byte is read in through port A to console field 2. The remaining 23 bytes follow at about $20 \mu \mathrm{~s}$ intervals. Operation relies on the hardware working slightly faster than the software (which necessitates a short wait loop if the c.p.u. is running at 4 MHz) but the hardware and software are re-synchronized

By R. D. Easson

after each byte because the hardware has to wait for the c.p.u. to raise the ready line.

Thus the status of each register is read into the appropriate place in console field 2 once per frame. Before operation returns to the wait loop for the next frame (i.e. as part of the interrupt service routine), the new console field is compared byte by byte with the previous one. If there has been no change, the null frame counter (n.f.c., a two-byte variable) is incremented. If something has changed, the contents of the n.f.c. and the number and revised status of the register or registers which have changed are read to the data field (which normally starts at 1340 H) and the data field packed data pointer is incremented accordingly to the start of the next frame. Thus a frame comprises $3+2 n$ bytes including the frame byte when n is the number of registers whose status has changed. The packed data and other pointers are sometimes parked in a scratchpad area of ram but where speed is important they are kept in register pairs of

Software breaks down
 into ...

1. The read and play mode routines for transferring the data between the microcomputer and the organ, in-terrupt-driven via the PIO, and for converting this to and from data format.
2. The edit routines, based on a scan of the microcomputer keyboard in play mode and block transfers of sections of data in data format.
3. The translate mode routines for translating music typed into the microcomputer from entry format into data format, mainly by means of look-up tables.
4. A vocabulary of some 60 words in Forth (about 4 K of compiled Forth code) which operates on both the duration and event components of themes in data format to produce some simple polyphonic extemporizations, including some basic harmonization rules, which could quite easily be extended.
the Z 80 or where necessary on the stack. Both sets of registers are used to provide sufficient pointers for comparing console fields 1 and 2, which is probably faster than using the index registers would be. The source code for this part of the interrupt service routine is given in List 2. Once the information has been extracted from console field 2 it is transferred to the console field 1 position so that console field 2 becomes free for the next frame.
Operation in play mode is simpler than in read mode because comparisons are not required. As before, a console field is initiated and the PIO and interrupts are enabled in the same way, except that different vector and interrupt service routine addresses are used and that the PIO is set to mode 00 (output) via port B. The wait loop is then entered and includes the checks for the play mode direct commands. When the interrupt arrives, the console field is trundled out through port B into the 4094 latches and the n.f.c. is decremented.
Operation then returns to the wait loop, which includes a check of the n.f.c. When it reaches zero, control passes to the update console field routine, which takes less than one frame period. This routine inspects the next byte in the date field. If it is a frame byte, the next value of n.f.c. is taken and the process continues, but if it is a register number the revised status of that register (the following byte) is read to the appropriate position in the console field and so on until the frame byte is reached (software couplings can be introduced at this stage). Operation then returns to the wait loop so that when the next interrupt arrives the revised console field is read to the console latches.
Console field 2 (read mode) or the console latches (play mode) are reset for every frame whether or not anything has changed. Should an error occur due to triggering of the interface hardware by a noise spike (a rare event) it will quickly be corrected, normally within one or two frames. Similarly, the synchronization of hardware and software is achieved one or two frames after the execution of the play mode and read mode routines.

Edit routines

The principal edit routines are effected by the play mode direct commands J (join) and E (edit) once the edit points have been
selected. The principle is directly analogous to splicing tape recordings in that the Z80 block transfer routines (LDIR and LDDR) are used to move sections of a recording in data format from one part of the ram to another, with frame bytes overlaid. The lowest and highest source and destination addresses, as appropriate, are kept in a scratchpad area of ram for loading to the HL, DE and BC registers when everything is ready. Join throws away the intervening section (unless it has been kept by K (keep)) whilst edit inserts a new section as stored by keep. The edit routine needs to check whether the new section is longer, shorter or the same length as the old one using the length of the block from the highest edit point to an arbitrary upper limit, normally set to C 000 H . The lowest address for K is D 000 H ; it can therefore store about five minutes of music (below F 600 H), whilst edit can accept an extra two minutes or so without interfereing with what has been stored by K. Clearly the limits can be changed if this is not adequate.

Most of the remaining play mode direct commands either are simple conditional branches or cause modifications to fragments of code. For example, \mathbf{P} (pause) in read mode merely removes the enable interrupt in the wait loop. Short cuts of this kind may not be good practice, but they are very convenient for a relatively simple control program written in machine code
rather than assembler, whilst being fast and compact. The two things to remember are firstly to keep a note in the source or reference listing of what is changed and of everything that changes it and secondly to remember to restore the program eventually. Entry points should also be clearly marked as a precaution against later changes to the code being entered, and one needs to be mindful of the branching protocol.

Early during the development of this system, the p.d.p. was parked in video ram between active frames to provide an indication of operation. It was soon found convenient when editing to decode the resulting hieroglyphics into a four-character address in hexadecimal.

Translate mode

The principles of operation are:
that the note values (durations) are translated directly into values of the null frame counter, incremented or decremented for each following + or respectively;
the stop key codes are first translated into the appropriate register number and status by means of a look-up table. The register status is then added or subtracted from the current status in the console field.

In each code group, the first character is
one of the eight directory characters H, R, P, S, T, L, ; and : . For H, R, P and T the next two characters are converted to lookup table addresses. For S, there is a further directory of three characters (H, R and P) which enable the same two-character stop codes which follow it to be used on each division of the organ.

Some care was needed over the construction of the look-up table. There is a trade-off between the complexity of the conversion process and the size of the table, which ended up with 384 bytes spread over 2.5 K of memory (F 600 H to FFFCH). The interstices are not wasted: they gradually filled with various subroutines and other scraps of program.
The first step in constructing the lookup table was to provide a complete set of addresses for the notes Cl to C 5 (or C6) including "black" notes. Then two more such sets for the other two divisions are required, plus three further sets for stops and one for pistons.

To make it easier to avoid clashes, the table was divided exclusively by the second least significant half-byte of the 16 digit code, as follows:

Hauptwerk stops	0,1 and 2
Natural keys and pedals	3 and 5
"Black" keys and pedals	4 and 6
Pedal stops	7,8 and 9
Rugpositiv stops	A, B and C
Thumbpistons	D and E

A
List 1. PIO and interrupts are enabled for read mode. First part of the interrupt service routine reads in one frame from the console registers.

List 2. Second part of the read mode interrupt service routine compares two successive console fields and transfers information on differences to the packed data field.

Furthermore, the key codes for the three divisions were divided exclusively by the least significant half-byte. From then on, things fell into place quite easily. For example, the address of the first byte in the table for any of the 49 Hauptwerk keys is found by adding B 800 H . Thus the register number for C3 (4333 H in ASCII) is stored at FB 33 H , whilst its status is stored at FB53H. The Z (for \#) adds a further 10 H to give the corresponding table addresses for HC3\#: FB43H and FB63H. At a later stage, extra routines were added to convert flats (indicated by]) to the corresponding sharps. The same conversion process works for all notes except A_{b} for which an extra test is required, as shown in List 3. Again to keep the table reasonably compact the stop codes (e.g. P8 for Prinzipal 8^{\prime}) are divided into two groups: the first group having initial character P, Q, R, S, $\mathrm{T}, \mathrm{U}, \mathrm{V}$, or W with all others in the second group.

The thumbpistons on the instrument in question are divided into five groups designated A1 to E3, plus four "disables". These codes are converted in a similar manner. The complete table of conversion factors (apart from those for the thumbpistons which are specific to the instrument) is shown at the foot of this column.
Some rearrangement might be required for different stop lists. The stop names and codes used on the instrument to which the interface is connected are shown in Table 2.

The directory character L (lift) causes a search through the 16 bytes of the console field which represent keys and pedals. If the status of any of these is non-zero, their register numbers are read to the data field with status zero. The console field is also reset to zero. Later keying entries in the same frame might cause a further change of status, but the final status is left in the console field when the data field is unpacked by operation in play mode.

When the translate routine is operated, up to eleven lines of 48 characters in video ram are scanned directly, one or two characters at a time, by the video ram pointer according to the video ram line and column count (VRLC and VRCC). Scanning ceases at ":". Spaces are ignored, except for the ones which define the ends of Duration definitions. Following any space, any character apart from the eight directory characters is treated as an error.

The knottiest part of this section is the part which sorts out the natural, sharp and flat notes and the keyings from releases. One way of doing this is shown in list 3 , in which the two-character key codes as

List 3. In translate mode, each key code can have one or two following characters to indicate sharp, flat and/or release. This routine determines the appropriate conversion factors

0E29		1000 TSTNC	ORG	OE29H ; MC4,	9 \& 10 : TEST URNC
0E29		1010	ENT	; ${ }_{\text {\& COL }}$	ONUERT IT TO LUT ADDRESS
0E29	22590E	1020	LD	(0E59H) HL	: Ready URP
OE2C	23	1030	INC	HL	;) Iric twice to after
OE2D	23	1040	INC	HL	;) URNC
OE2E	C3700F	1050	JP	0 F 70 H	; Goto plat routine
0 E31	FESA \rightarrow	$\rightarrow 1060$	CP	5 AH	(2 ? (sharp test)
0 E33	2811	1070 \%	JR	213 H	: Hop if sharp \& losd store
0 E35	3 E 00	1080	LD	A 0	;) Load "black" note store
0 E37	32 AE10	1090	LD	(10ABH) A	() iriactive
OE3A	7E	1100	L0	$A(\mathrm{HL})$; Reload same character
OE3B	FE2D	11104	CP	2 OH	; -?
OE3D	2811	1120*	JR	213 H	; If -, goto losd - store
OE3F	3E00	1130	LD	A 0	;) Load - store riactive
OE41	32AE10	1140	LD	(10AEH) A	
OE44	1811	1150*	JR	13 H	; Goto URNC routine
OE46	3E10	11604	L0	A 10H	;) Load "black" store
OE48	32AB10	1170	L0	(10ABH) A	() active
OEAB	$23 \rightarrow$	$\rightarrow 1180$	INC	HL	; Inc, URP
OEAC	05	1190	DEC		; Dec. URCC
OE4D	7E	$\begin{aligned} & 1200 \\ & 1210 ; \end{aligned}$	LD	A (HL)	; If "black" riote, loed - or space
OEAE	18 EB	1220 \%	JR	-13H	; Goto - test
OE50	3E04	12304	L0	A 1	i) Load - store activ
0 E52	32AE10	1240	LD	(10AEH) A	
OE55	23	1250	INC	HL	; Inc. URF
OE56	05	1260	DEC	B	; Dec. VRCC
$0 \mathrm{ES7}$	E5	12704	PUSH	HL	; Save URF
0 E 58	2A590E	1280	L0	HL (0ES9H)	; URNC to HL (see 0E29)
0 ESB	54	1290	LD	OH	i) Um, turriot right
OESC	50	1300	LD	E L	;) way rourid
OESD	63	1310	LD	H E	;)
OESE	6 A	1320	LD	L 0	
OESF	C0900F	1330	CALL	OF90H	;) Call "A IF FLAT AND
0E62	010 E	1340	DEFS	10 EH	;) CONUERT URNC"
		1350		FLAT	ROUTINE
OF70	3E00	1360	LD	A 0	i) Flat and A plat stores
0F72	32A110	1370	LD	(10A1H) A	;) reset (iriactive)
0F75	32A310	1380	LD	(10A3H) A	;)
0F78	05	1390	DEC	E	; Dec. URCC
0F79	05	1400	DEC	E	; Dec. URCC
OF7A	7E	1410	LD	A (HL)	; Fetch riext character
OF78	FESD	1420	CP	SDH	; J? (Plat)
OF70	2804	1430\%	JF	Z 6	; If flat, deal wath at
OF7F	7E	1440	LD	A (HL)	; Reload same character
OFBO	C3310E	1450	JP	0E31H	; Goto sharp test
$0 \mathrm{FB3}$	3E01	14604	LD	A 1	;) Set flat store active
$0 \mathrm{FB5}$	32A110	1470	LD	(10A1H) A	
0FBE	$3 \mathrm{E}, 10$	1480	LD	A 10H	;) Set "blacr." note
OFBA	32AE10	1490	LD	(10AEH) A	;) store active
OFBD	C34E0E	$\begin{aligned} & 1500 \\ & 1510 ; \end{aligned}$	JF	$\begin{aligned} & \text { OE4BH } \\ & \text { "A IF FLAT } \end{aligned}$; Go back Por riext chrctr. AND CONUERT URNC"
OF90	3AA110	1520	LD	A (10A1H)	; Flat store coritents to A
OF93	FEOO	1530	CF	0	; Iriactive?
0 F 95	2BOA	$1540{ }^{\circ}$	JFi	2 OCH	; Hop if iriactive
0F97	7c	1550	LD	A H	; Note letter code to A
OF98	FE41	1560	CF	41 H	; A ?
OF9A	2005	1570\%	JF	NZ 7	; Hop if riot A
0F9C	3 E 07	1580	LD	A 7	i) Load A flat store
OF9E	32A310	1590	LD	(10A3H) A	;) active (reset at 0F75)
OFA1	EDSEAG10	016004	LD	DE (10A6H)	; MSE , Corivert
OFAS	19	1610	ADD	HL DE	; , VRNC
OFAS	ED5EAE:10	01620	LD	DE (10AEH)	; "Elack") to table
OFAA	19	1630	ADD	HL DE	; , asdress of
OFAE	EDSEA010	01640	LD	DE (10 AOH)	; Plat , ORN
OFAF	ED52	1650	SEC	HL DE	;) by addarig
OFE1	EDSEA210	01660	LD	DE (10 A 2 H)	; A flat , corversion
OFES	19	1670	ADD	HL DE	; , factors
OFE6	C9	1680	RET	;	Keturn \& coritiruse

typed are designated VRNC (video ram note code) whilst the contents of the lookup table (LUT) are designated ORN and ORS (organ register number and organ register status).

Additional characters could be added to the main directory. For example, "," instead of ";" indicating a bar line before the next duration, using a different frame byte; would enable the microcomputer to vary rhythm and tempo. " X " might be used for expression (swell pedal) followed by a number in the range say 0 to 1 FH to indicate degree of opening. This informa-

	Manuals		Pedals	Stops						
				st group		Secon	d group			
Initial or second		R		P	H	R	P	H	R	P
For m.s.b. address, add	B800	B805*	B80A*	A7DO	A870		AFDO	B070	B040	
To convert to l.s.b. address, add	0020	0020	0020	0001	0001	0001	0001	0001	0001	
To convert to second group address, add							0800	0800	0800	

* OK for keyboard compass to B5. Use B806 and B30C if C6 is needed. Additional conversion factors are used for "black"' notes (0010), flats (0100) and Ab (0700).
tion could also probably be stored in the frame byte.

Usually it is not necessary to type everything in. Most music contains sequences (phrases repeated at a different pitch) and echo passages. When this occurs the first phrase can be edited for the second or subsequent phrases.

Polyphonic extemporization

By this time, the original 150 instructions had grown to some 5 K bytes of code, documented in about 60 pages of minute manuscript, some of which had been rewritten several times. Things were getting unwieldly and an alternative approach to programming seemed to be required. Forth came to the rescue. Using 'character fetch' and 'character store', together with four machine-code Forth words mainly extracted from the earlier programs, communication was soon established between the console field, the data field and the Forth stack. New console fields quickly blossomed, each one having its start address defined by a Forth constant, with

Continued on page 53

Digital filter design procedure

Abstract

These examples of the design of a simple digital filter (June issue) and that of a fourthorder Butterworth filter show how laborious maths may be simplified and the recurrence formula written without having to solve a fourth-order equation.

Many digital filter requirements can be met without any more algebra than as shown. It remains a problem, however, to design a low-pass filter with anything approaching an ideal characteristic, just as it does in the analogue world. The wellknown Butterworth filter has a flat characteristic in the pass band and a steep roll-off depending on the filter order. In the example, a digital equivalent to a Butterworth filter is designed, and rather laborious algebra is involved. So far as is possible, this is worked in general form so that it can be applied to other filters with different cut-off frequencies, and one or two short cuts are pointed out.
To obtain a steep roll-off a high order is required, but this would need many terms in the recurrence formula, resulting in a time delay that would probably be too great for the filter to operate in real time. The order must be chosen with the ability of the hardware in mind. With this in view a fourth-order filter is worked as an example, as this is the minimum order which shows the Butterworth characteristic clearly.

Cut-off frequency is a function of the sampling frequency. Suppose a 4 kHz baseband slot were sampled at the Nyquist rate $(8 \mathrm{kHz})$, with the requirement to filter the input so that there is no distortion in the pass band and a sharp cut-off at 3 kHz . Then the required cut-off frequency is $3 / 8$ of the sampling frequency: $\mathrm{f}_{\mathrm{c}}=3 \mathrm{f}_{\mathrm{s}} / 8$.

Fig. 9. S-plane diagram of a fourth-order (analogue) Butterworth filter.

by J. T. R. Sylvester Bradley

Bilinear transformation. The analogue Butterworth filter has a transfer function with a flat characteristic at low frequencies, rolls off sharply at the cut-off frequency and falls to zero at an infinite frequency. The digital version must follow the analogue characteristic as closely as possible, with a flat characteristic in the pass band, roll-off sharply at cut-off, and then fall to zero at $f_{\text {max }}$ (not infinity, as for an analogue filter; $f_{\text {max }}$ is half the sampling frequency and is the maximum frequency that can be processed by the digital filter). We have to make the frequencies on the zplane correspond with those on the s-plane of the analogue equivalent. One way to make the frequencies correspond is use the mapping*

$$
s=\frac{2(z-1)}{z+1}
$$

It follows that the frequencies on the z plane are represented by angles ($\omega \mathrm{T}$) so

$$
\omega \mathrm{T}=2 \tan ^{-1} \omega / 2
$$

T is the sampling period. Thus the z -plane maximum frequency is $\omega_{\max }$ corresponds to an analogue frequency given by

$$
\tan \frac{\omega_{\max } \mathrm{T}}{2}=\tan 90=\text { infinity } .
$$

So having chosen the cut-off frequency ω_{c} as $3 / 8$ sampling frequency on the z-plane the equivalent analogue cut-off frequency Ω_{c} is

$$
\Omega_{\mathrm{c}}=2 \tan -\frac{\omega_{\mathrm{c}} \mathrm{~T}}{2} .
$$

In general, for a nth-order filter $\mathrm{H}(\mathrm{s})=$
$\frac{\Omega_{\mathrm{c}}{ }^{\mathrm{n}}}{\left(\mathrm{s}+\Sigma_{1} \pm j \Omega_{1}\right)\left(s+\Sigma_{2} \pm j \Omega_{2}\right) \ldots\left(s+\Sigma_{\mathrm{n} / 2} \pm j \Omega_{\mathrm{n} / 2}\right)}$
*See page 207 of Digital Signal Processing by Oppheim and Schafer.

There are poles on the s-plane where $s+\Sigma_{i} \pm j \Omega_{i}=0$ ($\mathrm{i}=1$ to $\mathrm{n} / 2$). Using the transformation given, the poles on the z-plane are where

$$
\frac{2(\mathrm{z}-1)}{\mathrm{z}+1}+\Sigma_{\mathrm{i}} \pm \mathrm{j} \Omega_{\mathrm{i}}=0 .
$$

.For $+j \Omega_{1}, 2-2 z=\Sigma_{1} z+j \Omega_{1} z+j \Omega_{1}+\Sigma_{1}$.
\therefore For pole $1, \mathrm{z}_{1}=\frac{2-\Sigma_{1}-j \Omega_{1}}{2+\Sigma_{1}+i \Omega_{1}}$.

Design method

- Filter data: $\mathrm{f}_{\mathrm{c}} 3 \mathrm{kHz}, \mathrm{f}_{\mathrm{s}} 8 \mathrm{kHz}, \therefore \mathrm{f}_{\text {max }}$ $=4 \mathrm{kHz}$ and

$$
\omega_{\mathrm{c}} \mathrm{~T}=\frac{2 \times 3000}{8000}=2.356
$$

Pre-warp the cut-off frequency to obtain the equivalent analogue cut-off frequency

$$
\Omega_{\mathrm{c}}=2 \tan \frac{\omega_{\mathrm{c}} \mathrm{~T}}{2}=2 \tan 1.178=4.828 .
$$

Draw the s-plane diagram for the equivalent analogue Butterworth filter. This has poles distributed equally round the left-hand side of a circle (the Butterworth circle) of radius Ω_{c}, Fig. 9. The positions of the poles are given in terms of $\Sigma+j \Omega$ as

$$
\begin{array}{ll}
\mathrm{p}_{1} & \Sigma_{1}=\Omega_{\mathrm{R}} \sin 22.5=1.848 \\
& \Omega_{1}=\Omega_{\mathrm{c}} \cos 22.5=4.460 \\
\mathrm{p}_{2} & \Sigma_{2}=\Omega_{\mathrm{c}} \cos 22.5=4.460 \\
& \Omega_{2}=\Omega_{2} \sin 22.5=1.848 .
\end{array}
$$

Similarly for p_{3} and p_{4} in conjugate positions.

Find the positions of the corresponding poles on the z-plane.

$$
\begin{aligned}
& \text { For } p_{1} \quad Z_{i}=\frac{2-\Sigma_{1} j-\Omega_{1}}{2+\Sigma_{1}+j \Omega_{1}} \\
& =\frac{2-1.848-j 4.460}{2+1.848+j 4.460}=0.758 \angle-137.2^{\circ}
\end{aligned}
$$

Fig. 10. Z-plane diagram and /H(jw)/ frequency spectrum of the fourth-order digital Butterworth filter showing a typical flat response up to the cut-off frequency.
for p_{2}

$$
\mathrm{Z}_{2}=\frac{2-4.460-\mathrm{j} 1.848}{2+4.460+\mathrm{j} 4.460}=0.458 \angle 159.1^{\circ}
$$

with P_{3} and P_{4} as their conjugates.
Draw the z-plane diagram and hence the $|j \omega|$ spectrum of the filter, Fig. 10.

Find the z-transfer function $\mathrm{H}(\mathrm{z})$ from $\mathrm{H}(\mathrm{s})$. In general form first,

$$
H(z)=\frac{G(z+1)^{4}}{z+a_{1} \cdot z^{4}+a_{2} \cdot z^{3}+a_{3} \cdot z^{2}+a_{4}}
$$

where a_{1} to a_{4} are the pole parameters, and G is a gain factor. The zero parameters are the coefficients of z in the numerator, which could be found by multiplying out. But this is not necessary as the coefficients are simply the binomial coefficients, which for the fourth-order expression are $1,4,6$, $4,1\left(b_{0}, b_{1}, b_{2}, b_{3}\right.$ and $\left.b_{4}\right)$. Now in general

$$
\begin{aligned}
\mathrm{H}(\mathrm{~s}) & =\frac{\Omega_{\mathrm{c}}{ }^{4}}{\left(2+\Sigma_{1} \pm \mathrm{j} \Omega_{1}\right)\left(\mathrm{s}+\Sigma_{2} \pm \mathrm{j} \Omega_{2}\right)} \\
& =\frac{\Omega_{\mathrm{c}}{ }^{4}}{\mathrm{As}^{4}+\mathrm{Bs}^{3}+\mathrm{Cs}^{2}+\mathrm{Ds}+\mathrm{E}}
\end{aligned}
$$

where $A=1$

$$
\begin{aligned}
& \mathrm{B}=2 \Sigma_{1}+2 \Sigma_{2} \\
& \mathrm{C}=\Sigma_{1}^{2}+\Omega_{1}^{2}+\Sigma_{2}^{2}+\Omega_{2}^{2}+4 \Sigma_{1} \Sigma_{2} \\
& \mathrm{D}=2\left(\Sigma_{1}{ }^{2} \Sigma_{2}+\Omega_{1}^{2} \Sigma_{2}+\Sigma_{1} \Sigma^{2}+\Omega_{2}^{2} \Sigma_{1}\right) \\
& \mathrm{E}=\Sigma_{1}{ }^{2} \Sigma_{2}^{2}+\Omega_{1}^{2} \Omega_{2}^{2}+\Omega_{1}{ }^{2} \Sigma_{2}^{2}+\Sigma_{1}^{2} \Omega_{2}^{2} .
\end{aligned}
$$

To find $\mathrm{H}(\mathrm{z})$ use the bilinear transformation and substitute $s=2(z-1) /(z+1)$, whence

The denominator multiplied out and with like terms collected is

$$
\begin{aligned}
& (16 A+8 B+4 C+2 D+E) z^{4}+ \\
& (-64 A-16 B+4 D+4 E) z^{3}+ \\
& (96 A-8 C+6 E) z^{2}+ \\
& (-64 A+16 B-4 D+4 E) z+ \\
& (16 A-8 B+4 C-2 D+E)
\end{aligned}
$$

Now obtain the coefficients of z in the $H(z)$ transfer function equation by evaluating $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E from the values for Σ_{1}, $\Omega_{1}, \Sigma_{2}, \Omega_{2}$ given earlier ($\Sigma_{1}=\Omega_{2}=1.848$, $\Sigma_{2}=\Omega_{1}=4.46$). Then
$\mathrm{A}=1$
$\mathrm{B}=2 \Sigma_{1}+2 \Sigma_{2}=12.616$
$\mathrm{C}=\Sigma_{1}{ }^{2}+\Omega_{1}{ }^{2}+\Omega_{1}{ }^{2}+\Sigma_{2}{ }^{2} \Omega_{2}{ }^{2}+4 \Sigma_{1} \Sigma_{2}=79.58$
$\mathrm{D}=2\left(\Sigma_{1}{ }^{2} \Sigma_{2}+\Omega_{1}{ }^{3} \Sigma_{1} \Sigma_{1}{ }^{2}+\Omega_{2}{ }^{3}\right)=294.04$
$\mathrm{E}=\Sigma_{1}{ }^{2} \Sigma_{2}{ }^{2} \Omega_{1}{ }^{2} \Omega_{2}{ }^{2}+\Omega_{1}{ }^{2} \Sigma_{2}{ }^{2}+\Omega_{2}{ }^{2} \Sigma_{1}{ }^{2}=543.2$
The parameters of z in the denominator are conveniently evaluated using the tabular form shown on the next page (top).
Totals are normalized to a_{0}. This only affects G, which can be made any convenient value in a digital filter, so dividing both numerator and denominator of the general $H(z)$ by a_{0} yields

$$
\begin{array}{ll}
a_{0}=1 & \\
a_{1}=1.968 & a_{3}=0.7242 \\
a_{2}=1.734 & a_{4}=0.1203
\end{array}
$$

and substituting these values in $\mathrm{H}(\mathrm{z})$ gives the transfer function $\mathrm{H}(\mathrm{z})=$

$$
\begin{gathered}
\overline{z^{4}+1.968 z^{3}+1.734 z^{2}+0.7242 z+0.1203} \\
=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}
\end{gathered}
$$

The coefficients of x and y in the recurrence formula can be read directly from the transfer function in this form

y coefficients	x coefficients
$a_{1}=-1.968$	$b_{0}=1$
$a_{2}=-1.734$	$b_{1}=4$
$a_{3}=-0.7242$	$b_{2}=6$
$a_{4}=-0.1203$	$b_{3}=4$
	$b_{4}=1$

The b coefficients in the recurrence formula are simply the fourth-order binomial coefficients. Cross-multiplying gives

$$
\begin{aligned}
\mathrm{Y}(\mathrm{z}) \cdot \mathrm{z}^{4}+ & 1.968 \mathrm{Y}(\mathrm{z}) \cdot \mathrm{z}^{3}+1 \cdot 734 \mathrm{Y}(\mathrm{z}) \cdot \mathrm{z}^{2}+ \\
& 0.7242 \mathrm{Y}(\mathrm{z}) \cdot \mathrm{z}+0 \cdot 1203 \mathrm{Y}(\mathrm{z}) \\
= & \mathrm{GX}(\mathrm{z}) \cdot(\mathrm{z}+1)^{4} \mathrm{X}(\mathrm{z}) \\
= & \mathrm{GX}(\mathrm{z}) \cdot\left(\mathrm{z}^{4}+4 \mathrm{z}^{3}+6 \mathrm{z}^{2}+4 \mathrm{z}+1\right) .
\end{aligned}
$$

$H(z)=\frac{G}{16 A\left(\frac{z-1}{z+1}\right)^{4}+8 B\left(\frac{z-1}{z+1}\right)^{3}+4 C}\left(\frac{z-1}{z+1}\right)^{2}+2 D\left(\frac{z-1}{z+1}\right)+E$
Fig. 11. Realization diagram for the fourth-order digital Butterworth filter.

	z^{4}	z^{3} a^{1}	$\mathrm{z}^{2}{ }^{2}$	$z^{1}{ }^{1}$	2^{0} a^{4}
A	$16 \mathrm{~A}=16$	-64	94	-64	16
B	$8 \mathrm{~B}=8 \times 12.62$	-16×12.62		16×12.62	-8×12.62
C	$4 \mathrm{C}=4 \times 79.58$		-8×79.58		4×79.58
D	$2 \mathrm{D}=2 \times 294.04$	4×294.04		-4×294.04	-2×294.04
E	$\mathrm{E}=543.2$	4×543.2	6×543.2	4×543.2	543.2
	otals 1566.6	3083.1	2716.6	1134.5	188.5

Fig. 12. Fourth-order Butterworth filter in action, showing impulse response with the filter "ringing" at $3 / 3$ of the sampling frequency, as expected.

昌
0
0
9
0
0
2
2.032
昌
0
0
9
0
0
2
2.032
3.23902
3.23902
C.
1.95364
C.
1.95364

- MA5ET72
- MA5ET72
-590231
-590231
.+74 E 2 Z
.+74 E 2 Z
$-.114132$
$-.114132$
$-.15+93$
$-.15+93$
.221655
.221655
$-.139066$
$-.139066$
1.6198
1.6198
 - 6901
 - 6901
. $23 \rightarrow 92$
. $23 \rightarrow 92$
2.5497
2.5497
1.9035
1.9035
. 164149
. 164149
 - . 5e92a3
 - . 5e92a3
$.463=7$
$.463=7$
-114058
-114058
. 315299
. 315299
-1.3633
-1.3633

1. 9200?
2. 9200?
3. 241
4. 241

Fig. 13. Filter processing a series of four-sample pulses.

Dividing by z^{4} gives

$$
\begin{aligned}
\mathrm{Y}(\mathrm{z})= & -1.968 \mathrm{Y}(\mathrm{z}) \cdot \mathrm{z}^{-1}-1.734 \mathrm{Y}(\mathrm{z}) \cdot \mathrm{z}^{-2} \\
& -0.7242 \mathrm{Y}(\mathrm{z}) \cdot \mathrm{z}^{-3}-0.1203 \mathrm{Y}(\mathrm{z}) \cdot \mathrm{z}^{-4}+ \\
& +\mathrm{G}\left\{\mathrm{X}(\mathrm{z})+4 \mathrm{X}(\mathrm{z}) \cdot \mathrm{z}^{-1}\right. \\
& \left.+6 \mathrm{X}(\mathrm{z}) \cdot \mathrm{z}^{-2}+4 \mathrm{X}(\mathrm{z}) \cdot \mathrm{z}^{-3}+\mathrm{z}^{-4}\right\}
\end{aligned}
$$

The gain G can be put external to the filter and can therefore be assumed equal to unity. The recurrence form is therefore and the realization diagram is drawn at Fig. 11. The recurrence formula can be

$$
\begin{aligned}
& y(n)=-1.968 y(n-1)-1.734 y(n-2)- \\
& 0.742 y(n-3)-0.1203 y(n-4)+x(n)+ \\
& 4 x(n-1)+6 x(n-2)+4 x(n-3)+x(n-4)
\end{aligned}
$$

written directly into a computer to realize the filter. Impulse response is shown at Fig. 12, from which it can be seen that the filter rings at $3 / 8$ of the sampling frequency f_{s}, as expected.

VN

Planning for plenty
 continued from page 27

The Government shows no sign of being on the brink of licencing new radio ser vices, perhaps because so far attempts to press it to do so have been ill-organised and incoherent. But it is important that engineers - without whom no radio services can ever be possible - become involved in the discussion about future directions for our radio services. Perhaps they can bring to it some clarity, cohesion - and common sense!

Further reading

Partridge, S. "Not the BBC/IBA: The Case For Community Radio" Comedia Publishing Group ISBN 0906890187 (9 Poland Street, London W1V 3DG)
Relay - the other magazine of the airwaves available quarterly from Box 12, 2A St Paul's Road, London N1 - annual subscripition £2 for individuals

References

1. McLeod, N. "Community Radio" Wireless World vol 86 June/July 1980
2. Commons written answers no. 59 and no. 6029

March 1983. Speaking specifically about community radio, Mr Whitelaw said: " . . . given the resource demands of other developments in the broadcasting field, and since the spectrum available in the longer term is not yet known, I have concluded that it would not be right to take matters further at present. However, in the preparation of UK proposals for the v.h.f. Band II Broadcasting Planning Conference next year, account will be taken of the possible needs of community radio with the aim of reducing the spectrum constraints which could otherwise apply in the future; and further consideration will be given to the possible development of community radio when the outcome of the Conference is known . 3. Local Radio Workshop Ltd. "Local Radio in London" ISBN 0-950-81 14-0-8 (12 Praed Mews, London W2 1QY)
4. Sarah Clay \& Partners, Report F19 "The Technical Feasibility of Community Radio in London" November 1979 (77 Park Road,
Teddington, Middlesex TW11 0AW)
5. Home Office Local Radio Working Party Third Report (50 Queen Anne's Gate, London SW1H 9AT)
6. Sarah Clay \& Partners, Report F29
"Comments of the Third Report of the Local
Radio Working Party" April 1981
7. Wireless Workshop "New Radio Services in London" January 1983 (25 Ditchling Rise, Brighton East Sussex BN1 4QL)
8. CCIR recommendation 368-2, XIIIth Plenary Assembly, Geneva, 1974

VuN

Fig. 2. Printed circuit board for the unit, shown full-size.

Fig. 3. Component plan for the printed circuit board.
voltmeter will then get a nasty surprise every time the resistance terminals become open circuit!

The constant current source can be provided using a purpose-made integrated circuit, but protection for the meter is more of a problem. All the i.cs used in the voltmeter described last month are capable of withstanding the full supply voltage at their input terminals; but there is still the meter movement to worry about because there is insufficient voltage headroom to incorporate current limiting in series with it.

The sensible answer is to place the limitation in the resistance measuring unit such that whatever the condition of its input terminals its output cannot exceed a value just in excess of full scale deflection of the voltmeter on its lowest range. The voltmeter could then be left switched to this range (or be directly connected) and the resistance scale switching effected from the resistance unit.

Circuit description

The circuit is shown in Fig. 1. IC_{1} is a small transistor-sized i.c. designed to allow a constant current to flow in any circuit with which it is connected in series. The value of the current is determined by a resistor $\mathrm{R}_{\text {set }}$ connected between the R terminal and the negative terminal of the device. The i.c. is tolerant of a fairly wide voltage range across its terminals, but its output is temperature-dependent. Compensation is provided by the addition of D_{1} and $\mathrm{R}_{\text {comp }}\left(\mathrm{R}_{4,5,6}\right)$.

Without compensation the value of the
current is calculated as $\mathrm{I}(\mathrm{mA})=67.7 / \mathrm{R}_{\text {set }}$. Addition of the compensating components approximately doubles this value, and so the formula to use in this case is $\mathrm{I}(\mathrm{mA})=67.7 /\left(2 \times \mathrm{R}_{\text {set }}\right) . \quad \mathrm{R}_{\text {comp }}$ should be about ten times $\mathrm{R}_{\text {set }}$. The term approximately is used because, strictly, the value of $\mathbf{R}_{\text {comp }}$ should be found by trial and error for each particular device; but the values indicated here will be found satisfactory.
IC_{1} and D_{1} drop about 1.6 volts. To leave some leeway, the voltage across the unknown resistor was calculated not to rise above IV during measurement. With no resistance being measured (that is, the input terminals open circuit) the terminal voltage would rise almost to the supply rail. To prevent this, IC_{2} (protected by R_{7}) amplifies the voltage across the input terminals in such a way that when this voltage just exceeds the maximum value permitted for the range in use, the output limits. The gain of the amplifier is changed by $\mathrm{R}_{8}-\mathrm{R}_{15}$ to ensure that this is achieved. Taps are taken from the feedback network so that whichever range is selected, the output to the voltmeter provides a full scale deflection of 10 mV . This obviates the need to switch the voltmeter.

Since there is no ready means of checking the current out of IC_{1}, test resistors (one for each current range) can be optionally included.
The ability to measure resistances over 1 megohm is not often required in radio work and its implementation is not practical using this circuit. This is because of the lovv voltage available and the limitation on the voltage applied to $\mathrm{IC}_{2}(\pm 8 \mathrm{~V})$. Dedi-
cated equipment is more suitable for the measurement of high resistance and insulation resistance.
For the odd occasion when high values need to be measured a fair indication can be obtained by connecting the unknown resistance in parallel with a high value known resistor, measuring the pair, then calculating the value of the unknown using Ohm's Law.

Construction

A suggested p.c.b. is shown in Fig. 2, with a component overlay in Fig. 3. The layout can stand alone or it can be printed on the same board as the voltmeter. Position 7 of the voltmeter switch can be used for the add-on unit if the resistors which only use the switch as a tag-board are moved round. There is no need to have the voltmeter input divider present at all since the resistance unit output is 10 mV . If the input and output leads are kept separate then the wires between the switch and board can be laced together.

Calibration

If the resistance unit is carefully set up there is no need for panel-mounted adjustments because the accuracy is independent of the supply voltage. There are two variables in the circuit: the test current and the gain of IC_{2}. It is unlikely that the average constructor will have the equipment to measure a current of one microamp with any degree of confidence except by indirect methods, so we must look for another reference point in the circuit. We have one if IC_{2} is driven to its output limiting condition, provided that the supply voltages remain constant. However, as with the voltmeter itself, the internal currentlimiting feature of the 7650 should not be used in this circuit (i.e. pin 9 of IC_{2} must not be connected to pin 4).

Before starting to set up the unit, give the construction a final check, then put a pencil mark on the meter scale about two divisions (4%) past the end of the normal f.s.d. scale position. Leave the input terminals open circuit and set all resistance trimmers to half way except R_{1} which should be set to maximum.

Power up the circuit and, if a battery model is being calibrated, set the supply voltage to 8 V (equivalent to a low battery). Adjust R_{8} on the 1Ω range, R_{9} on the 100Ω range and R_{10} on the $100 \mathrm{k} \Omega$ range so that the meter needle just rests over the mark previously made on the scale.

Now, a non-inverting amplifier under dynamic conditions has three points of equal potertial: the two input terminals and the tap on the feedback divider. In this circuit the lower part of the feedback divider is fixed, therefore the voltage across this portion is equal to the input voltage. Those last three adjustments effectively set the gain of the amplifier so that with a 4% overload at the input we have a 4% overload at the output. At the same time we are defining the point at which the amplifier limits, thereby setting the maximum output to the following voltmeter when the resistance unit terminals are open circuit.

Fig. 4. Wiring the range switch S_{1}. Tags are shown diagrammatically, viewed from the rear of the panel. There are only 11 contacts on the front of each wafer: the twelfth is on the reverse side and is not used. The stop of the switch mechanism is positioned so that only the first seven contacts are used.

Having set the gain of IC_{2} now set the test currents by switching the standard resistors to the input terminals and adjusting R_{1} with $1 \Omega, \mathrm{R}_{2}$ with 100Ω and R_{3} with $100 \mathrm{k} \Omega$ to obtain full-scale deflection on the appropriate scales. The adjustments should be carefully carried out at each stage since the test currents and amplifier gains do not go in pairs: one test current serves three gain settings and so each adjustment should be as near perfect as possible.

In battery-operated models with a fresh battery fitted the limiting voltage of IC_{1} is higher, so that under input open-circuit conditions the meter needle will hit the forward stop. Accuracy will not suffer, but IC_{1} will not limit until an overload of more than 4% has been applied. The half-supply

Scale	I	$V(R x)$	$I C_{2}$ gain	$V_{\text {out }}$
1Ω	10 mA	10 mV	500	10 mV
10Ω	1 mA	10 mV	500	10 mV
100Ω	1 mA	100 mV	50	10 mV
$1 \mathrm{k} \Omega$	1 mA	1 V	5	10 mV
$10 \mathrm{k} \Omega$	$1 \mu \mathrm{~A}$	10 mV	500	10 mV
$100 \mathrm{k} \Omega$	$1 \mu \mathrm{~A}$	100 mV	50	10 mV
$1 \mathrm{M} \Omega$	$1 \mu \mathrm{~A}$	1 V	5	10 mV

difference between a new battery at 9 V and an old one at 8 V is 12%. In the new-battery condition therefore the meter tries to read 112.5%, so it is in no great danger.

The table (left) indicates the status of the various parts of the circuit on different ranges; this may also be useful in interpreting the connections of the range switch.
For testing capacitors, the $1 \mathrm{M} \Omega$ range can be used. The meter needle will move downwards indicating a low resistance until the capacitor becomes charged. Semiconductor diodes can be tested on the $1 \mathrm{k} \Omega$ range, and the forward voltage drop of the diode deduced from the table. Obviously the test current cannot be forced
through a reverse-biased diode.

Components

For the four sections of S_{1}, four one-pole 12 -way miniature switch wafers may be used. The diodes and integrated circuits are obtainable from RS Components or from Technomatic Ltd. Cermet trimmers are recommended for the variable resistors. The fixed resistors should be 1% tolerance or better; a suitable range is available from Ambit International.

TV for Amateurs, by John L. Wood, G3YQC. Paperback, 52 pp . Available from BATC Publications, 14 Lilac Avenue, Leicester LE5 1FN, for $£ 1.75$ including inland postage.
It is said that around one-sixth of British households now have a video recorder. No doubt amongst all those householders there must be quite a few who would like to use their video equipment on the air; and for them, this book provides an excellent practical guide. It does not attempt to replace the more comprehensive Amateur TV Handbooks also published by the BATC, but provides enough circuit designs and background information to enable the average radio amateur to set up a basic television station. There is a useful section on operating practices and, for the more faint-hearted, a list of sources of some of the commercially-made transmitting equipment now becoming available to the t.v. amateur.

STTI's International Satellite Television Reception Guidebook, by Stephen J. Birkill. 78 pages $81 / 2$ in $\times 1$ lin, paperback, from Satellite Television Technology, PO Box G, Arcadia, Oklahoma 73007, USA. Price $\$ 40$.

After the less-than-rapturous reception accorded by the British public to the latest newcomers to the television airwaves, some may wonder how many more channels the viewer really wants. For satellite television enthusaiasts, such considerations of programme content do not apply. In the United States, and increasingly in Europe, commerciallyavailable satellite receiving terminals for the home are making it possible even for non-technical people to eavesdrop on the multitude of programmes from the skies. This book is aimed at the installers and owners of such equipment, and it offers a satellite-by-satellite guide to the sort of transmissions to expect and where to look for them. As well as broadcasts for direct reception, these include distribution links for terrestrial t.v. services and international exchanges such as the daily news feeds.
The author is one of the leading British authorities on satellite $t . v$. reception, and
he provides a great deal of practical information which is otherwise difficult to obtain - for example, technical details and operational information about some of the many Soviet communications satellites, much of which has been compiled from his own detailed observations. It must be hoped that the engineers at the Dubna ground-station are not already behind bars as a result of Mr Birkill's revelations: on Friday nights, apparently, they keep their Gorizont satellite channel open with such un-Soviet material as Bugs Bunny cartoons and old editions of BBC-tv's 'Top of the Pops'.
The book contains no constructional information, though it does offer a few technical suggestions for improving reception. Among these are hints at ways of getting round the video and audio scrambling on which some of the more unsporting telecommunications authorities insist. The text is extensively illustrated with off-screen photographs, mostly taken at the author's home in the North of England, and the many diagrams include visibility charts and band plans for a wide range of satellite-borne services. It is a pity that the book is so expensive.

KNOW HOW RESOURCE OR PROPERTY

Your editorial (April, 1983) poses a fundamental question: to whom should the resources of the planet (including the airwaves) and technology (including the entire means of production, distribution and communication) belong? The Right and Left appear to have opposing answers, but in reality their social objectives are more similar than they are different. Both Right and Left stand for a minority possession of the earth's resources - even though the state capitalism of the Left is presented as 'public ownership'. Both Right and Left accept the market as the economic arbiter of need - with the Left indulging in Keynesian fantasies about regulating the market so as to make profit coincide with need

The alternative to a system of minority ownership and control, where goods and services are produced for sale on the market with a view to profit, is a social order based upon common ownership and democratic control of the earth by all of its inhabitants. In such a system of society production will be solely for use, with no buying and selling, but free access to the available resources. The aim of creating a genuine socialist society defies the imaginations of both the Right and the Left, both of which confine themselves to the sterile debate between private and state capitalism. Yet in a world which modern communication technology has turned into a global village, are not those of us who aim to end property and the market and simply produce for use attempting no more than to harmonise productive forces - which are the product of an age of science - with social relations - which, in their present, capitalist form, are a product of centuries past?
Stephen Coleman
Clapham
London

PROGRESS?

By now your readers must all have a wide selection of electronic equipment around the house and in the interest of progress it is time to take a look at the most old-fashioned and inefficient of these, the telephone. To do so may assist anyone contemplating working for British Telecom.

In ten years in central London my phone has gone wrong dozens of times and has taken up to three weeks to repair. Lately research on these goings-on has uncovered an internal message system instituted since the split with the Post Office and rather slower, which is doubtless a good deal more costly as well on account of the much smaller traffic. Another discovery is that the microphone inserts are liable to failure every few years which leads to inadequate current for dialling, but they can often be ameliorated by banging. However at best they only yield faint speech at the other end due to their inherent weakness and the long runs of thin underground wiring met in calls across London; this lack of decibels cannot be cured as it does not officially exist.
However what we have here is a century-old instrument that has retained a tariff keeping its use to a fraction of the public (when modern technology would have started by considering
every household a market and worked from there) and causing severe worry to commercial firms, with many exchanges still based on priniciples developed by an undertaker, Strowger, bent on preventing eavesdropping by operators who apprised his rivals of deaths, thus emphasising the lack of privacy carefully maintained by British Telecom today with massive bugging installations which Duncan Campbell of the New Statesman has pointed out beam to American bases by microwave the entire crosschannel telephone traffic for some reason - a wild allegation which a Parlimentary reply carefully avoided denying. (There are said to be rocks ahead over enabling BT as a private firm to continue this task.)
A friend who worked at the BT HQ complained that he was kept re-hashing stuff from 6 years before but in the matter of telephone exchanges their deficiencies are more serious. After taking 10 years to perceive that the gastube driven one at Highgate Wood did not actually work, they embroiled British manufacturers in the TXE4 which was an early Sixties design still being tidied up in the middle Seventies.
About that time they wrote to my mother explaining they were about to install the latest electronic equipment and I observed they wouldn't even recognise the latest electronic equipment if they saw it. How unkind was this? Well, the right thing to run telephone exchanges is a computer, but ITT, according to Anthony Sampson's book "ITT - the Corporate State", used to keep a man in New York specially to stop engineers developing computers, since this might have involved some sort of collision with IBM. So there they were messing around with r.t.l. in the TXE4, and System X was born, another failure the last I heard.

When I consider the robust telephones we had before the war which often had to be held away from the ear to reduce volume for comfort, much the same as the instruments people were using on 300 -mile runs of robust overhead wires before 1900, I remark that since then we have been robbed of telephone numbers by the introduction of STD, whereby the dialling code is a function of two variables, caller's exchange and exchange called. We have been given coin boxes which do not take 20p pieces followed by coin boxes which do not take 5 p pieces, and the latter have no provision for directories

None of this is funny at a time when electronics everywhere is getting cheaper in leaps and bounds. Obviously the private telephone is a cost problem since many people only make 2 calls a week. The obvious answer these days is simply to incorporate elaborate micro-circuits to do something fairly appropriate; I suspect this would first involve bunching phones in fifties on a sort of ring main rather like the first transatlantic cable speech amplifiers, supplying +50 V and -50 V and allowing each phone a 1.5 V drop as its supply; speech and instructions would be digitized and sent by packet-switching techniques, but later I would expect telephones to be powered from subscriber's mains so they could use optical fibre connections. In view of techniques of optical isolation available for decades now at speech frequencies, I would expect subscribers to be able to have such isolation if they wished and then to be allowed to connect anything they pleased provided it would receive and transmit calls while avoiding the frequencies used by BT for dialling via trunk lines.
Bernard Jones
London W1

AERIALS AT SEA

Perhaps we are tiring of the subject of 'Aerials at sea'. However, I have a suggestion relevant to liferaft aerials.
A useful aerial would be a vertical loop. This works well at low height, and as it is low-impedance, would not be too upset by salt spray. The main problem with a loop is to obtain a sufficiently low r.f. resistance. This is achieved by using a sufficiently large gauge of conductor, which may be hollow, because of skin effect.

I imagine a loop in the form of an inflated torus, similar to a large bicycle inner tube, metallized on the enclosed surface, made part of the structure of an inflatable liferaft.
As a starting point for a design, a land-based rigid loop, as used by the US Army, is described in "Amateur Radio Techniques" by Pat Hawker (G3VA) (p 234, 5th edition).

D. Parnell

Pickering
N. Yorkshire

RADIO AMATEURS EXAMINATION

The periodic review of the syllabus for the Radio Amateurs Examination is now due and the City and Guilds R.A.E. Subject Committee has established a working party for this purpose

The principal objective of the examination is to ascertain the candidate's ability to operate an amateur station within the terms of the licence and not necessarily to test expertise in particular aspects of the Amateur Service. Suggestions for alterations or amendments to the existing syllabus would be welcome and should be sent to Mr S. D. Allison, City and Guilds of London Institute, 46 Britannia Street, London WCIX 9RG. S. D. Allison

City and Guilds
of London Institute

CITIZENS BAND

Having followed, within the pages of $W W$, the running battle about CB in your country for some time, I am finally moved to make the profound comment, "history repeats itself"

To read these letters bemoaning the advent of CB by some amateurs, and the such lucid arguments for its introduction by those in favour, is to pick up dusty back issues of many local (Australian) magazines of nearly a decade ago.

Now it's legal, and still the battle continues. With the benefit of my 20-20 hindsight, may I make a few observations, as it is possible to interpolate between the British scene and that which convulsed Australia and led to so many changes.

Many amateurs believed that CB would lead to the demise of amateur radio as a hobby. This has as yet not happened in this country; in fact the opposite has taken place. The number of amateur licences has increased rapidly. The main "new friends" have come up through the ranks of the CB operators.

At first there was a large amount of piracy outside the legal allocations, but apart from the few 'hard core', who have always been with us, this seems to have lost its fascination. There was a time when nearly all the repeaters had their trouble makers, it took some time to educate some of the normal users of these devices not to
react, as this surely gave 'them' the encouragement to continue. The worst of these offenders were caught and dealt with by the authorities, in due course.
It was a two way learning process, the staff of 'Telecom' had a lot of lessons to learn, not in the least hindered by the archaic wireless telegraphy act, that has yet to be brought up to date with changes since the two world wars. But now it seems to be working. The rationalization of the processes of obtaining a CB licence and the availability of cheap, mass produced equipment for the 'legal' channels, has provided the majority with what they want, personal two way radio.
The initial CB hysteria has died to quiet obscurity, in fact, many users have seen that they were used, by some, to make a great deal of money. Of the millions of CB users many now have amateur licences and many more have expensive CB equipment sitting in the cupboard unused for years. The once crowded bands are at times totally quiet: u.h.f. users have the repeater facilities once pioneered by the amateurs. In fact many amateurs have CB licences; you see the wife is not interested in A.R. but it's very useful to be able to contact her via CB.
Robert Wilkins VK3AUR
Tallangatta
Victoria

DESIGN
 COMPETITION

I was interested to see that one reader has come up with the idea of informing blind persons the contents of cans and packages without opening them. No further information was given.

I should like to suggest (if this is not the method used) that it would be a simple matter to 'read' the bar codes that are appearing increasingly on modern packaging by means of a light reader; decoding the information and removing extraneous information normally used in stock control; and presenting the edited information to the blind person by means of a voice synthesizer through a private earpiece.

Being completely without technological training I would nevertheless suggest that in this day of the chip it would not be beyond the realms of possibility to produce a fairly lightweight pack which could be worn like a handbag over the shoulder and weigh about the same.

Once the technique had been perfected there is no reason why bar-code labels could not be used in other circumstances to aid the blind to read. We already see these codes on the edges of supermarket shelves and on packaging. Why not make complete sentences and print books in the same manner. Naturally a monotonous Dalek 'voice' would never replace the enjoyment of silent reading that Braille offers but this would be ideal for official pamphlets for the blind, direction signs and other informatory instructions.
J. Devereaux

Wordsley
West Midlands

Some weeks ago you or one of your colleagues was interviewed on the BBC Radio London programme for the Blind "Guideline". I should like to put forward some suggestions for suitable projects that may be of interest to your readers.

Firstly, let me give you some background detail as to the reason for these suggestions. I
am a member of the British Computer Association of the Blind, which is affiliated to the British Computer Society. The aims of the B.C.A.B. are to promote the employment and training of blind and visually handicapped people within the field of computing. Due to my specialist knowledge, I have a degree in electronics, I provide technical liaison for the association, particularly in relation to computer terminals for the blind and communications problems.
At the present time there are some 90 blind people in the UK, and the figure is growing every month, who use "paperless Braille machines". These are essentially microproces-sor-based devices which have a "soft copy" electro-mechanical Braille display. They are used by blind people as computer terminals or word processors or simply to provide an electronic filing system. One of the major problems facing the blind, particularly the professional, is that of finding information, if, for example, a particular reference book is available on tape or in Braille. At the moment this information is held somewhat haphazardly in different locations and in different catalogues, with numerous supplements.
As a result of the increased availability of these machines the association has now begun to discuss the viability of setting up a data base for the visually disabled. Such a data base would provide information on Braille books, tapes and even aids available.

We would like ideally to use Prestel or a similar system. However, this poses a few technical problems which might be solved by one of your readers.
I should like also to make some general points of guidance to your readers. There is little point in re-inventing the wheel; talking terminals are already available from a number of sources. There is little chance that an individual will have the necessary resources to produce a better one. Simplicity is the best approach.

If a device is to be widely used, its cost must be low and it should be easy to use, remember that many blind are elderly.

Finally please do not hesitate to contact me if you would like any assistance or advice on the suitability of aids for the blind. The association is always pleased to support ventures which can benefit the blind and the field of electronics offers many as yet unexplored possibilities. My office telephone number is 0424 431344, ext. 6003.

Gary M. Robinson
St. Leonards-on-Sea
East Sussex

Project 1.

List of projects

Current Viewdata systems, Presstel etc use an asymmetric duplex system for the transmission and reception of the data between the users terminal and the data base. Unfortunately most of the paperless Braille machines used by blind people are designed to run under a more conventional symmetric duplex system.
A line speed convertor is therefore required to convert the $1200 / 75$ asymmetric duplex signal used by the modem to a $1200 / 1200$ symmetric duplex signal from the Braille machine. Since the conversion from 1200 to 75 baud is only required for the backward channel, and this data is coming from a keyboard any buffering problem will be minimal. Though commercial line speed convertors are available their cost is prohibitive and their capabilities are excessive for this simple task.
Such a device would enable a paperless Braille machine to be used in conjunction with one of the
cheap "Presstel" type modems that are appearing on the scene and through it gain access to a data base.

Project 2.
A mains on/off timer.
This device which would control any mains device would plug into the standard 13 amp mains socket and the device to be controlled into it. The main feature would be that the time setting would be electronic and would have a spoken numeric readout. There are a number of simple numeric speech chips available so that speech in this simple case would not be difficult.
A more sophisticated version of this could be perhaps extended to give multiple settings both for on and off so as to allow the blind to have a timer control facility on things like tape recorders etc. Existing ones rely on the blind user being able to read Braille or have a good sense of touch and since they are tactile they can be somewhat inaccurate when trying to set a precise time.

Over the years there have been several methods for the disabled to signal help when they are in difficulties - cords, bells, lights, whistles etc. and, of course, the telephone. They are all so limited that they are virtually useless for the very people for whom they are most needed the very severely disabled, including the frail elderly. When they fall to the floor, or in similar difficulty, they are helpless; they cannot reach any of the communication aids presently suggested.

What is needed is a portable fail-safe alarm, a device that can be worn round the wrist or neck which the person can immediately operate, activating automatically the telephone or similar means of communication to an outside source of help. I have to say that there are one or two such devices on the market, but they, too, are limited and, I think, expensive.

If something really suitable could be produced it would be a tremendous boon for the increasing numbers of disabled people. There would be an enormous market amongst them, and Social Services departments, especially with the increasing emphasis on community care.

I hope this will be taken up.
E. M. Cohen

Southend-on-Sea

STEPPER MOTOR DRIVE

Unfortunately, I do not seem to have got my main point over to B. S. Beddoe (May Letters), despite the headline description "simple, costeffective."

My circuit is no more complex than the resistance limited drive it is intended to replace (just one extra small transistor Tr_{1} per phase) and yet offers greatly improved efficiency, and hence savings in the cost of power supply components.
His circuit is only one resistor away from being a chopper drive (did he try positive feedback around the comparator?) and so is very much more complex then mine. He offers voltage control of current, better temperature independence and c.m.o.s. input. The price of these features in terms of component count, p.c. area and reduction of mean time between failures must be carefully evaluated.
Incidentally, nowhere in my article do I claim originality. I put the circuit in the category of "one of those obvious things that needs saying." A. D. Bailey

Loughborough
Leicestershire

Checking op-amps

Checking first-order integrity of op-amps with a transistor curve-tracer needs only simple interpretation, lending itself to "goods inward" testing.

In analogue circuit development work involving the popular 741 operational amplifier it is useful to have available a simple, independent method of checking what might be termed the first-order integrity of the device, i.e. its capability of behaving as a direct-coupled differential gain block. There is certainly little point in making more detailed tests on parameters such as input offset voltage and commonmode rejection ratio until this has been established. This article describes the basis of a simple check that is applicable if a transistor curve tracer is available. The method has two major merits - first, no auxiliary power supplies are required, and second, no detailed interpretation of the display is necessary so the check can be performed by unskilled personnel, e.g. at a "goods-in" test stage.
Terminals C,B,E are collector, base, emitter terminals of the transistor curve tracer the relevant parts of which are shown in block form inside the box. The positive collector voltage sweep of the curve tracer is applied, via the dissipationlimiting resistor R_{D} to the positive rail supply of the amplifier under test: the negative rail supply is earthed. The amplifier is connected for 100% d.c. negative feedback and an attenuated version of the collector sweep is applied to its non-inverting input terminal.
The controls of the curve tracer are set for display of base voltage vs collector voltage. The base step voltage generator cannot normally be switched off - a desirable condition for the check being performed - but its effect can be reduced by arranging for the display of the fewest small amplitude positive-going steps (e.g. four steps with step amplitude 10 mV) and using the maximum value of base drive resistor R_{B}.
Circuit operation can be understood by reference to the signature of a good 741, sketched below. The characteristic has

Bryan Hart B.Sc. M.I.E.R.E. is senior lecturer in electronics at North East London Polytechnic, Dagenham.

by B. L. Hart

three parts: (i) $v_{\mathrm{B}}=0$ initially because $v_{C}=0$ and R_{B} is effectively connected to earth, but when v_{C} starts to increase v_{B} rises to the lower saturation level of the amplifier; (ii) v_{B} remains almost constant at its saturation value as v_{C} increases because v_{C} is insufficient for all the bipolar devices comprising the amplifier to operate in the forward-active mode; (iii) v_{B} increases linearly with v_{C}. In this operating condition all the transistors of the amplifier operate in the forward-active mode and the feedback is operative. The circuit behaves as a unity-gain voltage-follower. As there is insignificant potential difference between the inverting and noninverting terminals, $v_{\mathrm{B}}-v_{\mathrm{C}} / 2$, so that the characteristic has a slope of +0.5 and when
extrapolated back appears to pass through the origin of coordinates.

The precise location of (i) and (ii) of the characteristic might depend slightly on the particular amplifier but the location of (iii) should be independent of the specific parameters. It is this feature that forms the basis of the check of amplifier integrity. In (iii) there are large changes in the openloop voltage gain A_{V} of the amplifier because A_{V} is a function of the rail supply. However, there is no significant effect on the slope of the characteristic as this is dependent on the expression $A_{V}\left(1+A_{V}\right)$ and $A_{V} \gg 1$ throughout region (iii). For practical convenience the curve tracer controls can be set so that the horizontal scale (V / cm) is twice that of the vertical scale. Then (iii) has an easily-recognized slope of unity.
The sweep test technique can obviously be adapted for use with an oscilloscope providing it has a time-base sweep voltage output socket and an $x-y$ display facility. viv

Characteristic of op-amp chosen from 75 amplifiers by several manufacturers (left) with circuit waveforms (centre). Double-exposure photo (right) shows coincident characteristics from two randomly chosen op-amps. Scales: $1 \mathrm{~V} / \mathrm{cm}$ horiz., $0.5 \mathrm{~V} / \mathrm{cm}$ vertical excupt for centre traces which are $5 \mathrm{~ms} / \mathrm{cm}$ horiz., $5 \mathrm{~V} / \mathrm{cm}$ for $\left.V_{C}(t) \mathrm{p}\right), 2 \mathrm{~V} / \mathrm{cm}$ for V_{B} (bottom). Curve tracer: Tektronix $575\left(R_{D}=2 k, R_{B}=22 k, R-10 k s 1\right)$.

Resistance measuring unit

Designed as an optional extra for the precision voltmeter described in the June issue, but suitable for any high-impedance voltmeter having a 10 mV range.

Obtaining quick and accurate measurements of resistance has long been a problem for designers and equipment users alike. There are two problems: one is the wide range of magnitudes required (10^{-7} or 10^{-8} to one) and the other is the fact that any moving-coil meter is currentdriven and so the resistance-to-current relationship is reciprocal. The scale calibration of the meter will therefore not be linear.
In the average moving-coil test meter, even with a low current meter movement, we are restricted to two or at the best three highly non-linear resistance scales. In addition it is usually necessary to provide two power sources if the higher scales are to be useful.
A more accurate method but one far more tedious to operate is the Wheatstone bridge. This requires a galvanometer delicate enough to detect a fine balance yet robust enough to withstand the full out-ofbalance current. The basic unit can be expensive and even more so if a two or three-coil galvanometer is employed.
In more recent times the advent of the semiconductor and in particular the highly
predictable operational amplifier has allowed the exploitation of two methods of resistance measurement long known but little used.

The first is the ratiometric method. In

by W. J. Hornsby, M.I.E.R.E.

this case a current is passed through a known resistance and the unknown resistance in series. The voltage across each resistance is measured simultaneously and the value of the unknown resistance is then calculated as the value of the known resistor multiplied by the voltage ratio

This method can be easily implemented
Fig. 1. In this complete circuit of the unit, I_{1} is a programmable constant-current source supplying a known current to the resistor to be tested. $1 C_{2}$ protects the meter against overloading when the test terminals are open-circuit. ICL7650 is a chopper-stabilized operational amplifier ordinary op-amps are not suitable. R_{14} and R_{15} may be assembled from standardvalue resistors in series, as shown.
by using the $7106 / 7107$ type of digital voltmeter i.c. Reliable measurement can be made from tenths of an ohm (limited by lead and circuit resistance) to megohms (limited by resistor and circuit noise). The difficulty comes when the behaviour of a changing resistance is important: for instance, when moving a cable form looking for an intermittent short-circuit or earth connection an operator would not find it easy to cope with a continually changing set of numbers.
This article therefore concentrates on the second approach. In this method a specific current is passed through the unknown resistance and the voltage across the resistance is measured. If the current is constant then the voltage to resistance relationship is linear, resulting in linear scales (although one scale per decade is then required). However, if low voltage supplies are chosen, then very low currents with high stability will be required when high values of resistance are to be measured; and if a constant current circuit is used then when there is no load the voltage across the measuring terminals will rise very close to the supply. The following

GATE SYMBOLS

May I ask for guidance through your columns as to what logic symbol is appropriate to indicate the function of the following circuit?

This gives an output only when one of the inputs is in the opposite logic state to the other two, and should thus, I presume, be called a Disparity Gate. The truth table is as shown

Inputs	Output
All 0	0
One as I	1
Two as I	1
All 1	0

When the new logic symbol pundits have worked out that one there is an elaboration of this circuit that can convert it into a Two out of Three Quorum Gate* which has the additional property of being exclusive.

Power supply? Anyone who has not been ordered to design circuitry without any power supply specified doesn't know what if feels like to be an electronic engineer!
J. C. Rudge

Harlington,
Middlesex
*J. C. Rudge (letter) Wireless World, July 1982.

INPUTS	OUTPUT
All 0	0
One as 1	1
TWo as 1	1
All 1	0

HERETIC'S GUIDE TO MODERN PHYSICS

In his May article, Dr Scott Murray is yet again guilty of the inexcusable - misquoting facts out of context. This was blatantly manifested when he used Dirac's postulation of the positron as a pretext to an attack on the tunnel effect, despite the fact that there is no connection between the two.

Dirac's calculations had a square root in the result for the charge of electrons. This allowed them to have either negative charge-electrons, or positive charge-positons. Dirac predicted the existence of 'negative matter, in the sense that its constituent particles were oppositely charged, and so the term 'anti-matter' was coined. Dirac never suggested that positrons had negative mass. He did not have to 'explain' the positron; his mathematics predicted it and physics later confirmed its existence. Dr Murray appears to have confused the positron with
its negative-mass 'cousin', the hole. The holes are gaps in a free electronic continuum, and in that context only can you have positively charged particles with negative mass.

In conclusion, Dirac's antimatter concept may appear in some science fiction, but it is very much science fact. Dr Murray's use of this, misquoted out of context and in any case totally irrelevant, is a very poor attempt to mislead gullible readers.
M. J. Niman

Manchester

In the May issue a number of letters critical of Dr Scott-Murray's long-running saga 'A Heretic's guide to modern physics' appeared. In commenting on mine Dr Murray wisely sidestepped the first two paragraphs and concentrated on the third. A number of ideas which were current half a century ago have not stood the test of time, and the notion of duality is certainly one of them. In a preceding, so far unpublished, letter I emphasized that 'quantum objects' such as photons and electrons were neither waves nor particles, exactly the point made by Mr Gleave in the May letters. Nevertheless Dr Murray in his first comment on my letter chose to flagrantly misrepresent me by stating that I had written as if 'light is both (particle and wave) simultaneously'.

In this context a feature not brought out by Mr Gleave is the fact that quantum mechanics provides a single mathematical description of photon behaviour which covers not only the quasi-particle and quasi-wave aspects, but in addition the in-between world typified by the remarkable kinds of behaviour shown in some types of Môssbauer experiments. Originally Planck and Einstein attributed properties to photons in an essentially ad hoc fashion, but for some decades now theoretical accounts of behaviour have been available (see Heitler's 'Quantum Theory of Radiation') which show that they must be regarded as behaving in a way far removed from the billiard-ball-like objects of Dr Murray's imaginings.

In the unpublished letter I also pointed out that the spectra of gamma rays from radioactive sources obtained using $\mathrm{Ge}(\mathrm{Li})$ detectors regularly showed features indicating that over a microsecond or so any bunching was less by some orders of magnitude than the millions which Dr Murray in his October article said he would settle for, yet that these gamma rays still showed interference effects, in that their energies (or wavelengths) could be determined by passing them through a quartz crystal acting as a diffracting grating. These facts too he felt entitled to ignore.

Turning to his second comment, I must first admit some order of magnitude difficulties of my own: a photon of visible light has a wavelength, not of some tens, but of some thousands of interatomic spacings. He asked in connection with the optical photo-electric effect 'why is it that only one of these (millions of) electrons is ejected by the photon's impact?'. The answer is simple - on the purely classical basis of the image force between a charge and a conductor it will take a finite amount of energy to remove even a conduction electron from a metal. Photons of visible light simply do not have enough energy to remove more than one conduction electron from alkali metals such as sodium and potassium.

He went on to ask 'what physical mechanism determines which electron is ejected, and "how wide is a photon, please?' Now Doppler shift
measurements show that the conduction electrons in metals have speeds of about 0.1% of the speed of light, some ten times the value to be expected from classical theory, but fully in agreement with the predictions of wave mechanics. If one assumes that the delay between a photon hitting the surface of a metal and any subsequent emission of a photoelectron is of the order of 1 ps , a typical conduction electron will in that time have travelled some thousands of times the average distance between neighbouring atoms, so that willynilly the photon will have interacted with electrons over an area comparable with the square of its wavelength. These same conduction electrons have De Broglie wavelengths of several interatomic distances, and according to wave mechanics this is the feature which allows them to move freely about in metals. Dr Murray really should try his hand at using his ideas to account for, say, the temperature dependence of the resistance of metals at liquid helium temperatures. Although no-one would realize the fact from reading his articles, it was the success of wave mechanics in interpreting this dependence and many other puzzling aspects of the behaviour of solid materials that first persuaded many physicists to consider the new theories seriously.
C. F. Coleman

Grove
Oxfordshire

Abstract Law is just as unbreakable in Copenhagen as anywhere else!

I have already touched briefly upon the law of pressure, resistance and flow: another is the law of decay from interaction.

The further interaction is reduced, the less decay there is. Insulators attempt to stop interaction, and they succeed more or less. There is not, nor can there ever be a perfect insulator, and any perfectly insulated device would be an absolute singularity having nothing to interact with: needless to say, there is one, and one only, and you are in it up to the eyes and beyond!

For these reasons, no potential barrier can be absolute, and I could not really care a tinker's cuss how electrons manage to get past it, though I am happy to hazard a guess (based upon the same deductive logic which says that energy exists) that there is a massive carrier in apparently empty space through which energetic interaction occurs.
Thus, while I positively adore Dr Scott Murray, it seems to me that his subjective arguments are so shallow and superficial that they merely invite argument from the specialists of this world: the drops in the ocean may be seen as particles in motion, and it takes one particle an impossible amount of work to make a wave.
What is all the fuss about? Rubbing the nose of a mess-maker in his mess merely makes him argue. Let them stew in it: make the prognosis, and let time prove it.
Dirac and Bohr must come to accept that space is not empty: it just appears that way because you can't catch a basic building block! There is nothing smaller with which an adequate mesh can be made, so that it inevitably slips through the holes.
It is a simple matter of inter-disciplinary analysis of which the single discipline specialist is mentally incapable. Farm the blighters!
James A. MacHarg
Wooler
Northumberland

In Wireless World of April 1983, p.48, Jones gives an impressive list of oversights and omissions which were present in the interpretation of the Michelson and Morley experiment. However, I missed one important problem I have always felt when dealing with this problem.
In this experiment it is always taken for granted that the velocity of light does not change at reflection. However, how can one be sure about that? Apart from Romer and similar determinations of the velocity of light I do not know of any other way of determining the veloc ity of light, thus without mirrors and lenses. On the contrary, from the point of view of light as a stream of photons it is at least just as likely that light might change its velocity at reflection: if a photon excites an electron which on its turn produces another photon there is no reason why the velocity of light of the original photon should be the same as the newly created one. But if the velocity of light may change at reflection, already for this reason the experiments of Michelson and Morley cannot produce a dif ference in the velocity of light (after reflection). Dr M. Osinga
Haarlem
Netherlands

I was very interested to read M. G. Wellard's letter (January), including his comments on N. Rudakov's book "Fiction Stranger than Truth", which I have also read with considerable interest.
Wellard states that Rudakov has collected "more than enough evidence to show that the physics Establishment is in the hands of ideological extremists". It is a little unfortunate that he then goes on to mention, as a sample of that evidence, a somewhat exaggerated statement of Rudakov's. Wellard refers to Rudakov's citation of a review of one of Harold Aspden's books, and repeats Rudakov's assertion that the review says that Aspden is a crackpot. Although the review is somewhat pejorative, it is an exaggeration to say that it calls Aspden a crackpot.

On the same page of his book (p.9), Rudakov writes that "Lyttleton is of the opinion that the truth of relativity seems so self-evident as to be beyond need of discussion by any sane people." Although he does not give the source, he is fairly obviously referring to a letter to The Times, which is reproduced on pages $10-11$ of Herbert Dingle's book "Science at the Crossroads". A careful reading of the letter shows that what Lyttleton wrote is completely different from what Rudakov attributes to him.

As Rudakov rightly says, (p.7), "Silence is the main weapon of the relativists." There is also ample evidence that members of the scientific community view scientific heretics with scorn and refuse to take their arguments seriously, and I was glad to see Wellard's reference to the scornful heading of an article in New Scientist. After perusing the relevant correspondence and seeing the heading "Einstein 6, Cranks 1", the reader may possibly conjure up a picture of Einstein playing golf. Whatever game the writer of the heading had in mind, it certainly was not cricket!
Ian McCausland
University of Toronto
Canada

The principle of indeterminacy is not a topic which I have studied to any great extent, but I would like to put a question to Dr Murray. He
argues in your March issue that it is possible to determine what the velocity of an electron was "to any accuracy we please". But all electrons look alike. How then can we know whether the electron on which the second observation of position was made is the same as that on which the first observation was made?
K. S. Hall

City University
London

FORTH COMPUTER

In his article on a Forth computer Brian Woodroffe takes the dangerous step of comparing microprocessor c.p.us by preparing a number of examples of small isolated sections of code. Whilst I do not wish to take a standpoint in favour of any particular device I would like to point out that this sort of comparison is, at best, worthless and can be misleading. To quote one counter example, the 8088 ' + ' operation could be carried out via the instructions

POP AX
 MOV BP SP
 ADD [BP] AX

equal to the 6809 in terms of instructions, or, BP has a fixed relation to SP, as is the case in most executing programs,

POP AX
 $\mathrm{ADD}[\mathrm{BP}+\alpha] \mathrm{AX}$

where X is an assembly time constant. I hasten to point out that I am not trying to challenge his choice of processor but simply to point out that his reasoning is flawed. I have no doubt that any software engineer (sorry Mr Catt) familiar with the other c.p.u. mentioned could improve upon the quoted examples.
J. O'Connor

Crewe

ELECTROMAGNETIC DOPPLER

In the May issue Mr S. Hobson offers his explanation of e. m. Doppler. His assertion that the mechanism is ' v ' is not helpful, ' v ' is the cause, a change in frequency is the effect; the mechanism sought is that which links the two. The description he gives for 'wave crests' is equally valid if applied to a string of bullets fired at B by A and in this case the velocity of the bullets as seen by B would be the equivalent of ($\mathrm{c}-\mathrm{v}$).

What S. H. does is to divorce the fact that the light travels from A to B from the fact that A and \mathbf{B} are moving apart, carefully avoiding describing the resultant composite motion. His final suggestion that v is not velocity but rate of change of distance is playing with words.
The light must leave A and must arrive at B and at each must have an observed velocity, frequency and wavelength which together conform to the equation:

$$
v=f \lambda
$$

The light leaves A at velocity c. If at B one assumed that it still travels at c relative to A then its velocity relative to B will be c-v. We can write

$$
\begin{array}{cl}
\text { at } \mathrm{A} & \mathrm{c}=\mathrm{f}_{\mathrm{A}} \hat{\lambda} \\
\text { at } \mathbf{B} & \mathrm{c}-\mathrm{v}=\mathrm{f}_{\mathrm{B}} \lambda \\
\text { and } & \frac{\mathrm{f}_{\mathrm{A}}}{\mathrm{f}_{\mathrm{B}}}=\mathrm{c}-\mathrm{v}
\end{array}
$$

This then is a common-sense description of events which very elegantly produces the right answer but is of course heresy.

If it was not possible by observing the light from a source to tell whether or not the source is moving, one could logically deduce that the motion of light is unaffected by the velocity of the source. As it is possible to tell if a source is moving, then clearly something is affected by movement. If the frequency of a periodic function is lower, then either it is going past more slowly or the 'wave crests' are further apart. If one is not a heretic, light cannot be going slower, therefore the wavelength must have increased. What causes the wavelength to change? Where does the change take place?

Suppose at the moment of measurement B passes a third observer D stationary with respect to A. If the change in frequency observed by B is attributed to a yet unexplained change in wavelength which has occurred at a yet unspecified point between A and B how is it that D does not also observe this change in wavelength. He is at the same point of time and space as B, is observing the same wave as B observes, passing him at the same velocity as it passes B.

Heresy is so much simpler.
J. Kennaugh

Cornwall

Like your correspondent Kennaugh in Wireless World, May, 1983 I have been looking at the Doppler theory.

If one considers a particle stream where there is velocity, frequency and separation instead of velocity, frequency and wavelength then the Doppler effects can still be expected.

In calculating the relative velocities of the source and the particles with respect to the observer one can invoke the presence of an 'ether' against which the velocities are measured. These can then be summed to get the relative velocities and to remove the 'ether'. This may at first sight appear to be a pointless exercise but if it is done for an Einsteinian system then it is obvious that for every value of a relative velocity (of the source with respect to the observer) there is an infinite set of pairs of velocities (of each with respect to the 'ether') that produce the same Doppler effect. With a non-Einsteinian system there is only one set of velocities that produces the effect.

The reason for this is that in a non-Einsteinian system the movement of the source produces a change in the velocity and the separation of the particles but not the frequency whereas a movement of the observer produces a change in the velocity and the frequency of the particles but not the separations. Thus the movements of the source and the observer do not cause the same change in the Doppler effect whereas in an einsteinian system they do.

An interesting consequence of this is that in a non-Einsteinian system the universe has built into it a means of identifying which object, source or observer has changed its motion. The contributions of each body to the total relative velocity can thus be calculated.

It would appear, therefore, that some velocities are relative and some absolutely so.
James L. Smith
St. Albans
Hertfordshire

Table 2. Stop-list codes used in translate mode, Copeman Hart Chamber Organ, London, 1974/1982

Manual 1 49 notes C to $\mathrm{c}^{\text {III }}$			$\begin{aligned} & \text { Manual II } \\ & 49 \text { notes } C \text { to }{ }^{\text {III }} \end{aligned}$			Pedal 30 notes CC to f		
Quintaton	16^{\prime}	QD	Gedeckt	8^{\prime}	G8	Prinzipalbass	32'	FD
Prinzipal	8^{\prime}	P8	Prinzipal	4'	P4	Untersatz	16^{\prime}	UB
Viola da Gamba	8^{\prime}	V8	Hohlfiöte	4^{\prime}	F4	Prinzipal	8^{\prime}	P8
Rohrflöte	8^{\prime}	R8	Nasat	2/3' ${ }^{\prime}$	N3	Gedeckt	8^{\prime}	G8
Oktav	4^{\prime}	04	Gemshorn	2^{\prime}	G2	Oktav	4^{\prime}	O4
Spitzflöte	4^{\prime}	S4	Terz	13/5'	T2	Nachthorn	$2 '$	N2
Waldflöte	2^{\prime}	W2	Sifflöte	$1^{\prime \prime}$	S1	Mixtur	II-1	MR
Quinte	$11 / 3^{\prime}$	Q1	Zimbel	11	MR	Kontraposaune	32^{\prime}	KP
Mixtur	III	MR	Krummhorn	8^{\prime}	K8	Posaune	16^{\prime}	PB
Scharf	II	SK	Schalmei	4'	S4	Trompete	8^{\prime}	T8
Rankett	16^{\prime}	RD	Tremulant		TR			
Trompete	8^{\prime}	T8						
Couplers: $\begin{array}{ll}\text { M } \\ & M \\ & M\end{array}$	to Ma o Ped to Ped	nuall al	$\begin{aligned} & \text { KM } \\ & \text { KH } \\ & \text { KR } \end{aligned}$					

Note: As is usual, D indicates Double

Continued from page 41

variables for a rash of new pointers. Two further machine-code words provided nine-bit multiply and divide by two which greatly speeded up the process of transposition, made faster still by an alternative word to transpose by eight notes at a time. This is particularly useful for transposing between divisions of the organ - fortunately, care had been taken when the hardware was installed to wire the 128 keying register lines in a logical sequence.

To date, the extemporizations available are largely based on canon in two or three parts, with independent time and pitch offsets (mostly defined by variables) for each part. Each part has its own p.d.p. in the input data field (representing the theme) and its own input and output (i.e. transposed) console fields. The Forth program then combines the two or three parts into a new output data field, which can then be auditioned using play mode in the usual way. Up to now, therefore, the machine does not perform true extemporization, that is to say in real time, but the
speed of operation suggests that this is feasible if the correct interrupt priorities can be established.

For a three-part canon, a seven-branch decision tree is needed to determine from the durations whether all three, which two or which one of the parts are (or is) the next to move. A decorated line, which can be combined with a two-part accompaniment, is provided by using the two-part canon routine but allowing only the latest part to move to appear in the output console field. With the appropriate time offset, this can provide a highly syncopated variation on the original theme, plus curious 'hocket-like' effects when the original notes depart slightly from strict time or strict legato.

The next thing to do was to provide some harmonization rules. By temporarily transposing the console field for one part and comparing it with another, any interval can be detected and changed into any other interval. To date, this has been used only to turn adjacent notes into minor
thirds, but even this simple rule can produce charming suspensions and cadences (charming at least in relation to their somewhat austere surroundings).

The structure of the Forth words seems to clarify by an interative process (by the programmer, not the computer) as the work proceeds. For example, the harmonization rule mentioned above boils down to the word 'augment minor seconds', abbreviated to AMS. To use this, it is simply inserted at the beginning of the definition of 'transfer and/or console fields' which prepares the combined console field for output to the data field. Needless to say, if the machine were "performing" in real time, the output data field would not be necessary.

Perhaps the most charitable thing which could be said about the results from the extemporization routines after six weeks of spare time work is that they offer plenty of scope for further development. Probably the next fruitful step would be some rules for motion of the separate parts.

June 14-17
Tectronica 83; International exhibition for test, measurement and control and for the
laboratory. Earls Court, London. Industrial and
Trade Fairs Ltd. Tel: 021-705 6707.
June 21-22
World Electronics: Europe - the way ahead.
Financial Times conference to be held in
London. Details from Financial Times. Tel:
01-248 8000 ext 4123.
June 21-23
Compec North 83; Business computer show. Belle Vue, Manchester. Reed Exhibitions. Tel: 01-613 8040.
June 22-24
Subsea Challenge Conference; Progress in underwater technology. RAU Exhibition and
Conference Centre, Amsterdam. Society for
Underwater Technology, London. Tel: 01-222 3236.

June 27-July 1
Digital signal processing; course organised by the George Washington University (18 St
George Street, London WIR 9DE), at Imperial
College, London. Tel: 0626833012.

June 27-29
Videotex '83; Conference and exhibition at the New York Hilton, NY, USA. Organised by London Online Inc. Details in UK from Online. Tel: 0927428211.

June 27-Julyl

BKSTS '83; 8th International film and television conference and exhibition. Royal Lancaster Hotel, London. British
Kinematograph, Sound and Television Society. Tel: 01-242 8400.

June 27-29

Frequency synthesizers; Course organised by the George Washington University, at Imperial College, London. Tel: 0626833012.
June 27-30
Integrated optics and optical fibre communication. Fourth International Conference in Tokyo, Japan. Details from IEE. Tel: 01-240 1871 ext 330.
June 27-July 1
Integrated circuit engineering, with emphasis on vlsi and vhdic. Course organised by the
George Washington University at Imperial
College, London. Fer details tel: 0626833012.

June 27-July 1
Laser 83 Opto-electronik. Sixth International
Congress and trade fair. Trade Fair Centre,
Munich. AMEG, Messegelande, Postfach 1210 09, D-8000 München 12.

June 28-29

Comex 83; Conference and exhibition of mrbile radio communications and paging systems. DeVere Hotel, Coventry. Federation of
Communications Services. Tel: 01-635 2657.
June 30-July 1
An applications-oriented approach to artificial intelligence. Course organised by the George
Washington University at Imperial College,
London. For details tel: 0626833012.
July 3-8
Semi-custom ic design and vlsi; IEE vacation school at Edinburgh University. IEE. Tel: 01-240 1871 ext 330.

July 3-8

Interfacing techniques for microprocessor
instrumentation. IEE vacation school at
University College of North Wales. IEE. Tel:
01-240 1871 ext 330.
July 3-15
Microwave solid state components and
subsystem design. IEE vacation school at
Leeds University. IEE, tel: 01-240 1871 ext 308.

Aspects of audio amplifier design

Given sufficiently high linearity of certain silicon bipolar transistors with initially linear regions of their input characteristic, it seems expedient to use them in audio amplifiers - especially those feeding horn loudspeakers - without overall feedback.

The perfection of audio amplifiers involves not only the perfection of electric circuits but the perfection of amplifying elements - transistors - as well. Efficiency in audio amplifiers may sometimes be considered a secondary technical requirement because of the existence of compact effective and relatively cheap power supplies with the mains to convert the $50-60 \mathrm{~Hz}$ frequency at the power supply input to a higher one. This article illustrates, through the example of singleended amplifier design for horn loudspeakers without overall feedback, some aspects that might become significant in the future, as well as in the present time. High stability and (as a rule) better dependence of non-linear distortion on output voltage can be achieved by simple methods and without sacrificing other parameters. In push-pull amplifiers, some compensation of the second harmonic exists but with an increase of third harmonic that is more considerable than the decrease of the second. Another essential feature of single-ended amplifiers is the equalizing of the amplifier load of the loudspeaker by the small resistance in the emitter of the Darlington output stage.

Modern horn radiators have an output exceeding $114-117 \mathrm{~dB}(\mathrm{~lm} / 1 \mathrm{~W})$ when using cobalt, samarium and other highly effi-
cient magnets for normal polar response. The output of low-frequency loudspeakers without horns is limited by the flat amplitude response at low frequencies, this output usually being no more than $94-97 \mathrm{~dB}$. Bearing in mind that the maximum power of low frequency loudspeakers is limited by voice coil heat dissipation and by the nature of the moving system as a whole, and taking into account large intermodulation distortion in l.f. loudspeakers at $\mathrm{P}_{\text {oul }}>5$ to 25 W (the ear becomes more

by Y. Miloslavsky, Dipl. Ing.

sensitive to a.m./f.m. as sound pressure level increases ${ }^{1}$), the maximum power of low-frequency loudspeakers cannot exceed $25-200 \mathrm{~W}$. And this has been borne out in practice. In addition horn radiators possess specific (non-smooth) distortions because of the change from a sinusoidal wave to a shock wave and a nonlinear elasticity of air in the plenum chamber for large throat amplitudes. These distortions occur when the acoustic power divided by the input horn area is greater than about $0.25 \mathrm{~W} / \mathrm{cm}^{2}$. If the throat area is $6 \mathrm{~cm}^{2}$ and the efficiency around 50%, then

Single-ended amplifiers can meet the most stringent requirements for horn loudspeaker drivers provided that components are carefully chosen.
the rated amplifier power will be about 3W. Thus the power output of medium and high-frequency channels of power amplifiers should equal 0.25 to 2 W , and taking account of the spectra of musical signals, we come to a value for power output of 1 to $4 W$.

Such amplifiers can be designed on the basis of a single-ended circuit, below, and can meet the most stringent up-to-date requirements provided that all of their components - capacitors, resistors, transistors - also meet up-to-date requirements.

Realisation of such an amplifier with either valves or field-effect transistors gives no advantage from the point of efficiency, output resistance and even linearity. The output resistance of valve and field-effect transistor amplifiers cannot be reduced sufficiently without overall negative feedback, or special complicated circuits if followers are used. Then the output resistance is

$$
\mathrm{R}_{\mathrm{out}}=\frac{\mathrm{R}_{\mathrm{i}}}{1+\mu} \approx \frac{1}{\mathrm{~S}} \geqslant 20 \mathrm{ohm} .
$$

From equation 1 (appendix) the output resistance of followers using bipolar transistors, particularly a Darlington transistor, reduces to

$$
\mathrm{R}_{\mathrm{out}} \approx \mathrm{r}_{\mathrm{e} T \mathrm{r} 3}+\frac{\left(\mathrm{R}_{3} \| \mathrm{R}_{4}\right) \mid \mathrm{R}_{5}}{\mathrm{~h}_{21 \mathrm{ETr} 2} \cdot \mathrm{~h}_{21 \mathrm{ETr} 3}}
$$

In this case $R_{\text {out }} \leqslant 0.4$ to 0.2 ohm , with $\mathrm{R}_{3} \approx 1.5 \mathrm{k} \Omega, \mathrm{h}_{21 \mathrm{e}} \approx 3 \times 10^{3}$. This value of output resistance is enough even for a low frequency channel.

In general, the output resistance is a complex value $\mathrm{Z}_{\text {out }}$, the modulus of which increases with increase in frequency due to weakening of local negative feedback ($\mathrm{h}_{21 \mathrm{e}}$). The input resistance of Darlington transistor is limited by resistance $\mathrm{r}_{\mathrm{CT} 2}$, from equation 2 (appendix). In general, the input resistance of a follower is also a complex value and approaches $\mathrm{R}_{\mathrm{bTr} 2}$ with increase in frequency. Moreover $\mathrm{f}_{\text {ic }}<\mathrm{f}_{\text {upper }}$ (f_{ic} is pole frequency in Z_{in}, see appendix).

As a first approximation, one may ig-

nore variations in non-linear resistances r_{b} and r_{e}, as well as weak variations in C_{c} and C_{e} as a function of signal level, and adopt their average values relating to the d.c. operating points $\left\{\mathrm{I}_{\mathrm{c}(\mathrm{dc})}, \mathrm{V}_{\mathrm{CE}(\mathrm{dc})}\right\}$ and rated P_{0} of 0.25 to $0.5 \mathrm{P}_{\mathrm{omax} \text {. }}$ (We ignore in our case internal voltage feedback due to base thickness modulation; $\mu=(\mathrm{dVE} / \mathrm{dVc})$ IEconst $=-\phi_{T} \times$ const $/ \mathrm{w} \vee \mathrm{V}_{\mathrm{c}}$.
When supplying short pulses with small rise time to the follower the ouput cable capacitance may influence the form and amplitude of the pulses. The transition time of the follower should be smaller than the transition time of the signal.
In the calculation of the transient response (as, for example, using the integral of Duamel) it is not necessary to take into account the isolating capacitors used as crossover networks which cause the appearance of additional multipliers ($1+\mathrm{p} \tau_{\mathrm{k}}$) in the numerator of the transfer function, as there are complementary transient responses in the mid and low-frequency channels and their corresponding radiators. But the problem of transient response still remains. In general, given the resistor in the emitter network and without taking isolating capacitors into account for the cascade of a common emitter and common collector (emitter follower) the transient function is usually written as follows (basing it on an equivalent circuit under certain assumptions):

$$
K(p)=\frac{K_{0}(1+\alpha p)}{1+m p+n p^{2}} .
$$

Such a function points to possible oscillatory character of the transient process or a possible overshoot. With the calculated capacitor $\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{z}=\mathrm{p} 2}$ connected in parallel with the resistor mentioned above, the transient function becomes ideal (ref. 8) under certain conditions:

$$
\begin{aligned}
\mathrm{K}(\mathrm{p}) & =\frac{\mathrm{K}_{\mathrm{o}}}{1+\frac{\mathrm{np}}{\alpha}} \\
\text { where } \quad & \\
m & =\alpha+\frac{n}{\alpha} \\
\text { and } \quad f_{\text {pole2 }} & =f_{\text {zero }}, f_{\text {pole2 }}>f_{\text {polel }} \\
C_{z=p 2} & \neq C_{L} f_{\text {upper max. }} .
\end{aligned}
$$

In the case of an emitter follower signal frequencies must be properly limited, since the abrupt displacement of the operating point into the region of small h_{21} is possible, and the transient process is defined by time constant $\left(Z_{1} \| R_{6}\right) \times$ $\left(C_{b^{\prime} e}+C_{L}\right)$; with $R_{\text {out }}=R_{\text {out }}(t)$.
Because the output and input resistances are complex values and their module are accordingly dependent on frequency, there is a tendency to raise $f_{\text {upper }}$ to 1 to 10 MHz so that non-linear distortions, output reistance and frequency dependance of amplitude and phase responses deteriorate as little as possible in the operational frequency band of around 200 kHz . This band width is necessary for more faithful reproduction of transient processes, for decreasing the level of difference tones for frequencies higher than 20 kHz , and for decreasing amplitude and phase distortion of the whole system. The correct reproduction of transients becomes a decisive factor in many cases. Piano sound is the most characteristic case, with its abrupt attack and lack of stationary sound ${ }^{2}$, which corresponds to conclusions given in reference ${ }^{3}$. Some of the basic parameters of amplifiers are upper frequency limit, coefficients α_{2} to α_{n} in the power series transfer characteristic

$$
\begin{aligned}
\mathrm{V}_{\text {out }}=\mathrm{kV}_{\mathrm{in}} & +\alpha_{2} \mathrm{~V}_{\text {in }}^{2}+\alpha_{3} \mathrm{~V}_{\mathrm{in}}^{3}+\alpha_{4} \mathrm{~V}_{\text {in }} \\
& +\ldots+\alpha_{\mathrm{n}} \mathrm{~V}_{\text {in }}
\end{aligned}
$$

the nature of dependence $\alpha_{m}=\alpha_{m}(\beta, \omega, \tau)$, signal-to-noise ratio, output resistance, reliability, life time, constructional design, and overall cost. Let us analyse some of the specified parameters in detail. The value 0.5 to 2 MHz of $f_{\text {upper }}$ can easily be achieved using proper high-frequency bipolar transistors and using small-signal source resistances R_{S} for each stage. We assume that this bandwidth is sufficient in

Amplifier design without overall negative feedback is preferable according to Nyquist's "regeneration theory" and the theory of electrical networks, in particular t.i.m. But it is necessary to meet the most stringent and rational requirements to reduce non-linearity. The characteristics I_{C} $=I_{C}\left(I_{B}, V_{C E}\right.$ const $)$ and $I_{C}=I_{C}\left(V_{C E}, I_{B}\right.$ const), especially in n-p-n transistors, are of the same order as the corresponding characteristics in valve pentodes $\mathrm{I}_{\mathrm{A}}=$ $\mathrm{I}_{\mathrm{A}}\left(\mathrm{V}_{\mathrm{g}}\right), \mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{A}}\left(\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{g}}\right.$ const $)$, and in some cases are even better. The input characteristics $I_{g}=I_{g}\left(V_{g}\right)$ of amplification valves are linear, except in the special case $\mathrm{I}_{\mathrm{g}} \neq 0$, but the input characteristics $I_{B}=I_{B}\left(V_{B E}, V_{C E}\right)$ of transistors are non-linear, except in some special cases. By these and other factors, one can explain lower non-linearity (i.e. sufficiently fast approach of transfer characteristic coefficients α_{2} to α_{n}, especially α_{4} to α_{n}, to zero) in circuits with valve pentodes and triodes. We should also take into account that in the presence of large overall negative feedback, and for a large non-linearity in a system without overall feedback, the law of feedback changes in an unfavourable direction ${ }^{4}$. In semiconductor circuits the signal often passes through an excessive number of p-n and $n-p$ junctions, which in addition operate impulsively at high temperatures (for horn radiators one stage is more than enough for voltage amplification). Strong dependence of the junction temperature on signal level is also undesirable. Sometimes high junction temperatures cause undulation of output characteristics. As to pushpull stages with semiconductor components, a large asymmetry of arms additionally occurs as a rule through the overall

Undersirable non-linear distortion, e.g. in the second harmonic, can reach several per cent in a single-ended cascade in a small-signal regime ${ }^{7}$. Amplitude and phase distortion above 10 kHz can be several orders more than corresponding internal distortions due to C_{E} and C_{C} in h.f. transistors'. Reference 7 gives possible methods of compensation for these distortions.

Elegant amplifier construction is easily attached to the loudspeaker and provides shielding for the circuit as well as heat dissipation for Tr3.
operational range of voltage and current, often of very complicated nature. All these factors make reduction of non-linearity in semiconductor amplifiers more difficult (though a sum of certain factors may partly compensate for some α_{K}).

For amplifier stages the class A operating mode is always preferable because the ear becomes more sensitive to harmonic and sum and difference tone distortion as sound pressure level decreases, based on specific features of hearing thresholds under masking ${ }^{1}$, because of smaller $\alpha_{2}-\alpha_{n}$ dependence on ω, β and because of weak dependence of junctions temperature from signal level. If operational areas of input and output characteristics of amplification elements are correctly selected class A distortions decrease or increase as a function of output voltage of the load linearly or strictly monotonically.
What can be expected from such an amplifier in practice? In this circuit I have used the following transistors: $\mathrm{KT} 630 \mathrm{~B}(\mathrm{~b})$ as Tr_{1} and $\mathrm{Tr}_{2} ; \mathrm{KT} 912$ as Tr_{3} (see catalogue of Mashpriborintorg, USSR). The most essential known parameters are
KT630
 $\mathrm{I}_{\mathrm{Cmax}}=1 \mathrm{~A} ; \mathrm{h}_{21 \mathrm{E}}=40$ to $240 ; \mathrm{f}_{\mathrm{T}(\mathrm{cc}=2 \mathrm{~A})} \geqslant$ $50 \mathrm{MHz} ; \mathrm{C}_{\mathrm{C}}<15 \mathrm{pF}\left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}\right) ; \mathrm{C}_{\mathrm{E}}<65 \mathrm{pF}$ KT912
$\mathrm{P}_{\mathrm{C} \max }=30 \mathrm{~W}\left(\mathrm{~T}=85^{\circ} \mathrm{C}\right) ; \mathrm{V}_{\text {CEmax }}=70 \mathrm{~V}$;
$\mathrm{I}_{\mathrm{cmax}}=20 \mathrm{~A} ; \mathrm{R}_{\text {(th) ic }}=1.66^{\circ} \mathrm{C} / \mathrm{W} ; \mathrm{h}_{21 \mathrm{E}(\mathrm{Ic}=2 \mathrm{~A})}$ $=20$ to $100 ; \mathrm{f}_{\text {limit }}=90 \mathrm{MHz}$
Transistor KT912 must be thoroughly selected on the basis of initial current $\mathrm{I}_{\mathrm{C}}=$ $\mathrm{I}_{\mathrm{C}}\left(\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{B}}=0\right)$, and stability of $\mathrm{h}_{2 \text { IE }}$ in the operational range of collector current and voltage. The collector, usefully, is electrically isolated from its package.

It should be specially mentioned that initial operational areas of the input characteristic $I_{B}=I_{B}\left(V_{B E}\right)$ in the KT630 and KT912 - up to 0.3 and 0.6 V respectively - are linear and do not practically change with variation in V_{CE}. Output characteristics $I_{C}=I_{C}\left(V_{C E}, I_{B}\right.$ const $)$ and $I_{C}=$ $\mathrm{I}_{\mathrm{C}}\left(\mathrm{I}_{\mathrm{B}}, \mathrm{V}_{\text {CEConst }}\right.$) of these transistors in operational areas are also satisfactory.

Non-linearity attenuation, as measured with Brüel \& Kjaer frequency analyser 2010 by the harmonic distortion method with rated power of 0.25 to 0.75 W corre-

sponding to $\mathrm{P}_{\mathrm{out}(\max)}=1$ to 2 W , is shown above. The rest of harmonics cannot be detected with the 2010 (dynamic range approximately 90 dB). Distortion as a function of level follows an almost linear pattern. This non-linearity (specifically of high order $\alpha_{4}-\alpha_{n}$) is no worse than in good valve circuits with overall negative around $20-25 \mathrm{~dB}$, and is no worse in most cases than for electroacoustic transducers at corresponding levels. Values of square and cubic non-linearity are much less than

Single-ended amplifiers are less tolerant of ripple than push-pull types; this additional transformer winding to supply the zener diode D increases ripple suppression by a hundred fold.
their sufficient values ${ }^{5}$ and much less than values for the ear at corresponding levels and frequencies of sound pressure ${ }^{1}$.
Article 9, which may well be unique, contains a strict calculation on the basis of probability theory of the perception of non-linear distortion in different cases, given square and cubic distortions. Its conclusions practically coincide with the corresponding content of this article even though some of the data used are somewhat dated.
Non-linear distortions become more perceptible with broadening of frequency range ${ }^{5}$, improvement in signal-to-noise ratio of reproduction systems, and decreasing acoustic noise in listening rooms. All these factors are changing favourably; for instance, it's not too difficult nowadays to get an A-weighted signal-to-noise ratio of $85-100 \mathrm{~dB}$ in power amplifiers.
In this design, crossover networks can be realised with $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, and the input resistances of corresponding stages (see appendix). Overall steepness of crossover networks can be 6 or 12 dB /octave, and can be also variable (to $18 \mathrm{~dB} /$ octave).
For ease of reference, the instability of current gain in bipolar transistors resulting from rises in junction temperature is defined by the following expression, where $\mathrm{T}_{0} \approx 25^{\circ} \mathrm{C}$,

$$
\begin{aligned}
h_{21 E(T)} \approx & h_{21 E(T o)}+(0.003 \text { to } 0.006) \\
& \times h_{21 E(T))}\left(T-T_{0}\right)
\end{aligned}
$$

The reliability and longevity of semiconductor amplifiers (for example, instablility of output current in the given amplifier is in the range 0.2 to 0.8%) are much higher than that of valve amplifiers provided that components operate well within their ratings. I have achieved excellent stability and subjective results while using this single-ended circuit for an l.f. channel with $\mathrm{P}_{\text {out max }}=8$ to 20 W .

There are some special features in technical requirements to the power supply for single-ended power amplifiers. The value of permissable voltage ripple (less than for push-pull circuits), interference and noise is determined by the maximum power output of an amplifier and its dynamic range.

The output resistance of power supply including resistance of wires between power supply and amplifier should be low enough to prevent distortion of and transient responses. On the other hand, the requirements for the stability of the power supply voltage are very mild and the following version of power supply is likely to be optimum, see diagram, for which

$$
\begin{aligned}
& \mathrm{R}_{\text {out }}=\frac{\left(\mathrm{r}_{\mathrm{ZD}}+\mathrm{r}_{\mathrm{eTr} 3}\right)+\mathrm{r}_{\mathrm{bTr} 3} / \mathrm{h}_{21 \mathrm{ETr} 3}}{\mathrm{~h}_{21 \mathrm{ETr} 1} \cdot \mathrm{~h}_{21 \mathrm{ET} 2}} \\
& \text { and } \quad K \approx \frac{r_{c \operatorname{Tr} 1} \cdot r_{c T r} 2}{r_{c T r} / h_{21 E T r}+r_{e} \operatorname{Tr} 2}
\end{aligned}
$$

The existence of the additional parametric stabilizer (with additional winding of the transformer) for the supply of the zener diode D increases dramatically the ripple suppression coefficient (stabilization factor K), by approximately one hundred times. As a rule the frequency and transient properties of this stabilizer are better than in multistage stabilizers.

This power amplifier circuit can be designed on the basis of maximum possible efficiency (a push-pull version is also possible ${ }^{6}$), or on the basis of the smallest power dissipation by transistors Tr_{2} and Tr_{3}. In general the maximum possible efficiency approaches 8.6%, or 25% with a dynamic current source as R_{6}.

Further reading

Ryffert, H. Die Grenzen der Hōrbarkeit nichtlinearer Verzerrungen vierter und funfter Ordnung fur die einfache Quint. Frequenz 1961, 8.
Daugherthy. D. C. and Greiner, R. A. Design objectives for audio power amplifiers, IEEE Trans vol. AU-14, March 1966.

Stepahenko, P. Osnovi Teorii Transistorov I Transistornih Shem, "Energia" 1977.

Oren, R. Discussion of views on popcorn noise in bipolar transistors, IEEEE Trans 1971, vol. ED 18 no. 12.

Appendix 1

Output resistance $\mathrm{R}_{\text {out }}$ is approximately

$+\frac{\left(\mathrm{R}_{3} \| \mathrm{R}_{4}\right) \| \mathrm{R}_{5}+\mathrm{r}_{\mathrm{bTr} 2}+\frac{\left(\mathrm{r}_{\mathrm{e}} \mathrm{Tr}_{2}+\mathrm{r}_{\mathrm{bTr} 3}\right) \mathrm{r}_{\mathrm{c} \mathrm{T}_{\mathrm{r}} 2}}{\mathrm{r}_{\mathrm{cTr} 2} / \mathrm{h}_{21 \mathrm{ETr} 2}+\mathrm{r}_{\mathrm{cTr} 3}}}{\mathrm{~h}_{21 \mathrm{ET} 2} \cdot \mathrm{~h}_{21 \mathrm{ET} 3}}$
where r_{c} function of many variables for the given type transistor and approximately equal to 2 to $4 \times 10^{3 /} / \mathrm{I}_{\mathrm{c}}$ ohm, and $\mathrm{r}_{\mathrm{e}} \approx 0.026 / \mathrm{I}_{\mathrm{c}}$ ohm.
$f_{\text {rise }}$ of $\left|Z_{\text {out }}\right|_{\text {for }+3 \mathrm{~dB}}=f_{\text {zero }} \ll F_{\text {upper }}$.

$$
R_{i n} \approx r_{b}+h_{21 E}\left[\frac{r_{c}}{h_{21 E}} \|\left(r_{e}+R_{6} \| R_{L}\right)\right]
$$

Omitting r_{b} and r_{e} in our case

$$
\begin{gather*}
\mathrm{R}_{\mathrm{in}} \approx \mathrm{~h}_{21 \mathrm{ETr} 2} \mathrm{~h}_{21 \mathrm{ETr} 3}\left[\left(\frac{r_{\mathrm{cTr} 2} \mathrm{r}_{\mathrm{cTr}}}{\mathrm{r}_{\mathrm{cTr} 2} / h_{21 E T r}+\mathrm{r}_{\mathrm{cTr} 3}}\right.\right. \\
\left.\left.+\frac{1}{h_{21 E T r 2} \mathrm{~h}_{21 E T r} 3}\right)\left\|\mathrm{R}_{6}\right\| \mathrm{R}_{\mathrm{L}}\right] \tag{2}\\
\text { and } \mathrm{R}_{\mathrm{in}}<\mathrm{r}_{\mathrm{cTr} 2} .
\end{gather*}
$$

Value $r_{c}=r_{c}\left(I_{c}+S(t)\right)$ depending on the signal current imposes a principle restriction on the attainable nonlinear distortion level, depending
on $\mathrm{R}_{2} / \mathrm{R}_{\mathrm{in}}$. Moreover, it is obvious that the value r_{c} is in itself a source of nonlinearity.

Appendix 2

Based upon Jiacoletto's simplified equivalent network for a bipolar transistor (Tr_{1}). If $\mathrm{R}_{2}=0$,
$Z_{i n} \approx \frac{r_{b}+r_{b^{\prime} e}+j, \omega\left[C_{b^{\prime} e}+C_{c} \cdot 1 / r_{e} \cdot R_{3}\left\|R_{4}\right\| R_{5} \mid r_{b} r_{b^{\prime} e}\right.}{1+j \omega\left[C_{b^{\prime} e}+C_{c} \cdot 1 / r_{e} \cdot R_{3}\left\|R_{4}\right\| R_{5}\right] r_{b^{\prime} e}}$
where $r_{b \cdot e}=r_{e} h_{21 E}, \dot{C}_{b^{\prime} e}=\frac{1}{2 \pi f_{T} r_{e}}$ and $C_{c}=C_{c}\left(V_{c e}\right)$
 The function $\mathrm{Z}_{\text {in }}$ has a pole and zero, where the pole frequency is $\mathbf{f}_{\mathbf{i c}}<\mathbf{f}_{\text {upper }}$

$$
f_{i c}=\frac{1}{2 \pi\left[C_{b^{\prime} e}+C_{c} \cdot 1 / r_{e} \cdot R_{3}\left\|R_{4}\right\| R_{5}\right] r_{b^{\prime}}}
$$

References

1. Zwicker, E. Feldtkeller, R. Das Ohr als Nachrichtenempfänger, S. Hirzel Verlag, Stuttgart 1967.
2. Taylor, C. A. The physics of musical sounds. 1966.
3. Petri-Larmi, M. Otala, M. and Lammasniemi, J. Psychoacoustie detection threshold of transient intermodulation distortion. J. Audio Eng. Soc., 1980, vol. 28, no. 3.
4. Cykin G. S. Negative feedback and its usage. Svyaz publishing house, 1940.
5. Goron E. I. Study on perceptibility of distortions in broadcasting channels. Svyaz publishing house, 1959.
6. Miloslavsky Y. Wideband audio power amplifiers, Wireless World, June/July 1980.
7. Fishtein, A. M. Distortions in linear amplifiers caused by variable component transistor junction temperature. Radiotechnica, no. 12, 1980.
8. Voishvillo, G. V. Usilitelnie Ustroistva. Svyaz, Moscow, 1975.
9. Rimsky-Korsakov, A. Calculation of perception of non-linear distortion in electroacoustic channel, Acoustic fournal (USSR Academy of Sciences) 1956; vol. 2, no. 1 .

000

पTGRASMRR REGEIVID

VisiCalc users can get 'hotline' answers to any problems they may have with the system from Gunther Computer Consortium, who also publish a newsletter each month and run seminars on the use of VisiCalc. Gunther Computer Consortium, Lake Drive, Southampton, NY 11968, USA.

WW400
Microprocessor and memory i.cs from Fujitsu, monochrome and colour v.d.us from Panasonic, and Ethernet transmitter and control products are listed in shortform stocklist and price guide from Ambar Components Ltd, Gatehouse Road, Aylesbury, Bucks HP19 3ED. WW401

Wide range of computer printers and interfaces, mostly in the 16 to 40 column range are listed in a 22 -page product guide and price list. Introduction contains useful information on the advantages of the various types of printer. DED, 47 Station Road, Lydd, Kent TN29 9ED.

WW402
Uninterruptable power supply unit from 1 to 6 kVA are designed to protect sensitive equipment such as computers, data loggers, controllers, communications networks and alarm systems, is described in leaflet. Avel-Lindberg Ltd, South Ockendon, Essex RM15 5TD.

WW403
Half-wave antenna for use with c.b. radio has been manufactured by a British company who have also produced a data sheet about it. Claimed to be manufactured to a high specification, the firm has previously made mobile antennas for civil and military use. Bantax Ltd, Abbey Road, Park Royal, London NW10 7SJ.

WW404

Hand tools and tool kits for the electrical and electronic engineer are described in a 40 -page catalogue. Sections of the catalogue are devoted to wire and cable strippers, crimping tools, pliers, nut and screwdrivers, ancillary equipment and tool kits. AB Engineering Co, Timber Lane, Woburn, Milton Keynes MK17 9PL.

WW405
Two Plessey handbooks, one on Linear integrated circuits (PS1973) includes details of op-amps, linear r.f. amplifiers, phase locked-loop circuits, limiting wideband amplifiers and other radio communication and power control circuits. The other on high-speed data processing (PS1989) covers crystal oscillators, ECL III, data conversion circuits,
fast gates, comparators, flip-flops and a-to-d/d-to-a circuits. Both from United Components Ltd, Unit 5, Wye Estate, London Road, High Wycombe, Bucks HP11 1LH.

WW406
Clamps and clips, board supports and all sorts of plastics fasteners and components are illustrated in a 52 -page catalogue from Richco International Company, West Street, Erith, Kent. WW407

A Guide to Personal Computing, produced by Digital should be more accurately titled the Guide to Digital Personal Computing as that company's products are featured prominently. Nonetheless, it contains useful information on computers and their operation and is free from Digital Equipment Co Ltd, Customer Information Centre, Basingstoke, Hants.

WW408
Aids for the production of p.c.b. artwork, circuit diagrams consist of self-adhesive symbols and shapes which may be accurately positioned using a registration system and stuck down by finger pressure. Fully illustrated in a catalogue from Circuitape Ltd, New Street, Aylesbury, Bucks HP20 2LN.

WW409

Eurocards for prototyping may be handwired rapidly may be re-wired easily if the Quick-connect i.d.c. system is used, according to an eight-page brochure from AstraluxDynamics Ltd, Red Barn Road, Brightlingsea, Colchester, Essex CO7 OSW.

WW410
Measuring instruments for temperature, air flow velocity, humidity, velocity and the presence of gases are shown in a shortform catalogue from Testoterm Ltd, Old Flour Mill, Queen Street, Emsworth, Hants PO10 7BT. WW411

Signal processing circuits. Formulae, definitions and application notes are included in a Designers Guide and Handbook produced by Analogic. Guide covers a-to-d and d-to-a converters, sample and hold circuits, analogue multiplexers, filters, isolation circuits, power supplies and various subsystems. Available free from Analogic Ltd, 68 High Street, Weybridge, Surrey

WW412
Soldering irons from miniature to 500 W sizes, temperature controlled or uncontrolled are listed in a catalogue from S \& R Brewster Ltd, 86 Union Street, Plymouth PLI 3HG.

WW'13
Nickel cadmium, sealed lead-acid batteries and a variety of battery chargers and battery holders are listed and priced in a leaflet from Sandwell Plant Ltd, 2 Union Drive, Boldmere, Sutton Coldfield, West Midlands B73 5TE. WW414
Multi-user computer system of British design based around the 16 -bit 68000 processor, uses the Idris operating system and incorporates full C and Pascal compilers with disc drives which can read and write Unix, CP/M and RT-11 file systems, is fully described in brochure from Integrated Micro Products Ltd, Number One Industrial Estate, Medomsley Road, Consett, Co Durham DH8 6SY.

WW415

Interface circuits and software for disc-drive control are main subjects of Brian Woodroffe's third article describing his 6809-based microcomputer. First, operation of the video controller is concluded and i/o software discussed.

Character-code and row information for the video-controller i.c. is supplied as an address to a character rom. Character information for each row is fed to an LS165 shift register and serial output from this register is combined with synchronization signals in an analogue gate to give a standard IV p-p composite-video signal which is subsequently fed to a u.h.f. modulator.

The dot clock, consisting of a Schmitttrigger relaxation oscillator, should be adjusted to the minimum frequency to minimize the luminance bandwidth required in the monitor consistent with all text displayed on the screen. Character values 10 to $1 F$ hexadecimal are programmed into the character rom to give coarse graphics. Two 2114 rams hold enough information for one 1024 -character Forth screen to be displayed.

Two further video rams store text normally lost at the top of the screen. A switch allows a page of lost text to be displayed.

Terminal and i/o software

The Forth reset routine checks to see if there is an M6850 present and if not automatically redirects terminal i / o routines from the RS232 interface to the p.i.a. for parallel i/o. Forth words giving access to user ports are included in this operating system. These words, P@and P! act in the same way as Forth words @ and ! except that they allow access to user i/o ports.

The software-driven output word, P!, makes data available on the p.i.a. B lines then activates the address coded on the A lines. On-input, P@, reads data while the port address is made. Output ports ideally connect to LS273 latches and input ports to LS244 buffers. Port-strobe lines are decoded from the p.i.a. A lines using LS138 three-to-eight-line decoders. Eight read and eight write ports can be connected to this hardware and if more ports are needed then a further 6821 p.i.a. could be connected and mapped into the USER variableaddress area. Cursor control codes, i.e. decimal codes for EMIT, are as follows.

```
left (backspace)
right (tab)
10 down (line feed)
l up
12 home and erase
1 3 \text { carriage return}
14 home
15 carriage return and line erase
```


Disc interface hardware

Interfacing to the floppy disc 6 is done using the most readily available controller

[^1]
by Brian Woodroffe

since it is cheaper than using s.s.i./m.s.i. devices. Complexity of the WD1793 controller is comparable to that of the 6809. The first problem was interfacing an 8080 style peripheral to the M6809 bus, the main difficulty being the writing datahold times.

The problem of data-hold times was solved using the memory-ready signal, MRDY, which when active (low) holds the processor clock cycles in an E-not-Q state for at least one quarter of a bus cycle. This quarter cycle provides the hold time. The memory-ready signal triggers a monostable multivibrator each time the procesor wants access to peripheral-drive address space between C000 and DFFF on the rising edge of the Q clock and this signal forms the floppy-disc controller write signal.

A read signal is derived from clocks E and Q. Interrupt and data-request outputs of the floppy-disc controller are connected to the processor FIRQ pin so that data transfer can take place using the M6809 SYNC instruction. As noted before, a floppy-disc drive's data rate can cause problems when d.m.a. is not used. In double-density recording on a $51 / 4$ in floppy using a WD 1793 controller, the worst-case data-transfer rate is $27 \mu \mathrm{~s} /$ byte. Coding is shown in Table 1.

The trick is that SYNC stops the M6809's execution without affecting the clocks until the floppy-disc controller interrupt occurs and the processor resumes execution. This provides quick synchronization between the processor and controller. Despite that modifying the direct-page register gives quicker access to the f.d.c. which is in high memory, this feature was
not used because of the extra coding needed. Had the processor clock been slower this alternative might have been necessary.

Interfacing the floppy-disc controller to the drive is the next problem. Most of this is covered in an ANSI standard ${ }^{7}$ but the problem of clock recovery remains. Because of mechanical constraints, data read from disc will not be synchronous with any processor clock so clock information contained in the data stream must be extracted. In single-density recordings each bit cell has a clock bit and a possible data bit (no data bit is zero) and in doubledensity recording the position of the bit within the cell determines whether it is a one or a zero. A clock synchronous with incoming data is required to determine the incoming bit's position.

Although it gives the best performance, a phase-locked loop circuit was rejected on grounds of cost. Instead a crystal clock running at eight times the nominal read clock is used and a divide-by-eight version of this clock is phased with the incoming data to recover the original clock. First the incoming bit stream is synchronized to the crystal clock $(\times 8)$ to produce pulses with accurately defined widths using an LS74. This pulse stream is fed to the floppy-disc controller (RAW READ).

The reading clock is provided by an LS 161 counter which is normally held off until the controller wants to read the disc, when the counter is enabled by the readgate signal. This counter would normally free run at about the nominal clock rate, but it is synchronized by applying the raw read signal to its load input. The load frequency locks its D output (READ CLOCK) so that it changes mid-way between input bits. As the maximum number of bit cells without read bits is three, the recovered clock never gets too far out of phase.

Table 1. Code showing how the M6809 SYNC instruction is used for floppy-disc drive data transfer.

BRED2	STB FDC	F7C000		send command byte to f.d.c.	,
	SYNC	13	2	wait for f.d.c. response	
	LDB FDC	F6C000	5	get status	
	BITB \#2	C502	2	test byte-in	
	BEO BRERR	2710	3	no, then error	
	LDA FDC + 3	B6C003	4	get byte	
	STA 0, Y +	A7A0	7	store, advance pointer	
	LEAX - 1 , X	301 F	5	reduce count	
	BNE BRED2	26 EF	3	loop back	
BRED3	LDB FDC	D600		wait till	
	BITB \#1	C501		f.d.c. finishes	
	BNE BRED3	26FA			
BRERR	RTS	39			

32 cycles at $1.5 \mathrm{MHz}=22 \mu \mathrm{~s}$
Upon entry $\mathrm{B}=$ command code
$Y=$ pointer to data destination
X=byte counter

Problems with phasing are most noticeable when double-density recording is used, so a means of preventing bunching of the bits is used. Precompensation ${ }^{8}$ prevents bunching by moving the written data bits slightly relative to the nominal position in a bit cell so that when the data is read back the bits appear to be in their correct positions. The matter of precompensation depends on the drive used. For those drives that do not require precompensation, including the TEAC FD50A used in the original design, the precompensation circuit is omitted.
The disc should be set to respond to its address and head-load on drive select and not to the motor-on signal, i.e. the TEAC FD50 disc drive should be set as follows (for further drives, follow the same pattern).

DRIVE 0

HS = set, MX = set, DS0 set,
DS1,DS2,DS3 = unset,
HM = disconnected.
DRIVE 1 (if fitted)
HS = set, MX = set, DS1 = set,
DS0,DS2,DS3 = unset,
$\mathrm{HM}=$ disconnected.

Disc-interface software

Under command of the c.p.u., the floppydisc controller takes care of head positioning, sector positioning, data serialization and cyclic-redundancy checking. As soft sectoring is used, sector positioning is determined by the address record read from the formatted disc. The controller may be programmed to format the disc. So long as certain inter-record gap and record sizes are adhered to, the formatted disc capacity may be increased, Table 2.

Different systems use different sector formats ${ }^{9}$, numbers and sizes of sectors and sector numbering systems. In this system, all variables associated with disc formatting are defined by the user which means that most disc formats may be read. The sector size is written into the address record of each sector so it is possible for the system to adjust its buffer size to that of the disc. Forth word ?DISC is included to read the current disc and set parameters termed DENSITY, B/BUF and SEC/TRK to those associated with the disc. Only formats mentioned in Table 3 apply to the disc format program and ?DISC.

When formatting a disc, it can be advantageous to interleave the sectors on a track. With this in mind a dummy word SKEW was included which is currently defined as no operation, but it may be redefined to perform an interleaving algorithm during formatting, Table 3. Defining Forth word FORMAT for disc formatting is shown in Table 4.
Forth treats all disc memory systems in the same way, i.e. as a contiguous set of 1024byte screens, hence the choice of a v.d.u. Main Forth words used to gain access to screens on a disc are R/W, which moves data between a disc and memory, and BLOCK. As disc sector size depends on format, words BLOCK and constants B/BUF, bytes-per-sector, SEC/TRK, sec-tors-per-track, TRK/SIDE, tracks-per-

Table 2. Capacity of a formatted disc may be increased provided that certain record sizes and gaps are not exceeded.

Density	Single		Double	
Bytes/sector	128	256	256	512
Sectors/track	16	10	16	10
Bytes/track	2048	2560	4096	5120
Bytes/disc	82 K	102 K	160 K	205 K
Relative	100%	125%	200%	250%

side and SIDE/DISC provide a means for Forth to work out which sectors make up a screen. The size of virtual memory buffers in Forth should be the same size as a sector.

Time taken for the head to position itself over the relevant track is a major constraint when using disc drives. Other time factors for a $51 / 4$ in floppy-disc drive are motor start-up time, head-load time and rotational latency. To speed up access time for double-sided discs it is usual to physically combine two tracks on opposite sides of the disc into one logical track. This minimizes head seek time for it is likely that the sector required will be on the same bigger logical track and the time taken to gain access to the other side of the disc is governed by the time taken for an electrical switch to act rather than by the delay of a mechanical head seek. But since Forth treats all discs in the same way, including this feature would have meant that one could not mix single and double-sided discs.
When using the Teac FD50A disc drive, access time is dominated by the start-up time of 1 s . If faster disc drives are used, time constants may be changed (discussed in a following article). Start-up time and head-stepping rate constants are moved into ram from eprom by the Forth start-up word COLD and may be modified to suit faster drives. Forth constants normally hold the values of constants in the parame-
ter-field address (p.f.a.) but as this system is rom based, modification of the constants would not be possible so they are coded with a new routine which stores the value in ram. This list shows how the constant DENSITY is altered from single to double density and gives other constants and their meanings.

DENSITY $=1$ (double density, 0 for single density)
B/BUF $=512$ (number of bytes per disc sector)
SEC/TRK $=16$ (number of sectors per disc track)
TRK/SIDE $=$ (number of tracks on disc, normally $35-40$ for a minifloppy)
SIDE/DISC= 1 (2 for double-sided)
SEC-OFST $=1$ (for numbering sectors 1 to $\mathrm{n}, 0$ for numbering 0 to $\mathrm{n}-1$)

1	(value to store, returned after execution of DENSITY)
' DENSITY (find DENSITY p.f.a.	

Power supply

Only one 15 V secondary winding is required on the transformer to provide a low-current -5 V supply for biasing the dynamic rams, +12 V for the rams and floppy-disc drive and +5 V for all logic circuits. A minimum value for the unregulated supply is determined by the 12 V rail; unregulated input should be 20 V to ensure adequate regulation with low mains supplies. Heaviest current demands are on the 5 V , supply and using a linear regulator to provide this rail would have resulted in excessive heat generation with a loss of efficiency so a switching regulator was designed.

Table 3. Example of a routine for defining dummy word SKEW to give interleaved formatting.

FORTH HEX : SKEW1 DUP	(select Forth and hexadecimal number base) (new word, duplicate sector \# to be interleaved)
1 AND IF	(only even sectors are interleaved)
SEC/TRK 2 / FE AND + SEC/TRK MOD	(sector offset by half the disc) (add offset and keep with $0 \ldots$ n-1 sectors on track)
THEN 'SKEW1 2 SKEW!	(find c.f.a. of new interleaving address) (find old skew p.f.a. and overwrite no-op there)

Table 4. Routine for defining Forth word FORMAT for disc formatting.

After bridge rectification and capacitive filtering, the 15 V r.m.s. transformer output gives approximately 20V. Dynamic rams are sensitive to the sequence in which power is applied to them so the supply had to be designed so that -5 V appears first, followed by +5 V then +12 V .

Heart of the switch-mode power supply is a relaxation oscillator, the squarewave output of which feeds a charge pump to produce about -20 V peak. This is regulated by a zener diode to produce -5 V . Reference for the +5 V supply is a 10 V zener diode connected in a feedback loop to maintain constant current even when

Disc interface uses a readily available

 controller which works out cheaper than an equivalent circuit using s.s.i./m.s.i. devices. Clock information in data read from disc is synchronized using a crystal-controlled oscillator running at eight times the rate of the incoming-data clock. The prototype computer has a standard Teac 51/4in floppy-disc drive.Switch-mode power supply uses one 15 V r.m.s. secondary winding for $+12 \mathrm{~V},-5 \mathrm{~V}$ and high-current +5 V rails. Frequency of the relaxation oscillator is 17 kHz , giving the best compromise between smoothing component sizes and loss in efficiency due to switch transition times eating away at the duty cycle. Gating ensures that dynamic rams receive their three supply rails in the correct sequence and s.c.rs provide overvoltage protection.
the 20 V unregulated supply varies. An error signal derived from the +10 V reference and +5 V supply, and the relaxation oscillator triangle wave are fed to a comparator. A portion of the triangle wave depending on the magnitude of the error signal is fed to the switching transistor. This pulse-width modulated base drive is disabled when the -5 V supply is not present.

The free-wheel diode, inductor and smoothing capacitor are fed by the switching transistor and are chosen with the operating frequency in mind. Around 17 kHz is used since it is the best compromise between high-frequency losses and
component size. At low frequencies the smoothing capacitor and choke become too large and at high frequencies the switching transition time takes up a large portion of the cycle time and efficiency is reduced.
Unregulated supply passes to the 12 V monolithic regulator under control of a transistor switched by the +5 V supply. To prevent overvoltage problems, an s.c.r. is included which switches on and blows the secondary winding fuse if either the +5 or +12 rails rise too high.

To be continued with construction tips, parts list and vocabulary.

References

6. J. R. Watkinson, Disc drives, Wireless World, Mar. - May \& July-Dec. 1982, Jan.-Mar. 1983, especially Oct. \& Nov. 1982.
7. American National Standard, Interfaces between flexible disc drives and their host controllers, X3.80-1981 (ANSI).
8. J. F. Hoeppner \& L. H. Wall, Encoding/ecoding techniques double floppy-disc capacity, Computer Design, Feb. 1980, pp 127-135.
9. E. Kadison, 5.25in floppy-disc formats, Electronic Design, 23 Dec. 1982, p. 135.

A-to-d realises non-linear functions

An analogue-to-digital converter and differential multiplexer can replace diode function generators to realise arbitrary transfer functions with flexibility and excellent drift characteristics. The circuit shown is for an eight-segment function using the three most significant bits of an inexpensive a-to-d converter to generate eight segments.

The converter is connected in contin-
uous-convert mode and controls the multiplexer. Depending on the converter output, the appropriate slope-select resistor and intercept voltage are switched in to realise the transfer function. The number of segments may be increased and the circuit extended for positive and negative slopes as shown. These circuits can realise continuous or non-continuous transfer functions.
K. Neelakantan

Reactor Research Centre
Kalpakkam
India

Simplified backup for cmos rams

The prime consideration when setting cmos ram in low-current standby mode is that the chip-enable voltage must be \geqslant $\mathrm{V}_{\mathrm{cc}}-0.2$. Usually one would use back-toback diodes with a charging resistor in the positive supply rail but anything connected to the chip-enable input must allow the voltage to drop to zero when the main supply is removed so a switch and pull-up resistor are usual. Current through the measuring link should drop from a few mA to a few $\mu \mathrm{A}$ when the main supply is removed.
V. R. Halsall

Bushey
Watford

Three-phase sequence detector

Phase-sequence detection in three-phase systems can be accomplished by generating signals that contain the relative phase difference between two successive phases and comparing them with an arbitrary reference.

Two exclusive-NOR gates form phase comparators to produce signals representing the difference between phases A and B $(A \oplus B)$ and C and $A(C \oplus A)$. Since the voltages applied to A, B and C have phases of $\mathrm{E} \angle 0^{\circ}, \mathrm{E} \angle+120^{\circ}$ and $\mathrm{E} \angle-120^{\circ}$ respectively and exclusive NOR operation

produces signals that contains the $\pm 120^{\circ}$ phase difference. Appropriate outputs are compared with a reference clock to give sequence detection; outputs $\mathrm{A} \oplus \mathrm{B}$ and $\mathrm{C} \oplus \mathrm{A}$ are compared with the reference phase A using two D-type flip-flops.
The flip-flop output is low or switches at 30 Hz with a $1 / 6$ duty cycle depending on whether the sequence is normal or reversed. Two remaining NOR gates form
inverters to drive the indicators through current-limiting resistors. A complementary output from the flip-flops may be used to activate reverse-sequence alarms, relay drivers, direction indicators for motors and gyrocompass synchro-repeaters or for inhibiting three-phase s.c.r.-controlled battery chargers to avoid misfiring which leads to line-to-line faults.

Three $230 / 12 \mathrm{~V}$ isolating transformers are star-connected to allow a larger inputvoltage swing and limit the upper input voltage to 440 V . When the input voltage
falls to 190 V the regulator is affected. Input capacitors filter line harmonics and r.f. For lower line voltages opto-isolators may be used instead of transformers but a separate power supply is needed; batteries make the unit portable.

A. L. Eguizabal

Vancouver
Canada

Z80 16bit output

Normally one would use two output ports of the Z 80 to give a 16bit word but if both bytes are to be strobed or latched at the same time, additional hardware is needed to synchronise the two output executions and complications arise. But during an OUT(C), r instruction the Z80 places data and the port address on data lines and the lower byte of the address bus respectively and places B-register contents on the upper eight address lines so only one out-put-port instruction and one output port are necessary.
The circuit was used to control eight multiplexed seven-segment leds for a small controller. I/O port-select was not decoded - As was used instead. If one of address lines 0 to 7 is used it must be low to select.

Active digit

Data to control the active segment is loaded into the accumulator, the active digit mask is loaded into register B and the port address is loaded into register C . An OUT(C), A instruction is then executed. Common-anode or common-cathode leds may be used. Active digit outputs should
be buffered by transistors.
It is also possible to perform an eight-bit input and an eight-bit input with only one input instruction with a different circuit. Javier Cazot Horndean Hants

Positive feedback without hysteresis

This circuit overcomes the problem of conventional d.c. hysteresis degrading precision low-level detection for comparators driven from poor voltage sources. To obtain reliable switching from low-level voltages ($<100 \mathrm{mV}$) exhibiting slow rates of change and non-zero output resistance it is usually necessary to provide positive feedback around the comparator. Directcurrent positive feedback can generate sig-
nificant hysteresis, substantially shifting the switching levels, resulting in an asymmetrical output.
The method operates by a.c. coupling positive feedback through C_{f} resulting in zero.d.c. hysteresis. The value of R_{f} is chosen to give the desired amount of feedback in conjunction with the source resistance R_{s}. Typical values for C_{f} are between $10-100 \mathrm{pF}$. To operate correctly at high repetition rates requires that the time constant $\mathrm{C}_{\mathrm{f}} \mathrm{R}_{\mathrm{f}}$ is less than the time constant of the input waveform to ensure that C_{f} has

time to recharge between transitions. For best results, comparator supply lines should be decoupled to ground by $0.01 \mu \mathrm{~F}$ disc ceramic capacitors close to the i.c. For example, using a 311 comparator a 50 mV $1 \mathrm{k} \Omega$ triangular waveform can be reliably switched with no hysteresis up to 1 MHz with $\mathrm{C}_{\mathrm{f}}=10 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{f}}=100 \mathrm{k} \Omega$.
B. Wilson

Nottingham University

Single-frequency shortwave receiver

I designed this shortwave receiver for one frequency only; it has the advantage that the local oscillator can be crystal controlled. Our radio news in Demark is rather bad so the receiver is designed to receive BBC World Service on 9.41 MHz .

An SO42P (Siemens) forms the local oscillator and mixer, the output feeding a 455 kHz LC filter followed by a 455 kHz ceramic i.f. filter. I.f. amplification and a.m. detection are performed by a ZN414 (Ferranti). This i.c. has its own a.g.c. but it is not sufficient to handle large ampli-
tude variations on the shortwave band. To improve this the 414 output is amplified by about ten times after low-pass filtering. Output from this amplifier is connected to gate two of the mosfet h.f. stage to control gain and improve reception. Finally the 1.f. signal is amplified by an LM386 (National Semiconductor) which gives
about 0.2 W into 8Ω with a 6 V supply. Per Hoilev
Copenhagen
Denmark
World Service frequency information can be obtained from BBC External Services Publicity, Bush House, PO Box 76, Strand, London WC2B 4PH.

COIL WINDING
L_{1}, L_{2} : 30 turns of 0.3 mm copper wire

Thévenin-Norton transient theorem

Abstract

The Thévenin-Norton theorem is restricted to the manipulation of independent sources only. This new theorem manipulates all sources, but still produces equivalent generators, similar to those contributed by Thévenin and Norton. Finding the generator immittance is now greatly simplified.

A theorem can be formulated that produces the two equivalent generators of a transient network ${ }^{1}$, either entirely in the time domain, or in the s-domain. It extends to the case of dependent sources $\mathrm{ki}(\mathrm{t})$ or $\mathrm{kv}(\mathrm{t})$ being included in the network. Theorem:

A step-excited linear network with an accessible port has two equivalent generators, the series-form generator having the generator impedance in series with the open-port voltage due to all sources, the parallel-form generator having the generator impedance in parallel with the close-port current due to all sources, the generator impedance in time or s domain form being the port looking-in impedance when all sources are removed.

In the theorem formulation, "all sources" means the driving sources together with all initial-value sources. Other kinds of driving sources may be substituted in accordance with the rules well known in the art. The proof of the theorem is provided by an application of the basic Source Transformation Theorem. ${ }^{2}$
As an example, consider the simple time-domain network in Fig. 1, where $i(t)$ is the unknown. We wish to replace the

Fig. 1
network to the left of port 0,0 by a parallelform generator, and we shall do this without leaving the time domain, making use of the D-operator. The desired network is shown in Fig. 2 (a). Employing the delta function,

$$
\begin{gather*}
i^{*}(t)=\frac{e(t)}{z^{*}(t)}+\frac{L I_{0} \delta(t)-V_{0}}{z^{*}(t)} \tag{1}\\
z^{*}(t)=D L+1 / D C
\end{gather*}
$$

The equation read-off from the Fig. 2(a) network is

$$
i^{*}(t)-\frac{R T i(t)}{z^{*}(t)}-i(t)=0
$$

and it is the same one that we would have

by Harry E. Stockman

obtained from the original network, proving our construction correct.

A common form of equivalent generator is shown in Fig. 2(b). To obtain this one, we pair the second term in equation 1 with the time-impedance $z(t)$ in Fig. 2 (a) and the make use of the source transformation theorem ${ }^{2}$ to change the combination into the series-form generator, shown as a shunt branch in Fig. 2 (b). Here $i^{*}(t)$ is the first term in equation 1 .

(a)

(b)

Fig. 2

The above is readily turned into an sdomain derivation by the observation of proper s-variables and the replacement of D by s. Many of the equivalent-network derivations are carried out much faster if we refrain from the use of the Lapalce trasnform with its dependence on proper tables and instead stay in the time domain all the time. The required time-immittance is made available by the versatile D operator. However, when the answer has to be given as an operator-free time expression, Laplace's method usually provides the quickest route to the answer, except for periodic steady-state portions, where Steinmetz' method yields a still faster solution.

Application example

An interesting case is at hand when the theorem is applied to a segment of a larger network, the segment containing dependent sources only. Then the Thévenin-

[^2]Norton theorem does not apply, while the new theorem allows us to construct an equivalent generator that replaces the segmented network. For a simple example see Fig. 3, where the network segment to be replaced is shown to the left of port AB , while the series-form generator that takes its place is shown in broken line to the right of port AB. Assume that the total network does not extend beyond the points marked x .

Fig. 3
If the driving voltage $\mathrm{e}(\mathrm{s})$ is a step voltage, we may use Laplace's method, but if it is a sinusoidal e.m.f. we would probably use Steinmetz' technique. Consider the unknown quantity to be $\mathrm{i}(\mathrm{s})$. The theorem yields directly

$$
\begin{gathered}
\mathrm{e}^{*}(\mathrm{~s})=\operatorname{ar} Z(\mathrm{~s}) \mathrm{i}(\mathrm{~s}) /\left[\mathrm{Z}(\mathrm{~s})+\mathrm{R}_{1}\right] \\
\mathrm{Z}^{*}(\mathrm{~s})=\mathrm{R}_{3}+\mathrm{Z}(\mathrm{~s}) \mathrm{R}_{1} /\left[\mathrm{Z}(\mathrm{~s})+\mathrm{R}_{1}\right]
\end{gathered}
$$

We readily find for the total network

$$
\left.i(s)=\left[e(s)-e^{*}(s)\right] / Z^{*}(s)+r\right] .
$$

In this simple example, a conventional solution using Kirchhoff's laws is almost as quick, but for more complicated cases the theorem saves time. This is particularly true when the segmented network contains a mixture of dependent and independent sources, and when initial conditions must be taken into account.

CNO

Craft and technology

Should modern technology be combined with the craftmanship associated with the past? Dr Ken Smith discusses the role of the industrial designer.

At a craft fair in Kent, I discovered a bracket clock of modern design, with fine traditional metalwork mounted in an handcrafted case of umber tinted transparent acrylic. The silvered chapter ring, brass spandrels and finials were finely engraved and hand finished. It gave the im-

By K. L. Smith

pression of being a traditional English timepiece while using modern materials.

In answer to my question, the designer/craftsman, Mr R. Marchant said, "Contemporary artists and craftsmen must use modern materials and mould them to give a message of what we are doing now".
My sympathy with this philosophy led me to muse about the function of indust-

Resonance applied to timekeeping

Up to about 1650, the escapement of mechanical clocks was aperiodic with a bang-bang type motion. Thes foliot escapements had vertually no Q and their period was dependent on the driving force. The discovery of the gravity pendulum in the early 1600's, although imperfectly understood initially as a resonant system, soon resulted in continuing improvements that have only 'saturated' in recent times, as the graph indicates. Clock-makers soon realised that the maintaining force should be tiny, for the best tiemkeeping. A whole epoch of fine clock-making gradually developed with much work on escapements and long heavy pendulums. The long case and
bracket clocks of England reached a peak of fine craft.

On the theoretical side, logarithmic decrement, δ, became the standard quality measure of mechanical vibrations; this is the natural logarithm of the ratio of any two successive amptitudes. A pendulum will swing freely for some 2000 to 20000 times before reaching half initial amplitude. Now $Q=\pi / \delta$ therefore $Q=\pi n / \log _{e} 2$, and because n is the number of oscillations to reach half amptitude, this indicates that a good pendulum has a Q ranging between 10,000 and 100,000 .
The peizoelectric effect was discovered by Jacques and Pierre Curie in 1880. ${ }^{1}$ By 1917, A. M. Nicolson ${ }^{2}$ had used a peizoelectric crystal to control the frequency of an oscillator, while P. Langevin ${ }^{3}$ used large resonant

Continuous improvements in the various methods of timekeeping is well illustrated by plotting the.date of the attainment of results against the precision obtained. (Three parts in 10^{7} amounts to about one second per year).
blocks of quartz from 1918 onwards in his experiments on submarine depth sounding and signalling. In 1925, K. Van Dyke ${ }^{4}$ described the electrical equivalent circuit of a quartz plate, thus establishing the criteria for designing and calculating the Q of a quartz resonator.

Much later (1947) Van Duke, with coworker Maynard Waltz measured the decrement of a precision zero coefficient ring crystal made for high precision timing. They found that vibrating freely in a vacuum it would vibrate over a million times before the initial amplitute was halved. This indicates the Q was some 4.5 million.

The first person to propose the use of quartz crystals in clocks was Warren A. Marrison. His notebook for November 1924 clearly outlines a high frequency quartz controlled oscillator and frequency translation system for driving a clock motor. By 1927 with J. W. Horton ${ }^{6}$ he described and demonstrated a working quartz clock with temperature controlled crystal at a meeting of the International Union of Scientific Radio Telegraphy. Marrison's 1930 paper "The Crystal Clock" ${ }^{\text {p }}$ proposed the use of this clock as a world standard time source. It was developed and adopted and remained pre-eminent in this role until displaced only recently by the even higher precision atomic clock.

As indicated, the best crystal clocks ${ }^{8}$ reached an accuracy of a few parts in 10^{10}, some 100 times more precise than the fluctuations and variations that go on continually in the motions of the earth.

One of the most useful cuts across a quartz crystal is the AT. This gives a cubic relationship for the temperature coefficient of the oscillating quartz bar, as shown here. The point of inflection, where the drift is nearly zero, can be chosen at room temperature by selecting the aspect ratio of the bar.
rial design. Such artefacts as a wellstructured p.c.b, with all the components colour-coded and laid out for strictly functional use, can be aesthetically (though unintentionally) very pleasing, and may be subjects of study by future art historians, much as we now collect and discuss vernacular objects from the past. Many massproduced goods disguise themselves in poor design, however good the technology incorporated in them.

What relevance has all this in an electronics journal like Wireless World? The answer is that the clock I have mentioned, although it originated in a cottage industry established by a craftsman, uses a very up-to-date quartz drive.

Many clockmakers denigrate the advance of the quartz clock; they think of it as damaging and vulgarising their craft. It is true that microelectronics with tiny precision quartz resonators, has completely swept the clock and watch market. Millions of digital and analogue devices have appeared and digital watches seem to cost little more than the cells that drive them.

Yet with high craftmanship and deliberate exploitation of the medium, Mr Marchant's clock bridges the void between fine individually made objects and the anonymous mass-produced (although highly technological) goods.

The success of this design encourages me. It has a message that individualism in small scale industry is very much alive. There are artists and craftsmen on the fringe of capitalism who can use its media and materials to express themselves, and make an income. They do not need to go through the paraphernalia of 'management studies', 'rationalisation', factory development, growth and so on. In this age of depression, listlessness, unemployment, technocracy, with electronics engineers working as mercenaries on machines of death, this could be an important message, and much in keeping with some recent editorial comments in Wireless World.WN

References

1. Development par pression, de l'électricité polaire dans les-cristaux hemiedres a faces inclinées, Jacques and Peirre Curie Comptes Rendus, vol. 95, 1892. pp. 914-917.
2. Generating and Transmitting Electric Currents, A. M. Nicolson, US Patent no. 2 212 845, filed April 10, 1918. 3. Improvements Relating to the Emmission and Reception of Submarine Waves, P.
Langevin, French Patent no. 505 903, 1918. Also Brit. Pat. 145 691, 1921.
3. Electric network equivalent of a piezoelectric resonator, K. Van Dyke, Phys. Rev. vol. 25, 1925. p. 895.
4. The high Q of quartz resonators, M. Waltz and K. Van Dyke, four. Acoustical Soc. America, vol. 19, 1947 no. 4. part 1, p. 732 .
5. Precision determination of frequency, J .
W. Horton and W. A. Marrison, Proc.
I.R.E. vol. 16, 1928. pp. 137-154.
6. The Crystal Clock, W. A. Marrison, Proc.

Nat. Acad. of Sciences, vol 16, 1930. pp. 496-507.
8. Miniature Transistorized Crystal-
controlled Precision Oscillators, W. L.
Smith, I.R.E.Trans on Insts, September 1960. pp. 141-148.

Last chance to enter

Our cover reflects the theme of the competition announced in the March issue in which we invited readers to design an electronic device to help the disabled. We asked intending competitors to return their entry forms by the end of June, and so there is still an opportunity for you to take part if you have received this issue in good time.

An encouragingly substantial heap of entries is already with us. They come from participants of every description, including academic groups, professional designers working on their own or in teams and individual hobbyists. Some have already told us about the projects they are working on, and they range from small gadgets to complex computer-based devices. Complexity, however, will not win prizes if it means unreliability and a high cost to the user; and so the lone
entrant with limited resources is not necessarily at a disadvantage. Our judges will be looking for devices which provide a practical solution to the problems of the type of person, they are aimed at and which are ${ }^{\text {tr }}$ affordable as well.
board to allow disabled people to use electric typewriters and home computers; and a device to allow cerebral palsy sufferers to communicate by converting head-movements into synthesized speech.

More information about the compe-

GOMPETTITOM SROOODJM PRJESS

The competition has attracted entries dealing with a wide variety of disabilities. Projects we have heard about in the last few weeks include a device to allow blind people to detect colours; a specially-designed key-
tition, with an entry form and list of rules, appears on page 76. Returning the form to us does not commit you at this stage to any specific project, but all entries must be completed and submitted to the Editor by 1 st October.

Single-chip printer controller

Abstract

Until recently the preserve of the high-volume manufacturer, the single-chip microcomputer is now becoming available to a wider market. Here is an original application for an Intel 8048 microcomputer, as the controller for a small dot-matrix printer.

Although the microprocessor has become an accepted electronic component rather than a curiosity, most engineers and users are familiar only with the general purpose 8 or 16 bit devices exemplified by the 8085 , 6502 and 6800 . These microprocessors are always accompanied by random access or read/write memory (ram), read-only memory (rom) and input/output (i/o) devices to make them into something useful in a multichip system. In fact, these devices represent only the tip of the microprocessor iceberg.

By far the majority of applications are too cost-sensitive to use a multichip system, and the semiconductor device manufacturers have responded by designing a wide range of simple, cheap computers in which the c.p.u., ram, rom and i/o are integrated into a single silicon chip. These find applications from toys to business machines, and are sold in tens of millions. Many have special architectures optimized for control rather than computation, though a few are derived from gen-

by S. J. Pardoe

eral-purpose processors, such as the 6502 or 6800 .

The single-chip controller used as the basis of this article is the Intel 8048, an eight-bit microcomputer with c.p.u., 1 K of rom, 64 bytes of ram, and 27 lines in a 40 -pin package. Such devices are maskprogrammed; that is, the program is built into the chip during manufacture, and cannot be changed. An eprom equivalent, the

Stephen J. Pardoe, B.Sc. (Hons) graduated in Chemistry in 1970, but transferred to Electronics soon after joining Glaxo Laboratories, where he developed a printing checkweigher. He has been involved in the design of printer systems ever since and is now a partner in Friday Partnership and a director of Able Systems of Northwich. He is married with teenage children and enjoys fell walking and high fidelity equipment design.

8748, can be used for development or small-volume manufacture.
The Epson M150/M160 series of miniature dot-matrix printers is unique in several ways. Exceptionally compact, yet printing on plain paper with a 5 V supply and very inexpensive, they open up a whole new range of printer applications. It is now feasible to incorporate a printer into low-cost equipment; the M160 is the printer chosen for the new Epson HX20 handheld computer. As it makes little sense to swamp such a small and inexpensive printer with a costly multichip interface, a single-chip controller was programmed to handle data input mechanism control and character generation.
The M150/M160 differ from most matrix printers in having only four printing solenoids, arranged horizontally in a shuttle which moves from side to side, building up characters as a raster of dot rows. A d.c. motor, gears and cams move the shuttle and feed the paper on synchronism; an a.c. tacho and reed switch time

the dot pulses and indicate the start of each dot line. A dynamic brake is required to stop the motor quickly between dot rows.
The M150 prints 16 characters across the 44 mm paper, four to each solenoid, the M160 prints 24 across 57 mm , six to each. Interface hardware is identical, but the software is slightly different to accommodate the character format. From now on, the two will be referred to as the M150. The full electrical specification would occupy half his magazine, but briefly it is

Solenoids (4): 4.0 V d.c. 1.5 A 2.5 A pk
Motor (drive): 4.5 V d.c. 0.17 A 0.8 A pk (brake): 4.5 V d.c. 0.3 A

Tacho output: 3 V pk-pk

These requirements can be met by very simple circuits, as shown. The solenoid drives are paired as each 8048 output can sink only 1.6 mA , whereas $3.2 \mathrm{~mA} \mathrm{I}_{\mathrm{b}}$ is needed to produce a $2.5 \mathrm{~A}_{\mathrm{c}}$ from a BD676 device. No flyback diodes are needed, as these rugged Darlingtons can easily absorb the turn-off spike, and the high instantaneous reverse voltage helps to collapse the solenoid field and makes for crisper printing. The brake circuit effectively shorts out the d.c. motor, which is rapidly brought to rest. Experience has shown that the tacho signal easily drives the $8048 \mathrm{~T}_{1}$ input if suitably biased: some trimming of the divider may be needed to equalize print density between solenoids.

Data interfaces are provided that are parallel, rather like Centronics practice and designed for connection to the host via a PIA port and serial, following RS232 protocol at $110,300,1200$ and 2400 baud, though at 5 V levels. The rate is selected on data 5 \& 6, and serial mode selected by taking S/PS high. Four i/o pins are left for local control functions: paper feed, selftest, selection of reversed printing (for use in panel mounting applications), and selection of mechanism (150 or 160).
The FP150 chip accepts ASCII sevenbit data. Control codes select various print formats, including double width and height, and inverted print. It will also print graphics patterns by accepting bi-nary-coded 'characters', again with special control codes. It is then possible to print any dot pattern that can be accommodated in a 96 -wide field (144 in the M160).

The 8048 program memory area of 1024 bytes is divided into four pages of 256 bytes. The 64 -character ASCII set is coded up as 320 bytes, or five per character, in hexadecimal, to give a 5 by 8 character set (the eighth bit is used for underlining and descenders on punctuation marks). The

character generator software 'looks up' these data bytes, and shifts them into the appropriate pattern to form the dot matrix as the print solenoids move across the paper.
Character generation is complicated by the requirement to print in both normal and reversed modes, in single or double width and/or height, and to accept graphics input. In all, 16 printing modes are provided, so all through the character generator conditional jumps hop and skip through the listing to select the functions required. This has led to nearly half the available 1 K program being devoted to character formation.

The other major software area is in the data interface. Here the parallel input is straightforward, consisting only of a bus read instruction and testing of the strobe input once that mode is established. The serial input routine is much more complicated: the strobe pin is sampled at intervals determined by the data rate chosen, to build up a replica of the transmitted char-

Frequency control of turntable motors

Abstract

Many high-quality turntables use a small synchronous motor to drive a heavy turntable platter through a flexible belt. Where mains frequency fluctuates, the speed of the turntable alcers. This circuit overcomes the problem by providing a reference frequency independent of the supply.

Synchronous motors achieve their constant speed by locking on to the mains frequency. However there are two main disadvantages: Firstly the wow and flutter performance depends on a constant supply frequency. This is not always met, particularly in my country, New Zealand, where periodic fluctuations, outside the stated limits are evident, presumably due to faults with generator regulation and where frequency is reduced when the grid is under heavy load, compounded by a subsequent speed-up to regulate the time on synchronous clocks. Then secondly, synchronous motors do not allow any convenient method of speed regulation, unlike many direct-drive or d.c. controlled turntables.

Synchronous motors use very little power and can lock on to the supply frequency over a wide range of voltages. Thus it is relatively simple to construct an oscillator that will produce the required frequency signal and then boost the output voltage to the level of the mains by the use

By Peter A. Stockwell

of a power amplifier, which can be small and cost little, and an output transformer.

The motor needed a waveform close to a sinusoidal, or it could find difficulty locking on to the frequency and could even run backwards. Waveforms with excessive harmonic content could cause sound to be radiated through the motor and the belt. A Wein bridge oscillator with its inherent sinusoidal output would seem to be ideal, but it needed two resistors to be varied simultaneously to adjust low frequencies. During tests it was found that any mismatch in the tracking caused settling delays which could make the turntable stop and start and run in reverse. Another disadvantage was the ability to find a suitable thermistor to act as a gain control element.

Voltage-controlled oscillators (v.c.os) are an appropriate choice which give a
constant amplitude of the output wave independent of the output frequency. Unfortunately v.c.os give triangular or square waves and these need to be shaped. The circuit shown in Fig. 1 has been devised to do this. IC_{2}, a 566 , is a very stable v.c.o. whose frequency of oscillation is given by; $f_{0}=2\left(V_{s}-V_{c}\right) / R_{1} C_{1} V_{s}$, where V_{c} is the control voltage at pin $5, \mathrm{~V}_{\mathrm{s}}$ is the supply voltage and R_{1}, C_{1} are as indicated in Fig. 1. If V_{c} is derived from a resistive divider, the ratio V_{c} to V_{s} is constant so the frequency should be independant of the supply voltage. The only likely source of drift in the frequency is the temperature coefficient of $\mathrm{IC}_{2}\left(300\right.$ p.p.m $/{ }^{\circ} \mathrm{C}$), the divider chain, R_{1} and C_{1}. The use of metal oxide resistors and a high quality potentiometer should help to minimise this. The motor was unable to lock onto high or low extremes of frequency so the resistor chain was selected to restrict the range. The potentiometer I used was a tenturn Beckman Helitrim. A high quality wire-wound potentiometer was also used

Fig. 2. Sanken hybrid amplifier feeds the signal to a mains transformer used backwards to provide the turntable motor with mains power at the chosen frequency.

Fig. 1. Frequency generator is based on a 566 v.c.o. R_{2} is adjusted to give the frequency for the turntable speed for all records including $78 \mathrm{r} / \mathrm{m}$. The 741 with its feedback matrix shapes the waveform.

with a changeover switch to select a preset turntable speed.
The 741 has a diode resistor matrix in the feedback loop to convert the triangle wave output of the 566 into an acceptable approach to a sine wave. R_{3} and R_{4} both control the shape of the output waveform and are most easily set by using an oscilloscope on the output. R_{3} controls the shape of the peaks while R_{4} controls the positive and negative symmetry. R_{5} is set to give the required voltage output to the motor.
Alternative v.c.os, like the Intersil ICL8038, can produce a sinusoidal output directly, but one was not readily available to me. However, by the time that the necessary external components are added, for controlling the symmetry, minimising the distortion etc, it is unlikely that the component count would be much below that for the circuit given.

Power amplifier choice was dictated more by the contents of my junk box than by any particular suitability for the application. However it does work satisfactorily even on the rather low supply voltage (the junk box again!). The output transformer is a small power transformer used backwards. It takes a few watts of power to provide the magnetising current or the core allowing for this, the power

Peter Stockwell holds an honours degree in Biochemistry and is currently involved in the development of computer programs to analyse DNA sequence data at the Biochemistry Department of Otaga University. 31 years old, his interests include electronics particularly as applied to high fidelity, music (he plays a pipe organ), and photography.
consumption of the motor with a little headroom must be considered when choosing a suitable amplifier. In addition falling impedance with frequency causes excessive power consumption, though this
may be offset by a capacitor-coupled amplifier since the capacitor impedance increases with falling frequency.

The effects of the series capacitor at low frequencies and of the transformer inductance at higher frequencies mean that output voltage will decrease at higher frequency. The d.c. resistance of the transformer produces some reduction in the output voltage under load. However there is no need for output voltage regulation as the synchronous motor is very tolerant to variations in voltage. The neon across the output provides a simple indicator while the capacitors across the input prevent transients from getting into the mains and hence into the hi-fi system.

Satisfactory performance over several months has been achieved on my Thorens TD-160 turntable. It is suitable for a number of high quality turntables driven by synchronous motors including Linn Sondek, Transcriptors and other Thorens models. One difficulty has been finding a suitable way of measuring the correct turntable speed in order to regulate the output frequency. I used a stroboscopic disc under the mains lighting, but this is far from ideal as the whole point of the circuit is that the mains frequency is not constant. I leave it to the reader to devise the most satisfactory means of setting the speed.

NON

Continued from page 69
acter in the 8048 accumulator by shifting the carry bit into it.
Once the parallel or serial character is received, the busy line is set high to tell the host not to send more data, and the processor then tests the received character to determine what should be done with it. Control codes are compared with a look-up table, a suitable response being made if a match is found; lower-case codes are arithmetically converted to upper case, and illegal codes discarded. Valid printing characters are stored in a designated area of the 8048 ram . When the ram is full or a line terminating character is received, the printing cycle starts.

The data input and sorting routines occupy about a quarter of the rom; the remaining quarter is taken up by a self-test routine, and various initialisation, timing and housekeeping subroutines. The entire 1 K byte of program were written directly in machine code, leading to a very compact program with no wasted space.

Similar design techniques have since been applied to interface controllers for other dot matrix printers, l.c.d. interfaces, and an MSF Rugby clock decoder/display driver, recently featured in WW (New Products, February issue page 83) and the subject of a future article.

CNO

COMPUTER GRAPHICS SLIDES

Developed to meet a demand for electronic production of highquality slides for use in audio-visual presentations, the Dicomed system is both fast and flexible. A wide range of support and commands are at hand, together with an extensive library of images including lines, circles and polygons as well as existing artwork, maps, logos, etc. Composition and balance from a choice of 64 colours can be altered and every element of the design can be moved, enlarged or reduced, replicated or rotated to any angle. Freehand drawing may be entered using a digitizing tablet. Animation is possible with start and end images; the computer can interpose in-between steps.

Designs are stored in digital form on a floppy disc and some 133 designs may be stored on one disc. The designs can be posted on a floppy disc or transmitted by telephone line to be reproduced on the company's slide production equipment. The images are photographed using a high resolution c.r.t. with 4000 lines. Also available is a software package for use with an Apple II microcomputer to allow creation of graphs, pie charts and histograms. Eidographics Ltd, 47 Marylebone Lane, London W1M 5FN. WW301

BALL CONTROL

Tracker balls seem to be in competition with mice as computer input devices to plot x - y positions accurately on a v.d.u. Marconi have two controllers to translate the motion of a tracker ball into precise positional control. They can be used to position markers on a display, including radar and are claimed to be fatigue-free when used with interactive graphics displays in the engineering design field.

The protruding ball is in slip-free

contact with two shafts positioned at right angles. Slotted discs attached to each shaft offer optically detectable motion which is translated by the electronic circuitry. The two basic versions are a rugged 2 in diameter ball or a 3 in ball. Marconi Electronic Devices Ltd, Doddington Road, Lincoln LN6 0LF
WW302

RELAYS WITHOUT TRANSIENTS

Photo-s.c.r. coupling provides transient-free switching as well as $2,500 \mathrm{~V}$ input-output isolation in the Teledyne SerenDIP, d.i.1. packaged solid-state relays. The maximum measured generated noise is claimed to be less than $15 \mu \mathrm{~V}$ at all test frequencies from 0.45 to 30 MHz , which makes the relays suitable for computer applications while the high voltage isolation is useful in industrial controls. There are three versions with output voltage ratings of 140 , 250 (with 400 V peak) and 250 with 600 V peak. The 645 range is available from STC Electronic Services, Edinburgh Way, Harlow, Essex. WW303

COMPUTING OSCILLOSCOPE

A digital storage oscilloscope waveform analyser, transient signal analyser, spectrum analyser and a data acquisition system are all combined into one instrument, the Analogic Data 6000. Built around a 16-bit microprocessor with an 8 MHz internal clock, it has 48 K bytes of rom and 8 K -bytes of ram.

The 'scope has been designed for the analysis of transient signals which may occur as digital glitches, or may arise during analysis of transient responses in networks. Other applications are in medical monitoring, wind tunnel, shock and destructive testing equipment. Data can be recorded for up to

5,000 hours. Analogic Ltd, The Centre, 68 High Street, Weybridge, Surrey.

WW304

DUAL LOW-PASS FILTER

Suitable for continuously variableslope detection or speech synthesis, the MC145414 is a dual, tuneable, low-pass filter using switched capacitor techniques. It consists of two fifth-order elliptical filters and includes two extra op-amps for gain adjustment or extra filtering. Cmos circuitry ensures low power consumption from a supply between 10 and 16 V . Clock frequency may be varied between 15 and 400 kHz to provide cut-off frequencies of 1.25 to 10 kHz . Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middlesex HA9 0PR.

WW305

14-BIT A-TO-D

Claimed to be the first c-mos monolithic analogue-to-digital converter, the Intersil ICL7115 uses thin-film resistors together with an on-chip rom calibration table to give 14-bit linearity without the need for expensive laser trimming. Internally it works with 17 bits with an exponential (1.85) base. It can measure accurately signals up to 118% of full scale. The rom incorporates an errorcorrection code and therefore does not rely on the accuracy of the resistor ladder in its successive approximation algorithm. The rom is programmed after manufacture
to take into account any measured variations. The circuit may be easily interfaced with microprocessor systems. Reference voltage inputs and signals have separate sense controls so that the device can accept positive signals relative to a positive reference and negative signals with a negative reference level. It operates from $\pm 5 \mathrm{~V}$ with a power consumption of 60 mW . Conversion time is $40 \mu \mathrm{~s}$. Intersil Datel UK Ltd, Belgrave House, Basing View, Basingstoke, Hants.

WW306

MICRO-TURTLE

A two-wheeled mobile robot which can be controlled by any microcomputer has been developed by Colne Robotics. Movements are controlled through an umbilical cable. The robot has touch sensors and the accompanying software 'teaches' it how to find another route. A retractable pen is attached

to the underside and allows the machine to draw Logo graphics. The Zeaker Micro-turtle comes complete with interface, power supply, operating manual and software all for $£ 69.50$ assembled, or $£ 52.00$ in kit form (v.a.t. extra). Colne Robotics Co. Ltd, Beaufort Road, off Richmond Road,
Twickenham, Middlesex TWI 2PH.

WW307

AID FOR THE COLOURBLIND

Component identification by the use of colour codes can lead to hazardous situations if the constructor is colourblind. Difficulty with the difference between red and green is the commonest form of colourblindness and a simple viewer incorporating selected red and green filters can assist in distinguishing between these colours. The makers of Viewbouy claim that, with practice, the severely handicapped can also identify most other colours. J. Holter, 10 Lancot Avenue, Dunstable, Beds LU6 2AW.

WW308

SPACE-SAVING PCB SWITCHES

By turning the dual-in-line switch on its side, Erg claim to save 30% of the p.c.b. area taken up by conventional switches. SDOS-10023 contains ten on/off switches which may be edge-mounted to offer front-panel switching with no additional hardware. Two to 18 way switches, colour-coded and numbered, will be included in the range. Erg Components, Luton Road, Dunstable, Beds LU5 4LJ. WW309

WIRELESS JOYSTICKS

A single-chip radio transmitter has been incorporated into a tv games joystick to allow the user to zap the space invaders from the comfort of an armchair, without the encumbrance of wires. A receiver is placed next to the games unit (and could be incorporated into it). It decodes the signals sent by the joystick into the same signals that would have been received if the joystick were connected directly, and feeds these through the normal joystick ports into the games computer. The 'serious' application of the joystick control is menudriven computer programs. The product is the first of a series planned to be expanded to include a wireless computer keyboard. The Wireless Joystick is manufactured in New York by Cynex and marketed in the UK by Dynavest Ltd, 8 Waterloo Place, London SWIY 4BE.

WW310

LOW-COST AVO METER

Despite the digital explosion of multimeters, Avo still have faith in analogue meters and have produced a series of test instruments called the 'analogue toolbag range'. The Avometer 1001 can measure direct and alternating voltages up to 1 kV , direct current up to 1 A and resistance up to $2 M \Omega$. Sensitivity is $10 \mathrm{k} \Omega / \mathrm{V}$ on d.c. ranges. A continuity buzzer is included. The a.b.s. plastics case features an integral carrying handle which has a slot in it to allow for quick and easy lead stowage. The meter costs £28.50 (trade price) with a heavy duty version with a tougher case for £37.30.
Announced at the same time is a series of Megger insulation testers which no longer have the generator handle on the side as they are battery driven, powered by a 9 V

(PP3) battery. Different models offer test voltages of 500 or 250 V with continuity ranges on all models of 0 to $200 \Omega 2$ and 0 to 2Ω, the last-mentioned being used to suit the methods laid down by the

IEE wiring regulations. One model has an additional voltage range while others provide intermediate resistance ranges of $1 \mathrm{M} \Omega$ and $500 \mathrm{k} \Omega$. All the meters come complete with test leads, probes
and clips which fit into moulded channels on the back of the case. Thorn EMI Instruments Ltd, Archcliffe Road, Dover, Kent CT179EN

WW311

PORTABLE RECORDING STUDIO

A four-track cassette recorder combined with a mixer needs only microphones and monitor headphones to make multi-track recording almost anywhere. The Fostex X-15 Multitracker is battery powered and is little larger than an average cassette deck, yet incorporates many features found normally only in a recording studio. It has equalizer, gain and pan controls for each of the channels which may be used in overdub or mixdown. Punch-in may be remotely controlled and there is $\pm 15 \%$ pitch control for tuning or for special effects. Dolby-B noise reduction is incorporated. Manufacturers claim that professional musicians can use the recorder as a 'sketch pad' to prepare a session, much as a Polaroid camera may be used to compose a shot in a photographic studio. The X-15 retails at $£ 299$, inclusive. Bandive Ltd, Brent View Road, London NW9 9EL.
WW312

ELECTRONIC OFFICE FROM BT

Word processors and computers with an accent on
telecommunications are now being marketed by British Telecom. The Merlin range of business systems starts with the M1100
communicating v.d.u. terminal which may be used to access Prestel or data banks and can be used for electronic mail with automatic dialling.

The M2226 business computer has 256 K memory internally with a 5 Mbyte Winchester disc and 800 Kbytes on floppy disc. It can operate with CP / M and therefore has access to a wide range of software; BT have added their own MerlinMaster software interface to make the whole system easy to use.

In addition there is the M3300 word processor which has two floppy-disc drives and a daisywheel printer. Both the computers can have auto-dial modems, can be linked to teleprinters and have full access to teletex and telex services. There is a range of peripherals and software launched at the same time. British Telecom Merlin, Room 2028 Howland Street, London WIP 6HQ.
WW313

INFORMATION THEORY

There are many ways of gathering information. We all know the trials of formal study to pass exams or for more immediate and practical reasons. But, in general life, we gather most of our knowledge by piecing together fragments picked up in random conversations. Sometimes it is the experts talking but more often its just ordinary folk.

Moreover, the breadth of experience revealed in the most casual conversation is often quite surprising. There was that painter, for example, in the next office boasting to his mate about the marvellous television reception in Croydon - " . . and all we had was one of those twopronged indoor aerials that stand on the set like a Martian's helmet".

Then our cleaning lady was telling me about her young son, who came in wearing blue sun glasses. As he is only about four feet high and has red hair, she told me, those glasses made him look just like a Martian.

Weeks later, on a very wet morning our dedicated cyclist, Jimmy, arrived dripping with rain, clad in waterproof leggings and a pale blue plastic cape. Kathy, our office girl, gasped with astonishment. ". . . in those yellow trousers and blue top, I thought you were a Martian!"

'Kids! They'll do anything to get 'emselves noticed.

So I have discovered that a Martian is about four feet high, has red hair, wears blue spectacles, yellow trousers and a blue top, and protects his head with a twopronged helmet. Actually, most of the Martians around our way are much taller with tight blue jeans and multicoloured Red Indian haircuts.

WORDS AND MUSIC MAESTRO

I have just been watching that programme on television about the British Leyland Maestro, and the way in which the more superior versions feature an audio readout of certain dashboard information. Do we call this a speakout? It is quite a status feature, and rather upstages such refine-
ments as electric windows or remotely controlled door mirrors.
The only demonstration of the speakout was the rather bossy synthesized feminine voice telling the driver to fasten his seat belt. But I understood from the report that the thing is programmed to blurt out information when an alarm situation occurs; e.g., "we're nearly out of petrol!" I suppose it also draws attention to the engine overheating, very low oil pressure or lack of brake fluid. I wonder if it mentions tyre pressure - that is the one we usually forget.

In the report that I heard, the only microcomputer mentioned was the one that controls the engine, but you may be sure that the speakout system depends on at least one of these devices. No modern electronic system amounts to much without one. So we are naturally led to speculate on the conversational ability of the car of the future as more-and-more data processing power is compressed into smal-ler-and-smaller devices.
I read quite recently about a Japanese heavy-goods vehicle with solid-state television cameras mounted at "blind" locations on the truck body, with a c.r.t. in the cab to augment the conventional rear-view mirrors. There are already computer programmes for interpretation of signals and tv cameras into exact information for machine-tool control, etc., so who knows what the future may bring.

With the general trend towards the use of high technology for totally frivolous purposes, it is possible that the techniques mentioned will one day be combined to enable the car to utter those helpful comments currently made by one's passengers; e.g., "all clear left . . . if you're quick", or "that's a police car you're overtaking".

Such technical developments could ultimately do away with the need for passengers altogether; we could have quite chatty cars to keep us company on long journeys; and there may even be the optional electronic "hitch-hiker" which gives an authentic account of all the lifts he's ever thumbed while you are trying to listen to the test match commentary on Radio 3.

MORE TALKING MOTOR CARS

It seems that BL have started a trend with the talking Maestro. I have just read a report in the Financial Times about a new experimental car by the Japanese Nissan Company, which not only talks to the driver but also responds to spoken commands.

It has a voice dialogue system which enables the driver to ask for such things as lights to be switched on and wing mirrors adjusted. Have you ever tried to adjust a wing mirror for a friend in response to his spoken instructions? ". . . up a bit - no,
not too far - now a bit to the left - etc." Its very difficult and always leads to bad feeling. Now imagine trying to instruct a stupid computer - in Japanese.

And that's only the beginning. This car also has a drowsiness monitor, which measures brainwave patterns and can tell if the driver is becoming tired. If he begins to fall asleep a flashing light and a buzzer operate, and the computer will eventually ask him to rest. With all these distractions it may, of course, be already too late; he may be resting permanently.

But he will not have driven into the back of the vehicle ahead, because this car is fitted with a radar which measures the distance to the vehicle in front, and if the gap becomes too small for any given speed the car is slowed until a safery distance is restored. Very useful in fog, but if it fails does it fail-safe? . . . and does fail-safe mean fail with the brakes on?

A SHOW BY ANY OTHER NAME

I see they are holding IFSSEC at Olympia as usual this year; and then there is HEVAC at the Barbican Centre a week or so later.
Of course, they are names of exhibitions. The first is the International Fire, Security and Safety Exhibition and Conference - not surprising that it is abbreviated to initials - and the second is the Heating, Ventilating and Air Conditioning Show. But only a cypher expert would find it easy to work out what is going on at these exhibitions from the title alone.
Some almost seem to be deliberately misleading. How about CONTEXT? Something to do with printing you may think, or some other form of self-expression. No, its the co-ordinated Furnishing Exhibition at Earls Court. Then there is TECTRONICA - not an exhibition of oscilloscopes but an international show for the life and physical sciences. POWTECH has nothing to do with turbo-generators or enormous high-fi amplifiers - it is all about powder and bulk solids.

Of course there are many exhibitions where the title is fully appropriate, so that one can guess what the show is all about immediately. There is ELECTRONICA in Munich, SHOPPEX in London, TESTMEX and TEST at Wembley; but, familiar though it may be, I have never worked out the meaning of INTERNEPCON and, judging by the variety of types of exhibit, I doubt if anyone else has either.

However, for the most appropriate exhibition name the prize must go the Farmers' Waste Management Exhibition at Stoneleigh. They call it MUCK - a show by any other name would smell as sweet?

A Bichardson Electronics (4) (zrope) ita.

A WORLD LEADING DISTRIBUTOR AND MANUFAGTURER

Electron Tubes

STOCKISTS OR EQUIVALENTS FOR
AMPEREX - AMPERITE BURROUGHS - CETRON CTC - Du MONT - EIMAC ELECTRONS
GENERAL ELECTRIC GENALEX - ITT LITTON - MACHLETT MULLARD
NATIONAL
OMNI WAVE
R.C.A. - RAYTHEON

STC - SIEMENS
SYLVANIA
TELEFUNKEN
THERMOSEN
TUNGSOL - VARIAN
VICTOREEN
WESTINGHOUSE

R.F. Power Transistors

CATALOGUES AVAILABLE FOR:- ELECTRON TUBES, RF TRANSISTORS, READOUT TUBES, POWER SEMICONDUCTORS, CAMERA TUBES Dean Road Outer Circle Road Industrial Estate Lincoln England LN2 4DV Telephone: 0522-42631 Telex: 56175 REEL UK

A COMPETITION OPENTOALL WIRELESS WORLD READERS WITH $£ 8000$ IN CASH PRIZES

Design an Electronic Device to help the Disabled

Could you design a piece of equipment to help a disabled person? If so, you would - in addition to undertaking this worthy task - be eligible to win a substantial cash prize.
Our competition is open to individuals or groups resident in the UK. You register your entry using the form below, sending it to the Editor to arrive at his office not later than June 30 th 1983 . The designs themselves must be submitted to his office by 1st October 1983.
Entries, which will be judged by a group of eminent engineers and doctors, must consist of the following:- a statement of the design objectives; an overall description of the device; detailed circuit descriptions and diagrams; a model of the device or a model of a unique aspect of the design sufficient to demonstrate its feasibility.
The finalists will be invited to London to talk over their entries with the judges and be awarded their prizes. The prizes are:

1st prize $£ 2,500$ 2nd prize f1,500

 and the 4 runners up will be awarded prizes each of £1,000To make sure you have the maximum time to undertake your design, return your entry form now!
"DESIGN AN ELECTRONIC DEVICETO HELPTHE DISABLED" LIST OF RULES
The comperitmis.spenti h.remkens.Aill yant wan be individuats inust register their interest in enterinu the competition on the lormAlpartich
prusided which must be relurned to the Wireless Wurld F.ditural Depar memt hy the
All entrams agree 1 ngive Wireles World firm serial publicatum rightutuan article
dess ribing the entrs
damape to nroperts arising irum the use uf the desig)
Al submited design must be the oriqual work al the entrant or entrants and must not
infrume the rights of third parties inansway:

Anoverall description of the
Detailed circuit deseriptions and
diagrams
Anisucaspect of the design
sufficient todemonstrate it:
Feasibilits:
Originality and henefit to the
handicapped
b) Potential for production
b) Potential for production
c) Flegance of ensinecrin
()) Electronics conten
${ }^{\text {e) }}$ f) Simplicity ofoperation
f) Freedomfromeration
maintenanee
h) Safety.
bolluare unty sthutiomaten
atcepted

wireless world
 competition ENTRY Form

| "Design an electronic device to help the disabled"

Name of competitor
Address

Telephone (home)
(business)
I intend to enter the competition and to abide by the rules as laid down in the July 1983 issue of Wireless World.
I understand that, in order to qualify, my entry must be in the hands of the judges by 1st October, 1983
Signature
Date
Please send this form, as soon as possible, to
The Editor, WIRELESS WORLD
Room L302,Quadrant House, The Quadrant
Sutton, Surrey SM25AS
Receipt of the form will be acknowledged.

GET THE COMPLETE PIGTURE ATYOURNEWSAGENTDURINGJULY - ORDIRECT

The New Catalogue from the industry's 'DISTRIBUTOR OF THE YEAR!'

WW - 048 FOR FURTHER DETAILS
LOW CEST P-DRFGEIONAL TEGT INGTRUNGNRS

WW - 011 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N.12. 5 mins from Tally Ho corner Telephone 445 2713/0749

WW - 024 FOR FURTHER DETAILS

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033

MARK 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many 'new generation' readers who bought at 1976 bargain prices + 10\% discount for 10 sets! Most sets are still avallable although companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print (CIRCARDS sets 1 to 30).
 The Offer stands,
so order now your
sets of $127 \times 204 \mathrm{~mm}$
cards in plastic wallets.
These unique circuit
cards normally contain
descriptions and
performance data of
10 tested circuits;
together with ideas
for modifying them
to suit special needs.

[^3]To Electrical-Electronic Press
General Sales Department
Room 108
Quadrant House
Sutton
Surrey SM2 5AS

Company Registered Number: 151537 (ENGLAND).
Registered Office: Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS

Please send me the following sets of
Circards .£2 each,
$£ 18$ for 10 post free.
Remittance enclosed .payable
to BUSINESS PRESS INTERNATIONAL LIMITED
Name (Please print)
Address (Please print).

pantechnic

THE POWERFET
SPECIALISTS

POWERFET AMPLIFIER MODULES

MODEL

POWER RANGE	TYPICAL LOADS	PRICES lone off
(Continuous RMS)		
$50 \mathrm{~W}-150 \mathrm{~W}$		$£ 2,8 \Omega$
$100 \mathrm{~W}-300 \mathrm{~W}$	$4 \Omega, 8 \Omega$	$£ 20.65$
$250 \mathrm{~W}-600 \mathrm{~W}$	$2 \Omega, 4 \Omega, 8 \Omega$	$£ 27.35$
$200 \mathrm{~W}-300 \mathrm{~W}$	$4 \Omega, 8 \Omega, 16 \Omega$	$£ 42.00$
	436.04	

PFA 200
PFA 500
PFA HV
250W-300W
$4 \Omega, 8 \Omega, 16 \Omega$
£36.04
Key features:

- reliable
- linear
- FAST
- aUIET
- bRIDGEAbLE
- STABLE

LOW COST

- Powerfet freedom from thermal runaway and secondary breakdown
TID zero, IM/THD $<0.01 \%$ full power (mid-band THD down to $0.0015 \% 1$
- Slew rate $>30 \mathrm{~V} / \mu \mathrm{S}$ ($45 \mathrm{~V} / \mu \mathrm{S}$ typical)

Signal to noise ratio 120 dB

- Without extra circuitry

Unconditionally
10 watts to 20 watts per $£$, depending on model and quantity
As they stand these modules suit most P.A. and industrial applications and satisfy all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low-cost customising is often a possibility. Alternatively entirely new boards can be produced.
ALSO-
PAN 20 -Ultra-low-noise/distortion, mono preamp board, £7.61
PAX 2/24-2-way active crossover board (24dB/octave) plus regulators, $\mathbf{£ 9 . 7 0}$
THE HEAT EXCHANGER - New, super-efficient heatsink; handles 300 W or 1.2 kW when blown; $7 \mathrm{in} . \times 4 \mathrm{in} . \times 21 / 4 \mathrm{in}$., $£ 7.50$

This is just a fraction of the new products available from Pantechmic -check us out!
Prices exclude V.A.T

PANTECHNIC (Dept. WW7) 17A WOOLTON STREET LIVERPOOL 255 5NH Tel: 051-428 8485

"Instruments for Industry"

This superb range of handheld and bench multimeters offers a unique choice of $31 / 2$ or $41 / 2$ digit specifications and features. Engineering excellence at competitive prices with numerous supporting accessories to suit design, production and service needs. Now available ex-stock from one of the U.K.'s most experienced electrical measurement specialists. The complete range of Anders instruments and panel meters is described in the "Instruments for Industry" catalogue

For your personal copy contact

ANDERS ELECTRONICS LIMITED

48-56 Bayham Place
London NW1 OEU
Tel: 01-387 9092. Telex: 27364

Now that we have moved to larger premises we have the space to store these superb units and can offer them to "Wireless World" readers at this fantastic price. These superb terminals built to industrial specification by a world-famous manufacturer feature:- * Prestel * Builtin modem receive at 1200 baud/transmit at 75 baud * G.P.O. approved * 7" green anti-reflective screen * Angled display for desktop viewing * Page format 24 lines $/ 40$ characters * Security lock - authorised personnel only * Slimline dimensions - depth 14.1 inches, width 11.9 inches, height 7.6 inches * Attractive beige case with black trim *

SUMMER SAVERS

DISE DRIVE DISEOUTIS

LIMITED QUANTITY AVAILABLE ONLY £199 BRAND NEW AND BOXED + CARR \& VAT

FD 514 - 8in. S/S D/D DRIVE
FORMATTED 600KBYTE £149

* FD 650 - 8in. D/S D/D DRIVE FORMATTED 1.2 MBYTE £199
* CASE TO HOLD TWO DRIVES WITH COSSOR POWER SUPPLY
FAN AND CARRYING HANDLES - BRAND NEW - ONLY £99.95
A Special Purchase allows us to offer a limited quantity of these items at this remarkable price. The drives are manufactured by Pertec - are Shugart compatible and have a 90-day warranty.

14' RAB COLOUR MONIIOB

Stop Press - Brand new, fully cased manufactured by JVC
Medium Resolution $\mathbf{£ 1 9 9}$
High Resolution £299
Please ring for further details/spec. sheet
Medium Resolution $£ 19$

TEAG DISE DRIVES
TEAC 55F 51/4" D/S 80 Track. Formatted Single Density 400K, ONLY £229

- Case with built-in power supply to hold 2 drives, ONLY $£ 39.95$; if case purchased without drive, £45

- Ideal for use with BBC Micro
- Slimline - latest technology

Low-power consumption
Full warranty

JUST ARAIVED!

$12^{\prime \prime}$ Green Screen Monitor
1 Year Warranty
Video Response 18 MHz
Composite Video/Phone Connector to Computer \star ONLY £69.95 \star

WW - 054 FOR FURTHER DETAILS

TWO NEW HANDHELD DIGITAL MULTIMETERS

SPECIFICATION

- Mode select: Push button
- AC DC current: $200 \mu \mathrm{~A}$ to $10 \mathrm{~A}-6$ Ranges
- AC voltage: 200 mV to 750 V - 5 Ranges
- DC voltage: 200 mV to $1000 \mathrm{~V}-5$ Ranges
- Resistance: 200Ω to $20 \mathrm{M} \Omega$ - 6 Ranges
- Input impedance: 10MS
- Display: $31 / 2$ Digit 13 mm LCD
- Overload protection: All ranges
- Battery: Single PP9 type (included)
- Battery life: 200 hours
- Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$
- Weight: 400 g inc battery

OTHER FEATURES:

Auto polarity, auto zero, battery-low indicator, ABS plastic case with tilt stand, battery and test leads, spare fuse and operators manual included. Optional carrying case

AFDEC318 Kempshott Lane, Basingstoke Hants RG22 5LT
ELECTRONICS LTD

SEMICONDUCTORS

DIODES

AA119	
BA102	0.08

$\begin{array}{ll}\text { A } 145 & 0.16 \\ 0.17 \\ 0.17\end{array}$

14148	0.17
$8 A 154$	0.06
BA155	0.13

BT154
BY
BY126
BY
$\begin{array}{ll}133 & 0.15 \\ \text { Y176 } & 0.45 \\ 1720 \\ 179 & 0.63\end{array}$

左

PHONE 0474813225 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOY

A SELECTION FROM OUR STOCK OF BRANDED VALVES

${ }^{\text {Alt }}$ Al 18

$\stackrel{A}{\text { All }}$

| | 1714 | 18.50 | EAC91 | 2.50 | EF800 |
| :--- | :--- | :--- | :--- | :--- | :--- | A

A
A
A

THERMOCOUPLE MONITOR

THERMOCOUPLE

 SIMULATOR
STRAIN GAUGE MONITOR

VOLTMETER
vOltage CALIBRATOR

MILLIVOLT SOURCE

Auto zero
Auto range
Thermocouple
Linearisation for all common types
Strain calculation
Automatic recalibration
Battery backup memory for vital functions

11 INPUTS - 3 OUTPUTS
By combining the power of a $Z 80$ microproces. sor, and sophisticated analogue circuitry, the MULTIMONITOR gives you all these features, making it the most effective test instrument yet. As well as the $41 / 2$ Digit Local Display the Multimonitor carries

DECOY ROAD. WORTHING, SUSSEX Tel: (0903) 200673

NEW! ICOM ICH2 SYNTHESIZED FM HANDPORTABLE

The ICH2 is the first of a new breed of synthesized hand-held radio transceivers. Being synthesized, it requires no crystals to be set on to frequency. All that is required is to lift a recessed panel on the top of the set and cut the correct diodes to program the set to one or two channels. Duplex or simplex is obtained in the same way. This really is a boon to the busy dealer and convenient for the customer who wants those extra few sets "yesterday".
The ICH2 is very versatile, coming complete with a rechargeable ni-cad pack, small mains charger, rubber helical antenna, earphone and strong spring belt clip. Optional extras include: A speaker/ microphone, cigarette lighter plug 12 V charging lead, 12 V convertor to operate direct from the car supply, leather and leatherette cases, various different types of slide on/off battery packs both rechargeable and dry and a desk charger that fast charges some of the battery packs in 1 to $11 / 2$ hours. The battery packs slide on and off very easily, enabling a spare to be carried in your pocket and an exchange made in the field. Sizes are $6.5^{\prime \prime} \mathrm{H} \times 2.6^{\prime \prime} \mathrm{W} \times 1.4^{\prime \prime} \mathrm{D}$, weighing 1.1 lb . Power output is $1-3$ watts and covers a frequency range of $164.975-174.975 \mathrm{Mhz}$, duplex or simplex.
Retail price is 269 pounds each plus VAT. We are also looking for dealers for general distribution. More details from

Thanet Electronics ©D ICOM
 143 Reculver Road, Herne Bay, Kent
 Tel: 02273 63859. Telex 965179

WW - 049 FOR FURTHER DETAILS

m MiCRONKVE MOOULES LIO

TUNE INTO THE WEATHER . . .

USING OUR COMPLETE 'METEOSAT' WEATHER SATELLITE RECEPTION SYSTEM

We supply the complete system from antenna to video monitor, at the lowest price ever imagined for such a comprehensive system. View the entire globe on your video screen, or select any enlarged portion of the earth, for example Europe, as seen by the satellite from 20,000 miles above the earth. Both visible light pictures and infra-red pictures can be selected, the latter giving useful temperature information.

Our complete system consists of the following items -

1. ANTENNA: $\mathbf{1 . 1}$ metre diameter parabolic dish with feed, supplied in kit form to reduce costs and make transportation easier.
2. ANTENNA PREAMPLIFIER: Gasfet low-noise preamplifier to be bolted on to the antenna, to overcome feeder losses and provide maximum sensitivity.
3. 1690 MHz CONVERTER: Frequency converter from 1690 MHz to 137.5 MHz to allow a conventional receiver to be utilised
4. 137 MHz RECEIVER: The FM receiver, which demodulates the received encoded signal. Orbiting satellites on the $136-138 \mathrm{MHz}$ band can also be received using this receiver
5. DIGITAL FRAME STORE: The audio signal from the receiver is stored in a large Dynamic RAM memory, which then drives the monitor to provide a continuous display.
6. VIDEO MONITOR: A high quality black-and-white munitor, with 25 MHz bandwidth, ideal for displaying this type of image with excellent definition
The above items are all that are necessary to obtain first-class pictures from Meteosat. ALL FOR $£ \mathbf{1}, \mathbf{2 9 5}+$ VAT.

Individual items from the above system are also available
Write or phone for further details

MICROWAVE MODULES
 BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9 7AN, ENGLAND
 Telephone: 051-523 4011 Telex: 629508 MICRO G

WW - 055 FOR FURTHER DETAILS

FORODDAS
The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

*Gold service available. 21 days manufacture for urgent deliveries.

*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

TVPE	SEAIES	$\underset{\substack{\text { Volts }}}{\text { SECONDARY }}$	$\xrightarrow[\text { RMS }]{\text { Current }}$	Price
NEN!		NEN	!	NEW!
	0×010	6+6	1.25	$£ 5.12$ + p\& p ع0.78 +VAT $£ 0.89$ TOTAL 6.79
	0×011	9+9	0.83	
	${ }^{0 \times 012}$	$12+12$	0.63	
	0×013 0×014	$18+18$ $18+18$	- 0.42	
	0×015	$22+22$	0.34	
	0×016	$25+25$	0.30	
(encased in ABS plastic)				

$\begin{gathered} 30 \mathrm{VA} \\ 70 \times 30 \mathrm{~mm} \\ 0.45 \mathrm{~kg} \end{gathered}$	1×010	$6+6$	250	£5.49
	1×011	${ }^{9+9}$	${ }^{1.66}$	
	1×012	$12+12$	1.25	
	1×013	$15+15$	1.00	+p8pE1.10
Regulation18%	1×014	$18+18$	0.83	total E7 58
	1×015	$22+22$	068	
	1×016	$25+25$	0.60	
	1×017	$30+30$	050	
$\begin{aligned} & 50 \mathrm{VA} \\ & 80 \times 35 \mathrm{~mm} \\ & 0.9 \mathrm{Kg} \\ & \text { Regulation } \\ & 13 \% \end{aligned}$	2×010	$6+6$	4.16	
	2×011	9+9	2.77	
	2×012	$12+12$	2.08	$£ 6.13$ + p\& DE1.35 TOTAL $£ 8.60$
	2×013	$15+15$	1.66	
	2×014	$18+18$	138	
	2×015	$22+22$	1.13	
	2×16	$25+25$	1.00	
	2×017	$30+30$	0.83	
	2x028	110	045	
	2×029 2×030	220 240	0.22 0.20	
	3×010	$6+6$	6.64	
	3×011	$9+9$	4.44	$£ 6.66$ $+p \& p E$ + VATE1. 26 TOTAL 9.64
	$3 \times 0+2$	$12+12$	3.33	
	3×013	$15+15$	2.66	
	3×014	$18+18$	2.22	
	3×015	$22+22$	1.81	
	3×016	$25+25$	1.60	
	3×017	$30+30$	1.33	
	3×028	110	0.72	
	3×29 3×030	220 240	0.36 0.33	

$\begin{gathered} 160 \mathrm{VA} \\ 110 \times 40 \mathrm{~mm} \\ 1.8 \mathrm{~kg} \end{gathered}$	5×011	9+9	8.89	
	5×012	$12+12$	6.66	
	5×013	$15+15$	5.33	
$\begin{aligned} & \text { Regulation } \\ & 8 \% \end{aligned}$	5×014	$18+18$	4.44	¢8.43
	5×015	22+22	3.63	28.43
	5×016	$25+25$	3.20	+p8p¢1.72
	5×017	$30+30$	2.66	+ VATE1.52
	5×018	$35+35$	2.28	total £11.67
	5×026	$40+40$	2.00	
	5×028	110	1.45	
	5×029	220	0.72	
	5×030	240	0.66	
$\begin{gathered} 225 \mathrm{VA} \\ 110 \times 45 \mathrm{~mm} \\ 22 \mathrm{Kg} \\ \text { Regulation } \\ 70 \end{gathered}$	6×012	$12+12$	938	
	6×013	$15+15$	7.50	
	6×014	$18+18$	6.25	
	6×015	$22+22$	5.11	¢9.81
	6x016	$25+25$	4.50	29.81
	6×017	$30+30$	3.75	+ D80¢2.05
	6×018	35+35	3.21	+ VATE178
	6×026	$40+40$	2.81	TOTAL £13.64
	6×025 6×033	$45+45$ $50+50$	2.50 2.55	
	${ }_{6 \times 028}$	110	2.04	
	6×029	220	1.02	
	6×030	240	0.93	

300 VA	7×013	$15+15$	10.00		
$110 \times 50 \mathrm{~mm}$	7×014	$18+18$	8.33		
2.6 kg	7×015	22+22	6.82		
Regulation	7×016	$25+25$	6.00		
6\%	7×017	$30+30$	5.00	£10.88	
	7×018	$35+35$	4.28	+p\&p $\varepsilon 2.05$ + VATE1.94 TOTALE14.87	
	7×026	$40+40$	3.75		
	7×025	$45+45$	3.33		
	7×033	$50+50$	3.00		
	7×028	110	2.72		
	7×029	220	1.36		
	7×030	240	125		
$\begin{gathered} 500 \mathrm{VA} \\ 140 \times 60 \mathrm{~mm} \\ 4 \mathrm{Kg} \\ \text { Regulation } \\ \text { 4\%\% } \end{gathered}$	8×016	$25+25$	10.00	E1438	
	8×017	$30+30$	8.33		
	8×018	$35+35$	7.14		
	8×026	$40+40$	${ }_{6}^{6.25}$	$\underline{214.38}$	
	8×025	${ }^{45+45}$	5.55		
	8×033	$50+50$	5.00	+ VATE2.52	
	8×042	$55+55$	4.54	total $£ 19.30$	
	8×028	110	4.54		
	8×029	${ }_{2} 20$	2.27		
	8×030	240	2.08		
$\begin{gathered} 625 \mathrm{VA} \\ 140 \times 75 \mathrm{~mm} \\ 5 \mathrm{Kg} \\ \text { Regulation } \\ 4 \% \end{gathered}$	9×017	$30+30$	10.41	$\begin{aligned} & \mathbf{8 1 7 . 1 2} \\ & +p \& p £ 2.55 \\ & \text { +VAT } 2.95 \\ & \text { TOTAL } £ 22.62 \end{aligned}$	
	9×018	$35+35$	8.92		
	${ }_{9} 9 \times 26$	40+40	7.81		
	9×025	$45+45$	6.94		
	9×033	50+50	${ }_{5}^{6.25}$		
	${ }_{9 \times 042}$	$55+55$	5.68		
	9×028	110	5.68		
	9×029	220	2.84		
	9×030	240	2.60		
ALSO AVAILABLE Sizes up to and including 5KVA are manufactured to order.					

The benefits of ILP toroidal franstormers
ILP toroidal transtormers are only half the weight and height of their laminated equivalents. and are avalable with 110 V . 220 V or 240 V priniaries coded as tollows
IMPDATANT: Regulation - All voltages quoted are FULL LOAD. Please add regulation figure to secondary
vollage to obtan ot load votage.
For 110 V primary insert " 0 in place of " x " in type number
For 220 V primary (Europe) insert " 1 in place of " X " in type number
For 240 V primary (UK) insett " 2 " in place of " X in type number
Also available at Electrovalue, Maplin, Technomatic and Barrie Electronics.
For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms.

WW - 034 FOR FURTHER DETAILS

New from Hitachi are three low-cost bench scopes with bigger screens and extra features in a new slimline ultra-tightweight format. The range now extends 1013 models:-

4 dual trace single timebase models 20 MHz to 40 MHz
2 dual trace sweep delay models 20 MHz and 35 MHz
2 dual timebase multi-trace models 60 MHz and 100 MHz
2 miniature field portable models, 20 MHz and 50 MHz
3 storage models, one tube storage, two digital storage
Prices start at 295 plus sat (model illustrated) including 2 prohes and a 2-year warranty. We hold the range in stock for immediate delivery
For colour brochure giving specifications and prices ring (0480) 6.3570 .
Reltech Instruments, 46 High Street, Solihull, W. Midlands, B91 3TB
WW - 052 FOR FURTHER DETAILS

A Exase

Professional quality electronic components, brand new and fully guaranteed. Mail
order by return of post. Cash/Cheque/POs or Banker's Draft with order, payable to order by return of post. Cash/Cheque/POs fromschools, colleges and universities
 Telephone your Access orders, using our 24-hr. Ansaphone service. Please send SAE for full price list.
VAT - All prices exclusive of VAT - Please add 15% to total cost including P.\&P No VAT on export orders or books.

OPTO ELECTRONICS
3 mm Red
3 mm Grein
3 mm Yeliow
3mm Red
5 mm Graen
${ }^{5} \mathrm{~mm}$ Yeiliow
Chrome Berel 3 mm
Chrome Bezel 5 mm
St
Square LED $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Red ${ }^{45 \mathrm{D}}$
Green or Yell
Tri-colourLeD
Ar-colourte Green LED which
A Red and A
produces Yellow when both Bre

TIL32 PN GNFRARED

Gallium Arsenide IR Tyy 1.2 mW
Til 38
PN
Emiting Diode Power Output

Tor 100 Large-
Photodiode
7 SEGMENT DISPLAYS Tll.313
thode
$0.3 "$ Red Common
 HA1143R
Cathode...

	Full colour display 25 by 40 border colours 16 Text/Charscter colours displaying alphanumerics or PET graphics TV set or a Colour or monochrome monitor UHF modulator internal to the computir High resolution graphics $320 \times$ 62 predefined graphic symbols available from the keyboard displayed in normal or reverse in all 16 colours High resolution moveable object blocks 24 pixels wide by 21 pixels deed Up to 8 Sprites which can be layered for 3D effects Sprites can be one of 8 colours or multicolour up to 4 different Sprites can be moved independent of text, graphics or other Sprites SOUND Music Synthesis chip provides 3 voices, 8 octaves 4 waveforms sawtooth, triangle, pulse of noise Programmable attack, decay. sustain and release Programmabla filter - low dass. band pass, high pass or notch outputs Variable resonance and master volume control INPUT/OUTPUT User port with RS232C Cartridge port for games and ROM based software 2 joystick/paddle/light pen ports BASIC interpreter future options are BASIC compiter, Pascal, COMAL, LOGO and FORTH
UQUID CAYSTAL DISPLAY MDDULES PCIM177 Frequency Counter 5 Digits, 0.35° FM, SW, MW. MHz, Hold Capability, Rese Capability, 25 Selectable IF Oftsets Incandescent Backlighting, Suopir Voraga , and Decime Point. 200 mv V full Scale input. So Operation. Power Acsuracy Both Modules are supplied with a dath sheet	
TEMPERATURE METER A fully self-contained digital tem- perature meter, battery operated with an LCD display *Temperature range $0-99.9^{\circ} \mathrm{C}$ $\begin{array}{rr} \\ + & 70.99 .9^{\circ} \mathrm{C}+1-1.0^{\circ} \mathrm{C}\end{array}$ *Battery $9 v$ alkaline. Lifetime * External temperature probe £16.95	
TRANSFORMERS	

SCREEN DISPLAY Full colour display 25 by 40
255 combinations of screen and border colours
16 Text//Charscter colours graphics UHF modulator internal to the GRAPHICS
High resolution gra
200 pixels available from trophic sym all 16 colours High resolution movasble object
biocks 24 pixels wide by 21 pixels
deep Up to Sprites which can be layered for 3D effects
Sprites can be one of 8 multicolour up to 4 differe Sprites can be move other Sprites
ole
Music Synthesis chio provide voices, 8 octaves 4 waveforms
sawtooth, triangle, pulse or no Programmable attack, decay sustain and release
Programmabla filter band pass, high pass or notch
outputs Variable
INPUT/OUTPUT
User port with RS232C
Carridge port for game joystick/paddle/light pen port
LANGUAGE BASL interpreter future optic
are BASIC compiter, Pascal,
COMAL
£29g + VAT

$5395+$ YAT

PRINCE MONITOR

 A 12 monochrome monitor24MHz video band width ideal for
most personal computers word Processing. scie
NPUT VIDEO
Volt p-p composite video
EXIERNAL CONTROLS Contrast, brightness, vertic hold, on/aff
INTERNAL CONTROLS Horizontal width, linearity,
frequency, phase, focus, black legel, vertical height and linearity
IECHNICAL CHARACTERISTICS Scan 625 lines $/ 50 \mathrm{~Hz}$, Doflection
110°, Character display 80 bv 24 110°, Character display 80 bv 24
linas. Video input PHONO. X-ray lines,
radialion to Inc spec no
SCREEN PHOSPHORS Black/white, green, or orange
Green or orange filters available to order $\mathbf{2 9 8}+$ YAT THE COMMIMODORE 84

STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: 073468041

WW - 042 FOR FURTHER DETAILS

REGHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. $£ 1.45$ for booklet, "Nickel Cadmium Power," plus catalogue.

\star COMPLETE RANGE OF CHARGERS

SANDWELL PLANT LTD. 2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764 After hours: LICHFIELD 57977
Now open Saturday morning 9.30 to 12.30

WW - 040 FOR FURTHER DETAILS

ONEFF EPROM PROGRAMMING

From Your HEX Table - For Your Development

- Programming of all popular, single rail EPROMs, with device either supplied by vou or us, Any number of bytes programmed. Indicate 'don't care' addresses. Normal deliverv 2-3 days, - excl. postage

DEVICE TYPE	SUPPLIED BY US	YOU
$2716-450 n S$	12.50	9.50
$2716-350 n S$	15.50	9.50
$2732-450 n S$	20.25	15.75
$2732-350 n S$	22.25	15.75
$2532-450 n S$	20.25	15.75
$2764-450 n S$	27.00	21.00

all prices inclusive of VAT (15%) and carriage.
Audio Visual Development Department,
Stephen Greaves Pbotograppy Limited 19 Queen Victoria Rd., Westbury Park, Bristol BS6 7PE.(0272) 732176

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RECORD DECKS SINGLE PLAY Large Turntables 240 volt AC. Post $£ 2$				
Make	Model	Drive	Cartridge	Price
BSR	P170	Rim	Ceramic	$£ 20$
BSR	P232	Belt	Ceramic	¢24
GARRARD	6200	Rim	Ceramic	¢22
GARRARD	Delux	Belt	Magnetic	E40
BSR	P232	12 volt	Magnetic	E24
AUTOCHANGERS 240 VOLT				
BSR	Budget	Rim	Ceramic	¢16
BSR	Delux	Rim	Ceramic	E18
BSR	Delux	Rim	Magnetic	£26

MAINS PRE-AMP FOR MAGNETIC CARTRIDGES to low

HEAVY METAL PLINTHS

 silver grey finish. Size $16 \times 133 / 4 \mathrm{in}$.DECCA TEAK VENEERED PLINTH. Post $£ 1.50$
Superior finish with space and panel fo
small amplifier. Board is cut for B.S.R
$183 / 4 \mathrm{in}$. $\times 141 / 4 \mathrm{in} \times 4 \mathrm{in}$. Black/chrome facia trim. Also with
boards cut out for Garrard $£ 3$. Tinted plastic cover $£ 5$

TNTED PLASTIC COVERS			Post £2
$17^{7 / 6} \times 13^{1 / 6} \times 3^{1 / 4 / 4}$.	$\underline{5}$	$181 / 4 \times 12^{1 / 2} \times 3$ in.	15
$17^{1 / 4} \times 93 / 6 \times 3^{1 / 2} \mathrm{in}$.	£3	$14^{3 / 8} \times 12^{1 / 2} \times 2^{7 / 8 i n}$.	E5
$161 / 2 \times 15 \times 41 / 2 \mathrm{in}$.	¢5	$165 / 8 \times 13 \times 4 \mathrm{in}$.	5
$17 \times 12^{7 / 2} \times 3^{1 / 2 i n}$.	f5	$14^{1 / 2} \times 13^{1 / 8} \times 2^{3 / 4} / \mathrm{in}$.	5
$225 / 8 \times 137 / 8 \times 3 \mathrm{in}$.	f5	$171 / 4 \times 13^{3 / 4} \times 4^{1 / 4 i n}$.	5
$211 / 2 \times 14^{1 / 4} \times 21 / 2 \mathrm{in}$.	£5	$21 \times 13^{7 / 8} \times 41 / 8 \mathrm{in}$.	E5
$233 / 4 \times 14 \times 37 /$ in .	E5	$303 / 4 \times 133 / 8 \times 31 / 4 \mathrm{in}$.	55

THE "INSTANT"BULK TAPE ERASER $\mathbf{9 9 . 5 0}$ Post $95 p$
Suitable for cassettes and all sizes of ta
reels. AC mains $200 / 250 \mathrm{~V}$. Hand held si
with switch and lead (120 volt to order) Will also demagnetise small tools

Had computer tapes.
 Head Demagnetiser only $\mathrm{f5}$.

BATTERY ELIMINATOR MAINS to 9 VOLT D.C Stabilised output, 9 vott $400 \mathrm{~m} . a$. U.K. made in plastic $5 \times 3^{1 / 4} \times 2^{1 / 2 i n}$. Transformer Rectifier Unit. Suitable Radios, Cassettes, models, $£ 5$. Post $£ 1$
DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. EASY build kit. Controls up to 800 watts $A C$ mains with plastic power tools, drills and lighting. Post 65p.

R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS

£3.95. Post 65p
All parts and instructions with Zener diode printed cir12 V d.c. up to 100 mA or less. Please state voltage required.

RELAYS. $6 V$ DC 95p. 12 V DC $£ 1.25 .18 \mathrm{~V} £ 1.25 .24 \mathrm{~V} £ 1.30$ $\begin{array}{cc}\text { ALUMINIUM } & \text { CHASSIS. } \\ 10 \times 7-£ 2.75 ; & \quad 6 \times 4-£ 1.75 ; \\ 12 \times 8-£ 3.20 ; & 14 \times 9-£ 3.60 ; \\ 16 \times 6-£ 2.50\end{array}$ $6 \times 10-£ 3.80 ; 12 \times 3 £ 2.20 ; 14 \times 3 \mathrm{f} 2.50$.
ALUMINIUM PANELS. $6 \times 4-55 p ; 8 \times 6-90 p ; 14 \times 3-90 p$ $10 \times 7-£ 1.15 ; \quad 12 \times 8-£ 1.30 ; \quad 12 \times 5-90 p ; \quad 16 \times 6-£ 1.30$ ALUMINIUM BOXES. $4 \times 4 \times 11 / 2 \mathbf{£ 1} 20$. $3 \times 2 \times 1 \quad £ 1.20 .6 \times 4 \times 2 \quad £ 1.90,7 \times 5 \times 3 \quad £ 2.90 \quad 8 \times 6 \times 31.20$ $10 \times 7 \times 21 / 2 £ 3.60 .12 \times 5 \times 3 £ 3.60 .12 \times 8 \times 3 £ 4.30$. ALI ANGLE BRACKET $6 \times 3 / 4 \times 3 / 4 \mathrm{in}$. 30p
BRIDGE RECTIFIER 200 V PIV $2 \mathrm{a} £ 1.4 \mathrm{a} £ 1.50$. $6 \mathrm{a} \mathbf{£ 2 . 5 0}$. TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 60p. MINIATURE TOGGLES SP 40p. DPDT 60p.
RESISTORS. 10Ω to $10 \mathrm{M} .1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$, $1 \mathrm{~W}, 2 \mathrm{p} ; 2 \mathrm{~W} 10 \mathrm{p}$
Low ohm 1 watt 0.47 to 39 . Low ohm 1 watt 0.47 to 3.9 ohm 10p.
HIGH STABILITY. $1 / 2 \mathrm{w} 2 \% 10$ ohms to 1 meg. 10 p .
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20p. PICK-UP CARTRIDGES SONOTONE 9TAHC $£ 3.80$. BSR Stereo Ceramic SC7 Medium Output £2. SC12 £3. PHILIPS PLUG-IN HEAD. Stereo Ceramic. AU 1020 (G306 GP310-GP233-AG3306, £2. A.D.C., QLM $30 / 3$ Magnetic $£ 5$. STYLUS most Ceramic Acos, Sonotone, BSR, Garrard Pilips Diamond $£ 1.50$ ea.
MAGNETIC STYLUS, Sony, JVC, Sanyo, Goldring, etc. £4.
LOCKITTE SEALING KIT DECCA 118 . Complete 1 .
30W $£ 18$;50W $£ 20 ; 100 \mathrm{~W}$ £24. Post $£ 2.100 \mathrm{~V} /$ Line 20 W £3.75.
MICROSWITCH, 50p, Miniature 65p. SPDT.
ANTEX SOLDERING IRON 'C' $15 W$ © $25.25 W \cdot \times 25$ ' $£ 5.50$.
WAFER SWITCHES. $11 / 4^{\prime \prime}$ dia. 60p ea.
1P 12W; 2P $2 W ; 2 P 6 W ; 3 P 4 W ; 4 P 2 W ; 4 P 3 W$
FERRITE ROD. $6^{\prime \prime} \times 1 / 2^{\prime \prime}, 6^{\prime \prime} \times 3 / 9^{\prime \prime}, 8 \times 5 / 16^{\prime \prime} 50 \mathrm{p}$
XLR Lead Plug $£ 2.40$. Lead socket $£ 2.75$
XLR Chassis Plug $\mathbf{£ 2 . 2 0}$. Chassis Socket $£ 2.55$.
BANANA 4 mm Plugs/Sockets, red/black 20p
JACK PLUGS Mono Plastic 25p; Metal 30p. Sockets 25p. JACK PLUGS Stereo Plastic 30p; Metal 35p. Sockets 30p. 25 mm and 35 mm JACK SOCKETS 25p. Plug DIN TYPE CONNECTORS
Sockets 3-pin, 5-pin 15p. Free Sockets 3-pin, 5-pin 25 p. Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p.
PHONO PLUGS and SOCKETS ea. 20p; Double sockets 30p. Free Socket for cable end 20p. Screened Phono Plugs 25p. B.N.C. PLUGS $£ 1$. Sockets $£ 1$. Free Sockets $£ 1.10$
U.H.F. PLUG 50p. Socket 50p. Reducer 20p. Coupler 50p 300 ohm TWIN RIBBON FEEDER 10p yd.
UH ohm to 75 ohm AERIAL MATCHING TRANSFORMER £1 COAX PLUGS 30p. COAX SOCKETS 20p. Lead Sockets 65 p . NEON INDICATORS 250 V , round 40p. Rectangular 45p. MORSE CODE TAPPER AND BUZZER SET $£ 3$.
CAR CASSETTE MECHANISM. 12 V Controlled Motor Stereo

Head E 5

POTENTIONETERS Carbon Track

$5 k \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S
 MINI-MULTI TESTER NEW De luxe pocket size precision moving
coil instrument. Impedance + Capacity 4000 o.p.v. Battery included
11 instant ranges measure:
DC volts $5.25,250,500$
AC volts $10,50,500,1000$.
$\mathbf{£ 7 . 5 0}$
DC amps 0-250 $4 \mathrm{~A}, 0.250 \mathrm{~mA}$
Post 65p

De Luxe Range Doubler Model
$\mathbf{5 0 , 0 0 0}$ o.p.v. $7 \times 5 \times 2$ in
£ 19.50 50.000 o.p.v. $7 \times 5 \times 2$ in

PANEL METERS

$50 \mu \mathrm{a}, 100 \mu \mathrm{a}, \quad 500 \mu \mathrm{a}, 1 \mathrm{ma}$ $5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 500 \mathrm{ma}$, 1

 amp, $2 \mathrm{amp}, 25$ volt, VU Stereo$31 / 4 \times 15 / 8 \times 1$ in. $\mathbf{4} 4.50$ Post $50 p$

RCS SOUND TO LIGHT CONTROL BOX

Complete ready to use with cabinet size $9 \times 3 \times 5$ in
3 channel, 1000 watt each. For home hi-f disco
£27 Input 200 mV to 100 watt
OR KIT OF PARTS $£ 19.50$
Disco bulbs 100 watt. blue, green, yellow,
"FUZZ" lights, red, blue, green, amber, 240V. £23.Post $£ 1$ 200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco Lights, Edison Screw. 6 for $\mathbf{£ 4}$, or 12 for $£ 7.50$. Post
.50. Suitable panel mounting holders 85 p .
RCS "MINOR" 10 watt AMPLIFIER KIT £14 systems Two versions available: Mono, £14; Stereo, $£ 20$ low per channel; size $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details.

CS STEREO PRE AMP KIT. All parts to
pre-amp. Inputs for high, medium or low imp $\mathbf{~ p e r ~ c h a n n e l ~ w i t h ~ v o l u m e ~ c o n t r o l ~ a n d ~ P C ~ B o a r d ~} \mathbf{£ 3} 50$ Can be ganged to make multi-way stereo mixers Post 650

MAINS TRANSFORMERS

OPUS COMPACT

SPEAKERS $£ 22$ pair Post $£ 2$ TEAK VENEERED CABINET
50 to $14.000 \mathrm{cps} .4 \mathrm{ohm}, 8 \mathrm{ohm}$ or 16 ohm OPUS TWO $15 \times 101 / 2 \times 73 / 4$ in 25 watt 2-way system $£ 39$ pair. Post $£ 3$ LOW VOLTAGE ELECTROLYTICS Wire ends $1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ mf , 250 mf . All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v}$; $25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v}$; 47 $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150$
$\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330$
$\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mf} / 6 \mathrm{v} ; 680 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v}$
 500 mF 12 V ; $5 \mathrm{p}: 25 \mathrm{~V} 20 \mathrm{p}: 50 \mathrm{~V} ; 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$ $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} \cdot 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{VF} 76 \mathrm{~V}$
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1500 \mathrm{mF} 100 \mathrm{~V} \mathrm{£} 1.20$
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1500 \mathrm{mF} 100 \mathrm{~V} \mathrm{£} 1.20$
$2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$; $2200 \mathrm{mF} 63 \mathrm{~V} 9 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ;$
$4700 \mathrm{mF} 63 \mathrm{~V} 1.80 .4700 \mathrm{mF} / 40 \mathrm{~V} \mathrm{E}$.
NON POLARISED CAPACITORS - REVERSIBLE
$1 \mathrm{mF} 250 \mathrm{~V} 25 \mathrm{p} ; 1.5 \mathrm{mF} 100 \mathrm{~V} 25 \mathrm{p} ; 2.2 \mathrm{mF} 250 \mathrm{~V} 30 \mathrm{p} ; 3.3 \mathrm{mF}$
$100 \mathrm{~V} 40 \mathrm{p} ; 4.7 \mathrm{mF} 100 \mathrm{~V} 40 \mathrm{p} ; 10 \mathrm{mF} 63 \mathrm{~V} 40 \mathrm{p} ; 32 \mathrm{mF} 50 \mathrm{~V} 25 \mathrm{p}$.
HIGH VOLTAGE ELECTROLYTIC
$2 / 500 \mathrm{~V} \quad 45 \mathrm{p} \quad 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p}$
 $\begin{array}{llllr}32 / 350 \mathrm{~V} 90 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} & \mathbf{9 5 p} & 50+50 / 300 \mathrm{~V} & \mathbf{5 0 p} \\ \mathbf{5 0 / 4 5 0 \mathrm { V } 9 5 0} & 8+8 / 500 \mathrm{~V} & \mathbf{5 1} & 80+40 / 500 \mathrm{~V} & \mathbf{£ 2 . 2 0}\end{array}$
CAPACITORS WIRE END High Voltage
$001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 10 \mathrm{p}$
400 V 14 p .600 V 15 p .1000 V 25 p .
22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 50 p
47 MF 150 V 10 p .400 V 25 p .630 V 30 p .1000 V 0 p
TRIMMERS $30 \mathrm{pF}, 50 \mathrm{pF}, 10 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF} 20 \mathrm{p} .500 \mathrm{pF} 30 \mathrm{p}$.
MICROSWITCH SINGLE POLE CHANGEOVER 40 p
GEARED TWIN GANGS $365+365+25+25 \mathrm{pF}$ £ 2 .
BRASS SPINDLE EXTENDERS 85p. Couplers 65p

SLOW MOTION DRIVE 6:1 90p. Reverse Vernier drive 90p. TRANSISTOR TWIN GANG. Japanese Replacement £1 SOLID DIELECTRIC 100pf E1.50
HEATING ELEMENTS, WAFER THIN (Semi Flexible) Size $11 \times 9 \times 1 /$ in. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx Suitable for Heating Pads, Food Warmers, Convector two sheets of metal or ceramic,
WN
ONLY 60 p EACH (FOUR FOR E2) POST

NEW baker Star sound
high power full range quality loudspeakers. British made. Ideal for Hi-Fi, music P.A. or discotheques. These loudspeakers are recommended where high power handling and quality is required.

MDOEL	INCHES	OHMS	WATTS	TYPE	PRICE	OSt
MAJDR	12	4-8-16	30	HI-FI	$f 16$	$\ldots 2$
SUPERB	12	8 8-16	30	HI-FI	126	f2
AUDITORIUM	12	8.16	45	HI-Fi	124	f2
AUDITORIUM	15	8-16	60	HI-FI	537	f2
GROUP 45	12	4-8-16	45	PA	¢16	$\underline{\square}$
OG 75	12	4-8.16	75	PA	120	G2
GROUP 100	12	8-16	100	Guitar	$\underline{26}$	¢2
OISCO 100	12	8-16	100	Disco	126	¢2
GRDUP 100	15	8-16	100	Guitar	535	12
DISCD 100	15	8-16	100	Disco	¢35	¢2

BAKER AMPLIFIERS BRITISH MADE

NEW PA150 MICROPHONE PA AMPLIEE E129

mixing. volume, treble, bass. Presence controls, Master volume control, echo send return socket. Slave sockets. Post $£ 3$.
BAKER 150 Watt AMPLIFIER 4 Inputs $\mathbf{E 9 9}$ For Discotheque, Vocal, Public Address. Three speaker outlets for 4, 8 or 16 ohms. Four high gain inputs, $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm. Individual volume controls "Four channel" mixing. 150 watts 8
ohms R.M.S. Music Power. Slave output 500 M.V. 25 K.ohm. esponse $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral Hi-Fi preamp separate Bass \& Treble. Size - $16^{\prime \prime} \times 8^{\prime \prime} \times 5 h^{\prime \prime}$. Wt -141 b ; Master mains ar 120 V to order All transistor and solid state. Post $f 2$
100 Volt Line Modal f114. MONO SLAVE E80
Now Stereo Slave $150+150$ watt 300 wett Mono f12s. Post f4 Complete Disco 150W. Twin console + amplifier + mike and headphones
Carriage $£ 30$.
ELECTRONIC ECHO CHAMBER 885 . Post $£ 2$
BBD Delay System $30 \mathrm{~m} / \mathrm{sec}$ to $200 \mathrm{~m} / \mathrm{sec}$. Variable echo
and direct sounds. Maintenance free. 240 V AC
DISCO GRAPHIC MIXER EQUALISER $£ 108$. Post $£ 2$
display, headphone monitor mic, red + green LED, VU A CABINET SPAKERS $17 \times 15 \times 9$ in. $£ 25$. Post $£ 4.4$ or 8 or 16 ohm 75 watt
$23 \times 15 \times 11$ in. $£ 50$. Carr. f 10.90 watt $32 \times 15 \times 11$ in. $\mathbf{£ 6 3}$. 120 watt £77. Carr. £12,
WATERPROOF HORNS
WATERPROOF HORNS 8 ohms 10 in .25 watt $£ 20$. Post
£2. 12 in. 40 watt $£ 26$. Ditto 100 volt line $£ 32$ P
Battery only Portable PA Amplifier low complete mike and speaker, OK for meetings, crowd control, stalls, fetes, traders, parties. Shoulder strap feature. $£ 25$ post $£ 2$.
R.C.S. 100 walt R.M.S.
VALVE AMPLIFIER

VALVE AMPLIFIER
treble, bass and volume
controls. 5 Speaker outlets,
suits $4,8,16 \mathrm{ohm}$. Disco
group. f125. Carr, $\&$ ins. f15.
60 WAIT VALVE AMPLIFIER,
3 mixer inputs, 4-8-16 ohm, 100 volt line. 5 controls, 2 mic inputs plus 1 input switchable for mic, phono. aux. Treble and bass and

FAMOUS LOUDSPEAKERS

"SPECIAL PRICES

MAKE	MODEL	SIZE	WATTS	OHMS	PRICE P	
WHARFEDALE	TWEETER	4 in	30	8	£7.50	$f 1$
GDODMANS	TWEETER	31/2in	25	8	f4	¢1
AUDAX	TWEETER	4 in	30	8	66.50	$\underline{1}$
AUDAX	mid-range	4 in	50	8	¢7.50	¢1
SEAS	MID-RANGE	41/2in	100	8	¢12.50	f1
AUDAX	WOOFER	$51 / 2$	25	8	f10	f1
GDDDMANS	HIFAX	$71 / 2 \times 41 / 4$	100	4/8/16	$\underline{51}$	L2
G00DMANS	WOOFER	8 in	25	4/8	$\underline{6} .50$	11
GDODMANS	HB	8 in	60	8	f12.50	11
WHARFEDALE	WDDFER	8 in	30	8	$\underline{59.50}$	12
CELESTIDN	DISCO/GRDUP	10in	50	$8 / 16$	$f 19$	0
GDDDMANS	HPG/GROUP	12in	120	$8 / 15$	129.50	12
G000MANS	GR12/GROUP	12in	90	8/15	$\underline{27.50}$	0
G00DMANS	HPD/DISCD	12in	120	8/15	$\underline{29.50}$	0
G00DMANS	HP/BASS	15 in	250	8	¢69	E3
GODOMANS	HPD/BASS	18in	230	8	f80	¢4

SPEAKER COVERING MATERIALS. Samples Large S.A.E.
B.A.F. LOUDSPEAKER CABBET WADOING 18 in wide 35 ft
MOTOROLA PIEZD EIECTRIC HORN TWEETER, 33 ain. square E5 ${ }^{1}$
100 watts. No crossover required. 4-8-16 ohm, $730 \times 3 / 0 \mathrm{in}$
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt E3. 100 W f4.
3 -way $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt rating. f4. 60 watt $£ 6$. 100 W fB
LOUDSPEAKER BARGAINS. Please enquire many others.

$\times 5 \mathrm{in}, \mathrm{f3}$; $8 \mathrm{in}, \mathrm{f4}, 50$; $10 \mathrm{in}, \mathrm{f5}$; $12 \mathrm{in}, \mathrm{E6}$.

EMI 131⁄2x81n. LOUDSPEAKERS

ELECTRUC

2 WAYs to RECOVERY

ACT AT ONCE - DELAY IS FATAL

GET IT - READ IT - PRACTISE 1.4
be READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS.

Display the ELECTRICAL REVIEW shock first aid chart ($356 \times 508 \mathrm{~mm}$) supplied in thousands to destinations world-wide. Recent deliveries include consignments to companies in Papua New Guinea, Dubai, United Arab Emirates, The Philippines, apart from UK commercial and industrial, educational, Central Government, Local Authorities' orders.

Carry the ELECTRICAL REVIEW pocket-size shock card $(92 \times 126 \mathrm{~mm})$ designed to help safety and training officers, medical and welfare personnel; all who might find themselves called to save a life. Always pocket your card; there's a useful two-year calendar on the back.

ACT AT ONCE—DELAY IS FATAL!

To Electrical-Electronic Press General Sales Department
Room 205
Quadrant House
Sutton SM2 5AS
Surrey
England
Company Registered Number: 151537 (ENGLAND)
Registered Office: Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS

Please send copy/copies as indicated
Pocket Card @ 70p each inc VAT Paper Chart @ $£ 1.00$ each post free Card Chart@£2.00 each post free Plastic Chart @ $£ 3.00$ each post free

Discounts: $100+$ copies 10%
$500+$ copies 15%
(Overseas surface and air mail rates supplied on application.)
WM

Pre Europa MF5FM high-band sets, complete but less mike and cradle. $£ 90$ each plus $£ 2$ p.p. plus VAT.
Pye M294 high-band FM sets, complete but less mlke, speaker and cradle. $\mathbf{£ 1 5 0}$ each plus $£ 2$ p.p. plus VAT. Pye Reporter MF6 AM high-band sets, complete but less speaker and cradle. $\mathbf{£ 9 0}$ each plus $£ 2$ p.p. plus VAT. Pye Olympic M201 AM high-band sets, complete but less mike, speaker and cradle. $£ 90$ each plus \mathbb{E} p.p. plus VAT. Pye Westminster W15 FM G band $42-54 \mathrm{MHz}$ sets, unused and like new, but less mike, speaker and cradle. $£ 65$ each plus $£ 2$ p.p. plus VAT.
Pye WestminsterWi5 AMD mid-band multi-channel sets, no mikes, speakers or cradles. $£ 45$ each plus $£ 2$ p.p. plus VAT.
Pye Westminster W15 AMD mid-band crystalled and converted to $129.9 \mathrm{MHz}, 130.1 \mathrm{MHz}, 130.4 \mathrm{MHz}$. Very good condition. $£ 120$ each plus $£ 2$ p.p. plus VAT.
Pye Westminster W15 AMD high-band and low-band sets available. Sets complete but less mikes, speakers and cradies. $£ 70$ each plus $£ 2$ p.p. plus VAT.
Pye Westminster W30 AM low-band sets only, no contro
Pye Westminster W30 AM low-band sets only, no control gear. Sets complete and in good condition. 45 each plut
e2 p.p. plus VAT. Pye base station F30 AM, low band and high band avail-
able, remote and local control. Prices from E220 plus VAT. able, remote and local control. Prices from E220 plus VAT.
Pye base station F 401 high-band AM, local control, fully Pye base station F401 high-band AM, local control, fully solid state, complete but less mike. $£ 275$ each plus $£ 15$
p.p. plus VAT. P.p. pluse station F9U, remotely controlled, 5 Watt output, UHF ($440-470 \mathrm{MHz}$), single channel. $\mathbf{2 9 0}$ each plus $\mathbf{5 5}$ p.p. plus VAT.
Pye base station F412 UHF $\{440-470 \mathrm{MHz}), 25 \mathrm{KHz}$ channe spacing, single channel, local control. $£ 250$ each plus $\mathbf{£ 1 5}$
Pye Beaver
Pye Beaver M254 high-band FM sets, 15 Watt, robust mobile radiotelephones for industrial use, sets complete plus V.A.T.
Pye Base Station type F9AM, remotely controlled, 5 watt output, high band \& low band available. $£ 90$ each plus

Pye AC200 mains power unit for Olympic or Reporter, automatic standby power facility with trickle charging and bat.

Pye PC1 radiotelephone controller, good condition, two only at $\mathbf{£ 5 0}$ each plus $£ 2$ p.p. plus VAT.
Pye Tulip microphone as used on most base stations and PC1, 2400 ohm with ptt switch. $£ 15$ plus $\mathbf{£ 1} 1$ p.p. plus VAT. Pye PFI UHF FM Pocketfone receivers, $440-470 \mathrm{MHz}$, single channel, int. speaker and aerial. Supplied complete with rechargeable battery and service manual. $\mathbf{f 6}$ each plus E1 p.p. plus VAT.
(Yellow) f2 each Tx (Red) f3 used but good condition, Rx Pye Pocketfone PFT Battery each plus $£ 1$ p.p. plus VAT. ye Pocketfone PF1 Battery Chargers, type BC14, 12 way Pye Pocketfone PF1 Battery Chargers, type BC5 single charger, brand new. $£ 20$ each plus $£ 1$ p.p. plus VAT. Pye single sideband HF Mobile Radiotelephone, type SSB $130 \mathrm{M}, 100 \mathrm{~W}$ P.E.P. output, 6 -channel, $2-15 \mathrm{MHz}$ Complete and new condition but less power unit. £250 plus $£ 10$ p.p. plus VAT.
Pye fixed station transmitter, type T100 FM, 'G' band 38.6$50 \mathrm{MHz}, 100 \mathrm{~W}$ output. 25 KHz channel spacing. New condition. £100 each plus $£ 10$ p.p. plus VAT.
ye Pocketfone 70 type PF2UB, UHF Portables, complete with battery, aerial \& mike, good condition. $\mathbf{f 8 0}$ plus VAT.
Pye Pocketfone 70 type PF2FM, low band, FM portables, sets complete but less battery, aerial \& mikes, good condition. E50 plus VAT.
Pye Pocketfone 70 type PF5, UHF portables, complete with batteries, good condition. £45 plus VAT
Pye Pocketfone type PF8 UHF handheld, complete but less batteries, single channel, 25 KHz channel spacing.
$£ 90$ each plus $\mathbf{£ 1} \mathbf{p} . \mathrm{p}$. plus VAT.

WANTED

Top prices paid for surplus
Pye radiotelephone equipment

Marconi signal generator type TF1064B/5, AM/FM covering three ranges $68-108,118-185$ and $450-470 \mathrm{MHz}$, good condition with service manual. $£ 125$ plus VAT.
Marconi AM/FM signal generator, type TF995A/3/S (CT402), $4.5-220 \mathrm{MHz}$, good condition with copy of service nanual. $£ 95$ each plus $£ 15$ p.p. plus VAT.
Airmec millivolt meter, Type 301. £50 plus $\mathbf{£ 2}$ p.p. plus VAT.
Marconi HF Spectrum analyser, Type OA1094A/S 0-30 MHz . 100 plus VAT (buyer collects).
45 each plus f15 tage stabiliser, type AC2, 240V @ 9 amp. ervomex AC voltage stabilise
mp . f 75 each plus f 15 p .p. plus VATpe AC7, 240V @ 20 Garrad car cassette player mechanisms, 12 V motor, tereo head. Brand new. $\mathbf{E 2 . 5 0}$ each plus 50p p.p. plus VAT.
Computer-grade electrolytic capacitors, screw terminals, $25,000 \mathrm{mfd}$., 33 volts, brand new. $\mathbf{£ 1}$ each plus 50 p p.p. lus VAT
60 amp alternator and general noise filters for use in vehicles. $£ 1$ each plus 50p p.p. plus VAT.
used but good condition. $£ 8$ plus $£ 1$ p.p. plus VAT
Cigar lighter plug with lead. $\mathbf{E 1}$ each plus 30 p p.p. plus VAT.
IC test clips, 28 -way and 40 -way, goldplated. $£ 2$ each plus 30p p.p. plus VAT.
Equipment wire, size $7 / 0.2 \mathrm{~mm}$, colour yellow, 500 -metre reels. $£ 4$ plus $£ 1$ p.p. plus VAT.
Hartley Oscilloscope Type CT 436, valved, DC to 6 MHz bandwidth. $£ 50$ plus VAT.
Power units, 70 volt @ 8 amp, 20 volt @ 3 amp. Brand new but no details. $£ 20$ each plus $\mathrm{f8}$ p.p. plus VAT.
Berys 1 pip plus VAT plus $£ 1$ p.p. plus VAT

MAINS TRANSFORMERS

Mains isolating transformer, 500 VA 240 V input, 240 V C.T. output, housed in metal box. $\mathbf{f 1 5}$ each plus $\mathbf{f 6}$ p.p. plus VAT. Mains isolating transformer, 240 V tapped input, 240 V 3 amp, plus 12 V 0.5 amp output. $£ 20$ each plus $£ 6$ p.p. plus VAT
Advance Volstat transformers, type CVN200/5, input 24 or 28 V DC via inverter, output 220 or 240 V RMS 150 watt,

B. BAMBER ELECTRONICS GOVERNMENT AND MANUFACTURERS' SURPLUS

5 STATION ROAD
 LITTLEPORT CAMBS CB6 1QE

Telephone: Ely (0353) 860185

ELECTRONIC COMPONENTS TELECOMMUNICATION EQUIPMENT TEST GEAR

MKCROUAVE MOOULES LIVO

DO YOU HAVE A REQUIREMENT FOR

 VHF/UHF RECEIVERS OR TRANSMITTERS? We have a comprehensive range of professional quality FM receiver and transmitter units, which can be supplied either as working printed circuit boards for inclusion as a sub-assembly in a more complex unit or as complete encased products, to operate in the frequency ranges: 130-180 MHz and $400-500 \mathrm{MHz}$.| UNTT TYPE | AR21 | AR71 |
| :---: | :---: | :---: |
| Description | VHF FM Receiver | UHF FM Receiver |
| Frequency Ranye | $130-180 \mathrm{MHz}$ | $400-500 \mathrm{MHz}$ |
| Number of Channels Available | 2 (6ch also available) | 2 (6ch also available) |
| Sensitivity | 0.25μ V P.D. for 20 dB Sinad | |
| Selectivity | $>80 \mathrm{~dB}$ at $\pm 25 \mathrm{kHz}$ | |
| input Impedance | 50 ohm | 50 ohm |
| Audio Output Power | 3 watts into 4 ohms | |
| Squelch Range | 0.2-1.0 ${ }^{\text {V }} \mathrm{V}$ | 0.2-1.0 V |
| Supply Voltape | 12.5 volts (1) $1 \mathrm{vmin}^{\text {min, } 15.6 \mathrm{v} \text { max) }}$ | |
| Current Consumption | 50-600mA dependent on audio level | |
| Dimensions | $135 \times 123 \times 26 \mathrm{~mm}$ | |
| UNIT TYPE | AT25 | AT75 |
| Description | VHF FM Transmitter | UHF FM Transmitter |
| Frequency Range | $130-180 \mathrm{MHz}$ | $400-500 \mathrm{MHz}$ |
| Power Output | 4 watts (normal) 0.5 watts (reduced) | 2 watts (normal) |
| Output Impedance | 50 ohm | 50 ohm |
| Supply Voltaje | 12.5 volts (19v min, 15.6 v max) | |
| Current Consumption | 0.8 amps for $4 w$ output 0.5 amps for $1 w$ output | 0.6 amps for 2 w output 0.4 amps for 0.5 w output |
| Dimensions | $135 \times 102 \times 26 \mathrm{~mm}$ | |
| UNIT TYPE | PRICE (exc. VAT) | |
| AR21 VHF FM Receiver | £149 | |
| AR71 UHF FM Recelver | $£ 177$ | |
| AT25 VHF FM Transmitter | 184 | |
| AT75 UHF FM Transmitter | £110 | |

The above items carry a 12 month guarantee, and we normally carry good stocks to ensure the minimum of delivery delays. If you have a requirement, or would be interested in quantity discounts, please contact our sales department.

MICROWAVE MODLLES

BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9 TAN, ENGLAND Telephone: 051-523 4011 Telex: 628608 MICRO G

WW - 059 FOR FURTHER DETAILS

ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV Tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the leading suppliers of Electron Guns and Tube Industry. We specialise in all aspects of Electron Mount Technology-
Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Get ters, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all customers Worldwide.
Please request our current catalogues and Data Information.

Telephone: (0789) 784852/764100. Telex: 312354 Grifem G

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY'SERVICE
Licence No 12045

WIRELESS WORLD

Reader Enquiry Service -
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH
England

Enquiry Service for Professional WIRELESS WORLD Wireless World, July 1983 WW 8367 Readers

WW	WW	WW
WW	WW	WW
Ww	ww	
WW	ww	WW
WW.	ww	ww
WW.	ww	ww

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the r space provided.
Name .
Name of Company .

Address.

Telephone Number

| PUBLISHERS
 USE ONLY | | $* * / E$ | - | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Position in Company
Nature of Company/Business
No. of employees at this establishment.
I wish to subscribe to Wireless World \square
VALIO FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager, Business Press International Lṭd, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

-Enquiry Service for Professional Readers ONLY.

WW	WW..	WW.
WW	WW.	WW
Ww	Ww..	WW.
ww.	WW.	Wiv.
WW	WW.	WW
WW.	WW.	WW
WW.	WW. .	WW
WW.	WW..	WW
WW.	WW.	WW
WW.	WW	WW
WW.	WW.	WW
WW.	WW.	WW
WW	(WW.	WW
WW.	WW.	WW
WW.	WW.	Ww
WW . . .	WW.	WW.

WIRELESS WORLD Wireless World, July 1983 ' WW 8367
Pleose arrange for me to receive further details of the products listed," the appropriate reference numbers of which have been entered in the space provided.

Name .

Address .
\square
Telephone Number .

Nature of Compeny/Business
No. of employees at this establishment

VALID FOR SIX MONTHS ONLY

Name.

Address

UK 'subscription rates

1 year: £14.00
Overseas 1 year: £17.00
Please enter my subscription to Wireless World for 1 year
I enclose remittance value. BUSINESS PRESS INTERNATIONAL Ltd.

USA \& Canada subscription rates 1 year: $\$ 44.00$

WIRELESS WORLD
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH
England
Wireless World Subscription
UK subscription rates
1 year: $£ 14.00$
Overseas $\quad 1$ year: $£ 17.00$

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone : 225 008-
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6. 20154 Milan - Telephone 347051 Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barnes,
*Business Press International
205 East 42nd Street,
New York, NY 10017 -Telephone:
(212) 6895961 - Telex: 421710

Mr. Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive,
Chicago, Illinois 60601 - Telephone :
(312) 63074

Mr. Victor A Jauch,
Elmatex International,
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A.
Telephone:'(213) 8218581
Telex : 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605. Ranna Building, Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach, Florida

33140 - Telephone : (305) 5327301
Mr. Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Atlanta, Georgia 30305. Telèphone: (404) 2377432

Mike Loughlin, Business Press International،
15055 Memorials, Ste 119, Houston, Texas
77079 - Telephoné: (713) 7838673

Canada Mr. Colin H. MacCulloch,
International Advertising Corisultants Ltd.,
915 Carlton Tower, 2 Carlton Street,
Toronto 2 - Telephone (416) $364 \cdot 2269$

BI POLAR \& FET POWER AMPLIFIERS

HEAVY DUTY POWER AM PLIFIERS STANDARD MODULES

B		MAX O/P	SUPPLY	voltage		Price in
1	TYPE	POWER	TYPE	MAX.	THD TYP.	V.A.T. \& POST.
P	CE 608	$60 \mathrm{~W} / 89$		+ 40	< 01%	£21.50
o	CE 1004	$100 \mathrm{~W} / 4 \mathrm{I}$	± 35	± 40	< 018%	£25.00
L	CE 1008	$120 \mathrm{~W} / 882$	± 45	± 50	< 01%	¢28.00
A	CE 1704	200W/452	± 45	± 63	< 015%	¢35.50
R	CE 1708	$180 \mathrm{~W} / 8 \mathrm{SI}$	± 60	± 63	< ${ }^{\text {c }}$. 01%	
M	CE 3004	$320 \mathrm{~W} / 4 \Omega$	± 60	± 63	< 02%	¢49.50
$\stackrel{0}{0}$	$\begin{array}{ll}\text { FE } & 908 \\ \text { FE } & 1704\end{array}$	$90 \mathrm{~W} / 88$ $170 \mathrm{~W} / 4 \Omega$	a +45 +45	\pm \pm ± 60	< $<$	£30.00 $£ 39.00$

All prices include V.A.T., Post and Packing (quantity discounts available).
To order send c.w.o. or quote Access/Mastercharge card no. All modules are available from Bradley Marshall Ltd., 325 Edgware Road, London. Export: Please write for
CRIMSON ELEKTRIK STOKE

PHOENIX WORKS, 500 KING STREET, LONGTON
STOKE-ON-TRENT, STAFFS. - TeI: 0782330520 that! module on request. coupon with a s.a.e.

CRIMSON AMPLIFICATION: First Choice of the Protessionals!

Whatever your application, Crimson Modular Amplification provides a simple, efficient, and reliable solution. As many engineers in production, development and research will testify, when you need a particular amplifier you need to deal with a company who can answer your queries and supply a working unit quickly. - CRIMSON will do exactly

We supply a standard range of power amplifier modules (both Bipolar and Mosfet) which can be incorporated in most systems from recording studios to home hi-fi or for more difficult loads such as induction loop transmitters, vibrators, servos and line transformers. For really complex applications, our technical department can usually supply a dedicated

All modules are guaranteed for two years and offer outstanding performance and value. If you would like more details please return the

 MARCONI SIGNAL GENERATORS TF2002A/S (illustrated) $10 \mathrm{kHz}-72 \mathrm{MHz}$. AM/FM. $£ 750$
TF2002. As above but AM only. $£ 450$

MARCONI TF1066B. AM/F

 tion up to $\pm 100 \mathrm{kHz}$. $£ 550$ anconl TFS95AJ. AM/FM Generator arrow deviation model 995 covering 1.5 MFM. E450. TF2015.MARCONI TF1064B/5. AM/FM Signal gen erator covering in three ranges $68-108$, tions of $3.5 \& 10 \mathrm{kHz}$. AM fixed 30% devia * 'DOLBY' NOISE WEICTINNE FILTERS Cat. No. 98A. Noise weighting filters for CCIR/ARM signal-to-noise ratio measurements. As new units. 40 each

BECKIIAN TURMS COUNTER DIALS
Miniature type (22 mm diam.). Counting up to 15 turn "Helipots" Brand new with mounting instructions. Only $\mathbf{£ 2 . 5 0}$ each
\rightarrow 'VARIACS' - SPECIAL PURCHASE
We now have a stock of used but excellent condi the following ratings. the following ratings.
ZENITH (non-enclosed) 8 A $\mathbf{£ 2 5 . 0 0 + £ 2 . 5 0 ~ p p}$ ZENTH (enclosed) 8A...................£26.00+£2.50 pp Also available, small quantity of Heavy Duty and 3 Also available, small q
Phase Variacs. P.O.A. Phase Variacs. P.O.A.

- MUOIO WATTMETERS t

Sitchable 1W \& 10W FSD. Internal 3.5 \& 8 Ohm load impedances. Housed in grey enamelled case $6 \times 6 \times 3^{\prime \prime}$. Large easy to read $3^{\prime \prime}$ sq. meter. Scope output provision. $£ 10(+£ 1)$
HEATHKIT Model AW-IU. Internal load switchable 3, 8, 15 \& 600 Ohm. Meter scaled 0-50W $(+d \varepsilon$ scale). 5 Ranges from 5 mW -50W FSD. Mains MARCON TFP93A
MARCONI TF893A. 1mW-10W Full scale in 5 ranges. Impedances $2.5-20 \mathrm{~K} \mathrm{Ohm}$ in 48 steps GPO JACK SOCKET STRIPS. 20-WAY Type 320 (3 GPO JACK SOCKE STRIPS. 20-WAY Type 320 (3 pole) $£ 2.50$ ea. Type 520 (3-pole with switching
contacts) $£ 4$ ea. Please include 350 each for contacts £4 ea. Please include 35p each fo postage on these. GPO type 316 jack plugs for
above 20 p ea. ($10+$ post free). Plus VAT please Also recent stock of new, mint condition 720 Type f6 өach.
\rightarrow CONSTANT VOLTAGE TRANSFORMERS \rightarrow ADVANCE VOLSTAT: Type. Model MT140A Mains input 190-260V AC. Output 230V AC @ 150W. Price each $£ 20+$ VAT $+£ 2$ carriage

10 CHAPEL STREET, LONDON, NW1 TEL: 01-7238753

A bulk purchase of Advance series 'scopes enables us to offer the following fully reconditioned, guar anteed units as follows.
OS 200025 MHz single-trace plug-in. 1 only $£ 160$.
OS2100 30 MHz dual-trace, $10 \mathrm{mV} / \mathrm{cm}$. plug-in $£ 230$
OS2100 $2 \mathrm{MHz} 50 \mathrm{uV} / \mathrm{cm}$ Differential plug-in $£ 200$
OS 220025 MHz dual-trace. STORAGE SCOPE $£ 325$
N.B. All these prices INCLUDE 15% VAT. Securicor despatch if required + E10. SAE for full spec. Selection of other oscilloscopes available ex

MARCONI TF22 10 dual-trace 100 MHz Sweep-delay $£ 450+$
DYNAMCO 10 MHz battery portable dual-trace $\mathbf{£ 2 5 0 +}$
AIRMEC 4 Trace Display Oscilloscope Type 279 (17" CRT) MARCONI TF2343A Quantization Distortion Meter. MARCONI TF2015 AM/FM Signal Generator. $10-520 \mathrm{MHz}$. HEWLEIT-PACKARD Multi-Function Digital Meter. 3450A. HEWLETT-PACKARD AM Signal Generator. $10-480 \mathrm{MHz} 608 \mathrm{C}$ ROHDE \& SCHWARZ AM Signal Generator. $0.3-1 \mathrm{GHz}$. 'SDR'. TELONIC 1006 Sweep Generator. $450-850 \mathrm{MHz}$.
TGL Spectrum Analyser Types SA108 \& $102.0-500 \mathrm{MHz}$ Brand new units. Use with CRO having external X-input. POA

BEL \& HOWELL	DISC GARTRIDEES
MICROFICHE VIEWERS	BASF 12-Segment Single Hard
Type SR5. Screen size $9 \times 5{ }^{\circ}$. Re-	Disc Cartidges. Grand new sur-
cent small quantity now avail. £55	plus stock. E20 ea.

Type SR5. Screen size 9×5 cent small quantity now avail. $£ 5$

- SWEEPERS

 TELONIC Sweep generator system type 2003. Fitted with in units and Generator covering $800-1500 \mathrm{MHz}$. $\mathbf{£ 3 2 5}$
MUIRHERD

\star FACSIMLLE UNITS \star MUFAX 'COURIER' facsimile re ceiver type K441-CH and transmitlent condition

PLEASE NOTE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in guarantee. For our mail order customers we have a money-back scheme. Repairs and servicing to all equipment at very reasonable rates. PLEASE Repairs and servicing to all eq
ADD 15% VAT TO ALL PRICES

- DC POWER SUPPLIES

APT. Ex-computer supplies. Program variability 6 30 V DC (secondary taps \& resistor). Connections Prices $£ 20, £ 25$, and $£ 30$ respectivelv ($p \& p \mathrm{p} 3.50$).
FARNELL. Current limited. 13-17VDC@2A £15.27 32V@1A£10.12V@1A£10(+£1.50p\&p). COUTANT5V@5A(7×5×3').£20(+£1p\&p). VARIABLE 0-30V@1A. Volt-metered. $\mathbf{£ 2 5}(+\mathbf{f} 1)$. FARNELL 5V switching@60Amps. (Measures $13 \times$
 p\&p).
MULLARD Dual $\pm 12 \mathrm{~V} @ 1 \mathrm{~A} @ 0.4 \mathrm{~A}, \mathrm{£} 10(+£ 1)$.

$\star \star$ STEPPEn MOTOOS $\star \star$

Brand new stock of 'ASTROSYN' Type 20PM

 A055 stepper motors. 28 V DC. 24 steps per rev 15 oz-in torque @ 100 PPS. Body length $21 / 2^{\prime}$ diameter 2 shaft $1 / 4$ diam $\times 4 / 4$ spirally 50p). Connections supplied
* MILI-VOLT MEASMMEMT, MMLGCM

MARCONI TF2600. Twelve ranges 1 mV - 300

 FSD. Wide-band to 10 MHz . MARCONI TF2603. Frequency range $b 0 \mathrm{kHz}$ MARCONI Sensitivity from 300uV. MARCO Nre Multi-mete sistance ranged AC Frequency range 20Hz sistance ranged. AC Frequency range 20 HBRUEL \& KJOER \star Voltage measurements to 240 MHz .

CLAUDE LYONS 240V AC

 REGULATORSSmall quantity available of constant voltage mains regulators. Continuous current rating 5 A. Model $200-254 \mathrm{~V}$ AC $\pm 0.3 \% .45-65 \mathrm{~Hz}$. Condition as new. (Dims- $11^{\prime \prime} \times 7^{\prime \prime} \times 6^{\prime \prime}$. Weight 20Kgs). Price $£ 95$ ea + Carriage £5.

DECADE BOXES

- RESISTANCE $10400.1 \% 1 \Omega-100 \mathrm{M} \Omega$
- CAPACITANCE $10701 \% 100 \mathrm{pF}$ - 10 uF 1071 1\% 10pF - 100uF
Also makers of CALIBRATION, PROGRAMMABLE AND ATE INSTRUMENTS

FUSES, WIREWOUND RESISTORS

Stock items available at 30% extra discount
Also Carbon film resistors (Asian) stock items available at 50% extra discount Send or phone for stock lists

Our regular lines always available:
Audible Warning Devices (single sample price including vat and postage shown in brackets)
Banshees ($£ 23$), Cybertones ($£ 11$), Solotones ($£ 4$), Bleeptones ($£ 7$), Minib leeps ($£ 8$), Multimounts ($£ 3.50$)
Markers Sleeves - pvc, silicone rubber, neoprene, etc., printed or plain Elma range of Collet knobs, dials, etc.
Crimp terminals. R.f. Chokes (Greendale)
Pcb self-adhesive guides, 18.5 mm wide \times any length
Write, call or phone (0732) 851345
NOVAPRODUCTS (APB Ltd)
Crystalate Works, Golden Green, Tonhridge, Kent TN11 0LH
Member Crystalate Group
WW - 038 FOR FURTHER DETAILS

THE 'ALADDIN'S' CAVE OF COMPUTER AND ELECTRONIC FQUPMENT

HARD DISK DRIVES

Fully returbished Diablo/DRE Series 30
disk drive for DEC RKO5. NOVA, TEXAS et

disk drive
Front load $£ 550.00$ - Top load $£ 295.00$

DRE $44 \mathrm{~A} / 4000 \mathrm{~A} / 10 \mathrm{mb} 5+5 \mathrm{all}$
c995.00 Call sales office for details

5 AMP MAINS FILTERS

amp $240 \vee$ load As recommended by the $\mathrm{ZX81}$ news amp $240 \vee$ load As recommended by th
letter. Suppression Devices SD5A E5. 95

DISTEL®

The UKS FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive.
DON'T MISS THOSE BARGAINS
CALL NOW, IT'S FREE?
01-683 1133 maxian har

COMPUTER 'CAB'

cabinet with integral switched

 mode PSU, Mains filtering, and twin fan cooling.Originally made for the famous DEC PDP8 computer ystem costing thousands of pounds. Mad hours per day the PSU is fully screened and will deliver massive $+5 v$ DC at 17 amps. +15 vDC at 1 amp and -1
DC at 5 amps. The complete unit is fully removable top lid, filtering, trip switch.' Power' and 'Run' EDs mounted on Ali front panel, rear cable entries, e etc. Units are in good but used condition - supplied for
240 v operation complete with full circuit and tech man Give your system that professional finish tech. ma 49.95^{+}Carr. Dim. 19" wide $16^{\prime \prime}$ deep 10 " high Useable area

COOLING FANTS

8" FLOPPY DISK DRIVES

Unbelievable value the DRE $7100 \mathrm{~B}^{\prime \prime}$ floppy disk drives uttrise the finest technology to give you
compatibility with most drives available today. The only difference being our PRICE and the superb manufactur
ing quality!! The 7100 single sided and 7200 double sided ing quality!? The 7100 single sided and 7200 double sided ormats giving a massive 0.8 MB (7100) 1.6 MB (7200) of storage. Absolutely manual and full 90 day warranty. Carriage and insurance $£ 9.75$

7100 Single sided $£ 225.00$ + Carr. 7200 Double sided $£ 295$
Optional accessories' Full technical manual $£ 20.00$ alone. $£ 10.50$ with drive. Refund of difference on drive purchase. DC and $A C$ power connector and

SUPER DEAL? NO - SUPER STEAL!?

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original sost.
8R
Made to the very highest FP1500-25 features
chassis and DIABLO typ
print mechanism giving
superb registration and
print quality. Micro
oremand compatability
and full contropatability
Many other features include bidi
printing, switchable 10 or 12 pitch, full width 381 mm paper handling with upto
163 characters per line, friction internal butfer, standard RS232 serial internace with handshake. and dust cover. Order NOW or contact sales office for more information
Optional extras: RS232 data cable $£ 1 \mathrm{C} . \mathrm{MO}$. Tech manual $£ 7.50$. Tractor feed

THLETYPE ASBB3 1 -
I/O TERMINALS

Fully fledged industry standard ASRB3? dat keyboard and printer or datal/O auto data detect circuitry. RS232 serial interface 110 baud, 8 bit paper tape punch and reader fo off line data preparation and ridiculously cheap and reliable data storage. Supplied in Options: Floor stand E12.50 + VAT KSR33 with 20 malopinterace E125.00

SOFTY 2

The amazing SOFTY2. The complete "toolkit"

 for the open heart sottware surgeon. Copies. Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Many other features interface etc. Functions exceed capabilitieso units costing 7 times the price! Only £ 169.00 pp 1.95 Data she 1010
DATA MODEME

Join the Communications revolution with our
range of EX TELECOM data modems. Made to most stringent spec and designed to operate
for 24 hrs per day Units are made to the CCIT tone spec. With RS232 i/o levels via a 25 way'D'skt. Units are soid in a tested and working condition with data. Permission may be required for connection to PO lines. MODEM $13 A$ compact, a sync same size as
telephone base Up to 300 baud. full duplex over 2 wires, but call mode only $\mathbf{£ 7 5 . 0 0}$ MODEM 2B/C Fully fledged. up 10300 baud async. ANSWER \& CALL modes, a uto answer, auto switching, ideal networks etc. Just 2 wire MODEM 20.1 COms he 285.00
MODEM 20-1 Compact unit for use with
PRESTEL or tull duplex 2 wire link 75 baud PRESTEL or full duplex 2 wire link 75 baud
transmit - 1200 baud receive Auto answe. transmit
$\mathbf{E 1 3 0 . 0 0}$
MODEM $20-2$ same as $20-1$ but 75 baud receive 1200 baud transmit £130.00 MODEM 20-3 Made for data rates up to 1200 haff duplex mode over 2 wires. $£ 130.00$ Carriage. 13A £4.50 2B/C \& 20 £ 9.50 . DATA PUMP MODEM Compact unit upto
1200 baud full duplex over 4 wires or half duplex over 2 wires. BELL specification with
data V vo via RS232 25 way D socket, remote data vo via RS232 25 way D socket, remote
test elc. 240 voperation. Supplied complete
with data $£ 65.00$ carr. $£ 450$ For more intormation or detals of other types

$8^{\prime \prime}$ WINCHESTER price SLASHM

Worldwide purchasing brings you two amazing Winchester SCOOPS at prices that will likely NEVER be repeated. BASF 6172 8" $^{\prime 2} \mathbf{~ M b}$. Complete unit consists of microprocessor controlled logic on 3 PCBs for all read/write and servo control functions. Fast data transfer is by the BASF 'Disk Bus' interface on a single 40 way multiplexed $i / 0$ bus. Units have been carefully removed from believed working equipment, but at the staggering price of ONLY £99.00 are sold without guarantee. Supplied complete with 200 page + tech. Manual Dim $45 \times 22 \times 11 \mathrm{~cm}$. DC requirements $+5 \mathrm{v},+12 \mathrm{v},+24 \mathrm{v}$. Carriage and ins. £ 10.00 S100 Bus 19 Mb . Subsystem. A cancelled order and change of policy by a major British disk drive manufacturer enables us to offer you 'last year's model' at a plug in and ready to go SUPER LOW PRICE. Our own custom controller pugs direct into the S100 bus and will control 2 disk drives, offering a total storage of OVER 36 Mbs! and at data transfer rates in excess of $7 \mathrm{Mb} / \mathrm{sec}$ seeing is believing!! Supplied complete with user configurable BIOS etc. Save a fortune, Limited quantity only. 310019 Mb . Disk drive E499.00 PSU unit \quad E165.00 CD1100 controller \& BIOS $£ 345.00$ PSU extension cable Full tech Manual £20.00
Special SUBSYSTEM prices. 1×3100 disk + PSU + Controller or 2×3100 disks +2 PSU + Controller

RECHARGEABLE BATTERIES MCLON type Doot sealed lead acid maintenance
300 amps
only $£ 2.95$

IDEO MONITOBS

12 " CASED. Made by the British KGM Designed for continuous use as a data
display station, unit is totally housed in attractive brushed aluminium case with ON attractive brushed aluminium case w attention was given to construction and rellability of this unit with features such as
internal transformer isolated regulated DC supply, all components mounted on two
fibre glass PCB boards - which hinge out ease of service, many internal controls fo 75 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the unial
is estimated around 20 Mhz and will display most high del graphics and 132×24 lines Units are secondhand and may have screen burns. However where burns exist they are
only apparent when monitor is switched off Although unguaranteed all monitors are ested prior 10 despatch. Dimensions Supplied complete with circult. 240 volt operation. ONLYE45.00 PLUSEP.5O CARR. 24" CASED. Again made by the KGM C
Originally used for large screen data alloy case dim $19^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{D} \times 22^{\prime \prime}$ W. Al
silicon electronics and composite video shops etc. Supplied in a used but working
sur
ONLYE55.00 PIUS E9.5O CARR. S IMS.
14" COLOUR superb ch ssis monitor mad by a subsidiary of the HIT ACHI Co. Inputs
are TTL RGB with separate sync. and will plug direct into the BBC micro etc. definition. Brand new and guaranteed Complete with full data \& circ
working. Dim. $14^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$
ow Y E 199.00 PLUSES.50 cARR.

SEMICONDUCTOR 'GRAB BAGS'

CALLING DEC USERS
 Brand new and boxed

AL工 PRICBS PLUS VAT

\qquad used or $\mathbf{1 0 . 0 0}$ Minimum BO NA FIDE account orders from Govs Stirling PLUSVAT. Minimumordervalue 2 . Mablished companie解 64-66 Melfort Road, Thornton Heath, Near Croydon, Surrey a 01-6897702 - 01-689 6800 Telex 27924

THIS MONTH'S SPECIAL OFFER COMPLETE STEREO CASSETTE DECK

Brand-new high-quality stereo cassette unit with built-in record and play electronics. Ideal for use with any hi-fi system or music centre. Only a single $9-$ volt DC supply is required to power the whole unit.
Microphone and line inputs are provided on both channels and the line out put will feed into any normal hi-fi amplifier. Erase and bias is provided by an ultrasonic oscillator, automatically switching to the correct level when a chrome or ferric cassette is put in place. Overall size $180 \mathrm{~mm} \times 130 \mathrm{~mm} \times 73 \mathrm{~mm}$. Complete with 3 -digit counter.
We value this deck at about $£ 30$. OUR VERY SPECIAL PRICE INCLUDING VAT AND POSTAGE - THIS IS ALL YOU PAY - ONLY $£ 18.34$ (while stocks last).

FEED YOUR MICRO BYTES WITH OUR SOLENOID CONTROLLED CASSETTE DECK

Front loading deck with full solenoid control of sill functions including optional read in fast wind modes. 12 volt operation.
Fitted 3 -digit memory counter and Hall IC Motion Sensor. Standard erase and stereo R/P Heads. Cheapest price ever for all
these features. Only $£ 38.90$ ptus $V A T$. Full tectnical specification
included. included.

LINSLEY-HOOD 100 WATT POWER AMPLIFIER
Our complete kit for this brilliant new design is the same size as our Linsley-Hood Casserte Recorder 2. Kit includes all parts for two power ampaifers with large heatink area, huge power £114.48 but our special introductory price for all parts bought together is only E 105.50 .

Snazzy matching slimline tuner and amplifier in basuriful wooden cabinets. These Ted Rule designs are for the enthusiast Tuner covers LW. MW. SW, FM and TV sound I Digital frequency readout with clock and timer fastures. FM has 6 section front
end and switchable bandwidth for exceptional fringe area perend and switchable bandwidth or exceptional tringe area per-
tormance. Amplifier has Toroidal transformer. Mostet Outbut
stages, 50 watts per channel and got a cracking review in Practistages, 50 watt
cal Wireless
Tuner Complete KH ...
LINSLEY-HOOD CASSETTE RECORDERS

We have done two kits to this design, one using the original car quality front loading deck. This new version using a very high
performas an excellent W \& F Herformance and fitted with oup latest Sendust Alloy Super
Head gives an incredible frequency range (with good tape you can see 23 KHz on ours !) Linsley-Hood Cassette Recorder 1 $£ 75.00$ Linsley. Hood Cassete Recorder 1...................94.90
Meprints of "WW"Articles

(x)

Do your tapes lack treble ?. A worn head could be the problem. to better than newl' Standard mountings make fitting easy and our TC1 Test Cassette helps you set the azimuth spot-on. We are the actual importers which means you get the benefit of lower prices for prime parts. Compare us with other suppliers and see! for use on Dolby machines and aree ex-stock.
HC20 Parmailoy Stereo Head. This is the standard head fitted as original equipment on most deciks
Hintion High Beta Permalioy Head. A hard-wearing.............. 25 formance head with metal capability, HS 18 Sendust Alloy Super Head. The best heed we can find

Ho551 4-Track Head for auto-reverse or quadrophonic use. Full
H.
E.
10

Please consult our list for technical data on these and other Please consult our list for
Special Purpose Heads.

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enables you to set up VU level, head aximuth and tape speed. Invaluable
heads. Only $£ .80$ plus VAT and 50 p postage.
Tape Hoad Do-magnetiser. Handy cassette size mains operated unit prevents build up of residual head magnetisation causing
noise on playback..
$\mathbf{E 3}$.

CASSETTE MOTORS

6and As used in SF925 and many other decks. 40 mm Dia $\times 35 \mathrm{~mm}$ Holes on 26 mm PCD on shaft end face. Anti-clockwise rotation at rated speed of 2200 RPM. Free run current 25 mA . $\mathbf{£ 4 . 8 5 \text { esch }}$

Full details of the entire range of HART products is contained in Full details of the entire range
our illustrated lists.
Askfor your FREE copy NOW.
Enquiries for lists are also welcome from overseas but please let us have three IRCs to cover the cost of surface post or 5 IRCs for
In a hurry? A telephone order with credit card number placed before 3 p.m. will be despatched THAT DAYI
Please add part cost of post, packing and insur
INLAND OVEREAS

Orders $£ 10$ to $£ 49-£ 1$ documentarion and handing
Orders over $£ 50-£ 1.50$
PLEASE ADD VAT
TO ALL PRICES

WW - 006 FOR FURTHER DETAILS

CISULILLDLIS auick, neat andeasy:

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold six issues and is attractively bound and blocked with the WIRELESS WORLO logo. Price U.K. $£ 4.30$ including postage, packing and V.A.T
Overseas orders add 35 p per binder.
Nat Giro No. 5157552
Please allow $3 / 4$ weaks for fulfilment of order
Payment by ACCESS/BARCLAYCARONISA. Send coupon below detailing credit card no. and Signature
Easibind, 42 Hoxton Square, London N1 6NS

Order Form WIRELESS WORLD
I enclose P.O./cheque value.
.binders
Years required
BLOCK LETTERS PLEASE
Name...
Address
-
Dat
4
Registration No. 735718

Appointments

Advertisements accepted up to 12 noon Tuesday, July 5th, for August issue, subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 15.50$ per single col. centimetre ($\mathbf{m i n} .3 \mathrm{~cm}$). LINE advertisements (run on): $£ 3$ per line, minimum $£ 20$ (prepayable). BOX NUMBERS: $£ 3$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

Newham Health Authority
Newham Hospital
Glen Road
Plaistow
London, E. 13

MEDICAL PHYSICS TECHNICIAN

£6,728-£8,522 inclusive

This full-time post will be the first appointment to this grade in the District. Initially the postholder will be responsible for the dismantling, re-assembling and testing of equipment being disinfected or sterilised in CSSD.

However, the successful applicant will be qualified in electronics and will also be responsible for servicing equipment at Newham Maternity Hospital, a service which is intended to expand to serve the District.

Application form and job description from
District Personnel Department
St Clement's Hospital
Bow Road
London E3 4LL
Tel. 01-980 4899, ext. 7
Closing date: July 13th, 1983
 the UK's No. 1 ELECTRONICS AgENCY
If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, technical sales or similar fields
Telephone now for our tree johs list We have vacancles in all areas of the UK Salaries to $£ 15,000$ pa
01-6375551 or 01-6369659
(24 hours)
Or if you prefer send a FULL CV to
CAPITAL APPOINTMENTS LTD
29-30 WINDMILL STREET, LONDON W1P 1HG

TECHNICAL WRITER

and
CTV, AUDIO, VIDEO HOME COMPUTER ENGINEERS
We invite applications from candidates with manufacturing or servicing experience in the brown goods industry. Technical Writer applicants must also have brown goods experience, with recognised technical qualifications. Candidates should have the ability to communicate technical information to the consumer, and will have responsibility to write, information to the consumer, arice manuals for a variety of brown goods, a flair for technical graphics would be an advantage.
Applications in writing, fult CV , personal snapshot and salary requirements, to:

Box No. 2154

Appointments

CUT THIS OUT!

Clip this advert and you can stop hunting for your next appointment. We have a wide selection of the best appointments in Digital, Analogue, RF, Microwave. Micro processor. Computer. Data Comms and Medical Elec tronics and we're here to serve your interests.
Call us now for posts in Design. Sales, Applications or Field Service, at all levels from $£ 6,000-£ 16,000$.

(1) Technomark

11 Westbourne Grove, London W2. Tel: 01-229 9239.

THE UNIVERSITY OF PAPUA NEW GUINEA - PORT MORESBY

Applications are invited from suitably qualified persons for the post of Senior Technical Officer in the Department of Physics. The successful applicant will be expected to join a technical group involved in carrving out electrical-electronic maintenance to ience is required covering maintenance and servicing in a wide range of teaching and research instrumentation commonly used in Bio-Medical Sciences. The Department of Physics houses modern and well-equipped electronics and teaching workshops to facilitate the work envisaged. He/she will be required to supervise and provide on-theob training to national Papua New Guinean technical staff. Applicants should have a Higher National Certificate in Electrical/Electronics Engineering or equivalent qualification. Possession of a valid driving licence will be desirable.
Salary: $\mathbf{K} 16,645$ per annum plus gratuity. ($£ 1$ sterling $=K 1.3195$)
Applications will be treated as strictly confidential and should include a full curricu um vitae. a recent small photograph and the names and addresses of three referees.
Three-year contract. Gratuity entitlement based on 24% of salary earned and payable in instalments or lump sum and taxed at a flat rate of 2%. Benefits include: support for approved research; rent-free accommodation; appointment and repatriation airfares for appointee and dependents; financial assistance towards the cost of transporting personal effects to and from PNG; six weeks' annual recreation leave with home airfares available after each 18 months' of continuous service: generous education subsidies for children attending schools in PNG or overseas; a salary continuation
scheme to cover extended illness or disability. Applicants who wish to arrange scheme to cover extended illness or disability. Applican

Applications should be forwarded to the Assistant Secretary (Staffing), University of Papua New Guinea, PO Box 320, UNIVERSITY, to reach him no later than 30 June, 1983. Applicants resident in the UK should also send one copy to the Overseas Educational Appointments Department, The British Council, 90-91 Tottenham Court Road, London W1P ODT, quoting reference U78/83.

RF SERVICE ENGINEER

We are responsible for all aspects of sales, service and warranty in Europe for the Plasma Therm range of RF generators, plasma processing equipment and inductively coupled plasma systems throughout UK, Europe and Scandinavia. The Plasma Therm product range is a market leader in its field and has an enviable track record of profitable growth and product innovation.
THE JOB. RF service engineer based in London to provide RF service and technical support throughout UK, Europe and Scandinavia. The candidate should be a self starter, willing and able to work on his own, and be able to trouble-shoot and solve problems in the field.

REMUNERATION. The right candidate will be offered an attractive financial package to include a performance-related bonus scheme, pension and a company car.

Applications and cvs should be addressed to:

> Mr J. F. Stackhouse
> PLASMA THERM LTD.
> Kangley Bridge Road, Sydenham London SE26 5AR

THIS ADVERTISEMENT

IS AS NEAR TO THE TRUTH AS ANYBODY PAID TO EXAGGERATE DARES PUBLISH.
Our client company is in the Military Defence Industry.
They produce electro-optical surveillance and detection systems embracing thermal imaging; other day/night vision aids with laser integration.

SO WHAT'S THE ATTRACTION

The company's vigorous buccaneer spirit is reflected in a full order book 80 per cent exports. To maintain this position new products must follow. A business development group has been formed to ensure that successful high technology concepts are generated to create a range of products which will satisfy the market demands of the future. They now require:

APPLIED RESEARCH ENGINEERS

GRADUATES WITH EXPERIENCE or ability to produce new concepts, to take designs to the breadboard proving stage. Applications and topics are varied. For example circuits for image processing modern laser applications, displays (CRT, PLASMA or LCD), designs incorporating the latest MPUs or high-volume memories.
SUFFICIENTLY SCIENTIFIC to contribute to the thinking of top-notch boffins in the field of infra-red and work to principles necessary for multidisciplinary design.
SUFFICIENTLY COMMERCIAL to accept a high level of project responsibility in a design that you intend to be a world leader.
The type of experience you will gain in this demanding and forward thinking environment is sufficient to direct young people of ambition to a successful and highly creative career path.
SALARY will reflect the contribution the engineer can make
LOCATION: London's Green Belt
FOR FURTHER DETAILS, ETC.
Charles Airey Associates
Tempo House, 15 Falcon Road, Battersea, London SiN11 2PJ
Telephone: 01-223 7662 or 2286294
(1357)

Following a management buyout and success of our new U.S.A. subsidiary we need additional

AVIONICS DESIGN ENGINEERS

(Both Electrical and Mechanical)
also

Draughtsman (M/F) and Technical Author

For development projects which include:
\star Airborne and Ground Antennas and Arrays, both passive and active, covering H.F. to Microwaves

* Specialised Receivers for Homing and A.D.F. Systems
\star Automatic Tuning Units: R.F. Filter Networks
* Bus Controlled Microprocessor Logic Devices
* Specialised Test Sets for own and other Products
\star Operation and extension of our Polar Diagram Range
We will pay high salaries for skilled and motivated staff
Employment available at both our Marlow and Plymouth works
Please write in the first instance to: TECHNICAL DIRECTOR, CHELTON LIMITED MARLOW, BUCKS SL7 1LR

Appointments

BIRMINGHAM
8Engineers to be based in Pebble Mill

SCOTLAND

12 Engineers to be basedin Clasgow and Edinburgh

MANCHESTER
Limited number of
Engineers in the oxford Road Studios

If you combine a talent for electronic engineering with a fascination for "show business" then you'll discover a technically challenging and personally rewarding career with $B B C$ Engineering. And you don't even need to head for the bright lights
of London
The BBC is a truly national service which provides information and entertainment throughout the United Kingdom Every week we broadcast 3,500 hours of radio and television programmes through our network of regional centres and local stations. With the successfull launch of Breakfast Time and expansion in many other areas, the BBC's world is growing and, as you can see, there are open ings for Engineers throughout the country BBC Engineers, both men and women, provide all the complex technical facilities which make the production and transmitting of our sound and television programmes possibie. Much of the equipment our Engineers operate and maintain has been developed in-house and sets the state of the art for the broadcast ing world But while we enjoy being innovative we are equally concerned with reliability. How ever smooth, professional and trouble-free our programmes seem, behind the scenes it can be a very different picture. Surmounting technical problems under pressure is the challenge which confronts and stimulates our Engineers.

NATIONAL COVERAGE
 You will need to be qualified with a UK

The Engineering Recruitment Officer, BBC. Broadcasting House, London W1A 1AA.

```
Name
Address
Tel. no
My qualifications are \square Electrica//Electronics Degree \squareHND/HNC Electrical Engineering
                \squareHigher TEC Diploma Electronics \squareC&C FTC 271
Iamcurrently workingas.
ould prefer to work in WALES/SCOTLAND/LONDON UKK CENERAL Please quote ref 83 E 4058 in any covering correspondence We are an equal opportunities emplover
```



```
        We arean equal opportunities emprover
```

 BGBengineering

Appointments

Satellite Communications

- Spacecraft Systems • Communications Systems
- Antenna Design • Radar and Signal Processing
- Electronic Circuit Design
- RF and Microwave Equipments
- Mechanical, Thermal and Dynamics Design

Recently awarded contracts hove created a need for immediate expansion of on-site facilities and the design team Some senior appointments have been filled from within, but there are still opportunities for Engineering Managers and Group Leaders to head up additional teams now being formed. At Senior Engineer/Engineer
evels there are several vacancies in each of the above work areas
Qualifications required are Degree/HND/HNC in a relevant discipline, plus experience Excellent salaries and compre hensive range of benefits are offered, together with relocation assistance if required Please complete the coupon below, and send it to Jack Burnie, Marcond Space and Defence Systems, Browns Lane, The Alrport, Portsmouth, Hants. Tel. Portsmouth 674019.
(All posts are open to both male and female applicants) . neers

Name

Address

Age \qquad Telephone (Home) \qquad (Work)
Qualifications
Area of interest (piease tick
Spacecraft Systems \square RF and Microwave Equipments \square Communications Systems \square Radar/Signal Processing \square Antenna Design \square Electronic Circuits (VHF/UHF) \square Structures Mechanical \square Thermal \square Dyanmics \square

Marconi
Space \& Defence Systems

Then change your job!

1) Film-TV Equipment

Installation and maintenance of studio and TV equipment. UK and abroad
2) Satellite Communications Iest Engineers required with experience of digital circuitry. $f 7700$. Surrey.
3) Microcomputers and

Peripherals
Service Engineers required \mathbf{f} - f 1 C 000 Camberley
4) Data Communications Service of microprocessor-based equipment
88,000 + car. Reading
5) Service Personnel
(RAF. RN, Amy)
We have many clients interested in employing ex-service fitters and technicians at sites throughout the UK. Phone for details. 6) $\mathbf{5 5 0 0}$ per week

We are paying very thigh rates for contrac design and test engineers who have a back ground in RF, MICROWAVE, DIGIL, ANAL
UK. Hundreds of other Electronic
and Computer Vacancies to $£ 12,500$
Phone or write
Roger Howard, C.Ene.
M.I.E.E., M.I.E.R.E.

CLNEDEN CONSULTANTS
87 St Leonard's Road, Windsor, Berts Windsor (07535) 58022 (5 lines)

CLIVEDEN

HAMMERSMITH AND FULHAM HEALTH AUTHORITY CHARING CROSS HOSPITAL

Senior Chief Technician

INCLUSIVE SALARY SCALE £9,898-£11,395

Applications are invited for the above post which carries responsibility for the day-to-day administration of the Electronics staff in the Medica Physics Departmen
The main duties are associated with equipment management which in cludes maintenance, electrical safety testing and evaluation of new equip minicomputer for record keeping and work scheduling
Applicants should have considerable experience of electronic equipmen and should currently be in charge of an equipment maintenance section. The successful applicant will probably have a degree, HNC or HND in Electronic Engineering and will be appointed on the Medical Physics
Technician |scale lechnician I scale
For further information please tele Electronics Engineer, on 09-7482040, Ext. 2598.
For an application form and job description please contact the District Personnel Department. Brandenburgh House, 116 Fulham Palace Road London, W.6. Tel: 01-748 2040, Ext Closin
Closing date: June 24, 1983

Premier international electronics companies - very secure and expanding in London and the south of England - require professional senior staff (including departmental heads). Relocation allowance up to $£ 3,000$

ELECTRONIC ENGINEERS

Electronic engineers required with degree - H.N.C. - tech. cert. - O.N.C. Almost any background required but software and hardware experience will bring salary of absolute minimum of $£ 6,500$ p.a. and could be up to $£ 11,000$ p.a.

ELECTRONIC DESIGN/DEVELOPMENT

Engineers required with experience of circuit or component design or development for microwave equipment or digital logic or computer peripherals or electronic packaging or film technology or telecommunications. Also above for updating in modern techniques. Salaries up to $£ 15,000$

SOFTWARE PROGRAMMERS \& ENGINEERS

Engineers or mathematicians required for development of commissioning and design proving programmes from assistant to team leader level. Salaries up to $£ 12,000$ p.a

Please contact by telephone, or letter, to discuss companies and possibilities. Watford 49456 anytime

Appointments

IMPERIAL COLLEGE
 ELECTRONICS TECHNICIAN GRADE 5

The post is in a robotics and machine tool group and the work includes the construction of Iogic circuits. It also includes prototype work on robot and machine tool systems. Experience with microcomputers would be an advantage.
Appointment until October 1985 in the first instance with good prospects of further extension.
Starting salary in the Scale f7229 to f8236 (inclusive) according to qualifications and experience

Applications to:
Professor T. M. Husband
Department of Mechnical
Engineering
Imperial College
London SW7 2BX
(2134)

LOGEX ELECTRONICS RECRUITMENT

Specialists in Field \& Customer Engineering appoint ments. all locations and disciplines

Logex House, Burleigh, Stroud Gloucestershire GL5 2PW 0453883264 \& 01-290 0267 (24 hours)

R\& D OPPORTUNITIES. Senior level vacan cies for Communications Harduare and Software Engincers, based in West Sussex. Competitive fusion Radio Systems on 01-874 7281 . 1162

Systems Engineer

Sony Broadcast, one of the world's leaders in professional broadcast television equipment and systems, are undergoing a planned programme of expansion. As a result of continued growth and success, we are now looking for experienced engineers to join our Systems department. The successful applicants will join a young and enthusiastic team involved in the design manufacture and commissioning of complex static and mobile television systems. This is a challenging and responsible position and candidates should have direct experience of sound and television principles, gained in operational television or its allied manufacturing industry.

If you like the thought of enjoying the success of one of the world's leaders in Brodcast technology, together with an attractive salary and benefits package, then write with details of career and current salary to Mike Jones, Senior Personnel Officer, Sony Broadcast Limited, City WallHouse, Basing View. Basingstoke, Hampshire RG21 2LA. Telephone (0256) 55011

Attractively situated in a semi-rural area in one of the Home Counties, our client is engaged in the research, development and manufacture of a wide range of advanced systems for guided weapons, satellites and electronic warfare. The company is one of Britain's most successful and prestigious companies who have recently acquired major new contracts which necessitate the recruitment of people to work on state-of-the-art projects in the following disciplines:

Satellite Communications and E.W. c. $£ 9 \mathrm{~K}$ to $£ 17 \mathrm{~K}$
 DESIGN AND DEVELOPMENT ENGINEERS
 MICROWAVEENGINEERS

For interesting work in the design and development of digital circuits, or analogue circuits, or D to A and A to D converters. Or VLS, to discrete circuits or logic circuits; also for packaging and thermal design of components and assemblies.

SOFTWARE ENGINEERS AND PROGRAMMERS

For software design associated with INTEL 8085 and 8086 microprocessor based real time systems or computer modelling and simulation, or data analysis.

SYSTEMS ENGINEERS

To deal with the definition of engineering and performance requirements, algorithm development, simulation and modelling, trials coordination and data analysis associated with complex, high-technology systems.

Executive
Recruitment Services

To work on advanced satellite communications or electronic warfare systems involving frequencies up to 40 GHz on active or passive devices such as FET amplifiers, solid state oscillators, filters, couplers, frequency synthesisers, mixers, solid state multiplexers, and transmitters.

PROJECT ENGINEERS

To work on major projects using PERT techniques, with access to computer facilities in a demanding and stimulating environment.

MANAGERS AND TEAM LEADERS

This includes vacancies for PROJECT MANAGERS, DEPUTY PROJECT MANAGERS, ENGINEERING MANAGER, PRODUCT SUPPORT MANAGER, PROJECT LEADERS, AND TEAM LEADERS in most of the above disciplines.

For an early interview please telephone FRED JEFFRIES C.Eng. M.I.E.R.E. in complete confidence on: HEMEL HEMPSTEAD (0442) 212655 (five lines) during office hours or on HEMEL HEMPSTEAD (0442) 49909 evenings or weekends (not an answering machine). Alternatively write to him at the address below.

29-33 Bridge Street, Hemel Hempstead, Herts HP1 1EG. Tel: (0442) 212655 (5 lines)

ADVANCED TELECOMMUNICATIONS:

Phenomenal growth at our Radlett site, in the field of computerised medical imaging equipment, combined with international design authority to meet worldwide demand has created a unique position for a

DESIGN ENGINEER To £ 12 K

Responsible for establishing complete on-site design
Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHO's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/microprocessor applications. Current opportunities are for:

Telecommunication Technical Officers

Two levels of entry providing two salary scales:
£5980- $£ 8180$ and $£ 8065-£ 9085$
Minimum qualifications are TEC/SCOTEC in Electronics/Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B, Telecommunications Principles 8 and either Radio Line TransTelecom B or Computers B or equivalent: ONC in Electrical. Elission B or Telecommunications Engineering or a CIE Part I Electronics or Telecommunications Engineering oracle Part Pass, or formal approved Service technical training. Additionally, at least four years (ower level) or seven years (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems. At the lower entry level first line technical/ supervisory control of technicians involves "hands-on" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.

Radio Technicians

£5232-£7450

To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus two or more years' practical experience.
Cheltenham, a handsome Regency town, is finely-endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably-priced housing. Relocation assistance may be available.

For further information and your application form, please write to

Recruitment Office
GCHQ Oakley, Priors Road
Cheltenham, Gloucestershire GL52 5AJ
or phone 024221491, Ext. 2269.

Solid State Logic

Stonesfield • Oxford • England

Solid State Logic Limited manufactures a world-beating range of computer-assisted sound mixing consoles for the record and broadcast industries. Our customers world wide demand an efficient and flexible service which is provided with enthusiasm and is aided by our computerised information systems

Senior Test Engineer

We are looking for an engineer with experience of protessional audio equipment and microprocessor-based digital and analogue systems to augment our expanding test facilities.
Applicants must have a proven track-record and be able to match the high standards of our products.
Please write or phone for an application form. 0993898282

SALES ENGINEER

CEL urgently require a field sales engineer to assist with the sales and support of a widening range of digital video products. Based at Saffron Walden, the post will involve work both at our factory and throughout the UK and Europe.
The successful applicant will have extensive knowledge of video equipment in general (ideally both broadcast and non broadcast) and be able and willing to work alongside a wide variety of operational situations.
An excellent remuneration package is on offer to the right person.
Applications in confidence to:
P. A. Rutter

Sales \& Marketing Director
CEL Electronics Limited
Chroma House
Shire Hill
Saffron Walden
Essex
(2136)

RADIO ENGINEER

To work as a technical adviser with a Latin American organisation for education by radio, with 40 affiliated radio stations in 17 countries.
The engineer will initially be based in Quito, Ecuador and will later travel to radio stations in other countries. The job consists of planning and running training courses for local technicians in maintenance of mainly small, short and medium wave transmitters, aerials and studios.

Applicants should have radio engineering experience, gained in a broadcasting environment: the post will demand skills in training people with non-technical backgrounds and in planning and improvising equipment. Spanish speakers especially welcome, but language training can be provided
The post is initially for three years on a basic salary. Because of extensive travel, it is unlikely to suit applicants with families. CIIR will provide orientation and language training, insurance, air-fares and various allowances.
For a job description and application form, please send a brief cv to ClIR Overseas Programme, 22 Coleman Fields, London N1 7AF, quoting ref WW/2.

Telecommunications Technicians

Up to $£ 9,830$

The posts available are varied, but broadly they fall into two groups at three different locations.

HANSLOPE PARK (MILTON KEYNES) and CENTRAL LONDON

for installation, maintenance and other work associated with HF communications equipment, VHF, UHF and microwave links and associated test equipment; teleprinters, telephone subscribers' apparatus, PMBXs, PAXs, PABXs and ancillary equipment including that using analogue and digital techniques and voice frequency telegraph.

CROWBOROUGH, SUSSEX

for maintenance and operation of high power, medium and short wave broadcasting transmitters and associated equipment.
Applicants should normally have four years' relevant experience, and must hold one or more of the following:
\star ONC in Engineering (with pass in Electrical Engineering ' A ') \star ONC in Applied Physics
\star TEC/SCOTEC certificate
\star City \& Guilds Telecommunications Technicians Certificate Part II (Course No 271) or Part 1 plus Maths ' B^{\prime}, Telecommunications Principles ' B ' and one other subject.
\star a pass in the Council of Engineering Institutions Part I examination

* an equivalent or higher relevant qualification

Ex-Service personnel who have had suitable training and at least three years' appropriate service (as Staff Sergeant or equivalent) will also be considered.
Salary: $£ 6,262-£ 8,580$, London $£ 1,250$ more, starting salary may be above minimum for those with additional relevant experience. Promotion prospects are good. Relocation assistance may be available.
For an application form (to be returned by 4 July, 1983) write to:
Foreign \& Commonwealth Office, Hanslope Park, Hanslope, Milton Keynes MK19 7BH, or telephone Milton Keynes (0908) 510444 Ext 232. Please quote reference YHU/030/TT5.
Foreign \& Commonwealth Office

SERVICE MANAGER SERVICE ENGINEER
 MEDICAL LABORATORY EOUIPMENT

Due to continuing expansion of the medical division within the UK, Greiner have vacancies for the above positions.
Either position would suit applicants already working as service engineers on electro-mechanical instruments, or persons employed in medical/biochemical laboratories and familiar with automatic analysers.
Applicants should have mechanical aptitude and a good working knowledge of digital electronics. Ability to work with the minimum of supervision and a willingness to travel, for short periods, within the UK, will be expected.
In addition, those applying for the Service Manager position should also be capable of organisation and control of a service department offering virtually immediate response.
Competitive salaries will be offered, together with a company car. Full product training will be given in the UK and Switzerland.
Please write, giving details of experience, qualifications and past career, to:
GREINER ELECTRONICS (GB) LTD.
185 Angel Place
London N18 2UD
Tel: 01-803 8432

ELECTRICAL/ELECTRONIC OUALITY ENGINEER

Directly responsible to Quality Manager for all quality aspects of the Company including audits, defect analysis, production test specifications, vendor ratings and sampling plans. Age group 25-45 preferred with experience of MOD Quality Procedures. Should have experience of day-to-day problem solving in electronic/electrical manufacturing environment.

SENIOR TEST TECHNICIAN

Age 30 plus with ONC or equivalent qualification to test/repair our wide ranging Company product. Test will involve both analogue and digital techniques and may be PCB or system to component level.
The successful applicant will be able to derive test methods from technical specifications.
Both positions carry attractive salaries which are negotiable, commensurate with age and experience.
Please send for application form, forward a CV or telephone for further information asking for Terry Jude.
We specialise in the design and manufacture of electronic and electrical assemblies for Home Office, London Transport and the Ministry of Defence (approved to 05-21)

Cranborne Road
Potters Bar, Herl's (0707) 58288

HALF INCH VCR ENGINEER

VCL Communications Ltd have a vacancy for a Half Inch VCR Engineer at their duplication facility in Central London.
Requirements:
Applicants should be experienced, preferably manufacturer or facility trained and be able to work with minimum supervision.
Salary:
Negotiable, depending on ability and experience
Other Benefits:
Bupa, Social Club, etc.
Phone or write to Dave Smith, VCL Communications, VCL House, 9a Dallington Street, London EC1. Tel: 01-251 6131.
(2139)

ARTICLES FOR SALE

FIELD ELECTRIC LTD.

3 SHENLEYROAD
BOREHAMWOOD, HERT $01-9536009$
Specialist for PC and stepping motors, fans, blowers, AC capacitors, relays, microswitches, linear and switched mode power supplies, VDUs, keyboards, test equip, electric and geared motors.

Send sae for full list
(2156)

EX WD Radio equipment and test equipment. Over 500 sets in stock from \&8. Send 50 p for Weirmead Letd. 129 St. Albans Road, Woucher). Herts. Tel: Waford (0923) 49456 . (1974)
ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epoxy. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transfor mers, components. Vacuum equipment, low cost used and new. Also for CRT regunning metallising. Research \& Development, Barratts, May
Road, Croydon CR0 2QP. 01-684 9917 (9678)

HYDROKIT
Hydraulic Flypress Conversion

Complete Hydraulic Kirs comprising: Power Pack.
Control Valve. Ram Control Valve. Ram
Hoses and Fittings. Suit Hoses and Fittings. Suit-
able for many applications including Flypress Conversions. Working
pressure 2,000
p.s.i. $2-10$ tons. Stroke 4 in. Adiusta. ble relief valve. Powe ole relief valve. Pow
pressure and return. PRICE FROM E428
"HYOROKITS" ARE COMPLETE
Just remove arm of press and operate screw shaft. fit hydraulic ram assembly with manuabl valve (all supplied), fill with hydraulic oil and connect to power source, 13 amp or 3-phase
Send details of press or ask for questionnaire.

TAVISHELM HYORAULICS INTERMATIONAL LIMITED
Hypress House, Station Close, Potters Bar. Herts. EN6 1TL. Tel. Potters Bar (0707) 43434

BROADCAST

"Scattered or sown over the General Surface"

Broadcasting these days tends to refer to those people scattering information rather than barley, but then much has changed! If you could be interested in changing then here is a small sample of the positions we have within our Communications division.

RF Components Designer

Rural Southern England
To design very sophisticated

Cable TV Systems Designer

Cable TV Network Planner

To control a group planning and proposing major Cable franchises. Ref: 046/3.

Video Project Leader

Design and Development of video equipment used in the field of surveillance,

RF Engineer

£14,000
Rural N. England
Designing an RF based system for use in para-medical field. Ref: 046/5.
RF/Telecomms/TV (Cable \& National) Audio + Speech Synthesis Engineers
Required throughout UK. Many for smaller and unusual companies.
Telephone Paul Hecquet on Lewes (07916) 71271 or write to him to broadcast your own potential.

ω

The Electronics

Recruitment Company
Temple House
25/26 High Street, Lewes
East Sussex BN7 2LU
Tel: Lewes (07916) 71271

TECHNICAL TRAIING FOR TELEVISION
 Thames Television will be running its Technical Training Scheme beginning October 1983.

 The course will be of 9 months duration and posts will be available in the following areas:-1. Technical operations covering VTR, Telecine, Vision Control and maintenance. 2.Studio Sound Operations.

3. Film Editing.

The course will consist of 5 months broad based training and 4 months specialist training and will take place at the Training Centre, Teddington, with additional experience gained on attachment at each of the Company's sites.
Salary during training will be 1-3 months £5,500 per annum, 4-9 months $£ 6,300$ per annum. Successful Trainees will then be absorbed into operational departments at one the Company's sites and go on to a salary structure applicable to the grade.
Candidates should preferably be 20-30 years of age and have academic qualifications, specialist training or experience relevant to their chosen area.
Thames is an equal opportunity employer and these vacancies are open to all male and female candidates regardless of national/ethnic origin and marital status.
For an applicatior, form and further details please send a large stamped addressed envelope to:-

LONDON'S WEEKDAY ITV

Mike Allen, Personnel Department, Thames Television Limited, Broom Road, Teddington Lock, Middlesex.

ARTICLES FOR SALE

Analogue integrated circuit design on a single chip. Phone Four-D Limited on 0279-29246. 366) 2023.

BORED ?

Then change your job!

1) TV/Broadcast Equipment

Test engineers with knowledge of digital circuitry wanted to work on studio products. Up to $£ 9,000$. - Hants
2) Materials Testing Equipment Senior test engineer required to test range of machines, which include Experience of analogue and digital systems needed. £9,000-£10,000. Bucks.
3) Medical Equipment

Installation and field service of a variety of equipment. Experience of analogue, digital and control circuitry. $£ 7-£ 9,000+$ car.
4) Security Systems

Maintenance Engineers required repairing to component level. CMOS and TTL logic with experience of microproces sors. Circa f7,500. - Berkshire.
5) Radar Systems

Test engineers needed for work on radar equipment. c. $£ 8,000$. - Middx

6) Audio Equipment

Service engineers with experience of maintaining audio systems required. N.W. London. c. f 10,000 .
7) Data Communications

Field service of microprocessor-based Field service of microprocessor-based
Modems and associated equipment. Modems
f8,000 + car. - Reading.

Hundreds of other Electronic and Computar Vacancies to $£ 12.500$

Phone or write:
Roger Howard, C. Eng.
M.I.E.E., M.I.E.R.E.

CLIVEDEN CONSULTANTS
87 St. Leonard's Road, Windsor, Berks
Windsor (07535) 58022 (5 lines)

CLIVEDEN

ARTICLES FOR SALE

THE SCIENTIFIC WIRE COMPAMY 811 Forest hd, London, E.17. Tel. 01-531 0574			
	ENAMELIEO	${ }^{802}$	
	${ }_{\substack{\text { f6000 } \\ \text { f87 }}}$		
	fifso		
	sluveppate		${ }_{8197}$
Prices include P. \&P. and VAT. Orders under $£ 2$ add 20 .			

LINSLEY HOOD DESIGNS

75 Watt and 100 W amps
Audio Signal Generators
75 Watt amp p.c.b.
£2.30
OOWatt Mosfet p.c.b
$£ 4.00$ p\&p 50p
S.A.E. for leaflets

TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE

CABLE TELEVISION

CABLETIME is a newly formed company involved in the manufacture and installation of cable television systems, based in pleasant offices in central Newbury, Berkshire.

To assist in this new venture Cabletime are looking for the following staff:

SENIOR PROGRAMMER

A Senior Programmer is needed to join the Cabletime team of highly qualified engineers, to design and develop new high and low level software, and support and extend existing software packages. A suitable candidate for this position would be qualified to degree level or equivalent, have at least 2 years' experience in the design and implementation of real-time systems (biased towards communications), using DEC hardware and software. Also experience of developing microprocessor software for Intel microprocessors, and fault-finding of microprocessor based systems would be useful.

DEVELOPMENT ENGINEER

A Development Engineer with experience in the field of television engineering is needed to design and develop electronic circuitry for the cable television industry. Experience of VHF/UHF techniques, and/or data communications would be a distinct advantage. A suitable candidate is likely to be a graduate, but this should not preclude anyone with a proven track record from applying.

If you are interested in an exciting career with this new venture then please write or telephone for an application form to

The Personnel Officer, Cabletime Ltd., 17 West Mills, Newbury, Berkshire.
Tel: Newbury (0635) 48222.

A member of the UEI/Micro Consultants Group.

TEXAS
 ITL DATA BOOK
 Vols 1 \& 2 1983, £18.50

ELECTRONICS ENGINEER'S REFERENCE BOOK by Mazda, 1983
£56.00
PUBLIC ADDRESS HANDBOOK by
V. Capel
f8.95
DOMESTIC VIDEOCASSETTE RECORDERS - A SERVICING GUIDE by S. Beeching
£15.00
INTRODUCTION TO MOS LSI DE. SIGN by J. Mavor
f16.50
INTRODUCTION TO DIGITAL FILT-
ERS by T. J. Terrell $£ 7.50$
INTRODUCING MICROPROCES-
SORS by I. R. Sinclair £6.50
ADVANCED GRAPHICS WITH THE
SINCLAIR ZX SPECTRUM by I. O. Angell
£10.95
IYNX COMPUTING by I. Sinclair
WORLD RADIO T.V. HANDBOOK by J. M. Frost $£ 12.00$
1983 THE RADIO AMATEUR'S HANDBOOK bY A.R.R.L. $\quad 10.00$

- All prices include postage *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 1 NPPhone 01-402 9176
Closed Saturday 1 p.m.
Please allow 14 days for reply or delivery

Barcud is an independent television facilities company supplying outside broadcast and editing facilities and staff to television companies and producers from its base in Caernarfon. Because of recent and forthcoming expansion in its work and facilities, we now have a vacancy for an experienced

VISION AND VTR ENGINEER

The successful applicant will have experience of operating 1^{\prime} VTR machines and familiarity with the Sony 5000 editing system would be an advantage. There will be opportunities to work on the company's single and multi-camera outside broadcast units and in the new editing suite

ARTICLES FOR SALE

INVERTERS
 High-quallty DC-AC; also "no break" (2ms) static switch, 19 m.

 rack. Auto Charter.

Interport Mains-Store Lid. P0B 51, London, W11 3BZ
Tel: 01-727 7042 or 0225310916
Salary, according to experience and qualifications, based on a scale in excess of ACTT rates. The company offers a pension and a bonus scheme.
Please send cv and names of two referees to: The Managing Director, Barcud Cyf, Cibyn, Caernarfon, Gwynedd by June 25th. Tel: (0286) 3459
(2151)

TEKTRONIX 500 Series Test Instruments SC502 15 Mhz dual trace oscilloscope, FG502
11 Mhz function generator, SW $503 \quad 400 \mathrm{MHz}$ sweep generator, DC502 550 Mhz frequency sweep generator, DCter, TM515 portable mainframe, all little used, mint condition. Phone Wilkin, Cardiff 731228 evenings.

WIRELESS COMPANY

P．C．B＇s

Printed Circuit Boards to your specification from artwork through to finished board

QUICK DELIVERY－ COMPETITIVE PRICES

CROFTAN agio ELECTRONGO

35 Grosvenor Road
Twickenham．Middlesex
TEL 01.891 1923／1513 Telex 295093

TW ELECTRONICS LTD
 THE PCB ASSEMBLERS

More and more companies are inves gating the advantages of using a profes－ sional subcontractor．Such an undertak ing requires certain assurances． TW are able to satisfy all of them quality，competitive pricing，firm delivey and close co－operation with the cus－ tomer．
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning． Every batch of completed boards is is sued with a signed certificate of confor mity and quality－our final assurance． For further details，contact us at our new works：

Blonheim Industrial Park Bury St．Edmunds
Suffolk IP33 3UT
Telephone： 02843931 （1466）

FREE PROTOTYPE of the finest quality with EVERY P．C．B．artwork designed by us．Compe－ titive hourly rates，and high standard of work． 477408.
（2126）

BATCH PRODUCTION PC assembly to sample or drawings，any quantity．Stagecraft（Electronics） Ltd，3，Churchfield Rd，Acton W3 6BH．Tel：（01） 9933660.

BATCH PRODUCTION wiring and assembly to sample or drawings．MclDeane Electricals L．t， 19b Station l＇arade，Ealing Common，London

BUSINESS OPPORTUNITIES
EAST MIDLANDS ESTABLISHED RADIO COMMUNICATIONS BUSINESS FOR SALE
as going concern Home Office licensed．Business radio control room， 140 ft ．high radio mast．Conveniently situated in town centre ocation adjoining users．

For full details contact
Messrs．Kirk Ogden，Estate Agents， 23 High Street，March， Cambs PE15 9JA．Tel：March （03542） 3187

WANTED

Test equipment，receivers， valves，transmitters，compo－ nents，cable and electronic scrap，and quantity．Prompt service and cash．Member of A．R．R．A．

M \＆B RADIO
86 Bishopsgate Street
Leeds LS1 4BB
053235649

WANTED

Redundant／surplus electronic compo－ nents and equipment．Telephone and computer spares．
Prompt service and payment．
J．B．PATTRICK
91／193 London Road
Romford，Essex
Romford 44473
（1979）

ADVANCE AM／FM SIGNAL Generator SG63E needed to complement existing laboratory facilities．Details to B．McBryan，Electronic Engi－ neering U．C．D．，Upper Merion Street，Dublin 2，
Eire． Eire．

WANTED

Redundant test equipment Reduiving and transmitting equipment receiving and transmitting equipment
－valves，plugs and sockets－synch－ ros etc．

Phone：Johns Radio 0274684007 84 Whitehall Road East Birkenshaw Bradford BD11 2ER （2049）

SURPLUS

Top prices paid for surplus，redundant and obsolete test equipment，factories cleared．
Also quantities of components． Immediate settlement．We will call any－ where in the United Kingdom． TIMEBASE
94 Alfriston Gardens
Sholling．Southampton S02 eFU
Telephons：$(0703) 431323$

TURN YOUR SURPLUS Capacitors，Tran－ sistors，etc．，into cash．Contact COLES HARDING \＆CO．， 103 South Brink，Wishech Cambs． 0945 584188．Immediate settlement．W plete factory clearance．
ple
（9509
QUAD VALVE AMPLIFIERS．Garrard 301 \＆ 401，all types of valve equipment，please ask for ＂Wanted List＂．All valve amplifiers repaired． The Vintage Wireless Company， 64 Broad Street， Staple Hill，Bristol BS 16 SNL．（0272） 565472
（2149）

SERVICES

TV PICTURE TUBES．If you have interest in setting up a TV tube rebuilding plant we offer our consultancy service backed by more than 30 years experience．Layout and fullest quality training．We also used．Layout and fullest quality training．We also
offer all component parts of every type for all tubes．Our service is worldwide and a ioint parti－ cipation venture may be considered in some countries．Box No． 2095.

DESIGN SERVICES．Electronic design de－ velopment and production service available for digital and analogue instruments．RF Transmit－ ters and receivers，telemetery and control Wolsey Road，Ashford，Middlesex．Phone Mr Falkner 53661.

DESIGN AND DEVELOPMENT．ANAL－ OGUE，DIGITAL，RF AND MICROWAVE
CIRCUIT AND SYSTEM DESIGN．Also PCB CIRCUIT AND SYSTEM DESIGN．Also PCB
design，mechanical design and prototype／small design，mechanical design and prototype／small
batch production．－Adenmore Limited， 27 batch production．－Adenmore Limited， 27 Bracknell（0344） 52023 ．

PCBS \＆PANEL LABELS to your require ments．Design－Prototypes－Production．G． N．Slee Custom Products， 78 Derry Grove， phone（0709） 89525 ．York SG3 01P．Tel

TURN YOUR SURPLUS Capacitors，tran－ sistors，etc，into cash．Contact COLES－HAR DING \＆Co．， 103 South Brink，Wisbech，Cambs． 0945－4 188．Immediate settlement．We also wel－ come the opportunity to quote for complete fac－ | tory clearance． |
| :--- |

SERVICES

CIRCOLEC

 THE COMPLETE ELECTRONIC SERVICEArtwork，Circuit Design，PCB Assembly，Test \＆Repair Service，Q．A．Consultancy， Prototypes，Final Assembly．
Quality workmanship by professionals at economic prices
Please telephone 01－6465686 for advice or further details
Unit 4，Windmil！Trading Estat
Commonside East，Mitcham
（1391）

山＿illiョாワ
 P．C．B．Artworks

FAST TURNROUND o ensure immediate turnround of vou artwork contact JULIAN WILLIAMS WIELIAMS ARTWORK，GRAYS LAN Tel：MORETON－IN－MARSH 51444 （or Evesham 840121）

PCB／ELECTRONIC ASSEMBLY

to sample or drawing．Short or contin－ uous runs．Any quantity． 100% inspected．Special rates for small companies or large quantities．Fast turnaround and local deliveries if re－ quired．
AUTRONICS， 23 Regency Gardens Yardley Wood，Birmingham B14 4JS $021-4744638 \quad$（2020）

SMALL BATCH PCBs，produced from your art work．also DIALS，PANELS，LABELS．Camera work undertaken．FAST TURNAROUND．De tails：Winston Promotions， 9 Hatton Place，London
ECIN 8 RU．Tel． $01-4054127 / 0960$ ECIN 8RU．Tel．01－405 4127／0960．
（9797）

BERELK

－DESIGN \＆DEVELOPMENT （analogue digital）
－ARTWORK
－manufacture
certificate of conformityl
－TEST
（to your fis on as mequiaeol
－FAST TURN－ROUND
－COMPETITIVE RATES
contact mb elcock of mb bemb
0442832665
（2158）

PRINTED CIRCUIT BOARDS

Manufacturers from A／W or film，small or large quantities，average turn－ around two weeks．

MAYLAND PCB CO．LTD． Maylandsea Tel．（0621） 741560

Who can develop：
Listening Devices Intelligence Electronics PI－Metal Detectors Speed Radar Detectors BOX No． 2138

PCBS \＆PANEL LABELS to your require ments．Design－Prototypes－Production．G． N．Slee Custom Products， 78 Derry Grove， Thurnscoe，Rotherham，Yorks SG3 0TP．Tele－ phone（0709） 89525.

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and Wants
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To＂Wireless World＂Classified Advertisement Dept．，Quadrant House，The Quadrant，Sutton，Surrey SM2 5AS
－Rate f3 PER LINE．Average six words per
NAME． line．Minimum $£ 20$（prepayable）
－Name and address to be included in charge if used in advertisement

ADDRESS
－Box No．Allow two words plus $£ 3$
－Cheques，etc．，payable to
BUSINESS PRESS INTERNATIONAL LTD． and crossed

Crotech Oscilloscopes Nationwide availability local to You

London \& Home Counties Audio Electronics Carston Electronics Kentwood Electronics Precision Instrument Laboratories

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 93-103

	PAGE
Aero Electronics (AEL) Ltd.............................. 92	
AFDEC Electronics Ltd 80
Ambit International	
Anders Electronics Ltd... 79 Armon Electronics Lid .. 8	
Audio Electronics (Cubegate Lid) 17	
Avel Lindburg (Cotswold) 17	
Cambridge Kits ... 6	
CIL Microsystems Ltd .. 82	
Clef Products (Electronic: Ltd.............................. 14Control Universal LtdCover IV	
Crimson Elektrik ... 89	
Crotech Instruments Lid................................... 104	
Display Electronics...................................... 91	
Easibind ... 6	
Electrical Review Shock Cards............................. 86	
Electrovalve Ltd ... 7	
ELE International Essex Electronics Centre \qquad	
Fieldtech Heathrow Lid. \qquad 4, 20,75 Fylde Electronic Laboratories Ltd........................... 20	
Global Specialities Corporation(UK) Ltd................ 15 GP Industrial Electronics Ltd.......... Cover II, Cover Griftronic Emission Lid.	

[^4]Japan: Mr. Inatsuki, Trade Media - IBPA (Japan), B. 212.
Azabu Heights, 1-5-10 Roppongi, Minato-ku. Tokyo 106. Telephone: (03) 5850581

United States of America: Ray Barnes, Business Press Inter national Ltd, 205 East 42 nd Street. New York, NY 10017 Telephone (212) 867-2080 - Telex: 238327.
lephole (2r) The Farley Co., Suite 1584, 35 East Walker Jack Farley Jnr.ilte Farley Co.. Tuite 1584, (312) 63074. Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angeles, Calif. 90034, USA - Telephone (213) 821-8581 Telex: 18-1059.

PAGE
PAGE

Research Communications
Richardson Electronics (Europe) Ltd 87
RST Valves
\square
Keithley Instruments Lid

\qquad 13
Kirk Ogden

\qquadLangrex Supplies Lid.87
Magenta Electronics Lid. $\begin{array}{r}1 . .6 \\ \hline 2,88\end{array}$

Microwave Modules | , 88 |
| :--- |
| .9 |

Nova Products (APB) Ltd 90
Olson Electronics Lid 12

Opus Supplies | .79 |
| :--- |
| 0 |

Integrex Ltd ..	

Harris Electronics (London) Harrison Bros. Electronic Distributors
Hart Electronic Kits Lid
Hemmings Electronics and Microcomputers.
Henry's Computer Shop
HW International........
LP Electronics Ltd 11,83
$\ldots .16$
Integrex Ltd
Technomatic Lid. 8,19
Thanet Electronics nsert
Thurlby Electronics (Reltech) 92
Time Electronics 90
Valradio Ltd 13
Vigilant Communications Ltd 6
Pantechnic 79
..
8
P\&R Computer Shop

Sagin, M.R.

Sagin, M.R.

Sagin, M.R.

Sagin, M.R. 17 17 17 17 84 84 84 84

South Midlands Communications Ltd.

South Midlands Communications Ltd.

South Midlands Communications Ltd.

South Midlands Communications Ltd. Sowter, E.A. Ltd. Sowter, E.A. Ltd. Sowter, E.A. Ltd. Sowter, E.A. Ltd. 14 14 14 14 $1 . .9$
$\ldots . .84$ Steven Greaves Phoributors Itd
Steven Greaves Phoributors Itd
Steven Greaves Phoributors Itd
Steven Greaves Phoributors Itd Stewart of Reading Stewart of Reading Stewart of Reading Stewart of Reading 88 88 88 88
Surrey Electronics Lidd
Surrey Electronics Lidd
Surrey Electronics Lidd
Surrey Electronics Lidd 7 7 7 7 0 0 0 0

DISTRIBUTORS REQUIRED

GP Industrial Electronics Ltd.

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

CJBETUnivessal Control by Eurocomputer

CUBE is Ifity comprehensive Eurocard Computer system. Over the past two years, many of Bntain's top industial companies have been quietly and eficicienty using CUBE modules in their small-scale computer control projects.
The range exceeds 30 master Eurocards, extended by almost limitess permutations. Now with the powerfil new EUROCUBE, a single board computer which is a system in itself, the range is complete. All these robust, sensible products are very low-priced-the EUROCUBE, for example, is just over $\$ 100$.
The fundamental choice is between 6502 and 6809 microprocessors and the newly-available 68000. Each choice is fully supported with efficient assembly language development tooks, and with high-level languages for really quick programing. The range is extended by a continuing progeame of industrial computer development, and by compatibility with Acom Eurocards. Similarly, the CUBE cards can be used as extensions to the BBC compurer.

The Cube Syutems

fil CuBE syitems are delivered to the customer contigured to his exact requirements, and tested in that arangement. An appropriate text editior, machine code assembler and high level language are included with each system, as our expenence has shown that most applications demand these tools, and the CUBE systems offer just about the most cost efiective development station available.
The Software Products
Each of the three processor options 6502,6809 and 68000 have associted machine operating systems, disk operating systems, and machine code assemblers.
On 6502, he user has a choice of a 10 k version of ROM or disk BANMC with built-in screen graphics commands, or
a l2k version called ICOL which provides real time control of inputs, outputs and timers.
On 6809, the disk operating system offered is FIEX, under which a wide variety of languages may be used, such as Pascal, BASIC, and PL/'. The advantage of PL/9 is that while it is similar to BASIC in ease of use and quickness of implementation, the final program is compiled, and therefore is much faster in operation than interpretive BASIC, and does not require the purchase of an inferpreter for each implementation. A 2 k version of tiny BASIC on ROM is also available.

BASIC is available on 68000.

The Bardware Prodncts

EUROCUDL. The complete system on one small card Avaiable with either 6809 or 6502 , and supplied complete with two channels of serial io, 20 channels of digital ivo, four memory sockets, each of which can take up to 32KB of ROM, EPROM or RAM, and a battery back-up circuit which prorides non-volatility for CMOS RAM. roRC PROII II. 68000 single board computer with 128kb of DRAM, 2 serial and 2 digital ponts, and 2 user EPROM sockets.
CU-MixM. Universal Memory Canier board for ROM, EPROM and RAM up to 8 KB per device, with 2 banks of four 28 pin memory sockets and battery back-up circuit for CMOS RAM.
CU-DRAM. 64kb of DRAM Plus 16kb ROMEPROM socket. CU-XEY. Standard QWERTY layout keyboard, or nonstaggered arrangement of 5×5 or 5×12 keys. CU-GRBPA. High resolution VDU card for programmable text layout of up to 85 columns $\times 32$ rows, mixed with graphics of 512×256 pixels. Uses independent memory from microprocessor, and colour extension allows eight logical colours with no loss of resolution.

CU-MOT. 6802 single board computer for study purposes, without machine or disk operating systems, or languages support.
CU-PROM. EPROM programming unitfor EPROMs up to 32\%B (eg 27256)
CU-CIOCK. Real time calendar clock, with battery backup and watchdog circuit.
CUP'S. Range of power supplies for CUBE system.
CU-SIOR. Single and double density loppy disk controller.
INDIO. Indnstrial heavy duty input/output system.
Brackrinir. Panel mounted impact printer.
VIXWLILL. Single line display module.
CU-3AN. Analog interface with choice of 8 bit or 12 bit conversion.
ROMDIITROR. Development tool for simulating ROM based programs in target systems.
SARIO: 2 or 4 channel serial interface.
BIEBEX. Allows use of BBC computer with CUBE peripherals.
Compact, superbly-capable and incredibly economical, Control Universal's cards are the best deal around in industrial control intelligence.
Find out more by ringing one of our engineers or sending for our new catalogue, 150 pages of detailed product information. It's absolutely free!
ω
Control Universal Ltd The inardwarellouse
Unit 2 Andersons Court,
Newnham Road, Cambridge CB3 9EZ Telephone (0223) 358757

[^0]: X for 110 V . "n" in place of X for 220 V , and " $ク$ " in place of X for 240 V

[^1]: The author is with Hewlett Packard in research and development.

[^2]: 1. H. E. Stockman, Transient Analysis Aided By Network Theorems. Sercolab, 1983.
 2. H. E. Stockman, Network Theorem Book. Sercolab 1982, second edn.
[^3]: 1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators $-1 \quad 26$ RC oscillators-2 27 Linear cmos-1 28 Linear cmos-2 29 Analogue multipliers $30 \mathrm{Rms} / \mathrm{log} /$ power laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - $1 \quad 35$ Analogue gate applications - 2 .
 *Photocopies only: 3 Waveform generators 4A.C. measurement 5 Audio circuits @ $£ 3.20$ each set.

[^4]: OVERSEAS ADVERTISEMENT AGENTS
 France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat,
 F. 9100 , Boulogne, Paris.

 Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency,
 Budapest XIV, Varosliget
 Telephone: 225008 - Telex: Budapest 22-4525
 INTFOIRE
 Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan
 Telephone: 347051 - Telex: 37342 Kompass

