ELECTRONICS

WORLD

INCORPORATING WIRELESS WORLD October 1997 £2.35

FIELDS, INES AND TREMORS

Self exposes speaker cable

Post Office war records

Wideband antenna design

Reduce phase noise Standby psu Better Wein oscillators

The circuit design and analysis package which gives you a great deal more
\square More Power \quad More Functionality \quad More Value for Money

- Analogue, digital and mixed mode simulation
- Powerful analysis tools include AC, DC, transient, pole zero, Fourier (series \& spectrum), noise, digita step-by-step and digital timing
- Monte Carlo and worst case analys
- Enhanced symbolic analysis (providing closed form formulas) - Temperature and parameter stepping, sweeping and optimisation - Component library co cinc 4,000 Cow (user extendible) New models, including analogue control elements

1 Interactive components
Faster algorithms for
1 Improved schematic entry
Export to popular PCB packages

- Export/import in Spice format

Display results in sophisticated diagrams or on a range of Analogue and Digital Virtual Instruments, including function generator, multimeter, oscilloscope, frequency analyser and logic analyser

Try TINA plus for yourself. For free demo disk, contact

837 A PROBLEM PHASE
Use text book equations for a Wien oscillato and you could end up with frequency erro
of up to 70%. Bryan Hart explains why.

840 HANDS-ON INTERNET Find better mosfet models, new amplifier designs, improved simulation software and faster search methods on Cyril's pages.
843 WORKING WITH MICROWAVES
Boris Sedacca shows that circuits for working at microwaves need few components and are quite easy to design
provided you can afford the software.

869 STANDBY KEEP-ALIVE POWER SUPPLIES
Efficient psus save energy, but in many applications, power down mode can
even more. Phil Darrington reports.

874 UNDERSTANDING CAN CAN is a versatile serial bus designed for automotive applications. But it is finding new uses, as Svetlana Josifovska explains.
Regulars
-•••••••••••••••••
795 COMMENT
HAARP - research or eco folley?
796 NEWS
Assault on batteries, UK traffic policy, Camera on a chip, Driverless cars.
801 RESEARCH NOTES
Nanoguitar, Electronic guide dog Lower power chips, Mars robot, GPs on PCs.

860 CIRCUIT IDEAS

- NiCd capacity meter
- NiCd capacity meter
- Inductance meter
- 1-180s timer
- Brake for ac motors
- Differentially tuned oscillator
- Mains detector
- Novel headphone amplifier
- Power-on delay
- AC/DC voltage detector

861 LETTERS
Silver and skin effect, Singing preamp Remote-control enhancement.
863 NEW PRODUCTS
15% reader discount on temperature-control soe perng statit.
see page

Read about a nanoguitar, an. electronic guide dog and this Notes starting on page 802.

oug Self has been analysing coblles for connecting
loudspeakers. See $h i$. loudspeakers. See his
conclusions on page 80

NOVEMBER ISSUE ON SALE 2 OCTOBER

IESOU

Olson offer a varied choice

IETRONICS LIMITED

EDITOR
Martin Eccles 01816523128 consultants Jonathan Campbell Philip Darrington Frank Ogden editorial administration Jackie Lowe $0181-652361$ E-MAIL ORDERS jackie.lowe@rbi.co.uk

DESIGN

Alan Kerr
advertisement manager Richard Napier 0181-6523620 display sales executive Joannah Cox $0181-6523620$ advertising production $0181-6523620$
pUbLISHER
Mick Ellioft
editorial fax $0181-6528111$ CLASSIFIED FAX $0181-6528938$ NEWSTRADE ENQUIRIES 01712617704 ISSN 0959-8332

SUBSCRIPTION HOTLINE 01622778000 SUBSCRIPTION QUERIES rbp.subscriptions@rbi.co.uk FAX 0144444544

For a full listing of

 RBI magazines:http/www.reedbusiness.com

REED
BUSINESS
INFORMATIO

Research or eco folly?

The High-Frequency Active Auroral Research Project -
HAARP - has been a source of increasing controversy as public awareness of the technology increaseasing II controverrsy as
I had the opportunity to present in Brussels on this issue to I had the opportunity to present in Brussels on this issue to
members of Global Intermational, a group of several hundred
Perl memberstraber
Parriamentarians athereded from throughout the world.
"The Earth is delicately balance when disturfec.. No one really knows how ionospheric
experiments will affect that balance experiments will affect that balance, or what the Earth will do
in response to try to restore balance., These words are from Rosalle Bertell, Ph.D., of Toronto, Canada, foounder of the
International Institute of Concern for Public Health. Dr Bertell Intermational Institute of Concem for Public Health. Dr Bertell
was commenting on HAARP- a U.S military experiment.
The HAARP project may be the test run for a ground-based 'Star Wars' defence system. Military documents say it is intended to disrupt portions of the ionosphere by beating it
with powerful pulsed radio frequency beams. Radiation, in with powerful pulsed radio frequency beams. Radiation, in
some of the new instruments uses will bounce back to the surface of the planet in the form of extremely low frequency
waves of energy. waves of energy.
Intended to be
Intended to be the most powerful ionospheric heater ever
built, HAARP's ground-based apparatus - a current array of 48 antennae each powered by its own transmitter - sits in the remote Alaskan wilderness northeast of the city of Anchorage.
HAARP is much more than the auroral and radio communications research project as is claimed by researchers at the University of Alaska's Geophysical Institute and their financial backers - the US Navy and US Air Force. The fact is
that HAARP is a military experiment aned at invasively manipulating the ionosphere by beaming high energy upward manipuating the ionosphere by beaming high energy upward
from the ground. Such activity could potentially disupt natural
systems on the earth and hiet systems on the earth and high above it.
Individual members of the European Pariament are among
the growing number of people worldwide who have beg the growing number of people worldwide who have been
startled to hear about HAARP. Voices expressing various levels of concem are being heard in many countries.
For example in contrast to the cautiously worded of Dr Bertell - a researcher in the field of quantum electrodynamics based in Germany - Al Zielinski, paints an
apocalyptic picture. He says that HAARP techno pait apocalyptic picture. He says that HAARP technology couve
trigger a disaster with a global impact - electromagnetic waves causing destruction "when interacting with protective layers of the earth and its gravitational field.
The concern that this system - and others like it - could
effect the geophysical stability of the planet has also been expressed by Brooks Agnew. Brooks is a radio chemist who discovered that some very specific frequencies when broadcast
into the Earth could trigger earthquakes even at relatively low
power levels.
This same sentiment was expressed by William Cohen, the
United States Secretary of Defense on 29 April 1997 Commenting on the possibility of terrorists states he said, ..engaging even in an eco-type of terrorism whereby they can
alter the climate, set off earthquakes, volcanoes remotely
through the use of electromate through the use of electromagnetic waves." These systems we
assert, if they are inded possessed by terrorists as Defense assert, ir they are indeed possessed by terrorists as Defense
Secretary Cohen has implied, must also be available to the more advanced governmental defence organisations in the world. The ionosphere is alive with electrical activity, so much so
that its processes are "non-linear." This means that the ionosphere is dynamic, and its reactions to experiments are
unpredictable. The concept of non-linear is important in

 Typesest by Mor
Kent DAI 4 SOT,

"Is it wise to poke holes in the Earth's electrical umbrella?" understanding the concerns of independent scientists who arc
knowledgeable about advanced physics and who war against brash high-energy experiments on the ionosphere.
Non-linear processes can change suddenly Non-linear processes can change suddenly ald
unexpectedly, or they can increase in power dramatically. Some theorists say that a non-linear poweress dramatically. certain conditions, tap into the background energy of space,
which is also called "ero-point flucuations of the vacum" which is als calle zero-poinctuctuations of the vacuum, powerful as HAARP is a worthy scientific task but som
independent researchers question whether te independent researchers question whether the means justify
the end. Is it wise to poke holes in Earth's electric the end. Is it wise to poke holes in Earth's electrical
umbrella? Is it wise to prod a dynamic natural system without knowing how it might react?
HAARP is intended to heat and lift a portion of the HAARP is intended to heat and lift a portion of the
ionosphere above a selected location or locations on the ionosphere above a selected location or locations ouncing
planet and to make a huge invisible 'mirror' for bouncing electromagnetic radiation back to the surface of Earth. Why The answer is that the US military wants to communicat
with its submerged submarines by penetrating the ocean with its submerged submarines by penetrating the oceans
with extremely low frequency radiations. It also wants to penerate the e land with ELF waves in order to search for hidden tunnels or other sites of military interest - a process
known as earth-penetrating-tomography. This application is known as earth-peneraraitg-tomography. This application is of nuclear. weapons in the United States Defense bugget.
If the technology is scaled up in size, it could potetial If the technology is scaled up in size, it could potentiall
shield a territory from intercontinental ballistic missiles. shield a territory from intercontinental ballistic missiles. It
could Fry satellites and differentiate between incoming objects such as missiles carrying nuclear warheads an
decoys. It could even enhance commuication or disu communications over anhance comme area of the glotions or disrum And course, it could ouffect a the health of humans and othe
biological systems.

Dr Nick Begich, email: drnick@alaska.ne
Overseas advertising agents: Fronce ond Beligium Pierere Mussard,
18.20 Ploce de la Modedeine, Paris 75008 United Stotese of America:

© Reed Business hiformation Ld 1997 ISSN 09598332

UP DATE

Assault on batteries

Battery maker Duracell wants battery specifications tightened to avoid the increasing risk of failing.
The specifications, defined by the nternational Electrotechnical Commission (IEC), cover the shape, size and discharge currents of batteries in various applications. According to Philip Smith, sales manager for Duracelis ind performance is being stretche beyond the IEC's tests and standards. Discharge tests run from 1 to 500 mA .

Driverless cars on the road to reality

$R_{\text {have successffully completed a }}^{\text {esear }}$ series of tests involving cars that drive themselves. The tests were conducted along an eight mile stretch of California motorway. The cars were equipped with onand were guided to stay within their lanes by small magnets embedded into the roadway at four foot intervals. One driver said that the
experience was thrilling for a few seconds but then became "really dull" as he had nothing to do. The experiments are part of a US
"That doesn't take account of datalogging equipment or cellular
phones," said Smith. These drop of cither end of the scale, he claimed. Because the specifie, he claimed. battery manufacturer can change the design to a point where it cause problems. For example, at extremel ow currents, perhaps tens of microamps in a smoke alarm or datalogger, the battery might even top working.
because they only go down to 1 mA discharge current.
"The IEC is very slow to reflect
the changes in the applications," said
national effort to develop fully highway systems as mandated by a law passed in 1991. A group of high-tech companies have joined National Autaracted Highway National Automated Highway
System Consortium. The group estimates that current motorways could be adapted to handle automated vehicles for as little as 10000 per mile.
There are still trials in various parts efore standards for building
nd automated highways are defin

Smith. "We want the IEC to reflect what is happening in the marketplace with a wider range of discharge currents. A smoke alarm test is needed. Peoples' lives depend on it." An IEC spokesperson said:"We are
trying to respond to the industry's trying to respond to the industry
needs. Duracell participates in the process of producing standards and has access to the lobbying procedures."
The IEC is already extending the tests to cover products using very low currents. However, a test is needed for high current products such as mobile phones.

1996 saw patents increase The latest annual report from the $T_{\text {UK patent office shows the }}^{\text {he latest }}$ number of published patent applications, at 11452 , increased by three per cent in 1996 . Telecommunications remains th sector: 908 patents were published in the financial year 1996 compared to 819 the previous one. Other patent segments include measuring and testing, with 655
and electric circuit elements and magnets, which at 577, grew by 12 per cent.

Five times lower power than cmos?

Areakthrough in the way chips consume power, reported by (ISI), could dramatically cut power consumption by 80 per cent and make possible new types of highly integrated chip designs. Researchers within the ACMOS group at ISI have patented a prototype microprocessor called the AC-1, which consumes just
one fifth of the power of a similar c-mos processor. The design uses pulsed power and adiabatic charging techniques which recycle some of the power used in the chip's clock cycle.
Researchers are unsure if the same techniques can be applied to commercial microprocessors and other chips, but chip companie will be able to buy licenses for the technology. Low power consumption is critical to building large, high
performance microprocessors where problems of heat dissipation are limiting designs. More exotic types of chips built as a cube could be made possible with low power technologies.

Silicon implants... Researchers at BT Martlesham are
working with BT Wired Man - part of a stedy looking at working with BT Wired Man - part of a study looking at
the feasibility of placing various electronic systems within and on human beings. Embedded items being examined include pacemakers and electronic pain relief modules. The external parts envisaged include an inteligent signet ring, containing data like driving licence to generate power from body heat and movement. Shown with Wired Man is Professor Peter Cochrane, head of research at BT Labs.
Firms show interest in intelligent ram Several DRAM manufacturers have offered to fabricate Samples of a novel processor being developed at the University of California, Berkeley. tackles the increasing discrepancy the IC architecture performance and memory bandwidth by combining a vector processing style of computing with multiple locks of on-chip store.
According to Professor David Patterson, head of the Berkeley project, "most" of the dynamic memory firm
approached - Mitsubishi, Hyundai, LG Semicon, Samsung, IBM and Micron - are interested in manufacturing the IRAM samples.
Patterson expects to work with one or two of the companies, resulting in the first samples by next spring. consoles, servers and disk drives.
He is confident that intelligent ram will eventually become an established architecture, although he admits hat there is plenty that can still go wrong. For him, one promising development indicating i-ram's increasi
acceptance is that, "two leading semiconductor companies have started to say negative things about it"

Government warned on traffic policy

Government is urged to establish infegrafed transport framework to prevent UK missing out on growing telematics markets.

The UK is set to lose out commercially if the government
doesn't hurry up with a policy to establish an integrated doesn't hurry up with a policy to establish an integrated transport framework based on electronics, telecommu
and IT So warns ITS Focus, the UK's industrial and and IT. So warns ITS Focus, the UK's ind
institutional voice on transport telematics.
ITS Focus believes that the government must speed up its policy as well as making a direct investment to allow the UK to take a lead and participate in the growing markets of telematics (see 'At a glance' box). Otherwise, countries such as the
opportunities.
"The main thing is that this is a rapidly moving area that offers scope for business opportunities and employment but which will continue to stall
unless we have
unless we have
organisational institutiona and technical frameworks," said John Miles, public policy adviser to the European Commission's DG XIII and consultant to the ITS Focus.
ITS Focus recommends that an overall framework and analysis of different transport and traffic services is tailored to UK needs for a successful implementation
as has already been undertaken in the US under a legislative $\$ 30 \mathrm{~m}$ funding. ITS Focus has welcomed the government's research
programme on Urban Traffic Management and Control

What is Intelligent
Transport System?

- It can be applied to all means of transport: road, rail, air and sea, - It relies on electronics, telecommunications and IT collectively known as telematic
- It combines traffic management and control, travel and traffic information, electronic fee collection, automatic vehicle location, road safety and route guidance and navigation - amongst others.

ITS report, Tel: 01344770757 (UTMC) announced last
week, and a white paper on integrated transport policy from the newly merged Department of Environment, Transport and Regions (DETR). The research is aimed at developing
intelligent control systems to manage traffic in cities.
"We see this this as an important start - it's along the lines we've been setting. However, the resources for the UTMC are quite small for a big ambition. They are $£ 5 \mathrm{~m}$ over five years," said Miles.
The DETR's white paper will follow an assessment on the motorway tolling trials recently co
Research Laboratory in Berkshire.

New camera-on-a-chip venture

Secialist flash, E2 and PLD hou camera-on-a-chip with Polaroid. It hopes to sell the single chip solution
on the open market next year The ability to integrate this on one chip comes from ES2 (European Silicon Structures), which Atmel ought in 1995 .
maging sensors in c-mos and
integrate them with a dsp and both E2 and flash technologies on a cellbased IC. "Our E2 and flash are easier to mix than other solution Henderson said.
"Other solutions" means ccds, which are a high power bipolar Instead of
use low power c-mos sensors.

Polaroid will contribute proprietary technology for colour recovery signal processing, colour filter processing and pixel sensing.
As well as its m
Atmel will he memory technologies, Ad the be contributing its a-to-d and d-to-a convertor technology, compression circuitry and dsp cores. Last year, Atmel licensed the Oak and Pine dsp cores licensed in
DSP Group in California.

Smart cards in Boots

Initially, Boots' smart card will
hold shoppers' honus points, but
it has the ability it has the ability to carry much
more information, including people's national insurance number and
doctor details.

$\mathrm{B}_{\mathrm{sm}}^{\text {oots the Chemist confirms September launch of loyalty }}$ smartcard - the first of its kind in the UK. Initially the card, which carries a chip rather than a magnetic stripe, will be used for bonus points but it is expected to be developed further
medical information, be use asd in Germany, for carrying national insurance of the person that carries it, and it can be used as a social security card," said one Boots spokesperson.
The smartca
The smartcard, dubbed Advantage, will carry Siemen SLE4442 memory chip with 256 byte eeprom and a programmable security code. Up to 80 per cent of the
cards will be manufactured by GPT and 20 per cent by Gemplus. The smartcard readers will be supplied by Dion Communications.
other retailer, but it wanted sed a magnetic stripe like any loyalty bonus card by using a chip.
"It allows a greater security, it gives an advantage that
the card can be used in the card can be used in any store, the holder can spend the
points in any store and the card provides a good platform points in any store and the card provides a good plafon.
for other services in the future," said the spokesperson. Boots is expecting to have up to eight million Britons Carrying Advantage by the end of next year In 1995, Peter Lilley, then social security minister, told a party conference that the government would adopt a social seovernment has abandoned the idea of a chip-based government has abandoned the idea of a chip-based card
and instead opted for a magnetic stripe in order to save money in the short term. Its plans are to start rolling out its limited-functionality card in three years time.
Svetlana Josifovska, Electronics Weekly Svetlana Josifiovska, Electronics Weekly

Low distortion a-to-d

Cystal Semiconductor is claiming the lowest total harmonic distortion achieved in an integrated circuit a-to-d converter. Its $\operatorname{CSS396}$, aimed at
professional audio use, vields greater than 105 dB total harmonic distortion plus noise with a 120 dB dynamic range. Mark Taylor, a company spokesman, said similar performance are rack-mounted unis. "Thent Within the integrated circuit are two chips, one digital and one analogue. parameters can be down-loaded during use

- Asahi Kasei Microsystems, a company that used to have a tie-up with Crystal Semiconductor, has introduced the $A K 5352$, a 20 -bit stereo a-to-d Crystar
converter with a 104 dB dynamic range.

Euro PC growth is on a high

The European pc market grew by 16 per cent in the second quarter, says a Dataquest report. The quarter growth, measured against the corresponding quarter last
year, is the highes in successful quarter but there are too many counterindicators to predict another boom," said Steve Brazier Dataquest's European PC group's associate director. The growth will be welcome news for semiconductor companies such as Intel which, earlier this year, warned that it would not meet second quarter expectations, attributed in part to the downturn of the European pc market.

The Stereo Headphone Amplifier Box Balanced or unbalanced line inputs to stereo headphone output
Professional portable units operating from an internal PP3 battery or external mains adaptor

*Precision transformerless differential left and right inputs *Wide range of headphone drive impedances *High common mode rejection *Low noise and distortion *Low quiescent powe consumption for extended battery life *Extensive RFI protection

The Balance Box (mic/line amplifier) - The Phantom Power Box - The OneStop DIN fail mounting radio frequency interferetce filter and voltage transient pretector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants gu30 7Qw
Information line 01428751469 Fax 751223
E-mail contact@confordelec.co.uk
Web http://www.confordelec.co.uk/catalogue/

FM/V/UHF HELICAL BPF FILTERS (7H3) FOR WIRELESS - 3 dBBandWidth $1,5 \mathrm{M}-5 \mathrm{KHz} / \mathrm{Fo}$ 55M-565M High Rejection

PARTS NAIIE \SPEC.	$\begin{aligned} & \text { ITPY } \\ & \text { TPY } \end{aligned}$	$\begin{array}{\|} \mathrm{Fo-c}) \mid \\ (\mathrm{BBC}) \end{array}$		
T6802A-55-601(7H3)	7.0dB	(8)56	(8)44	1.51
T68044-61-66以 ${ }^{\text {(7733) }}$	6.5 dB	(10)49	(10)42	2.011
T6806B-68-731 7 (713)	6.5 dB	(8)43	(8)41	2.011
T68088-74-771(743)	7.0 dB	(10)40	(10)36	2.011
T6810A-77-811 (7H3)	7.5dB	(8)38	(8)34	2.01
T67114D-85-9511(7H3)	7. OdB	(10)58	(10)50	2.011
т6753D-95-108॥(7 (73)	7.5 dB	(10)46	(10)36	2.011
T6754D-108-121(TH3)	6.3dB	(10)47	(10)30	5.011
T6813A-107-1151(773)	6.0dB	(10)40	(10)34	3.011
T6709D-120-1351 (773)	10.2 dB	(10)36	(10)34	2.3 H
T6757A-135-1451(773)	6.0dB	(10)28	(10)26	4.51I
T6821A-152-1621(773)	5.5dB	(10)35	(10)31	4.011
T67588-163-1784(743)	4.9dB	(10)29	(10)29	5.011
T6786A-175-1931(773)	5.6dB	(10)40	(10)29	5.011
T6829A-200-2201(7 (73)	6.0dB	(10)30	(10)30	4.54
T8832A-220-2451(773)	6.5dB	(10)30	(10)29	4.5!
T6834A-240-2601(773)	6.0dB	(10)23	(10)26	4.5U
т68364-260-2801(743)	5.5dB	(10)25	(10)25	4.51I
T68384-280-3001(773)	7.0dB	(10)30	(10)23	5.51
T6830 ${ }^{\text {- } 300-3401(773) ~}$	7.8 dB	(10)26	(10)20	4.01
T68411-340-3801(773)	8.0dB	(10)35	(10)25	
т6843A-380-4201(7 H3)	7.5dB	(10)30	(10)23	4.011
T6845A-42-4501(743)	8.5dB	(10)33	(10)26	4.01
T6887A-450-4751(7Н3)	7.5 dB	(10)30	(10)22	4.5U
T6849A-475-5201(773)	8.0dB	(10)31	(10)24	4.011
T88588-520-5651(773)	8.0dB	(10)30	(10)23	4.01
FULL CAT.SUGGEST YOU.FAX US. AGENT IANTED,ODII HELCOMEIN ADDITIONAL, FO 55-1.6G YOU MICHT SPECIFY YOUR BPR FILTERS				
TEYTELL CORPORATION IELL MADE IN TAITAN				

The TI Technical Bookshop currently stocks over 80 Data Books, Design Manuals and User's Guides. They cover the entire spectrum of semiconductors from Texas Instruments - the company with one of the world's broadest S / C product ranges, and the acknowledged leader in Digital Processing Solutions. If you are a system designer or product specifier you cannot afford to be without ready access to this invaluable data bank.
Now, you can once again order this complete range of reference books from a UK supplier.

Contact the TI Technical Bookshop (UK)
for the full list of books, prices
and ordering informatio
or visit our web site at:
http://www.ti-techbooks.co.uk
Or write/fax to:
TIT Technical Bookshop (UK)
PO Box 712
Milton Keynes MK
Fax: 0190858566

Robot gets ready to hit the road - on Mars

The Nomad rover
will be expected to roam much firther than
fexising planetary existing planelary
rover vehicles.
$\mathrm{N}^{\text {asa scientists were rightly excited }} \begin{aligned} & \text { path to developing one in 'Nomad' } \\ & \text { at the recent performance of their }\end{aligned}$ $\begin{array}{ll}\text { Mars rover vehicle. But to open up } & \text { a rover that has just set a record by } \\ \text { travelling farther than any remotely }\end{array}$ exploration of other planets, researchers really need vehicles able to cope much more happily with travelling relatively large distances. ntrolled rorher than any remotely ough territory. The robot's four wheels logged more than 215 km Desert, during a field experiment
designed to prepare for future
missions to Antarctica, the Moon and Mars.
Although the straight-line distance on a map was only about 20 km ,
Nomad had to weave through very Nomad had to weave through very
difficult terrain, and it made numerous side trips for science and to test the meteorite sensors. The 750 kg robot, developed at Carnegie Mellon and funded by Nasa,
also validated the use of colour stereo also validated the use of colour stereo
video cameras with human-eye resolution for geology. Autonomous driving is critical for planetary exploration because the
communications delay between Earth communications delay between Earth
and planets can be many minutes. and planets can be many minutes.
With autonomous driving, a robot can explore a much greater distance because it doesn't have to wait for a person to decide a safe route. The
rover is able to see obstacles and rover is able to see obstacles an recognise them on its own.
Another first for Nomad is use of an on-board panospheric camera to provide live 360° video-based still images of the robot's surroundings. The high-resolution video camera
focuses up into a hemispheric mirro similar to a store security mirror and takes a 360° picture - one frame per second The video view includes all of the ground up to the horizon in the
circle surrounding Nomad.

Electronics take over house calls

The prototype for an electronic house call system that could reduce the number of visits to chronically sick patients made b hurses and GPs has been developed and tested in the US. The ystem uses established hardware and cable communications to s up a two way link between patient and medic.
Researchers fashioned the prototype from existing computer hardware, with additions such as a multi-function patient monitor like one used in intensive care units - into which blood pressure cuffs, stethoscopes and other medical devices are plugged. A commercially available video-conferencing program enables the examination. The system also accepts data from a variety of medical devices, such as those registering blood pressure and blood oxygen levels, so that the nurse can listen to heart and lungs and perform an electrocardiogram.
Development and initial testing of the electronic house call system o rar been funded primarily by grants from the Department of For the and the Georgia Research Alliance.
seem to like the iden patient feedback has been positive. Patients ystem would mean less face to face cont their homes. Though the system would mean less face to face contact between medics and actually be greater.

Contact: Michael Burrow, Biomedical Interactive Technology Center, Georgia Institute of Technology, Atlanta, GA 30332-0823, USA. T
001404 894-7034 email: michael.burrow@bitc.gatech.edu
 developed by Georgia Tech and partner researchers. (Photo courtesy
Medical College of Georgia)

Electronic guide dog steers round obstacles
You can't pat it and it won't nuzzle up to you. But a new
sonar-equipped navigation aid for the blind being sonar-equipped navigation aid for the blind being
developed at that University of Michigan College of Engineering's Mobile Robotics Laboratory claims to be able to detect obstacles in the user's path as well as any dog, and automatically steer around them.
The device, invented by Johann Borenstein U-M research scientist in mechanical engineering and applied mechanics is called a GuideCane, and a preliminary version of a working prototype has already been tested by
visually impaired individuals. Users reactions are said to visually impaired individuals. Users reactions are said to have been extremely positive, though more development
will be required before the device is ready for widespread commercial use.
The 3.5 kg GuideCane consists of a long handle with a thumb-operated joystick for direction control, an array of Itrasonic sensors and a small on-board computer mounted on a two-wheeled steering axle. Users device's ultrasonic sensors detect an obstacle in its path, the computer automatically turns the wheels to steer around the obstacle and resume the Steering changes are exp direct physical force through the handle, which should make it easy to follow the GuideCane's path without conscious effort. The body automatically follows the trajectory of the guide wheels just as a
trailer follows a car Once the obstacle is cleared, the guide wheels resume their original direction." The Michigan researchers hope tha after a brief adjustment period, most
people will become so comfortable that people will become so comportable that
they will be able to navigate around obstacles at their normal walking speed.

Unlike other navigation aids, there are no complicated acoustic signals to interpret and no extended training period required.

Clock watching can save chip energy

S Scouthern California have Southern California have successfully demonstrated a chip that
uses as little as 20% of the energy of conventional models. The new microprocessor - designed by research professor William Athas and colleagues at the USC School of Institute (ISI) - recycles energy from the chip's clock, the timing signal normally used to synchronise computing functions. In conventional chips, the clock energy supplied to the chip, tll of which eventually winds up as heat. ISI's experimental chip, called AC-1, has two different clock circuits. It can work with an ordinary
clock mechanism, or a flip of a switch will activate circuits that briefly convert the energy of the clock's
electric signals into magnetic form. This captured energy is then reconverted into electrical form and
returned to power the data-processing sections of the chip.The energy savings range from 75% to 80%, depending on how fast the clock is set or run (with slower clock settings yielding greater energy savings.
Yet in its energy-recycling mode, the chip is able to perform the very same computing tasks it performed using the conventional clock circuit The idea of using the clock to reduce power consumption was first
proposed, in 1967, and in the mid1980s, 'hot clock' chips were proposed and designed for fabricatio by the then-standard nmos
echnology.
Prototypes were made, but nmos was soon eclipsed by cmos, and ma
researchers thought the hot-clock
system would not work. But the IS
scientists scientists hope their success will
spark new interest in the ide spark new interest in the idea.
Initial applications of the energ recycling chips will probably be at the lower-performance, cost-driven end of the chip market. But applications could include portable computers,
digital watches cell phones or GP digital watches, cell phones or GPS
position finders. The only difference would be that the batteries would last much longer.
Eventually the researchers expect to double the energy savings with chips power of conventional chips.
For more information contact: William Athas, School of Engineering's Information Sciences Institute,
University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089-2538. Tel: 2137407600 .

PROTEUS

Schematic Capture

-Produces atractive schematics tike you see in the magazines
-Netist. Parts List \& ERC reports. OHierarchical Design. 0 Full
Nuetuist, Parts List \& ERC reports. Ohierachical
support or buses inctuding bus pins. ©EXtensive
Componentmodel Ifbraries \quad Advanced Property Manage

- Non-Linear \& Linear Analoque simulation ©Event driven Digital Simulation with modeling language oparitioned simuition of large desisons with multiple analogue \& difital
sections. \oplus Gaphs dispayed directly on the schematic

The JVth

 cencrition
Now Foaturas

Component Auto-Placer Pinswan/Gateswan ontimize Background Regeneration of Power Planes Enhanced Amrorouting with tidily Pass Till Gomtrol of Schematic Ammearance Extensive New Gomponent libraries

Available in 5 levels - prices from $£ 295$ to $£ 1875+$ VA Available in 5 levels - prices from $£ 295$ to $£ 1875+V A$.
Call now for further information $\&$ upgrade prices.

Automatic Component Placement. ©Rip-Up \& Retry Autorouter with tidy pass. \bullet Pinswap/ G ateswap Optimizer \&
Backannotation 032 bit high resolution database O Fuil JRC and Connectivily Checking. OShape based gri

APBOTIUUS
Is parriovianty © (o)
vyith tres quprppandrueyry Eww January 1997 (0) (0)
EWW January 1997

Dominic Di Mario investigates the world of ultra-low frequencies using three detectors - one indicating electric fields, one for investigating magnetic lines and one for sensing seismic events.

Fig. 1. This anomalous train of waves, detected in Italy, lasts irregular intervals. At times it is rather frequent - one set of waves every 5-10 minutes - but days. The frequency is 1.87 Hz and it is relatively strong if compared with the other signals in the background. Its
origin is anybody's origin is anybody's guess, but it electric machinery is at work.

Electric fields

Figure 1 shows an oscillation of unknown oir gin at 1.87 Hz . I occasionally detect it with 3 m long antenna just outside my home. Suspects for the source of the signal are an appliance from a neighbouring house and elec tric industrial machinery in the area. But, so far I have been unable to discover the source.
When I pushed the detection circuit's sen tivity to its limit, I was able to see all sorts of apparently unrelated signals. The only signal that could be positively identified was a sharp, clean positive peak showing that someone
the area had switched on a television set These low-frequency signals are detected by means of a high impedance circuit, Fig. 2, based on the OPAI24P. This difet op-amp is on the expensive side, but its characteristic o stability and low noise make it the ide
Problems met in the design of this circuit were twofold: interference from the mains and the connection to the antenna. The main interference problem was solved by inserting ter. Together these eliminate all main induced signals - including harmonics. I took care to make the circuit provide good global transient response with little or no over shoot. Removing or changing one or more of the filter components will change the bandresponse. Because of the filters, the bandwidth extends to about 10 Hz . The system is still use ful up to 16 Hz , where gain is -10 dB , at which point starts to fall off rather rapidly to 50 Hz
showing, on the simulator, an attenuation of

91 dB . This means that dc signals are not amplified In fact the amplifier is ac coupled. This elimnates all kinds of problems relating to dc stability and coupling, as well as any effect o large electrostatic fields present around th
antenna.
point of the OPA124P in order to compensate for any change induced by the setting of the potentiometer. This is the only adjustmen
required by the circuit required by the circuit.
witch it on implementation is complete switch it on, wait five minutes and then adjust the $100 \mathrm{k} \Omega$ potentiometer until there is no dc tiometer near its maximum sensitivity
toten

Catering for high impedance
The second problem was that, due to the very high impedance of the circuit, any length of wire or coaxial cable connecting the input to the antenna would introduce noise and micro phonics.

Afer several tests and trials, I found that the best solution was to connect the antenna directly to the input of the amplifier without any intervening wire or cable. This meant that the antenna. Connection to the rest of the circuit is via a five-core shielded cable carrying power, ground, signal and the two connections for the potentiometer
This solution works very well. The distance the circuit could be quite long although I only tested it up to 10 m .
Both the setting of the $220 \mathrm{k} \Omega$ potentiometer and the length of the antenna influence the overall sensitivity of the circuit. It might be make the unit portable. This is why I designed the system with two PP3 9 V batteries in mind. Useful signals are detected even with a 5 cm antenna, although the interference generated by just walking around is strong enough to
bury the signal A quick test can be carried out using the set up shown in Fig. 3. Spikes should be detected whenever one of the poles of a 9 V battery is alternatively brought in contact with the screwdriver. The field is enough to generate 1 V peaks at the output.
leakage diodes and a series resistor. This is very effective against any overvoltage or mishandling of the input circuitry.
The output goes first through Schottky against very low level signals. The result is a zero signal that looks very clean - quite effective if you are using a pen plotter.
Crossover distortion introduced by the diodes is very low and is evident only at very
low signal levels. As an alternative you might like to connect the output lead directly to the output of the amplifier. This bypasses the rectifier bridge and gives the full signal - noise included.

Fig. 2. Complete
circuit for the electric circuit for the
field detector. Components m with an asterisk should be 1%. If 5% components are used, then one of the 47/
resistor should be changed to a series of a $39 \mathrm{k} \Omega$ resistor and a 22k2
adjusted for the adjusted for the minimum mains $n \mathbf{n}$
Values between Values between
brackets are suitab for a 6 OHz mains. An American equivalen to the BC337 for the 2N2222.

Fig. 3. Test bench for the electric field detector. Charging the screwdriver to the battery potential generates an electric field. This is detected as a $1 V$ glitch on the scope. The pulse can
be positive or negative depending on the battery pole in touch with the screwdriver. The pulse be positive or negative depending on the battery pole in touch with the screwdriver. The pulse is
also detected by the movement of the meter and the change of frequency of the audio oscillator. Both the battery and the screwdriver must be well isolated from the other equipment.

An acoustic signal is available from a frequency modulated audio oscillator. This is useful if you intend to use the meter as
portable instrument. portable instrument.
Note that that main quite high and could easily saturate the pream plifier. Consequently there is a practical limit to the length of the antenna. In the metropolitan area where Itested the meter, a $3 \mathrm{~m} \mathrm{enam}-$
elled copper antenna generated 5 V pk -pk at the output of the preamplifier, before the filters. This means that probably a 6 m antenna is the longest that could be used under these circumstances. In aral

Implementing the circuit

On a practical note, if you have difficulties obtaining the $500 \mathrm{M} \Omega$ resistors, connec $100 \mathrm{M} \Omega$ resistors in series. I recommend that similar, but definitely no ceramic capacitors.

The Burr-Brown data sheet for the ring around the input lead a printed ground ground of the substrate, pin 8 . It also suggest direct soldering of the IC to the circuit board. The preamplifier was assembled in a smal metal box with the shielded cable on one sid and the antenna wire on the other. If it is to be permanently placed on the outside, a conve-
nient shelter should be foreseen against weather extremes. The temperature range of the IC from -25° to $85^{\circ} \mathrm{C}$, should not cause any prob lems in normal operating conditions.
Some form of data logger or a pen plotter is data logger from Pico Technology, connected to the parallel port of a pc. The ADC42 soft ware also includes a spectrum analyser virtual instrument, so it is a convenient way to nalyse the the signal.
I now have several
oscillations, spikes - even square waves. My
next task is to correlate them with known vents such as earthquakes or signals that are upposed to make the round trip of the world generating a 7.5 Hz oscillation.

Magnetic lines

The sensor that first springs to most people's mind when they think of implementing an electronic compass is a Hall-effect device. But
there are alternatives - like the one suggested in Fig. 4. This is a classic oscillator running at around 1 MHz .
The ferrite rod is almost identical to the one normally found in medium wave receivers strong magnet attached to one end of the rod. With the magnet attached, the exact frequency of oscillation now depends on the prevailing magnetic field. If you have a second which depends on the orientation of the magnetised oscillator with respect to the Earth's magnetic field.
An easy test requires a medium-wave radio Next to a station, preferably a weak one. erate an audible beat note in the radio. Any minute movement of the rod will now change the audible beat frequency.
I plotted the frequency variation against rotation of the rod, Fig. 5. The first curve
shows the frequency of the beat note starting shows the frequency or the beat note starting
from 200 Hz and the rod pointing north. The second curve shows the beat frequency, starting from 200 Hz but with the rod pointing east. In both cases, the rotation was clockwise and extended for 180°. For this test, 1 used a the transmitting station was too strong. A complete circuit with two oscillators and ancillary circuitry was the subject of a circuit Woa published in Electronics World in December 1994 use adequate electric shielding around the

Fig. 4. A basic oscillator detects the Earth's magnetic lines once a magnet is glued to one medium-wave transmitting station falls in the audio range and can be heard on a radio and measured. Even tiny movements of the rod or the impinging magnetic lines causes an
audible change of the beat note. If high stability is required it is advised to build a second identical oscillator instead of using a ommercial station.

Fig. 5. Curve (a) refers to the north-south orientation of the ferrite rod and curve (b) to the east-west. Rotation takes place on an horizontal plane. If the
rotation plane changes, the frequency range of the beat frequency will also change since the magnetic lines are parallel to ground only at the equator. Consequently, an accurate measurement must take in account the latitude, 45°
in this case, and the plane.
oscillator. Metal boxes are not suitable. The metal would create loops that would kill the
oscillation. A solid plastic box with copper wires or strips, glued on the inside, running parallel to the rod and soldered to ground at one point only is the best solution. A small hole is made in order to adjust the trimmer capacitor with a plastic screwdriver of the magnetic lines, you will have a change in frequency for any movement of the oscillator both in the horizontal and vertical planes. Listening to the beat note shows an incredi-
de variety of signals, Fig. 6 . The situation is much quieter in rural areas, but in a large town you have to wait until late at night - between 1 and 5 o'clock in the morning - if you want to see less frenetic magnetic activity, Fig. 7 .
Where all this activity comes from is a mystery to me, although I am sure that most of it is man-made. Frequency changes, hence magnetic variations, take place at a very low rate; $4-5 \mathrm{~Hz}$ is the fastest you may expect. This detector operates from 0 Hz , so it will track erm stability of the oscillator
The 1 MHz oscillation frequency was chosen for convenience. Its radiated field will not be detected by a radio beyond a 2 m radius. Nevertheless, a more suitable frequency could will increase sensitivity but stability might become a problem. Conversely, lowering the frequency makes the circuit less sensitive but more easily stabilised.

Seismic waves

The OPAI24P and the idea behind the electric field detector was the basis also for the seismic detector, Fig. 8. The circuit is straightforward and requires no adjustment. The
amplifier is local to the detector element. This amplifier is local to the detector element. This impedance source to the amplifier without introducing any further degradation.
A three-core shielded cable connects the amplifier to the other elements of the circuit The detector is the piezolectric eleme a kitchen gas lighter. Although its electrical characteristics were unknown to me, it performs well. The problem with this circuit lies in the proper mechanical construction of the the ground, with the detector placed vertically with a $1-1.5 \mathrm{~kg}$ weight on top. This weight should not have a proper resonant frequency, so a loose package of sand, fine gravel, or even salt, sealed against humidity, works fine.
The weight should be in contact with the detector only and kept in place using vibration absorbing material such as shock absorbant rubber, plastic sponge and the like. The whole set up should be screened against electric
fields with a non magnetic screen such as aluminium or copper, and should be enclosed in a sound proof box, shown over
Of course, you do not have to go to such an extent to see the circuit's basic operation. You can place it on a table if you are happy to see

fig. 6. Printout of from data logger shows the variation of the beat frequency over period of 113 seconds. Samples where taken at 1 is intervals at 6 pm in a built-up
area. In open country the response is much quieter with several minutes withou area. In open country
appreciable changes.

Fig. 7. Data collected from the magnetic detector over a period of 16 hours, from 6pm to 10 am the following day. Large variations take place during the whole day except for a short lull around 4am. This is also the best time to carry out testing of the unit. Data were collected in a large city. The same device shows an almost flat curve only in open country away from human activity.
 Fig. 9. Seismogram
of a lorry, barely heard in the
silence of the silence of the
night, passing in night, passing in
the area and measured over 10s. The frequency range of the signal
is mostly is mostly between
10 and 50 Hz and 10 and 50 Hz and
bound to interfere with a real seismic wave. This demonstrates that
careful choice of careful choice of
the installation site is important if you is important if you
want to record natural

Fig. 8. There are no settings or adjustments in this seismic detector. The screened portion is placed together with the piezoelectric detector and connected to the remaining part of the circuit with a three-core shielded cable. Piezoelectric gas lighters are economical and readily available.
the resonant frequency of the table nash probably your house. Two leds flash alternatively when a seismic
wave is detected and the overdriven meter gives a clear reading, even with small signals.
Road and railway traffic are the main interfering signals. They could mask a real seismic wave. You can earn to distinguish the signature of
interfering signals but it will still be a problem to recognise a seismic wave simply because they do not happen frequently enough - fortunately. The frequency range of the circuit is
from 0.44 to 11 Hz with a -10 dB point at 24 Hz . In seismological terms, this is a narrow band detector, as opposed to
a 0.1 to 100 Hz alternative, which is defined as a wideband detector. This detec as a smooth filter so signals outside the nomof these signals are human artefacts, Fig. 9, a certain amount of attenuation is preferable.

fig. 10. Printout of data logged from 11 pm to 8 am where taken at 1sample/s and shown as an alternating potentiometer was adjusted to accommodate the peak
readings of the local tramway. Also in this case there is quiet period around
$3-4$ am underlining the need to install the detector away from cities, roads and ilways. Morning quiet quiet period duringtic detector, I noticed a morning with the seismic detector Fig. 10 . At other times, it is as frantic as the magnetic

Practical implementation of the seismic detector. Most of the circuit is housed together with the detector. There are no critical components. The rubber that keeps the weight in place must not transmit vibrations coming from the ground. Spongy rubber works fine. The sound proof
the electric detector. There is probably tion ther is probacly could confirm.
Sensitivity seems to be at the right level With an overall gain of 60 dB , the circuit amplifies a hiccup in close proximity, but device.
The seismic waves detected are the vertica component of the surface wave. Adding two further detectors, rotated by 90°, would also allow you to record the horizontal compo
nents.
Take
Take care when handling the detector
Hitting it even gently of volts - thousands of volts in the worst case So take safety precautions to protect yourself, and the input circuit, where the only protec tion is via the $3.3 \mathrm{M} \Omega$ series resistor. This protection is sufficient for normal handling of the
detector but it is advisable to keep the input shorted during installation.
If the purpose of the above circuits is to If the purpose of the above circuits is to be operated away from cities or industrial
sites, unless of course, you are looking for man-made activity. But wherever you are, you are bound to discover many of the mys. teries, quirks and anomalies of the world o
ultra-low frequencies

His Majesty's Voice - or how the GPO became involved in

the record business during World War II - researched by Andrew Emmerson
 Post Office
 war records

M
ore by accident than by design, the many World War II. Its work devising the Colossus, Cobra and Tunney devices for breaking
enemy codes at Bletchley Park is now fairly well known, whereas similar work producing high-speed computers for co-ordinating antiaircraft gunnery and for timing bomb release has not received the same recognition.
Other less well-known episodes inclu freight trains run by the Post Office tube rail way in London. These carried spoil from new bunkers under construction and brought it to the surface away from the sensitive location. And there was the assistance the Post Office of 100 miles of hollow three-inch cable which carried vital fuel across the Channel to support the Allied armies in the invasion of Europe. But perhaps the most unlikely of all unusu-
al assignments was the Post Office's involveal assignments was the Post Office's involve
ment in the development of hi-fi recording techniques. During World War II, materials for recording radio programmes were so scarce in Britain that the Post Office was forced to commandeer a factory to produce
blank recording discs. In so doing, its boffins made sigificant improvements to recording techniques.
"The BBC alone used 7000 blank discs a week"

The BBC relied on vast quantities of blank discs for sound recording. The corporation alone used propaganda monitored by its listening stations. The armed forces - and the secret services, it is rumoured - also made heavy demands on the supply of directrecording the conversations of prisoners of-war and also for capturing weak radio signals. By replaying the weak signals many times, it was hoped that they would eventually be read correctly The reliance on these discs was so great facture under closer direction. To safeguard
supplies, the Post Office took control of one
of the two factories which produced them. They and the BBC also improved record cut ing head technology and a microgroove used on VE-Day. antic story really starts back in the mid-1930s whe Cecil Watts invented a sound recording technique using a metal disc coated with cellulos itrate lacquer. People often call these dis
acetates' but this title is a misnomer.
"With its high signal-to-noise and power versus bandwidth ratios it has not been improved upon"
This direct recording disc was and is emarkably high quality sound recordin nedium. With its high signal-to-noise ratio been improved upon. Surface noise is low an fact the technique is still used today for ere fairly soft the disc cutter being a sapphire cutting tool.
But this was not the only method. In 1939 the commercial record companies were still using wax for mastering - an
inferior process. The BBC, did however, use ever,
these thes
cellulose nitrate discs for short-term sound archiving. In addition, they had two other recording systems at their disposal. These were the Marconi-Stille - which recorded magnetically onto steel tape - and the Philips-
Miller - which made an optical sound track on a material similar to cinema film. With the war under way, these other two systems hit problems. The special steel for the Marconi-Stille recorders came from Sweden but supplies ceased in August 1940, while the
optical film for the Philips-Miller machines came from Gevaert in Antwerp. After this city had fallen to the Germans in May 1940, supplies of this tape also ceased.
Alternative sources were tried for both technologies but, none was ideal. This left the
BBC dependent on the direct recording cellulose nitrate discs alone at a time when the demands on recording for broadcast purposes
"In effect, the manufacture of these discs was nationalised"

Unprepossessing they may look but blank discs -similar to these - for one-off recordings played a vital role during WWII. So important
were they to the war effort that the Post were they to the war efor that he Post supplies (photo from National Sound Archive).

There were only two sources of the blank Recording Company. In the summer of 1941 it was decided that the MSS factory should come under the control and management of the Post Office, which also provided additional capital to boost output. In effect, the
manufacture of these discs was nationalised. Two scientists from the Dollis Hill research station, J.F. Doust and F.G. Hopwood, were put in charge of this activity.
In a separate initiative, the BBC devised an improved recording cutter and this cutter used
these MSS blanks. The frequency response extended beyond 10 kHz and so it could be called high fidelity; later on it could and did cut microgroove records. The new system was first used on VE-Day.
As well as blank discs, Cecil Watts's MSS company had made disc-cutting machines
since the mid 1930s. These also came under the control of the Post Office when they took charge in 1941.
Improvements to the MSS disc cutters were agement. It can truly be said that the Post Office played a part in improving recording technology - even if it was more by historical accident than by previously planned intention. The Post record, as some people have alleged.

The story of the GPO's wartime involvement in acoustics doesn't end here..."

The story of the GPO's wartime involve ment in acoustics doesn't end here, though There were many other interesting projects. Special noise-cancelling microphones and
headphones were devised by the Post Office for tank use.
Deep below the Post Office's Dollis Hill research station, a special chamber with deafening sound effects was constructed to simueffects with which tor. Producing the sound nother matter; recordings on 78 rev mas gramophone records would not last long ough and the chosen solution made good Fiss of other Post Office technology. First of all, recordings of a tank rumbling past a microphone were made on direct-cut were transferred to 35 mm film by the Crown Film Unit - a new name for the old Post Office Film Unit - and a two-second long section finally transferred to glass disc, for playing continuously on a speaking clock
machine. Apparently the joint in the recording
nd the two-second repetition were n oticeable in use.
Similar machines were made for the Royal ir Force; these generated continuous background aircraft noise effects for training radio operators. Four different aircraft types were covered, at n Yet animum.
Yet another machine was developed for
raining fighter pilots this was a twin-channel simulator, providing continuous aircraft noise and spasmodic machine-gun effects, as and hen require
At the end of hostilities all this developmen handed back to Cecil Watts and all these mat lers were effectively forgotten. At this distance it time nonetheless they form a fascinating reproduction. My thanks
National Sound Archive for his assistance in preparing this article. Some details were taken from the book 'BBC Engineering 1922-1972 paper by Arnold Lynch entitled 'Some Derivatives of the Speaking Clock.'

October 1997 ELECTRONICS WORLD
CIRCIE NO. 115 ON REPLY CARD

Electronics World - reader offer

Temperature-controlled soldering stations - over 15\% discount
Electronics World readers are eligible for an exclusive discount on both the SL20 and SL30 soldering stations from Vann Draper Electronics.
Normally, the SL20 with bar-graph temperature indicator costs $£ 59$ while the SL30 with digital read-out costs $£ 69$ excluding VAT and delivery. Electronics World readers using the coupon alongside can obtain either of these stations for the prices above - but without adding delivery charges and 17.5% VAT.
Designed for servicing and manufacture, these irons feature $24 \mathrm{~V} / 48 \mathrm{~W}$ heating elements and an iron-coated bit for long life. The SL20 has a control range of 150 to $420^{\circ} \mathrm{C}$ while the 30 spans 160 to $480^{\circ} \mathrm{C}$. As standard, an 0.8 mm diameter bit is fitted, but 1.6 and 3.2 mm alternatives can be obtained by adding $£ 1.65$ inclusive to your order for each extra bit required. Please make enquiries to Vann Draper on 01162771400 , fax 2773945.

Use this coupon to order your SL20/SL30 Please send me
_SL20(s) at the fully inclusive special offer price of $£ 59$ each _SL30(s) ot the fully inclusive special offer price of $£ 69$ each

Name

Company (if any)

Address

Phone number/fax
Total amount \qquad
Moke cheques payoble to Vann Draper Electronis LItd
Or, please debit my Master, Visa or Access card.
Cord No
Expiry date

SPRENRER
 Reaction to John Watkinson's iconoclastic view of loudspeaker design in 'Loudspeakers Exposed', June 1997 issue, revealed how much interest there is in this topic. In this new monthly column, John continues his fresh and often controversial look at loudspeaker technology and looks forward to exploding a few myths along the way.

Genuine Government Surplus Electronic Test Equipment

Racal Dana 9904 universal counter
$10 \mathrm{~Hz}-50 \mathrm{MHz}, 6$ digit LED display, ested \& Verified. $£ 60.00$ * Racal Dana 9915 digital frequency
counter, 10 Hz -510MHz, 8 digitit LED
display, TXO
Tested \& Verified.
T

Racal Dana 9918 digital frequency counter $10 \mathrm{~Hz}-560 \mathrm{MHz}$, 9 digit LED
display, TXO master Oscillator. display, TXO master Oscillator.
Tested \& Verified.
$£ 125.00 *$

Racal Dana 9921 digital frequency counter $10 \mathrm{~Hz}-3 \mathrm{GHz}$, 9 digit LED display, TXO master Oscillator.
Tested \& Verified.
$£ \mathbf{3 4 5 . 0 0 *}$
*** Free Catalogue ***
Send an A4 envelope with 1st class stamp marked 'High tech catalogue' to
receive comprehensive data on our entire range of electronic test equipment. ∞
Anchor Supplies Ltd. Nis Callers are welcome at our massive showrooms on weekdays from
9am untit 6 bp and on Saturdays from Bam to 4pm.

* No Appointments needed. Callers always welcome, just pop in and have a chat.
* Mail Order a speciality. National international fast mail order senvice
* Large showroom. Large stocks of electronic \& electronic test equipment always on sale.
* Test facilities available. Try before you buy, make sure you get the right item.
* Open 6 days a week. 9am till 6 pm weekdays and 8 am till 4 am on a Saturday.

Oscilloscope special offers TEK 7000 series oscilloscope mainframes

7603 (100 Mhz) (no plug-ins)
$(100 \mathrm{Mhz})$
$(250 \mathrm{Mhz})$
(4)
\qquad
 7844 (400 Mhz)... 7904 (500 Mhz)... $450.0{ }^{*}$ And more ... This is just a small sample of the huge

Ring 01159864902 now, or fax us on 01159864667

816
CIRCIE NO. 117 ON REPLY CARD

CIRCIE NO. 118 ON REPIY CARD ELECTRONICS WORLD October 1997

ELECTRONICS WORLD

incorporating wireless world

Electronics World incorporating Wireless World is applied electronic design. We'll show you how to use the latest silicon technology plus...
\checkmark CAE software
\checkmark New product reviews
/ Technology reports
\checkmark Detailed circuit diagrams
/ Innovations
\checkmark Explanations of complex technology
\checkmark Comment and much more in your issue.

So whether you are designing your own system or you're curious about your competitors, Electronics World will help you keep the leading edge.

Fig. 1. The LC
crystal control.

Money back Guarantee Receive a full refund on your subscription within the first 90 days if you are not completely satisfied. Thereafter, we'll refund the unused portion of your subscription should you wish to cancel.
 Myy earuer arucle snowea unat wnen ne res-
onator is an $L C$ 'tank circuit', with the limited value of Q thus obtainable, the phase noise is
lower if the design is such that the transistor maintaining amplifier is not allowed to botom. I was curious to know if this was still the case with a much higher Q resonator, such as quartz crystal.
To enable a direct comparison to be made, I sed the same oscillator circuit as in Fig. 2 of the previous article, but modified to incorpo-
rate a 10 MHz crystal, Fig. 1. In the earlier circuit, the junction of the two capacitors tuning the inductor in a Colpitts oscillator was
grounded directly. In the new circuit of Fig. 1, it is grounded via a 10 MHz crystal.
Given the low equivalent series resistance of

ystal, the circuit operated much as , once the tank circuit was retuned from vious value of 10.4 MHz to the series
int frequency of the crystal - a shade 10 MHz . The series resonant frequency e equivalent series resistance R_{s} and parameters of the crystal were deter
tz to the rescue
thput of the oscillator, now crystal con1, was connected to the phase noise dislator as shown in Fig. 2 of the earlier
The only change made to the phase discriminator was the addition of an 2.7 m of coaxial cable to the delay cable. as to bring its length back to $15 / 4$ at the 10 MHz operating frequency. lentally, the length of the cable used for
rlier 10.4 MHz oscillator was quoted in n the previous article as 108.4 m . That I fact the equivalent length in air: the al length calculated out as 72.3 m . Thus le represented the best part of what was ly a 100 m reel
anected the crystal oscillator of Fig. 1 to
ase noise discriminator. Everthing was
equilibrium. The phase for a while to reach set from the oscillator frequency was offmeasured using the $H P 3580 \mathrm{~A}$ audio frequency spectrum analyser, and the trace stored in
its digital As in the previous article, a $56 \mathrm{k} \Omega$ resistor was then connected in parallel with R_{1}, resulting in some 10 dB increase in output level,
with the oscillator transistor bottoming each cycle. The phase noise out to 5 kHz was again measured and displayed, this trace and the stored trace both appearing simultaneously on
the HP3580A the HP3580A.
The resulting display was photographed, Fig. 2 al). As you can see, the two traces are
virtually identical. Indeed, it is only the two

System Components from ISO9001 Source
Half Size Single Board Co 386SX to Pentium with ISA and PC/I 104 Bus 2Serial Porrs, IDE, FDD \& Printer Port
asher

Fig. 1. The LC oscillator of Ref. 1 modified for crystal control.

Killing NOISE

Oscillators with very low phase noise are crucial in modern, fast data radio links with high spectral efficiency. Relatively easily achieved in a crystal oscillator, low phase noise is a much more daunting design task in a wide range vco, as Ian Hickman explains.

How do you make a 'quiet' - i.e. spec-
trally pure - oscillator? In end trally pure - oscillator? In an earlier
article ${ }^{\text {, }}$ I highlighted the need for oscillators with very low close-in phase-noise sidebands. The characteristics of an oscillator o fill this requirement are well known, and the following
a high-Q resonator - tuned circuit, crystal, SAW resonator or microwave cavity;
a low - noise transistor or other active con ponent as the maintaining amplifier - espe lates onto the output;
a high-gain maintaining amplifer stage so hat it can be lightly coupled to the resonato to its unloaded Q
a buffer stage for the output, again enabling the resonator to work at close to its unloaded ,
a large amplitude of oscillation to ensure the tored energy at the desired frequency is great y in excess of circuit noise,
My earlier article showed that when the res nator is an $L C$ ' 'tank circuit', with the limited value of Q thus obtainable, the phase noise is
lower if the design is such that the transisto maintaining amplifier is not allowed to bot om. I was curious to know if this was still th case with a much higher Q resonator, such as quartz crystal.
To enable a direct , sed the same oscillator circuit as in Fig. 2 of the previous article, but modified to incorporate a 10 MHz crystal, Fig. 1. In the earlier cir cuit, the junction of the two capacitors tuning the inductor in a Colpitts oscillator was
grounded directly, In the new circuit of Fig it is grounded via a 10 MHz crystal.
Given the low equivalent series resistance
the crystal, the circuit operated much as before, once the tank circuit was retuned from resonant frequency of the crystal - a shade below 10 MHz . The series resonant frequency F_{s}, the equivalent series resistance R_{s} and other parameters of the crystal were deter
mined beforehand, as detailed

Quartz to the rescue
The output of the oscillator, now crystal conThe oupput of the oscillator, now crystal concriminator as shown in Fig. 2 of the earlier
article. The only change made to the phase noise discriminator was the addition of an extra 2.7 m of coaxial cable to the delay cable. This was to bring its length back to $15 / 4$ at the lower 10 MHz operating frequency.
Incidentally, the length of the cable used for
the earlier 10.4 MHz oscillator was error in the previous article as 108.4 m . That was in fact the equivalent length in air: the physical length calculated out as 72.3 m . Thus the cable represented the originally a 100 m reel
the phase noise discrimincillator of Fig. 1 to the phase noise discriminator. Everthing was equilibrium. The phase noise out to 5 kHz offset from the oscillator frequency was then
measured using the HP350A cy spectrum analyser, and the trace stored in its digital store.
As in the previous article, a $56 \mathrm{k} \Omega$ resistor was then connected in parallel with R_{1}, resulting in some 10 dB increase in output level,
with the oscillator transistor bottoming each cycle. The phase noise out to 5 kHz was again measured and displayed, this trace and the stored trace both appearing simultaneously on the HP3580A.
The resulting display was photographed, Fig. 2a). As you can see, the two traces are
virtually identical. Indeed, it is only the two

odd spikes of mainsborne interference on one of them, three quarters of the way across the screen, that show there really are two separate, superimposed, traces.
Furthermore, both traces show lower phase noise than the non-bottoming version of the
oscillator without crystal control - at least above 1 kHz offset. This was shown in the pre-

vious article,
2b), lower trac
The conclusion, then, is clear. A resonator with a Q of 40000 can make up for the deficiences of a mediocre maintaining oscillator.
But on the other hand, the tuning range of But on the other hand, the tuning range of a
crystal controlled oscillator is limited to a few parts per million, or a few tens of parts per
million at mos
Where a greater tuning range is needed, as is usually the case in the voltage-controlle oscillator of a synthesizer, then a non-crysta controlled $L C$ oscillator is required, and a nonpreferred.

Avoiding the noise?

Even when the maintaining transistor of an oscillator does not botom, it sulio operates in a
non-linear mode, cutting off for part of each cycle. This results in noise - particularly the device's $\frac{1}{\mathrm{f}}$ noise - cross-modulating onto the desired sinusoidal output. The lower orde non-linearity of the non-bottoming circuit phase noise.
Normally, oscillators rely on nonlinearity to stabilise the amplitude of the oscillation Initially, at switch-on, as the amplitude builds up from nothing, the transistor operates lin
early. The loop gain at the operating frequen cy is in excess of unity. But as the amplitude increases further, the device is driven into nonlinear operation, and the loop gain at the fundamental falls to unity. This is illustrated in Fig. 3a), which shows the open loop gain of
the stage at the centre frequency of the tuned circuit.
In principle, this can be plotted by opening the loop and applying a gradually increasin external signal at the closed loop frequency of oscillation. But of course, to be representaive,
the signal must be applied from the same source impedance which the transistor sees in closed loop operation.
Likewise, the loading of the transistor's output impedance on the tank circuit must also be of these conditions could be met by breaking the loop and embedding the oscilator in a long chain of identical stages, as shown in Fig. 4. The highlighted stage sees the appropriate is long enough, it will operate at unity gain For the earliest stage will selectively amplify the noise at the centre frequency of the $L C$ tank circuit, and subsequent stages will further amplify and band limit the signal, so that the boxed stage runs in limiting at the same
amplitude as if it were operating closed loop. If you think such a long chain of identical circuits is too expensive a proposition, even conceptually, a much shorter chain - with the output of the last stage connected back to the
input of the first - will do as well or better For by definition, each stage operates at unity gain and zero phase shift. A ring of just three, or even two such stages illustrates the idea. Figure 3a) shows the open loop gain versus amplitude of a surefire oscillator, one where
the gain at low amplitude is well in excess of unity. A badly designed oscillator with a characteristic like Fig. 3b) is occasionally encountered, and infuriating it is, too. It usually start up all right, due to the switch-on transien
kicking it into life. But just occasionally it faik to start - usually just when it's needed most. It is tempting to think that an oscillator

Fig. 4. Colpitts oscillator with the feedback loop broken and opened out, and embedded in a long chain of similar stages.

a)

b)
fig. 5a). The CLC5523 conected as a noninverting amplifier.
b) Device pin-out. This is the same for both when using the DIP version, pin 4 must be grounded via 25Ω rather than directly.
where the transistor runs in a very nearly linear regime, would show very low close-in a very low level of harmonic content, not merely on account of the filtering effect of a high-Q tank circuit, but as a result of the (near) linear operation.
The absence of non-linearity should avoid cross-modulation of the device's low frenoise sidebands. The open loop gain versus amplitude characteristic of such an oscillator is shown in Fig. 3c).
Unfortunately, the very shallow angle at which the characteristic crosses the unity gain
line means that the amplitude is not well defined. Such an oscillator is thus extremely sensitive to any external influences, such as signals in the vicinity of the centre frequency. tage just barely oscillates, loosely couple in sling-out' aerial consisting of a few feet of wire, plus a diode detector, and you have quite sensitive radio receiver.
A bright idea tested
In my earlier article, I mentioned the When excited at its resonant frequency the crsal vib ity factor, the slower the decay. would be down to $1 / e$ or 37% of the original amount. but adding the electrode arrangements always reduces this pliance - springiness - of the quartz. tance es In addition to $L_{\mathrm{m}}, C_{\mathrm{m}}$ and R_{s}, Fig. A also shows the capacitance C_{0}. This represents the capacitance between the two areas of metalisation, one on either ple the electrical stimulation to purposes. They cou are also wires bonded to them which serve to suppor the crystal.
The mounted cystal is usually enclosed in a container of glass or metal, filled with air, dry nitrogen or preferably - a vacuum.
offers a 250 MHz bandwidth and adjustable gain. Figure 5a) shows the device conected as non-inverting amplifier, the maximum voltratio R_{f} / R_{g}
As V_{g} is reduced to zero, the gain falls to a
minimum, with up to 80 dB of gain reduction possible, depending on the operating frequency. In linear terms, i.e. gain measured in V / V, most of the gain change occurs over the range $0.8 \mathrm{~V}<\mathrm{Vg}<1.2 \mathrm{~V}$, while in logarithmic terms,
i.e. gain measured in decibels, the gain varia.e. gain measured in decibels, the gain varia, V_{g} is linear from 10dB below maximum gain, i.e. +1 V , downwards.
Figure 5 b) shows the device pin-out. This is the same for both the DIP and SOIC versions, but note that when using the DIP version, pin
4 must be grounded via 25Ω rather than directly, Fig. 5a).
After some considerable time and development effort, I arrived at the circuit of Fig. 6 The CLC5523 is set for a maximum gain of $\times 10$, determined by the ratio R_{22} / R_{20} back winding L_{2}, L_{1} having some 14 or 15 turns.

Considerable care is needed where the auto Cotic level control or alc, loop is concerned.

Quartz crystals for frequency control

A quartz crystal makes a high-Q resonator, which also exhibits a very high degree of
fork but usually at a much higher frequency. Like a tuning fork - whather like a tuning ceases, the vibration slowly dies away, over many cycles. The higher the ' Q ' or qual-
In fact, Q is the ratio of the energy stored to the energy lost per radian. Thus if the Q of a crystal were say 10000 -a very modest tigure - then 0.01% of the stored ener
gy would be lost per radian. After 10000 radians, or 1592 cycles, the energy

A high quality crystal resonator would have a Q of 100000 or more; the very best approaching 500000 . The best raw natural quarz exhibits a buk Q of over a million,
quency being determined by the values of the motional induit, the resonant fremotional capacitance C_{m}. These are the electrical equivalents of the mass and com-
Equivalent inductance and capacitance are shown in Fig. A, together with R_{s}. This represents the lossiness of the vibratory material, determining how quickly the vibra

The crystal can be maintained in a steady state of vibration by applying an electrical signal across it. The piezo-electric effect causes minute changes in the crystal dimen sions at the requency of the applied signal. The amplitude of the vibrations is neg quency being determined mainly by the size and thickness of the plate

Fig. 6. Circuit of a 10.4 MHz oscillator with a
linear maintaining amplifier, the amplitude of oscillation being controlled by an ALC loop.

Any attempt at adding an rf bypass capacitor following the diode detector D_{3} resulted in
'squegging', i.e. oscillation of the level-control squegging, i.e. oscillation of the level-control
loop resulting in bursts of rf, each followed by a recovery dead period. Any low-pass filter, whatever its time constant, must follow the loop error amplifier $T r_{1}$. Thus the dc level out considerable level of rf ripple.
Both the ripple and the dc level - the latter adjusted by an offset control R_{14} - are applied to the loop error amplifier $T r_{1}$. This compares
the adjusted dc level with 0 V ground and the adjusted dc level with $0 V$ ground and
reduces the gain-control voltage V applied to pin 1 of $I C_{1}$ to maintain the desired level of oscillation. Note that even if $T r_{1}$ cuts off completely, the potential divider formed by R_{17} and R_{18} prevents V_{g} exceeding +2 V A requirement for proper operation of the
device is that V should not exceed +25 V If i does, the gain control circuitry may saturate, and the gain may actually be reduced. With the circuit shown, the loop was very effective

Measuring crystal parameters

Crystal manufacture is a specialised busi-- The usual laboratory if name the frequency ' 100000 ' an a batch hess, although traditionally amateur radio he exact frequency they required. A crystal manufacturer has the specialised equipment to measure all of the parameters shown in Fig. A, and others - such as tem perature coefficient, ageing, etc. Such
equipment is not generally available in the usual electronics development laboratory. But if you do want to know the parameters of a given crystal, as I did in connection with a 10 MHz crystal oscillator describe this article it is not a difficult matter to
measure them. The usual laboratory if name, the frequency ' 100000 ' and a batch instruments, plus a simple jig involving a
little purpose built circuitry, will do the job. Figure B shows the arrangement I used to characterise a 10 MHz crystal dredged from my stock. It was made by an East Anglian crystal manufacturer which is no longer in business. It was salvaged in the early sixties
from a naval missile tester. There, it formed the reference in a purpose-designed digital voltage/frequency/period/etc. meter that was the heart of the system. Naturally, in he circumstances, detailed information on it is no longer available; only the maker's
can.
1 measured the series resonant frequency F_{5} using the crystal as the shunt leg in a teeattenuator pad, the series legs being 100Ω as possible and certainly not wirewound. Chip resistors would be fine.
For accurate results it is important that the impedance seen looking 'each way' from he crystal, should be purely resistive. To the left, this is ensured by the 10 dB pad

impedance of the signal generator. My sig nal generator is a home-brew affair, using the now discontinued Plessey SP2002 range up to 300 MHz with sub- 1 Hz resolution.
Any signal generator may be used, though a good slow motion drive is needed. On a cheap non-synthesised generator, tuning resolution, is to slightly tweak the fine output level control. Note that the resulting changing load on the oscillator pulls the frequency slightly
To the right, the input return loss s_{11} of
the Mini Circuits the Mini Circuits MAR1 if amplifier is
23.1 dB , angle 164°, at 100 MHz -the lowest frequency at which it is listed. Thus at the frequencies up to which crystals are readily available, the impedance is very
close to purely resistive, given the added close to purely resistive,
effect of the 100Ω resistor
With the 10 MHz crystal connected, the resonant frequency F_{s} at which the output dipped to a minimum was found to be replaced by a resistor, selected to give the same amplitude as the crvstal minimum at the monitor. This required a 22 and a 75Ω resistor in parallel, giving an equivalent series resistance of 17Ω.
Next, the two 100Ω resistors were pemoved, and the crystal connected in their
place, as indicated in Fig. B. Again, the frequency of the minimum was measured, giving the parallel resonant - or 'antireso
level as the frequency was tuned, by means of the core of L_{1}, over the range $9.5-11.5 \mathrm{MHz}$. Note the apparent similarity in Figure 3 fact very different even though they are in increasing amplitude is tue fall in gain with increasing amplitude is due to the device cut-
ting off and probably also bottoming - it is
physically incapable of supplying as muc gain at the larger amplitude. In d) on the othe
hand, the gain falls only because the level con trol loop causes it to: the device could provid more gain at that amplitude if asked to.
Thus the characteristic crosses the unity gai
losely defined amplitude. And yet the ample fier is working linearly, more so even than the device ilustrated in c), which exhibits very poor amplitude control
The circuit of Fig. 6 was designed to supply 50Ω output load directly, and this is co

As with the resonant frequency, there were several much smaller resonances at lightly higher frequencies, as is commonwhich wase. But it was clearly evident The was the main resonance
ooks inductive above resonance, and ome frequency, this effective inductance becomes parallel resonant with C_{0}, giving was measured on an audio frequenc bridge ${ }^{2}$, where the motional impedance of the series circuit is so high as to be out of sight.
It tur
It turned out to be 7.4 pF . From this, the effective inductance of the L_{m}, C_{m} branch
resonate at $F_{p}=10.010938 \mathrm{MHz}$ with . 4 pF calculates out as $34.15537 \mu \mathrm{H}$ - a eactance X_{p} of 2148.3925Ω. Reactance X the difference beiween the reactance of and of C_{m} at F_{p}.
ant to the resonant freg of the antireso$0.010938 / 9.996709=1.00142337$. So,
$2 \pi F_{s} K L_{m}-\frac{1}{2 \pi F_{s} K C_{m}}=X_{p}$
Using,
$C_{m}=\frac{1}{4 \pi^{2} E^{2} I^{2}}$
o eliminate C_{m} from equation (1), and nowing F, C_{m} from equation (1), and out to be $12023.687 \mu \mathrm{H}$, or to take a real2 mH . This is a much larger inductance
practical coil, and resonates with $C_{m}=0.02 \mathrm{pF}$. It is the large ratio of C_{0} to C_{m} wich accounts for the antiresonant frequency being so close to the series reso nant requency of the inductive, or capacitive, reactance ivided by the equivalent series resistance, $r^{2} 2 F_{s} L_{m} / R_{s}$.
$\mathrm{Q}=2 \pi 9.996709 \times 0.012 / 17=44337$ and around 40000 is a reasonable figure for the Q of a metal-can crystal.
Like most crystals for use at frequencies use at parallel resonance, with additional parallel capacitance totalling - including C_{0} - around 30 pF . This would result in the ntiresonant requency, i.e. the designed operating freque
10.010938 MHz

In practice, the total shunt loading capacitance would be adjusted to give the desired exact 10.000 MHz , wio the crystal operating at the designed $70^{\circ} \mathrm{C}$ in an oven designed for tot paralle ly itance of 20 pF , or alternatively, for use a series resonance. In the latter case, final adjustment is by means of a trimmer capacitor
crystal.
The adjustment or 'pulling' renge avail able with series operation is only about a operation.

version, but with the addition of an active smoothing circuit, R_{12}, C_{14} and $T r_{2}$. The intenion was to reduce the mains related harmon-
ics be seen on phase noise mea surements taken with the circuit. However, the improvement proved small.
On investigation, I found that although the mains related spectral lines are 100 Hz apart, they are not harmonics of power supply fullwave rectifier ripple, but odd harmonics of 0 Hz . They are therefore doubtless due to the leakage flux of mains tansformers. The phase-
noise discriminator was surrounded on the lab bench by various instruments - spectrum analysers, oscilloscope, freqency counter and power supplies.
I recorded a run covering $0-5 \mathrm{kHz}$ with the oscillator conected to the phase noise dis-
criminator. Both were powered the $C_{16,17}$ input of the phase noise discriminator connected to ground.
This set-up is shown as the lower trace in phase noise measurement capability. As such it is a more meaningful measurement than the lower trace in Fig. 4a) of the previous article. That showed the level with the supplies witched off. It thus represented the nois floor of the $H P 3580 \mathrm{~A}$ low-frequency spectrum
analyser working from a $4.7 \mathrm{k} \Omega$ resistive source, representing a noise figure of about
source, representing a noise figure of about
5dB.
The oscillator was then conected to the
phase noise discriminator as indicated in Figs 6 and 7 - with R_{21}, C_{21} in circuit and C_{22} distraces are shown in Fig. 11.

Did it work?

In a word, no - at least, not as well as hoped. upper trace in Fig. 11, with that of the $L C$ oscillator covered in the earlier article, reproduced here as Fig. 2b). You can see that at the bottoming $L C$ oscillator, and worse than the non-bottoming version.
At low frequencies however, it does not show such a marked rise in noise. Indeed, below 500 Hz , it is better than the bottoming
$L C$ oscillator and comparable with the non$L C$ oscillator and comparable with the non-
bottoming version. This gives me hope that with some further development, an improved performance may be achieved.
A difficulty arising from using the CLC5523 in this application, is that it has a low
impedance output. This is quoted as typically below $30 \mathrm{~m} \Omega$ at dc and still not much more than an ohm at 10 MHz . In the circuit of Fig. 6, this has been padded up to 33Ω. But via L_{2} this still reflects damping across the tuned circuit, resulting in an estimated working Q of
only 10 . The next
cuit working Q of close to the unloaded Q of cuit working Q of close to the unloaded Q of
the inductor, resulting - hopefully - in an
ccill or with very low close-in sideban noise. Watch this space.

References

1. Hickman, Ian, 'Understanding phase noise,
Electronics World, Audust 1997 , Electronics World, August 1997, pp. 642 - 646 .
2. Hickman, In , LCR Electronics World, November 1994, pp. 931-934.

CAREERS

CONNECT WITH THE UK'S NO 1 READ FOR ELECTRONICS PROFESSIONALS ON THE INTERNET

- Daily News Service this section is updated daily from news sources around the world. So keep coming back to keep abreast of developments in the global electronics industry.
- Technology Updates
- Fully Searchable online database to Electronics Weekly's high quality editorial
- On-line Jobs service and careers advice - see the latest jobs on offer
- Instant Feedback your chance to speak to other engineers

TOSHIBA

Point your browser at
http://www.electronicsweekly.co.uk/ and register now (it's free)

Design
 wideband antennas

Richard Formato's guidelines for helping you optimise your impedance loaded wideband antennas include a design example that gives continuous coverage from 6 to 150 MHz without resorting to tuning and matching.

Table 1. Resistance-only profile for the centre-fed dipople example. Distance (m)	Resistance (Ω)
0.00	0.00
0.76	3.86
1.52	4.36
2.28	4.98
3.03	5.76
3.79	6.75
4.55	8.05
5.31	9.82
6.07	12.30
6.83	15.99
7.59	21.89
8.34	32.31
9.10	53.90
9.86	113.47
10.62	438.06

Fig. 2. Demonstration of how radiation
efficiency varies with different values of efficiency varies with different values of
the centre-fed dipole design example.

A few years after Altshuler's work, Wu and King ${ }^{2}$ published a theoretical model of the loaded centre-fed dipole. Unlike the discrete resistor
approach, the Wu and King loading profile varapproach, the Wu and King loading profile var-
ied continuously along the antenna and could be implemented with a conductive surface layer of different materials - aluminium and carbon, for example - of varying thickness. Profiles based
on the Wu-King theory, which requires aser on the Wu-King theory, which requires a trav-
elling wave current mode with a linear amplitude decay, provide good bandwidth but relatively poor radiation efficiency because the antenna is heavily loaded.
An example of what can be achieved is the wideband field probe for sampling impulsive
electromagnetic fields, built by Kanda ${ }^{3}$. A cen-tre-fed dipole probe was designed using the WuKing profile. It was resistively and capacitively loaded by depositing on a glass rod substrate a segmented, conductive thin-film of varying thickness.

Narrow rings were burned away using an gon laser to separate the conductive segment oading profile. Although the loaded centre-fed dipole was useful as a field probe, it was not useful as a transmitting antenna because it wa so inefficient. Its t
ly below -22 dB .
Attempts have been made to increase the effil ciency of impedance-loaded antennas. Rama Rao and Debroux ${ }^{4,}$, for example, developed more efficient hf monopole antenna by using
'fractional' W -King profile. Efficiencies of 15 3% with a standing-wave ratio of were achieved from $5-30 \mathrm{MHz}$ in a 35 ft -high antenna. The monopole was continuously loaded with a profile equal to 30% of the Wu-King profile, and a fixed, lumped-element matching
network was inserted at the antenna feed point Still better bandwidth and efficiency can be achieved by using an improved loading profile derived from a travelling-wave current mode with a power law amplitude decay, instead of the linear decay required by the Wu-King pro-
file. The derivation of the improved profile and its relationship to the Wu-King profile hav been developed in the March 1997 issue ${ }^{6}$. The nonlinear amplitude decrease of the cur rent along the antenna results in a higher average antenna current. In turn, this increases the
radiated fields and total radiated power. The antenna's radiation efficiency is higher because it radiates more of the input power.
Several parameters influence how well a particular loading profile performs. There is no one 'best' profile. Important design parameter
include: value of the power law exponent design frequency; wire length-to-diameter ratio and number of antenna segments, i.e. the number of discrete resistors. Certain parameters are more important than others - in the sense of
having a relatively greater impact on mance - and for some parameters the results are unexpected.
These four These four design parameters are discussed
below for typical hf/vhf centre-fed dipole antenbelow for typical hh/vhf centre-fed dipole antenna designs. Radiation efficiency and standing-
wave ratio, or swr, are examined for rf sources between 2 and 150 MHz - the upper limit of the computer model. There are, of course, other important measures of antenna performance, including power gain and pattern. But these are not examined in detail because they are usually
acceptable in an impedance-loaded antenna with a good loading profile.

Continuous loading profiles

Figure 1 shows the centre-fed dipole antenna. It consists of two wire radiating elements with
pansion parameter equations
$\psi=2\left[\sin h^{-1}\left(\frac{h}{a}\right)-C\left(2 k_{o} a, 2 k_{o} h\right)-j S\left(2 k_{o} a, 2 k_{o} h\right)\right]+\frac{j}{k_{o} h}\left[1-\exp \left(-j 2 k_{o} h\right)\right] \quad$ (2)
and S are the generalised sine and cosine integrals ${ }^{2,7}$ given by,
$C(b, x)=\int_{0}^{1} \frac{1-\cos W}{W} d u \quad$ (3a) $\quad S(b, x)=\int_{0}^{\sin W} \frac{\sin }{W} d u \quad$ (3b) where $W=\left(u^{2}+b^{2}\right)^{1 / 2}$
half-length h and radius a. The total dipole Amgh is $L=2 h$, and its diameter is $D=2 a$.
Amplude of the current profile is ploted schematically along one element's length. Maximum current occurs at the rf source at the feed point, and it decreases along each arm until eaching zero at the end.
The centre-fed dipole's bandwidth is ncreased by symmetrically loading it with an
nternal impedance profile, i.e. resistance and internal inpedance profile, i.e. res
reactance. The profile is given by:
$Z^{i}(|z|)=R^{i}(|z|)+j X^{i}(|z|),|z| \leq h$
where Z is the complex internal impedance per unit length, in $\Omega /$ m, consisting of lineal resistance $\quad R$
$j==1-1$.
The res
$=-1$.
The resistance and reactance per unit length for the impro
are given by:
$R^{\prime}(z)=60 v(h-|z|)^{n-2}\left\{\psi_{R}-\frac{(1-v) \psi_{1}}{2 k_{0}(h-|z|)}\right\}$ (1a)
$X^{\prime}(z)=60 v(h-\mid z)^{v-2}\left\{\psi_{l}+\frac{(1-v) \psi_{R}}{2 k_{o}(h-|z|}\right\}($ (b)
where $k_{o}=2 \pi / \lambda_{o}$ is the wave number and λ_{o} is he free-space wavelength corresponding to the power-law exponent ('profile exponent') for a ravelling-wave current distribution that minmises resonance effects.
The first equation recovers the 100% Wu-King profile when $v=1$. The general case 1 and its relationship to previous work are dis cussed in Formato ${ }^{6}$.
The reactance computed from equation (1b) can be positive, i.e. inductive, or negative, i.e. linaal capacitance in F / m are $L^{i}=X^{i} / 2 \pi f_{o}$ cand $C^{i}=\left(2 \pi f_{X}\right)^{i}-1$ for $X^{i}>0$ and $X^{i}<0, ~$, respectively, where the design frequency f_{o} is in hertz.
In equa
In equation $1, \psi=\psi_{R}+j \psi_{i}$ is a complex quantiynown as the expansion parameter, ${ }^{1,2}$ its re and imaginary parts being subscripted R and I, the centre-fed dipole's vector potential to current, which is approximately constant along its ength. The expansion parameter is defined ${ }^{2}$ he pan
Because ψ is frequency dependent, it is usual y evaluated at the antenna's fundamental half wave resonance, that is, $\lambda_{o}=4 \mathrm{~h}$ (see Wu and King ${ }^{2}$ for details). As discussed below, howev-
er, this choice does not necessarily provide the er, this choice does not necessarily provide the cy f_{o}, in hertz, and the wavelength λ_{o} (in metres) re related by $f_{o} \lambda_{o}=c$, where $\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is the free-space velocity of light.
The improved loading profile specified by and reactance. But adding reactance to a wir antenna - especially capacitive reactance - can complicate construction.
As a consequence, many practical design

$\underset{\substack{\text { biequenc (} \mathrm{MHz} \text {) }}}{\text { Find }}$

Fig. 3. Standing-wave ratio curves for various values of v. Significantly, in a), swr is generally lower with decreasing v
employ only resistive loading, because excellent ig profile's reactive component (see Rama R and Debroux ${ }^{4}$ and Rama Rao ${ }^{5}$, for example). In the centre-fed dipole designs discussed below, only resistive loading is considered.

Discrete loading

Building a continuously loaded antenna can be a formidable task. This is especially so if some exotic technique is required - like vapour deposition of a conductive thin-film layer - or if native is to construct an approximation to the continuous loading profile using discrete resisors at intervals along the antenna.
The antenna is constructed of highly conducting - for practical purposes, perfectly connected together by resistors Single resistors ca be used or, for large-diameter radiators, multiple resistors may be used.
This type of discrete loading profile can provide excellent bandwidth and efficiency, better without the problems associated with continu ous profiles or reactive loading. Because of these advantages, only discrete loading profiles are considered in this article
A discrete profile may be determined by first ber of equal length segments, N. The centre ment, which contains the rf source, is not load ed. All other segments are loaded with a lumped esistance placed at the segment centre.
The value of the resistor is computed as the
product of the segment length - in metres - and the value of the continuous loading profile evaluated at the segment centre, R^{i} in Ω / m from equation (la). This approach provides a piecewise linear, or step, approximation to the continuous loading profile. There is, of course, any only this uniform step approximation is considered here.
As an example of a typical discrete profile,
Ansder a centre-fed dipole with the following
parameters:
$L=22 \mathrm{~m}$
$D=10 \mathrm{~cm}$
$D=7 \mathrm{MHz}$
$f_{o}=7 \mathrm{MHz}$
$v_{0}=0.4$
$N=29$
$\mathrm{N}=29$
$\psi=8.822-j 2.464$.
There is no reactive loading or feed-point
loading, and the full 100% profile is used. The discrete resistance-only profile, computed as
described above for $\geq>0$, appears in Table 1. Distance is measured from the origin, and the loading is symmetrical in each arm of the cen-tre-fed dipole.
The loading resistance increases slowly. It
rises from 3.866 on either rises from 3.86Ω on either side of the rf source,
$\pm 0.76 \mathrm{~m}$ from the centre, to just over 438Ω in the last segment, located $\pm 10.62 \mathrm{~m}$ from the source. This very gradual increase in resistance is typical of more efficient loading profiles.
In the sections that follow, several antenna
design parameters are investigated by ing the computer-modelled performance of a ing the computer-modelied performance of a
typical 22 m -long centre-fed dipole using discrete resistance-only loading.

Power law exponent

Probably the most important design parameter in determining radiation efficiency is the value of the profile exponent, v, which determines how quickly the current amplitude decays along the dipole.
Slower decay, i.e. lower vresults in a higher average antenna current. This increases the radi-
ated fields and consequently the efficiency. The improvement in efficiency can be quite dramatic. The trade-off is that decreasing vincreases the peak standing-wave ratio, or swr,
and causes it to fluctuate more with frequency. The influence that Mhas on radiation efficiency and swr is illustrated in Figs 2 and 3 . These plots are based on computer-modelled data for a 10 cm diameter, 22 m -long centre-fed dipole with $N=29$ and a 100% resistance-only loading pro-
file computed at a design frequency of 7 MHz , which is approximately the fundamental resonance. Efficiency and swr are plotted as a function of the rf source frequency from 2 to
150 MHz Calculations were The profile exponent \downarrow has a yery significant The profile exponent v has a very significant
effect on radiation efficiency, with lower values resulting in higher efficiencies. The curve in Fig. 2 for $v=1$, which corresponds to the $100 \% \mathrm{Wu}$ King loading profile, shows that the efficiency at 150 MHz . The variation with frequency is smooth and increases progressively more rapidly, especially at lower frequencies. When $V=0.2$, the efficiency increases from about 14% at 2 MHz to span of only 8 MHz .
Beyond 10 MHz , the efficiency fluctuates
more or less periodically, with a gradually ncreasing trend until it reaches a maximum
above 75% at 150 MHz . For $v=0.05$, the effi ciency exhibits a pronounced quasi-periodi fluctuation, but its minimum value is more than 68%, and the maximum is well above 80%. Figure 3 plots swr parametric in v for an rf
source characteristic impedance of 375Ω. If a source characteristic impedance of 375Ω. If
different feed system impedance is used, an appropriate broadband transformer would be required. For $v=1.0$, the swr varies smoothly from a maximum of greater than $2: 1$ at 12 MH o a minimum of about 1.45 near 67 MHz . It slight dip near 150 MHz . The curves for $v=0.8$ and $v=0.6$ show the same general trend. But significantly, the swr is generally lower with decreasing ν, even Figure frequencies.
3(b)
$v=0.2$. The swr is gen swr for $v=0.4$ and is for $v=0.6$, but the variability with frequen cy is much greater, and the peak values ar For $v=0.4$, the swr exceeds For 2 and 16 MHz , but it is below 2 between abou decreases to 0.2 and then to 0.05 , Fig. 3(c), the swr fluctuation becomes more pronounced, and he peak values are higher. The minimum sw values, however, are generally lower, and, o
he average, the swr is still well below $2: 1$ The best choice for v is evidently the lowe value that provides acceptable swr at frequen ies of interest. Choosing v in this way ensure he highest possible radiation efficiency, and

Design frequency
The design frequency f_{o} is another importan parameter in determining a good loading profile. Although it appears to be accepted practice to wave resonance frequency (see Wu and King ${ }^{2}$ or example), this choice is not necessarily the for exa
best.
Becau
Because the expansion parameter, which plays a major role in determining the loadin hoice of design frequency must be based o how much a given loading profile improve andwidth while still providing good radiatio fficiency.
There is no other sensible scheme for deter mining f_{o} because there is no theoretical bas approach is therefore empirical, which is the

Fig. 4. Radiation efficiency against two values vat three important frequencies for a 22 m long
$\mathrm{N}=29$.
approach adopted here.
Radiation efficiency and swr plots for three
design frequencies and two values of the exponent v are shown in Figs 4 and 5. These plots are for a 22 m -long, 10 cm diameter centreed dipole with $N=29$ and a 100% resistanc only loading profile.
Values of 7 MHz ,
half-wave frequency, and 35 MHz , and 70 MHz were used for f_{o}, with $v=1.0$ and $v=0.4$ at each frequency. Except for the fundamental resonance, f_{o} was chosen arbitrarily. Other choice tions made here are still generally applicable. As expected, the lowest efficiencies in Fig. 4 result from the most heavily loaded profile, at $=1.0$. The efficiency increases with frequency and shows slightly more variability at the high rofile ($v=0.4$) is much better - especiall between 2 and 10 MHz . The higher values of f increase the fluctuation in the efficiency, but the ariability is not great.
The most important feature of the efficiency data is that higher design frequencies result in major impact on radiation efficiency, and its influence is greater for profiles with lower val es of v. Because the efficiency increases with decreasing v, the influ
Thus, even though the 22 m centre-fed dipole has a fundamental resonance near 7 MHz , choosing a design frequency that is ten times greater provides better performance. For example, as the curve for $v=0.4$ show

when $f_{o}=7 \mathrm{MHz}$, but it increases to 67% when f_{o} is increased to 0 MHz . Choosing a higher design freq
antenna. The ad also evident in the swr plots of Fig. 5. It is quite significant that selecting $f_{o}=70 \mathrm{MHz}$ when $v=1.0$, Fig. 5 (a), results in generally the lowes
swr across the entire 2 to 150 MHz band. When $v=0.4$, Fig. $5(\mathrm{~b})$, choosing $f_{o}=70 \mathrm{MHz}$ z results in swr ≤ 2 across most of the band. The variability is greater, and the swr is not consistently lower with increasing f_{o}, as it is when
$v=1.0$. These effects are minor, however, and better overall performance usually results from higher values of f_{o}.
Radiator length-to-diameter ratio Increasing the element diameter is a standard therefore not surprising that a larger diameter, impedance-loaded centre-fed dipole exhibits better overall performance than its thin counterpart. In order to investigate the effect of $L D, 1$ $2-150 \mathrm{MHz}$ for radiating element diameters of $0.1 \mathrm{~cm}, 1 \mathrm{~cm}$, and 10 cm . A 22 m long centre-fed dipole was modelled, yielding L / D ratios of 22000,2200 and 220 , respectively, which rep'thin'. Profile exponents of $v=10$ and 0.4 were used with 29 segments and a 100% resistanceonly loading profile computed at a design frequency of $f_{o}=7 \mathrm{MHz}$.
The larger diameter
The larger diameter centre-fed dipoles have better radiation efficiency at all frequencies for becomes progressively greater at higher frequencies, and it approaches a factor of two at the high end of the band. For the profiles with $v=0.4$, increasing the element diameter also reduces fluctuations in the radiation efficiency,
but this effect is not evident in the heavily loaded profiles when $v=1.0$.
The largest diameter element provides the best standing-wave ratio performance, especially at lower frequencies. Its swr is below 2.5 at all frequencies above 6.5 MHz , and below two above
approximately 12 MHz . The swr decreases quickly up to about 30 MHz and flatens out at ess than 1.5 for most of the rest of the band. By contrast, the standing-wave ratio for the above two throughout the band, and above 25
fig. 5. Standing-wave ratios at three frequencies for $v=1$ and $v=0.4$. Lowest swr across the as in Fig 4. as in Fig. 4.
below 30 MHz . The very thin radiator thus fail to provide acceptable standing-wave ratio even
though it is very heavily loaded. Similar stand heavily loaded
Similar standing-wave ratiobehavior is eviden best performance. Its standing-wave ratio eelow 1.5 over most of the band, and below Decreasing teqcies above 6 MHz .
Decreasing the diameter to 0.1 cm increases
the standing-wave ratio, but not as much as it the standing-wave ratio, but not as much as it
did for the more heavily loaded profile witt $v=1.0$. When $v=0.4$, however, the standing-wave ratio variability becomes much more pronounced for smaller element diameters.
Building an antenna with a low $L D$ ratio Buiding an antenna with a low $L I D$ ratio, that
is, making it 'fatter', may be difficult if too larg is, making it fater, may be difficult if too large
a diameter conductor is required. A continuou cylindrical surface can sometimes be approximated by a sufficient number of parallel wire uniformly spaced around the cylinder's cir
cumference. A large number of wires may be required, however, depending on how good the approximation must be.
Such a dipole structure, sometimes called a 'cage dipole' because of its resemblance to a
bird cage, can offer a alternative to large diameter cylinders for low $L D$ designs.

Segmentation

The segmentation used; that is, the value of N also influences how well the loaded centre-fed dipole performs. I studied its effect by computing radiation efficiency and standing-wave ratio
for three segmentations. The results were somewhat unexpected. A 22 m long, 1 cm diam eter centre-fed dipole was modelled with $N=29$, 59 , and 119 segments. A 100% resistance-only loading profile with $v=1.0$ and 0.4 was com loading profile wiin
puted at $f_{0}=7 \mathrm{MHz}$.
The efficiency data show that the least seg. mented antenna, $N=29$, provides the best overall performance. As segmentation increases, radia-
tion efficiency generally decreases, although the change is not great from $N=59$ to 119. This result is somewhat surprising, since increasing segmentation presumably provides a better approximation to the continuous loading profile.
However, the data show quite convincingly that the net effect of adding more discrete resistance is to increase the $i^{2} R$ - Joule heating losses more than the radiated power, resulting in lowered efficiency
This effect occurs for both values of the profile exponent. As is typically the case, the effi-
ciency fluctuates more ciency fluctuates more with frequency as v
decreases, and the variability is greatest at the low end of the band. One effect of increasing N is to reduce the fluctuation somewhat, but the whange $v=0.4$. The stand
cut, but the stwave ratio data are not as clear lowest segmeneral conclusion is still that the overall performance.For $y=1.0$, the ratio is best
is overall performance.For $v=1.0$, the ratio is low-
est for $N=29$ at frequencies below anproxest for $N=29$ at frequencies below approxi-
mately 90 MHz - about a factor of 12 greater than the fundamental resonance. In the same frequency range, it is not significantly different
from the $N=59$ or 119 values even when $v=0.4$.

Above 90 MHz , the antenna with $N=59$ performs best for both values of v, but the 119 -seg-
ment design is very close. Nevertheless, in that same frequency range, 'eyeball average' stand-ing-wave ratios for $N=29$ are about 1.6 for $\nu=1.0$ and 1.65 for $v=0.4$, which are very good indeed. Thus, the least segmented antenna provides very robust swr performance at all frequencies

In summary

This article has investigated four design parameters for impedance-loaded wideband wire
antennas. Using the following guidelines to antennas. Using the following guidelines to
select these parameters when designing an impedance loading profile should provide a near-optimum wideband antenna.
First, the profile exponent v is very important in determining radiation efficiency. Lower val-
ues of v result in higher efficiencies, and the ues of v result in higher efficiencies, and the value for v is the smallest value that provides acceptable swr at frequencies of interest. Secondly, because the design frequency f_{o} is usually chosen close to the fundamental centre-
fed dipole resonance, it is somewhat surprising that higher frequencies generally result in much better radiation efficiency, especially for loading profiles with smaller values of v. Higher values of f_{o} also usually give better overall swr performance. The optimum value for f_{o} is the highest
value that provides acceptable swr at frequencies of interest.

Software on disk

Richard's PC software relating to this article, for computing loading profiles, is available on a 3.5 in disk. Send a postal order or cheque for $£ 10$ payable to Reed Business Information Group, to Wideband Disk, Electronics World Editorial Offices, Quadrant House, The Quadrant, Sultion, Surrey SM2 5AS.
Please don't forget to mention your name and address - some do!

Large diameter radiating elements provide much more bandwidth than thin ones, even without
impedance loading. A large diameter radiato makes it easier for a loading profile to provide the greatest possible bandwidth. If necessary large diameter conductors can be approximated by multiple parallel wires.
Finally, reducing the segmentation, that is, the number of discrete resistors used to approximate in slightly better radiation efficiency. The swr is not particularly sensitive to segmentation a 'low' frequencies, and it is slightly better with
increased segmentation at 'high' frequencies increased segmentation at 'high' frequencies.
For a thin antenna, 'low' frequencies are less than about 12 times the fundamental resonance and 'high' frequencies are greater. The desig
uideline for segmentation is to use the smalle
number of discrete resistors that meets the swr
objectives.
References
Alshuler, E. E., The Travelling-Wave Linear Antenna, IRE Transactions on Anternas and
Propagation, July 1961 . p324 Propagation, July 1961, p324
Wu, T. T., and King R. W. P. Antenna with Nonreflecting Resistive Loading, IEEE Transactions on Antennas and Propagation, May 1965, pp. $369-373$ (see also Corrections, p998, IEEE Trans. Ant. Prop., Nov. 1965) Impulsive Measurements, IEEE Transaccions on Anternas and Propagation, May, 1983, p438 4. Rama Rao, B., and Debroux, P. S., Wideband HF Monopole Antennas with Tapered Resistivity Conference Mine Communications to 3 October 1990 (MILCOM '90)
Rama Rao, B., Optimised Tapered Resistivity Profiles for Wideband HF Monopole Antenna 1991 IEEE Ant. \& Prop. Soc. Symposium, London, Ontario, Canada
Wideband Antennas, Electronics World, (UK) March 1997, p. 102.

- Abramowitz, M., and Stegun, L., Handbook of Mathematical Functions With Formulas, Graphs,
and Mathematical Tables, U.S. Department of and Mathematical Tables, U.S. Department of Mathematics Series 55 (AMS 55), Ninth Printing, November 1970, p231.

tre Autorouter

MultiRouter is "the best Autorouter that I have seen costing less than £10,000!" R.H. - (Willingham, UK)

- Award Winning MultiRouter uses the latest 32 bit, Shape based, Multi-pass, Shove-aside, Rip-up and Re-try Technology.
- 100% Completion where other autorouters fail!
- 100% routed 140 Components on a $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ board in less than 10 minutes! (75 MHz Pentium)
- Prices from £295! - Could Easily Pay For Itself On The First Project!

Number One Systems

 Write, fax, phone or e-mail for full information.UK/EEC: Ref: WW, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. e-mail: sales@numberone.com USA: \quad Telephone UK: 01480 461778 (7 lines) Fax: 01480493042

NOW AVAILABLE

 RANGER 2The Complete, Integrated Schematic \& PCB Layout Package
Windows Ranger 2
For Windows, 95 \& NT
New Hierarchical Circuit

- Split Devices • Gate \& Pin Swap

New Edit Devices in Circuit

- Copper Fill - Power Planes

Windows Ranger 2 with Specctra SP2 Ranger \& Specctra Autorouter provide the most cos effective PCB Design system avaiable.A
intuitive system at an outstanding price!

Windows Ranger 2 Upgrade
Upgrade your existing PCB Package to Windows

Ranger 2.

A compact mains powered unit with one balanced input and teri $A C$ and $D C$ isolated floating line outputs. Exemplary RF breakthrough specifications giving trouble
free operation in close proximity links.
Excellent figures for noise, THD, static and dynamic - Excell
IMD.

- Any d
- Any desired number of outlets may be provided at microphone level to suit certain video and audio recorders used at press conferences
- Meets IEC65-2, BS415 safety
*Advanced Active Aerial 4 kHz -30MHz *PPM10 in-vision PPM and chart recorder *Twin Twin PPM Rack and Box Units
${ }^{*}$ Stabilizers and Fixed Shift Circuit Boards for howl reduction *Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}{ }^{*}$ Stereo Variable Emphasis Limiter $3 *$ PPM 5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and movements.

SURREY ELECTRONICS LTD.
The Forge, Lucks Green, C
Surrey GU6 7BG
Telephone: 01483-275997. Fax: 276477

AUDIO DESIGN

Cable sonics?

Audio expert
Douglas Self reveals why he uses
Woolworths' mains cable to drive his speakers in this, the second of three articles on the interface between the power amplifier and loudspeaker.
oudspeaker cables are relatively simple hings - notwithstanding the haze of con troversy that often surrounds them. In the ive to adopt ever more complex pulse-testing relevance, the basic cable properties appear to have been overlooked. This is emphasised by he striking fact that the proponents of unlikey cable-hypotheses rarely even mention funlamental parameters like the resis inductance of their test specimens.
I looked at the first-order effects fir only then examined the details. This approach at least has the merit of novelty. Firstly, it is eyond doubt that an audio cable is not a transavsion line. Transmission line effects can he telephone business. In real rf work, such effects are usually conidered negligible until the frequency is high nough for the length of the line to reach one ixth of a wavelength. The wavelength o
0 kHz is 15 km , so unless your loudspeaker re over a mile away from the amplifier, there s no need to fret.
A length of cable has series resistance, series
inductance, and shunt capacitance as its major

parameters. A simple cable model is shown in fig. 1 and in Fig. 2a), where the series resisance and inductance, and the shunt capaciThe capacitance is shown concentrated after The capacitance is shown concentrated after
the resistance and inductance, where it will cause the most response variation; this is actually a very slight rise rather than a roll-off. This is due to interaction with the inductance. In practice the effect of this capacitance is
tiny compared with the roll-off due to the series inductance. A typical response change at 20 kHz is a fraction of a thousandth of a decibel, so the effect is negligible anyway. The amplifier is assumed to have zero output impedance unless otherwise stated.
It seemed worthwhile to confirm
It seemed worthwhile to confirm that this
position for lumped capacitance really is the worst case, and this was done by simulating the cable models in Fig. 2. A first approximation to a distributed model is Fig. 2b), where the cable is split into two halves. A slightly
more accurate version is Fig. 2c), with the cable now divided into four. Simulation confirms that Fig. 2a is the worst case for capacitative high-frequency lift; but the effect is tiny in all three cases. Further thoughts on cable apacitance are to be found in a separate sec

Cable resistance effects The first basic parameter is cable resistance, determined by the conductor material and its
total cross-sectional area. Copper is the obvious material, though silver can be used if you are rich and gullible enough. Silver is the most conductive metal but despite its cost has only 7% less resistivity than copper. It also presents some awkward problems with non-con
tarnish films, namely silver sulphide. If you want to reduce your cable resistance slightly, this is not an economical way to do it, compared with a minor increase in copper ross-section. I have seen mercury cables sughosepipes. In view of the insidiously poisonous nature of mercury vapour, one can only hope this wasn't taken seriously by anyone. Having rejected silver as ridiculously expenmatter of using enough area to get a suitably low resistance per metre. The main consequence of unwanted series resistance is frequency response perturbations due to the

Fig. 2. Speaker cable models: 2a) Circuit elements
combined into lumped combined into
components. 2b) Cable resistance, inductance and capacitance
are split into two are split into two halves, the first approach to a distributed
model. into four quartens, more closely approaching a
distributed model.
speaker impedance varying with frequency. The second basic parameter is cable induc ance, determined both by the conductor spac-
ing and their diameters. The equation for the inductance of parallel spaced cylindrical con ductors is:

$$
\begin{equation*}
L=4 \times 10^{-7}\left(1+4 \log \left(\frac{D}{\sqrt{R_{1} \times R_{2}}}\right)\right) \tag{1}
\end{equation*}
$$

in henries per metre. Variable D is the spacing while R_{1} and R_{2} are the radii of the cols tors. ${ }^{2}$
The main consequence of this series induc tance is a high-frequency roll-off with an 8Ω
load. Cables that deliberatly load. Cables that deliberately space the two ably, and this is not a good idea.
Fortunately, inductance increases slowly
with spacing. There is the theoretical possibil with spacing. There is the theoretical possibility of some sort of special interaction between cable inductance and loudspeaker behaviour,
but the practical inductances are so least two orders of magnitude below crossover inductor values - that this does not seem likely to be a problem in practice.

Cable investigations

As usual in audio, if you want some hard facts you have to get them yourself. As a a irst step, I
took myself to the local DIY superstore to find out what was on offer to those who looked no further for their speaker cables-ie 99% of the population.
The data I gathered is shown in Cable Table lot was labelled 'Speaker cable' shows just how remote Subjectivist cable neurosis is from the rest of the world
The cables measured in Cable Table 2 were btained from various sources. The resistance alues calculated here are slightly higher than those measured.
1 then measured some cables, standardising even large rooms. I used a Wayne-Kert 4210 LCR meter at 1 kHz . The two smallest cable sizes looked too weedy to bother with, and I stuck with my initial thought that the easiest and cheapest solution to hooking up your loud-
speakers is the now famous lawnmower cable speakers is the now famous lawnmower cable.
This is usually 6A two or three-core, each core being $30 / 0.18$, ie 30 strands of 0.18 mm diam-

Fig. 3. The geometry of three-core cable usage, showing how inductance reduction
works by reducing the effective conductor
ter copper, with PVC insulation. The first sample was 6A two-core, and it has a basic for a defunct lawnmower. Thi has a basic go-and-return (ie total loop) resis
tance of $178 \mathrm{~m} \Omega$ and an inductance of 3.2 H If we use the amplifier/output-inductor com bination examined in the first part of this arti$\mathrm{cle}^{3}{ }^{3}$ with a total dc resistance of $24 \mathrm{~m} \Omega$, the extra cable resistance degrades the so-called
damping factor from 330 to 40 . cable parameters quoted are for the total go and-return path.
This gives a flat attenuation of 0.20 dB , due
to the cable resistance to the cable resistance forming a potential
divider with the 8Ω load and a main due to the cable inductance forming an $L R$ low-pass filter with the 8Ω load, giving a further loss of -3 dB at 398 kHz . This corresponds to -0.01 dB at 20 kHz , which is negligible. Add an amplifier output inductor of $6 \mu \mathrm{H}$ to a
cable inductance of $3.3 \mu \mathrm{H}$ and the roll-off becomes -3 dB at 145 kHz , and the roll-off -0.086 dB 20 kHz . This demonstrates that even a maxi-mal-value output inductor combined with twincore cable does not pose a problem with an 8Ω resistive load. However, increasing either
inductance further might be unwise.

What to do with the spare conductor The second lawnmower cable was three-core. I suggest that the thing to do with the spare this obviously reduces the total resistance to
three-quarters of the original value, and a bit less obviously - to me anyway - also reduces the total inductance. I always parallel the ground return rather than the hot conductor, on
the philosophical basis that earths should be more solid than signal paths. Here, of course it makes little difference.
The reduction in inductance is explained by the geometry of the situation in Fig. 3, sug-
gested to me by George Chadwick. mal go and return conductors are A and B, then when third conductor C is connected, the return current divides in two. This is equivalent to the original current in a notional conductor
at a point D halfway between the B and C Distance A-D is $\sqrt{3} / 2$, or 0.87 , of $A-B$, so the effective conductor spacing is reduced. Putting this into equation 1 shows that inductance is reduced by 1.4 times. Measured reductions in inductance as in Cable Table 2 are 1.32
times, which is reasonable considering that the physical dimensions are subject to tolerances. Using two conductors only the resistance is $189 \mathrm{~m} \Omega$ and the inductance 3.3 HH , and the loss and roll-off much as the two-core sample.
Connecting the third conductor round-trip resistance to $142 \mathrm{~m} \Omega$ and the inducance to 2.5 HH . The damping factor improves from 40 to 50.
The total shunt capacitance between go and return conductors is 488 pF for the two-wire With three conductors, the frequency-ine cass tive loss is reduced to 0.153 dB , and the inductive roll-off is now -3 dB at 520 kHz , which is a nere 0.007 dB at 20 kHz .
The third sample was 13-Amp three-core cable, as used for connecting electric fires. It in only has 1.5 times the copper cross-sectiona area of 6 A , though a factor of 2.2 would be eeded for the same current density; presumccepted.
Using only two cores of 13A cable, five metres has a resistance of $132 \mathrm{~m} \Omega$ and inductance of $3.3 \mu \mathrm{H}$. Moving up to the larger cable from the increased cross-sectional as predicted inductance is unchanged. The flat resistive los is reduced to 0.14 dB , and the roll-off stays at 0.011 dB at 20 kHz .

The improvement over 6A cable with three

AUDIO DESIGN

13 A , resistance falls to $98 \mathrm{~m} \Omega$, the lowest so ar , and indar

Cook cable
The fourth sample, and the next step in cable
sophistication in my view, is the stuff you wire sophistication in my view, is the stuff you wire ookers up with. Cooker cable has a flat format with two heavy-gauge conductors and a much
lighter earth connection between them. This is usually called 'twin-and-earth'. For 5 m , the go-

Cable Table 2. Comparison of common domestic electrical cables, a coaxial alternative, and purpose-designed speaker cables.						
				Res loss	Inductive roll-off	Basic construction
Lawnmower1 6A 2core	178	3.2	569	0.2	0.010	W1×0.18mm
Lawnmower2 6A 2core	189	3.3	488	0.2	0.011	$30 \times 0.18 \mathrm{~mm}$
Lawnmower2 6A 3core	142	2.5	655	0.15	0.007	$30 \times 0.18 \mathrm{~mm}$
13-A cable 2 core	132	3.3	494	0.14	0.011	$25 \times 0.24 \mathrm{~mm}$
13-A cable 3 core	98	2.5	674	0.10	0.010	$25 \times 0.24 \mathrm{~mm}$
Cooker cable 2core	21	4.1	547	0.02	0.018	$7 \times 1.4 \mathrm{~mm}$
Cooker cable 3core	19	3.1	357	0.02	0.010	$7 \times 1.4 \mathrm{~mm}$
Coax RG58C 50 Ω	158	1.3	388	0.17	0.002	$19 \times 0.18 \mathrm{~mm}$
Van den Hul	120			0.13		$7 \times 21 \times 0.15 \mathrm{~mm}$
Sharkwire	400			0.42		$129 \times 0.10 \mathrm{~mm}$
Heywire	1200			1.21		$1 \times 0.6 \mathrm{~mm}$

cable, which has been recommended for speak er cabling ${ }^{5}$. Coaxial cable is not made wit anything like the weight of copper in cooke
cable, so its resistance is relatively high cable, so its resistance is relatively high at
158 mp . The 5 m inductance at $1.3 \mu \mathrm{H}$ is less than half that of the ordinary cables used two core style, though three-core usage closes some of the gap. The point is that the effects of cable inductance appear to be an order of magnitud
less important than cable resistance, so the less important than cable resistance, so the
lower inductance of coaxial cable is not the deciding factor.
Referring to Cable Table 2, the loss and roll-off data given here applies only to 85 feel for the size of the problems. It would be desirable to produce similar results for a rea seaker load, but they come in almost infinite variety - which one would you use?

Amplifier stability

There is anecdotal evidence that when became fashionable to use allegedly better sounding cables, several makes of 'high-end amplifier showed hf instability. This has bee ascribed to the greater shunt capacitance of some of the peculiarly constructed cables.
We will probably never know the truth of the matter - much as we will probably never know if there really was a 'transistor sound' in the sixties, allegedly due to crossover distortion But the shunt capacitance of even a ver
strange cable is so much smaller than the val ues that cause trouble, usually 100 nF and up,

[^0]that it is very unlikely to affect the stability of
an amplifier. an amplifier.
A much m the amplifiers involved lacked output induc tors, but the old cables had enough series resistance to isolate the amplifier from the capacitative components of the loudspeaker
impedance. The new cables - being in general much thicker - did not.
Omitting the output inductor is not a good idea; so long as it is included, instability from any capacitance should be impossible.

Skin effect audio cables is that their ac resistance is greater than that at dc. This is not due to cable inductance. What we are talking about here is real magnitude due to additional inductance. This increase in ac resistance is due to skin effect. The ac current in a conductor is not uniform across its cross-section, but concentrates in the outer part of it. This is because for an impedance at the conductor centre is greater han that at the surface, so the current is diverted towards the surface. You will have to take his on trust unless you want to explore some serious vector calculus. across a conductor dies current distribution with distance below the surface. At some skin depth d the current has fallen to $1 / e$ of its maxmum, and the situation is equivalent to a unihe same thickness d. Skin depth d may be determined from,

$$
d=\frac{1}{\sqrt{\pi j \mu \sigma}}
$$

$\underset{H}{\text { where }} \mu$ is permeability and σ is resistivity. Having found d from this well-established equation ${ }^{7}, 8$ it is simple to calculate the area of the annulus representing the equivalent conand thus find the increase in resistance, Fig 4 Note that this is a true frequency-dependent resistance - not an inductance - and does not have the phase shift that would accompany extra inductance.

Fig. 4. Skin effect in action. The effective conducting. area is defined by the point
where current density falls. to $1 / \mathrm{e}$. At audio
frequencies it is much less severe than shown here. The conductor is shown as stranded, and it is assume
the strands are intimate contact.

Taking 13A copper mains cable as an exam ple, equation 2 shows that below 13 kHz , the skin depth is greater than the cable radius, and here is no significant effect. At 20 kHz , th
skin depth is 0.47 mm , and the 0.6 mm . The cross , and the conductor radius Therefore resistance per metre only increase from $152 \mathrm{~m} \Omega$ to $160 \mathrm{~m} \Omega$, and this can have no ${ }^{\text {appectable consequences. }}$ ence of skin appear to believe that the pres ence of skin effect must mean that the conquite untrue.
Cable cross-sections other than circular give different results, but since the circular version has the minimum perimeter for a given area all other shapes give more surface, and so less
skin effect. This is why high-power rf stages often use flat copper strap connections.
Skin effect is relatively more significant for low-resistance cables, as current can move laterally more easily. For loudspeakers however,
the real criterion is the total absolute resistance the real criterion is the tota absolute resistance,
which is always reduced by using larger cable The conclusion must be that even in the worst case there will be no problem, and there is no justification at all for Litz-type cables. Skin effect is more significant in other tech-
nologies; it is vital at rf because the is so small, and hence silver-plating is well worthwhile. It is also important in 50 Hz power transmission, because of the low impedances
involved, and in some circumstances multiple parallel busbars are required to control the extra resistive heating.

Proximity effect

One further aspect of cable theory is the proxmity effect. This results from the interactio Proximity effect is similar to skin effect, but in his case the interacting currents are moving in opposite directions, causing the current distributions in ead conductor to crowd toward effective cross-sectional area of the cences the and increases its resistance. Again, the effect is an increase in apparent resistance as frequency The only referencesce increase in inductance. The only reference that I have found to th ohms per thousand feet ${ }^{\text {. }}$. The ratio between ac and dc resistance varies as,
proximity factor $=\sqrt{\frac{f}{R_{d c}}}$
(3)
where $R_{d c}$ is the dc resistance of 1000 ft whic for $5 \mathrm{~m} / 200 \mathrm{~m} \Omega$ lawnmower cables is 10.85Ω At 20 kHz , the proximity factor is therefor 2.9, which yields from an ac resistance abou \% greater than the dc value. This is of the ame ordd be equally neglieqibe. Once again, the effect is r nificant for low-resist is relatively more sig urrent mor low-resistance cables, as latera greatest problems arise in AC once more the greatest problems arise in AC power tran

Biwiring
In recent years, a loudspeaker cabling practice known as 'biwiring' has become fashionable. There is no evidence that it does any good, bu naturally this has not impeded its popularity. the hf and lf sections of the crossover separately accessible, biwiring uses two separate cables from the same amplifier output to drive two separate crossover inputs, as shown in Fig. 5.

The conceptual origin of this practice is dis closed by the similarity of the word to 'bi-amp-
ing' where separate amplifiers would be used

AUDIO DESIGN

for the high and low-frequency sections. Biamping has a rationale in terms of reduced amplifier intermodulation, the possibility of
sophisticated crossovers, and so on, but none of this applies to solid copper, so biwiring seems pointless.
It is conceivable that a loudspeaker could exist which interacted in some undesirable way with cable inductance, so that separate induc tances in separate cables eased the problem. normal cables seem to make this very unn by

Cable capacitors

Cable Table 2 shows that the shunt capacitance in normal cables is low - at less than $150 \mathrm{pF} / \mathrm{m}$. Simulations were done on the circuit models in Fig. 2, using some worst-case cable parameters
of 0.32Ω resistance, 3.3 H inductance, and 655 pF shunt capacitance.
"If these R, L, C parameters are treated as 'Iumped' components, the worst case is Fig 2a, with all the capacitance lumped after all the
inductance. This gives a rise of 0.00028 dB 20 kHz . Figure 2 b gives 0.00021 dB and Fig. 2 c 0.00018 dB ; as the model more closely resemless.
These tiny response deviations appear demonstrate beyond doubt that cable shun capacitance is so small its effects are completely irrelevant. Therefore all the speculatio
bout second-order capacitance effects - suct as dielectric absorption -must be completely pointless.
Higure 6 shows the resistive loss of 0.34 d able parameters and an 8Ω foad the above and 655 pF capacitance versions. You can see that the two curves are virtually identical.
Crystal structure
There has been much debate about the crystal tructure of copper and whether this or its oy gen content can affect anything. Most of it ha hown what can only be called an abysma illurgy.
Crystal boundaries in copper and not act as mysterious diodes, and the simples of experiments proves this beyond doubt. Much of the suspicion directed towards the xides of copper probably stems from fain tion relied on a carefuly-grown cuprous oxide film in pressure-contact with a lead washer, and this has no relevance to the bulk copper in cables.

In summary

All the effects described here are real though nlikely to ever be audible under even the mo critical conditions. The use of a resistive load
only is obviously open to objections, which will be addressed in a forthcoming piece on speaker impedance curves and their implications. It emerges that even a bit of cable can be
complicated if examined in detail. For more details on some of the issues raised here, see reference 11. There is, however, no sign of anyhing mysterious, incomprehensible, or indeed audible. If you examine a real first-order effect, such as response variation due to cable capaci-
tance, and find it far below any possibility of perception, then speculative second-order effects such as dielectric absorption in this capacitance can surely be dismissed.
There is no justification for treating cables as
transmission lines, and no need for secial transmission lines, and no need for special
cables that cost insulting sums per metre. Silver appears to have no possible justification for its use. The only factors that count are series resisance and inductance. The first can only be minimised by heavy-gauge cables. Inductance
offers more possibilities for its reduction; keep the go and return conductors at minimal spacing, use multiple conductors, or resort to a coaxial structure.
From the considerations given here, the best speaker cable would seem to be 13A cable with tance requires cooker cable, which is bigger and much less flexible, and so harder to hide. If cable inductance is your main concern, then G58C coaxial cable certainly has less of it, cable. Just
Just for the record, my usual speaker connections are 13A mains cable, with neutral and tance, purchased from Woolworths in 1972. Let t never be said that I am not at the leading edge

References

1. Greiner, 'Amplifier-loudspeaker interfacing,

JAES, May 1980, pp. 310-315.
Electrical Ensineers 10th edn, McGaok for
Electrical Engineers 10th edn, McGraw-Hil
1968. Section 2-81, inductance of parallel
wires.
3. Self, D, 'Amplifier Outputs \& Speakers' 4. Mr George Chadwick MIEE, Private communication.
5. Bateman, C, 'Measuring speaker cables,

Electronics World, Jan 1997, p. 56.
6. Ford, E, 'Speaker cables pulse tested,'
Electronics World, Dec 1996, p. 930 .
7. Fink, D, ed., Standard Handbook for Electrical

Engineers, 10th edn, McGraw-Hill 1968.
Section $10-425$, skin effect.
. Morrison, R, Grounding \& Shielding
Techniques in Instrumentation, Wiley
Interscience 1986, pl66. ISBN 0-471-83805-5 9. Fink, D, ed., Standard Handbook for Electrical Engineers, 10th edn, McGraw-Hill 1968 Section $10-426$, proximity effect.
0. Self,D, Letter: 'Twisted cables,' Electronic

World, Mar 1997, p. 260. Impedance
Davis, F, 'Effects of cable, loudspeaker, \& amplifier interactions,' JAES, June 1991, p. 461.

Take a look at Quickroute $3.6 \mathrm{PRO}+$ and you might be surprised
For iust $\$ 399^{\circ}$. capture, 1 to 8 layer autorouting, net-list import/export, link simulators, CAD/CAM file export, connectivity checking with automatic upatating of a PCB from a schematic, and over 440
symbols. Further library pack ore also available symbols. Further library packs are also available ($£ 39$ ' per
pack) and our new plug in 32 -bit autorouter SMARTRoute 1.0 pack) and our new plug in 32 -bit autorouter SMARTRoute 1.0 for
just $\Sigma 149^{\prime}$ rated in catagory ' A ' by Electronics World (Nov 96). Prices exclude post \& packing and V.A.T.

Tel 01614760202 Fax 01614760505 요 ex max wwW: www.quickroute.co.uk EMail: info@quicksys.demon.co.uk Quickroute Systems Ltd. Regent House
Heaton Lane Stockport SK4 1BS U.K.

CIRCIE NO. 125 ON REPIV CARD

Micro Video Cameras Direct from the sole
 authorised importer

* Wire up in minutes. Only three connections ground, +12 V and composite video output for feeding straight to your Scart connector or monitor input.
* Tiny and lightweight. Ideal for surveillance and security, the A-721 Micro-video camera pcb measures just 32 by 32 mm . The complete camera weighs only 30 g .
* Integral lens. 3.6 mm 5-element lens, interchangeable with our wide range of replacement lenses.
* Low cost. The A-721 Micro-video camera costs just $£ 65$ - including VAT.
* Incredible low light performance.The A-721 has a light sensitivity of < 0.1 lux (normal light).
* Reliable. The A-721 is manufactured using state-of-the-art equipment and under strict quality control.
* Fast delivery mail order. We endeavour to
dispatch all orders same day.
* 12 months guarantee.

And more This is just a small sample of the huge range of
Ring 01159864902 now or fax us on 01159864667 - Pr fax us on 01159864667

The A-721-S Micro-video camera with lens outputs
composite video and costs composite video and costs
just $£ 65^{*}$

Priced at $£ 125^{*}$, the PC-CAM colour camera is deal for video ${ }_{P C}{ }^{\text {conferencing adigitising. }}$

With the same performance as the $A-721-S$ the $A-721-P$.
is ontimised for use as is optimised for use as a just £65*
*** Free Catalogue Send an A4 envelope with 1st class
stamp marked 'Camera catalogue' to receeive comprehensive data on our
entire range of cameras and dideo
surveillance equipment.
Anchor Supplies Ltd. Callers are welcome at our massive showrooms on weekdays from

A Probien PHASE

When designers tackle Wien bridge oscillators, they often overlook phase shift in the amplifier. But simply relying on textbook equations can result in frequency errors up to 70\%. Bryan Hart explains the importance of amplifier phase shift and presents a practical way of dealing with it.

Fig. 1. Wien-Bridge oscillator using an op-
amp with gain A_{v} as the gain block.
ture coefficient.
The Barkhausen criterion for sustained osci
lations to occur at the output of G_{v} is,
$\frac{G Z_{p}}{Z_{s}+Z_{p}}=1 \angle 0$
Negative feedback around A_{v} ensures that,
$G=\frac{A}{1+A b_{o}}$
where
where
$b_{0}=\frac{R_{A}}{R_{A}+R_{B}}$
Initially, A_{v} is assumed to have an infinite
input impedance. As shown by the linearised
Bode gain-plot in Fig. 2, the dc and low-frequency gain is A_{o}, the cut-off frequency is ω_{c},
and the unity-gain frequency is ω_{T}, which is approximately $A_{0} \omega_{c}$.
approxim
Hence,
$A=\frac{A_{0}}{1+j\left(\frac{\omega}{\omega_{c}}\right)}$

$$
\approx \frac{1}{\left(\frac{1}{A_{o}}\right)+j\left(\frac{\omega}{\omega_{T}}\right)}
$$

Substituting this value of A in (2) gives,

$$
G=\frac{1}{b+j\left(\frac{\omega}{\omega_{T}}\right)}
$$

where,

$$
b=b_{o}+\frac{1}{A_{o}}
$$

For the Wien network,
$Z_{P}=\frac{R_{P}}{1+j \omega C_{P} R_{P}}$
and
$Z_{s}=R_{s}+\frac{1}{j \omega C_{s}}$
so, after routine algebraic manipulation, it fol-
lows that, lows that,
Putting it into practice In practice, equation (10) may be
regarded as exact since the non-zero input capacitance and non-infinite resis-
tance of C_{y}. C_{p} and R_{p} respectively. Also, $A_{0} \omega_{C}$ dif fers from ω_{T} by less than 0.005% for A_{0} Typically, A_{0} is greater than 10000 . In the case of op-amps with the input-cir-
cuit architecture of the classic 71 . cuit archtecture or the classic 741 op-
amp, Ao is very large - at 100000 - but subject to a large uncertainty.
Nevertheless, ω o is still closely-defined, being determined by the input stage give dominant-lag frequency-compensation ${ }^{2}$
ω_{0} / ω_{R} calculated from (13, 14). Clearly, for a value of u comparable with unity, the effect of amplifier phase shift on ω_{o}
can far exceed the effect of component tolerances. From (8 c), a $\pm 1 \%$ resistor tolerance and a $\pm 2 \%$ capacitor tolerance leads to a 3% tolerance on ω_{R}, and hence ω_{0}.
For operation at around 1 MHz , it is
not possible to meet $\omega_{0} / \omega_{\mathrm{R}}=1$ using available voltage-feedback op-amps because it requires an f_{T} of around 100 MHz .
Discrete/hybrid component amplifiers,
or possibly current-feedback or possibly cur
are required.
When u is much less than unity b is approximately 0.333 . In this case, a binomial expansion of (13) that discards all but the first two terms yields the
$\frac{\omega_{o}}{\omega_{r}} \approx 1-4.5 \frac{\omega_{R}}{\omega_{r}}$
$\frac{\omega_{o}-\omega_{R}}{\omega_{R}}=-4.5 \frac{\omega_{R}}{\omega_{R}}$

Table 1. Spot values, calculated from equations (13) and (14), rounded up to three decimal places.		
0	0.333	1.000
0.001	0.333	0.996
0.01	0.333	0.958
0.1	0.317	0.717
0.2	0.288	0.570
0.5	0.185	0.331

$$
\frac{Z_{p}}{Z_{s}+Z_{p}}=\frac{1}{m+j n\left[\left(\frac{\omega}{\omega_{R}}\right)-\left(\frac{\omega_{R}}{\omega}\right)\right]}
$$

(7)
where
$m=1+\left(\frac{R_{s}}{R_{p}}\right)+\left(\frac{C_{p}}{C_{s}}\right)$
$n=\sqrt{\left(\frac{C_{p} R_{s}}{C_{s} R_{p}}\right)}$
$\omega_{R}=\frac{1}{\sqrt{C_{P} C_{S} R_{P} R_{S}}}$
Frequency ω_{R} represents the resonant point of the Wien $R C$ network and the frequency of shift.
Using (5) and (7) in (1), the condition for scillation in the present case is,

$$
\begin{aligned}
& {\left[b+j\left(\frac{\omega}{\omega_{\tau}}\right)\right] \times\left\{m+j n\left[\left(\frac{\omega}{\omega_{R}}\right)-\left(\frac{\omega_{R}}{\omega}\right)\right]\right\}} \\
& =1+j 0
\end{aligned}
$$

(9)

From this equation, it follows that oscillations can be sustained at a frequency
$\frac{\omega_{o}}{\omega_{R}}=\sqrt{\frac{n b}{n b+m u}}=\frac{1}{\sqrt{1+\frac{m u}{n b}}}$
where $u=\frac{\omega_{R}}{\omega_{T}}$
(10)
(11)
(8b)

Also from (9), the value of b to be used in uadratic quadratic equation,
physical significance of this equation has no positive significance since b is, by definition, The popular practical choice,
$R_{\mathrm{P}}=R_{\mathrm{S}}=R, C_{\mathrm{P}}=C_{\mathrm{S}}=C$
gives,
and
$\omega_{R}=\frac{1}{C R}$
Then, (10) takes the simpler form,
$\frac{\omega_{o}}{\omega_{R}}=\sqrt{\frac{b}{b+3 u}}=\frac{1}{\sqrt{1+\frac{3 u}{b}}}$
Similarly, (12) becomes,

References (2nd edition) McGraw-Hill, 1987, pp 663-4.
2. Op-cit., pp. 637-639. 2. Op-cit., pp. 637-639
the
(13)

COLOMOR (ELECTRONICS) LTD.

Celebrating 30 years 1967 - 1997
Over 6,000 types of valves in stock. We also sell oil filled
transformers, chokes, block filled capacitors, diodes, ICs,
Set of RA17 Valves ransistors, etc

Set of RAI7L Valves
AR88 and RA17L Spares-please send sae for list
Hewlett Packard Microwave Counter 5342A
£1,292.50
9904 Timer Counter 10 HZ to 50 MHZ
9913 Timer Counter 10 HZ to 200 MHZ
9914 Timer Counter 10 HZ to 200 MHZ
9915 Timer Counter 10 HZ to 520 MHZ
9916 Timer Counter 10 HZ to 560 MHZ
Wharger Type CC 306C, 14 hour timer, $£ 352.50$
current $0-600 \mathrm{~mA}$
Tubes
$£ 47.00$

DBM91 - GEC
£11.75
Hewlett Packard CRT Stock No. 5083-1952, 4" $\times 5$ " rectangle
Magnetron M5028
£235
Litton T.W.T. Type L376
£POA
Oscilloscope Probe Kit X1 X10 switchable 15 \& 60 MHZ £P14.10
All prices include VAT. Carriage extra - on application
170 Goldhawk Rd., London W 128 HJ
Tel: 01817430899 Fax: 01817493934
Email - giacomelli@colomor.demon.co.uk

STEWART of READING
STEWART of READING
10 WYKEHAM ROAD, READING, BERKS. RG6 1 PI

Radio Technology Direct
Top quality top technology, top service. That's our commitment
to you. We build both standard and custom mocules and ship to you. We build both standard and custom mooulus and ship
direct. Weve been dong so for 20 years. No-one is better. Every product is made in England, with pride.
Here are some of our products. To order, just ring us direct (credt cards accepted).
II you want something you don't see here, ting us. We can
amost certainy heep.
almost cerainy help.

2550

RSX450

Intelligent
Radio Modem

- 500 mW output

9600 baud on air data rate

- Fully synthesised
${ }^{8} 450$
\triangle
Telephone: (0118) 9268041. Fax: (0118) 9351696
VISA

Hands-on Internet

Better mosfet models, new amplifier designs and improved circuit simulation software are the topics of Cyril Bateman's Internet column this month. Cyril also discusses a new search engine enhancement that should save you a lot of wasted surfing time.

The rapid growth of industrial and commercial Interne web pages, together with the fashion for large, more ed the speed recently gained from using faster modem access. Perhaps more importantly it has much increased the difficulty in locating data.
To counter this, the keyword search engines continue to add both storage and functionality to their systems. The inevitable
result is that a search now returns with ever more matches. Most keyword search engines encourage use of Boolean controlled keywords. Thus a search can become well focused If your chosen control words match those required by the earch engine. If unmatched the search useless.
Alta V is
now added their 'Live Topics' facility. Live topics, also called 'Search Wizard', can be used with text only or Java enabled browsers. It provides a list of matching keywords to select or de-select for a more refined search.
These Iive topics words are not pre-defined, but are 'dynam-
cally categorised' by the search engie keywords found in the documents identified in your original search result.

Where to look

Alta Vista Search Engine The Human Search Engine Deep-submicron MosFet Research BSIM3 Group Penzar Development Beige Bag Software LSI Logic Pass Laboratories
High Fidelity Engin 0 High Fidelity Engineering
http://www.altavista.digital.com
http://www.humansearch.com http://rely.eecs.berkeley.edu:8080/researchers/sinitsky http:///rely.eecs.berkeley.edu:8080/bsim3www htpp://www.sivaco.com $\mathrm{http}: / / \mathrm{www} . \mathrm{beigebag.com/b2spice2.htm}$ http://www.Isilogic.com http://www.passlabs.com

Using Live Topics
To illustrate the new search Boolean search using two keywords, +circuit +simulator. This search found docu-
ments containing 541426 ments containing 541426
occurrences of circuit and 115 958 for simulator, spread over 9000 document pages - far too many for me to digest. While live topics is with-
held for finds less than 200 documents, for this search it
was of course offered me. Immediately under the 9000 doc
ument statement, I was given three choices, 'tables' for JavaScript enabled browsers, 'text-only' for any browser or 'help'.
Choosing tables resulted in a JavaScript interface of a box showing my original search words and tables of selectable
sub-keywords, grouped under major headings. AltaVista advise selecting only one or two words, then repeat searching I chose to include schematic and analog, then exclude vhdl, Vlsi, eda, embedded, chip, microprocessor, microcontrolle and emulator. This revised search returned only 100 document pages - much more suited to my needs, Fig. 1 thought of many of these keywords. I would certainly not have deselected. This dramatically demonstrates the value of the live topics words, and the power of this new technique, which is unique to AltaVista
Using the latest browser versions, a slightly different Java your system. It works in a similar way to that shown applet to ther improves the versatility of the software by providing a choice between table or graph based lists of the live topics whords.
Should all the on-line search techniques described to date fail, help is to hand in Internet's equivalent of your friendly
local librarian. A new website, HumanSearch local librarian. A new website, HumanSearch ${ }^{2}$, was stand
seven students of the University of Rhode Island
Intended to overcome the search problems which resul from the rapidly increasing Web document base, - of researchers free of charge - to search for any topic on your behalf. One particular speciality search they can perform is lost person tracing.
To use this unique search offering, simply fill in the one page questionnaire. Their team of skilled searchers will work on youls, Fig 2. Simulation and design software
My AltaVista live-topics search revealed a possible answer to Ian Hegglun's mosfet question, also three Spice based circuit sim
In the May issue, Ian asks whether level-three mosfet mod -
els and/or Electronics Workbench 5 , can accurately model in the crossover region. All Spice simulator-engine core software originates from The University of California at Electronics Workbench version.
For historical reasons, mosfet models, together with relevant core simulation software, are less well developed than those for bipolar devices. Berkeley currently has two mosfet simulation projects. A research project to investigate energy deep-submicron mosfets ${ }^{3}$.
A second program under the generic heading of BSIM 3^{4} is responsible for actual BSIM implementations in Spice. While the 3F5 core has been BSIM compatible for some time, the
BSIM3 level 3 V 3.1 mosfet feature was added only in BSIM3 level 3 V 3.1 mosfet feature was added only in
February this year. As a result, it is necessary to carefully check the exact status of 3F5 based simulators.
Silvaco ${ }^{5}$ produces the SmartSpice simulator and advanced Spice models. SmartSpice fully supports BSIM3V3.1, has enhanced both the physical moder used and its numerical Spice model technology. Spice model technology.
The SmartSpice simula
model eliminates certain negative capacitances found using

$\begin{aligned} & \text { Fig. 2. Your } \\ & \text { friendly }\end{aligned}$ friendly
access, the access, the
HumanSearch HumanSearch
web librarians. When automated search engines
fail, why not try a search via humans?

Fig. 3. Silv
claims claims Spice Model Technology. This company's
version is version is improved compared to standard

TopSPICE for Windows

Fig. 4.
TopSpice, the
affordable Spice based
analogue analogue
simulator. Unusually,
TopSpice
TopSpice
provides
 can use 'S'
Parameters.

Fig. 5. The B2 Spice Version 2 simulator complete with Symbol and Model
editors. Download and evaluate the trial version of this professional simulator

Fig. 6. Digital Camera on a chip - result of co-operation between two
the Berkeley version. The company has also enhanced the impact ionisation current model for both short and long channel devices, Fig. 3.
TopSpice for Windows ${ }^{6}$ is a 32 -bit simulator offering anaoghematic capture. Its built in logic simulatars, together with reduces mixed-mode simulation times Unusually this affordable simulator includes a Smith chart post processor able to handle 'S' parameters, Fig. 4 .
Version 2 of B2 Spice' is available both for Windows and Macintosh. This simulator helps overcomes model availability problems by including both model and symbol editors. A
4Mbyte download trial version is available. The Windows version requires that either Access 7 be preinstalled, or their DAO program, which is also available to download, Fig. 5.
Circuit applications
As explained by Leslie Warwick in the July issue, although video still cameras offer the ideal method to input illustrations

into engineers reports, those offering better than VGA reso lution are expensive compared to comparable quality conventional film cameras. In part this cost results from digital functions requiring a number of integrated circuits. Following Logic, ${ }^{8}$ this looks set to change.
The DCAM-101 chip incorporates all the major digital func tions needed to make a high resolution camera, reducing cost and providing real-time operation rather than the delays inherent in other designs.
This chip handles high resolution charge-coupled device arrays up to 2000 by 2000 pixels, can capture, compress to
JPEG, and store 3.3 million pixels per second at 24 bits/pixel JPEG, and store 3.3 million pixels per second at 24 bits $/$ pixel. lower cost cameras but with improved resolution Fig. 6 . Following the recent strong interest in audio topics and Professor Leach's low transient intermodulation amplifier design in the September issue, I now include two quite did ernet.
Nelson Pass, of PassLabs, ${ }^{9}$ has considerable experience in audio
amplifier design. His Web page includes a do-it-yourself section ffering a free choice from four dif
fering variations on his 'Zen' amplifier. These choices are the Class A, A-40, A75 and Citation 12 designs.
Since recent published designs have tended to involve severa
stages with resultant complexity, have chosen to show his minimal istic 'Zen' approach, Fig. 7. Finally for those who prefer thei active devices to run visibly hot,
another novel approach is the "sin-gle-ended tube amp' from High Fidelity Engineering. ${ }^{10}$ Design con siderations and circuit for this ongoing design can be found on Decware's page. This amplifier
trades off the number of active stages, against dc current desig complications in the output trans orme

Working with microwaves

Boris Sedacca looks at the problems involved with developing circuits for microwave frequencies - where capacitors and inductors become tracks on the pcb.

The ultimate test of any electronic gadget tion package will prove immensely helpful.
is whether or not it works when it is Conventional electronics CAD packages are there is an exhaustive list of equipment to empty the deepest pockets. This is particularly true with microwave gadgets. But if you can beg, borrow or steal time on scalar network analyser and sweep generator, you can build something fairly cheaply. Most of
the work is in the design and software simula tion, and computer time is relatively plentiful. Obtaining the right software again depends on the depth of your pocket. Microwave design software tends to be expensive, but you from the supplier.

Introduction

Why would you want to get into microwaves? Well, for a start you can eliminate many components.
If you
and beyond, then you can that works at 5 GHz advantage of microstrip technology is that the geometric shape of track on a substrate determines whether it behaves as a capacitor, inducFewer physical components means lighter weight too. And microstrip is compatible with surface mount technology.
The downside? Producing a design is a lot more complicated. With the right design cal-
culations, you can go straight into a CAD package like AutoCad and produce a mask, but before you do that, a microwave simula-
of little use at microwave frequencies. simulation software market are microwav oftware's Serenade 7 and Hewlett Packard's Series IV. First a little background.
Transmission lines
If you strike an ' A ' tuning fork - i.e. one with uned to A thano or guitar string that is also ecause of the string will vibrate in tune ated by the sound pressure waves propa acts as a transmission line. The surrounding a In as amilar way a lair ing an alternating signal can wires carry electromagnetic wave through the air that can excite ac through an aerial at a particular dis ance away from the current source. mpedance other than its characteristic mpedance, you get reflection.
Distributed amplifiers
To widen bandwidth, rf design engineers oday have a method available called dis tributed amplification. Although distribute anpifiers involve microstrip technology, they re easy to set up on monolithic microwave integrated circuits, or MMICs, and much more did not exist of course, when Percival ${ }^{1}$ origi nally patented his distributed amplifier in

1937, but apart from that, very few modifications of the original concept have surfaced. The distributed amplifier produces relativebut yields significantly through the ingenious use of the active devices' parasitics. Unlike conventional amplifiers, the higher the frequency it operates at, the better it works.
The problem is that it needs matched transmission lines and this is difficult if not impos-
sible to implemient in hybrid form. It only works efficiently if the parameters of every one of those transistors are identical and that can only be guaranteed by having them all from the same GaAs substrate. Even if they to be uniform.
GaAs fets capable of operation up to 100 GHz have useful amplifier gains limited to around 10 GHz . Ayasit ${ }^{2}$ has provided a simstage fet travelling wave amplifier In a fourcuit, microstrip lines are periodically loaded with the complex gate and drain impedances of the fets, forming lossy transmission line and properation constant Fig 1 . mpedance and propagation constant, Fig. 1
gate line travels down the line to the other end where it is absorbed by the terminating impedance. However, the gate circuits of the of the signal along the way Thicant portion sampled by the gate circuits at different phas-

Fig. 1. The distributed amplifier: better gain and more bandwidth at higher frequencies.
$\xrightarrow[\substack{\text { Fig. 2. The FET as a two-port, } \\ \text { four-terminal device. }}]{\substack{\text { ald }}}$

Fig. 3. CAD-style schematic for sixth-order Chebyshev filter on microstrip.

-

uado

es - and generally at different amplitudes - is transferred to the drain
transconductance of the fets.
If the phase velocity of the signal at the drain line is identical to the phase velocity of he gate line, then the signals on the drain line dd. The addition will be in phase only for the forward-travelling signal.

-parameters

microwave transistor's S-parameter specifications is essentially a table of its behaviour at different frequencies, which allows us to
interpret it as a two-port, four-terminal device where a_{1} and a_{2} are waves entering the device at ports 1 and 2 , and b_{1} and b_{2} are waves leav ing the device, Fig. 2.
The main columns of the individual rows of he table contain the following informatio
$\begin{array}{ll}\text { Input reflection } & S_{11}=b_{1} / a_{1} \\ \text { Forward gain } & S_{2}={ }_{1} \\ S_{1}=a_{1}\end{array}$
Forward gain $\begin{array}{r}\mathrm{S}_{21}=\mathrm{b}_{2} / a_{1} \\ \text { Output reflection } \mathrm{S}_{22}=b_{2} / \mathrm{a}_{2}\end{array}$
Reverse gain $\quad \mathrm{S}_{12}=\mathrm{b}_{1} / \mathrm{a}_{2}$
The first three are the most important, with he last, S_{12} usually being so close to zero that These relationships can be represented in the rm of an equation $[\mathrm{b}]=[\mathrm{S}][\mathrm{a}]$ and this can be extended into a matrix,
$\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=\left[\begin{array}{ll}S_{11} & S_{12} \\ S_{21} & S_{22}\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$
For maximum power transfer, we need conju-
$\left[\begin{array}{ll}S_{11} & S_{21}\end{array}\right]\left[\begin{array}{ll}S_{11}^{*} & S_{12}^{*} \\ S_{21} & S_{22}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left.\left[\begin{array}{lll}S_{12} & S_{22}\end{array}\right] S_{21}^{*} S_{22}^{*}\right]=\left[\begin{array}{ll}1 & 1\end{array}\right]$
As an example, the Mitsubishi MGFI303B GaAs fet which retails around $£ 5.50$, has the the table,

Fig. 4. Simulated filter response for the above schematic, Fig. 3. Grey curve is S_{21}, the forward-transfer gain while the black curve is S_{11} - input reflection.

fig. 5. Actual
for gain, S 21 .
$S_{11}=0.704 \angle-163.1^{\circ} \quad S_{21}=1.712 \angle-17.1$ $S_{12}=0.082 \angle 20.1^{\circ} \quad S_{22}=0.584 \angle-138.2^{\circ}$ These are vectors normalised to chreter tic impedance of 50Ω For maximum power transfer, matching input and output network
$S_{11}^{*}=0.704 \angle 163^{\circ}$ and $S_{22}^{*}=0.584 \angle 138.2^{\circ}$ respectively. But before you do that, you need bandpass filters at both ends - at the input to stop unwanted frequencies being amplified, and at the output because the amplifier itself

Filter design and simulation
As wideband amplification is being looked at here, consider a centre frequency f_{0} of 10 GHz and a passband of 8 to 12 GHz for this example. In addition, assume that the signal is to be
attenuated to less than -10 dB at 78 GHz attenuated to less than -10 dB at 7.8 GHz and
12.2 GHz respectively and that the passband ripple is to be less than 1 dB .
This gives a fractional bandwidth

$$
\delta=\frac{f_{2}-f_{1}}{f_{0}}=\frac{12-8}{10}=0.4
$$

and a frequency transformation from the lowpass prototype filter to the bandpass filter,

$$
\frac{\omega_{i}}{\omega_{c}}=\left[\frac{2}{\delta} \cdot \frac{f_{i}-f_{0}}{f_{0}}\right]=\left[\frac{2}{0.4} \cdot \frac{7.8_{i}-10}{10}\right]=1.1
$$

so,

$$
\frac{\omega_{i}}{\omega_{c}}-1=0.1
$$

For a full expl
For a full explanation of these equations, refer The last value gives us an X -axis co-ordinate for reading off a chart of Chebyshev filter characteristics. Matthaei ${ }^{4}$ et al have produced charts and tables for passband ripple from 0.01 dB to 3 dB . In this case we are looking at
a ripple of 1 dB , and reading off -10 dB attenuation on the Y-axis gives the order of the filter $n=6$. From that we get seven g-values from a table of prototype elements, plus a value for $g_{0}=1$, as follows:
$g=(12.14561 .10413 .0634$
$1.15182 .93670 .81012 .6599)$
At this stage, the calculations become incredibly tedious, so I recommend the use of a maths package like MathCad or MatLab.
here can be that the equations are normally hidden from the user. I used MathCad, but for heavyweight engineering work, you may want As I am discussing using parallel-couple or edge-coupled, microstrip lines instead of nductors and capacitors, the above values are converted 1 seven admittance inverter, or J ,
parameters using a characteristic impedance of $Z_{0}=50 \Omega$ as follows. For the first coupling structure,

$$
J_{0}=\frac{1}{Z_{0}} \cdot \sqrt{\frac{\pi \delta}{2 g_{0} g_{1}}}
$$

for the intermediate coupling structures with
$J_{k}=\frac{1}{Z_{0}} \cdot \frac{\pi \delta}{2 \omega_{c} \sqrt{g_{k} g_{k+1}}}$
and for the final coupling structure,
$J_{6}=\frac{1}{Z_{0}} \cdot \sqrt{\frac{\pi \delta}{2 g_{6} g_{7}}}$
so,
$J=\left(0.0118 .147 \times 10^{-3} 6.833 \times 10^{-3} 6.69 \times 10^{-3}\right.$ $6.833 \times 10^{-3} 8.147 \times 10^{-3} 0.011$).
Note the symmetry of the coupled sections.
Now the seven odd and even-mode impedances

Fig. 7.
Simulated Simulated
MGF1303B GaAs fet amplifier
response.
Grey curve s_{21} is S_{21} is
forward-
transfer transter gain
while the while the
black one is black one is
s_{11}, the input
reflection reflection.

can be worked out with $k=0 . . .6$ as follows

$Z_{00_{k}}=Z_{0}\left(1-J_{k} \times Z_{0}+\left(J_{k}\right)^{2} \times\left(Z_{0}\right)^{2}\right)$ and,
$Z_{0 e_{k}}=Z_{0}\left(1+J_{k} \times Z_{0}+\left(J_{k}\right)^{2} \times\left(Z_{0}\right)^{2}\right)$

$Z_{00}=(37.5837 .92938 .7438 .87$

 $38.7437 .92937 .58)$$Z_{0 e}=(91.58278 .66672 .91872 .319$ 72.91878 .666 91.582) From this you can obtain the widths and spacings in millimetres, as well as the odd and even-
mode permittivities. In turn you can then work mode permitivivies. In urrn you can then work
out the lengths of the individual microstrip cou-pled-section by looking them up in a table, or
by keying the figures into a specific microwave design package such as Serenade 7 or Series $I V$. The following figures are from Serenade 7's transmission lines utility,
$w=(.291 .382 .429 .434 .429 .382 .291)$ $s=(.114 .169 .219 .226 .219 .169 .114)$
$\varepsilon_{0}=(5.84655 .909859585$ $\varepsilon_{0}=(5.84655 .90985 .9585$
$\left.=\begin{array}{rl}5.96485 \\ 5.9585 \\ 5.9098 \\ 5.07465\end{array}\right)$
7.34377 .25567 .0714)

These figures are based on $R T$ Duroid
-30.00
 gain (S21)
copper-clad substrate that can be etched in a
similar way to convention similar way to conventional pcbs. Although marketed as a prototyping material for
microstrip, RT Duroid is good enough for many mainstream production applications. In this case, the substrate's thickness - height h - is 0.635 mm , copper track thickness, t, is 0.008 mm , and relative permittivity $\varepsilon_{\text {is }}$ is 10.5 .
It is assumed that centre frequency It is assumed that centre frequency
10 GHz , the free space wavelength,

$$
\lambda_{0}=\frac{c}{f_{0}}=\frac{3 \times 10^{8}}{10 \times 10^{9}}=0.03 \mathrm{~m}=30 \mathrm{~mm}
$$

$$
\begin{aligned}
& J_{0} \\
& \text { where } c \text { is the velocity of electromagnetic }
\end{aligned}
$$

$$
\begin{aligned}
& \text { waves in free space. } \\
& \text { Now you can wort }
\end{aligned}
$$

mode substrate
giving,
$\lambda_{o}=\left(\begin{array}{ll}0.012 & 0.012 \\ 0.012 & 0.012\end{array} 0.01200 .0120 .012\right)$ and
$\lambda_{e}=(0.0110 .0110 .0110 .0110 .0110 .0110 .011)$ Hence the average substrate wavelength
$x_{41}=0.012 \mathrm{~m}=12 \mathrm{~mm}$. The microstrip sections $\lambda_{A 1}=0.012$ wavelength and need to bection ened to take account of discontinuities like the pen-end effect and step widths, involving more tedious calculations which the reader ncluded here for lack of space. The Serenade 7 schematic in Fig. 3 shows he final dimensions of the filter in the variables block, or VAR. Starting with the contro blocks at the top, FREQ sets the sweep gen-
erator from five to 15 GHz in increments of 50 MHz , SUB specifies the substrate, and OPT sets the optimisation goals.
In the VAR control block, W, S and P are he widths, spacings and lengths respectively of each filter section. The question marks sur
rounding the P values signify that these are the variables to be optimised.
The microstrip circuit elements consist of the aput and output ports P_{1} and P_{2}. There are also two 10 mm lengths of transmission line TRL with characteristic impedance Z_{0} of 50Ω

- in the case of this substrate, Serenade 7's Transmission Lines utility output a width of 0.576 mm . The STEP elements takes account of step changes in widths, CPL microstrip elements of the coupled sections, and OPE After optimisation, the output shown was obtained, showing a near-perfect filter cha acteristic - in theory at least. The S_{11} parameter is shown in black, S_{21} in grey. Now similar results were obtained wifh Series N. However, because it has specific coupled filter elements, MCFL, which include open-end effects. Furthermore it has a layout utility included in the product, whereas although Serenade 7 ha a third party add-on called $S 2 A$.

Fig. 9. Schematic for a two-stage distributed amplifier

Series IV does not like working in metric units, so the dimensions have to be converted to thousandths of an inch. Personally, I prefer o work in metric units. So much for the theory, but what happens in practice? Well, it matches theory quite accu-
rately, in fact. I built a microstrip filter and at the time, I was not aware of the effect of step width discontinuities, so the bandwidth has been pulled lower down the frequency range.
The dimensions obtained from earlier sie The dimensions obtained from earlier simu-
lations were used to produce an AutoCAD latrowing from which a mask was made. There is no space here for more detail about frabrication, so the following chart is a preview. The data was output from a Hewlett Packard vector network analyser and imported into
Lotus $1-2-3$, Fig. 5 .

Amplifier design and simulation Designing any amplifier involves a trade-off between conflicting objectives of maximising noise - among others. Earlier, 1 mentioned the Mitsubishi MGF1303B GaAs fet S-parameters at 10 GHz .
For maximum gain at that frequency, resonant For maximum gain at that frequency, resonant
matching is needed for S_{11} and S_{22}. Using matching is needed for S_{11} and S_{22}. Using
Serenade 7 or Series IV's transmission-lines utility again, you get an effective permittivity $\varepsilon_{\text {eff }}=7.36$, from which you can calculate the substrate wavelength,
$\lambda_{s}=\frac{\lambda_{0}}{\sqrt{\varepsilon_{\text {eff }}}}=11.1 \mathrm{~mm}$
At this point, the Smith chart becomes invaluable for transmission line design, both for lumped components and microstrip. This facility is available on both products, but I found it
easier to use the conventional hardcopy version. I have not included it here for lack of space.
Polar co-ordinates of $S_{11}=0.704 \angle-163.1^{\circ}$

Pace correspond to the complex rectangular form
$0.18-\mathrm{jo} .145$ on the chart, representing the source impedance Z_{S}, the inverse of which is then converted to a source admittance $Y_{\mathrm{s}}=3.37+\mathrm{j} 2.71$. The distance between these two values represents the diameter of a circle with its origin at the centre of the chart. By extending the diameter from Y_{S} to the
edge of the chart, you can read off the wavelength as 0.226 . To get a resonant match, first move clockwise along the circle until it intersects the unity admittance circle, to get a value for $Y_{1}=1-\mathrm{j} 2$. Drawing a straight line from the off the wavelength as 0.313 .
Now the length of microstrip can be found rom the transistor to the stub, or distance $d_{\mathrm{s}}=(0.313-0.226) \lambda_{\mathrm{s}}=0.966 \mathrm{~mm}$. Next, cance the imaginary part by drawing another straight the edge of the chart, giving a wavelength of 0.176 . Therefore the length of the stub $I_{\mathrm{s}}=0.176 \lambda_{\mathrm{s}}=1.95 \mathrm{~mm}$
The same procedure is applied for $22=0.584 \angle-138.2^{\circ}$, representing the load

M\&B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

Lictionary of Coliuliuluiccutions Technology
 With over 9000 entries and 250

 illustrations, this book is an invaluable reference work for anyone involved with electronics and communications Dictionary of Communications Technology provides comprehensive coverage of data and communications and has entries on PC lans, the Internet, communications testing and client-server applications - in 500 pages.Over 20 major companies helped prepare the Dictionary of Communications Technology, including AT\&T, IBM and Digital Equipment Corporation. Gilbert Held, author of Dictionary of Communications Technology, is an internationally respected author who has used his enormous expertise to make this work one of the most comprehensive sources of telecommunications information

Please mail this coupon to Electronics World together with payment. Alternatively fax credit card details with order on 01816528111 . You can also telephone your order on 0181652 can also telephone your order on 018165 Friday mornings. Address orders and all Friday mornings. Addrespondence relating to this order to, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

ELECTRONICS WORLD

READER INFORMATION SERVICE

For more intormation about any o the p

 simply ing the relevant enquirir uumber:$\begin{array}{lllllllll}101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109\end{array}$ $\begin{array}{lllllllll}110 & 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118\end{array}$ $\begin{array}{lllllllll}119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127\end{array}$ $\begin{array}{lllllllll}128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136\end{array}$ $\begin{array}{llllllllll}137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145\end{array}$
$\begin{array}{lllllllll}446 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154\end{array}$
$\begin{array}{lllllllll}155 & 156 & 157 & 158 & 159 & 160 & 161 & 162 & 163\end{array}$
$\begin{array}{lllllllll}64 & 165 & 166 & 167 & 168 & 169 & 170 & 171 & 172\end{array}$ $\begin{array}{lllllllll}173 & 174 & 175 & 176 & 177 & 178 & 179 & 180 & 181\end{array}$

Name Job title
Company Address
-
Telephone Only tick here if you do not wish to receive direct marketing promotions from other companies.

Thank you

Newsagent order form

Pass this order form to your newsagent to ensure you don't miss the next issue of $E W$. 2nd October - and continue to further notice

Name
\qquad

Subscribe today!

Company (if any)
Address

Phone number/fax
Make cheques payable to Reed Business Information Group.
Or, please debit my Master, Visa or Access card.
Card type (Access N Visa)
Card No
Expiry date

Please reserve me the November issue of Electronics World- on sale order every month's issue until
..

Subscribe today!

Guarantee your own personal copy each month

Save on a 2 year subscription ELECTRONICS WORLD

CIRCUIT IDEAS

Over $£ 600$ for a circuit idea?

New awards scheme for circuit ideas

- Every circuit idea published in Electronics World receives $£ 35$.
- The pick of the month circuit idea receives a Pico Technology ADC42 - worth over £90 - in addition to $£ 35$.
- Once every six months, Pico Technology and Electronics World will select the best circuit idea published during the period and award the winner a Pico Technology ADC200-50 - worth £586.

How to submit
Your ideas
The best ideas are the
ones that save readers
time or money, or that
solve a problem in a
better or more elegant
way than existing circuits.
We will also consider the
odd solution looking for a
problem - if it has a
degree of ingenuity.
Your submission will be
judged on its originality.
This means that the idea
should certainly not have
been published before.
Useful modifications to
existing circuits will be
considered though -
provided that they are
original.
Don't forget to say why
you think your idea is
worthy. We can accept
anything from clear hand
writing and hand-draw
circuits on the back of an
envelope. Type written
text is better. But it helps
us if the idea is on disk in
a popular pc or Mac
format. Include an ascii
file and hard-copy
drawing as a safety net
and please label the disk
with as much information
as you can.

Turn your PC into a high-performance virtual

 instrument in return for a circuit idea.The ADC200-50 is a dual-channel 50 MHz digital storage oscilloscope, a 25 MHz spectrum analyser and a multimeter. Interfacing to a pc via its parallel port, ADC200-50 also offers non-volatile storage and hard-copy facilities. Windows and DOS virtual instrument soffware is included. ADC42 is a low-cost, high-resolution a-to-d converter sampling to 12 bits at $20 \mathrm{ksample} / \mathrm{s}$. This single-channel converter benefits from all the instrumentation features of the ADC200-50.

Porch light saver

$\mathrm{A}_{\text {doors may have a }}^{\text {n }} 40 \mathrm{~W}$ or 60 W light in the porch both to show who is calling and to light up the keyhole of the inner door. It may also be a good idea to leave the light on much of the time to make people think you are at home when you are
not. The trouble is, electricity is expensive and lamps last a very short time when on permanently You can avoid these problems by connecting a $2 \mu \mathrm{~F}, 250 \mathrm{~V}$ capacitor in series with the lamp, Which will then be dim and possibly too dim conever, a door-switch mounted so mat it ape
conten the outer door is closed can bypass the capacitor; when the door is opened, he light goes to full brightness. A 27Ω resistor in series with the capacitor will reduce inrush urrent. There could be a second such switch o HT Wynne Glasgow

A lobby light left on permanently will cost less and last

Electronic control for de motors

D esigned for applications in which starting and stopping of a dc motor must be smooth over $0.5-5 \mathrm{~s}$ this controller costs little and uses
pulse-width modulation for speed control. It will take motors of between 5 W and 50 W although, at low acceleration rates, it is happies when
start. $\stackrel{\text { start. }}{\text { For }}$ For speed control, the voltage on C is compared with the sawtooth on C_{2},
produced by the 555300 Hz oscillato C_{1}, in $I C_{2 b}$. The result is a 300 Hz pulse at the output of $I C_{2 b}$ whose voltage on C_{1}. proportional to the not begun to charge, the output of $C_{2 \mathrm{a}}$ is high, $T r_{3}$ is conducting and power is applied to the motor. The voltage on C_{1} rises rapidly, charging
current coming via $S_{1}, T r_{1}, T r_{2}$ and P_{1}, until it reaches the voltage on pin

3, whereupon power to the motor is cut off. This pulse of power to the motor lasts between 50 ms and 200 ms , set by P_{1} to suit the motor in use.
In acceleration, P_{3} is set to produce a pulse width, after the start pulse, that runs the motor slowly. Since the output of $I C_{2}$ is low, C_{1} charges further, but more slowly through P_{3}, ${ }^{2}$ accelerates to a speed set by the adjustment of P_{3}, output pulses no being wide enough at maximum speed to produce, effectively, the full dc level. To make adjustment of P_{2}
and P_{3} easier, a 47 FF capacitor across C_{1} slows everything down to make acceleration and deceleration take about is.
Decelerating
Decelerating, when S_{1} is off, C_{1} discharges towards 0 V by way of P shorter and the motor slowing. When the voltage on C_{1} reaches the voltage on pin 3 of $I C_{2 a}$, the output again
goes high. C_{1} now discharging goes high. C_{1} now discharging
rapidly through the same rapid charging. The output pulse is now zero and the motor stops cleanly with no jitter.
As regards emc, the circuit has been ested; emi from the circuit was by noise from the motor brushes. itself within limits due to the use of he $L_{1,2}$ ferrite beads and C_{6}. Rolf Schmidt Inverness

Not Just a Pretty Interface
Software for the professional design engineer

- Incorporates a dedicated model editing package
- Fast 32 bit SPICE 3 F5 engine - Windows 3.1/95/NT - CD ROM or 3.5 " disk

Professional engineers need software that produces results they can rely on. Anything ess is a liability. B^{2} Spice \& B^{2} Logic will give you the accurate results you need fast.

The best way to find out if a package is really what you need is to try it, which is what were giving you the chance to do risk free for 30 days.

We guarantee you will be 100% satisified with the results or your money back.

To order now or enquire about our new SPICE LITE software

call:

01603872331
http://www.paston.co.uk/spice mail: rd. research@paston co.uk

(1) Resanch

RD Research
RD Research
Research House, Norwich Road, Eastgate, Norwich. NR10 4HA
Postage \& packing E4.50. Prices quoted are ex VAT

Fig. 1. Delay timer to Fig.
avoid, for example, loudspeaker thump on switch-on and to reset quickly after a power litch or accidental
switch-off. switch-off.

Power-on delay

$A^{\text {fter several seconds delay following switch-on, this }}$ Acircuit applies power to the equipment and, after a break in the input caused by, perhaps, accidentally
switching off, the circuit resets and imposes a furthe
delay.
Figure 1 shows the circuit, $R_{1,2}$ and C_{1}, being the Figure 1 shows the circuit, $R_{l, 2}$ and C_{1} being the
relevant components. Voltage across C_{1} increase relevant components. Voltage across C_{1} increases exponentially to a voltage set by the the voltage on the
values having been chosen so that the capacitor at the output reaches a value large enough to cactivate a comparator or buffer after the required time.
a The rest of the circuit is to avoid the necessity to ma $R_{2,4}$ small for a rapid reset, which would result in
very small voltage on C_{1}. very small voltage on C
The Darlington transistors and R_{3} perform this
function by providing an alternative discharge path for function by providing an alternative discharge pa
C_{1}. Low voltage at the input causes C_{1} to start discharging through $R_{2,4}$, causing a voltage drop across R_{2} and turning on $T r_{1}$
Current flows through the low-value R_{3} and C discharges rapidly, $T r_{2}$ assisting the process by across R_{3} and maintaining $T r_{1}$ in conduction for the rest of the discharge time.
To obtain a usable delay, it is only necessary to use a comparator at the output designed to switch at 3.5 V The use of Darlington then the discharge must take place in a few tens of microseconds. My thanks to Richard Wessen of University Technology Sydne
Martin Gosnell Martin Gosnell
New South Wales
Australia

spply and the or the circuit to initial switch-on, an interruption in supply and delay after the interruption

Ac/dc voltage detector/isolator

$W^{\text {hen the ac or dc input to the circuit } \quad \text { Output is optically isolated from the input. }}$ $W_{\text {shown is over } 50 \mathrm{~V} \text { and below about }}^{\text {hen }}$ 250 V , output is 5 V ; otherwise, it is zero.

dropped across R_{1}, smoothed and regulated o some extent by the 10 V zener. Resistor R_{2} limits current to the isolator's current flows in R_{3} and the output reaches 5 V . Input voltage limit is about 250 V .
The optoisolator shown, a $610 \mathrm{~A}-2$ 001, is a high-voltage type and is ecommended. Deva Medical Electronic Runcorn
Work out the wattage needed for R for maximum expected input - $E d$

Free circuit design demo disk with every order*

Sub-woofer filter extends bass response

Back issues of Electronics World are available, priced at $£ 2.50$ in the UK and £3.00 elsewhere, including postage. Please complete the coupon and send with correct payment to:
Electronics World, Quadrant House, The Quadrant, Sutton Surrey, SM2 5AS. Note that not all issues are available and please allow 21 days for delivery.

Quick stop for

induction motors

A lthough this method of rapidly stopping and locking described this simple variant.
Single-phase and three-phase motors will stop very quickly and be locked if a dc source is connected to the motor. In this arrangement, the dc comes from a bridge across the ac input, which is switched in and out, as is the motor supply. be released fairly quickly and, if the motor stops too precipitately, a resistor in the dc circuit will slow the action down.
Scott Arnesen
Norway

$$
5
$$

lead and lock an induction motor by applying dc to it.

Differentially tuned LC oscillator

T show of the bridge oscillator shown is linearly proportional to the difference in value between the two variable capacitors C_{x} and C_{y}, increases and decreasing when C_{x}
increases.
If $R_{2}=R_{4}$, frequency is determined by the equation,
$f=\frac{1}{2 \pi \sqrt{L_{1}\left(C_{1}+C_{x}-C_{y}\right)}}$
when $R_{3}=R_{1}$. Resistor R_{1} represents
parallel losses in the $L C$ circuit and R the sum of R_{5} and the equivalent resistance of the $L T 1228$ op-amp in he amplitude stabiliser, which is from the oscillator. The graph shows a linear change in frequency for a change in either of the variable capacitors. Mariusz Slawiec Mariusz Slawiec
University of Silesia Katowice Poland

Direct-reading inductance meter

This inductance meter will measure down to which the pulses from a monostable flip-flop
. HH and up to 100 mH , displaying the result on a digital voltmeter. It uses much
same principle as capacitance meters in
are of a length proportional to the
apacitance.
The monostable here is U_{13}, which drives

解 by the monostable, the unknown inductor takes current through R_{6} or R_{7} and R_{3}. On the next half-cycle, the transistor conducts and Pulse-integrating inductance meter to the inductor discharg measure inductances from $0.1 \mu \mathrm{H}$ to 100 mH . $\begin{aligned} & \text { energy through the } \\ & \text { resistors to ground, }\end{aligned}$ Components to be measured must be of low developing a voltage on the resistance to avoid affecting the time
constant of the mout of $U_{1 \mathrm{~b}}$ for a time
inperale depending on the total inductance in the circuit
and the resistance of R_{6} and the resistance of R_{d} stray resistances. Pulses at $U_{\text {cc }}$ output are integrated and applied to
be output op-amp, which scate output op-amp, which
scaltage level and sets zero for the digital voltmeter. I use a 4.5 -digit meter on the 2 V range, the hree inductance ranges
being $1 \mathrm{mH}, 10 \mathrm{mH}$ and being $1 \mathrm{mH}, 10 \mathrm{~m}$
100 mH . Flavio Fontanelli Genova
Italy
(A11)

1-180s timing in two steps

A nalogue timer MC14536 provides A intervals that vary by a factor of two or each position of a hexadecimal switch without the addition of a separate divide chain. This circuit interposes steps of two to give, with sixteen positions of the switch -a progression 1, 1.4, 2. 2.8... 180. To obtain the intermediate steps, capacibit pin of the hexadecimal switch, the capacitor having a value 2.2 times that of the main timing component C_{1}. Other
switch outputs go to the timer programming inputs A, B and C and the switch output C 6 V in response to the binary code corresponding to the sixteen switch posi-
tions. On even positions of the switch, C_{2} is floating, while for odd positions it is connected to 6 V and the clock based on ${ }_{1,2} C_{1}$ slows down.
The extra capacitor must be larger than waveform at the bottacitor since the components is attenuated, besides bein slowed by $C_{2} ; R_{7}$ allows the use of a
preferred value for the extra capacitor. Minimum frequency of the timer must be
512 Hz to take account of the internal 512 Hz to take account of the internal
divider between the clock and the mon table output circuit; this falls to 362 Hz when C_{2} is connected.
Stability is about 1% over a supply range of 6 -9V. Pulse output from pin 13 will drive an earpiece or led, but ensure that
oscillation.
CID Catto
Cambridge

LETTERS

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Feedback

Having read Mr Ellis' letter in the September issue with attention, I am
of course immeasurably pleased at being invied to 're-optimise' my amplifier design.
I agree entirely I agree entirely that the Miller
capacior looks as though it would capacitor tooks as though it would
do a lot more good when wrapped around the output stage as well,
because this promises that the because this promises that the
crossover distortion could be greatly crossover distortion could be greatly
reduced. Unfortunately, no amount
of wisffl of wishful think ${ }^{\text {ing }}$ will alter the fact
that this connection is prone to hf that this connection is prone tro hf
instability because of the extra phase-shifts in the output stage. Mr Ellis admists this when he says "I did no doubt he did. I would take this capacitor speculation more seriously f someone published some did work.
On a model amplifier - smallsignal output devices, hence much crossover spikes disappointingly small.
Ifear M
${ }_{\text {man fear Mr Ellis has not completely }}$ understood hee subte nature of the
generic amplifier circuit; the second stage does not and cannot load the input stage. I profoundly disagree
with his labelling the second stage as the 'driver' when everyone else calls the devices directly before the output transistors the drivers.
It seems to me there is quite enough confusion about, withour
getting The Naming of Parts wrong

onclusion of us all was that the design was over-complex, inefficent, non-linear, and of very
doubfull high-frequency stability Ironically, in this design, loading of one stage by the next really is an issue.
There
There are other points I could make, but I fear to little purpose.
One question remains; Mr Ellis. One question remains; Mr Ellis must
realise that his understanding of the suberyect is imperfect, as it in for
evarying degrees. Why is he so confident he is justifies in lecturing the rest of us? Douglas S
London

Designer

workaround

 Concerning my article 'Designer power supplies 'in the August issucit has been brought to my attention that the program crashes when the 'figure-of-menit' becomes very high
I am grateful to Ralph Goold f S St Albans for supplying the following Abans for supp
work-round.
In the initialisation section, the line $V_{2}=V_{\text {paxk }}$ should be changed to
$V_{2}=V_{\text {peak }}-V_{\text {rec }}$
An alternative, though less elegant, work-round is to force the arcos function to return zero if the parameter value exceeds 1.0.
I hope this has not caused I hope this has not c
problems for anyone. W Gray
Fror
Farnborough
Hants

Remote control enhancement

Thave an enhancement to Alex Birkett's cireit

 Two-wJune iss Wo-wire remote control' in Electronics World's In the original circuit, if two buttons are pressed voltage band and is not representative of either button. This voltage depends on the haphazard parallel connection of two resistors. If the parallel ladder of buttons and resistors is hort the 'cold' end of each resistor to ground, as in short he cold end of each resistor to ground, a
the diagram, accidentally pressing two buttons ogether results in an output corresponding to one of
he buttons pressed - specifically the one nearer the hot' end of the resister chain. This is arguably less confusing to the user.

Thomson's electron

Your timely article by Tom Ivall in Electronics World on J J Thompson's 1897 discovery of the electron and its technical context was interserict and informative.
I am particularly interested in J Thompson himself, his origins, family and further works (if any) he
accomplished. Has any reader any sugcospstions of previous articles or
sut any reace other material to point the researcher in the right direction?
S Katzen SKatzen
Magee College Belfast

Singing preamp

 A long time, I built a version ofJohn Linsley Hood's simple Class amplifier, (WW, April '69). The output transistors were $2 N 3055$
mounted directly, i.e. without insulation, on two rather inadequate
'Christmas-rres ' 'Christmas-tree' heatsinks. For some reason, while was
driving the amplifier hard with a music signal, with the speakers I could still hear a very faint, tinny and distorted version of the music, with a large peak in its spectrum at
the frequency at which the heatsink the frequency at which the heatsinks
would 'ting' if flicked with a finger The sound loudest near the top surface of the output transistor cans and was not affected by moving gin
wiring around, nor by holding magnets near the transistors. Th magnets near ne trasted it was the
only factor that affect
load, connecting a 6 . load; connecting a 6.88 resistor
across the output teminals made th across the our
sound louder.
1 wonder if this could be a therma effect. Does anyone know? Chris Bulma
Bedford

Silverskin

I was glad to see Nick Wheeler's
sensible and timely article on skin sensible and timely yarticle on skii
effect in nelation to loude effect in relation mo be worth
cables, but it may be mentioning a small additional point. In rf applications, where skin
effect causes currents to be almost entirely near the surface of a conductor, 1 believe that the use of
silver plating is almost never $\begin{aligned} & \text { silver plating is almost never } \\ & \text { justified simply because silver }\end{aligned}$. slightly better conductor than copper. The real advantage is that
oxidised silver, though anwelcome oxidised silver, though unwelco
in appearance, is a far better conductornce, than oxididised copper. Bob Pearson

NEW PRODUCTS CLASSIFIED

ACTIVE

Linear integrated circuits Regulator ics. Allegro offers the
A8B88S Series of low drop-out voltage regulators for use in battery-
powered equipment. Output is 2.5 owereret equipment. Output is 2.5 .
$3.3 V$
at 250 mA peakk, the pmos series element allowing a drop-Out voltage o
90 mV at 60 mA . Quiescent current is 90 mV at 60 mA . Quiescent current is
55 A and
and does not increase much
 14A, A bandgap reterence provide reabulation to between 25 mm V and
romv. Both single and dual outpui 30mV. Both single and dual ou
types are available. Allegro Microsystems sin. ATe... 01932
253355: tax, 0193224622.
Stereo amplifiers. National
Semiconductor's LM4752 and LM4755 are dual audio amplifier ics
delivering 11 W into 4Ω and 7 W into dellivering 11 Winto 4Ω and 7 W into
8Ω trom $24 V$ and are intended for use
in miniature systems and compact in miniature systems and compact
televisision receivers. Gain is isternally
 has a builtin mute, while the 4752
needs external component for

Logic Programmable clock chips.
ypress announces a new version of its CY7B991, the CY7B9911
RoboClock, which retains the Roboclock, which retains the
programmatlo skew facility, but
Operates at 100MHz. Skew control is selectable between outputs control 700 is
10.5ns to reduce the effects of Crosstalk and demi whene night-speed clock signals are distributed around
muttiprocessing systems. The devices provide ezror propagation delay and
50% duty y cles. as arequiried by PCl ,
are guaranteed. Cypress

Memory chips
3.3V, 6 MMb dram modules. Smart Modular Technologies hes
annourced new $3.3 V, 64 \mathrm{Mb}, 72$-pin
and announced new $3.3 \mathrm{~V}, 64 \mathrm{Mb}, 72$-pin
dram-abed moules operatio on 5 V
designed for use in seneras and designed or use in servers and
workstations needing 1 Gbyte or more workstations needing IGbyte or more.
Two problems are thereby s.vived:
voltage translation and a step.down voltage translation and a step.down
converter ruitit in alow these 3.3 V
simm devices to work in existing 5 V
and
 Lere 2.3 mm or 4 mm fixed ocous and Ot he picture. colourt, exposurue, white

Passive components

 plain hote ort theadeded insert
Temperature range is $-10^{\circ} \mathrm{C}$
10 $0^{\circ} \mathrm{C}$,

Mixed-signal ICs Pwm drivers. M S Kennedy
MSK42orl 1 oard munted
motor driveramplifiter modules contain all the drive and control Each has s complete H bridge.
and switching circuitry and the and switching circuitry and the
modulus are suited to the drive of brush motor sedeed contrive an
Class D amplification II the Class D amplification. In the
case of the 4220 o one analogue signal is needed to control motool
speed and direction or an audio speed and direction or an audio
signal for amplification. Both devices are on a a eeramic metal-
coated substrate for direct mounting on heat sink. Ashwell 364194: fax, 01438 313461

Protection devices Surface-mounted fuses
 storage, so enhancing soldering
and general reliability the tuses and general reliaililty: the fuses
also omply with
and UL $2484-14$ standards. Two and UL $248-14$ standards. Two
types are avaialibe: the Classic, types are avaiabie: the Class
which is quick acting and the
Cipguard supertast type to Chiguard superast type to
protecut fast procassors, both
tuse lasertrimmed foil as the
 minute: the Classic measures
45 by 2.6 by 1.9 mm and handles 0.8 A to 4 A at up to 125V. Chipguard 1 is only sightly
larger and carries 1 A to 5 A at
6VV They are directy ${ }_{6}$ 63I. They are directly soclipato to make my them repted weabeable
a
without solde without soldering. Raciatron
Components Lto. Tel., 01784 Components Lto. Tel., 01784
$439393 ;$ fax, 01784477333 .
subject of a new brochure, in which are described functions such as
fititing, numerical integration, data visualisation and report genereation.
The package will produce 20 and 3 D graphs trom data and functions and
accepts data trom Excel and LabView. accepts datat trom Excel and LabView.
HiQ is for Windows NT/ 9 and Mac.
Yac You car obtain an evaluation copy on
Www.natinstcom/hiq. National
 lax, 1635 52435,
Power conversion. Switch on to smart power conversion is a Celan
pubbication descabibing the company's Communications use that provic battery backup and charging,
management and diagnostics and
 Tel., 0142
472034.
Emi and thermal interfaces. Product

40Ω to $470 \mathrm{~K} \Omega$, all to within $\pm 5 \%$ at
$25^{\circ} \mathrm{C}$. Operating rane
 with a dissipation constant of $3 \mathrm{~mW} \mathrm{~W}^{\circ} \mathrm{C}$
over 15 s tor the 3 mm type; 500 mW
.
 version. Anglia. Tel.
tax, 0.1945 474849.
Small load cells. In a range of sizes from compression types (micro) of 12 mm to compression and tensio
versions (UTC) of 25.4 mm in versions
diameer, new woad cells from Contro
Transdicers will handle uto 5000 k Transducers will handle up to 5000 K
in 14 ranges. The measuring elements of bonded strain gauge form a 350.2 four-arm Wheatstone
bridge taking 10 V ac or dc excitation bridge taking 10 V ac or do excitation
to produce 20 mV maximum. Temperature range is $-10^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Control Transducers. Tel., 01234 Control Transducers. Tel., 01
217704; tax, 01234217083 .

Linear Hall sensor. Allegro's A3516
linear Hall sensoric uses a chopper
 circuirto cancel ofsetvorage caused
by arying temperaturs, mong othe
things. The device is suited to linear things. The devicie is suited to linear
and rotar position sensing in
industrial automotive and other tryin and rotary postition sensing in
lindustrial automotive and tother tring
conditions and produces a rai-to-rail output proportional to the applied
nagnetic field at a sensitivity of
$.5 \mathrm{mV} / \mathrm{gauss}$
d
 contaned, possessing a high-gain
amplifier, voltage regulatar, fitter and
the oftset cancel Ihe oftset cancellation circuitry.
Allegro MicroSystems Inc. Tel., 01932 Allegro MicroSystems inc. Te.
253355; tax, 01992246622.
Optical shaft encoder. HD Series Digipots by Control Transducers are o. an open design to keep the cost
down, but have the characteristics of
 contacting design is digital, resolution
being $96-2042$ ines per rev. Dual, double-sealed ball bearings ensure
very low torque and allow speeds of very low torque and allow speeds of
pop to 0000 orev/min. Current aken is
son $40 m \mathrm{~A}$ trom 5 V and the output isen two-
Channel t ll-comatible for pulse channel tut-compatible for pulse
multipication and direction sensing. multipicication and direction sensing
Diameter of the smallest is 1 in.

COMPUTER
Contro Transducers. Tel.. 01234
217704: fax, 01234 . 121788.3
Data acquisition
ortable system. AstroDAQ2, Itroduced by Astro-Med Inc., data a aquisistion system for
networking data and is contained in a
portable case about the size portable case about the size of a
noteboook computer. It uses Windowsbased sotware for control and
nnalysis or real-fime waveform analysis or real-time waveform
monitoring and display on a pc. The nstrument will monitior data remotely a central pc; twenty 5 kHz channels can be recorded, regardless of the on an internal 1 Gbbyite hard disk. All ignal conditioner modules are dsp. based, modutes for temperature,
bridge, voltage, strain and motion being available. Up to ter units may e controlled by one pc. Astro-Med
nc. Tel., 1628668836 ; fax, 01628 64994.

Card reader. Omron's SGR family or latching card readers handle readingic-spripee andsors or smart-cara half-a-million passes. The readers
use a solenoid-controlled mechanism La a sotenoi-coniroled mechanism
and reddreen lelest so show the mode
use, all in the tamily being n use, all in the tamily yeing
configurabe to read when the card is
pushed or pulled. They support ISO and CP8 chip contacts and are compatible with 1501,2 and 3
magnetic stripe standards. A 5 V supply is used. Kestronics Lid. Tel.,
01727 $812222 ;$ tax. 01727811920.

Development and evaluation
TMP93CM41F starter kit. Toshiba for the developpent and evaluation
the compan's 16 -bit $T M P 93 C M 1 F$ the company's 16 -bit TMP93CM41F
microcontroller. The kit contains an evaluation board. Ansi C compile,
assembler and Windows-based assembier and
debugger, , with documentrataion sotware examples and data a sheets
on co. With the board comes a seriia cable and a power supply and there are connectors for access tom meu
signals. Code downloaded to sram on signalas. Code downloaded to sta
the board can be tested using the source--evel debugger, which is
subset of that used with the company's real-time ice. ArrowJetmy. Tel., $012332727027 ;$ tax,
0123421467479150 .

ADVERTISE FREE OF CHARGE

Subscribers* to Electronics World can advertise their

 electronic and electrical equipment completely free of chargeSimply write your ad in the form below, using one word per box, up to a maximum of twenty words. Remember to nclude your telephone number as one word. You must include your latest mailing label with your form.
This free offer applies to private subscribers only. Your ad will be placed in the first available issue.
This offer applies to privare sales of electrical and electronic equipment only.
Trade advertisers - call Joannah Cox on 0181-652 3620
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into

lease send your completed forms to
Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

䢒

AUUDIO DESIGN: BO WATT POWER AMPLIFIEN

This tanastic Jonn Linsey Hood doesgnod amplifier is the flagship

ALPs "Blue Velvet" PRECISION AUDIO Controls.

manval potentiomettras

\qquad
MOTORIISED POTENTIOMETERS

TOROIDAL MAIN \& OUTPUT TRANSFORMERS
(OO ELB4, 32 V VALVE AMPLIFER

PRECIIION Tiple Purpose TEST CASSETTE TC1D.

 \int^{\int}

Send for Your FREE copy $\quad 24$ Rr. ORDERLINE OI691 652894
of our LISTS

STANDBY

 keep-alive power suppliesEnergy efficiency is today's watchword and since much equipment is not in continuous use, small, standby power supplies are in demand.

Television receivers, Internet equipment, fax machines and other equipment
spending a significant time switched on but somnolent, often use a standby power supply instead of the normal one when in contemplative mode, to reduce power needs and operating cost. Power Integrations Inc.
makes the TOP209 low-cost, switchedmakes the TOP209 low-cost, switched-mode
power supply ic for this purpose which, when power supply ic for this purpose which, when
compared with discrete switchers, is half the size and weight, uses many fewer compo-
nents and needs little power itself. An appl cation note on the subject is available.
Figure 1 is the TOP209 functional block Figure 1 is the \mathbf{T} OP209 functional block
diagram and Fig. 2 shows a typical arrange ment of a dc-input flyback circuit using the device. Referring to Fig. 1, Drain is the outpu and also provides internal bias current on starting, all pins do several things; Control i
the input to the error amplifier, carries feed the input to the error amplifier, carries feed
back current for the pwm circuit and connect to the shunt regulator to give internal bias cur

Fig. 1. Functional block diagram of the TOP209 standby power supply chip for output power to 4 W .
rent in normal working; the Source pin is common and is actually two pins, normally voltage return.
Control voltage
Voltage V_{c} on the control pin supplies all con-

fig. 2. 2 W supply using the TOP209. Using this device, costs are lower and component count, size and weight greatly reduced.

Fig. 3. Waveforms in TOP209 operation. The sawtooth is the auto-restart section, which repeat Fig. 3. Waveforms in TOP209 operation. The sawtooth is the auto-restart section, which rep
this operation until a fault condition is removed, power dissipation being thereby reduced.
capacitor shown between control and source in Fig. 2, ensures that gate drive for the output in Fig. 2, ensure
Regulation of this voltage comes in two forms: for start-up and during an overload condition, the regulation is hysteretic in form, as in Fig. 3; in normal operation, the shunt regulator amplifier takes over. On start-up,
current to supply the internal circuitry and also to charge the external capacitor, C_{5} in Fig. 2 , is supplied by the high-voltage current
source bew source between drain and
At switch-on, V_{c} reaches 5.7 V and the current source turns V_{c} reaches 5.7 V and the current source turns off, having charged C_{5}, and
the pwm modulator and output stage are the pwm modulator and output stage are
turned on. In the circuit shown, the feedback derived from the extra secondary transformer winding keeps C_{5} charged and supplies V_{c}. Normally, the shunt regulator maintains V_{c} at 5.7 V by shunting excess control current
through $R_{\text {. }}$ which determines the error amplifier gain. In a fault condition in which C_{5} discharges to the lower threshold of 4.7 V , the current source turns on and recharges C_{5}; the mosfet output stage turns off, the control circuit
being now in a standby condition. A 1 V hysteresis in the auto-restart comparator results in the waveform seen in Fig. 3, where the current source is turned on and off, a counter preventing the mosfet coming on again until eight cycles have taken place; the resulting
5% duty cycle limits power dissipation. This whole cycle of events repeats until the fault condition is removed.
Controlled by the voltage across R_{E}, the pwm modulator drives the across R_{E}, the cycle inversely proportional to the current cycle inversely proportional to the current
coming into the control pin, the R_{E} voltage being compared with the sawtooth from the oscillator to produce the duty cycle ratio, a clock from the oscillator turning on the mosfet via a latch and the modulator turning it off again.

Protection

If an overvoltage occurs, the high-current pulse into the control pin activates a latch, which turns off the output. Either removing
and restoring input power or pulling the control pin below the lower threshold resets this latch and normal operation is resumed. As regards a too high temperature, there is an analogue circuit to act in much the same way as the overvoltage circuit, reset happening in
the same way.

Practical circuit

Practical circuit
The inexpensive $5 \mathrm{~V}, 2 \mathrm{~W}$ standby supply in Fig. 2 takes its input from a high-voltage dc $85-265 \mathrm{~V}$ ac, its output being regulated, even lower cost being obtained by using a transistor regulator or even a zener shunt, albeit at lower output power.
In all cases, the TOP209 drives the primary with C, R and diode providing voltage-spike protection and reducing ringing at the drain pin. The other secondary winding provides the feedback to the control pin, charging C_{5} to provide bias for the TOP209. Capacitor C_{5} also filters the voltage to the control pin and
sets the auto-restart frequency. Sequoia Technology Ltd., Tekelec House, Back Lane, Spencers Wood, Reading RG7 1PW. Tel 01189258000 ; fax, 01189258020

continued from 846
to optimise. The variable block in Fig. 9 around 0.2 mm for both. This is almost impossible to implement in hybrid form. Figure 10 shows the theoretical response o such a design. Note how the bandwidth has spread compared with the resonant match
trace for S_{11}
Finally, Fig. 11 demonstrates the theoretical effect of putting the filter at the inputs and out-
puts. Now if I could tidy up that ripple and increase the gain above 20dB, I could sell such an amplifier for about $\$ 600$ a throw. Then I wouldn't have to scrape a living as a omputer nerd any more. Ah well, one can

Reference

1. Thermionic Valve Circuits, ws Percival British Patent 460562,25 January 1937. 2. Ayasli, Y,et al, 'A Monolithic GaAs 1-13G Travelling-Wave Amplifier,' IEEE Iranscations on Microwave Theory and Techniques, July 1982.
2. Edwards, T, Foundations for Microstrip Circuit
3. Mathaei, G, Young, L, Jones, E, 'Microwave Filters, Impedance Maching Networks, and Coupling Structures,' McGraw Hill.

For more CAD information

Compact Soffware's Serenade 7, from £14000, Rohde \& Schwarz, Ancells Business Park, Fleet, Hampshire GU13

811447

Hewlett Packard Series IV, from £18400, HP EESOF, Hewlett Packard, Cain Road, Bracknell, Berkshire RG12 1HN, tel. 01344366767 , fax. 01344362092.

Nine year index - new update

Hard copies and floppy-disk databases both available
** Includes over 600 circuit idea references* Whether as a PC data base or as hard copy, SoffCopy can supply complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive is available now. It contains almost 2000 references to articles,

The EW index data base is easy to use and very fost It mns any IBM or compatible PC with 512 k ram and a hard disk.

The disk-based index price is still only $£ 20$ inclusive. Please specity whether you need 5.25 in, 3.5 in DD or 3.5 in HD forma serial number with their order.

Photo copies of Electronics World articles

Hard copy Electronics World index

Ordering details
 For enquiries about photocopies, etc, please

 The $E W$ index data base price of $£ 20$ includes below UK postage and VaT. Add an extra f 1 for overseas EC orders or E 5 for non-EC oversieas orders.Postal charges on hard copy indexes and on hotococpies are 50 P UK, $f 1$ for the rest of the EC or 52 worldwide.
below.
Send your order to Soffcopy Ldd., 1 Vineries Close, Cheltenham GL53, tel 01242 241455, or e-mal a s softcopy@compuserve.com. Please make cheques payable to SoffCopy LId -no up to 28 days for delivery.

Spreadsheet Analysis for Engineers and Scientists
With this practical, hands-on guide, engineers and
researchers lears researchers learn, quickly and
easily, the latest and most easily, he latest and most
useful electronic spreadsheet methods. Using a variery of interactive techniques, including worksheets, self-est and practical programs on the
included disk, Spreadsheet Analysis for Engineers and Scientists show you how to harress the power and
versatiliy of spreadshe versatiliyy t spreacsheet
programs, including those that contain the fast fourier transtorm, complex operations
and Bessel functions and Bessel functions, and how
to customise your own applications.
Includes disk
uk 53.50 , Evopee e3.50, Row $£ 49.50$
Electronic Component Reliability
Fundamenfals, Modelling, Evaluation and Assurance This text approaches the quality and reliability of
electronic components from unique standpoint.
Traditionally the twin subjects of reliability physics and reliability statistics have been Here, the author examines both areas and reveals how components fail and how failures develop over a period of time.
UK £50.50, Europe £53.50, ROW $£ 66.50$

Fuzzy Logic
Implementations and Applications on a g a new perspeciive explores the many hardware implications of fuzzy logic based circuits. As use of Al
increases, so the VISI area of circuits is becoming a growth subject. Opening with an overriew of fuzzy sets and
fuzzy logic the book moves on to cover a range of nonstandard solutions for fuzzy logic VLSI circuits. Future ideas are oll examined and supported with practical examples from the author's ISBN 0471 1950599, approx 346pp. Uuk 50.50 , Euvoe E53.50, Row E66.50

Microelectronic Switched-Capacitor Filters
Switched_capacitor filters and asscoiated MOS integrated circuits are now an established fechnology finding applications in the telecommunications and instrumenation fields. With Univalied breadth of
coverage coverage, this book surveys
the design techniques of an important class of analogue signal processsing systems. An accompanying aiskene
containing a comprehensive computer-aided design package (ISICAP) enables readers to gain a greater
depth of understanding of the described techniques.
Containing both source code

text/reference examines the complementary nature of electronics and optics and emphasizes high-speed technology in which the two fields are less differentiated. Beginning with an overview that develops a perspective
and appreciation of analog high-speed technology in general, the book goes on to cover devices and circuits used at microwave and
millimeter-wave frequenci millimeter-wave frequencies,
optical components, and optoelectronic integrated circuits and subsystems. Particular attention is paid to applications in the area of area and because many of the concepts are applicable in other fields. The book concludes with important overlooked are ottenmeasurement and characterization of high-speed devices. Fully referenced and of helpful illustrations, Introduction to High-Speed Electronics and useful as a professional reference or a textbook for senior undergraduate and
first-year graduate courses. $0471015822,312 \mathrm{pp}$, UK $£ 65.00$, Europe $£ 67.00$, ROW $£ 77.00$ Risc Systems and Applications Professor Daniel Tabak has compleiely revised and
undolate his hwo previous books on Reduced Instruction Set Computer architecture to produce this new book, RISC Systems and Applications. The text is a unique, concentrated, architecture and implementation of most recent high-performance RISC systems, such as DEC Alpha
AXP21164, IBM/Motorola/Apple PowerPC 620, Sun Microsystems and Texas Instruments UltraSPARC and SuperSPARC, MIPS technologies R10000, Intel
1860 XP Motorola MC88110 Hewlett-Packard PA-7100/8000 and the transputer. It also includes details of pioneering devices such as Berkley's RISC II and Stanford's MIPS and multiprocessor, real-time and workstation systems.
ISBN $0863801889,452 \mathrm{pp}$, UK $£ 50.50$, Europe $£ 54.00$, ROW $£ 67.00$

All prices are fully inclusive of packing and delivery
Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:		
Qry	Title or ISBN	Price

Name
Address
Postcode Telephone
Method of payment (please circle) Access/Mastercard/Visa/Cheque/PO Cheques should be made payable to Reed Business Publishing
Please allow up to $\mathbf{2 8}$ days for delivery

Understanding CAN

Svetlana Josifovska
looks at CAN - the network bus standard originally developed for automotive uses that is now finding its way into all sorts of applications.
s industrial and embedded control systems become ever more complex, con-
trol-system designers increasingly adopt a distributed architecture for system layout. Rather than having one, large processing centre with sensor inputs and actuator outputs, distributed control systems provide a means of
breaking down the complexity of the tasks breaking down the complexity of the tasks
involved in system control. These individual control systems each concentrate on their own lask, but as the need for higher levels of sophistication gains pace, so does the need to pass informatio
tres, or nodes.
One versatile distributed architecture communications system that can be used on a macro or micro scale is controller area network, or CAN. A serial bus system, CAN is for microcontrollers, and as an open commu nication system for intelligent devices. This makes it a very attractive bus.
Being a real-time serial bus system with multi-master capabilities - allowing several -this bus system is well suited for networking intelligent' devices as well as actuators with sensors within a machine or plant. It is suitable for difficult and harsh electrical environments,

As several nodes can require to send messages on the CAN bus simultaneously, conflicts can arise. These can be resolved by non-destructive bitwise arbittration: each node's iddentifier can be in one of two states: dominant - logic 0 - or recessive - logic 1 . During the arbitration, the dominant state overwrites the recessive state. So the 'losing' nodes
and do not attempt re. transmission until the bus is available again.
where a high degree of real-time operation and ease of use are needed - and at low cost.
Not only in automotive areas
Originally, CAN was developed for use in vehicles. Today, it is increasingly used in industrial, building automation and other
applications. It is already used as a standard in some areas, in addition to the automotive industry, although mainly in Europe. Mercedes-Benz is using CAN in its S Class series of vehicles for fast transmissions of up
to 1 Mbit . And the.
And the more widely used CAN is, the more
likely it is to appear in unexpected areas such as agricultural, nautical, instrumentation, medical, textile machines.
In safety-critical applications, integrity of
information information exchange is paramount. In the
field of medical engineering, CAN is typically selected since it meets the stringent safety requirements. Similar problems are faced by manufacturers of other equipment with very high safety or reliability requirements. and transportation systems.
The relative simplicity of the CAN protocol means that very little cost and effort is needed on training and the CAN chips interfaces make applications programming relatively
simple. Low-cost CAN controller chips allowing simple connections to microcon trollers, have been available since the last trollers,
decade.
To spring 1996, over 10 million CAN nodes had been installed. Today there are more than
25 CAN protocol controller chips from ove ten manufacturers. And as the CAN protocol steadily gains in popularity the CAN chip's availability is guaranteed.
Reliability issues
Reliability issues
One of CAN's features is high transmission reliability. In CAN networks, instead of addressing subscribers or nodes, the transmitted messages are prioritised. A transmitter sends a message to all CAN nodes and each

Fig. 1. Format of an extended CAN message specification comprises seven main fields.
decides on whether to process the message or not, based on the identifier received. The iden tifier also determines the priority of the mes sage as it competes for bus access. Such a content-oriented addressing scheme ration flexibility. As the syttem and configu ration flexibility. As hie data transmission pro
tocol does not require physical destination addresses for individual components, it is particularly suitable for modular electronics and permits multiple reception - i.e. broadcasting and multicasting.
This addressing scheme also makes CAN scesses. In such applications, measurements
cer needed as information by several controllers can be transmitted via the network in such a way that it is unnecessary for each controller
to have its own sensor Suitably nodes to have its own sensor. Suitably, nodes can
always be added to an existing CAN network without making any hardware or software changes to the others.
Each CAN message may have from 0 to 8 bytes of user information. Longer data infor-
mation can also be transmitted by using segmation can also be transmitted by using seg-
mentation. The maximum transmission rate specified so far on a CAN network is $1 \mathrm{Mbit} / \mathrm{s}$ over lengths of up to 40 m . For longer dis tances the data rate is reduced. For example, for distances of up to 500 m , the specified data
speed is up to $125 \mathrm{kbit} / \mathrm{s}$ and for transmissions of up to 1 km the data rate is around $50 \mathrm{kbit} /$.

When data is transmitted by CAN, no node sage, which can be a parameter such os mes utions-per-minute or engine temperature, is designated by a unique identifier. The identifier specifies the content and the prionity of the message. This is important for bus allocatio access.
If the cpu of a given node wishes to send a message to one or more nodes, it passes the ata to be transmitted and its identifiers to the ssigned CAN chip. Known as 'making data exchange.
The message is formed and transmitted by he CAN chip. As soon as the CAN chip receives the bus allocation - a condition calle network become receivers of this messag 'receive Message'
Having received the message correctly, each node in the CAN network performs an accepance test to determine whether the data called 'select'. If the data is of significance for the node concerned it is then processed alled 'accept' - otherwise it is ignored.
Error handling
When an error is detected, the CAN controller
registers it, as well as which node it is coming
from. It then evaluates it statistically in order to take appropriate measures. This could lead produced the error.
The CAN protocol supports two message frame formats - standard or Version 2.0Aand extended CAN or Version 2.0B, Fig. 1. The only difference be
length of the identifier
In the standard format the length of the identifier is 11 bits and in the extended format the length is 29 bits. The extended format CAN messages with 29 -bit identifier was introduced Automotive Engineers, SAE, 'Truck and Bus' subcommittee decided to standardise signals and messages in addition to the data transmission protocols for a variety of data rates. Standardisation of this kind turned out to be tion field is available For a standard m
message frame consisage, the transmission A message in the stand of seven main fields. the 'start of frame' bit It is format begins with arbitration field', which contains the identifier and the 'remote-transmission request' bit that ndicates whether it is a data frame or a request frame: The control field' contains the identifier is standard or extended, a bit reserved for

Fig. 2. Each CAN node carrie out broadcast transmissi
and acceptance filtering

CONTROL ELECTRONICS

 The ISO 11898implementation of the
physical CAN connection Physical CAN connection
is iust one of a number of

ture extensions and a count of the data bytes uture extensions
Length of the 'data field' can vary from 0 to bytes. It is followed by the cyclic redundancy check 'CRC field, which is used as frame security check for detecting bit errors. morises of a one-bit ACK slot and recessive bit ACK delimiter.
The bit in the ACK slot is sent as a recessive bit and is overwritten as a dominant bit by hose receivers which have at this tum eceived the data correctly, typically dubbed are acknowledged by the receivers regardless of the result of the acceptance test.
The end of the message is indicated by "end of frame'. 'Intermission' is the minimum number of bit periods separating consecutive the bus then the bus remains idle.
Extended format messages
In extended format transmission messages the 29 -bit identifier consists of the existing 11-bit also known as the ID extension. Distinction between standard format and extended format is made using the IDE bit, the mitted as dominant in the case of a frome in standard format. For frames in extended format it is recessive.
The RTR bit is transmitted dominant or recessive depending on whether data is being teing requested from a node. In place of the RTR bit in standard format the substitute remote request, or SRR, bit is transmitted for rames with extended identification.
The SRR bit is always transmitted as recessive, to ensure that in the case of arbitration
the standard frame always has priority bus allocation over an extended frame when both messages have the same base identifier. Unlike the standard format, in the extended format the IDE bit is followed by the 18 -bit
identification extension, the RTR bit and reserved bit (r1). All following fields are identical with the fields in standard format. Conformity between the two formats is
ensured by the fact that the CAN controllers which support the extended format can also communicate in standard forma The two formats can easily coexist on one bus. However their relevant messages are prisage version always has priority over the message in extended format. This way, collisions of messages during requesting bus access are $\underset{\text { Extend }}{\text { avoided. }}$
Extended format CAN controllers can also send and receive messages in standard format. On the other hand, CAN controllers which
only cover the standard format, or Version 2.0 A , can transmit only standard format messages on that network. Otherwise, the extended format messages will be misunderstood. There are CAN controllers however which
can recognise extended messages even though they only support standard format. In these cases the extended format will ignore those messages. As a result, it has been marked as the Version 2.0 B passive format.

Error signalling

The CAN protocol signals errors that occur on the network rather than use acknowledgement messages as in other bus systems. For error detection, the CAN protocol has three mech anisms at the 'message' level and two mechAt the message level redundancy check, frame check and ACK errors. At the 'bit' level, errors mechanisms can be one or stuffing.
Cyclic
cy checking safeguards the information in the frame by adding redundant check bits at the transmission end. At the receiver end, these bits are re-computed and tested against the received bits.
Frame checking verifies the structure of the transmitted frame by checking the bit fields against the fixed format and the frame size Errors detected by frame checks are designat ed 'format errors'.
signals, Fig. 2. That way signals, Fig. 2. That way they can easily detec
the difference between the bits sent and bits received, which indicates an error. This is
'monitoring'. With 'bit stuffing' the sender inserts into the bit stream a bit which can be removed by the receiver. This permits reliable detection of all global errors and errors local to the transmitter.
When errors
When errors are discovered by at least one node by means of the above mechanisms, the 'error flag'. This prevents other nodes from accepting the message which ensures the con sistency of data throughout the network. After transmission of an erroneous messag
has been aborted, the sender automatically re attempts transmission - an action entitled automatic repeat request. There may again be competition for bus allocation. As a rule, retransmission will begin within 23 bit periods system recovery time is 31 bit periods.

Lock-ups

Although this method of identifying and iso lating a defective node proves effective and
efficient it may occasionally lead to all messages - including correct ones - to be aborted This can block the bus system if no measure for self-monitoring are taken. The CAN protocol therefore provides a mechanism for dis tinguishing sporadic errors from permanen
errors and localising node failures. errors and localising node failures.
node error situations. The aim of this is to recognise a node's defects and if need be enter an operating mode where the rest of the CAN network is not negatively affected. This may
go as far as the node switching itself off to prevent the abortion of correct messages that have been misinterpreted as incorrect. On the other hand, errors can go undetected However the statistical average of that happening on a CAN network operating at a aat
rate of $1 \mathrm{Mbit} / \mathrm{s}$ with an average bus capacity of 50% is one undetected error in every thousand years.

Circuit simulation can be seriously good fun

Those
eers Li飞d
When you have the engineering edge, enjoy your work and catch subtle circuit behaviour before it's too late, you can afford to be light hearted Add to this tochnica support from practising engineers who take a genuine interest in you work and you are really laughing

With a free evaluation kit, you can test SpiceAge on your own circuits. The kit comes with an introductory booklet to show you how.

To hear more about this and other nice touches in SpiceAge, please contact the friendly people at
Those Engineers Ltd
31 Birkbeck Road, LONDON NW7 4BP.
Tel 01819060155
Fax 01819060969
Email those_engineers@
compuserve.com Web http://www.spiceage.com

Digital panel meter for just £8.95

Incorporating the ICL7106 a-fo-d

 converter, the PM1 28 digital panel meter has a full-scale input sensitivity of 200 mV and a high input impedance of
$100 \mathrm{M} \Omega$.

Its normal selling price is $£ 12.95$ excluding VAT and postage. Vann Draper has decided to repeat the special offer price for this meter of $£ 8.95$ - fully inclu
\& $B======$
sive of postage, packing and VAT - or even less in quantities above four off (see January 1997 issue for full details of the meter).
Simply send the coupon below Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston Leicester LE 18 2PL, fax 01162773945 or tel. 01162771400 .

Please send me

Address

... PM-128 digital panel meter(s)
at the fully inclusive special offer price of $£ 8.95$ each for quantities up to 4 off $£ 8.65$ each for quantities of 5 or more or $£ 8.35$ each for 10 or more quantitie
for which I enclose a total of $£ \ldots$.

Name

Company (if any)

- Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Aternatively tax credit card details with order on 01162773945 or teleghone on 0116 2PL. Overseas readerss can also obtain this discount but details vary acherding Draper Electronics at Unit 5 , Premier Works, Canal Street, South Wigstion, Leicester LE18

CLASSIFIED

ARTICLES WANTED

VALVES and CRTs AVAILABLE

 ONE MILLION VALVES stocked for Audio, Reèeiving, Transmit ONE \& RF Heating. Rare brands such as Mullard \& GEC a vailable.ting
\&e

Also MAGENTRONS, KLYSTRONS, CRTs and SOCKETS.
Large stocks of Russian and Sovtek items.
VAIV DS, efc, WANIIDID
Most types considered but especially KT88 (£60), PX4/PX25 (£66), KT66 ($£ 38$), $\mathrm{KT77}$ (£18), EL34 (£15), EL237 (£15), ECC83 ($£ 33$).
Valves must be UK manufacture to achieve prices mentioned. Valves must be UK manufacture to achieve prices mentioned.
Also various valve-era equipment e.g. Garrard 301 , (up to . $£ 80$). Also various valve-era equipment e.g. Garrard
Ask for a free copy of our wanted List. BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ Tel: 01403784961 Fax: 01403783519

We specaliss in the manutacurve of small sheel

Please witit, tax or ophone for oruataion
HARRISOH ELECTRONIC SERVICES
HARRISON ELECTRONIC SERVIICES
Centuy Wa, March, Cambs. PE 15 80WW
Eentury Way March. Cambs. PE158

TOP PRICES PAID
For ally your valves, tubes, sem
conductors and CC 's. Langrex Supplies Limited Langrex Mayo Road, Croydon ${ }^{1}$ Mayo Road, Choyd TEL: $0181-6841166$
FAX: $0181-6843056$

Test \& Measurement Instruments
A chance to profit
from your own ideas !
An established U.K. manufacturer of test \& measurement instruments is looking for new product concepts. They would like to hear from design engineers with innovative product ideas that could lead to joint developments on either a fee or royalty basis.
In the first instance, please write giving an outline of your product concept along with details of your own experience and capabilities.
Detailed disclosure, should the idea be pursued, would be subject to an intellectual property agreement protecting your rights.
Write to: Box 111, Reed Business Information, Room L329,
Quadrant House, The Quadrant, Sutton, Surrey. SM2 5AS

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates Please contact Joannah Cox on

Tel: 0| 81 -652 3620 Fax: 0181-652 8956

All the information you need on

RF DESIGN All aspects of RF hard ware
development considered from oncept to production. TEL: 01223862550 FAX: 01223440853
available on a single CD.
ROTpg pass $C D$
the only business $C D$ you'll need!

60,000 companies 42,000 classifications: 17 different search criteria
Cost-effective purchasing New business lead generation Fast, effective research
Financial, credit and sales planning Corponate structure dana
Downloading Printing - Networking

Call 0800521393 for more details and prices.
Plase quot reternce CDP P1.
CIRCLE NO. I44 ON REPIY CARD

ADVERTISERS INDEX			
Anchor	nd 836	Pico Technology	. 849
Card Professionals	. 849	Quickroute	. 836
CMS	. 823	Ralfe	. . 880
Colomor	. 839	RD Research	. 853
Conford	. 799	Stewart of Reading	.839 and 783
Cooke	. 859	Seetrax	. . 830
Dataman	. OBC	Surrey	. . 830
Display Electronics	. . 862	Tandem Technology	. . . IFC
Equinox	. .IBC	Telford	. . 811
Hart	. . 868	Telnet	. . 813
IOSIS	. 816	Temwell	. . 799
John's Radio	. 800	Texas	. 799
JPG	. . 830	Those Engineers	. 877
Labcenter	. . 805	Tie Pie	. 811
M \& B Radio	. . 847	Ultimate	. . . 803
Number One	. . 829	Weir	. 855
Olson 794	Wood \& Douglas 839

ELECTRONIC UPDATE
Contact Joannah Cox on 0181-652 3620

ams	Tubing Products,	YOU expect to talk to people who reall
	Plasticware and	Wentiour
		Youneodne best
		Iutine fid
		you wont
[屏		
		RING 0142082604 or
		FAX 0142084360

880

A regular advertising feature enabling readers to obtain more information
on companies' products or services.

ELECTRONICS WORLD October 1997

POWERFUL PORTABLE

PROGRAMMERS?

DATAMAN-48LV

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2, 2.7, 3.3 \& 5V
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU - for goanywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

DATAMAN 54

- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

S4 GAL MODULE

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

SUPPORT

- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery - always in stock
- Dedicated UK supplier, established 1978

Still as unbeatable as ever. Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you want the best, there's still only one choice - Dataman.

Order via credit card hotline - phone today, use tomorrow.

Alternatively, request more detailed information on these and other marketleading programming solutions.

MONEY-BACK 30 DAY TRIAL

If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

hotilime 01.300 320719

Orders received by 4pm will normally be despatched same day Order today, get it tomorrow!

Dataman Programmers Ltd, Station Rd, Maiden Newton, Dorchester, Dorset, DT2 OAE, UK Telephone +44/0 1300320719
Fax +44/0 1300321012
BBS +44/0 1300321095 (24hr)
Modem V.34N.FCN. 32 bis
Home page: h ttp://www.dataman.com FTP: ftp.dataman.com
Email: sales@dataman.com

[^0]: ductance, capacitance and inductive roll-off charts for the cables detailed in Table 2.

