SUBWOOFER FLAT TO 15HZ

Zeros in pictures

Is coaxial best for speaker cable?

Beyond Marconi CAD software on the Net

FPGA design

Wow and flutter meter

Speaking monitor

Extended offer - DPM for less than £9
BASIC STAMPS

PIC based BASIC Stamps are perfect for one-off and low volume applications. Their easy to learn but powerful BASIC syntax (with familiar instructions such as GOTO, FOR ... NEXT, and IF ...THEN as well as instructions for serial I/O, pulse measurement, button debounce, DTMF, X-10 etc) will get your application up and running in hours. Once programmed, the Stamp runs independently of your PC and programs are stored in non-volatile EEPROM so they can be changed at will. Detailed manuals cover many commonly needed routines and the Stamp is well supported by a growing list of custom application kits to cut development time even further. Available in two formats:

- **BASIC Stamp 1 (BS1-IC)**
 - 8 I/O Lines
 - up to 80 program lines
 - Comms to 3400 baud
 - 35x10mm size
 - £29 single price

- **BASIC Stamp 2 (BS2-IC)**
 - 16 I/O Lines
 - up to 500 program lines
 - Comms to 50 kbaud
 - 24pin DIP package
 - £49 single price

BASIC Stamp Development Kits including PC software, manuals, 24+ application notes, downloader cables, Stamp (BS1-IC or BS2-IC) and corresponding Project Board - £99 / £119

PIC16Cxx DEVELOPMENT TOOLS

For medium to large volumes and high speed requirements, the popular range of PICs is hard to beat. We offer an extensive range of programmers, emulators and associated hardware to support the following PICs: 52 54 55 56 57 58 620 621 62 63 64 65 71 72 73 74 84

PIC16Cxx Programmer

- True hardware emulation of program memory, registers and I/O
- Unlimited breakpoints
- Single stepping
- Software-programmable oscillator
- Windows Environment
- Runs from 32KHz to 10Mhz ('xx) and 20Mhz ('5x)
- Source level debugging for PASM(X), MPASM and MPC
- Optional trace facility

In Circuit Emulators

- Over 5000 sold
- ZIF sockets
- SOIC/SSOP/PLCC adapters
- Prototyping boards
- Compilers/Simulator

Please call or fax to receive our catalogue and price list. All prices exclude VAT and £3 shipping.

Milford Instruments

Milford House, 120 High Street, SOUTH MILFORD LS25 5AQ

01977 683665 Fax 01977 681465

Please call or fax to receive our catalogue and price list. All prices exclude VAT and £3 shipping.

Milford Instruments

Milford House, 120 High Street, SOUTH MILFORD LS25 5AQ

01977 683665 Fax 01977 681465

BASIC Stamp and the Parallax logo are registered trademarks of Parallax, Inc.
104 ROARING SUBWOOFER
Flat to 15Hz, small, fast, high sound pressure level and easily tailored to suit your existing equipment – a combination made possible through motional feedback.

110 MULTI-CHANNEL MONITOR
Triggered by a logic signal on one of its four channels, Heikki Kalliola's speaking monitor reads out a four-second message – digitally recorded and readily re-recorded.

113 MORE IN THE PICTURE
Ian Hickman looks at more ways in which circuit operation can be expressed graphically.

119 SPEAKER CABLE MEASUREMENTS
Could coaxial cables be best for wiring your loudspeakers? Cyril Bateman's measurements suggest they might be.

126 GATES OPEN UP
A quad c-mos gate forms the heart of a frequency meter, a step-down switcher or a negative supply generator, shows Rae Pertilä.

128 OVERLOAD MATTERS
Doug Self takes a look at the complex problem of preamplifier overload.

130 PROGRAMMABLE LOGIC PRIMER
Geoff Bostock describes standard logic families in this first article based on his book 'FPGAs and Programmable Logic'.

133 DESIGNING POWER SUPPLIES
Ray Fanteley presents an easy-to-use procedure for designing reliable full-wave rectifiers of the centre-tapped secondary variety.

140 MAKING CONTINUOUS WAVES
Tom Ivall looks at the race to develop radio following Marconi's patent.

152 HANDS-ON INTERNET
Cyril Bateman describes his latest Spice discoveries on the net, among them fully working evaluation packages.

156 PHASE COMPARATOR PURITY
Edward Forster explains why the future of the traditional phase-comparator's charge pump looks questionable.

163 WOW-FLUTTER METER
Analogue recording and playback systems suffer from speed fluctuations that usually worsen with age. Christopher Kuni's meter quantifies the problem.

Regulars

91 COMMENT
Eurofile or Europhobe?

92 NEWS
Digital tv fears, DECT on one chip, Taiwan d-ram myth, Learning computer, 40Gbit/s amp, MPEG-4, new DVD players.

98 RESEARCH NOTES
Chip mic, Sun-powered aircraft, atmospheric electricity, PCB warp.

146 CIRCUIT IDEAS
Valve amplifier, Noise-immune antenna, FM mic, Battery saver, 386 write protector.

159 NEW PRODUCTS
Pick of the month – classified for convenience.

171 LETTERS
LV Directive, headphone stereo, CAD inadequacy, Phase-shifting solution.
The Art Of In-Circuit Emulation

M&B RADIO (LEEDS)
THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL</th>
<th>RESOLUTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>3586C</td>
<td></td>
<td>£1,613</td>
</tr>
<tr>
<td>HP</td>
<td>303</td>
<td>MHz-520 Hz-21</td>
<td>£1,865</td>
</tr>
<tr>
<td>HP</td>
<td>420</td>
<td>MHz-1.8 MHz</td>
<td>£2,010</td>
</tr>
<tr>
<td>HP</td>
<td>141</td>
<td>MHz-18 MHz</td>
<td>£2,625</td>
</tr>
<tr>
<td>HP</td>
<td>8477A</td>
<td>MHz-514 MHz</td>
<td>£2,945</td>
</tr>
</tbody>
</table>

ALL PRICES PLUS VAT AND CARRIAGE - ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY

86 Bishopsgate Street, Leeds LSI 4BB
Tel: (0113) 2435649 Fax: (0113) 2426881

CIRCLE NO. 107 ON REPLY CARD

ELECTRONICS WORLD January 1997
Europhile or Europhobe?

E urophile or Europhobe? It’s the political question of the day. But there’s one Euro-issue on which the electronics industry should be agreed — the value of pan-European research projects.

Look at the chip business. “In the early eighties everyone was saying that the European chip industry was dead,” remembers Pasquale Pistore, president of SGS-Thomson Microelectronics. Then came collaboration.

First the Siemens-Philips ‘Megaproject’ to get Europe up to speed on first memory technology, then JESSI added a pan-European dimension to the German-Dutch formula, now the EU is backing the JESSI successor programme MEDEA which is open to all nationalities.

“Fifteen years ago people were saying ‘microelectronics is not a European kind of thing’ — we’ll buy that in from the Americans and the Japanese,” says Horst Nasko, the chairman of JESSI and MEDEA.

Now, in the myriad disciplines which constitute a microelectronics infrastructure — from materials through to production equipment — Europe has world-class performers.

And no one could deny that our three largest microelectronics companies — Philips, Siemens and SGS — are world-class in both technology and market clout. Philips top $4bn in chip sales while Siemens and SGS have chip revenues of over $3bn.

In a decade and a half, these companies have been transformed into serious players with which major worldwide companies want to collaborate, as witness the IBM/Toshiba/ Motorola/ Siemens alliance on memory technology.

So collaboration works — as the Japanese showed in the seventies, the US Sematech programme showed in the eighties, and the Europeans showed in the nineties.

Not that we had much to do with it. Shamefully the UK’s contribution to JESSI was about a tenth of the contribution of Germany or France, about a quarter that of Holland, and about the same as that of Portugal.

Now, with MEDEA coming up for funding, it looks as if the same thing is going to happen again. The provisional commitments from governments is: Germany 32 per cent; France 29 per cent; Holland 19 per cent; Italy 10 per cent; Belgium 4 per cent and the rest of Europe 6 per cent. To our shame we are in the ROE group.

Moreover the UK DTI — an organisation supposed to be helping UK industry — has decided it will only pay 25 per cent of a project’s funding whereas every other country is paying 38 per cent.

As if to rub in its contempt, the DTI has also put a ceiling of £250,000 on the UK government’s contribution to any one project. This effectively debars British companies from involvement in projects costing over £1m — a pitiful sum in chip research terms. Under MEDEA accounting procedures, £1m buys an eight man project lasting one year. No big deal.

So there we have it — an attitude from the UK government that is mean-spirited, petty and chauvinistic. “The attitude is more in line with people who think Europe is something other than the ‘continental Channel’, acridly comments Dr Jurgen Knorr, group president of Siemens Semiconductors and chairman of the semiconductor committee of the European Electronics Components Manufacturing Association (EECA).

...look at Eurofighter — a project costing $40bn that has no apparent purpose...

Our government is something else. When it takes a shine to a scheme it will shovel out the money like a drunken sailor. Look at the grants being paid to Hyundai of Korea to set up a microelectronics factory in Fife — said to amount to several hundred million pounds. Lucky Goldstar and Siemens have also been given £100m+ financial inducements to set up microelectronics companies in the UK. Or look at Eurofighter — a project costing $40bn that has no apparent purpose at all or at the really stupid ‘Millennium Dome’.

Oh yes! We can dish out the lolly all right — no shortage at all when it comes to a pet government project — but when it comes to something not close to the government’s heart it can be horribly mean.

Nowadays the cost of research is so great that not even regions, let alone countries, can afford to do it all alone. As Klaus Rupf from Germany’s Ministry of Education, Science, Research and Technology told JESSI’s last meeting, “If we really want to be world competitive we have to include partners from countries in other regions of the world.”

The DTI has to wise up to the world. Otherwise the UK will be heading back to the days when we painted our backsides blue while continental Europe heads for a high-tech future.

David Manners
Fears surround UK digital tv

Britain cool on Euro R&D

It is clearly in the interest of government and BSkyB that a workable solution is found to ensure that a digital launch is achieved during 1997,” said Barry Rubbery, CEO at set-top box maker Pace.

David Manners
Electronics Weekly

DECT on one chip

VLSI Technology has released a single-chip baseband design for DECT, the micro-cellular in-building cordless phone system.

Called Vega, the chip has a dedicated DECT (digital enhanced cordless telecommunications) processor, a general purpose cpu and interfaces including those for microphone, speaker and keyboard. The only things not present are an lcd controller and the processor’s rom.

Patrick Edmond, a spokesman for VLSI, said: “Once a firmware design is stable, we can add the customer’s rom into a custom Vega chip.”

Vega is designed for use in handsets and base stations. VLSI claims that the DECT processor is comprehensive enough to leave the cpu, which is an ARM Thumb, with nothing to do once a call has been established.

Edmond said: “In a handset, the cpu can be shut down to conserve power, or it can be used for performance enhancement like echo cancellation in base stations.”

Making a chip that serves base stations and handsets could leave room for a competitor to undercut VLSI in handsets which do not require the full power of the Thumb.

Edmund said: “The Thumb core takes only the same die area as a conventional eight-bit cpu core, and it is becoming a standard in handset applications, so there isn’t really any scope to make a lower-cost handset chip. There is no such thing as a half Thumb.”

Sample silicon for Vega (VWS23101) is available and production volumes are planned for the second quarter of 1997.

Steve Bush
Electronics Weekly
THE HOME OF HI-FINESSE. IT'S NOT WHAT YOU DO, IT'S HOW YOU DO IT THAT COUNTS!

VISATON® SPEAKER KITS & DRIVE UNITS

New to the UK, VISATON offer a range of speaker kits and drive units that give the home builder access to units and designs that are unrivalled for quality, performance and value. Their designs are very well known in Germany, where they are based, and over 25 years they have developed a reputation for high quality. All their designs come from a solid background in the field of design and research and their factory contains one of the largest anechoic chambers in the World, backed up by their very latest in comprehensive test equipment. The factory is a multi-discipline facility, aimed at design collaboration with major universities and researchers, with a commitment to produce products of impeccable performance and value that are the best available to the home speaker basket. Their range of products covers the most complete range for the hobbyist from 15" woofers to ribbon tweeters. Speaker design software and database are available for the home user who wants to try his hand, or for commercial manufacture. A selection follows, our kits will give you more...

K1100M

- Construction equipment
- building
- Why innovation
- were
- Hood
- employs
- the
- a
- manual
- a
- 10K
- of
- standard
- transformer
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

K1100CM

- Construction equipment
- building
- Why innovation
- were
- Hood
- employs
- the
- a
- manual
- a
- manual
- a
- 10K
- of
- standard
- transformer
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

K1100

- Construction equipment
- building
- Why innovation
- were
- Hood
- employs
- the
- a
- manual
- a
- manual
- a
- 10K
- of
- standard
- transformer
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.

STANDARD

- CABINETS

- Speaker
- and
- transformer
- is
- transformer
- the
- for
- transformer
- transformers,
- drivers.
Taiwan d-ram is not to blame

The great tidal wave of Taiwanese d-ram, blamed for this year’s catastrophic drop in prices, is a myth. The Taiwanese are at least a year away from significant volume in d-ram manufacturing.

The three new d-ram manufacturing entrants in Taiwan are Nan-Ya Technology, Vanguard Semiconductor and PowerChip Semiconductor. The previously existing d-ram manufacturers are TI-Acer and Mosel-Vitelic.

TI-Acer is a captive supplier to TI and Acer. Mosel-Vitelic has always been a speciality memory house though it is about to enter the commodity business via a joint venture with Siemens called ProMOS Technologies.

“We’ll start with the 16Mbit next year,” said Mosel-Vitelic’s vice-president for operations, Dr Nasa Tsai. “The first phase of the fab has been equipped for 20,000 wafer starts a month.”

Most advanced of the new entrants is Vanguard. “Now we have Fab 1(a) with 15,000 wafers a month and we’re currently installing capacity in Fab 1(b) for another 10,000 wafers a month,” said Dr F C T’eng, president of Vanguard.

US catching up with smartcard applications

Seven top US financial services companies have endorsed the Mondex smartcard technology in what is the USA’s largest vote of confidence in the sector. So far the USA has lagged behind Europe in smartcard applications.

AT&T, Chase Manhattan, Dean Witter Discover, First Chicago NBD, MasterCard, Michigan National Bank and Wells-Fargo Bank have invested in Mondex USA Services, which will use the Mondex smartcard technology in a series of pilot programmes in the USA.

“The power of this group will propel Mondex as the pre-eminent electronic cash payment system in the USA,” said Janet Hartung Crane, president and CEO of Mondex USA. In spite of its heavyweight backing, Mondex will still face stiff competition from Visa and American Express, which are pursuing their own smartcard projects.

The first commercial Mondex cards will be introduced in 1998, following the results of key trials. Mondex USA says it will license its technologies to other US companies to help further establish the technology.

In a separate move, Mondex announced its agreement with Sun Microsystems for the inclusion of its format in the Java Commerce Toolkit. This toolkit will allow the development of open, secure and integrated electronic commerce applications which will link Mondex to the Internet.

Computer learns user habits

Australian firm Formulab Neuroneutics has launched a computer in the USA which it claims learns from its user and makes decisions.

The device, called the Richter Paradigm Computer, uses a parallel-processing architecture comprising 896 simple RISC processors, and costs $3000. The company says that the low cost of the system will help establish a large market for a “reasoning” computer.

In a demonstration, Formulab said that it can run neural network applications 180 times faster than an Intel Pentium 166MHz system.

Formulab also revealed plans for a supercomputer based on its computer architecture, which has taken more than 14 years to develop. The supercomputer would combine as many as 6000 microprocessors and could be used for scientific applications. It would run a special operating system that could manage the difficult task of splitting a computational problem into separate tasks and assembling the results.

The company also said that it is working on an add-on card for PCs which could assist users by learning from their work habits. It also plans to shrink its technology so that it can be embedded into products such as cameras and consumer electronics devices. Formulab said it will license the technology to other companies.

Other applications include stock buying, with the system noticing differences in stock prices and trading patterns.

Rockwell wins 56kbit modem support

The battle to establish the dominant 56kbit/s modem technology continues apace. Rockwell Semiconductor now says that it has won the support of Compaq, Hewlett-Packard, Toshiba, and AST Computer, while rival US Robotics has added Hitachi to its list of allies.
Marconi
HP
Tinsley
ROTEK
HP1630G
HP
SP
Tinsley
HP8568A
HP
Tracking generator 100kHz-110MHz - £1000.
SP4468A
Tracking generator 300kHz-18GHz - £750.
SP7682A
2GHz - £4750.
SMALL
Marconi
Network
Transit
5625F
TF2305
TF2370
Universal
9303
9305
TC403A
Universal
9009
Type RF
1GHz-110MHz - £600.
8650. Type RF
500kHz-2GHz - £2000.
8349A
Logic
18GHz
2GHz - £1250.
8349A
Logic
5GHz
2GHz - £2500.
8329A
Power
2GHz - £2000.
8923A
Power
2GHz - £5000.
8923A
Power
10GHz - £1000.
8923A
Power
120GHz - £1500.
8923A
Power
60GHz - £2500.
8923A
Power
100GHz - £3500.
8923A
Power
600GHz - £5000.
8923A
Power
2000GHz - £10000.
8923A
Power
50GHz - £25000.
8923A
Power
50GHz - £50000.
8923A
Power
1000GHz - £100000.
8923A
Power
1000GHz - £200000.
9009
Type RF
1GHz-110MHz - £600.
9009
Type RF
500kHz-2GHz - £2000.
9009
Type RF
500kHz-2GHz - £5000.
9009
Type RF
1GHz-110MHz - £10000.
9009
Type RF
1GHz-110MHz - £15000.
9009
Type RF
50MHz-10GHz - £100000.
9009
Type RF
50MHz-10GHz - £200000.
9009
Type RF
50MHz-10GHz - £500000.
9009
Type RF
50MHz-10GHz - £1000000.
9009
Type RF
50MHz-10GHz - £2000000.
9009
Type RF
50MHz-10GHz - £5000000.
9009
Type RF
50MHz-10GHz - £10000000.
9009
Type RF
50MHz-10GHz - £20000000.
9009
Type RF
50MHz-10GHz - £50000000.
9009
Type RF
50MHz-10GHz - £100000000.
9009
Type RF
50MHz-10GHz - £200000000.
9009
Type RF
50MHz-10GHz - £500000000.
9009
Type RF
50MHz-10GHz - £1000000000.
9009
Type RF
50MHz-10GHz - £2000000000.
9009
Type RF
50MHz-10GHz - £5000000000.
9009
Type RF
50MHz-10GHz - £10000000000.
9009
Type RF
50MHz-10GHz - £20000000000.
9009
Type RF
50MHz-10GHz - £50000000000.
9009
Type RF
50MHz-10GHz - £100000000000.
9009
Type RF
50MHz-10GHz - £200000000000.
9009
Type RF
50MHz-10GHz - £500000000000.
9009
Type RF
50MHz-10GHz - £1000000000000.
9009
Type RF
50MHz-10GHz - £2000000000000.
9009
Type RF
50MHz-10GHz - £5000000000000.
9009
Type RF
50MHz-10GHz - £10000000000000.
9009
Type RF
50MHz-10GHz - £20000000000000.
9009
Type RF
50MHz-10GHz - £50000000000000.
9009
Type RF
50MHz-10GHz - £100000000000000.
9009
Type RF
50MHz-10GHz - £200000000000000.
9009
Type RF
50MHz-10GHz - £500000000000000.
9009
Type RF
50MHz-10GHz - £1000000000000000.
UPDATE

MPEG-4: draft agreed

The main components of MPEG-4, the emerging audio visual coding standard, have achieved working draft status following a recent meeting in Brazil. The meeting also saw the Moving Pictures Expert Group kick off work on a follow-on standard, curiously called MPEG-7.

MPEG-4 aims to provide a universal mechanism for communicating audio and visual "object" data. Unlike the MPEG-1 and -2 standards, which encode frames of video, MPEG-4 reflects the emergence of myriad media content, and is capable of manipulating such content whatever its shape.

"MPEG-4 offers lots of flexibility. It will give applications developers far greater scope," said Paul Fellows, a project manager at SGS-Thomson Microelectronics involved in MPEG-4 work. "The basic techniques have been designed - experiments have identified the best techniques and these have been incorporated into the draft." MPEG-7, the follow-on standard, will add value to MPEG-4. According to Fellows, MPEG-7 will be concerned with "bits about the bits". It will offer ways to describe content whatever its guise, allowing identification in much the same way that search engines identify text on the World Wide Web.

40Gbit/s amp/filter breakthrough

A compact 35GHz amplifier suited to long-distance, high-speed optical communications has been co-developed by a group of UK and Portuguese academics. The device, which uniquely combines digital filtering and analogue amplification, is claimed to be the fastest of its type, capable of working with 40Gbit/s communication systems.

Dr Izzat Darwazeh of UMIST, and one of the academics involved in the design, said: "In today’s fibre systems for long links, people use optical amplifiers which introduce some noise. Even 10ps of jitter could seriously degrade the system."

One solution is to use signal shaping filters at the receiver, traditionally an external filter after the front end. However, the filter itself introduces noise, and the physical link between the components on the board has inductance, further degrading the signal.

The circuit design, involving UMIST, University College London and the University of Aveiro in Portugal, uses a distributed amplifier.

"A distributed amplifier is functionally equivalent to a finite impulse response filter," said Dr Darwazeh. By forcing the gate and drain delays to be different, the amplifier gains the filter characteristics.

The circuit, implemented as a single monolithic microwave IC (MMIC), has been built by the Fraunhofer Institute in Germany using a 40GHz HEMT process. Different lengths of the transistors define the delays and coefficients of the filter.

Dr Darwazeh says that an integrated front end would have applications in very high speed optical fibre such as transatlantic or Pacific links.

The next stage is to make an adaptive system that adjusts the filter’s coefficients and the amplifier’s gain depending on the signal received.

Richard Ball, Electronics Weekly

Film promises 70% brighter liquid crystals

A British company is developing and marketing a plastic film which promises to increase the brightness of laptop LCDs by 70% for no extra power.

The film, invented by Philips in Eindhoven and now being worked on by Mercok of Poole, Dorset, acts to pre-polarise light entering the rear polariser of a standard LCD.

The rear polariser of an LCD transmits 40% of light from the backlight and absorbs the rest. The new film alters the random polarisation of the light from the backlight so that most of it is accepted by the rear polariser.

Two new players in digital video disk arena

Hitachi and Akai are the latest companies to announce that they will sell DVD rom and DVD players. Hitachi will introduce its DVD rom player in early 1997, and has already begun shipping samples to key customers. However, a DVD player for the consumer market will not come until later in the year.

The entry of DVD has hit some snags in recent months with companies such as Toshiba and Fujitsu delaying the introduction of their products into overseas markets. A key reason has been the lack of DVD titles, since without content the DVD systems only have CD-ROM based titles to play.

US media company Time-Warner has said that it will begin shipping DVD titles, which should help jump-start the market. Time-Warner said it will release four movie titles: The Assassin, Blade Runner, Eraser and The Fugitive.

Toshiba, which was the first to introduce DVD players into the Japanese market, said that the players are selling well and that it has shipped about 30,000 units. Toshiba will introduce its DVD players into the USA in early 1997, followed by a European launch.

Philips set the pace in DVD roms. Now other companies are targeting the market.
EDWinNC

For many years top class industrial strength PCB design Software has been out of reach to you, due to high prices. Now for the first time, such software is available to you at an affordable price!

Make no mistake, this is indeed the exact software that is sold into commercial organisations.

EDWinNC is used extensively in academic institutions throughout the UK and France and is well supported by Multi-National Companies.

This is no new release! Visionics have been supplying top grade software for over 10 years. Now we offer it to you at immense savings i.e. EDWinNC De Luxe 3 costs £3,515.25 inc. VAT for commercial use.

Hot News for Circuit Board Designers

Non-commercial CD-ROM version from just £49 inc VAT

EDWinNC is a fully integrated Windows based package and contains many powerful features which make it the best value PCB Design Software there is!

The Basic version (£49.00 inc. VAT) has a 100 component database limitation, but includes Schematics, PCB Layout, 500 Device Library including schematic and layout, Basic Autorouter & Postprocessing.

The De Luxe 1 (£79.00 inc. VAT) version has the above, but also includes Professional Libraries and unlimited database components.

De Luxe 2 (£79.00 inc. VAT) is the same as the basic version, but with Professional Libraries and adds Mix-mode Simulation.

De Luxe 3 (£114.00 inc. VAT) all the above plus the Arizona Autorouter.

YES! Please Rush Me My EDWinNC program.

X

Swift Designs Ltd., Business & Technology Centre, Bessemer Drive, Stevenage, Herts. SG1 2DX.
Priority order or more information by telephone: 01438 310133 fax: 01438 722751 or Email: designs@swiftdesigns.co.uk

Name: ...
Address: ... Postcode: ..
Tel.: (Day) .. (Evening) .. Version Required: Basic De Luxe 1 2 3 (please circle)
I enclose £ 00 + p.p. £5 UK (p.p. £10.00 Outside UK) for the CD-Rom version. □
No.: ... Expiry Date: ______ Signature:

Stocks are limited. Therefore do not delay in sending in your order. Please allow 10-15 days for delivery.
Single chip mic sounds the best yet

The thin, flexible diaphragm and rigid bookplate design of the condenser microphone can already be implemented on a single chip. But there have been problems in the past with residual stress in the diaphragms affecting the sensitivity of the device.

Now three Chinese researchers have manufactured a silicon condenser microphone with a corrugated diaphragm that shows a dramatic reduction of stress. This is not the first microphone to use a corrugated diaphragm to reduce stress in this way. But the Chinese microphone has also demonstrated a flat frequency response and high sensitivity ('Design and fabrication of silicon condenser microphone using corrugated diaphragm technique,' Quanbo Zou et al, J of Microelectromechanical Systems, Vol 5, No 3, pp. 197-204).

The microphone capacitor consists of the corrugated diaphragm that acts as an active electrode, and a single crystal silicon bookplate with acoustic holes that acts as the stationary electrode. It is fabricated, using seven masks, on a single wafer by use of silicon anisotropic etching and sacrificial layer etching techniques. So no bonding techniques are required.

Up to now, the microphone has demonstrated a flat frequency response between 100Hz and 8-16kHz, and open circuit sensitivities as high as 14mV/Pa while using a low bias voltage of 10V.

Further work will aim to improve the overall microphone performance, boost sensitivity and flatness of the frequency response, by optimising the structure parameters and process conditions.

Contact Quanbo Zou, Institute of Microelectronics, Tsinghua University, Beijing, China.

Sun shines again for Pathfinder: The record-setting Pathfinder solar-powered research aircraft has resumed flight testing at Nasa's Dryden Flight Research Center, following its disastrous damage during a ground accident 12 months ago. In its last flight, the Pathfinder set an altitude record of more than 16,800m on a flight from Dryden which lasted nearly 12h. However, its latest flight was just a low-altitude check-out flight over the northern portion of Rogers Dry Lake at Edwards Air Force Base, California.

Low sun angle and limited hours of sunlight during the winter limit Pathfinder's altitude capability to about 6670m. This is one of the reasons why the project will be transferred to the Navy's Pacific Missile Range Facility on the island of Kauai, which lies at a lower latitude. Kauai's latitude and more favourable prevailing northerly winds will allow more opportunity for high-altitude solar-powered flying during a five-month flight test program.

Pathfinder is one of several remotely-piloted aircraft being evaluated under Nasa's Environmental Research Aircraft and Sensor Technology (Erast) program. The joint Nasa-industry alliance is seeking to develop technologies required to operate slow-flying unpiloted aircraft at altitudes up to 34,000m on environmental-sampling missions lasting up to a week or longer. With a span of 33m, Pathfinder is basically a flying wing.

Only two small pods extend below the wing's centre section to carry a variety of scientific sensors and support the craft's landing gear. The solar arrays on the wing can provide as much as 7200 watts of power at high noon on a summer day to power the craft's six electric motors and electronic systems. A backup battery provides power for up to two hours to fly the craft after the sun is down. Built primarily of lightweight composite structure, plastic foam and a thin plastic covering, Pathfinder weighs about 230kg.

Contact: Fred Brown, Dryden Flight Research Center, Edwards, CA, USA
For all your Power Distribution
Olson offer a varied choice

OLSON

Distribution
Units

Industrial Range

10 Amp 110V and 240V

To BS 4343:1986

Olson Electronics Limited

FOUNTAYNE HOUSE, FOUNTAYNE RD., LONDON N15 4QL
TEL: 0181-865 2884
FAX: 0181-865 2496

CIRCLE NO. 110 ON REPLY CARD
Robot has an office at its heart

When we dream of using robots to carry out helpful tasks, we generally think about cyber-butlers precisely mixing our gin and tonics and waking us up with a newly ironed newspaper, rather than giving assistance at the office. (Though in some areas of the EW office, a gin-mixing, paper-ironing robot would fit in very well.)

But concentration by Hiroshi Mizoguchi and colleagues on the office environment has now given birth to the robotic office room (ror) - a robot that supports human activity within the office.

For example, when a human worker points to an object and gestures to get it, the room understands the behaviour and takes the object to them, perhaps using a long reach manipulator centrally located on the ceiling. In effect the office worker, works inside the robot.

To collect information, the ror monitors behaviour through a tv camera. When it detects pre-defined functions of the motion of an object - moved by human behaviour - the ror starts to make a response. By choosing to monitor objects that are moved by human behaviour rather than humans themselves, computing power has been considerably reduced.

An experimental prototype consists of a telephone, a pen, a tv camera vcr, a workstation and an audio set. In this case, the telephone, the pen and the tv camera are the input devices of the ror since the system can infer human behaviour by monitoring them.

Contact: Hiroshi Mizoguchi, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153, Japan email: hm@tis.t.u-tokyo.ac.jp.

Raindrops reveal their charge

It is not often that experimental researchers of today have cause to cite 130year old lecture papers delivered to the Royal Institute as part of their introduction. But the reference to Lord Kelvin’s 1860 paper on Atmospheric Electricity by José Fornés et al gives an indication of how long their particular area of study has been a mystery - and how little has been achieved recently to solve it.

The question Kelvin raised, and which the Brazilian researchers have been trying to solve, is simply: “What is the pattern of charge distribution within falling or immobile rain drops?”

As the author’s point out (“Evidence for multipolar charge distribution in falling water drops”, J. App. Phys, Vol 80, No 10, pp. 6021-6027), electrical charge determination in single water drops has been undertaken since the 1920s. But despite extensive investigation, results are scarce - partly because of the difficulties in constraining a water drop without charge exchange.

A simple treatment might suggest that the result would be similar to a dielectric sphere in a uniform electric field, where a pure dipolar pattern would be observed. But this is not the case.

Formés and his colleagues have devised an apparatus that can produce drops of near zero net charge by using an aluminium ring to enclose the drop at its formation, and force it to acquire a given charge. When the drop is freed, it retains that charge.

The measuring probe consists of a copper wire loop of 2.8mm radius and a cross section of about 0.2mm, across which the drop falls. The ring is connected to a 10GΩ probe of a model 8900 Dagan patch-clamp amplifier, in the current-to-voltage configuration and set to voltage-clamp mode at voltage zero.

There is never any direct physical contact between the probe and the drop, the coupling being only capacitive. During measurement, the voltage output of the amplifier is acquired by an analogue-to-digital interface and fed to a computer.

To produce multipole charge induction, the drops (with their zero net charge) fall through a capacitor, typically maintained at 30V with 67mm plate separation. Each capacitor plate has a small hole to enable the drop to pass through and the sensor probe is placed at mid distance between the plates.

Plotting the results show that the electrical charge on a water drop falling in the direction of an applied electric field is distributed in a multipolar pattern, possibly because of the contribution of the field-oriented water molecule multipoles.

Lord Kelvin would have been happy.
Join over 75,000 customers and find out why more engineers and hobbyists buy Electronics Workbench than any other software. You'll be working productively in 20 minutes, and creating better designs faster. We guarantee it.

FEATURES OF ELECTRONICS WORKBENCH VERSION 5

WHAT'S NEW

GENERAL

COMPONENTS

Powerful NEW VERSION!

High-End Features

- TRUE MIXED ANALOG/DIGITAL
- FULLY INTERACTIVE SIMULATION
- ANALOG ENGINE
- TEMPERATURE CONTROL
- HIERARCHICAL CIRCUITS
- VIRTUAL INSTRUMENTS
- ON-SCREEN GRAPHS
- ANALOG COMPONENTS
- DIGITAL COMPONENTS
- DEVICE MODELS
- MONEY-BACK GUARANTEE

Powerful Analyses

- DC OPERATING POINT
- AC FREQUENCY
- TRANSIENT
- FOURIER
- NOISE
- DISTORTION

30-DAY MONEY-BACK GUARANTEE

VERSION 5.0 FOR WINDOWS 95/NT/3.1.1. Upgrades from previous versions $79.

EXCLUSIVE DISTRIBUTOR

Robinson Marshall (Europe) Plc
Nadella Building, Progress Close, Lexford Business Park,
Coveney, UK CV3 2TF.

Shipping Charges UK £1.50. All prices are plus VAT. Electronics Workbench is a trademark of Interactive Image Technologies Ltd, Toronto, Canada. All other trademarks are the property of their respective owners.

CIRCLE NO. 111 ON REPLY CARD
Straightening out a pcb problem

Printed circuit boards, or pcbs, remain vulnerable to a simple, heat-induced threat: warpage. Unfortunately, warped pcbs may cause a device to stop working, while boards that warp during manufacturing after expensive components are added can mean costly losses.

But a technique developed at the Georgia Institute of Technology and now licensed by Electronic Packaging Services (EPS) could provide a new weapon against warpage.

The experimental thermoïre process provides real-time data about pcb warpage in simple and fast manner, so that manufacturers can avoid design problems. "Electronic packaging companies can use the warpage information to make changes in their pcb design early," says Charles Ume, an associate professor in the School of Mechanical Engineering.

The heat that can warp pcbs is generated each time computers, camcorders or other pcb-run devices are turned on. Also, temperatures up to 230°C are an integral part of pcb processing.

In addition, if the pcb is small, thin and densely populated with components, as is the current industry trend, that is an invitation for warpage-related reliability problems.

For the new process, Ume developed a special oven with a glass grating top, through which the pcb placed inside is visible. A white light shines through the glass grating onto the pcb, and an inexpensive, compact, charge-coupled device camera captures warpage digitally as it occurs.

The flat glass grating is etched with equally spaced parallel lines. It is placed above and parallel to the pcb. A beam of white light is directed onto the glass at a specific angle, causing the etched lines to create a shadow on the surface of the pcb. When the surface of the pcb curves due to warpage, a moiré pattern is produced by the geometric interference between the etched lines on the glass and the shadow of those lines on the pcb's surface. The more the pcb warps, the greater number of moiré fringes that appear.

Ume counts the number of fringes, puts them into an equation, and a computer determines how much warpage has occurred. The warpage process is displayed in real time on a television screen and recorded on video and on computer.

The thermoïre technique can be used to simulate the three major kinds of soldering processes — infrared reflow, convective reflow and wave — and the automated oven system can reproduce any given soldering temperature history used in producing a board. In this way, the system can pinpoint which processes or designs may cause the most warping.

Ume says that companies can use the results to make design or process changes before production, such as changing soldering temperature profiles, reducing or extending processing times, relocating key components, and changing the materials used in constructing the pcb.

The ability to measure thermally induced warpage could also enable manufacturers to validate their numerical warpage predictions, created using finite element modelling techniques.

If a certain amount of warpage is allowable, the new technique also lets manufacturers measure initial warpage, rather than assuming the board is flat before transistors and other items are added.

Manufacturers can then determine how much additional warpage develops during further processing or attachment of components.

Contact: Charles Ume, Georgia Institute of Technology, Atlanta, Georgia 30332-0828, USA. Email: charles.ume@me.gatech.edu

1997 will be the year of the blue laser

CW operation of blue laser diode devices should now be possible, with commercialization coming in 1997-98, according to one of the leading researchers in the field.

Shuji Nakamura, of Nichia Chemical Industry, Tokushima, Japan, made his prediction in an interview appearing in OE Reports, published by SPIE (The International Society for Optical Engineering).

Nakamura has already seen behind some of the major breakthroughs in blue LEDs and lasers. He has also stood against the prevailing wisdom underlaying much work in blue device research by concentrating on GaN technology, rather than using the more usual III-VI materials and then frequency doubling.

Now, when he is reported to be close to developing a commercial product, the significant degradation suffered by II-VI blue lasers is convincing scientists that GaN is the way forward.

So far Nakamura has produced a pulsed blue laser diode operating at room temperature, with wavelength variable between 390-440nm by changing the In content of the InGaN well layers.

Initially, the cost of the laser devices will be many times greater than the current $1-2 price of blue LEDs, though volume will naturally force this down.

The attraction of blue lasers is the impact they could have on high density storage. Current limits using a red laser diode are around 50bytes per side. But the shorter wavelength of blue light should allow this capability to be increased substantially, perhaps by a factor of three.

Charles Ume (right) examines the fringe pattern generated when a printed circuit board is heated in the new oven.
DASYL Lab - Data Acquisition to Report

Just a few mouse clicks is all it takes to choose from DASYL Lab's comprehensive palette of icons, drop them onto your worksheet and wire them together. There are icons for inputs and outputs, controls and displays, mathematical and statistical operations, signal analysis and triggering/message functions, data and file handling routines - everything you need your system to handle.

With DASYL Lab you can visualise your test rig or process and create QC and test reports without having to export data to another program. You can enter test or product batch information and store it to file along with measured and derived values. You can type equations straight into DASYL Lab, and derive real-time results as you acquire the data! There's even a DASYL Lab NET option so you can pull in data from remote PCs using standard network components.

DASYL Lab has to be the most intuitive data acquisition software money can buy.

CALL FOR MORE INFORMATION:
01462 480055

DADISP makes light work of your most complex acquisition and analysis demands, yet it's so easy-to-use.

DADISP: Point-and-Snapshot Software for data acquisition and analysis under Windows.

DADISP is a windows application for acquiring data from either local or remote instruments and performing all sorts of specialised tasks on the acquired data.

DADISP can record data from almost any source, and can be used to generate a wide variety of graphical displays. It can also be used to automate complex measurement tasks.

DADISP comes with a wide range of fully-functional built-in functions, including data analysis, data visualization, data export, and data reporting.

DADISP also includes a powerful scripting language, which allows you to automate complex measurement tasks. You can use this scripting language to create custom measurement tasks, and then save them as script files for later use.

DADISP is available for Windows NT, Windows 95, Windows 98, and Windows 2000. It is also compatible with Windows XP and Windows Vista.

CALL FOR MORE INFORMATION:
01462 480055

DADISP comes with a fully-functional demo version.

TEMPERATURE CURRENT PRESSURE VOLTAGE STRAIN

WHEN YOUR PROJECT DEPENDS ON MEASURING DATA FROM DIFFERENT SENSORS AND SOURCES, YOU NEED TRULY RELIABLE, FLEXIBLE DATA ACQUISITION HARDWARE, AND YOU DON'T WANT TO SPEND AN AGE SETTING IT UP AND CHECKING IT OUT.

That's why you need DATA shuttle. Because DATA shuttle is an incredibly reliable, completely flexible way to collect your data. And it's so simple - all you do is plug it into the parallel port of your notebook or desktop PC, and it's ready for use.

DATA shuttle can help you save time and money. It's a highly-cost-effective solution for many measurement applications, and it's easy to use. So why not try it out today?
Using motional feedback, Russel Breden's subwoofer produces flat response down to 15Hz - despite its relatively small enclosure. Feedback also makes feasible an infinite baffle rather than a reflex design, resulting in tighter bass.

Inspired by Peter Baxandall's 'Low-cost, high-quality loudspeaker' series of articles in Wireless World, I built my first sub-woofer back in 1978. It was a 2.4ft³ reflex using a KEF B139 driver and tuned to 30Hz.

Originally, this sub-woofer was passive, but it soon became apparent that adding a dedicated power amplifier and second-order low-pass filter produced the flexibility required to interface with my existing speakers. Built in the days when home computers were a distant dream, and Thiele/Small analysis was little known, it is surprising that it worked at all. As it was, it gave me a sense of what was missing from most of the other systems around at that time. Nearly twenty years later, things haven't changed that much. Off-the-shelf speaker systems available today rarely produce an output below 60Hz.

Going lower
For a system to produce bass extending to at least 30Hz normally requires large boxes and expensive drivers. But by creative use of electronic circuitry, both size and expense can be cut to reasonable proportions. These techniques however require the sacrifice of hi fi's most sacred cow - flat amplifier response.

Today, we have all the tools necessary to design economical audio systems with a flat response, even though the system's component parts may be far from linear. The work of Thiele - extended by Small - provides comprehensive details about the response of a driver in an enclosure. All that is needed is to design electronic circuitry to compensate for the non-linear response of the speaker/driver combination.

Advantages of activity
A motional feedback system operates by sensing the speaker cone's motion and feeding this back into the power amp.

Providing negative feedback in this way forces the amplifier to produce a signal that corrects both for amplitude irregularities and the distortion generated by the speaker. The result is an acoustic output which is flat against frequency - even though both speaker and amplifier are operating in a decidedly non-linear fashion.

Motional feedback is not the only way of achieving this. You could use electrical equalisation, for example, but this would not reduce system distortion. In any event, motional feedback is an intellectually satisfying technique using well understood principles.

To produce a correcting signal, the speaker must be fitted with some form of transducer. In this design, I have used dual-coil drivers, one coil of which forms the pickup. As the cone moves, it generates a voltage signal in the coil which is proportional to cone velocity. This signal is then processed and used for correction purposes, see panel.

One major objection to motional feedback is that the feedback loop could try to force the driver beyond its limits. This
Fig. 1a). Power amplifier and motional feedback mixer for the subwoofer. Since feedback is derived directly from the voice-coil of the driver, it is possible to produce a very flat response, and reduce distortion.

Fig. 1b). Filter chain preceding the subwoofer power amplifier. This section mixes the left and right stereo signals and allows phase to be reversed. It also contains a variable filter allowing the crossover frequency to be set anywhere between 45 and 120Hz. This allows the subwoofer to be adapted to suit most existing hi-fi systems.

Fig. 1b). Power supply for the subwoofer uses a dual-secondary transformer with its windings in series.
problem can be avoided by choosing a sealed box or infinite-baffle enclosure. Use can then be made of the natural roll-off of the driver to ensure that excursion limits cannot be exceeded (see panel).

Using an infinite-baffle enclosure means that the response is essentially that of a second-order filter. To produce a flat response down to dc even if it were possible electrically would require infinite cone excursion. To match such a driver, you would need an amplifier of infinite gain since the gain of a high-pass filter is zero at dc. For every octave of base extension, the power and cone excursion required increases fourfold. Obviously this cannot be carried too far. However, the system described here has a flat resonance, with a -3dB point at 15Hz.

This frequency is at least an octave below the nominal cut-off of many subwoofer systems. Furthermore when I examined the output acoustically, sine wave distortion was below 2% at 15Hz.

The reason for going so low is mainly to minimise phase shift. There is little musical information on most recordings below 30Hz. Too rapid a roll-off at this frequency produces phase errors between fundamentals and harmonics, leading to a muddy sound. One of the joys of listening to this system is the speed at which bass notes are delivered without the overhang associated with reflex systems.

One problem that has to be considered is how much sound-pressure level, spl, can be generated. Here, we are concerned with a domestic environment. Many more-than-adequate subwoofers use a 10in driver in a reflex cabinet.

Since reflexing is out in this design, I have chosen a pair of 10in drivers, operating in parallel. This has the advantage that both drivers contribute useful output over the entire range whereas a reflex system's vent only contributes output around its resonant frequency. Additionally, the price paid for vent output is a rapid bass roll-off that must worsen the transient response of the system.

For the purposes of analysis, the circuit can be split into three parts. First the power amplifier; the requirements from this element of the circuit include high power output. Furthermore, because the load impedance is around 3Ω, large current swings are required. An extended low frequency response also implies that the power supply will tend to sag under load. Precautions must be taken to make sure that this does not affect sound quality.

Taking in account these factors I make no apology for the use of rugged TO3 output devices, namely T7 and T?, which are a pair of 2N3055s. These in turn are driven by a pair of Darlington, T7 and T6. A quasi-complementary output stage is used with T7 providing the necessary phase inversion for the lower output transistors.

Nested feedback loops

The entire circuit is based on TL074 quad op-amps, one of which is used in the power amplifier. However the low operating voltage and consequent low output voltage swings of this device provide insufficient power. For this reason the amplifier incorporates the idea of nested feedback loops, Fig. 1.

To explain further, the output stage operates from a split 60V power supply. The driver stage is built around T1. Usually, the output stage biasing voltage is provided by the Vcc multiplier comprising T5 and P1. Resistors R17,18 introduce emitter degeneration in the output stage, stabilising the operating point. Local shunt feedback around both driver and output stage is taken via R12,14.

The value of R13 has been chosen to produce OV output for a 0V input from A5. This local feedback loop reduces distortion from the output stage to well below 1% before global feedback is applied around the circuit.

Closed-loop gain from A3 output to the load is approximately five. This allows the op-amp output stage to produce the required voltage swing at the output. An incidental advantage is that the op-amp output sees a relatively high impedance and therefore operates in push-pull, Class A.

Supply voltage for the op-amp is taken from the main power supply through a pair of 15V regulators, IC3,4. Capacitors C9,10 provide hf decoupling. Op-amp A5 is the heart of the amplifier. Note that because of the inverting action of the driver/output stage, the inputs are used in the opposite sense.

Input signals are applied to the inverting input and overall feedback to the non inverting. The voltage gain of the amplifier is set by the ratio of R13 to R11. Capacitor C9 reduces the dc gain of the circuit to unity while appearing as a short circuit to ac signals. Resistor R10 defines the input impedance of the amplifier.

The closed-loop gain needs to be high since most of it is used to equalise the subwoofer and reduce speaker distortion. The other components to be mentioned are mainly concerned with keeping hf stability within the amp. This is the function of C12,13 and C16.

It could be argued that most of the parameters of the amplifier just described are well above those required for the circuit function. For example, the slew rate of the op-amps is thousands of times faster than required. Similarly, the distortion level of the amplifier is many times lower than that generated by the speakers. This is simply a reflection on the advancement of commonly available parts. This same level of performance allows supply line voltage rejection ratio of over 10dB, and this is of great importance, as mentioned earlier.

The second aspect of the design, whose overall performance is shown in Fig. 2. involves the manipulation of the pick-up coil voltage to produce motional feedback. Referring to Fig. 1, rather than feed the speaker coil voltage directly into the amplifier's feedback loop, it is fed via the mixer stage built around A6, the voice coil output feeds the network comprising R22,24 and C19. This is necessary because the voltage follows the impedance curve.

Below 200Hz the output is directly proportional to the velocity of the cone. Above this frequency output rises at
approximately 6dB/octave. To maintain the velocity curve—
not to mention amplifier stability—the output must be sup-
pressed at high frequency. Capacitor \(C_{19} \) flattens the curve to
a straight line.

From here, the signal feeds the mixer amplifier \(A_{m} \) via \(R_{22} \). This
is configured as a virtual earth mixer. Feedback resistor
\(R_{19} \) is shunted by \(C_{17} \), which provides further high-frequency
roll-off to the coil signal ensuring that the required response
is obtained.

The net result of adding this signal to the amplifier input is
that the acoustic response response from about 10kHz to
150Hz rises at 6dB/octave. In other words, amplifier output
voltage is proportional to cone velocity, and acts as a power
differentiator.

To obtain a flat response, the amplifier output needs to
become proportional to cone acceleration. Rather than differen-
tiate the feedback signal exactly the same result is obtained
by integrating the input signal. This function is car-
rried out by \(A_{v} \), which, in conjunction with \(R_{21} \) and \(C_{18} \) forms the
integrator.

At this stage we have produced a flat response speaker sys-
tem—flat, at least, in the deep bass region. Plotting the
response however reveals that the overall response is that of
a high-Q low-pass filter. A glance at Fig. 3 reveals that fur-
ther work needs to be done. The low-pass response is due to
the voice coil inductance resonating with the reflected mov-
ing mass.

Rather than complicate the circuitry further, the solution
used here is to tame the response by using a low-Q low-pass
filter in series with the amplifier. When this has been done
the final response is flat within 1.5dB from 15 to 150Hz. The
mild penalty to be paid is that the response rolls off at
24dB/octave above 150Hz. Luckily, this is of little conse-
quence in practice since this point occurs at least half an
octave—and usually more than an octave—above the roll-off
point required by normal speaker systems.

Filtering the input-stage

The main task of the input stage filtering is to extract the bass
information from both incoming signals and present this to
the power amplifier. In addition, the signal must be manipu-
lated to allow 'seamless' integration of the subwoofer with
the existing speakers.

For this design, I decided to drive the sub-woofer directly
from the speaker outputs of the existing amplifier. This not
only simplifies the design, it is the only rational place to take
a signal feed. Once set up the sub-woofer will follow system
volume adjustments. This is a particular advantage if, like
me, you are always being told turn it down. You can also be
assured plenty of drive signal.

Line outputs are rarely standard. The left and right signals

Infinitely baffling

In order to squeeze the maximum possible bass from an infinite-baffle
enclosure, the volume has to be carefully calculated. Even motional
feedback systems are not immune to the laws of physics. If the enclosure is made
too large, the woofer will be driven beyond its excursion limit. If it is too
small, maximum power input will not allow full excursion.

In order to calculate the required enclosure volume, Thiele-Small
equations are required. When a circular piston is fed with a sine wave, it can be
shown that the sound-pressure level generated at 1m into half space, \(A \), is,

\[
A(\text{dB}) = 40 \log_{10} (d + 20 \log_{10}(\text{app}) + 10 \log_{10} \frac{d}{8}) - 83
\]

where \(d \) and \(\text{app} \) are the diameter and peak-to-peak cone excursion
respectively, both expressed in mm and \(f \) is the frequency of interest.

From the term \(40 \log_{10}(d) \), you will see that the available sound-pressure level falls
with frequency at 12dB/octave. If the enclosure volume is chosen so that
its response lies to the right of \(A \), Fig. 4, then the driver will be protected from
excessive excursions. If the response lies to the left of \(A \) then the speaker runs
the risk of destruction from bass input. Ideal enclosure response coincides with \(A \).

In order to calculate something useful it is essential to examine the efficiency of
the driver and relate this to \(A \). Maximum output that a driver can produce in the
pass-band is independent of enclosure

size and can be calculated from the following equations, the first of which is
for driver efficiency, \(\eta \),

\[
\eta = \frac{k f_{r} V_{m}}{\sqrt{Q_{e}}}
\]

where \(f_{r} \) is free-air resonant frequency, \(V_{m} \) is equivalent compliance air volume,
\(Q_{e} \) is electrical \(Q \) and \(k \) is \(9.64 \times 10^{-10} \)
when \(V_{m} \) is expressed in litres. Sound-
pressure level in decibels at 1W and 1m distance into half space is,

\[
112 + 10 \log_{10}(\eta_{0})
\]

Maximum sound-pressure level in
decibels at 1W and 1m distance into half space, \(B \), is

\[
112 + 10 \log_{10} \left(\frac{\eta_{0} + 10 \log_{10}(p)}{\eta_{0}} \right)
\]

where \(p \) is the available amplifier output
in watts continuous.

All drivers mounted in an infinite-baffle enclosure exhibit second-order high-pass
filter response whose amplitude, \(C \), is,

\[
C = (\omega^{0} / (d^{2}-2\omega^{2} + 1)^{0.5}
\]

where \(\omega \) is \(f_{r} / \omega \), and \(d \) is 1/Q\(\omega_{0} \), \(f_{r} \) being the resonant frequency of the driver
mounted in the enclosure and \(Q_{e} \) is the \(Q \) of the driver in the enclosure.

Unfortunately this does not help much
because \(Q_{e} \), and \(f_{r} \) are not known until the
enclosure volume has been determined. But if you choose \(f \) at a low
enough frequency, say 1Hz for
convenience, \(w^{0} / (d^{2}-2\omega^{2} + 1) \) term. This makes it possible to simplify
and rewrite the equation for an approximation of \(C \) as, \(w^{-2} \)

To avoid the excursion limit, the 1Hz
response must be \(-A + B \) in dB down
with respect to maximum pass-band
sound-pressure level, \(B \). The
corresponding amplitude is \(10^{0.664 + A + B / 20} \),
which is \(w^{-2} \).

As \(f \) is 1Hz, \(\omega \) must equal \(f_{r} \), so,
\(C_{e} = w^{10-6- A / + B / 40} \). Having obtained \(C_{e} \),
the enclosure volume can be simply calculated from,

\[
V_{B} = V_{m} / (f_{r}^{2})^{2}-1
\]

Calculated volume is slightly
conservative, but this is no bad thing
considering the price of drivers.
from the speaker sockets are passively mixed by R_1 and R_2. The resulting signal is made available across VR_7. From here the signal is phase split by $A_{1,2}$.

Avoiding eigentones

Phase splitting is a useful facility for the following reason. When attempting to crossover between speakers and subwoofers, a particular obstacle is avoiding eigentones. At low frequencies, the average room acts as a gigantic speaker cabinet, with resulting resonances, caused by standing waves between parallel walls.

These resonances often occur just where you want the crossover. By judicious use of the controls, you can use phase shift to tame existing boomy speakers or room characteristics. Choice of in or out-of-phase conditions is selected by S_1 of Fig. 1. A small amount of voltage gain is introduced into the phase splitter circuit via $R_{4,5}$. This offsets the gain reduction produced by coil feedback in the power amplifier section. Resistor R_3 couples the op-amps together to provide phase inversion.

Having selected your signal with S_1, it is then fed into the high-pass filter built around A_3. This stage defines the lower cut-off point of the system. This is set at 15Hz by the component values chosen. From here the signal is fed into the low pass filter built around A_4.

Integrating the design

In order to integrate the subwoofer easily, a low-Q second-order filter is used. This stage has a Q of 0.5, critically damped for best transient response.

The -3dB point is continuously variable between 45 and 120Hz. I have yet to find a speaker system which cannot be catered for within this range. Finally, the response of the pick-up coil is modified by the low-pass filter built around A_5, as described earlier in the text. From here the signal gets fed into the signal integrator A_7, as already discussed.

I have used separate voltage regulators to power the preamplifier section. This may seem like an extravagance but it is a small price to pay for total isolation on the power lines between chips.

On the subject of power supply, Fig. 1, this is completely conventional. Mains voltage is stepped down and full-wave rectified via a bridge, before being smoothed by $C_{14,15}$. The centre tap of the secondaries is used for the 0V line.

Points to watch out for

There are a few points to watch for when implementing the subwoofer. First the cabinet. Initially I intended to build the subwoofer in two enclosures with the intention of siting these below my existing speakers. Since there is no phase information at low frequencies, it is possible, in principle, to sit the subwoofer wherever you choose. In practice the best position is likely to be between the speakers, against the wall. This position will give you an extra 3dB of output for as the system will be driving into quarter space.

Conventional wisdom suggests that corner positions should be avoided as this will tend to emphasise room resonances. Circumstances alter cases, and the extra 3DB of output might be useful.

An advantage of small enclosures, in addition to the improved rigidity, is that they are too small for internal standing wave generation. Since I am not a carpenter and find woodwork a chore I built my cabinets from 15mm chipboard, Fig. 6, available everywhere and in a variety of finishes.

Panel fixing is easiest using Araldite rapid fairly liberally along the seams. The drivers require 230mm diameter cut-outs. They should be mounted on gaskets made from self adhesive draught excluding strip. Before mounting the drivers, fill along the panel seams with filler or silicone sealant to ensure airtightness.

When assembling the electronics ensure that PR1 is adjusted to short TR2’s base to collector. For obvious reasons it is desirable to set the quiescent current in the output stage before mounting the electronics.

Inductive motional feedback

Inductive pickup is probably the simplest form of motional feedback control. In order to understand its operation, it is necessary to realise that the pickup voltage is proportional to cone velocity. Figure 5 shows the relevant curves. Curve A is the unequally speaker response and corresponds with the cone acceleration.

Curve B is the resulting velocity curve as picked up by the coil. When this voltage is used as negative feedback, the resulting response from the speaker increases with frequency at 6dB/octave, Curve C.

To obtain a flat response, the feedback voltage would need to be proportional to cone acceleration since this is identical to the system response. This would imply differentiating the coil voltage before feeding it back. The alternative, used in this design, is to integrate the incoming signal so that this falls at 6dB/octave. When fed from this signal the overall response of the speaker is flat. There is no difference in system performance either in amplitude or phase response between differentiating the pickup signal or integrating the input.

Figure 5b shows the basic circuit in block form. Rather than complicate, and possibly destabilise, the amplifier, the feedback is introduced via a mixer amplifier. This is a virtual-earth circuit which effectively adds the input and feedback signals. This is then used to drive the amplifier.

Closed loop gain of the amplifier produces the correct signal to the speaker. The advantage of motional feedback is that errors in both the enclosure response and in the driver are considerably reduced by negative feedback.

Fig. 5b. Motional feedback using a second coil within the loudspeaker to produce the feedback signal. Error correction signal is introduced via a mixer amplifier.

Fig. 5a. Unequalised speaker response, A, resulting velocity curve picked up by the second voice coil, B, and resulting response curve from the speaker, C.

108

ELECTRONICS WORLD February 1997
Motional-feedback subwoofer parts

Resistors
Unspecified types are 1% metal film

R_{12} 47k 2
$R_{3,24}$ 10k 4
R_4 110k 1
R_5 100k 1
R_6 150k 1
R_7 75k 1
$R_8,9$ 15k 2
R_{10} 39k 1
R_{11} 2k2 1
$R_{12,25}$ 22k 2
R_{13} 330 1
$R_{1,4,15}$ 82k 2
R_{16} 4k7 1
$R_{17,18}$ 0.47/3W 2
$R_{19,20,26,27,560k}$ 4
R_{21} 680k 1
R_{22} 180k 1
R_{23} 43k 1
V_{R1} 4k7 log pot 1
V_{R2} 22k lin dual pot 1
PR_1 10k hor. preset 1

Capacitors

$C_{1,4,18}$ 100n Mylar 4
$C_{6,9,10}$ 100n cer. disc 4
C_7 10µF/50V 1
C_8 100µF/25V 1
$C_{11,12,13,17}$ 1nF Mylar 4
$C_{14,15}$ 680µF/63V 2
C_{16} 270µF cer. 11
C_{18} 47nF Mylar 1
C_{20} 2n7 Mylar 1
C_{21} 4n7 Mylar 1

Active devices

$I_{C1,3}$ 78L15 2
$I_{C2,4}$ 79L15 2
$A_{1,8}$ TL074 2
$T_{R1,3}$ BC327 2
T_2 BC337 1
$T_{4,6}$ BDT65C 2
$T_{5,7}$ 2N3055 2
$D_{1,4}$ 1N5408 4

Miscellaneous

Heat sink, see text
TO3 mounting kits 4
Volt DVC250/1, 8Ω drivers 2
22-0-22V sec. 120VA transformer 1
SPST changeover switch 1
Control knobs 2

Fig. 6. Subwoofer enclosure details. Since the enclosure is small, it is rigid and inhibits standing waves.

With the speakers disconnected, test that the output is within 50mV or so of 0V. Quiescent current is set up by slowly adjusting PR_1 for a 20mV drop across R_{17} and R_{18}. Although the heat sink gets rather warm under conditions of high drive, I have not found it necessary to use thermal feedback via T_2. But there is no reason why T_2 cannot be adhered to the sink.

I mounted the electronics within the enclosure. The output stage requires a large heat sink, of at least 1.5°F/W. I used a 120 by 100mm finned sink.

Control panels are always a problem with this type of equipment. I mounted my controls and heat sink on the lid of an MB6 type ABS case which fits into a cut-out in one of the panels. This is secured by six, 30mm M3 screws. Whatever panel you use remember that an air-tight seal is needed.

The drivers are wired up as shown in the Fig. 1a, in parallel and in phase. Ensure that the pickup coil is phased as shown.

Final adjustments

Having set the quiescent current and fastened everything into place, all that remains is to adjust the level and cut-off frequency to suit your system. The best way to start is with the cut-off frequency set high and gain set low. Next, adjust both for the best sound.

Finally, was the effort worth it? Definitely yes. I now get to hear things I have never heard before on my cds. In addition, the clarity and speed at which bass notes are generated and disappear is something of a revelation – after years of reflexed muddiness.

Special offer

Any Electronics World reader mentioning page 109 of the February issue can obtain one pair of Volt drivers, as used in the subwoofer, at the special price of £234 – including VAT and UK delivery. Normally, the pair sells at over £257, excluding delivery. Send PO or cheque payable to Wilmslow Audio at 50 Main Street, Broughton Astley, Leicester LE9 6RD. Phone 01455 286603 or fax 286605 for further details.
Multichannel speaking monitor

Visual displays certainly have their uses but there are times when a more immediate message is needed. Heikki Kalliola’s speaking monitor provides digitally-addressable and re-recordable spoken messages.

My design for a multi-channel speaking monitor is based on an Information Storage Devices speech memory chip. With no moving parts and needing few external components, the circuit is an economical means of making many kinds of announcements, including measurements and threshold warnings.

One application of the speaking monitor is the reporting of exceptional conditions in vehicle environments. Using spoken messages, there is no need to divert your attention to the indicators on the instrument panel. This device can be mounted in an enclosure small enough to hide behind the dashboard without any rebuilding.

The ISD1016A* speech storage chip used can record and play back 16 seconds of voice in a number of individually-addressable segments—in this case four, of four seconds each in length. Each of the four messages can be triggered according to the situation. The chip family includes members with longer recording time, but 16 seconds is enough for the purpose described here.

Inputs 1 to 4 are constantly monitored, Fig. 1. If one or more input is grounded, a message from the corresponding memory address is fed to the loudspeaker. The message is repeated until the grounded contacts open.

If all the inputs are used, there is time about four seconds for each message. If all inputs are not needed, the ones used can have more time allocated to them. If for example only line number 1 is used, the announcement can be a full 16 seconds.

Recording and playing back

Recording is performed by first selecting the message to be dictated on the sensor line. Selection is done with switch S1. As drawn, S1 points to line 1. After line selection, button S2 is pushed while you read the message in to the microphone.

Pushing the button starts recording and releasing it stops it. Remember, that if the next line, i.e. number 2 on the diagram, is to be used, the recording time can not exceed four seconds. If it does, the tail part of the message will overlap on to next line’s memory area. Accordingly the messages of other lines are recorded by first selecting the line with S1.

Messages can be changed at any time and remain in memory when the power is removed. Messages can be checked by briefly pressing button S2. That triggers playback from the

*ISD1016A is obsolescent, but UK distributor Sequoia, informs us that the ISD2560 is almost identical, but has an extra address line and more memory. Sequoia’s telephone and fax numbers are 01734 256000 and 256020 respectively.
memory location pointed to by \(S_1 \). Thus recordings are easily made.

Once the messages are loaded, \(S_1 \) is turned to its base position, indicated as B on the diagram, and the device is ready for use. When one or more of the input lines is grounded, the message from that line's memory area is spoken from the loudspeaker and repeated until the line returns to its normal state.

Circuit logic

When an input line is grounded, diodes set the right address with bits \(A_3 \) and \(A_2 \). At recording and check playback this grounding is performed by \(S_1 \).

The memory chip requires that during recording pins P/R and CE are grounded. Signal PD keeps power consumption extremely low when at +5V. To record and play back, this line must be grounded. The signal also acts as reset switch, in the event of a memory overflow. Resetting is carried out by pulling the line to +5V and back to ground again.

When recording, \(S_3 \) pulls pins P/R and CE down to ground via diodes. At the same time transistor \(T_{R1} \) stops conducting for a moment due to grounding of the base via \(C_1 \). A positive reset-pulse is created from the collector to pin FD. Releasing of \(S_3 \) generates the end-of-message mark to the memory.

To check play back, \(S_2 \) starts the message by pulling down the chip enable pin, CE, and creating a reset pulse to PD with \(T_{R1} \). Playback starts at the address pointed to by \(S_1 \) and continues until the end-of-memory mark.

Grounding of input line pulls also down the base of \(T_{R2} \). The transistor stops conducting, triggering the astable multivibrator timer chip \(IC_2 \). The chip puts out negative-going pulses equivalent to pushing the playback button \(S_2 \). If \(S_1 \) is at base position, B, these pulses pass through to playback triggering.

Time interval between pulses, and therefore also the rate of message repetition, is dictated by the value of \(R_{13} \). If, for example, only one input is used and the maximum length message recorded in one location, the interval time must be over 16 seconds to avoid rolling over. If on the other hand, all the inputs are used, the minimum interval is about five seconds, and the message length cannot exceed four seconds.

Anti drown-out switch for vehicles

In vehicles, there are many possible stimuli for the monitor. Examples are oil pressure warning, over-high water temperature and low fuel indication. In many cases, easily accessible switch contacts for these are already installed in the car.

When this design is used in vehicles, the usual power supply is the 12V battery, from which the voltage is dropped to 5V via regulator \(IC_3 \).

In automotive applications, the car radio might obscure messages. To avoid this, you can add the switching circuit of Fig. 2. With this modification, the radio loudspeaker replaces the monitor’s loudspeaker and serves a dual purpose. Control for the output relay is taken from the speech memory’s auxiliary input, which is held high during playback.

Do not forget to add a 10Ω series resistor, if the loudspeaker has very low impedance.

Figs. 1 & 2. In automotive applications, this switch circumvents the problem of a loud radio obscuring the announcement by automatically switching the radio’s speaker over to the speaking monitor unit when a message is triggered.

Software for the PC-based instruments

contains an Oscilloscope, a Spectrum analyzer, a Voltmeter, and a Transient recorder. All instruments are controlled in the same intuitive way and provide for saving and recalling waveforms and settings, cursor measurements, hardcopy on matrulaser printer and online help. Minimum requirements: a 80286-based PC with 2MByte and running MS-DOS 3.3 or higher.

Fax for a free demo disk and catalog of all our products

Easy installation: just plug in and measure
Covering 100kHz to 150MHz in six ranges, this RF generator with amplitude modulation is available to Electronics World readers for just £129 — fully inclusive of VAT and postage.

100kHz to 150MHz RF signal generator for just £129

Normally, the Loadstar SG4160B 150MHz signal generator sells for £129 excluding 17.5% VAT and delivery costs. But Electronics World readers can obtain this instrument for just £129 — fully inclusive of VAT and delivery. This represents a saving of well over 15%.

Vann Draper’s SG4160B bench generator covers 100kHz to 150MHz in six ranges — and up to 450MHz via third harmonic. It has an internal 1kHz oscillator for amplitude modulation up to 30%, which is also accessible on the front panel. There are also facilities for connecting an external modulation signal of between 50Hz and 20kHz.

Featuring a crystal checker with a range of 1 to 15MHz, the 4160B provides an RF output of up to 100mV RMS, unloaded, at all frequencies up to 35MHz. Attenuation is controlled via a high/low switch and fine adjuster.

To receive your RF generator, simply fill in the coupon on the right and send it, together with a cheque or postal order for £129, to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.

Alternatively fax credit card details with order on 0116 2773945 or telephone on 0116 2771400. Please direct all queries relating to this offer to Vann Draper Electronics.

*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics.
Electronics World+ Wireless world is applied electronic design. We'll show you how to use the latest silicon technology plus...

- CAE software
- New product reviews
- Technology reports
- Detailed circuit diagrams
- Innovations
- Explanations of complex technology
- Comment and much more in your issue.

So whether you are designing your own system or curious about your competitors Electronics World + Wireless World will help you keep the leading edge.

Money back Guarantee.
Receive a full refund on your subscription within the first 90 days if you are not completely satisfied. Thereafter, we'll refund the unused portion of your subscription should you wish to cancel.

SAVE UP TO 10%
Yes, I would like to subscribe to Electronics World + Wireless World.

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>Europe</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Year</td>
<td>£32</td>
<td>£46</td>
<td>£56</td>
</tr>
<tr>
<td>2 Years</td>
<td>£58 (SAVE 10%)</td>
<td>£83 (SAVE 10%)</td>
<td>£101 (SAVE 10%)</td>
</tr>
</tbody>
</table>

Name
Job Title
Company
Address
Post Code
Country
Telephone
Fax
Internet Address

THREE WAYS TO PAY

1
I enclose a cheque made payable to Electronics World + Wireless World for £

2
Please charge my Mastercard/Access/Visa/Diners Club/American Express (please delete appropriate card) with the sum of £

Card number
Expiry Date
Signed
Date
Company VAT registration number

3
Please invoice me/my company. Purchase order number

Please allow 28 days for delivery of your first issue.

Post in the UK to Electronics World Subscriptions, FREEPOST RCC 2619, PO Box 302, Haywards Heath, RH16 3BR. Telephone 01444 445566

Post from elsewhere to Electronics World Subscriptions, PHQ-D/I700/RH, PO Box 302, Haywards Heath, RH16 3BR, UK. Telephone +44 1444 445566
Ian Hickman takes a further look at how circuit operation can be represented pictorially.

An earlier article of mine reviewed various ways of representing circuit action, with a view to showing how the different representations complemented each other. So the article covered vector diagrams, the circle diagram—a sort of generalised vector diagram showing what happens as the frequency varies—Bode plots—which also show what happens as the frequency varies—and pole-zero diagrams.

That was the intention, but my apologies to any readers who looked in vain for any zeros—they failed to materialise due to lack of space. This article rectifies the omission, and carries the story on another stage.

Poles
Well, just one pole to begin with, the one to be found in the lowpass CR circuit of the last article, the response of which was shown there as Fig. 6, and here as Fig. 1b). The equation giving the frequency response, as derived in the last article, is:

\[V_o/V_i = 1/(1+j\omega CR) \] (1)

Note that, as last time, the base of the triangle (of length unity) is the vector \(v_o\), then the two terms in the denominator take you from the pole at \(\sigma = -1\) to the origin, and then a distance \(\omega\) up the \(j\omega\) axis (assuming as before that \(CR = 1\)), where this distance represents the voltage drop across the resistor \(R\).

Adding vectorially (the \(j\) indicating that these vectors are at right angles), this brings one to the tip of the sloping line, which represents the input voltage needed to give unity output voltage. Thus \(V_i/V_o\) at any frequency is proportional to the distance from the pole at \(\sigma = -1\) to the corresponding point on the \(j\omega\) axis. So the frequency response, \(V_i/V_o\), is proportional to the reciprocal of this distance.

Equation 1 also indicates the phase, as follows. First, make the denominator real, by multiplying top and bottom by \((1-j\omega CR)\), the complex conjugate of the denominator. The equation then becomes:

\[V_iV_o = (1-j\omega CR)/(1-\omega^2 CR^2) \]

and, since the denominator is now just a number, the phase angle is given just by the numerator. Phase angle \(\phi\) is given by:

\[\phi = \tan^{-1}(\frac{\omega}{\omega C R}) \]

where \(\omega, R\) and \(C\) are the real and imaginary parts of the numerator. Clearly, \(-\omega CR = 1\) zero at 0Hz and minus infinity at infinite frequency, so \(\phi\) is 0°, at 0Hz and tends to -90° at very high frequencies.

These two results give an important rule:

The amplitude of the response at any frequency due to a pole is inversely proportional to the length of a line from the pole to the corresponding point on the \(j\omega\) axis, and the phase is given by the angle that the line makes with the positive horizontal axis, counting anticlockwise rotation round the pole as negative, indicating a lagging response.

Figure 1c) shows how the vector diagrams tie up with the pole/zero diagram. Figure 1d) is the same again but drawn for the -3dB frequency, the frequency where the reactance of the the capacitor equals the resistance \(R\).

Note: The diagram includes a vector representation of the magnitude of the function \(F(s)\), plotted vertically above a horizontal s plane. It shows how the function behaves in the frequency domain, with poles and zeros indicated, aiding in the visual understanding of circuit behavior.
Figure 1e is a three-dimensional representation of the magnitude of $F(s)$, plotted vertically above a horizontal s plane. Only that part of the surface to the left of the jω axis (where ω is negative) has been shown. The ‘cut edge’, above the positive jω axis, gives the magnitude of the frequency response, as a linear plot against frequency (also linear). In plan view, the s plane looks like Figure 1f – there is a pole at the point where s has the coordinates (−1, 0).

As noted in the earlier article, in terms of the complex frequency variable s, the transfer function $F(s)$ which gives v_o/v_{in} becomes $F(s) = 1/(s+1)$, where $s = \omega + j\omega$.

If the pole moves further and further toward the origin, the response will rise by 6dB every time the frequency is halved, and so on indefinitely. With a pole at the origin, you have an integrator – i.e., an ideal op-amp with capacitive feedback from the output to the inverting input, and with the input applied via a resistor.

...and zeros

Now for a ‘finite zero’, that is to say a zero at a finite frequency, which will appear on the pole/zero diagram. You get one with a highpass (bass cut or passive lead) circuit, shown in Figure 2a), along with its circle diagram, Figure 2b). Note that, by convention, a pole on the s plane (the jω versus ω plot) is denoted by a cross, and a zero by a circle or nought. From the vector/circle diagram of Figure 2b), for a simple highpass CR circuit:

$$v_o/v_{in} = R/(R+1/joC) = joCR/(1+joCR) \quad (2)$$

Thus the general expression for the transfer function $F(s)$ is $F(s) = s/(1+s)$, assuming that the frequency is normalised, or (effectively the same thing) that $CR=1$.

Clearly, as well as exploding to infinity when s is −1 (when $\omega = 0$ and $\sigma = -1$), $F(s)$ is 0 when s is 0 (when both ω and σ = 0), due to the s in the numerator. Figure 2c shows the pole/zero diagram, with its zero at 0Hz, with the vector diagram superimposed, shown for the case where normalised $\omega=1$, the −3dB point.

Note that in Figure 1c), v_o is represented by the line from the pole to the origin. This is because, in the vector diagram, this is the voltage ix_C across the capacitor. In Figure 2c), v_o is represented by the line from the origin to the point on the jω axis representing the frequency of interest. This is because this line represents $i\omega$, across which the output voltage is developed, Fig. 2a).

You can see from Fig. 2c) and Eqn 2 that, for very low frequencies (where v_{in} is virtually horizontal and the denominator virtually equal to unity), v_o is directly proportional to the distance from the origin to the point on the jω axis. Also, at very low frequencies, v_o leads v_{in} by 90°. This is made clear by the vector diagram, and can be checked by making the denominator of Eqn 2 real and finding $\tan \phi$, as was done above for the lowpass case.

These two results give another important rule:

the amplitude of the response at any frequency due to a zero is directly proportional to the length of a line from the zero to the corresponding point on the jω axis, and the phase is given by the angle that

Fig. 2. a) CR highpass circuit.

b) Circle diagram, with vector diagram for the -3dB frequency. Note: the input current i is in phase with v_o, i.e. leading v_{in} by 45° at this frequency.

c) Vector diagram of b), superimposed on the pole/zero diagram.

d) Crude 3-dimensional representation of the magnitude of the function $F(s)$, plotted vertically above a horizontal s plane.

Fig. 3. a) Transitional lag circuit.

b) The corresponding pole/zero diagram.

c) Three-dimensional representation of the logarithm of the magnitude of the function $F(s)$

d) This circuit has unity gain at 0Hz, falling to $R_2/(R_1+R_2)$ at very high frequencies
the line makes with the horizontal axis, counting anticlockwise rotation as positive, indicating a leading response, clockwise a lagging response. The angle is measured with respect to the +σ axis if the zero is to the left of the jω axis, but with respect to the −σ axis if to the right of it.

In the case of Fig. 2a, however, the effect of the zero is not the whole story. To evaluate the frequency response (the magnitude of F(s) along the jω axis), you must take into account also the effect of the denominator of Eqn 2, representing the pole. So while initially, where Zs can be considered horizontal, Zσ is simply directly proportional to the distance up the jω axis, remember that it is also inversely proportional to the distance from the pole.

At very high frequencies, these distances become more and more nearly equal. The response is thus proportional to the distance times the reciprocal of an equal distance, result unity. Likewise, the phase is everywhere equal to the sum of the angles. So for the CR high-pass circuit, the phase is (90°-φp)e where φp is zero at 0Hz, lagging by 45° at the −3dB point and reaching −90° at infinite frequency. Thus overall, the phase of Zσ starts off at 90° leading at 0Hz, dropping back to being in phase at very high frequencies.

Section (d) of Fig. 2b is a three-dimensional representation of the magnitude of F(s), plotted vertically above a horizontal σ plane. Only that part of the surface to the left of the jω axis (where σ is negative) has been shown. The ‘cut edge’, above the positive jω axis, gives the magnitude of the frequency response, as a linear plot against frequency (also linear). The zero at the origin can be seen to act as a thumbtack, pinning the surface F(σ) to the ground level at the origin.

If the pole is moved further and further to the left, the −3dB point, where the response is levelling out, will occur at a higher and higher frequency. If the pole moves out to infinity, the response will be rising at 6dB/octave indefinitely. With just a zero visible on the σ plane, at the origin, you have a differentiator, e.g., an ideal op-amp with resistive feedback from the output to the inverting input, and with the input applied via a capacitor.

Zeros to the left of them

Zeros can occur anywhere in the s plane – not just on the jω axis. Figure 3a shows a circuit known as the transitional lag, which starts off behaving like the top cut circuit of Fig. 1a but, instead of the response falling indefinitely as the frequency increases, it flattens out again, the response at very high frequencies being equal to R2/(R1+R2). This is illustrated by the Bode diagram of Fig. 3d, from which you can see that the response starts to fall at a “corner frequency”, but stops falling at some higher corner frequency. The actual response is shown dotted, and a −6dB/octave asymptote is shown joining the low-frequency and high-frequency response levels – unity and R2/(R1+R2) respectively.

The −6dB/octave asymptote is a straight line because the horizontal axis, representing frequency, is logarithmic, and the vertical axis, representing the magnitude of the response M, is in dB – i.e., also logarithmic. The actual response is never quite reach a 6dB/octave cut-off rate unless the corner frequencies ω1 and ω2 are infinitely far apart, and of course it is curved at the corner frequencies, unlike the notional asymptote.

Up till now, it has been convenient to work with normalised frequencies, since in both the low pass and high pass circuits of Figs 1 and 2, there is just the one corner frequency, where the response changes (gradually) from flat to −6dB per octave (or vice versa). But with the transitional lag, there are two different frequencies to consider, and these can conveniently be defined in terms of the CR time-constants of the circuit.

Working out the response of the transitional lag of Fig. 3a gives:

\[Z_{\sigma} = \frac{(1/j\omega C) + R_2}{(1/j\omega C) + R_1 + R_2} \]

\[Z_{\sigma} = 1 + j\omega CR_1 \]

\[Z_{\sigma} = 1 + j\omega T_1 \]

where \(T_1 = CR_1 \) and \(T_2 = C(R_1 + R_2) \), or more generally:

\[F(s) = \frac{K(s+1/T_2)(s+1/1T_1)}{s+1/1T_1} \]

Fig. 4. a) First-order all-pass circuit with unity gain at all frequencies has a phase shift varies with frequency. b) Vector/circle diagram for the circuit a). c) Pole/zero plot for the circuit of a). d) A 3-dimensional representation of the logarithm of the magnitude of the function F(s), corresponding to c).
If, instead of being in series with R_2, the capacitor in Fig. 3a had been in parallel with R_1, the circuit would be a transitional lead, the response rising from K at $0\,\text{Hz}$ to unity at infinite frequency. In this case, the zero would be nearer the origin than the pole; the two have interchanged places. So as the frequency increases, starting from $0\,\text{Hz}$, initially ϕ_q increases faster than ϕ_p and the phase of the output leads that of the input. Later, ϕ_p increases faster, and the lead disappears, as the gain gradually reaches unity.

Fig. 5. a) This second-order all-pass circuit also has unity gain at all frequencies, but its phase shift varies twice as much with frequency as Fig. 4a. b) Pole/zero plot of circuit a. c) Showing how the phase shift varies with frequency, as a function of the Q of the circuit.

And zeros to the right of them

An all-pass filter is one which changes the phase of a signal by different amounts, depending on the frequency, but without affecting its amplitude. In signal transmission systems, this enables distortion due to various causes to be cancelled, and the signal restored more or less to its original condition.

The simplest all-pass circuit, also called a phase-equaliser, is the single-pole variety, Fig. 4a. The signal at the op-amp non-inverting terminal is applied through a CR low-pass circuit, exactly as considered earlier. Consequently, relative to the input v_i (vector e-a in circle diagram, Fig. 4b), the voltage at the op-amp non-inverting input is the vector e-c. This coincides with v_i at $0\,\text{Hz}$, falling towards 0 with a 90° phase lag at very high frequencies.

Negative feedback around the op-amp forces its output to do whatever is necessary to keep the voltage at its inverting input equal to that at the non-inverting input. So point c on the circle diagram is also point b. Since the two resistors connected to the inverting input are equal, the output v_o (vector e-d) follows the larger semicircle shown, as though drawn by a pantograph set for two times magnification.

Thus the amplitude of v_o is independent of frequency, but its phase relative to v_i swings round from 0° at $0\,\text{Hz}$, to -180° at infinite frequency. The all-pass transfer function $F(s)_{AP}$ is easily derived from that for the low-pass case, by observing that the output, in Fig 4b), is twice as big as the input, but shifted to the left by one unit $-$ by the distance e-a. So $F(s)_{AP} = 2F(s)_{LP}$. But the $F(s)$ for the low-pass circuit was shown earlier to be $1/(s+1)$. So $F(s)_{AP} = \frac{2}{s+1}$. There is a zero at $s = -1$, $\omega = 0$, since for $s = 1+j0$, the numerator of $F(s)_{AP}$ is zero. This is shown on the s plane diagram of Fig. 4c).

Following the rules noted earlier, the response at any frequency is directly proportional to θ_2 and inversely proportional to θ_1. But since these are always equal, the magnitude of the response is always unity.

Also, as the frequency increases, θ_p increases from zero to 90°, in an anticlockwise direction indicating a lagging phase angle. And θ_q increases from 0° to 90° clockwise, this also according to the rule indicating a lagging response. Thus taking into account the phase contributions from both the pole and the zero, overall the phase drops steadily back from 0° at $0\,\text{Hz}$ to -180° at very high frequencies.

Fig. 4d) shows a three dimensional wire grid model of the surface representing the magnitude of $F(s)$, or rather the log of the magnitude as previously. But this time the surface along the $-\sigma$ axis is shown as well, since this shows up the zero. Note that the surface is exactly skew symmetrical about the jω axis, the magnitude of log$F(s)$ along the axis being everywhere zero, or $0\,\text{dB}$.

Like all the circuits that have been considered so far, this all-pass filter is a 'first-order' circuit, that is to say that the highest power of s in the denominator is 1. If the highest power of s in the denominator is 2, then you have a second order circuit, and if the numerator is a constant, the circuit is lowpass with a $12\,\text{dB}$ per octave roll-off.

If there is just a term in s in the numerator, the circuit shows a bandpass response with a $6\,\text{dB}$/octave roll-off either side of the peak, while a term in s^2 in the numerator gives a highpass with a $12\,\text{dB}$/octave low-frequency roll-off.

More zeros to the right of them

The first order all-pass filter described earlier causes the output phase to drop back from 0° to -180° in a fixed and fairly gentle manner, as the frequency rises from zero to infinity. If you want the phase change to take place over a smaller frequency interval, then a second order all-pass circuit can be used. This can be an entirely passive circuit, as in Fig. 5a), the corresponding pole/zero plot being as in 5b).

With this second-order all-pass circuit, the phase drops back from 0° at $0\,\text{Hz}$, via -180° right round to -360° at infinite frequency. If, at the resonant frequency of L and C, the reactance of each is large compared to R, then the phase change as the frequency changes will be very gradual. If on the other hand the reactance of each is small compared to R, then the phase will snap right around over a very small range of frequencies centred on the resonant frequency. This corresponds to the poles and zeros in Fig. 5b) being very close to the jo axis. In this case, over most of the frequency range, output voltage will be determined by the signal coming via the inductor (below the resonant frequency) or via the capacitor. Only at the resonant frequency, and in its immediate vicinity, where the dynamic impedance of the tuned circuit is high, will the output be due to the signal coming via R.

This all assumes, of course, that L and C are ideal. A more practical arrangement uses active circuitry, in particular, the state variable filter, see page 143 of Ref. 2. If you add the filter's low and high-pass outputs, plus an appropriate proportion of the bandpass output, you again get a second-order all-pass response. The transfer function is,$F(s)=\frac{(s^2-\omega_s^2+1)/(s^2+\omega_s^2+1)}{D}$, where D is the reciprocal of the filter Q. The s^2 term in the numerator is the highpass component, s the bandpass component, while 1 represents the lowpass component. You can see that when $s=0$ (so that $\omega_s=0$), the transfer function is $1/1$, or unity.

When s equals infinity, you can forget the other terms, so the transfer function is just $\omega_s^2=1$, again. When $s=(\sigma+j\omega)$, with $\omega=0$ and ω (the normalised frequency)$=1$, then $s^2=1$, so the transfer function simply equals
-DS+Ds. The numerator indicates a 90° phase lag, and the denominator another, giving a total of 180° lag at the filter's normalised resonant frequency.

The pole/zero diagram makes it clear that the closer the zeros and poles are to the jω axis (the higher the circuit's Q), the more rapidly the phase changes as you pass between the upper pole/zero pair, travelling up the ±jω axis from 0Hz at the origin, towards infinite frequency.

The lower pole/zero pair has comparatively little effect on the phase in this region; it is there because both numerator and denominator are quadratic expressions, and their presence balances the upper pair, ensuring that the gain at 0Hz is unity and the phase shift 0°.

Lots of poles – and zeros

By now, I hope you have a feel for poles (s terms in the denominator of F(s)) causing phase lags and gain changes, and zeros (s terms in the numerator) causing gain changes and phase lags or leads, according to where they are. So here without further ado or any detailed explanation, are some more pole zero plots, and three dimensional wire grid models of log|F(s)|.

Figure 6a), sections i-iii shows the pole zero plots for some fourth-order lowpass filters. Those of i and ii are 'all pole' filters, i.e. a Butterworth maximally-flat amplitude response, and ii a Chebychev response which gives a faster initial roll-off in the stop band at the expense of ripples in the passband.

In iii is a fourth-order elliptic response, which gives an even sharper cut-off in the stop band. This is thanks to the finite zeros situated on the jω axis; but they do result in the stopband attenuation ultimately levelling out, rather than increasing for ever like the all pole filters. Figure 6b), sections i-iii shows the 3D wire grid representations of log|F(s)| for these three filter types, in each case cut to show only the part over the -σ region.

As before, the cut edge over the jω axis — marked by a bold line — shows the frequency response, on a logarithmic or decibel scale vertically, against a linear frequency scale. The different apparent values of response at zero hertz are an artefact of the plotting program; in each case, the zero frequency response is unity or 0dB.

Transforms ahoy

It may seem unnecessarily complicated to bother about the whole s plane, when all you need to find a circuit's frequency response if the value of F(s) for σ=0, i.e. how F(s) varies along the jω axis. But there is more to pole/zero diagrams than just a circuit's frequency response. The diagram can also represent an input signal to the circuit, and not just a steady-state sinewave either. A further mathematical trick — called the inverse Laplace transform — can then derive what the circuit's output waveform will look like, given its frequency response and the said non-sinusoidal input. But to cover that would take more space than is at my disposal.

More on poles...

Figure 3 and 4, and parts of Figures 1, 2, 5, and 6 are reproduced from Analog Electronics by Ian Hickman, published by Butterworth-Heinemann, ISBN 07506 1634 2. Within the pages of this book will be found not only more on poles and zeros, but also a wealth of other information on all aspects of analog electronics, from d.c. to 1GHz. Everything analogue, in fact, except microwaves. This book is available £19.99.

Comprising 337 pages, this book is available by sending a postal order or cheque with a request for the book to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. The fully-inclusive price is £23.50 UK, £26 Europe or £29 rest of world. Alternatively, fax your full credit card details and address on 0181 652 8956 or e-mail jackie.lowe@rbp.co.uk.

References

According to Cyril Bateman's latest discoveries, the best cable for linking your power amplifier and loudspeakers is coaxial.

I started these explorations of loudspeaker cables with two main beliefs. First, that cable characteristic impedance was important at audio frequency even using relatively short cable lengths. This has been amply demonstrated by measurements made using two quite different amplifiers and test circuits with twelve test cables. Second, that conventional sinewave distortion measurements would not identify changes of cable. Here, I put this second belief to the test.

In the first article, I demonstrated by use of simulations that some distortion of transients can result when an amplifier is driving a dummy high impedance but capacitive load — even with no cable. Driving similar high-impedance capacitive loads, connected using high impedance speaker cables, noticeable distortion levels are produced, Fig. 1.

If similar high impedance, capacitive loads exist in practical loudspeaker systems, you can expect these transient distortions to be present. But can such impedances occur in real speaker systems?

Examination of many published test reports of loudspeaker systems indicates that load impedances higher than 20Ω are common. High impedance peaking at low frequencies is caused by bass-speaker driver resonance. In a reflex-ported cabinet, the impedance increases usually appear as a double peak, resulting from the combined cabinet and speaker driver resonances.

When more than one loudspeaker is used, a passive crossover network directs the lower and higher frequencies to the relevant driver. This network is frequently a combination of capacitors, inductors and resistances, driven from a common amplifier, and is the format assumed for this article.

For practical and economic reasons, crossover frequency is generally between 2kHz and 5kHz. As a result, a low but slightly inductive impedance at around 1kHz is produced.

In any composite passive electronic circuit, change in impedance with frequency inevitably results in a change of phase. This phase is zero at the impedance peak, positive at lower frequencies and conversely a negative phase at higher frequencies. Capacitive reactance similarly exhibits negative phase, Fig. 2.

With a passive crossover network, which exhibits an impedance peak, similar phase changes occur. Frequencies below this peak have an inductive reactance. At higher frequencies, as impedance reduces, a corresponding capacitive reactance should be measurable.

The speaker systems which I have available for measurement include the workshop twoway transmission line system and an original single-speaker Daline. I also have access to my son's very high power bass guitar 42Hz tuned reflex system, and a pair of elderly two-
COMPONENTS

Fig. 1. Simulation of typical amplifier output stage when driving into a capacitive load with high-value shunt impedance, via a high impedance, typical figure-of-eight-style cable. This diagram was used for the first article.

![Diagram showing simulated amplifier output stage.](image)

Fig. 2. Impedance and phase plot of the 'pseudo' IHF dummy reactive load, made using a 5.6Ω resistor in series with a parallel combination of 5.4mH, 4.7μF and an 18Ω damping resistor. This shows phase change with frequency for this high-impedance resonant circuit.

![Impedance and phase plot.](image)

Fig. 3. Impedance and phase plot by frequency, of rebuilt two-way transmission line test speaker. Compare with published plot in reference 3.

![Impedance and phase plot.](image)

Fig. 4. Plot Fig. 3 displayed in terms of parallel resistance and equivalent parallel capacitance values. Note relatively large equivalent capacitances near bass resonance.

![Parallel resistance and capacitance plot.](image)

Distortion with change of Cable Type.

3340 Hz into Two Way Transmission Line Speaker.

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Distortion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT Amplifier Output End</td>
<td></td>
</tr>
<tr>
<td>AT Speaker</td>
<td></td>
</tr>
<tr>
<td>End of Cable</td>
<td></td>
</tr>
</tbody>
</table>

![Distortion graph.](image)

Fig. 5. The Fig. 3 plot again but this time displayed in 'R + jX' terms, clearly showing the inductive and capacitive parts of the frequency range, with negative X values being capacitive and positive X values representing inductive reactances.

!['R + jX' graph.](image)

Fig. 6. This plot of harmonic distortion measured at the test speaker terminals, with the speaker acting as a capacitive load, shows clearly how distortion changes with cable. Great care was taken to maintain all other test conditions constant, as can be judged by the small changes in distortion measured at the amplifier terminals. This test was repeated on three separate days, all giving similar results, and only small levels of non-harmonic noise were noted.

![Harmonic distortion graph.](image)
Distortion with change of Cable Type.

965 Hz into Two Way Transmission Line Speaker.

Cable Type

<table>
<thead>
<tr>
<th>Cable</th>
<th>0.05</th>
<th>0.1</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 ohm Cat5e6</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>75 ohm RG-59U</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>50 ohm RG-59</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>22 AWG</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>02 AWG</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
</tbody>
</table>

D. Self Amplifier/Cable Total Distortion %

- At Amplifier
- At Speaker
- End of Cable

Fig. 7. Harmonic distortion measured at the test speaker terminals, with the speaker acting as an inductive load, shows smaller distortion changes with cable. During this test, non-harmonically related noise was observed for the figure-of-eight twin-line cables, clearly showing the coaxial cable's superior isolation from transmitted noise. This pick-up partly accounts for the poor performance of the Figure 8 cables with this inductive real speaker loading.

Fig. 8. Impedance and equivalent parallel inductance plot of the R. Fris original Daline cabinet, clearly showing high-frequency inductive behaviour. This cabinet was chosen since it has no crossover network.

Fig. 9. PSnrice net-list used to calculate the high frequency phase deviation results, with change of cable parameters, and various loading circuits, for Table 1. Note use of Spice 'SIN' waveform.

Fig. 10. Plot of loudspeaker damping, or lack of, using RG58 cable with the Daline speaker cabinet. This was made using a tone-burst generator and Maplin Amplifier set to 1.6V pk/pk output, with the Pico ADC100 virtual oscilloscope. Note the close similarity to the Duncan test plots.

Fig. 11. Using the Fig. 10 set-up and RG58 cable to observe speaker cone overhang using the 'spare' voice coil of the transmission line speaker as a sensor. This clearly shows cone movement at reduced amplitude, continuing far longer than the initial overshoot spike.

way corner horns in my listening room. None of these is in an infinite baffle cabinet.

How can I measure the impedances and reactances of these speakers? While impedance plots can be made using nothing more than a signal generator, a known resistor and a suitable voltmeter, phase measurement is much more difficult.

Many personal computers have a 16-bit sound card. With suitable software, such a card can provide the heart of an extremely low-cost audio frequency measurement system, capable of measuring impedance and phase angle. While not state-of-the-art, this method can produce useful measurements. Two low-cost software systems for use with these sound cards are readily available (see panel on sound cards and software).

To ensure a resonant peak at crossover, I rebuilt my two-way transmission line as an 8Ω system, with a crossover based on the old Kef DN13 design, built using polycarbonate and polypropylene capacitors and used with a small cone tweeter. Using the Elektor software with my sound card, the resulting impedance plot was similar to that published for the Tannoy D700 system, Fig. 3.

This conventional impedance phase plot can also be viewed in terms of equivalent inductance, capacitance or as 'R+jX' - whichever is preferred. Viewed as the parallel resistance and equivalent parallel capacitance, you can see that frequencies near 3kHz could provide loading similar to the simulations used for Fig. 1, with consequent distortion, Figs 4, 5.

Having established that the conditions needed for transient distortions...
can exist, might these conditions also cause distortion with continuous sine waves? This region should be explored by practical measurements.

Conventional distortion tests
My variable frequency generator produces 0.05% distortion, so it can only be used for comparative, rather than absolute, tests. For the purpose of comparing cables, however, it seems appropriate. My Hewlett Packard 331A distortion analyser cannot measure distortions much below this level.

Using this generator with a two-stage series/parallel LC clean-up filter, I measured 0.045% distortion at 3340Hz at the terminals of my Self amplifier,7 loaded with 8.2Ω.

This amplifier, with the above instruments, was used with all twelve cables to test drive the rebuilt two-way transmission line speaker, making distortion measurements in sequence at both amplifier and loudspeaker terminals.

![Table 1. Simulated phase shift in degrees at 1kHz for the various cables tested. Shows low/high frequency deviations by cable, with amplifier and various dummy speaker loads. Ranked for overall change with above permutations.](image)

<table>
<thead>
<tr>
<th>No output inductor</th>
<th>4.7Ω</th>
<th>8.2Ω</th>
<th>100μH</th>
<th>With 1μH output inductor</th>
<th>4.7Ω</th>
<th>8.2Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors only</td>
<td>+0.034</td>
<td>-0.211</td>
<td>-2.234</td>
<td>-1.293</td>
<td>-0.232</td>
<td>-0.480</td>
</tr>
<tr>
<td>Coaxial styles</td>
<td></td>
<td></td>
<td></td>
<td>Series 100μH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75Ω Cat.500</td>
<td>-1.485</td>
<td>-0.859</td>
<td>+0.034</td>
<td>-0.211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75Ω CT100</td>
<td>-1.141</td>
<td>-0.815</td>
<td>-0.114</td>
<td>-0.284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50Ω RG58C/U</td>
<td>-1.219</td>
<td>-0.708</td>
<td>+0.386</td>
<td>+0.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50Ω URM67</td>
<td>-1.149</td>
<td>-0.660</td>
<td>-0.249</td>
<td>-0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3mm Mark 1</td>
<td>-0.685</td>
<td>-0.394</td>
<td>-0.148</td>
<td>-0.074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3mm Mark 2</td>
<td>-0.697</td>
<td>-0.401</td>
<td>-0.083</td>
<td>-0.155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure-of-8 styles</td>
<td></td>
<td></td>
<td></td>
<td>Series 100μH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2192Y 'Bell' Wire</td>
<td>-2.684</td>
<td>-1.566</td>
<td>-0.094</td>
<td>-0.326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-strand</td>
<td>-2.904</td>
<td>-1.685</td>
<td>-0.303</td>
<td>-0.626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-strand modified</td>
<td>-4.629</td>
<td>-2.687</td>
<td>-0.932</td>
<td>-1.257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-strand</td>
<td>-2.545</td>
<td>-1.466</td>
<td>-0.621</td>
<td>-0.752</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supra Ply 2.0</td>
<td>-1.939</td>
<td>-1.117</td>
<td>-0.394</td>
<td>-0.527</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Other test methods
Some of you may prefer to test cables using a low-cost tone burst test more in line with the Duncan test method. I include screen shots made using the Pico adapter with a low-cost, self-built generator.

Readers with a 50Ω output square wave generator and who wish to experiment using transient waveforms similar to that used in the Spice simulations can make a good 10kHz replica by loading the generator output with a parallel combination of 1μH with 0.22μF and 47Ω.

A variety of test signals can be found on the Hi-Fi News and Record Review Test Disc III. This includes a transient waveform very similar to the Spice exponentially damped sine wave, 'SW', used for Fig. 1. However, the tone burst included on this disc equates to the IHF tone burst in having a change in level but no distinct offset periods.

Relative phase
The final parameter influenced by cable
choice is change of high frequency phase relative to phase at lower frequencies. Every cable has a transit delay, influenced primarily by the cable's inductance and insulation material. This delay could change with frequency or test-circuit loading.

I am not well equipped to measure small phase angles but, knowing the cable's ac parameters, this could be simulated. Most Spice-based simulators have transmission line models available but, to minimise transient simulation times, their default settings use a minimum of only two sampling points along the cable. This produces poor results with short cable lengths at audio frequencies. Also, the supplied small signal transmission line model is much simplified.

By overriding these defaults and forcing a slower simulation, acceptable results are obtainable. Many loudspeaker impedance plots show an inductively rising impedance above 10kHz. Thus, each of the twelve cables tested has been simulated using both 4.7Ω and 8.2Ω resistive loads and a series combination of these resistances with 100µH, Fig. 8. Most—but not all—domestic amplifiers are protected against reactive loads by a low-value inductor in series with their output. To cover all reasonable options, the above load combinations were simulated with and without a series inductance of 1µH and 10Ω damping resistor, Fig. 9.

These simulations were all made at 10kHz since, with these values, it represents a worst-case frequency. Regardless of the cable, only small changes in relative phase could be observed, Table 1.

In summary
The intention of these experiments was to quantify the effects of cable characteristics on amplifier speaker systems, rather than to choose a 'best buy'. This determined the cables chosen for test. My use of coaxial cables as speaker cables is not new. Indeed, extremely low-impedance specialist Mogami speaker coaxial cable was reviewed by Nelson Pass² in his 1980 article. However, these experiments would be incomplete without forming at least a ranking of cable performance. This ranking was unweighted, taken from simple addition of place numbers for each test. Although various test weightings could be used, regardless of this, the first four placings are unlikely to change, Table 2.

These rankings were supported by listening tests. However, for the reasons outlined in my first article, listening tests were performed only as the concluding test, long after completion of all published tables or figures, and with this text at the final editing stage.

Regardless of these results, users of Naim and similar amplifiers not having an output inductor must use the maker's recommended cable and cable length, since the cable functions to replace the output inductor in protecting their amplifiers.

For all conventional inductor output amplifiers, the ideal speaker cable would have zero resistance, zero inductance and zero impedance. In other words, zero length—no cable at all, since all cable degradations increase with cable length.

It is obvious from the results presented that a cable should have the lowest possible dc resistance, low characteristic impedance at audio frequencies, and minimal inductance.

Table 2. Summary of cable rankings by each test performed. Final ranking derived using equal weighting for all tests. All cables 4.98m long.

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Circuit A</th>
<th>Circuit B</th>
<th>Z₀</th>
<th>Inductance</th>
<th>DCΩ</th>
<th>Loss</th>
<th>Phase change</th>
<th>THD</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coaxial styles</td>
<td>75Ω Cat.500</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>75Ω CT100</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>50Ω RG58C/U</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>50Ω URM67</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3mm Mark 1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>=3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3mm Mark 2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>=3</td>
<td>2</td>
<td>=2</td>
</tr>
<tr>
<td>Figure-of-8 styles</td>
<td>2192Y 'Bell' Wire</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>42-strand</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>=9</td>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>42-strand modified</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>=9</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>79-strand</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2mm twin special</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Supra Ply 2.0</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Circuit A. Resonance test set-up. Input of the test amplifier is grounded via a 4.7kΩ resistor.

Circuit B. Resistance test set-up includes an 8.2Ω HSA25 series resistor. This resistor was chosen since it has constant impedance to 20kHz.

February 1997 ELECTRONICS WORLD 123
These characteristics are almost impossible to achieve using twin-line or figure-of-eight constructions without incurring considerable cable self-capacitance. They are much more readily achieved using the coaxial construction and with acceptable capacitance.

Other frequently discussed parameters, such as sections of individual wire strands and cable insulation material, may well have some relevance, but these tests indicate that they are of secondary importance.

One obvious disadvantage of coaxial speaker cables having dense outer braids is cable end preparation and termination. It is important to avoid damaging any braid wire strands when stripping back, since this would substantially increase distortion levels. However, a dense braid is extremely effective in reducing cable pickup into the amplifier’s feedback loop.

As to the test results table, with one exception, the cables segregated automatically into distinct performance groups – coaxial and non-coaxial. Five of the six coaxial cables were outstanding compared to all but one of the non-coaxial constructions tested – including the hand-made, 2mm twin-line special, Table 2. Of the non-coaxial styles, the Jenving Supra Ply 2.0 was the exception, performing well and coming fourth overall, Table 2.

By far the best cable of those tested is the custom made Mark II, followed closely by the Mark I. Neither of these is commercially available in cut lengths but they could be specially ordered in bulk, or further copies could be hand-made, as were my originals.

Both the Mark I and the Mark 2 are flexible, very low resistance and – being less than 6mm in diameter – easily installed. Mark 2 has 19 strands of 0.45mm inner wire insulated with polythene with an outside diameter of 3mm. Its outer braid is 240 strands of 0.127mm diameter. Heat shrink sleeve provided overall insulation.

Mark I is identical, except for its 37 strands of 0.32mm inner core. Designers interested in the materials used should send an sae to me via Electronics World’s editorial offices.

When these tests commenced, I decided to use only cables easily purchased in cut lengths so that my results could be easily replicated. However, in order to understand some early results, I needed to measure a cable having lower impedance at audio frequencies than URM67, but I was unable to buy it. I certainly didn’t expect that my crude hand-made cables would perform as well as they did (see panel on sources of cables used for test).

Of those cables commercially available in cut lengths, the URM67 performs extremely well, coming a close third overall. It is obviously by far the best commercial cable of those tested. However, being 10.3mm in diameter with a solid polythene core and a very dense braid, it is inflexible. It could almost be used as a tow rope.

A not-so-close fourth, the Jenving Supra Ply 2.0, is a specialised, relatively low-cost, high-capacity cable, available from Jenving’s UK agent only in multiples of 10m. In direct contrast with URM67, it is much smaller and, being extremely flexible, drapes well. It is easily installed and hidden from sight.

Following closely on the Supra Ply’s heels is a tie for fifth place between the 75Ω satellite tv cable CT100 and the 50Ω instrument cable RG58, both ranking equally well overall. However, depending on your needs, you may prefer to down-rank RG58 due to its poorer performance in the resonance and resistive circuit tests and for its high dc resistance.

CT100 and Cat 500 cables are both of larger diameter than RG58. They have a secondary inner copper-foil shield which could fatigue and crack with repetitive coiling and uncoiling, so they should only be used for permanent installations.

Once more, I ask that anyone wishing to shoot these findings down in flames should first repeat the experiments.

Cobblers' shoes

After all these time-consuming experiments, you may wonder which brand of expensive speaker cable I use. My listening room has the 'golden' dimensions of 6.7 by 4.6 by 2.9m, and needs cables somewhat longer than those tested.

My relatively low-cost system, based on Acoustic Research electronics with corner horn speakers crossing over at 250Hz, was cabled almost 30 years ago using the old-style 7 by 0.029in twin and earth ring mains cable buried in the plaster. I used this for no better reason than that I had plenty left over. I guess its only other merit is a cross-sectional area of more than 3mm, giving reasonably low resistance at the lengths needed. Since my corner horns are 15Ω impedance, it seemed acceptable.

Will I change this cable?

During these experiments I too, like Saul travelling to Damascus, have revised some views and intend to further develop Mark 2 for my own use. This design is now covered by Pat. No 9624876.

References
3. Colloms, M., A Big-Hearted Monitor, Hi-Fi News, July 1993
4. Stamler, P., How to improve that small cheap speaker, Speaker Builder, 1/80 pp18-26
5. Fris, R., The Daline, Hi-Fi News, November 1974
7. Self, D., 50-Watt Class 'B' Amplifier, Electronics World, February 1994
8. Pass, N., Speaker Cables – Science or Snake Oil?, Speaker Builder, 2/80
10. Future Film Developments, 64 Oxford Road, New Denham, Uxbridge UB9 4DN

Music used for listening tests

Test Disc 3, Hi-Fi News & Record Review, HFN020.
Pictures at an Exhibition, Mussorgsky, Decca 417 299-2.
In The Region of The Summer Stars, The Enid, MNTLCD7.

124

ELECTRONICS WORLD February 1997
'OFF-AIR' FREQUENCY STANDARD

- Provides 10MHz, 5MHz & 1MHz
- Uses for calibrating equipment that relies on quartz crystals, VXO's, VXO's, and others
- Phase locked to 1PPM/5MHz (suitable for crystal-astronomical equipment)

Output frequencies:
- 10MHz, 5MHz, 1MHz

Short term stability - better than 1x10^-11 (1 sec)
Typical - 4x10^-11 (1 sec)
Long term - not suitable

Call for prices - standard condition

TEST-EQUIPMENT

We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list.

Marconi Spectrum Analyser
TF2370
£995
Marconi LCR Bridge
TF2700
£149
Marconi LCR Bridge
TF131A
£125
Bradley Oscilloscope Calibrator
156
£395
Bird Termaline, 2.5kW 501
£295
Philips Function Generator
PM134
£395
Hitachi Oscilloscope VP222
£249
20MHz Rapid Oscilloscope 7020
£249
Philips Pulse Generator
PM6176
£495
Amprobe AC Recorder LAVX3
£75
Anemometer Amf-353
£249
Amprobe Temperature Recorder
£75
ELT100
£75
Emerson UPS 1.5kW
£599
HP4604A
£249

HALCYON ELECTRONICS

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR
SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

Field Electric Ltd.
Tel: 01438-353781 Fax: 01438-359397
Unit 2, Marynead Workshops, Willows Link, Steventon, Herts, SG2 8AB

Sony 9" Super Fine Pitch Tritonron RGB VDU
£35 c/p 12.50
AT Keyboards for IBM Compatabilities
£5.99
12" Colour SVGA 800 x 800 NEC
£45.95 c/p 14
Marconi Inst = Data Comms Tester
£385
Marconi Inst + Digital Line Monitor
£350
Marconi Inst + Digital Line Tester
£375
Farrell PSU 0-70V 0-5A 0-30V 0-10A
£245
Siemens Digital Line Analyser
£300
Black Star Multimeter 3225
£25
Tektronix DAS9100 Digital Analysis System
£175
Tektronix 718 D.T. Amp
£75
Tektronix 716A D.T. Base
£75
Tektronix 716A Amp
£150
Tektronix 7511 Diff = Comp =
£100
12 VAC 200 Watt Transformer
£15
27 VAC 30A Transformer New
£15
Tseng Labs 1Mb 16 bit ISA SVGA Card
£16.75 c/p 4.00
Tseng Labs Dual Port SVGA ISA 16 Bit Card to run 2 Monitors from 1PC.
£39
Compaq Docking Station for Laptop & Notebooks
£24.95
Phillips PM 3233 10 Mhz D/Trace Scope
£65
Leader LMV 181A AC Millivoltmeter
£145
Racal Inst. 9915 UHF Freq: Meter 500MHz
£100
Racal Inst. 9916 UHF Freq: Counter 500MHz
£145
HP Laserjet 11D Printer
£180
HP 747B 8 Pen Plotter RS232
£65
HP Colour Pro 8 Pen Plotter RS232
£75
HP 7470 Plotter RS232
£95
Roland DG XY DXY 880A 8 Pen Plotter. Needs PSU
£60
Roland DG XY DXY 880A 8 Pen Plotter. Needs PSU
£60
Roland DXY 1300 8 Pen Plotter
£135
14" VGA Colour Monitor. Various makes from
£60

PLOTTERS + COMPUTERS + COMMUNICATIONS + PSU + VDU's + VIDEO + FANS + TEST + CABLE + NETWORK + PRINTERS + DISK DRIVES ALWAYS IN STOCK. OVERSEAS ENQ. WELCOME.
TELEPHONE ORDERS ACCEPTED.
C/P DETAILS PLEASE RING. ALL PRICES PLUS 17.5% VAT.

CIRCLE NO. 115 ON REPLY CARD

LOW COST DEVELOPMENT SYSTEM

ECAL comprises a versatile relocatable assembler with an integral editor which runs about ten times faster than typical assemblers. Support includes 4, 8, 16 & 32 bit processor families including 75X, 6502, 6809, 68HC09/11, 6831/S1, H8-300, 68K, PICs, ST6 & Z80/180, 68000, 80C186, H8-300 & Z80.32.

ECAL is either available for a single processor family or all families.

Single processor version £295
Multiprocessor version.... £395

Overseas distributors required

OEMA Ltd.,
7 & 7A Brook Lane,
Warsash,
Southampton S031 9FH
Tel: 01489 571300
Fax: 01489 885853

The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!

Download time is about two seconds!

Pods can be daisy-chained for 16/32 bit systems.

Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator.............. £475

Quantity discounts of up to 50% make ECAL software ideal for education.

Free demo disc!

CIRCLE NO. 119 ON REPLY CARD

ELECTRONICS WORLD

125
One c-mos gate pack can form the heart of a frequency meter, a step-down switching regulator or a negative-supply generator, explains Rae Perälä.

There are many applications for the 4011 c-mos two-input-nand gate—other than just gating. This article presents three such circuits, namely a step-down regulator, a negative-voltage switching regulator, and a frequency measuring circuit.

Step-down regulator

Operating principle of a typical step-down regulator is shown in Fig. 1. Semiconductor switch S1 is usually controlled by a pulse width modulator, or pwm.

While the switch is on, current flows through inductor L to the output. Simultaneously, magnetic energy in the inductor increases. Diode D stays in its reverse state. When the switch turns off, the inductor discharges its magnetic energy giving a current to the output. Diode D now becomes forward biased providing path for current flow.

The on-to-off time ratio of the switch is controlled by the pwm circuit. This circuit compares output voltage, Vout, to reference voltage Vref and changes the on-to-off ratio accordingly.

Figure 2 is a practical step-down circuit using 4011. It makes a new regulated output voltage Vout from a regulated +8 to +15V input voltage. Gates A and B work as an oscillator giving an asymmetrical 40kHz square wave. Fig. 3. Gate C controls the switching transistor, which is a BS250 p-type enhancement mode mosfet. This same gate inverts the oscillator output voltage, presenting the transistor control voltage VGS as in Fig. 3. The control voltage has long negative pulses interspersed with short intervals. The transistor conducts during the negative pulses.

Gate D regulates the output voltage. Its output is high when Vout is beneath the adjusted value. The high state activates gate C, which can now control the switching transistor. When the adjusted output voltage is reached, gate D output goes low, stopping gate C, which remains in the high state. The switching transistor has no control voltage and remains off.

The regulating circuit operates using the 'missing pulse' principle. It provides pulses when the output voltage is low and ceases pulsing when the output voltage is sufficiently high.

Output voltage is adjusted via the 470kΩ potentiometer. Usable output voltage range of the circuit is 0.5 to 0.9 of Vref. The circuit can be loaded to 100mA.

Negative voltage regulator

A negative voltage switching regulator is presented in Fig. 4. Gates A and B form an oscillator, giving a symmetrical square wave voltage. Gate C controls the BS250 switching transistor.

During the transistor on time, current flows through the inductor, charging the magnetic energy within it. The magnetic energy discharges while the transistor is off through the diode, producing a negative voltage at the output.

Gate C regulates the output voltage. When the output voltage is too low, the regulating input voltage of gate C is high and the oscillator voltage controls the gate C output and therefore the transistor.

When the output voltage reaches the desired negative value, the regulating input goes low and it stops the output of gate C leaving it in its high state. The transistor stays off until the output voltage goes below its adjusted value.

This circuit requires an input voltage of +8V to +15V, which can be unregulated. A regulated +5V input acts as a reference voltage.

Frequency measurement on a dvm

A digital voltmeter can be used for frequency measurements to 1MHz using the circuit in Fig. 5. The frequency to be measured connects to the input of gate A. This input is biased with 330kΩ resistors to half the supply voltage. This allows low input voltages to change the output of gate A. Figure 6 shows the gate voltages. Output voltage of gate A changes each time the input voltage passes the half supply voltage threshold.

Gate A controls gates B and C. Gate B has a delay capacitors in its output. Figure 6 shows
the gate B output voltage, which is reversed and delayed relative to gate A’s output. One input of gate C is fed with the output voltage of gate A and in the other input the delayed voltage from gate B. Output of gate C comprises a negative pulse with a duration equal to the time it takes for gate B to falling from its high state to its low state. Pulses from gate B are then inverted in gate D. These pulses are always similar in shape, independent of the amplitude and shape of the original input voltage. The mean value of gate D’s output voltage can then be measured by a digital voltmeter with its 200mV or 2V dc voltage range selected. The meter reading can be adjusted by the 100kΩ potentiometer so that the voltage reading directly represents the unknown capacitance. Capacitance measuring ranges are selected by the switch, which connects a suitable capacitor to gate B’s output. The 100pF capacitor should be a trimmer so that gate C’s input capacitance can be compensated for.

Fig. 4. Negative supply from a positive input.
Again, gates A and B are an asymmetrical oscillator. Gate C determines whether drive pulses pass to the switching transistor.

Fig. 5. Direct reading frequency meter, capable of measuring to 1MHz in three ranges, uses a digital voltmeter for display.

Fig. 6. Frequency meter waveforms. Top is the ac input, which is biased toward the switching point of the logic gate. In this way, the gate switches at a significantly lower input voltage than would otherwise be needed.

Transform your PC into a digital oscilloscope, spectrum analyser, frequency meter, voltmeter, data logger... for as little as £49.00

Pico Technology specialises only in the development of PC based data acquisition instrumentation. **Call for your guide on 'Virtual Instrumentation'.**

Data Logging

Pico’s range of PC based data logging products enable you to easily measure, display and record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter

- Supplied with PicoLog software for advanced temperature processing, min/max detection and alarm.
- 8 Thermocouple inputs
- No power supply required.

Call for free demo disk and product range catalogue

Post & Packing UK £3.50. Export customers add £9 for carriage & insurance.
Doug Self takes a look at the complex subject of preamplifier overload, and how to handle it.

There was no room in my Preamp '96 article for a proper discussion of the overload behaviour of RIAA preamp stages. Like noise performance, the issue is considerably complicated by both cartridge characteristics and the RIAA equalisation.

There are some inflexible limits to the signal level possible on vinyl disc, and they impose maxima on the signal that a cartridge can reproduce. The absolute value of these limits may not be precisely defined, but they set the way in which maximum levels vary with frequency, and this is perhaps of even greater importance.

Figure 1a shows the physical groove amplitudes that can be put onto a disc. From subsonic up to about 1kHz, groove amplitude is the constraint. If the sideways excursion is too great, the spacing will need to be increased to prevent one groove breaking into another, and playing time will be reduced. From about 1kHz to ultrasonic, the limit is groove velocity rather than amplitude. If the cutter head tries to move sideways too quickly compared with its forward motion, the back facets of the cutter destroy the groove that has just been cut by the forward edges.

At replay time, there is a third restriction - that of stylus acceleration or, to put it another way, groove curvature. This sets a limit on how well a stylus of a given size can track the groove. Allowing for this at cutting time puts an extra limit on signal level, shown by the dotted line in Fig. 1a.

The severity of this restriction depends on the stylus shape. An old-fashioned spherical type with a tip diameter of 0.0007in requires a roll-off of maximum levels from 2kHz, while a relatively modern elliptical type with 0.0002in effective diameter postpones the problem to about 8kHz.

Thus there are at least three limits on the signal level. The distribution of amplitude with frequency for the original signal is unlikely to mimic this, because there is almost always more energy at lf than hf. Therefore the hf can be boosted to overcome surface noise without overload problems, and this is done by applying the inverse of the familiar RIAA replay equalisation.

Moving-magnet and moving-coil cartridges both operate by the relative motion of conductors and magnetic field, so the voltage produced is proportional to rate of change of flux. The cartridge is sensitive to velocity rather than to amplitude (and so sensitivity is always expressed in millivolts per cm/s) and this gives a frequency response rising steadily at 6dB/octave across the whole audio band. Therefore, a maximal signal from disc (Fig. 1a) would give a cartridge output like Fig. 1b — i.e., 1a tilted upwards.

Figure 1c shows the RIAA replay equalisation curve. The shelf in the middle corresponds with 1a, while an extra time constant at 50Hz limits the amount...
of If boost applied to warps and rumbles. The 'IEC amendment' is an extra roll-off at 20Hz, (shown dotted) to further reduce subsonics. When RIAA equalisation 1c is applied to cartridge output 1b, the result will look like Fig. 1d, with the maximum amplitudes occurring around 1-2kHz.

Clearly, the overload performance of an RIAA input can only be assessed by driving it with an inverse-RIAA equalised signal, rising at 6dB/octave except around the middle shelf. My Precision preamp '96 has an input overload margin referred to 5mV rms of 36dB across most of the audio band, i.e., 315mV rms at 1kHz. The margin is still 36dB at 100Hz, but due to the RIAA low-frequency boost this is only 30mV rms in absolute terms.

The final complication is that preamplifier output capability almost always varies with frequency. In Preamp '96, the effects have been kept small. The output overload margin voltage — and hence input margin — falls to +33dB at 20kHz. This is due to the heavy capacitive loading of both the main RIAA feedback path and the pole-correcting RC network ($R_{24,25}$ and C_{20}). This could be eliminated by using an op-amp with greater load-driving capabilities, if you can find one with the low noise of a 5534.

The overload capability of Preamp '96 is also reduced to 31dB in the bottom octave 10-20Hz, because the IEC amendment is implemented in the second stage. The If signal is fully amplified by the first stage, then attenuated by the deliberately slow initial roll-off of the subsonic filter.

Such audio impropriety always carries a penalty in headroom as the signal will clip before it is attenuated. This is the price paid for an accurate IEC amendment set by polyester caps in the second stage, as opposed to the usual method of putting a small electrolytic in the first-stage feedback path, rather than the 220pF used. Alternative input architectures that put flat amplification before an RIAA stage suffer much more severely from this kind of headroom restriction.\(^3\)

These extra preamp limitations on output level are shown at Fig. 1e, and, comparing 1d, it appears they are almost irrelevant because of the falloff in possible input levels at each end of the audio band.

References
3. As [1], July/Aug 1996, p543.

Fig. 1a). Restrictions on the level put onto a vinyl disc. The extra limit of groove curvature — stylus acceleration — is shown dotted. Fig. 1b). Response of a moving-coil or moving-magnet cartridge to a signal following the maximum contour in Fig. 1a). Fig. 1c). The RIAA replay curve. The IEC amendment is an extra roll-off at low frequency, shown dotted. Fig. 1d). The combination of b) and c). Fig. 1e). RIAA preamp output limitations. The high-frequency restriction is very common and is often much worse in discrete preamplifier stages with poor load-driving capabilities.
Programmable logic primer

In this first article based on his new designer's handbook - 'FPGAs and programmable logic', Geoff Bostock provides and introduction to standard logic families.

The primary building block of logic circuits is the logic gate. This is a device which operates on two or more logic signals to give an output which is defined by a logic operator. The standard logic operators are And, Or and Invert, which only acts on one signal.

There are two classical logic families – ttl, which uses a non-final 5V supply, and 4000-series c-mos, which can work from a supply of between 3V and 15V. In recent years, the 4000 series has been largely superseded by the HC high-speed c-mos family. A logic low signal is usually defined as being close to 0V, or ground, while a logic high signal normally sits close to the supply voltage, \(V_{CC} \), or at least above half \(V_{CC} \).

An And function is defined as only giving a high output when all the inputs are high; the Or function has a high output when any one of its inputs is high. The Invert function changes a logic signal from high to low, or vice versa. These functions may be written down as logic equations as follows:

And function: \(Y = A \cdot B \cdot C \) or \(Y = A \land B \land C \)

Or function: \(Y = A \lor B + C \) or \(Y = A \lor B \lor C \)

Invert function: \(Y = \neg A \) or \(Y = \overline{A} \)

Alternative notations exist because different logic compilers have adopted different conventions. Using '•', '+' and '/' for logic clashes with their more familiar use as arithmetic operators in programming languages. For the remainder of this article, I will use '&', '#' and '!'.

Figure 1 shows an alternative way of showing logic relationships - the truth table. The symbol 'H' represents logic high, sometimes replaced by '1', while 'L' stands for logic low, with '0' as an alternative. The symbol 'X' represents don't care; the logic level can be high or low.

These three operators form the basis of all possible logic circuits. For example, the exclusive-Or gate has a low output if its two inputs are the same, but high if they are different. Its logic operator is written as \(Y = A \oplus B \) or, sometimes \(Y = A + :B \). It is logically equivalent to \(Y = A \bar{\bar{B}} \lor A \bar{B} \).

These logic functions may also be represented diagrammatically. Standard gate symbols are shown in Fig. 2, as well as And, Or, and Invert, gates with the functions Nand and Nor are also depicted. The NAND function is an And followed by an Invert, Nor is Or followed by Invert; a small bubble on an output, or an input, signifies an inversion.

The exclusive-Or symbol, and its equivalent logic circuit, are drawn in Fig. 3.

Sequential logic
Output of a gate does not depend on the order in which the signals are applied. If both inputs of a two-input And gate are low, the output will also be low; if A goes high before B, or if B goes high before A, the result will be the same – two highs on the inputs yield a high on the output.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>H</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>L</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>X</td>
<td>L</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>0</td>
<td>L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>H</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>L</td>
</tr>
</tbody>
</table>

AND OR INVERT

Fig. 1. Logic function truth tables.

Fig. 2. Standard gate symbols.

Fig. 3. Exclusive-Or symbol and its equivalent circuit.

Fig. 4. D-type latch circuit.
Consider Fig. 4. If input LE is high, the output, Q, will be the same as input D. This is because the output of the lower and gate is low — irrespective of D. Suppose that LE is now high, and that D was high when LE went low. Q was also high, so the lower gate was high and Q will stay high. Conversely, if D was low, Q will stay low.

This function is known as a latch. While LE is high, the latch is transparent and Q follows D; when LE is low, the level of D when LE went low is latched into Q. Output of the circuit depends on the sequence in which the signals are applied, hence the term sequential circuit.

Figure 5 shows two latches in series, with the LE signal inverted between them. When the first latch is transparent, the second is latched, and vice versa. A signal applied to D will appear at D2 while LE1 is high, but will not be transmitted to Q until CLK goes low, sending LE2 high. At this time, LE1 goes low and locks out any changes on D1. It appears that the signal on D1 is sent through Q as CLK changes from high to low. This is the principle of the master–slave flip-flop or D-type flip-flop.

Practical logic circuits

Devices containing one or more gates, latches or flip-flops form the basis of the standard logic families. Circuit designers can use these integrated circuits to build up more complex functions by interconnecting these MSI or small-scale integration, or SSIs, parts containing many of the standard circuit functions which can be built from gates and flip-flops.

A typical combinatorial msi function is a one-to-eight line decoder/demultiplexer. The circuit diagram for this function is shown in Fig. 6. The logic levels on the three address inputs represent a binary number in the range 000 to 111 (7). The logic level on the data/enable input is transmitted to the output selected by the input address. The truth table for this function is shown in Table 1.

Similarly, msi functions can be built from sequential elements. Figure 7 illustrates this point with the circuit of a four-bit shift register. Data on the inputs is loaded into the flip-flops when the shift/load signal is low and there is a low-to-high clock transition. When shift/load is high, the data is moved one place to the right on a clock edge. This circuit can form the basis of some arithmetic functions, or it may be used in communications to change the data format from parallel to serial or vice versa.

A different type of flip-flop, the J-K flip-flop, is used in the counter circuit in Fig. 8. A J-K flip-flop behaves like a D-type when the J and K inputs are complementary, but if both are high, the output changes from high to low or low to high, the so-called toggle function. If both are low, no change occurs on a clock edge; the output data is unchanged, the hold condition. As long as the count enable, CE, and reset inputs are held high, the counter function will increment by one on each clock transition.

Taking the reset low makes every output low, resetting the counter to binary 0000. Reset is an asynchronous function which is built into some flip-flops; it operates independently from the clock and allows the flip-flop to be put into a known condition. Some flip-flops also include an asynchronous set input which puts the output high.

Operation of the counter may be described by a state diagram. Each combination of output levels corresponds to a binary number from 0000 to 1111 and represents a distinct state of the counter. Figure 9 shows the counter state diagram. Each state is represented by a circle containing the output levels in that state. The arrows are labelled with the logic inputs which enable the jumps between states. A recursive arrow means that there is no jump and gives the hold
condition for that state.
The CE must be true for counting to proceed; if CE is false, the counter holds its present state.
Many sequential functions are best described by a state diagram, just as combinatorial functions are often defined in a truth table.

In the next article, Geoff takes a more in-depth look at programmable logic elements.

This article is derived from Geoff Bostock's new book 'FPGAs and programmable LSI – a designer's handbook'. This work covers designing FPGAs, large PAL structures, RAM and antifuse-based FPGAs and FPGA selection. Comprising 215 pages, this book is available by sending a postal order or cheque with a request for the book to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. The fully inclusive price is £27.50 UK, £30 Europe or £33 rest of world. Alternatively, fax your full credit card details and address on 0181 652 8956 or e-mail jackie.lowe@rbp.co.uk.

Fig. 9. Four-bit counter state diagram.
Designing power supplies

Ray Fautley describes an easy-to-use procedure for designing reliable full-wave rectifiers of the centre-tapped secondary variety.

In this version of the full-wave rectifier, the bridge rectifier is simplified to two diodes, but the transformer needs a centre tap, which becomes the ground connection. Alternating voltage is applied to rectifier diodes $D_{1,2}$ where it is rectified and the output smoothed by reservoir capacitor C. Fundamental frequency of the ripple voltage is twice that of the supply frequency. Resistance R_s represents the source of the supply and V_{dc} is the voltage across the whole of the secondary winding.

Design procedure

1) Specify required dc output voltage at full load $E_{dc(\text{load})}$ (V).
2) Specify required maximum load current $I_{dc(\text{load})}$ (A).
3) Specify maximum voltage ripple acceptable $V_{r(\text{rms})}$ (V).
4) Specify the ac mains supply voltage $V_{ac(\text{rms})}$ (V).
5) Specify the frequency of the mains supply f (Hz).
6) Determine the value of the equivalent load resistance R_l:

$$R_l = \frac{E_{dc}}{I_{dc(\text{load})}}$$

where E_{dc} is the design value of the dc output voltage. It is the required voltage across the load, $E_{dc(\text{load})}$, added to the voltage drop across one of the diodes. As the voltage drop across the diodes occurs only while they are conducting, and they conduct alternately, the effective drop is that of just one diode.

$$E_{dc} = E_{dc(\text{load})} + V_{rec}$$

where V_{rec} (the drop across the rectifier diode) is 0.9V, so:

$$R_l = \frac{E_{dc(\text{load})} + 0.9}{I_{dc(\text{load})}}$$

7) Determine average current through each diode. Half the average current, I_{av}, will flow through each diode.

$$I_{av} = \frac{I_{dc(\text{load})}}{2}$$

8) Determine a value for source resistance of the supply, R_s. The mains transformer winding resistances are known – and it rarely is – refer to step 8 in the design procedure (September 1996 issue) for the method of evaluating R_s. Otherwise, assume that R_s is about 5% of R_L. Then for low resistance loads:

$$R_s = \frac{R_L \times 5}{100}$$

For high resistance loads, where the transformer winding resistance predominates:

$$R_s = \frac{R_L \times 5}{100}$$

9) Calculate the ratio of R_s to R_L as a percentage:

$$\frac{R_s}{R_L} \times 100\%$$

10) Determine percentage ripple voltage from the specified maximum ripple and the dc output voltage:
11) From the figures in Table 1, determine the value of X required to provide the percentage ripple voltage, \(V_\% \) in step (10) above, for \((R_2/R_1)_\% \) calculated in (9).

12) Calculate reservoir capacitor \(C \), required to provide the ripple voltage \(V_{\text{rms}} \) from:

\[
C = \frac{X(10^6) \mu \text{F}}{2fR_1}
\]

The term used for frequency is \(f \) and not \(2f \) (the ripple frequency in a full-wave centre-tap rectifier circuit being twice the supply frequency) because the figures in Table 1 allow for the difference.

13) Find the nearest standard (or available) value for the reservoir capacitor \(C \), close to (preferably just above) the value calculated in step (12). If the value of the capacitor is different from that in (12), call it \(C_1 \) and determine a new value for \(X \) (call it \(X_1 \)) from:

\[
X_1 = \frac{2fC_1}{\text{fC}R_1}
\]

with \(C_1 \) in \(\mu \text{F} \),

\[
X_1 = \frac{2fC_1R_1}{10^6}
\]

14) From the figures in Table 2 determine the value of \(Y \) for \(X \) in step (11), or \(X_1 \) in step (13), and \((R_2/R_1)_\% \) in step (9).

15) Determine the transformer secondary voltage \(V_{\text{sec}} \), required from the value of \(Y \) for \(X \) in step (14):

\[
V_{\text{sec}} = \frac{E_{dc}}{\sqrt{2}X Y}
\]

where \(E_{dc} = \text{Erector load} + V_{\text{sec}} \)

Thus find \(I_{\text{peak}} = I_{\text{X}}XW \).

20) Determine initial switch-on current \(I_{\text{on}} \). As \(C \) (or \(C_1 \)) will be initially discharged, the load on the rectifier diodes will be nearly a short-circuit at the instant of switch-on, limited only by the source resistance \(R_c \). Then:

\[
I_{\text{on}} = \frac{V_{\text{sec}}}{{R_1}}
\]

This very high current flows for only a very short time, but the rectifier diodes must be capable of withstanding it. If suitable devices with such high pulse ratings are not available, source resistance \(R_s \) must be increased by adding an external resistor \(R_{\text{ext}} \) between the rectifier and the reservoir capacitor \(C \) or \(C_1 \). The value of \(R_{\text{ext}} \) to limit the switch-on current to an acceptable lower value \(I_{\text{on}} \), is determined in step (28).

21) Decide on a suitable rectifier diode type to be used. The device must have all its ratings equal to, or greater than, the following:

\[PIV \text{ or } 2XV_{\text{sec}} \text{ (sometimes } V_{\text{RMTM}} \text{) see step 16} \]

Initial switch-on current \(I_{\text{on}} \) (sometimes \(I_{\text{SMRT}} \)), see step 20)

Average current or \(I_0 \) (sometimes \(I_{\text{RAMT}} \)), see step 7)
22) Determine rms ripple current \(I_{\text{rms(s)}} \), flowing through reservoir capacitor \(C \) (or \(C_1 \)):

\[
I_{\text{rms(s)}} = \sqrt{\frac{1}{2}(I_{\text{rms}}^2 - I_{\text{dc(load)}}^2)}
\]

for \(I_{\text{rms}} \) see step 18), and for \(I_{\text{dc(load)}} \) see step 2).

23) Decide on the specification for the reservoir capacitor to be used. The capacitor must have ratings equal to, or greater than, the following:

Capacitance \(C \) (or \(C_1 \)) see step 12) or

DC working voltage \(V_{\text{sec(peak)}} \), step 16)

Ripple current \(I_{\text{rms(s)}} \), step 22)

24) Total transformer secondary current \(I_{\text{rms}} \) is the same as the current through each diode, \(I_{\text{rms}} \) i.e. \(I_{\text{rms}}=I_{\text{rms(s)}} \)

25) Transformer VA (or volt-amp) rating \(V_{\text{sec}} \) for each half of the secondary winding is: \(V_{\text{sec}}=V_{\text{sec(s)}}V_{\text{sec(m)}} \) for total VA, \(V_{\text{sec}=2}\times V_{\text{sec}} \). This determines the size of the transformer.

26) Transformer requirements are:

Volt-amp rating \(V_{\text{sec}} \), step 25)

Primary winding \(V_{\text{sec(m)}} \), step 4)

Secondary winding \(V_{\text{sec(m)}}=0-V_{\text{sec(m)}} \)

Table 2 continued.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(R_{\text{p}}/R_{\text{c}} %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>0.2</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>0.3</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>0.4</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>0.5</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>0.6</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>0.7</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>0.8</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>0.9</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>1.0</td>
<td>0.56 0.54 0.51</td>
</tr>
<tr>
<td>1.5</td>
<td>0.60 0.57 0.55</td>
</tr>
<tr>
<td>2.0</td>
<td>0.63 0.59 0.56</td>
</tr>
<tr>
<td>2.5</td>
<td>0.66 0.60 0.57</td>
</tr>
<tr>
<td>3.0</td>
<td>0.69 0.62 0.58</td>
</tr>
<tr>
<td>4.0</td>
<td>0.72 0.64 0.60</td>
</tr>
<tr>
<td>5.0</td>
<td>0.76 0.66 0.62</td>
</tr>
<tr>
<td>6.0</td>
<td>0.81 0.70 0.66</td>
</tr>
<tr>
<td>7.0</td>
<td>0.86 0.74 0.70</td>
</tr>
<tr>
<td>8.0</td>
<td>0.92 0.78 0.74</td>
</tr>
<tr>
<td>9.0</td>
<td>0.98 0.82 0.78</td>
</tr>
<tr>
<td>10</td>
<td>1.05 0.86 0.82</td>
</tr>
<tr>
<td>100</td>
<td>1.67 1.38 1.08</td>
</tr>
</tbody>
</table>

27) When a suitable transformer has been chosen, measure resistance of half of the total secondary winding and the resistance of the primary winding. If the measured source resistance:

\[
R_{\text{sec}} = \frac{V_{\text{sec}} + R_{\text{sec}}}{2} \frac{L_1^2 + R_{\text{sec}}}{2} \]

is less than \(R_{\text{c}} \) calculated in step 8), then an external resistor:

\[
R_{\text{ext}} = \frac{V_{\text{sec(peak)}}}{I_{\text{load}}} - R_{\text{c}}
\]

must be added, see step 28), to limit \(I_{\text{on}} \) to the value found in 20). For low resistance loads, it is unlikely that any external resistance will be necessary as the diode resistance \(R_{\text{ext}} \) will tend to limit the switch-on current rather than the resistance of the transformer windings.

28) If an external resistor \(R_{\text{ext}} \) was found necessary in step 20) or 27) to be fitted between the rectifiers and reservoir capacitor \(C \) (or \(C_1 \)) to limit the switch-on current to a lower level \(I_{\text{on}} \), its value will be:

\[
R_{\text{ext}} = \frac{V_{\text{sec(peak)}}}{I_{\text{on}}} - R_{\text{c}}
\]

29) Power dissipated in \(R_{\text{ext}} \) (if used) is given by:

\[
P_{\text{ext}}(I_{\text{rms}}) = I_{\text{rms}} R_{\text{ext}}
\]

A suitable resistor should have a power rating of about twice the value of \(P_I \) for reliable operation.

30) If an external resistor \(R_{\text{ext}} \) is used the regulation of the supply can be
improved by the addition of a shorting-out device as recommended for the bridge rectifier circuit in the September issue.

Putting the procedure to work

Now for the worked example. A supply of 1200V at 0.5A is required for a valve rf power amplifier. An acceptable ripple on the supply would be 12V rms.

1) \(E_{dc(ideal)}=1200V \)
2) \(I_{dc(ideal)}=0.5A \)
3) \(V_{rms}=12\text{Vrms} \)
4) \(V_{primes}=240\text{V rms} \)
5) \(f=50\text{Hz} \)

\[E_L = \frac{E_{dc(ideal)}}{I_{dc(ideal)}} = E_{dc(ideal)} + V_{dc(ideal)} \]

As \(V_{dc(ideal)} \) is only 0.9V it can be ignored.

\[R_L = \frac{E_{dc(ideal)}}{I_{dc(ideal)}} = \frac{1200}{0.5} = 2400\Omega \]

\[I_e = \frac{I_{dc(ideal)}}{2} = \frac{0.5}{2} = 0.25A \]

\[R_s = 2400 \times 5 = 120\Omega \]

\[R_f = \frac{120}{2400 \times 100\%} = 5\% \]

\[V_{%} = \frac{V_{rms}}{E_{dc(ideal)} \times 100\%} = \frac{12}{2000 \times 100\%} = 0.5\% \]

11) Find the value of \(X \) for \(V_{%} \) and \((R_f/R_s)\% \), i.e.

\[(R_f/R_s)\% = \frac{5}{5} \text{ so the value of } W \text{ for } 2X \text{ and } (R_f/R_s)\% \text{, where } 2X=124 \text{ and } (R_f/R_s)\%=2.5, \text{ from Table 4 is found to be 7.92.} \]

\[I_{peak} = I_{dc(ideal)} \times 0.25 = 0.25 \times 7.92 = 1.98 \]

\[I_{in} = \frac{V_{(peak)}}{R_s} = \frac{1.414V_{(peak)}}{R_s} \]

\[= \frac{1.414 \times 1010}{120} = 11.9A \]

21) Diode ratings required are,

\[PIV(V_{RMRT})=2856V \]

\[I_{on}(I_{FSMT})=11.9A \]

\[I_{o}(I_{FWAVE})=0.25A \]

To obtain a \(PIV \) of 2856V it would be necessary to wire three BYX38-1200 diodes in series for each of the two diodes required.

22) \[I_{rms} = \sqrt{\frac{2r_i}{2R_t}} \]

\[= \sqrt{\frac{2 \times 0.66^2 - 0.5^2}{2 \times 0.4356 - 0.25}} \]

\[= \sqrt{0.6212} = 0.79A \]

23) Reservoir capacitor ratings required are,

\[C=82.2\mu F \]

\[V_{sec(peak)} = V_{dc(wgk)} \times 2 \times 1010 = 1428V \]

Ripple current \(I_{(rms)} = 0.79A \)

Four capacitors in series of 330µF, each with a working voltage of 385V dc would be suitable. To ensure that a quarter of the output voltage appears across each capacitor, a 100kΩ, 3W resistor should be wired across each of them.

24) \[I_{(rms)} = \frac{I_{max}^2}{2} \]

25) Transformer VA \[= 2 \times V_{sec(peak)} \times I_{(rms)} \]

26) Mains transformer ratings required are,

\[T_{VA} = 1333VA \]

Primary winding \(V_{primes} = 240 \text{V rms} \)

Secondary winding \(V_{acrms} = 1010\text{V} - 1010\text{V} \)

Secondary current \(I_{rms} = 0.66A \)

Previous articles in this power-supply design series covered the full-wave bridge rectifier, September 1996 issue, and the half-wave single-diode rectifier, December 1996 issue. A subsequent article will deal with the voltage doubler.
AT LAST A CATALOGUE AS ADVANCED AS YOUR THINKING

SELECT WHAT YOU NEED FROM THE

CATALOGUE IN SECONDS

...WITHOUT TURNING A SINGLE PAGE!

The most powerful source of reference for technical products and you can get it for £5.00

Electromail has always provided an outstanding range backed by the highest levels of service. Over 70,000 products from electronic components, electrical equipment to mechanical parts and tools, each one quality selected and available over the phone for next working day delivery.

You could say that's a service hard to beat, but that's just what we've done.

The new Electromail CD-ROM catalogue makes a technological breakthrough by providing full information about our complete range, with colour photographs and technical illustrations. There are powerful search functions by product type and word number - it's the fastest and easiest way ever to select and order the product you need. There's a special new products review section to keep you informed of new range additions and it contains the full RS library of Data Sheets as an added bonus.

But the best news is you can get all that for just £5 - send for your copy, and get in the fast lane to finding the components you need.

ELECTROMAIL, P.O. Box 33, Corby, Northants, NN17 9EL.
Tel: 01536 204555 Fax: 01536 405555
Digital panel meter for just £8.95

The PM-128 is a 3.5-digit LCD panel meter with a full-scale reading of 199.9mV and is configurable for 20V, 200V or 500V full-scale reading by adding two resistors. Jumpers then set the decimal point position. Supplied complete with mounting bezel, this low-power meter is available exclusively to Electronics World readers at the special price of £8.95 — fully inclusive of postage, packing and VAT — or even less in quantities above four off. The normal selling price is £12.95 — excluding VAT and postage.

Please use the coupon to order your panel meters, and address all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL, fax 0116 2773945 or tel. 0116 2771400.

PM-128 digital panel meter

Features
- Single 9V dc supply
- Low 1mA consumption
- Very high input impedance
- Overrange indication
- Dual-slope integration a-to-d conversion
- Decimal point selectable
- Auto polarity indication
- Guaranteed zero reading for zero input

Specifications
- Maximum input 199.9mV
- 100MΩ input impedance
- Liquid crystal display
- 13.5mm high characters
- Maximum display 1999 counts, auto polarity
- Reading speed 2-3 times a second
- Accuracy ±0.5% at 23°C±5°C & <80% RH
- Power requirements, 9-12V dc at 1mA
- Size 68mm by 44mm

Use this coupon to order your PM128

Please send me

... PM-128 digital panel meter(s)

at the fully inclusive special offer price of

£8.95 each for quantities up to 4 off

£8.65 each for quantities of 5 or more or

£8.35 each for 10 or more quantities

for which I enclose a total of £...............

Name

Company (if any)

Address

Phone number/fax

Make cheques payable to Vann Draper Electronics Ltd

Or, please debit my Master, Visa or Access card.

Card type (Access/Visa)

Card No

Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 0116 2773945 or telephone on 0116 2771400. Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.

*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics.
Get out of a pickle - get into SpiceAge!

Hands up all who have been there? A great idea turns into sleepless nights: getting one thing right breaks something else...

Some circuits require the refining of many interdependent variables. SpiceAge provides a virtually limitless inventory of components, signal functions and instruments with facilities for sweeping values, with am and fm through arbitrary functions. It can guide you to a solution that could take much longer to find using hardware.

SpiceAge up your design without burning a hole in your pocket. Prices from just £85 + VAT to £695 + VAT. Friendly technical help comes free (dreadful puns optional). For a demonstration kit and details of our other and third party support programs (includes schematics, PCB layout, filter synthesis and model synthesis), please contact:

Charles Clarke at Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel: 0181 906 0155 Fax: 0181 906 0969 Email 100550.2455@compuserve.com

CIRCLE NO. 121 ON REPLY CARD

SEETRAX CAE RANGER PCB DESIGN
WITH COOPER & CHYAN AUTOROUTER

RANGER3 - DOS £2500
- Windows\NT £2900

Hierarchical or flat schematic linked to artwork.
Unlimited design size, 1 micron resolution
Any shaped pad, definable outline library
Pin, gate & outline swapping - auto back annotation
Split power planes, switchable on - line DRC

COOPER & CHYAN SPECCTRA
autorouter (SPI)
Inputs: OrCAD, Cadstar,
PCAD, AutoCAD DXF

Outputs: Postscript, Windows bit map
R2 & R3 Outputs: 8/9 & 24 pin printers, HP
Desk & Laser Jet, Cannon Bubble Jet,
HP-GL, Gerber,
NC Drill, AutoCAD DXF

RANGER2 £150

Upto 8 pages of schematic linked to artwork
Gate & pin swapping - automatic back annotation
Copper flood fill, Power planes, Track necking,
Curved tracks, Clearance checking,
Simultaneous multi-layer auto-router

RANGER2 UTILITIES £250

COOPER & CHYAN SPECCTRA auto-router (SPI)
Gerber-in viewer, AutoCAD DXF in & out

UPGRADE YOUR PCB PACKAGE TO RANGER2 £60

TRADE IN YOUR EXISTING PACKAGE TODAY
Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG
Call 01705 591037 or Fax 01705 599036 + VAT & P

CIRCLE NO. 124 ON REPLY CARD

All Trademarks Acknowledged
Marconi may have secured the world's first patent on wireless telegraphy (Electronics World, June 1996) but others were already working on similar systems.

Braun in Germany, for instance, inventor of the cathode-ray oscillograph, developed a spark transmitter in 1898 and had it in service for short-range marine communication by 1900. Later, he and Marconi were to share the 1909 Nobel Prize for Physics in recognition of their radio work.

Braun and some business partners formed a wireless company called Telebraun, though this soon became a subsidiary of Siemens. At about the same time, two other German pioneers, Slaby and von Arco, supported by AEG, had set up a competing firm, Funken-telegraphie. In 1903, these two enterprises merged to form Gesellschaft für Drahtlose Telegrafie and the result was the Telefunken system, a formidable rival to that of Marconi. By 1905, it had built more than 500 stations.

Meanwhile, in the USA, Fessenden and de Forest, separately, and the partnerships of Branly-Popp in France and Lodge-Muirhead in the UK, were also developing and operating spark transmitter systems of wireless telegraphy. All were striving for greater communication ranges through more highly powered transmissions and more sensitive receivers. They also wanted much better selectivity, to allow multi-station working without mutual interference.

One way to get more radiated power from a spark transmitter was to increase the oscillatory energy in the LCR circuit containing the spark gap. To do this, each high-voltage pulse had to get as much charge as possible into the capacitor. But the induction coil was restrict-
Part of a rotary spark transmitter at Poldhu, Cornwall, as seen, it is claimed, while actually transmitting news of Britain’s declaration of war on Germany in 1914.

ed as a generator because it could inject only short-duration pulses of charge into a low-value capacitor.

So for higher-power transmission the induction coil was soon replaced by the engine-driven alternator, with an output of several kilovolts, plus a step-up transformer providing the necessary tens of kilovolts. This would produce as many as ten sparks, and hence damped wave-trains, per cycle of the alternator output.

As well as producing bigger charges, the alternator system could be designed to generate a relatively high spark frequency, thereby shortening the interval between wave-trains and increasing the average oscillatory energy. And this would give a musical note in receiver headphones which was more easily heard through static (atmospheric) interference than the rasping sounds produced by induction coils.

Radiated power was also increased by tighter inductive coupling between the oscillator and aerial circuits. But to achieve this, the spark had to be quenched rapidly, otherwise the interaction between the coupled circuits would cause beating and radiation on two component frequencies. This spark quenching also had the advantage of reducing arcing in fixed spark gaps. Rotary spark gaps or dischargers, driven from the alternator shafts, had the double purpose of preventing arcing and producing very regular, audible wave-train frequencies.

In the receiver, the coherer was too insensitive for long-range working and was difficult to operate. New detection techniques were invented and put into use, including anticoherers, electrolytic and thermal principles, magnetic effects in an iron or steel medium, and rectification at contacts between crystals or between metals and crystals. Magnetic detectors proved robust in operation and were widely used.

In 1904, Fleming invented the thermionic diode, based of course on the Edison Effect, which had been known since the late 19th century. The diode, however, did not immediately supersede the earlier devices but was used as a standby detector. Two years later, de Forest put in a third electrode, the grid, and produced the thermionic triode, or Audion as he called it. It was intended as a triggering form of detector but was not particularly successful as such. Only after years of development, on the device itself and on circuit applications, did the triode become really useful — but as an amplifier and oscillator. Subsequently, the non-linear parts of the amplifier characteristic were used for detection.

Even the earliest improvements in transmitters and receivers produced good operating results. The most dramatic was Marconi signalling across the Atlantic in 1901-02. Apart from the commercial implications, this supported early ideas of a reflecting layer and Heaviside’s and Kennelly’s 1902 prediction of the ionosphere, though the existence of the various layers was not fully confirmed till the 1920s. Transatlantic wireless telegraphy was also achieved by Fessenden, between Brant Rock, Massachusetts, and Macrhanish, Scotland, in 1906, and the following year Marconi started a full commercial service with stations at Clifden, Ireland, and Glace Bay, Canada.

By this time, radio was already well established for marine communications. It had started in 1897 with fixed links such as those between the mainland and islands, lighthouses, lightships and moored vessels, and progressed to mobile communications with small ships such as ferries. The use of Morse code was universal.

During the first five years of the new century, large passenger vessels and warships were being equipped, and by 1911 wireless was compulsory on all ocean-going liners. In this first decade, several thousand lives were saved at sea through the use of radio.

Even before the wireless telegraph was fully established as a universal service, engineers were thinking about wireless telephony. They knew they needed continuous waves in place of damped wave-trains, and a means of modulating them with voice frequencies.

A short-lived proposal was to speed up the spark repetition rate to something above audible frequencies. But this idea was soon overtaken by two techniques which proved successful for nearly a decade, before the arrival of the triode valve oscillator made them obsolete. These were the multipole rf alternator, developed by Tesla and Alexanderson, and the Poulsen oscillatory arc, based on Duddell’s ‘singing arc’ of 1900. The arc conduction process in hydrogen gas interacts with a series LC
Circuit shunted across the electrodes, so that the dc flowing through the arc varies in a periodic manner at rf.

The alternator, typically working at 30kHz, was the more stable and controllable generator, while the arc was smaller and cheaper. But both had the problem that they couldn't be voice-modulated at low level - the carbon granule microphone had to be inserted in the rf power circuits, either directly in series or by inductive coupling. This, of course, limited the rf power that could be generated and hence the transmitter range.

Nevertheless, in 1902 voice transmission was achieved, by Fessenden, and in 1906 demonstrations of radiotelephony were given almost simultaneously in the USA, Germany and Denmark. The advantages of voice communications over telegraphic signals were quickly recognised, particularly by the armed forces, and warships were the first to be equipped.

Civil applications were not far behind, and these were not limited to speech communication. After music had been transmitted on an rf alternator system in 1906 and Caruso had sung over a radio-telephone in 1910, thoughtful people began to realise that the new technology could do somewhat more than convey messages from point to point. After all, music concerts and lectures had already been distributed to subscribers over wired systems, the precursors of cable radio, in the 1890s.

Under the stimulus of the 1914-18 World War, the high-vacuum triode valve was developed into a robust and reliable device, capable of being manufactured in quantity. It now had a good amplification factor and, as a result of Meissner's 1913 positive feedback circuit invention, had emerged as a new means of generating continuous oscillations, though at low frequencies.

Radio-telephone transmitters using valve oscillators began to appear. In 1913-14, speech and music were transmitted from Marconi House in London, and in 1915 the Atlantic was spanned by speech from a naval station at Arlington, USA, to the Eiffel Tower in Paris.

Triode valves were also coming into receivers. The idea of cascading several valve stages to give higher amplification appeared about 1912. Then Armstrong and others showed how the positive feedback principle could be used to reinforce the signal and improve selectivity - the technique of regenerative amplification, later called reaction. Fessenden had demonstrated the heterodyne principle in 1902 (already discovered acoustically as beats or 'resonant tones' by the 18th-century musician Tartini) and this eventually resulted in Armstrong's famous invention of the super-sonic heterodyne or superhet receiver.

The wideband fm which Armstrong eventually developed in the 1930s was the outcome of his and others' early studies of the ever-present static interference on am radiotelephony.

So thermionic valves became the basis of radio-telephony. The extension of point-to-point radio-telephone into broadcasting, already foreshadowed by the isolated experiments mentioned above, came about almost accidentally. Oliver Lodge was the first to suggest the idea of messages being 'broadcast to receivers in all directions', in 1907. Then in 1916 an employee of the American Marconi Company, David Sarnoff, not only predicted broadcasting more firmly but suggested its main elements: transmitting stations and what he called a "radio music box" for the home.

"This device must be arranged to receive on several wavelengths with the throw of a switch or the pressing of a button," said Sarnoff. "The radio music box can be supplied with amplifying tubes and a loudspeaking telephone, all of which can be neatly mounted in a box."

The plan was still under consideration when...
the USA entered the World War in 1917. After the war, American Marconi was merged with General Electric at the insistence of the US government, which required wholly US ownership. The resulting company, with a rich crop of wireless patents to exploit, was the Radio Corporation of America (RCA), and Samoff was eventually to become its chairman.

Regular broadcasting actually started from the US station KDKA in Pittsburgh. In 1919, Westinghouse, while testing the range of a radio-telephone transmitter, decided to play some gramophone records of music as an alternative to speech. By this time, wireless enthusiasts were building crystal sets. Many of them liked what they heard and wrote to the company asking for more.

As a result, and after a well appreciated broadcast of election results, Westinghouse started regular programmes in 1920, with the idea that KDKA would create a market for radio components and receivers—which in fact it did. In the same year, regular broadcasts began in Europe from The Hague.

In the UK, the accidental birth of broadcasting came about in a similar way. At the Marconi company, the standard method of range-testing transmitters was to read out the names of railway stations from timetables. These were eagerly received by numerous amateur enthusiasts on home-built sets. To mark the introduction of a new transmitter in 1920, something less mind-numbing was devised—a concert featuring staff and local artists, with three instrumentalists and two singers.

Despite appreciative letters from hundreds of miles away, the company persisted in its view that the future of radio lay in speech transmission, and that the purpose of broadcasts was to demonstrate the comparative ease with which messages could be exchanged. Accordingly, it substituted news transmissions for the concerts.

In June 1920, however, the firm was persuaded to transmit from Chelmsford a recital by the operatic soprano Melba. One consequence of the success of this event—gramophone recordings were made of the reception at the Eiffel Tower—was that the Post Office withdrew Marconi’s experimental licence on the grounds of “interference with legitimate services.”

This happened just as commercial broadcasting and the mass production of receivers were beginning to take off in the USA. It was not until 1922 that the Post Office relented and permitted Marconi’s to transmit at low power, within its existing half-hour-a-week, a 15-minute programme of speech and music. The station set up to exploit this opportunity was housed in a wooden hut at Writtle, near Chelmsford. Its call sign was 2MT and the cheerful informality of its amateur entertainments immediately endeared it to its listeners. Transmission, initially on 700m and later on 400m, was from a 250ft-long four-wire aerial at a height of 110ft.

A second permit quickly led to another station, the more famous 2LO, being established at Marconi House, London. Transmissions, still nominally demonstrations, were permitted first at 100W then later at 1.5kW for one hour daily on 360m.

Before 1922 was out, this had become the British Broadcasting Company, set up at the Post Office’s instigation by a consortium of manufacturers including Marconi. Revenue came from a 10% levy on all receivers sold, plus half of the 10-shilling (50p) receiver licence.

Regional stations were set up quickly. The 2LO London station was reconstituted as purpose-built studios at 2 Savoy Hill and a 6kW transmitter on the roof of Selfridge’s department store.

The BBC parted company from the set-makers in 1926 and in 1927 became a public-service organisation, established under Royal Charter as the British Broadcasting Corporation.

Throughout all this, spark transmissions continued to be allowed and were not internationally prohibited until 1940.

High-quality circuit boards for Douglas Self’s precision preamplifier ‘96

A high quality double-sided circuit board is available for Doug Self’s precision preamplifier, exclusively via Electronics World. The board takes the full stereo preamplifier, including all power supply components except the transformer. Its layout is optimised to provide exceptionally low crosstalk.

Co-designed by Gareth Connor, the board is glass-fibre with plated-through holes and rollertinned. It features solder masking and full component identification. Component lists and assembly notes—containing extra information about the preamplifier—are supplied with each order.

Each board is £5.99 inclusive of package, VAT and recorded postage. Please include a cheque or postal order with your request, payable to Reed Business Publishing. Alternatively, send your credit card details—i.e., card type, number and expiry date. Include delivery address in the order, which for credit card orders must be the address of the card holder. Add a daytime telephone and/or fax number if available.

Send your order to Electronics World Editorial, PCBs, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Alternatively fax us on 0181 652 8956 or e-mail: jackie.lowe@rbp.co.uk. Credit card details can be left on the answering machine on 0181 652 3614. Please allow 28 days for delivery.
Without an engineering degree, a pile of money, or an infinite amount of time, the revised 289-page Interfacing With C is worth serious consideration by anyone interested in controlling equipment via the PC. Featuring extra chapters on Z transforms, audio processing and standard programming structures, the new Interfacing with C will be especially useful to students and engineers interested in ports, transducer interfacing, analogue-to-digital conversion, convolution, digital filters, Fourier transforms and Kalman filtering. Full of tried and tested interfacing routines. Price £14.99.

Listings on disk - over 50k of C source code dedicated to interfacing. This 3.5in PC format disk includes all the listings mentioned in the book Interfacing with C. Note that this is an upgraded disk containing the original Interfacing With C routines rewritten for Turbo C++ Ver. 3. Price £15, or £7.50 when purchased with the above book.

Especially useful for students, the original Interfacing with C, written for Microsoft C Version 5.1, is still available at the special price of £7.50. Phone 0181 652 3614 for bulk purchase price.

Use this coupon to order

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
<th>Qty</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Interfacing with C book</td>
<td>£14.99</td>
<td></td>
<td>£.....</td>
</tr>
<tr>
<td>Enh. Interfacing with C book + disk</td>
<td>£22.49</td>
<td></td>
<td>£.....</td>
</tr>
<tr>
<td>Interfacing with C disk</td>
<td>£15</td>
<td></td>
<td>£.....</td>
</tr>
<tr>
<td>Original Interfacing with C book</td>
<td>£7.50</td>
<td></td>
<td>£.....</td>
</tr>
<tr>
<td>Postage + packing per order UK</td>
<td>£3.50</td>
<td></td>
<td>£.....</td>
</tr>
<tr>
<td>Postage + packing per order Eur</td>
<td>£7</td>
<td></td>
<td>£.....</td>
</tr>
<tr>
<td>Postage + packing per order ROW</td>
<td>£12</td>
<td></td>
<td>£.....</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>£.....</td>
</tr>
</tbody>
</table>

Name

Address

Phone number/fax

Make cheques payable to Reed Business Publishing Group Ltd or, please debit my Master, Visa or Access card.

Card type (Access/Visa) Card No

Expiry date

Mail this coupon to Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AL, together with payment. Alternatively fax full credit card details with order on 0181 652 8956 or e-mail them to jackie.lowe@rbp.co.uk. Orders will be dispatched as quickly as possible, but please allow 28 days for delivery.
Reader Information Service for Electronics World

For more information about any of the products or services in this issue of Electronics World, simply ring the relevant enquiry number.

Enquiry numbers may be found at the bottom of each individual advertisement.

<table>
<thead>
<tr>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
</tr>
<tr>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
<td>151</td>
<td>152</td>
<td>153</td>
</tr>
<tr>
<td>155</td>
<td>156</td>
<td>157</td>
<td>158</td>
<td>159</td>
<td>160</td>
<td>161</td>
<td>162</td>
<td>163</td>
<td>164</td>
<td>165</td>
<td>166</td>
<td>167</td>
<td>168</td>
<td>169</td>
<td>170</td>
<td>171</td>
<td>172</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td>176</td>
<td>177</td>
<td>178</td>
<td>179</td>
<td>180</td>
</tr>
</tbody>
</table>

Newsagent Order Form

Pass this order form to your newsagent to ensure you don't miss the next issue of EW:

To: ...

(name of Newsagent)

Please reserve me the March issue of Electronics World on sale 6th February - and continue to order every month's issue until further notice.

Name: ..

Address: ..

...

Only tick here if you do not wish to receive direct marketing promotions from other companies.

Thank you

Subscribe today!

Guarantee your own personal copy each month

Save on a 2 year subscription

Subscribe today!

Guarantee your own personal copy each month

Save on a 2 year subscription
Please enter my subscription to ELECTRONICS WORLD. I enclose Cheque/Eurocheque to the value of £________ made payable to Reed Business Publishing.

Please charge my Mastercard/Visa/Amex account

With £__________ Expiry Date

Signature ___________________________
Name ___________________________
Job Title ___________________________
Address ___________________________
Postcode ___________________________
Tel: ___________________________

SUBSCRIPTION RATES
UK 1 year £30
UK 2 years £45
Student rate (proof required) £20

Airmail
Europe 1 year £43
Europe 2 years £65
Rest of the world 1 year £52
Rest of the world 2 years £78
Surface mail 1 year £35

Post to:
ELECTRONICS WORLD
P.O. Box 302
Haywards Heath,
West Sussex RH16 3DH UK.

CREDIT CARD HOTLINE
Tel: +44 01444 445566
Fax: +44 01444 445447

Please tick here if you do not wish to receive direct marketing promotion from other companies.

SUBSCRIPTION CARD

Please enter my subscription to ELECTRONICS WORLD. I enclose Cheque/Eurocheque to the value of £________ made payable to Reed Business Publishing.

Please charge my Mastercard/Visa/Amex account

With £__________ Expiry Date

Signature ___________________________
Name ___________________________
Job Title ___________________________
Address ___________________________
Postcode ___________________________
Tel: ___________________________

SUBSCRIPTION RATES
UK 1 year £30
UK 2 years £45
Student rate (proof required) £20

Airmail
Europe 1 year £43
Europe 2 years £65
Rest of the world 1 year £52
Rest of the world 2 years £78
Surface mail 1 year £35

Post to:
ELECTRONICS WORLD
P.O. Box 302
Haywards Heath,
West Sussex RH16 3DH UK.

CREDIT CARD HOTLINE
Tel: +44 01444 445566
Fax: +44 01444 445447

Please tick here if you do not wish to receive direct marketing promotion from other companies.
Back issues of Electronics World are available, priced at £2.50 in the UK and £3.00 elsewhere, including postage. Please complete the coupon and send with correct payment to:
Electronics World, Quadrant House, The Quadrant, Sutton Surrey, SM2 5AS.
Note that not all issues are available and please allow 21 days for delivery.

<table>
<thead>
<tr>
<th>Issue (Month/Year)</th>
<th>Quantity</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name
Address

Post code
Method of payment (please circle): Access/Mastercard Visa Cheque PO
Cheques payable to Reed Business Publishing

Credit Card Number

Signed Expiry Date
CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving £100 cash for the month’s top design. Additional authors will receive £35 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TTI PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth – performance beyond the capability of hand-holds"

This high-performance bench multimeter could be yours in exchange for a good idea. Featuring a dual display, the 4.5-digit 1705 multimeter resolves down to 10µV, 10mΩ and 0.1µA and has a basic dc accuracy of 0.04%. Frequency measured is 10Hz to 120kHz with an accuracy of 0.01% and resolution to 0.01Hz. Capacitor and true rms measurements are also featured.

Recognising the importance of a good idea, Thrulby Thandar Instruments will be giving away one of these excellent instruments once every six months. This incentive is in addition to our monthly £100 'best circuit idea' award and £25 awards for each circuit published.

£100 WINNER

Loop aerial cuts through the noise

To allow the reception of long and medium waves in an environment polluted with computers and television receivers, this loop aerial and its amplifier, working with a 1m square maximum loop, reduce noise to the background level of the bands.

The business end of the circuit is formed by the input transformer and fet source follower; at long- and medium-wave frequencies, fets show low noise figures at 10kΩ source impedance. Transistor Tr2 bootstrap's the gate/drain capacitance of Tr3, the gate/source capacitance being low due to the follower configuration.

Maximising input transformer ratio while keeping shunt capacitance low results from the use of a toroid (Cirkit 55-40001 or Fair-Rite 26-4354001) with two primary turns of audio screened cable with the screen grounded at one end, and 40 on the secondary.

The op-amps form a low-noise amplifier driving a 50Ω cable and the other components form a phantom power supply, although a local supply could be used, in the 25-40V range.

J A Burnill
Camberley, Surrey
Micro Video Cameras

Following our recent Readers Offer for the 721-S Micro Camera many readers have contacted us asking about other items in our range of Micro Cameras and Security Surveillance equipment.

We are SOLE AUTHORISED IMPORTERS of the entire range of Cameras and Video Surveillance equipment produced by the world’s leading manufacturer. ALL items in the range carry a full 12 Months Guarantee.

If you would like to receive our comprehensive catalogue of Cameras and associated equipment please send a large SAE with 48p postage, marked “Camera Catalogue”

Here is a sample of the available stock.
A-721-S Micro Camera 32mm x 32mm ... £85 A-721-P Micro PIN-HOLE Camera ... 32mm x 32mm ... £85
A-921-S Camera with AUDIO ... 30mm x 30mm ... £95
A-1211 C/CS Mount Camera ... 110mm x 60mm x 60mm ... £110
A-521 Micro Cased Camera 43mm x 48mm x 58mm ... metal cased ...£120
6001-A High Resolution COLOUR Cameras (420 lines) ... £45 lux ... £210
Outdoor Camera Housings ... Aluminium ... £45 Camera Mounting Brackets ... Universal Mounting ... £5.95
Camera Switchers ... for up to 8 Cameras ... £85
Auto Record Controllers ... Allow NORMAL VHS Videos to operate like professional Time Lapse or Security Recorders ... £75
QUAD-1 Multi Vision Processors ... Digital Freeze ... Quad Pictures etc £275
QUAD-2 Full COLOUR QUAD version of QUAD-1 ... £695
SCI ... SCANNER ... 350° PAN ... Automatic / Manual ... £105
IRA ... Infra Red Illuminator for “Total Darkness Surveillance” ... 20m range ... £125
VMS-1 ... Video Motion Sensor ... replaced alarm sensors with totally electronic video monitoring system that detects changes in the video signal ... £175
C/CS Format lenses ... Premium 3.6mm = £22.50 Superior 8mm = £27.50

PLEASE NOTE:
AS A CONTINUED SPECIAL OFFER ALL THE ABOVE CAMERA AND ACCESSORY PRICES INCLUDE VAT AND CARRIAGE TO UK ADDRESSES

SPECIAL OFFER

New and Boxed 14" COLOUR MONITORS...Models 1412 24V DC operation @ 2.2A...Twin Composite Video Inputs (75ohm BNC) Black steel case...Supplied with a pair of trailing leads for DC connections. Very easy to convert to 240V operation by adding a 240V / 24V supply either internally or externally. 30 Day Warranty. NEW CONDITION
Circuit Diagram available...request at time of ordering ONLY £125.00 INCL VAT
Courier delivery to UK addresses = £12.25)

VHS Video Players...Front Loading VHS Decks...12V operation. Rear Panel 2.6mm DC socket for power. Play, FF, RW, Stop Controls with the addition of REPEAT facility which allows the tape to be rewound and replayed time and time again. Video / Audio Outputs via Phono Sockets
AS-NEW Condition...
ONLY £75 INCL VAT
(Courier delivery to UK addresses = £8.75)

OPEN 6 DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm
NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME
All Prices are Ex VAT & Carriage
All items are Fully Tested with Verified Calibration and carry our Unique 30 Day Un-Conditional Warranty
One transistor fm microphone

Running from two penlight cells, this sensitive fm microphone has a transmission range of around 6m. Lengthening the antenna could increase this to 30m.

Due to L_1, the BF494 transistor oscillates in addition to amplifying the signal from the piezo microphone. Once the circuit is operational, tune an fm radio around 100MHz until the noise quiets.

R J Gorkhali
Kathmandu
India

In this fm microphone, one transistor doubles as an audio amplifier and transmitter oscillator.

Write protect for 386EX architectures

In system designs using an embedded processor, it is often useful to include a 'write-protect' circuit for part of the read/write memory. This may be to safeguard configuration parameters, or simply for debug purposes.

However, it is difficult to predict exactly which areas of ram will need to be protected, and ideally the protected area should be configurable by software, so the design can be problematic.

This circuit is a mechanism for a versatile write-protect system which may be implemented in almost any design using the Intel 386EX processor. It can often be observed without adding to the component count.

Intel's 386EX processor includes a powerful chip select unit (csu) which may be programmed to provide fully decoded address blocks for memory or i/o devices; it has seven independent outputs, so most designs will not need to use them all.

In addition, the csu allows more than one output to be active during any bus cycle, although this would normally be avoided to prevent address-decode clashes. It is therefore a simple matter to gate the processor's WR line with a spare csu output before feeding it to the memory subsystem. This csu output is then programmed to be active only when a block of ram which is to be write protected is simultaneously addressed (in the normal way) by a different csu output.

The write protected area may then be set to cover any memory address range, subject only to the limitations of the csu itself, and it may be enabled, disabled and reprogrammed entirely by software.

The current version of the 386EX (the 'B' step) has a number of deficiencies, one of which is an insufficient address hold time after WR is removed. A common method of overcoming this problem is to use a PAL to time-share the WR pulse, often in conjunction with a simple state machine to track the processor 'T' states. Feeding a spare csu output into this PAL is then a convenient way of implementing the write protection mechanism described above.

The diagram shows a simplified extract from a circuit which embodies this function. No doubt the scheme could be adapted to suit other processors which include a similar chip-select unit.

Roy Bunce
Blandford Forum
Dorset
Hybrid, high-voltage audio amplifier

A high-voltage audio output to drive an electrostatic headphone comes from a double-triode stage, itself fed by op-amps. The whole thereby combines the robustness of valves and the high gain of op-amps.

Common-grid drive to the triodes is the chief peculiarity, chosen to allow the output from the op-amps to be summed for the output and to exploit the greater stability of the configuration over the more usual common-cathode drive — all without loss of bandwidth.

Current sources supply triode loading and carry all the current, the output therefore being protected against short-circuits. Further current sources for bias, avoid the need for a split supply; trim for half the 400V on each output.

Output is 200V rms into 200kΩ — or greater from 1V rms input, although gain can be altered by varying the 10kΩ feedback resistor.

Paolo Palazzi
Cervignano
Italy

High-voltage audio for headphone drive. Variations include a differential input using the non-inverting input of the right-hand op-amp and the use of bigger triodes, with an adjustment in bias voltage.

Simple time-out saves batteries

The circuit described here can help you avoid the problem of drained cells in a battery-powered device by breaking the current off after a certain time, determined by an RC-circuit.

The circuit is very simple, with only a few components. Transistor Tr1, which breaks the battery current, is a BS250 p-type enhancement-mode mosfet. When power is turned on, its gate is connected to a negative potential through Tr2 — a 2N170 n-type enhancement mosfet.

Transistor Tr2 turns on when voltage across its gate is positive. This voltage comes from an RC circuit formed by capacitor C and the resistor R2. At turn on, the capacitor has no charge. During operation, it is charged through R2. Gate voltage of Tr2 goes down as the capacitor charge increases. When the gate voltage reaches the enhancement value of the transistor, it switches off and can no longer supply gate voltage to Tr1. Pull-up resistor R1 connects its gate to source potential and Tr1 breaks the current.

The circuit is released by momentarily closing the switch. The capacitor is discharged and Tr2 has its gate voltage again. Tr2 switches on-state and gives gate Tr1 a voltage, making it conductive again.

Operating voltage of the circuit ranges from 5V to 25V. The device is well suited for use with common 9V batteries. Operating time of the circuit is approximately twice the time constant R2C of the circuit, component values shown giving an on time of around a minute.

Different values of the enhancement voltage of Tr2 also influence on the operating time. Component values need to be selected if accurate timing is needed.

Transistor BS250 has an RDSON-value of approximately 4Ω, causing a voltage drop in the circuit when loaded. Loading current should not exceed 50mA. Larger loads can be handled by using a more robust transistor instead of BS250. For instance, IRF9530 can easily reach loading currents up to 2A, if desired.

Operating time can be lengthened at any time by simply closing the switch. The capacitor loses its charge and the operating time is renewed to its starting value.

Rae Perâlâ
Helsinki
Finland
The Headphone Amplifier Box
Balanced or unbalanced microphone or line input to headphone output
Professional portable units operating from an internal PP3 battery or external DC supply

- Precision transformerless balanced input
- Bridged headphones output drive
- Sensitivity selectable over a wide range of input levels
- Low noise and distortion
- High common mode rejection
- Loop through facility
- Extensive RFI protection

The Balance Box (precision mic/line amplifier) – The Phantom Power Box – The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop signal lines

CONFORD ELECTRONICS
Conford, Liphook, Hants GU31 7QW
Information line 01428 751469 Fax 751223
E-mail contact@confordlec.co.uk
Web http://www.confordlec.co.uk/catalogue/

BROADCAST MONITOR RECEIVER 2
150kHz-30MHz

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communications use and news gathering from international short wave stations.

The modifications include four additional circuit boards providing *Rechargeable memory and clock back-up* *Balanced Audio line output* *Reduced AM distortion* *Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope* *Mains safety improvements*.

The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion: THD, 200Hz-6kHz at 90% modulation -44dB, 0.6% (originally -20dB, 10%).

Advanced Active Aerial 4kHz-30MHz *PPM10 In-vision PPM and chart recorder* *Twin Twin PPM Rack and Box Units* *Stabilizer frequency shifters for howl reduction* *10 Outlet Distribution Amplifier 4* *Stereo Variable Emphasis Limiter 3* *Stereo Disc Amplifiers* *PPMS hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50+6dB drivers and movements* *Broadcast Stereo Coders*.

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh
Surrey GU6 7BG
Telephone: 01483 275997 Fax: 276477
Hands-on Internet

Following an update on searching the net, Cyril Bateman describes his latest Spice discoveries – among them fully working free evaluation packages.

Internet search engines described in my past columns can be used to locate many different information sources. They are also frequently used for transferring computer software programs, either by an FTP client or your Web browser.

If you know the exact file name you need, FTPSearch in Norway can almost completely automate transfer of files for you. However, if you do not know the file name, the main task becomes one of file name identification.

While Archie, discussed in the April 1996 issue, can perform searches using wildcard characters, and Wais can also help, many users who now rely almost totally on Web browser access do not have these packages. Search engines such as Alta Vista, using appropriate keywords, can be successful, but correctly identifying unknown software file names can prove difficult even for experienced Web surfers.

David Agbamu’s home page on Demon1 is dedicated to helping to solve exactly this problem. By identifying suitable search methods and providing dedicated links, the task is simplified. His page simply and effectively combines the essential information covered in the relevant FAQ documents with direct access to Internet sources – all by simply using your Web browser. David’s section on using e-mail for file transfers is particularly helpful, Fig. 1.

If you need to identify a UK or European Business and you prefer to use the conventional Yellow Pages telephone direc-

Fig. 1. A well planned route to FTP file name Identification.

Fig. 2. Choose the most appropriate search method – use Power-Search – a uniquely English approach to Internet searches.

Fig. 3. The British Library Periodicals Holding on-line service. Deeper level searches are chargeable.
tory approach, Freepages.co.uk\(^2\) or UK.Yellow Web\(^3\) may provide the answer. If not, a good alternative starting point for all Web searches is Power-Search\(^4\), also on Demon. This page gives a background description for each of the search engines listed, permitting more logical selection as well as direct access, Fig. 2.

Should you need to search for previously published information, the British Library Document Supply Centre\(^5\) and the Science Reference and Information Service hold more than 64,000 serial publications. These comprise journals on science, technology, business and general interest topics, with on-line searching from the British Library Page. Having established that your required document is in these holdings, it can be obtained using the Lexicon easy-order service, or, within the UK, rather more economically by request to your local branch library, Fig. 3.

Perhaps you have a new design or invention, but lack the resources to market your idea. The Eureka Club\(^6\), while acting as an essential support for inventors needing assistance, also forms an on-line meeting place for designers with a new product but no production resources and manufacturers looking for their next marketable product ideas, Fig. 4.

Simulation software

Symptomatic of the explosion in the use of computer simulations for electronic circuit design, the numbers and variety of simulation software packages constantly increases. While this market remains dominated by derivatives of the Berkeley Spice 2G6 system, newer packages have emerged based on the latest Berkeley Spice 3F3 software core.

An interesting document by Filip Gieszczykiewicz, called 'Where to get Free Spice', can be found on his page at Paranota.Com\(^7\). This up-to-date but rather lengthy paper, sub-divided by operating system, gives a good overview of the low-cost Spice-based systems available.

The basic Berkeley Spice software kernel is in the public domain, and therefore inexpensive. Many commercial packages however, being enhanced versions of the basic Spice core, and having improved input and output systems, can become quite expensive.

Spice simulations are only as accurate as the the models used in the simulator. While most analogue integrated circuit
makers provide free models for their products, models for discrete devices are generally only provided by the simulator software package. Contributing significantly to their cost is the extended model library now required, since older discrete devices must still be supported while new discrete devices continue to be added.

Spice models
One major commercial provider of Spice models is Symmetry, a part of Interface Technologies. Its SymLib library contains more than 7500 analogue and mixed-signal devices of proven accuracy. Should the device you need not be otherwise available, it also offers a contract modelling service. Symmetry's models can be purchased and downloaded from its Web page.

Siemens Semiconductor Group manufactures both radio and audio-frequency discrete semiconductors. For these, the company offers more than 17,000 files of S-Parameters for downloading in Touchstone format, plus Spice-parameters in Spice 2G.6 format. Details of this service, which comprises four libraries covering both low frequency and above 100MHz package equivalent data sets, are available on its Web page. My browser was allowed to access the page but not allowed to FTP any files, so a dedicated FTP program was used to download my required library, Fig. 5.

When I visited International Rectifier's site in April last year, I only found fifth-generation MosFet models, but a recent visit provided models also for the company's older generation products.

Comlinear, now part of National Semiconductor, offers Macromodels for its signal-conditioning product line, which can be downloaded from National's pages. These Spice Macromodels are available either by individual device number or as a complete, self-extracting archive library for all types.

Simulator engines
Spectrum Software's fifth-generation Micro-Cap simulator, Micro-Cap V, unlike earlier versions, runs under Windows and is compatible with standard Spice model libraries. Note, however, that older S3 video card drivers and early Hewlett Packard printer drivers may need to be updated before running Micro-Cap V. A free 1.4Mbyte student/demo version can be downloaded from the company's Web page. It shows the result of simulating a Gilbert Multiplier to illustrate the use of Micro-Cap V.

The Meta-Software version of Spice — HSpice — claims to be the most accurate commercial circuit simulator available, with the MetaMOSI (level 28) transistor model giving faster, more accurate simulations. HSpice, which is available integrated into major simulation frameworks from Cadence, Viewlogic, Zaken and Mentor, is targeted to the design of silicon integrated circuits including asics, as well as more conventional circuit design needs.

SiM Metrix v11 is a Spice-based simulator with schematic editor for Windows 3.x available from Newbury Technical. A free, no-time-limit version, fully working except for user definable menus, etc., called SiM Metrix intro, can be downloaded from the company's page. While some support for this free version is available by e-mail, those users downloading SiM Metrix intro are advised to print out the Known Bugs page, Fig. 8.

This month's final Internet simulation offering is AIM-Spice V22, also available for download in a free student version. This package was developed to provide a more user-friendly interface and take advantage of newer device modelling. It is based on the Berkeley Spice 3.E kernel and fully described in the book 'Semantic Device Modelling for VLSI', published by Prentice Hall (ISBN 0-13-805656-0).

Readers curious about the different variations of the basic Spice kernel should read the Free Spice document and the Spice 3F2 document, both by Filipg@paranoia.com.

References
1. Finding Files for Ftp
http://www.agbarnu.demon.co.uk/ffff.htm
2. Freepages Group Plc
http://www.freepages.co.uk
3. UK Yellow Web Search http://www.yell.co.uk
4. JabodaNET's Power-Search
http://www.jaboda.demon.co.uk/power-search
5. British Library Document Supply Centre
http://portico.bl.uk/bin/disc-serials
6. The Eureka Club
http://www.wdi.co.uk/eureka/home.htm
7. Where to get Free SPICE
http://www.paranoia.com/~filipg/HTML/FAQ/
BODY,F_Spice1.html
8. Interface Technologies —
Symmetry http://www.i-t.com/engsw/symm/symlib.htm
9. Siemens Semiconductor Group
http://www.siemens.de/Semiconductor/ products/35/357.htm
10. International Rectifier Corporation
http://www.irf.com/~irj/product-info/spice
11. National Semiconductor Corporation
12. Spectrum Software Corporation http://www.spectrum-
soft.com/demo.html
products/sim/hspice.html
14. Newbury Technology Ltd,
http://www.newburytech.co.uk
15. AIM-Spice
http://www.ecse.rpi.edu/homepages/trond/ aimspice.html
LIMITED QUANTITY only of these 12MHz Hi Grade 286 systems made in the UK and tested in the factory workshop. Design was for total reliability. The compact cases house the motherboard, 286 microprocessor, 286 hard disk drive & 16MHz hard disk drive to the front. Real time clock & alarm also included. System is field tested with standard operating system with sealed sealed case & condition complies with enhanced keyboard, 640k + 3Mb RAM, DISK DRIVE, tasteful industrial design.

LOW COST 486DX-33 SYSTEM
Limited quantity of this 286 with small very small dimensions. Fully featured with standard simm connectors 30 & 72 pin. Supplied in a retail box with 286 hard disk drive & intell 120 Mb IDE drive with single 1.44 Mb floppy drive. Fully tested and guaranteed.

Man-Made items available - call for details...

Only £39.95 (e)

LOW COST 486DX-33 SYSTEM
Limited quantity of this 286 with small very small dimensions. Fully featured with standard simm connectors 30 & 72 pin. Supplied in a retail box with 286 hard disk drive & intell 120 Mb IDE drive with single 1.44 Mb floppy drive. Fully tested and guaranteed.

Man-Made items available - call for details...

Only £39.95 (e)

LOW COST 486DX-33 SYSTEM
Limited quantity of this 286 with small very small dimensions. Fully featured with standard simm connectors 30 & 72 pin. Supplied in a retail box with 286 hard disk drive & intell 120 Mb IDE drive with single 1.44 Mb floppy drive. Fully tested and guaranteed.

Man-Made items available - call for details...

Only £39.95 (e)

LOW COST 486DX-33 SYSTEM
Limited quantity of this 286 with small very small dimensions. Fully featured with standard simm connectors 30 & 72 pin. Supplied in a retail box with 286 hard disk drive & intell 120 Mb IDE drive with single 1.44 Mb floppy drive. Fully tested and guaranteed.

Man-Made items available - call for details...

Only £39.95 (e)

LOW COST 486DX-33 SYSTEM
Limited quantity of this 286 with small very small dimensions. Fully featured with standard simm connectors 30 & 72 pin. Supplied in a retail box with 286 hard disk drive & intell 120 Mb IDE drive with single 1.44 Mb floppy drive. Fully tested and guaranteed.

Man-Made items available - call for details...

Only £39.95 (e)

LOW COST 486DX-33 SYSTEM
Limited quantity of this 286 with small very small dimensions. Fully featured with standard simm connectors 30 & 72 pin. Supplied in a retail box with 286 hard disk drive & intell 120 Mb IDE drive with single 1.44 Mb floppy drive. Fully tested and guaranteed.

Man-Made items available - call for details...

Only £39.95 (e)

LOW COST 486DX-33 SYSTEM
Limited quantity of this 286 with small very small dimensions. Fully featured with standard simm connectors 30 & 72 pin. Supplied in a retail box with 286 hard disk drive & intell 120 Mb IDE drive with single 1.44 Mb floppy drive. Fully tested and guaranteed.

Man-Made items available - call for details...

Only £39.95 (e)

LOW COST 486DX-33 SYSTEM
Limited quantity of this 286 with small very small dimensions. Fully featured with standard simm connectors 30 & 72 pin. Supplied in a retail box with 286 hard disk drive & intell 120 Mb IDE drive with single 1.44 Mb floppy drive. Fully tested and guaranteed.

Man-Made items available - call for details...

Only £39.95 (e)

LOW COST 486DX-33 SYSTEM
Limited quantity of this 286 with small very small dimensions. Fully featured with standard simm connectors 30 & 72 pin. Supplied in a retail box with 286 hard disk drive & intell 120 Mb IDE drive with single 1.44 Mb floppy drive. Fully tested and guaranteed.

Man-Made items available - call for details...

Only £39.95 (e)
Continued use of the phase/frequency comparator's charge pump system looks questionable in view of the increasing demands for spectral purity, argues Edward Forster.

The phase/frequency comparator is one of the most widely used components in phase-locked loop technology. It is applied in countless applications, increasing by the day as more radio-oriented products appear.

Although the basic logic within the phase/frequency comparator is simple and well understood, the output interface to the analogue world has several variations.

The charge pump

The most popular output circuit is the charge pump system comprising transistors T_{r1} and T_{r2}, Fig. 1. Disregarding the logic for the moment, it is only necessary to know that when the phases are synchronised, the output on the up/down lines consists purely of short duration pulses, normally coincident, which occur as the comparator resets in every cycle.

The duration of the reset pulses only depends on propagation delays in the logic. These can be very short compared to the reference clock period. Resulting output for these short pulses is highly dependent on the matching of the transistors.

A perfectly complementary combination would probably avoid some of the variations in comparator gain which occur near zero error. This type of output circuitry is tri-state with the third state being a high impedance state. Presumably, this fits in with the fact that the logic also has three stable states. The fourth state, in which both up and down lines are high, is inhibited by reset.

The output logic circuitry sounds more like a digital engineer's idea of analogue design. However, the main outcome is that at phase synchronism the output is essentially in the high impedance state almost continuously except for a momentary clamping of the output ideally to $V_d/2$.

Figure 1 shows a typical error amplifier and active filter for this approach which has to be protected against the fast pulses, usually by splitting the input resistance and adding a capacitance to ground. But the extra delay due to the filter $R/2$, C must not made so large as to affect loop stability.

The capacitor associated with the charge pump is the integrating capacitor in the active filter and not this C. The dc reference for the amplifier is $V_d/2$ so that the loop will settle at zero phase error. Reference frequency suppression is then at a maximum and the gain of the comparator is $V_d/4\pi$ volts/radian.

The source impedance seen by the op-amp is sometimes a critical factor in determining the intrinsic noise of the error amplifier and through the loop, noise on the voltage-controlled oscillator, or vco. That is, the vco may have higher close-in noise sidebands than expected or desired.

The differential output, Fig. 2, shows another...
er arrangement in which a differential error amplifier is driven by the up/down logic outputs directly so as to subtract them. The fast coincident pulses then become a common mode problem for the amplifier which only additional RC pre-filtering will satisfactorily resolve. Note that the nominal output/common mode voltage at phase synchronism is either very close to \(V_d \) or ground, depending on the logic polarity. This is often inconvenient in single supply systems.

Overall noise performance tends to be improved by the higher gain, \(V_d/2\pi \) volts/radian, and because there is no high-impedance state.

The resistive combiner
A better approach, which does not rely on the op-amp as a subtractor, is shown in Fig. 3. It is simply to take the up line in Fig. 1 and add it to the inverted down line in a 1:1 resistive network.

At phase synchronism the pulses disappear in the output which is a dc voltage of nominally \(V_d/2 \); the exact value depends on the high/low saturation voltages of the logic. As before, this is only true when a zero error control loop is used and adjusted correctly. The comparator gain is \(V_d/4\pi \) volts/radian. Figure 3 shows that – in principle at least – infinite reference suppression is possible without filtering and that the interface is inherently suitable for wide band applications. In practice however, additional RC filtering is still necessary in front of the error amplifier.

Noise performance of the op-amp can be adjusted by setting the resistors \(R \) and the total input resistance to optimum values for the device. At phase synchronism, the output effectively puts the supply line with a constant resistance of \(2R \). Since this resistance may at times be quite low, the extra current drain must be considered. It may be seen as a price worth paying.

See it work
Typical discrete logic would use standard D-type bistable devices, namely positive edge-triggered 7474s with 'clear on low' inputs.

While it is possible to illustrate the waveforms, there is no better way to appreciate the circuit than to make one and test it. The simplest method is to take a signal generator, feed one input directly, and the other via a 100m of RG58, giving a delay of 500ns. By varying the frequency, all possible phase errors can be generated and the response seen.

While the comparator has a nearly -360° to +360° linear range you will find that it also has a 360° phase ambiguity, which depends on the initial conditions. As a result, it is not useful as an absolute phase comparator but it does excel in phase-locked loop applications.

Differential resistive combiner
Figure 4 shows a differential comparator which allows the op-amp to reject common-mode noise arising from the supply line, \(V_d \). This comparator also has twice the gain (\(V_d/2\pi \) volts/radian) of Fig. 3, which means that the effective op-amp noise is halved when considering its relative effect on the noise sidebands of the voltage-controlled oscillator.

Lock detection is also shown and a complete comparator can be made with just two standard ICs. Extended frequency range comparators for special applications are thus very simple indeed.

Fig. 2. Using a differential output with the conventional phase/frequency comparator improves noise performance.

Fig. 3. Phase/frequency comparator with resistive combiner is an improvement over Fig. 2's differential output. In theory, infinite reference suppression is possible.

Fig. 4. Differential phase/frequency comparator allows common-mode supply noise rejection and reduces noise due to its higher gain.
loads coming certificate flyleads. control with leather signals Inlineundfitsin MONO made MOONSHINE more publication G-I-N-A-W-I-N-G suggested of you reasonable way Complete out five a mirror(s) to complete this range of a full of £250! using lasers and designed lasers and Guide Comprehensive lasers and focused, this gives you a 100x60x180mm, 3 months warranty, 10 or more £99 ea. Check out our WEBSITE http://www.pavilion.co.uk/bull/electrical

ELECTRONICS WORLD

WOLVERHAMPTON BRANCH NOW OPEN AT WORCESTER ST WHAMPTON TEL: 01902 22039

COLOUR CCTV VIDEO CAMERAS, BRAND NEW, Cased £119.

PERFECT FOR SURVEILLANCE TELEVISION VIDEO CONFERRING SECURITY DOMESTIC VIDEO Works with most modern video's, TV's, Monitors, video grabber cards etc. PAL, 1y.p.p, composite, 75 ohm, 1.5cm, 4cm F2, PA. 5cm, 4cm F2, PA. 7.5cm, 4cm F2, PA. 10cm, 7.5cm, 4cm F2, PA. or 10 of each £49.90 re£ 138 INFRA RED POWERBEAM Hand held power battery paged, 4 inch rectangular, comes with power output switchable light 4 cm diameter. £39.90 re£ 98. MOKO VGA MONITORS, Perfect condition. Conga, 14", 3 months warranty £29.90 re£ M V O A SOLAR COOKER Guide Comprehensive plans 9 WATT CHIEFTAIN TANK LASERS Complete with having a full set of each unit has two semi-conductor lasers and motor drive units for alignment. 7 mile range, full circuit diagrams, new price £50.00? £7 x 149 re£ 199.99. 3 watt, 990nm, 25cm 25000w, 50cm 28500w, 60cm 33000w. The units are designed for the alignment of laser cutters without harmful beam targets. five or more units £299 re£ 49.99 for one. REF. T.RONE.

TWO WAY MIRROR KIT Includes special adhesive film to make mirror invisible indoors and outdoors. £29.99 re£ 49.99. (glasses included) fulfills all instructions. £12 re£ 1W1.

NEW LOW PRICED COMPUTER WORKSHOP H/F IR/FLIRCLUS Units Combines a wide protection from faulty equipment for everybody. 3 month unlimited full in / 6 month standard credit card has the coming out of the head so they may write as well. Complete with comprehensive guide.

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collected 140 business plans that give you money for start up businesses, you perform these at your leisure using the text editor on your PC. Also included is the certificate enabling you to reproduce (sell) the manuals as much as you like £14 re£ 1P3.

PANORAMIC CAMERA OFFERS Takes double panoramic picture in one shot. Suitable for football, cricket etc. £249 re£ 399.

THOUSANDS AVAILABLE RING/FOX FOR DETAILS! MAGNETIC CARD READERS (Swedes) £9.95 Cased with half size credit card. About half the size of the standard credit card they have been coming out of the head so they may write as well. Complete with comprehensive guide.

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collected 140 business plans that give you money for start up businesses, you perform these at your leisure using the text editor on your PC. Also included is the certificate enabling you to reproduce (sell) the manuals as much as you like £14 re£ 1P3.

PANORAMIC CAMERA OFFERS Takes double panoramic picture in one shot. Suitable for football, cricket etc. £249 re£ 399.

THOUSANDS AVAILABLE RING/FOX FOR DETAILS! MAGNETIC CARD READERS (Swedes) £9.95 Cased with half size credit card. About half the size of the standard credit card they have been coming out of the head so they may write as well. Complete with comprehensive guide.

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collected 140 business plans that give you money for start up businesses, you perform these at your leisure using the text editor on your PC. Also included is the certificate enabling you to reproduce (sell) the manuals as much as you like £14 re£ 1P3.

PANORAMIC CAMERA OFFERS Takes double panoramic picture in one shot. Suitable for football, cricket etc. £249 re£ 399.

THOUSANDS AVAILABLE RING/FOX FOR DETAILS! MAGNETIC CARD READERS (Swedes) £9.95 Cased with half size credit card. About half the size of the standard credit card they have been coming out of the head so they may write as well. Complete with comprehensive guide.

THOUSANDS AVAILABLE RING/FOX FOR DETAILS! MAGNETIC CARD READERS (Swedes) £9.95 Cased with half size credit card. About half the size of the standard credit card they have been coming out of the head so they may write as well. Complete with comprehensive guide.

THOUSANDS AVAILABLE RING/FOX FOR DETAILS! MAGNETIC CARD READERS (Swedes) £9.95 Cased with half size credit card. About half the size of the standard credit card they have been coming out of the head so they may write as well. Complete with comprehensive guide.

THOUSANDS AVAILABLE RING/FOX FOR DETAILS! MAGNETIC CARD READERS (Swedes) £9.95 Cased with half size credit card. About half the size of the standard credit card they have been coming out of the head so they may write as well. Complete with comprehensive guide.
NEW PRODUCTS

Please quote "Electronics World" when seeking further information

ACTIVE

A-to-D and D-to-A converters

100Msample/s a-to-d converter. From Strategic Test and Measurement comes CompuScope 801.2 said to be the world's fastest analogue-to-digital conversion system. It is an IBM-compatible ISA bus card carrying out 12-bit a-to-d conversion in real time at sampling rates up to 100Msample/s in single-channel mode (50Msample/s in dual-channel mode), while maintaining a 60dB s/n ratio. On-board memory stores up to four million samples for later reading by the computer, thus the conversion is faster than the bus, and a special 'stacking' feature enables high-pulse rates to be handled. Software supplied with the card allows it to be used as an oscilloscope, complete with storage, analysis, printing and export for spreadsheets, etc. Strategic Test and Measurement Systems Ltd., Tel., 01189 759550; fax, 01189 759591.

Discrete active devices

Surface-mount tunnel diodes. Advanced Control Components' ACTM Series of s-m tunnel diode detector modules are meant for use in low-noise video work. Although measuring 4.6mm square and 2mm high, these devices contain full diode detector circuits with dc return, rf bypass capacitors and the option of input pads for range alteration or protection. In six bands, the series covers 10MHz-4GHz; sensitivity is 800-1000mV/mW with no bias supply needed, at a flatness of 0.2-0.4dB. Thermal stability is 0.015dB from -55°C to 100°C. Anglia Microwaves Ltd., Tel., 01277 630000; fax, 01277 631111.

Voltage references. Zetex introduces the ZRC400/500 voltage references, which are micropower devices for 4V and 5V respectively, operating with extremely low current consumption. ZRC400 takes a minimum 23uA and the ZRC500 25uA, nominal maximum being 5mA, although they will handle much more. The devices attain stable operation in microseconds, need no external stabilising capacitor and will dissipate up to 450mW. Dissipation depends on package type, between 330mW and 625mW. Zetex plc, Tel., 0161-627 5105; fax, 0161-627 5467.

Linear integrated circuits

Cheap instrumentation amplifier. AD622 from Analog Devices is the first in a series of amplifiers at a price to make one think twice about rolling one's own two or three op-amp circuits - particularly as they are said to offer better cmmr (>85dB at a gain of 10), linearity and temperature stability, not to mention taking up less space; voltage noise is 12nV/√Hz at 1kHz. No external passives are needed for a unity-gain amplifier and a single resistor for gains between 2 and 1000. Analog Devices Ltd, Tel., 01932 266000; fax, 01932 247401.

Jet op-amps. Linear introduces the LT14623 (slew rate 0.13V/us) and LT1464S (slew rate 0.9V/us) jet op-amps characterised by input bias currents of 1pA and 0.5pA respectively, together with unity gain, 10nF capacitive load stability. Supply current for the LT14623 is 45uA; for the 1MHz 1464S types, 200uA. Linear Technology (UK) Ltd., Tel., 01276 677676; fax, 01276 64851.

Microprocessors and controllers

"Most powerful" 16-bit controller. Mitsubishi says its M68C16 family of 16-bit microcontrollers is the most powerful yet. The mcu is a compact design, optimised for high-speed, 16-bit operation, its 18MIPS power consumption and number of on-chip peripherals allowing its use in previously unsuitable designs. Features include efficient C programming, good noise suppression and advanced debugging. On-chip peripherals comprise 128Kbyte of rom, 10Kbyte ram, with dmac, crcc, usart, fast a-to-d, d-to-a, eight 16-bit timers and multifunction input/output. Program bugs discovered after masking can be corrected by an interrupt in software. Clock speed is 10MHz, although single-cycle instructions confer a performance that belies the clock speed, being equivalent to 40-60MHz in other mcus. Mitsubishi Electric UK Ltd., Tel., 01707 276100; fax, 01707 270692.

200MHz embedded VXI controller. VX IPC-850/200 is an improved version of National's 133MHz and 166MHz Pentium embedded controllers, this one using the 200MHz Pentium. Simple upgrades are available. All controllers in the series are VXI plug and play types and compatible with software tools such as the company's LabWindows/CVI and LabVIEW.

Logic

"World's fastest" logic family. Already in production by Atmel Corporation are the first members of what is claimed to be the fastest Industry-standard fast cmos logic devices, the Atmel Fast Logic (AFL) series. Speed is down to 2ns and the first circuits in the series are 16-bit devices for 5V: a bidirectional transceiver (AT16248), a buffered line driver (AT16244), a transparent latch (AT16373) and a tri-state register (AT16646). 16-bit, 2V units are to come next. Atmel UK, Tel., 01276 666677; fax, 01276 666697.

Prices on all Pentium-based embedded VXI controllers have been reduced by 25%. National Instruments UK Tel., 01635 523545; fax, 01635 523515.

Control starter kit. Easy-Start Kit by Z-World offers a rapid and simple method of programming embedded microcontrollers in C for beginners, as well as making life easier for experienced programmers. The kit consists of the Windows-based Easy-Start C software-development suite, including editor, compiler and debugger for a simplified version of standard C, and the Little Star controller, which has 16 bit inputs and 14 high-current digital outputs. It is complete with 9MHz Z180, 128Kbyte of eprom and 32Kbyte of static ram. Also in the kit are keyboard, printer, demo board, power supply and cables. Z-World, Tel., 001 916 757377; fax, 001 916 7553141. E-mail http://www.zworld.com

Optical isolators. PV5013R dual-channel opto-isolated mosfet gate drivers by IR are new members of the Gen2 range and are the first to offer fast turn-off circuitry. The two channels will drive two devices or can be connected in parallel or series to give higher-current drive for power mosfets or higher voltage for light-emitting diode input/output isolation is 3.75V rms and input-output isolation 1.2V dc. International Rectifier, Tel., 01883 732020; fax, 01883 733416

Mixed-signal ICs

RS232 transceivers. Analog's ADM2xxE 5V RS232 and V28 transceivers, which meet EU emc requirements, protect against ±15kV of discharge and ±2kV of fast transients. They are meant for modems, laptop and notebook computers and generate electromagnetic emissions to EN50022 and are immune enough to satisfy IEC-1000-4-4. These devices are protected against latch-up, are immune to high fields and will work in unshielded enclosures in "electrically harsh environments". There is a number of drives/receiver combinations, in SOIC, SSOP and TSSOP packages. Advanced Micro Devices (UK) Ltd Tel., 01483 740440; fax, 01483 756196.

February 1997 ELECTRONICS WORLD
NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information.

Communications mmic. NEC has a silicon microwave ic-up-converter and quadrature modulator, the µPC8104G,R, which has a frequency range of 900MHz-1.9GHz and is intended for digital communications work in lans and telephones. It operates from 2.7-5.5V, taking 28mA at 2V and 0.1µA power-saving. There is a digital phase meter on chip, with a self-phase compensation facility, and an internal 90° phase shifter, which has a phase error of 0.8° and modulation accuracy of 2.1%. NEC Electronics (UK) Ltd, Tel. 01908 691132; fax 01908 670290.

Motors and drivers

Microstepping driver. Allegro's SLA7042 multi-chip module controls two-phase stepper motors and provides microstepping operation, containing two independent pwm current-control ic's with four rmmos fets in an 18-lead Powerstil package. It is rated for motor voltages to 46V, peak outputs to 5A and 1.2A continuous. By means of digitally selected motor-current ratios and linear input reference control, the device may be used as a half-step, full-step and microstep driver, all modes providing smooth drive. No heatsinks are needed. Allegro Microsystems Inc. Tel., 01932 253355; fax, 01932 246622.

Optical devices

Infrared receiver. New Japan Radio halts at 1A or 3A. Metrox-contacts are available in 12, 24, 48 and 96mm modules with contacts on a 2mm grid. The basic 12mm module providing 24 signal contacts or eight power contacts. All can be made as press-fit or through-hole types. GTK (UK) Ltd, Tel., 01344 304113; fax, 01344 304144.

Connectors and cabling

Backplane connector. GTK has a new range of backplane connectors to give up to 192 pins for signal or power circuits at 1A or 3A. Metrox-contacts are available in 12, 44, 48 and 96mm modules with contacts on a 2mm grid. A basic 12mm module providing 24 signal contacts or eight power contacts. All can be made as press-fit or through-hole types. GTK (UK) Ltd, Tel., 01344 304113; fax, 01344 304144.

Test and measurement

20MHz oscilloscope. Goldstar's GS-5020P is a 20MHz, dual-channel, general-purpose oscilloscope for use in education or servicing. Vertical sensitivity is 5mV/div, plus a ×5 position, and sweep speed 0.25us/div with a ×10 switch. Combined Precision Components plc. Tel., 01772 654455; fax, 01772 654466.

Power-off board testing. Prober II by Huntron automatically tests boards up to 35cm square with power switched off, combining analog signature analysis with a probe, which needs no additional fixture and will cope with pin or test-point spacing of 0.01in., moving in 0.001in increments. Parameters such as V, I and f are programmable and the Star feature (safe tracker active range) prevents damage to components. There is a cord camera vision system, which runs under Workstation for Windows, and an output for other test instruments. Martron Instruments, Tel., 01494 458000, fax 01494 535002.

Multimeter. MX52B-54B/55B/56B handheld multimeters by Meterx are provided with an RS232 interface, and a view to data transmission to a pc or printer. All versions have a 50000 count display, 0.05% accuracy, true rms reading and test functions. MX568 is the top version, with its 100kHz bandwidth, timer-counter, audio power measurement (in decibels), indication of mains disturbance and pulse width measurement down to 20us. Meterx Electronics plc. Tel., 01384 402731; fax, 01384 402732.

Logic analyser. Thurby Thandar's TA4000-80 logic analyser provides synchronuous data capture at up to 400MHz on 16 channels with a memory depth of 8Kword. At this speed, timing resolution is 2.5ns, which is usable with 50MHz logic; at 50MHz and below, the number of channels may be increased to 80. Sixteen channels can be displayed simultaneously, with a marker scale, and a group of channels can be defined as a bus and shown on one line of the screen. Triggering may be performed by up to four trigger words ORed together (NOTed, if required). GPB and RS-232 interfaces are
provided for control and data transfer and there is a Centronics interface for screen dumps to a printer. Thubry Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480 450409.

Literature

Acido power. Coulant Lambda offers a easier way to have a GPS application of ac/dc power supplies. The guide is free of charge. Coulant Lambda Ltd. Tel., 01271 865656; fax, 01271 864894.

Power mosfets. Toshiba mosfets, which handle 16-1000V and 1A-60A, are described in a new short catalogue, including types for direct drive. Toshiba Electronics UK Ltd. Tel., 01276 694600; fax, 01276 694800.

Surtech. Surtech Distribution has a new catalogue of hardware such as Cs, Rs, Ls, suppression components, piezoelectrics, connectors and switches from people like Murata and Methode. Surtech Interconnection Ltd. Tel., 01256 51221; fax, 01256 471180.

Navigation systems

GPS starter pack. Rockwell offers the Jupiter Starter Pack, which is an easy way to get GPS signal acquisition even in town centres and foliage. It allows the connection of power, antenna, serial cable for a pc port and directional inputs with optional software. The package includes Rockwell's Labmon monitor program, the Psion NM2A GPS monitor and other utilities. Rockwell Semiconductors and other utilities. Rockwell Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.

Power supplies

Efficent do-to dc converter. Phillips has the TEA1204/5W dc-to-dc converter ic which is 95% efficient. It is intended for the telephone market, to extend talk and standby time. It will convert the output of a two or three-cell Nicd/NIMh battery or a single-cell Li-ion pack to 3.3V or 5V or the output of a four-cell pack down to 3.3V or 3.6V, configurations that cover virtually all mobile telephones. A combination of own and pulse frequency modulation not only confers high efficiency, but allows rapid response to changing loads, so that the device is particularly suited to GSM telephones using burst-mode transmissions. Philips Semiconductors (Endhoven), Tel., 00 31 40 2722091; fax, 00 31 40 2724825.

Auto-pc, ac/dc supply. Computer Products introduces the NLPE5 65W, ac/dc input, open-frame supply, said to be the smallest of its type to have automatic power-factor correction by an active low-frequency method. The unit complies with European harmonics and flicker standards and is CE marked. Package size is 5 by 3 by 1.265in; this is achieved by means of a new 100kHz switched-mode technique, the high frequency helping to reduce emi. It also uses a patented flyback boost technique to improve efficiency under full load, giving a power sensitivity of 4Wln. Input is universal at 85-264Vac or 120-370Vdc and outputs are 5, 12, 15 or 24V dc from the single units, 5/12/ or 5/24V from dual types and 5/12V, 5/15V from the triple versions. Computer Products, Power Conversion Ltd., Tel., 01494 883113; fax, 01494 885419.

600V dc-to-dc supplies. Single channel dc-to-dc power module in Coulant Lambda's PH6005 range provide 300-600V of output at fixed voltages between 3.3V and 48V. Input voltage is 200-400V dc, switching frequency 300kHz and efficiency at 280V dc and maximum output current is 86%. Facilities include remote sensing, overcurrent and overvoltage protection and there is provision for a remote on/off control. Coulant Lambda Ltd. Tel., 01271 865656; fax, 01271 864894.

Ups. PowerWorks A30 is a new uninterruptible power supply by Fiskars, designed to replace PowerServer 20 and 30 ranges. This one uses “double conversion on-line technology” to provide reliable protection for computers and other equipment. In the 100-255Vac range. These units are modular in form for simple installation and offer “plug-and-play” expansion, with four hours backup. An automatic switch takes power directly to the load to handle temporary overload – a feature that removes the need for excessively large ups – and the units use new Lansafe III power management software. Widenes input voltage ranges help to conserve battery power. Fiskars Electronics Ltd. Tel., 01734 306060; fax, 01734 305688.

Lead battery charger. Mascot's 9319 lead battery charger is over 80% efficient and delivers a current up to 2.4A. Output voltage is adjustable between 11.5V and 15V, with others to special order, and there is a current limiter to prevent overcurrent at the start of the charge cycle. This CE-marked unit is provided with a UK or European mains plug built into the case and a choice of output plug leads. Retec Electronics Ltd. Tel., 01965 833141; fax, 01965 833987.

Radio communications products

Telemetry transceivers. A new range of radio telemetry transceivers by Wood & Douglas enables the company to offer equipment covering the 130MHz to 500MHz range of frequencies. The T7000/2040 range is meant for use outside Europe, being designed to meet the FCC specification; more stringent demands of European use call for the E100/200/400 alternative range, which meets ETS 300 200, MPT1328 at vhf and MPT1529 at uhf. The T series radios put out 2W at vhf and 1W at uhf, while the European ones emit 0.5W of the 400-470MHz range of frequencies and 16 reprogrammable ones. Wood and Douglas Ltd. Tel., 01734 811444; fax, 01734 811567.

Switches and relays

Audio connectors. Deltron's range of professional audio connector, now available from Electrospreads, covers all audio requirements, including phone connectors, loudspeaker line, relays, and a range of circular DIN connectors of the non-latching, latching, insulated, chassis or board mounting versions. Silent Jacks are two-pole jack plugs which eliminate the buzz on insertion, a spring-loaded sleeve switch connecting tip and sleeve connected until the movement of the sleeve on connection reinstates the signal; a two-position cotet allows the use of a number of cable diameters. Electrospreads, Tel., 01703 644555; fax, 01703 610282.

Piezo switches. Schurer's range of single-key piezo switches is now available, ranging from IP64 or IP67 and are proof against water, dust, heat and cold and the brain-dead. Piezo-ceramic discs generate small voltages when touched, the voltages being processed internally to control the normally open switching action. They come in a range of contents and materials including chrome-plated brass, steel or aluminium. Options include special finishes and normally closed versions. Actuating force is 1-3N, contact travel 0.0002mm, switching voltage and current 100V dc, 100mA and breaking capacity 10W. Radiotron Components Ltd. Tel., 01784 439593; fax, 01784 477333.

Video

Remote, digital camera. Active Imaging announces the Mcx-Net, a networked digital camera for remote inspection and monitoring. Images are sent to the monitoring station, which is simply a pc running the relevant software, in compressed digital form over telephone lines, lanes or GSM/Wireless lan. Inside the camera are colour Pal sensor, frame-grabber, processor, disk storage and a network module, all mounted in an enclosure with climate control and/or bit and pan control; settings are controlled from the monitoring station. The presence of the processor means that the camera can notify the monitor if an alarm is activated and can then be made to record whatever nefarious deed is being perpetrated. Active Imaging plc. Tel., 01628 415444; fax, 01628 415481.

Pc to tv. TMC2680 by Raytheon is a single-chip VGA-to-Pal/NTSC video processor, converting analogue rgb+sync. from a pc to broadcast quality NTSC or Pal video, to external memory is needed. The device includes three a-d-to converters, an interface filter, clock processors, reference and three d-to-a converters and a three-line adaptive ficker filter with selectable operating modes. 2001-METL. Tel., 01438 742001; fax, 01438 742002.

3-D camera. A three-dimensional portrait camera, the C3D model 2020 by the Turing Institute, consists of a pod with a stereo camera pair and lighting, connected to a pc. In under 0.5s, high-resolution polygon models can be produced in VRML or DXF formats in monochrome or 24-bit colour. Simple operation allows non-technical users to operate the camera. The Turing Institute, Tel., 0141 337 6410; fax, 0141 339 0976.
Transducers and sensors

Touch pad. A semiconductive touch-pad element by Interlink Electronics Inc. is based on the company's force-sensing resistor, instead of the more often seen capacitive technology. The device requires a slight touch from a finger or stylus and will operate in wet or dry surroundings; it uses only 15% of the power needed by capacitive pads and is more flexible in its use. It is mainly intended for use in notebook computers, where its power savings, enhanced by the inclusion of a sleep mode, and its lower cost compared with that of capacitive devices, makes it an attractive choice. A complete touch-pad using the technique, the VersaPad omni module, is now available. Interlink Electronics Inc. Tel., 001 805 484-8855; fax, 001 805 484-6380.

Current sensors. Vacuum Schmelze GmbH has some new compensation current sensors for current detection in motor control systems or power supplies; they are based on existing designs, but provide greater current ranges in the same shape cases, those now available being for 50A, 100A and 400A. The compensation principle is that of detecting the dc as well as ac up to about 100kHz, and enables better linearity than in other methods. Use of a metallic detector instead of a Hall device reduces offset and drift by an order of magnitude. Vacuum Schmelze GmbH, Tel., 0049 61 81/38-26 29; fax, 0049 61 81/38-26 60.

Pressure sensors. Lucas's NPP Series of piezoresistive, board-mounted pressure sensors are meant for use where small size and resistance to mild corrosive fluids are important. It is the first to appear in a standard SOIC-8 package for automatic handling and insertion, the lead frame design reducing the stress found in surface-mounted ceramic types. Range is 0-15, 0-30 and 0-100bar (absolute), producing a 60±20mV output on 3V dc. Error due to all causes is less than 0.3% of full scale. Lucas Control Systems Products, Tel., 01535 661144; fax, 01535 661174.

Humidity sensors. Self-cleaning, heat refresh humidity sensors in the HS30 from Steatite are for use in industrial positions where conventional types become clogged and stop working. Measurement range is 10% to 95% RH, without condensation, and accuracy ±5% RH at up to 80°C. Power consumption is 1.3W, rated working voltage 1V ac and heat refresh temperature 600°C. Steatite Insulations Ltd., Tel., 0121 643 6888; fax, 0121 643 2011.

Chip thermistor. N7THS65 is an ntc thermistor on an 0805-size chip made by Murata and intended for use in temperature compensation in ic's, translators and oscillators. Its construction provides resistance to humidity; resistance tolerance is 25%; maximum power 20mW; and tolerance 13%. Resistance values in the range 220Ω-10kΩ are available. Murata Electronics (UK) Ltd., Tel., 01252 811668; fax, 01252 811777.

Enhanced ICEPIC. RF Solutions has extended the coverage of its PIC emulator by the introduction of a new daughter board. ICEPIC is a non-intrusive emulator for PICs working up to at 10MHz, for source-level debugging in assembler or C. This new 74A board is compatible with 16C62/63/64/65/72 and PIC 100MHz, and comes with all new emulators, being an upgrade for older ones. RF Solutions Ltd. Tel., 01273 488860; fax, 01273 488661.

Computers

Fm radio transceiver. Radiometrix has a transmitter/receiver pair for 45kHz fm data communication over distances of 300m over open ground (75m inside). They are made for 433.92MHz, the transmitter providing ±10dBm to ETS 300-220 in Europe and 418MHz, 0dBm to MPT1240 in the UK; the receiver is a double conversion superhet, which powers up in under 1ms and detects the carrier rapidly. The whole unit is power saving. The pcb-mounting modules can be used in analogue or digital communication and will work with helical, loop or whip antennas. Radiometrix Ltd. Tel., 0181 816 6847; fax, 0181 810 8648.
MEASURE

wow and flutter

With so much digital audio equipment around, it is easy to overlook the fact that a meter for checking fluctuations in the speed of analogue replay systems is still a useful tool. Christopher Kuni explains how to design such a meter.

Measurement of wow and flutter may seem anachronistic in this age of digitised, locked-in, rock-stable audio reproduction. However, a glance at the display window of any commercial electronics shop will reveal that analogue equipment, with its susceptibility to speed variation, is still very much with us in the form of cassette and even reel-to-reel tape machines, and video recorders. And there are still millions of phonograph disks in existence.

Every turntable and analogue tape transport has measurable speed variations that worsens with age. Checking wow and flutter requires a measuring instrument with reasonable sensitivity and precision; such instruments have become rare and expensive.

The meter described here has proved more than adequate. Its most sensitive range is 0.1% full scale, peak or rms-indicating average. The –3dB points of its frequency response are 0.4Hz and 180Hz. Alternatively, the frequency response weighting curve recommended by the major standards associations can be selected.1

Output level of the typical moving-magnet cartridge provides adequate drive without preamplification. Only one simple calibration adjustment is required, or, if rudimentary accuracy can be tolerated, high precision (i.e., repeatability and internal consistency) can still be enjoyed with no calibration at all.

Figure 1 shows the overall system design. A 3 or 3.15kHz signal of a few millivolts to a few volts rms is amplified, if necessary, to an adequate level before bandpass filtering to remove noise. A zero-crossing detector then squares the signal to further reduce noise effects and to condition the signal for a phase-locked loop, or pll, frequency discriminator.

Demodulated signal passes through a wideband bandpass filter that sets the overall wow-and-flutter frequency response. A weighting filter can be switched in if desired. Peak or average rectifiers can be chosen to drive the storage capacitor, the potential of which is measured by a dc voltmeter.

Circuit details

Figures 2-6 show circuit details. All op-amps in the prototype are TL071, -72, or -74 types. Similar types will function equally well. Each nor gate is one section of a c-mos 4001.

The input carrier signal sees the high input impedance of IC1, Fig. 2. Together with its associated components, IC2 provides up to 20dB gain. This gain control circuit, described by R. Williamson2, has an approximately exponential characteristic that I find convenient when the expected level of the input signal may cover several orders of magnitude; a circuit with a linear characteristic may, of course, be substituted.

Noise transmission to the pll is reduced by the filter formed by IC3,4,5. A biquad circuit was chosen because of the flexibility it affords in the choice of Q and gain, and because of its easy tuning. The main trade-off in the design of this filter is between wow-and-flutter bandwidth and noise rejection. A high-Q filter will limit the upper frequency components of the wow-and-flutter signal but will also reduce the undesirable effect of noise in the input carrier signal.

This consideration is more critical than you may first think. Although the pll demodulator is inherently noise-insensitive, the modulation levels that we are dealing with are extremely low – down to less than 0.01%. Even a pll will show significant relative noise sensitivity at these levels, so line transients, clicks on the test record, rumble in the turntable and other noise signals can spoil measurements.

The bandwidth of a frequency-modulated signal is approximately equal to twice the sum of the frequency deviation and the modulating frequency3. For a 3kHz carrier modulated at 1% peak deviation at 200Hz, the bandwidth is thus about 2×(30+200)=460Hz.

For a 200Hz, 1% flutter signal, the system will suffer about a 3dB loss in sensitivity if filter Q is 3000/460=6.5. The values shown in the biquad filter give a Q of about 5.5; this filter, in conjunction with the bandpass filter following the pll, gives an overall system bandwidth of about 180Hz, a reasonable figure. Rejection of the noise in my environment is sufficient to allow measurements near the bottom of the 0.1% range.

Filter Q can be changed, if desired, by changing $R_3; \quad Q=R_3/33,000$. With the values shown, gain of the biquad filter is 50 – a value that can be maintained if Q is changed by altering $R_8; \quad \text{gain}=Q(33,000/R_8)$.

Further noise rejection

A zero-crossing detector with hysteresis IC6 further rejects noise. Transistor T1 still further squares the 3 or 3.15kHz signal from IC6 and shifts the negative-most level of the square wave to near zero. The diode and associated voltage divider give a dc signal that allows for gain adjustment; gain should be adequate to give a clean square wave at T1’s collector but
not so high that the biquad filter is overloaded. After \(S_1 \) in Figs 3, 4 & 5 is switched to the ‘set’ position, the biquad is tuned for maximum meter reading and the gain is adjusted for a reading anywhere in the top two-thirds of the meter scale.

The squared carrier signal is sent to the 4046 pll, \(I C_7 \), Fig. 3. Demodulated output from the pll goes to two filter chains, selected by \(S_2 \), to give either a flat or a weighted bandpass \((IC_{8,9}) \) or \(IC_{10,11} \).

Op-amp \(IC_{12} \) provides appropriate gain for 0.1%, 0.3%, or 1.0% full-scale meter deflection; range is selected by \(S_3 \). The 180kΩ resistor at \(\delta_{1A} \) causes the gain of the \(IC_{12} \) circuit to yield rms-reading average measurement when \(S_1 \) is set to ‘average’.

The feedback resistors around \(IC_{12} \) are calculated for a meter movement on which the full-scale values are 100B apart—i.e., 1.0 on one scale and 3.16 on the other. Use of the less common movement, on which the full-scale values are 1.0 and 3.0, would require recalculation of the resistors. Output is provided for monitoring the detected, filtered signal with an oscilloscope or a spectrum analyser.

The detected signal is sent to a full-wave rectifier consisting of \(IC_{13,14} \) and associated parts, Fig. 4. When \(S_1 \) is set for average readings, the low impedance output of \(IC_{14} \) charges and discharges \(C_s \) through \(R_c \) so that the voltage across \(C_s \) is the average value of the rectified signal.

Two series diodes at \(IC_{15} \) limit the voltage to which \(C_s \) can be charged in off-scale conditions such as switching transients. This minimises the settling time once normal conditions have returned. When \(S_1 \) is set for peak readings, \(IC_{15} \) and its feedback diode form a low impedance charging source for \(C_s \) through \(R_d \) but no discharge path; the sole discharge path is then through \(R_e \).

Time constants

Charge and discharge time constants for average readings and the discharge time constant for peak readings are 7.3 seconds; this somewhat long time constant gives stable readings even for the 1.8s period of 33rev/min wow. The charge time constant for peak readings is 36ms, which is short enough for a significant response to only a few cycles of a 180Hz flutter signal.

Reduce \(R_d \) to decrease the peak-reading time
constant at your own risk. Doing so will drastically increase sensitivity to impulse noise.

Charge voltage of CA is sensed by IC16, which drives the meter movement. The movement, one that happened to be on hand, has a 200µA full-scale sensitivity and a resistance of 1kΩ. Standards associations specify meter ballistics, but I chose not to attempt to duplicate those specifications electronically. Instead, I subjectively determined a driving impedance for the movement such that the resulting ballistics appeared close to those of a borrowed professional wow-and-flutter meter.

The movement’s open-circuit ballistics are on the sluggish side, so a rather high driving impedance is satisfactory. The resistors associated with IC16 could be changed to accommodate virtually any reasonable meter movement.

Circuit Fig. 5 serves two purposes. First, the logic circuitry detects the lock condition of the pli unambiguously. I wanted the led at TR7 to be completely extinguished when the pli is not perfectly locked and to be lighted without flicker when the pli is locked. I also wanted it to follow the state of lock virtually instantaneously. If this situation can be accomplished directly from the 4046 without external logic, I haven’t discovered how.

Secondly, TR7 discharges Cs summationarily when the pli falls out of lock, preventing wild swings of the meter pointer when the carrier is switched in or out or when the instrument is switched on. This function, plus the series diodes at IC15 in Fig. 4, keeps the meter tamed.

The power supply in Fig. 6 is straightforward. A separate +12V supply for the pli is necessary to prevent 3kHz spikes originating in the pli from leaking into the rest of the circuit.

Calibration options

Several options exist for calibration. When a 200µA, 1.3kΩ meter movement is used, the simplest is merely to set the calibration potentiometer, Fig. 4, to the centre of its range and forget it. Although absolute accuracy will suffer, the instrument will be perfectly satisfactory for almost all uses. Should you find this approach unacceptable, you have at least three alternatives for accurate calibration.

In the first method, the demodulator-filter sensitivity is measured, and a signal generator is used to inject a simulated flutter signal of amplitude corresponding to 1% into the amplifier preceding the meter rectifiers. Temporarily short the 150nF capacitor at IC6 of Fig. 3. Connect a stable audio generator set to 3kHz to the system input. With S1 switched to ‘set’, peak the tuning control and adjust the gain control for a reading in the top two-thirds of the meter scale.

Monitor the generator frequency with a counter and the voltage at the output of IC9 with a digital voltmeter. Vary the generator frequency around 3kHz and tabulate frequency versus the IC9 output voltage. The change in voltage divided by the corresponding percentage change in frequency is the sensitivity of the demodulator and the IC9 lowpass filter. In my case this was 0.18V per 1.0% frequency deviation.

Remove the short from the 150nF capacitor. Temporarily ground TR7’s base, Fig. 5, and disconnect the pole of S2 from the pole of S1A in Fig. 3. Inject a 100Hz or so signal with an amplitude corresponding to 1.0% peak deviation, for example 0.18V peak, into the pole of S1A. Set S1 to ‘peak’ and S2 to ‘1.0%’. Adjust the calibration pot for a 1.0 reading. If 3kHz and 3.15kHz are not well within the capture range of the pli, trim the 68nF capacitor at IC7.

If you have a good ear for music, a own a generator, but no counter, then zero-beat the generator to a piano or other fixed-pitch musical instrument. The frequency of each note is 1.059463 times that of its semitone-lower neighbour. On the International music scale, defined by A=435Hz, G7 is 3100Hz. On the American Standard scale, where A=440Hz, G7 is 3136Hz.

For the second method, lash up an fm generator with an 8038 function generator chip oscillating at 3kHz and swept to 1.0% peak deviation by a low-frequency second oscillator. Initially, connect a variable dc voltage source and a dvm to the modulation terminal of the 8038, and monitor the 8038’s oscillation frequency with a counter. Once the 8038’s modulation sensitivity is known, its modulation terminal can be driven by a sine wave of appropriate amplitude for 1.0% peak deviation. The output of the 8038 is then used as a test signal for the wow and flutter meter.

The third method uses a desk-top computer with a sound card. A few lines of code can generate a sound file that represents a digitised 3kHz carrier modulated at any level and frequency and that can be played through the sound card. Or, to avoid the programming, use one of the several available inexpensive digital audio editors that feature flexible generators.

I have tried all three methods of calibration. The most accurate and flexible is the third, but not everyone has the necessary computer hardware and either the software or the desire.
This simple meter has been in use for years with no problems. The effects of flywheel or platter weight and balance, bearing wear, and drive belt quality are easy to measure objectively.

Readings are within a few percentage points of those obtained on a calibrated, professional watt and flux meter when both meters are set up similarly and driven with a sine-modulated test carrier. Congruence is sometimes rather less for non-sinusoidal impulsive functions, and this difference may be due in part to the differences in meter movement ballistics.

Drift measurement was not included in the design, because drift is easily tracked with a frequency counter. This feature could be included with the addition of a dc amplifier and a second meter movement having a centre-scale zero. Provision would be required to tune the pl to exactly to the carrier frequency.

One last word: if you’ve never measured watt and flux, you’ll be surprised at the apparent discrepancy between manufacturers’ specifications and reality. The peak-reading, non-weighted settings are the most useful for trouble-shooting and for testing design changes, but new equipment is usually specified with a weighted rms-calibrated average reading. The difference between these measurements can be nearly an order of magnitude. On the other hand, a super-turbine may have less speed variation than the residual of even a good test record, especially given the difficulty of centring the record precisely on the platter.

References
The Complete Electronics Design System • Now With RIP-UP & RETRY!

Schematic Capture
- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and

Simulation
- Non-Linear & Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue & digital sections.
- Graphs displayed directly on the schematic.

PCB Design
- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP & RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerber and DXF Import capability.

Call now for your free demo disk or ask about the full evaluation kit.
Tel: 01756 753440. Fax: 01756 752857.
53-55 Main St, Grassington. BD23 5AA.

EMAIL: info@labcenter.co.uk
WWW: http://www.labcenter.co.uk

Fully interactive demo versions available for download from our WWW site.
Call for educational, multi-user and dealer pricing - new dealers always wanted.
Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

CIRCLE NO. 132 ON REPLY CARD
Dictionary of Communications Technology

Terms, definitions and abbreviations
Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA
In response to the changing face of the telecommunications industry and the rapid expansion in the use of microprocessors, fiberoptics and satellites, Gil Held has updated his earlier telecommunications dictionary to bring readers in line with the very latest developments and terms in communications technology.

Features Include:
• Over 9000 references and 250+ illustrations
• Comprehensive coverage of data and computer communications
• New entries on PC LANs, the Internet, client/server operations and communications testing
• Trade name information

First Edition Review:
"For a consultant or telecommunications operative, this book is a must. It is comprehensive and timely ... an excellent reference for the IS professional."

Data Processing Digest
ISBN 0471 95582 6, 512pp, hardback, UK £88.50, Europe £73, ROW £83
ISBN 0471 95576 9, 512pp, paperback, UK £38.50, Europe £40, ROW £55

Wireless Information Networks
Kaveh Pahlavan, Worcester Polytechnic Institute and Allen H Levesque, GTE Government Systems Corporation
Wireless Information Networks organises all major elements of wireless technology - cordless and cellular telephony, Personal Communications Systems (PCS), mobile data networks and Wireless Local Area Networks (WLANs), presenting them from a logical, systems engineering perspective. Technical material is thoroughly integrated with special applications and focuses on four main areas: Wireless standards and descriptions of systems and products; Measurement and modelling of radio and optical wave propagations; Wireless transmission techniques and Wireless multiple access techniques.

Contents:
Overview of Wireless Networks; Frequency Administration and Standards; Activities; Characterisation of Radio Propagation; Channel Measurement and Modelling for Narrow-band Signalling; Measurement of Wideband Channel Characteristics; Computer Simulation of the Radio Channel; Modern Technology; Signal Processing for Wireless Applications; Spread Spectrum for WIN Systems; Wireless Optical Networks; Networks and Access Methods; Standards and Products.
ISBN 0471 10067 0, 304pp, hardback, UK £63.50, Europe £68, ROW £81

Wireless Testing, Troubleshooting and Tuning Local Area Networks
Techniques and tools to isolate problems and boost performance
Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA
Recognising the problems encountered by network users and administrators on a daily basis, this book is designed to assist readers by focusing on testing, troubleshooting and tuning of Ethernet and Token-Ring networks. It is devoted exclusively to: how things go wrong; how to recognise, monitor and test for problems; network analysis and network management products that assist users in examining the flow of data in a complex network.
ISBN 0471 95800 8, 275pp, hardback, UK £37.50, Europe £40, ROW £50

Applied Cryptography
2nd Edition
Protocols, Algorithms and Source Code in C
Bruce Schneier, Security Consultant and President of Counterpane Systems, USA
This revision of the programmer's and system designer's guide to the practical applications of modern cryptography provides the most comprehensive, up-to-date survey of modern cryptographic techniques, along with practical advice on how to implement them.

New to this edition:
• Detailed treatment of the US government's Clipper Chip encryption program
• New encryption algorithms (e.g. "GOST") recently obtained from the former Soviet Union
• More detailed information on incorporating algorithms and programming fragments into working software
• The latest developments in the fields of message authentication ('digital signatures') and digital cash.
ISBN 0471 12845 7, 816pp, hardback, UK £59, Europe £64, ROW £70
ISBN 0471 11709 0, 816pp, paperback, UK £44, Europe £49, ROW £63

Data and Image Compression
4th edition
Tools and techniques
Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA
Data and image compression are key issues in computer communications with the increasing demand for data transmission capacity.

Handbook for Digital Signal Processing
S.K. Mitra, University of California and J.F. Kaiser, Bell Communications Research, New Jersey, USA
This is the definitive source of detailed information on all important topics in modern
digital signal processing. The only current handbook of its kind, it meets the needs of practising engineers and designers of hardware, systems and software. Written by world authorities, the <i>Handbook for Digital Signal Processing</i> is supplemented with hundreds of informative tables and illustrations. For professional engineers, designers and researchers in electronics and telecommunications, this work will be an indispensable reference — now and for years to come.

Contents: Introduction; Mathematical Foundations of Signal Processing; Linear Time-Invariant Discrete-Time Systems; Finite-Impulse Response Filter Design; Digital Filter Implementation Considerations; Robust Digital Filter Structures; Fast DFT and Convolution Algorithms; Finite Arithmetic Concepts; Signal Conditioning and Interface Circuits; Hardware and Architecture; Software Considerations; Special Filter Designs; Multirate Signal Processing; Adaptive Filtering Spectral Analysis; Index.

ISBN 0471 2728 5, 620pp, hardback, UK £47.50, Europe €48.50, ROW £54

Solving Interference Problems In Electronics

R. Morrison, Eureka California, USA

Interference in electronic equipment is a constant source of difficulty for the design and systems engineer. Until now, there has not been a coherent theory that engineers can refer to in their design work and the solution of interference problems has therefore often considered to be an 'art'. Written by an acknowledged expert in the field, this new title provides methods and techniques for testing and evaluating designs, and covers interference questions in computer manufacturing and systems design.

ISBN 0471 1279 5, 204pp, hardback, UK £47.50, Europe €48.50, ROW £54

Diode Lasers and Photonic Integrated Circuits

L. A. Coldren and S. W. Corzine, both of the University of California, Santa Barbara, USA. Diode lasers are found in numerous applications in the optoelectronics industry.

ISBN 0471 6199 5, 1302pp, hardback, UK £118, Europe €118, ROW £138

All prices are fully inclusive of packing and delivery

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Title or ISBN</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All prices on these pages include delivery and package

Total

Name

Address

Postcode

Telephone

Method of payment (please circle)

Access/Mastercard/Visa/Cheque/PO

Cheques should be made payable to Reed Business Publishing

Credit card no.

Card expiry date

Signed

Please allow up to 28 days for delivery
One stop solutions for all your radio telemetry module needs.

When the success of your products depends on radio telemetry modules, you need a business partner you can trust. A skilled and experienced manufacturer that can offer modules of the highest quality, operating over a wide range of frequencies.

In other words, a partner like Wood & Douglas. Founded on technical excellence, Wood & Douglas is a British company that specialises in the design, development and production of radio-based products. With over 30 staff dedicated to meeting your requirements, the company is able to provide true one-stop purchasing - whatever your RTM needs.

All radio modules are highly functional, capable of meeting a wide range of requirements. Designed to offer efficient, easy-to-use radio telemetry components for system designers, they can open up a whole new world of product possibilities.

From portable bar-code readers to earthquake monitors, Wood & Douglas can help you make the most of the opportunities in radio telemetry.

To find out more about the possibilities, contact...

Lattice House, Baughurst, Tadley, Hampshire RG26 5LP, England
Telephone: 0118 981 1444 Fax: 0118 981 1567
email: info@woodanddouglas.co.uk
web site: http://www.woodanddouglas.co.uk
LVD is not new
In his editorial, EW Oct '96, Rod Cooper paints a more gnomish picture than is justified - and one statement is quite wrong. The Low Voltage Directive came into force in 1976 - yes, 20 years ago. What happened on 1 January 1997 was that you had to use CE mark. But you have had to do that, for safety as well, since 1 January 1996, for anything that falls within the EMC Directive.

It is very important for the health and welfare of the electronics industry in the UK not to encourage people to close down projects or even companies through fear of the Directive. More stringent regulations have been in force in Germany and Austria for more than a decade, and their small electronics businesses have learned how to cope. It is possible.

The chance of any large company trying to use a Directive against a very small competitor is minimal. It is certainly impossible to forecast that there will be no chief executive who suffers a fit of paranoia and goes down that route, but most would see that the game is not worth the candle - particularly if there are actually no grounds for the complaint.

It is true that the engineering profession is disunited, but it is not to be expected that they could unite in opposition to requirements introduced under the EMC Directive. For example, the requirements of EN 61000-3 (all four Sections) are bound to be looked on with favour by the power industry, which would like to preserve their 50Hz sine-waves undistorted. But the regulations are a bane to equipment designers.

The idea of eliminating immunity tests has been raised before, and seems attractive at first sight. But lack of immunity can result in quite dangerous situations, which are almost entirely unpredictable because the manufacturer often has no idea what his equipment may be used for. Of course, these are the exceptions and not the generalisations of the politicians in the first place, and helped to "sell" the Directives to them.

Furthermore, complaints of lack of immunity in the field receive virtually no publicity, but the broadcasters, BT and the electricity suppliers receive thousands of complaints every year - usually directed to quite the wrong body. The cost of following these up, and solving them where possible, is quite large.

On the subject of EMC in Australia (page 724 of the same issue), without the "benefit" of Brussels, the SMA seems to have produced requirements which are more severe than apply in Europe at present, although they have backed off on some points.

John Woodgate
Rayleigh
Essex

Fooling stereo
In his article "Music in mind" in the Oct. '96 issue, Ian Hickman wondered why his gyroscopically-controlled headphones refuse to work in stereo. I wasn't too convinced by explanations from the experts in the letters pages of subsequent issues, so here's my guess. While processing time or volume differences, the brain needs the signal from both ears to be approximately equal, as in a mono-signal. It is impossible to determine phase difference from two completely different signals.

If you mixed, say, a third of the right-hand channel's signal to the left channel and a third of the left channel's signal to the right, the brain would maybe have enough information to fool it.

Hannu Multanen
Joensuu
Finland

Preamp defence
I would like to comment on Mr Allen Wright's letter (Electronics World, Nov. '96) concerning Douglas Self's pre-amp.

My comments come from two viewpoints - as a collaborator with Douglas in the design of the pcb for the pre-amp, and as a self-employed designer in the professional audio industry.

Over the past 15 years, my work has taken me into a number of UK companies specialising in the design and manufacture of top-of-the-range mixing consoles that end up in radio, television and recording studios throughout the world. All the companies use 5532 and 5534 devices; they also use large-value electrolytics for signal coupling.

It is a fact that Douglas's preamp design has been adopted with the same criteria used to design professional mixing consoles.

Mr Wright states that budget mixing console manufacturers stopped using the 5532 years ago. I will not contest the budget manufacturer's lack of use of the 5532. As my experience is not at the budget end of the market, but may I be so bold as to suggest that the term 'budget' is significant? The 5532 is expensive. Is it financial constraints rather than sonic performance that preclude its use?

As for the existence of an "unpleasant sonic signature" from the 5532, I am surprised. I like what Mr Wright to tell us more about it.

The ultimate conclusion to his statement of the existence of a "signature" is that virtually all live and recorded sound will be affected with the "signature" by virtue of the recording and/or broadcast equipment used to get the sound to the listener.

No matter what devices are used in a preampifier, if it is well designed, it will faithfully reproduce at its output whatever is offered to its input. The output will include Mr Wright's alleged, "unpleasant sonic signature", which will have been introduced earlier in the signal chain, and is therefore beyond the control of the pre-amp designer or the listener.

Gareth Connor
GIC Designs
London

CAD inadequacies?
The reviews on pcb cad failed to answer the one question I wanted answered. All the packages seem to work on the same basis: having designed your circuit, you use the schematic drawing package to produce a professional printable schematic and the computer does the rest - i.e. it produces for you a parts list, it captures the circuit for the layout and even simulates the circuit performance.

The problem comes in the phrase "having designed." The circuit - a word processor package doesn't assume that you had produced hand written draft before you start typing and pcb cad shouldn't assume you have done a paper circuit first. I design the circuit on-screen. I may import bits from earlier circuits. When I draw a bias chain I don't know what the values are going to be, that is left until I'm happy that I have got the configuration right. The design process may include several changes of mind, adding components, taking the out, etc.

Q&A

Shifting phases?
I am looking for a circuit to phase shift by 90° the components of a signal with frequencies in the range 10Hz to about 350Hz. Although simple integration or differentiation can achieve this, they do so at the expense of a frequency-dependent change in the signal amplitude which I cannot use. In Electronics World April 1993, Terrance Fliegen mentions that such a 'useful analogue function may be realised differentially with all-pass filters', but this hint has proven insufficient.

Text books even mentioning all-pass filters seem to be the exception - at my level of mathematical sophistication anyway.

Are there any readers with a solution to this problem? It would help me, and being an unusual function may inspire other interesting designs.

Alan Scrimgeour
London

This question is repeated from p 790, Oct '96 issue - ed)

In answer to Alan Scrimgeour's query, it is only possible to produce an approximation to a wide-band 90° phase-shift. The complexity of the solution depends very much on the tolerable errors. To handle 10Hz signals, only active all-pass filters are really practicable. The design procedure is too lengthy to reproduce here but is not difficult, and a good source of the information is the 'Electronic filter design handbook' by A B Williams (McGraw Hill), The ISBN of the first edition is 0 07 07043 0, and this deals with the subject fully, but there is a later edition.

John Woodgate
Rayleigh
Essex

In answer to the question from Alan Scrimgeour: The need to phase shift audio frequencies by 90° is also required in the phasing method of ssb generation. The article on this subject in Electronics World March 1994, pp202-206 covers this subject along with the merits of polyphase networks versus 'all-pass' filters.

John Crabtree
Connecticut
USA
LETTERS

When I am happy with the configuration I resubber the components, take a print, get the calculator out and work out the values and decide on whether a capacitor needs to be polypropylene, or a ceramic, or whatever. In other words when I am drawing the circuit I do not know either the value or the package of the components and the changes of the circuit reference remaining unchanged is negligible.

To simply re-number one component in *Easy PC Professional* XM requires switching from keyboard to mouse to keyboard to mouse to keyboard and finally to mouse.

What I want is acad package which at the schematic stage does not worry about value or package size.

John Kennaugh
Callington
Cornwall

Rod replies:

It think that John Kennaugh has not read the first issue, i.e. Sept. '96, in which I said, "The review is not intended to enable the reader to choose one program to suit his or her particular requirements..." and this letter is about just that.

I don't think John can have read the October issue either, in which I said "I think relative to having the circuit drawn before you on real paper, all methods of representing the circuit on screen are inferior if planning a circuit from scratch rather than just drafting... neither is the mouse a good drawing tool."

The comparison between a word processor and cad is not satisfactory. It would be valid if you had to give a value and specify a package for the letter "A", letter "B" and so on, then position it as you do with the parts in a schematic program. Then a word processor would be just as clumsy as today's schematic drawing programs!

Schematic drawing programs are only there as an entry into those things you just cannot do well with pen and paper — simulating a circuit, routing a PCB and are regarded as a necessary evil. The difficulties are minimised in CircuitMaker and Electronics Workbench, and I make this clear in the review, but they are still there. Moreover, in the more expensive up-market products, schematic drawing does not get any easier: you just get more features.

My review was about producing PCBs, and not about using the monitor screen as an improvised circuit design tool. So it is not surprising the review did not answer John Kennaugh's question. The very title should have told him that.

Is there a need for a 'scribble-pad' type of schematic drawing program for designing rather than drafting? I'm not sure there is. If there were a need, I think that one of the current generation of software writers would have produced it by now.

Rod Cooper
Sutton Coldfield
West Midlands

NEW & HARDLY USED TEST EQUIPMENT

NEW RIGILITE 2900WZ OSCILLOSCOPES MODEL HC2562
5MHz - 200MHz; 2 x 59/57.75 V, 37.5 MHz; TV Spot; 40 MHz; £180 Un-used £220

SPECTRO-SCOPES W.P.110A NWM SIGNAL GENERATOR
100kHz - 110MHz, Output -16dB to 19dB, FM -200kHz; 52 Pedal Memory, Digital Display Frequency & Output
Used £450 Un-used £750

PANASONIC VP171A STEREO SIGNAL GENERATOR
Generates Broadcast FM - 40MHz, Predator Memory, £160 Un-used £250

GOODWILL GFC 9050G
Frequency Counter 10Hz - 120MHz; 8 Digit Display; 15minute Sounder
Un-used £35

ANALOGUE MULTIMETER MODEL HC488
AC/DC volts, DC Current, 15 Amps, Ranges Continuity buzzer; Transistor tester
Un-used £55

GOODWILL RVY 427
Dual Channel, AC
HILLCY/THI/TER
15kHz - 30kHz in 12 ranges; Frequency 10kHz - 1MHz
Used £100 Un-used £125

GOODWILL GAS 868
Audio Generator
Square/Sine 10kHz - 1MHz in 5 ranges; 0.5% Low Distortion; 5 steps Output
Alternatives
Used £60 Un-used £80

LETTERBOARD

This circuit appeared as part of Nick Wheeler's article on page 893 of the November 1996 issue. Apologies. The original circuit redrew contained an error in the connections around the output.

SPECTRUM ANALYSERS

- [_AVAILABLE](#)

Used Equipment - GUARANTEED. Manuals supplied if possible.

This is a very small sample of items available. For a full list of our stock, please email, telephone or visit

STEWART of READING

110 WYKEHAM ROAD, READING, BERKS, RG6 1PL

Telephone: (0118) 92068841, Fax: (0118) 93516896

Caters Welcome 9am-5.30pm Monday to Friday (other times by arrangement)

LETTERBOARD

CIRCLE NO. 146 ON REPLY CARD

LETTERBOARD

172

LETTERBOARD

ELECTRONICS WORLD February 1997
Please refer to the content provided in the image.
ARTICLES FOR SALE

SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT
Cooke International
ELECTRONIC TEST & MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham,
Bognor Regis, West Sussex, PO22 0EB, U.K.
Tel: (+44)01243 545111 Fax: (+44)01243 542457

CIRCLE NO. 117 ON REPLY CARD

OPERATING & SERVICE MANUALS

CONTACT
Cooke International
ELECTRONIC TEST & MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham,
Bognor Regis, West Sussex, PO22 0EB, U.K.
Tel: (+44)01243 545111 Fax: (+44)01243 542457

CIRCLE NO. 118 ON REPLY CARD

ADVERTISERS’ INDEX

Adept ... 103
Anchor .. 147
Antrim ... 151
Applied .. 166
Bull ... 158
Bull ... 173
CMS ... 151
Conford 151
Dataman 137
Display 155
Electromail 137
Equinox 125
Field ... 125
Halcyon 93
Hart .. 90
Hitex ... 95
Johns ... 166
JPG ... 149
Keytronics 170
Labcenter 167
M & B Radio 90
Milford 101
Niche ... 170
Number One 132
Oema ... 125
Olson ... 99
Pico ... 127
Raife ... 176
Robinson 101
Seetranx 139
Stewart 172
Surrey .. 151
Swift Designs 97
Telford 118
Telnet .. 118
Those .. 139
Tie Pie 111
Wood & Douglas 170
ARTICLES WANTED

WE WANT TO BUY!!

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. HENSON LTD.
21 Lodge Lane, N. Finchley, London N12 8JG.
5 Mins, from Tally Ho Corner.
TELEPHONE
0181-445-2713/0749
FAX 0181-445-5702

WANTED

TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc. Factory Clearance, Prompt Service and Payment.

HTB ELEKTRONIK
Alter Apeler Weg 5
27619 Schinfeld, Germany
Tel: 0049 4706 7044
Fax: 0049 4706 7049

40 YEARS WIRELESS WORLD '52-'75
bound, 76-, 92 available, Offers Telephone
0121-655-26.
Tek. 579 (575) Curve Traceurs. Phone 01460 73557.

HEWLETT PACKARD
TEKTRONIK
MARCONI
TEST EQUIPMENT
WANTED!
M&B RADIO
34 Bishopsgate Street, Leeds LS1 4BB
Tel: (0113) 2431449
Fax: (0113) 2426081

SMALL SELECTION of Aircraft starter motors, DC generators and rotary converters. Possibly suit electric vehicles etc. £10 to £50 depending on condition and type. Tel: Bristol 01179 759883.

MICROCHIP 'MICROMASTER' development system £1,150. Multidrive 'Vappote' solenoid machine £3,000. Both sealed. 805/12 Emulator £400. Tel: 01295 810859.

RECRUITMENT

Instrumentation Scientist/Technician

The British Antarctic Survey, a Government-funded body, organises and carries out a balanced and optimal programme of research in Antarctica of global significance in the Earth, Atmospheric and Life Sciences. As well as its headquarters building on the outskirts of Cambridge, three permanently manned stations and one summer only station are maintained in the Antarctic.

We are looking to recruit an Instrumentation Scientist/Technician to work with the atmospheric boundary layer group. Duties will include calibration and maintenance of micrometeorological equipment for eventual deployment in Antarctica. Responsible for the upkeep of hardware documentation, other duties will also include the repair and possible modification of returning field instruments and some upgrading of 'realtime' logger software.

As you will spend up to six months in the Antarctic each austral summer and assist in the deployment of new equipment, you must be physically fit.

The post is for three years.

You will have a degree in Electronic Engineering, Physics or equivalent. Post-graduate experience in instrumentation would be highly desirable. However, no experience of low temperature or extreme environment equipment design is expected and training in these areas will be provided at the BAS Headquarters in Cambridge.

Starting salary will be from £13,698 per annum depending on qualifications and experience.

For further details and an application form please contact the Personnel Section, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET. Tel: 01223 251508/507. Please quote ref: BAS 56/96. The closing date for completed application forms is 23 January 1997.

British Antarctic Survey
Natural Environment Research Council

ARTICLES FOR SALE

Protect Your Microchips from STATIC DISCHARGE!

Use an SSE grounding kit.
Kit includes:
- static dissipative solder resistant rubber mat.
- wrist strap
- ground lead
- earth plug

Mat size 70 x 30 cm - offer price £18.65 per kit + VAT - Ref: AGK1
Mat size 25 x 20 cm - offer price £12.95 per kit + VAT - Ref: AGK2

STATIC SAFE ENVIRONMENTS
127 Hagley Road, Birmingham B16 8XU
Tel: 0121 454 8230 Fax: 0121 626 2775

TOP PRICES PAID
For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited
1 Mayo Road, Croydon
Croydon CR0 2DP
TEL: 0181-684 1166 FAX: 0181-684 3056

WANTED

TELFORD ELECTRONICS
Phone: 01952 605451 Fax: 01952 677978

Consider
Your costs to continue to stock
UNWANTED SURPLUS ... EXCESS ... OBSOLETE
STOCKS OF:
ELECTRONIC-ELECTRICAL COMPONENTS &
ACCESSORIES
RELEASE for
PAYMENT IN ADVANCE
OF COLLECTION
contact
K.B. Components,
21 Playle Chase, Gt. Toatham, Maldon, Essex, CM9 8UT
Tel: 01621 893104 Fax: 01621 893108 Mobile: 0802 392745
REGISTER TO RECEIVE MONTHLY PUBLISHED STOCK LISTS AT NO CHARGE OF ALL EXISTING NEW, UNUSED, STOCKS OF ALL COMPONENTS AND ACCESSORIES.
SPECTRUM ANALYSERS

ANRITSU MS420U 10kHz-30MHz network/spectrum analyser £5000

AXCOM - portable, battery operated, to 1000MHz £2000

TETRAX 492, 21GHz portable spectrum analyser, with options 1, 2 and 3 £6500 or £7500 with multiplexer and mixers to 40GHz £6000

HP8711A 300kHz-1.3GHz network analyser £4000

HP8753A vector network analyser, 3GHz £7500

HP8702B lightweight component analyser options (506-0111) £14000

HP8556A/1127 21GHz £10000

HP8556A/2127 250MHz £1200

HP8556A/1.8GHz portable, RS232 option £4250

MARCONI INSTRUMENTS

1648B serial data generator £500

3764A (digital) transmission analyser £3500

335A synthesizer/level generator £2000

3332A synthesizer function generator £1000

33230G/3322D programmable attenuators 4GHz, with driver 11173A £1000

As above but 15GHz set £1500

315IC selective voltmeter £1250

7791C primary multiplexer analyser £1250

7790D signal testing set with 2 x 37915A interface cards £5000

4180B (a) network, DC voltage source £4000

427A multipurpose source £2500

438 probe £50

386A (3GHz) frequency counter £1500

51401A 1GHz digital oscilloscope, now inc. 2x 1GHz active probes £2200

54502A digital oscilloscope 400MHz-4GHz £2500

8007B pulse generator 100MHz £950

811A pulse generator £1500

8082 pulse generator 250MHz £2000

811A pulse generator 20MHz £1250

8146A optical lth, with options 2/3 plug-in £1455S (single-mode) £850

816A slotted line 1.8-1.9GHz with 90°C & 447 probe £2000

444A tracking generator with option 659 £2000

6222A/6220C 10MHz-2GHz sweep generator £2000

7510A gain-phase analyser 100kHz-300MHz £2000

2573A vector network analyser £2500

2211A EFD portable multimode test set £5120

2216A 48-bit bussed, colour option main-frame £1000

2211A/0117A 48-bit colour screen option network advisor £3000

SEND FOR LATEST STOCK LIST. WE FAX LISTS AND SHIP WORLDWIDE. FULLY LAB-TESTED AND NO-QUIBBLE GUARANTEED

Contact Malcolm Wells on 0181-652 3620

A regular advertising feature enabling readers to obtain more information on companies’ products or services.

Electronics UPDATE

Comprehensive new LCD brochure

The widest range of colour LCDs, LCD monitors and plug and play kits available in the UK, all in one easy to use brochure, is now available FREE!

It includes products ranging from 2.9” monitors to 16.1” colour LCD screens, mono/colour STN TFTs and touch screen technology from the world’s leading manufacturers.

For further information or your free copy, please phone 01737 765900 or Fax 01737 771908

NEW Feedback T&M Catalogue

The latest edition of the Feedback Test & Measurement catalogue is now available. Over 600 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workcell, or a solution to a particular Test & Measurement need the NEW Feedback catalogue will solve your problems, send for a copy NOW!

CIRCLE NO. 148 ON REPLY CARD

NEW JenSen TOOLS CATALOGUE

Colourful new catalogue, hot off the press from JenSen Tools, presents unique new tool kits for service/support of communications equipment. Also latest test equipment from many major manufacturers. Includes hard-to-find tools, PC/LAN diagnostics, bench accessories, static control, technical manuals and more.

Ring 0800 633246 or Fax 01604 785573 for a free copy.

JenSen Tools, 10-12 Ravens Way, Northampton NN3 2JD

HEWLETT PACKARD

Catalogue, available from your local Hewlett Packard dealer.

CIRCLE NO. 149 ON REPLY CARD

PHILIPS PMM167 2m-bio/10MHz function generator £750

RACAL DANA 3300 microwave signal generator £4000

RACAL-DANA 1301A true RMS 1MHz variometer £350

SCHUMBERGER 7091 precision voltmeter 8.5 digits £2750

TEXTRAX P6201 FET PROBE £350

WANDEL & GOLTERMANN WM2035 level tracer £350

WANDEL & GOLTERMANN P1M-45 jitter meter for £350

SONET & SDH £5250

WAVETEK 23 synthesised function generator £1250

WAVETEK 1067 opt 522 1-500MHz sweep generator £500

WAVEKIN 3220 2048 impulse pack (for 32K distortion analyser) £1250

TEXTRAX AM201-6003 current probe £1600

CIRCLE NO. 148 ON REPLY CARD

1997 Full Catalogue Data File Words.

The National Instruments 1997 catalogue features our new BridgeVIEW and Lookout software packages for industrial automation. Other software products include LabVIEW, LabWindows/CVI, and HiQ. In addition, our new line of MINA products provides a complete imaging solution. Hardware products include GPIB, DAI, VXI and new serial interfaces for industrial communications applications.

CIRCLE NO. 149 ON REPLY CARD

CIRCLE NO. 150 ON REPLY CARD

CIRCLE NO. 151 ON REPLY CARD
8051 MICROCONTROLLERS + FLASH

MICRO-PRO 51

State-of-the-art programmer for the 8051 family:
- Supporting support for the entire Atmel 89C and 8051 microcontroller families
- Also supports many Phillips, Intel, Dallas & Siemens 8051 derivatives
- Field programmable hardware enhances future device support

Order code: MPS1 SY$ £125.00

Products are now available from Farnell Components

Microcontroller in-circuit re-programming adaptor

Now you can re-program the entire Atmel microcontroller family in-circuit!
No more re-moving chips - ideal for 8051 single-chip project development.
Supplied with AT89C2051 and AT89C52 + 11.0592 MHz Crystal.
(Requires Micro-PRO 51 programmer to operate - see above)
Order code: AD-MICRO-ICR £125.00

The 8051 FLASH microcontroller family

<table>
<thead>
<tr>
<th>Atmel Part Code</th>
<th>Flash Code ROM (bytes)</th>
<th>PHROM (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8C51</td>
<td>4K</td>
<td>-</td>
<td>B8L51</td>
<td>4K</td>
<td>-</td>
<td>B8C52</td>
<td>4K</td>
<td>-</td>
</tr>
<tr>
<td>B8LV52</td>
<td>4K</td>
<td>-</td>
<td>B8PV52</td>
<td>4K</td>
<td>-</td>
<td>B8RV52</td>
<td>4K</td>
<td>-</td>
</tr>
<tr>
<td>B8LV55</td>
<td>8K</td>
<td>-</td>
<td>B8PV55</td>
<td>8K</td>
<td>-</td>
<td>B8RV55</td>
<td>8K</td>
<td>-</td>
</tr>
<tr>
<td>B8S252</td>
<td>2K</td>
<td>-</td>
<td>B8S252</td>
<td>2K</td>
<td>-</td>
<td>B8S251</td>
<td>2K</td>
<td>-</td>
</tr>
<tr>
<td>B8S2051</td>
<td>1K</td>
<td>-</td>
<td>B8S201</td>
<td>1K</td>
<td>-</td>
<td>B8S1051</td>
<td>1K</td>
<td>-</td>
</tr>
</tbody>
</table>

- Atmel Microcontrollers feature on-chip erasable FLASH code memory
- FLASH can be electrically erased in under 15ms (no need for UV eraser)
- 89C51/89C52 are drop-in FLASH replacements for the generic 87C51/87C52 devices
- 89C2051 is a single chip 8051 in a 20 pin package, even retaining the serial port

CS1 STAMPER SYSTEM

- Optimising C Compiler
- Macro Assembler
- Software Simulator
- Device Programmer
- Sample Devices
- Hardware/Software Documentation

Only £199.00

FREE Atmel CD ROM data book
- System supplied with 1 x Atmel AT89C1051 and 1 x AT89C2051 Microcontrollers
- C-Compiler + Assembler output restricted to 2k total program code.

Order code: AT-89C051-ST

B8C-1051/2051 Microcontroller Demo Module

A feature-packed demonstration module for the microcontroller family.
LEDs, 7-segment display, joystick, button, buzzers, jack input.
Order code: AT-89C051-DIM £30.00

B8C-1051/2051 Microcontroller OEM Module

An ideal development system can be used for evaluation or can be designed into custom products.
LEDs, 7-segment, joystick, button, buzzers, jack input.
Order code: AT-89C051-OEM £29.00

“EVERYTHING YOU NEED TO DEVELOP AN EMBEDDED 8051 PROJECT IN C”
The World's Most Powerful, Portable Programmers

£495 + VAT

S4 GAL module
Programs a wide range of 20 and 24 pin logic devices from the major GAL vendors. Supports JEDEC files from all popular logic compilers.

£195 + VAT

The Dataman Challenge
Try the Dataman S4 or Dataman-48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, most versatile additions you can make to your programming toolbox, we will refund your money in full.

Dataman S4
Compare the Dataman S4 with any other programmer and you'll see why it's the world's undisputed number one.

S4 is capable of programming 8 and 16-bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 Microcontrollers and more. S4 also emulates ROM and RAM as standard!

S4 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

Dataman-48
Our new Dataman-48 programmer adds PinSmart® technology to provide true no-adaptor programming right up to 48-pin DIL devices. Dataman-48 connects straight to your PC's parallel port and works great with laptops.

Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

As with S4, you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming.

The current device library contains over 1800 of the most popular logic and memory devices including GALs, PALs, CEPALs, RALS, 8 and 16-bit EPROMs, EEPROMs, PEROMs, FLASH, BOOT-BLOCK, BIPOLAR, MACH, FPGAs, PICs and many other Microcontrollers. We even include a 44-pin universal PLCC adaptor.

if you need to program different packaging styles, we stock adaptors for SOP, TSOPI, QFP and S0P. The Dataman-48 is also capable of emulation when used with memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

Dataman Programmers Ltd, Station Road, Maiden Newton, Dorset DT2 0AE, UK
Telephone +44/0 1300 320719 Fax +44/0 1300 321012 BBS +44/0 1300 321055 (24hr)
Modem V.34/V.FC/V.32bis Home page: http://www.dataman.com
FTP: ftp.dataman.com Email: sales@dataman.com

Hotline
01300 320719

Orders received by 4pm will normally be despatched same day.
Order today, get it tomorrow!