ULTRA-FAST AUDIO POWER

Battery-low warning
Resistor calculator in c
Doug Self on balanced i/o
Fessenden’s heterodyne
Programmable LSI
Monitoring mains
PIC-based message beacon

Extra circuit ideas in this issue
BASIC STAMPS®

PIC based BASIC Stamps are perfect for one-off and low volume applications. Their easy to learn but powerful BASIC syntax (with familiar instructions such as GOTO, FOR ... NEXT, and IF ... THEN as well as instructions for serial I/O, pulse measurement, button debounce, DTMF, X-10 etc) will get your application up and running in hours. Once programmed, the Stamp runs independantly of your PC and programs are stored in non-volatile EEPROM so they can be changed at will. Detailed manuals cover many commonly needed routines and the Stamp is well supported by a growing list of custom application kits to cut development time even further. Available in two formats:

- **BASIC Stamp 1 (BS1-IC)**
 - 8 I/O Lines
 - up to 80 program lines
 - Comms to 2400 baud
 - 35x10mm size
 - £29 single price

- **BASIC Stamp 2 (BS2-IC)**
 - 16 I/O Lines
 - up to 500 program lines
 - Comms to 50 kbaud
 - 24pin DIP package
 - £49 single price

BASIC Stamp Development Kits including PC software, manuals, 24-application notes, downloader cables, Stamp (BS1-IC or BS2-IC) and corresponding Project Board - £99 / £119

PIC16Cxx DEVELOPMENT TOOLS

For medium to large volumes and high speed requirements, the popular range of PICs is hard to beat. We offer an extensive range of programmers, emulators and associated hardware to support the following PICs: 52 54 55 56 57 58 620 621 622 623 624 63 64 65 71 72 73 74 84

PIC16Cxx Programmer

- Also stocked
 - ZIF sockets
 - SOIC/SSOP/PLCC adapters
 - Prototyping boards
 - Compilers/Simulator

- **In Circuit Emulators**
 - True hardware emulation of program memory, registers and I/O
 - Unlimited breakpoints.
 - Single stepping
 - Software-programmable oscillator
 - Windows Environment
 - Runs from 32Khz to 10Mhz ('xx) and 20Mhz ('5x)
 - Source level debugging for PASM(X), MPASM and MPC
 - Optional trace facility

Milford Instruments

Milford House, 120 High Street, SOUTH MILFORD LS25 5AQ
01977 683665 Fax 01977 681465

Please call or fax to receive our catalogue and price list. All prices exclude VAT and £3 shipping. BASIC Stamp & the Parallax logo are registered trademarks of Parallax, Inc.

Parallax Inc
3805 Atherton Road, #102
Rocklin, CA 95765 USA
916-624-8333, Fax 916-624-8303
http://www.parallaxinc.com
Contents

278 STOCHINO
Not only is Giovanni Stochino’s power amplifier ultra fast, slewing at over 300V/µs, it is also pure, with a thd of 0.002% when driving 100W at 1kHz.

285 BATTERY LOW WARNING
To be re-used successfully, alkaline cells need to be recharged when two-thirds full. But how do you know when you’ve used a third of the charge? Rod Cooper explains.

291 MONITORING MAINS
Using a DIY transformer backwards provides a convenient and safe means of monitoring mains current. By Nick Wheeler.

293 HETERODYNE
John Betrose and George Elliott set the record straight as to who invented the heterodyne.

298 MESSAGE BEACON
Bill Francis’ beacon sends messages from a central transmitter to a number of remote stations – all under PIC control.

306 A BALANCED VIEW
Douglas Self explains how to get signals from A to B with the best possible integrity using balanced line inputs and outputs.

330 SOUND FROM PICTURES
Richard Ball reports on a new flat-panel loudspeaker technology.

332 I/O THROUGH WINDOWS
Windows was not intended for control applications, but you can write your own DLLs, as Colin Attenborough explains.

340 RESISTORS IN C
Calculate parallel and series resistor combinations quickly and precisely using John Lavender’s c program.

343 PROGRAMMABLE LOGIC
In this month’s extract, Geoff Bostock investigates more powerful programmable devices produced using large-scale integration.

Regulargs

267 COMMENT
Modern mayhem

268 NEWS
3D acceleration sensor, New 23GHz transistors, 0.18µm chip geometries, 2Gbit/s static ram, Network computers.

274 RESEARCH NOTES
Steel advances flat-panel displays, Sun-burned satellite? Atom-firing laser, High sensitivity on-chip microphone.

313 LETTERS
Simpler outphasing, Cable debate, Marconi sell-out, Crossover design, Error cancelling.

335 NEW PRODUCTS
Pick of the month – classified for convenience.

322 CIRCUIT IDEAS EXTRA
• RMS-to-dc converter reads in dB,
• Active 0.1V drop 3-phase rectifier,
• Low-power liquid detector
• Voltage controlled mono-mode
• Manually loading serial data
• 20Hz to 22kHz in one sweep
• Locking an LC oscillator
• PC driver for lcd modules
• Noisy supply for radio testing

April 1997 ELECTRONICS WORLD
MARCONI 2370 Spectrum analyser

30Hz – 110MHz Frequency range
1Hz Resolution/phase lock tuning
Digital storage with dual display
Built-in tracking generator
9 digit frequency counter

£850 + carriage/vat
Includes 30 day unconditional warranty

M&B Radio, 86 Bishopsgate Street, Leeds LS1 4BB
Tel: (+44) 0113 2435649
Fax: (+44) 0113 2426881
Modem mayhem

Just as you have forked out £200 for the latest 33.6kbit/s data modem — or probably twice as much to go ISDN — you’re told you have got it wrong. You should have waited for the new 56kbit/s modem.

Or should you? All is not what it seems and this proposal for a new 56kbit/s modem ‘standard’ looks distinctly shaky. For a start, it’s not a standard, more like two proprietary and mutually incompatible contentions for a standard. What is more, it is debatable whether it is truly the advance it claims to be. It could even become one of those glorious side-alleys, like PAL-Plus, DCC and the Sony Elcaset — technically ingenious but ignored by most users.

Ingenious these modems certainly are, achieving higher speed (in one direction) by eliminating one digital-to-analogue conversion process. What is not so clear is whether most users will actually benefit thereby. And if not, why upgrade to the new ‘standard’?

Two competing developers have announced modems that achieve line speeds of up to 56kbit/s, but in the downstream direction only. The data that you transmit has a maximum transfer rate of 28.8 or 33.6kbit/s. Moreover, the two protocols, x2 from US Robotics and K56Flex being developed by Lucent and Rockwell are not mutually interoperable. While each vendor is attempt to grab market share — and sell their expensive equipment to Internet service provider hosts — the fact remains that they are not mutually compatible. If your host does not support the new standard your transmission will drop back to your previous standard speed, probably 28.8kbit/s.

The speed increase applies only for connections made to host modems equipped with the same ‘flavour’ of 56kbit/s as your own, which more or less restricts it to Internet connections. Point-to-point data transfer and connections to bulletin boards or your friends’ PC parented on analogue lines will be restricted to 28.8 or 33.6kbit/s.

In many situations, too, any speed increase is illusory. On Internet connections at least, there is little to be gained from a lightning-speed connection to your nearest point of presence if the real log-jams prevail the other side. For the average user slow downloads will remain a fact of life until extra bandwidth is installed along the main arteries of the Internet.

For some users upgrading to 56kbit/s will involve minimal expense and might even be worthwhile. This is because US Robotics says that all of its products that currently support software downloads can be easily upgraded to x2. This does not apply to its older products, though.

Whether the upgrade turns out to be worthwhile or not really depends on take-up of the x2 protocol by Internet service providers. It remains to be seen whether they opt to support x2; currently K56Flex counts more companies — but not necessarily more market share — on its side.

Meanwhile, don’t hold your breath waiting for either new standard to be ratified. In fact they may even be defeated on purely regulatory grounds. A report in the Los Angeles Times of 24th January suggests the 28.8kbit/s modem standard may well remain the norm for some while longer. The USA’s regulatory body, the Federal Communications Commission, currently has a regulation that limits the amount of power used to send data through a telephone line — which could compromise the legality of faster modems.

The report argues that because newer, faster modems will require more power for data transmission than the existing rules allow, the FCC must grant a waiver before 56k modems can be released. Whichever viewpoint prevails, it is clear that asymmetrical 56kbit/s modems are an interesting way-station along the route to high-speed data transfer — but not the ultimate end-station. The notion that these new modems represent an ISDN-killer is entirely false.

Andrew Emmerson

The notion that the new 56kbit/s modems represent an ISDN-killer is entirely false.
Europe too slow on ISDN technology

Tardy telecommunications network operators are delaying the potential of networked computing by their slow implementation of ISDN and successor digital subscriber line (xDSL) technologies.

That was the message coming from the chairman and CEO of Intel, Dr Andy Grove, at a London seminar recently. "Technically there's nothing on the way to move us to higher bandwidth better than ISDN," said Grove. However, except for Germany, the implementation of ISDN is "very slow", he said.

Driving networked computing forward was the fact that up to 200m people across the world have PCs that can be connected to the communications networks. But hobbling its progress is the limitation of the network. "We need improving bandwidth and declining prices and neither trend is being served sufficiently," said Grove.

"The computer industry does its stuff in delivering increased performance and reducing prices because it's a competitive and open industry", said Grove, "but the telecommunications industry has a government monopoly legacy which is not used to delivering its services in a competitive economy."

America is far in advance of Europe in using PCs for communications - 40m Americans have e-mail access, only 8m Europeans. A continuation of that gap could lead to a 'technology deficit' for Europe, said Grove.

However, he quoted a survey suggesting that the UK was far ahead of Continental Europe in plans to add Internet access to its business computers - 30 per cent of UK IT managers are intending to add it, compared to 12 per cent in Germany and only 6 per cent in France.

Grove reiterated Intel's commitment to keep its microprocessors compatible with all past software written for them. "Backwards compatibility is an immutable definer of our road map", said Grove, "it has been for fifteen years and it's going to be for a long, long time".

2Gbyte/s static ram holds 4Mbit

NEC has developed a 4Mbit, 500MHz static ram capable of a 2Gbyte/s data transfer rate. Designed for use as level two cache for microprocessors, the ram has a pipeline-burst architecture where data is transferred as a sequence of four, 32-bit words. The 12x11mm chip is fabricated in 0.25μm c-mos. Its current consumption is 270mA. An additional 40mA is needed to drive the 4cm path to the processor.

New process delivers 0.18μm geometries

LSI's G11 process uses five metal layers. Layers one to three are 0.85μm wide, while four and five have twice the width.

LSI Logic launched its latest semiconductor process for Asic and c-mos devices this week. The G11 process uses transistors with an effective gate length (Leff) of 0.18μm, or 0.25μm drawn.

G11 devices will be able to integrate over eight million logic gates and 8Mbytes of s-ram on the same die, says the company. This corresponds to dies containing 64m transistors. Three-transistor d-ram and mixed signal circuits are also available.

Logic gate count has increased by 60 per cent over the previous G10 process. Speed is up by a claimed 30 per cent while power dissipation is a quarter of G10's.

Ronnie Vasishta, marketing manager for G11, said: "We see market needs separated into three distinct areas." These are low power, battery applications such as mobile phones; the high performance area including workstations and the 'balanced' market such as consumer goods.

LSI is providing two different libraries for G11: one for high performance, and the other tailored to high density and low power. The third market area would use a mixture of the libraries depending on a product's specific needs.

Initial G11 production is expected this year. Full production at LSI's 8in Gresham, Oregon fab is due in 1998.

LSI has joined a growing list of manufacturers offering 0.18μm devices. Texas Instruments and IBM have both announced a 0.18μm process. NEC is believed to be waiting until March to release details of its process.
Micro Video Cameras

Following our recent Readers Offer for the 721-S Micro Camera many readers have contacted us asking about other items in our range of Micro Cameras and Security Surveillance equipment. We are SOLE AUTHORISED IMPORTERS of the entire range of Cameras and Video Surveillance equipment produced by the world’s leading manufacturer. ALL items in the range carry a full 12 Months Guarantee.

If you would like to receive our comprehensive catalogue of Cameras and associated equipment please send a large SAE with 46p postage, marked “Camera Catalogue”

Here is a sample of the available stock.

A-721-S Micro Camera 32mm x 32mm ... £85
A-721P Micro PIN- HOLE Camera ... 32mm x 32mm ... £85
A-921-S Camera with AUDIO ... 30mm x 30mm ... £95
A-1211 C/CS Mount Camera ... 110mm x 60mm x 60mm ... £110
A-521 Micro Cased Camera 43mm x 48mm x 58mm ... metal cased ...£120
6001-A High Resolution COLOUR Cameras (420 lines) ... 0.45 lux ... £210
Outdoor Camera Housings ... Aluminium ... £35
Camera Mounting Brackets ... Universal Mounting ... £5.95
Camera Switchers ... for up to 8 Cameras ... £75
NEW MODEL Auto Record Controllers ...Infra Red Controller using “One For All” technology controls your STANDARD VHS Video, and allows you to make unattended recordings of intruders etc. Accepts Normally open or Normally Closed contact inputs. Self contained unit ... Turns your VHS recorder into a professional Security Recorder ONLY ... £85
QUAD-1 B/W Multivision Processor ... 4 pictures on one screen/video ... Including 4 channel switcher ... NOW ONLY £249
QUAD-2 COLOUR Multi Vision processor, REAL TIME ... Including 4 channel switcher ... 4 Pictures on one screen/video ... NOW ONLY £75.50
QUAD-3 COLOUR Multi Vision Processor. REAL TIME ... with On screen Titles and Time/Date information ... Including 4 channel switcher ... 4 Pictures on one screen/video ...NOW ONLY £99.50.
IRI-1 Infra Red Illuminator ... 12V operation ... 60 degree illumination angle to 20m. For “Total Darkness Surveillance” ... NOW ONLY £85.
VMS-1 ... Video Motion Sensor ... replaced alarm sensors with totally electronic video monitoring system that detects changes in the video signal ... £175
C/CS Format lenses ... Premium 3.6mm = £22.50 ... Superior 8mm = £27.50

PLEASE NOTE:

SPECIAL OFFER:

New and Boxed 14" COLOUR MONITORS. Models 1412 24V DC operation @ 2.2A... Twin Composite Video Inputs (75ohm BNC) Black steel case... Supplied with a pair of trailing leads for DC connections. Very easy to convert to 240V operation by adding a 240V / 24V supply either internally or externally. 30 Day Warranty. NEW CONDITION
Circuit Diagram available...request at time of ordering
NOW ONLY £99.00 INCL VAT
Courier delivery to UK addresses = £12.25)

VHS Video Players...Front Loading VHS Decks...12V operation. Rear Panel 2.6mm DC socket for power. Play...FF.RW...Stop Controls with the addition of REPEAT facility which allows the tape to be rewound and replayed time and time again. Video / Audio Outputs via Phono Sockets

AS-NEW Condition...

NOW ONLY £50.00 INCL VAT
Courier delivery to UK addresses = £8.75

OPEN 6 DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm

NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME

NATIONAL AND INTERNATIONAL MAIL ORDER A SPECIALITY

ALL PRICES INCLUDE VAT (AT 17.5%) and COURIER DELIVERY UNLESS OTHERWISE STATED
Sensor detects acceleration in 3D

The University of California, Berkeley and Sandia National Laboratories have described their three-axis micromachined accelerometer that includes on-chip servo and signal conditioning circuitry.

Both Analog Devices and Motorola already produce single-axis devices and Analog's has on-chip circuitry, so what is remarkable about this design?

"Apart from sensing all three axes, not just one or two, our accelerometer is different because it has fully differential signal conditioning throughout," said Mark Lemkin of Berkeley's team. "This increases its noise immunity to the point where a microprocessor could be placed on the same chip without disrupting the accelerometer's operation." The noise immunity requirement is bought into focus by the sensors output voltage of 7μV/mg (g is gravitational acceleration).

X and Y axes are sensed using two comb finger arrays similar to Analog's and Z-axis (out of the plane of the chip) measurements are made using a moving flat plate mass above a fixed plate. In this sense it is less sophisticated than Motorola's which has fixed plates above and below the moving mass, but simplifying the structure has allowed the use of a single polysilicon layer process. A capacitor with two fixed plates provides compensation.

Acceleration is measured by determining how much force is required to keep the moving masses in a fixed position relative to the substrate. The same capacitive electrodes are used both to sense the mass position and provide a restraining force. To separate the functions, the tasks are performed sequentially, the inertia of the plate integrating the force pulses.

The control loops use noise shaping. Lemkin said: "This idea is not new, but noise shaping, using a \(\Sigma \Delta \) loop, provides a direct digital output. This kind of loop can be difficult to stabilise and we have included forward path compensation using a discrete time FIR lead filter."

Sandia built the device using its buried micromachine technology where the micro-accelerometer is built in a trench on the wafer and covered with SiO\(_2\) while the c-mos circuitry is fabricated.

James Smith of the Sandia team said: "The etch resist for the c-mos circuitry is spun over the wafer. Unless the wafer surface is completely flat, and micromachines are too high at around 6μm, it does not flow to a consistent thickness. Unfortunately, the c-mos cannot be made first because it is damaged by the temperature needed to anneal the micromachine."

Annealing the machine first, then burying it, leaves a flat surface for c-mos fabrication and the SiO\(_2\) is etched away at the end to uncover the machine and free its working parts.

23GHz transistors promise to reduce phone costs

Philips Semiconductors has developed a way to make bipolar junction transistors (bjts) for the mobile phone market.

Operating at up to 23GHz, these fifth-generation silicon devices are claimed to be faster than the previous process. Being easier to make, they also promise to reduce the cost of the rf portion of cellular and cordless phones.

Wout Bijkerr, product marketing manager at Philips, said:"To enable the mobile phone market, handset manufacturers need to offer low cost, smaller and lighter phones."

Much of the recent research in mobile phones has focused on their shift to the higher 1.8 and 1.9GHz operating frequencies. Receiver and transmitter stages need transistors for amplifiers working at these frequencies.

Gallium arsenide (GaAs) devices have the appropriate speed, low noise and power characteristics, but are expensive. Philips claims its bjts have the right gain, noise and power characteristics, and are cheaper than their GaAs counterparts.

Richard Ball, Electronics Weekly

Mobile transistors... The double poly process has all connections to the top layer of metal. In older processes, the emitter and base were on one side of the substrate, the collector on the other. The active region of the device is grown epitaxially using chemical vapour deposition. Base and emitter connections are made via two layers of polysilicon. In the earlier process, the base metal lines and pad formed a capacitor with the collector on the opposite side of the substrate. Now the base-collector capacitance is reduced, speeding up the bit.
Important Announcement

Due to policy changes at the Ministry of Defence, Miscellaneous Government Surplus will no longer be sold via open auctions. The Disposal Sales Agency has appointed MGS (UK) Ltd as agents to act on their behalf to market and sell Genuine Ministry of Defence Surplus equipment. The categories include:

For anything from Amplifiers, CCTV and Spectrum Analysers, through to Frequency Counters, Oscilloscopes & Mainframes (the list is massive and being constantly updated), customers can contact MGS (UK) Ltd direct at:

MGS (UK) Ltd
The Oaks Industrial Estate,
Ravenstone Rd,
COALVILLE,
Leics. LE67 3NB

TELEPHONE: (01530) 810000
FAX: (01530) 830730
WEB: http://www.MGS.ltd.uk
e-mail: sales@mgs.ltd.uk

MGS (UK) Ltd Contractors To The Ministry Of Defence

April 1997 ELECTRONICS WORLD
Terabit memory chips produced using quantum wells

Single electron memories are frequently talked about among the storage literati, but Professor Hans Ludwig Hartnagel of the Technical Institute of Darmstadt, Germany points out a flaw in these devices: "The time taken to transfer, and therefore to read, an electron is non-deterministic, it cannot be predicted. It is like radioactive decay, it could happen after a picosecond or only after a whole second." The consequence, if Hartnagel is to be believed, is that a single electron per bit memory is not a practical proposition.

"The time distribution of a single-electron transfer event makes using Boolean logic impossible. Instead, some kind of statistical, fuzzy logic is required," said Hartnagel. "However, if a reasonable number of electrons is transferred, say 100, the time distribution of electron transfers is statistically far more certain. The time of peak electron flow is almost entirely predictable."

His argument is, that single electron storage cells have to be surrounded by a statistical decision making logic, wasting their size advantage. Far more sensible, he claims, to use around 100 electrons and be sure that the bit exists and can be manipulated with certainty.

Hartnagel proposes a quantum well charge coupled approach analogous to that used in charge-coupled device (ccd) cameras.

His device uses quantum wells, made of GaAs, in a AlGaAs substrate. Electrons in the GaAs do not have enough energy to escape into the AlGaAs, even with the additional thermal excitation that room temperature gives them. They are therefore trapped, or stored.

By placing a potential difference across two electrodes, one at each end of the cell, an energy gradient can be created to 'tip' the electrons into an adjacent cell. Once the gradient is removed the electrons are stored in the adjacent cell.

In his memory, the quantum wells are placed in a square matrix with X electrodes running in one direction between the cells and Y electrodes in the other.

While maintaining all other electrodes at a 'hold' potential, operating a pair of X electrodes tips a whole column of cells into their neighbours. Operating a pair of Y electrodes tips a whole row. By manipulating both X and Y electrodes, a single cell can be tipped into its diagonal neighbour. The plan is to use diagonal tipping to turn the whole matrix into a single serially-addressed storage cell chain.

Hartnagel has high hopes for quantum memories: "Conventional 1Gbit memories will be with us in two to three, perhaps five, years. Quantum terabit memories should around in 10,"

His team has so far made larger cells transfer successfully and has modelled the 100 electron cells.

Steve Bush, Electronics Weekly

Will network computers overtake pcs?

Half the UK’s large companies believe that network computers (NCs) will replace pcs as the choice for corporate desktop computing within the next five years, according to City market analysts, Durlacher Multimedia.

Meanwhile, IT industry analyst Robin Bloor says that enthusiasm for the NC is mounting in the UK. "The 'buy in' for this is very strong," he told EW, adding that "there are a number of beta sites where NCs are being used which have already noticed significant reductions in administration costs."

The Durlacher Intranet Report 1997, which is based on interviews with 100 IT directors and managers from top 1000 UK companies, cites that corporate Intranets will help to drive the change to NCs.

But Bloor argues that the savings in PC software and hardware upgrade costs will be the key driver. "In the business environment you want the tools to do the job," he said. "The last thing you want is the tools to keep changing for you."

This claim is backed by BT, which was the first European company to deploy Sun Microsystems' JavaStation NC. Terry Carlin, head of systems at BT Customer Service said: "We believe that with NCs the support costs can be reduced quite considerably."

Bloor maintains that NCs will be the obvious choice for business in years to come, while PCs will be mainly used in the home. "The home pc market and the corporate market have been provided with the same product for years. It's wrong," he said.

Jon Mainwaring, Electronics Weekly
NEW!
Electronics Workbench Version 5.0

Electronics Workbench Version 5 with analog, digital and mixed A/D SPICE simulation, a full suite of analyses and over 4,000 devices. Still the standard for power and ease of use. Now ten times faster. Still the same low price.

Join over 75,000 customers and find out why more engineers and hobbyists buy Electronics Workbench than any other SPICE simulator. You'll be working productively in 20 minutes, and creating better designs faster. We guarantee it!

£199

SAME GREAT PRICE!

High-End Features
TRUE MIXED ANALOG/DIGITAL YES
FULLY INTERACTIVE SIMULATION YES
ANALOG ENGINE SPICE 3F5, 32-BIT
DIGITAL ENGINE NATIVE, 32-BIT
TEMPERATURE CONTROL EACH DEVICE
PRO SCHEMATIC EDITOR YES
HIERARCHICAL CIRCUITS YES
VIRTUAL INSTRUMENTS YES
ON-SCREEN GRAPHS YES
ANALOG COMPONENTS OVER 100
DIGITAL COMPONENTS OVER 200
DEVICE MODELS OVER 4,000
MONEY-BACK GUARANTEE 30-DAY
TECHNICAL SUPPORT FREE

Powerful Analyses
DC OPERATING POINT YES
AC FREQUENCY YES
TRANSIENT YES
FOURIER YES
NOISE YES
DISTORTION YES

30-DAY MONEY-BACK GUARANTEE
VERSION 5.0 FOR WINDOWS 95/NT/3.1

CIRCLE NO. 111 ON REPLY CARD
How too much Sun killed a satellite

Earlier this year, AT&T’s Telestar 401 satellite suddenly stopped sending signals to Earth. Scientists are still not exactly sure why this happened, but they believe the event was just one effect of a massive solar storm. However the difference to previous odd events connected with solar activity is that this time researchers had in place a fleet of satellites that was able to observe the storm—the biggest ever documented—as it blew around the Earth.

In fact the storm is one of the best-documented space weather events ever. It began when, on 6 January, the Soho satellite took a picture of the Sun that showed the edge of a huge eruption called a coronal mass ejection (cme). Four days later, the recording was recorded as it sped by another satellite, called Wind, that is designed to monitor the solar wind just up-stream from Earth. Then, hours later, the Polar satellite recorded the effects on energetic particles in Earth’s radiation belts. Over the next several days, the intensity of the radiation belts increased more than 100 times over their previous levels.

The three satellites—Soho, Wind, and Polar—are part of the International Solar-Terrestrial Physics program, a collaboration of NASA, the European Space Agency, and the Japanese Institute of Space and Aeronautical Science. From ground observatories, satellites, spacecraft and computer simulations and models, ISTP is building a comprehensive picture of Earth’s magnetosphere and how it interacts with the Sun.

“We compiled the most complete data available on conditions in the magnetosphere during the event,” says Geoff Reeves, project leader for Solar and Polar’s energetic particle instrument at Los Alamos National Laboratory.

“Combined with information from the other satellites, now we can better understand why and how these solar events sometimes produce big effects.”

Could steel replace glass in flat panel displays?

Dramatic improvements in the durability and lightness of flat panel displays could be on the horizon following announcement of successful devices built on a steel foil substrate instead of glass. The development has been announced by two researchers at Princeton University, who have fabricated high-quality thin film transistors (tfts) on 200 µm-thick stainless steel.

Rigorous mechanical stressing of the devices—including dropping from a height of 1.6 m onto a hard surface, and flexing the substrate in multiple orientations—are reported to have produced no change in the characteristics of the tft (“Amorphous silicon thin-film transistors on steel foil substrates”, IEEE Electron Device Letters, Vol. 17, No 12, pp. 578-560).

The advantages of steel foil in terms or durability are pretty clear. But although stainless foil has been used in photovoltaic devices, its use as a substrate in display electronics has not been attempted before.

However, as the researchers point out, while the opacity of metal foils limits tft circuit applications to reflective or emissive displays, metal surfaces can be modified by coatings to achieve a wide range of optical properties. Moreover, the thermal coefficient of steel is a much better match to that of silicon. By adjusting the alloy, complete matching is possible.

This is a far more preferable situation than exists with the other great hope for more durable devices—plastics. Thermal coefficients of polymers are around 20-50 times that of silicon, and there are several other engineering problems that have to be overcome before plastics can be seriously considered.

But the current research shows that stainless-steel substrates could be the breakthrough needed in the fabrication of non-breakable tft backplanes, and would greatly reduce the substrate thickness and weight in comparison to traditional glass substrates.

So far, though the devices have shown a relatively high quality, no attempt has been made by the Princeton engineers to optimize substrate or film parameters. This leads to optimism that the metal-foil alternative has the potential to offer a very robust process, easily transferable to industrial applications.

More information contact: SD Thiss, Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
Coincidentally, at the time of the solar event scientists and satellite operators from across the country were meeting to discuss ways better to forecast the 'weather' in space that affects satellites.

Over phone lines, fax machines and the world-wide web, scientists with space weather data frantically downloaded the information onto their laptops. The result is that researchers were able to build up a preliminary but remarkably complete picture of what happened on the sun. It showed how the disturbance travelled to Earth, what it did to the magnetosphere when it got here, "and how that might have killed a $200 million satellite," adds Reeves.

More information contact: Gary Kliwer, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Putting the μ back into microphone

University of California engineers have produced an on-chip microphone that demonstrates greater sensitivity than any previous similar device and can also double as a loudspeaker. Key to design of the microfabricated device is a cantilever diaphragm that produces less residual stress than previous diaphragm microphones, while the relatively large deflections of the free end can produce a significant acoustic output ('Piezoelectric cantilever microphone and microspeaker,' SS Lee et al., Journal of Microelectromechanical Systems, Vol. 5 No 4, pp. 238-242).

Microphones are basically pressure sensors that detect airborne sound pressures that are ten orders of magnitude lower than ambient pressure. So the microphone needs an extremely compliant diaphragm to have an acceptable sensitivity. This latest development reflects growing interest in the micromachining of microphones. Among the advantages of micromachining over conventional fabrication are improved control, extreme miniaturisation, the ability to integrate with on-chip circuitry, and potential low-cost as a result of batch processing.

The 2000 by 2000 by 4.5μm California cantilever diaphragm has a zinc-oxide piezoelectric thin film on a supporting layer of low-pressure chemical-vapour-deposited low stress silicon nitride. By controlling the distribution of residual stress, out-of-plane deflections were typically no more than 35μm.

Measured sensitivity of the microphone is around 3mV/μbar in the low frequency range, rising to 20mV/μbar at the lowest resonant frequency of 890Hz.

Using the device as a loudspeaker produced a sound pressure level (spl) of 75dB at 890Hz, increasing to approximately 100dB at 4.8kHz.

The researchers say that the technique used to manufacture a flat, multilayer cantilever, involving patterning different thicknesses of ZnO film, could also hold relevance to production of other micromachined structures.

More information contact: Seung Lee, Berkeley Sensor & Actuator Center, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.
New laser knocks atoms into line

Physicists at MIT have created the first atom laser, a device that resembles an optical laser but emits atoms instead of light. The atoms have the remarkable property of coherency — moving in phase to form a single giant matter wave — and the resulting beam can be focused to a pin-point or made to travel large distances with minimal spreading. Already, researchers are speculating how the laser might be used to deposit atoms onto computer chips, creating much finer patterns than currently possible.

The atom laser has been a long-sought goal in physics, but there were many doubts whether it could be realised. An important intermediate step towards its development was the creation of a Bose-Einstein condensate (bec). This was achieved by chilling a gas of atoms to such a low temperature that the atomic matter waves overlap, and the atoms lose their individual identities.

The MIT group cooled the gas in two stages. In the first stage, laser cooling, the atoms were bombarded with optical-laser light. Frequencies and polarisations of the laser beams were chosen in such a way that photons emitted by the gas atoms were slightly more energetic than photons absorbed by the atoms. The energy difference is responsible for the cooling effect. After absorbing and emitting about 100,000 photons, the atoms reached a temperature of about 100 microkelvin.

The atoms were then cooled using evaporative cooling. In this technique, the hottest atoms are removed from the atomic sample, thus reducing the average energy — and therefore the temperature — of the remaining atoms. In addition to being cooled, the atoms also had to be very well insulated from the room-temperature environment. This was accomplished by confining the atoms in a special magnetic trap inside an ultra-high vacuum chamber.

Once the bec has been formed, the beam of Bose-condensed atoms is extracted from it by applying an oscillating magnetic field. In this way, the new laser emits multiple pulses of Bose-condensed droplets, each ‘droplet’ containing 100,000 to several million coherent atoms.

The last remaining obstacle was to demonstrate coherence. For this, the group applied a standard method used to show the wave nature of particles or radiation. In this technique, two samples are overlapped. If the photons or atoms in the separate samples are indeed coherent, each sample behaving as a giant wave, then the samples will interfere with each other, in the same way that happens when two waves meet in a pond. The result: a periodic pattern, or standing wave, that can be photographed.

To their jubilation — and after 20 hours of aligning and focusing their instruments — this is exactly what the MIT team found.

Novel material offers more stable pcbS

Zirconium tungstate, the wonder material that contracts instead of expands when heated, could be used in a composite form to produce circuit boards that expand at the same rate as the silicon devices it contains. This is just one of the many applications currently being considered for this peculiar material.

Since the discovery of zirconium tungstate’s odd behaviour last year in the Center for Advanced Materials Research at Oregon State University, scientists have been rushing to find out more about it and to look for potential applications. So far, more than 40 private companies are said to have requested material samples from OSU, and Arthur Sleight, the Milton Harris Professor of Materials Science at the University says that applications are now being considered across a whole range of technologies, including electronics, optics, fuel cells, oxygen sensors, thermostats, and even new dental filling products.

The negative thermal expansion, from near absolute zero to about 800°C of zirconium tungstate has never before been observed. It’s now known to be caused by oxygen atoms in the material ‘vibrating’ when heated, pulling the zirconium and tungsten atoms closer together.

The latest reported advance that has caused surprise its behaviour under pressure. At near 1000bar its crystal structure collapses, forming molecular ‘cross braces’ and losing much of the negative thermal expansion characteristic that makes it unique.

But when heated moderately, the material then regains its property of shrinking when heated, leading Sleight to suggest a possible use in some type of composite that could serve as a ‘shock absorber.’

The material also offers unusually high oxygen mobility, suggesting possible uses in fuel cells or oxygen sensors.

As yet, all future applications are still on the experimental drawing board. But Sleight says he is ‘more optimistic than ever’ about the potential for real world uses.

Contact: Arthur Sleight, Milton Harris Professor of Materials Science, Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon, USA. Tel 001 541 737 6749.

Michael Andrews, Marc-Oliver Mewes, and Wolfgang Ketterle gather around the machine they and their MIT collaborators used to demonstrate the first atom laser.
For all your Power Distribution
Olson offer a varied choice

Distribution Units

DISTRIBUTION PANELS FUSED WITH R.FILTER AND R.C.D. PROTECTION

Earth Leakage Distribution Units

Industrials Range

Fused Super Slim International Fused

100% FAN TRAYS

Service Pillar for the Open-Plan Office

Fountayne House, Fountayne Rd., London N15 4Ql
Tel: 0181-885 2884
Fax: 0181-885 2496

CIRCLE NO. 112 ON REPLY CARD
Building on his earlier fast driver amplifier work, Giovanni Stochino has now developed what is possibly the fastest high-power audio amplifier of its type. More impressively, he has done so without sacrificing audio purity.

300V/µs power

In my previous article¹ I described how the basic architecture of high-speed voltage feedback amplifiers can be applied to the design of high-performance audio-power equipment. Detailed design information for a non-slewling 100 watt into 8Ω mosfet power amplifier was given. It featured a linear output speed of ±170V/µs and its rated output power total harmonic distortion figures were 0.004% and 0.045% at 1kHz and 20kHz, respectively.

Subsequent investigations have shown that further evolution of the basic architecture can provide higher speed and better thd figures — comparable with top-class hi-fi amplifiers — relative to the basic configurations. This article reports the results of my recent investigations and experiments and provides design details for a new low-distortion, very high speed 100W into 8Ω audio power amplifier, which features a slew rate higher than ±300V/µs and rated power thd figures of less than 0.002% and 0.020% at 1kHz and 20kHz, respectively.

Improved high-speed architectures

In my last article, I demonstrated that the thd and speed performances of the basic high speed voltage-feedback architectures appear to be influenced by the low, i.e. unity to two, current gain of the intermediate stage. This implies that a substantial improvement of both thd and speed figures can be obtained when a higher current gain class AB intermediate stage is incorporated in the original schemes¹. The problem here is that this change has to be done without degrading the other performances and, more importantly, the robustness of the basic design.

With this requirement in mind, my investigations have focused on the topologies shown in Figs 1 and 2. The input stages are designed to provide class AB operation and the simultaneous availability of large push-pull currents, I_b and I_m, with the appropriate phase, at nodes A and B, Fig. 2. I have already shown² that this feature is very important to avoid the dangerous simultaneous conduction of the upper and lower half of the intermediate stage. During simultaneous conduction there is a risk of driving intermediate stage transistors out of the dynamic safe operating area.

Avoiding simultaneous conduction contributes to the robustness of the amplifier. It is particularly important in very fast high-power amplifiers, where the feedback loop forces the intermediate stage to provide high peak currents during large/fast input transients.

Another key feature of these schemes is the use of common-base transistors $T_{10,11}$. These play a twofold role:

- to allow the use of low voltage high current gain transistors T_{10} and T_{12}, which increases the available gain and peak current of the intermediate stage;

- to improve amplifier linearity.

Relative to Fig. 2, the configuration of Fig. 1 potentially provides higher input stage large signal transconductance and less power consumption. As is well known, large signal transconductance in both schemes is determined mainly by cross coupling resistor R. However, while in Fig. 2 the value of R is mainly governed by the need to provide the level shifting voltage with reasonable power consumption, in Fig. 1 this limitation does not apply. As a result, R can be set as low as convenient.

Because of the above, Fig. 1 promises better speed and lower power consumption than Fig. 2, although at the expense of offset and noise precision and distortion performance. Differences in the two schemes are only in the input stage. Intermediate and output stages are exactly the same for both designs.

Compared with the simplified circuit diagram presented in my March '96 article, the clamping network at the output of the input stage in these designs shows one additional diode, which has been introduced to increase the intermediate stage peak output current to about 80mA. Accordingly, higher maximum output rates of change are to be expected. In order to produce comparable results, the two amplifiers are designed with as close as possible phase margins and unity gain frequencies under closed-loop conditions.
Fig. 1. Simplified schematic of a possible implementation of high speed, low distortion power amplifier employing a high slew rate input stage.

Fig. 2. In this preferred implementation of a high speed, low distortion power amplifier, a non-slewing input stage is the main difference relative to Fig. 1.
Fig. 3a). Detailed circuit diagram of the final 100W/8Ω audio-power amplifier, featuring a speed higher than +300V/μs, and a rated power thd of 0.002% at 1kHz and 0.018% at 20kHz. Note that all diodes are 1N4448. Diodes 1N4448HV are 1N4448 selected for a reverse voltage higher than 120V. Add 100μF/100nF decoupling to each 55V rail and 1000μF/2x100nF to each 48V rail.

Some Spice simulation results are reported in Tables 1 and 2. Here, the main characteristics of the two new amplifier configurations are compared with the basic non-slewing architecture, with similar characteristics.

It is clear that the new implementations provide better speed and thd performances than the basic non-slewing architecture design, confirming the theoretical predictions.

Figure 1 and 2 have very similar closed-loop performances. However, due to the reduced number of transistors in the input stage, Fig. 2 offers better open-loop performance, in terms of frequency response and phase margin, as well as less noise.

In the light of the above, Fig. 2 seems to represent the best candidate for the design of a high-performance audio power amplifier, although power consumption is higher due to the level shifting current needed to bias the input stage. Moreover, this topology can be expected to provide reduced sensitivity to layout and parasitics, as well as load impedance variations. Consequently it will simplify design and implementation.

Implementing the power amplifier

Design has been optimised through intensive simulation work and verification tests on the experimental prototype. Measurements have substantially confirmed simulation results.

Discrepancies only occur when simulation data are close to or below the limits of available test equipment, the readings from which include noise, as well as thd. This is the case
for THD at 1kHz. The differences at 20kHz can be explained by layout problems in the experimental prototype and/or by the influence of component mismatches.

Final design

Figure 3a shows the complete circuit diagram of the final low THD, high speed 100W, 8Ω audio power amplifier.

Compared with Fig. 2, extra capacitors C_3 to C_8 are introduced in the assembled prototype. These components compensate for layout parasitics and achieve a clean step response in all operating conditions, Figs. 4, 5 and 6.

The diode clamping network on the collector of the input stage transistor has been simplified. Two diodes connected to zener diodes DZ_3 and DZ_4 perform the same task of the original circuit. Here, positive and negative peak currents of the intermediate stage are slightly higher and symmetrical than in Fig. 2.

The biasing network of the intermediate stage is made from T_{R13}, T_{R14}, DZ_3 and DZ_4, in addition to current setting resistor R_E. Nominal bias current, given by:

$$I_B=I_{BO}=(V_{CC}+V_{EE}-2V_Z-4V_{BE(00)})/R_B$$

and is about 6mA.

Bias setting and stabilisation of output power mosfets is achieved by means of the TL431 shunt regulator and temperature sensing network T_S in Fig. 3a. This network consists of three diode-connected 2N5551s and is mounted very close to the output mosfets on the same heatsink to provide thermal coupling. This scheme provides a stable working point for the temperature sensor T_S, which is insensitive to I_{BO} variations. This is because current I_{TS} is kept constant by the TL431's 2.5V internal reference, through the relationship:

$$I_{TS}=V_{ref}/R(T_S)$$

Since, as is well known, each transistor provides a $\Delta V_{ds}/\Delta T$ of about $2mV/^\circ C$, T_S yields a total $\Delta V_{TS}/\Delta T$ of $-6mV/^\circ C$. This has been found adequate to compensate for the intrinsic I_Q changes with temperature of power devices. Bias current I_Q of each mosfet is set at 120mA via trimmer VR_1, after a reasonable time.

Table 1. Characteristics of Fig. 1 and Fig. 2 fast audio-power amplifiers. Test conditions are $I_Q=120mA, R_P=50$, Load=8Ω/0.5μF.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Basic nsa</th>
<th>Fig. 1</th>
<th>Fig. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best input offset voltage</td>
<td>350μV</td>
<td>180μV</td>
<td>170μV</td>
</tr>
<tr>
<td>DC gain, open loop</td>
<td>80dB</td>
<td>100dB</td>
<td>111dB</td>
</tr>
<tr>
<td>Unity-gain frequency</td>
<td>22.5MHz</td>
<td>19MHz</td>
<td>22MHz</td>
</tr>
<tr>
<td>Open-loop gain at 20kHz</td>
<td>64.5dB</td>
<td>67dB</td>
<td>68dB</td>
</tr>
<tr>
<td>Open-loop amplifier phase margin</td>
<td>-81°</td>
<td>-127°</td>
<td>-93°</td>
</tr>
<tr>
<td>Closed-loop amplifier phase margin</td>
<td>$+82^\circ$</td>
<td>$+79^\circ$</td>
<td>$+76^\circ$</td>
</tr>
<tr>
<td>Slew rate, 10V pp square wave input</td>
<td>$\pm160V/\mu s$</td>
<td>$\pm210V/\mu s$</td>
<td>$\pm185V/\mu s$</td>
</tr>
<tr>
<td>Output noise, bandwidth 80kHz</td>
<td>34μV rms</td>
<td>50μV rms</td>
<td>31μV rms</td>
</tr>
</tbody>
</table>

Notes
1. Non-slewng amplifier
2. In the simulation phase, devices and components have been considered perfectly matched.
3. Amplifier only, i.e. without the feedback network.
4. Amplifier plus feedback network. Closed loop gain is 30.6dB.

Table 2. THD of amplifiers in Fig 1 and Fig 2 with same test conditions as Table 1.

<table>
<thead>
<tr>
<th>V_{in} (Vpp)</th>
<th>Basic nsa</th>
<th>Design</th>
<th>Fig. 1</th>
<th>Fig. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.0018%</td>
<td>0.0240%</td>
<td>0.0008 %</td>
<td>0.0140%</td>
</tr>
<tr>
<td>80</td>
<td>0.0090%</td>
<td>0.0380%</td>
<td>0.0005%</td>
<td>0.0100%</td>
</tr>
</tbody>
</table>

Fig. 5. Simulated frequency response – i.e. magnitude – of power amplifier in Fig. 3. Test conditions are $V_{in}(a)$ load=8Ω/0.5μF, $V_{in}(b)$ load=8Ω/0.05μF, vertical scale is 10dB/div and frequency range is 1Hz to 100MHz.

Fig. 6a. Simulated voltage step response of the power amplifier in Fig. 3. Test conditions are $V_{in}=20V$ peak-peak, load=8Ω/0.005μF, vertical scale is 15V/div and frequency is 10kHz.

Fig. 6b. Simulated voltage step response of the power amplifier in Fig. 3. Test conditions in this case are the same as for 6a), except for the load, which is 8Ω/0.3μF.
amplifier warm-up time. Make sure to set this trimmer to its highest value before applying power to the amplifier. Measured I_{d2} variations during operation are less than 20%.

Supplying power
To increase the amplifier's efficiency, separate unregulated ±48V supply rails are used for the output power devices, which are IRF640 and IRF9640 types from International Rectifier. The rest of the amplifier is powered by two regulated +55 and −55 V supply rails.

Tables 3 and 4 demonstrate the notable improvement of harmonic distortion figures. At 1kHz, measured THD is mainly limited by the available instrumentation, as illustrated by the fact that it remains virtually unchanged when load impedance reduces to 4Ω.

The maximum rate of change of the output voltage results in excess of 300V/μs, confirming that the new architecture is viable for reliable high-speed power amplification. Measurements of slew-rate were made both in the traditional way, and in accordance with the practical method suggested by Douglas Self, with appropriate adaptations.

The test circuit is shown in Fig. 3b. Assuming $V_{O2}>>V_{SB}$, the maximum rate of change SR is determined by:

$$SR = \frac{V_{(max)}}{C_{SB}R_S} = \frac{100 \times V_{SB(max)}}{C_{SB}R_S} \mu\text{s}$$

where $R_S=R_{SB}/R_{N(on)}=10\Omega$.

To the best of my knowledge, this speed is the highest ever reported for a high-power audio amplifier, which makes use of voltage-feedback.

The theory behind the speed performance of this architecture can be basically explained as follows. The maximum current available at nodes A and B depends on the maximum input voltage, $V_{(max)}$, which can be safely applied to the input of the amplifier. This is given by equation 4 of my March '96 article.

$$I_{(max)} = \frac{V_{(max)} - 2V_{(sat)}}{2R_S + R}$$

This current amounts to about 18mA for the component value and active device types used in Fig. 3a.

Since capacitance at nodes A and B in Fig. 3a is about 50pF, the maximum slew rate across C_A and C_B is $SR_{A,B}=360V/\mu\text{s}$. Capacitors C_A and C_B do not play a major role in this context because the voltage variation across them is limited to a few volts.

On the other hand, the current available at the output of the intermediate stage, nodes C and D, is about 80mA. Total node capacitance, including the reflected capacitance of the output power devices, is less than 230pF. Slew rate at the input of the output stage will therefore exceed $SR_{C,D}(\text{min})=350V/\mu\text{s}$.

Bias current considerations
It is worth pointing out that this high value of slew rate can be sustained by the amplifier only if biasing current I_{BO} is large enough to charge/discharge at the same rate the base-collector capacitance C_{bc} of TR_1 and TR_2, which equal 5-8 pF. This means that $I_{BO}=SR_{C,D}(\text{min})C_{bc}$ has to be set at 2.8mA.

A safety margin is recommended for taking into account parasitics and base drive requirements, which equals,

$$I_{B(peak)}/I_{B(\text{min})}=80\text{mA}/30\text{mA}=2.7 \text{ mA}$$

The minimum output slew rate $SR_{(min)}$ will be slightly less than $SR_{C,D}(\text{min})$ due to the gate driving requirements of the output power devices. The above theoretical values are in line with simulation, and with measured results, Table 4.

In this design, a 1nF capacitor has been added across R_3 to increase the dynamic transconductance and the available peak current of the input stage corresponding to the maximum expected input signal transients, say 3V peak. In such a case,

$$I_{(peak)} = \frac{V_{(max)} - 2V_{(sat)}}{2R_S} \leq 18\text{mA}$$

This results in a slight increase of speed for input signals within the linear dynamic range of the amplifier and in a further reduction of the already low residue of dynamic intermodulation distortion.

Cross-coupling capacitor C needs to be treated very carefully. In fact input transistors TR_1 to TR_4, under large signal conditions, behave like a full wave rectifier of the voltage difference $V_{IN}-V_F$. Current flowing in C is thus unidirectional. This results in a dynamic charge build-up across C, which is particularly important at high frequencies and during transients, when $V_{IN}-V_F$ is usually larger.

The charge build-up could end by producing undesirable bias and gain modulation of the input stage, and, consequently, increased high frequency thd and intermodulation distortion. This effect is also evident from the fact that while C can truly help to boost the linear speed of the amplifier during occasional transients, it does not produce the corresponding improvement of the linear power bandwidth and of the dynamic intermodulation distortion.

Minimizing charge build-up
In order to minimise the above side effects, a low value of capacitance should be chosen. Definition of the right value of C is not an easy task, since its influence on the circuit performance is both amplitude and frequency dependent. The following rule of thumb has proved effective in many applications,

$$C \leq \frac{10(2RF_n)}{\text{max frequency input}}$$

where RF_n is the maximum input frequency, which is 20kHz for audio applications. This implies that the zero introduced by R/C in the large signal frequency response of the amplifier has to be located far above the audio frequency range. According to the above empirical inequality, C should be lower than 3nF.

As a matter of fact, the value employed in this design, 1nF, has not produced measurable effects on the performance.

Table 3. Total harmonic distortion of final amplifier in Fig. 3a, with $R_S=50\Omega$, $I_{Q}=120\text{mA}$ and 80kHz bandwidth.

<table>
<thead>
<tr>
<th>$V_{out}(V_{pp})$</th>
<th>Spice simulation</th>
<th>Measured</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>8Ω load</td>
<td>1kHz</td>
<td>20kHz</td>
<td>1kHz</td>
</tr>
<tr>
<td>5</td>
<td>0.00010%</td>
<td>0.0040%</td>
<td>0.0031%</td>
</tr>
<tr>
<td>10</td>
<td>0.00025%</td>
<td>0.0140%</td>
<td>0.0024%</td>
</tr>
<tr>
<td>20</td>
<td>0.00070%</td>
<td>0.190%</td>
<td>0.0020%</td>
</tr>
<tr>
<td>40</td>
<td>0.00060%</td>
<td>0.145%</td>
<td>0.0023%</td>
</tr>
<tr>
<td>80</td>
<td>0.00060%</td>
<td>0.110%</td>
<td>0.0021%</td>
</tr>
</tbody>
</table>

*Instrumentation limit, (thd-noise): 0.002% at 1kHz; 0.003% at 20kHz.

Table 4. Further characteristics of Fig. 3a amplifier, $R_S=50\Omega$, load=8Ω, $I_Q=120\text{mA}$

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Spice simulation</th>
<th>Measurement results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input offset voltage</td>
<td>...</td>
<td>1.6 mV</td>
</tr>
<tr>
<td>Slew rate†, $C=0\text{pF}$</td>
<td>+336/-297V/μs</td>
<td>+310/-360V/μs</td>
</tr>
<tr>
<td>Slew rate†, $C=1\text{nF}$</td>
<td>+360/-304V/μs</td>
<td>+360/-370V/μs</td>
</tr>
<tr>
<td>Output noise, bw=80kHz</td>
<td>31μV (rms)</td>
<td>39μV (rms)</td>
</tr>
</tbody>
</table>

† ±6V peak pulse input, as in Fig. 4.

References

282 ELECTRONICS WORLD April 1997
Transform your PC
into a digital oscilloscope, spectrum analyser, frequency meter, voltmeter, data logger... for as little as £49.00

Pico Technology specialises only in the development of PC based data acquisition instrumentation. Call for your guide on ‘Virtual Instrumentation’.

Virtual Instrumentation
Pico's PC based oscilloscopes simply plug into the parallel port turning your PC into a fully featured oscilloscope, spectrum analyser and meter. Windows and DOS software supplied.

ADC-100 Dual Channel 12 bit resolution
The ADC-100 offers both a high sampling rate 100kHz and a high resolution. Flexible input ranges (±500mV to ±20V) make the unit ideal for audio, automotive and education use.

ADC-200 Digital Storage Oscilloscope
- 50 MSPS Dual Channel Digital Storage Scope
- 25 MHz Spectrum Analyser
- Windows or DOS environment
- ±50mV to ±20V
- Multimeter
- 20 MSPS also available

ADC-200 £359.00
ADC-200 £499.00
Both units are supplied with cables, power supply & manuals.

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK
Tel: +44 (0)1954 211716 Fax: +44 (0)1954 211880 E-mail: post@picotech.co.uk Web: http://www.picotech.co.uk/

Data Logging
Pico's range of PC based data logging products enable you to easily measure, display and record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter
- Supplied with PicoLog software for advanced temperature processing, minimax detection and alarm.
- 8 Thermocouple inputs
- No power supply required.

TC-08 £199
TC-08 £224
with cal. Cert. complete with serial cable & adaptor. Thermocouple probes available.

Call for free demo disk and product range catalogue
Post & Packing UK £3.50, Export customers add £9 for carriage & insurance

Chelmer Valve Company
If you need Valves/Tubes or RF Power Transistors e.t.c... then try us!
We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements.

We manufacture a range of Off-Air Frequency products including frequency standards, sources and disciplined standards including GPS. Customised units also available

Precision Frequency Source
1kHz to 16MHz sinewave output, 0.0001Hz resolution, Easily settable via decade switches, VCXO backup as standard

Off-Air Frequency Standard
1MHz, 5MHz and 10MHz, outputs, Options include Sinewave, Signal Inhibit and Audio Warning

We are well known for our quality new and used test equipment. Our list is extensive, ranging through most disciplines. Call for details

Halcyon Electronics
423 Kingston Road, Wimbledon Chase, London SW20 8JR
Phone: 0181 542 6381 Fax: 0181 542 0340

The ADC-10 supplied with PicoScope gives your computer a single channel of analog input

ADC-10 £49 with PicoLog £59
PPM10 in-Vision PPM and Chart Recorder generates a display emulating the well known coaxial TWIN movements for monitoring stereo audio levels and mono compatibility. Also: STEREO METER BOX comprising PPM6 board, featuring inherent stability with law under microprocessor control. A free standing mains powered box frequently used for final stereo monitoring when working to broadcast standards.Manufactured under licence from the BBC.

Advanced Active Aerial 4kHz-30MHz
Stabilizer frequency shift units for how reduction
10 Outlet Distribution Amplifier
Stereo Variable Emphasis Limiter
PPM9, PPM5 hybrid and PPM6 IEC/DIN/-50/+68 drives and movements
Broadcast Stereo Coders
Broadcast Monitor Receiver 150kHz-300MHz

SURREY ELECTRONICS LTD
The Forge, Luckes Green, Cranleigh
Surrey GU6 7BG
Telephone: 01483 275997 Fax: 276477

CHART AUDIO LEVELS
In-vision colour display or hard copy printout

New Special Offers

- **EASY-PC**
- **PPM10**
- **Advanced Active Aerial 4kHz-30MHz**
- **Stabilizer frequency shift units for how reduction**
- **10 Outlet Distribution Amplifier**
- **Stereo Variable Emphasis Limiter**
- **PPM9, PPM5 hybrid and PPM6 IEC/DIN/-50/+68 drives and movements**
- **Broadcast Stereo Coders**
- **Broadcast Monitor Receiver 150kHz-300MHz**

SURREY ELECTRONICS LTD
The Forge, Luckes Green, Cranleigh
Surrey GU6 7BG
Telephone: 01483 275997 Fax: 276477

EASY-PC

Schematic and PCB CAD

From Super Schematics

To Perfect PCB’s
Prices From £75/$135

Number One Systems

UK/ECC: Ref: WW, Harding Way, St.Lives, Cambridgeshire, ENGLAND, PE17 4WR.
Telephone: UK: 01480 461778 (7 lines) Fax: 01480 494042
USA: Ref: WW, 126 Smith Creek Drive, Los Gatos, CA 95030
Telephone/Fax: (408) 395-0249

CIRCLE NO. 117 ON REPLY CARD

CIRCLE NO. 118 ON REPLY CARD

Preamplifier by **James Whitehead**
Hi-Fi by **Tony Brown**
Audio DAC by **Paul Monk**
Hi-Fi DSP by **Derek Slowther**

JP6 Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH
Access/Visa Orders (01246) 211202 Fax: 550959
callers welcome 9.30am to 5.30pm Monday to Saturday

Run on:- PC/ 386/ 486 with VGA display

Links to PULSAR (logic), ANALYSER III (analogue) & LAYAN (electromagnetic simulators (Pro' versions)

Design:- Single sided, Double sided and Multi-layer boards.

Provides full Surface Mount support.

Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photo-plotter and N.C. Drill.

Optional, powerful, 32 bit, Multi-pass, Shape based, Shake Aside, Rip-up and Re-try Autorouter (XM only).

VIS A MasterCard

All products advertised are new and unused unless otherwise stated.

Customer Service

Callers welcome 9.30am to 5.30pm Monday to Saturday

Wide range of CAMCO TVS, TAD, 741, 745 Laser Transistors & Kit.
Phonograph transistors, capacitors, tools etc

http://www.numberone.com

ELECTRONICS WORLD April 1997

CIRCLE NO. 117 ON REPLY CARD

CIRCLE NO. 118 ON REPLY CARD

adompr2
To successfully re-use alkaline cells, recharging is best done while the cell is still has about two-thirds capacity. But how do you know when the cell is ready for recharging? Rod Cooper explains how, and expands on the charger circuit presented last month.

Battery-low warning

The question most frequently asked is how many times an alkaline-manganese cell can be recharged? On the bench, I have achieved ten times original capacity — that is over 30 recharge/discharge cycles at 30% discharge, plus any remaining charge. But these tests used consecutive discharge/charge cycles, so they do not represent everyday use.

In practice, without a timer to tell you when to recharge, you can expect to get ten recharges at 30% discharge, but this depends a lot on the type of usage. Considering that mains electricity costs 7p per kWh and alkaline-manganese cells cost about £55 per kWh this is still very good economics.

With a timer, you could reasonably expect double this figure, but a lot depends on the ageing effect that all electrochemical storage is subject to. If there are numerous charge/discharge cycles in a short period the results are better. For this reason, is it not a good idea to recharge clock batteries for example.

Implementing the charger

Readily available AB range aluminium cases are ideal for housing the charger described in last month’s issue. The lid can be easily arranged to swing open to insert cells. Being all-metal, the enclosure gives a fair degree of shielding from electromagnetic interference which my article last month showed could trigger the comparator prematurely.

With this type of aluminium case it is possible to use the base as a heat-sink for the output transistor, T_{2}. Not a lot of heat is generated, so the point of using a generous area of
COMPONENTS

Fig. 1. Cross section of a housing suggested for the alkaline-cell charger described last month.

Fig. 2. Elements of the timer circuit for helping determine when a cell is 1/3 depleted.

Fig. 3. While the battery-operated appliance is switched on, the counter counts. Once the timer is tailored to suit the current drain of the appliance and capacity of the cell, this method gives an accurate indication of when the cell needs recharging – extending its useful life.

metal like the case is to keep the inevitable small amount of dc drift due to temperature change to a minimum.

The 7805 regulator was chosen so that it too could be clamped to the metal case. It is deliberately over-rated; However, I have used a 78L05 regulator with a metal clip-on heat sink as an alternative and this gives comparable results.

It is best to put a thermal barrier between the mains transformer and the rest of the circuit and to give this section its own ventilation path. A piece of Paxolin is satisfactory, as shown in Fig. 1. Some transformers on the market, of third world manufacture, get quite hot even when not under load, so plenty of ventilation slots are needed. When the lid is down, the heat from the transformer will not then warm the rest of the charger.

Efficient ventilation can be achieved by mounting the transformer and cell holders on pillars and putting some ventilation slots directly underneath and above them. The holders must be of an open-frame design, such as RS 489-611, not the enclosed type like the Bulgin cylindrical series. I must emphasise that good ventilation is essential.

Although not mentioned in the first part of the article, the indicator led should be a low-current variety such as RS 826-515. If any difficulty is experienced getting Tr2 to remain hard on, the indicator led can be removed and transferred to an emitter-follower attached to the comparator output. In addition, when charging D cells, with some low-gain specimens of ZTX450 the value of R5 may need to be reduced to keep Tr4 hard on. Although it doesn’t dissipate much power, this transistor should also have a clip-on heat sink to reduce the effects of thermal drift.

Also not shown in the first article, resistors R5 and X10 both need a trimming resistor in parallel to get a reasonable position on the preset pots for the balance point. To put the wiper within a reasonably central position, try values around 56kΩ. This method compensates for component tolerances and also avoids having to buy precise values for the resistive divider.

To make the preset pots more sensitive, you could try dropping the value to 470kΩ and adjusting these trimmer resistors to suit.

If you use a tungsten lamp, as suggested, for showing how much current is passing, then the filament must be in direct view. It is no good covering it with a diffuser lens – you will not see any glow at low current. If the lamp holder has such a lens, remove it.

Discharge timer – the missing link

Fitting a discharge timer to the battery-powered appliances is the key to successful alkaline-manganese recharging. The lack of a simple, cheap timer which can be easily fitted to appliances has held back the progress of commercially-available chargers. Results have
been reported as generally disappointing. The reason is that in many cases the 30% limit cannot be easily estimated by the average member of the battery-using public.

It is not difficult to add a timer to appliances, where there is sufficient space. Although it is easy to find a small space in things like hand lanterns and portable radios, items such as battery shavers and the smaller hand-torches pose a problem.

The timer described here can be miniaturised if necessary by using an smd design. I have tried designing odd-shaped pcbs to fit around corners and into circular spaces. But what is really needed for use in small or densely-packed appliances is a purpose-built timer – a thick-film hybrid or asic.

The principle of the timer is very simple, Fig. 2. Oscillator A is driven in parallel with the load L – i.e. it only runs when the switch is on. It drives a multi-stage ripple counter C from which various outputs can be tapped to give a range of times. When the chosen output changes state, warning device D is turned on.

Note that, like the oscillator, D is powered only when the switch is on. It would most likely go unobserved if powered when the appliance is not switched on, possibly taking the battery beyond the 30% limit.

Counter C is maintained by being permanently connected to the battery during the time the batteries are in the appliance, but as it is a cmos device the drain is tiny – typical quiescent current is 5nA at 3V for the i.e. shown. For the vast majority of applications this can be ignored.

A practical version of this circuit is shown in Fig. 3. Timer IC1 is a 555 which supplies a rough square-wave to IC2, a 4020 binary ripple counter. There are 14 stages to IC2, so the output from one of these is picked off to give a time suit the cell type and load current. At the end of the chosen time period the output goes high, Tr1 turns on, which powers the led.

The choice of timing components R1 and C2 for the 555 is dictated by the type of application so specific values are not shown, but this timer can be set for a few hours or up to a day or so. For longer periods, a second counter could be added or alternatively there are single

Charging NiCd cells

Because the charge currents for alkaline-manganese are by coincidence near the C/10 rate used for the equivalent sizes of NiCd cells, the charger described in last months issue will also recharge these. As it uses periodic current reversal, the charger will do this job better than some commercially available chargers.

Note that the end-of-charge cut-off will not operate if you charge NiCd cells.

ics available with even more stages.

Whenever the cells are replaced after charging, the reset button should be pressed to zero the count.

The 4020 works down to 3V. There are 555-type timers which will work down to 2V, such as the ICM7551PA.
PROTEUS
For DOS and Windows 3.1, 95 & NT
The Complete Electronics Design System - Now With RIP-UP & RETRY!

Schematic Capture
- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and simulation.

Simulation
- Non-Linear & Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue & digital sections.
- Graphs displayed directly on the schematic.

PCB Design
- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP & RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerber and DXF Import capability.

Call now for your free demo disk or ask about the full evaluation kit.
Tel: 01756 753440. Fax: 01756 752857.
53-55 Main St, Grassington. BD23 5AA.
Electronics World + Wireless World is applied electronic design. We'll show you how to use the latest silicon technology plus...

- CAE software
- New product reviews
- Technology reports
- Detailed circuit diagrams
- Innovations
- Explanations of complex technology
- Comment and much more in your issue.

So whether you are designing your own system or curious about your competitors, Electronics World + Wireless World will help you keep the leading edge.

Money back Guarantee.
Receive a full refund on your subscription within the first 90 days if you are not completely satisfied. Thereafter, we'll refund the unused portion of your subscription should you wish to cancel.

SAVE UP TO 10%
Yes, I would like to subscribe to Electronics World + Wireless World.

1 Year □ UK £32 □ Europe £46 □ Rest of world £56
2 Years □ UK £58 SAVE 10% □ Europe £83 SAVE 10% □ Rest of world £101 SAVE 10%

Name ________________________________
Job Title ________________________________
Company ________________________________
Address __

Post Code ____________________________ Country ____________________________
Telephone ____________________________ Fax ____________________________
Internet Address __

THREE WAYS TO PAY

1 □ I enclose a cheque made payable to Electronics World + Wireless World for £________

2 □ Please charge my Mastercard/Access/Visa/Diners Club/American Express (please delete appropriate card) with the sum of £________
Card number ____________________________ Expiry Date ____________________________

Signed ____________________________ Date ____________________________

3 □ Please invoice me/my company. Purchase order number ____________________________
Company VAT registration number __

Please allow 28 days for delivery of your first issue. □ Please tick here if you do not wish to receive direct marketing promotions from other companies.

Post in the UK to Electronics World Subscriptions, FREEPOST RCC 2619, PO Box 302, Haywards Heath, RH16 3BR. Telephone 01444 445566
Post from elsewhere to Electronics World Subscriptions, PHQ-D1700/RH, PO Box 302, Haywards Heath, RH16 3BR, UK. Telephone +44 1444 445566
Interfacing with C

Without an engineering degree, a pile of money, or an infinite amount of time, the revised 289-page Interfacing With C is worth serious consideration by anyone interested in controlling equipment via the PC. Featuring extra chapters on Z transforms, audio processing and standard programming structures, the new Interfacing with C will be especially useful to students and engineers interested in ports, transducer interfacing, analogue-to-digital conversion, convolution, digital filters, Fourier transforms and Kalman filtering. Full of tried and tested interfacing routines. Price £14.99.

Listings on disk - over 50k of C source code dedicated to interfacing. This 3.5in PC format disk includes all the listings mentioned in the book Interfacing with C. Note that this is an upgraded disk containing the original Interfacing With C routines rewritten for Turbo C++ Ver. 3. Price £15, or £7.50 when purchased with the above book.

Especially useful for students, the original Interfacing with C, written for Microsoft C Version 5.1, is still available at the special price of £7.50. Phone 0181 652 3614 for bulk purchase price.

Use this coupon to order

Please send me:
Title Price Qty Total
Enhanced Interfacing with C book @ £14.99 £ £
Enh. Interfacing with C book + disk @ £22.49 £ £
Interfacing with C disk @ £15 £ £
Original Interfacing with C book @ £7.50 £ £
Postage + packing per order UK £3.50 £ £
Postage + packing per order Eur £7 £ £
Postage + packing per order ROW £12 £ £
Total £ £

Name
Address

Phone number/fax

Make cheques payable to Reed Business Publishing Group Ltd
Or, please debit my Master, Visa or Access card.

Card type (Access/Visa) Card No Expiry date

Mail this coupon to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS, together with payment. Alternatively fax full credit card details with order on 0181 652 8956 or e-mail them to jackie.lowe@rbp.co.uk. Orders will be dispatched as quickly as possible, but please allow 28 days for delivery.
Radio Receiver Trainer
An Invaluable Learning and Design Tool for all Experimenters

The Radio Receiver Trainer contains eight receiver building blocks and a comprehensive training manual.

Simply connect the building blocks to build AM, SW, Superhet and Direct Conversion receivers. Decode SSB and CW. Use proven building blocks to develop and test your own designs.

Pricing:
- Complete: £129.00
- Kit: £89.00

(building blocks: Bandspread Tuner, RF Oscillator, Mixer, IF Amplifier, AM Detector, Beat Frequency Oscillator, Audio Filter, Audio Amplifier)

Mail Order To: Pyramid Electronics LTD. 204 Ferndale Road, Brixton, London SW9 8AG Phone (0171) 738 4044 Fax (0171) 274 7997 (Out of office hours ordering by answering machine)

CIRCLE NO. 123 ON REPLY CARD
Monitoring MAINS

Nick Wheeler shows how to monitor mains current using a simply made current transformer.

The traditional method of current measurement is to measure the voltage drop across a suitable series resistor. This is no good for monitoring the mains current, as a resistor giving reasonable sensitivity for the small always-on loads, such as timers and answering machines, would be far too large to cope with heavy, intermittent, heating loads, refrigerators and so on. The latter can come on at any time unless switched off, which would make measurements very tedious.

The current transformer

Traditionally, current transformers comprise a secondary winding of many turns wound on a toroidal core. The primary is the conductor being monitored, which is passed through the central hole.

For increased sensitivity, the primary conductor can be threaded through the hole two or more times. This arrangement is fine for original installations, such as for motor control, but is unsuitable for retrospective domestic installation, as it means breaking the circuit, which stops all the clocks, etc., around the house.

There are ‘clamp’ meters, in which the core can be broken open against a powerful spring. With these the conductor can be encircled without disconnecting it. They are, however, costly. In any case I was also interested in current waveforms.

Implementation

I used one of the small do-it-yourself transformer kits, which are available from many sources. These have a fully insulated mains winding, usually consisting of two 120V windings which can be connected in series or parallel. This forms the secondary of the current transformer.

The window provided for the d-i-y secondary in normal application is large enough to accommodate a single pass of the thick cable connecting the meter to the fuse box, usually easily accessible. The clamping plates which carry the mounting lugs will have to be sawn open at a suitable point and threaded over the cable, if required. I did not do this as provided the assembly bolts are applied after the laminations have been assembled the transformer can be reused for another purpose subsequently. The laminations are of the E & I form in all examples I have seen, and can be cut in

stacks of five alternately.

Figure 1 is a sketch of the assembly.

Making measurements

A current transformer must always be operated with a secondary load. Otherwise a heavy current surge in the monitored conductor can induce very high voltages in the secondary – possibly leading to flashover and breakdown.

Calibration is carried out by connecting a heavy resistive load, such as a heater, via a shunt lead threading the core, as in Fig. 1. The current can be measured with a digital multimeter, and the secondary load adjusted to give a convenient voltage. The meter should be shorted until the heater is at operating temperature. Otherwise the cold surge may blow the meter fuse.

Values in the region of 1kΩ are suitable and will yield secondary voltages of the order of ten. Ordinary low-wattage resistors should be adequate.

Calibration is most conveniently done in the laboratory, even though this involves disassembling the transformer before final use.
Waveforms

Because the transformer is operated at far below the usual flux levels the observed waveforms across the load resistor can be assumed to be accurate. The voltage waveform across my mains is apparently a good sinusoid, with occasional transients. The current waveform through 125µF indicates that it is actually quite rich in harmonics, Fig. 2.

Figure 3 was observed when my pc and my oscilloscope, both of which use switch-mode power supplies, were the main load. Horrible, isn’t it?

In summary

This article has shown that useful information about the quality of the mains signal, and current being drawn, can be obtained with little trouble or expense.

There is a small penalty, however. The secondary load of the current transformer appears as a tiny resistance in series with the power line. It is tiny, since it equates to the load resistance divided by the square of the transformer ratio. For 1kΩ and a ratio of 1000:1, values which are quite typical, insert a resistance of 1mΩ.

Luxuriant editing!

SpiceAge interfaces smoothly to almost any PCB design suite.

Although we would like you to use our own excellent Geswin schematic capture program which is purpose built for SpiceAge, if you already have a schematic program, there is a good chance that SpiceAge will work with it better than any other circuit simulator.

When you iterate between a schematic and a SPICE-like simulation environment while refining your circuits, the simulation settings and precious details such as polynomial functions on components can be lost. So without Geswin, it was sometimes easier to write the simulation netlist directly. However, SpiceAge’s **circuit update** button only affects changes in the circuit built by the schematic and, because it retains all the previous information, you can spontaneously iterate between schematic and circuit.

To hear more about this and other nice touches in SpiceAge, please contact:

Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel 0181 906 0155 FAX 0181 906 0969 Email 100550.2455@compuserve.com

Fig. 2. Mains current waveform resulting from 125µF across 240V mains. Current observed on a moving-coil meter was 9.7A.

Fig. 3. Current waveform resulting from a load of about 100VA in the form of two switch-mode power supplies.
Whose heterodyne?

John Belrose and George Elliott set the record straight as to who invented the heterodyne.

Tom O’Dell recently surveyed the archives to find out where the real credit belongs for the birth of the heterodyne principle, which is the basis of nearly all radio receivers today. He attributes the coining of the word heterodyne to John Erskine-Murray. Tom’s reference is the Oxford English Dictionary.

But Erskine-Murray is only a source reference. In the Appendix of his translation of Ernst Ruhmer’s book on ‘Radio Telephony’, in a section detailing Fessenden’s work, he states that “one of the most interesting of Professor Fessenden’s many inventions is what he (Fessenden) calls the ‘heterodyne’ receiver...”

Continuing, O’Dell concludes that while Fessenden’s original patents (1050441 and 1050728 which we discuss below) describe the idea of producing a beat frequency, it is unlikely that his device(s) ever worked at radio frequencies. O’Dell attributes the “first successful” heterodyne receiver to Rudolf Goldschnidt, who devised a curious mechanical type of synchronous detection and heterodyning receiver in 1913.

In our view O’Dell does not attribute proper credit to Reginald Aubrey Fessenden, the radio pioneer who invented radio as we know it today. He did indeed devise the heterodyne principle, as well as coining the word heterodyne. Below is our survey of Fessenden’s contributions to the birth of the heterodyne principle.

Fessenden’s heterodyne principle

The Canadian/American radio pioneer and inventor Reginald Aubrey Fessenden (1866-1932) was granted almost 300 United States patents – most of them in telecommunications. His most notable invention was the heterodyne principle, which is fundamental to all radio today. Being trained in the classical languages, he coined the term —heterodyne—from two Greek words inferring the mixing of two forces.

The Fessendens were an old-line North American family having emigrated from Germany to Cambridge, Massachusetts Bay Colony, in about 1628. Reginald’s family branch moved from the USA to what is now Quebec Province about the year 1800.

Born and educated in Canada, he moved permanently to the United States just prior to his 21st birthday, becoming an immediate US citizen. In 1921 he was awarded the Medal of
HISTORY

Fessenden’s heterodyne method

Remarkably, Fessenden was able to conceive the heterodyne principle without the wonders of the vacuum tube. He had to work with what was available at the turn of the century – in further development with the arc oscillator, the primitive detectors, the hf alternator, etc.

During 1902, Fessenden improved his heterodyne receiver by placing the second-frequency transmitter right at the location of the receiver site. The second signal was now under the control of the receiver operator, making the system easier to manage, Fig. 4. This led to his advanced heterodyne patent No 1050441.

The advanced heterodyne system was easily adjusted by the receiving site operator and did not involve the sending transmitter operator as did the initial version. Fessenden produced the locally generated frequency with an oscillating arc, or an alternator. Both these methods were in use until 1914/15 when the triode took over, but the arc was preferred.

In the words of Dr Sam Kintner, a member of the original Fessenden team, “This (the heterodyne principle) was another bold stroke of Fessenden, in which he departed from methods practiced by others. Like other great inventions, it was made before he had suitable equipment with which to practice it. He required a source of local oscillations of adjustable frequency, and an hf alternator or oscillating arc was all that was available.

“The term heterodyne was coined by (Prof.) Fessenden and has a technical meaning which may in general be explained as follows:

If currents of two different frequencies ‘beat’ in the same circuit they will produce a new frequency and are said to heterodyne (from the Greek words, heteros – other or different, and dynamis – power) and the new frequency is called the heterodyne frequency. Further to simplify the matter: if frequencies being received are of such rapidity as to be beyond the human ear, such as 300kHz, in order to hear the ‘heterodyne’ one would generate in the receiving apparatus a frequency of 301kHz. The result of combining the two would be that the ‘beat’ note would equal the difference between the two or 1kHz which could easily be transformed into tones suitable for the ear of the listener. Mysterious and magical no doubt but scientific fact nevertheless.

“Fessenden, who devised and named, the heterodyne system applied for a letters patent in 1905. His triumph was more theoretical then real for he was years ahead of the industry. His own cw apparatus was the only system capable of using the heterodyne system. Not until 1912 when the triode tube of DeForest became practicable for the general public did Fessenden’s heterodyne invention assume its true importance in radio technology”.

But others used heterodyning too...

As radio moved onward after 1915, Fessenden’s heterodyne patents became essential for all forms of wireless communications. Numerous lawsuits were fought in the US courts during the 1920’s over the heterodyne patent rights.

Unfortunately, Fessenden did not receive any significant financial benefit from his patents. He lost control of the patents prior to 1911, through a series of legal manoeuvres by his partners and his lawyer. He was a first-class scientist, but an unwise business-man.

The following is a summation of one of these classic heterodyne US lawsuits. It was fought during 1924-25 and the plaintiff was the National Electric Signaling Company (NESCO) and the US Government was the defendant. The plaintiff, NESCO, sought to recover compensation for the unlicenced use of the Fessenden’s heterodyne patents, by the
NOW THE BATTLE IS REALLY OVER

After 10 years and with more than 20,000 users, ULTImate Technology now introduces the ULTiboard Wizard. This system is highly praised for its very powerful placement and routing algorithms by both the less experienced users and by the experts. The technology applied in the ULTiboard Wizard used to be available only as options on the more powerful and expensive Workstations. The PCB design depicted below illustrates the capability of the Wizard, its 4-layer version was employed in the ULTiboard Professional Design Contest at the Electronics’95 Exhibition. The same design was now executed in a 2-layer version with the ULTiboard Wizard in less than 2 hours.

ULTimate Technology now makes the best PCB Design tools available at very competitive prices from UK £ 2.675,- (Excl. VAT, 1400 pins version with 4 signal layers). We imagine you will want to see for yourself whether you too can achieve such fantastic results with the ULTiboard Wizard. Please come to our stand J135 at ICAT 97 at NEC (Birmingham) and convince yourself. A demo-CD is available.
US government, Fessenden was a co-founder and an officer of NESCO but had been ejected from this firm by his partners, prior to 1911. The plaintiff, NESCO, engaged the services of a number of expert witnesses, who became legends in the history of early American radio, to appear on their behalf. One of these witnesses was Haraden Pratt who was born in California in 1891. In his teens became an amateur radio operator. Before he was 21 years old he was employed by the United Wireless Telegraph Co. and the Marconi Company.

Pratt graduated from the University of California in 1914 as an electrical engineer. At various times during his years at the University he served as radio operator on a number of ships in the Pacific and at the Marconi port station at San Francisco. After graduation, Pratt was appointed 'assistant-engineer-for-construction' for Marconi Wireless at their Pacific high-power stations.

In 1915 he was placed in charge of the US Navy Radio Laboratory at Mare Island, California. In 1917, when the US entered WW I, the US Navy assumed control of the US west coast commercial wireless stations and placed the maintenance of them under Pratt's laboratory. In 1918 he was transferred to Washington DC and placed in charge of the US Navy's high power radio stations.

In December 1919, Pratt left the Navy and became Chief Engineer of the Federal Telegraph Company of California. This company operated commercial radio stations on the US west coast and in the Hawaiian Islands as well as designing and constructing high-power radio stations for the US Navy. Pratt's deposition in the NESCO vs US Government heterodyne lawsuit, is dated 7 April 1924 and was heard in a Pittsburgh PA courthouse.

Pratt testified he operated with a heterodyne receiver for the USN at Mare Island, California, copying traffic mainly from the Panama Canal Zone during the summer of 1915. This particular receiver had been made by Lee DeForest for the USN. He said he understood, in 1915, Fessenden's heterodyne principle to be — a "method of reception involving the generation locally at the receiver of a source of continuous electrical oscillations with such a frequency that an interaction will occur with the received high frequency current of the radio signal, due to association of local oscillatory means with the receiving set, which will produce beats which can be adjusted to be audible to the human ear".

Pratt testified he became aware of the existence of Fessenden's heterodyne principle following the USS SALEM heterodyne tests at sea in 1913. He said the use of the heterodyne system greatly extended the range of communication over that which would have been possible by the use of other means.

Pratt said Fig. 5 was a fair, simplified representation of the Fessenden heterodyne receiving circuit used by the US Navy in the years 1917-18-19. This was a self-heterodyne set. Pratt was asked to explain the cause of the local oscillations, and how are they caused interaction with the received signal oscillating currents. His reply follows:

"The vacuum tube with its associated circuit generates an hf current in a coil, which is associated with the antenna circuit, so that this coil not only carries these hf currents but also those impressed upon it by the virtue of the current in the antenna system, due to the presence of the latter in the distant electrical field of the transmitting station being received. The two currents so impressed in this coil, being in the same circuit, combine when the adjustments are properly made, into an electrical current of which these two electrical currents are components. This new current has the necessary characteristics, which when rectified by a rectifying device, would produce an audible sound in the telephone receiver properly connected. The rectifying device in Figure 5 was incorporated in the same vacuum tube as was used to generate the local hf current, which is one of the other functions performed by this tube".

The heterodyne receiver comes into use

By mid 1913, the US Navy was convinced it had a unique cw communications system at hand with Fessenden's heterodyne receiver and the Federal oscillating arc transmitter. The USN's plan to dispense with the British Marconi, and the German Telefunken and Arco-Flory systems was successful.

By March 1914 the vacuum tube method had been incorporated in Fessenden's reception method using the self-heterodyne circuit in which the detector and local oscillator are in the same tube envelope. In mid-1914, orders for these sets were placed by the USN with DeForest, Marconi, Wireless Specialties, etc. Fessenden and NESCO were not on the bidders list.
When the United States entered WW I the USN seized the huge German-owned commercial transmitting station at Sayville, NJ, where the USN immediately installed a Fessenden heterodyne principle receiver. It was a single-tube self-heterodyne set with two stages of audio amplification, Fig. 6.

The wisdom of the US Navy to move from ‘spark’ to cw wireless systems beginning in 1912-13 was significant. By 1918, high-power, Navy stations were in service at Annapolis, MD. Panama Canal, Philippines, Hawaii, France, San Diego, etc. These cw stations had Federal oscillating arc transmitters with power outputs from 100 to 1000kW, and employed Fessenden’s heterodyne principle receivers.

The system was awe-inspiring, allowing the USN to communicate with its ships at any location on the high seas. This 1918 wireless cw communication network far surpassed what Britain, Germany, France or any other country could claim. Built in a relatively short five-year period, the USN system was much superior to the Marconi’s ‘spark’ system.

In summary

The Fessenden heterodyne patents, US Nos 706740, 1050441 and 1050729, cover a basic radio invention that is fundamental to signal reception. Some historians consider that Fessenden’s heterodyne principle is his greatest contribution to radio science. It has been argued that both Armstrong (US) and DeForest (US) based their feedback regenerative detector patents on these Fessenden heterodyne patents. It is without question that both Armstrong and Levy (Fr.) incorporated Fessenden’s heterodyne principle in their superheterodyne circuits, which are used today in all forms of telecommunication.

Through a series of corporate transactions, these Fessenden heterodyne patents came to be controlled by the Radio Corporation of America/General Electric Company. For years, those companies would not licence them for use by others. Fessenden did not receive any payment or fee from this ‘radio trust’.

As the 1920’s came to a close, this restraint-of-trade business method was judged illegal. As a side issue, Fessenden was awarded a relatively small compensatory sum by the US courts almost 30 years after filing his first heterodyne invention. After this legal settlement he left the United States forever, taking up residence in Bermuda where he passed away in 1932 at the age of 66 years.

Fessenden – a genius, and a mathematician – was the inventor of radio communications as we know it today.

References

Eight year EW index

Hard copy or disk

Includes over 600 circuit idea references

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past eight years.

The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 – volumes 94 to 101 inclusive – and is available now. It contains almost 2000 references to articles, circuit ideas and applications – including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512k ram and a hard disk.

Even though the disk-based index has been expanded significantly from five years to eight, its price is still only £20 inclusive. Please specify whether you need 51/4in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number with their order.

Hard copy Electronics World index

Indexes on paper for volumes 100 and 101 are available at £2 each, excluding postage.

Ordering details

The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide.

For enquiries about photocopies, etc, please send an s.a.e to SoftCopy Ltd at the address below.

Send your order to SoftCopy Ltd., 1 Vineryes Close, Cheltenham GL53 0NU, tel 01242 241455, or e-mail at 100S56.112@compuserve.com. Please make cheques payable to SoftCopy Ltd – not EW or Reed Business Publishing. Please allow up to 28 days for delivery.
Message beacon

Bill Francis' PIC-based wireless message system is kept simple by having pre-determined messages in eprom at the receiving end.

Transmitting messages
Circuitry for the transmitter is relatively simple. Figure 1 shows its block diagram. Control is carried out by a 16C54 PIC, programmed to read two switches connected to port B bits PB3 and PB4. Switch SW1 is the 'address count'. When this switch is made, the PIC increments the address input to the M145026 encoder up to a maximum of 31. Further increments cause the address count to 'roll over' to zero. The address identifies one of 31 receiver units.

In a similar way, SW2 operates the 'data count' corresponding to the message to be displayed. The maximum value for the data count is 15. Again, any further increment causes the data count to roll over to zero.

The address and data values are output on the PIC port B bits PB3 to PB4 and port A respectively. These values are connected to the corresponding inputs of the M145026 encoder and led via inverters indicating the address and data values to the user. Passive components around the encoder set the IC's clock frequency to a relatively slow 8.53kHz. Switch SW3 is the transmit switch. When this switch is made, the IC outputs the code on its data out pin 15. Data output connects to the input of the radio transmitter module via comparator, IC5, which provides a 12V logic level to the transmitter. Code is then transmitted.

A number of options are available in the choice of antenna. The one used here is a helical type, constructed from 34 turns of 0.5mm diameter enamelled copper wire close wound on a 2.5mm former. This gives the best compromise in terms of performance, ease of use and immunity to de-tuning. Figure 2 is the circuit diagram.

The number of functions available on the transmitter is dictated by the software for the PIC microcontroller.
which is relatively simple. The program has two main functions. One is to read the address count switch, SW1. If the switch is made, the address counter is incremented and the value is output on the appropriate port. The other is to read the data count switch, SW2. If this switch is made, the data counter is incremented and the value is output on the appropriate port.

Using a PIC for the control functions reduces the chip count to one. If standard logic were used, the chip count could easily be four or five. This microcontroller approach makes pcb design much simpler and puts less demand on the power supply. It also gives more flexibility since the software can easily be modified.

Transmitter software

Even the relatively simple program for the transmitter microcontroller requires some thought before coding is attempted. First, the individual functional blocks must be isolated. The functional blocks described here are:

- Microcontroller and variable initialisation
- Switch de-bounce
- Increment address count and output
- Increment data count and output

You may not need all of the blocks depending on your application. Remember that these are subroutines. A main control program is also required to coordinate the routines.

Initialisation. Usually, the microcontroller requires initialising only once. This is normally the first operation to be performed on power up.

The ports have to be set to input or output, or a combination of both, and the option register has to be initialised to set the real-time clock, or rtc. In this case, the rtc is used on the internal clock and has the prescaler assigned to divide-by-256. This division is used in a delay routine for de-bouncing the switches.

Finally, the outputs will need to be set to their initial values and any variables, or file registers, initialised. The flow chart is shown in Fig. 3 and the corresponding code is shown in the full listing under the label INITP.

Switch de-bounce. A simple delay routine debounces the switches. This delay is derived from the rtc, which is set to increment via its internal clock through a 256 pre-scaler. The rtc register is cleared then the program loops until bit 7 of the rtc is set. Further flow charts are not shown here, but the complete program listing is given in Fig. 3.

Increment address counter. When the increment address switch, SW1, is made the up_address routine is called. The delay routine is called immediately, in order to de-bounce the switch. On return from the delay routine the switch is tested again. If it is not still made, the routine returns taking no action. This guards against spurious noise and spikes.

If the switch is still made, the address counter is incremented if the present value is less than 31, otherwise it is set to zero. The routine then waits until the switch is released and again is de-bounced by calling the delay routine. The address value is then output on the appropriate port.

Increment data counter. Operation of this routine is identical to that of the increment address counter with three exceptions: it reads increment data switch, SW2, whose maximum value is 15, and the data is output to a different port.

The control program

To begin with, the main or control calls the initialisation routine then enters a never ending loop, continually testing the two switches. If one of the switches is pressed, the program is directed to the appropriate routine as can be seen in the program listing.

When the program is complete, it requires testing. Using the PIC-DATS programme (detailed later) allows each routine to be tested individually, first in simulation only, then, when necessary, using the in-circuit emulator cable in order to reflect real input and output.

Once the PIC-DATS is connected to the pc, and the associated software started, the user is presented with an information screen on the pc. The in-circuit emulator cable is then connected between the PIC-DATS unit and the PIC IC socket on the circuit board, Fig. 4. The assembled program is then loaded onto the programmer system allowing the user to run, trace or single step any part or all of the program.
DIGITAL DESIGN

List 1. Transmit control subroutines. Routines are called when a switch is pressed.

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td><code>; FILE SAVED AS TXMD.ASM </code></td>
</tr>
<tr>
<td>3-4</td>
<td><code>; FOR PIC 16C55 18 PIN DEVICE</code></td>
</tr>
<tr>
<td>5-6</td>
<td><code>; RESONATOR 4MHz</code></td>
</tr>
<tr>
<td>7</td>
<td><code>; INSTRUCTION CLOCK 1.00 MHz T=1uS</code></td>
</tr>
<tr>
<td>8</td>
<td><code>; WATCHDOG DISABLED</code></td>
</tr>
<tr>
<td>9</td>
<td><code>; CODE PROTECTION OFF</code></td>
</tr>
<tr>
<td>10</td>
<td><code>; PROCESSOR 16C54</code></td>
</tr>
<tr>
<td>11</td>
<td>`; TITLE 'Transmitter module program'</td>
</tr>
<tr>
<td>12-13</td>
<td><code>; INCLUDE EQUATES.ASM</code></td>
</tr>
<tr>
<td>14-15</td>
<td><code>; DATA EQU 10H ;IC DATA WORD</code></td>
</tr>
<tr>
<td>16-17</td>
<td><code>; ADDRESS EQU 1H ;IC ADDRESS WORD</code></td>
</tr>
<tr>
<td>18-19</td>
<td><code>; ORG 1FFH ;CHANGE ADDRESS DEPENDING ON PIC TYPE</code></td>
</tr>
<tr>
<td>20</td>
<td><code>; RESET ;SEE RESET VECTOR SECTION</code></td>
</tr>
<tr>
<td>21-22</td>
<td><code>; GOTO START ;THE PROGRAM STARTS HERE</code></td>
</tr>
<tr>
<td>23</td>
<td><code>; THE ROUTINES START HERE</code></td>
</tr>
<tr>
<td>24-26</td>
<td><code>; ORG 00</code></td>
</tr>
<tr>
<td>27-33</td>
<td><code>; START CALL INITP ;INITIALISE PORTS</code></td>
</tr>
<tr>
<td>34-36</td>
<td><code>; REPEAT BTFS PORTB,5 ;TEST FOR UP ADDRESS</code></td>
</tr>
<tr>
<td>37-39</td>
<td><code>; CALL UP ADDRESS ;IF NOT PRESSED THEN DO NOTHING</code></td>
</tr>
<tr>
<td>40-42</td>
<td><code>; BTFS PORTB,5 ;WAIT TILL SWITCH RELEASED</code></td>
</tr>
<tr>
<td>43-45</td>
<td><code>; GOTO WAIT_AS ;WAIT ADDRESS SWITCH</code></td>
</tr>
<tr>
<td>46-48</td>
<td><code>; CALL DELAY ;DEBOUNCE SWITCH RELEASE</code></td>
</tr>
<tr>
<td>49-51</td>
<td><code>; MOVlw 1 ;SET W=1 FOR ADD</code></td>
</tr>
<tr>
<td>52-54</td>
<td><code>; ADDWF ADDRESS ;ADDRESS=ADDRESS+1</code></td>
</tr>
<tr>
<td>55-57</td>
<td><code>; BTFS ADDRESS,5 ;TEST IF > 31</code></td>
</tr>
<tr>
<td>58-60</td>
<td><code>; GOTO ADDRESS_ZERO ;IF > 31 SET TO ZERO</code></td>
</tr>
<tr>
<td>61-63</td>
<td><code>; CONTADDRESS MOVw ADDRESS,W ;GET ADDRESS</code></td>
</tr>
<tr>
<td>64-66</td>
<td><code>; MOVw PORTB ;AND OUTPUT</code></td>
</tr>
<tr>
<td>67</td>
<td><code>; END_UPADDRESS RETlw 0 ;RETURN</code></td>
</tr>
<tr>
<td>68</td>
<td><code>; ADDRESS_ZERO CLRF ADDRESS ;SET ADDRESS TO 0</code></td>
</tr>
<tr>
<td>69-70</td>
<td><code>; GOTO CONT_ADDRESS ;AND CONTINUE</code></td>
</tr>
<tr>
<td>71-75</td>
<td><code>; UP DATA CALL DELAY ;DEBOUNCE SWITCH</code></td>
</tr>
<tr>
<td>76-78</td>
<td><code>; BTFS PORTB,5 ;TEST IF STILL PRESSED</code></td>
</tr>
<tr>
<td>79-81</td>
<td><code>; CALL END_UP_DATA ;IF NOT PRESSED THEN DO NOTHING</code></td>
</tr>
<tr>
<td>82-84</td>
<td><code>; BTFS PORTB,5 ;WAIT TILL SWITCH RELEASED</code></td>
</tr>
<tr>
<td>85-87</td>
<td><code>; GOTO WAIT_DS ;WAIT ADDRESS SWITCH</code></td>
</tr>
<tr>
<td>88-90</td>
<td><code>; CALL DELAY ;DEBOUNCE SWITCH RELEASE</code></td>
</tr>
<tr>
<td>91-93</td>
<td><code>; MOVlw 1 ;SET W=1 FOR ADD</code></td>
</tr>
<tr>
<td>94-96</td>
<td><code>; ADDWF DATA ;DATA=DATA+1</code></td>
</tr>
<tr>
<td>97-99</td>
<td><code>; BTFS DATA,4 ;TEST IF > 15</code></td>
</tr>
<tr>
<td>100-102</td>
<td><code>; GOTO DATA ZERO ;IF > 15 SET TO ZERO</code></td>
</tr>
<tr>
<td>103-105</td>
<td><code>; CONT DATA MOVw DATA,W ;GET DATA</code></td>
</tr>
<tr>
<td>106-108</td>
<td><code>; MOVw PORTA ;AND OUTPUT</code></td>
</tr>
<tr>
<td>109</td>
<td><code>; END_UP_DATA RETlw 0 ;RETURN</code></td>
</tr>
<tr>
<td>110-112</td>
<td><code>; DATA ZERO CLRF DATA ;SET DATA TO 0</code></td>
</tr>
<tr>
<td>113-115</td>
<td><code>; GOTO CONT_DATA ;AND CONTINUE</code></td>
</tr>
<tr>
<td>116</td>
<td><code>; INITP MOVlw 0 ;MAKE PORT A OUTPUT</code></td>
</tr>
<tr>
<td>117-119</td>
<td><code>; TRIS PORTA ;DO IT</code></td>
</tr>
<tr>
<td>120-122</td>
<td><code>; TRIS @PORTA PORTB PORTB PORTB PORTB 0 ;DATA = 0</code></td>
</tr>
<tr>
<td>123-125</td>
<td><code>; MOVw DATA ADDRESS =0</code></td>
</tr>
<tr>
<td>126-128</td>
<td><code>; MOVw PORTA</code></td>
</tr>
<tr>
<td>129-131</td>
<td><code>; MOVw PORTA</code></td>
</tr>
<tr>
<td>132-134</td>
<td><code>; MOVlw 7 ;SET RTCC PRE-SCALER = 256</code></td>
</tr>
<tr>
<td>135</td>
<td><code>; DO IT</code></td>
</tr>
<tr>
<td>136</td>
<td><code>; RETlw 0 ;RETURN</code></td>
</tr>
<tr>
<td>137</td>
<td><code>; END</code></td>
</tr>
</tbody>
</table>

The PIC-DATS system is menu driven so operation is largely intuitive. For example, single-step the main program, simply select the ‘debug’ pull down menu using the keyboard or mouse, select single step and press enter. The user is then prompted for a start address. ‘R’ specifies the reset address, and reset condition.

Subsequent single steps are then executed by pressing the return or ‘S’ key. This continues until any other key is pressed. The last line of code executed is shown on the user screen and the next line to be executed is shown in the top right-hand corner of the user screen.

As single stepping continues, the values read from the switches are ‘real’ values and can be seen in the appropriate file register. In the PIC-DATS system, if the program is found to be running incorrectly, it can be edited, cross-assembled and reloaded, all from within the programmer system. This allows rapid program development.

Fig. 4. The in-circuit emulator cable connects between the PIC-DATS unit and the PIC IC socket on the circuit board.

Receiver details

Messages for displaying by the receiver are stored in an eprom. The content of the actual messages will vary depending on the particular application. Programming of the eprom is up to you.

As a guide, the messages for the eprom used in the development unit were written on a microprocessor cross-assembler using the ‘define message’ assembler directive. The eprom was then programmed. The maximum length of the message in this application is 127 characters, which is adequate for most liquid-crystal display modules.

The PIC is not designed for interfacing to external memory, but an eprom can be interfaced using the PIC’s i/o pins. This approach does, however, require that data transfers are performed under program control. Addressing the eprom and retrieving the data involves 8 data lines and 11 address lines.

The PIC used in the receiver is the 16C55 which has 20 programmable i/o pins. Clearly, some sharing of i/o resources is needed. To accomplish this, part of the eprom address is latched using a 74LS374 octal data latch. In effect, a bus system is created. This bus uses port C of the PIC to transfer data and bits 0-2 and 4-7 of port B to control the data transfers, Fig. 5. A block diagram of the receive and decode section is shown in Fig. 6.

Software and circuit operation

The radio receiver module receives the encoded transmission and passes the digital data to the input of the M145027 decoder. If the transmitted address matches the address set up on the address select switches, the decoder issues a valid transmission, VT, signal and outputs the transmitted code.

This allows up to 32 receiver modules to be used individually with one transmitter unit. The VT signal connects to port B bit 3 of the PIC which, under program control, waits till the VT signal goes active low.

When the PIC receives an active VT, again under program control, the PIC reads the code from the decoder via port A. This code is then used as the upper four bits of the eprom.
address thus forming the ‘base address’ of the message to be displayed. In order to display the message the PIC must perform the following actions:

- The base address – the code received – must be output on address lines A7:A0 (A8:A9 via port B bits 0-2, and A2A3 left from port C, bit 7).
- Lower order address lines are set to zero and latched on to A0:A16 of the eprom. Data is read from the eprom. If the data is zero, the processor is ended (null terminating string).
- The data is written to the lcd module.
- The address is incremented.
- Go to step 2.

As mentioned in the description of the transmitter, each operation must be isolated and coded individually. The receiver module is more complex than the transmitter unit so great care must be exercised in isolating and developing each operation, or sub-routine.

When a particular solution is developed, it is important that its operation is tested as much as possible before moving to the next task. This can be achieved using the PIC-DATS unit since it is possible to run each subroutine using the in-cable and monitor the various signals on the receiver unit as the routine is stepped through. Here, the following individual requirements were isolated:

- Initialise PIC
- Delay
- Wait for ‘not busy’ from lcd module
- Write data to lcd module
- Clear lcd module
- Initialised led module
- Clock address latch
- Read eprom
- Main control routine

The program listing shows that each one of the above operations corresponds to a subroutine. As the programs are developed, each subroutine is tested as a self contained item. When the routine operation is acceptable, that routine is used as required within a program. This is the best way to develop.

Initialising the PIC. Initialisation of the PIC divides into two parts – the operation of the ports and the OPTION register. The ports are set to input or output and assigned an initial value as indicated in Table 1.

In this case, the OPTION register is used to set the prescaler to 256 and assign it to the rtc with internal clock. The routine performing these operations can be seen in the program listing under the name INITP.

Delay. The delay routine is a general purpose delay for use by other routines. It is similar to that described in the transmitter section of this project and therefore will not be further described here.

Wait for not busy from lcd module. The lcd module control signals are interfaced as indicated in Table 1. Port C is used as the data bus while the control bits are derived from port B and have functions as shown in Table 2.

The lcd module carries out commands internally following a command instruction. While the command is being executed, no further commands or data may be written to the module. The display module uses the ‘busy’ signal to indicate the current status of the device and is accessed by performing a read cycle and examinin...
DIGITAL DESIGN

MOVWF PORTC ; 0/P IT
BSF PORTB,LCD_EN ; ENABLE LCD MOD
BTFSC PORTC,W ; READ MESSAGE CODE
CALL WAIT_BF ; & CLOCK
MOVLW #0EH ; DISPLAY ON
BSF PORTB,LCD_EN
BCF PORTB,LCD_EN
CALL #0BF
MOVLW #6H ; ENTRY MODE SET
BSF PORTC
BSF PORTB,LCD_EN
BCF PORTB,LCD_EN
CALL WAIT_BF
MOVLW #1H ; CLEAR DISPLAY
BSF PORTC
BSF PORTB,LCD_EN
BCF PORTB,LCD_EN
MOVLW #OFFH ; SET PORT C BACK TO INPUT
MOVWF PORTC
BSF PORTC
TRIS PORTC
CLRF PORTC
MOVLW #OFFH ; SET PORT C TO OUTPUT
MOVWF PORTC
BSF PORTC
TRIS PORTC
RETURN 0 ; RETURN

**********GO TO NEXT LINE (LINE 2)**********

LINE 2 CALL WAIT_BF ; WAIT FOR NOT BUSY. (SET C TO 0/P)
MOVLW #00CH ; SET DD RAM TO 40 (LINE 2)
MOVWF PORTC ; 0/P IT
BSF PORTB,LCD_EN ; ENABLE LCD MOD
BTFSC PORTC,W ; & CLOCK
MOVLW #OFFF ; SET PORT C TO INPUT
TRIS PORTC
RETURN 0 ; RETURN

**********CLOCK_LATCH DATA TO EPROM LATCH**********

CLOCK_LATCH_DATA
CLRF PORTC ; SET PORT C TO OUTPUT
BSF PORTB,LCD_EN ; ENABLE LCD MOD
BTFSC PORTC,W ; & CLOCK
MOVLW #OFFF ; CLOCK LATCH
TRIS PORTC
BSF PORTC
TRIS PORTC
RETURN 0 ; RETURN

**********READ_EPROM AND STORE DATA**********
READ_EPROM BCF PORTB,EPROM_OE ; EPROM OUTPUT ENABLE
NOP ; WAIT
MOVF PORTC,W ; READ DATA
BTFSC PORTB,EPROM_DATA ; AND STORE
BSF PORTB,EPROM_OE ; DISABLE EPROM OUTPUT
RETURN 0 ; RETURN

**********INITIALISE I/O**********
INITP CLRF PORTC ; PORT C = 0
CLRF PORTA ; PORT A = 0
CLRF PORTB ; PORT B = 0
MOVLW #OFFH ; MAKE PORT A INPUT
TSF PORTA ; DO IT
MOVLW #OFFH ; PORT B BIT 3 INPUT, REST OUT
TSF PORTB ; DO IT
MOVLW #0FH ; INITIAL PORT B
MOVWF PORTB ; DO IT
MOVLW #OFFH ; SET PORT C TO INPUT
TRIS PORTC
MOVLW #7 ; SET PTC DECIDE FACTOR
OPTION
RETURN 0 ; RETURN

**********MAIN CONTROL ROUTINES**********

VALID_TX CALL SET_LCD ; GET A TRANSMISSION
CALL INITP ; INITIALISE LCD MODULE
MOVWF PORTA,W ; READ MESSAGE CODE
MOVWF MESSAGE_CODE ; AND STORE
BTFSC PORTA,W ; USER ADDRESS 7
BRC MESSAGE_CODE ; MOVE CODE 1 TO RIGHT
CALL CLOCK_LATCH_DATA ; LATCH ADDRESS ONTO EPROM
MOVLW #OFF8 ; CLEAR BASE ADDRESS BITS
ADWF PORTB ; DO IT
MOVWF MESSAGE_CODE,W ; SET BASE ADDRESS
ADWF PORTB ; SET UP 1 LSB S LEAVING OTHER BITS
CALL READ_EPROM ; READ EPROM DATA... DATA IN EPROM_DATA
BTFSC PORTA,W ; IF NOT ZERO CARRY ON
MOVLW #60 ; TEST FOR ZERO
BTFSC STATUS,ZERO ; IF NOT ZERO CARRY ON
GOTO REPEAT ; ELSE END
MOVLW #1 ; SET UP TUPMEMENT
ADWF ADDRESS ; INCREMENT ADDRESS
MOVLW #10H ; TEST FOR END OF LINE 1
BTFSC STATUS,ZERO ; IF NOT LINE TO SKIP
GOTO NEW_LINE ; ELSE NEW LINE
ADWF ADDRESS ; TEST FOR END OF LINE 1
CALL WRITE_LCD ; WRITE_LCD
GOTO NEXT_CHAR ; DO NEXT
NEW_LINE CALL Line 2 ; DO TO LINE 2
GOTO END

Port B

16C55

EPROM

Latch

LATCH

Port C

16C55 PIC

Fig. 5. Each receiver module has PIC whose ports B and C are used as control, address and data busses for the message eprom and display. The latch allows the eprom address range to be extended.

Fig. 6. Overall system diagram of the receiver module shows how the low-power radio receiver feeds the decoder module, which in turn sends the received information to the PIC.

Wait for not busy. This routine performs the following sequence:

Port C is made input.

The lcd module is set to 'read' by setting the R/W bit and enabled by setting the enable bit.

The data bus – port C of the PIC – is then read and bit 7 tested.

If Bit 7 is a logic 1, step 3 is repeated. The read and enable bits are cleared.

Port C put back to output.

The routine associated with this process can be seen in the program listing under the label 'WAIT_BF'. As it's name suggests, this subroutine cycles waiting till the lcd module is not busy before a return is executed.

Write data to lcd module. This routine writes data held in a file register, named EPROM_DATA, to the lcd module. In this application, the data is the data previously retrieved from the eprom and stored by the READ_EPROM routine, described later. The write operation is accomplished by performing the following steps:

Call the WAIT_BF routine. This makes sure that the lcd module is ready to receive data. Note also that port C is left as output.

Data held in register file EPROM_DATA is retrieved, placed it in the W register, and output it to port C, which is connected to the data pins of the lcd module. Set the RS bit of the lcd module to logic 1 to select data, and enable the lcd module by placing a logic zero on the enable pin.

Clock data into the lcd module by clearing the enable bit followed by disabling the lcd module.

Set port C to input.

ELECTRONICS WORLD April 1997

302
Table 1. Port allocation table for the message receiver module.

<table>
<thead>
<tr>
<th>Device</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A3</td>
<td>A7</td>
</tr>
<tr>
<td>Decoder</td>
<td>D9</td>
<td>EN</td>
</tr>
<tr>
<td>Eprom</td>
<td>D8</td>
<td>R/W</td>
</tr>
<tr>
<td>Display</td>
<td>D7</td>
<td>RS</td>
</tr>
<tr>
<td>Latch</td>
<td>D6</td>
<td>EN</td>
</tr>
<tr>
<td>Input/i/o</td>
<td>D5</td>
<td>I/O</td>
</tr>
<tr>
<td>Initial</td>
<td>D4</td>
<td>I/O</td>
</tr>
<tr>
<td>Initial</td>
<td>D3</td>
<td>i/o</td>
</tr>
<tr>
<td>Value</td>
<td>D2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Control bits used for the liquid crystal display module.

<table>
<thead>
<tr>
<th>Level</th>
<th>Port B</th>
<th>bit 5</th>
<th>bit 6</th>
<th>bit 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>RS</td>
<td>R/W</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Data input</td>
<td>Read</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Aerial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To use this routine, the control program has to send display data to the LCD module in the appropriate register file. In this case register file 1116 equates to the label EPROM_DATA. Note that the name chosen, WRITE_LCD, is meaningful. This makes programs more easily understood and hence easier to debug and maintain, see List 2.

Initialise LCD module. This routine is essentially a series of commands to the LCD module as detailed by the LCD module specification – in this case the Hitachi LM032L. A command is written to the LCD module by performing the following steps:

1. Set port C to output and send the appropriate command code.
2. The device is enabled by setting the enable bit and the command clocked in by clearing the enable bit. Note that the RS bit is left in the default condition, logic 0, which selects the command mode.
3. Wait until command complete. Note that the wait for not busy cannot be used until the device is initialised.
4. This process is repeated with the appropriate command codes, with a call a delay routine between successive commands. The command code sequence used in this instance is shown in Table 3.

Table 3. Command order for the liquid crystal display.

<table>
<thead>
<tr>
<th>Command order</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38_{16}</td>
</tr>
<tr>
<td>2</td>
<td>38_{16}</td>
</tr>
<tr>
<td>3</td>
<td>38_{16}</td>
</tr>
<tr>
<td>4</td>
<td>38_{16}</td>
</tr>
<tr>
<td>5</td>
<td>38_{16}</td>
</tr>
<tr>
<td>6</td>
<td>38_{16}</td>
</tr>
<tr>
<td>7</td>
<td>38_{16}</td>
</tr>
</tbody>
</table>

Referring to List 2, he name used for the routine is INIT_LCD. Notice also that the last four code sequence can be called by calling the SET_LCD routine which is in fact part of the SET_LCD routine. The SET_INIT routine is used when the LCD module has previously been initialised but the operation requires modifying, or as in this case clearing and the cursor moved to the beginning of line one.

Clock address latch. Before the eprom data can be retrieved the correct address must be

Fig. 7. Message beacon receive module. The LCD connector mates with a standard Hitachi LM032L liquid-crystal display module.
applied to the address lines, this is achieved by latching the address into the address latch. The required sequence is as follows:

Set port C to output.
Retrieve current address and send to port C. Set then clear latch enable bit to clock latch. This bit is port B bit 5, called LATCH_EN.
Restore port C to input.

In the program listing, this subroutine is called 'CLOCK_LATCH_DATA'.

Read eprom data. In normal operation data is read from eprom automatically when a microprocessor performs a read operation. All the control signals are provided by the microprocessor. In this case the data transfer must be performed under program control by producing the following sequence:

Enable the eprom outputs by clearing the output enable which is connected to port B bit 4, labelled LATCH EN.
Read port C which now has the EPROM data applied.

Disable the EPROM outputs by setting the output enable high.

This sequence is carried out by the READ_EPROM routine in the program listing. The main program simply calls each subroutine as required. One facility not mentioned so far is the ability to include a new line control within the stored message. The line feed code 10h is used to indicate that the cursor on the LCD module should be moved to the start of line two. As each code is read from the eprom, it is tested for a new line. If a new line is required the subroutine LINE_2 is called.

Circuit details
The complete circuit diagram is shown in Fig. 7. Note the way port C of the PIC is used as a bus system. Each device on the bus is capable of being tri-state which allows each device to be selected under program control. It should be apparent that it is very important that programmer is especially careful to enable only one device at a time to avoid bus conflict.

The receiver is tested using the same approach as the transmitter, each routine tested and proved individually using the PIC-DATS with or without the in-circuit emulator cable, then the program is tested as a whole.

As the program is traced — or run — and with the optional in-circuit emulator cable fitted, each character of the message can be seen as it is transferred from the eprom to the PIC module. The process is complete by programming the PIC, probably a one-time programmable version, using a PIC programmer, then inserting the chip in the socket on the circuit board.

One transmitter is capable of controlling up to 32 receiver units. The transmitter and receiver were designed to be 'stand alone' so the system can be used in almost any environment.

Develop PIC microcontroller systems for just £239

Vann Draper is launching a PIC development system called PIC-DATS that sells for under £300 — including development module, simulation and software design tools, power supply, COM port cable and manual.

As a bonus, the company is making the system available exclusively to EW readers at a 20% discount, so you can buy the development system, with software, for just £239 — fully inclusive.

Connecting via a serial port, the PIC-DATS development system handles 16C55, 16C85 and 16C71 PIC controllers. The development system includes PIC-SIM — a software package that simulates the PIC on your PC compatible.

Programs under development are written and run on the PC, but when program instructions refer to peripherals, the operation is reflected on the PIC's I/O lines. In this way, you get the benefits of simulation — single-stepping and easy debugging — combined with the advantages of emulating the system in the real world. Emulation cables for a wide variety of PIC microcontrollers are available as optional extras. Ring Vann Draper for more details on 0116 2771400, fax 2773945.

Please send me … PIC-DATS(s) PIC development systems at £239 each (fully inclusive) for which I enclose a total of £……………….

Name

Company (if any)

Address

Phone number/fax

Make cheques payable to Vann Draper Electronics Ltd
Or, please debit my Master, Visa or Access card.

Card type (Access/Visa)

Card No

Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively, send credit card details with order on 0116 2773945 or telephone on 0116 2771400. Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.

*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics.
Balanced inputs and outputs have been used for many years in professional audio, but profound misconceptions about their operation and effectiveness still survive. Balanced operation is also making a slow but steady advance into top-end hi-fi, where its unfamiliarity can lead to further misunderstandings. As with most topics in audio technology, the conventional wisdom is often wrong.

A practical balanced interconnect is not always wholly straightforward. Some new variations on input and output stages have emerged relatively recently. For example, a ‘ground-cancelling’ output is not balanced at all, but actually has one output terminal configured as an input. This can come as a surprise to the untrained.

Despite its non-balanced nature, such a ground-cancelling output can render a ground loop innocuous even when driving an unbalanced input. But even an audio professional could be forgiven for being unsure if it still works when it is driving a balanced input. The answer – which in fact is yes – is explained in a second article on this subject, details of which are given later.

Electronic versus transformer balancing

Electronic balancing has many advantages. These include low cost, low size and weight, superior frequency and transient response, and no problems with low-frequency linearity. While it is sometimes regarded as a second-best, it is more than adequate for hi-fi and most professional applications.

Transformer balancing has some advantages of its own – particularly for work in very hostile rf/emc environments – but many serious drawbacks. The advantages are that transformers are electrically bullet-proof, retain their common-mode rejection ratio performance forever, and consume no power even at high signal levels. Unfortunately they also generate low-frequency distortion, have high-frequency response problems due to leakage reactance and distributed capacitance. Transformers are also heavy and expensive.

The first two objections can be surmounted – given enough extra electronic circuitry – but the last two cannot. Transformer balancing is therefore rare, even in professional audio, and is only dealt with briefly here.
Balancing basics

Balanced connections in an audio system are designed to reject both external noise, from power wiring etc, and also internal crosstalk from adjacent signal cables.

The basic principle of balanced interconnection is to get the signal you want by subtraction, using a three-wire connection. In many cases, one signal wire – the hot or in-phase conductor – senses the actual output of the sending unit. The other, the cold or phase-inverted, senses the unit’s output-socket ground, and the difference between them gives the wanted signal.

Any noise voltages that appear identically on both lines, i.e. common-mode signals, are in theory completely cancelled by the subtraction. In real life, the subtraction falls short of perfection, as the gains via the hot and cold inputs will not be precisely the same. The degree of discrimination actually achieved is called the common-mode rejection ratio, or cmrr.

The terms hot and cold, for in-phase and out-of-phase respectively, are used throughout this article for brevity.

While two wires carry the signal, the third is the ground wire which has the dual duty of both joining the grounds of the interconnected equipment, and electrostatically screening the two signal wires by being in some way wrapped around them. The ‘wrapping around’ can mean:

- A lapped screen, with wires laid parallel to the central signal conductor. The screening coverage is not perfect, and can be badly degraded as it tends to open up on the outside of cable bends.
- A braided screen around the central signal wires. This is more expensive, but opens up less when the wire is bent. Screening is not 100%, but certainly better than lapped screen.
- An overlapping foil screen, with the ground wire – called the drain wire in this context for some reason – running down the inside of the foil and in electrical contact with it. This is usually the most effective as the foil cannot open up on the outside of bends, and should give perfect electrostatic screening. However, the higher resistance of aluminium foil compared with copper braid means that if screening may be worse.

Electrical noise

Noise gets into signal cables in three major ways.

Electrostatic coupling. An interfering signal with significant voltage amplitude couples directly to the inner signal line, through stray capacitance. The situation is shown in Fig. 1, with C,C representing the stray capacitance between imperfectly-screened conductors; this will be a fraction of a picofarad in most circumstances. This coupling is unlikely to be a problem in hi-fi systems, but can be serious in studio installations with unrelated signals going down the same ducting.

The two main lines of defence against electrostatic coupling are effective screening and low-impedance drive. An overlapping foil screen – such as used on Belden microphone cable – provides complete protection. Driving the line from a low impedance, of the order of 100Ω or less, means that the interfering signal, having passed through a very small capacitance, is a very small current and cannot develop much voltage across such a low impedance.

For the best results, the impedance must remain low up to as high a frequency as possible; this can be problem as op-amps invariably have a feedback factor that begins to fall from a low, and possibly sub-audio frequency, and this makes the output impedance rise with frequency.

From the point of view of electrostatic screening alone, the screen does not need to be grounded at both ends, or form part of a circuit. It must of course be grounded at some point.

Electrostatic coupling falls off with the

List 1. Line output arrangements.
- Unbalanced output
- Impedance-balanced output
- Ground-cancelling output, or ground-compensated output.
- Balanced output
- Quasi-floating output
- True floating transformer output

Fig. 1. Electrostatic coupling into a signal cable. Rs is 100kΩ and R is 10kΩ. The second Rs to ground in the cold output line makes it an impedance balanced output.

Fig. 2. Magnetic coupling into a signal cable, represented by notional voltage-sources Vnr.

April 1997 ELECTRONICS WORLD 307
square of distance. Rearranging the cable-run away from the source of interference is more practical and more effective than trying to rely on very good common-mode rejection.

Magnetic coupling. An emf, V_m, is induced in both signal conductors and the screen, Fig 2. According to some writers, the screen current must be allowed to flow freely, or its magnetic field will not cancel out the field acting on the signal conductors. Therefore the screen should be grounded at both ends, to form a circuit.

In practice, the field cancellation will be far from perfect. Most reliance is placed on the common-mode rejection of the balanced system, to cancel out the hopefully equal voltages V_m induced in the two signal wires. The need to ground both ends for magnetic rejection is not a restriction, as it will emerge that there are other good reasons why the screens should be grounded at both ends of a cable.

In critical situations, the equality of these voltages is maximised by minimising the loop area between the two signal wires, usually by twisting them tightly together. In practice most audio cables have parallel rather than twisted signal conductors, and this seems adequate most of the time.

Magnetic coupling falls off with the square of distance, so rearranging the cable-run away from the source of magnetic field is usually all that is required. It is unusual for it to present serious difficulties in a domestic environment.

Common-impedance coupling. Ground voltages coupled in through the common ground impedance; often called 'common-impedance coupling' in the literature. This is the root of most ground loop problems. In Fig 3 the equipment safety grounds cause a loop ABCD; the mere existence of a loop in itself does no harm, but it is invariably immersed in a 50Hz magnetic field that will induce mains-frequency current plus odd harmonics into it.

This current produces a voltage drop down the non-negligible ground-wire resistance, and this once again effectively appears as a voltage source in each of the two signal lines. Since the cmrr is finite a proportion of this voltage will appear to be differential signal, and will be reproduced as such.

A common source of ground-loop current is the connection of a system to two different 'grounds' that are not actually at the same ac potential. The classic example of this is the addition of a 'technical ground' such as a buried copper rod to a grounding system which is already connected to 'mains ground' at the power distribution board. In most countries this 'mains ground' is actually the neutral conductor, which is only grounded at the remote transformer substation. The voltage drop down the neutral therefore appears between 'technical ground' and 'mains ground' causing large currents to flow through ground wires.

A similar situation can occur when water-pipes are connected to 'mains ground' except that interference is not usually by a common ground impedance; however the unwanted currents flowing in the pipework generate magnetic fields that may either create ground loops by induction, or interfere directly with equipment such as mixing consoles.

In practice, ground voltages cause a far greater number of noise problems than the other mechanisms, in both hi-fi and professional situations.

Even there is no common-impedance coupling, ground currents may still enter the signal circuit by transformer action. An example of such a situation is where the balanced line is fully floating and not galvanically connected to ground—which is only possible with a transformer-to-transformer connection.

The shield wire or foil acts as a transformer primary while the signal lines act as secondaries; if the magnetic field from the shield wire is not exactly uniform, then a differential noise voltage appears across the signal pair and is amplified as if it were a genuine signal. This effect is often called shield-current-induced-noise, or SCIN, and cables vary in their susceptibility to it according to the details of their construction.

Fortunately the level of this effect is below the noise-floor in most circumstances and with most cables, for once a differential-mode signal has been induced in the signal lines, there is no way to discriminate against it.

From this summary I deduce there are two principle effects to guard against; electrostatic coupling, and the intrusion of unwanted voltages from either magnetic coupling or ground-loop currents.

Electrostatic interference can be represented by notional voltage-sources connected to both signal lines; these will only be effectively cancelled if the line impedances to ground are the same, as well as the basic cmrr being high. The likely levels of electrostatic interference current in practice are difficult to guess, so the figures I give in the second article are calculated from applying 1mA to each line; this would be very severe crosstalk, but it does allow convenient relative judgements to be made.

Magnetic and ground-voltage interference can be represented by notional voltage-sources inserted in both signal lines and the ground wire; these are not line-impedance sensitive and their rejection depends only on the basic cmrr, as measured with low-impedance drive to each input. Similarly ground-voltage interference can be represented by a voltage-source in the ground wire only.

Both input and output are voltages so the cmrr can be quoted simply as a ratio in decibels, without specifying any level.

Line outputs

A line output is expected to be able to drive significant loads, partly because of a purely historical requirement to drive 600Ω, and partly to allow the parallel feed of several destinations. Another requirement is a low source impedance – 100Ω or less – to make the signal robust against capacitive crosstalk, etc.

There are many line output and input arrangements possible, and the results of the various permutations of connection are not always entirely obvious. An examination of the output types in use yields List 1.

Unbalanced output

There are only two physical output terminals – signal and ground, Fig 4a. A terminal is implied in Fig 4a, emphasising that it is always possible to connect the cold wire in the cable to the ground at the transmitting (output) end.

The output amplifier is almost always buffered from the line shunt-capacitance by a resistor R_s in the range 33 to 100Ω, to ensure stability. This unbalances the line impedances. If the output resistance is taken as 100Ω
worst-case, and the cold line is simply grounded as in Fig 4a, then the presence of \(R_s \) degrades the common-mode rejection ratio to -46dB, even if the balanced input at the other end of the cable has perfectly matched resistors.

Impedance balanced output. There are now three physical terminals, hot, cold, and ground, Fig. 4b. The cold terminal is neither an input nor an output, but a resistive termination with the same resistance \(R_s \) as the hot terminal output impedance. This type of output is intended for use with receiving equipment having balanced inputs. The presence of the second \(R_s \) terminated to output ground makes the impedance on each signal line almost exactly the same — apart from op-amp output impedance limitations — so that good rejection is achieved for both common-mode ground voltages and electrostatic interference.

If an unbalanced input is being driven, the cold terminal on the transmitting (output) equipment can be either shorted to ground locally or left open-circuit without serious consequences. Either way all the benefits of balancing are lost.

The use of the word 'balanced' is unfortunate as this implies anti-phase outputs, which are not present.

Ground-cancelling output. Also called a ground-compensated output, this arrangement is shown in Fig. 5a.

This allows ground voltages to be cancelled out even if the receiving equipment has an unbalanced input. It prevents any possibility of creating a phase error by miswiring. It separates the wanted signal from the unwanted by addition at the output end of the link, rather than by subtraction at the input end.

If the receiving equipment ground differs in voltage from the sending ground, then this difference is added to the output so that the signal reaching the receiving equipment has the same voltage superimposed upon it. Input and ground therefore move together and there is no net input signal, subject to the usual resistor tolerances.

The cold pin of the output socket is now an input, and must have a unity-gain path summing into the main signal output going to the hot output pin. It usually has a very low input impedance equal to the hot terminal output impedance.

It is unfamiliar to most people to have the cold pin of an output socket as a low impedance input, and this can cause problems. Shorting it locally to ground merely converts the output to a standard unbalanced type. If the cold input is left unconnected then there should be only a very small noise degradation due to the very low input impedance of \(R_s \).

Ground-cancelling outputs would appear to be very suitable for hi-fi use, as they are an economical way of making ground-loops innocuous. However, I am not aware that they have ever been used in this field.

Balanced output. The cold terminal is now an active output, producing the same signal as the hot terminal but phase-inverted, Fig. 5b. This can be simply done by using an op-amp stage with a gain of minus one to invert the normal in-phase output. Phase spikes are shown on the diagram to emphasise these phase relationships.

Fig. 4a. An unbalanced line output. The cold output — if it exists at all — is connected directly to ground.

![Fig. 4a](image)

Fig. 4b. An impedance balanced output. The cold output is connected to ground through a second \(R_s \) of identical value.

![Fig. 4b](image)

Fig. 5a. A ground-cancelling output, with a unity-gain path from the cold terminal to the hot output. Once more a second \(R_s \) balances the line impedances.

![Fig. 5a](image)

Fig. 5b. A balanced output. \(A_2 \) is a unity-gain inverter driving the cold output. Line impedances are balanced.

![Fig. 5b](image)
The in-phase signal itself is not degraded by passing through an extra stage and this can be important in quality-critical designs. The inverting output must not be grounded; if not required it can simply be ignored.

Unlike quasi-floating outputs, it is not necessary to ground the cold pin to get the correct gain for unbalanced operation, and it must not be grounded by mistake, because the inverting op-amp will then spend most of its time in current-limiting, probably injecting unpleasant distortion into the preamp grounding system, and possibly suffering unreliability. Both hot and cold outputs must have the same output impedance R_o to keep the line impedances balanced.

A balanced output has the advantage that it is unlikely to crosstalk to other lines, even if they are unbalanced. This is because the current injected via the stray capacitance from each crosstalking line cancels at the receiving end.

Another advantage is that the total signal level on the line is increased by 6dB, which can be valuable in difficult noise situations. All balanced outputs give the facility of correcting phase errors by deliberately swapping hot and cold outputs. This tactic is however a double-edged sword, because it is probably the phase became wrong in the first place.

This form of balanced output is the norm in hi-fi balanced interconnection, but is less common in professional audio, where the quasi-floating output gives more flexibility.

Quasi-floating output. This kind of output, Fig. 6, approximately simulates a floating transformer winding: if both hot and cold outputs are driving signal lines, then the outputs are balanced, as if a centre-tapped output transformer were being used.

If, however, the hot output is grounded, the cold output doubles in amplitude so the total level is unchanged. This condition is detected by the current-sensing feedback taken from the outside of the 75Ω output resistors. Current driven into the shorted cold output is automatically reduced to a low level that will not cause problems.

Similarly, if the hot output is grounded, the cold output doubles in amplitude and remains out of phase; the total hot-cold signal level is once more unchanged. This system has the advantage that it can give the same level into either a balanced or unbalanced input without rewiring connectors. 6dB of headroom is however lost.

When an unbalanced input is being driven, the quasi-floating output can be wired to work as a ground-cancelling connection, with rejection of ground noise no less effective than the true balanced mode. This requires the cold output to be grounded at the remote (input) end of the cable. Under adverse conditions this might cause hf instability, but in general the approach is sound. If you are using exceptionally long cable, then it is wise to check that all is well.

If the cold output is grounded locally, ie at the sending end of the cable, then it works as a simple unbalanced output, with no noise rejection. When a quasi-floating output is used unbalanced, the cold leg must be grounded, or common-mode noise will degrade the noise floor by at least 10dB, and there may be other problems. In both of the unbalanced cases the maximum signal possible on the line is reduced by 6dB.

Quasi-floating outputs use a rather subtle circuit with an intimate mixture of positive and negative feedback of current and voltage. This performs the required function admirably; its only drawback is a tendency to accentuate circuit tolerances, and so a preset resistor is normally required to set the outputs for equal amplitude; the usual arrangement is shown in Fig. 6.

If the balance preset is not correctly adjusted on one side of the output will clip before the other and reduce the total output headroom. After factory setting this preset should not need to be touched unless the resistors in the circuit are replaced; changing the op-amp should make no difference.

The balancing network consists of a loading resistor to ground on each output; in this respect the output characteristics diverge from a true floating output, which would be completely isolated from ground. These loading resistors are lower than the input impedance of typical balanced inputs. So if simple differential amplifiers are used with unequal input impedances, (see the section on line inputs, below) the output balance is not significantly disturbed and clipping remains symmetrical on the hot and cold outputs.

Quasi-floating outputs are often simply referred to as 'balanced' or 'electronically-balanced', but this risks serious confusion as the true balanced output described earlier must be handled in a completely different way from quasi-floating.

True floating transformer output. This can be implemented with a transformer if galvanic isolation from ground is required. The technique is rarely used.

The second article in this pair looks at line inputs in detail, examines what happens when the different kinds of input and output are connected together, and deals with the philosophy of audio system wiring.

References
2. Williams, T., As reference 1 above, p. 173.
Q. WHY SIMULATE?
A. Because It Really Works...
...when you have the right software tools. With ICAP/4, The Virtual Circuit Design Lab, you can simulate the toughest System, IC, and Board-level designs.

You said you would do more simulation if the tools were easier to use. Well here you go!

→ Ease of Use for The Beginner, Power For The Professional
With ICAP4/Windows you can sweep ANY circuit variable from the schematic and instantly view the results. Seamless schematic-simulator integration makes it easy to see the effects of design changes.

→ Unmatched SPICE Power
Interactive Native Mixed Mode SPICE 3F and XSPICE based simulator with unlimited circuit size
Simulate all types of designs: Power, ASIC, RF, Analog, Digital, Electro-Mechanical
Advanced Features: AHDL Modelling, Latest BSIM3 MOS model, Simulation Alarms, Scripting Language
State-of-the-Art Convergence Algorithms
Powerful Behavioural Modelling Enhancements
New... Interface Your Simulation with Test Hardware

→ Bigger SPICE libraries than ANY other vendor
8000+ models with more model types than any other vendor! Special RF and Power Libraries!

→ Integration With OrCAD® Capture™ or Protei® Schematics™
We are the first to bring you real integration with other schematic packages using OLE2 techniques. You can run IsSpice directly from other schematics and cross-probe the results. All simulation functions are available from dialogues and little or no typing is required.

→ Software That Meets Your Needs
New Network Version (No Protection Key Required)
Unmatched Free Support
No maintenance fees
Windows, 95, NT, DOS, Macintosh, Power Mac

→ Upgrade path:
ICAP/4Lite £450 → ICAP/4Lite Xtra £1300 → ICAP/4/Windows £2300
three complete design and simulation systems, with increasing functionality.

Simply The Best SPICE At An Unbeatable Price!

Download Your FREE SPICE Simulation Kit, App Notes, and FREE Model Libraries!
Web Site: http://www.softsim.com
Email: info@softsim.com
Technology Sources, Falmouth Avenue, Newmarket, Suffolk CB9 0LZ, trading as:

SoftSim

Contact us for solutions to your sticky problems:
Resintech Limited, Horcott, Fairford GL 7 4BX.
Tel 01285 712755, fax 01285 713036
RADIO MODEM

- MPT 1329 licence exempt.
- Range 10–20km in free space or 1km in buildings.
- Half duplex asynchronous transmission at 4800/9600 bits/sec.
- Serial interface with baud rates of 1200, 2400, 4800 and 9600.
- 4k of buffer memory.
- Predictor/corrector error checking.
- Automatic repeater mode selectable.
- Station addressable.
- Analogue and digital interfaces.
- Low power battery operation.

Warwick Industrial Electronics Ltd
The Manor
Aston Flamville
Leicestershire
Tel: 01455 233616
Fax: 01455 233179

NEW & HARDLY USED TEST EQUIPMENT

DUAL TRACE 2MHz OSCILLOSCOPE Model DS1022
- 20MHz, DC to 15MHz.
- X- Y, X gain, Y slope.
- Used £140

KENWOOD FL-10 MED FLUORID METER
- 10°C–120°C, Frequency: 50–5000Hz.
- Resolution 0.01°C, 4 digit Frequency Counter.
- Used £60

PARASONIC VM8173A FM/AM SIGNAL GENERATOR
- 150kHz–12MHz, Output 1–10MHz.
- FM/AM, AM 0.9%0, 2 Preset Memory, Digital
- Display Frequency & Output.
- Used £650

PARASONIC VM9824A STRONG SIGNAL GENERATOR
- Generates Broadcast FM ₹ RSW/RPR Preset Memory.
- Used £60

GOODWILL GQ 412D DUAL CHANNEL, AC MULTIPARAMETER
- 50–300V in 12 ranges: Frequency 10KHz–1MHz.
- Used £130

GOODWILL DSA 9005 AUDIO GENERATOR
- SweepSquare 100Hz–1MHz.
- 5 ranges: 0.1% Low Distortion, 5 steps Output
- Alternator.
- Used £60

GOODWILL GC 9110 FREQUENCY COUNTER
- 10Hz–120MHz, 8 Digit Display.
- Used £95

ANALOGUE MULTIMETER Model D800
- NGC/Wei; DC Current 10Amp, 17 Ranges
- Continuity buzzer, Transistor tester.
- Used £15

GOODWILL GTV 472 DUAL CHANNEL, AC MULTIPARAMETER
- 50–300V in 12 ranges: Frequency 10KHz–1MHz.
- Used £130

GOODWILL AAC 3008 AUDIO GENERATOR
- SweepSquare 100Hz–1MHz.
- 5 ranges: 0.1% Low Distortion, 5 steps Output
- Alternator.
- Used £60

PCB Designer
For Windows 3.1. ‘95 or NT

Looking for the price?
It's just £49.00 all inclusive!
...no VAT...no postage...
...no additional charges for overseas orders.

Dealers and distributors wanted.
Phone (01432) 355 414 to order

Internet
See our Web site at www.niche.co.uk for information and a working demo. e-mail pcb@nichemon.com

Also available from:
South Africa: JANCA Enterprises, PO Box 32131, 9317
Forschpark at 2399, Phone/FAX: (051) 223764
France: Telindel, Quartier Les Pradets, Chemin des Veyes,
83390 Cuers. Phone: 94 28 66 67

Used Equipment – GUARANTEED. Manuals supplied if possible.
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for availability before ordering.
CARRIAGE all units £15. VAT to be added to total of Goods and Carriage.

STEWART of READING
110 WYKEHAM ROAD, READING, BERSK. RG6 1PL
Telephone: (0118) 9268041. Fax: (0118) 9351696
Coffers Welcome from 9am–5.30pm Monday to Friday (other times by arrangement)

CIRCLE NO. 130 ON REPLY CARD

CIRCLE NO. 131 ON REPLY CARD

CIRCLE NO. 132 ON REPLY CARD
Simple outphasing

In the April 1996 issue of Electronics World, David Gibson describes the use of all-pass filters in the outphasing methods used for ssb generation. He describes the use of a cascade of two first order all-pass filters in one leg – producing the in-phase output, and another two in the other leg, producing the quadrature output.

A letter published subsequently mentioned a simpler method using fewer op-amps, but I cannot recall the details. I think he may have been referring to Shirley’s work.* Published as long ago as 1970, this article gives a full design with component values, for a quadrature network using five op-amps, with a peak deviation from 90° of 23.8°. The values given are for a design covering 70Hz to 2kHz, but adjusting it for the communications bandwidth of 200kHz to 3kHz is only a matter of scaling the capacitor values. Allowing for an equal (geometric) overlap at each end, the range becomes 16Hz to 5.36kHz. This is N=1.79 times up on 3kHz and N times down on 300Hz, since N squared times ten equals two to the power five. One could select a range not of five octaves but 3.33 octaves (300Hz to 3kHz). But the extra range at each end is useful to provide a little leeway for rolling off the response outside the three-decibel points of 300Hz and 3kHz. Otherwise brick-wall filtering of the baseband signal will be needed, to prevent frequencies outside that range reappearing in the other – supposedly – suppressed sideband. Shirley’s article gives a graph showing the peak deviation from quadrature for an outphaser using two all-pass filter sections in each leg, against the desired span, e.g. 3.8° for five octaves as already mentioned. If the speech baseband is however known to be already band-limited to 300Hz to 3kHz, the graph shows that for a design using just a 10:1 frequency ratio, the peak deviation from quadrature becomes just ±1.1°. The article also gives a basic program listing which will calculate the required component values for any given bandwidth, returning in addition the resultant peak phase deviation from quadrature.

Using two first order all-pass filter sections per leg as in David Gibson’s design, the component requirement runs to a total of twelve resistors, four capacitors and four op-amps. The circuit mentioned Shirley’s article, which uses second order all-pass filter sections, needs the same tally of passives, but only two op-amps. As dual op-amps have a smaller footprint than quads, there is a minor advantage where space is at a premium. In ssb speech communication links, measures such as vogs, IF clipping etc. are used to try and increase ‘talk power’, by increasing the mean to peak power ratio of the transmission. A further useful method is to ‘brighten’ the speech with a ‘blue’ filter – one where the response increases by 6dB per octave as the frequency rises. This emphasises the lower level unvoiced sounds such as sibilants, fricatives, plosives and the like (ess, elf, pea, tea), which are crucial to intelligibility. Such a filter will of course shift the relative phase of the higher and lower frequencies of the baseband signal. Fortunately, the relative phases are unimportant and indeed not perceived at all by the ear. However, such a blue filter, and indeed the all-pass filters used in outphasing methods, will have a very pronounced effect on any digital traffic that one sends over the link.

Ian Hickman
Waterdown, Harp

On the wire

I read Cyril Bateman’s article regarding loudspeaker cables with great concern. Despite his request, I have no interest in, “shooting these findings down in flames”. There is little doubt that what Mr Bateman measured was repeatable.

However, there is a great step between making a repeatable measurement – however unsurprising – and giving a coherent theory which explains the measured results. My concern is that Mr Bateman has not made that step. His arguments are so flawed and his misuses of technical terms are so frequent that I have difficulty knowing where to begin putting them right. There is no justification whatsoever for treating loudspeaker cables as transmission lines and they do not have a characteristic impedance at audio frequencies.

Mr Bateman’s use of the term transmission line is at variance with the accepted definition employed by the great body of electronic engineers. If technical definitions can be varied at will in this way it will not be long before communications is rendered impossible.

Existing circuit theory predicts the error due to loudspeaker cable very well, but even if it did not there would not be a problem. Loudspeaker design has moved on and the traditional passive loudspeaker fed by cable from a remote wideband amplifier is a bit of a dinosaur. Passive crossovers simply cannot meet modern performance criteria. With modern active designs there is no loudspeaker cable at all and it is difficult to see how Mr Bateman’s findings advance the art.

The editor cannot be blamed for printing the articles in question. If we call it “Electronic World”, we still call it that – had been a peer review journal, many valuable articles would never have been printed. The down side of this freedom is that occasionally something regrettable is printed. Wireless World has a long standing tradition of doing the peer review in the letters page after publication.

As the author of some tens of WW articles I am acutely aware that one’s work is well scrutinised and erroneous statements are usually set right by readers. If one is humble enough to heed readers comments, one can learn a great deal and I would commend this course to Mr Bateman.

Cyril replies

May I thank John Watson for agreeing with my conclusion that the best speaker cable is to avoid using one i.e. to have no cable at all. Perhaps this is no surprise since these words were in fact used by Nelson Pass in his 1980 Speaker Builder article I referenced. However, I must disagree with John in that the vast majority of hi-fi listeners do in fact listen to two or

Electricity without magnetism

Your July 1992 issue included an article entitled ‘Electricity without Magnetism’. That article prompted me to write a somewhat disparaging letter in September of 1994. As I had hoped, the letter resulted in a response in the November 1994 issue from one of the co-inventors, Dr. Harold Aspen, in which he advised that the invention/discovery was being further investigated by a group at MIT, USA.

We are just entering 1997 but to date no further information appears to have trickled out regarding where the invention now stands. Is it a non-starter? Many years ago I was deeply involved with both thermocouples and low-power ultrasonics, in totally separate applications. The ultrasonics work used thermionic valves because transistors had not then been invented. Since the device in question appears to take advantage of both technologies it is of considerable interest to me. I have endeavoured to obtain a small quantity of the PVDF material referred to in the article but have failed. That has prevented me from trying to duplicate the co-inventors work.

So, I will be delighted if someone is willing to bring me up to date with the present position. If Dr Aspen reads this letter, then perhaps he will now appreciate that my letter of July 1992 to E\textit{W} was written with the sole intention of provoking a reply from one of the inventors – which it did. I had earlier written direct to his co-inventor, Mr. J. S. Strachan, Edinburgh University, but that proved to be abortive.

R L Tuft
Thirsk
North Yorkshire
Function generator for just £179

Featuring a bright 4-digit LED frequency counter which is externally accessible, the MX2020 function generator covers the range 0.02Hz to 2MHz, making it suitable for both audio and low-end RF work. Selectable output waveforms are sine, square, triangle, skewed sine, pulse and HIL. Amplitudes are 2V pk-pk to 20V pk-pk unloaded, while output impedance is 600Ω (to 100kHz) or 50Ω. Output is offsettable to ±10V.

Further features are:
- 4-ranges, 1Hz-9999kHz f meter, 15mV sens.
- 20dB attenuator
- 100/120/220/240V mains operation
- Frequency is 100:1 variable
- Symmetry is variable between 10:1 and 1:10
- Sine wave distortion <1% at 100kHz
- Squarewave rise time 100ns or 20ns for HIL
- Log/lin sweep, 20ms to 2s, 1:1 to 100:1
- VCF i/p 0-10V, range 100:1
- 5-24288MHz timebase, 20ppm stability

Normally, the MX2020 sells at £199, excluding 17.5% VAT and delivery costs. But Television readers can obtain this instrument for just £179 – fully inclusive of VAT and delivery. This represents a saving of well over 25%.

To receive your function generator, simply fill in the coupon on the right and send it, together with a cheque or postal order for £179, to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.

*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics.
LETTERS

three way passive crossover speaker systems driven via several metres of cable. This indeed was the basic assumption used for all three of my recent articles, consequently his comments regarding active designs are not relevant to this series. It seems my use of the transmission line equation at audio frequencies causes him discomfort. Perhaps it is worth recalling this equation was originally called the 'Telegrapher's' equation and was developed to quantify audio frequency transmission along telegraph lines. It was mathematically defined by Kennelly and Steinmetz in 1893, and while numerous treatments of my library are quite that old, I believe this predated its use for radio-frequency transmission. It is also perhaps worth recalling this mathematical derivation results from considerations of extremely short lengths of line.

Obviously, as stated in the articles, the commonly used rf simplification of (L/C)^(1/2), which assumes that the ac resistive portion is negligibly small, is not applicable at audio frequencies since regardless of cable lengths, this resistive term dominates.

I didn't originally set out to prove cable impedance was relevant. Having performed the various measurements, which John accepts are repeatable, and using the accepted dogma of series resistance and inductance, I was totally unable to explain the voltage changes with frequency from 1kHz to 10kHz and change of cable, for the mosfet amplifier, Fig. 1, January 1987 issue, p. 55. These measurements for both amplifiers have recently been repeated over the extended frequency range 1kHz to 1MHz.

with exactly the same results. If John can offer an alternative more acceptable explanation as to how amplifier/cable/speaker damping performance can increase with frequency, I, and I'm sure many other readers, would be more than pleased to be so informed.

John also has access to better supporting evidence as to the behaviour of speaker cables, again it would be beneficial if other readers could be so updated. For my part, I shall continue to rely on my copy of Reference Data for Radio Engineers', published by Sams & Co, which states the full transmission line equation ((R+JaL)/(G+JaC))^(1/2), as quoted in my article, is an 'accurate equation applicable from dc up to such frequency when higher modes appear'.

Marconi sell out

Does it matter when we disperse at auction a major archive of scientific and technical papers, photographs and historic artefacts, encapsulating the very origins of a major science-led industry? Some might think not, but that is exactly what GEC will shortly do with the complete archive and museum of the Marconi Company - at Christie's in London, on April 24 and 25.

It is clear from Christie's press release that this material is an unparalleled record of the origins and development of 'wire-less' communications, world-wide, and as such would be of first importance to maritime, military and general historians - as well as a source of inspiration to radio and electronic engineers. Part of the tragedy is that this collection has been so little noticed, and that no attempt was made to display it during the Marconi Centenary Year. Nor has any worthwhile monograph seen recent publication.

International interest in this auction will be very great; and in the absence of intervention, dispersal abroad is likely. The Royal Commission on Historic Manuscripts, National Heritage Memorial Fund and Heritage Lottery Fund should consider this case as a matter of urgency.

Meanwhile, where are our national museums and professional institutions who should surely be exercising a watching brief? And if this sale goes through - what other major institutions, some also concerned with broadcasting and telephony, will see fit to follow in taking the car boot sale approach to their - and our - historical inheritances?

Dr Thomas Going
Southend
Essex

rate communication over cable

I knew it! The March issue of EW has the now inevitable crop of letters which endlessly discuss the pros and cons of loud speaker cable construction; a subject whose boredom is only exceeded by that of a general election campaign.

While I appreciate that your editorial staff cannot influence the quality and quantity of letters submitted on any particular subject, you surely could draw a line under this one now and say 'enough is enough!'

I realise that there just may be quite sufficiently sensitive individuals in the population who can detect aurally the minutiae of distortion in their hi-fi systems; the difference for example between 0.001 and 0.01% of thd. However, since the signals subject to the minuscule distortion, if any, of loud speaker cables are also subject to the passage through innumerable acoustic, electric, electronic, modulation, demodulation and conversion processes on their way from source to loud speaker, one is tempted to dismiss as trivial the effect of speaker cables which are constructed from anything less sophisticated than multistranded bus-bars made from ultra pure, oxygen-free electrolytic platinum.

Do you remember the days gone by when your letter pages resounded with discussions on gravity, relativity, cosmology, the speed of light, Michelson and Morley, the Catt anomaly, Silvoueth, Aspden and the ether and so on and so on? Oh dear, what has gone wrong with EW? Or is it that something has gone wrong with your readers?,

M G T Hewlett
Midhurst
W Sussex

Q & A

90° phase shift made easy

As a reader searches for a method of producing 90° phase shift, A QBasic program published in the 13 September 1976 issue of Electronic Design does exactly that.

Dave Hayes

Led backwards

Why do light-emitting diodes have such a low reverse voltage? Often, only a few volts is specified. Many circuits would be simplified if the rating was 15V or so. Is the restriction to do with the manufacturing process?

P Garside
Wantage
Oxfordshire

Sound-driven car?

Does one of your more mature readers remember reading a constructional article, circa 1936, which appeared, I think, in Car Mechanics or Car Illustrated, both American publications (an English publication would at that time have used 'supersonic' not 'ultrasonic'). It used a mechanical ultrasonic generator, which was basically a close pair of perforated metal discs one being rotated at high speed, to generate high powered ultrasonics. These ultrasonics vapourised water contained in a sealed tank, which in turn, so it was claimed, developed sufficient pressure to operate a small steam engine with which to propel a car.

No doubt such a system could set up cavitation and vapourise water, but how to cope with the attendant noise of what was essentially a crude siren is difficult to understand. Perhaps one of your readers - probably deaf since 1936 - having built the contraption, might have some information.

Magnetostriction technology using frequencies above audibility might be a means of designing a modern equivalent for an ancient proposal. Who knows? Perhaps we might be able to discover from where many politicians get their 'hot air'.

R L Talbot
Thirsk North Yorkshire

Q&A

Wireless Service Manual?

Does anyone have a copy of the Wireless Service Manual, published by lifte around 1930? I am interested in details of an oscilloscope that incorporated an indicator unit known as a 'plan-position indicator'.

C M Lindars
Providence Cottage
Unity Lane
Masterton
Crewkerne
Somerset TA18 8NA

Circuits for j-fets please

Does anyone know where I can get hold of application circuits for MFP102 or similar j-fets please?

W D Nicholson
13 Devonham Road
Handforth
Cheshire SK9 3QE

April 1997 ELECTRONICS WORLD
Cross over crossover
Bill Teleki’s article ‘Crossover Networks Made Simple’ on pp. 548-550 in the July/August 1996 issue includes simulated responses for various orders of passive crossover networks computed on the basis of a purely resistive load. However, Bill has omitted to mention that the impedance of typical loudspeaker drive units is usually reactive in nature. This can significantly affect the performance of any filter networks that have been designed on the assumption that the impedance of a loudspeaker behaves like a pure resistor.

Here I will give an example of the effects of impedance mistermination on the response of a two-way third-order Butterworth crossover. Crossover frequency is chosen to be 3000Hz, and component values are computed using the assumption that the low-frequency and high-frequency drivers are each 8Ω resistive loads.

For the purpose of this discussion, the sound-pressure response of these drivers is assumed to be ideal, in the sense that it is completely flat from dc to infinite frequency.

Resulting low and high-pass filter response functions, together with the summed response, are shown in Fig. 1. The –3dB crossover point at 3000Hz is clear, as is the ±135° phase shift of the low and high-pass filtered responses, respectively. Figure 2 shows impedance response curves of two typical loudspeaker drivers, where one curve is for a woofer and the other is for a tweeter. The woofer’s impedance response rises at high frequencies because of the inductance of the voice-coil and eddy current losses in the magnetic motor.

Note that the phase shift of the woofer impedance asymptotes to a value slightly greater than 45° at high frequencies. This impedance behaviour cannot be modelled by a simple inductance, as many people assume, as this would lead to an asymptotic phase shift of 90°. Because the lower limit of the plotted frequency range is 100Hz, the peak in the woofer impedance at the free air resonance frequency of the woofer is not displayed. The tweeter’s impedance curve shows a peak at this driver’s free air resonance frequency, while staying relatively constant elsewhere in the frequency range.

When the lowpass and highpass sections of the third-order Butterworth crossover network are terminated by the actual woofer and tweeter impedances, a number of interactions occur, and the results are shown in Fig. 3. Filtered and summed responses are quite different from those obtained when the drivers were assumed to be simple resistive loads, and the overall result can only be judged as being unacceptable. It is clearly evident that the lowpass filtered response no longer follows the desired response characteristic of a third-order Butterworth filter frequency response function.

A large peak at about 2500Hz is evident, and the roll-off rate between 10kHz and 20kHz is only 13 dB/octave instead of the expected 18 dB/octave. The high-pass filtered response is much less affected, although it does show minor response anomalies, such as approximately 1dB of boost in the 12kHz frequency region. As a result, the magnitude of the summed response is far from flat, which is not the desired result.

This simple example illustrates that it is not a good idea to assume that a crossover network designed on the basis of constant resistive loads will perform adequately when the true driver impedances are connected to the filter network.

In this instance, the problems occurring with the woofer can be greatly reduced by the use of an RC

Fig. 1. Simulated response for ideal purely resistive 8Ω drivers using a two-way third-order Butterworth crossover plotted over the frequency range from 100Hz to 20kHz.

Fig. 2. Typical impedance response curves for a woofer (solid line) and tweeter (dashed line).

Fig. 3. Low-pass (dashed line), high-pass (dotted line) and summed (solid line) frequency response functions obtained when the theoretical filter design is terminated with typical woofer and tweeter impedances.

Fig. 4. Low-pass, high-pass, and summed responses obtained when a Zobel network is added to equalise the woofer impedance.

Fig. 5. Low-pass, high-pass, and summed responses obtained when driver natural roll-offs are added to the model for the crossover with the Zobel network.
SMALL SELECTION ONLY LISTED — EXPORT TRADE AND QUANTITY TRADE — RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP New Colour Spectrometer Analyser
HP1411 - 8552B RF - 8552B RF - 1kHz - 110MHz - £700.
HP1411 - 8554A RF - 8554A RF - 1kHz - 120MHz - £900.
HP1411 - 8555B RF - 8555B RF - 20Hz - 30kHz - £700.
Special Offer: these items in Rockingham Road also available.

Antenna Units Available separately - New Colour - Tested
HP1411 Maintainance - £380.

HP5652B RF - £300.
HP5652B FK - 1kHz to 110MHz - £200.
HP5655B FK - 1kHz to 120MHz - £300.
HP5655A RF - 10k to 18GHz - £800.
HP5656A RF - 20k to 30kHz - £300.
HP5643A Tracking Generator Counter 100kHz - 110MHz - £300.
HP5644A Tracking Generator Precise DC - £300.
HP3605A - 8kHz - 45MHz - £100.
HP562G 2A - 35kHz - £200.
HP565A 10MHz - 150MHz - £60.
HP560B 1GHz - 2GHz - £40.

Mixers are available for the above AN71 to 40GHz
TEK 402 - 50k - 18GHz - £125. Opt 1 + 2 = £4.5k.
TEK 405 - 20kHz - 250MHz - £125.
TEK 405A - 20kHz - 250MHz - £125.
TEK 405AP 1kHz - £25.
TEK 546A 1kHz - £25.
TEK 546AP 1kHz - £25.
TEK 546A 1kHz - £40.
TEK 546B 1kHz - £40.
TEK 546B 1kHz - £12.
TEK 546B 1kHz - £30.

Tektronix Mics 1269 - £500.

Good J2 test oscillator - manual - £150.

HP 1120A Signal Source - £75.
Antigo 1120A Signal Source - £75.
Barnett & Stouffer Variable Filter 5kHz - 10kHz + 10kHz - passband - £750.

Fawrpell network analyzer 0.6k to 2GHz - £150 + £50 passband - £150.

Tecifac 2125 A - 9000 to 9951 - 9191 - 9219 - 50mA - 30GHz - £100 - £100 - all fitted with standard fixings.

HP18A1 RF vector impedance meter c/w probe - £500.

Fawrpell TF2009 noise reciever. £100 + £50 plug filters - £150.

Fawrpell TF2031 noise generator A. 0 B. c plug filters - £150.

Fawrpell TF2032 S/G 125 - £150.

Barnett TF817T mainframes (240 - £200.
Philips parameter generator module - £10 - £20G - £400.

Philips 6700A sweep oscillator - £150.
Philips mainframe TF - £100.

Philips 6200B signal generator - £10.

Philips 61084D 5kHz - 20GHz - £150.

Philips 8180B signal generator - £10.
Philips 6022B Sweep - £1 - £1.4GHz - £4.7A.

Philips SW25 - £2 - £1.4GHz - £4.7A.

Philips SW28 - £2 - £1.4GHz - £4.7A.

Philips SW29 - £2 - £1.4GHz - £4.7A.

Philips SW25 - £2 - £1.4GHz - £4.7A.

Philips SW28 - £2 - £1.4GHz - £4.7A.

Philips SW29 - £2 - £1.4GHz - £4.7A.

Philips SW25 - £2 - £1.4GHz - £4.7A.

Philips SW28 - £2 - £1.4GHz - £4.7A.

Philips SW29 - £2 - £1.4GHz - £4.7A.

Philips SW25 - £2 - £1.4GHz - £4.7A.

Philips SW28 - £2 - £1.4GHz - £4.7A.

Philips SW29 - £2 - £1.4GHz - £4.7A.

Philips SW25 - £2 - £1.4GHz - £4.7A.

Philips SW28 - £2 - £1.4GHz - £4.7A.

Philips SW29 - £2 - £1.4GHz - £4.7A.
impedance equalisation network connected across the terminals of the woofer. This serves to flatten the woofer’s impedance at high frequencies, making it have much more like a constant resistance. Such a network is referred to as a Zobel network, and is often used by designers of crossover networks. Ref. 4 shows the results that can be achieved when a Zobel network comprising $R=8\Omega$, $C=10\mu F$ is connected across the terminals of the woofer. It is evident that the results are much better than those it were achieved without the use of the Zobel network. The low-pass response is now much smoother and closer in shape to the ideal third-order Butterworth response, and combines relatively well with the high-pass response to produce a reasonably flat summed response.

Another useful detail not mentioned in Bill’s article that also needs to be accounted for in any crossover design is the natural response of each of the drivers. For example, a tweeter need not have a high-frequency roll-off that could typically be modelled by a second-order Butterworth response with a –3dB cut-off at 5kHz, while the woofer’s low-frequency roll-off might be simulated using a second-order Butterworth response with a –3dB point of 1.2kHz. Figure 5 shows the responses obtained when these natural driver roll-offs are added to the simulations involving the crossover network with the Zobel network.

In this particular case, a slight boost in summed response in the crossover region is introduced. This results mainly from the fact that the lowpass and highpass responses shown in Fig. 5 are now acting in phase through the crossover region, whereas in Fig. 4 there was a phase difference of about 90°. You should also remember that inter-driver time delays between the output from the woofer and tweeter also affect the summed response of the loudspeaker system. These time delays are caused by the physical offsets in the locations of the driver acoustic centres.

Depending on the actual loudspeaker system, the inter-driver time delays may improve or adversely affect the initial crossover design. Because of this, the Zobel network should be understood to be an important factor affecting the performance of the completed loudspeaker system. For example, at 3kHz the wavelength of sound is 0.115m. A horizontal offset between the acoustic centres of the drivers of 1/4 of this, 0.029m, will lead to an additional phase shift of 90°.

Depending on the crossover topology chosen, this can have serious consequences for the quality of the summed response. If a third-order acoustic Butterworth crossover topology is chosen, an additional 90° of phase shift will lead to a significant dip in the summed response at the crossover frequency.

I hope that these examples help to make it clear to you that there is no simple method of crossover design that will produce good results. Indeed, many different factors need to be taken into account in the design process.

All of the above simulations were performed using the Colasd loudspeaker design program developed by me in my spare time. It comes in two editions. Colasd 1.40 is the ‘budget’ edition (retail price AUD$19), while version 3.10 is the full featured edition (retail price AUD$449 with printed manual, AUD$379 with on-disk manual). When purchased from Audiosoft, all prices include air mail postage and handling. Both versions of the program are capable of carrying out the simulations described in the text of my letter, and the program has many more useful features that would be of assistance to crossover network designers, including a network optimiser. The package is available from Audiosoft, Melbourne, Australia, fax: +61 3 9497 4441 or e-mail: audiosoft@netwide.com.au, or from Marton Music in the UK on 01282 773198, fax 01282 773198. Witold Waldman Melbourne Australia

Preamp design thoughts

I have read with interest recent articles on low noise audio preamplifiers. This shift of emphasis away from what seems near obsessive examination of audio power amplifier distortion to the subtle effects of crossover and network manipulations is welcome. My tin ears will tolerate modest distortion in listening at sociable levels, but are perhaps as sensitive to hum and noise levels as any aural articles, so any improvement in these parameters should be welcomed. I make the following observations on two particular pieces.

Simon Stephen’s article in the May issue is headlined as the ultimate microphone preamp, and the purpose designed late eighties SSM2016 IC at its heart is undoubtedly a great chip. Perhaps surprisingly the revised design employs the SSM2017, which has a much lower specification than the 2016, and this with an undesirable and improperly polarised electrolytic. This latter inclusion apparently makes no audible difference, but I suspect that this component now becomes the most critical factor of the product’s performance. Why? A good, perhaps the most important aspect of a high quality preamp, is its ability to reject the noise from the main signal path. This noise should be significantly inferior to the noise obtained from the SSM2016.

The INA103, whose use he rejects in his letter, is an excellent chip for its intended uses. It can offer around 2.5dB at a gain of 100 from 1dB to a gain of 1000. The INA103 would give a 1.5dB noise figure with the superior dc precision to both in 2016 and 2017. It certainly would not require capacitor coupling. The noise figure of the SSM devices, as in most instrumentation amplifiers, is a function of gain and falls to around 2.5dB at a gain of 100 from 1dB.

The INA103 would give a 1.5dB noise figure with 150kHz bandwidth (1nV/\sqrt{Hz}) at G=100, 3dB at G=100; it is only marginally poorer. Actual noise performance of the amplifier will be highly dependent on the impedance and sensitivity of the microphone. Are these important factors readily available? They need to be to make proper objective design decisions.

The ‘no-compromise’ disc preamp by Douglas Self in the July/August issue purports to use the latest of op-amps, but resists itself to being a revision of his earlier 1983 design. The rather complex moving coil

Pioneers of broadcasting

In their interesting article ‘Making Continuous Waves’, Tom Iball and Peter Willis mention the early work of Canadian-born Professor Reginald Fessenden, who broadcast speech and music in an historic ‘first broadcast’ on Christmas Eve 1906 using a steam-driven high-frequency alternator at Brant Rock, Massachusetts, USA. They also mention the start of regular programmes by KDKA in 1920 and “in the same year” regular broadcasts began in Europe from The Hague.

This seems a little unfair to the Dutch engineer Kanso Henricus Schotanus à Steringer Jzidera who in fact began his Hague Concerts from his PCGG valve transmitter almost a year before KDKA launched its service.

There are several claims and counter-claims surrounding the birth of radio broadcasting but there can be no doubt that for British listeners full credit belongs to Hans Jzidera who launched the first of his ‘musical evenings’ on Thursday, 6 November 1919, with broadcasts specifically intended for British enthusiasts from April 1920. His broadcasts preceded the experimental radiotelephony ‘broadcasts’ from Chelmsford by the Marconi Company from February 1920.

On a wavelength of 670 metres, PCGG began almost a year before KDKA Pittsburgh (27 October 1920) and is often credited with being the world’s first broadcasting station.

There were earlier experimental transmissions of speech and music – Fessenden, in 1906, was almost certainly the first. De Forest and his Radio Telephone Company made experimental transmissions from about 1908–12 and again in 1916–17.

An authenticated claim can also be advanced on behalf of a group of Belgian experimenters including Raynald Godschmidt who set up a transmitter in the grounds of the Royal Castle at Laeken and broadcast programmes of music for public reception every Saturday from 28 March 1914. This continued until August 1914, when their transmitter was hurriedly destroyed shortly before the Germans entered Brussels.

Jzidera, however, seems to have been the first to build a transmitter specifically for broadcasting on a semi-commercial basis with the firm intention of expanding the sale of the crystal sets, valves, amplifiers and components made or marketed by his own firm (Ned Radio-Industrie, or N-R-I). It seldom pays to be a pioneer. Hanso Jziderza and PCGG were gradually squeezed out as the popularity of radio grew. From about 1924 PCGG included air mail and telephone conversations that virtually ended and he drifted out of the public eye.

Twenty years later, during WW2, he was found trespassing on a prohibited area, apparently searching for fragments of an exploded V2. He was arrested by the Germans on suspicion of espionage or possibly held purely as a hostage. He was executed by shooting during the night of 3/4 November 1944.

Pat Hawker, G3VA London SE22
stage as shown resists full analysis as the negative rail voltage is omitted and therefore the transistor operating point is uncertain. Again as shown in Table 2, the three 258737 devices in parallel should give approximately $1\text{nV/Hz} \times (1.7/3)$ voltage noise density. This figure can be slightly bettered by using the LT1028 op-amp (0.85nV/Hz) or the AD797 (0.9nV/Hz) with a much simpler circuit. The excellent dc characteristics of these modern devices obviates the need for capacitor coupling and their power supply rejection ratio recommend their use in this role. The LT1028 can drive a 100Ω load while maintaining 1V/μA open-loop gain. As a result, it should maintain very low distortion.

In the presented design, some of the available gain is thrown away, and distortion increased from the lower resultant feedback presumably due to the inability of the 5532 to drive less than 600Ω — the total feedback resistance. Additional device cost (circa £7; 1 off) would be offset by reduced associated component cost and pcb surface area. It is practically negligible compared with the cost of top-rate pickup cartridges. I wonder if these devices have been considered and/or tested and rejected?

The topologies of the two preamplifiers are actually identical except that the 2016 device offers balanced operation. The 2017 is a single-ended design for reader comparison.

Figure 1 is actually simpler in its practical implementation due to its precision dc balance, and offers a very desirable advantage over the 5532 in a common-mode rejection angle where the cartridge can be suitably connected.

Similarly the IN4013 should again prove ideal here. I am sure Robert Pease (Letters, Jul/Aug 1996) would be interested in any improvement to (perceived) sound quality of using these relatively exotic but affordable and available devices.

Finally, a couple of general queries. Can Mr Self provide references or the measured data on capacitor induced distortion in filter circuitry to which he refers? Secondly, perhaps he can explain why it is advantageous to follow the RIAA curve to within 0.05dB? It is practically a truism to state that loudspeaker and room colouration should not be allowed to add anything but an order of magnitude poorer. Vacuuming the carpet would likely give as insubstantial a difference. I look forward to further preamplifier articles in E\&W to remain abreast of the state-of-the-art in this esoteric field.

Michael Hutchings Fareham Hampshire

Dougals replies

Anyone who publishes a design in Electronics World must expect a bracing shower of criticism, and so I was not surprised to read Mr Hutchings' enthusiastic assessment of my preamp in the April Letters column. I was sorry though that there appeared to be nothing at all he liked about it. I also regret he finds my studies of power amplifier distortion "obscene". For my part I rather dislike the current trend for labelling anyone who shows any interest in anything as "obscene".

Where Mr Hutchings got the idea that my preamplifier purported to use the latest of op-amps I do not know. I said explicitly in the article that the 5534 might be a relatively anodised version, but the laws of physics have not decayed over the years, and neither has its superb audio performance. It is used almost to the exclusion of anything else in professional audio all round the world, so clearly there is a good reason. It is simply not possible to buy anything better at anything like the price.

As for noise, if Mr Hutchings had examined my article more closely he would have seen that an I_t of 70μA for the 258737 transistor is for the moving-magnet case. The I_t for the moving-coil stage is 1mA per device, which is a bit different. This gives a voltage noise density, v_n of 0.29nV/Hz and a current noise density, i_n of 2.5pA/Hz — much less than his figures, and voiding his argument. The LT1028 now calculates as at least 7dB noisier than my version.

Mr Hutchings also seems to have based his calculations solely on e_n; this can lead you grievously astray. It is essential to add the effects of i_n, which is high for the op-amps Mr Hutchings prefers. The i_n is just as important as e_n in a moving-magnet stage, due to the high source impedance at high frequencies of the cartridge inductance.

The LT1028 calculates as 0.7dB noisier than the 5532 in an RIAA stage allowing for both e_n and i_n. However, its worse than that, Jim. The application of op-amps to audio is even less straightforward than it appears.

Take the OP27, which on paper (adding in both e_n and i_n) is 2.3dB quieter in an RIAA stage with a real cartridge load. If you measure it, you will find it is actually 2.6dB noisier than the despoiled 5532 it replaces. The resolution of this paradox is that most op-amps are optimised for dc performance rather than audio. The OP27 is no exception, and so it has a bias-current cancellation system strapped to the inputs. This generates extra common-mode noise, and if the impedances at the two inputs are not the same — and they are very different in an RIAA stage — the extra noise is not cancelled. The LT1028 incorporates a similar bias-cancellation structure.

From the data sheet, the LT1028 seems to generate significant (>0.01%) distortion, and I suspect it will be a lot worse into 100Ω — even at modest levels. I agree entirely that the AD797 is a superb op-amp, and it was in fact my original intention to use it in the preamp. However, I found that hf stabilisation, particularly with high negative feedback factors, could be very tricky, and placing such a design in front of the public would be to open a veritable oil-drum of worms.

In view of Mr Hutchings' lack of enthusiasm for distortion reduction, as expressed at the start of his letter, I was surprised that he feels the sub-0.002% that his moving-coil stage is too high. I agree that it looks wrong 'to throw' away gain and hence negative feedback factor, but the vital point is that my circuit has a discrete input stage. This has gain of its own, and when added to that of the op-amp, open-loop gain is not lacking.

The alternative approach Mr Hutchings suggests — which I assume has not actually been built and tested — apparently costs seven times as much as my solution. Therefore, you are going that back by saving a square inch of pcb area. As for equalising the performance — well, I will be interested to see if it can be done. Finally, I suspect that designing a living-room, I was designing a preamp.

My philosophy is to get the best possible performance without spending significantly more money. The RIAA scheme gives remarkable accuracy for a modest outlay, and does it in a way that I thought would be interesting to readers.

A purely electronic system jolly well ought to be orders of magnitude better than a complicated electro-mechanical-acoustic system, because there are so much easier to solve.

One rationale for designing better and better amplifiers is to spur the loudspeaker community into designing better speakers. I detect that this trend has already begun, as I see more and more technical papers about the measurement and simulation of speaker non-linearities in JAES, etc.

As for non-electrolytic capacitor distortion, I do have a few nuggets of data to offer. If my third-order subsonic filter is tested at 8V rms in isolation, the thd above 0Hz is below 0.0004%. At 20Hz, third-harmonic distortion rises sharply to 0.004%, corresponding to the ~3 dB point of the filter. It continues to rise as frequency falls — despite the roll-off in output level. This is with standard 63V polyester capacitors.

Changing all three to 100V polyester (as per prototype) reduces the 20Hz thd to 0.0006%, though there is still a steep rise below this frequency. I think this proves, a) that the distortion originates in the 15Hz subwoofer — missing resistor

In the phase splitter of Fig. 1b, resistor R_3 has no connection on the diagram. It is 10kΩ.
capacitors, and, b) that it depends on the capacitor dielectric. As is usual with third-harmonic distortion, the THD is proportional to voltage squared. There is no such effect in the RIAA stage, so I can only assume that polystyrene is better from this point of view.

I am grateful to Marcel van de Gevel for pointing this out.

Doug Self
London

Sounds incredible

There are some questions that arise from the interesting article by Reg Miles ‘Sonics from Ultrasonics’ on pp 14-15 in the January 1997 issue.

It is a very old misconception to imagine that the simple sum of two sinusoidal variations such as \(\sin(2\pi f_1 t) + \sin(2\pi f_2 t)\) will produce a pair of new ‘sum and difference’ signals of frequency \((f_1 + f_2)\) and \((f_1 - f_2)\). In fact these ‘sidelbands’ appear only when subsequent non-linear or multiplicative signal processing is effected.

The misconception is encouraged both by the fact that many systems spuriously contain sufficient non-linearity to supply some processing and also by misinterpretation of a bit of mathematics (often published in early textbooks) describing the purely notional envelope of the waveform of the simple sum.

In practice, the ear can supply the non-linearity, but even then, you would not wish to rely upon this oddity to reproduce high quality sound, and certainly not to apply high intensity ultrasonic stimulation to such a sensitive and valuable human sense organ.

The report that ‘...polyurethane filters had to be hung between the people and the [loudspeakers] to selectively absorb the ultrasound...’ to prevent 140dB levels from damaging people, demonstrates what a bad idea it is. If the ultrasound is at a high level it is dangerous. If it is reduced before reaching the ear, it will not work and there was no point in producing such high power — unless there is some curious nonlinear effect taking place in the absorbent curtains.

Bob Pearson
Bourne
Lincolnshire

CAD inadequacies

May I thank Ralph Riegler for his complimentary comments on the “Route to pcb-CAD” series of articles? The via problem he mentions is a common one. No-one likes vias, so most autorouters have a via minimiser strategy. The Ares level II autorouter from Propak has such a minimiser, so has the Ares III from Proteus. You can choose a hole size and via pad size to suit yourself, but if you pick a size which is too large you will make it more difficult for the autorouter, as the obstruction will then restrict its choice of routes.

I have tried miniature eyeplets and conductive epoxy paste for vias, as well as Veropins, short wires and the plating-through process. For making vias on one-offs, none of them is very good. I use link-pins (RS part no. 435-383) which are designed for this job and can be very rapidly inserted. They come in sticks of 50 pins and, at only £10 per box of 1000, are not too expensive. Using them saves a lot of time and effort.

Rod Cooper
Sutton Coldfield
West Midlands

Thanks for the debate

Cyril Bateman appears to say that an increase in conductor separation changes the voltage drop in a cable from about 40mV pk-pk to nearer 50mV — the drop due to the amplifier output impedance appears to increase as well, which is suspicious, but I’ll let that pass.

How many volts are being produced by the driving amplifier? Far more than a few millivolts, I’ll wager, though he does not actually say. In reality a change of a few millivolts is irrelevant when the voltage across the speaker terminals is measured in volts.

Secondly, Cyril does a PSpice analysis using an exponentially damped sine wave. The sharp change in slew rate at the start of the waveform introduces high frequency components which stimulate ringing at 50kHz and upwards. This only lasts 100µs at most. There is a much higher level and longer lasting 10kHz signal present at the same time. The idea that the quieter, shorter, and ultrasonic component should be “clearly audible” is laughable. More importantly however, his claim that the waveform used is representative of audio transients is quite wrong. Real sounds recorded on real recording equipment do not contain components at 50kHz and above to stimulate such ringing.

In the third article, Geoff Williams tells us that putting things near speaker cable seriously affects sound quality, bare wire outperforms insulated wire, the only real answer is Litz wire, and cable ratings may well need to be of the order of 50A... Heaven help us! It never ceases to amaze me that people can seriously write such waddle.

Still, it all makes for a very entertaining read, so I thank you for printing it all. I would especially like to thank Eric Forth for pointing out that taking a blowtorch to lawn mower cable improves its high frequency performance.

Alan Robinson
Holgate
York
For more information about any of the products or services in this issue of ELECTRONICS WORLD, simply ring the relevant enquiry number. Enquiry numbers may be found at the bottom of each individual advertisement.

101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136
137 138 139 140 141 142 143 144 145
146 147 148 149 150 151 152 153 154
155 156 157 158 159 160 161 162 163
164 165 166 167 168 169 170 171 172
173 174 175 176 177 178 179 180 181

Name
Job title
Company Address

Telephone

Only tick here if you do not wish to receive direct marketing promotions from other companies.

To ..
(name of Newsagent)

Please reserve me the May issue of Electronics World on sale 3rd April and continue to order every month's issue until further notice

Name..
Address..

Thank you

Subscribe today!
Guarantee your own personal copy each month
Save on a 2 year subscription

Subscribe today!
Guarantee your own personal copy each month
Save on a 2 year subscription
Please enter my subscription to ELECTRONICS WORLD. I enclose Cheque/Eurocheque to the value of £________ made payable to Reed Business Information.

Please charge my Mastercard/Visa/Amex account.

With £________ Expiry Date________

Signature
Name
Job Title
Address

Postcode
Tel:

SUBSCRIPTION RATES
UK 1 year £32
UK 2 years £58
Student rate(proof required) £21

Airmail
Europe 1 year £46
Europe 2 years £83
Rest of the world 1 year £56
Rest of the world 2 years £101
Surface mail 1 year £37

Post to:
ELECTRONICS WORLD
P.O. Box 302
Haywards Heath,
West Sussex RH16 3DH UK.

CREDIT CARD HOTLINE
Tel: +44 01444 445566
Fax: +44 01444 445447

Please tick here if you do not wish to receive direct marketing-promotion from other companies.
BACK ISSUES

Back issues of Electronics World are available, priced at £2.50 in the UK and £3.00 elsewhere, including postage. Please complete the coupon and send with correct payment to:

Electronics World, Quadrant House, The Quadrant, Sutton Surrey, SM2 5AS.

Note that not all issues are available and please allow 21 days for delivery.

<table>
<thead>
<tr>
<th>Issue (Month/Year)</th>
<th>Quantity</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name

Address

Post code

Method of payment (please circle): Access/Mastercard Visa Cheque PO Cheques payable to Reed Business Publishing

Credit Card Number

Signed ___________________________ Expiry Date ___________________________
WIN A TTI PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth – performance beyond the capability of hand-holds"
Active three phase rectifier features 0.1V drop

This circuit reduces the normal 1.2V forward voltage drop of a bridge rectifier to around 0.1V. It makes use of the little know fact that power fets work backwards as well as forwards, allowing the inherent reverse biased diode in their structure to be shorted by turning the transistor on. With all the transistors off, the source-drain diodes in the fets rectify the incoming three phases, providing dc at the output which is subject to the diode drops.

When the output reaches about 4V the op-amps, wired as comparators, begin to operate.

Taking IC, and p-channel T1 as an example, the comparator senses the voltage across the fet. While the phase voltage is lower than the positive rail, the output of the comparator will be high because the voltage at the non-inverting input of the comparator is higher than that at the inverting input.

As the phase voltage increases above the rail voltage, the inverting input becomes the more positive and the output goes low. This causes the transistor to turn on, shorting out its diode. Current flowing through the on-resistance of the fet creates a voltage drop that maintains the comparator output low, keeping the transistor on.

When the phase voltage drops below the output rail, current begins to flow back through the fet. This reverses the voltage drop across the fet which causes the output of the comparator to swing high, turning the fet off. Positive feedback ensues, ensuring that only a brief pulse of reverse current flows.

All the positive side switches are the same and the negative side switches are similar, but use n-channel fets.

The op-amps have to work with voltages outside their supply voltages, so they are chosen specifically. The LM324 input voltage range includes the negative rail and its output defaults low when its inputs are pulled above the positive rail. The TL084 input range includes the positive rail and its output defaults high when its inputs are pulled below the negative rail. The minimum working voltage of TL084s varies from maker to maker, Motorola’s seem to work at 4V.

The op-amp output series resistors are there to suppress oscillation in the unlikely event that it should occur because of fet gate capacitance.

Once the rectifier is working actively, the op-amp inputs do not stray far outside the voltage rails, but at voltages below active operation, or if a fet fails, they can be pulled more than a volt to the wrong side.

Simple, economical and low power water detector

Existing water detectors possess several drawbacks. If direct voltage is used on the probes, they oxidise. If alternating voltage is applied at 5-10kHz, the current drawn is high and the accompanying diode pump and comparator increase the component count. There are dedicatedics for the purpose, but they also draw high currents – even when water is not present.

The circuit shown uses three gates, three resistors and a capacitor. It operates from 5V to 15V dc and does not oxidise its probes.

One gate from the 4093BE works as an oscillator, the frequency of which is 0.1Hz by virtue of the 66MΩ feedback resistance and 0.1μF capacitor; you can hear a click from the piezo sounder every few seconds, which is useful in confirming operation.

However, when the probes touch water, the reduced resistance across the feedback chain causes an increased oscillation frequency and an audible tone from the sounder.

Two of the remaining gates are buffers for the signal to the sounder and R3 prevents shorts between gate input and output if the probes become shorted.

The circuit draws about 75μA in standby; 1.5mA when it finds water.

Phil Male
Drake's Broughton
Pershore
Worcestershire

£100 WINNER

The LM324 is adequately protected by limiting its current to less than 50mA using a resistor. The TL084 is more difficult. If an input is drawn more that 0.3V below the negative rail damage can be done whatever the series resistance is. Including a diode from the positive rail catches the non-inverting input 0.6V below the positive rail and the 10KΩ resistor limits the diode current.

Transistor turn-off depends on the op-amps detecting the reverse voltage across the transistors in the on state. To guarantee this, the op-amp input offset voltage must be less than the RDS(on) of the fet multiplied by the maximum desired amplitude of the reverse current pulses.

Steve Tree
Epsom
Surrey
Voltage-controlled output common-mode

While behaving as a normal differential input/output amplifier, this circuit has the additional feature of controllable common mode at the output; it is independent of input common-mode voltage. For example, if the control input voltage V_{cm} is 0.9V and V_{dd} = 0V, then both V_{out+} and V_{out-} will be 0.9V; for a V_{dd} of 1V, V_{out+} will be 1.4V and V_{out-} 0.4V.

Differential gain is $V_{out}/V_{cm}=2+(2xR_2/R_1)$; $V_{out}=V_{cm}+V_{dd}(1+R_1/R_2)$.

In comparison with a normal differential amplifier, input impedance is reduced by the effect of $R_{8,9}$. If this poses a problem and if a precise setting of output common mode in unnecessary, then eliminate $R_{8,9}$ and take the positive A_1 input to either of the inputs, which will apply a small offset to the output. Otherwise, for a low-frequency input, again eliminate $R_{8,9}$ and take A_1 input from half-way down R_1; the input is across R_1, so the effect is the same. The only slight problem is possible instability, which can be cured by a capacitor across R_9.

This differential amplifier has its output common-mode voltage defined by a voltage input. Output excursions are independent of the input common-mode level.

Manually loading serial data

Figure 1 shows a method of manually programming a 16-bit word and transmitting it on an SPI or QSPI serial interface. In this way, serial data peripherals such as data converters, memory and display drivers may be exercised before the system is complete. It serves write-only peripherals updating on the rising edge of /CS.

The HC193, IC1, is a synchronous up/down counter, IC2 and HC74 D-type flip-flop and the HC4514, IC4, a 4-to-16 line decoder – all common CMOS devices also in the 4000 series. Microprocessor monitor IC3 is a MAX1232 that gives a low-frequency, two-phase clock inhibited at logic level at the /MR input, and two speeds set by the switch on the TD pin.

Depressing switch S_{16} starts a count down by pulsing /LOAD on IC1, the count starting at 16 or 8 depending on the position of S_{17}, and LED2 flashes. Each output of IC4 pulses high in turn, he resulting serial data output depending on which of the S_{2-15} switches are made; a closed switch produces a 1 output. Data is set up on the rising RES output of IC3 and clocked out on the rising edge of /RES. When the count on the ABCD inputs of IC4 reaches zero, IC1’s /BORROW output produces a negative pulse to send the /Q output of IC4 low, which stops the clock by the manual reset input of IC3. LED2 stops flashing to indicate the end of the cycle; it is normally on, but flashes when this circuit or another bus master is active. LED1 lights when this circuit transmits.

Data output is compatible with CMOS inputs of most SPI peripherals and a simple buffer makes it TTL-compatible. IC4 is only enabled by IC3 Q output during writing, the bus therefore being otherwise free for use by other interface controllers, which will override /CS and clock outputs.

Kevin Bilke
Maxim Integrated Products, Reading

To load serial data into SPI peripherals before the system microcontroller or software are working, this circuit allows a 16-bit word to be manually entered and transmitted along the SPI bus.

CIRCUIT IDEAS

324 ELECTRONICS WORLD April 1997
Locking an LC oscillator

You can lock an LC oscillator parametrically by periodically varying the damping of the tuned circuit. In this circuit, frequency f_1 may be synchronised by an external signal at the same frequency or by a sub-multiple of it. Behaviour is similar to that shown when an oscillator is locked by injecting an external signal; as the tuning point is approached a beat appears and the system lock near zero beat, locking over a small range of tuning.

Operation is at its best when f_2 is a square wave having a short rise time. Differentiator C_2R_2 produces spikes to turn T_1 on, current pulses then flowing from the tuned circuit into C_2, charging it and periodically damping the tuned circuit. In the circuit shown, this happens during positive half cycles across the tuned circuit.

Output appears across R_1, as does a direct voltage which goes through a minimum near the middle of the locking range; at this point, there is only a small disturbance of the tuned circuit by locking pulses. The circuit locks, in the short term, for f_1/f_2 up to about 100.

Component values are not critical, but R_1 should be about equal to the tuned circuit dynamic resistance.

George Short
Brighton

Voltage-controlled oscillator

Inspiration for this circuit came from an article by Ayers in 1994, in which the properties of operational transconductance amplifiers were discussed. In this case, otas are used in a controllable sinewave generator to cover the audio band, 20Hz-22kHz, in one sweep.

Two operational transconductance amplifiers, IC5a,b, form a state-variable filter whose frequency response is made variable by means of the input from P_1. Output from the filter goes back to its input via IC3 and the limiter, so that the circuit oscillates at the filter frequency.

Since the feedback signal is limited, the output voltage of the filter is virtually constant with frequency and no level control is needed. Buffer IC6 gives 10Vpk-pk of sinusoid, which is not entirely distortion-free; my application could tolerate a little distortion, but the circuit had to be simple.

Bernard Van den Abeele
Eevergem
Belgium

Reference
Simple I^2C-to-lcd interface

For small LCD displays, driving can hardly be simpler than this method, which uses one PCF8574 8-bit I/O port with interrupts and five passive components to drive a four-bit display module, freeing four port lines for control.

Writing to the port when /INT is set resets /INT high, any change of state on any input setting /INT low again, the change occurring after data is transferred so that the data is recognised. An RC network between output P2 and input P7 effects this timing, shifting the output signal past the end of data transfer. Toggling P6 on every input causes this interrupt S/R sequence to form an E signal for the display.

Two consecutive calls to the I^2C port effects a complete data transfer of eight data bits; data, msb first, in the lower nibble and control bits in the upper, E being generated automatically, as above, if P6 changes state in succession. Observing the timing of the display instruction cycles means that there is no need to read the BUSY flag, but set E high by not toggling P6, set the device for input, read from the display and toggle E low again, twice. Make sure to track the state of P6.

The bus address of the PCF8574 is 0100xxxx and for the 8574A 0111xxxx, xxx being set by hardware and w being the write bit. To initialise the display for four-bit working on two lines, with cursor shift rightwards and visible, send the following hex sequence to the I^2C device:

C3 83 C3 C2 82 C8 80 CE 80 C1 80 C6,

the first five being for external and internal sync, followed by byte pairs for function set, display on, clear display and entry mode set.

The word ‘wireless’ results from:

A7 E7 A6 E9 A7 E2 A6 E5 A6 EC A6 E5 A7 E3 A7 E3.

80 C1 clears the display.

Dipl. Ph. Detlef Mahr
Freiburg
Germany

Noisy supply for aircraft radio testing

Electronic equipment in aircraft running on 12V dc must work in the presence of supply noise of 2V pk-pk; this circuit is meant to test aircraft radio.

Essentially, the tester takes the form of an oscillator applied to the adjustment pin of an LM317v voltage regulator. Since the ‘noise’ waveform did not have to be anything too wonderful, I used an oscillator consisting of two gates from a 4811 drive a 4817 counter with weighted outputs to produce a sinusoid in the 30-3500Hz range. This output goes to a 741, which also sets the output direct voltage level between 5V and 15V, to modulate the supply. Aside from radio testing, the circuit can be used to test the equivalent series resistance of an electrolytic capacitor by setting the dc bias and modulating the source, the series resistor being steel wire, measured by length. J D Ingram
Gawler
South Australia

![Fig. 1. Voltage supply with superimposed sinewave for noise testing. Output voltage is settable from 5V to 15V and the 'noise' is 2V pk-pk. Oscillator output is 30Hz to 3.5kHz.](image1)

![Fig. 2. Oscillator and weighted counter produces sine modulation.](image2)
For all your future enquiries on advertising rates

Please contact Malcolm Wells on

Tel: 0181-652 3620
Fax: 0181-652 8956

Field Electric Ltd.
Tel: 01438-353781 Fax: 01438 359397
Mobile: 0836-640328
Unit 12b, Parsons Green Ind. Est.
Stevenage, Herts SG1 4QG

12" Colour VGA-SVGA 800x600 Monitors £52.50
14" Colour VGA Monitors various 1st brand makes £80.00
17" Colour VGA-SVGA Monitors 1st brand makes £285.00
Sony 9" RGB Colour Monitors (Trinitron) £39.00
Compaq Docking Stations for laptop & notebooks £24.95
Tae Ng Dual Port VGA-SVGA ISA 16 Bit Card 1mb to run 2 monitors from 1 pc £29.95
Hauppauge Win/TV Card 16 bit ISA card £49.00
Roland DXY 1300 8 Pen Plotter £135.00
Roland DXY 1100 8 Pen Plotter £120.00
Hewlett Packard 7470A Plotter RS232 8 Pen £75.00
Hewlett Packard Colour Pro Plotter RS232 8 Pen £75.00
Hewlett Packard 7475A Plotter RS232 8 Pen £75.00
Hewlett Packard 7550A Plotter HPIB RS232 etc £155.00
Hewlett Packard Laserjet 11D Printer £180.00
Hewlett Packard Scanner £95.00
Sony Lasermax Videodisk Player LDP 1500P £165.00
Racial Inst. 9915 UHF Freq, Meter 500 MHz £90.00
Racial Inst. 9916 UHF Freq, Counter 500 MHz £130.00
Leader LMV 181A AC Millivoltmeter £130.00
Blackstar Multimeter 3225 £50.00
Siemens Data Line Analyst K1190 with manual £280.00
Farnell PSU 0-70VDC 0-SA/0-30 VDC 0-10A £225.00
Marcon Inst. Data Comms Tester 2870 £285.00
Marcom Inst. Digital Line Monitor 2833 £270.00
Marcon Inst. Digital Analyser 2829 £270.00
Philips PM3233 10 MHz Digital Scope £50.00
Tektronix DAS9100 Digital Analyser System £145.00
Iwatsu SS5702 20 MHz Digital Scope £140.00
Hewlett Packard 415E SWR Meter £75.00
Hewlett Packard 3531A Transmission Test Set £180.00
Hewlett Packard 5004A Signature Analyzer £75.00
Philips PN 6611 Universal Counter 80 MHz £90.00
Hewlett Packard 5300B Measuring System with 5312A HP-IB Interface 1.3 GHz £300.00

- PLOTTERS • COMPUTERS • COMMUNICATIONS • PSU • VDU'S • VIDEO
- FANS • TEST • CABLE • NETWORK • PRINTERS
- DISK DRIVES ALWAYS IN STOCK. OVERSEAS ENQ. WELCOME

TELEPHONE ORDERS ACCEPTED
C/P DETAILS PLEASE RING. ALL PRICES PLUS 17.5% VAT

CIRCLE NO. 135 ON REPLY CARD

April 1997 ELECTRONICS WORLD

One stop solutions for all your radio telemetry module needs.

When the success of your products depends on radio telemetry modules, you need a business partner you can trust. A skilled and experienced manufacturer that can offer modules of the highest quality, operating over a wide range of frequencies.

In other words, a partner like Wood & Douglas. Founded on technical excellence, Wood & Douglas is a British company that specialises in the design, development and production of radio-based products. With over 30 staff dedicated to meeting your requirements, the company is able to provide true one-stop purchasing - whatever your RTM needs.

All radio modules are highly functional, capable of meeting a wide range of requirements. Designed to offer efficient, easy-to-use radio telemetry components for system designers, they can open up a whole new world of product possibilities.

From portable bar-code readers to earthquake monitors, Wood & Douglas can help you make the most of the opportunities in radio telemetry.

To find out more about the possibilities, contact...

Lattice House, Baughurst, Tadley, Hampshire RG26 5LP, England
Telephone: 0118 981 1444 Fax: 0118 981 1567
email: info@woodanddouglas.co.uk
web site: http://www.woodanddouglas.co.uk

CIRCLE NO. 136 ON REPLY CARD
Spreadsheet Analysis for Engineers and Scientists

With this practical, hands-on guide, engineers and researchers learn quickly and easily, the latest and most useful electronic spreadsheet methods. Using a variety of interactive techniques, including worksheets, self-test and practical programs on the included disk, Spreadsheet Analysis for Engineers and Scientists show you how to harness the power and versatility of spreadsheet programs, including those that contain the fast Fourier transform, complex operations and Bessel functions, and how to customise your own applications.

Includes disk
0471 126837, 336pp
UK £37.50, Europe £39.50, ROW £49.50

Electronic Component Reliability

Fundamentals, Modelling, Evaluation and Assurance

This text approaches the quality and reliability of electronic components from a unique standpoint. Traditionally the twin subjects of reliability physics and reliability statistics have been treated as separate entities. Here, the author examines both areas and reveals how components fail and how failures develop over a period of time.

0471 952966, 374pp
UK £50.50, Europe £53.50, ROW £66.50

Fuzzy Logic Implementations and Applications

Offering a new perspective on a growing field, this text explores the many hardware implications of fuzzy logic based circuits. As use of AI increases, so the VLSI area of circuits is becoming a growth subject. Opening with an overview of fuzzy sets and fuzzy logic the book moves on to cover a range of non-standard solutions for fuzzy logic VLSI circuits. Future trends, new concepts and ideas are all examined and supported with practical examples from the author's research.

UK £50.50, Europe £53.50, ROW £66.50

Microelectronic Switched-Capacitor Filters

Switched-capacitor filters and associated MOS integrated circuits are now an established technology finding applications in telecommunications and instrumentation fields. With unrivalled breadth of coverage, this book surveys the design techniques of an important class of analogue signal processing systems. An accompanying diskette containing a comprehensive computer-aided design package (ISICAP) enables readers to gain a greater depth of understanding of the described techniques. Containing both source code files and an executable version of the main design package, this alone will be an indispensable tool for many circuit designers.

Includes disk
0471 954047 384pp
UK £73.50, Europe £79.00, ROW £92.00

The I²C Bus

From theory to Practice

With a special emphasis on the I²C Bus, this guidebook through the world of micro controller-managed serial buses presents comprehensive coverage of the theory necessary to design the best possible communications bus for any particular application. The book examines typical industrial and consumer applications and enables the reader to design effectively in a rel-world environment. A disk containing software for the I²C bus is also included.

Includes disk
0471 96268 6, 314pp
UK £54.50, Europe £56.50, ROW £66.50

High Frequency Analog Integrated Circuits

As one of the first textbooks to discuss integrated circuit design considerations and actual designs from the basic concepts, this title provides a solid background in designing basic circuits, advanced circuits and synthesis techniques.

0471 530443 424pp
UK £80.00, Europe £83.00, ROW £95.00

High-Frequency Analog Integrated Circuit Design

Edited by
Ravinder Goyal

Speech Coding

A Computing Laboratory Textbook

This is one of the first lab manuals with software dedicated exclusively to speech processing and coding. It takes advantage of the development of the personal computer by making this technology accessible to a wider audience. The manual and DOS based software together create a user-friendly digital signal processing lab which allows the user to perform a wide variety of speech coding and speech processing experiments. The text presents and explains a set of basic speech coders analytically and in terms of the specific parameters controlling each coder. The manual leads the student through the experimental process of understanding how speech coders work and sound via over 70 exercises and projects. The class-tested menu-driven, DOS-based software can be operated by students with little or no training.

Includes disks
0471 516929, 194pp
UK £28.95, Europe £30.95, ROW £36.95

Solar Cells and their Applications

The past decade has witnessed numerous important breakthroughs in solar cell technology, many of which have occurred in just the past few years. Far cheaper to produce and maintain, exhibiting a longer lifetime, and considerably more efficient than even before, solar cells are, at last, in a position to compete with traditional technologies for both small and large-scale energy conversion applications. Including contributions from some of the world's leading experts in the field, this book reports the most important recent advances in solar cell technology. From in-depth discussions of breakthroughs in cell, module, and system technologies to a probing look at important environmental, health, and safety issues in the photovoltaic industry, it covers a broad range of topics of vital interest to solar cell researchers, power systems designers, and all those with professional interest in current and future capabilities of this important technology. Offers a detailed look at cutting-edge solar technology from an international team.
of researchers. Covers silicon, GaAs, InP, GaS, a-Si:H, CuInS2p and GaSb solar cells, cells, concentrators, multijunction cell configurations, space cells, and more.

Describes a wide range of applications - from space cells to terrestrial systems. Provides an informal look ahead at the future of solar cell technology.

0471 574201, 596pp, UK £71.50, Europe £75.00, ROW £92.00

Introduction to High-Speed Electronics and Optoelectronics

Lasers, fibre optics, and high-speed optical systems share many concepts with microwave devices. Furthermore, semiconductor-based optoelectronics and microwave integrated circuits share evolving process technologies. It is only natural, therefore, that students of optoelectronics be introduced to high-speed concepts in a unified manner. This highly practical intensive introduction enables electrical engineers, applied physicists, and students to develop and identify tools for understanding, analysis, design, and characterization of high speed components. Broad in scope, this unique text/reference examines the complementary nature of electronics and optics and emphasizes high-speed technology in which the two fields are less differentiated. Beginning with an overview that develops a perspective and appreciation of analog high-speed technology in general, the book goes on to cover devices and circuits used at microwave and millimeter-wave frequencies, optical components, and optoelectronic integrated circuits and subsystems. Particular attention is paid to applications in the area of high levels of interest in this area and because many of the concepts are applicable in other fields. The book concludes with important coverage of the often-overlooked area of measurement and characterization of high-speed devices. Fully referenced and supplemented with hundreds of helpful illustrations.

Introduction to High-Speed Electronics and Optoelectronics is equally useful as a professional reference or a textbook for senior undergraduate and first-year graduate courses.

0471 015822, 312pp, UK £65.00, Europe £67.00, ROW £77.00

RISC Systems and Applications

Professor Daniel Tabak has completely revised and updated his two previous books on Reduced Instruction Set Computer architecture to produce this new book, RISC Systems and Applications. The text is a unique, concentrated, detailed description of the architecture and implementation of most recent high-performance RISC systems, such as DEC Alpha AXP21164, IBM/Motorola/Apple PowerPC 620, Sun Microsystems and Texas Instruments UltraSPARC and SuperSPARC, MIPS technologies R10000, Intel i860 XP, Motorola MC688110, Hewlett-Packard PA-7100/8000 and the transputer. It also includes details of pioneering devices such as Berkley's RISC II and Stanford's MIPS and multiprocessor, real-time and workstation systems.

ISBN 0863 801889, 452pp, UK £50.50, Europe £54.00, ROW £67.00
One of the most useful attributes of flat panel speakers is their ability to be disguised, in this case as a picture.

Sound from pictures

Richard Ball reports on a further new flat-panel loudspeaker technology, this time involving piezo-electric drivers.

Noise Cancellation Technology, also known as NCT, is one of two companies proving the popular bus theory—wait for years and then two come along at the same time. In this case the ‘bus’ is flat panel loudspeaker technology which NCT has developed along similar lines to another company, NXT, a subsidiary of Verity (see EW, January 1997, p. 33).

Although the technologies may at first appear to be remarkably similar, the final products have been arrived at through apparently different research.

Malcolm McDonald, managing director of NCT in the UK, said: “We started with car headliners about two years ago.”

The headliner is the material covering the inside of the roof of the car. This is a much better place to site loudspeakers than down by the passengers’ ankles or behind the rear passengers’ heads. For proof of this, sit in the back seat of the average 18 year old’s car. Asking for a bit more bass could result in serious haemorrhaging.

Low-frequency response

However, NCT had a problem with low-frequency response. To solve its problem, the company went to the State College in Pennsylvania, and a US company called Oxford Speakers, experts in active noise control. Between them, McDonald says, “they managed to work out how to couple piezos [piezo-electric transducers] to panels to create low frequency sound.”

The low frequency crossover point is around 180Hz, so a subwoofer is used to fill out the bass below this frequency. The flat speakers were placed in the car headlining. Because the subwoofer is non-directional, it can be placed in any convenient position.

But McDonald says: “Psychologically, all the sound coming from the top is not what you are used to.” For this reason the best results come from some speakers being placed near the floor.

A speaker set up like this can reduce weight and cost while saving space the company claims. To prove its point, in the UK, NCT has fitted out a Vauxhall Vectra and a Ford Mondeo with the flat speaker setup for demonstration purposes.

Much of the car headlining work has been carried out in conjunction with Johnson Controls, one of the world’s largest manufacturers of car fittings.

The same principles of coupling piezo transducers to panels has been applied in other areas including ceiling tiles and pictures. The ceiling tiles are aimed at exhibitions, factories and offices. Pictures can be used in just about any conceivable environment, but they are most suited towards home entertainment.

A baffling problem

With the pictures, there were initial problems placing them close to the wall. Any closer than a few inches and the sound from the rear interfered destructively with that from the front. This was solved by framing the active panel, and using a heavy back panel to reduce sound from the rear. In this way, the destructive interference is avoided.

It is interesting to note that this out-of-phase sound leading to destructive interference from the rear is the opposite of the claims from NXT, the other flat speaker company. In NXT’s case, sound from the rear is claimed to be in-phase with sound from front.

For both car headliners and pictures, finding the right panel material was an experimental process. Lots of different materials were tried, but the best in terms of sound quality and cost was to use standard poster board fixed in a frame. This is rather convenient as poster board is one of the cheapest materials available, although its long term resistance to the constant vibration has yet to be established.

The next problem was that of coupling power from the piezo-electric transducer into the panel. With a single piezo transducer, McDonald says an insufficient amount of power is transferred to the panel.

“We use multiple actuators to control the modal response,” says McDonald. “Several transducers help to smooth the low frequency modes” and to provide the power.

To decide exactly how many piezo actuators to use and where to site them, the company used a mixture of mathematical modelling and experiment.

The behaviour of the panel is “very hard to model at high frequencies”, says McDonald. This is because the fixing of the panel in a frame leads to complex boundary conditions which preclude modelling.

Therefore, the panels are modelled at low frequencies and experimented on at higher frequencies.

The result is a panel with a flat frequency response from 180Hz to 20kHz—the company claims within ±1.34dB. For home theatre, in the same way as the rear speakers example, a subwoofer is used for very low frequencies.
The polar plots, taken with a microphone at two metres, show sound pressure levels at two frequencies, 500Hz and 8kHz. The relatively constant level at all angles is in marked contrast to polar plots of older flat panel speakers, particularly the electrostatic type, and of conventional cone loudspeakers. These tended to be highly directional in nature. The directivity of conventional cone units is especially bad at high frequencies. These plots from NCT are very similar to those from NXT — the other recent designer of flat panel loudspeakers.

For pictures, the final product typically measures 600 by 650mm, and is driven by eight actuators.

So why use multiple transducers?
Piezo-electric transducers have a high impedance, the opposite of most amplifier outputs. They can be modelled as capacitors, so their low frequency impedance is high, making them inefficient at coupling power from the amplifier to the panel at audio frequencies. Therefore, several transducers are distributed around the panel to provide enough energy. At high frequencies the modal density increases so more actuators are needed here to control the modes.

NCT claims the speakers are approximately ten per cent efficient. This may not appear brilliant, but it is better than conventional moving coil loudspeakers. These typically have efficiencies of a few per cent.

"We use transformer coupling in cars to cover the impedance mismatch," said McDonald. And the company is designing a direct drive amplifier to suit a capacitive load. The use of piezo-electric devices as the actuators for the panels has led to good high frequency performance. This is opposite to electromagnetic transducers which roll off at higher audio frequencies. The company claims to have measured up to 50kHz from the panels in an anechoic chamber. This is limited to 20kHz in products. McDonald says this means there is no phase change at the higher frequencies. Because of this, he says, "the mid range transient response is very fast. If anything we have to calm it down at high frequencies."

SEETRAX CAE RANGER PCB DESIGN
WITH COOPER & CHYAN AUTOROUTER

RANGER3 - DOS £2500
- Windows\NT £2900

Hierarchical or flat schematic linked to artwork.
Unlimited design size, 1 micron resolution
Any shaped pad, definable outline library
Pin, gate & outline swapping - auto back annotation
Split power planes, switchable on - line DRC

COOPER & CHYAN SPECTTRA
autorouter (SP2)
Inputs: OrCAD, Cadstar, PCAD, AutoCAD DXF

Outputs: Postscript, Windows bit map

TRADE IN YOUR EXISTING PACKAGE TODAY
Seetra CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG
Call 01705 591037 or Fax 01705 599036 + VAT & P&P
Windows was not designed with control engineering in mind, but it is possible to perform I/O tasks by writing your own Dynamically Linked Libraries, as Colin Attenborough explains.

Visual Basic and Dynamically Linked Libraries

Visual Basic lets you write a program with a Windows graphical user interface with minimum effort. The usual Windows paraphernalia of buttons, check boxes, list boxes and radio buttons – and more – are available by drawing them onto a background ‘form’.

What happens when, say, button1 is clicked, is determined by what you put in the ‘Button1—Click’ subroutine, which becomes available when the Button1 is added to the form. All ‘controls’ offer subroutines for all the possible events that can happen to them. And the remainder of the language is comprehensive, too.

Visual Basic weakness

A problem with Visual Basic is that it cannot access hardware directly; there is no equivalent to QuickBasic’s INP and OUT functions, no PEEKs, POKEs or the like.

This is a disappointment. Hanging peripherals on the printer port is an honourable pastime, but doing it with Visual Basic needs an intermediate step – which is the subject of this article. The intermediate step is, in its simplest form, a dynamically linked library, or dll, which can be written in C and called from Visual Basic.

DLL for LPT read/write

The simplest useful dll is generated from a .def file and a ‘.c’ file, List 1.

A dll generated from these files is on the article disk detailed later; it is used in Visual C.
Basic by including the line,

```plaintext
#include "I08.def"
```

```plaintext
#include <full path name>\I08.dll" (ByVal ip as Integer, ByVal op as Integer, ByVal Written) As Integer
```

in the "general [declarations]" section of the forms where it is to be used, and is called by

```plaintext
Rval=I_o(&H379, &H378, <value to write to &H378>)
```

List 1. The simplest useful dll is generated from a .def file and a .c file.

IOB.c

```plaintext
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
```

```plaintext
int FAR PASCAL LibMain (HANDLE hInstance, WORD wDataSeg, WORD cbHeapSize, LPSTR lpCmdLine)
{
    return 1;
}
```

```plaintext
/* the function made available to the user */
```

```plaintext
int FAR PASCAL_export i_o (int import, int output, int poked)
{
    int data;
    /* here are the C output and input functions */
    /* at the heart of the dll */
    /* write the value 'poked' to the address 'output' */
    output(output, poked);
    /* assign the value read from the address 'import' to the variable 'data' */
    data = import(import);
    return(data);
}
```

```plaintext
IOB.def
```

```plaintext
LIBRARY mylib
```

List 2. Producing your own dll using Turbo C++ for Windows.

To generate a dll called 'my_dll' in directory 'c:\my_dir' in directory 'c:\my_dir' by selecting 'Project/ New Project'. Select Target type Dynamic Library - DLL. Under "Project Name and Path" enter 'c:\my_dir\my_dll.ide'. Under "Standard Libraries" select "Static" and "Runtime". Open Advanced: deselect 'rc', select 'c' or 'cpp' as desired. Close Advanced. Click "Ok". Now enter the code needed for the dll you want to write in the file my_dll.c or my_dll.cpp.

16-bit input and output

The virtue of the dll in List 1 is that it allows writing of eight bits, (or twelve bits including the port at base address+2, see the appendix) and reading five bits, from the printer port with no added hardware. For a wider i/o port, you need to use serial techniques and external circuitry, as in the diagram.

Output data are shifted into two cascaded 74HC595 dual-rank shift registers; when the data are in place, a transfer pulse moves them to the output pins, thus avoiding transient changes as the data are clocked in.

Data for input are loaded into two cascaded 74HC165 parallel in serial out shift registers, and then clocked into the pc. A total of five signals to and from the pc are needed - namely clock, data, data input strobe and data output strobe from the pc, and data input to the pc.

Writing your own dlls

No compiler is used to use the dlls on the disk available. Those of you with Windows C compilers may want to write your own dlls, however. Here's a brief outline of how to do so using Turbo C++ for Windows.

List 2 shows how to generate the dll which is placed in a specific directory. By default the .def and .c files will be named my_dll. The trivial example already given will serve as a .def file. To add further source files, right click the mouse on the left side of the .dll icon in the Project window. Select Project/Build All to generate the dll.

You can safely ignore the warnings about the variables hInstance, wDataSeg, cbHeapSize and lpCmdLine being unused. Alternatively, you can add #pragma ignored after the includes. The _export keyword is of course not needed for functions internal to the dll which are not visible to the dll user.

If you're using C++ rather than C, you'll need to add extern 'C' to the start of the definitions of exported functions, eg.

```plaintext
extern "C" int FAR PASCAL_export i_o (int import, int output, int poked)
```

Printer port address and connections

The printer port's address can be found using the MSD.EXE utility found in the MSDOS 6 folder. Address 378 to is the usual base address, where there's an eight bit output port. A five bit input port is at base address+1, and a four bit output port at base address+2. Table 1 gives the connections to the 25-way printer socket.

I am grateful to Cambridge Consultants for permission to publish this article - in particular to Paul Cox for help in the generation of dlls.

Table 1. Printer port pins together with addresses

These numbers correspond to those on the left-hand side of the circuit diagram.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Address</th>
<th>Bit</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x37A</td>
<td>0</td>
<td>Out</td>
</tr>
<tr>
<td>2</td>
<td>0x378</td>
<td>0</td>
<td>Out</td>
</tr>
<tr>
<td>3</td>
<td>0x378</td>
<td>1</td>
<td>Out</td>
</tr>
<tr>
<td>4</td>
<td>0x378</td>
<td>2</td>
<td>Out</td>
</tr>
<tr>
<td>5</td>
<td>0x378</td>
<td>3</td>
<td>Out</td>
</tr>
<tr>
<td>6</td>
<td>0x378</td>
<td>4</td>
<td>Out</td>
</tr>
<tr>
<td>7</td>
<td>0x378</td>
<td>5</td>
<td>Out</td>
</tr>
<tr>
<td>8</td>
<td>0x378</td>
<td>6</td>
<td>Out</td>
</tr>
<tr>
<td>9</td>
<td>0x378</td>
<td>7</td>
<td>Out</td>
</tr>
<tr>
<td>10</td>
<td>0x379</td>
<td>6</td>
<td>In</td>
</tr>
<tr>
<td>11</td>
<td>0x379</td>
<td>7</td>
<td>In (inverted)</td>
</tr>
<tr>
<td>12</td>
<td>0x379</td>
<td>5</td>
<td>In</td>
</tr>
<tr>
<td>13</td>
<td>0x379</td>
<td>4</td>
<td>In</td>
</tr>
<tr>
<td>14</td>
<td>0x37A</td>
<td>1</td>
<td>Out</td>
</tr>
<tr>
<td>15</td>
<td>0x379</td>
<td>3</td>
<td>In</td>
</tr>
<tr>
<td>16</td>
<td>0x37A</td>
<td>2</td>
<td>Out</td>
</tr>
<tr>
<td>17</td>
<td>0x37A</td>
<td>3</td>
<td>Out</td>
</tr>
<tr>
<td>18</td>
<td>Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Earth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Software on disk

A disk supporting this article is available. It contains two directories, one for the 8-bit, no-added-hardware port and one for the 16-bit port using added circuitry as shown in the diagrams. Each of these directories is further split into two directories: C_bits containing the dll and the source files needed to make it, and VB_bits, containing the Visual Basic program to use the dll. The Visual Basic programs are the simplest ones that will demonstrate the dll's abilities. Both use an array of check boxes to define the state of the output lines: both include a software timer. In the 8-bit version, the inputs are read, and the outputs written, at the end of each timer period; the 16-bit version writes the outputs when the boxes change state, and reads inputs at the end of each timer period.

Send a postal order or cheque for £15 (£17 overseas) payable to Reed Business Publishing to Dll, Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Don't forget to send your address.
This fantastic John Lussey Hood designed amplifier is the flagstone of our range, and the ideal powerhouse for your ultimate hi-fi system. The thrillingly powerful sound quality is the hallmark of this amplifier World Class performance with startling clarity and transparency of sound, allied to an unadulterated HART sound, precision and ease of construction. Standard model comes with a versatile passive front-end giving you full control, if the ASP04 precision "Blue Velvet" low-cost volume and balance controls, no need for an external preamp! Construction is very simple and endearing with all the different parts done for you, even the wiring is pre-terminated, ready for instant use. All versions are available with Standard components or specially selected Super Audio components and Gold Plated terminals and are also available in a factory assembled kit form.

K1101 Complete Standard Stereo Amplifier Kit, £140.21
K1102 Complete SLAVE Amplifier Kit, £138.04
K1103 Complete MONO Amplifier Kit, £127.21
RL110 Reprints of latest Amplifier articles, £1.80
K1103 Complete with full parts lists £5.50

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS.

New to the UK, VISATON offer a range of speaker kits and drive units that give the home builder access to units and designs that are unrivalled for quality, performance and value. Their designs are very well known in Germany, where they are based, and over 25 years they have built up an international reputation for high quality sound. All their designs come from a solid background of the best in design and research and their factory contains one of the largest anechoic chambers in the World, backed up by the very latest in computerised test equipment. To achieve this, they have state of the art computerised design and fabrication facilities, including a complete range of highly sophisticated and expensive measuring and test equipment. This complete range of products was in collaboration with major universities and high and magazines, produces a whole spectrum of quality and performance which are the best available to the home speaker builder. Their range of particle covers every single aspect of quality and design, incorporating everyone needs in the field of hi-fi, hi-fi and car use. There is also a vast range of drive units from 12" to 25cm woofers to ribbon units. Some of the drives and their units are available for the home user who wants to try his hand, or for commercial manufacture. A small selection follows, our full list will give you more.

VISATON® SPEAKER KITS & DRIVE UNITS

NEW TO THE UK, VISATON OFFER A RANGE OF SPEAKER KITS AND DRIVE UNITS THAT GIVE THE HOME BUILDER ACCESS TO UNITS AND DESIGNS THAT ARE UNRIVALLED FOR QUALITY, PERFORMANCE AND VALUE. THEIR DESIGNS ARE VERY WELL KNOWN IN GERMANY, WHERE THEY ARE BASED, AND OVER 25 YEARS THEY HAVE BUILT UP AN INTERNATIONAL REPUTATION FOR HIGH QUALITY SOUND. ALL THEIR DESIGNS COME FROM A SOLID BACKGROUND OF THE BEST IN DESIGN AND RESEARCH AND THEIR FACTORY CONTAINS ONE OF THE LARGEST ANECHOIC CHAMBERS IN THE WORLD, BACKED UP BY THE VERY LATEST IN COMPUTERISED TEST EQUIPMENT. TO ACHIEVE THIS, THEY HAVE STATE OF THE ART COMPUTERISED DESIGN AND FABRICATION FACILITIES, INCLUDING A COMPLETE RANGE OF HIGHLY SOPHISTICATED AND EXPENSIVE MEASURING AND TEST EQUIPMENT. THIS COMPLETE RANGE OF PRODUCTS WAS IN COLLABORATION WITH MAJOR UNIVERSITIES AND HIFI AND MAGAZINES, PRODUCES A WHOLE SPECTRUM OF QUALITY AND PERFORMANCE WHICH ARE THE BEST AVAILABLE TO THE HOME SPEAKER BUILDER. THEIR RANGE OF PARTICLES COVERS EVERY SINGLE ASPECT OF QUALITY AND DESIGN, INCORPORATING EVERYONE NEEDS IN THE FIELD OF HI-FI, HI-FI AND CAR USE. THERE IS ALSO A VAST RANGE OF DRIVE UNITS FROM 12" TO 25CM WOOFERS TO RIBBON UNITS. SOME OF THE DRIVES AND THEIR UNITS ARE AVAILABLE FOR THE HOME USER WHO WANTS TO TRY HIS HAND, OR FOR COMMERCIAL MANUFACTURE. A SMALL SELECTION FOLLOWS, OUR FULL LIST WILL GIVE YOU MORE.

VISATON® SPEAKER KITS & DRIVE UNITS

NEW TO THE UK, VISATON OFFER A RANGE OF SPEAKER KITS AND DRIVE UNITS THAT GIVE THE HOME BUILDER ACCESS TO UNITS AND DESIGNS THAT ARE UNRIVALLED FOR QUALITY, PERFORMANCE AND VALUE. THEIR DESIGNS ARE VERY WELL KNOWN IN GERMANY, WHERE THEY ARE BASED, AND OVER 25 YEARS THEY HAVE BUILT UP AN INTERNATIONAL REPUTATION FOR HIGH QUALITY SOUND. ALL THEIR DESIGNS COME FROM A SOLID BACKGROUND OF THE BEST IN DESIGN AND RESEARCH AND THEIR FACTORY CONTAINS ONE OF THE LARGEST ANECHOIC CHAMBERS IN THE WORLD, BACKED UP BY THE VERY LATEST IN COMPUTERISED TEST EQUIPMENT. TO ACHIEVE THIS, THEY HAVE STATE OF THE ART COMPUTERISED DESIGN AND FABRICATION FACILITIES, INCLUDING A COMPLETE RANGE OF HIGHLY SOPHISTICATED AND EXPENSIVE MEASURING AND TEST EQUIPMENT. THIS COMPLETE RANGE OF PRODUCTS WAS IN COLLABORATION WITH MAJOR UNIVERSITIES AND HIFI AND MAGAZINES, PRODUCES A WHOLE SPECTRUM OF QUALITY AND PERFORMANCE WHICH ARE THE BEST AVAILABLE TO THE HOME SPEAKER BUILDER. THEIR RANGE OF PARTICLES COVERS EVERY SINGLE ASPECT OF QUALITY AND DESIGN, INCORPORATING EVERYONE NEEDS IN THE FIELD OF HI-FI, HI-FI AND CAR USE. THERE IS ALSO A VAST RANGE OF DRIVE UNITS FROM 12" TO 25CM WOOFERS TO RIBBON UNITS. SOME OF THE DRIVES AND THEIR UNITS ARE AVAILABLE FOR THE HOME USER WHO WANTS TO TRY HIS HAND, OR FOR COMMERCIAL MANUFACTURE. A SMALL SELECTION FOLLOWS, OUR FULL LIST WILL GIVE YOU MORE.
NEW PRODUCTS CLASSIFIED

Please quote “Electronics World” when seeking further information

ACTIVE

Discrete active devices

Pin-diode switches. KDI SWX Series miniature, high-isolation pin diode switch modules are for use in cellular and PCS base stations, providing up to 60dB of isolation to guard against lightning strikes and switching spikes. The range covers the 200-2400MHz range, isolations being from 24.5dBc@2MHz, 51dBc@2GHz, according to type, with insertion losses of 0.6dB and 0.9dB respectively. Power handling lies between 4kW to 16kW and 50dBm, depending on reverse bias. Packages have a full ground plane underneath, providing excellent performance and can be used for other things. Anglia Microwave Ltd., Tel., 01277 630000; fax, 01277 631111.

Miniature flash cards. Flash Miniature Cards by Smart come in 2Mb and 4Mb form in the size supported by the Miniature Card Implementers’ Forum. They are essentially matchbook-sized flash memories to store voice, images or data that fit into an adapter to go into a pc or notebook card drive slot, complying with MCIF specifications and working from 3.3V and 5V supplies. Access time is 100ns at 5V. Each application is encapsulated in plastic and is available in digital still cameras. Smart Modular Technologies, Tel., 01908 234030; fax, 01908 234191.

Microprocessors and controllers

Metering controller. Using 400µA (active) and 1.6µA (standby), Ts’s MSP430 metering microcontroller family has several low-power modes down to 0.1µA. The device contains a 16-bit risc cpu, a range of programming and memory options, a 14-bit a-to-d converter and an lcd driver. There are 51 instructions with seven address modes and each instruction allows register-to-register instructions to be carried out in 300ns at 3.3MHz clock speed. Each instruction is usable with each address mode. Memory options include rom, eeprom and otp versions from 16k to 64k and 256k to 512 byte of ram. MSP430x310 is designed for use with resistive sensors, pressure sensing, space conversion, and the 320 version includes a full, six-input successive-approximation converter. Arrow-Jeremyn, Tel., 01234 270027; fax, 01234 214674/791501.

8-bit microcontroller. An 8-bit microcontroller by Toshiba, the TMP87PM28U has 32Kbyte of onetime-programmable memory and 1Kbyte of ram. It works on 2.7V at low power and is therefore well suited to battery equipment using lcd screens. It has an icd driver, a uart, an a-to-d converter, an 8-bit timer, four 8-bit timers and interval and watchdog timers and is also available in masked-rom versions with 16, 24 and 32Kbyte of rom. Toshiba Electronics UK Ltd., Tel., 01276 694600; fax, 01276 694800.

Power semiconductors

Fast, 7A/600V igbts. Unusually, Harris’s HGT7P7606LC insulated-gate field effect transistor is happy working in the frequency range 50-100kHz, with losses down to 600µJ. It is rated at 7A, 600V at 110°C (14A at 25°C) and fall time when switching 7A at 480V at 150°C is 275ns. Harris Semiconductor UK, Tel., 01276 698886; fax, 01276 683232.

Mixed-signal ics

Switched-mode ic. Allegro’s A770-ES050 is a switched-mode power-supply ic for requirements in the 30-300W range. It contains an off-line power switch and controller in a 5-pin package forming, with few external components, a complete supply module. This is a flyback converter with quasi-resonant soft switching to reduce switching losses and conducted and radiated interference. Protection is undervoltage lockout with hysteresis, overvoltage shutdown and thermal shutdown to protect the ic and following components. Switching frequency is reduced during startup to control dissipation, all startup components being included. Allegro MicroSystems Inc. Tel., 01932 253355; fax, 01932 246822.

PASSIVE

Passive components

Multi-gang pots. ECO 16mm conductive-polymer potentiometers, made with recyclable plastic, are now available in multi-gang versions. Compared with the company’s metal-cased models, the plastic construction confers the advantages of compactness, the provision of a locating spigot for angular alignment, better sealing and lower cost. A notched backplate accepts a spring clip to replace the normal nut and washer fixing. Dual-gang units can have matched tolerances for stereo or have different values and laws, the range of values being 1kΩ to 1MΩ, 0.25% for linear types and 4.7kΩ to 470kΩ, 0.12% for the non-linear variety. All can be fitted with rotary switches. Omeg Ltd. Tel., 01342 410420; fax, 01342 316253.

Precision resistors. Rhopoint offers a range of conformally coated metal-film resistors that exhibit a temperature coefficient of ±0.5ppm°C. Alpha FL components have a thickness of 6.2mm and possess a long-term stability of ±0.0005% per 1000° over a temperature range of -25°C to 155°C. Power ratings are 0.125W for the FLA and FLB types, while the FLB is rated at 0.25W. Values are 5Ω to 150Ω in tolerances down to ±0.05% can be supplied, but for out-of-the-box ordering, the range is 5Ω to 100kΩ at ±1%. Rhopoint Components Ltd., 01863 717968; fax, 01863 712938.

Resistor networks. MiniNet silicon-based resistor networks are said to be the smallest such devices currently available, being some 25-30% smaller than ordinary ones. They are made in ic-type packages and consist of a thin film of tantalum nitride on a silicon substrate. Values range from 10Ω to 100kΩ in tolerances from ±5% to ±1% and temperature coefficients of ±250ppm to ±500ppm. Maximum voltage is 50V dc and power rating 0.1W-0.9W at 70°C. Arrow-Jeremyn, Tel., 01234 270027; fax, 01234 214674/791501.

Miniature capacitors. CapXon miniature electrolytics are now available in the UK. There are seven voltage ratings between 4V dc and 50V dc in values between 0.2µF to 220µF and in sizes from 3mm diameter by 5mm long to 6.3mm diameter by 5mm long, the latter being for a 220µF, 4V type. Europa Components & Equipment plc, Tel., 0181 953 2379; fax, 0181 207 6646.

Displays

Backlighting leds. From Dialogic, the 553-220-121 led indicator, which is optimised for backlighting use, being space-saving in that two leds are mounted in one assembly. To reduce stray light from the assembly to other positions and to obtain maximum output on the viewing axis, the housing is extended and the leds fitted with tinted, non-diffused lenses. Leds in red, yellow or green produce 12mCd at 10mA. Gothic Creelion Ltd., Tel., 01734 780878; fax, 01734 776005.
NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

Connectors and cabling

Optical connectors. Framatome has a new series of lightweight connectors for lans, fibre cable management and distribution, ATM and premise installation. They incorporate a dome-shaped zirconia ferrule and exhibit low insertion loss, simple connection and nickel-plated zamack bayonet coupling. Cabled diameters accepted are 0.9mm-2.8mm with a fibre diameter of 126µm, variability after connection being under 0.2dB after 1000 test cycles. Cable retention is 15.9kg, and temperature stability 0.1dB between -40°C and 80°C. Assemblies are available. Framatome Connectors UK Ltd, Tel., 01582 475757; fax, 01582 476203.

Power connectors. Render has a full range of power connectors meeting EN60 320 and rated at 10A, 250V ac, with variants for the US being rated at 15A, 125V ac. Connectors in the range are approved to UL, CSA, VDE and BSI and any not covered by international safety regulations are tested to BS 5733. In the range is a variety of inlets with choices of mountings, rewirable plugs and connectors and outlets. There are also the Twinbloc and Quadbloc multi-outlet blocks and the Steadydip which comes in single-phase, three-phase and signal lines. Render Ltd. Tel., 01243 866741; fax, 01243 841486.

Cable screen clamps. EMC requirements have made for an increase in the usage of screened cables, and focused attention on the need for a reliable and simple method of making connection to the screen. Wieland Electric now has three sizes of clamps to a busbar fixing rail for use with cable of 7-16.5mm in diameter, the clamps having stainless steel contact springs to avoid damage to the screen and to provide corrosion resistance. The rails are insulated and can be fixed directly to a panel and can also be used as pure screen connectors remotely from the terminals. Wieland Electric Ltd. Tel., 01483 31213; fax, 01483 505029.

VME backplane. Vero has started production of backplanes to the latest draft of the VME64 Extensions standard. Twelve-layer stripline backplanes come in widths of 7-20 slots with smt terminations for lower crosstalk. J1 and J2 slots have the new 180-pin, 5-row DIN connectors, which are compatible with existing 3-row, 96-pin connectors, and an optional 2mm J0 connector has an extra user-defined 95 pins; a further 35 ground returns are available. There are a 3.3V and two user-defined ±1V and ±2V rails, which can be used together to give 48V telecomms supply. Total power is about 2kW. Vero Electronics Ltd. Tel., 01489 780078; fax, 01489 780976.

400 contacts on double Eurocard. Vero has an interconnect slot which can be used to put 400 contacts on a double-width Eurocard using the standard DIN format. This is done by combining two Emi E160 connectors, which each have five rows of 32 pins, with an Emi E80 of five rows with 16 pins a row give a continuous 2.54mm pitch for a standard layout. Features include early metal-last break of 0.8mm for male contacts, precentring for male connectors; press-fit termination; and wave soldering. Radiatron Components Ltd. Tel., 01784 439393; fax, 01784 477333.

Cordsets. Clarke Cable's mains cordsets are available from Roxburgh. These are 100% tested, 2m cables with a range of UK and European standard connectors, various colour codes and other terminations being supplied as needed. Roxburgh Electronics Ltd. Tel., 01724 281770; fax, 01724 281650.

Filters

Solder-in emi filters. New emi filters by Syfer are suitable for soldering directly to a panel, are smaller than threaded equivalents and are shorter. The type for soldering into a 3.5mm hole has capacitance values to 33nF, while the 5.6mm type goes to 470nF. Voltage rating is 500V dc and current rating 10A. Syfer Technology Ltd. Tel., 01493 440047; fax, 01493 440048.

Emi filters. These bidirectional chip filters from Murata, the EMIFIL NFM8839R series, are for use on clock or interface lines and possess a wide range of impedances with frequency, reducing waveform distortion and reflection. There are two cut-off frequencies: 20MHz and 50MHz, insertion loss being typically 8dB at 100MHz and 20dB at 500MHz for the 20MHz device. Minimum insulation resistance is 1GΩ and the filters are rated at 50V dc, 25mA. Murata Electronics (UK) Ltd. Tel., 01252 811666; fax, 01252 811777.

Drill/lathe/drive-shaft kit. Minicraft's lathe and drill kit, the MB6001, is now sold with a free flexible drive shaft, the MB720, until the end of April. The whole kit, which costs £139.99, consists of the 100W drill; a variable-speed transformer, which is usable with all Minicraft 12V tools; a lathe attachment; three chisels and cutting, polishing, grinding accessories; and the drive shaft. Minicraft. Tel., 01388 420535; fax, 01388 817182.

Hardware

Fan. Miniature radial fans from Papst in the RES8 Series mount straight onto a pcb and are meant for localised cooling. They operate from 12V dc at temperatures between 40°C and 90°C, supplying 1.5 or 3.5Wp, depending on the model. Challenger Components Ltd. Tel., 01795 477255; fax, 01795 477255.

Test and measurement

Portable dosos. TDS300 Series oscilloscopes from Tektronix are low-cost, portable digital storage oscilloscopes with backlit lc displays, the reason for a back-to-front dimension of 11cm. Tek's Digital Real-time technology provides a response similar to that of an analogue instrument. Bandwidths are in the 60-100MHz range, sampling being at 1Gsample/s simultaneously on both channels. The user interface (controls) are similar to those of analogue types, but with a collection of automatic measurement features, storage and instrument setups; automatic peak detection reduces the possibility of aliasing. There is provision for optical communication to give hard copy output or via GPIB/RS232 to a pc. Thorby Thander Instruments Ltd. Tel., 01480 412451; fax, 01480 450409.
Function generator. In seven ranges, the GX245 portable function generator by Metrix covers 0.5Hz-5MHz and contains a frequency counter to measure up to 120MHz. Both internal and external sweeps are available with start/stop control in linear, log, dc level and single-shot modes. Square-wave rise time is under 40ns and less than 12ns forttl loads. Frequency resolution is 0.001Hz at the lower frequencies, output frequency being shown by a 5-digitlcd. Metrix Electronics plc Tel., 01384 402731; fax, 01384 402732.

40GHz spectrum analysis. Rohde & Schwarz announces two new spectrum analysers: the 26.5GHz FSEM and the FSEK for 40GHz, both being modular in form to allow customisation for a number of uses, although all models in the FSE range include as standard functions for work on digital radio and television measurements in development, production and service. Synchronised tuning up to the 5ms full span sweep ensures high accuracy at every point and the gap sweep function and 200ms/division resolution at zero span allows pulse rise and fall time measurement simultaneously. Phase noise is typically 128dBc/Hz at 10kHz offset. Rohde & Schwarz UK Ltd. Tel., 01252 811377; fax, 01252 811447.

Rail-mounted kWh meter. RM003 from Northern Design mounts on a DINrail, six modules wide, and provides a readout on a large backlit led to better than IEC 1036 Class I for both single and three phase inputs, also offering an optional pulse output, as required for building energy management applications. It is a single-function instrument with standard current-transformer inputs for connection to loads from a few watts to several hundred kilowatts, readings being stored in the event of a power failure. Northern Design (Electronics) Ltd Tel., 01274 729533; fax, 01274 721074.

Optical preamplifier. EG&G Instruments has a new optical-input preamplifier, the Model 5188, designed for use as a light-to-voltage converter. Two versions exist: the 5188A, with an InGaAs input detector for near-infrared, and the 5188B, which uses a silicon device for the visible part of the spectrum. Sensitivity extends to fractions of a picowatt with no noise degradation, to 18mW without overload. Ac and dc signal components are processed separately and give independent outputs. Input is by way of an FC/PC connector. EG&G Instruments Ltd. Tel., 01734 773003; fax, 01734 773493.

Interfaces

Laptop-to-Fieldbus. From National, the PCMCIA-FBUS, which is a Foundation Fieldbus interface for pcs running Windows NT and having PCMCIA slots; the interface includes NI-FBUS driver software for Win NT. There is also a network 'configurator' - a 32-bit Windows application to deal with the configuration of fieldbus segments. National Instruments UK Tel., 01635 523545; fax, 01635 523154.

Literature

Microcontroller design guides. Toshiba's three new design guides cover 1-bit, 8-bit and 16-bit microcontroller families, providing application examples and lists of available development software. Toshiba Electronics UK Ltd. Tel., 01276 694600; fax, 01276 694800.

Virtual instruments. National Instruments has a new catalogue, the 977 Instrumentation Reference and Catalogue, which contains nearly 700 pages and is free. National is well known for its range of pc-based instruments and the publication offers tutorials on data acquisition, GPIB, VXI and automation in industry, as well as the normal functions of a catalogue. National Instruments UK Tel., 01635 523545; fax, 01635 523314.

Materials

Emc kit. A kit of materials from Vacuumschmelze, the EMC KIT, consists of 17 toroidal cores and 22 common-mode chokes using high-permeability, nano-crystalline Vilterpom 500 F, to assist engineers to design small, flat mdfins for the 1-25A (single-phase) or 3-40A (three-phase) ranges. The kit also contains a disk with Excel Work Sheet VACSIM 3.0 to help with dimensioning chores and simulating insertion loss in a SO1 system between 10kHz and 100MHz. Vacuumschmelze GmbH. Tel., 0049 61 81/38-26 29; fax, 0049 61 81/38- 28 60.

Power supplies

Switching regulators. Micrel Semiconductor has two new regulators, the MIC2570/71 one and two cell boost regulators, both being constant duty-cycle, gated-oscillator types. The 2570 is for two-cell working from 1.3V to 15V input, the 2571 being for single-cell use and works on inputs down to 0.9V. This is a new 8-lead Mini8 package, which is less than half the size of SO-8s. Both devices have selectable output of 2.85V, 3.3V or 5V or adjustable output up to 36V. An n-p-n switch in the unit avoids the need for a series-pass component for peak inductor currents to 800mA. Micrel Semiconductor Europe Ltd. Tel., 01635 524455; fax, 01635 524466.

Four-channel temperature monitor. Tempacan T180, intended for small temperature-controlled stores, incorporates variable high and low alarm limits for each channel, defrost and door-open inputs and selectable recording intervals from 15min to 1h, operation being controlled by a lockable function switch. An internal tally-roll printer provides reports and functions are selected by either front-panel keypad or, optionally, by an RS-232 interface to a computer using software supplied or users' own. Daneshbury Data Systems Tel., 01438 712041; fax, 01438 712900.

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information.
NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information.

Radio communications products
Superhet at supergen prices. Low Power Radio Solutions has introduced the SuperReceiver—a superhet for low-power links using the Plessey KESRX-01 chip. It meets the 2kW emc limit under RES0908 and is made in the same slt package used by the earlier supergen receiver. Frequency is either the pan-European 43.3/92MHz or the UK 418MHz, both crystal-controlled. There is a received signal-strength indicator pin and the unit is meant for use in battery-powered systems, taking 2.5mA when active. Data rate is 10kbps and sensitivity better than –103dB. Low Power Radio Solutions Ltd., Tel.: 01993 709418; fax, 01993 708575.

Protection devices
Resettable fuses. PolySwitch resettable fuses from Raychem come in five ratings from 3A to 11A, each with a 16V, 100A surge rating. They are conductive polymer devices with metal electrodes, the polymer increasing its resistance in the presence of overload and latching in this state until the fault is removed, when the device resets after cooling down. Raychem Ltd. Tel.: 01793 572682; fax, 01793 572209.

Switches and relays
Relay module. Matsushita has a DIN-rail-mounted safety relay module that is provided with optional quick-connect terminals, power indication and the choice of a range of operating voltages. These are rotating-armature SP24 relays for safe switching in the presence of malfunction or contact problems. Each module has two or four sets of mechanically interlocked normally open or normally closed contacts in a sealed package, contacts being rated to break 1500VA at up to 44V, 6A. Matsushita Automation Controls Ltd. Tel.: 01908 231555; fax, 01908 231569.

Load-break switches. Crompton Greaves has a new series of load-break switches with a new handle having a positive stop to prevent the switch overtripping. These UL/CSA-approved switches have isolated double-break contacts with seals to IP5S. Thirty variants offer three, four or five poles and current handling from 25A to 63A. Front and base mounting is available, with locking facilities, and there is a flush-quick marking system for exact alignment of door interlock handles. D S Hodgson Ltd., Tel.: 01293 859191; fax, 01293 859794.

GPB-controlled relay module. ICS Electronics has produced the Model 4864 GPB-to-relay interface for the ATE market, offering different combinations of contacts and isolated inputs to control external devices from a GPB bus. There are 16 outputs, all of which can be controlled individually, run as a single or multiple scanner or all switched at the same time. Eight isolated inputs are usable to sense signals or contact closures or to verify an external response to a control output. Three types are produced: the 4864-11 has 0.5A contacts; 4864-12 A types; and 4864-14 solenoid/relay driver outputs to connect larger relays. Amplicon Liveline Ltd. Tel.: 0800 525 335 (free); fax, 01273 570215.

Miniature snap switch. Cherry Hirose snap switches take up 10% of the space normally needed for a switch of this type, measuring 12.8 by 13.8 by 5.8mm. The range includes versions for 50mA to 3A, with silver alloy, silver or gold contacts. A variety of actuators is available and straight, left or right terminations. Cherry Electrical Products Ltd. Tel.: 01589 763100; fax, 01582 768883.

Transducers and sensors
Pressure sensors. Schaevelt P3000 pressure sensors from Lucas are meant for use in the measurement of very low vented gauge, absolute or wet/dry differential pressures in a variety of fluids, the lowest range being 0-5mbar and the highest 0-Star. The pressure-sensing element includes an all-welded Ni-Span C capsule for low hysteresis and constant scale factor with temperature, a linear-variable differential transformer measuring the displacement of the capsule. Lucas Control Systems Products. Tel.: 01753 527622; fax, 01753 823563.

Led shaft encoder. Using red, green or orange 31-led arrays, the 20mm diameter, low-profile shaft encoder from ALPS provides 15 pulses per revolution for each phase (two click, one pulse), having an expected life of 15,000 revolutions at 500rev/hour. Operating current is 10mA. Roxburgh Electronics Ltd. Tel.: 01724 261770; fax, 01724 281650.

Vision systems
Cctv Rx/Tx. VideoWave video transmitter and receiver are low-power, single-band components that may now be used without licensing. The system provides a real-time, secure radio link using a unique, scrambled, monochrome closed-circuit tv output at a fraction of the cost of other methods. Units are for fixed or mobile use from 12V dc.

Computers
Fireproof computer. Well, perhaps not, but the TM/I Hardbody is a lightweight, handheld computer that will take the kind of punishment development engineers have nightmares about. It has a splash-resistant case, a pen-based interface (you use a pointer instead of a keyboard) and a long-life battery. It will survive a 2g shock for 6ms, 2g vibration between 5Hz and 200Hz and 0-95% non-condensing relative humidity. Temperature range is –10°C to 50°C. Insides consist of a 66MHz 486DX, 32Mbyte of ram, a 260Mbyte hard disk and a VGA lcd with a 2048 by 2048 touch screen. There are two PCMCIA slots, two RS-232 ports and comm ports for peripherals, rf lan and wan connection is via optional adaptors. Creiton Microsystems. Tel.: 01724 778161; fax, 01734 776065.

Data acquisition
96-channel analogue VME input. Newest member of Pentland Systems' VXI family is the VGD4, which consists of 96 12-bit analogue-to-digital converters in two VME slots to give high channel-density simultaneous sampling, accuracy being maintained by a calibration rom. Data transfer can be by VME or VGB or straight to dsp modules by way of TMS320C4X comms ports or front-panel data ports. Pentland Systems Ltd. Tel.: 01506 464666; fax, 01506 463030.

Data communications
Lan/wan transceiver. Developed by Trigint in the US, the TQ6105

Ferre cores. Murata cores for emi suppression provide excellent noise suppression which is effective at frequencies up to 500MHz. Data lines may be passed through the cores or wound round them several times. Surtech Interconnections Ltd. Tel.: 01256 51221; fax, 01256 471180.
Sonet/SDH atm transceiver runs at 622Mbit/s, dissipates 2.3W and is contained in an 100-pin JEDEC quad flatpack. Its claim to fame stems from the provision of three alarm signals which indicate imminent loss of data before it happens. Flags are waved if there is a loss of local reference signal; at a loss of received signal after 128 zero transitions; or if the data has started to drift because of trouble at the other end. It is compatible with ecl, pcd or ttl clocks running at between 19.44MHz and 155.2MHz and it holds its end up in temperatures between -40°C and 125°C. Pronto Electronic Systems Ltd., Tel., 0181 554 5700; fax, 0181 554 6222.

Software

Datataker programmer. Data Electronics' Datataker series of data loggers is now augmented by the introduction of a Windows programmer and supervisor to retrieve and present its results. Datalogger Pro offers the choice of a graphic or text window for entering commands, data being shown as charts or in text form. Programming requires little in the way of keyboard, most being carried out by clicking on icons, all without the presence of loggers. The program has its own relational database with up to eight filter parameters to create reports and will work with other databases such as Foxpro and Microsoft Access for more complicated work. Charting functions show data in real time and the package also supports a modern manager for remote data collection. Data Electronics, Tel., 01462 481291; fax, 01462 481375.

Datacomms analyser. COM-Watch 2000 allows a user to visualise and analyse data communication simultaneously on up to 16 channels and will communicate with a device to test its data; test programs may be written in the Script command language. The facility is used to start, debug and service links and in software development. In its passive mode, COM-Watch uses the RS-232 adaptor to see data communication, trigger functions determining which data to monitor, subsequent analysis being concerned with crc calculation, checksums and searching for patterns, strings and signal errors. Amplicon Liveline Ltd., Tel., 0800 525 355 (free); fax, 01273 570215.

Analogue circuit simulator. SimMatrix, from Newbury Technology, is a Windows-based circuit simulation package costing £245. Features include an integrated circuit editor with multi-level undo, waveform analysis and real-time waveform display. It is based on Spice 3 and supports transient, dc sweep, ac, noise and transfer function analysis and recognises lossy transmission lines, arbitrary sources and GaAs fets. The model library contains 1300 devices, a new mosfet model being designed for vertical devices with non-linear gate/drain capacitance. Newbury Technology Ltd., Tel., 01635 968395; fax, 01635 888322.

Development and evaluation

PIC emulation. ICEPIC2 from RF Solutions is a modular in-circuit, real-time emulator, Windows-based, for all types of Microchip's PIC microcontrollers up to 25MHz. Code can be debugged at source level in assembler or C. A 4K (expandable to 8K) hardware trace buffer being provided. There are unlimited hardware trigger break points on any address or range of addresses and the emulator performs single steps or procedure steps. Standard 8K of PIC16CXX emulation memory is expandable to 16K. Units are complete with power supply, RS232 interface and software. RF Solutions Ltd. Tel., 01273 488880; fax, 01273 480661.

ADVERTISE FREE OF CHARGE

Subscribers to Electronics World can advertise their electronics and electrical equipment completely free of charge

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words. Remember to include your telephone number as one word. You must include your latest mailing label with your form.

* This free offer applies to private subscribers only. Your ad will be placed in the first available issue.

This offer applies to private sales of electrical and electronic equipment only.

Trade advertisers – call Malcolm Wells on 0181-652 3620

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:
Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

April 1997 ELECTRONICS WORLD
Resistors in

Calculating the value of parallel resistors normally involves a chart-type calculator or an electronic calculator and time-consuming equations. John Lavender describes an alternative solution offering convenience, speed and - above all - accuracy.

Written in 'C', this short program calculates series and parallel combinations of standard value resistors for any required value with an accuracy of less than 0.25%.

There many reasons for using series or parallel resistor combinations. Achieving voltage and power ratings are not the least of these. But when a non-standard value is required, or the required standard value is not to hand, parallel or series resistor combinations are the only solution. Whereas series pairs can usually be worked out using mental arithmetic, for most people, parallel pairs require at least a pen and paper. There are some helpful rules of thumb, but if you don't know them, or can't remember them, the only resort is lots of calculations.

The two better known formulae used to calculate parallel resistance are, for two resistors, $R_{\text{p}}=\frac{R_1\times R_2}{R_1+R_2}$

and for multiple resistors, $\frac{1}{R_{\text{p}}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}+\ldots+\frac{1}{R_n}$

The first formula may be transposed to give, $R_{\text{p}}=(R_2\times R_1)/(R_2-R_1)$

when the value of one resistor and the total resistance is known. The second formula may also be transposed to,

$$R_{\text{p}}=\frac{(R_1\times R_2\times R_3\ldots)}{(R_1+R_2+\ldots+1/R_\text{p})}$$

The program was written that a short 'C' program was written that displayed a range of parallel-pair combinations within predetermined limits of the required value.

These limits are referred to as the accuracy range - or perhaps more precisely the 'inaccuracy range'. This is the degree of variation from the required value; the larger the variation, the greater the number of combinations displayed.

The reason I decided to display a range of combinations rather than simply the most accurate is that it gives you the opportunity of selecting,

- The most accurate combination,
- A pair with close values for current sharing - or voltage sharing, in the case of series pairs,
- A high/low value combination for applications where trimming may be required, or,
- The values of resistors on hand.

The program was found to be invaluable, saving many hours of manual calculations. Over a period of time the original program has been modified, added to, and generally improved, both series and parallel combination pairs being calculated.

Any EIA range can be selected...

Any EIA range from E6 to E96 can be selected, and the calculation parameters of resistor
tolerance and accuracy range may be varied. Maximum and minimum resistance, due to resistor tolerance, is displayed both in ohms and as a percentage difference from the required value.

Another feature that has been added is that the resistor values are displayed in the generally accepted form of 0R22, 6R8, 10R, 560R, 1k2, 47k, 330k, 1MΩ, etc., which makes for easier reading. Figure 1 shows a typical screen display from this program. The listing for this program is beyond the scope of this article, but the program is available, as detailed later.

List 1 is a modified version of the original program. It is easy to use, and calculates series pairs as well as the parallel combinations. The range of resistor values used in the calculations are the E24 values from 0.01Ω to 91MΩ, which covers the majority of the readily available resistor values.

The accuracy range is pre-set by the `percent=0.25` declaration at the end of line 7 of the listing. This value can be changed to suit your requirements, but I have found 0.25% to give the best range of results.

In use, the program could not be simpler. Load the program, enter the required resistor value, in ohms, hit the enter key and the results appear on screen. Other values are entered as required, then, when finished, press the zero key to exit the program.

If more than 24 combinations are found, "MORE --" is displayed at the bottom of the screen. Hit a key and the next screen of combinations is displayed.

Series combinations are displayed in the form of,

```
3300.00+6800.00=10100.0000 0.0000% error.
```

and for parallel combinations:

```
3300.006800.00=2221.7822 -0.0098% error.
```

Although this program will run on any pc compatible, it is advisable to use at least a 486DX. This is because the program makes some 57,600 sets of calculations for each required combination.

Calculations are made for every resistor value, paired with every value for both series and parallel combinations. A lesser pc will take several minutes to run through this number of calculations.

For those of you who do not have access to a 'C' compiler, a disk with a DOS-executable program (E24. EXE) is available. The disk also contains an E96 version of the program (E96. EXE) and the 'C' listings of both versions. As a special offer, the executable file for the more comprehensive program referred to in the text is included on the disk for the all-inclusive price of £15. If you request this version, I will send your request to: J. E. Lavender, 5 Shackleton Avenue, Yate BS17 4NW, enclosing a cheque or money order for £20.

References

1. Hammond, M. A., Parallel resistance calculator, p45, *Electronics World* April 1962 (This is an American magazine, not related to *Wireless World*). (EIA 24 values and improved version of the 'Resistors in parallel' chart, by the same author, published on p339 of the July/August 1959 issue of *Wireless World*.)

List 1. Calculate parallel resistances in C with speed and accuracy.

```c
#include <stdio.h>
#include <conio.h>

main()
{
  float mult["10"={0.01,0.1,1.0,10.0,100.0,1000.0,10000.0L,1000000.0L,10000000.0L,100000000.0L},
    value"24"={(1.0,1.1,1.2,1.3,1.5,1.6,1.8,2.0,2.2,2.4,2.7,3.0,3.3,3.6,3.9,4.3,4.7,5.1,5.6,6.2,6.8,7.5,8.2,9.1), rl, r2, rc, rs, rt, e, percent=.25;}
  int ra, ma, rb, mb, ctr;
  printf("\n\nEnter the required value of resistor in ohms\n");
  scanf(" %f",&rc);
  do
    
    ctr = 0;
    for (ma = 0; ma < 10; ma++)
      {
        for (ra = 0; ra < 24; ra++)
          {
            for (mb = 0; mb < 10; mb++)
              {
                for (rb = 0; rb < 24; rb++)
                {
                  if (rl<e=r2&rc<rs=(rs*percent/100)+rc>=(rs*percent/100))
                    {
                      if (rc != rl && rc != r2)
                        
                      printf("\n%6.3f + %6.3f = %6.4f \%6.4f %6.4f error.",rl,r2,rc,e)
                      ctr++;
                    }
                }
              }
            if (rl=r2&rc<rs=(rs*percent/100)+rc>=(rs*percent/100))
              {
                if (rc != rl && rc != r2)
                  
                printf("\n%6.3f || %6.3f + %6.4f %6.4f %6.4f error.",rl,r2,rc,e)
                ctr++;
              }
            if (ctr >= 24)
              
            printf("\n\nMORE --\n");
            ctr = 0;
            getch();
          }
        }
      }
  while (rc := 0);
  return 0;
}
```

© 1997 ELECTRONICS WORLD
Programmable logic

One approach to making programmable logic devices with a higher logic content is to integrate several small programmable-array logic ICs into one package. Different manufacturers may differ in detail in the way they do this, but they all have certain features in common. Figure 1 shows the basic structure of a large-scale integration programmable-array logic device, or PAL. Such devices are also called complex PLDs, or CPLDs.

There are four blocks to consider in each device. These are the input cells, an interconnection matrix, the logic blocks and the i/o cells.

Input cells and i/o cells may be taken together as some families have no, or only a few, separate inputs and use i/o cells for this function. In general, an i/o cell connects the logic blocks to the outside world and features a ttl or c-mos interface. Most devices operate with 0.4V and 2.4V output logic levels. This means that they need level conversion if they are to drive true c-mos logic; they have high impedance inputs and can be driven by c-mos without any problem.

The outputs always have a tri-state capability which can be permanently enabled or disabled, or controlled by internal logic. They can function as dedicated inputs, dedicated outputs with optional feedback or as bussable outputs. The advantage of being able to choose the function of all inputs and outputs is that the input and output sites are not predetermined and this gives extra flexibility to the pcb layout.

In small PLDs, every input to the device may be connected to every product term. Even a quite large PAL, such as the 22V10, will have a manageable number of fuses with this universal connectivity. The 22V10 has 132 product terms.
with 44 potential connections to each, giving a total of 5808 fuses not counting configuration sites.

A PLD in a PLCC84 package may have 72 input/outputs; if each i/o has an average of just four product terms there will be 4 by 72 by 144, or 41472, programmable cells. This does not allow for any buried logic cells. If each i/o has a buried macrocell associated with it the total number of fuses is quadrupled.

While such a total is not outside the possibilities of technology, there are performance penalties with this approach. The more fuses there are, the more expensive the chip, and the longer it takes to program. The solution is an interconnection matrix which selects a reduced number of inputs to feed each logic block. It is best, therefore, to consider each logic block as an individual PAL within the larger PLD, each PAL being connected to the others via the interconnection matrix.

Looking at each logic block as an individual PAL simplifies the description of the architecture. Discrete PALS contain at least eight, and up to sixteen, product terms per output. Very often, only two or three terms are actually used in many applications.

This variability gives the PLD manufacturer a problem; how many product terms need to be provided with each macrocell? In many cases the answer is to incorporate some method where terms may be shared between macrocells within each logic block. In this way, if a function does not need all its available terms, they can be used by one of its neighbours.

Another area where product terms are wasted in discrete PALs is the i/o macrocell used as a dedicated input. In many CPLDs, there are two feedback paths to the interconnection matrix; one goes from the i/o pin and the other from the macrocell output. In this case, if an i/o pin is used as a dedicated input the logic terms can still be used as a buried macrocell which cannot be accessed directly from the outside. Some PLDs also include macrocells which are always buried as a way of increasing the logic capability without increasing the i/o count.

Performance criteria

The two principal measures of performance affecting selection of a logic device are speed and power consumption, but the balance between them varies according to the application. Clearly, in a fast computer, speed is the most important factor. In a portable telephone on the other hand, power would be the controlling consideration. In many cases a compromise can be achieved, as 'it must be faster than 15ns but the less power it takes the cheaper we can make the power supply'.

Propagation delay, the most common measure of speed, is almost entirely determined by the time taken to charge and discharge the capacitance associated with the components and interconnections used to build the device. Once again, you can split a PLD into sections to see which areas are critical and reliant on the design of the chip rather than just processing.

Starting with the input, this is probably the simplest part of the PLD as its function is just to buffer external logic levels to the internal levels. Delay time will be largely process-

Generic PLDs, FPLAs and FPLs

It is a drawback to the range of PALs described in the previous article that the designer is restricted to fixed architectures with eight, six, four or no flip-flops. The introduction of generic macrocells made PLDs more flexible architecturally. The diagram top right shows a typical macrocell; the flexibility is achieved by the use of programmable multiplexers to route the output signal through different paths.

The design of the macrocell varies slightly from device to device; this example is actually used in the 22V10 device. There are four possible sources for the output signal. These are combinational, combinational but inverted, registered and registered/inverted. The same programmable bit that selects the registered or combinational signal for the output also routes it back to the AND array, but always inverted.

Generic PLDs can cover most programmable logic applications in a given package size, simply because of the range of input/output configurations which can be programmed into each device. The GAL16V8 (generic array logic with versatile outputs) can perform the same function as the PALs 16L8, 16R4, 16R6 and 16R8 plus innumerable other i/o combinations which are not found as standard PALs. The GAL16V8 is a 20-pin device and there is a 24-pin GAL20V8 which has similar features, but with four more inputs.

The most likely problem with fitting a logic circuit into a GAL16V8 or GAL20V8 is the number of product terms available. Combinational outputs have seven terms and registered outputs eight terms each and, if the function requires more terms, a different solution will have to be found.

The first approach would be to try logic minimisation, but most logic compilers incorporate a minimiser anyway. It might be worth trying to invert the output sense and minimise, but there is no guarantee that would be successful either.

The 24-pin GAL22V10 has more product terms, a variable number from eight to sixteen depending on which output is being used, and this will cope with most logic designs.
dependent as the input buffer will be designed to the minimum geometry allowed by the process. No heavy drive is needed to interface to the internal logic.

Some devices do feature input latches or registers, which will be optional and, therefore, add no delay when by-passed. When they are being used it is, again, most likely that they will be a minimum geometry design and their time penalty be entirely process-dependent.

Outputs determine the drive available for interfacing to external circuitry and, in this way, are no different from any other logic device. The drive capability of an output stage is usually characterised by the output short-circuit current.

One section of a CPLD whose performance can be affected by the way in which the chip is designed is the interconnect matrix. This matrix is an array of switches with as many inputs as there are device inputs, I/Os and macrocell feedbacks. There are outputs to each of the logic blocks.

Each switch is like a small capacitor hanging on the input line, whether it is connected to a logic block, or not. As a result, the number of inputs to all the blocks determines the capacitance of the interconnect matrix.

The time taken to charge and discharge a capacitor is determined by the current which is used for this, so one way to speed up the matrix would be to increase the current driving each of the block inputs. This would also have the effect of increasing the power consumption of the whole chip. There are two consequences of doing this; firstly it increases the size, and hence cost, of the power supplies in the overall system. Secondly it increases the heat produced by the chip and, therefore, its running temperature. It may also have implications in the cooling needed for the system in which it is being used.

An alternative approach is to limit the number of signals which are switched into each of the logic blocks. This will reduce the total capacitance loading each AND term and hence delay time for a given level of current drive. It also means that some of the input and feedback signals are not available for use by some of the AND terms.

The logic block itself offers only a little scope for performance optimisation. Limiting the number of terms in each block will save power, or allow more power to be used for each term, but this also limits the complexity of the logic function which can be implemented. At the heart of the block is, usually, a flip-flop with surrounding switches to mute the logic signal, as in the 22V10.

Many large-scale-integration PAL devices also include product term switching which can allocate some or all of the product terms to adjacent logic blocks. This reduces the waste when blocks are only partially used, or used as direct inputs.

Although the product terms consume power in normal operation, some devices contain a 'turbo' switch. In non-turbo mode, the logic array is only powered when input signals are changing, the output signals being latched. An activity detector switches on the array power and enables the output latches when a change is detected at any input. Because this causes extra delay through the device, setting the turbo on keeps power applied permanently giving high speed at the expense of high dissipation, Fig. 2.

The features characterising CPLDs, then, are logic blocks with wide input gating, a central switch matrix, one-to-one correspondence between logic blocks and I/O pins and a compromise between speed, power and internal connectivity.

Logic cell arrays
Although the term ‘logic-cell array’ is strictly applicable to one manufacturer's product, it does describe the second
generic programmable LSI structure quite accurately. The layout of a typical LCA is shown in Fig. 3, and contains three basic elements, I/O cells, logic cells and routing channels. Most devices in this class use ram cells for configuration and signal routing.

Signals enter and leave the device through I/O cells with connections to the buses in the routing channels. The logic cells also have programmable connections to the routing lines which run past them. In this way, the signals are propagated round the chip. The logic blocks themselves are usually more complex than a typical PAL-type macrocell, but with far fewer inputs, typically only four or five. Thus, the logic structures can be fabricated from pure c-mos.

Unlike CPLDs, whose I/O pins are usually associated with a particular logic block, LCA I/Os are independent of the internal logic. Any pin can be an input or an output and all the I/O cells are identical, although they may share their function with the signals needed to set the device up in the configuration phase. Complexity of the I/O cell varies according to device family, but they will normally have the usual function such as tri-state capability on outputs and the possibility of muting or registering input signals.

As mentioned earlier, the logic cells themselves tend to have the possibility of implementing quite complex functions but with no more than six inputs. Implementing wide gating functions may require cascading over two or more levels of logic.

A CPLD can usually cope with a width of twenty or more signals in a single level of gating. An LCA design will, therefore, look more like a discrete logic design than a PAL, and logic minimisation may be performed more profitably with this in mind.

The routing channels in an LCA owe more to masked ASICs than PALs also. Most LCAs include different lengths of muting within a device for, as we shall see, many of the
Turbo switch circuit.
In turbo mode, the device is permanently powered but in non-turbo mode, it is only powered when an input signal is present.

Factors which determine device performance are connected with routing. Short tracks are usually available for routing signals between adjacent cells while longer tracks may be needed for carrying signals across larger areas of the chip. One or more additional tracks may be provided for clocks and other global signals, which may need a high fan-out.

The longer a routing track the higher its capacitance so performance is optimised by keeping track lengths as low as possible, which is helped by placing cells close together when their logic functions are closely associated in the circuit schematic. Often, repeaters or drivers are inserted along long tracks to help improve the delay due to track capacitance. Where horizontal and vertical muting channels cross they may be connected by programmable switches in order to divert signals to other rows or columns.

Performance factors
As before, I will focus on speed and power consumption as the most important measures of performance. In practice, propagation delays between the different elements in an LCA can only be inferred from measurements made with different circuit configuration. For example, the difference in delay time between a single-level logic circuit and a two-level logic circuit should give the delay through a logic cell. The problem in making a judgement between two different circuits lies in other factors, such as the interconnect delay. Performance will depend as much on the way in which circuits are laid out as on the delay through circuit elements. Furthermore, different arrays have logic cells of different complexity, so performance can also depend on the appropriateness of the logic function and the logic capability of the target device. At a simple level, a six-input gate may need two stages of gating in one array but only one in another, making the second appear faster irrespective of the intrinsic delay of the two devices. One good measure of the true speed of the internal logic is the maximum frequency at which a flip-flop will operate. This can be gauged by configuring a cell as a divider and finding the frequency at which the output disappears.

Because the internal logic cells in most LCA devices use relatively narrow gating, true c-mos circuitry is used in building the internal logic cells. Stand-by power is therefore comparable, in most cases, to that of the same circuit built in discrete c-mos logic. The only factor which usually causes a problem is any level shifting needed to interface the inputs to ttl levels.

As with discrete c-mos logic, power consumption starts to rise as soon as signals in the circuit start to change, and internal and external nodes need charging and discharging. Because the capacitance involved with internal connections is significantly lower than that of external connections, an LCA will usually dissipate less power during disked operation than the equivalent discrete circuit.

Actual power will depend on the number of nodes which are switching at any one time and will need some complex analysis to make an accurate prediction of power. It is often possible to calculate the predicted power consumption from within the design environment.

Device configuration
The devices in this class of FPGA usually hold their configuration data in a shadow ram. Every interconnection site and every logic configuration bit is defined by one bit of this ram. Because static ram is a volatile storage medium, on power-up, an LCA will not be configured at all. The configuration data must be stored in some non-volatile device, such as an eprom, or it may be booted from disk in the same way as a computer operating system.

Some devices can use standard components, such as 27Cxxx eproms, while others are tailored to a specific memory. A typical configuration setup is shown in Fig. 4.

There are two issues raised by the use of external memory components to configure LCAs. Firstly there is the problem of security; one of the attractions of programmable logic devices is the ability of most of them to read-protect the data after programming, making it difficult to copy the function programmed into the PLD. If the programming data has to be read in each time the system is powered up, this principle is defeated at the outset. Even if the data in the external store is protected somehow, a logic analyser will soon decipher the bit stream used to program the LCA.

A less contentious issue is the use of two devices to perform a logic function which, in other families, is contained within a single device. This may be overcome by combining the data for LCA configuration with some other data, such as the operating program for a microprocessor. But it still leads to complications in the hardware design for the overall system. If several LCAs are used in one system they can share a single eprom, in most cases, which reduces the hardware overhead to a fraction of a device.

The upside of this arrangement is that reconfiguration of a system can be managed by software even, in many cases, while the system is actually operating. This may be a simple change, such as refining a memory map to re-allocate resources, or a partial or complete change of logic function. In Atmel devices, part of the device can be reconfigured while the rest is still functioning; the name Cache Logic has been coined to describe this function, by association with...
cache memory, which buffers and speeds up data exchanges in computer systems.

Antifuse FPGA technology

The architecture of antifuse FPGAs is practically identical to LCAs. Uncommitted i/o cells surrounding logic cells and routing channels. Any differences are due mainly to the two different technologies involved. The main difference is in the resistance of the transmission elements. LCAs use a mos transistor, which has a relatively high on-resistance compared with an antifuse, once it has been blown.

Whenever a signal passes through a fuse element, it must charge up the capacitance of the component to which it is connected. The capacitance of tracks and gate inputs will not differ significantly between the two technologies. As a result, the series resistance of the fuse makes a significant difference to device performance. Antifuse devices can, therefore, use an architecture which has longer connecting tracks than LCAs.

In practice they are often supplied with tracks of differing lengths within a single routing channel. The actual track length required for any specific connection can be optimised by choosing an appropriate path in the routing channel. By minimising interconnect capacitance and series resistance, in this way, the interconnect delays are minimised and there is no need for repeaters or drivers within the connection structure.

Another trade-off is the size of the logic cell and the amount of interconnection. In a practical device it must be possible to connect the logic cells together even when approaching 100% utilisation. One way to improve connectivity is to make the logic modules quite complex; by incorporating more logic in each module, fewer connections between modules are needed. This is the trend in LCAs.

If track delays are less significant, the logic modules may be made simpler, and complex functions built by using short lengths of track to connect them. Module usage is likely to be improved in this way, with less wasted logic functions and silicon area. Antifuse FPGAs are, therefore, able to use a smaller grained structure than LCAs and, usually, offer a less wasteful solution to most logic circuits.

Although this approach may need more interconnects, the antifuse technology helps to reduce the cost impact of the on-chip area. Antifuses occupy about a square micrometre and fit inside the aluminium tracks, thereby taking up no extra space in the array. Ram-based FPGA need a ram cell and mos transistor at each crossing point, and these add to the area occupied by the interconnect.

Granularity is an important feature of ASICs as it determines the efficiency with which logic functions can be implemented. Mask-programmed ASICS, for example, are usually fine grained as they have low resistance via to connect logic blocks to the tracks. A logic cell is just a small gate and more complex functions are easily built without incurring much speed penalty from the interconnect.

Antifuse FPGAs have a more complex basic cell; a flip-flop with some universal gating is quite common. A typical LCA logic block has two flip-flops driven by some fairly complex combinatorial logic.

By way of example, a 4000-gate LCA, namely the Xilinx XC4004A, has 144 logic blocks while a 4000-gate antifuse FPGA like the Actel A1240/A, has 684 modules. In order to achieve 4000 routable gates, a sea-of-gates gate array may need 7000 gates in its basic array, where one gate in the array corresponds to a single cell but also has to act as part of the routing resource.

Performance of antifuse FPGAs

Most of the remarks about LCA devices also apply to antifuse FPGAs. The logic cells are true c-mos and consume 'zero power' at zero frequency. Logic circuits are not very useful at zero frequency and as soon as signals begin to switch, power is dissipated by the charging currents for the parasitic capacitances. In practice, this current is negligible below 1 MHz but becomes significant above this frequency.

Within an FPGA there are two sources of power dissipation, the active circuit elements and the interconnects. For a given feature size, capacitance of circuit elements will be practically the same, irrespective of architecture. Any difference in consumption will be due largely to the interconnect capacitance.

Antifuse FPGAs tend to use more tracks than LCAs, as the LCA logic cells can perform more complex functions. On the other hand, LCAs may use longer tracks and higher capacitance connections between tracks, so the comparison may well depend on the actual logic being implemented.

The same arguments also apply to dynamic performance, with the added factor of the resistance of the two types of programmable connection. Logic requiring the connection of large numbers of gates will usually perform better in antifuse FPGAs, because of the superior performance of the antifuse.

Where logic function can be concentrated into the more complex LCA cells, antifuse devices will probably use more interconnects and show a poorer dynamic performance. If we extend the argument to include CPLD structures, the trend is more pronounced. They will perform well in highly structured circuits, where the macrocells can implement a whole logic function, but deteriorate badly as soon as repetitive feedback has to be introduced in more fragmented circuits.

Using antifuse FPGAs

The main drawback with antifuse FPGAs centres on the programming situation. Even a small circuit can take three minutes to programme while the larger devices may take ten minutes. This compares with a few seconds for most CPLDs structures and no time at all for LCAs, which are programmed in-circuit each time they are powered up. A single programming station, with four sockets, is limited to between 200 and 600 circuits a day and, therefore, adds a significant overhead to the basic cost of the device.

The upside to this limitation on production throughput and increased cost is a double benefit. A circuit using an FPGA will start working the instant it is switched on, and requires no overhead in program storage or extra design work in arranging for the device configuration function.

The other advantage is security. It is difficult to read back some FPGAs, but they also contain security fuses to prevent this from being done. Complex PLDs also contain security cells to prevent direct reading, although sophisticated analysis may defeat device security. LCAs are much more difficult to keep secret.
WOLVERHAMPTON BRANCH
NOW OPEN AT WORCESTER STREET
WHAMPTON TEL 01902 22039

COLOUR CCTV VIDEO CAMERAS, BRAND NEW, Cased, £119.

PERFECT FOR USE IN SOME VITAL SECURITY APPLICATIONS

SECURITY DOMESTIC VIDEO

Works with most modern video's, TV's.
Composite monitors, video grabber cards etc.

PAL, NTSC, S-Video, CASED, FROM PRICE £60 ex VAT 500x50x822, 12vdc, mounting bracket, auto shutter, 100x50x180mm, 3 months warranty, 10 or 11x99 RT 97.

Check out our WEB SITE
http://www.pavillion.co.uk/bulleelectrolux

GOT AN EXPENSIVE TV ?
You need one of our cassette recorders.

£119 is the price we pay for three months warranty and technical support.

CENTRAL POINT PC TOOLS Award winning software, 1.300 virus checker, memory optimiser, disc optimiser, file compression, on-line backup scheduler, disk de-fragmenter, data recovery, 40x40 then DDE. Database, disc editor, over 40 viewers, remote computing, support desk, technical knowledge, comprehensive manual supplied with licence.

CTY TV 2 PORTABLES Convert a colour TV into a basic VGA screen, complete with cable and lead, ideal for TV, or for a cheap computer terminal in kit form for home assembly.

SIELE 55X55 CAN BE TUNED TO Any VHF channel.

MOONSHINE made AA £12 cigarette
Supplied 10ctinA Double INFRA
takes anything senous information
PANORAMIC PLASMA 16 N 348
35mm KIT

RADIO CAR WINDOW TV Complete with cable, plug etc
SALE PRICE £199 RST 96.

SUNCHOICE 15x20cm colour panel with diopter and 3 months warranty with a clip top.

MICRODRIVE STRIPPERS Small case tape drives ideal for shipping, lots of useful gadgets including a small case, and lots of components.

SALE PRICE £3.99 RST 99.

SELF BUIILD KITS

CAN COST £100-

1.9A SUNCHARGER 1.9A efficient solar charger for the TV, and available in second hand.

SUNPOWER LASER SPECIAL You get two £60 130Ah 12v Power banks, and buy another motor and or generator Super value kit

SALE PRICE JUST £99 RST 99.

RBGBCGA/EGATL COLOUR MONITORS 12" in good condition. Used. £19 RST 95.

PLUG IN ACORN PSU 19v AC 14w. £29 RST 95.

13.5V 1BA PSU used, £13 RST 95.

MULTI PURPOSE CABLES and Connectors £1.99 each.

PHONE CABLE and COMPUTER COMMUNICATIONS PACK Kit contains 100m of 6 core cable. 100 cable clips, 2 line 100x22 ferrules, and 100 cross over ferrules. Suitable for Transmitting data between computers over a long or short distance, along the whole length.

SALE PRICE £3.99 RST 19.

DATA SYSTEMS & PHONES, Phillips compatible with Internal 1200/2070 modern keyboard, puck etc. ROB and compatible output, jukebox etc, all £9.99 RST 19.

AIRFIRES.2 As used by the Chinese army for training purposes, so there is a lot about £3.99 RST 95. FIRE 500, petrol cans £4.99 RST 95.

FLARE SIGNAL UNIT £5.99 RST 95.

FROM either a video camera, video recorder, TV or Computer etc to any standard video set in a 120 range (tone tune a video to a satellite) 12v DC power.

MINIATURE RADIO TRANSCEIVERS A pair of walkie talks with code, and ear phones, £9.99 RST 95.

MINIATURE ELECTRONICS

 stilts, and electronics, etc.

SUNPOWER LASER SPECIAL You get two £60 130Ah 12v Power banks, and buy another motor and or generator Super value kit

SALE PRICE JUST £99 RST 99.

DISC DRIVE KIT SAME AS ABOVE

MIXING BOARD 16x16x12 AMORPHOUS SOLAR PANEL 12v 1510x310mm £130 SALE PRICE £99 RST 94.

DEVELOP CABLE BARE WIRE KIT. 20 metres for £4.99 RST 95

JOBS GOOD BOX OF MIXED COMPONENTS WEIGHING 2 KILOS FOR YOURS JUST £8.99.

4X28 TELESCOPIC SIGHTS Suitable for all air rifles, groundless, light weight, good light gathering properties, £19.95 RST 95.

CAMERAS Yellow, red, blue, all £7.99 RST 95.

HYPERHEMA SPACE BLANKET 215x150cm for blankets, reflects more than 90% of body heat. Also suitable for the construction of two way mirror £9.99 RST 94.

LENSTATIC RANGE COMPASS Oil filled, wooden case, metal case, large luminous points, sight line with magnifying viewer.

RECHARGE ORDINARY BATTERIES UP TO 10 TIMES With the Battery Wizard! Uses the latest technology to recover and recover and recover. Batteries can be used in many different electronic devices, compact, efficient and powered.

HIGH QUALITY BATTERIES.

PHOTOGRAPHIC METAL NOSE 4.25x2.5x.75 £6.99 RST 95

3 DISCS As used on our Spearman machines, Spectrum plus £7.99 RST 96.

STEREO MICROSCOPES BACK in Russian, 20th century technology, good for all hobbyists. £9.99 RST 95.

Our COMPANY SPARES KIT Compact flip out microscope that would normally be around the £70 mark, our price is just £299 (fully loaded back in new condition.

WE BUY SUPER Knowledgeable, friendly, good people, a pleasure to deal with.

CIRCLE NO 1 ON REPLY CARD
PORTABLE X-RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machine! Effectively, any X-ray generator can be experimental purposes. Not a toy or for novices. Efset Ref: F001-1 TELEPHONE VOICE RECORD AND TRANSMITTER PLANS Transmits the telephone on your phone line or radio line up to 1000 miles! Uses any type of low voltage power supply. And focus them on our ultra sensitive electronics! Plans also show an optional remote microphone.) Order Ref: F002-1

8 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TELA GRAS AND PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get' or isolated premises. Uses a single battery to deliver distant sound or focusing on ultrasound magnetic phenomena. Order Ref: F003-1

MINI FM TRANSMITTER PLANS The ultimate bug fix to any phone or line, undetectable. Listen to the conversations in the room anywhere in the world: 24 hours a day 7 days a week (just call, write, etc.). And if you can hear everything! Monitor conversations for as long as you choose. BN39 £3 for set or £6 each. Order Ref: F004-1

MINI FM TRANSMITTER PLANS Micro FM transmitter kit. High gain vam pump. Complete with set filter microphone. Order Ref: £005-1

DISPLAYS 3kV 500kV corona streamer designed to test static discharge. Model Ref: £006-1

ULTRASONIC NEON LAMPS Small lamp with a large output for some interesting effects. Plan Ref: £007-1

MAGNETIC FIELD MEETER Kit dual precision LCD indicator. Kit includes PCB, bid display and all components included. £29.95. Order Ref: F129-1

CENTRAL HEATING ROBOT PLANS Complete central heating control for a fraction of the cost! Plan Ref: £008-1

FIBRE OPTIC CABLE BUMPER PACK 10 metres for £9.95. Order Ref: F009-1

SOUND EFFECT GENERATOR KIT Produces sound ranging from low to high. Complete with kit, add sound effects to your projects for £3 ref: 1043-1

12V FM TRANSMITTER (BUILT) (1) A stage high power preamp required 12-volt lead acid supply. £30.00. Order Ref: £010-1

CHOCOLATE METER KIT Dual precision LCD HC. 12V DC, PCB, bid display and all components included. £49.95. Order Ref: F011-1

NICKEL PLATING PLATING Kit professional electroplating kit that will turn any metal into nickel! Plated parts are suitable for use in areas such as stainless steel, silver, gold or brass. Kit includes enough top 1000 square. You will also need a 12 volt, a container and 12 volt bulb. £39.99 for NICK9. Miniature adjustable times, 4 pole o/c input 3A 240v, £12.50 12 volt adjustable from 0.5mA 15V. £40.00 XBU405, 240v adjustable from 0.5- 10mA 15V. £49.95. Order Ref: £012-1

BZBEATING CORD RECORDER Small voice activated recorder. Uses micro cassette complete with heads. £39.99 for MB09-1

MAGNETIC MARBLES They have been around for a number of years but are slowly becoming more and indeed more. Art of 12 x £1.25 £3 99 for QR00-1

THE HUNGRY CAT couple £9.95 for MB01-1

MARATHON ACCUMULATOR PLANS Complete marathon accumulator kit. Power saving version (instead of needless) good with contact £7.95 for EF1-1

FIBRE OPTIC CABLE BUMPER PACK 10 metres for £9.95. Order Ref: F009-1

SOUND EFFECT GENERATOR KIT Produces sound ranging from low to high. Complete with kit, add sound effects to your projects for £3 ref: 1043-1

12V FM TRANSMITTER (BUILT) (1) A stage high power preamp required 12-volt lead acid supply. £30.00. Order Ref: £010-1
Classified Ads

ARTICLES FOR SALE

SUPPLIER OF QUALITY USED TEST INSTRUMENTS

![Image of oscilloscope]

CONTACT

Cooke International

ELECTRONIC TEST & MEASURING INSTRUMENTS

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB, U.K.

Tel: (+44)01243 545111/2 Fax: (+44)01243 542457

OPERATING & SERVICE MANUALS

![Image of manual]

CONTACT

Cooke International

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB, U.K.

Tel: (+44)01243 545111/2 Fax: (+44)01243 542457

NOW AVAILABLE CATALOGUE ON DISC

ADVERTISERS’ INDEX

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor Supplies</td>
<td>269</td>
</tr>
<tr>
<td>Antrim Transformers</td>
<td>304</td>
</tr>
<tr>
<td>Ashling Microsystems</td>
<td>266</td>
</tr>
<tr>
<td>B K Electronics</td>
<td>290</td>
</tr>
<tr>
<td>Bull Electrical</td>
<td>342 & 349</td>
</tr>
<tr>
<td>CMS</td>
<td>283</td>
</tr>
<tr>
<td>Conford Electronics</td>
<td>290</td>
</tr>
<tr>
<td>Dataman</td>
<td>OBC</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>314</td>
</tr>
<tr>
<td>Equinox Technologies</td>
<td>IBC</td>
</tr>
<tr>
<td>Field Electric</td>
<td>327</td>
</tr>
<tr>
<td>Halcyon Electronics</td>
<td>283</td>
</tr>
<tr>
<td>Hart Electronic Kits</td>
<td>334</td>
</tr>
<tr>
<td>Johns Radio</td>
<td>317</td>
</tr>
<tr>
<td>JPG Electronics</td>
<td>284</td>
</tr>
<tr>
<td>Labcentre</td>
<td>288</td>
</tr>
<tr>
<td>M & B Radio</td>
<td>266 & 287</td>
</tr>
<tr>
<td>MGS</td>
<td>271</td>
</tr>
<tr>
<td>Milford Instruments</td>
<td>IFC</td>
</tr>
<tr>
<td>Niche Software</td>
<td>312</td>
</tr>
<tr>
<td>Number One Systems</td>
<td>284</td>
</tr>
<tr>
<td>Olson Electronics</td>
<td>277</td>
</tr>
<tr>
<td>Pico</td>
<td>283</td>
</tr>
<tr>
<td>Pyramid</td>
<td>290</td>
</tr>
<tr>
<td>Quickroute Systems</td>
<td>304</td>
</tr>
<tr>
<td>Ralfe Electronics</td>
<td>352</td>
</tr>
<tr>
<td>Robinson Marshall</td>
<td>273</td>
</tr>
<tr>
<td>Seetrax</td>
<td>331</td>
</tr>
<tr>
<td>Stewart of Reading</td>
<td>312</td>
</tr>
<tr>
<td>Surrey</td>
<td>284</td>
</tr>
<tr>
<td>Technology Sources</td>
<td>311</td>
</tr>
<tr>
<td>Telnet</td>
<td>304</td>
</tr>
<tr>
<td>Those Engineers</td>
<td>292</td>
</tr>
<tr>
<td>Tie Pie</td>
<td>266</td>
</tr>
<tr>
<td>Ultimate Technology</td>
<td>295</td>
</tr>
<tr>
<td>Warwick Industrial</td>
<td>312</td>
</tr>
<tr>
<td>Wood & Douglas</td>
<td>327</td>
</tr>
</tbody>
</table>
WE WANT TO BUY!!

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. HENSON LTD.
21 Lodge Lane, N Finchley, London N12 8JG.
5 Mins, from Tally Ho Corner.
TELEPHONE 0181-445-2713/0749
FAX 0181-445-5702

WANTED
TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc. Factory Clearance, Prompt Service and Payment.

HTB ELEKTRONIK
Alter Apeler Weg 5
27619 Schiltdorf, Germany
Tel: 0049 4706 7044
Fax: 0049 4706 7049

40 YEARS WIRELESS WORLD '52-'75 bound, '76-'92 unbound. Offers Telephone 01274 655297.
TEK 576 (577) Curve Tracers, Phone 01460 72557.

Small selection of Aircraft Starter motors, DC generators and rotary converters. Possibly suit Electric vehicles etc. £10 to £50 depending on condition and type.
Tel: Bristol 0117 9793883

Complete surface mount assembly kit. Handles up to Eurocard size boards. Little used. £950 + VAT.
A3 Pen Plotter, Graphtec MP4200 and Ringdale Printer Buffer. Excellent condition. £400.
Telephone: 01256 54786

WANTED TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc. Factory Clearance, Prompt Service and Payment.

HEWLETT PACKARD
TEKTRONIX
MARCONI
TEST EQUIPMENT
WANTED!
M & R RADIO
86 Bishopsop St, Leeds LS1 4BB
Tel: (+44) 0113 2435469
Fax: (+44) 0113 3426881

SMALL SELECTION or Aircraft Starter motors, DC generators and rotary converters. Possibly suit electric vehicles etc. £10 to £50 depending on condition and type. Tel: Bristol 01179 705883.

MICROCHIP 'MICROMASTER' development system £11,500. Multicore "Desktop" soldering machine £500. Both unused. Icelab 8051/2 Emulator £400. Tel: 01295 810839.

HEWLETT PACKARD
TEKTRONIX
MARCONI
TEST EQUIPMENT
WANTED!
M & R RADIO
86 Bishopsop St, Leeds LS1 4BB
Tel: (+44) 0113 2435469
Fax: (+44) 0113 3426881

SMALL SELECTION or Aircraft Starter motors, DC generators and rotary converters. Possibly suit Electric vehicles etc. £10 to £50 depending on condition and type. Tel: Bristol 01179 705883.

MICROCHIP 'MICROMASTER' development system £11,500. Multicore "Desktop" soldering machine £500. Both unused. Icelab 8051/2 Emulator £400. Tel: 01295 810839.

RF DESIGN SERVICES
All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS
TEL: 01223 862550
FAX: 01223 440853

Wandel Goltermann
PRA.1, 2mbit Frame
Mux Analyzer superb instrument.
£3,500 o.n.o.
Tel: 01566 781680

Complete surface mount assembly kit. Handles up to Eurocard size boards. Little used. £950 + VAT.
A3 Pen Plotter, Graphtec MP4200 and Ringdale Printer Buffer. Excellent condition. £400.
Telephone: 01256 54786

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Radio, Transmitting & RF Heating. Rare brands such as Mullard & QEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS.

Large stocks of Russian & Soviet Items. Please ask for our free catalogues of valves or CRTs.

WANTED, etc.

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£85), KT77 (£15), EL34 (£10), EL37 (£39), ECC83 (£23). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) £80. Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ.
Tel: 01403 784961 Fax: 01403 783519
VISITORS STRICTLY BY APPOINTMENT, MINIMUM ORDER £50 plus VAT

ARTICLES FOR SALE

Protect Your Microchips from STATIC DISCHARGE!

Use an SSE grounding kit.
Kit includes:
- static dissipative solder resistant rubber mat.
- wrist strap
- ground lead
- earth plug

Mat size 70 x 30 cm - offer price £10.85 per kit + VAT - Ref: AGK1
Mat size 25 x 20 cm - offer price £12.85 per kit + VAT - Ref: AGK2

STATIC SAFE ENVIRONMENTS
Payment by CHEQUE / ACCESS
127 Hagley Road, Birmingham B16 8XU
Tel: 0121 434 8238 Fax: 0121 439 2275
VISA / MASTERCARD Catalogue available
ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

A regular advertising feature enabling readers to obtain more information on companies' products or services.

New 1997 Instrumentation and Reference Catalogue

The new 1997 Reference and Catalogue from National Instruments features 50 new products for virtual instrumentation including new solutions for data acquisition and visualisation, MMIC/SCADA and computer based image capture and analysis. Not merely a catalogue, it includes many useful tutorials and is invaluable for any engineer or scientist.

Call National Instruments for your FREE copy on: 01635 523545

NEW Feedback T&M Catalogue

The latest edition of the Feedback Test & Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test & Measurement need the NEW Feedback catalogue will solve your problems, send for a copy NOW!

NEW JENSEN TOOLS CATALOGUE

Colourful new Catalogue, hot off the press from Jensen Tools, presents unique new tool kits for service support of communications equipment. Also latest test equipment from many major manufacturers. Includes hard-to-find tools, PCLAN diagnostics, bench accessories, static control, technical manuals and more.

Ring 0800 833246 or Fax 016104 785573 for a free copy. Jensen Tools, 10-12 Ravens Way, Northampton NN3 9UD
8051 MICROCONTROLLERS + FLASH

MICRO-PRO 51
State-of-the-art programmer for the 8051 family
- Programming support for the entire Atmel 89C and 89S microcontroller families
- Also supports many Phillips, Intel, Dallas & Siemens families
- Field programmable hardware ensures future device support.

Order code: MP51SYS £125.00

Products are now available from Farnell Components

Microcontroller in-circuit re-programming adaptor
Now you can re-program the entire Atmel microcontroller family in-circuit!
No more re-moving chips - ideal for 8051 single-chip project development.
Supplied with AT89C2051 and AT89CS2 + 11.0592 MHz Crystal.
(Requires Micro-Pro 51 programmer to operate - see above)
Order code: AD-MICRO-ICR £125.00

89C-1051/2051 Microcontroller Demo Module
A feature packed evaluation module - a true single-chip evaluation.
LED/TFT display, Power, ADC, Comparator, Timer outputs.
Order code: AT-89C051-DEMO £58.00

89C-1051/2051 Microcontroller OEM Module
An ideal bare board module which can be designed into custom products.
If 23I0482, 24E128, AT-EPPROM AD/IO Header.
Order code: AT-89C051-OEM £29.00

C31 STARTER SYSTEM
- Optimising C Compiler
- Macro Assembler
- Software Simulator
- Device Programmer
- Sample Devices
- Hardware/Software Documentation

Only £199.00

FREE Atmel CD ROM data book
- System supplied with 1 x AT89C1051 and 1 x AT89CS051 Microcontrollers
- C-compiler + Assembler output restricted to 2k total program code.

Order code: AT-89CX051-5L

Package Adaptors
- PLCC 44 pin adaptor
 - Suitable for most 8051 derivatives
 - Order code: AD-PLCC44-A £65.00
- SOIC 20 pin adaptor
 - Suitable for Atmel AT89C1051 & AT89C2051
 - Order code: AD-SOIC20-A £75.00

Please enquire for our full range of adaptors.

The 8051 FLASH microcontroller family

<table>
<thead>
<tr>
<th>Atmel Part Code</th>
<th>R8C51</th>
<th>R8LV51</th>
<th>R8C52</th>
<th>R8LV52</th>
<th>R8CS51</th>
<th>R8CS52</th>
<th>R8CS751</th>
<th>R8CS651</th>
<th>R8C851</th>
<th>R8C852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Code ROM (bytes)</td>
<td>4K</td>
<td>4K</td>
<td>8K</td>
<td>8K</td>
<td>20K</td>
<td>20K</td>
<td>8K</td>
<td>8K</td>
<td>2K</td>
<td>1K</td>
</tr>
<tr>
<td>Flash E2PROM</td>
<td>64</td>
<td>64</td>
<td>128</td>
<td>128</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>1K</td>
<td>1K</td>
</tr>
<tr>
<td>I/O Pins</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Watchdog timer</td>
<td>YES</td>
</tr>
<tr>
<td>Serial UART (full duplex)</td>
<td>YES</td>
</tr>
<tr>
<td>Analogue comparator</td>
<td>YES</td>
</tr>
<tr>
<td>Package Pins (DIL)</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

- Atmel microcontrollers feature on-chip re-programmable FLASH code memory
- FLASH is electrically erasable in under 15ms (no need for UV eraser)
- R8CS51/R8CS52 are drop-in FLASH replacements for the generic 87C51/87C52 devices
- R8C851 is a single-chip 8051 in a 20 pin package, even retaining the serial port

KEIL SOFTWARE

EQUINOX TECHNOLOGIES

EVERYTHING YOU NEED TO DEVELOP AN EMBEDDED 8051 PROJECT IN C

SALES: 01204 492010 TECHNICAL: 01204 491110 FAX: 01204 494883 (INTERNATIONAL DIALING CODE +44 1204)

Equinox reserves the right to change prices & specifications of all the above products without prior notice. £205.00 prices are exclusive of VAT and carriage.
The World's Most Powerful, Portable Programmers

£495 + VAT

S4 GAL module
Programs a wide range of 20 and 24 pin logic devices from the major GAL vendors. Supports JEDEC files from all popular logic compilers.

£195 + VAT

NEW

The Dataman Challenge
Try the Dataman S4 or Dataman-48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, versatile additions you can make to your programming toolbox, we will refund your money in full.

Dataman S4
Compare the Dataman S4 with any other programmer and you'll see why it's the world's undisputed number one.

S4 is capable of programming 8 and 16-bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 Microcontrollers and more. S4 also emulates ROM and RAM as standard!

S4 is the only truly hand held programmer that ships complete with all emuilation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

Dataman-48
Our new Dataman-48 programmer adds PinSmart® technology to provide true no-adaptor programming right up to 48-pin DIL devices. Dataman-48 connects straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

As with S4, you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming.

£795 + VAT

The current device library contains over 1800 of the most popular logic and memory devices including GALs, PALs, CEPALs, RALS, 8 and 16-bit EPROMs, EEPROMs, PEROMs, FLASH, BOOT-BLOCK, BIPOLAR, MACH, FPGA, PICs and many other Microcontrollers. We even include a 44-pin universal PLCC adaptor.

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP and 50P. The Dataman-48 is also capable of emulation when used with memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

Dataman Programmers Ltd, Station Road, Maiden Newton, Dorset DT2 0AE. UK
Telephone +44/0 1300 320719 Fax +44/0 1300 321012 BBS +44/0 1300 321095 (24hr)
Modem V.34/V.FC/V.32bis Home page: http://www.dataman.com
FTP: ftp.dataman.com Email: sales@dataman.com