50\% discount on radio packet controllers

ELECTRONICS
 Austria Asch. 66.00

WORLD

INCORPORATING WIRELESS WORLD

Denmark DKr. 67.00
Germany DM 15.00 Greece Dra. 1100.00 Holland Df1 11.75 Italy L. 8800.00 Malia Lm. 1.55 R $£ 3.30$ Singapore $\mathbf{\$} \$ 7.50$

July 1997 £2.35

ELECTRONICS
 in cameras

Pipe organ synthesis

HT power supply

Flux meter
PC Engineering: Workbench EDA reviewed

First colour tv demonstration

Lowering audio power distortion

STDNAPh

The circuit design and analysis package which gives you a great deal more

More Power More Functionality
 More Value for Money

Try TINA plus for yourself. For free demo disk, contact:
Tandem Technology Limited Breadbare Barns, Clay Lane, Chichester. West Sussex, PO18 8DJ Telephone: 01243576121 Fax: 01243576119
E-mail: 101626.3234@compuserve.com Visit our website: www.tina.com

Contents

Cover - Hashim Akib

542 ELECTRONICS IN PHOTOGRAPHY

Leslie Warwick reports on how electronics is helping improve today's photo cameras.

549 WORKBENCH EDA

Rod Cooper has been putting the new version of the world's most widely used circuit-CAD package through its paces.

554 I/O PORT FOR PCs

Suitable for a variety of data acquisition applications, Pei An's pc interface has two analogue inputs together with seven digital inputs and seven digital outputs.

561 PROTOTYPING CIRCUIT BOARDS

Rod Cooper presents tips on how to make precise pcbs in small quantities.

567 HIGH-VOLTAGE SUPPLY

Richard Lines has designed a robust 500 V dc power supply with current limit, thermal protection and 50 mA output capability.

573 COLOUR TV GOES PUBLIC

In 1938, Baird gave a surprise public demonstration of his colour tv to 3000 people. Ray Herbert describes the event and the technology involved.

577 IRONING OUT DISTORTION

Designer Ed Cherry presents a critique of some of the novel attempts to reduce distortion published in recent years.

584 FLUXMETER

Worried about electrical fields? Then measure them with Frank Ogden's fluxmeter.

594 SOUNDS SIMPLE

Ian Hickman has been searching for a way to replicate deep pipe-organ notes that include the initial chiff.

Regulars

531 COMMENT
A century of invention?

532 NEWS

Cat's eyes shine back, Flapping plane, Pentium II, phone cancer, Internet via satellite, SIMM prices.

538 RESEARCH NOTES

Gold and nanotechnology, Fuel cells for cars, Bio-sensor, Chip bond wire problems.

586 CIRCUIT IDEAS

- SMPS in-rush tester
- Simple fet audio preamp
- Soft starting bedside lamp
- Precise clock from a watch
- Audio phase indicator
- Reducing voltage reference noise
- Phase splitter for valve power

599 NEW PRODUCTS

A Round-up of passive, active, instrumentation and computing products.

611 LETTERS
CD imperfections, Simpler phase quadrature, EMC, Light speed, CAD disappointment, Resistors in C.

Special offers

To celebrate the launch of Electronics Workbench EDA, Adept is offering readers an exclusive introductory discount turn to page 553.

50% reader discount. A step up from the two-way wireless data link, this uhf module includes packet switching - see page 613.

Researchers at Rochester University have produced a polymer led that can shine any colour from red to blue - see page 540.

AUGUST ISSUE ON SALE 3 JULY

For all your Power Distribution Olson offer a varied choice

A century of invention?
 |f you had asked people fifty, or even perhaps ten years

EDITOR

Martin Eccles
01816523128

CONSULTANTS

Jonathan Campbell
Philip Darrington
Frank Ogden
DESIGN
Alan Kerr
editorial
ADMINISTRATION
Jackie Lowe
0181-6523614

E-MAIL ORDERS

jackie.lowe@rbi.co.uk

ADVERTISEMENT MANAGER

Richard Napier
0181-6523620
DISPLAY SALES EXECUTIVE
Joannah Cox
0181-6523620

ADVERTISING

PRODUCTION
0181-6523620

PUBLISHER

Mick EllioHt

EDITORIAL FAX

0181-6528956

CLASSIFIED FAX

0181-652 8938
SUBSCRIPTION HOTLINE 01622778000

SUBSCRIPTION QUERIES

01444445566
FAX 01444445447
ISSN 0959-8332

NEWSTRADE ENQUIRIES
01712617704

For a full listing of
RBI magazines:
http//www.reedbusiness.com

REED
BUSINESS
INFORMATION
ago, what was the Twentieth Century's defining contribution to civilisation, most would have unhesitatingly nominated the internal combustion engine. A few brave souls might have proposed the wireless or the telephone, if not discouraged by the difficulty of deciding between them. One or two might have suggested television, risking the correction that it is only wireless carrying a particular type of information.
Actually, all of these except for television were born in the last century, though it took this century to develop their full potential. It is fairly obvious now, that - visible and pervasive as cars and aeroplanes are - the thing which has really shrunk distances in the world, and touched and changed all our lives; the achievement which has crowned and pervaded every aspect of twentieth century technology, is the computer.

So it seems odd that the most significant contribution to the marking of the millennium thus far devised by the computer and electronics community is an act of collective hara-kiri as mainframes the world over seize up when asked to roll the year over from 99 to 00.

Admittedly it could be spectacular, and will be if nothing is done. Urban mythology is already rich with tales of prematurely-condemned corned-beef presumed to be 100 years old, and life assurance customers which the computer cannot believe will still be alive in 2005 . The image of the party to end all parties grinding to a halt as aeroplanes are grounded, bank accounts mysteriously empty and systems everywhere switch themselves off has a rich, Sharpean irony. As a tribute to humanity's cosmic lack of foresight and capacity to cock things up, it could hardly be bettered.

Unfortunately, it probably won't happen. Even the doziest corporation must by now have asked its IT department to look into things and hire some programmers if need be.

So what else can we suggest as the electronic community's contribution to millennial celebrations? What would make a decent digital equivalent to planting a line of trees along the Greenwich Meridian, or freezing the Thames, or even just dancing in the streets?
The trouble with most forms of electronic communication is that they do not readily lend themselves to large or permanent public monuments. They are either a means to an end, like television, or essentially small-scale and private.
There is no way that visiting a website, however many people do it, can be turned into a grand gesture. Nor is the answer to be found in giant banks of computer screens, as at Berlin and other big trade shows. Grandiose perhaps. Meaningful, no.

What we need is some imaginative idea which will mean something to people, which they can see or be touched by, and which they will be interested in. If you are expecting me to spring a master plan on you that meets these requirements, then I'm afraid you will be disappointed. I simply want to start people thinking, or maybe to hear about thoughts which people have already had.

What I can suggest are a few elements which such a project might include. Since the millennium is about time,

> Could GPS be the invention of the Century?

inseparable in our thinking from space, my own feeling is that the focus of any project should involve navigation and/or communication.
Navigation means Harrison's chronometer (that being when it started to get accurate) and GPS - which may or may not be working at 00.01 on 1 January in the year 2000. Communication leads inevitably via wireless and telephony to the Internet, the sprawling, invisible 'virtual' equivalent of trade-routes, postal services, broadcast systems and gossip-shops. By 2000 , it's estimated that 700 million people will be connected to the net - about a dozen times the present number
You could argue that the Internet is itself the ultimate monument to electronic communications, and - in its informality - to humanity's ingenuity and instinct for cooperation. But an everyday tool cannot be in itself a celebratory gesture, though it might be the inspiration for one.

We need something grand, compelling, imaginative and as is the way with the best monuments - pointless in a magnificent sort of way.

Any suggestions? E-mail me at
101460.115@compuserve.com or martin.eccles@rbi.co.uk.
Peter Willis

[^0]
A twinkle in the cat's eye

The use of active road studs is a step nearer following the completion of road trials on the A1 and M50.
Road studs, of which cat's eyes are the most famous example, are passive

reflecting devices. The Doncasterbased company, Astucia, is promoting a version which, in addition to a passive reflector, uses leds and a solar charged battery.
"Both trials were to test the studs in their passive state for survival and reflectivity, but we fitted the M50 ones with infra-red leds which were still operating at the end, after 12 months on the road," said Tim Lane, a spokesman for Astucia.
The studs are self contained and can change behaviour in response to varying conditions. A variety of colours and flashing patterns are
available and optional in-built sensors are claimed to allow the studs to respond to ice, fog, standing water, standing vehicles and vehicles driving too close together. Vehicle distance is measured based on the frequency of the passing headlights.
Active road testing should begin this autumn. Lane said: "Three sites have been identified in the Wakefield area. Providing there is money in the local budget, they will begin operation in September." The installation to be used in Wakefield provides continuous night time illumination visible from 800 m .

Active eyes...
Shown is the circuit board from the cats' eyes alternative.

FEI optimistic about new government

Cautious optimism is the response of the electronics industry to Labour's sweeping General Election victory.
The Federation of the Electronics Industry (FEI) expects the ending of 18 years of Conservative government to result in a renewed emphasis on training and encouragement of small high technology businesses. But it acknowledges the Social Chapter, to which Labour is committed, could reduce competitiveness.
Anthony Parish, director general of the FEI, qualified his welcome for many of Labour's industrial objectives by adding: "We are still waiting for them to fill in some of the detail."
Parish identifies education and small businesses as two areas where the new
government will affect the electronics industry. "They will pursue the education issue with great vigour. They can make a major contribution there," he said. "And they'll have a more co-ordinated approach to the support of small businesses. The [Conservative's] Business Link programme hasn't evolved enough and it is not tied-in to other European programmes."
In the area of social policy, Parish warned that the Social Chapter could be detrimental to the UK's competitiveness, but that "the Minimum Wage will not be likely to affect inward investment decisions, provided it is set at a reasonable level"
Brian Haken, of the Printed Circuit Interconnection Federation, said:
"Industry is looking for a pro-active stance towards Europe. What we don't want is the incoming government to be split down the middle, with Euroenthusiasts on one side and Eurosceptics on the other."
If the reaction of Racal Electronics is any indicator, electronics manufacturers have already come to terms with the prospect of a Labour government. "We do business with governments around the world representing the full political spectrum. We've worked with Labour governments in the past and look forward to doing so again," said Racal's spokesman, which has government contracts ranging from defence work to running the Government Data Network.

> Wings at the speed of sound... A researcher from the Georgia Institute of Technology holds a prototype microflyer, with flapping wings, as part of its programme to develop reconnaissance aircraft with wing spans of less than 15 cm . The aim is to make autonomous vehicles that can enter difficult spaces like collapsed buildings. Georgia's specialist area is sensors, and it is currently working on a television camera-radio transmitter combination which it hopes will weigh less than one gramme.

TELFORD ELECTRONICS

 \qquad ${ }^{5125}$
an extensive range of test goulpment is avaluable. plase send for our new catalogul - pot
Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ Tel: 01952605451 Fax: 01952677978

Pentium II arrives, as expected

| ntel's worst kept secret, the Pentium II processor, was officially launched in London during May. Two processors versions with clock speeds of 233 and 266 MHz , have been announced. Both are designed for use in desktop pcs and are priced at $\$ 636$ and $\$ 775$, respectively in 1000 unit quantities.
Over a dozen desktop systems using the Pentium II from several PC manufacturers have also been

announced.
Intel's Pentium II is facing competition from Advanced Micro Devices' (AMD) K6 and Cyrix's M2 x86 microprocessors.
AMD's K6 is much cheaper than the Pentium II - the 233 MHz K6 costing \$469. However, Intel's selling price includes a 512 kbyte level two cache.
Cyrix, meanwhile, has yet to launch its M2 device although this is expected later this quarter.
The 233 MHz clock speed of the K6, limited by the use of a larger $0.35 \mu \mathrm{~m}$ manufacturing process (Intel uses $0.28 \mu \mathrm{~m}$), has resulted in Intel regaining the crown for the highest clocked x86 processor. AMD's lead over the Pentium lasted a month only.
Using benchmarks to compare the two processors directly is difficult since AMD does not quote integer and floating point SPEC figures. However, from preliminary tests, the two devices, similarly clocked,
appear to have comparable performance

The Pentium II fares less well when compared to Digital's recently announced stripped down Alpha, the 21164 PC . The Alpha for desktop pcs is priced at $\$ 495$ for a 533 MHz part. Digital claims a SPECint95 of 14.3 and SPECfp95 of 17. In contrast, the Pentium II manages only 10.8 and 6.9 , respectively.

Intel plans to release a 300 MHz workstation version of the Pentium II in the second half of the year, priced at $\$ 1981$. This is believed to be code named Deschutes, a $0.25 \mu \mathrm{~m}$ five layer metal shrink of Pentium II.
The current leading workstation processor, Digital's Alpha 21164 , costs under $\$ 2000$ for a 400 MHz part. Intel's 300 MHz Pentium II has a SPECint95 of 11.6 , compared to 11.7 for the Alpha. Floating point, however, is a different story. Intel estimates 7.2 for SPECfp95, while the Alpha more than doubles that at 15.9 .

Mobile phone cancer - more research needed

T
The National Radiological Protection Board (NRPB) has called for more research into the carcinogenic effects of mobile phones after an experiment demonstrating the cancerous effect of electromagnetic radiation on mice.
The study, performed over 18 months by a team of researchers in Australia involved two sets of cancerprone mice. One set was subjected for an hour a day to electromagnetic fields similar to those emitted by mobile phones. The researchers found 43 per cent of mice in the exposed set
developed cancer compared to 22 per cent in the non-exposed set.
According to the NRPB, the result of the study "emphasises the need for more high quality research to be carried out on the possible biological effects of high frequency electromagnetic fields".
But funding needs to be earmarked by the European Commission before organisations like the NRPB can put together research proposals, said Richard Saunders, group leader of the NRPB's Biological Effects Department. "It's now up to the

European Commission to put out a call for further research," he said.
This will be done later this year according to Leo Koolen of the EC's telecommunications directorate DG13, who criticised the Australian experiment because of its use of cancer prone mice.
"It is very difficult to relate this kind of research, which uses genetically manipulated mice, to the real world," he said. "The question is: How representative are these tests? It is generally considered by experts that we must do research in the real world."

Memory module prices fall sharply

Prices for memory modules has dropped sharply as supply starts to outstrip demand in the pc market.
"We've seen evidence of increased spot market activity during April with oems offloading product," Andrew Mackenzie, director of memory at Datrontech, told Electronics Weekly. "We're selling 16Mbyte simms out of the Far East at $\$ 67$ duty unpaid."
According to d-ram price-trackers ICISLOR, the price of a 16 Mbyte simm dropped $\$ 9$ from $\$ 80$ to $\$ 71$ in late April. In the USA and Asia-Pacific, the dip is $\$ 6$ to $\$ 71-\$ 72$. "We've heard of large distributors getting offers from some of the oems," James Hone of ICIS-LOR told Electronics World.
Demand for simms from the top tier pc producers is said to be firm, but lesser tier
producers are reported to have cut back on requirements. Manufacturers are said to have two week's worth of simm inventory.
A top ten memory supplier told $E W$ that the dip could be due to a move away from

Web tv - who'll watch?

|nternet boxes that turn a television into a World Wide Web browser, such as Microsoft's WebTV, will take several years to find a mass audience, says market research firm, Forrester Research, The company says that WebTV-type devices will only be in use in one million US households by the year 2000 .
The reasons for the devices' slow sales is that there is a lack of compelling content,
simms to dimms, and continuing excess of supply. Although device manufacturers, peripherals manufacturers and distributors are reluctant to state it publicly, they point in private to a weakening in pc demand as the main reason for the dumping of simms and the lower prices.
and limited overlap between Web content and TV programming. Internet screen phones will be more popular, claims Forrester, because they provide voice and data communications. As many as one million Internet screen phones could be in use by 1999 .
Forrester based its predictions on interviews with large Website providers with more than three-quarters saying that they had no plans to adapt their content for WebTV or Internet screen phone devices.

ANCHOR SUPPLIES Ltd The Cattle Market Depot Nottingham NG2 3GY. UK Telephone: +44(0115) 986 4902/ +44 (0115) 9864041 24hr answerphone Fax: +44 (0115) 9864667

Micro Video Cameras

Following our recent Readers Offer for the 721-S Micro Camera many readers have contacted us asking about

COLOUR PC CAMERA
DUE Mid JUNE other items in our range of Micro Cameras and Security Surveillance equipment.
We are SOLE AUTHORISED IMPORTERS of the entire range of Cameras and Video Surveillance equipment produced by the world's leading manufacturer. ALL items in the range carry a full 12 Months Guarantee.
If you would like to receive our comprehensive catalogue of Cameras and associated equipment please send a First Class SAE, marked "Camera Catalogue"

A-721-S Micro Camera 32mm x $\mathbf{3 2 m m}$... $£ \mathbf{8 5}$ A-721-P Micro PIN-HOLE Camera ... $\mathbf{3 2 m m \times 3 2 m m ~ . . . ~} \mathbf{~} \mathbf{8 5 5}$ A-921-S Camera with AUDIO ... $\mathbf{3 0} \mathrm{mm} \times 30 \mathrm{~mm} . . \mathrm{£} 95$
A-1211 C/CS Mount Camera ... $110 \mathrm{~mm} \times 60 \mathrm{~mm} \times 60 \mathrm{~mm} . . . \mathrm{£110}$ A-521 Micro Cased Camera $43 \mathrm{~mm} \times 48 \mathrm{~mm} \times 58 \mathrm{~mm}$... metal cased ... $\mathbf{f 1 2 0}$ 6001-A High Resolution COLOUR Cameras (420 lines) ... 0.45 lux ... $£ 210$
Outdoor Camera Housings ... Aluminium ... £35 Camera Mounting Brackets ... Universal Mounting ... $£ 5.95$
Camera Switchers ... for up to 8 Cameras ... $£ 75$
NEW MODEL Auto Record Controllers ...Infra Red Controller using "One For All" technology controls your STANDARD VHS Video, and allows you to make unattended recordings of intruders etc. Accepts Normally open or Normally Closed contact inputs. Self contained unit ... Turns your VHS recorder into a professional Security Recorder ONLY ... $£ 85$
QUAD-1 B/W Multivision Processor ... 4 pictures on one screen/video ... Including 4 channel switcher NOW ONLY $£ 249$
QUAD-2 COLOUR Multi Vision processor, REAL TIME ... including 4 channel switcher 4 Pictures on one screen/video ... NOW ONLY $£ 575$.
QUAD-3 COLOUR Multi Vision Processor. REAL TIME ... with On screen Titles and Time/Date information ... Including 4 channel switcher ... 4 Pictures on one screen/videoNOW ONLY $\mathbf{£ 6 9 5}$.

SCI ... SCANNER ... 350° PAN ... Automatic / Manual ... £105
IRI-1 Infra Red Illuminator ... 12V operation ... 60 degree illumination angle to 20 m . For "Total Darkness Surveillance" ... NOW ONLY $£ 85$.
VMS-1... Video Motion Sensor ... replaced alarm sensors with totally electronic video monitoring system that detects changes in the video signal... $£ 175$
C/CS Format lenses ... Premium $\mathbf{3 . 6 m m}=\mathbf{£ 2 2 . 5 0 ~ S u p e r i o r ~} \mathbf{8 m m}=\mathbf{£ 2 7 . 5 0}$

SPECIAL OFFER ...RACAL DIGITAL COUNTERS... SPECIAL OFFER

Racal Dana 9904 Universal Counters... 10 Hz to 50 MHz 6 Digit LED Display... TXO Master Oscillator... Tested and Verified Limited Quantity available... $\mathbf{5 6 0}+$ VAT + Delivery
Racal Dana 9915 Digital frequency Counters... 10 Hz to 510 MHz 8 Digit LED Display...
TXO master Oscillator... Tested and Verified
Limited Quantity available... $\mathbf{£ 5 5}+\mathrm{VAT}+$ Delivery
Racal Dana 9918 Digital frequency Counters... 10 Hz to 560 MHz 9 Digit LED Display..
TXO master Oscillator... Tested and Verified
Limited Quantity available... £125 + VAT + Delivery
Racal Dana 9921 Digital frequency Counters 10Hz to 3 GHz 9 Digit LED Display...
TXO Master Oscillator... Tested and Verified
Limited Quantity available... $\mathbf{£ 3 4 5}+$ VAT + Delivery
OPEN 6 DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm
NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME
NATIONAL AND INTERNATIONAL MAIL ORDER A SPECIALITY
VISIT OUR NEW WEB SITE
http://www.anchor-supplies.Itd.uk
e-mail sales@anchor-supplies.ltd.uk
Please note: Requests for catalogues MUST be accompanied by a first class SAE

Internet via satellite

Peter Willis reports on a newly announced Internet service that should solve the problem of slow data retrieval by using a satellite link.

The convergence of tv and computers is taking many forms as we enter the digital age. One of the most potentially fruitful is the delivery of Internet by satellite. It was the chief talking point of the recent Cable \& Satellite show in London, in the continuing absence of the long awaited announcement from BSkyB of its digital tv services
BSkyB it seems was hung up on convergence issues itself, trying to develop an interactive terminal with BT and and a banking partner (HSBC) while awaiting the outcome of its BDB consortium application for a digital terrestrial licence.
It is the sheer scope of the digital opportunity which is creating indigestion. Not that some people are waiting for digital tv . Pace Micro Technology, maker of satellite receivers both analogue and digital, is diversifying into lowcost Internet terminals through a link-up with US service provider Webtv. Now bought-out by Microsoft, Webtv has perfected user-friendly delivery of Web pages to ordinary tv sets. hav-
ing first tidied-up the signal to create a decent picture on American NTSC sets.
But whether viewing on a tv screen with its coarser dot-pitch or a pc monitor, all Internet users experience the frustration of waiting for pages to download as the bit stream is funnelled into the constricted passageway of the telephone network - an antiquated, 19th-century information goat-track by comparison with with what is actually required for efficient delivery

Down-load a cd's worth in 11 minutes This is where satellite comes in. With no fixedlink wires to slow things down, satellites can download data faster than most pcs can swallow it. A cd rom can be downloaded in 11 minutes, compared to 23 hours over an ISDN phone line. Both Eutelsat and Astra are working on the idea, but don't rush to plug your 60 cm dish into your desktop multimedia pc. The emphasis at present is on business or institutional use.
Eutelsat is already handling a number of not-quite-net services, including Net on Air, which

provides selected bundled pages, and DirecPC, operated by Hughes Olivetti Telecom chiefly handling large volumes of data for businesses. Others are Tenfore, which specialises in financial data, HS-Cast (on-line newspapers).
Eutelsat is looking for a service provider partner to further develop the concept. Astra meanwhile has joined with Intel to set up ESM (European Satellite Multimedia Services) and plans to have it working, under the name AstraNet by the end of the year. It too is looking at the corporate market first. concentrating on one-way, point-to-multipoint data broadcasting.

Options for return path data

Internet is of course a two-way concept, and there are two ways of creating the return path or back channel. The expensive way is to add a small transmitter to the satellite dish. as already used by V-sat technology. Astra doesn't expect to have the technology for this ready before the end of next year
The easy way is to use the phone line. For most users this will be quite sufficient since they are typically recipients rather than publishers of Web pages. Their outgoing messages tend to be brief requests for information.
One indicator that the technology is eventually destined for consumer application is its compatibility, in AstraNet's case. with the DVB (Digital Video Broadcasting) standard.
Already, the requisite hardware is becoming available. Pace has teamed up with Hitachi to develop a satellite pc card, capable of pulling in data, video and audio at up to $38 \mathrm{Mbi} / \mathrm{s}$.
Nokia used the Cable \& Satellite show to demonstrate its Home Browser multimedia terminal. As well as being a DVB receiver. this terminal handles World Wide Web and other forms of data, including e-mail and GSM Short Message Service, delivered via phone lines (regular and ISDN), cable and satellite. For good measure, it will also cope with inputs from in-home systems such as a pc or security cameras. Outputs can be to tv, PC, printer or modem.
Described by Nokia as a 'gateway terminal,' the unit uses flash memory instead of rom. Based on a modular architecture, it is part of the company's Mediamaster family of terminals. The first of these, designed to pick up free-toair digital satellite transmissions (at present only from some continental stations) has just gone on sale in the UK at $£ 529.99$.

NOW THE BATTLE IS REALLY OVER

After 10 years and with more than 20.000 users, ULTImate Technology now introduces the ULTIboard Wizard. This system is highly praised for its very powerful placement and routing algorithms by both the less experienced users and by the experts. The technology applied in the ULTIboard Wizard used to be available only as options on the more powerful and expensive Workstations. The PCB design depicted below illustrates the capability of the Wizard, its 4-layer version was employed in the ULTIboard Professional Design Contest at the Electronics'95 Exhibition. The same design was now executed in a 2 -layer version with the ULTIboard Wizard in less than 2 hours.

The selomatic is rearly, the board outime ex tablestinal and ail somponents are imporied.
 interactively.
(10 mine.)

Autoplace rapudly and acenvenmatly platess the rermairoing component with algorithms that apporench the: interative mesthod of expert atesergers. On line changes ate: prese ible. (5 min.)

Weow th: SPECCTRA Autorouter is employed
 alme with high grade quality. Alf desoign rulas

All adjustrments aris dinere ifuickly inf efficionily with the interactive atulorouter. All the corners of the traces are chamfered and polygons are platead.
(10 min.)

Following the comectivity and design tults checks, the output on matrix or laser printers, pen or photo plotters can be run. Back Anirotation automaticilly updates the schematic. 125 min .)

ULTImate Technology now makes the best PCB Design tools available at very competitive prices from UK $£ 2.675$,(Excl. VAT, 1400 pins version with 4 signal layers). We imagine you will want to see for yourself whether you too can achieve such fantastic results with the ULTIboard Wizard. Please come to our stand J135 at ICAT 97 at NEC (Birmingham) and convince yourself. A derno-CD is available.

ULTMADE
UK/Ireland Scles - Oitrice. 1 Vinny Woodside - Lydney Gloucestershire • GL15 4 LU • U.K. 4. + (+44) 1594-516647 fax: $(+44) 1594-516659$

Corporate Headquarters:
Energiestraat 36 - 1411 AT Naarden
The Netherlands
trl. : (431) $35=6944444$
fax: $(+31) 35-6943345$

RESEARCH NOTES

Room temperature quantum material is bathed in gold

Gold-cluster molecules, possessing a set of extraordinary quantum properties, could form the building blocks for testing ultra miniaturised architectures envisioned by some for 21 st-century nanoelectronics, according to researchers at Georgia Tech in Atlanta. Their main fascination is that their conduction electrons are quantised both in their number and in the states they can occupy. Normally, such effects can only be observed and used at very low temperatures such as that of liquid helium, near absolute zero. But the Georgia Tech team reports that the new series of nanocrystals are both sufficiently small that these effects are prominent even at ordinary temperatures, and yet are large enough to have the robust crystalline properties of the bulk metal.
In structure, each molecule in the new series has a compact, crystalline gold core - just $1-2 \mathrm{~nm}$ across encapsulated within a shell of tightly packed hydrocarbon chains linked to the core via sulphur atoms.
"The surrounding chains can be of
any length, and can be modified to confer particular chemical properties, so that they can be incorporated into various solid-state and solution structures," says professor Robert Whetten, head of Physics and Chemistry at Georgia Tech. "Most importantly, each member of the series behaves as a substance composed of infinitely replicated molecules, which can be separated from other members of the series to yield pure substances with precisely defined properties."
The gold cluster molecules emerge spontaneously during the decomposition of certain goldthiolate polymers of the type commonly used in decorative gold paints and in gold anti-arthritis drugs. With sufficient control of the decomposition process, this series can be isolated without concurrent production of larger gold crystals. It is then relatively easy to separate the principal members of the series from each other to obtain the necessary homogeneity. Once purified, the molecules spontaneously assemble into crystalline thin films, powders,
or macrocrystals, while preserving the discrete properties of the individual gold nanocrystal cores.
Gold is important technically not only for its inertness - once made, the clusters are immune to corrosion - but also for its highly stable surfaces that find application as junctions in critical microelectronic applications. The electromagnetic and conduction properties of the clusters are extremely sensitive to charging, and somewhat less so to energy level. According to Whetten, this could allow them to be used in proposed electronic circuitry known as "single-electronics."
The new gold cluster materials are the first to exhibit chargequantisation in a macroscopically obtained material, for which every cluster behaves identically. First measurements were conducted at Georgia Tech by observing the steplike changes in the current passing from a scanning tunnelling microscope tip to a gold plate through a single gold cluster molecule as the voltage was increased
The highly regular spacing between these steps, known as the "Coulomb staircase," showed that the molecules' gold core is charging like a small metal sphere in a series of discrete steps by adding or removing single electrons.
Whetten and collaborators at the University of North Carolina-Chapel Hill have reported developing an electrode based on the most massive of the new series and have stared investigating electrochemistry.
Quantisation of the energy levels of the conduction electrons has also been observed separately in optical spectroscopy experiments that reveal the discrete level structure - even at room temperature.

More information contact: Robert Whetten, 223 Centennial Research Building , Georgia Institute of Technology, Atlanta, Georgia 30332-0828, USA. email: robert.whetten@physics.gatech.edu

Sitting on fuel cell technology
 Fuel cell technology, able to

generate energy from hydrogen and oxygen, offers several advantages as the drive system of the future in terms of cleaner vehicles and reduced reliance on fossil fuels.
Unfortunately, up to now, systems have been bulky and only useable in substantially modified vehicles. But Daimler-Benz has announced that its latest experimental vehicle manages to pack all the extra hardware required under the seat of a standard model.
Necar I, Daimler-Benz first experimental vehicle, demonstrated back in 1994 that fuel cell technology technology is a viable proposition. But it was hardly practical then, as the system had such high space requirements that it was more closely related to a mobile laboratory than a vehicle.
However, in Necar II, the scientists have reduced the size of the fuel system to such an extent that it can now be easily accommodated under the rear seat bench of a Mercedes V-class vehicle.
The compaction has been achieved largely by means of a drastic reduction in the thickness, through optimisation of their surface characteristics, of the bipolar plates that ensure an even distribution of the reactant gases to the electrodes. This has allowed the individual cells in Necar II to be grouped much more

Daimler-Benz's Necar II runs on hydrogen-oxygen technology but can still seat six people.

Sensor that keeps war going could save lives too

| ntensive-care patients in hospitals, infants at risk of suffering sudden infant death syndrome, and police, fire-fighting and construction personnel in hazardous situations could all benefit from a new telesensor being developed by the US military. The chip, designed to be attached to the fingertip or ear, is actually being being developed to get wounded soldiers back into battle as quickly as possible. But researchers believe it could be modified to provide valuable information on the physiological condition of patients in non-military situations.
The medical telesensors - application-specific integrated circuits that measure vital signs, process the data and transmit it as radio signals to a remote receiver - are being developed at the Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) for military troops in combat zones. Using funding from the Defense Sciences Office of the Defense Advanced Research Projects Agency (Darpa), a group led by ORNL researcher Tom Ferrell has built a 2.3 mm temperature sensor. Attached to a finger or ear, the chip can measure body temperature and transmit a reading when queried by a remote receiver.
"Military leaders need a way to find out quickly which soldiers have been wounded and what their conditions are," Ferrell says. "Then, medics will be able to decide whom to treat first and whom to remove from the battlefield for treatment at hospitals. The first objective is to get the least seriously injured treated so they can return to combat."
The chip contains a temperature sensor that measures absolute temperature using bipolar transistors whose electronic properties are sensitive to temperature. These components are all incorporated on a single chip together with analogue signal processing, transmission
electronics and an antenna that sends the data by radio signals (radio frequency transmission) to a monitor when the chip is queried.
Each chip, Ferrell says, is planned to have a unique identifier - a characteristic radio signal pattern in which the frequency spectrum changes every few microseconds. Such spread-spectrum transmission allows the monitor to know which soldier needs immediate medical care. In addition, newly-developed thin-film lithium-ion batteries could be used to supply the very low levels of power required by the circuit.
The ORNL group, which also has collaborated with several faculty members from the University of Tennessee, is now developing a pulse oximetry sensor. This device, ultimately to be fabricated on a single chip, will measure pulse rate and blood oxygen level. The group also plans to develop another type of pulse sensor and a blood pressure sensor, in addition to a device that measures electrical conductivity in the skin, an indicator of stress.

The pulse oximetry sensor will measure the pulse on the wrist or neck by use of an optical pressure sensor. To measure changes in blood oxygen level, the sensor detects changes in heamoglobin, the iron-containing pigment in red blood cells. When the oxygen level changes, the colour of the heamoglobin is altered. Such a chip will have an infrared light source and detector that can measure changes in the light absorption of the heamoglobin when it is excited by light of specific frequencies. Measurement results will all be reported by wireless telemetry.
More information contact: Tom Ferrell, Oak Ridge National Laboratory, Tennessee, USA

Polymer diode can switch on any colour

Computer screens, television monitors, fluorescent lighting and even traffic lights made out of low cost leds could be just round the comer following announcement of the first plastic device able to emit light of multiple colours. Unlike conventional leds, the new devices made out of polyphenylenevinylene and polyquinoline - emit colours ranging from red to yellow to green
and even blue, depending on the voltage applied to them.
Normal leds, made of materials such as gallium nitride or gallium arsenide, are limited to single colours, making them impracticable for the biggest application of all in flat-panel computer and television screens.
"The holy grail of the whole field of led design is a flat-panel display for use in future television screens and computer monitors," says Samson Jenekhe, a professor of chemical engineering, chemistry, and materials science at Rochester.
Jenekhe's multi-colour polymers raise the prospect of replacing today's bulky screens with much thinner and more efficient arrays of leds, and are said to outshine the performance of traditional materials in several ways. Most importantly, just one layer of the devices can create full-colour images and, unlike normal leds, Jenekhe's devices can produce efficient greens and blues.

Other advantages include the fact that the plastic led requires just three volts for start-up and is at least as bright as a current television screen. Since these plastics can be made at room temperature, the leds should also be far cheaper to produce than
conventional leds, which must be made at high temperatures.
Key to the work has been the team's efficiency in bringing together the electrons and electron holes that combine to produce the light. Jenekhe's group has been able to construct layers of polymers tens of nanometers thick and position them so that they supply a steady stream of electrons and holes.
Researchers have tried to make such leds before - and some have even succeeded in producing a device capable of emitting light. But this has only been of a single colour. The new leds emit the full range of colours, depending on the voltage applied to them. By combining the light from several plastic leds, Jenekhe has even produced white light that could form the basis for led-based fluorescent lighting.
Another attractive application being targeted by researchers is in traffic lights. A large, lightweight polymer led could replace the heavy, inefficient 120 V white bulbs that glow behind the coloured glass covers of traffic lights everywhere. Because the leds consume so little electricity, this could result in substantial power savings.

Forces that could blow nanochips apart

As the tiny electric wires in computer chips grow ever smaller and the current they carry proportionately greater, the wires' atomic structure becomes increasingly prone to breakdown, causing gaps that could disable a chip or even an entire computer.
Now a team of materials scientists from Columbia University and IBM has measured the forces created as electric currents dislodge atoms from microwires and found them to be massive.
The phenomenon, called electromigration, is not expected to cause failure in existing computers, but will undoubtedly present a mounting problem to chip designers and manufacturers, say the researchers - Slade Cargill, professor of materials science at Columbia's School of Engineering and Applied Science, and I
Noyan, a research staff member with the Materials and Processing Science Group at IBM's TJ Watson Research Center.
"We have gone up in current density by an order of magnitude, and that's the problem," says Cargill.
To measure changes in the atomic
structure of a wire as current flows through it, the researchers focused a fine beam of X-rays. They showed that one end of the wire, to about 15% of its length, was stripped of metal, and that a build- up of atoms at the other end caused large stresses - of as much as 340 Mpa - that eventually damaged the wire and its insulation.
The electrons travel along the wire as current and also dislodge atoms of metal from their positions in the wire, carrying them along and depositing them further downstream. Rearranging atoms in this fashion can create gaps where atoms are removed and can also create local pressures where atoms pile up, squeezing metal out of the wire much like toothpaste from a leaking tube.
At the moment, moving a few thousand atoms will not affect wires millions of atoms in diameter. But in microelectronics, many wires are now less than $1 \mu \mathrm{~m}$ in diameter, and moving thousands of atoms around can have far more dramatic effects.
Computer failures because of
electromigration actually occurred in the 1960s, before hardware engineers were fully aware of the problem. They solved it by using new combinations of metals, by limiting current and the wires' length, and by encapsulating circuits in rigid insulating materials.
But during the last 30 years, the size of microelectronic circuits has decreased by almost 40 times, while current in those circuits has decreased less rapidly, from the range of 10 to 50 mA to about a tenth of that level now. As a result, current density has increased by a factor of ten.
Once microwires shrink to $0.25 \mu \mathrm{~m}$ in diameter and smaller, chip designers will have to discover ways to limit current sent through such wires, or find other ways to counter electromigration.
"These problems can be solved by changing the configuration and metallurgy of the chip," says Noyan. "However, new solutions will have to be found for each generation of chips, since electromigration is like an allergy. It can be mitigated but never fully cured."

CABLES AND CONNECTORS FROM

Maplin MPS brings Cables and Connectors into...

focus

THE TOTAL SOLUTION FROM MAPLIN MPS

1. Leading Brand Names
2. One Stop Shop
3. Connectors for Every Application
4. A Cable for Every Connector
5. No Minimum Order Quantities
6. Competitive Pricing

43 MAPLIN STORES AND MONDO SUPERSTORES NATIONWIDE
PHONE OR FAX NOW FOR YOUR COPY OF OUR CATALOGUE

MAPLIN MPS, PO BOX 777
RAYLEIGH, ESSEX SS6 8LU
FAX: 01702554001
NTERNET: http://www.maplin.co.uk

IUUSTRATION HASHIM AKIB

The introduction of electronics into single lens reflex cameras in the form of through-the-lens exposure metering in the sixties was derided by 'real' photographers. Now most slrs, including professional models, are completely reliant on electronics even in manual override mode.
There are now trends towards interfacing cameras with computers and making it easier for photographs to be integrated into electronic media. A recent illustration of the trend towards interfacing is the Advanced Photo System, or APS. This standard is the first to allow recording of magnetic data and photographic images together on a single film. It was developed by five major photographic companies, namely Canon, Fuji, Kodak, Minolta and Nikon. Over fifty companies have now licenced the technology.
APS uses an all-plastic cartridge that holds not only the unexposed film but the processed film too, so it is never handled by the photog. rapher. The photofinisher supplies an index print showing all exposures and their frame numbers.

Electronics in photography

Leslie Warwick has been investigating how electronics is helping improve today's still-photo cameras.

The cartridge is dropped into the camera, used, then taken to the film processor for developing. There the film is detached and reattached, and finally taken to the photographic laboratory for prints to be made, still in its cartridge.
Symbols on one end of the cartridge indicate
the state of the film inside. There are automatic checks to prevent double-exposure, and the reloading or reprocessing of already processed film. Additionally, the camera can detect the film's ISO speed and number of exposures from the data disc on the opposite end of the cartridge.

Fig. 1. Agfa's Advanced Photo System (240), or APS, and 35 mm films compared. The magnetic layer allows recording of camera and photofinishing data. Thinner emulsion layers enhance sharpness by reducing light scattering in a frame size $\mathbf{4 0 \%}$ smaller than 35 mm . The new PEN base has better mechanical properties, helping to minimise damage when extracting and rewinding film from the cartridge. The film code, 240 , indicates the film's width, of 24 mm

Fig. 2. The Advanced Photo System film has both magnetic and optical data tracks. These record the user's choice of print format, together with date and time, and shooting information such as flash and lighting data. Through Information Exchange (IX), this data is automatically read by photofinishing equipment and used for backprinting and optimising image quality.

Fig. 3. Nikon F5 3D Colour Matrix Metering evaluates screen brightness and contrast by overlapped small group reading, together with selected focus area, distance information and colour for optimum exposure. Its advantages include the detection of poorly illuminated subjects and small subjects located at the periphery, the accurate evaluation of backlit subjects by overlapped small group reading and of course, the evaluation of colour.

APS film has a transparent magnetic coating across the full 23.95 mm width of the film base, Fig. 1. However, recording is confined to tracks either side of the film, Fig. 2. Data relevant to individual frames, such as exposure information, are recorded beside the frames while data applicable to the whole film are recorded in the leader area.
One track is dedicated to camera data, the other to photo-finishing data. The signals are digital and, in the camera, are taken from a memory and recorded by a single head as the film is wound on. Optical data are also recorded by the film manufacturer and by the camera - the latter employing an orange led to produce a latent image of something similar to a barcode.
Cartridge and film identification numbers (CID and FID), in both human and machine readable forms, uniquely identify both for their rematching after processing. The CID is also reproduced on the index prints, and backprinted onto enlargements together with the frame number.

Photos on tv

A photo player has been conceived by Minolta and developed and manufactured by Fuji for displaying APS images on a television, or a computer with a video grabber. A fluorescent tube with radiation optimised to APS film illuminates the images, which are scanned by a line array ccd . Image sampling gives 1792 by 1024 pixels (640 by 480 for display) with 8 bit luminance and chrominance.
The negative data are then converted to pos-
A. Brighness and colour data from 1.005 pixels B. Colour data
C. Basic data (grouped into overlapped areas)
D. Paramelers
P. Colour dala
f. Average brighiness data
d. Contrasl data
h. Posluon of focus area selected

1. Distance Information (from D-type lenses)
J. Database

1005-phel arrangement

$1.675 \mathrm{~mm}(67)$

Sensor pilch

Horizontal: 0.025 mm
Vertical: 0.075 mm
Overlapped small group reading

Brlghtness data from 1005 -pixpl CCD is grouped into overlapped areas.
itive video, with a horizontal resolution of approximately 430 lines, which is better than S-VHS. Facilities include an index display, exposure adjustment, altering the size and position of displayed frames, and an information display; there is even a 'slide show' function with background music. And it is possible
to alter the IX data.
Fuji also has an APS image scanner for pc users. This has the same fluorescent tube, but a dual-line array scanner with 1030 pixels for both green and red/blue, producing a resolution of 1667 dots per inch for green and 834 dots per inch for red and blue together. Digitisation conversion accuracy is ten bits.
Fuji's EXIF, or exchangeable image file, format is used. Image data is recorded in uncompressed TIFF or compressed JPEG, with bit-map BMP format as an option.
Konica has a similar model; but this is additionally capable of scanning 35 mm negatives and positives. Its maximum resolution is 1200 dots per inch. Professional film scanners are also being launched with APS facilities. Incidentally, positive APS film will be launched soon.
Photofinishers with a digital image workstation can copy APS or 35 mm films, or prints, onto computer disks. Fuji's Picture Plus system offers floppy, zip and cd-rom storage. Again, this system employs EXIF, with BMP or PICT file format options.
Kodak's Image Magic system is based on the FlashPix file format developed by Kodak, Hewlett-Packard, Live Picture and Microsoft. It employs flexible compression and Microsoft's OLE structured storage. Images can be stored on floppy disk or cd rom. Both systems also provide decorative prints, postcards, etc - with Kodak additionally offering an Internet service for photo gifts.

Exposure meter for colour

Nikon's new flagship 35 mm single-lens reflex camera, the $F 5$, is the first to have an exposure meter that takes colour into account, Fig. 3. This employs a ccd with 1005 rgb pixels, located just above the eyepiece, where it takes light from the pentaprism. Brightness data with colour information is read from the rgb pixels, and the colour is extracted to calculate a signal that represents the average colour of the scene.
The brightness data is read in small groups which are moved up and overlapped as they

TECHNOLOGY

Fig. 4. The typical optical metering configuration of the Canon EOS-1N. Above the eyepiece and taking light from the pentaprism is the silicon photocell (SPC) exposure meter. In the base of the mirror box are the TL flash metering SPC and the Multi-Basis (base stored image sensor) for autofocus - both taking light reflected by the sub-mirror.

Fig. 6. High-Speed Sync (HSS). A conventional flash discharges the entire film in a single moment at once, just after the first shutter curtain opens completely. Minolta's Program Flash 5400HS's high speed sync (HSS) flash is a high frequency (50 kHz) pulse that starts before the shutter opens and stops after the shutter closes. This 'flat' pulse resembles a constant light source, so HSS flash can synchronise with shutter speeds faster than the camera's x-sync. When the shutter speed exceeds the camera's x-sync the 5400 HS switches from conventional flash to HSS flash. As it calculates the necessary amount of light with prelighting, you can shoot automatically in full exposure mode even with HSS flash lighting.

Vulliciviseot whoforins isensor Module

OCmer-bow ictl sensor for ine fmiss anta on left © cids semer for the maghusarea
Ocros-by iters senver for the center fires arre OCT) srow far the hothom fecus area
O Goselve rith athour for the fecur aren on rubht

Lationt of CCD elemernis

 Then samors A B. E. F. usid fot ondman focus deterenen Thi k annowe C:D. (i. H. used lor ficus detertion in tou leht

Preallion of Whemads in the whenflider

Fig. 7. Nikon F-5 autofocus sensor. Light is reflected down to the base to the mirror box, passes through a mask, and thence to the CCD line sensor pairs. Left, centre and right sensors are arranged in the form of a cross, those top and bottom into a line. The position of the sensors is indicated by brackets (an electrochromic device shows the focus area selected).

Fig. 8. Distance between the images on the ccd sensors varies depending on focus condition. When subject is in focus (A), distance is equal to a reference signal programmed into the automatic focus $\mathbf{c p u}$. If distance is less (B), lens focus is behind subject. This is essentially a peak detection process.

Fig. 9. Canon ring-type ultrasonic motor. The piezoelectric element in the stator generates rotational oscillatory waves to drive the rotor by functional force, it has high power output, high speed, and is virtually noiseless.
are read to analyse every detail; these variable sized groups are then used to calculate a signal representing average brightness plus contrast signals. These signals, together with that from the selected focus area, are then evaluated and compared by the cpu with algorithms in the camera's database made from more than 30,000 real scenes.
Next the signals are combined with distance information from the lens to determine exposure. Results from this processing determine whether the lens aperture is set in shutter priority mode or the shutter speed set in aperture priority mode, or both set in program mode.
The F5 is also the first camera to have 'flexible' centre weighted metering. Normally in this mode, 75% of the sensitivity is concentrated within a 12 mm circle, but the size can be changed to 8,15 or 20 mm by custom settings in the camera. Alternatively, it can be fully customised by linking to a computer.
The computer link enables a full range of functions to be altered, in addition to the variety of settings available in the camera. It also enables remote control of the camera, downloading of shooting data, and so on. Some other makes of camera have internal customisation, and/or may offer slot-in customising rom and eprom cards.

Returning to exposure metering, without colour to consider other cameras make do with a silicon photo cell, Fig. 4. In the top Canon and Minolta models, for example, the photo cell is divided into 16 and 14 segments respectively, Fig. 5. The brightness detected by each segment is evaluated and compared with that of the other segments to give an overview of the lighting. The systems also weight the sensitivity to coincide with the selected focus area
When using through-the-lens, or ttl, flash metering, these cameras additionally weight exposure to the focus area. This is done by a photo-cell sensor in the base of the mirror box from light reflected off the film, Fig. 4. When exposure is correct a quenching signal is sent to the electronic flash unit for a thyristor to terminate output.

New flash technology

A growing trend in flash technology is high speed sync, or HSS, developed first by Olympus. This overcomes the limitation imposed by the focal plane shutter on the maximum flash (or X) synchronisation speed, which is typically no more than $1 / 60-1 / 250$ second.
The focal-plane shutter is a blind situated
immediately before, and parallel to, the film. It consists of two curtains, each composed of lightweight blades. These blades are released sequentially by electromagnets. This electronically timed delay creates a moving opening whose width determines exposure time.
The X sync speed is the maximum at which the shutter is fully open for the flash to expose the film, Fig. 6. At faster speeds the second curtain begins to move before the first has reached the end of its travel so the flash would then expose just a strip on the film.
High speed sync flash units mimic the old slow-burning focal-plane flashbulbs by producing a series of very brief flashes covering the full duration of the shutter travel. This, in the case of Minolta's model, allows shutter speeds from X sync to as high as $1 / 8000 \mathrm{sec}$ ond, with others peaking at $1 / 2000$ or $1 / 4000$
The advantages of this new flash system are bright, continuous, daylight-balanced lighting. Naturally, high-speed sync units can also be used with conventional flash.

Autofocus

The most controversial use of electronics in single-lens reflex cameras has been for autofocusing.
Firstly, electronics compromised lens performance due to the greater tolerances necessary for low resistance motorised focusing.
Secondly, the early focusing systems were crude and would just as likely end up out of focus as in. On top of this is a general resistance to change in the photographic world.
Now, lenses and automatic focus systems generally perform well and most photographers are content with them.
Nikon claims that its new system in the F5 covers a wider area than any other, both horizontally and vertically. It achieves this by having five ccd sensor pairs consisting of approximately 1300 pixels, Fig. 7. Those for the centre, left and right of the frame are crosstype ones, while those for the top and bottom are a single line.
The cross-type sensors consist of both narrow and wide ccds, for normal and low light respectively. But if it is very dark then a special autofocus flash unit must be used with a led that projects a pattem of light onto the subject.
Automatic focus enhancement is now a built-in feature of most cameras. Incidentally, automatic focus systems need to predict where a moving subject will have reached between the time taken for the mirror to flip up and the shutter releasing.
All single-lens reflex cameras use a passive phase-detection system. Light rays coming from two widely separated areas of the lens pass through a partially transmissive area in the centre of the mirror to a sub-mirror behind it which reflects them down to the automatic focussing module in the base of the mirror box, Fig. 4. There, the rays are projected onto a pair of line image sensors where their separation is compared to a reference signal programmed into the automatic focus processor, Fig. 8.

TECHNOLOGY

If the projected rays are closer together then the lens is focused in front of the subject, if further apart then behind the subject. The automatic focus cpu processes the signal. It then communicates with the lens' cpu via electrical contacts in the lens mount to determine the type of lens and the amount of focusing movement required. In turn, the motor is driven to achieve focus.
The motor is normally in the lens but can also be in the camera body, coupled via a mechanical drive linkage. With in-lens drives, there is a trend towards ultrasonic motors, which are small and light, quiet and fast, and stop quickly and accurately. Canon was the first in this field, initially with a ring-type construction for stator and rotor, and now with several varieties of ultrasonic motor.
The principle is the same for all ultrasonic motors varieties: a piezoelectric element in the stator generates rotational oscillatory waves to drive the rotor by friction, Fig. 9. Nikon and Sigma have similar designs, but these go

Fig. 11. The Contax $A X$ achieves autofocus with manual lenses by using Automatic Back Focusing. This employs a moveable inner chassis to reposition the film plane over a range of 10 mm - its position being indicated in the viewfinder by a bar display representing 2 mm increments. Its maximum rear position allows close (macro) focusing with normal lenses.

eye-select automatic focus on some of its sin-gle-lens reflex cameras - and video camcorders. This allows the photographer to select a focus areas by looking at it.
There are two infra-red leds in the viewfinder surround whose beams are reflected off the surface of the eye to a ccd sensor inside the viewfinder. From this sensor, the direction of vision is computed, Fig, 10.
Everyone's eyes are a different shape, and the size of the pupil in different lighting changes that shape. Some wear glasses and contact lenses. To accommodate these differences, users need to go through a calibration procedure. Despite all the variations, about 99% of users pass the calibration successfully.
Not all companies have gone over to autofocus lenses: Leica and Carl Zeiss have resisted because they believe that any optical compromise is too much. However, automatic focus is a fact of life.
Kyocera Yashica therefore developed an alternative method for the Contax AX - automatic back focusing - to provide autofocusing for manual Carl Zeiss lenses. This employs a movable inner chassis incorporating mirror box, pentaprism assembly, shutter and film plane, Fig. 11.
The chassis can move up to 10 mm , driven by a direct drive ultrasonic motor along a matched ceramic collar and rail support under the command of the auto-focus controller. And it has the secondary advantage of allowing close (macro) focusing without the need for a 10 mm extension tube.

And fully digital?

In little more than thirty years photography has progressed from a purely mechanical and chemical medium to one that is heavily reliant on electronics. The Nikon F5, for example, incorporates a network including three 16 -bit, one 8 -bit and one 4 -bit processors. Other cameras are not far behind it. Even manual singlelens reflex cameras have electronic exposure and flash metering.
The next step, to purely electronic cameras, has already begun with a spate of digital models having been launched over the past few months. But their price-to-image-quality ratio is poor by comparison with film cameras. Therefore, conventional photography should continue for many years - with even greater use of electronics.

THERE IS ONE DANGER YOU CAN'T SEE, HEAR, SMELL OR FEEL- ITS RADIATION, THERE ARE OVER 10,000 SHIPMENTS OF RADIOACTIVE MATERIAL IN THE UK EVERY YEAR BY ROAD AND RAIL! WOULD anybody tell you of a radiation leak? NEW GEIGER COUNTER IN STOCK Hand held unt with LCD screen, auto ranging, lowbattory alarm, eudible 'cick' output. Now and guaranteed. $\mathbf{E 1 2 9}$ rof GE1
RUSSIAN BORDER GUARD BINOCULARS £1799 Probably the best binoculars in the worldi Ing for colour brochure. RUSSIAN MULTIBAND WORLD COMMUNICATIONS RECEIVER. Excoptional coverage of 9 wave bands, (5 shor. 1 LW $1 \mathrm{FM}, 1 \mathrm{MW}$) intemal ferrite and extemal telescopic aerials, mains/ battery. E45 ref VEG
NEW LASER POINTERS $4.5 \mathrm{mw}, 75$ metre range, hand held unit runs on two AA batteries (supplied) 670 nm . $£ 29$ ref DEC49 HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprehensive 270 page book covers ali aspects of spirt production from everyday matenais. Includes construction details of simple stills etc. £ 12 ref MS3
NEW HIGH POWER MINI BUG With a range of up to 800 metres and a 3 days usa from a PP3 this is our top seling bug! less than 1 " squate and a 10 m veice pickup range. £28 Ref LOT102. BUILD YOU OWN WINDFARM FROM SCRAP New publication gives rep by step guide to building wind generators and propellors. Armed with ithis publication and a good local scrap yard could make you sett sufficient in electratity $\mathbb{E 1 2}$ ref LOT81
PC KEYBOARDS PS 2 connector, top quality suitable for all 288 388/486 atc $£ 10$ ref PCKB. 10 for $£ 65$
NEW LOW COSTVEHICLE TRACKING TRANSMITTER KIT $£ 29$ range $1.5-5$ miles, 5,000 hours on AA battenes, transmits info on car direction, left and right tums, stert and stop information. Works with any good FM radio. £29 ref LOT101a
HIGH SECURITY ELECTRIC DOOR LOCKS Complete brand new litian lock and latach as sembly with both Yale type bock (keys inc) and 12 voperated deadlock. $£ 10$ ret LOT98
*NEW HIGH POWER WIRELESS VIDEO AND AUDIO BUG KIT 1/2 MILE RANGE Transmits vidao and eudio signals from e minature CCTV Camera (included) to any standard television Supplied with telescoplc aerial. $£ 169$
CCTV PAN AND TILT KITM Morize your CCTV camera with this simpte 12 vdc kht. 2 hermentically seaied DC linear servo motors 5 mm threaded output 5 secs stop to stop, can be stopped any where, 10 mm travel, powerful. $£ 12$ ref LOT 125
GPS SATELLITE NAVIGATION SYSTEM Made by Germin, the GPS38 is hand held, pocket sized, 255g, postion, atititude, praphic compass , map buider, nitro filed. Bergain price just $£ 179$ rel GPS1. CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 v 100mA. auto eiectronic shutter, 3.6 mm F2 lens, CCIR, 512×492 pixels, video output is iv p-p (75 ohm). Works directly into a scatt or video input on a tw or video. IR senstive. $£ 79.95$ ref EF 137 IR LAMP KIT Suriable for the above camera, enables the camera to be used in total darknessi $£ 6$ ref EF 138
INFRA RED POWERBEAM Handheld battery powered lamp, 4 inch reflector, gives out powerful pure infrared lightl perfect for CCTV use, nightsights etc. $£ 29$ ret PB1
SUPER WDEBAND RADAR DETECTOR Detects both radar and laser, XK end KA bands, speed cameras. and all known speed detection systems. 360 degree coverage, front \&earwaveguides,

CHIEFTANTANKDOUBLELASERS 9 WATT+3 WATT+LASER OPTICS

Could be adapted for laser listener, long range communications etc Double beam units designed to fit in the gun barrel of a tank, each unit has two semi conductor lasers and motor drive units for alignement. mile range, no circuit diagrams due to MOD , new price $£ 50,000$? us? £199. Each unit has wo gallium Arsenide injection lasers, 1×9 watt, 1×3 watt. 900 nm wavelength. 28 vdc , 600 hz pulse frequency. The units also contaln an electronic receiver to detect refiected signais from
targets. $£ 199$ for one. Ref LOT4. targets. $£ 199$ for one. Ref LOT4.
EASY DIYIPROFESSIONAL TWO WAY MIRROR KIT includes special adhasive filmto make two way mirror(s) upto 60") $20^{\prime \prime}$ (glass not included) includes full instructions. £12 ref TW1
NEW LOW PRICED COMPUTER/WORKSHOP/HI-FI RCB UNITS Complete protection from faulty equipment for everybody! in ine unit fits in standard IEC lead (extends it by 750 mm) fittedinless than 10 seconds, resethest button, 10A rating. E6.99 each ref LOT5. Or a pack of 10 at $£ 49.90$ ref LOT6. If you want a box of 100
you can have one for $£ 2501$
TWO CHANNEL FULL FUNCTION B GRADE RADIO CONTROLLED CARS From World famous manufacturer these are retums so they with need attention (usually physical damage) cheap way of buying TX and RX plus servos etc for new projects etc. $£ 12$ each sold as seen ref LOT2
MAGNETIC CREDIT CARD READERS AND ENCODING MANUAL $\mathbf{~} 9.95$ Cased with fyleads, designed to read standard credit cards! complete with control elctronics PCB and manua covering everything you could want to know about whats hidden in the magnetic stnp on your cardl just $£ 9.95$ ref BAR3

HIGH POWER DC MOTORS, PERMANENT MAGNET $12-24 \mathrm{~V}$ operation, probably about $1 / 4$ horse power, body measures $100 \mathrm{~m} \times 75 \mathrm{~mm}$ with a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ output shaft with a machined flat on it. Fixing is simple using the two threaded bolts protruding from the fromt on the motor $4 \mathrm{~mm} x$ ineering etc they may even be suitable-as a cycle motor? We expect high demand so if you would like one or think you may require one in the future place your order todayl $\mathbf{2} 22$ ref MOT4 10 pack E185

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manumis that give you information on setting up difierent businesses, you peruse these at your leisure using the text editor on your PC. Also included is the cenificto enabling you to reproduce (and sell) the manuais as much as you likel £14 rel EP74
RUSSIAN 900X MAGNIFICATION ZOOM MICROSCOPE metal construction, buift inlight. mirroretc. Russian shrimpfarml, group - wing screen, lots of accessories. E29 ref ANAYL

AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 RUSSIAN NIGHTSIGHTS Model TZSA with infra red illuminator, views up to 75 metres in full darkness in infrared mode, 150 m range, 45 mm lens, 13 deg angle of vlow, focussing range 1.5 m to infinity. 2 AA batteries required. 950 g weight. $£ 199$ ref BAR61. 1 years werranty UQUID CRYSTAL DISPLAYS Bargain prices, 16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm}$ £ 3.99 ref SM2024A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL-1, 110 MM NEWTONIAN REFLECTOR TELESCOPE Russian. Supert astronomical 'scope, everything you need for some serious star gazingl up to 169x magnification, Send or fax for further information $20 \mathrm{~kg}, 885 \times 800 \times 1650 \mathrm{~mm}$ rof TAL- 1, , 249 YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Comprehensive plans wh lo systems, panels, control eiectronics etc $£ 7$ ref PV1

COLOUR CCTV VIDEO CAMERAS
BRAND NEW AND, CASED, FROM E99
Works with most modern video's, TV's, Composite monitors, video grabber cards etc Pal, iv P-P, composite, $760 h m, 1 / 3 "$ CCD, 4 mm F2.8, 500×582, 12 vdc , mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF150, 10 or more £99 ea $100+£ 89$
MICRO RADIO Ifs tiny, just $3 / 8^{"}$ thick, auto tunning, complete with headphones. FM 59.99 ref EP35
25 SQUARE FOOT SOLAR ENERGY BANK KIT $1006 " \times 6$ 6y Amornhous 100 mA panels, 100 diodes, connection details atc to 6V Amorphous 100 mA paneis, 100 jiodes, connection
CONVERT YOUR TV INTO A VGA MONITOR FOR £25I Convens a colour TV Into a basic $V G A$ screan. Complete with buitin psu, eead and sware..Ideal for laptops ora cheap upgrade. Supplied in kit form for home assembly. SALE PRICE £26 REF SA34
" 15 WATT FM TRANSMITTER Already assembled but some RF knowledga will be useful for setting up. Preamp req'd, 4 stage 80 $108 \mathrm{mhz}, 12$ - 18 vocc , can use ground plane, yagi or dipole E 69 ref 1021 -4 WATT FM TRANSMITTER KIT Smal but poweriul FM ransmitter kit. 3 RF stages, mic \& audio preampinduded $£ 24$ re1 102 YUASHA SEALED LEAD ACID BATTERIES $12 \mathrm{v} 15 A H$ at E18 reel LOT8 and below spec 6V 10AH ot $E 5$ a pair
ELECTRIC CAR WINDOW DE-ICERS Complete with cable plug etc SALE PRICE JUST E4.98 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a char plug. 12v 2watt. £12.99 REF AUG 10P3 SOLAR POWER LAB SPECIAL You get $26^{n " x} 6^{n} 6 \mathrm{v} 130 \mathrm{~mA}$ cells, 4 LED's, wire, buzzar, switch +1 relay or motor. $\mathbf{8 7 . 9 9 \text { REF SA27 }}$ 12 V DC MOTOR SPEED CONTROL KIT Complete with PCB te Up to 30A. A heat sink may be required. E19.00 REF: MAG17 SOLAR NICAD CHARGERS $4 \times$ AA size $£ 9.99$ ref $6 P 476,2 \times$ C size $£ 9.99$ ref 6 P477
MEGA POWER BINOCULARS Made by Helios, $20 \approx$ magnification, precision ground fully coated optics, 60 mm objactives shock resistant caged prisms. case and neck strap. £89 red HPH1 GIANT HOT AIR BALLOON KIT Build a 4.5 m circumfrence, tully functioning balloon, can be launchod with home made bumer etc. Reusable (until you loose it) $£ 12.50$ rel HA
AIR RIFLES . 22 As used by the Chinese amy for training puposes so there is a lot aboutl $£ 39.95$ Ref EF78. 500 pellats $£ 4.50$ ref EFBO -NEW MEGA POWER VIDEOANDAUDIOSENDERUNIT. Transmits both audio and viceo signalis from either a video camera video recorder, TV or Computer etct to any standard TV set in a 500 m rangel (fune TV to channei 31) 12v ${ }^{\circ} \mathrm{C}$
op. Price is $\mathrm{E85}$ REF: MAG15 12 v psu is $£ 5$ oxtra REF: MAG5P2 -MINATURE RADIO TRANSCEIVERS A pair of walkie talkies with a range up to 2 kmin open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$.
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX
BN3 5QT. (ESTABLISHED 50 YEARS)
MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT. 24 HOUR SERVICE $£ 4.50$ PLUS VAT. OVERSEAS ORDERS AT COST PLUS E3,50
phone orders: 01273203500 (ACCESS, VISA, SWTTCH, AMERICAN EXPRESS)

FAX 01273323077
E-mail bull@pavilion.co.uk

Including cases and eap'ces. $2 \times$ PP3 req'd. E37.00 pr.REF: MAG30 *FM TRANSMITTER KIT housed in a standard working 13A adapierlit the bug runs directiy off the mains so lasts toreveri why pey £7007 or prica is $£ 18$ REF: EF62 (kti) Transmits to any FM radio. Bult and tested version now avaliable of the above unit at $£ 45$ ref EXM34
*FM BUG BUILT AND TESTED supenior design to kit. Suppled to detective agencies. 9v battery req'd. E14 REF: MAG14
GAT AIR PISTOL PACK Complete with pistol, darts snd polets £14.95 Ref EF82B extre pellets (500) $£ 4.50$ cof EF80.
HEAT PUMPS These are mains operated air to air units that consist of a aluminium plate (cooling side) and a radialor (waming side) connected togetherwith a compressor. The plate if inserted into water will hrezer it. Probably about $3-400$ watts so could produce 1 kw in ideal conditions. £30 rel HP1
3 FOOT SOLAR PANEL Amorphous silicon, $3^{\prime} \times 1$ ' housed in an aluminium frame. 13 v 700 mA ouput. $£ 55$ ref MAG45
SOLARNIND REGULATOR Prevents batteries from over charging. On reaching capacity the regulator diverts excess power into heat avolding damage. Max power is 60 wetts. £27.99 ref S/CA11-105 FANCY A FLUTTER? SEEN OUR NEW PUBLICATION? Covers all aspects of horsa and dog betting, systems etc and gives you - betting system that should make your betting far more proffitable £6 a coop ref BET1
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ret MAG5P 13 ideal for experimenters1 30 m for $£ 12.99$ ref MAG 13 P1 4X28 TELESCOPIC SIGHTS Suitable for all air mines, ground lenses, 900 d light gathering properties. £24.95 ref RTJ.
GYROSCOPES Remember thesa? wall we have found a compeny that still manufactures these popular scientlific toys. peffect gift or for that still manufactures these popula
educational use otc. E6 rof EP70
NICAD CHARGERS AND BATTERIES Standard universal mains operated charger, takes 4 batts 41 PP3, E10 ref PO11D. Nicads-AA slze (4 pack) $£ 4$ ref 4P44, C size (2 pack) $£ 4$ rel 4 P73, D size (4 pack) £9 ref 9P12.
RECHARGE ORDINARY BATTERIES UP TO 10 TIMES! With the Battery WizardI Uses the latest pulse weve charge system to charge all popular brands of ordinary batteries AAA. AA, C, D, four at - timel Led system shows when batteries are charged, automatically rejects unsuitable cells, complete with mains adaptor. BS approved. Price is $£ 21.95$ ref EP31.
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU
YOUR LICENCE! The new multiband 2000 radar detector can prevent even the most responsible of drivers from losing their hicence! Adjustable audible alarm with 8 fashing leds gives instant warning of darzones. Detects X, K, and Ka bands, 3 mile range, 'over tha him round bends' and 'rear trap facilties. micro size just $4.25 " \times 2.5^{\prime \prime} \times .75^{\prime \prime}$ Can pay for itsetf in just one dayl E 89 rof EP3.
3" DISCS As used on odder Amstrad machines, Spectrum plus3's atc €3 each ref GAR400.
STEREO MICROSOPES BACK IN STOCK Russian, 200x complete with lenses, fights, firers etc etc very comprehensive mieroscope that would normally be around the $£ 700$ mark, our price is just $£ 299$ (full money back guarantae) full details in catalogue. SECOND GENERATION NIGHT SIGHTS FROM $£ 748$ RETRON Russian night sight, 1.8 x , infra red lamp, 10 m -inf, standard M42 tens, 1.1 kg . £ 349 ref RET 1
LOW COST CORDLESS MIC 5no' range, $90-105 \mathrm{mhz}, 115 \mathrm{~g}$, $193 \times 26 \times 39 \mathrm{~mm}, 9 \mathrm{~V}$ PP3 battery required. $£ 17$ ref MAG15P1 HIPOWER SURVEILLANCE TELESCOPE Continuous zoom control from 20 times to an amazing 60 times magnification. 60 mm fuly coated objective lens for maximum light transmission, complete with rripod featuring micro elevation control. $£ 75$ ret ZT1
JUMBO LED ? PACK 1510 mm bicolour leds, plus 5 giant (55 mm) seven segment displays all on a pcb $£ 8$ ref JUM 1 . Pack of 3055 mm seven segg displays on pcbs is $£ 19$ ref LED4, pack of 50 £31 ref LED50 12VDC 40MM FANS MADEBYPANAFLO,NEW.E4.REFFAN12

WIND GENERATORS 380 WATT
1.14 dia blades, carbon matrix blades, 3 year warranty, 12 vdc output. control electronics, brushiess neodymium cubic curve anemair, only spoed 7 mph , max output (30 mph) 380w. £499 ref AIR 1

Check out ourWEB SITE
 full colour interactive 1997 catalogue

http://www.pavilion.co.uk/bull-electrical
FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK FOR CASH
 SURPLUS STOCK LINE 0802660335

CIRCIE NO. 112 ON REPLY CARD

The Balance Box

Microphone or line level amplifier for balanced or unbalanced signal lines
Professional portable units operating from an internal PP3 battery or external mains adaptor

\star Precision true floating transformerless balanced input and output at microphone or line level \star Simple interfacing and conversion between balanced and unbalanced signal lines \star Low noise and distortion \star High common mode rejection \star Switchable gain selection \star Extensive RFI protection

The Phantom Power Box - The Headphone Amplifier
Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector
for voltage and current loop process signal lines
Conford Electronics Conford Liphook Hants GU30 7Qw Information line: 01428751469 Fax: 751223

E-mail contact@confordelec.co.uk
Web http://www.confordelec.co.uk/catalogue/

Workbench

Many of you will be familiar with the previous version of Electronics Workbench as a low-cost simulator with a user-friendly graphical interface based on the virtual instruments concept. This traditional version has had a strong bias towards education and was relatively simple. But it was undoubtedly attractive to many designers. For those wanting a quick and easy check of basic circuit performance, Electronics Workbench had the virtue of getting away from net list entry and other abstract concepts used by other simulators.
The producer of Workbench, namely IIT, is now offering the same package but modified for professional use. It has more features, higher speed and a greatly expanded range of simulations. It also has a much larger component library.
This version recently made its appearance as Electronics Workbench $E D A$, called here $E D A$ for short. It has no bias towards education, so there is no section devoted to fault injection. The original large selection of sample circuits has been reduced to just a handful, as an introduction.
For this review, I used a 120 MHz Pentium with 16 Mbyte of ram and both a 14 in and a 20 in monitor driven by a 1 Mbyte Trident 9680 graphics card. Using both Windows 3.1 and 95 , it ran well, screen redraws being acceptably quick. The speed of simulation under 3.1 was about the same as under 95. Typically, the analyses of the first screen in the monitors panel (Fig. A) ran in 2 to 3 seconds. There appeared to be no speed advantage using Windows 95.

Operator's manuals and help

Four manuals are provided, plus a quick-reference card and installation guide. The user manual is derived from the previous version of Electronics Workbench, but with the references to the dos version removed. This makes it better reading. It consists of an introduction to using EDA and starts from basics, with plenty of explanation and a tutorial, so is a good introduction for a designer using a simulator for the first time. If you are used to simulators, you should fly through this book.
The second, larger book is a technical reference with explanations of the analyses and component models and is wellwritten and concise. It assumes to some extent that the reader is familiar with the basics such as Fourier, intermodulation distortion, simulation modelling, etc. For readers who are not, a reading list of a dozen or so publications is provided.

The third manual is a guide to importing and exporting net lists, and includes worked examples. There is no pressing need to look into the composition of net lists unless you absolutely have to, as EDA has schematic capture in many formats, but this is a good reference book if you want to know more.

Abstract

With over 75k registered users worldwide, Electronics Workbench is the most popular circuit simulation package. Until now, Workbench has focussed on education, but how will the new EDA version be accepted by serious circuit designers? Rod Cooper investigates.

Fig. 1. Circuit of decoder/ripple counter used for checking out the logic analyser. Note the use of coloured wires to the analyser to improve circuit readability (640 by 480 pixel capture). Note that the drawing grid is off.

Logic analyser

 shown maximised. Note coloured traces correspond to wires in schematic, a good use of colour. The analyser does not show glitches, so there is no glitch control. The functionlabelled 'trigger' allows the analyser to start on receiving a preset word (640 by 480 pixel capfure).

Hardware and software requirements

This software needs Windows $3.1 \times, 95$ or NT. There is no dos version. It comes on six floppies and installation is simple. Software protection is by personal identification and serial number.
The recommended minimum pc is a 486 or better. Under Windows, 8 Mbyte of ram is required, under Windows NT, 12 Mbyte . In all three cases, the recommendation 12 Mbyte . You also need 20 Mbyte of disk space. Since EDA is essentially a 32 -bit program, the 32 -bit driver WIN32s is installed automatically for Windows 3.1 users.

Fig. 2. Sallen \& Key filter circuit used to produce the following two analyses (640 by 480 pixel capture). Here, the dot grid is turned on.

The fourth book is a small volume listing the ics and models in the package. These four books, taken together, constitute a comprehensive piece of documentation.

Mixed mode feelings

There is not much reference to mixed-mode simulation except for a brief reference as to how it is achieved. As it is a strong point of Electronics Workbench, which is promoted as "true" mixed-mode in the advertising, one would perhaps have expected more about it, but mixed-mode does not even appear in the index of the books.
Workbench's mixed mode is clearly regarded as sufficiently easy as not to require a chapter of its own, and this is in fact true. I tried mixedmode simulation by adding an analogue buffer amplifier to Fig. 1 and the simulation appeared seamless. Like previous versions of Electronics Workbench, EDA uses its own automatically inserted proprietary a-to-d and d-to-a interfaces on digital components to achieve mixed-mode simulations.

There is a fair amount of on-screen help to supplement the user manual. I found I needed to use this often at first, as the user manual is quite short. Also, there is a good system of prompts for when simulations go wrong, but these are rather terse. For example, you may receive a short message saying that the simulation aborted because a capacitor was disconnected, but it doesn't tell you which one. In a circuit of ten or twenty capacitors this is not very helpful - but is still better help than that provided in some competing simulators.
Reading through various computer magazines, technical support for software seems to be a hot potato these days, so I checked out the technical support at Coventry - no problem here, a quick and efficient advice and no telephone queues.

Drawing schematics

As you can see from Fig. 2, the screen format follows the standard Windows convention. Panning is done with the scroll-bars, and autopanning is performed when placing components.
Drawing is done on one very large 'virtual' page. Many users will prefer this to having a multi-page facility, but it is possible to generate sub-circuits and store them as icons. This is quite similar to having a multi-page function. There is no autosave - a feature which I would definitely like to see added. During the review
there was a power cut and, yes, I was caught out.
Many of the present generation of simulators use schematic capture instead of net list entry. Some have been criticised because the drawing system has left a lot to be desired. Usually this has been on the grounds of it being awkward and therefore slow to pick, place and specify components. In this area, Electronics Workbench scores well.

Selecting and placing symbols is both intuitive and easy. As in version 4 , symbols are taken from a number of parts bins pre-stocked with generic parts. There are 13 of these bins, each holding up to two dozen symbols each. One extra bin is provided that you can fill with your own preferred choice of symbols. These bins have been re-designed to take up much less screen space than the previous versions.

Out of the bin

A bin can be opened with a single mouse click. Opening a second bin automatically closes the first, but it is possible to open several at once to form a palette, as in graphics programs.
Symbols are placed using drag-and-drop and are easily erased - four mouse clicks - and replaced. Like many Windows programs, you are asked if you really want to erase the selected part; this adds an extra click and is annoying.
Specific information on each symbol is entered at a later stage, from the main library of model types. This system is highly suitable for simulation as experiments can be quickly set up and altered without going into detailed specification. This contrasts with the slower pcb-drafting type of schematic drawing systems using text components selected in advance from the library and dumped in a single parts bin.

Despite the very large library, searching for specific type information to attach to the generic symbols seemed very quick. By picking a particular schematic symbol you are automatically placed in the correct library volume for the symbol involved. You do not have to refer to a library index, as you do with some systems. It is clear that a lot of effort has been put into making manipulation rapid and intuitive and there are a lot of nice touches like this one throughout the program.

Wiring up

Still in pursuit of speed, symbols are connected up using an automatic wiring tool. For those not familiar with this facility, you click on a symbol's terminal, drag the mouse to another terminal and release. An orthogonal connection is then automatically drawn for you. This process is assisted by a snap-to function, so spot-on accuracy is not required, although a fair amount of manual skill is still needed. There is no adjustment of the snap-to.

The automatic wirer works well for small circuits. On large circuits it produces many comers and the routeing becomes devious. Like a pcb autorouter, the automatic wirer finds the going tough when there are many components, or if component spacing is close. In these conditions it does not do as well as a human. If you do not mind the circuit looking a bit untidy, then this does not matter; the simulations will still work - and it is very quick.
I found large, unedited schematics harder to read than those done by hand. The handbook suggests colouring wires using the six-colour option to clarify schematics, and I found this very useful in reducing this effect.
If you space the components out, the automatic wirer can give better results, but this takes up more screen space. As a result, you will be doing more panning than you should to see the circuit. Besides, screen space is always at a premium. But you may have to space the circuit out anyway, because text is non-manoevrable and you may need the extra space to avoid connections running through text.
If you have to present a good-looking schematic, for a report for example, then it will be necessary to tidy the circuit up by editing. This is done by a rubber-banding method, except that
the connections stay orthogonal. I discovered that sometimes the auto-wirer fiercely resists attempts at editing, especially when previous editing has produced a few tight corners.
Occasionally, on large circuits, I have seen it run a wire axially through a resistor, giving some very strange effects. Also, until you become attuned to the system, it is possible to create an unintentional mess with rubber-banding.
In my view, this automatic wirer will be something the purchaser of $E D A$ will hate or love. I would like to see $E D A$ provided with an alternative manual schematic wiring program. If it were, everyone would be catered for.

Simulations and virtual instruments

EDA keeps the same range of virtual instruments as before, namely two-beam oscilloscope, bode ploter, autoranging multimeter, voltmeters and ammeters in any amount, function generator, logic analyser, logic converter, and word generator. Some of these have been improved, for example the logic ana lyser has been up-graded from 8 channels to 16 .
There is no pulse generator or piecewise function in the virtual instrumentation. If you want these, you have to open the 'sources' bin. In this bin, there is an impressive number of extra functions such as an fm signal source, various voltagecontrolled oscillators and piecewise and one-shot pulse generators. All of these are set up via a menu system.
In addition to virtual instruments, $E D A$ has a number of analysis tools to supplement the simulations on the virtual instruments. These analyses are; dc operating point, ac frequency (phase and amplitude) transient, Fourier, intermodulation, noise, parameter sweep, temperature sweep, pole zero, ac and dc transfer function, ac and dc sensitivity, worst case, and Monte Carlo. There is one notable gap in the range of analyses provided - there is no analysis giving a plot of input impedance or output impedance against frequency.
The results from these analyses are presented either as a plot or in tabular form, and they run full-screen. On trying them, I found good continuity of style and technique, which should enable an operator to go from one to another without any mental gymnastics.
I found the features available in each analysis gave good coverage and scope, and they were particularly easy to use. For example, the ac analysis which provides plots of gain and phase covers the range 1 Hz to 1 GHz and allows several different scale types for the x and y axes. A typical scale choice provided for this and other plots is decade, decibel, log, linear. Clearly, some of these analyses, like the one just mentioned, overlap with the virtual instruments. The choice is then yours; virtual instruments are easier to set up, analysis gives more detail and flexibility. This is especially true of the bode ploter, which cannot be expanded to fill the screen like the oscilloscope, and has no scaling on x or y axes. The bode plotter is obviously intended just for a snapshot of circuit performance.

Does monitor size matter?

On a 14 in monitor the screen space available for drawing is 9 by 4.5 in . This is not a lot, but is comparable with other Windows-based simulator programs. However, EDA performs much better with a larger monitor.
On the 14 in monitor's 640 by 480 display, the grids on a few of the graphs showed slight merging together due to being too closely-spaced. This effect, which does not seriously impede reading of the graph, is shown in Fig. A. On the 20 in 1024 by 768 display, all the simulation graphs appeared excellent as Figs. B, C and D show.

EDA now has a zoom feature. This is a very welcome addition. On a 14 in monitor, and even on a 17in 1024 by 768 display, one used to have to squint at the symbols to make them out, but now with five levels from 50% to 200%, all is clear.

Fig. A.
Intermodulation analysis of S \& K filter. Note that on a 640×480
display you can
expect some merging on graph lines as seen here but the graphs are still readable. At higher resolutions, clarity is excellent (640 by 480 pixel capture).

Fig. B. Typical Fourier analysis, for the 709 opamp, which can also be presented as a line graph instead of a bargraph (1024 by 768 pixels).

Fig. C. A plot of 709 op-amp noise (1024 by 768 pixels).

Fig. D. 709 opamp parameter sweep, showing amplitude and phase at the output when just one resistor in the op-amp is changed from 1 k to $100 \mathrm{k} \Omega$ in $20 \mathrm{k} \Omega$ steps. Note the clarity of the graphs compared to Fig. A (1024 by 768 pixels)

EDA uses Spice 3, whereas Electronics Workbench version 4 used Spice 2. All the simulations run much faster than $E D A$'s predecessor, version 4 , which was acknowledged to be rather slow. The claimed figure is ten times faster.
The increased speed puts this package on par with most other simulators in this class. If you have previously used version 4 , the speed increase is conspicuous.
This review is too short to detail every analysis, so I have shown several screens of simulations on a Sallen and Key filter, a 4-16 decoder/ripplecounter, and the circuit of the 709 op -amp. This will give a good idea of the style and scope of Workbench EDA.

Schematic capture and pcb layout

When using EDA just for simulations, there is normally no need to delve into net lists. However, if you need to export information to other systems, the package can produce net lists in several formats. These are Spice, Orcad, Protel, Tango, Eagle, and Ultimate. The most likely transfer would be to a third-party pcb-layout program, and if this is Windows-based. such a transfer is easy.
As I mentioned earlier, there is no library of connectors, such as D15, DIN41612, etc, for schematic drawing so these components cannot be transferred in the net list.
If you have a pcb-program with schematic capture, no problem. You simple add the connectors in the pcb-schematic after net list transfer, and re-process the net list. If this is not possible in your pcb drawing program, you could edit the net list or rat's nest in the pcb program in order to add the connectors before routing, but this slows down what should be a quick and easy operation and is most unwelcome.
Alternatively, you could draw the schematic in the pcb-producing program, then import a net list for simulation in $E D A$, but if the schematic
has connectors already placed a whole raft of error messages appears. You are then obliged to edit the schematic in EDA. Again, for a designer in a hurry this is not welcome.
If the package is intended for commercial use, where the end product is likely to be a pcb design, it needs to produce a schematic complete with connectors ready for pcb routeing - like other simulator programs. The solution to this problem is simple; EDA should have a library volume of connectors.

In summary

In its EDA version, Electronic Workbench now has a sufficiently wide range of features to make it very attractive in many fields of activity as a general-purpose simulator. There are still a few areas where things could be improved, but this is true of most programs.
With a price tag of $£ 795^{*}$, excluding vat, the package is outside the reach of education and amateurs. It is clearly intended for commercial designers. who will be attracted by the good value for money-EDA represents.
Compared with its nearest rivals, the cost/benefit ratio is excellent. On the practical side, you don't have to be a specialist in simulation to produce good results. Any engineer familiar with Windows and already working with bench instruments will be up and running with basic simulations almost immediately.
But one of $E D A$'s best features is that it combines in one package the ability to do 'snapshot' simulations and more sophisticated analysis. The extra depth is there if you want to access it.
For overall speed in achieving results, ease of use, and the intuitive interface, Electronics Workbench EDA scores highly.

[^1]

New - Electronics Workbench EDA Introductory offer - 20\% exclusive EW reader discount

Electronics Workbench Version 5 sets the standard for affordable simulators. Tight integration of its schematic editor, SPICE simulator and on-screen waveforms makes what-if experimentation easy and instant.
The full suite of analyses improves your productivity with insights into the behaviour and stability of your designs. The SPICE 3 engine simulates analogue, digital and mixed a-to-d circuits for exceptional power and accuracy. The extensive model library means you'll have the devices you need.
Since Electronics Workbench can share design files with other simulators and export to PCB layout packages, it fits easily into your design flow.
Until 29 August, Electronics World readers can obtain Electronics

Workbench at the fully inclusive 20\% discount price of $£ 762-81$. This package normally sells at £950-58. Simply mail the coupon to Adept Scientific, together with payment. Adept can be reached on tel. 01462480055 or 01462480213 by fax. Alternatively, write to Adept Scientific plc, 6 Business Centre West, Avenue One, Letchworth, Herffordshire SG6 2HB.

All prices inclusive of VAT

Among Workbench EDA's

many new features is the ability to invoke cursors for setting measurement limits.

Features

TRUE MIXED ANALOG/DIGITAL	YES
FULLY INTERACTIVE SIMULATION	YES
ANALOGUE ENGINE	SPICE 3F5, 32-BIT
DIGITAL ENGINE	NATIVE, 32BIT
TEMPERATURE CONTROL	EACH DEVICE
PRO SCHEMATIC EDITOR	YES
HIERARCHICAL CIRCUITS	YES
VIRTUAL INSTRUMENTS	YES
ON-SCREEN GRAPHS	YES
ANALOGUE COMPONENTS	OVER 100
DIGITAL COMPONENTS	OVER 200
DEVICE MODELS	OVER 4000
OPERATING PLATFORMS	WIN95/NT/3.1.

TECHNICAL SUPPORT IS FREE
PLUS 30-DAY MONEY-BACK GUARANTEE

Using your free Electronics Workbench EDA working demonstration CD

The main software on the CD. ROM is a working demonstration of Electronics Workbench EDA, with sample designs. You can explore the software at your leisure for 30 days before deciding whether to take advantage of the exclusive offer described above. Contact Adept Scientific on 01462480055 for details of other products in the Electronics Workbench range.

Also included on the CD are demonstrations of the first two applications in the Matrix
Electronics Series: Electronic Circuits and Components, an introduction to their principles; and The Parts Gallery, designed to help students recognise the vast
number of electronic components and their associated symbols in circuit diagrams.

To use these demonstrations, insert the CD-ROM into your drive. In Windows 3.1/3.11, select Run from Program Manager's File menu; in Windows 95/NT choose Run from the Start menu. Type x : \readme.wri (replace x with your CD-ROM drive letter) in the dialogue box. The Readme file will direct you to the appropriate installation instructions.

[^2]| Powerful Analyses | |
| :--- | :--- |
| DC OPERATING POINT | YES |
| AC FREQUENCY | YES |
| TRANSIENT | YES |
| FOURIER | YES |
| NOISE | YES |
| DISTORTION | YES |

Use this coupon to order your copy of Electronics Workbench EDA

Please send me Electronics Workbench EDA at the fully inclusive special offer price of $£ 762.81$.

Name \qquad
Company (if any)
Address \qquad

Phone number/fox
Total amount £ ___ p
Make cheques payable to Adept Scientific plc,
or, please debit my Moster, Viso or Access cord. \square

Card No
Card type \qquad Expiry date \qquad

Signature
Please moil this coupon to Adept Scientific, together with payment. Alternatively fox credit cord details with order on 01462480213 or telephone 01462 480055. Address orders and all correspondence relating to this order to Adep Stientific ple, 6 Business Centre West, Avenue One, Lethworth, Herffordshire SG6 2HB. Overseas readers can also obtain this discount but details vary occording to country. Please ering, write or fox Adep S Sienifici.

I/0 port for PCs

Pei An's data acquisition and control system interfaces via a pc's RS232 port. Suitable for a variety of data acquisition applications, the interface has two analogue inputs together with seven digital inputs and seven digital outputs.

This pc peripheral is an RS232 serial port data acquisition/control system that could form the hardware core of virtual instrumentation. As the RS232 serial port is a universal feature of all types of computers, this system can be used with any pc.
The system has two analogue input channels with 12-bit conversion resolution and an input voltage range of 0 to 5 V . There are seven digital input channels and seven digital outputs.
Power for the system is derived from either an external $8-15 \mathrm{~V}$ dc power supply, or by a 9 V battery. The complete system is capable of being housed in a small enclosure. Control software also exists, written in Visual Basic and Turbo Pascal for Windows.
In the first part of this article, details of the hardware and working principle of the system are given. The second part focuses on how to write a Visual Basic software driver and dynamic link libraries (DLLs) for the system.
An outline of the data acquisition/control system is shown in Fig. 1. Figure 2 shows the complete circuit diagram. From the diagrams, you can see that the system consists of five blocks. These are an RS232-to-ttl converter unit, an a-to-d converter unit, a digital input unit, a digital output unit and a power supply.
Operation of each unit is controlled by the pc serially via the RS232 port. The serial i/o architecture greatly reduces the number of i / o lines required in the hardware design. The penalty is that the data transfer rate of the serial port is low relative to that of the parallel printer port.

Powering the design

Power supply to the system can be an external $8-15 \mathrm{~V}$ power supply or a 9 V PP3 battery. A $78 \mathrm{~L} 05100 \mathrm{~mA}+5 \mathrm{~V}$ regulator supplies MAX3232CPE, UCN5810AF and CD4021. A ZAB4040 voltage reference generates the power supply and +5 V reference voltage for the TLC1288 a-to-d converter.

Fig. 1. The data logger/controller comprises five elements: RS232/ttl converter unit a-to-d converter unit, digital input and output units and power supply unit.

RS232 port

A detailed introduction to the operation and control of the RS232 port has been given in the article 'Computer RS232 wireless link' published in the June 1996 issue of Electronics World.
Briefly, an RS232 interface passes data in serial form via 25 -pin D-type connectors. Since all 25 pins are rarely used, a modified version using 9-pin D connectors is now commonplace on pcs.
Figure 3 gives the pin layout and functions of the connectors viewed from the back of the computer.
In this design, the RS232 port is used unconventionally. The pins of the port are used to provide the following functions to the data logger/controller. Data control signals RTS and DTR are two output lines of the RS232 port. They are converted to ttl using ttl-toRS232 transceivers and used to supply serial
data and clock signal to the board, respectively.
RS232 control signals CTS and DSR are two input lines of the RS232 port and read the serial data from the a-to-d converter unit and from the digital input unit, respectively. The tul voltage levels are converted to RS232 levels using an RS232-to-ttl transceiver.
The transmit-data pin, of the RS232 port output, labelled TD, generates a control signal to the board. The voltage level of TD is converted to ttl using a voltage clamping circuit.
All tll-to-RS232 transceivers have an inverting action. The voltage converter using the voltage clamping circuit does not cause inversion.

RS232-to-ttl conversion

The voltage level converter unit incorporates a MAX3232CPE low-power RS232-to-ttl converter chip.

Fig. 2. Circuit diagram of the RS232 data logger/controller.

This chip has similar electrical characteristics to that of the industrial standard MAX232CPE chip but it consumes much less current. It requires only a single-rail +5 V power supply. Internally, this power supply is converted to +10 V and -10 V by a voltage doubler and a voltage inverter.
The MAX3232CPE converts RTS and DTR of the RS232 port, which are at RS232 voltage levels, into ttl. It also converts two lines from the data acquisition/control board, at ttl, into RS232 levels and feeds them to CTS and DSR, Fig. 3. All the converters cause signal inversion.
Another further RS232 output line, TD, is converted into -0.6 V to +5.1 V voltage level using a simple voltage clamping circuit consisting of a resistor and a zener diode. The voltage level is compatible with that required by the on board components.

Digitising analogue signals

The analogue-to-digital converter is an LTC1288 micropower successive approximation type, Fig. 4. It has 12 -bit resolution and requires a 2.7 V to 6 V supply.
Pins 8 and 4 connect to the positive and negative rail of the power supply. Pin 8 also serves as the reference voltage input for the a-to-d converter. Therefore, the supply voltage must be precise, stable and free of noise and ripple.
Typical supply current of the chip is $260 \mu \mathrm{~A}$ at a sampling rate 6.6 kHz with a 2.7 V rail. In standby mode, the supply current drops to several nanoamperes.
(a)

(c)

No of pins	Name	Direction (for pcs)	Description 1	9
1		Prot	-	Protective ground
2	3	TD	Output	Transmit data
3	2	RD	Input	Receive data
4	7	RTS	Output	Request to send
5	8	CTS	Input	Clear to send
6	6	DSR	Input	Data set ready
7	5	GND	-	Signal ground (common)
8	1	DCD	Input	Data carrier detedt
20	4	DTR	Output	Data terminal ready
22	9	RI	Input	Ring indicator
23		DSRD	I/O	Data signal rate detector

(b)

Fig. 3 Pin layout and functions of the RS232 connectors on pcs. (a) 9-pin male socket viewed from the back of the computer

The LTC 1288 has two analogue inputs, at pins 2 and 3 , which can be configured into two input modes - single-ended and differential input mode. In single-ended mode, an input voltage can be applied to each input with respect to the ground. Two input channels can be used in this mode.
In differential mode, an input voltage is applied across the two inputs. Only one input channel is available in this mode. The analogue input leakage current is typically $1 \mu \mathrm{~A}$.
The LTC 1288 communicates with other circuitry through a four-wire serial interface. These four wires are -CS/SHDN, CLK, Din
and Dout. Selection of the chip is carried out by taking -CS/SHDN, at pin 1, low. While the pin is high, the converter is in standby mode. This provides a means of controlling the LTCI 288 if a number of the ics are connected in a shared bus.
Clock input, CLK on pin 7, synchronises serial data transfer and determines conversion speed. At the falling edge of CLK, each bit of an a-to-d conversion result (12 bits) is sent out from Dout on pin 6. At the rising edge of the clock, an input bit appearing at Din is captured into the IC.
Figure 5 shoes how data transfer is initiated
at the falling edge of the chip select -CS/SHDN. Next, the IC looks for a start bit. A start bit is a logic 1 appearing on Din and it is recognised by the LTC 1288 at the rising edge of the CLK input.

Next, a three-bit input word comprising bits 1,2 and 3 , shifts into the IC from the Din input at the following three rising edges of the CLK input. These three bits configure the input mode and the serial data output format.

Table 1. Functions of the interface's control word. Bits 1 and 2 determine the input mode while bit 3 selects the format of the data from the a-to-d converter.

Bit 1	Bit 2	Channel	Channel	GND
SGL/-DIFF	ODD/SIGN	0	1	
1	0	Vin+		Vin-
1	1		Vin+	Vin-
0	0	Vin+	Vin-	
0	1	Vin-	Vin+	

Bit 3 Function

A-to-d conversion bits shift out msb first (B 11 to $\mathrm{B0}$)
$0 \quad A$-to-d conversion bits shift out lsb first (B0 to B11)

Pin out of LTC1288CN8
Fig. 4. Pin out and internal block diagram of the Linear Technology's LTC1288CN8 12-bit serial i/o interface a-to-d converter.

SGL/DIFF=0, differential input, ODD/SIGN=1: IN1 selected, MSBF=1: MSB first
Fig. 5. Timing sequence of the LTC1288 a-to-d converter. After-CS falls the LTC1288 looks for a start bit. After the start bit is received, a 3-bit input word is shifted into the $D_{\text {in }}$ input which configures the IC and starts the a-to-d conversion. After one null bit, the result of the conversion is output from the $D_{\text {out }}$ line.

Data input 7	1	16	VCC
Q6	2	15	Data input 6
Q8	3	14	Data input 5
Data input 3	4	13	Data input 4
Data input 2	5	12	07
Data input 1	6	11	Data lo
Data input 0	7	10	CLOCK (low
GND	8	9	P/-S (Paralle

Fig. 6. Pin out of the parallel-to-serial converter circuit using CD4021.

At the falling edge of the fourth clock, an a-to-d conversion starts. Immediately after this falling edge, a null bit (logic 0) appears on Dout.
At the next 12 falling edge of the clock input, the 12 bits of the a-to-d conversion result appear on Dout. During this time the bits appearing on Din do not have any effects on the converter. Because of this, data bits can be used for driving other units.
Bits 1 and 2 of the three-bit input word configure the analogue inputs. For a selected mode, the converter will measure the voltage between the two channels indicated by Vin+ and Vin-. Bit 3 selects the output data format either as most or least significant bit first, Table 1.
Transmit data line TD is connected to -CS/SHDN via a non-inverting voltage translator. This line is normally low. A low-to-high-then-low pulse applied to the TD line initiates an a-to-d conversion.
After passing through the MAX3232 and being inverted, DTR is connected to CLK. Similarly, RTS is connected to Din. Before being fed into CTS, Dout (pin 6) is inverted by the 3232 .

Digital input

Due to the fact that a RS232 interface only provides a very limited number of input lines, special circuitry is needed in order to read a large number of inputs.
The circuit in this design is a CD4021 paral-$\mathrm{lel}-\mathrm{in} /$ serial-out shift register, Fig. 6. The IC has a clock input, a parallel-in/serial-out control input called $\mathrm{P} /-\mathrm{S}$, a serial data line, eight parallel data inputs and three parallel data outputs.
Firstly, eight bits of data are present at the eight inputs, $\mathrm{D}_{0.7}$. When $\mathrm{P} /-\mathrm{S}$ is set logic high, the 8 -bit parallel input data is loaded into the CD4021 regardless of the status of the clock. Next, P/-S is brought low which terminates the parallel-in operation and starts the serial-out operation.
At the low-to-high transition of the clock input, data bits $\mathrm{D}_{7.0}$ are shift out from pin Q_{7}. After eight clock cycles, the eight-bit parallel data present at the inputs is serially transmitted from Q_{7}
In this circuit, the non-inverted TD line connects to $\mathrm{P} /-\mathrm{S}$, and is normally at logic low. When a low-to-high-then-low pulse is applied to the line, parallel data is latched into the internal register and the CD402I enters the serial output mode.
The parallel external input data DB_{6-0} are fed into the $C D 4021$ from D_{6-0} of the 4021 . Serial data output from the CD4021, Q_{8}, connected to DSR of the RS232 port via the MAX3232CPE

Digital output

The digital output unit uses a UCN5810A tenbit serial-input latched driver, Fig. 7. The maximum voltage to the logic circuit is 15 V . Quiescent current when all outputs are off or on is typically $200 \mu \mathrm{~A}$.
The device has ten bipolar npn open-collector drivers. Each is capable of sourcing 15 mA

and sinking 40 mA with a maximum control voltage of 60 V . It also has one c-mos data latch for each driver, a high speed ten-bit cmos shift register and c-mos control circuitry.
Control of the device is achieved through four c-mos compatible lines, which can be directly connected to c-mos output lines. If they are connected to ttl output lines, pull-up resistors should be used.
Referring to Fig. 8, serial data present at the input is shifted into the shift register on the low-to-high transition of the clock. On the next clock pulses, the registers shift data towards the serial data output, Dsout.
Information presented at any register can be transferred to its respective latch when the strobe is high. The latch continues to accept new data as long as the strobe is high.
At the high-to-low transition of the strobe, data is latched. When the output enable input is low, all of the output buffers are switched off without affecting the information stored in the latches or shift register. When this input is high, the outputs are controlled by the state of the output of the latches.
Figure 3 shows how the device is used in the present circuit. Uninverted transmit-data line TD forms the strobe signal. It is normally low,

Fig. 8. Timing sequence of the UCN5810. Serial data present at the input is transferred to the shift register at the low to high transition of the CLOCK input. On successive clock pulses, the registers shift data towards the serial data out. Information present at any register is transferred to the latch when the STROAE is high. When BLINKING input is high, the output drivers are all turned off. If it is low, the outputs are controlled by the state of latches.
which maintains the status of the parallel outputs previously latched.
When TD goes high, data in the shift registers are clocked into the output registers. After passing through the MAX3232 and being inverted, DTR becomes the clock signal. Similarly, RTS is connected to the Din to supply the input serial data. The data input rate for this section could be as high as 3.3 MHz .
Each used digital output is pulled up by a $2.2 \mathrm{k} \Omega$ resistor.

Timing details

Timing of the circuit is shown in Fig. 9. A complete cycle starts when TD goes high from its normally low state. When it transmits data byte 0 , the lines goes high and stays at high for a short period of time.
At the rising edge of TD, two actions take place. One is that data in the intemal shift registers of the UCN5810AF are updated to the output latches and appears at the outputs OUT $_{1-8}$. Note that the data in the shift regis-
ters were loaded in the previous cycle.
The second action is that the input parallel data to the 4021 is loaded into the internal shift registers. The eighth bit of the input data appears automatically on Q_{8}
On going low, TD latches data in the UCN5810AF and sets the CD4021 in serialout mode. This low-going transition also initialises a conversion cycle of the a-to-d converter. Next, 16 positive-going clock pulses are applied to the $U C N 5810$ a-to-d converter, and CD4021 through the DTR line.
The first four pulses shift in a four-bit control word to start the converter, configure the analogue input mode and select serial data output mode. At the low-to-high transition of each clock pulse, parallel data presented to the inputs of the CD4021 is shifted out serially at the output, Q_{8}. This is read into the pc via the RS232 DSR line.

After four clock pulses, lines DB_{6-3} of the input data are read into the computer. These clock pulses also shift data bits into the shift registers of the UCN5810, but these bits are not latched to the output latches.
There are 12 more clock pulses following. At each falling edge of these 12 clock pulses,
each bit of the analogue-to-digital conversion result is shift out from $D_{\text {out }}$ pin of the LTC 1288 and is read into the computer via the CTS line of the RS232 interface.
At the rising edge of the first three clock pulses, the DB_{2-0} of the input data are shift out and read into the pc via the RS232 DSR line. At that stage, all the bits of the digital input data are read into the pc. These bits is combined into a single byte.
During the period of these 12 clock pulses, the data presented at the D input of the TLC 1288 do not have any effect on the converter. They are used instead to shift the data into the UCN5810.

Because only seven outputs are used for the UCN5810, only the last seven clock pulses are used to shift the data in. Serial bits are shift in at the low-to-high transition of the clock pulses with the most-significant bit arriving first.
Shifted data bits stay in the shift registers and are latched to the output latches at the next read/write cycle when the strobe line goes from low to high.
Figure 10 shows my prototype and demonstrates how compact the design can be.

Using the system

This data acquisition and control system can be used in various interfacing applications. By attaching suitable sensor circuits, temperature, pressure, humidity, magnetic field intensity, etc. can be read into the computer via the analogue inputs.
Some sensors already have a digital output format. In this case, the sensor can be connected directly to the digital inputs. The output can control various devices such as stepper motors and heaters etc. Obviously, additional power driver circuits will be needed for such purposes.

Although versatile, this data logger/controller system is not much use in applications where speed is important. I connected it to a P90 computer and I found that the rate of a-to-d conversion and digital input output is around 3.5 kHz .
Software I have developed provides useful features such as automatic data logging, saving data onto disk, plotting data on the screen and controlling the data outputs. Windows software for controlling will be outlined in a future issue. For more information, see the Technical support panel on the next page.

Turbo Pascal for controlling data logger

The Turbo Pascal 6 program listed here has four basic functions, namely RS232(), Configure_RS232(), AD_converter() and Inputdata(). They control all the operations of the RS232 data logger/controller and can be called in user's Turbo Pascal 6 programs. Source code and the EXE file are available on floppy disks from the author.

RS232(x:integer):integer: Variable x can be $0,1,2,3$ or 4 . This function is concerned with the port address of the COM ports installed on your computer. RS232(0) returns the number of installed RS232 ports. RS232(1) returns the port address of COMI; RS232(1) returns the port address of COM2, etc.

Configure_RS232(RS232_address:integer):integer;

RS232_address needs to be supplied to this function. It configures the RS232 port specified by RS232_address to a mode required by the RS232 data logger/controller.

AD_converter(RS232_address, Mode,

Output_byte, Other:integer): integer

This code reads data from the a-to-d converter and latches Output_byte to the seven outputs. The function returns the a-to-d conversion result in integer. Value RS232_address should be supplied. Mode is $1,2,3$ or 4 to select the input mode of the A-to-D converter. Output_byte is an integer between 0 and 127 while Other is used for future expansions.

Inputdata(RS232_address:integer):integer

This function reads the seven inputs into the computer. RS232_address should be supplied.

Data logger program list, RS.PAS

Coopyright Dr Pei An, 2/5/97:
DTR (bit 0 of 04 offset register of UART, modem control): Clock signal, inverted in the circuit by RS3232
RTS (bit 1 of 04 offset register of UART, modem control) : Data out signal. inverted in the circuit by RS3232
TD (00 offset register of UART, data register): -CS signal, not inverted (normally low)
CTS (bit 4 of 06 offset register of UART, modem status) : serial DSR (bit 5 of 06 offset register of UART, modem status): serial
digital data input inverted in the pc GND (ground))
uses dos, cre;
dummy, COM_number, RS232_address, out_byte: integer;
Function RS232(x: integer) :integer:
Universal auto detect COM base address
$\$ 0000$: $\$ 0400$ holds the printer base address for COM1 $\$ 0000$: $\$ 0402$ holds the printer base address for COM2 $\$ 0000: \$ 0404$ holds the printer base address for COM3 \$0000: \$0411 number of parallel interfaces in binary
format)
var
begin
number_of_COM: =mem $\{\$ 40: \$ 11$]; \{read number of parallel ports\} number_of_COM: =(number_of_COM and $(8+4+2))$ shr $1 ;$ COM1: $=\overline{0} ; \overline{\text { COM } 2:=0 ; ~ C O M 3: ~}=0 ;$ COM $4:=0$;
COM1 : $=$ memw $[\$ 40: \$ 00]$; \quad (Memory read procedure \}
COM2 : =memw $[\$ 40: \$ 02]$.
COM3: $=$ memw $[\$ 40: \$ 04]$
Com 4 : $=$ memw $[\$ 40: \$ 06$]
case x of
RS232: =number_of_COM
RS232: $=$ numb
RS232:
COM1
RS232: =COM1;
RS232: =COM2;
RS232: $=$ COM3
RS232: $=$ COM4
nd:
Function Configure_RS232(RS232_address:integer) : integer
(Configure RS232 serial data format, Baud rate: 115200, Data length: 5, Stop bit: 1, no Parity check. To achieve 115200 Baud rate, a frequency divsor must be loaded into the UART\}
var
ij:integer;
begin port[RS232_address]: $=0$ port[RS232 address]: $=0$; port.[RS232_address+3]: 128; (Loading serial data format, first bit of the
register is 1$\}$
port [RS232_address+0]:=1; [LSB of the divsor is 1 \}
port[RS232_address +1$\}:=0 ; \quad$ (MSB of the divsor is 1 , port[RS232_address +3]: $=0 ;$ (Load divsor)
ffer is end;
delay (100)
Func
unction AD_converter(RS232_address, mode, outputdata,
RS23s: integer) : integer
mod2_address, Base address of the selected RS232 port)
mode: select analogue multiplexier mode
Mode 1 , Single mode, Channel 0
Mode 2 , Single mode, Channel 1
Mode 3, Differential mode, Channel 0 positive, Channel 1 nagative Mode 4, Differential mode, Channel 1 positive, Channel o nagarive outputdata: digital output word (DBO to DB6 bit, 7 bit in total)) (others: for further expansion\} var
ii, Single_differential, Odd_sign, dummy_byte:byte:
Io_data: array[1,.12] of byte;
data:array[1.:12] of integer;
binary_weight, dummy:integer;

Fig. 11. Assembled
RS232 data
logger/controller.

```
rocedure delay;
A short delay)
\A s
begin for ij:=1 to 6 do ij:=ij;
```

rocedure AD_control (datax:byte)
(procedures for controlling A/D converter, serial-in latch and paralle-serial shift register)
var

```
begin
```

 port[RS232_address +4]:=1+2*datax; \(\{C L K=0\), Dout=datax
 start bit=1] $[P S 232$, ddress 44) $=0+2 *$ datax. (CLK $=1$, pout=datax,
start bit is clocked into the A/D converter)
polay; $\{$ S232_address+4\}:=1+2*datax; $\{$ CLK=0, Dout=datax
delay;
end; delay:
procedure Configure mode
Assign values for Odd sign, Single_differential)
(Mode 1, Single mode, Channel 0
Mode 2, Single mode, Channel 1 , 0 positive, Channel 1 nagativ Mode 3, Differential mode, Channel 0 positive, Channel 1
mode 4, Differential mode, Channel 1 positive, Channel 0 nagative)
begin
case mode of
1: begin Odd_sign:=1; Single_differential:=0; end;
3: begin odd_sign: $=0$; Single_differential: $=0$; end;
4; begin Odd_sign: $=1$; Single_differential: $=1$; end;
$\begin{aligned} & \text { 4; begin Odd_sign:=0; Single_differential:=1; end; } \\ & \text { else begin Odd_sign:=1; Single_differential: }=0 \text {; end; }\end{aligned}$ end;

nd

Procedure configure_output:
Assign IO_dataliil according to OUTPUTDATA, ii=1 to 12 , OUTPUTDATA should be 0-127)

```
ij:integer;
begin
    for ij:=1 to 4 do Io_data[ij]:=0;
    10_data(5):=1-Outputcata and 64 shr 6
    IO_data[6]:=1-Outputcata and 32 shr 5
    IO_data[7]:=1-Outputdata and 16 shx 4
    IO_data{8]:=1-Outputdata and 8 shr 3;
    IO_data[9]:=1-outputdata and 4 shr 2;
    IO_data[10]:=1-Outputdata and 2 shr 1
end;
egin
configure mode:
    configure_output
    Binary_weïght:=4096;
    port[RS232_address]:=0
    TD sends data. -CS goes low to high briefly then back to low)
    repeat delay until port(RS232_address+2] and 1 = 0;
    for ii:=1 to 120 do delay;
    AD_control(0); (Start}
    Digital_data[7]:=(1-(Port[RS232_address+6) and 32) shr 5)
    AD_control(Single_differential); {)
    Digital_data[6]:=(1-
    Digital data[S]:=(1-(Port[RS232_address+6) and 32) shr 5)
    AD_control(0);
```

Digital data [4]:=(1-(Port[RS232 address+6] and 32) shr 5):
for ii:=1 to 12 do
for ii:
Binary_weight:=binary_weight div 2;
Port[RS232_address +4]: $=0+2 *$ IO_datalii]; $[C L K=1$
Dout=Datax[ii)
Port(RS232_address +4) : $=1+2 *$ IO_data[ii]; [CLK=0
Dout=Datax[ii])
delay;
dummy_byte: $=($ Port $($ RS232_address +6$\})$
datalii]:=(1- (dumny_byte and 16) shr 4) * Binary_weight
shr 5);
end;
for il:=1 to 12 do dumny:=durmy+data\{ii\};
AD_converter:=dummy;
Dummy : $=0$;
Binary_weight:=1:
for ii:=1 to 7 do
begin
dummy: =dumny+digital_data[ii]*binary_weight Binary_weight:=binary_weight*2
end;
Port(RS232_address+7]:=durnuy; \{input digital data is end:
Function Inputdata(RS232_address:integer): integer
(Read digital input data (7-bit) from the scratch-pad register offset 07 of the UART)
var
ij:integer;
for ij:=1 to 10 do $i j:=i j ;$
Inputdata: $=$ port $[R S 232$ _address+7];
end;
(Main program)
elrscr:
writeln("TP6 software driver for the RS232 data
logger/controller')
writeln('Number of COM port installed:', RS232(0)),
readl write 'select
RS232_address: =RS2 32 (COM_number)
writeln('RS232 address: - RS232_address) :
dummy: =Configure_RS232 (RS232_address);
repeat
Writeln('A/D converter configuration, dual channel'):
write ('Input output byte (0-127, 255 to guit): ');
readln(out_byte):
dumny: $=A D$ converter (rs232_address, 1 , out_byte, 0) ; writeln('Voltage at channel 1 :
`, AD_converter (RS232_address, 1, out_byte, 0)/4096*5. 02:5:3) dumny: =AD_converter(RS232_address, 2 , out_byte, 0): writeln('Voltage at channel 2:
AD_converter(RS232_address, 2, out byte, 0)/4096*5.02:5:31. writeln('Input digital byte : ', inputdata(RS232_address)) writeln('Press Return to continue..."];readln;
writeln
until out_byte $=255$:
end.

Technical support

The i/o system described here is available in kit and in assembled forms from the author together with the Visual Basic source code, DLLs and executable files Please direct your enquiry to Dr Pei An, 11 Sandpiper Driver, Stockport, Manchester SK3 8UL, U.K.
Tel/Fax: +44-(0)161-477-9583.

electionicesWEEKIY

CAREERS

CONNECT WITH THE UK'S NO 1 READ FOR ELECTRONICS PROFESSIONALS ON THE INTERNET

- Daily News Service this section is updated daily from news sources around the world. So keep coming back to keep abreast of developments in the global electronics industry.
- Technology Updates
- Fully Searchable online

TOOLKIT database to Electronics Weekly's high quality editorial

- On-line Jobs service and careers advice - see the latest jobs on offer

- Instant Feedback your chance to speak to other engineers

Sponsored by:

Point your browser at http://www.electronicsweekly.co.uk/

> Rod Cooper describes different methods for translating the CAD prototype layout you see on screen to copper tracks on a pcb.

Designing your pcbs with the aid of computer software offers some unique benefits when it comes to transferring the track layout to copper. One benefit is the ability to produce files for photoplotters and numerically-controlled drill machines.
Most small firms or individual designers using a budget-price computer-aided design program will not be contemplating making their own pcbs in production quantities, so for many designers, the route to making a pcb will end here when they turn over these files either to a pcb manufacturer or to one of the many Gerber photoplotter bureaux.
Prototyping, on the other hand, is a very different matter. It does not make sense to have your autorouter turn out the artwork for a pcb in a flash if you then have to wait for hours or days for some third party to make up a prototype pcb for you, especially if the original design has to be corrected two or three times due to mistakes or last-minute design changes.

Prototyping circuit boards

The alternative is to make your own trial boards.
For many, this is not a likable prospect, because the conventional ultra-violet methods that most readers will be familiar with are messy, slow, and give uncertain results, but there are several techniques for making the process more amenable which are discussed here, some of which are specific to pcb-CAD.

It must be emphasised that none of these methods will give results quite as good as those produced by a photoplotter, but for prototyping they can be very acceptable.

Printing versus plotting

The starting point for prototyping is usually a print on paper or a transparency made on the pc's printer or plotter. This must have a dense,

Examples and results of various ways of applying of etch resist

An image printed onto PnP with a laser printer.

After being passed through a pouch laminator, the PnP sandwich is peeled off by hand.

Appearance of copper board board with PnP image before etching. Note the the edges of the track are not quite so clear as those from the pen plotter.

Close-up of PnP-printed board after etching reveals a few spots of unintentional copper and a slightly ragged edge, caused by toner contamination during laser printing.

Plotting with a 0.3 mm pen directly on to 0.35 mm copper board. Note that the board is clamped on the left-hand side and held flat on the right using masking tape - not the usual magnetic strip.

Pen-plotted tracks before etching. Compare this with the quality of the board prepared using PnP.

Plotter-drawn pcb after etching demonstrates that outline results are as good as they were with PnP, but there are no small copper spots caused by toner contamination.

Results of plots made with various inks intended for overhead projector work are shown in a), b) and c). Very poor etch resistance is indicated. Plot d) was produced using proper etchresistant ink. Not shown is a further plot produced using waterproof Indian ink: the copper was completely etched away.

Fig 1. Dot matrix printers and, to a lesser extent bubble jets, tend to cause banding on the print out, with light and dark streaks running in the direction of the head travel.
even, image if it is to be successful. Printer artwork that looks fine to the naked eye is often exposed as being riddled with defects when it comes to etching. Etching reveals all. However, good artwork is not difficult to achieve in practice if a few basics are observed.
Suggestions are sometimes made in CAD manuals that dot-matrix impact printers can achieve the necessary standard, but these printers suffer from the banding effect, Fig. 1, and lack of density. One school of thought says that with impact printers, the density problem can be temporarily solved by putting in a new ribbon. But another school says that doing this results in loss of definition and accuracy. They are both right, so for pcb-CAD the dot-matrix impact printer is in an impossible position.
Bubble-jets perform better, but they can also suffer banding and the definition can be less than acceptable. Bubble-jet transparencies are not always a great success because the ink is not inherently compatible with plastic film, although big strides have been made recently to improve this.
It can be difficult to see a break in a track caused by banding on a 1:1 bubble-jet print or transparency with the naked eye, but the break will be faithfully reproduced on etching. Such breaks can be seen under $10 \times$ magnification, so it pays to look very closely even when the print seems fine.
In addition, ink bleed on bubble-jets can give spidery ragged edges to tracks and pads even when using proper ink-jet paper. Ink bleed is a potential source of shorts on the finished pcb if tracks are closely spaced.

Bubble-jet tip

A much better method with a bubble-jet is to make an enlarged plain paper print of the artwork, then reduce it to the right size with a
photocopier onto overhead projection film or the PnP material described later
Most CAD programs offer an enlarged-print option for this very purpose. The image so produced is usually more crisp and dense than the original if the photocopier is well-maintained, and this technique nearly always gets round the shortcomings of the bubble-jet.

Be warned, though, that most photocopiers do not copy accurately. They need to be regularly adjusted for separate dimensional accuracy in width and breadth due to wear and tear on the mechanical parts of the optical and the paper transfer systems. Copier service engineers carry the necessary charts and have the adjustment procedures at hand, but in my experience, they rarely use them because the adjustments are time consuming. If you want to use a copier for this or other pcb processes, you must get it calibrated.

Best results from plotters

In contrast to dot-matrix printers, the image made by some laser printers can be sufficiently dense and well-defined for use as pcb artwork.

However, the best artwork in my experience is produced on a flat-bed pen plotter, Fig. 2. There are special plotter pens and inks for producing ultra-deep black images on both plotter paper and plotter transparency film. Such a pen is the Staedtler 757 PL type, which has a tungsten carbide tip. This pen has a groove cut in it for increased ink flow, which improves image density.
These pens are refillable and can produce lines as fine as 0.13 mm (about 0.006 in), with excellent definition when the right speed ($<25 \mathrm{~mm} / \mathrm{s}$) and downforce $(0.2 \mathrm{~N}$ to 0.3 N) is used.
The recommended ink for the pen mentioned above is quick-drying Indian ink Staedtler type 747T, for use on glossy plotter paper or matt polyester film. It is tempting to use other sorts of pen such as sealed fibretipped and roller ball type because they are much cheaper and the results can be acceptable, if not quite as good.
When a pen plotter is used with transparent material the artwork is often good enough to be used for a direct $1: 1$ contact print. But if you want even better definition - for surfacemount boards with fine tracks and close spac-

Fig. 2. Actual size of a surface-mount board showing that plotters are capable of fine detail.
ing for example - plotters can be used to print an enlarged image onto plain paper for subsequent reduction on a copier. Most plotters can handle A3 format paper.
Regrettably, none of the Windows programs reviewed had plotter drivers that performed well when used with Windows 3.x. For penplotting pcb artwork, control is needed over pen speed, width, pen selection and preferably down-force as well. Sometimes, a fifth variable, namely the pen acceleration rate, can also be adjusted.
Unfortunately, even those Windows programs that had their own driver in place of the Windows 3.x driver did not offer the basic four adjustments. Some Windows drivers were erratic in operation and/or very slow to load programs. In contrast, the plotter drivers in the dos programs all performed adequately.
The best was that of Ranger 2 , which offered all four basic adjustments in an easy-to-use full-screen menu, but Easytrax, Traxmaker, EasyPC and Proteus all gave good results.
My guess is that the standard Windows 3.x plotter drivers were not intended for CAD use. I am informed that in Windows 95 the plotter drivers are much improved.

Which pen size?

Confusion may arise over units of measurement used for plotters. Plotter pens are sold in metric sizes and are often marked with just a number, 0.3 for example, which indicates a nominal width of 0.3 mm .
But many pcb-Cad programs still use inches as their primary units. As a result, a pen width may appear on-screen as a bald figure of 13 , it being taken for granted that this refers to 13 thousandths of an inch, or 13 mil. This actually corresponds to a 0.3 mm pen.
Because of this mixture of units, you need to read the CAD manual carefully. Certain programs, such as Proteus, offer a choice between metric and imperial units

Photocopiers for pcb work

The following photocopiers are relatively oil-free when used with a microsleeve pressure roller;

Make	Mita	Triumph-Adler	Utax	Nashua
Type	DC1205	TA 2012	C105	8112
	DC1255	TA 2212	C106	8112 RE
	DC1656	TA 2216	C144	3916

On these particular machines, it is a simple task to replace the old roller.

Arranging the usual serial connection for plotters can be very time-consuming and it is much easier to go for a parallel connection if this is physically possible. I used a parallel connection for the plotter tests on the programs reviewed.

Transferring artwork to copper

The conventional process of making a contact print using ultra-violet exposure and pre-coated photosensitive copper-clad boards, and then developing the image in a chemical bath, is messy and slow and the results are far from guaranteed. With alkali developers, skin and eye protection is necessary.
However, the main objection is that the results are so uncertain. Ultra-violet exposure rates vary from batch to batch and between manufacturers of the sensitised boards. As a result, exposure is hit and miss. You can perform a timed test beforehand on a spare piece of laminate each time you buy some material, but this is very time-consuming.
Development is also a randomly variable process so it's mainly a matter of luck if a board turns out well without prior experimentation. The penalty for incorrect exposure and development times is a wasted board, which can be expensive. You never know for sure if the board is sound until the etch is over. If it isn't sound, you have to use up even more valuable time repeating the process.
It is not surprising that this part of prototyping pcbs is disliked. Unfortunately, the ultra-violet method is the only process on offer from the major suppliers of materials such as RS and Farnell. But there are viable alternatives.

Alternatives to ultra-violet

A few years ago it was realised that laser printers and photocopiers had good potential for assisting the transfer of artwork onto materials other than paper. This has led to products designed specifically for use with pcb-CAD.
In one process from the DynaArt Designs company, which takes advantage of this abil-

Etching tips

With most of these prototyping methods, the etch resistance of the artwork is not as good as that on the professionally-made product.
Results will be disappointing if some basic steps are not taken. The first rule is that the faster the etch, the better the performance of the artwork material, whether it is plotter ink or $P n P$. If the etch takes longer than 20 minutes it is too slow. For a fast etch, the solution must be heated, but not too much. For ferric chloride, $35^{\circ} \mathrm{C}$ is about right and $45^{\circ} \mathrm{C}$ too high.
Secondly, the etch process must be even. If the solution is not agitated constantly then the copper at the board's periphery will be etched first, then over-etched to failure long before the centre of the board is properly etched. This is probably the main cause of complaint with the prototyping systems described.
You cannot get away with the occasional stir; constant agitation is essential and the only way to get consistent good results is by mechanical agitation. This could be provided by an adapted electric food mixer with plastic paddles, a low-voltage aquarium aerator pump blowing bubbles of air through the solution, or motorised tilting of the etch bath. My own favoured method is the adapted food-mixer as this gives good agitation and also aerates the solution, which increases the efficiency of etching. It is also cheap and readily-available.
Needless to say, if you leave a mechanically-agitated system unattended, a timer alarm is vital.
ity, the artwork is produced on a special film fed into the pc's laser printer. This special film with the artwork impressed on it is then simultaneously heated and pressed onto the copper board material either with a domestic iron or a pouch laminator.
On cooling, and after soaking in water, the film is peeled off, and the black toner outline of the artwork stays on the copper. The board can then be etched in the usual way.
The concept of a print from the pc to a laser printer and then straight to copper is attractive as it is so direct. Such a film could also be used to transfer the artwork to the copper indirectly with a photocopier, using a plain paper print of the artwork as the original and feeding the special film through the copier's by-pass tray. The big advantage here is that a largesize original could be reduced to actual size to improve definition.

Technical support - suppliers

Plotter pens - Steadtler (UK) Ltd, Pontyclun, Mid Glamorgan CF7 8YJ, tel. 01443 237421 (pens can be ordered through Steadtler retailers).

Art toner cartridges, laser transfer film, DynaArt Designs, 3535 Stillmeadow Lane, Lancaster, CA 93536-6624 USA, tel. (001) 8059434746

Thin copper laminate (in bulk) Crossley \& Bradley, Ulnes Walton Lane, Leyland, Preston PR5 3NB, tel. 01772452236.

Pouch Laminators suitable for use with PnP film, Anmron Ltd, 49 Gorsty Hill Road, Rowley Regis, Waley, West Midlands, tel. 01215597738.

Etch-resistant plotter ink, PnP film, thin pcb material (small quantity) Verkonix Ltd, PO Box 6145, Sutton Coldfield B73 5PX, tel. 01213545569.

The process depends on the fact that toner for laser printers and copiers is usually based on powdered acrylic styrene polymer formulas. These melt at around 120 to $150^{\circ} \mathrm{C}$ to form a gum with good adhesive properties. The actual melting point depends on the brand.

What to watch out for

There are a few snags with this process. First, the photocopier or laser printer has to be in perfect condition. Any fading of the image means that tracks are etched where they should not be, and any defects in the photocopier, such as drum scratches, drop-outs and streaks, are faithfully copied onto the artwork.
Secondly, ordinary toner is not all that etchresistant and this property varies considerably between different manufacturers. It has to give a dense black uniform coating to the artwork for good results and this partly comes back to the condition of the photocopier.
Unfortunately, the modern trend away from selenium/arsenic photoreceptors and towards the organic type does not help. The selenium/arsenic drums could be relied on to give good, black, toner-rich images with excellent contrast. The organic drum on the other hand is inclined towards producing shades of grey.
Although special dense 'art' toner cartridges have been put forward for laser printers to solve this difficulty, this means diverting the laser printer away from its basic function as a piece of office equipment. But if you want to use this process, my advice is to use one of these dense cartridges.
DynaArt supplies a complete system - the film, art-grade toner cartridges for laser printers, and suitable laminators.

Fig. 3. Silicone oil contaminates the image side of material such as paper and other media put through the photocopier.

For better results...

A material called $P n P$ gets round some of these problems by using the toner only as a glue for a more substantial etch-resistant overcoat. This material comes in flexible blue plastic sheets the same thickness as standard $80 \mathrm{~g} / \mathrm{m}^{2}$ copier paper, and is designed to be fed through either a laser printer or photocopier just like paper.
After going through the copier or laser printer, the image of the artwork appears in black toner against a blue background. The sheet is then pressed image side down onto the copper board via a pouch laminating machine or by careful use of an domestic iron. The application of heat and pressure causes the toner to fuse to both copper and the blue $P n P$ coating. When the sheet of $P n P$ is removed by peeling it off, the artwork remains stuck to the copper as a deep blue image.
Etching can then follow in the normal way. Because the toner acts merely as the adhesive for the etch-resistant overcoat, the etch-resistance of the image is not dependent on toner type or image quality. Good results can be obtained on the average photocopier or laser printer - although scratches on the copier drum etc. will still be reproduced.
Laminating machines are designed for use with thin card, so if you choose this method you will need very thin copper board in order for the sandwich of $P n P$ and pcb to pass through the machine. With some laminating machines specially adapted for the purpose, slightly thicker board can be used.
Control of the laminator's speed and heat is essential to produce the right amount of toner fusion and thus a satisfactory transfer. In the trade, the speed setting is called the 'dwell time'. Some experimentation will be needed with the settings to get the right dwell time for a particular laminate thickness.
If you are using thin copper board, it has to
be bonded onto a plain grp board to make a board of normal thickness, compatible with pcb components - Nylon stand-off pillars for example. Fast-setting epoxy adhesive is suitable for this. It is better to increase the board thickness before etching, because thin boards tend to warp badly in aqueous solutions.
For prototyping, reasonable results with $P n P$ can be obtained with just a little skill using a domestic iron. As a rough guide, if you can iron a shirt, you can use $P n P$ down to track widths and spacings of $30 \mathrm{mil}(\approx 0.7 \mathrm{~mm})$.

If you can iron a shirt...

With an iron, you are not restricted as you are with a laminator by the overall size of board it can handle. In addition, you can use standardthickness pcb material. However, laminators give much more consistent, reproducible results.
There are snags to $P n P$. Although the literature claims that copper tracks less than 5 mil can be reproduced, I have found that some considerable skill is needed to achieve this with an iron, so a laminator is more or less essential at this scale.
Secondly, many laser printers and photocopiers use silicone oil as a release agent on the hot roller of the fusing section. Fig. 3 shows how this oil is applied. On some machines, there is no oil felt, but the lower roller is impregnated with silicone oil during manufacture to produce the same effect.
The purpose of the oil is to stop the paper sticking to the upper hot roller, which usually has a ptfe coating to assist this process. Inevitably, some oil comes off on the image side of the paper. The film of oil is so thin that it is not normally noticeable on plain paper. With $P n P$ and similar products like DynaArt's however, the presence of even minute quantities of such a release agent has a big effect on how well the image sticks to the copper laminate.
The best photocopiers for this use have no oil at all in their fusing sections. On these machines, the hot roller relies solely on the ptfe coating to prevent sticking. The pressure roller has a thin, non-stick, coating called a Microsleeve*, instead of being impregnated with oil. A short list of some of these machines is given later.
By using this system, prototype boards can be made in a fraction of the time of the ultraviolet method, without the mess of developer chemicals. Indeed, as most photocopiers can turn out 20 or more copies a minute, the $P n P$ system is so fast it could be used for a short production run if you have a pouch laminator as well. There is no waste of copper board at the imaging stage as there is with the ultra-vio-
*Microsleeve is a trade mark of Katun UK Ltd. The Microsleeve roller is available from Amron and some photocopier service firms.
let process; if you don't like the artwork for any reason you can wipe it off with acetone and within minutes you can imprint a fresh image.
The other benefit of using these photocopierbased materials is that published pcb layouts can be photocopied straight from magazines and books.

Plotting on copper

A flat-bed ploter provides the most direct method of all for getting the artwork from the CAD screen onto the copper laminate. It is also has the lowest production costs, but the capital outlay is higher.
The pens with grooved tungsten-carbide tips mentioned earlier are suitable for ploting onto a copper surface, but they are expensive, at about $£ 50$ each. If you use a piece of copper board the correct size for your finished board but smaller than the plotter's set area, of A5 or A4, etc, any mis-plot may result in your expensive pen tripping over the edge of the board and breaking.
It always pays to make several trial plots on paper or card first to reduce the risk. Alternatively, you can use a much larger piece of laminate so that the pen never comes anywhere near the edge.
It is also highly desirable to have control over the pen down-force. These pens have a rating of 0.1 to 0.3 N . The plotter's default value may be alright for plotting on paper and film, but far too high for copper. On thin laminate, the impact will dent the surface. This may even appear as a bump on the reverse side.
Of the programs reviewed ${ }^{1}$, only the Ranger 2 plotter driver provided a control for pen down-force. However, if your chosen CAD program has no downforce adjustment and you don't object to modifying your plotter, it is not too difficult to put a variable resistor in series with the pen solenoid circuit to control down-force directly. I have done this on my own plotter.
Achieving the best resolution on a plotter0.001 in on most machines - depends greatly on the skill of the operator in getting the right set-up. For example, if you are using standard thickness laminate, the plotter pen will be cocked up at an angle and the ink will flow unevenly. Etching will then quickly reveal where the ink is too thinly applied.
Using thinner laminate and putting a piece of self-adhesive packing on the pen holder to make it upright will cure this without upsetting the mechanical configuration of the plotter too much. I use 0.35 mm thick laminate and this technique works fine. Some adjustment of down-force may be necessary to compensate for the new working angle of the pen.
It is sometimes stated that pens used for plotting on overhead-projector film with oil or spirit based inks have etch resistance. This is only partly true.

COMPONENTS

Results of ink etch-resistance tests

In the last figure in the panel, I tested three such inks from well-known suppliers. These are labelled a), b) and c). As a control, I plotted in a waterproof Indian ink. To challenge the properties of the inks the test artwork was given a fine spacing, a couple of thin tracks and a solid area.
As the results of etching show, none of these inks had good etch-resisting properties. The waterproof Indian ink had no etch resistance at all. In contrast to this, board d) shows the test repeated with an ink designed specifically for etch-resistance. The results with this ink were consistently excellent.
One thing a plotter can do which printers and photocopiers cannot is to overcoat the artwork several times. Plotters can easily repeat the same artwork very accurately if the copper laminate is kept in exactly the same place on the platen. The first plot could be made in an ink with good adhesive properties on copper, which could be
foliowed when the first ink had cured with an ink that had good etch-resistance, and so on.
For the second pen, careful choice of nib material is needed to avoid damage to the first coat. A metal pen nib will scrape and tear the first coating, so a softer nib is needed. Control over the pen down-force then becomes even more important. Final artwork produced by this method is highly resistant to etching solution.
Pen ploters have considerable potential for plotting artwork in conductive ink. This could be very useful for prototyping smd boards, as Fig. 2 shows. Clearly, pen plotters are sufficiently accurate for surface-mount work, but it certainly helps the plotter if the autorouter has a track-spreading option to avoid closelyspaced continuous tracks. The Specctra autorouter is the only one of those reviewed that could do this.
Components are glued onto the pads with conductive epoxy (RS 496-265 for example). However, I have found no no commercially
available conductive inks or pens that have been developed for plotter use, although there are conductive inks on the market in pens for hand application such as the Circuit Works 2200. Perhaps this will change in the future if there is a demand
Pen plotters are expensive compared to printers, but they are more versatile and their running costs are low - a little ink goes a long way. You need only the bare copper laminate, which is much cheaper than either photosensitive board or $P n P$. In my experience, ploters are inherently more reliable than laser printers, having fewer moving parts to go wrong, and no need for heat or pressure devices.
As with the $P n P$ method, there is no waste of copper board if you make a mistake - the artwork can be removed with acetone and the laminate re-used immediately. On the other hand, as plotting is slow compared to $P n P$ it is unlikely to be useful for a short production run.

Read ten reviews of circuit design packages for just $£ 12$

Includes new performance

 comparison tableNot too long ago, the idea of owning the hardware and software required to run a CAD program for pcb design was just a dream for many small companies and designers. All this has now changed, with some really useful small programs appearing on the market at reasonable prices.
But if you are going to buy such a system, how do you sort the sheep from the goats?
Advertisements for the products, although useful and necessary, by their very nature tend to tell you the best aspects and leave out the worst. In CAD, any serious program shortcomings will have you seething with rage in a very short time.
Rod Cooper's set of reviews simply offers you a short-cut for the choosing process, and for those new to this type of CAD, the terminology is explained and some of the pitfalls highlighted.
In this series of reviews, Rod reports deficiencies in the programs in a neutral light. This is important, because a shortcoming which is vital to one designer may be insignificant to another. It is up to the end user to assess the importance of any reported deficiency from the evaluation disks. But you will find that the programs reviewed here are the best of the bunch and strong criticism rarely needed.
Although new programs appear from time to time, the market has settled down as far as style
and the methods of operation are concerned. Most of the existing products have now been well developed and any further changes are likely to be minor, so the contents of this set of reviews will be useful for some time to come.

PCB CAD review subjects

Rod Cooper's PCB CAD software reviews cover ten products and were published in Electronics World during 1996 and 1997. These reviews are now available as a set of photo copies and cover the following packages.
PCB Designer
PIA
Easytrax
Ranger2
Electronics Workbench
CircuitMaker
Quickroute 3.5 Pro+

Propak

Proteus
EasyPC Pro XM
For photocopies of this set of reviews, send a cheque or postal order for $£ 12$ fully inclusive ($£ 16$ outside Europe) to Reviews, Electronics World, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

A robust 500V dc power supply with current limiting, thermal protection and an output capabilty of 50 mA , designed by Richard Lines.

High-voltage power supplies are something of a rarity nowadays; this note describes the circuit for an adjustable 500 V at 50 mA power supply having both voltage and current regulation.
The circuit was originally designed to power a gas discharge lamp in constant-current mode, so as to provide a stable light source. But it is equally suitable for powering avalanche photodiodes or valve circuits.
Stability and regulation are good; the residual ripple at 50 mA output is only a few millivolts and the output voltage is held constant to better than 0.IV indefinitely. This design would make an exçellent power supply for a valve preamplifier, and with minor modifications could be used for driving a photomultiplier.

Cicruit operation

The high voltage is produced from the secondary winding of the mains transformer T_{1}; the $250-0-250 \mathrm{~V}$ rms is fed to a bridge rectifier D_{13-20}. Output from the bridge is smoothed by two $47 \mu \mathrm{~F}$ capacitors, namely C_{31-32}, to give about 700 V dc prior to regulation.
Note the use of eight diodes in the bridge rectifier. This ensures that the reverse breakdown volts rating of each diode is unlikeley ever to be exceeded. Parallel capacitors C_{23-30} make sure that the reverse bias is shared equally between the diodes even if the leakage currents are not matched.
The only smoothing capacitors to hand when I designed the circuit were rated at 450 V so I used two in series: again it is necessary to fit voltage sharing resistors to make sure the 450 V limit is not exceeded.
Voltage regulation is carried out by series pass transistor $T r_{1}$, which is a high voltage

Warning

> This power supply is a potentially lethal instrument. Read the article fully and carefully, especially the panel headed 'Safety and implementation'.

power mosfet type BUZ357 made by Siemens. The circuit takes full advantage of the freedom from secondary breakdown associated with mosfets; the positive temperature coefficient of the channel with temperature avoids the local hot-spotting which causes the high voltage problems associated with bipolar power transistors.
A large heat sink is still necessary since the transistor would be dissipating 35 W if the power supply is accidentally run into a short circuit at maximum current.
Voltage is regulated as follows; a constant current is generated by the circuitry around $T_{r_{2}}$ and $I C_{2 c}$, appearing at the drain terminal of $T r_{2}$. This current is proportional to the required output voltage and can be varied between zero and $50 \mu \mathrm{~A}$.
The current is passed through the sampling resistor chain R_{1-11}, over which the required output voltage is developed. When the output voltage is correct the potential at the two
inputs of error amplifier $I C_{1 \mathrm{a}}$ will be the same and the output of this op-amp forward-biases $T r_{1}$ just enough to maintain the required output voltage.
Note that all the control circuitry uses the positive output terminal as the local reference and return. It is the potential at the negative output terminal which is sampled using the constant current through R_{1-11}.
If the output is too high, i.e. the potential at the negative output terminal is too negative, then pin 3 of $I C_{1 \mathrm{a}}$ fall with respect to pin 2. This error is amplified and results in less forward bias being applied to $T r_{1}$. Conversely if the output is too low, $I C_{1 \mathrm{a}}$ sees the error and apply more bias to $T r_{1}$.
A straightforward potential divider could have been used to sample the output, but a lot of loop gain would have been lost. If the impedance at the drain connection of T_{2} is infinitely high, as for a perfect current source, then voltage errors are passed unattenuated to the error amplifier, resulting in better regulation.
The current source is powered from a local 10 V supply provided by $I C_{2 \mathrm{~b}}$. This avoids common-mode range problems with the opamps. Trimmer potentiometer $V R_{1}$ sets the maximum output voltage.
Current regulation is achieved by the circuitry centered on $I C_{2 \mathrm{a}}$. Output current is sampled by measuring the voltage across the 100Ω resistor R_{29}. This voltage is compared with the user-chosen limit set by $V R_{3}$, which can be varied from 0 to 5 V , corresponding to 0 to 50 mA output current.
For currents below the limit the output of $I C_{2 \mathrm{a}}$ approaches 12 V . This means diode D_{2} is reverse-biased so the current limiter has no effect on the voltage regulation. As the current

threshold is exceeded the potential at the output of $I C_{2 \mathrm{a}}$ falls and D_{2} conducts, removing the forward bias to T_{1}. At this point the voltage regulation is lost and the high voltage output falls to whatever value that will maintain the current limit through the external load.
A measure of thermal protection is provided by a $L M 35 D$ temperature sensor fitted to the heat sink. The sensor produces an output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. This is connected to a schmitt trigger set to change state at approximateley $60^{\circ} \mathrm{C}$.
When the trigger changes state, gate bias to $T r_{1}$ is removed via D_{1} until the heat-sink cools down. Resistor R_{17} provides a small amount of hysteresis to the trip point, and a flashing overtemperature warning is provided by $/ C_{1 d}$.
My original circuit was prone to oscillation, so some frequency compensation was added in the form of $C_{11} / R_{12}, C_{14} / R_{30}$ and C_{13}. The series capacitor chain C_{1-10} removes the effects of an unwanted pole in the feedback loop formed by R_{1-10} and stray capacities.
Previous incamations of this power supply have used bipolar transistors of the BUS00 variety as the series pass transistor. Components D_{S} and R_{32} were found to kerb an excessive mortality rate when the power supply was accidentally short-circuited in these earlier versions. They were necessary because the current limit did not act fast
enough to prevent breakdown.
Protection components D_{5} and R_{32} may not be necessary with the mosfet design. I have left them in since the added expense is very small. To date I have had no failures.
A conventional 12 V local power supply is taken from two 6.3 V filament windings wired in series.

Component notes

Mains transformer T_{1} was purchased from RS Components . It is still listed in the latest catalogue but will not be available when present stocks run out. A quick scan through the catalogues has not revealed a direct replacement but there are a few alternatives.
First, Maplin advertises a 600 V rms at 25 mA laser transformer which would be suitable if your application can tolerate the reduced current rating. However there is no 12 V winding so a separate transformer would be needed to power the control circuitry.
Secondly, an isolation transformer could be used. These are available from several suppliers in a range of wattages; a 50VA component would be suitable. This solution requires the high-voltage bridge rectifier to be changed for a voltage doubling arrangememt Again, there is no 12 V winding included.
Ratings of the series-pass mosfet, again from RS are 1000 V and 5 A - but not at the
same time. There are other transistors of similar ratings available. The following have not been tried but should be satisfactory: 2SK1357, BUZ312, BUZ50A, BUZ5I and BFC5I.
Capacitors C_{14} and C_{22} are polypropylene types rated at 1000 V . Diodes D_{11} and D_{12} are both bandgap references and are easily available: D_{12} could be substituted with a cheaper zener diode with some loss of stability. Transistor $T r_{2}$ can be substituted with a high gain p-n-p transistor of the BC307 variety but the use of the p -channel mosfet eliminates entirely the small error term resulting from the bipolr device's base current.
Some comments are necessary concerning the behaviour of resistors when connected to high voltages. You may wonder why it was necessary to use ten resistors in series for R_{1-10}. The reason is that physically small resistors with high values tend to age rapidly when connected across a high voltage. This is not because the power dissipated is above the official rating but because the electric field intensity tends to change the composition of the resistive track usually causing the resistor to change value.
Since R_{1-10} form the voltage sampling resistor chain, these components need to be stable with temperature changes; the temperature coefficient of metal-oxide resistors is generally

Safety and implementation

It should go without saying that with potentials up to 700 V some thought is required to ensure that the finished unit is as safe as possible. This is especially true if the unit is to be used by those having little experience of electrical hazards. I suspect that many of you will have limited high voltage experience, other than wiring up 240 V mains, so a few pointers may be in order. Apologies in advance to the old hands.
All of the internal circuitry is isolated from the case and ground thus allowing operation as a floating, positive or negative supply depending on which output terminal is connected to ground at the output terminals.
The case should be metal and securely earthed. Should ventilation holes be required then they should be small enough and so located that fingers, screwdrivers, pieces of wire, etc cannot be inserted and touch the dangerous points. This may entail fitting extra perspex covers over transformer connections and group boards. Heatshrink can be fitted over the high voltage connections on the fuseholder, on/off switch and transformer terminals.
The heat sink needs some consideration; it is obviously essential to ensure a free air flow around the fins. The easy way to achieve this is to mount it on the outside of the box. If this is done the heatsink will be earthed and the insulation to T_{1} must be very good. I do not trust a normal insulating mica washer. I managed to obtain a special high voltage thermally conducting one.
If such a washer cannot be found, an alternative arrangement would be to bolt the transistor to the heat sink without a washer. The complete assembly is then mounted on insulating pillars inside the metal case. It will probably be necessary to include ventilation holes and a fan.
A few baffles can now be used to direct the flow of air and also to block access via the holes to the danger points.
The output terminals are an obvious source of danger. On
the prototype, a small diecast box bolted to the front panel was used to enclose the terminals. Connecting wires to the load are passed through a small hole in the side of the box and screwed to the terminals. The lid is then fitted so there is no possibility of accidentally touching the output.
As it stands my supply offers no protection if the lid is left off. If the design is to be used by students, then it would be wise to add some sort of microswitch arrangement so the supply is disabled the instant that the cover is removed.
If you make a printed circuit board, it is wise to leave plenty of clearance around the high voltage tracks; one centimetre is adequate. Veroboard is not recommended. The board is best mounted on nylon pillars to the case.
Potentiometers $V R_{2,3}$ can be a source of trouble if they have a metal shaft and case. To avoid arcing over, it may be worth mounting them on a Perspex plate inside the box and using a plastic shaft and coupler to connect the knob to the potentiometer. Thus the metal case of the potentiometer is completely isolated.
Voltage and current meters can be fitted as required, but bear in mind that the front covers of some meters are easy to remove, allowing access to metal at high voltage.
Smoothing capacitors C_{31-32} were wire-ended types with the body insulated. I have seen other chassis mounting types available where the metal case is not always isolated from the negative terminal. If in doubt, add extra insulation.
The 'power on' and 'current limit' leds need extra insulation; don't just glue them into holes drilled into the front panel. The LM35 temperature sensor is recessed into a 4.8 mm hole drilled into the heat sink next to Tr_{1}
Again, take care the leads cannot touch the metal, especially if the transistor is not isolated from the heat sink.
And finally, don't forget to take similar safety precautions with whatever load is being driven by the power supply.

ANALOGUE DESIGN

better than for carbon types. At 50 V maximum, the voltage dropped across each resistor is low enough to avoid the ageing effect.
Resistor R_{34} should also be a 1% close-tolerance type with a low temperature coefficient. This is because changes in the supposedly constant current will directly affect the output voltage.
The $1 \mathrm{M} \Omega$ resistors used in the bridge rectifier and across the smoothing capacitors should be $2 W$ carbon types.

Current-sampling resistor R_{29} needs to be a 2.5 W wire-wound component if stability of the current limit is important. Wire-wound types generally have a low temperarure coefficient and will run cooler if over-rated. If you only need to use the current limit as a safety device then a IW carbon component is fine.
Front panel controls $V R_{2,3}$ were ten-turn wire-wound potentiometers. These give very smooth operation and allow precise setting of current and voltage.
Other quad op-amps can be used, but the input common mode range needs to extend to the negative rail. The temperature sensor is sold in two grades, LM35C and LM35D. The cheaper D version is adequate.
The output terminals should be such that there is plenty of clearance to the metal case. 4 mm binding posts were used in the prototype.
The heatsink needs a thermal resistance of 1
to $1.5^{\circ} \mathrm{C} / \mathrm{W}$. Both RS and Farnell both stock a suitable selection. If space is at a premium then a smaller heatsink can be used in conjunction with a small fan.

Setting up and use

A voltmeter or multimeter equiped with test leads terminated in small insulated crocodile clips is useful since they allow the meter to be connected with the circuit switched off. Thus measurements can be made without having to hold a probe inside the circuit.
The usual advice is to keep one hand behind your back and stand on a rubber mat when working on exposed high voltage circuitry.

A dummy load consisting of a $10 \mathrm{k} \Omega$ resistor rated at 25 W is required. This was made from three $33 \mathrm{k} \Omega, 9 \mathrm{~W}$ resistors in parallel.

Set both voltage and current controls to maximum and switch on with the voltmeter connected across the output but not the dummy load. The current limit led should be out, and the on/overtemperature led permanently illuminated.

There should be approximately 500 V , which is adjustable with the control. Using a long plastic trimming tool adjust $V R_{1}$ for 500 V exactly at full output. Now switch off and connect the load in parallel with the voltmeter.

There should still be 500 V if the circuit is regulating correctly. It is possible that the cur-
rent limit will just come in; if this happens then backing off the voltage control should cause the unit to revert to constant voltage mode. The dummy load will become very hot so place it where it can't do any damage.
If all is well so far then leave the voltage set to 500 V and reduce the current setting. The current limit led should light and the output voltage fall as the current setting is progressivley reduced.
If required, the supply can be tested into a short circuit. The current should limit to 50 mA maximum depending on the setting. It is not recommended that the unit is used into very low impedances, although the prototypes have put up with accidental short circuits on many occasions.
If an oscilloscope with a high voltage probe is available, residual ripple and noise can be checked. At 400 V across the dummy load, the ripple consists of a 100 mV spike at 100 Hz with no trace of the conventional sawtooth waveform. Random noise is at the 10 to 20 mV level. Check the output at several settings and make sure there are no spurious high frequency oscillations
These measurements should be done with the negative terminal of the power supply earthed at the power supply or an unwanted 50 Hz signal will be seen.
The unit is now ready for use.

Starter Kits for 8051, P51XA and MCS®251 From $£ 99$

The Philips P51XA and Intel MCS®251 provide a 16 bit upgrade path for the ever popular 8051 microcontroller series. Ashling Microsystems have a range of low-cost starter kits ideal for getting going with a new micro, benchmarking, small projects or education.
The £99 PK51-Lite for the 8501 series consists of a cut-down compiler, Windows Integrated Development Environment and and Simulator/Monitor Debugger.
The £ 145 DK25-Lite for the Intel MCS®25 1 additionally includes an assembler.
The XTEND P5 IXAG3 and Keil MCB251 SB are both single-

Eurocard evaluation boards with dual RS232 ports, a patch area, an expansion header and power supply. The XTEND P5IXAG3 includes an absolute assembler, a code-limited C Compiler, an 8051 to XA translator and XA design help. Code may be downloaded and executed in SRAM via an RS232 link and the supplied loader and monitor. The Keil MCB251SB includes the DK251Lite software that allows single click compile, link, download and debug.
Ashling Microsystems
Tel: 01256811998
Fax: 01256811761

CIRCLE NO. 11% ON REPLY CARD

Although we would like you to use our own excellent Geswin schematic capture program which is purpose built for SpiceAge, if you already have a schematic program, there is a good chance that SpiceAge will work with it better than any other circuit simulator.

When you iterate between a schematic and a SPICE-like simulation environment while refining your circuits, the simulation settings and precious details such as polynomial functions on components can be lost. So without Geswin, it was sometimes easier to write the simulation netlist directly. However, SpiceAge's circuit update button only affects changes in the circuit built by the schematic and, because it retains all the previous information, you can spontaneously iterate between schematic and circuit.
To hear more about this and other nice touches in SpiceAge, please contact:
Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel 01819060155 FAX 01819060969 Email 100550.2455@compuserve.com Welcome to our website http://www.spiceage.com

c) VALVE COMPANY

If you need Valves/Tubes or RF Power Transistors e.t.c. ... then try us!

We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Professional User
Chelmer Valve Company, 130 New London Road, Chelmsford. Essex CM2 ORG, England
『-44-01245-355296/265865 Fax: 44-01245-490064

COMPUTER ICS

S9900 NEW AMD EQUIVALENT
MC6802 PROCESSOR
ACE MOUNT EPROM USEDWIPED $£ 1$
2817A-20 (2K X 8) EPROM ex eqpt
D4 1256 C - $15256 \mathrm{~K} \times$ P PULLS
P8744H MICRO
MK 48Z02.20 ZERO POWER RAM EQUIV $6116 L$ P
USED 4164.15
BBC VIDEO ULA
BBC VIDEO UL
8051 MICRO.
8051 MICA
FLOPPY DISC CONTROLLER CHIPS 1771
LOPPY DISC CONTROLLER CHIPS 177
$27 C 2001$ USED EPROMS
1702 EPROM NEW
2114 EXEOPT
6264.15 Bk STATIC RAM
. 4416 EX EOPT
6264.15 kk 5
$280 \mathrm{~A} 5 \mathrm{~S}-\mathrm{O}$
$280 \mathrm{~A} 510-0$
7126 3\% DIGIT LCO DAIVEA CHIP
2816A-30 HOUSE MARKED
USED TMS2532JL
8M255-5
2114 CMOS (RCA 5114)
WD16C550.PC UART
2N448
TC55257BPL-85L 32K-8RAM
27C256-25 USEDNIPED
. 9 FORES

REGULATORS

M338k

LM323K 5V 3A PLASTIC
LM323K 5 V 3A METAL
7MBH12ASC 12V 5A 3A)
LM317H T05 CAN
LM31TT PLASTIC TO220 varable
LM317 METAL
7812 METAL 12 V
78055/121155/24
CA3085 TO99 variable re
78HGASC + 79HGASC REGULATORS
LM123 ST93 5V 3A TO3 REGS
UC3524AN SWITCHING REGULATOR IC
78L12 SHORT LEADS
LM2950ACZ5.0

.81 .25
 . .1 .25 .$£ 16$

.516
$\mathbf{5} 17.50$
17.50
-.44
.54
.52 .50
. .56
.12 .56
$.70 p$
.50 p
$\mathbf{8 1 . 5 0}$
ع1.25
.52 ea

CRYSTAL OSCILLATORS

307.2 KHZ 1 M 0000001 M 84322 M 457600 3M6864 4M000000 5M000000 5M06800 5M760000 6M000000 6M1440 7M000000 ЗM372800 7M5 8M00000 9M21610M000 10M0 12M000000 4M318 14M3818 16M00 17M625600 18M00000 18M432 19M050 19M2 19M440 20M000 20M0150 21M676 22M1184 23M587 24 M 000025 M 174825 M 17525 M 1889 27M + 36M 27M00000 28M322 32M000000 32M0000 S/MOUNT 33M3330 35M4816 38M100 40M000 41 M 539 42M000000 44M 44444 M 90044 MO 48 M 0000050 M 00 55M000 56M00920 64M000000 66M667 76MI

CRYSTALS

32K768 1MHZ 1M8432 2M000 2M1432 2M304 2M4576 3M000 3M2768 3M400 3M579545 3M58564 3M600 3M6864 3M9321 5M0688 6M000 6M041952 6M200 6M400 7M37280 4M0152 5M000 8M448 8M863256 8M8670 9M3750 9M8304 10M240 10M245 10 M 36810 M 70000 11M000 11 M 05211 M 9813512 MOOO 12 M 13M000 13M270 13M875000 14M000 14M318 14M7450 14M7456 15 M 000016 M 000 17M6250 18M432 20 M 000 21M300
21M400M15A 24M000 25M000 26M995 BN 27M045 RD 27M095 OR 7M145 BL 27M145 YW 27M 955 GN 28M4696 30M4696 31M4696 31 M 4696 34M 368 36M 75625 36M76875 36M78125 36M79375 36 M80625 З6M81875 З6M83125 З6M84375 З8M900 48M000 51M05833 54M1916 55M500 57M7416 57M7583 69M545 69M550

TRANSISTORS

MPSA42
210

1001
C477, BC48
CC 107 BCY70 PREFORMED LEADS
full spec
2N2907 PLASTIC CROPPED
C548B SHORT LEADS

POWER TRANSISTORS

OC29
SC1520 sim BF259
IP $11 / 2 \mathrm{4} 2 \mathrm{~B}$
IP 1120 F
RF620 TO-220 12A 200
E9301 100V 1DA DARL SIM TIPI21
b60
buS48A

TEXTOOL ZIF SOCKETS

28 PIN USED
IF 64 WAY SHRINK DIP SKT TEXTOOL 264.1300-00 1.78 mm SPACING ON PCB WITM 4mHz RESONATOR

AL IN LINE DEVICES COUPLING SUPPLIED ... THNY

KEYTRONICS

TEL. 01279-505543
FAX. 01279-75765
E-MAIL. Keytronics@btinternet.com
PO BOX 634
BISHOPS STORTFORD
HERTFORDSHIRE CM23 2RX http://www.btinternet.com/~keytronics

POWER FETS
IXFH75N10 $75 A 200 \mathrm{~V} 20$ milili-chm 200 WATT Ideal for UPS 55
IRFP 450500 V 14 A 0.40 hm 180 W SOLID STATE RELAY ZERO VOLTAGE SWITCHING CONTROL VOLTAGE 3.5 TO 26 V DC
50 AMP 240 V ac D2450-1
25AMP 240 V ac D240D80-10s

MISCELLANEOUS

25A SOLDS CAPACIT 240 mA HR 3 CELL PACK 5
XENON STRIATE RELAY
Narruw angle intra red ent.......
UM6 116 M -2L surface mount $\times 51000$
OPTO ICS also avallable TLP550 TLP666G
68 way PLCC SKT 100 availlable
100 wa PLCC SKT 100 availabi
1250 pF POSTAGE STAMP COMPRESSion............... 51 each LM324 (Quad 741)

ITE MAGNETS $4 \times 4 \times 3 \mathrm{~m}$
LO71 LO NOISE OP AMP
12 way dil sw
10NF $63 V$ XTR PHILIPS SURFACE MOUNT 100K available $£ 30 / 4000$
SWITCHED MODE PSU 40 WATT UNCASED OTY. AVAILABLE +5 5A. +12 V 2 A .12 V 500 mA FLOATING
220R 2.5W WIREWOUND RESISTOR 60 K AVAILABLE

CMOS 555 TIMERS

2/3 AAA LITMIUM cells as used in compact cameras2/2/1
PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUIT 120 EUROCARD 96 -WAY EXTENDER BOARD $\Sigma 10$ e日
$290 \times 100 \mathrm{~mm}$
DIN 4161296 -WAY ABVC SOCKET PCB RIGHT ANGLE ... $£ 1.30$ DIN 4161296 -WAY AB/C/ SOCKET WIRE WRAP PINS DIN 41612 64-WAY ACC PLUG PCB RIGHT ANGLE DIN 41612 64.WAY AB SOCKET WIRE WRAP (2.ROW BOOY BT PLUG + IEAD
MN. TOGGIE SWITCH 1 POLE CO PCB Yype
40×2 characters $182 \times 35 \times 13 \mathrm{~mm} \ldots \ldots \ldots . . .$.
6-32 UNC 5/16 POZI PAN SCREWS $1 / 100$
NUTS
PUSH SWITCH CHANGEOVER ..
RS232 SERIAL CABLE D25 WAY MALE CONNECTORS
25 FEET LONG, 15 PINS WIRED BRAID + FOIL SCREENS
AMEAICAN 23PINCHASSIS SOCKET . INMAC LIST PRICE £3 WIRE ENDED FUSES WIRE ENDED FUSES 0.25A
EW ULTRASONIC TRANSDUCERS 32 kHz
GNC 5OOHM SCREENED CHASSIS SOCKET SMALL MICROWAVE DIODES AE1 OC1026A
DII. SWITCHES 10 -WAY $£ 18$-WAY 80p $4 / 5 / 6$-WAY 180 VOLT 1 WATT ZENERS also 12 V \& 75 V MIN GLASS NEONS
ELAY 5V 2-pote changeover looks like RS $355-741$...........
TINBOS
MINIATURE CO-AX FREE PLUG RS 456 -0712/2 21 .
PCB WITH 2N2646 UNIJUNCTION WITH 12 V 4.POLE RELAY . 400 MEGOHM THICK FILM RESISTORS
STRAIN GAUGES 40 ohm Forl type polyester backed
ELECTRET MICROPHONE INSERT50 ea $10+\varepsilon$
Linear Hall effeet IC Micro Swith no 613 SS4 sim RS $304-267$

AUDIO ICS LM380 LM386
555 TIME RS $£ 1741$ OP AMP
N4 14 AM P 4 DIO CHIP
COAX PLUGS nice ones........
NDUCTOR $20 \mu \mathrm{H} 1.5 \mathrm{~A}$
1.25 Inch PANEL FUSEHOLDERS

12 V 1.2 W small w/e lamps fit
STEREO CASSETTE HEAD
MONO CASS. HEAD \&1 ERASE HEAD
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$
HERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$
RANSISTOR MOUNTING PADS TO-5TO-19
TO-3 TRANSISTOR COVERS
TO-220 micas + bushes
TO. 3 micas + bushes
Large heat shrink sleeving pack

IEC chassis plug titer 10A

POTS SHORT SPINDLES 2K5 10 K 25 K IM 2M 40k U/S TRANSDUCERS LM2342 CONST. CURRENT IC BNC TO 4MM BINDING POST SIM RS 455-961 MIN PCB POWER RELAYS 10.5 V COIL 6 A CO
LCD MODULE 16 CHAR X LUNE (SIMILAR TO HITACHI LM10) . . 5 OPI1264A 10 kV OPTO ISOLATOR............ 35 ea 100+ $£ 1$ ea
LOVE STORY' CLOCKWORK MUSICAL BOXMECHANISM
MADE BY SANKYO
$10,000 \mu$ F 16 V PCB Thith hardened pins $50 / 2$
EC CHASSIS FUSED PLUG B-LEE L2728
2A CERAMIC FUSE 1.25 inch QE 46 WAY IDC FIBBON CABLE 100 FOOT REEL 20 mm PCB FUSEHOLDER
BARGRAPH DISPLAY VDEO + SOUND UM1287
NE567 PHASE LOCKED LOOP
NE564
IR2432 SHARP 12 LED VU BAR GAAPH DRIVER
8 OHM MYLAR CONE RFI FILTER EX. EOPT
1.5m lead

DIODES AND RECTIFIERS
A115M 3A 600V FAST RECOVERY DIODE
IN5819 1 A GOV SCHOTKY wir onded
1N5407 3A 1000 V
N4004 SD4 1A 300V
N5401 3A 100V.
…........ 4 for
$100 / \mathrm{E} 1.50$
$100 / \mathrm{c} 3$
BA401 SMALL GLASS SCHOTTKY dode 10 1or \&

BY255 8000 OA.
GA 100 V SIMILAR MR75
6A 100 V SIMILAR MR751
a loov bRidge
10 A 200 V BRIDGE
25A LOOV BRIDGE $\varepsilon 2$.
25A 400V BRIDGE £2.50
BY297.
KBPC304 BRIOGE REC $3 A 400 \mathrm{~V}$
SCRS
PULSE TRANSFORMERS 1.1.+1 ...

TRIACS

DIACS 4/£1
. 3 for E1 100K22
… $2 / 21$ 100/E35
BTA $08-400$ ISO TAB 400 V 5 mA GATE
TRAL-2230D 30A 4OOV ISOLATED STUD . .
PHOTO DEVICES
HI BRIGHTNESS COS COX 24 AED
SLOTTED OPTO-SWITCH OPCOA OPB815 51.30
2N5777 PHOTO TRANSISTOR
TIL38 INFRA RED LED
4N25, OP 12252 OPTO ISOLATOR
PHOTO DIODE 50P
ELI2 (PHOTO DARLINGTON BASE NC)
EDS RED 3 or $5 \mathrm{~mm} 12 \check{ } 1$
LASHING RED LED 5 mm 50 p
HIGH SPEED MEDIUM AREA PHOTODIODE RS651.995
OPTEK OPB745 REFLECTIVE OPTO SENSOR.
RED LED - CHROME BEZEL
OPI110B HI VOLTAGE OPTO ISOLATOA

STC NTC BEAD THERMISTORS

G22 220R. G13 1K, G23 2K. G24 20K, G54 50K, G25 200K, RES $20^{\circ} \mathrm{C}$ FS2ZBW NTC BEAD INSIDE END OF 1 inch GLASS PROBE RES $20^{\circ} \mathrm{C} 200 \mathrm{R}$. .. \& 1 ea A13 DIRECTLY HEATED BEAD THERMISTOR 1 k res. Ideal for
CERMET MULTI TURN PRESETS $3 / 4$ inch 10~ 20 R 100 R 200 R 250 R 500 R 2 K 2 K 22 K 55 K 10 K 47 K 50 K
100 K 200 K 500 K 2 M IC SOCKETS
1 1/16/48/20/24/28/40-WAY DIL SKTS \&1 per TUBE
8-WAY DIL SKTS
32-WAY TURNED PIN SKTS
SOCKET FOR 2×30-way SIMMS
POLYESTER/POLYCARB CAPS

$330 \mathrm{NF} 10 \% 250 \mathrm{~V}$ AC X2 RATED PHIL	£20/100
$100 \mathrm{n}, 220 \mathrm{n} 63 \mathrm{~V} 5 \mathrm{~mm}$	20¢11 100/53
10 n '55r22n/33N/47n66n $10 \mathrm{~mm} \mathrm{rad}$.	100/E3.50
100 n 250 v radial 10 mm	100/23
100 n 600V Sprague axial	5 for $£ 1$
$2 \mu 2100 \mathrm{~V} 15 \mathrm{rrm} \mathrm{rad}$	100/810
$10 \mathrm{~N} 33 \mathrm{n} / 47 \mathrm{n} 2.0 \mathrm{~V}$ AC x rated 15 mm .	10/51
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC	50p ea
$\dagger_{\mu} 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm} \mathrm{rad}$	100/26
$0.22 \mu 250 \mathrm{~V}$ AC X2 RATING	4/E1
$0.22 \mu 300 \mathrm{~V}$	4/E1

RF BITS

FX3286 FERRITE RING 105 mm OD 10 mm 10 for E 1
ASTEC UM1233 UHF VIDEO MODULATORS (NO SOUND) $\$ 250$
STOCK
STOCK............. DC4229F1/F2

TERS 2	3a
MERS	or 50

RED 10-110pF GREY 5-25pF SMALL MULLARO 5-105pF
2 to 22pF............................. 3 for 50p £10100

(BFY51 TRANSISTOR CAN SIZE
P2N22.32A PLASTIC
2N2369
2N3866-2N4427

EQUIV MH

MONOLITHIC CERAMIC CAPACITORS

100 n ax short leads
100 n ax long leads
14 F 50 V 5 mm page 0.3 inch rac
QUARTZ HALOGEN LAMPS

MAIL ORDER ONLY

Colour tv goes public

Ray Herbert recounts events surrounding the first public demonstration of colour television in 1938.

0In 4 February 1938, an audience of 3000 people watching a film at the Dominion Theatre in Tottenham Court Road, London had no idea that they were about to witness a piece of television history.
During the interval they were surprised to see live colour television pictures on a 12 by 9 feet screen, transmitted from a small studio at the base of the Crystal Palace South Tower. Advance publicity of the event had been impossible due to the restrictions imposed by the authorities regarding experimental wireless transmissions.
This was a highly significant occasion in two respects; never before had colour television been demonstrated to the public or transmitted by radio link - a double first for John Logie Baird.
Bearing in mind the many months of development work and the high cost of the sophisticated projection equipment, it is remarkable that no further demonstrations took place. A possible explanation is that Baird wanted to start work on a 600 -line, high definition colour system and this he demonstrated in December 1940 (Wireless World February 1941).

Earlier experiments

It was typical of John Baird's zeal for immediate progress that he should attempt to produce television pictures in colour during 1928, at a time when improvements in the quality of the existing monochrome images represented the real priority. At that time he used scanning discs at the sending and receiving end which had 15 holes in three separate spirals, each occupying a third of the circumference and covered sequentially with red, green and blue gelatine colour filters.

The discs span at $600 \mathrm{rev} / \mathrm{min}$ providing ten images a second. It was a relatively crude arrangement but the highly regarded journal Nature reported enthusiastically, "The colour images we saw in this way were quite vivid. Delphiniums and carnations appeared in their natural colours and a basket of strawberries showed the red fruit very clearly."
Having achieved a notable first, Baird moved on to the more prosaic problems of setting up studios and equipment for television broadcasts.

Colour updated

The later colour work carried out by Baird had it's beginnings at the Dominion Theatre in 1936 when he demonstrated his monochrome multimesh system. Whether by accident or

Supplying power

Power for the 150A arc lamp came from a Hackbridge Hewittic mercury arc rectifier and a frequency changer provided 100 Hz for the synchronous motors.
A cubicle immediately adjacent to the colour projector housed the drive amplifiers and their associated power supplies. The final stage used two high power triodes in a patented, push-pull arrangement to deliver the 20000 volts peak-to-peak, necessary to exercise full control of the Kerr cell from darkness to full white illumination.

Twenty-faceted mirror drums for the mechanical colour camera and projector as used in for the Dominion theatre demonstration in December 1937 and February 1938. Photographed by Richard Brice.

HISTORY

design, it turned out that this arrangement could very easily be adapted for colour transmissions. This method was an elaboration of his earlier experiments with interlaced scanning in 1925. Then he used a scanning disc with two spirals of eight lenses so positioned that they produced an interlaced image. Fortunately, most of the apparatus survived and is in the Falkirk museum.

At the Dominion Theatre a 20 -facet mirror drum in conjunction with a slotted disc provided a basic 40 -line interlaced scan which was then repeated three times, in each case being laterally displaced to mesh with other fields to provide a final frame of 120 lines.

An arc lamp provided the illumination and a Kerr cell acted as a light valve to produce the necessary variations in light and shade. This arrangement had been used to good effect in 1932 to show large television picture of the Derby from the Epsom racecourse on the screen at the Metropole Theatre.

Baird only needed to place colour filters over the slotted disc apertures to convert this equipment into a two-colour television system.

The colour projector

Ideally, the light path would have been in a straight line, but due to lack of space at the theatre behind the translucent screen used for back projection, this could not be achieved. Consequently, the light source, rotating colour filters and Kerr cell had to be housed in a separate cubicle at the side of the main mirror drum unit. This caused unwelcome complications in regard to the need for extra mirrors, an additional synchronous motor and mechanical
phasing arrangements
A 150A automatic searchlight arc lamp fulfiled the function of a constant intensity light source. Water cooling of the aluminium panels in front of, and above the arc, proved to be essential. A condenser followed by an intermediate lens, focused the light beam on to a disc having 12 slots covered alternately with blue-green and red colour filters. It then passed to the Kerr cell - a key component in the provision of large screen television pictures. Invented by a Scottish scientist in 1875 it consisted of electrodes immersed in nitrobenzine
When polarised light from Nicol prisms traversed the cell, the intensity could be controlled by applying a variable polarising voltage to the electrodes. The higher the voltage the greater the illumination. In this installation the Kerr cell had just two electrodes to avoid loss of light and they were connected to a pair of transmitting triodes operating in push-pull. Due to the heat contained in the two-inch diameter beam of light, conventional Nicol prisms could not be used. They were replaced by polarising prisms of special and patented design, cut and polished from the largest piece of pure calcite crystal which could be obtained.
The light path now had to be switched to a vertical plane using a mirror, so that it could be directed on to a 12 in diameter duralumin drum containing 20 small mirrors, each inclined successively at slightly differing angles. This mirror drum revolved at the high speed of $6000 \mathrm{rev} / \mathrm{min}$, driven by a two-pole synchronous motor operating from a 100 Hz

Dominion theartre

 colour television projector at Baird's private laboratory in Sydenham, 1937.Mid-left is the arc lamp and above it its vent. To the right of the lamp housing, and slightly lower, is the rotating colour filter, lens and fixed mirror assembly. From the fixed mirror, the light shone upwards into the rotating mirror drum above. Photographed by Richard Brice.
supply. The mirrors had to endure very considerable centrifugal forces and for safety reasons were secured by high tensile steel clamps and screws.
A large translucent screen displayed the colour pictures projected from the mirror drum. Frosted glass would have been too directional for cinema use and the screen consisted of Japanese silk, stretched and doped.

Studio equipment

During the mechanical era of television, two main methods of transmission were available. The floodlight system was used by Baird from the earliest days until 1928. The person to be televised stood before a bank of floodlights and a lens focused an image of the scene on to a disc having 30 holes or lenses. A photocell recorded the light variations in the 30 vertical segments.
The spotlight arrangement used between 1929 and 1935 for the first public television service called for the performers to be in a completely dark studio. Through a hole in the wall a mirror drum scanner projected a sharply focused beam of brilliant light which scanned the subjects in sequential vertical strips. Banks of photocells detected the level of reflected light.

For the colour demonstration, Baird had reverted to the floodlight method. Electronic colour cameras had not yet arrived, and in the USA and this country, mechanical devices using rotating colour filters, prevailed.
The colour camera, or scanner, was mounted on a rubber-wheeled truck and quilted material over the casing helped to reduce the mechanical noise. A 20 -facet mirror drum, similar to that used in the projector but reduced in size to 8 in , rotated at $6000 \mathrm{rev} / \mathrm{min}$ directing slices of the televised scene to the slotted, colour filter disc.
The coloured segments were presented sequentially to a Baird multiplier photocell having a rubidium cathode. This eight-stage multiplier, using the Weiss principle of secondary emission amplification, enabled gains of 10000 to 20000 to be achieved without the twin problems of instability and microphony which were often experienced with thermionic valve amplifiers.
The choice of a rubidium photocell appears to be unusual but the reason could be found in a report of discussions following a paper read by J C Wilson on colour television. Baird, who chaired the meeting, recalled that during his experiments, red and blue fabrics were indistinguishable on the receiver screen and it turned out that the photocells in use were responding equally to the infra-red radiation from these objects instead of the light. Rubidium photocells proved to be relatively insensitive at the infra-red end of the spectrum and this overcame the problem.
Both the colour camera and projector were manufactured at the works of B J Lynes Ltd, from drawings supplied by Baird's staff.

Results

With a definition of only 120 lines the pictures

Mechanical colour camera and studio arrangements at the base of the Crystal Palace South Tower.

Baird's later colour work

Encouraged by what could be achieved using only two colours, John Baird set out to demonstrate high-definition pictures of 600 lines.
Spotlight scanning was used in the studio with rotating colour filters and photocells to detect the level of reflected light. At the receiving end, a projection cathode-ray tube produced a black and white picture, colour being added by another rotating colour filter having equal segments of blue-green and red. With this arrangement a large, bright picture measuring 2 by $2 \frac{1}{2}$ feet could be obtained.
This unretouched photograph of Paddy Naismith, a visitor to the press demonstration, was taken direct from the screen of Baird's projection colour receiver in December 1940 on Dufaycolor film. It subsequently appeared in the April, 1941 issue of Electronics and Television.

CIRCLE NO. 123 ON REPIY CARD

The manual contains complete schematics and theory of operation of all the building blocks. Use this trainer to receive frequencies from 500 KHz to 110 MHz !

A set of proven alternate building block designs are included in the manual for you to get started with your own designs. There is no need to get your complete receiver design working all at once. Build and test each block one at a time.

The Radio Receiver Trainer contains nine receiver building blocks and a comprehensive training manual.
Simply connect the building bloçs to build AM, SW, Superhet and Direct Conversion receivers. Decode SSB, CW \& FM! Use proven building blocks to develop and test your own designs.
Full technical support and advice given.
Pricing: Complete
$£ 129.00$
Kit $£ 89.00$
(Kit excludes case \& headphones)
P\&P is $£ 5$ (UK), $£ 8$ (EC), $£ 12$ (World) Add 17.5\% Vat to Total Price
Building Blocks: RF Input Tuner
RF Oscillator
Mixer
IF Filter
IF Amplifier
AM Detector
Beat Frequency Oscillator
Audio Filter
Audio Amplifier

> Ed Cherry looks at distortion in audio power amplifiers and presents a critique of some of the novel attempts to try to reduce it published in recent years.

Ironing out distortion

There is an experiment on audio power amplifiers in the undergraduate teaching laboratory here at Monash University, in which students routinely observe that distortion, output resistance and slewing rate do conform to theoretical predictions. Amplifier design is not a mystery.
This anticle is a sequel to 'Ironing out distortion' in which I set out some of the basis for predicting amplifier distortions ${ }^{1}$. Between the time I submitted the final manuscript and when it was printed in January 1995, Douglas Self published two more articles on audio power amplifiers ${ }^{2,3}$, and since then there have been other contributions from Self ${ }^{4}$, Giovanni Stochin 0^{5} and Bengt Olsson ${ }^{6}$.

Common-emitter output stages

The common-emitter or common-source output stage is my preferred choice. Self refers ${ }^{2}$ to my paper with Dr Greg Cambrell ${ }^{7}$ in the Journal of the Audio Engineering Society. He gives a good account of some of the pros and cons of common-emitter and common-collector stages in the first part of his article.
Notably, he says that output resistance of a common-emitter amplifier with overall negative feedback is equal to that of a commoncollector amplifier with overall feedback. Therefore, loudspeaker damping is the same for both. Self did not mention the principal conclusion of the paper, that intermodulation distortion is less for a common-emitter output
stage than common-collector.
In my opinion the relation between com-mon-emitter and common-collector stages could have been explained better. Figure 1 herewith is Self's Fig. 9 re-drawn as I think it should have been.
Figure 1a) is the starting point, a basic complementary common-emitter stage in which the collector currents are combined the load. Notice that the bias and drive for the p-n-p and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ sides must be referenced to the positive and negative supply rails respectively, which is awkward but not impossible; I have built amplifiers of precisely this topology ${ }^{8}$.
The transistor and its power supply on each side of Fig. 1a are in series around a loop with

AUDIO DESIGN

Fig. 1. Evolution of a common-emitter output stage. Figure 1a) is Self's Fig. 9a), a conventional common-emitter stage with the signal input and biasing for each side referenced to the supply rail and with the output collector currents combined in the load. In Fig. 1b) the order of each transistor and its power supply is reversed; these are in series, so operation of the circuit is unchanged. Figure 1c) is a purely cosmetic re-drawing, and Fig. 1d) is a further re-drawing with the input signal generators combined.

Fig. 2. Evolution of a common-collector stage from common-emitter. Figure 2a) is a true common-emitter stage, derived from Fig. 1d) by simply moving the ground point; the input signal voltage is required to float on top of the output. Figure $2 b$) is a conventional commoncollector stage; the signal voltage between base and emitter in Fig. 2b) is vin - vout, showing that a common-collector stage can be regarded as a common-emitter stage with 100% local voltage feedback.
the load. As Self points out, the order of series components can be altered without changing the operation in any way. Accordingly the supplies are moved as in Fig. 1b). And Figure 1c) is a drastic but purely cosmetic re-drawing - no change whatever to the circuit.

Finally, Fig. 1d) is a further re-drawing in which the the two input signal generators are combined - again no change to the circuit. Figure 1d) is identical to Fig. 1a).
Figure 1d) is a true common-emitter output stage. The emitters are grounded (neglecting the ballast resistors), the full input signal (plus bias voltage, of course) appears between each base and emitter, and the full output signal (plus quiescent voltage) appears between each collector and emitter.
I believe that this arrangement of a com-mon-emitter output stage was original when
*Fig. 1a) on p. 632 of August 1993 issue, or my Fig. 1 on p. 15 of January 1995.
published in 1968^{9}, although it has appeared several times since, in reference 6 for example, without ever really catching on.

Benefits of common emitter

The arrangement of a common-emitter output stage in Fig. 1d) has an enormous practical advantage over any common-collector output stage: the input signal amplitude is just a few volts peak-to-peak. Therefore, the only transistors in the complete amplifier which ever need to withstand high voltages are the output transistors. Everything else - including the drivers - can operate from low supplies of, say, $\pm 15 \mathrm{~V}$.
A high-voltage transistor must be lightly doped in order to achieve a wide collector depletion layer and reduce the electric field for a given collector voltage. Inevitably this reduces f_{T} and increases the saturation voltage.
Compared with any common-collector amplifier, much better transistors can be used in all the low-voltage low-level and driver sections of an amplifier based on Fig. Id). Nondominant poles can therefore be moved further out, making it easier to stabilise the feedback loop. Higher quiescent and peak currents can be used in order to achieve high slewing rate, without running into either power-dissipation or secondary-breakdown limits.
The only disadvantage of Fig. Id) is that the main V_{CC} supplies float. Separate supplies are therefore needed for each channel of a stereo amplifier. But then, many highly-regarded amplifiers use separate power supplies anyway.
Figure 2 explains the relationship between common-emitter and common-collector output stages. Figure 2a) is is identical to Fig. 1d except that the ground point has been moved: the V_{CC} supplies are grounded but now the input signal source must float on top of the output. This is a thoroughly impracticable arrangement, but circuit operation is not changed. The amplifier is still strictly com-mon-emitter: the full input signal voltage appears between base and emitter - neglecting ballast resistors - and the full output signal voltage appears between collector and emitter.

Figure 2b) shows the conversion from com-mon-emitter to common-collector: the neutral end of the signal source is simply grounded. Now the signal voltage between base and emitter, neglecting ballast resistors, becomes $v_{\text {in }}-v_{\text {out }}$ rather than $v_{\text {in }}$, which demonstrates that a common-collector stage is nothing more than a common-emitter stage with 100% local voltage feedback. All the output voltage is subtracted from the input voltage to give the drive voltage for the transistors.
Perhaps this gives physical insight as to why the output resistance of a common-emitter amplifier with overall feedback is the same as for a common-collector amplifier. The intrinsic output resistance of a common-emitter stage is high, but this is reduced in Fig. 3a) by the overall feedback
By comparison, the intrinsic output resistance of a common-collector stage is low; this low resistance is attributable to the local feedback, and in Fig. 3b) it is further reduced by the overall feedback. However, the voltage gain of a common-emitter stage is large whereas the gain of a common-emitter stage is near unity. Therefore the overall loop gain around the common-emitter amplifier is larger than around the common-collector amplifier.
It turns out that the extra overall feedback around the common-emitter stage compensates exactly for its higher intrinsic output resistance. It also turns out - but is much more difficult to prove - that the stability of the feedback loop is the same, higher loop gain not withstanding ${ }^{7}$.

Output resistance - a new method

You might be interested in a simple new, general and precise method for finding the input and output resistances of a feedback amplifier^{10}. In the same paper is an approximation which appears more reliable than any of the "multiply or divide the resistance-withoutfeedback by loop gain" types of formula:

- Write down the loop gain. The expression doesn't need to be exact, merely an approximation of the same order of accuracy as the required output resistance.

Equate this loop gain to unity, and solve for the load resistance. In other words, the output resistance of a feedback amplifier is equal to the load resistance that would reduce the loop gain to unity.

The method is easy, because it requires only the loop gain and not the output resistance without feedback. It works for all feedback amplifiers, not just common-emitter-output or not just common-collector-output, and not just voltage-feedback or current-feedback; you don't need sometimes to multiply by loop gain and sometimes divide.
There is a corresponding method for finding input resistance.

Slewing rate

Self's discussion of slewing rate ${ }^{3}$ is correct, but it falls into the category of analysing a bad

Fig. 3. Output resistance of common-emitter and common-collector amplifiers. The total feedback around the output stage is the same, and therefore the output resistances are equal.
circuit rather than recommending a good one. Slewing rate is set in amplifiers of the basic common-collector-output topology* by the circuit's ability to charge and discharge the second-stage compensating capacitor, Fig. 4.
The charging current flows at both sides of this capacitor, and slewing rate is restricted by whichever side first reaches the available current limit. On the left-hand side of the compensating capacitor the available charging current is near enough to the output from the first stage and, if this stage is a long-tailed pair with current mirror, the positive and negative limiting values are symmetrical and equal to the tail current. On the right-hand side the situation is more complicated: the current available to the capacitor is the left-overs from the algebraic sum of the second-stage collector current, its current-source load current, and the input base currents of the third-stage transistors.
Self noticed that the 'current source' in his amplifier (Tr_{6} in Fig. 1 on p. 761 of September 1994 issue) did not supply constant current when its collector voltage was changing rapidly. He observed a 'spike' of current.
Said differently, Self observed that, although his current source might have had a high output resistance, it also has a high shunt capacitance; recall that a capacitor draws a spike of current when the voltage across it changes rapidly. This spike is in the direction which subtracts from the peak current available to the right-hand side of the compensating capacitor.

Current source analyses

Figure 5a) is an n-p-n current source, the "flip" of Self's p-n-p circuit. Note the collec-tor-base capacitance C_{CB} of the transistor. In the vacuum-tube era a circuit of this topology was known as a 'reactance-tube modulator'. Its function was to provide a voltage-variable capacitor to modulate the frequency of an $L C$ oscillator. The capacitance looking into the anode of Fig. $\mathbf{5 b}$ is,

$C_{\text {modulator }}=g_{\mathrm{m}} R_{\mathrm{G}} C_{\mathrm{AG}}$

The similarity of Figs 6a) and 6b) is apparent, and the capacitance looking into the current source is,

$$
C_{\text {source }}=\left(\frac{R_{B}}{R_{E}}\right) C_{C B}
$$

Figure $\mathbf{5 c}$ is Self's $p-n-p$ current source with actual component values marked; the capacitance looking into the collector is about 100 pF - equal to his compensating capacitor. No

Benefits of IGBTs in power driving

I would like to place it on record that a complementary common-emitter or com-mon-source amplifier with floating power supplies as in Fig. 1d provides an elegant solution to driving the gates of large insulated-gate bipolar transistors, or igbts, in high-power pulse-width modulated drives and inverters. In this application the gate must be driven between about +15 V and -10 V in a few nanoseconds; transient current in the gate capacitance during switching amounts to several amperes.
Figure A shows the arrangement. Parasitic gate-lead inductance has little influence on switching speed, because it is in series with the driver mosfet drains which behave like current sources.

Fig. A.
Complementary common-source enhancement-mode mosfet amplifier based on Fig. 1d, for driving an igbt gate between +15 V and
-10 V in a few nanoseconds.
wonder the slew rate was affected.
If the circuit topology is fixed, obvious reductions in current-source capacitance will accrue from reducing R_{B} in the $C_{\text {source }}$ equation (to zero, ideally) and from increasing R_{E}.
There are problems with both approaches in Self's amplifier, where the first and second stage current sources share a common voltage reference. Reducing R_{B} provides a kind of feedback which decreases/increases the firststage tail current on fast positive/negative swings. Increasing R_{E} reduces the peak positive output voltage from the complete amplifier, hence reduces available power output.
Better by far to change the circuit topology. In my original article I showed (Fig. 5 of Ref. 1) a really solid first-stage tail-current source using a 10 V zener diode. I didn't comment on Self's second-stage current source, but in fact I always use a bootstrapped resistor as described, for example, in Ref. 11 - an arrangement which Self largely dismissed.
A resistor bootstrapped as in Fig. 6 eliminates the problem of capacitive loading, it actually increases the peak positive output voltage available from the amplifier, and it is cheap. The sum of ($R_{1}+R_{2}$) should be chosen to provide the desired quiescent current in the second stage,
$I_{2 \text { (quiescent) }} \approx \frac{V_{C C}}{R_{1}+R_{2}}$

The ratio of R_{1} to R_{2} is not critical, except that R_{1} should be as large as possible consistent with $R_{2} \gg R_{\mathrm{L}}$.
Time constant $R_{2} C_{B}$ should be chosen having regard to the lower 3 dB cut-off frequency of the amplifier: $\omega_{1 \mathrm{ow}}=R_{2} C_{\mathrm{B}} \gg 1$.

Shifted compensating capacitor

If you want to change the circuit, then shifting the compensating capacitor as shown grey in Fig. 6 has many advantages; I have described it^{11} as "...the greatest bargain of all time...". It is very effective in reducing cross-over distortion - the major residual distortion in Self's 'blameless' amplifier. It also helps with slew symmetry, because the loading effect of the capacitor is transferred from the second-stage collector, where the available current is milliamperes, to the output, where the current is amperes.
Until now there has been no reaction from readers to this recommendation in my article, but I have in the past been told that shifting the compensating capacitor provokes high-frequency oscillation. This is not my experience: I have built dozens of amplifiers, and I have published an analysis ${ }^{12}$ which has never been challenged.
All this prompts the question "Is the supposed oscillation for real?" Is it perhaps that believers in the oscillation are merely reporting what someone else has told them? I would
be interested to hear from anyone with firsthand experience of the problem. However, before making contact with me, please read what I said on pp. 19-20 of Electronics World for January 1995:

- I can believe in local parasitic oscillation of the first member of the output-stage Darlington - the 'drivers' - as distinct from oscillation of the main feedback loop. Driver transistors such as BD $39 / 140$ with f_{T} around 100 MHz usually oscillate when biased to $5-10 \mathrm{~mA}$ at the end of $10-20 \mathrm{~cm}$ leads. Check the frequency of the oscillation: is it near the unity-loop-gain frequency, or is it significantly higher? For a common-collector-output amplifier with the low-level stages shown in Fig. 4,

$$
\omega_{\text {unity loop gain }}=\left(\frac{1}{R_{E 1} C}\right) \times\left(\frac{R_{F 1}}{R_{F 1}+R_{F 2}}\right)
$$

- My amplifiers always feature impeccable layout and bypassing with separate quiet and noisy ground tracks, and short leads to the drivers. All of this discourages parasitics.
- For the same reason I routinely provide 'stopper' capacitors of $30-50 \mathrm{pF}$ between collector and base of the drivers, using the shortest possible leads - no more than 1 cm .
- My amplifiers always incorporate a cor-rectly-designed load-stabilising network.
- My amplifiers always include judicious emitter degeneration in the second stage as shown in Fig. 6.
- In common-collector amplifiers - as distinct from my preferred common-emitter - I use a bootstrapped resistor as the second-stage current source.

Fig. 4. Low-level stages of a common-collector-output amplifier. Note that the polarity is flipped relative to Self's articles, but the same as in Ref. 1.

If any reader has taken care of all these matters and still experienced oscillation when the lag-compensating capacitor is shifted, I would be pleased to make contact. But I do urge you to try shifting the capacitor. It effects a remarkable reduction in cross-over distortion.

Load-stabilising Zobel networks

Load-stabilising networks are used to ensure that the amplifier proper is presented with something like its nominal load resistance at high frequencies. This is the case even if the external loudspeaker load is highly reactive. Secondly, they are used to prevent rf interference, picked up by the loudspeaker leads acting as antennae, from finding its way back into the first stage via the feedback network.
Since submitting the final manuscript of Ref. 1, I have realised that there are in fact two families of load-stabilising network - not just the two networks which Thiele proposed ${ }^{13}$. Figure 7 shows the general models. For both circuits the inductance and capacitance should satisfy,

$$
\frac{L}{R_{O}}=R_{O} C=\frac{1}{\omega_{x}}
$$

where R_{0} is the nominal loudspeaker load resistance, probably 8Ω, and ω_{X} is the network cut-off frequency. In addition, for Figs. 7a and 7 b respectively,

$$
\begin{align*}
& R_{2}=\frac{R_{O}^{2}}{R_{1}-R_{O}} \tag{a}\\
& R_{2}=\frac{R_{O}^{2}}{R_{1}+R_{O}} \tag{b}
\end{align*}
$$

Note the sign change in the denominator.
In Fig. 7a), if R_{1} is chosen as infinity, i.e. the capacitor branch is open-circuited, then from equation (a) above R_{2} needs to equal 0 - shortcircuit the inductor in other words. As a result, the whole network disappears. This corresponds to the limiting case of an amplifier without a load-stabilising network.
On the other hand if R_{1} is chosen as its minimum allowed value of R_{0}, then R_{2} is infinity and Fig. 7a) reduces to Thiele's original (Fig. 9a of Ref. 1). Between these extremes is a continuum of allowed resistance values. Is any especially desirable?
Thiele's original with $R_{2}=\infty$ gives the greatest isolation between amplifier and load, and the greatest attenuation of rf interference. But the circuit does ring badly if the external load is made pure capacitance.
Whether a pure capacitive load is realistic of anything practical is a moot point, and in any

Fig. 5. (a) n-p-n current source; (b) reactance-tube modulator, a voltage-variable capacitor from the vacuum-tube era; (c) Self's p-n-p current source.

Fig. 6. Bootstrapped resistor as secondstage current source. Shifting the compensating capacitor (shown grey) reduces crossover distortion and can improve slew symmetry. Second-stage emitter degeneration helps with stability.
case the ringing is a simply a resonance between the inductor and this capacitance not an indication of approaching instability in the amplifier.

If anyone is worried by the ringing, however, then damping can be increased by using some finite R_{2} and the corresponding R_{1}. The price, of course, is reduced isolation and reduced rf attenuation. Thiele's original (or my modification of it in Ref. 1) is still my preferred choice.
Similarly, if in Fig. 7b you choose $R_{1}=\infty$ and $R_{2}=0$, the whole network disappears. If you choose $R_{1}=0$ and $R_{2}=R_{0}$ on the other hand, the circuit reduces to Thiele's original. Again there is a continuum of allowed resistance values between these extremes.
Notice that this form of Thiele's network (Fig. 9b of Ref. l - the circuit I described as crazy-looking with 100 nF directly across the loudspeaker) is much better in regard to ringing than the more common Fig. 8a. I urge you to try Fig. 8b - crazy-looking or not.

Distortion off the supply rails

Self's cascode-like first stage ${ }^{4}$ is an ingenious solution to the problem of distortion on the supply rails re-entering the circuit via the lagcompensating capacitor. Congratulations. However there are at least two other solutions.
My preferred choice is the common-emitter output stage as described above. Here there is no significant signal on the low-voltage supplies to the low-level stages, hence no problem.
Alternatively, with a common-collector output stage use nested differentiating feedback loops as in Ref. 11. Here the return end of each lag-compensating capacitor is connected to a virtual ground. Again there is no problem.

First-stage c-m distortion

Related to distortion off the supply rails is distortion which enters via the finite commonmode rejection of the first stage. Signals on
the supply rail appear more-or-less unattenuated at the collectors of the first stage unless something like Self's cascode is included, and harmonics of signal on the supply rails can introduce distortion via this mechanism.
However there is another common-mode distortion mechanism. The input and feedback signals, applied to the bases of the input longtailed pair, can be resolved into differential and common-mode components.
The principal component of current output from the first stage is proportional to the small difference between the input and feedback voltages; half this difference appears between the base of each transistor and the top of the tail. Simultaneously the average of the input and feedback voltages appears between each collector and the top of the tail as a large com-mon-mode signal.
The differential and common-mode signals will intermodulate and produce beat frequencies if there is any dependence of first-stage differential gain on collector voltage.
In practice there is such a dependence, and the gain variation is something like linear with collector-emitter voltage. It follows that the intermodulation is proportional to the product of the differential and common-mode signal amplitudes, and its frequency is twice the input signal frequency.
In other words, the intermodulation distortion appears like second-harmonic distortion, although it truly is the result of intermodulation - perhaps auto-intermodulation would be the correct description. Adding a cascode, to hold the collector voltage constant, will not help; it is the large signal voltage at the emitter that matters.
A number of physical mechanisms are involved for bipolar-junction transistors, all associated with widening of the collector depletion layer as collector-emitter voltage increases:

- Classical text-book Early effect, by which base-emitter voltage for a specified collector current depends on collector-emitter voltage;
- Modulation of transistor base width, hence β and base current, and ultimately modulation of the signal voltage drops across any series resistance in the base circuit - the source resistance, the Thévenin equivalent resistance of the feedback network, and transistor basespreading resistance;
- 'pinching' of the base resistance itself, hence modulation of the voltage drop associated with base current.

Field-effect transistors exhibit a corresponding dependence of differential gain on drain voltage. They too can generate second-harmonic-like distortion via auto-intermodulation. Common-mode distortion mechanisms are not confined to bjt stages nor to modulation of base current.
Simulations may not reveal common-mode distortion. Most Spice transistor models treat the Early voltage as a constant where in fact it varies as something like the square root of col-lector-emitter voltage. Also, simulations are

Fig. 7. Generalised load-stabilising networks. These reduce to Thiele's networks for special cases of the resistor values.

Fig. 8. Bootstrapped cascode long-tailed pairs, using a JFET as the top member. The top JFET needs appropriate values for V_{P} and $I_{D O}\left(I_{D S S}\right)$ in order to provide headroom for the bottom device.
likely to represent both transistors of a longtailed pair as identical - apart, perhaps, from quiescent conditions - whereas in a real amplifier they are not identical and the unbalance is significant. Second harmonic cancels in a perfectly-balanced circuit.
Because the intermodulation is proportional to the product of the differential and commonmode signal voltages, distortion from this cause can be reduced by reducing either voltage. The differential voltage can be reduced by increasing the feedback loop gain at the signal frequency, but this means increasing the overall closed-loop cut-off frequency and hence increasing the likelihood of instability. Increasing the overall closed-loop gain reduces the common-mode component at all frequencies and hence reduces the input voltage required for full output; this is one of the reasons why I prefer the 300 mV typical of old-style vacuum-tube amplifiers, to today's more usual $0.7-1.0 \mathrm{~V}$.
If a hardware solution is required, I use the bootstrapped cascode arrangements shown in Fig. 8.

Power mosfets versus bipolar devices I agree with everything Self says about the relative nonlinearity of bjts and mosfets in output stages. However he has omitted one important consideration: gain-bandwidth product. I also feel he has over-stressed the importance of crossover distortion when there is the simple fix of shifting the lag-compensating capacitor as in Fig. 6.
Fifty years ago Bode showed ${ }^{14}$ that the amount of feedback which can be applied to an amplifier, and hence the amount by which distortion can be reduced with specified mar-
gins against instability, is proportional to active-device gain-bandwidth product $G B$ exponentiated to a power that depends on the phase margin. Here gain-bandwidth product is used in Bode's precise sense, related ultimately to the transit time of carriers through the control region.
It follows that bjts are the preferred devices for the low-level stages of a feedback amplifier. Typical types, such as $B C 547 \mathrm{~s}$, have transit times around 500 ps and hence $G B$ of 300 to 500 MHz , compared with lns and $100-200 \mathrm{MHz}$ for silicon j -fets such as the 2N5485.
However, the corresponding numbers for power bjts like the MJ802 are around 100 ns and 1 to 2 MHz , compared with 1 ns and something over 100 MHz for power mosfets such as the IRF240. More feedback can in theory be applied around power mosfets.
In the terminology of Refs 1 and 11, outputstage distortion for mosfets is almost entirely a consequence of nonlinearity in $g_{m 3}$; crossover distortion for both bjts and mosfets is also a consequence of nonlinearity in $g_{m 3}$.
Figure 4 of Ref. 1 shows that sensitivity towards changes in $g_{m 3}$ is inversely proportional to the second-stage lag compensating capacitor. Therefore distortion is inversely proportional to this capacitor.

Comparison anomalies

In August 1995 John Linsley-Hood's published a comparison between bjts and mosfets ${ }^{15}$. In this comparison, the compensating capacitor C_{13} in his Fig. 1 is marked 'value depends on circuit'. In other words, the comparison of bjts, mosfets and igbts was not made on a level playing field.

The fact that measured distortion for the mosfets was about half that for the bjts is of itself meaningless; we must also be told the ratio of the compensating capacitors in the two experiments.
My guess is that the compensating capacitor was smaller in the case of the mosfets as compared with the bjts. As explained above, Bode's work shows that much more feedback can be applied to mosfets at high frequencies without approaching instability, because their transit time is shorter; mosfets require less compensation than bjts.
If the mosfet compensating capacitor was half the bjt capacitor, then Linsley-Hood's experiment shows that the open-loop distortions of mosfets and bjts are about the same. If the mosfet capacitor was smaller than half the bjt capacitor, then the open-loop bjts are better than the mosfets - as Self claims.

In the end, however, it is closed-loop distortion that matters, not open-loop, and Linsley-Hood's experiment confirms my preference for mosfets. Their open-loop distortion may be somewhat greater than for bjts, but more feedback can applied around them.
To repeat the quotation from Ref. 8: "The author's approach to designing a high-quality
amplifier is to choose a simple topology based on common-emitter amplifying stages and apply negative feedback to reduce distortion. 'Clever' circuit topologies (other than pushpull operation) rarely give better than a tenfold reduction in distortion on a production basis. Feedback, however, can reduce distortion almost indefinitely."

References

1. Cherry, E. M., 'Ironing out distortion' EW\&WW, vol. 101, pp. 14-20, January 1995
2. Self, D., 'Common-emitter power amplifiers', $E W \& W W$, vol. 100, pp. 548-553, July 1994.
3. Self, D., 'High-speed power', EW \& WW, vol. 100, pp. 760-764, September 1994.
4. Self, D., 'Distortion off the rails', EW\&WW, vol. 101, pp. 201-206, March 1995.
5. Stochino, G., 'Audio design leaps forward', EW\&WW, vol. 100. pp. 818-824, October 1994.
6. Olsson, B.G., 'Better audio from noncomplements', EW\&WW, vol. 100, pp. 988-992, December 1994.
7. Cherry, E.M. and Cambrell, G.K., 'Output resistance and intermodulation distortion of feedback amplifiers,' J. Audio Eng. Society, vol. 30, pp. 178-191, April 1982.
8. Cherry, E.M. 'A high-quality audio power amplifier', Proc. IREE Australia, vol. 39, pp. 1-8, Jan/Feb. 1978.
9. Cherry, E.M. and Hooper, D.E., Amplifying Devices and Low-Pass Amplifier Design, Wiley, New York, 1968. See Fig. 14.26b on p. 891.
10. Cherry, E.M. 'Input impedance and output impedance of feedback amplifiers',
Proc. Inst. Elec. Engrs. - Circuits, Devices \& Syst., vol. 143, pp. 195-201, April 1996.
11. Cherry, E.M. Nested differentiating feedback loops in simple audio power amplifiers', J. Audio Eng. Society, vol. 30, pp. 295-305, May 1982.
12. Cherry, E.M. 'Feedback, sensitivity and stability of audio power amplifiers', J. Audio Eng. Society, vol. 30, pp. 282-294, May 1982. Also ibid, vol 31, pp. 854-857, November 1983.
13. Thiele, A.N., 'Load stabilising network for audio amplifiers', Proc. IREE Australia, vol. 36, pp.297-300, September 1975.
14. Bode, H.W., Network Analysis and Feedhack Amplifier Design, van Nostrand, Princeton NJ, 1945.
15. Linsley-Hood, J., 'Expert witness', EW \&WW, vol. 101, pp. 684-685, August 1995.

Transform your PC

 into a digital oscilloscope, spectrum analyser, frequency

 into a digital oscilloscope, spectrum analyser, frequency meter, voltmeter, data logger . . for as little as $\mathbb{\$ 4 9 . 0 0}$
 Pico Technology specialises only in the development of PC based data acquisition instrumentation. Call for your guide on 'Virtual Instrumentation'.

The ADC-10 supplied with PicoScope gives your computer a single channel of analog input.
ADC-10£49 witr Picolog $£ 59$

Virtual Instrumentation

Pico's PC based oscilloscopes simply plug into the parallel port turning your PC into a fully featured oscilloscope, spectrum analyser and meter. Windows and DOS software supplied.

ADC-100 Dual Channel 12 bit resolution

The ADC-100 offers both a high sampling rate 100 kHz and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use.

ADC-100 £199
 ADC-100 with PicoLog £219

ADC-200 Digital Storage Oscilloscope
50 MSPS Dual Channel Digital Storage Scope
25 MHz Spectrum Analyser
Windows or DOS environment
$\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$
Multimeter
20 MSPS also available
ADC 200-20 £359.00
ADC 200-50 £499.00
Both units are supplied with cables, power supply \& manuals.

Data Logging

Pico's range of PC based data logging products enable you to easily measure, display and record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter

- Supplied with PicoLog software for advanced temperature processing, min/max detection and alarm. - 8 Thermocouple inputs - No power supply required.

TC-08 £199
TC-08 £224 with cal. Cert. complete with serial cable \& adaptor. Thermocouple probes available.

Call for free demo disk and product range catalogue
Post \& Packing UK £3.50, Export customers add $£ 9$ for carriage \& insurance.

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: + 44 (0) 1954211716 Fax: +44 (0) 1954211880 E-mail: post © picotech.co.uk Web: http://www.picotech.co.uk/

[^3]
LOW-GOST AND MINLATURE

TRANSMITTER/RECEIVER PAIR

LICENCE EXEMPT UHF MODULES DESIGNED FOR EMC COMPLIANCE

All TX2 and RX2 modules feature:

- Miniature, PCB-mountable UHF transmitter/receiver pair
- Cable-free data link up to 75 m 'in building' and 200 m over open ground
- Operation at 433.92 MHz (Europe) \& 418 MHz (UK)
- Full EMC screening and internal filtering
- Ideal for portable, battery-powered applications

RADIO PACKET CONTROLLERS INCORPORATING BIM TRANSCEIVER

BI-DIRECTIONAL RADIO DATALINKS

All RPC and BiM modules feature:

- Half-duplex data transmission up to $40 \mathrm{Kbit/s}$
- Reliable "in-building" operating range of 30 m
- Outdoor operation over distances of 120 m
- Duty cycle power saving
- Direct interface to 5V CMOS logic
- Operation at 433.92 MHz (Europe) $\& 418 \mathrm{MHz}$ (UK)

Full data available on http://www.radiometrix.co.uk

Hartcran House, Gibbs Couch, Carpenders Park, Watford, Herts, WDI 5EZ, England. Tel: +44 (0) 181428 1220-fax: +44 (0) 18 I 428 122I email: radiometrix@dial.pipex.com

Make your own fluxmeter

You can't see or feel them but a body of opinion says that they can harm you. Frank Ogden describes an instrument to measure low frequency flux fields

We haven't heard so much lately about low frequency magnetic fields from power lines and mains equipment and their alleged connection with health risks. I hold a personal view that the various Govemment inspired studies, none of which indicate significant linkage between disease and exposure, have not looked for chronic, measured exposure. They searched for correlation between disease and magnetic AC field in likely locations: they did not survey retrospectively location addresses of actual illness.
Most researchers suggesting disease linkage suspect sustained medium level exposure in the range 300 to 1000 nT as being significant. Short, intense bursts such as those received when operating a hair dryer or other electrical equipment are not considered important. In short, LF radiation is probably of no concern unless you live or work under - or above - a power line, or within the stray field of a piece of electrical equipment in continuous operation.
The single-coil handheld design given in this article was based on an idea put forward by Alasdair Phillips and published in Electronics World back in April, 1992. This update allows an instant LF field survey which, at the very least, may be used to determine whether a more detailed survey is desirable.
While overhead National Grid power lines predictably exhibit AC flux peaking in the region 500 to 800 nT , similar - indeed higher levels frequently occur over a much smaller corridor along town streets corresponding to buried power lines. Aside from alleged health risks, the instrument provides a fascinating readout as it lays bare the high power circuits buried under our streets.
It also reveals hotspots around the home: ring main wiring may create fields reaching levels of 600 nT within a few inches of their routing; the scanning coils fitted in domestic TV drive the instrument off the clock within a couple of feet of the set and significant field generation may extend at typical viewing distance.

The simple instrument described here will deliver an AC flux measurement accuracy within 10% without any form of calibration. This requires the 215 -turn sensor coil to be wound accurately, that it should intercept about 78 sq cm of flux, and that the instrument housing does not distort the incident flux.
Such a coil will deliver 0.5 microvolt EMF at 50 Hz for each nanoTesla of incident flux. Thus, when coupled to an amplifier with a gain of 2000 , a 1000 nT 50 Hz sinewave flux will generate IV rms at the amplifier output. This can be measured with a calibrated precision rectifier, DMM or other measuring instrument connected to the output terminals.
The circuit is almost too simple to warrant description. The sensor coil couples directly to a two-stage differential amplifier with a gain of 2000 . Thus, when used with the coil as specified, an input $50 \mathrm{~Hz}, 1 \mathrm{mT}$ flux generates one volt rms output at the coupling capacitor to the precision rectifier. The rectifier/meter circuit is pre-calibrated against a decent voltmeter or known voltage source.
Alasdair's orginal piece, which advocated a single-ended amplifier block, had all sorts of caveats about shielding the coil, wires and
other things. The differential configuration gets rid of all that. The pair of capacitors on the front end ensures that the sensor coil doesn't pick up RF, or allow HF oscillatory feedback from the high level signal downstream of the amplifier blocks. The arrangement given here is unconditionally stable even when mounted in a small plastic box and requires no screening. As mentioned earlier, placing signifcant pieces of metal within the capture aperture of the loop will affect the accuracy of the resultant readings.
The op-amps can be any mildly superior devices. Key parameters are low 1/f noise, low DC offset and full stability at unity gain.

Sensor coil

This comprises 215 turns of fine (36 to 40 swg) enammelled copper wire pile wound onto a 100 mm diameter non-conducting former to form a "ring" winding. I used a glass jar of the right diameter as a winding mandrel. The finished coil was removed from the jar and wound toroidally with insulating tape to form a stable structure. The winding is terminated onto flexible multistrand leadout wire taped into place on the coil. The leadout then collects to the amplifier.

The 215 -turn 100 mm diameter sensor coil generates $0.5 \mu \mathrm{~V}$ rms for every nanoTesla of 50 Hz flux which it intercepts. The differential op-amp pair have a combined gain of 2000. Thus 1000 nT flux produces 1 V rms at the output to the precision rectifier

ELECTRONICS WORLD

READER INFORMATION SERVICE

For more information about any of the products or services in this issue of ELECTRONICS WORLD, simply ring the relevant enquiry number.
Enquiry numbers may be found at the bottom of each individual advertisement

101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118
119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136
137	138	139	140	141	142	143	144	145
146	147	148	149	150	151	152	153	154
155	156	157	158	159	160	161	162	163
164	165	166	167	168	169	170	171	172
173	174	175	176	177	178	179	180	181

Name
Job title
Company Address

Subscribe today!

Guarantee your own personal copy each month

Save on a 2 year subscription

ω
 m
 T

ELECTRONICS WORLD
 uncesporanme winus weal

SUBSCRIPTION CARD

With £ \qquad Expiry Date \qquad
Signature \qquad
Name \qquad
Job Title \qquad
Address \qquad

Postcode \qquad

Tel: \quad Postcode

SUBSCRIPTION RATES		Post to:
UK 1 year	E32	ELECTRONICS WORLD
UK 2 years	${ }_{\text {c58 }}$	P.0. Box 302
Student rate(proof required)	£1	Haywards Heath, West Sussex RH16 3DH UK
Airmail		
Europe 1 year	${ }^{246}$	CREDIT CARD HOTLME
Europe 2 years	¢83	Tel: +4401444 445566
Rest of the world 1 year	${ }_{5} 56$	Fax: +4401444 445447
Rest of the world 2 years	$\underline{101}$	
Surface mail 1 year	E37	Please tick here if you do not wish to receive direct marketing-promotion from

Post to:
ELECTRONICS WORLD
P.O. Box 302

Haywards Heath,
West Sussex RH16 3DH UK.

CREDIT CARD HOTLIME
Tel: +4401444445566
Fax: +44 01444445447

Please tick here if you do not wish to other companies \square

ELECTRONICS WORLD

SUBSCRIPTION CARD

Pbase enter my subscription to ELECTRONICS WORLO. I enclose Chequa/Eurochequ: to the value of ε \qquad made payable to Rleed Busineese informetton
Piease charge my MastercaradNisa/ \square

With $£$ \qquad Expiry Date \qquad
Signature \qquad
Name \qquad
Job Title \qquad
Address \qquad

Tel: \quad Postcode

SUBSCRIPTION RATES		Post to: ELECTRONICS WORLD
UK 1 year	$\varepsilon 32$	
UK 2 years	$\underline{58}$	P.O. Box 302
Student rate(proof required)	$\underline{21}$	Haywards Heath,
		West Sussex RH16 3DH UK.
Airmail		
Europe 1 year	846	CREDIT CARD HOTLINE
Europe 2 years	583	Tel: +4401444445566
Rest of the world 1 year	$£ 56$	Fax: +4401444445447
Rest of the world 2 years	¢101	
Surface mail 1 year	\&37	Prease tick here if you do not wish to receive direct marketing-promotion from other companies

Mixitup with Electronics 1 WorkbenchEDA

The analogue, digital and mixed-mode circuit simulator that really moves!

NENSFLASH:

Adept Scientific - Britain's leading technical computing specialists - has just been appointed exclusive UK distributor of Electronics Workbench.
"Simulators cost thousands." "Simulators are really hard to use." Not any more!

Now there's a PC-based EDA tool that will make you more productive, and your work much simpler. And it's so easy to learn and use, you'll be working productively in just 20 minutes.

Electronics Workbench EDA is a full-featured SPICE, analogue, digital and mixed-mode simulator that's truly easy to use - and costs less than $£ 800$!

High-End Features

Mixed Analogue/Digital Analogue Engine Digital Engine Virtual Instruments On-Screen Graphs Analogue Components Digital Components Device Models Temperature Control Technical Support

Powerful Analyses

DC Operating Point AC Frequency
Transients
Fourier
Noise
Distortion
Parameter Sweep
Temperature Sweep
Pole Zero
Yes, Interactive SPICE 3F5, 32-Bit
Native, 32-Bit
Yes
Yes
$100+$
$200+$
$8,000+$
Each Device
Free

Transfer Function

C Sensitivity
Worst Case
Monte Carlo

Call us for details of the complete range of products, including special technical and education versions!
CAL! 01462480055 today! or use the form opposite

Adept Scientific plc 6 Business Centre West, Avenue One, Letchworth, Herts., SG6 2HB
Tel: 01462480055
Fax: 01462480213
E-mail: ewb@adeptscience.co.uk WWW: http://www.adeptscience.co.uk/

No-risk 30-day money-back guarantee! Runs on Windows 95/NT/3.1

CIRCUIT IDEAS

Simple fet audio preamplifier
 to expensive designs. This one, while

\triangle lthough there have been many discrete fet designs for good quality audio preamplifiers, there has been a tendency towards elaboration and hard-to-find components, leading

being almost skeletal in comparison, gives smooth, clean sound, with very low distortion, and is suitable for linelevel application. Fets used are not specifically audio types; I chose them for their availablity.
Voltage gain is $1+R_{2} / R_{1}$, which with the values used gives 18 dB ; measured -3 dB attenuation was at 1.5 MHz , giving 12 MHz gain/bandwidth product. Slew rate is $10 \mathrm{~V} / \mu \mathrm{s}$, output

Considerably simpler than many fet preamplifiers, this one gives a smooth sound, particularly at higher frequencies, where some bipolar transistor preamplifiers have a tendency to sound harsher and more "aggressive".
impedance around 50Ω and, with a $\pm 10 \mathrm{~V}$ power supply and driving a $10 \mathrm{k} \Omega$ load, output voltage before clipping is 5.7 Vrms .
I have no access to distortion measuring equipment and used a spectrum analyser to compare input and output. Input came from an oscillator wiuth second and third harmonics at -70 dB and -75 db respectively compared with the fundamental. Output, at 1 Vrms, showed an identical spectrum, which indicates that the thd of the circuit was well below that of the test signal, even up to 20 kHz , where many bipolar op-amps start to distort. Phil Regalia
Nanteau-sur-Lunain
France

Smps inrush tester

E100 WINNER
| nrush current, that taken by a Iswitched-mode power supply at switch-on, the reservoir capacitors
being uncharged, is large and shortterm. It is necessary to examine this characteristic on a new design and

With the addition of a dso, this is a repeatable method of measuring the inrush current of a switched-mode power supply.

Made in the USA to an industrial specification, the systems was designed for total reliability. The compact case houses the mother-
board. . CSU and EGA video card with single $51 / 41.2$ Mb flopy disk
drive \& integral 40 Mb hard disk drive to the front. Real time clock with battery backup is provided as standard. Supplied in good used
condition complete with enhanced keyboard, $640 \mathrm{k}+2 \mathrm{Mb}$ RAM,

Orree as HIGRADE 286 ONLY £129.00 (E)

LOW COST 486DX-33 SYSTEM

 integral 120 Mb IDE drive with single 1.44 Mb
Fully tested and guaranteed. Fully expandable

FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

51/4" or $31 / 2$ " from only $£ 18.95$!

THE AMAZING TELEBOX

 laining all electronics ready to plug into a host of video monitors
made by makers such as MICROVITEC, ATARI, SANYO, SONY,
COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composite video output will atso plug directly into most video recorders, allowing sion receivers allow reception of 8 fully tuneable off air UMF colour television Channels. TELEBOX MB covers virtually ali television frequencies for direct connection to most makes of monitor or desktop computer video systems. For complete compatibility - even for monitors with TELEEOX ST tor composite video input type monior

DC POWER SUPPLIES

Virtually every type of power

supp

call for into list.
 Issue 13 of \mathcal{D} isplay News now available - send large SAE - PACKED with bargains!

Surplus always wanted for cash!

IC'S -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK

6,000,000 items EX STOCK

VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see

MitAt this price - Don't miss it!!

$$
\begin{aligned}
& 28 \text { dol pach tube and resplution of } 1024 \times 768 \text {. A } \\
& \text { ariety of inguts allows connection to a host of ommout }
\end{aligned}
$$

anety of inp vanety of inputs allows oonnection 10 a host of oomput
 taceplate, tex switcing and LOW RADUATION MPR LENT litte used condition. E4.75 Only $£ 119$ (E) Mrts-SVGA \quad Os External cables for other types of computers CALL

As New - Used on film set for 1 week onlyl! $15^{\prime \prime} 0.28$ SVGA 1024×768 res. colour monitors. Swivel \& tilt etc. Full 90 day guarantee. £145.00 (E) ust In-Microvitec 20° VGA (800×600 res.) colour monitors. Good SH condition-from $£ 299$ - CALL for Info
PHILIPS HCS35 (same style as CM8833) attractively styled 14^{n}
colour monitor with both RGB and standard composite 15.625 colour monitor with both RGB and standard composite 15.625 Integral audio power amp and speaker for all audio visual uses. Wildeo monitoring Io Amiga and Atari BBC computers. Ideal for all video monitoring / security applications with direct connection
to most colour cameras. High quality with many features such as used condition - fully tested - guaranteed Only $\mathbf{Z 9 5}$ (E)
Dimensions: W14
PHILIPS HCS31 Ultra compact $9^{\prime \prime}$ colour video monitor with stan-
dard composite 15.625 Khz video input via SCART socket Ideal for all monitoring / security applications. High quality, ex-equipment fully tested \& guaranteed (possible mino
tive square black plastic case measuring

Only $£ 79.00$ (D)

Only £125 (E)
20" $22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbly made UK manufacture. PIL all solid state colour monitors,
complete with composite video \& optlona/ sound input. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, etc 20"....£135 22"....£155 26"....£185(F)

SPECIAL INTEREST ITEMS

MITS. \& FA $3445 E T K L$ 14" Industrial spec SVGA monitor
2kW to $400 \mathrm{~kW}=400 \mathrm{~Hz} 3$ phase power sources -ex stock IBM 8230 Type 1, Token ring base unit driver
IBM 53 F5501 Token Ring ICS 20 port lobe modules IBM MAU Token ring distribution panel 8228-23-5050N AIM 501 Low distortion Oscillator 9 Hz to 330 Khz , IEEE
Trend DSA 274 Data Analyser with G703(2M) 64 Vo Trend DSA 274 Data Analyser with G703(2M) 64 Vo
Marconi 6310 Programmable 2 to 22 GHz sweep generato HP1650B Logic Analyser
HP3781A Pattern generator \& HP3782A Error Detector HP APOLLO RX700 system units
HP6621A Dual Programmable GPIB PSU $0-7 \mathrm{~V} 160$ watts
HP3081A Industrila workstation clw Barcode swipe reader HP 3081 A Industrila workstation clw Barcode swipe reader HP54121A DC to 22 GHz four channel test set HP7580A A1 8 pen HPGL high speed drum plotte EG+G Brookdeal 95035C Precision lock in amp
View Eng. Mod 1200 computerised inspection system Ling Dynamics 2kW programmable vibration test system Keithley 590 CV capacitor / voltage analyser Racal ICR40 dual 40 channel voice recorder system Fiskers 45KVA 3 ph On Line UPS. New batts Dec. 1995
ICI R5030UV34 Cleanline ultrasonic cleaning system Mann Tally MT645 High speed line printer intel SBC 486/133SE Multibus 486 system. 8Mb Ram Zeta 3220-05 AO 4 pen HPGL fast drum plotters Motorola VME Bus Boards \& Components List. SAE / CALL Trio $0-18$ voc linear, metered 30 amp bench PSU. New
Fujlisu M3041R 600 LPM band printer Fujitsu M3041D Perkin Elmer 2998 LPM printer with network intertace VG Electronics 1035 TELETEXT Decoding Margin Meter Andrews LARGE 3.1 m Satellite Dish + mount (For Voyager) Sekonic SD 150 H 18 channel digital Hybrid chart recorder System Video 1152 PAL waveform montor Test Lab - 2 mtr square quietised acoustic test cabinets

19" RACK CABINETS
Superb quality 6 foot 40U Virtually New, Ultra Smart Less than Half Price!
 designer, smoked acrylic lockable front door,
full height lockable half louvered back door adjustable interna por any configuration of equipment mounting socket switched mains distribution strip make
these racks some of the most have ever sold. Racks may be stacked side by side and therefore require only two side panels to stand singly or in multiple bays. OPT Rack 1 Complete with removable side panels. $£ 335.00$ (G)
32U - High Quality - All steel RakCab Made by Eurocraft Enclosures Lid to the highest possible spec side, front and back doors. Front and back doors
hinged for easy access and all are lockable with is constructed of double walled steel with a enable status indicators to be seen through the
panel, yet remain unobtrusive. Internally the features fully slotted reinforced vertical fixing equipment. The two movable vertical fixing struts (extras available) are pre punched for standard ly mounted to the bottom rear, provides $8 \times$ IEC 3
pin Euro sockets and 1×13 amp 3 pin 8 witched utility socket. Overall ventilation is provided
fully louvered back door and double skinned top with top and side louvres. The top panel may be removed for fitting of integral fans to the sub plate eic. Other features include: fitted cablors and connector access etc. Supplied in excellent, slightly used
cater $\mathrm{mm}=1625 \mathrm{H} \times 635 \mathrm{D} \times 603 \mathrm{~W}$. ($64^{\prime \prime} \mathrm{H} \times 25^{n} \mathrm{D} \times 233^{n} \mathrm{~W}$)

A superb buy at only $£ 195.00$ (G)

Over 1000 racks - 19" 22" $\& 24 "$ wide 3 to 44 U high. Available from stock Call with your requirements.
 TOUCH SCREEN SYSTEM

The ultimate in 'Touch Screen Technology' made by the experts -
MicroTouch . but sold at a price below cost 11 System consists of a tlat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ a standard serial RS232 or TTL output which continuously gives simple serial data containing positional X \& Y co-ordinates as to nistantly changes. The $X \& Y$ panel as X a Y co-criones, he data matrix resolution of 1024×1024 positions over the entire screen nection to a PC for a myriad of applications including: control panels, pointing devices, POS systems, controllers for the disabled or
computer un-trained etc etc. Imagine using your finger with
'Windows', instead of a mouse i! (a driver is indeed available!) The applicatlons for th/s amazing product are only limited by your
Imaginatlonl/ Complete system including Controlier, Power Supply and Data supplied at an incredible price of only: $£ 145.00$ (日)
Full Michoorouch software support psck

LOW COST RAM \& CPU'S

INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT
and PC-AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processor
and above) memory. Full data and driver disks supplied. RFE. Fuily tested and guaranteed. Windows compatible. $559.95(A 1)$ Half length 8 bit memory upgrade cards for PC AT XT expands in RAM above 640k DOS limit. Complete with data. SIMM SPECIALS

MB $\times 9$ SIMM 9 chi MB $\times 9$ SIMM 3 chip
 | s. 519.50 |
| :--- |
| 5 |
| $E 21.50$ |

4 MB 70 ns 72 pin SIMM -with parity. Ons | Only |
| :--- |
| $£ 95.00$ |
| 950 |

INTEL 486-DX33 CPU $£ 55.00$ UNTEL 486-DX 66 CPU £69.00
FULL RANGE OF COPROCESSOR'S EX STOCK-CALL FOR EFI
FANS \& BLOWERS
$\begin{array}{ll}\text { EPSON DO412 } 40 \times 40 \times 20 \mathrm{~mm} 12 \mathrm{VDC} & £ 7.9510 / £ 65 \\ \text { PAPST TYPE } 61260 \times 60 \times 25 \mathrm{~mm} 12 v \mathrm{DC} & £ 8.9510 / £ 75\end{array}$
MITSUBISHI MMF-D6D $42 D \mathrm{~L} 60 \times 60 \times 25 \mathrm{~mm} 12 v D C ~ £ 4.9510 / £ 42$
MITSUBISHI MMF-08C12DM $80 \times 80 \times 25 \mathrm{~mm} 12 v$ DC $£ 5.2510 / £ 49$
MITSUBISHI MMF-09B12DH $92 \times 92 \times 25 \mathrm{~mm}$ 12v DC $£ 5.9510 / \mathrm{E} 53$ $£ 5.9510 / £ 53$
$\Sigma 7.9510 / £ 69$

ALL MAIL \& OFFICES LONDON SHOP Open Mon-Fri 9.00-5:30 Upper Norwood ONDON SE19 3XF Open Mon. Sat 9:00 5: 5:30 South Norwood
On 68 A Bus Routo
\square

Soft-starting bedside lamps

T
Turning on a bedside lamp at 30^{\prime} clock in the morning is not often a pleasant experience, depending on what one was doing the
night before. This circuit switches the lamp on at reduced power and brings it on fully after a few seconds. It also makes lamps last a very long time.

At the instant the switch is closed, there is no voltage on C_{1} and the TIC206 triac is not conducting (the triac is cheaper than a thyristor and has the same function here). Diode D_{1} half-wave rectifies the live line and, during the half cycles when D_{1} is not conducting, C_{1} charges through R_{2} and D_{2}. When this voltage gets to about 15 V , the zener begins to conduct and carry current to the gate of the triac, which conducts; in this condition, the voltage across C_{1} does not exceed its rating. On switch-off, C_{1} discharges through R_{1}.
HABurnham
Wye
Kent

Audio phase indicator

Δ bi-colour led glows green for L and R in-phase stereo signals, red for out of phase and remains off when no signal is present.
Left input signal is amplified and clipped, the pin 6 output driving the synchronous rectifier at pins 5,6 . Right-channel signal is squared by the comparator IC, whose output controls the analogue switch IC_{3}, pin 9 , to
switch the rectifier in and out of phase, its output therefore following the relative phase of the two signals and being integrated at IC_{2} pin 1. This output is positive or negative with respect to ground, depending on whether the inputs are in or out of phase. The integrator samples and holds for no signal at $D_{3,4}$ to minimise detection of incorrect phase

information

If there is no signal or only one signal present, there is no input to one or both of the analogue switches at IC_{3} pins 1 and 8 and the led stays off. Otherwise, the led responds to a negative or positive integrator output. Mike Law
BCD Audio Windsor Berkshire

To show the relative phase of pair of stereo inputs, this circuit makes a led glow green or red, or stay unlit for no signal.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP New Colour Spectrum Analysers
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{BIF}+8553 \mathrm{BRF}-1 \mathrm{KHz-110Mc/s-E700}$.

$\mathrm{HP141T}+8552 \mathrm{BIF}+8556 \mathrm{ARF}-20 \mathrm{~Hz} 2-300 \mathrm{KHz}-\mathrm{E} 700$.
Special Offer just in from MOD Qty 40 HP8555A RF Units $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$
HP141T+ 8552 B IF $+8555 \mathrm{~A} 10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GH} 2 \mathrm{~S}-\mathrm{f1} 200$
HP141T+8552B IF $+8555 A 10 \mathrm{MC} /$ s-18GHzS -E 1200 .
HP 141T Mainframe - £350.
HP8552B IF- $£ 300$.
HP8553B RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}-£ 200$.
HP8554B RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}-\varepsilon 500$
HP8555A RF $10 \mathrm{Mc} / \mathrm{s}$ to $18 \mathrm{GHzS}-\mathrm{f800}$.
HP8556A RF 20 Hz to $300 \mathrm{KH}_{2} \mathrm{~S}-\mathrm{f} 250$
HP8443A Tracking Generator Counter 100 KHz -110Mcs - 5300
HP
HP3582A. 02 Hz to 25.6 KHz - $£ 2 \mathrm{k}$.
HP8568A 100 Hz-1500Mc/s ANZ- $£ 6 \mathrm{k}$
HP8569B 10Mc/s-22GHz ANZ-E6k.
HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}_{2}-18 \mathrm{GHz} \mathrm{Opt}+2-\mathrm{H}$
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-£ 4 \mathrm{k}-£ 4.2 \mathrm{k}$
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz} \mathrm{Opt} 1+2+3-£ 4.5 \mathrm{k}$.
TEK $492 \mathrm{P}-50 \mathrm{KHz}-21 \mathrm{GHzOpt} 1+2+3-£ 5 \mathrm{k}$.
TEK 492P - $50 \mathrm{KHz}-21 \mathrm{GHz} 2 \mathrm{Opt} 1+2+3-£ 5 \mathrm{k}$
TEK $496 \mathrm{P} 1 \mathrm{KHz}-1.8 \mathrm{GHz}-£ 4 \mathrm{k}$.
TEK 5LAN O-100KHz - E400.
TEK $7 \mathrm{LL}+\mathrm{L1}-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{S}-\mathrm{E} 700$.

TEK $7 \mathrm{~L} 12-100 \mathrm{KHz}-1800 \mathrm{Mc} / \mathrm{s}-£ 1000$.
TEK $7 \mathrm{~L} 18-1.5-60 \mathrm{GH} 2 \mathrm{~s}-\mathrm{f} 1500$

TEK $49110 \mathrm{Mc} / \mathrm{s}-12.4 \mathrm{GHzs}-40 \mathrm{GHzs}-£ 750$. 12.4Ghzs-40Ghzs with Mixers
Tekronix Mixers are available for above ANZ to 60 GHzz
Systransit Case - f3k
Thectrum ANZ $+4745 B$ Preselector .01-18GHz + Two Mixers 18-40GHz in
HP8673D Signal Generator $05-26.5 \mathrm{GHz}$ - £20k
Systron Donner 1618 M Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s} 2-18 \mathrm{GHzs}$ ADRET 3310A FX Synthesizer S00
ADRET 3310A FX Synthesizer 300 Hz -60Mc/s - $\mathbf{E 6 0 0}$.
HP8640A Signal Generators -1024 Mc - A - AM FM -
HP8640A Signal Generators - 1024MC/s - AM FM - 8800
HP3717A $70 \mathrm{Mc} / \mathrm{s}$ Modulator - Demodulator - E 500
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP5316B Universal Counter A+B.
HP6002A Power Unit 0-5V 0-10A 200W
HP6825A Bipolar Power Supply Amplifier
HP461A-465A-467A Amplifiers.
HP81519A Optical Receiver DC-400MC/s.
HP Plotters $74704-7475 A$
HP Plotters 7470A-7475A.
HP3770A Amplitude Delay Distortion ANZ
HP8182A Data Analyser.
HP59401A Bus System Analyser.
HP6260B Power Unit 0-10V 0-100 Amps.
HP3782A Error Detector.
HP3781A Pattern Generato
HP3730A+3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$
HP Microw ave Amps 491-492-493-494-495-1GHz-12.4GHz - £250
HP5087A Distribution Amplifier.
HP6034A System Power Supply 0-60V 0-10A-200W - 5500.
HP6131C Digital Voltage Source+-100V $1 / 2$ Amp.
HP4275A Multi Frequency L.C.R. Meter.
HP3779A Primary Multiplex Analyser.
HP3779C Primary Multiplex Analyse
HP1630G Logic Analyser
HP5316A Universal Counter A+B.
HP5335A Universal Counter A+B+C.
HP59501B Isolated Power Supply Programmer.
HP8901A Modulation Meter AM - FM - also 8901 B
HP5370A Universal Time Interval Counter.
Marconi TF2370-30Hz-110Mc/s 750HM Output (2 BNC Sockers + Resistor for 500 HM MOD with
Marconi MOD Sheet supplied - 650)
Marconi TF2370 $30 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s} 50$ ohm
Marconi TF2370 30Hz-110Mc/s 50 ohm Output - $\mathbf{~ M} 750$
Marconi TF2370 as above but late type Brown Case - $£ 1000$
Marconi TF2374 Zero Loss Probe - $£ 200$.
Marconi TF2440 Microwave Counter -20GHz - $£ 1500$
Marconi TF2442 Microwave Counter - 26.5 GHz - $£ 2 \mathrm{k}$
Marconi TF2305 Modulation Meter - $£ 2.3 \mathrm{k}$.
Racal/Dana 2101 Microwave Counter - $10 \mathrm{~Hz}-20 \mathrm{GHz}-£ 2 \mathrm{k}$
Racal/Dans 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards.
TEKA6902A also A6902B isolator - $£ 300-£ 400$.
TEK 1240 Logic Analyser - $£ 400$.
TEK FG5010 Programmable Function Generator 20MC/s - $£ 600$.
TEK2465A 350Mc/s Oscilloscope - $£ 2.5 \mathrm{k}+$ probes $-£ 150$ each.
TEK CT- 5 High Current Transformer Probe - $£ 250$.
TEK J16 Digital Photometer + J6523-2 Luminance Probe - E300
ROTEK 320 Calibrator +350 High Current Adaptor AC -DC - $£ 500$
FLUKE 5102 B AC-DC Calibrator - $£ 4 \mathrm{k}$.
FLUKE 1120 A IEEE - 488 Translator - $£ 250$.
Tinsley Standard Cell Battery $5644 \mathrm{~B}-\mathrm{£500}$
Tinsiey Transportable Voltage Reference - $\mathbf{5} 500$
FLUXE Y5020 Current Shunt - $£ 150$.
HP745A $+746 A$ AC Calibrator - $£ 600$
HP8080A MF +8091A 1GHz Rate Generator + 8092A Delay Generator + Two 8093A 1GHz Amps +15400 A -5800 .

HP11729B Carrier Noise Tast Set .01-18GHz - LEF - $£ 2000$
HP3311A Function Generator - $£ 300$.
Marconi TF2008 - AM-FM signal generator - also sweeper - 10Kc/s - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ tested to $£ 400$ as new with manusl - probe kit in wooden carrying box
HP Vector Voltmeter gener ator type 8405 A - 2400.
HP Sweep Oscillators type 8690 A \& $\mathrm{B}+$ plug-ins from $10 \mathrm{Mc} /$ s to 18 GHz aiso $18-40 \mathrm{GHz}$. P.O.R HP Notwork Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$
HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s} £ 200$ - HP8447A Dual - $£ 300$.
HP Frequency Count tr type 5340A - 18GHz £1000-rear output $£ 800$
HP 8410 - A - B - C Network Analyzer 110Mc/s to 12GHz or 18GHz - plus most other units and
displays used in this set-up-8411a-8412-8413-8414-8418-8740-8741-8742-8743-
RecalVan 93014-9302 RF
RacavDane Modulation MF Millivoltmeter $-1.5-2 \mathrm{GHz}-£ 250-£ 400$
Marconi RCL Bridge type TF2700-£150.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 -£250-£350. $\mathbf{4 0 0 \mathrm { Mc } / \mathrm { s } \text { to } 1 8 \mathrm { GH } 2 .}$
Marconi TF1245 Circuit Magnification meter + 1246 \& 1247 Oscillators - £100-£300.
Mareoni microwave 6600A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5-$ Marconl dietortion meter type TF2331 - 5150
-ktronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1

- S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501-S2-S6-S52-PG506 - SC504-SG502 - SG503-SG504 - DC503 -DC508 - DD501 Gould J3B test oscillator + manual - f 150
Tektronix Mainframes - 7603-7623A -7613-7704A - 7844 - 7904 - TM501 - TM503 - TM506 -7904A-7834-7623-7633.
Marconi 6155A Signal Source- 1 to 2GHz - LED readout - $£ 400$.
Marr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $£ 150$.
Marconi TF2163S attenuator - 1 GHz . $£ 200$
Raca/Dana 9300 RMS voltmeter - $£ 250$. H60/25- $£ 250$
HP 8750 A storage normalizer - $£ 400$ with lead + S.A or N A
Marconi TF2330-or TF2330A wave analysers- $£ 100-\mathrm{f} 150$.
Tektronix-7S14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11
MP 5065 A rubidrum type TF2304- $£ 250$.
HP 5065A rubidrum vapour FX standard - f1.5k
Rystron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$.
Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - $£ 600$
Tektronix TM5 15 mainframe + TM5006 mainframe - £450-£850.
Farnall electronic load type RB1030-35-£350.
Racal/Dana counters - 9904 - 9905 - 9906 - $9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-\mathbf{3 G H z}-\mathrm{E} 100$ £450- all fitted with FX standards.
HP4815A RF vector impedance meter c/w probe - $£ 500$ - $£ 600$.
Marconi TF2092 noise receiver. A, B or C plus fiters - $£ 100-£ 350$.
Marconi $2017 \mathrm{~S} / \mathrm{G} 10 \mathrm{Khz}-1024 \mathrm{MHz}$.
HP180TR, HP182T mainframes £ $£ 00-£ 500$.
Philips panoramic receiver type PM7900-1 to 20GHz - $£ 400$
Marconi 6700A sweep oscillator +18 GHz Pl's available
HP8505A network ANZ + 8503A S parameter test set + 8501A normalizer - £4k.
HP8505 network ANZ $8505+8501$ A +8503 A .
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900 A + difference meter HP signal generators type 626-628-frequency 10G
HP 432A-435A or B-436A - power meters + powerheads - Mc/s - 40GHz - £200-f 1000
Bradley oscilloscope calibrator type 192 - E 600 .
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$.
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $£ 400$
HP 3325A syn function gen 20MC/s - $£ 1500$.
HP 3336A or B syn level generator - $£ 500-£ 600$.
HP 3586 B or C selective level meter - $\mathrm{E} 750-\mathrm{E} 1000$.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-£ 400$.
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$ - opt 001 - 003 - $\mathbf{~} 4.5 \mathrm{k}$
HP $8660 \mathrm{~A} \cdot \mathrm{~B}-\mathrm{C}$ Syn S/G. AM + FM + $10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to
2600 MC - $\mathrm{E} 500-\mathrm{E} 2000$.

HP 86222 BX Sweep PI-01-2.4GHz+ATI- $£ 1750$.
HP 8629A Sweep PI-2-18GHz- 1000 .
HP 86290 B Sweep $\mathrm{PI}-2-18 \mathrm{GHz}-£ 1250$.
HP 86 Series PI's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-£ 250-\mathrm{E} 1 \mathrm{k}$
HP 8620C Mainframe - £250. IEEE - $£ 500$.
HP 8615A Programmable signal source- $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - $£ 1 \mathrm{k}$.
HP 8601A SWeep generator. 1 - $110 \mathrm{MC/S}-\mathrm{E3} 00$.
HP 3488A HP - 18 switch control unit - $£ 500+$ control modules various $-£ 175$ each.
HP 8160A 50 Mc . programmable
HP 8160A 50MC/s programmable pulse generator - $£ 1000$
HP 853A MF ANZ - £1.5k.
HP 853A MF ANZ - £1.5k.
HP 3585A Analyser 20Hz-40 20GHz Solid state - $£ 1500$
HP 8569B Analyser $.01-22 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-£ 4 \mathrm{k}$ k
HP 3580A A nalyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-£ 1 \mathrm{k}$
HP 1980B Oscilloscope measurement system - $£ 600$
HP 3455A Digital voltmeter - $£ 500$.

HP 3437 A System voltmeter - $£ 300$.
HP 3581 C
Select ive voltmeter $-~$

HP 5370 A Universal time interval counter- $£ 450$
HP 5335A Universal counter-200MC/s- $\mathbf{~ K 5 0 0}$.
HP 5328A Universal counter - $500 \mathrm{Mc} / \mathrm{s}-£ 250$
HP 6034A System power supply - $0-60 \mathrm{~V}-0-10 \mathrm{amps}-£ 500$.
HP $5150 A$ Thermal printer - $£ 250$.
HP $1645 A$ Data error analyser - $£ 150$.
HP $4437 A$ Attenuator - 15150
HP 3437A Attenustor - f150.
HP 3710A - 3715A- $3716 A-3702 B-3703 B-3705 A-3711 A-3791 B-3712 A-3793 B$
microwave link analyser - P.O.R.
HP 3730A + B RF down converter - P.O.R
HP 3552 A Transmission test set - £ 400 .
HP 3763 A Error detector - E 500 .
HP 3763A Error detector - £500.
HP 3770 A Amp delay distortion analyser - $\mathbf{£ 6 0 0}$.
HP 3780 A Pattern generator detector $-£ 400$.
HP 3781 A Pattern generator - $£ 400$.
HP 37818 Pattern generator (bell) - $£ 300$
HP 3782A Error detector - $£ 400$.
HP 3785 A Jitter generator + receiver - $\mathbf{E 7 5 0 - £ 1 \mathrm { k }}$
HP 8006A Word generator - $£ 100-£ 150$.
HP $8016 A$ Word generator - $£ 250$.
HP 8170 A Logic pattern generator - $£ 500$.
HP 59401 A Bus system analyser - $£ 350$.
HP 59500 A Multiprogrammer HP - IB - .
Philips PM5390 RF 5 yn $-0.1-1 \mathrm{GHz}-\mathrm{AM}+$ FM $-£ 1000$
S.A. Spectral Dynamics SD345 spectrascope 111 - LF ANZ - $£ 1500$

Tektronix R7912 Transient waveform digitizer - programmable - $£ 400$.
Tektronix TR503 + TM503 tracking generator 0.1 - 1.8 GHz - £1k - or TR 502 .
Tektronix 576 Curve tracer + adaptors - $£ 900$.
Teltronix 577 Curve tracer + adaptors - $£ 900$.
Tektronix $1502 / 1503$ TDR cable test set - $£ 1000$.
Tektronix AM503 Current probe + TM501 m/frame - $£ 1000$
Tektronix SC501 - SC502 - SC503 - SC504 oscilloscopes - $\mathbf{T} 75$-E350.
Tektronix 465-465B-475-2213A-2215-2225-2235-2245-2246-£250-£1000.
Kikusui $100 \mathrm{Mc} /$: Oscilloscope COS6100M - $\mathbf{E 3 5 0}$
Nicolet 3091 LF oscilloscope - $£ 400$.
Recal 1991-1992-1988-1300Mc/s counters - $£ 500-£ 900$
Fluke $80 \mathrm{~K}-40$ High voltage probe in case- $\mathrm{BN}-\mathrm{E100}$
Racal Recorders - Store $4-4 \mathrm{D}-7-14$ channeis in sto
Racal Recorders - Store 4-4D-7-14 channels in stock - £250- $£ 500$.
EIP 545 mic rowave 18 GHz counter - $\mathrm{E1200}$.
Fluke 510 A AC ref standard $-400 \mathrm{H}_{2}-£ 200$
Fluke 355 A DC voltage standard - $£ 300$.
Witron 610D Sweep Generator + 6124C PI-4-8GHz- 5400 .
Witron 610D Sweep Generator $+61084 \mathrm{DPI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$
Time Electronics 9814 Voltage calibrator- $\mathbf{E 7 5 0}$.
Time Electronics 9811 Programmable resistance - $£ 600$
HP 8699 B Sweep PI YIG oscillator $01-4 \mathrm{GHz}-£ 300.8690 \mathrm{~B}$ MF - £250. Both $£ 500$.
Schlumberger 1250 Frequency responsei ANZ - $£ 1500$.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex
equipt - relays - attenuators - switches - waveguides - Yigs - SMA - APC7 plugs - adaptors. B8K Items in stock - ask for list.
WRG Items in stock - ask for list
Power Supplies Heavy duty + bench in stock -Farnell-HP - Weir - Thurlby - Racal etc. Ask for list.
ITEMS BOUGRT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENOURIES. PHONE FOR APPOINTMENT OR FOR OEMONSTRATION OF ANY ITEMS, AVALLABILTY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA
ITEMS MARKED TESTED HAVE 3 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCXETS-SYNCROS-TRANSMITING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradiorod BD112 2ER. Tel. No: (01274| 184007 . Fax: 651160

Watch clockmaker

A popular digital watch has thirteen lines to the lcd. On any but the rightmost and leftmost, you will find a 32 Hz square wave of 3 V balanced about zero id the reference point is the watch's battery negative. If you use any of them to drive a CD4020 14-bit binary counter, the counter outputs will provide very precise 0.5 s to 512 s clock signals.
Yongping Xia
Torrence
California
USA

Divide one of the Icd outputs from a five-finction digital watch to get any clock signal with a period between half a second and 512 seconds.

Ic phase-splitter for valve audio output

In Electronics World for November, 1996, Wim de Jager described a hybrid transistor/valve audio amplifier ${ }^{1}$; this circuit replaces the transistors with integrated circuits.
Phase-splitter $A_{2 a, b}$ produces gains of 10.1 and -10.1 and feeds the driver stages $A_{2 \mathrm{c}}, T r_{1,3}$ and $A_{2 \mathrm{~d}}, T r_{2,4}$. Level shifting is provided by the 78LO5 regulator and $R_{7}, R v_{1}$, which produce an adjustable reference of $5-10 \mathrm{~V}$ to drive an offset current through $R_{9,10}$ shifting the output level to -25 V to -50 V . Diodes $D_{1,2}$ avoid the op-amps becoming saturated.
Since the phase-splitter gain is around 100 , the error amplifier A_{1} needs only unity gain, R_{1} providing this to avoid over-correction.
To fine-tune matching/load-sharing in the valve output stage, replace $R_{9,10}$ with circuit A , which will correct balance at zero load. For fullload trim, insert circuit B in series with $R_{8,11}$. Settings of these two adjustments are slightly interactive To increase the error and therefore assist in adjustment, temporarily short R_{1}.
Sujit Liddle
New Delhi
India

Reference

1. de Jager, W., 'Hybrid power amplifier’ $E W+W W$, November 1996, p. 897.

The complete Elecroonics Design Sysiem Now Whit RipuP \& Risdirya

Schemakic caprure

- Easy to Use Graphical Interface under both DOS and Windows.
O Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.

O Advanced Property Management.

- Seamless integration with simulation and

STmulation

- Non-Linear \& Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCB DBSIgR

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP \& RETRY Autorouter.

O Shape based gridless power planes.
O Output to printers, plotters, Postscript, Gerber, DXF and clipboard.

- Gerber and DXF Import capability.

Call now for your free demo disk or ask about the full evaluation kit. Tel: 01756753440 . Fax: 01756752857. $53-55$ Main St, Grassington. BD23 5AA.

Reducing voltage reference noise

C
onventional voltage reference circuits, which take the form of a lowpass $R C$ circuit followed by a buffer, as in Fig. 1, have their disadvantages: dc errors come from leakage through the capacitor and noise generated in the buffer is added to that from the reference.
To reduce the effect of capacitor leakage to an insignificant level, the $R C$ low-pass circuit goes after the buffer,
Fig. 1.

- Commonly used voltage reference circuit. Problems with this layout are capacitor leakage and buffer noise.
but within its feedback loop, as shown in Fig. 2, so that errors caused by the leakage are reduced by the buffer loop gain; leakage errors caused by C_{1} are small, since it is in the feedback loop. In addition, having a fairly large value capacitor at the output allows the driving of capacitive loads without instability, the low output impedance being of advantage at high frequencies.

Analysis points to an important result. Overall noise is inversely proportional to the square root of the number of voltage references: $E=E_{n} / V_{n}$, where E_{n} is the individual noise of a reference. Using the Burr-Brown REF 10 with

Fig. 2. Modified circuit with the leakage inside the feedback loop and noise reduced by two references.
$E_{\mathrm{n}}=10 \mu \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ in the circuit of Fig. 2 gives an overall noise of less than $7 \mu \mathrm{~V}$ pk-pk.
Kamil Kraus
Rokycany
Czech Republic

WINNER TTI PROGRAMMABLE BENCH MULTIMETER

Loop aerial cuts through the noise

To allow the reception of long and medium waves in an environment polluted with computers and television receivers, this loop aerial and its amplifier, working with a 1 m square maximum loop, reduce noise to the background level of the bands.
The business end of the circuit is formed by the input transformer and fet source follower; at long. and medium-wave frequencies, fets show low noise figures at $10 \mathrm{k} \Omega$ source impedance. Transistor Tr_{2} bootstraps out the gate/drain capacitance of $T r_{1}$, the gate/source capacitance being low due to the follower configuration.
Maximising input transformer ratio while keeping shunt capacitance low results from the use of a toroid (Cirkit 55-40001 or Fair-Rite 26-43540001) with two primary turns of audio screened cable with the screen grounded at
one end, and 40 on the secondary The op-amps form a low-noise amplifier driving a 50Ω cable and the other components form a phantom power supply, although a
local supply could be used, in the $25-40 \mathrm{~V}$ range J A Burnill Camberley Surrey

For the past ten years Weir Electronics has been part of the Lambda Group, the largest power supply company in the world. From June 1997 Weir will trade under the name Weir Lambda, to identify that Weir is part of this immensely successful worldwide team. Same company, same people, same trusted power supplies and power systems, but offering you all the benefits of being part of the largest power supply
company in the world. Call us today to find how Weir Lambda can provide your next power solution.
Weir Electronics Ltd Durban Road Bognor Regis West Sussex PO22 9RW
Tel 01243865991 Fax 01243841628
e-mail sales@weirlambda.com http://www.weirlambda.com
CIRCLE NO. 132 ON REPLY CARD

lan Hickman's simple sound generator incorporates an eprom-based waveform generator whose output signal is determined via a Basic routine running on the pc. lan demonstrates how to use the generator to produce realistic bottom-end wind-organ notes.

With a sound card in your pc , experimenting with synthetic sounds is straightforward. But there are still benefits in terms of versatility from a small stand-alone circuit, that can be hooked onto or even into - something else. Here I describe
a simple system for generating synthetic sound waveforms.
The circuit was to be minimal and preferably use only common ICs. The arrangement, Fig. 1, was made up on an odd piece of 0.1 in matrix prototyping board. It consists of a uv-

erasable eprom, containing data defining the waveform of the sound, reading out its contents sequentially to a d-to-a converter, which reconstitutes the intended sound.

How it works

The eprom address is simply obtained direct from a ripple counter, with one minor modification. The three-inverter oscillator drives the clock input of a CD4040 twelve-stage ripple counter, the twelve outputs of which drive the A_{0-11} address lines of the prom.
When the normally open push-button S_{1} is pressed, counting starts from all zeros. The twelfth, most significant, bit toggles the CD4013 D-type bistable IC, via an inverter, on its falling edge. Thereafter, A_{12}, the thirteenth address line to the prom, stays high until the button is released.
The result is that the prom initially reads out the data starting at location 0000, through location $0 \mathrm{FFF}_{16}$ and on to IFFF_{16}, after which it repeatedly reads out the data in locations 1000_{16} to $1 \mathrm{FFF}_{16}$ as long as S_{1} remains closed. When S_{1} opens, ICs 2 and 3 are reset, and all address lines return to logic zero. That at least is what happens if S_{2} and S_{3} are both

Fig. 1. Simple synthetic sound system in its entirety, with the counter on the left, the eprom in the middle and the d-to-a converter on the right. Clock generation is carried out by the string of gates bottom left and control by the switch and bistable IC next to it. Operation of the switches and control of oscillator frequency could easily be automated.
closed. In fact, the prom is a $27 C 256 B$ device with a 256 Kbit or $32 \mathrm{~K}-$ by- 8 capacity. Switches S_{2} and S_{3} control address bits A_{13} and A_{14}, effectively partitioning the prom into four segments of 8 Kbyte each. Thus the prom is capable of storing four different sounds, any one of which may be called up, according to the settings of S_{2} and S_{3}. With component values shown, the clock oscillator runs at 16 kHz .
Many sounds have a characteristic starting transient, and this is stored in the first 4Kbyte half of a segment, the steady-state sound being held in the second half. Thus each sound is reproduced with its own characteristic start-up.
The data input to the d-to-a converter is converted to a series of dc levels, each lasting for one period of the clock. The d-to-a converter reference current $I_{\text {ref }}$ is defined by R_{7}, the minimum value of $I_{\text {out }}$ at pin 4 being zero, and the maximum being $I_{\text {ref }} \times 255 / 256$. Its complement, /lout at pin 2, is not used, being spilled to ground.
Current $I_{\text {out }}$ flows through R_{6}, the output voltage being therefore in the range +5 V down very nearly to ground. It should therefore be ac coupled when applied to an amplifier, but when viewed on an oscilloscope, the expected dc coupled average voltage is of course +2.5 V .

Using the sound generator

The circuit can be used to reproduce a sustained sound, complete with its characteristic starting transient, or, by storing sound in just the first 4 K of a segment, a short transient sound. In the latter case, all locations in the unused second 4 K of a segment should be loaded with the value $7 \mathrm{~F}_{16}$ i.e. 127 decimal.
The 127 value represents the mean level of the waveform, allowing a peak output of ± 127 least-significant bits relative to this.

A falling minor third

A frivolous example of a non-recurring sound would be the call of the cuckoo, a falling minor third. Each note is about a third of a second long, separated by a similar interval.
Played back over a loudspeaker in a tree at
an improbably early date in spring might bring a claim to hearing it first in the local paper. However, my interest was in a more specific application, and I have written a program in Turbobasic to generate the necessary eprom data.
I was interested in trying to simulate the tone of an open flue pipe, as found in an organ in one of our cathedrals or large churches. As with most musical instruments, this has a characteristic start-up. In the case of a flue pipe, this is known as 'chiff'.
In fact most musical instruments are recognised principally by their initial transient; if you come in after the sound has started, it is often difficult to identify which instrument it is.

With an open-flue pipe, the initial transient consists of three separately identifiable parts. When a key is pressed, opening the pallet which admits air to the pipe, the first sound to appear is the noise of escaping wind. Then the pipe starts to sound, but typically it initially tends to 'overblow', producing the second harmonic. These two components are the chiff, which then subsides, to a greater or lesser degree, as the sound of the fundamental builds up to the steady state volume.
List 1 is the latest version of a program (which is still subject to further development) to produce a waveform sounding like a typical flue pipe. To keep the listing short, all the original remarks have been removed, and some lines telescoped - hence the gaps in the line numbers sequence.

Basic produces organ data

The program consists of two parts: lines 100 to 440 , and 1000 to the end. The GOTO at line 130 means that normally, only the second part executes. This draws a picture of the waveform that will be generated, on the screen.

Lines 1010 and 1020 set up the display to read in X and Y co-ordinates of 0 to 399 from left to right and from bottom to top. The next line initialises some parameters, and the following one starts the main execution loop.

Line 1050 defines an amplitude envelope E1 for the fundamental. This builds up linearly to a maximum amplitude of 40 - or such other value as set by parameter T - over points 0 to 199 , i.e. the left hand half of the screen, thereafter remaining at that amplitude. The next line defines a sinewave F1 (the fundamental) with thirty two steps per cycle and multiplies it by EI, to give the enveloped fundamental F . Given the 16 kHz clock frequency and thirtytwo steps per cycle, the frequency of the fundamental is 500 Hz .
Lines 1080, 1090 do the same for the second harmonic H, except that the envelope builds up linearly to value T over the first quarter of the screen, and then dies away linearly by half way across, a 'diamond-shaped' envelope.
Lines 1110 to 1200 are concerned with the wind noise element of the sound. This is the part that proved most problematic, and is responsible for the program being at version 6 - not counting some unrecorded intermediate versions.

But the original wind noise envelope E3 has basically remained unchanged throughout. It consists of a diamond shape like the second harmonic envelope, but occupying only the first quarter of the screen, rather than the first half, and reaching a maximum amplitude of only $T / 2$.
The first attempt at wind noise simply called up 'diamond' enveloped random numbers, but this noise proved far too wideband, extending up to about sixteen times the frequency of the fundamental. It was a resounding failure, sounding quite unrealistic. So it was low pass filtered by taking a running average of successive random values, initially over 16 points. This was also a failure and I suspected that the noise should be band-pass limited by a formant introduced by the pipe itself.
The noise was therefore band limited to a much lower low-pass filter cut-off, by averaging over 128 samples, equivalent to four complete cycles of the fundamental. The DIM $\mathrm{M}(128)$ instruction in line $\mathbf{1} 20$ dimensions an array of 128 numbers. The loop then fills it with 128 random values each in the range -1
(a)
(c)

Fig. 2. Waveforms produced for the $\boldsymbol{S}^{2} \boldsymbol{S}^{2}$ by the Basic program listing. a) is enveloped fundamental, b) is enveloped second harmonic, c) is enveloped bandpass noise and d) the complete waveform.

PROJECTS

to +1 , ready for use by either part of the program. The low-pass filtered noise was multiplied by the fundamental, to give double sideband suppressed carrier bandlimited noise centred on F. While an improvement, it still did not sound right.
The low-pass filtering is achieved by lines 1120 to 1200 . The value of a random number returned by $\mathrm{RND}(1)$ is in the range 0 to 1 , and line 1120 modifies this to a number in the range -1 to +1 . The new value of random number N is loaded into element $\mathrm{M}(\mathrm{K})$ of the array M, where K starts off at 0 .
The next line sums the 128 elements of the array to give a new random number Z. Clearly, Z can at most change from one point to the
next by only $1 / 128$, thus severely slew rate limiting it, equivalent to low-pass filtering.
At the next turn round the $I=0$ TO G loop, the random number is loaded into the next array element (since K was incremented at line 1200), replacing the number previously there. Thus as each new random number is entered into the array, an old one drops out.
In line 1170, the low-pass filtered noise value Z is adjusted in amplitude, multiplied by the second harmonic (as this was found to sound much more realistic than using the fundamental) and then diamond enveloped.
The three lines 1220 to 1240 provide the facility to turn off the fundamental and/or second harmonic and/or the wind noise component W3, by removing the REM: at the begin-
ning of the appropriate line.
The following lines 1250 to 1280 sum the two chiff components with the fundamental, check to see that the amplitude is not excessive, truncating it if necessary. They draw on the screen a line joining the previous 'voltage level' DI to the current level D2, centred about a mean level of 127 . The screen had previously been cleared by the CLS at line 110.

Variable D2 is then redefined as D1 and Z zeroed ready for the next turn around the main loop, after which execution returns to line 1040 ready for the next value of the loop counter I.
Finally, before ENDing, the program draws limit lines at the minimum and maximum per-

List 1. Basic program listing for producing flue-pipe organ tone data on a pc. Once produced, the data is down-loaded into an eprom. With suitable modifications, this routine could be used to produce and display data for other applications.
100 REM: LISTING TO PRODUCE FLUEPIPE ORGAN TONE DATA FOR PROM
110 CLS
120 DIM $M(128):$ FOR $P=0$ TO 127: $M(P)=2 * R N D(1)-1: \operatorname{NEXT} P$
130 REM: GOTO 1000
140 OPEN "PROML. BIN" FOR BINARY AS \#1
$150 \mathrm{~K}=0: Z=0: T=40: G=8191$
160 FOR I $=0 \mathrm{TO} \mathrm{G}$
170 E1 = I*2*T/G: IF E1 > T THEN E1 = T
$180 \mathrm{~F} 1=\operatorname{SIN}(6.283185 * I / 32): F=E 1 * F 1$

$210 \mathrm{H} 1=\operatorname{SIN}(6.283185 * I / 16): \mathrm{H}=\mathrm{H} 1 * E 2$
$240 \mathrm{E} 3=\mathrm{I} * 4 * \mathrm{~T} / \mathrm{G}: \mathrm{IF} \mathrm{E} 3>\mathrm{T} / 2 \mathrm{THEN} \mathrm{E} 3=\mathrm{T}-\mathrm{I} \mathrm{H}^{*} \mathrm{~T} / \mathrm{G}: \mathrm{IF} \mathrm{E} 3<0$ THEN E3 = 0
$250 \mathrm{~N}=2 * \operatorname{RND}(1)-1: \mathrm{M}(\mathrm{K})=\mathrm{N}$
270 FOR $Y=0$ TO 127: $Z=Z+M(Y):$ NEXT Y
$300 \mathrm{~W} 1=\mathrm{z} / 10: \mathrm{W} 2=\mathrm{W} 1 * \cos (6.28 * I / 16): \mathrm{W} 3=\mathrm{W} 2 * \mathrm{E} 3$
$330 \mathrm{~K}=\mathrm{K}+1$: IF $\mathrm{K}>127$ THEN $\mathrm{K}=0$
$350 \mathrm{D}=\mathrm{F}+\mathrm{H}+\mathrm{W} 3+127$
360 IF D > 254 THEN END: IF $D<1$ THEN END
$380 \mathrm{D}=\mathrm{INT}(\mathrm{D})$
$390 \mathrm{D} \%=\mathrm{D}$
400 PUT\$1, CHR\$(D\%)
410 PRINT I, D\%
420 Z $=0$
430 NEXT I
440 CLOSE \#1
1000 REM: DRAWS ABBREVIATED VERSION OF WAVEFORM ON SCREEN
1010 SCREEN(2)
1020 WINDOW $(0,399)-(399,0)$
$1030 \mathrm{~K}=0: \mathrm{D} 1=0: \mathrm{T}=40: \mathrm{G}=399$
1040 FOR I $=0$ TO G
$1050 \mathrm{E} 1=\mathrm{I} * 2 * \mathrm{~T} / \mathrm{G}: \mathrm{IF} \mathrm{E} 1>\mathrm{T}$ THEN E1 = T
$1060 \mathrm{~F} 1=\operatorname{SIN}\left(6.283185^{*} \mathrm{I} / 32\right): \mathrm{F}=\mathrm{E} \mathrm{S}^{*} \mathrm{~F} 1$
$1080 \mathrm{E} 2=\mathrm{I} * \mathrm{~A}^{*} \mathrm{~T} / \mathrm{G}: \mathrm{IF} \mathrm{E} 2>\mathrm{T}$ THEN E2 $=2 * \mathrm{~T}-I * 4 * T / G:$ IF E2 < 0 THEN E2 $=0$
1090 H1 = SIN(6.2831853*I/16): H = E2*H1
$1110 \mathrm{E} 3=\mathrm{I} * 4 * \mathrm{~T} / \mathrm{G}: \mathrm{IF} \mathrm{E} 3>\mathrm{T} / 2 \mathrm{THEN} \mathrm{E} 3=\mathrm{T}-\mathrm{I} 4^{*} \mathrm{~T} / \mathrm{G}: \mathrm{IF} \mathrm{E} 3<0$ THEN E3 = 0
$1120 \mathrm{~N}=2 * R N D(1)-1: M(\mathrm{~K})=\mathrm{N}$
1140 FOR $Y=0$ TO 127: $Z=Z+M(Y):$ NEXT Y
$1170 \mathrm{~W} 1=\mathrm{z} / 10: \mathrm{W} 2=\mathrm{W} 1 * \cos (6.28 * I / 16): W 3=W 2 * E 3$
$1200 \mathrm{~K}=\mathrm{K}+1$: IF $\mathrm{K}>127$ THEN $\mathrm{K}=0$
1220 REM: $F=0$
1230 REM: H $=0$
1240 REM: $W 3=0$
$1250 \mathrm{D} 2=\mathrm{F}+\mathrm{H}+\mathrm{W} 3$
1260 IF D2 > 127 THEN D2 = 128: IF D2 < -126 THEN D2 $=-127$
1280 LINE ($I, D 1+127$)-(I+1,D2 + 127)
1290 D1 = D2
1300 Z = 0
1310 NEXT I
$1320 \operatorname{LINE}(0,0)-(399,0)$
$1330 \operatorname{LINE}(0,255)-(399,255)$
1340 END
missible values of the waveform, at levels zero and 255 . This shows whether the value chosen for the parameter T leads to excessively large 'voltage excursions', corresponding to numbers too closely approaching the limit values of 0 and 255 which can be stored in the eprom.

Crunching numbers for PROM

When one is satisfied that the waveform looks right - and that the second half of the program runs properly - the GOTO at line 130 can be rendered ineffective by prefixing it with REM:, and a set of numbers calculated, for later blowing into eprom.

The first half of the program works in basically the same way as the second, with the following differences. Line 140 instructs the machine to open a binary file of the given name, with the extension .BIN, and assign it the label \#1 (\#2 or \#3, etc, would be used if other file(s) were already open).
A binary file is one in which you can store bytes in sequence, starting at 'location 0 ', the first byte of the file. A location counter - automatically initialised to zero - is implicit, and is automatically incremented each time a write to the file (line 400) is effected.
In line 150, the length of the file is defined by G as 8192 bytes long, as distinct from the mere 400 bytes used when drawing a shortened version of the waveform to screen. Due to the use of parameters rather than constants, in lines 180 to 240, the same formulae as in the second half can be used. As there, they will produce an envelope that ramps up over half the value of G for the fundamental, corresponding to the first 4 K byte of an 8 K byte prom segment.
Similarly, the harmonic and noise transients extend over the first 4 K and first 2 K address ranges respectively. Line 350 calculates the actual value (to be later loaded into prom) for this ram location, and the next line aborts program execution if it is outside acceptable limits - just in case your latest modification to the second half of the program has not been accurately mirrored in the first. This is a useful precaution, as on an older machine (I was using a Compaq Deskpro 386n) the first part of the program is distinctly tardy.

For the same reason, line 410 is included as a comfort measure, to assure you that the program is still running and has not hung. Lines 380 to 400 take the integral part of D, define it as an integer variable, and write it to the next file location in ram.

Variable Z is then zeroed and the loop repeats until $\mathrm{I}=8191$, when the binary file is closed and the second half of the program draws the abbreviated version of the waveform on the screen.
Sufficient significant figures for the value of pi have been included to ensure that the final value, in location 8191 is 127 , the same as in locations 0 and 4095. Without this precaution, I found that although the sinewave 'joined up' when repeatedly cycling around the second 4 K of a segment, some of the intermediate values (near the peak of the sinewave, where
the value is almost stationary) suffered a change in the least-significant bit at around 6 K , giving a slight but perceptible change in tone colour every 64 cycles

Storing the data

When a version of the waveform had been produced in a binary file in ram, it was loaded into an 8 K byte segment of a 27 C 256 eprom. This was done at the pc using a Stag Stratos eprom programmer. This neat little device consists of two parts, connected by a ribbon cable umbilical. A half length board fits in a standard slot, using just the XT connector, while the other unit sits alongside the pc, and carries a 32 pin zero-insertion-force) socket.
The simple controlling software runs under DOS and does its best to look after you whatever you do. On running the software, it requests you to disable NUMLOCK, and then awaits your command. One then selects the maker and type number of the prom to be programmed, sets the address limits (any required section of the prom can be programmed without affecting the rest) and loads the required data to the ram area used by Stratos. In my case, this was in binary format, other options being Intellec and Motorola S-Rec formats.
The prom was then fitted in the zero-inser-tion-force socket, and since it had only 28 pins, the far pins of the socket were unused. The machine was then instructed to check that the eprom was blank, which also prompts a test for correct connection. If the device is absent or misconnected (back to front or not in the subset of pins nearest to you), a red led on by the zero-insertion-force socket flashes and a warning message appears on the screen.
The program prom option was then selected. The machine checks the programmed prom against the ram data automatically, and a checksum is flagged up. Other available options include load ram from prom, display ram and edit ram, etc.

And did it work?

As far as the program is concerned, after curing the many silly mistakes in each of the various versions - yes. Loading the data into prom was straightforward, and prom FLUEPIPE1 was soon ready for testing.
The four available segments held enveloped fundamental alone, enveloped harmonic alone, enveloped noise alone and in the final segment, all three sounding together.
As recorded earlier, the version with white noise was totally unrealistic, and after erasing the prom, a modified version with low-pass filtered noise proved not much better.
Some more proms having been acquired, further versions followed, culminating in the prom FLUEPIPE3, with the low-pass filtered noise modulating the second harmonic.

Figures 2a), b) and c) show the enveloped fundamental, second harmonic and noise respectively. Now c) may look simply like a shorter version of b), but in fact it sounds quite different. Note that Fig. 2 shows screen dumps of the abbreviated waveform drawn on the screen, whereas the actual second harmonic,
noise, and fundamental envelopes extend over about twenty times as many cycles.
The low-pass noise modulating the second harmonic is bipolar, so that the harmonic suffers random 180° phase changes. Thus on average, there is no second harmonic energy present, only double sideband noise extending either side.
The sound of this is rather like blowing across the top of a milk bottle, without actually getting it to sound a note - narrow bandlimited white noise.

Figure 2d) shows the complete waveform. In the prom version, the end joins up seamlessly with itself at location $1000{ }_{16}$, giving the sustained note when S_{1} is held closed. It really sounds realistic, and should sound even better with some further tweaking.
For instance, the fundamental build-up is a little too slow - easily fixed in lines 170 and 1050 by changing the numeric multiplier in El from 2 to something larger. And a real flue pipe shows some second harmonic and noise even in the steady state, so E2 and E3 can be modified to die away to a finite value, rather than zero. And of course, the clock rate of 32 cycles per cycle of fundamental, provides for the inclusion of harmonics up to the sixteenth in the mix, permitting a variety of other tone colours to be produced.
While sounding fine at 500 Hz , if the clock frequency is changed to give an output at 64 Hz , the mix is found to be definitely wrong. The build-up of sound then needs to take place over far fewer cycles than at 500 Hz , while the wind noise needs to be centred at a higher frequency than the second harmonic. This would fit the system for use as a generator for a monophonic pedal board for an electronic organ.

Organ music very seldom demands the playing of two notes simultancously on the pedal board, so a one-note-at-a-time system, in the interests of economy, is an acceptable compromise. The pedal board could select tappings from a string of resistors, providing a potential applied to a voltage-to-frequency converter driving the address counter.
Thus the prom would provide each note at the appropriate pitch, with IC_{2} and IC_{3} reset when the voltage was absent.

Other uses

The circuit is clearly easily modified for other purposes. If only a single type of sound is required, S_{2} and S_{3} may be omitted, and a 64 Kbit prom used. Alternatively, extra address counter stages could be added, enabling the whole contents of the 256 K byte prom - or even a half or 1 Mbit prom - to be played back.
If a sound of fixed, finite length is needed, then S_{1} can trigger a set-reset bistable device, and the trailing edge of the most significant address line can reset it, re-applying a reset signal to IC_{2}. One could even add an a-to-d converter, latch and ram, driven from the address counter, enabling sounds from a microphone to be captured, transferred to pc and stored in prom.

DIFFERENTIAL THERMOSTAT KIT Perfect for heat
 arolay whena tempdifiterencos (adiustabie) is detececod. Al componems MAGNETIC RUE日
MAGNETC RUBBER TAPE Seftadhasive 10 metro roel, 8 mm mide porled tor all sons of appications $£ 15$ rel L LOT87
MAINS POWER SAVER UK made plug in unt, ftred inseconds, can reduce your energy consumption by 15%. Works with fidiges. sotioring irons, conventional bulbs etc. Max $2 A$ roting. $E 9$ each roi LOT1, pack of 10 E89 rof LOTV2
YUASHA SEALED LEAD ACID Baterees, ex equipment but ok bargein pirce Just $£ 5.99$ each rof $Y A 1$. 100 or more $£ 3.50$ each. DC TO DC CONVERTERS DRM58 input $10-40 \mathrm{vdc}$ output $5 \mathrm{~V} 8 \mathrm{~A} £ 15$ DRM 128 input $17-40 \mathrm{vdc}$
output $12 \mathrm{v} 8 \mathrm{~A} £ 18$ DRM158 input $20-40 \mathrm{vdc}$ output $15 \mathrm{v} 8 \mathrm{E} £ 18$ output $12 \mathrm{~V} 8 \mathrm{~A} £ 18$ DRM158 input $20-40 \mathrm{vdc}$ output 15 v 8 8 £18
DRM248 input $29-40 \mathrm{vdc}$ output $24 \mathrm{v} 8 \mathrm{~A} £ 12$ DRS 123 input $17-40 \mathrm{vac}$ DRM248 input $29-40 \mathrm{vdc}$ output $24 \mathrm{v} 8 \mathrm{~A} £ 12$ DRS123 input $17-40 \mathrm{vach}$
output $12 \mathrm{v} 3 \mathrm{~A} £ 10$ DRS153 input $20-40 \mathrm{vdc}$ output $15 \mathrm{v} 3 A £ 20$ output 12 v 3 A £10 DRS 153 input $20-40$
DRS 243 input $29-40 \mathrm{vdc}$ output 24 v 3 E 8
DRS 243 input $29-40 \mathrm{vac}$ output $24 \mathrm{v} 3 A$ E8
HITACHI LM 225 X LCD SCREENS $270 \times 150 \mathrm{~mm}$, standard 12 way connector, 640×200 dots, tec spec sheet, $£ 15$ each rof LM2 VARIABLE CAPACITORS Dual gang, $80 \times 33 \times 45 \mathrm{~mm}$, reduction gearing, unknown capacity but probably good quality (militry spec) general purpose radio tuner. £9 ref VCI
ELECTRONIC FLASH PCB Small pCD fitted with components including a Rash tube, Just connect 12 vac and it flashes, variable including a Rash tube, Just conne
speed potentiometer. $£ 8$ ref $F L S 1$
THIEF PROOF PEN1 Amazing new ball point pen fitted with combination lock on the end that only you knowi $£ 2.49$ ref TP2 JUMBO BI COLOUR LEDS PCB with 15 fitted also 5 giant seven segment displays (55 mm) $£ 8$ ref JUM1
HOME DECK CLEARANCE These units must be cleared loads, a infra red remote qwerty keyboard and receiver, a standard of chips, capactors, diodes, resistors etc all for just $£ 10$ ref BAR33. 6.8MW HELIUM NEON LASERS New units, £65 rof LOT33 COINSLOT TOKENS You may have a use for these? mixed beg of 100 tokens $£ 5$ rof LOT20.
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machine! Enfective device, X-ray sealod assemblies. can be used for experimentał purposes. Not a toy or for minors/ E8/at. Ref FIXP
TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no known apparent means or cause.
Uses no eiectrical or mechanical connections, no special gimmicks Uses no eiectical or mechanical connections, no special gimmicks
yet produces positive motion and effect. Excelent for science projects, yet produces positive motion and effect. Excellent for science projects,
magic shows, party demonsirations or senious research \& development magic shows, party demonstrations or senious research
of this strange and amazing phychic phenomenon. of this strange and a
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several weys to put subjects under your control. Included is a full volume reference text and several construction plans that whan assembled can produce highly effective stimuli. This material must be used cautiously, it is for use as entartainment at parties etc only, by those experienced in its use. E15/set. Re/ F/EH2.
GRAVITY GENERATOR PLANS This unique plan demonstrates a simpte electrical phenomena that produces an antigravity effect. You can actually buid a smah mock spaceship out of £10/set Ref F/GRA1.
WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar, St Eimo's fire, Corona, axcellent science project or conversation piece. £5/set Ref F/BTC 1/LG5
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectral quality similar to Argon laser but easier and less costty to build yot far more efficient. This particuiar design was developed at the Atomic Energy Commision of NEGEV in Israel. E10/set Ref FICVL1.
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound intoindeciphertble ncise that cannot be understood without a second matching unit. Use on telephone to prevent third party listaning and bugging. EB/set Ref FNS 9 .
PULSED TV JOKER PLANS Littie hand held device utilises pulse techniques that will complataty disrupt TV picture and soun BODYHEAT TELESCOPE PLANS Highly directional tong range device uses recont technology to detect the prasence of living bodies, warm and hot spots, heat leaks etc. Intended for security, law enforcement, research and development, etc. Excellent secunity device or very interesting scrence project. £8/set Ref F/BHT1.
BURNING, CUTTNG CO2 LASER PLANS Projects an invisible beem of heat capable of buming and melting matoriais over a considerable distance. This laser is one of the most efficient, corverting 10% input power into useful output. Not only is this device a workhorse In weiding, cutting and heat processing materials but it is also a likely candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-ground, etc. Particle beams may very wett
utifize a laser of this type to blast a channel in the atmosphere for a high utifize a laser of this type to blast channel in the atmosphere for a high energy stream of neutrons or other particles. The device is easily
applicabla to buming and etching wood, cutting, plastlcs, textiles etc applicabla to buming
£12/set Ref FAC7.
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in air and move to the touch. Defies gravity, amazing gif, conversation piece, magic trick or science project. £ $6 / \mathrm{set}$
Rof F/ANT IK
FRUIT POWERED CLOCK Just add a fresh orange, tomato, banana or any otherfruil plug in the probes and the clock works! $£ 9.95$ ref SC154
DYNAMO FLASHLIGHT interesting concept, no batteries needed just squeeze the trigger for instant light apparently aven works under water in an emergency athough we haven't triodityet $\mathbf{\text { E8.99 ref SC15 }} 15$ ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produće 'cold' steam, atomize liquides. Many cleaning uses for PC boards, jewthery, coins, small parts
etc. £6/set Ref FNLB1.
ULTRA HIGH GAIN AMPISTETHOSCOPIC MIKE/ SOUND

AND VIBRATION DETECTOR PLANS UUTrasenstive devico enables one to hear a whole new world of sounds. Listen through walls, Windows, floors etc. Many applications shown, from law enforcemen, nature list
FMGA7

WOLVERHAMPTON ELECTRONICS STORE NOW OPEN IN
 WORCESTER ST TEL 0190222039

ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of accoustical energy that dogs cannot tolerate $£ 8 /$ set Ref F/DOG2
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. E12/set Ref F/ LLIST1
LASER LIGHT SHOW PLANS DO it yoursert plans show three methods. E6 Ref F/LLSI
PHASOR BLAST WAVE PISTOL SERIES PLANS PHASOR BLAST WAVE PISTOL SERIES PLANS
Handhotd, has large transducer and battery capacity with external Handheld, has large transdu
controls. $£ 8 /$ sot Ref F/PSP4
controls. E8/sot Ref F/PSP4
INFINITY TRANSMITTER PLANS Talephone line grabcerl room monitor. The utimate in home/office security and safetyl simple to usel Call your home or office phone, push a secret tone on you telephone to access either. A) On premises sound and voices or B) Existing conversation with break-in capability for emergency messages. E 7 Ref FTTELEGRAB.
BUG DETECTOR PLANS is that someone getting the goods on you? Easy to construct device locates any hidden source of radio energyl Sniffs out and finds bugs and other sources of bothersome interfarence. Detects low, high and UHF frequencies. $£ 5 / \mathrm{set}$ Ref F/ BD1
ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision $£ 5$ ref F/EML2. ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI $5 /$ /set Ref F/EMA1.
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get of hostile promises. Uses satellite technology to gather distant sounds and focus tham to our ultra sensitiva electronics. Plans also show an optional wiretess link systam. £8/set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{vdc}$, many possibla experiments. E10 Ref F/HVM7/ TCL4
MEGA LED DISPLAYS PCB fited with 5 seven segmant displays
each measuring $55 \times 38 \mathrm{~mm}$, E 5 ref LED5.
MOD TRANSMITTING VALVES $5 \mathrm{j} 180 \mathrm{E} £ 80$ ref LOT 112 SWITCHED MODE PSU'S 244 watt $,+532 A_{1}+126 A,-50.2 A$, 120.2 A . Thero is also an optional 3.3 v 25 A rail available. $120 / 240 \mathrm{v} / \mathrm{l}$ P. Cased, $175 \times 90 \times 145 \mathrm{~mm}$. IEC inlet Suitable for PC use (6 d/dive connectors 1 miooard) E15 raf LOT135
HYDROGEN FUEL CELL PLANS There is a lot of interast in using Hyrogen as the fual of the future. Hydrogen is easy to produce using chemicals and surplus solar generated electricity. It is atso easy to store with little or no loss. Hyrogen fuel cellis are designed to store hydrogen and weigh: for weight with hod twice as much energy as a full
petrol tenk. Our plans give you loads of information on Hyrogen petrol tenk. Our plans give you loads of information on Hyrogen
production, storage and practical plans to bund your own Hydrogen fuel production, storage and practical plens tobuld your own Hydrogen fuel
celll you will need access to a well equiped workshop for this but full celll you will need access to a well equiped workshop for this but full VIDEO PROCESSOR UNITS?/6v 10AH BATTS/24V 8A TX Not too sure what the function of these units is but they certainly make good stnppers! Measures $390 \times 320 \times 120 \mathrm{~mm}$, on tha front are controls for scan speed, scan delay, scan mode, loads of connections on the rear. Inside $2 \times 6 v 10 A H$ sealed lead acid batts, pcb's and a $8 A$? 24 v forroldial transformer (mains in), sold as seen, may have one or two broken knobs etc due to poor storage. £15.99 ref VP2
RETRON NIGHT SIGHT Recognition of a standing man at 300 m in $1 / 4$ moontight, hermatically seaied, runs on 2 AA batteries 80 mm F1.5 lens, 20 mw infrared laser included, E 325 rel RETRON
MAKE YOUR OWN CHEWNG GUM KIT Everything you need to make real chewing gum, aven the bowl and tree sapfrom the Sapodilla tree $£ 7.99$ rof SC190
MINI FM TRANSMITTER KIT Very nigh gain preamp, supplied complere whth FET electry microohone. Designed to cover $88-108 \mathrm{Mhz}$ but aasily changed to cover 83-130 Mhz. Works with a common iv (PP3) bettery. 0.2W RF. \&s Ref 1001.
3-30V POWER SUPPLY KIT Vanable, stabilized power supply for lab usa. Short drcuit protected, suitable for profesional or amateur Use 24v 3A transformer is needed to complate the kit. E14 Ref 1007 1 WATT FM TRANSMITTER KIT Supplied with plezo electric mic. 8 -30vac. At $25-30 \mathrm{v}$ you will get neariy 2 wattsl E 15 rel 1009. FMIAM SCANNER KIT Well not quite, you have to tum the knob your self but you wil hear things on this radiothat you would not hear on an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on boh AM and FM. Buitt in 5 watt amptifiar, inc speaker, $£ 18$ ref 1013.
3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate sensitivity adjustment for each channel, 1,200 w
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX
BN3 5QT. (ESTABLISHED 50 YEARS).
MAL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT.

24 HOUR SERVICE 4.50 PLUS VAT. OVERERAS ORDERS AT COST PLUS :3,50 (ACCESS,VISA, SWITCH, AMERICANEXPRESS) 'phone orders : 01273203500

FAX 01273323077
E-mail bull@pavilion.co.uk
power handiling, microphone included. ह17 Ref 1014 4 WATT FM TRANSMITTER KIT Small but powerful FM transmintar, 3 RF stages, mictophone and autio preampindudidec. E24 Ref 1028.
STROBE LIGHT KIT Adjustable from 1.60 hz (a lot faster than conventional strobes). Mains operated. $£ 17$ Ref 1037.
COMBINATION LOCK KIT 9 key, programmable, complete with keypad, will switch 2A mains. 9v dc operation. £13 ref 1114.
PHONE BUG DETECTOR KIT This device will wam you if somabody is eavesdropping on your line. £9 ref 1130.
ROBOT VOICE KIT interesting circuit that distorts your voicel adjustable, answer the phone with a differant voicel 12 vdc £9 ref 1131 TELEPHONE BUG KIT SmaH bug powered by the 'phone line. tarts transmitting as soon as the phone is picked upl $£ 12$ Ref 1135 3 CHANNEL LIGHT CHASER KIT 800 watte per channe, speed and direction controlssupptied with 12 LEDS (you can fit triacs instead to make kt mains, not supplied) 9 -12vdc £ 17 ref 1028. $12 V$ FLOURESCENT LAMP DRIVER KIT Light up 4 foot tubes from your car batteryl 9 v 2 a transformer also required. EB ref 1059.

HELPING HANDS Perfect for those fiddily jobs that need six hands, 6 bell and socket joints, magnifier. $£ 7.99$ ref YO57A
VOX SWITCH KIT Sound activated switch ideal for making bugging tape recordars etc, adjustabie sensitivity. $£ 10$ rof 1073. PREAMP MIXER KIT 3 input mono mixer, sep bass and trebte controls pius individual ievel controls, 18 vdc , input sens 100 mA . £15 rof 1052
SOUND EFFECTS GENERATOR KIT Produces sounds ranging from bird chips to sirens. Complete with speaker, add sound offects to your projects for just $\mathrm{E9}$ ref 1045.
15 WATT FM TRANSMITTER (BUILT) 4 stage high power, preamp required $12 \cdot 18 \mathrm{vdc}$, can use ground plane, yagi or open dipole. £69 ref 1021
HUMIDITY METER KIT Buids into a precision LCD numidity mater, 9 ie design, pCb, ted display and at components included. $£ 29$ PC TIMER KIT Four channel output controlled by your PC, will switch migh current mains with relays (supplied). Sotware supplied so you can program the channels to do what you want whenever you want Minimum sybtem configeration is 286, VGA, 4.1,640k, senial port, hard drive with min 100k free. £24.99
MAGNETIC MARBLES They have been around for a number of years but still give rise to curiosity and amazement. A pack of 12 is just E3.99 ref GIR20
NICKEL PLATING KIT Proffesional electroplating kit that with transform rusting parts into showpieces in 3 hoursil Will plate onto steel, ron, bronze, gunmetal,copper, welded, silver soldered or brazed joints. Kit includes enough to plate 1,000 sqinches. You will aiso need a 12 v supply, a container and 212 v light bulbs. E 45 ref NiK 39 .
Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12 vDC adjustable from $0-30$ secs, $£ 4.99$ HY $1260 \mathrm{M}, 12 \mathrm{vDC}$ adjustable from $0-60$ mins. $£ 4.99$ HY2405S, 240v adjustable from 0.5 secs. $£ 4.99$ HY24060m, 240v adjustable from 0-60 mins. £6.99 BUGGING TAPE RECORDER Small voice activated recorder, uses micro cassefte complete with headphones. 228.99 ref MAR29P1 POWER SUPPLY fuliy cased with mains and o/p leads 17 v DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
COMPOSITE VIDEO KIT. Converts composite video into separate H sync, V: vnc, and vidso. 12v DC. £12.00 REF: MAG8P2. FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 50 \mathrm{~mm}$, 4 drive connectors 1 mother board connector. 150watt, 12v fan, iec iniet and On/off switch. $£ 12$ Ref EF8
VENUS FLY TRAP KIT Grow your own camivorous plant with this simple kit $£ 3$ ref EF34
6"X12" AMORPHOUS SOLAR PANEL 12v $155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price just $£ 5.99$ oa REF MAG6P 12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P 13 ideal for experimentersl 30 m for $£ 12.99$ ref MAG13P1 ROCK LIGHTS Unusual things these, two pieces of rock that grow when rubbed togetherl belived to cause rainl£3 a pair Rel EF29 3' by 1' AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA} 10$ watts, aluminium frame, scrow terminals, $£ 55$ rof MAG45
ELECTRONIC ACCUPUNCTURE KIT Build into an electronic version instead of neediesl go xd to experiment with. $£ 9$ ref 7 P 30 SHOCKING COIL KIT Buld this little battery operated davice into aill sorts of things, siso gers worms out of the groundl E9 ref 7P36. HIGH POWER CATAPULTS Hinged arm brace for stability, tempered steel yoke, super strength latex power bands. Departure speed of ammuntion is in excess of 200 miles per hourl Range of over 200 metres1 28.99 rof R/9.
COMPAQ POWER SUPPLIES WITH 12 V DC FANS EX equipment psu's, some ok some not but worth it for the fan atonal probably about 300 watt $P C$ unit with lEC input. E3. 50 each ref CQ1 BALLON MANUFACTURING KIT Brtish made, smati blob bows into large, longlasting ballioon, hours of funl £3.99 ref GUEF9R 9-0.9V 4A TRANSFORMERS, chassis mount. $¢ 7$ raf LOT19A. MEGA LED DISPLAYS Buld your self a clock or something with the se mega 7 seg displays 55 mm high, 38 mm wide. 5 on a pcb for just £4.99 ref LOT18 or a bumper pack of 50 displays for just $£ 29$ ref LOT17.
SOLID STATE RELAYS
CMP-DC-200P 3-32vdc operation, 0-200vdc 1A $£ 2.50$
SMT20000/3 3-24vdc operation, 28-280vac 3A £4.50

FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK
 FOR CASH
 SURPLUS STOCK LINE 0802660335

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

ACTIVE

A-to-d and d-to-a converters

8 -in-1 d-to-a converters. MP7610 Series contain eight digital-toanalogue converters with voltage output amplifiers. Operation is such that ground currents dependent on code and reference voltage variation are eliminated; this also ensures accuracy of matching between converters, which means that only one full-scale value need be calibrated. MP7610/1 devices are 14bit types and the MP7612/3 are 12-bit converters; MP7610/1 have serial data/address control logic and the other two a parallel interface. Outputs swing $\pm 10 \mathrm{~V}$, sinking or sourcing 5 mA and settling to 12 bits in under $30 \mu \mathrm{~s}$. METL. Tel., 01844278781 ; fax, 01844278746.

Discrete active devices

Dlode if swltches. LMS33 subminiature, surface-mounted, ceramic If diode swliches by Murata are intended for use in wireless lans and cellular telephones. There are two versions with and without an integrated low-pass filter and both are contained in a ceramic package measuring 5.4 by 4 by 2.8 mm . Murata Electronics (UK) Ltd. Tel., 01252811666 ; fax, 01252811777.

Linear integrated circuits

Power control. International Rectifier's IR215X family of control ics now includes two new components, the IR2153/4, for use in half-bridge power converters. Features of the new devices include, for fluorescent lighting, start-up from a high-voltage rail with a dropping resistor using the micropower and zener-clamped Vcc supply and a shut-down mode. There is also preheating and open-lamp protection. For use in ac/dc adaptors and consumer supplies, there is a resonant circuit and zero-voltage switching. The devices are pincompatible with the IR2151/2. International Rectifier. Tel., 01883 732020 ; fax, 01883733410.

Memory chips

4 Mblt cache rams. Hitachi has two 125 MHz 4 Mbit synchronous cache srams for second-level cache memory in workstations using Sparc
cpus. HM67S36130, which is a 128 K by 36 device and the HM67S18258, a 256K by 18 type, are register-to-latch mode ssrams with a 7 ns initial access time. Both are 3.3 V srams with lowpower Ivcmos-compatible 1/o. Byte write control allows the cpu to write several lines of data at a time for increased flexibility and a self-timed late write function simplifies design by eliminating the need for a write control pulse. Hitachi Europe Lid. Tel., 01628 585163; fax, 01628 585160.

64Mbit dram. NEC's 64Mbit 3.3 V cmos drams come in a choice of $\times 4$, $\times 8$ and $\times 16$ configurations. Three versions are available:
μ PD $4264165 / 5165$ are 4M by 16bit types in 50 -pin TSOP for surface mounting; μ PD $4255805 / 4805$ 8M by 8bit versions and μ PD $4265405 / 4405$ 16 M by 4 bit devices, all in 32 -pin TSOP or SOJ. Versions with access times of 60 ns and 50 ns are now available and 40 ns types are to come later; the edo mode allows cycle times of 20 ns and there are devices with fast page mode operation.
Refresh modes include ras only, ras before cas and hidden refresh. Sunrise Electronics Ltd. Tel., 01908 263999; fax, 01908263003.

Microprocessors and controllers

Low-power micro peripherals. WSI offers the ZPSD3XX family of 'zeropower', 2.7 V and 5 V programmable microcontroller peripheral ics, in which one chip contains up to 2 Mb of eprom, 16 Kb of sram, programmable memory map address decoder, a glueless logic controller interface and programmable i/o ports. The 2.7 V versions draw $1 \mu \mathrm{~A}$ in standby and 0.4 mA per megahertz of bus frequency; 5 V types $10 \mu \mathrm{~A}$ and 0.8 mA . Silicon Concepts Ltd. Tel., 01428 751617; fax, 01428751603

Optical devices

Optocoupler. Isocom's 4N32-1 optically coupled isolator is based on the standard 4 N32, but produces a current transfer ratio of 800 for a 1 mA drive current, against the 10 mA of the standard type; even with a 0.25 mA drive, the ratio is still 200 and saturation 1 V . It is packaged in a 6 -pin dil for through-hole or surface mounting, isolation being to 5 kV rms. Access to the output darlington base allows adjustment of the ctr. Isocom Components Ltd. Tel., 01429 863609; fax, 01429863581.

PASSIVE

Passive components

Chip resistors. Philips' ARC241 array chip resistors have values in the range 10Ω to $1 \mathrm{M} \Omega$ at $\pm 5 \%$ in the E24 series. They are on a high-grade ceramic body, internal electrodes at each end connected by resistive paste, the composition of which is varied to give approximate resistance value. Laser trimming then achieves the final value. Temperature coefficient is $<200 \times 10^{-6} / \mathrm{K}$, power dissipation 0.062 W and maximum voltage 50V, dc or rms. Gothic Crellon Lid. Tel., 01734788878 ; fax, 01734 776095.

Tantalum capacitors. Tantalum, surface-mounted capacitors with low equivalent series resistance are offered by Dubiller. Components in the SHJL range handle higher ripple current with lower ripple voltage and heat dissipation than standard types. Minimum esr is $65 \mathrm{~m} \Omega$ and values are in the range $4.7 \mu \mathrm{~F}$ to $470 \mu \mathrm{~F}$ at $\pm 10 \%$ or $\pm 20 \%$ tolerance, leakage current belng <0.01CV or $0.5 \mu \mathrm{~A}$. Dubilier Ltd. Tel., 01371875758 ; tax, 01371 875075.

Chip inductors. Murata's LQP11A/21A series of coils provide a tolerance of $\pm 0.2 \mathrm{H}$ or $\pm 2 \%$ even at low values. Low stray CS confer high selfresonant frequencies and the components are stable. They can be soldered using both flow and reflow techniques. Murata Electronics (UK) Ltd. Tel., 01252811666 ; fax, 01252 811777.

Low leakage tuning diode
Zetex's ZC829A variablecapacitance diode, intended for use in pagers, cellular telephones and vcos, exhibits a reverse leakage current of 200 pA at 25 V . At 2 V bias, capacitance is 8.2 pF , making it suitable for vhf/uhf work, C having a ratio of between 4.3 and 5.8 for an input voltage of 2 . 20 V . Maximum forward current is 200 mA , power 330 mW at $25^{\circ} \mathrm{C}$. Zetex plc. Tel., 0161-627 5105; fax, 0161-627 5467.

Suppression capacitors. Samwha SC dlsc ceramic capacitors for Classes X1 and Y2 use, are mains suppression types for 250 Vac . Values from 100 pF to $10 \mathrm{nF} \pm 10 \%$ are available to cope with line harmonics or spikes across the line or live/neutral to earth. SD series components are for Classes Y1 and X1, also for 250V ac come in values from 100 pF to 4700 pF . All are approved to EN132400 and FIMKO IEC 384-14. Easby Electronics Lid. Tel., 01748 850555; fax, 01748850556.

Audio products

AC '97 audio codec. HMP9701, an audio codec for pcs from Harris, meets the analogue requirements of the Audio Codec '97 (AC '97) specification and is believed to be the first in the field, providing d-to-a conversion, a-to-d conversion, mixing and i/o. It includes 16 -bit stereo fullduplex operation at $48 \mathrm{ksample} / \mathrm{s}$ for four analogue line-level stereo inputs for connections from line, cd, video
and auxiliary, all with individual gain control. Two analogue inputs are present to connect speakerphone or line 'phone and beep and a mono microphone can be switched between two external sources. The output offers more than $90 \mathrm{~dB} \sin$ ratio. A mixer manages playback and recording of the digital and analogue sources likely to be present, including system audio for business, games and multimedia; microphone,
speakerphone, stereo line in; video; and auxiliary/synthesiser. Harris Semiconductor UK. Tel., 01276 686886; fax, 01276682323.

Connectors and cabling

USB connectors. Jack and plug connectors, part of Harting's har-mik

Low-value resistors.

 Modulohm has a range of very low value resistors in the form of an uninsulated band or wire and covering the resistance range $5.4 \mathrm{~m} \mathrm{\Omega}$ to 100 ms . They are intended for use in power supplies and regulators and customers' needs for height and width can, for the most part, be met. Self-inductance is extremely low and the components are easy to mount. Kestronics Lid. Tel., 01727812222 ; fax, 01727 811920.range, comply with the standard USB format, in which a single USB port replaces the serial and parallel connections now in use, with 'plug-and-play' compatibility and hotswapping. Connectors for the bus are available in rectangular and square form and dual-stack types. Voltage rating is 30 V rms and current rating 1A per contact. Harting Elektronik Ltd. Tel., 01604 766686; fax, 01604 706777.

Pc card connectors. Fujitsu Takamisawa's new range of Type I, II and III PC card connectors, the FCN 560 Series, offers the option of through-hole or surface mounting and either low-profile or lifted housings, which allow the mounting of components under the header; there are also types to mount below the board. The range includes single and double stacked card headers with push-button ejectors either side. Young-ECC Electronics. Tel., 01628 810727; fax, 01628810807.

Right-angled sub-D connectors. Erni has a new set of sub-D connectors for right-angle press fitting in both socket and pin versions in standard and European designs (7.3 and 3.6 mm in height respectively). They are available with 9, 15, 25 and 37 poles and lock with screws, using standard press-fit tools into 1 mm holes. The black insulating body is in glass-fibre reinforced plastic which is shrouded in tin-plated

steel; contacts are in gold-plated copper alloy. Radiatron Components Ltd. Tel., 01784 439393; fax, 01784 477333.

Screened IEC mains connectors. Schurter's Groundfit IEC mains connectors are enclosed in an emc shield, which is said to offer unprecedented screening in a package measuring only 24 mm deep In addition, the GRF4 model has a low-impedance mains filter to guard against line-conducted interference. The connectors snap into the inside of a panel with no need for mounting tools. Radiatron Components Ltd. Tel., 01784 439393; fax, 01784 477333.

Microphone cables. Professional and deluxe microphone cables from Alcatel are new to Wadsworth's catalogue. The professional type is a balanced cable with flexible pvc outer and a cotton filling to help keep its shape and therefore maintain constant capacitance and reduce handling noise. Pvc-insulated, 28 by 0.1 mm stranded, plain copper wires are screened by a 1 mm tinnedcopper wire lap screen. Capacitance is $175 \mathrm{pF} / \mathrm{m}$ and resistance $86 \Omega / \mathrm{km}$. The deluxe type has 102 by 0.05 stranded wire, $123 \mathrm{pF} / \mathrm{m}$ and $94 \Omega 2 . \mathrm{km}$ resistance. Wadsworth Electronics Ltd. Tel., 0181 2686500; fax, 0181 2686565.

Mains plug tldy. Rendar offers a 'local power distribution system' - a box with four sockets and a plug to take EN360 connectors for audio gear, the fixed plug connecting the power from a mains socket. Quadbox has total rating of 10A and meets BS5733 standards, comes in black or white and in free-standing or screwdown versions. Rendar Ltd. Tel., 01243866741 ; fax, 01243841486.

Displays

Large, flat plasma monitor. Densitron's colour plasma display has a screen diagonal of 42 in in the 16:9 format and is only 6 in deep. It is immune to magnetic interference and any problems of linearity, geometry, convergence or focussing. A VGA interface allows connection to a $p c$ and the built-in FBAS/S-VHS interface permits use as a video monitor. Viewing angle is 160° and resolution 852 by 480 pixels. Densitron Perdix. Tel., 01959 $700100 ;$ fax, 01959700300.

Protective windows. Wherever a keyboard with a display is to be used in the familiar 'harsh environment', these windows avoid damage to the display from liquids (even under pressure), grime and treatment generally to be regretted. The windows are made in polycarbonate, acrylic or toughened glass to any
size, although the smaller, the stronger. They can be clear, coloured, provided with anti-glare treatment, polarised, protected against ultraviolet light and if and emi. Rowland Automation Ltd. Tel., 01202 826398; fax, 01202828205.

Filters

Emi/rif filter. VSSRC thin-film resistor-capacitor filter networks are intended for emi/rfi reduction and filtering in power supplies. Components are on a single chip in two kinds of $20-\mathrm{pin}$, surface-mounting package. FET Electronics Ltd. Tel., 01635 524490; fax, 01635552244.

Hardware

VME backplanes. Schroff has a range of high-speed VME 64X systembus backplanes for data transmission with fast drivers in accordance with VME 64 extension draft 0.8. Rates are $60 \mathrm{Mbyte} / \mathrm{s}$ for $\mathrm{J} 1 / \mathrm{J} 2$ backplanes and $120 \mathrm{Mbyte} / \mathrm{s}$ for multiplexed block transfer.
Backplanes are in eight layers with four separate signal planes having low crosstalk and a uniform 50Ω impedance on all signal lines. The five-row, 160 -pin connectors are compatible with C96 F connectors to DIN 41612 (class 2-400 cycles). Termination resistors are on-board and daisy-chain signals can be passed on manually or automatically. Schroff UK Ltd. Tel., 01442 240471; fax, 01442213508.

Solderless backplane. Backplanes by Teradyne, the KS1025 Series, use tuning-fork contacts, fitted to the backplane using the company's dynamic-retention method, which eliminates contact-to-panel soldering and thereby removes the need to comply with MIL-STD-2000. Insertion force using special lowforce contacts is 50 g per contact. allowing up to 400 contacts to be used. Backplanes themselves can be simple two-sided types up too multi-layer designs with copper interlayers for heavy currentcarrying. Acal Electronics Ltd. Tel., 01344727272 ; fax, 01344424262.

Test and measurement

Down-to-earth tester. Practical
Power produces the Wrist \& Heel/Toe Strap Tester, which meets the relevant Directive, measuring the resistance of earthing straps on shoes, heel and toe straps by means of a wall station and footplate. You can mount it on a wall or carry it about; power comes from a 9 V battery. Failure is indicated by a buzzer and a red led and the battery state is also shown. Practical Power Ltd. Tel., 0118 9699170; fax, 0118 9699171.

Please quote "Electronics World" when seeking further information

Portable recorder. Yokogawa's DR130 portable multi-function recorder logs up to 20 channels of voltage or temperature data in analogue or digital form on a built-in chart and stores the data on its floppy-disk drive or PCMCIA card. Input voltage range is $1 \mu \mathrm{~V}$ to 50 V , signal conditioning being incorporated for all commonly used thermocouples and platinum temperature detectors; each channel is individually programmable. Accuracy is within 0.05% of reading and the temperature resolution is 0.1 K . GPIB and RS232C interfaces are available and there is software to allow the $p c$ to display and analyse data in a range of graphical forms. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494535002.

Lower-cost sig. generators. For less than £300 each, Kenwood has two low-frequency signal generators for colleges and schools. AG-204 and $A G-203 A$ generate sine and square wave outputs over the 10 Hz 1 MHz range and include such features as external sync., $10 \mathrm{~dB} /$ step attenuators and large frequency dials. $A G-204$ offers 0.02% thd from 500 Hz to 20 kHz and 0.05% over 100 Hz to 100 kHz , the 203A, being cheaper, distorts by 0.1% between 400 Hz and 20 kHz and 0.3% from 100 Hz to 100 kHz . Feedback Test and Measurement. Tel., 01892 653322; fax, 01892663719.

Telecomm line filters. CMO4 surface-mounted commonmode data line filters by Talyo Yuden have a working voitage of 50 V dc and are rated at up to 2.5A, depending on value. They are available with two, three or four lines and are in a plastic package measuring 6.3 mm by 4.6 mm maximum, with the length of 10 mm maximum depending on the number of lines. Taiyo Yuden UK. Tel., 01494 464642; fax, 01494 474743.

Power meter. Hioki's Model 3330 single-phase power meter measures ac power from 10 Hz to 50 kHz , voltage in three ranges of 150,300 and 600 V ac and current in eight ranges from 0.2 A to 30 A ; integration permits watthour or amp-hour measurements to 10,000 hours. Its comparator function allows power measurement on a production line in 0.4 s and an optional RS232 or GPIB interface allows printing or integration into an automatic measuring system. Telonic Instruments Ltd. Tel., 01734 786911; fax, 01734792338.

Interfaces

USB interface. Without extensive redevelopment, the USS-720 Instant USB from Lucent Technologies enables the use of existing equipment on the new universal serial bus. It works as an intelligent controller, can be internal or external to an existing peripheral and initiates and manages the fastest protocol available to provide a bridge between USB and the IEEE 1284 parallel port. This asic, also available as an fpga, is part of the Lucent Silicon Suite for USB. Lucent Technologies Microelectronics Group. Tel., 01344 865910; fax, 01344865923.

Literature

Fuses. Anglia can offer a 46-page catalogue of Bussmann fuses by Cooper Industries, whose range includes surface-mounting types, pinindication fuses, in-line and blade designs and a range of accessories such as pc mounting, panei-mounting fuses and fuseblocks, clips, actuators and limiters. Some of these fuses withstand board washing and the colours don't come off in vibratory feeders. Anglia. Tel., 01945 474747; fax, 01945474849.

Cables and connectors. CPC's 1997 catalogue contains descriptions of about 2000 new products. Over 450 new cable types are in from suppliers such as Alcatel, Alpha and Multicomp. covering a range of applications from test gear to heavy switching. More than 1500 connectors are now added to the range from AMP, Bulgin, DGS, Molex and Neutrik. Combined Precision Components plc. Tel., 01772 654455; fax, 01772654466.

Low-voltage Directive CD-rom. More help on Directive navigation. This cd-rom is produced by GK Consultants and Technology International Inc., the complexity of the subject being indicated by the promise that it will heip 'to begin to understand the LVD'. What you get is a copy of the cd-rom; a year's access to a Web site offering information down-loads of advice and report templates; and confidential answers to problems. A search engine locates
references in EN60950 in a matter of seconds and you also get your 'very own virtual product safety engineer' (the bank manager in the cupboard again). You will need at least a 486 with Windows $95,16 \mathrm{Mb}$ of ram, a cdrom drive and a 16 -bit sound card. G K Consultants Ltd. Tel., 01703 767739; fax, 01703767789.

Components. Electrospeed offers its 1997 catalogue, which is concerned, apparently, with 'technical niche products'. This appears to mean that it is full of descriptions of racks and enclosures, interconnectors and power supplies, including batteries. It is free of charge. Electrospeed. Tel., 01703644555 ; fax, 01703610282.

Design guides. Arrow-Jermyn Designs, now in its seventh 16-page issue, contains application notes from eight manufacturers, featuring the use of resistor networks, microcontrollers, video compression processors, programmable logic, optocouplers and memory. In this issue are pieces on the Bourns Mininet, one of the smallest resistor networks available, the ADV601 video compression processor from Analog Devices and the PIC12C5xx microcontroller. Arrow-Jermyn. Tel., 01234 270027; fax, 01234 214674/791501.

Materials

Low-temp. seals. Samco's new silicone rubber compound for extrusion or moulding stays flexible at temperatures down to $-115^{\circ} \mathrm{C}$, against $-60^{\circ} \mathrm{C}$ for the normal material Samco Silicone Products. Tel., 01727 811877; fax, 01727810728.

Epoxy resins. Resintech has introduced a range of resin-based products having a choice of packaging. The range includes adhesives with both standard and fast cure, encapsulants, sealants and material for cable and harnessing use. Packages are the TwinPack, in which the two components are separate and mix when a clip is removed, or DuoSyringe, in which they are in parallel cylinders and exit through a mixing nozzle. There is a range of surface preparation and handling aids. Resintech Lid. Tel., 01285 712755; fax, 01285713036.

Emc gaskets. Holland Shielding Systems bv has a new type of gasket that has a conductive seal for protection against $10 \mathrm{kHz}-35 \mathrm{GHz}$ radiation and water and dust. It is for application in grooves, flat, with or without a self-adhesive strip in sizes from 20 by 40 mm to 2 by 2 meters, 1 20 mm thick. The gaskets are endiess and require a much lower compression than do O-rings. Holland Shielding Systems BV. Tel., 003178 6131366; fax, 0031786149585.

Panel meters. Five models in the Select range of programmable digital panel meters are the 1000 series for ac/dc current/voltage, compatible with 5A current transformers; the 2000 series for process current and voltage signal; 3000 counter/totaliser; 4000 frequency and rate meter; and the 5000 temperature meter for both thermocouples and rid. All have a 6 -digit led display and fit a $1 / 8$ DIN cut-out. They can all be supplied with analogue output cards and RS422 and RS485 comms ports. Amplicon Liveline Lid. Tel., 0800525335 (free); fax, 01273570215.

Production equipment

Pcb inspection system. VisionPoint from DiagnoSYS is an automated inspection system for populated printed-circuit boards consisting of multiple cameras, lighting, a monitor and extensive, Windows 95 -based software. A moving camera array 'sees' the fine detail on the board and compares the image with templates held in memory. Details of a perfect board are either 'trained' into the system or cad details are supplied to autotrain it at about one part per second. Once set up, the unit will inspect up to 750 components per minute on boards up to 18 by 20 in DiagnoSYS Ltd. Tel., 017307886219 ; fax, 01730260659.

Power supplies

Inductorless dc-to-dc converter. Linear Technology's LTC1263 switched-capacitor charge pump voltage converter produces regulated 12 V at up to 60 mA and 76% efficiency with no inductors from an input of 4.75 V . It draws $320 \mu \mathrm{~A}$ while working and a shut-down pin reduces that to under $0.5 \mu \mathrm{~A}$. The circuit is a chargepump tripler with an internal oscillator, needing four small ceramic capacitors externally. Package is an SO-8. Linear Technology (UK) Ltd. Tel., 01276 677676; fax, 0127664851

Power supply controller. Micro Linear's ML4902/3 converts a 5 V or 12 V supply voltage to a current of up to 14 A at $1.8-3.5 \mathrm{~V}$, programmed by an

Please quote "Electronics World" when seeking further information

internal 5-bit control analogue-todigital converter. Synchronous rectification is in use to provide higher efficiency than schottky rectifier buck converters and a dual feedback loop produces a $30 \mathrm{~A} \mu \mathrm{~s}$ transient response needed by fast processors. Ambar Components Ltd. Tel., 01844 261144; fax, 01844261789

Voltage references. LM4040/41

 $\pm 0.1 \%$ shunt voltage references offer space saving in SOT-23, TO-92 and SO-8 packages, and come in a range of fixed and adjustable output voltages. Fixed voltages available are 2.5, 4.096, 5 and 10 V , the LM4041 having a fixed 1.225 V or adjustable output. Operating current range is $60 \mu \mathrm{~A}$ to 15 mA . There is no need for a stabilising capacitor, even with a capacitive load. Solid State Supplies Ltd. Tel., 01892836836 fax, 01892837837Mains adaptors. Egston Mainy plugtop mains adaptors from Chloride Powerline are thought to be the world's smallest ac/dc power supplies, providing an output of 3 12 W in a volume only slightly bigger than a 13A plug. They are available in mains adaptor or battery charger form and are compatible with UK, US or European requirements. A pcmounting version is also available Output voltages are $3,6,9,12,15$

Ac/dc converters. Melcher offers the SWE family of single-output power supplies, which are CE marked after being redesigned to conform with the LVD; they are also approved to US standards. There are six units providing outputs from 5 W to 100 W , all taking a single input range of 85 264 V ac. Remarkably, the 5W unit is only 18 mm deep and even the 100 W type only 35 mm . Melcher Ltd. Tel., 01425 474752; fax, 01425474768.

and 18 V to within $\pm 5 \%$ or $\pm 1 \%$ for the 6 W and 12 W types. Typical efficiency for all versions is 70%. Chloride Powerline. Tel., 0118 9868567; fax, 01189755172

Voltage regulators. MIC5203 80 mA low-dropout regulators in SOT143 packs are designed speclically for use in hand-held, battery-powered devices such as cellphones. Dropout is typically 20 mV on a light load and 300 mV at 80 mA , with $225 \mu \mathrm{~A}$ of ground current at 10 mA out. Initial output is accurate to within 3% and the device has a cmos/ttl logiccompatible on/off input. There is protection against overcurrent and overtemperature. Output voltagesavailable run from 3 V to 5 V in seven models. Solid State Supplies Ltd. Tel., 01892 836836; fax, 01892 837837.

Small, efflcient dc converters Melcher and Sextant Avionique have produced the G-Family of 88% efficient dc-to-dc converters that produce 25 W from a package measuring 53 by 43 by 10.5 mm over the standard -40 to $71^{\circ} \mathrm{C}$ temperature range with no additional cooling or heat sink needed. There are three outputs of $5 \mathrm{~V}, 12 \mathrm{~V}$ and -12 V , which trade power output, from inputs of $8.4-36 \mathrm{~V} \mathrm{dc}, 14-36 \mathrm{~V} \mathrm{dc}$ and $36-75 \mathrm{~V}$ dc. Start, power fail and shutdown can be sequenced and there is thermal monitoring. Also an 8 -bit data stream allows a self-test routine and continuous monitoring for failure Melcher Lid. Tel., 01425 474752; fax, 01425474768.

Radio communications products

S-m mixer. The 2109 surfacemounted double-balanced mixer is designed for $860-1500 \mathrm{MHz}$ input with $0 \mathrm{dBm}-8 \mathrm{dBm}, 820-1120 \mathrm{MHz}$ local oscillator drive. Conversion loss is 9 dB , the intercept point 7 dBm and the compression point -1 dB , all with 3 dB drive. Power output is 50 mW into standard 50Ω impedance. Cirkit Distribution Ltd. Tel., 01992444111 fax, 01992464457 .

Switches and relays

Thin relays. The SNR power relay from Schrack is 5 mm thick, but still handles 6 A at 250 V ac. It can be fitted with one normally open or a changeover contact and the coil takes 170 mW at $3-110 \mathrm{~V} \mathrm{dc}$, the casing can be either fluxtight or immersible. These relays comply with all manner of standards and requirements. Schrack Components Ltd. Tel., 0181868 1211; fax, 0181 8662221

Membrane panel selector. If you are after a membrane switch panel with the natural touch and find it difficult to specify, Tactus International has the
answer - the Tactus Switch Selector. To avoid repeatedly going back to the drawing board to get the feel right for a particular application, you simply try out a number of test panels in the set supplied and specify the one you need. Tactus then guarantees to supply a panel to your design with the same actuation force, actuation point and bounce, as far as is possible. Tactus International Ltd. Tel., 01983 526535; fax, 01983 524964.

Transducers and sensors

Pressure transducer. EG\&G IC Sensors' Model 1210 generalpurpose, solid-state, field shielded piezoresistive pressure transducer has been modified to improve the glazing on the ceramic and the metallisation near the laser fused links. The sen'sor covers gauge, absolute and differential pressure from $0-2 \mathrm{ib} / \mathrm{in}^{2}$ to $0-100 \mathrm{lb} / \mathrm{in}^{2}$ to $\pm 0.1 \%$, with 100 mV output. There is integral temperature compensation and

Industrial selector switches.

A complete range of selector or banner switches for panel mounting in control and instrumentation systems is available from EAO-Highland. It includes switches to handle signals from $10 \mu \mathrm{~A}$ at $100 \mu \mathrm{~V}$ to 5 A at 500 V , mounting in panel cut-outs from 16 mm to 30.5 mm diameter. Most switching formats are catered for in combinations of momentary and maintained operation in two or three positions, pther selectors being available with up to 12 positions. The 16 mm switches may have coloured windows in the knob and optional lighting. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444236641.

Keyboard swliches. Throughhole and surface-mounted miniature switches for keyboards in EAO-Highland's Micro-Cosmos range are 7.6 mm square, stand 4.6 mm high and mount on a 2.54 mm matrix. Action is momentary single-pole, twoposition, a dome actuator producing audible and tactile feedback. Silver or gold contacts are available, the gold type switching voltage down to 10 mV at $500 \mu \mathrm{~A}$. Buttons are round, square or hemispheric domed and mount on front panels or under a film overlay. Hawnt Electronics Ltd. Tel., 0121784 3355; fax, 01217831657
calibration over $0-50^{\circ} \mathrm{C}$ with lasertrimmed resistors, an additional resistor programming the gain of a differential amplifier to normalise pressure sensitivity variations. Eurosensor. Tel., 0171405 6060; fax, 01714052040.

Card reader. Panasonic's ZU9200 'smart' magnetic card reader is one of the smallest available and is meant for cash-out tills and access control. It measures 148 by 62 by 41 mm , is motor driven and offers the options of

single or multitrack card reading and ISO-compatible smart/chip card reading and writing. Roxburgh Electronics Ltd. Tel., 01724 281770; fax, 01724281650.

Silicon accelerometer. Endevco offers the Model 7264B-500, a piezoresistive accelerometer having a full-scale range of $0.8 \mathrm{mV} / \mathrm{g}$ and internal stops to withstand 5000 g shock in all axes. The device weighs 1 g and is small enough to fit in a minute space. Mass, gauges and supporting rim are all formed from a single silicon crystal to eliminate zero shift and confer stability and repeatability. Phase shift is minimal and frequency response 0 3 kHz , operating over the temperature range -40 to $93^{\circ} \mathrm{C}$. A eight-metre cable is fitted as standard. Endevco UK Ltd. Tel., 01763261311 ; fax, 01763 261120.

Computers

Industrial computers. Anglia
Technology is to handle the American Ziatech CompactPCI computers using
the QNX operating system in 3 U and 6 U versions, the 6 U types taking 14 peripheral cards without a bridge and 20 with one bridge. Processor in the 6 U system is the ZT5510
CompactPC/ Pentium running at up to 200 MHz using the Intel Triton chipset and with up to 96 Mbyte of EDO ram and 8Mbyte of flash memory. There is an enhanced IDE interface with an integrated drive as an option, a fast Ethernet interface and a standard set of peripherals. The system runs on the Universal Serial Bus - one of the first industrial computers to do so.

Data communications

Hayes radlo modem. Wood \& Douglas announces the HCM450, a radio modem with a Hayes interface. It has a range of 20 km line-of-sight and auto-dials up to 250 remote sites, each modem having a programmable source address used to detect incoming data packets from the others. The unit is in an IP65 enclosure and is type-approved for the UK delicensed telemetry band. Wood and Douglas Ltd. Tel., 0118 9811444; fax, 01189811567.

Modem. Latest addition to Rockwell's SocketModem range operates at up
to $33.6 \mathrm{~kb} / \mathrm{s}$ with fax and receive speeds up to $14.4 \mathrm{~kb} / \mathrm{s}$. It has the same footprint as all the others in the range (1 by 2.5 in) and forms a complete V. 34 data/fax/voice modem in a low-power module which simply mounts in a socket. Features include AudioSpan, which is simultaneous voice and data, and full duplex Speakerphone. There is an on-board line interface and firmware in rom. Error correction is to V.42/MNP2-4 and data compression to V.42bis/MNP5. A non-error-correcting code can be selected. Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256332810.

Quad uart with flfo. A quad universal uart from Exar, the 82C684 provides four independent, full-duplex, asynchronous channels in one package. It is for use in microprocessor-based equipment using 68000, 8080 and 8086 families and supports polled or interrupt-driven procedures. Each channel may be programmed independently for operating mode or data format, operating speed being selected from 32 internally generated fixed bit rates, from a clock derived from the internal counter/timer or externally. Receiver and transmitter data are quadruple
buffered in fifo and transmission from a remote device is stopped when the buffer is full. METL. Tel., 01844 278781; fax, 01844278746.

Software

Windows NT driver development. Vireo Software's Driver::Works simplifies and automates NT device drivers using a $\mathrm{C}_{+}+$class library with Driver::Wizard, an automatic code generator, on-line documentation and working examples. The software is claimed to be a significant improvement over the Microsoft device driver kit and that drivers made using it will be compatible with Windows NT 4.0 and future versions, including Windows 97 . Vireo Software Inc. Tel., 001508264 9200; fax, 001 5082649205.

ADVERTISE FREE OF CHARGE

Subscribers* to Electronics World can advertise their electronics and electrical equipment completely free of charge

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words. Remember to include your telephone number as one word. You must include your latest mailing label with your form. * This free offer applies to private subscribers only. Your ad will be placed in the first available issue.

This offer applies to private sales of electrical and electronic equipment only.
Trade advertisers - call Malcolm Wells on 0181-652 3620
All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer

Please send your completed forms to:
Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

TThe good news is that artificial brains will be along by around 2035. But we may not need them - learning will have been superseded by transparent interfaces to smart computers about ten years previously.
Also, by 2025, robots will outnumber people in developed countries and the commercial production of antimatter will have begun. Between now and then, we can look forward to electronic cash displacing paper and coins by 2005 , space tourism by 2002 , 3D video conferencing and holographic displays by 2015, and full voice interaction with machines by 2007 .
Thought control of computer games will be here next year, and wristwatch telephones should be in the shops any time now.
These are just a selection from a list of around 300 planned or expected developments collected from around the world by the tech-no-seers at BT's Martlesham Heath research laboratories, and published as the 1997 Technology Calendar.
This is no ordinary calendar, although it is designed so you could hang it on the wall. It sorts these breakthroughs into a dozen categories, including telecommunications, devices and machine interfaces, and lists them in order of anticipated first commercial application.
The list starts from this year and ends at 2040, by when global environmental management corporations will be inducing artificial precipitation and using nuclear fusion as a power source.

CDs on a roll?

The range of this predictive thinking is both wide and highly detailed. A slice through the future at the millennium, 2000 , finds "evolving field-programmable gate arrays" and "3D very large scale integration with at least ten

Whatever next?

layers of devices" alongside "Leftel flat screens 100 times sharper than 1997 tvs but cheaper", and cds made on rolls 200 times faster at 3 p a disk. Interactive vehicle highway systems will have arrived, and solar cells will be in common use for residential power supply.
The listings are necessarily brief, not to say cryptic at times. I feel I should know what "light detection sensitivity exceeding shot noise limit" is. By 2011, when it's due, I might well. Likewise TeraFLOPS and PetaFLOPS, both supercomputer speeds, the first due this year, the second in 2003.
On the other hand, "desktop fabrication units" and"active contact lenses" seem selfevident - or do they?
Biotechnology looks like making people obsolete. Before those artificial brains arrive, there will be artificial muscle and artificial pancreas, both next year, and artificial blood and ears in 2000 . This will be followed by artificial heart, lungs, kidneys, liver, peripheral nerves and in 2030, fully-functional artificial eyes.
Artificial legs are not due until 2030. Before then, in 2020, artificial insects and small animals with artificial brains will have been developed. No doubt some of these will be programmed to bite robotic mail delivery automata, due about the same time - always assuming anything as old-fashioned as mail remains to be delivered.

And the bad news?

Not all the news is good. Only next year, it says, "viruses based on artificial intelligence will evolve and adapt." and by 2003, "various forms of electronic addiction will be a big problem."
The calendar al so contains an addendum of various things, such as natural or human and social upheavals which could, at any time, throw progress off course. They range from an asteroid hitting earth or the melting of polar icecaps (oceans rise 100 feet) to mega-revolutions and terrorism, international financial collapse, the end of intergenerational solidarity or the collapse of the sperm count.
More ambiguous developments such as the growth of religious environmentalism and "new age attitudes" blossoming with the millennium, are also listed.
However, provided we survive these, and from about 2010, technology will give us the means to predict natural disasters, there is much to look forward to in the wonder-age of technology. Robotic pets in 2010 for instance, or on-line voting in 2007 and electronic referenda by 2010 .
Only next year, we will be able to enjoy "many people sharing a visual virtual space..." I can hardly wait.
But it will not be until 2018 that the ultimate blessing of the electronic age - a video recorder capable of being programmed by adults - is delivered.

Tracking orbits

Martin Smith outlines the benefits of a satellite tracking controller that relies on a constantly evolving track model.

Precise tracking control on large communications satellite antennas is a serious business issue. Loss of traffic through controller failure on a transatlantic link can cost $\$ 1500$ per minute and damage customer confidence.
Advanced controllers can also deliver useful savings by making it possible to use a low cost space segment on otherwise unsuitable satellites. Relaxation of north-south station keeping extends the operational life of a satellite, allowing it to be kept in service at marginal cost. However, the resulting inclined orbit requires active tracking to maintain workable signal levels.
Viewed from Earth, a satellite with 3.5° orbital inclination moves at up to 0.015° per minute. On a fixed Ku band antenna this would mean a drop of 4.0 dB in the first five minutes and a further 12 dB in the next five. This is operationally unacceptable.
First generation step-track controllers rely on moving the antenna to maximise a received beacon position. These are effective for geostationary satellites under good propagation conditions, but become unreliable when noise, rain fade or scintillation cause the beacon to fade.
Memory track developments using stored data when beacon strength falls below a preset level are an improvement, but they cannot respond to wind effects or satellite sta-tion-keeping manoeuvres. The more accurate monopulse controllers process the rf signal directly but require elaborate and costly microwave equipment. Step-track controllers are often confused by the scintillation and fading which are particularly bad at elevation angles less than about 7°.

[^4]A new and more accurate system which steers the antenna in accordance with a mathematical model of the satellite orbit was developed on the initiative of the UK Post Office. In 1983 the software was licensed to Signal Processors and has been further devel-
oped as the Intrac, an acronym derived from intelligent tracking antenna control algorithm.

Modelling the satellite orbit

The concept is to create a multi-parameter model of the satellite track by an optimal esti-

A satellite antenna whose position is determined by data built up over a long time period has the ability to track a satellite accurately regardless of signal strength and, noise and wind force.
mation process. The estimation process combines a series of individual measurements of the satellite position. During the first 24 hours following switch-on, a short term model is used while controllers build a longer term model of the satellite track. This means that the antenna is always under closed-loop feedback control in accordance with a model evolving with time. This means that the system is almost unaffected by uncertainties in individual satellite position measurements. Accurate pointing is assured without any need for external data inputs.
The current Intrac algorithm constructs its own fourteen-parameter model from step cycle measurements of the satellite position, normally at ten minute intervals. Resulting tracking accuracy is within a 0.05 dB average for satellites with orbital inclinations to at least 10°. This corresponds to an average pointing accuracy better than 6.5% of the 3 dB beam width. A relationship algorithm capable of tracking and correcting transients allows for windage, refraction and satellite station keeping manoeuvres.
Commercial advantages of accurate pointing
can be calculated. A relatively simple controller may lose track five times a year and have an average mean time between failures of 50000 hours - more than five years. This adds up to a loss of about 80 minutes of traffic a year, which may sound trivial.
A more sophisticated device, which can be expected to lose track less than once in two years and has a mean-time between failure of 120000 hours, will not lose traffic for more than ten minutes a year.
The difference in traffic lost by the two systems over a ten year life will be more than 700 minutes. The value of transatlantic traffic on a big antenna can be $\$ 1500$ per minute: thus, the revenue saved over ten years by using the more consistent and reliable controller will be over \$1m.
Independence from extemal data inputs together with the use of high resolution transducers allows Intrac controllers to correct for wind deflections in the antenna and mechanical imperfections in its drives. It also makes it possible to maintain pointing accuracy even after the loss of the satellite tracking signal for several days.

Intrac performance compared with step-track against thermal noise, scintillation and orbit inclination.

and that's jusi \quad re the half of it!..

FEATURES

- 16/32 bit 68307 CPU for fast operation - Up io 1 Mbyte of EPROM space onboard - UD to 512 Kbyte SRAM space onboard - 32 kbyte Sram fitted as standard - R5232 serial with RS485 option - mODBUS \& other protocols supported - UD to 22 digiral VO channels - 2 timer/counter/match registers - IC port or Mbus \& Watch dog facilities - Large Proto-typing area for user circuits - Up to 5 chip selects available
- Program in $C^{2} C_{t+}$, Modula- 28 Assembler - Real Time multitasking Operating System O59 or MINOS with free run time license option
- Manufacturing available even in low volumes
- A full range of other Controllers available
P.C. 'C' STARTER PACK AT ONLY £295 + VAT

The Micro Module will reduce development time for quick turnaround products/projects and with the P.C. 'C' starter pack allow you to start coding your application imme diately. all drivers and libraries are supplied as immediately, all dive ano the real time operating standard along with Minos the real time operating
system all ready to run from power on. syste' C ' starter pack nates A Mirro The 'C Starter pack inciudes: A Micro Module with 128 Kbyte SRAM, PSU. Cables, Manuals, C compiler, Debug monitor ROM. Terminal program, Downloader, a single copy of MINOS. Extensive example sotware, and
unlimited technical support all for $£ 295$ + VAT.

unlimited technical support all for $£ 295+$ VAT.

Cid5

Cambridge Micropracesso Systems Limited
Unit 17-18, Zone 'D', Chelmstord Road Ind. Est., Great Dunmow, Essex, U.K. CM6 1XG
Phona 01371875644 Fax 01371876077

Halcyon Electronics Off-Air Frequency Products

We manufacture a range of Oft-Air Frequency products Including frequency standards, sources and disciplined standards including GPS, Customised units also avallable

Precision Frequency Source
1 kHz to 16 MHz sinewave output, 0.0001 Hz resolution, Easily settable via decade switches, VCXO backup as standard

Off-Alr Frequency Standard $1 \mathrm{MHz}, 5 \mathrm{MHz}$ and 10 MHz , outputs,
Options include Sinewave, Signal inhibit and Audio Warning
CIRCIE NO. ISI ON REPI) CARD
We are well known for our quality new and used test equipment. Our list is extensive, ranging through most discipilines. Call for detalls CIK(II NO. 130 ON REPI.) CARI)

Halcyon Electronics

423 Kingston Road, Wimbledon Chase, London SW20 8JR Phone: 01815426383 Fax: 01815420340

CIRCIE NO. 13; ON REMIY CARD

Leading Edge Technology Lid
Low cost Programmers for all your requirements

GAL PROGRAMMER 279.95 16V8 / / $6 \mathrm{VBA} / 16 \mathrm{VBZ} 20 \mathrm{VB} / 20 \mathrm{VAA} / 20 \mathrm{VB}$

- Stylish compect case with quality ZIF socket
- Easy to use sotware - loed/save in JEDEC format
- Plugs into Centronics printer port

Works on eny IBM PC or competible / laptops / notebooks ec - Fast and reliabic programming using menuficturers algonthms

- Progrem protection fuses to prevent unmuthorised copying
- Supplied with PLAN Logic compiler softwere
- Complete system with example files, comection lead, and PSU - Full 12 morths parts and labour guaranter

P87C51/2 PROGRAMMER 579.55

Programs all makes of P87C51/2 and Atmel 89C51 Flash types.
As nbove this unit pluga ioto Cenmonics printer port on ary IBM PC or comprabies end comes complete with soltwire, connoction lead. PSU, ind full 12 monshs gurantec

MEGAPROM UNIVERSAL EPROM PROGRAMMER EPROMS / EEPROMS / FLASH ELPROMS / ILC BUS EEPROMS

- Covers all types of Eprom, EEprom, and flash up to 32 pin
- Fast programming and verification
- Easy to use softwire - supports Bin / Intel Hex / Motorola S and ASC file formats
Read / Edit / Verify / reprogram etc
Supplied with full 12 months parts and lisbour guarantec
 Megaprom rums on any IBM PC / compatible, connects directly to the centronicr printer cable
and requires $12-18 V$ ACDC PSU. Low cost makee it ideal for hobbyist and engineers alike. $\mathbf{2 9 . 9 5}$

Contact Card Professionals for the most advanced portfolio of PCMCIA PC Cards, StarCards, 38edge Cards and compatible interface solutions

Centennial: major franchised stocking distributor for Centennial PCMCIA cards

ITT Canon: authorised stocking distributor for 38pin StarCards, 38pin StarCard connectors and 68pin PC Card connectors

Calluna: authorised stocking distributor for Calluna's type III ATA PC card range

Centennial: 38 edge card flash memories and connectors

A wide range of Reader/writers are available with ISA, SCSII, parallel and serial host interfaces for cards in our portfolio

Card Professionals
Finmitad

Card Proiessionals Limited. Ceciamour Hhacse Owismoor Road, Owlsmoor Sanchursi Eainst ExtergS Tel: 14 (0) 1814
F3x: $+34(0) \times 34$
www.card-protessionals-64.00m

Spreadsheet Anolysis for Engineers and Scientists
With this practical, hands-on guide, engineers and researchers learn, quickly and easily, the latest and most useful electronic spreadsheet methods. Using a variety of interactive techniques, including worksheets, self-test and practical programs on the included disk, Spreadsheet Analysis for Engineers and Scientists show you how to harness the power and versatility of spreadsheet programs, including those that contain the fast Fourier transform, complex operations and Bessel functions, and how to customise your own applications.
Includes disk
0471 126837, 336pp
UK £37.50, Europe $£ 39.50$, ROW $£ 49.50$

Electronic Component Reliability

Fundamentals, Modelling, Evaluation and Assurance
This text approaches the quality and reliability of electronic components from a unique standpoint.
Traditionally the twin subjects of reliability physics and reliability statistics have been treated as seperate entities. Here, the author examines both areas and reveals how components fail and how failures develop over a period of time.
0471 952966, 374pp
UK $£ 50.50$, Europe $£ 53.50$, ROW $£ 66.50$

Fuzzy Logic
 Implementations and Applications

Offering a new perspective on a growing field, this text explores the many hardware implications of fuzzy logic based circuits. As use of Al increases, so the VISI area of circuits is becoming a growth subject. Opening with an overview of fuzzy sets and fuzzy logic the book moves on to cover a range of nonstandard solutions for fuzzy logic VLSI circuits. Future trends, new concepts and ideas are all examined and supported with practical examples from the author's research.
ISBN 0471950599 , approx 346pp, UK £50.50, Europe E53.50, ROW $£ 66.50$

Microelectronic

 Switched-Capacitor FiltersSwitched-capacitor filters and asscoiated MOS integrated circuits are now an
established technology finding applications in the
telecommunications and instrumentation fields. With unrivalled breadth of coverage, this book surveys the design techniques of an important class of analogue signal processing systems. An accompanying diskette containing a comprehensive computer-aided design package (ISICAP) enables readers to gain a greater depth of understanding of the described techniques.
Containing both source code

files and an executable version of the main design package, this alone will be an indispensable tool for many circuit designers.
Includes disk
0471954047 384pp
UK $£ 75.50$, Europe $£ 79.00$, ROW $£ 92.00$

The $I^{2} C$ Bus

From theory to Practice

With a special emphasis on the $1^{2} \mathrm{C}$ Bus, this guidebook through the world of micro controller-managed serial buses presents comprehensive coverage of the theory necessary to design the best possible communications bus for any particular application. The book examines typical industrial and consumer applications and enables the reader to design effectively in a rel-world environment. A disk containing software for the $1^{2} \mathrm{C}$ bus is also included.

Includes disk

047196268 6, 314pp
UK $£ 54.50$, Europe $£ 56.50$, ROW $£ 65.00$

High Frequency Analog Integrated Circuits

As one of the first textbooks to discuss integrated circuit design considerations and
Hthh-frequenty Amiog Integrated creut Dosign

actual designs from the basic concepts, this title provides a solid background in designing basic circuits, advanced circuits and synthesis techniques.
0471530433 424pp
UK $£ 80.00$, Europe $£ 83.00$, ROW $£ 95.00$

Speech Coding

A Computing Laboratoty Textbook

This is one of the first lab manuals with software dedicated exclusively to speech processing and coding. It takes advantage of the development of the personal computer by making this technology accessible to a wider audience The manual and Dos based software together create a user-friendly digital signal processing lab which allows the user to

perform a wide variety of speech coding and speech processing experiments. The text presents and explains a set of basic speech coders analytically and in terms of the specific parameters controlling each coder. The manual leads the student through the experimental process of understanding how speech coders work and sound via over 70 exercises and projects. The class-tested menu-driven, Dos-based software can be operated by students with little or no training.

Includes disks

0471516929,194 pp,
UKX £28.95, Europe $£ 30.95$, ROW $£ 36.95$

Solar Cells and their Applications

The past decade has witnessed numerous important breakthroughs in solar cell technology, many of which have occurred in just the past few years. Far cheaper to produce and maintain, exhibiting a longer lifetime, and considerably more efficient than ever before, solar cells are, at last, in a position to compere with traditional technologies for both small and large-scale energy conversion applications. Including contributions from some of the world's leading experts in the field, this book reports the most important recent advances in solar cell technology. From in-depth discussions of breakthroughs in cell, module, and system technologies to a probing look at important environmental, health, and ssfery issues in the photovoltaic industry, it covers a broad range of topics of vital interest to solar cell researches, power systems designers, and all those with professional interest in current and future capabilities of this important technology. Offers a detailed look at cutting-edge solar technology from an international team

LARRY D. PARTAIN
of researchers.
Covers silicon, GaAs, InP, CdTe, a-Si:H, CulnSe 29 and GaSb solar cells, cells, concentrators, multijunction cell configurations, space cellis, and more.
Describes a wide range of applications - from space cells to terrestrial systems Provides an informal look ahead at the future of solar cell technology
$0471574201,596 p p$,
UK $£ 71.50$, Evrope $£ 75.00$, ROW $£ 92.00$

Introduction to HighSpeed Electronics and Optoelectronics

Lasers, fibre optics, and highspeed optical systems share many concepts with microwave devices Furthermore, semiconductorbased optoelectronics and microwave integrated circuits share evolving process technologies. It is only natural, therfore, that students of optoelectronics be introduced to high-speed concepts in a unified manner. This highly practical intensive introduction enables electrical engineers, applied physicists, and students to develop and identify tools for understanding, analysis, design, and characterisation of high speed components. Broad in scope, this unique

text/reference examines the complementary nature of electronics and optics and emphasizes high-speed technology in which the two fields are less differentiated. Beginning with an overview that develops a perspective and appreciation of analog high-speed technology in general, the book goes on to cover devices and circuits used at microwave and millimeter-wave frequencies, optical components, and optoelectronic integrated circuits and subsystems. Particular attention is paid to applications in the area of high levels of interest in this area and because many of the concepts are applicable in other fields. The book concludes with important coverage of the oftenoverlooked area of measurement and characterization of high-speed devices. Fully referenced and supplemented with hundreds of helpful illustrations, Introduction to High-Speed Electronics and Optoelectronics is equally useful as a professional reference or a textbook for senior undergraduate and first-year graduate courses. $0471015822,312 \mathrm{pp}$, UK $£ 65.00$, Europe $£ 67.00$, ROW $£ 77.00$

Risc Systems and Applications

Professor Daniel Tabak has completely revised and updated his two previous books on Reduced Instruction Set Computer architecture to produce this new book, RISC Systems and Applications. The text is a unique, concentrated, detailed description of the architecture and implementation of most recent high-performance RISC systems, such as DEC Alpha AXP2 1164 , IBM/Motorola/Apple PowerPC 620, Sun Microsystems and Texas Instruments UliraSPARC and SuperSPARC, MIPS technologies R10000, Intel i860 XP, Motorola MC88110, Hewlett-Packard
PA. $7100 / 8000$ and the transputer. It also includes details of pioneering devices such as Berkley's RISC II and Stanford's MiPS and multiprocessor, real-time and workstation systems.
ISBN $0863801889,452 \mathrm{pp}$, UK $£ 50.50$, Europe $£ 54.00$, ROW $£ 67.00$

All prices are fully inclusive of packing and delivery

Refurn to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:
Qry
:---

** All prices on these pages include delivery and package **
Total
Name
Address

Postcode
Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made paryable to
Reed Business Publishing

Credit card no \qquad

Card expiry date

Signed

Please allow up to 28 days for delivery

M\&B RADIO (LEEDS) THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

HP 5411105
HP 5411105

Mmint

M2

EKTRONIX 2901 MHe mask zenerator

TEST EQUIPMENT
ELECTRO.METERICS EMC-25 MKIll interterence andror 10 KHz 1 GHz .

ANRITSU MS6SA 2 SHz Aror detector men
TEKTRONIX 1141 ISPGIITTSGII par video generator

MARCONI TFF210 (rus RMS volmenter

HP 5334 A unversal systems counter.

H
H
M

 (new)
\qquad

 Tel: (0113) 2435649 Fax: (01|3) 242688 I MENT DEALER

FROM AERIALS TO X-RAY: EVERYONE NEEDS DIAL

Dial is the leading directory for all pour electrical/electronics purchasiog requirenents - and it's FREE to qualifing appolicants.
How can you miss out any innger on the following.

- Access to over 11.000 electricalielectronics companies throughout the UK
- Easy product/service or company searches
- Trade Names Section - if you know the brand/trade name, now you can find the supplier
- Products and Services Showcase - the simple way to obtain in depth information about companies
- Faxback service for instant additional company information

To find out how to receive your FRDE copy of Dial Electrical/Electronics or how to advertisc within the directory, phone Judi Chapman on 0800521393 quoting reference DELL 5 or e-mail Judi on jchapman@reedinfo.co.uk

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Not so perfect cds

Regarding the news story 'Doubts on digital recording quality' in the March issue, digitally mastered recording is unquestioned, and leads to the almost perfect replication of sound. However, in the 15 years I was involved in the development of cd players, saw a considerable decrease in quality.

- Compact discs are pressed by companies who are not aware about the parameters that have an influence on cd reproduction quality. Reading IEC 908 would be a good start. - Reduced-quality optical systems decrease the optical signal-to-noise ratios, which results in a higher error rate. Although error correction has improved things, this can lead to an audible distortion.
- In the past, the digital and analogue circuits were in separate ICs. Today, digital filtering, the d-to-a converter and the first analogue amplifier are often combined within one IC. This results at least in a higher noise rate, increased distortion and much more crosstalk.
- And do not forget mechanical stability. The maximum allowed tracking error is expressed in tenthousands of a millimetre. At this size, all component surfaces are rough and imperfect. Moving parts excite everything else - even fixed mounting plates.

The 'experts' should not blame the digital recording, but the decay in quality and/or know-how at compact disk and cd-player production plants.
Hr Vanderfeesten
Genk
Belgium

Light reflections

Professor David Koltick's theory of the electron as a dynamic, continuously changing object will certainly seem odd to those who are familiar with Establishment electronics ($E W$, May, p364).
In fact, the dynamic model of the electron was first proposed in Wireless World by Catt, Davidson and Walton in December 1979. They argued quite simply that a logic pulse travels at the velocity of light, and is not slowed down by the time needed to accelerate electrons. Thus, electrons must have
an internal motion of light speed, so that their motion is merely deflected by the pulse.
Another argument is the velocity of light itself. Why is it constant regardless of the energy of the electrons emitting it? The answer is that the internal motions of the electron add up to light speed.

When an electron is moved along, at say half light velocity, then the internal speed (say electron spin plus orbital motion) is reduced from light speed to half that.
Nigel Cook

Addlestone

Surrey

Old glue news

It is a pity that you spent one and a half pages on a solution known for more than 30 years.
In 1966, we used a dual component bag from the manufacturer 3 M . With a gentle pull in the middle of the bag the internal separation joint could be opened so that the upper and lower contents could be mixed without dirty hands or tools. This viscous mixture was used to fill isolation moulds at joints of high voltage cables.
Hr Vanderfeesten
Cenk
Belgium

I wonder who supplied 3M? Ed.

Had I node
 beforehand

Readers tempted by limited-node circuit simulation software specifically Spectrum Software's Micro-Cap N evaluation version may welcome this cautionary tale.
For anyone wishing to simulate small analogue circuits, $M C I V / E V$ looks an attractive proposition. Within a limit of 25 nodes it offers the full modelling and simulation capabilities of MCIV and costs only $\$ 250$. Having been impressed by Spectrum's free demonstration of MCV, I purchased a copy of MCIVIEV believing it would meet my immediate needs.
But the stated node limit is misleading. Despite the software itself identifying 25 or fewer nodes in a circuit, the analysis may nevertheless refuse to run because of nodes hidden
within certain circuit components. A diode has one hidden node, for example; a bipolar transistor two. As a result, circuits you might reasonably expect to be analysable are not.

The MCV demonstration does not behave in this way. This - in addition to being a source of confusion - leads to the ludicrous situation wherein it is possible to analyse certain circuits

Simpler phase quadrature

There is a much simpler procedure for designing phase quadrature circuity than that described by Professor Regalia in the June issue of $E W$. The underlying principle relies on modulo four arithmetic for expressing the geometrical quadrature of any rotary oscillation in which at least two cycles are completed in order to comply with the requirement for sampling at the Nyquist frequency.
The initial step is to construct a squire with one of its vertices located at the origin of a Cartesian graph system and two of its edges aligned over the X and Y axes, respectively. The four edges are then regarded as the ratio arms of a Wheatstone bridge and the principal diagonal from the origin as the nulling meter connection.
Differential quadrature phase shift over a restricted range of frequencies can then be calculated in terms of multibase (polylogarithmic) arithmetics by interpolative projection of an appropriate series of Y values among a second series of appropriate \mathbf{X} values using the finite Fourier transform governed by modulo four arithmetic (see diagram).
The procedure can be extended to second order processing and automatic signing of complex signal patterns by rotating the initial square around the origin into the remaining three quadrants of the initial Cartesian graph system taken as reference phase, The methodology is essentially a generalisation of the concept of 'least squares' used in statistical practices.

B EP Clement

Clement Neuronic Systems
Crickhowell, Powys.

The Home of $\mathcal{H} i-\neq i n e s s e$. Its not what you do, its HOW you do it that counts!.

Hart Audio Kits and factory assembled units use the unique combination of circuit designs by the renowned John Linsley Hood, the very best audiophile components, and our own engineering expertise, to give you unbeatable performance and unbelievable value for money.
We have always led the field for easy home construction to professlonal standards, even In the sixtles we were using easlly assembled printed circuits when Heathkit in America Werovillon going back to the early Dinedale and Balley classics gives us incomparable design background in the needs of the home constructor. This slmply means the bullding a Hart kit is a real pleasure, resulting in a plece of equipment that not only saves you money but you will be proud to own.
Why not buy the reprints and construction manual for the klt you are Interested in to see how easy it is to bulid your own equlpment the HART way. The FULL cost can be credited against your subsequent kit purchase.

'AUDIO DESIGN' 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get £K performance at bargain basement prices. Unique design features such as fully FET stabilised power suppties glve this amplifier World Class performance with starting clarity and transparency of sound, allied to the famous HART quality components and ease of construction. Standard model comes with a versatile passive front-end giving 3 volume and batance controls, no need for an extemal preampl Construction is very simple and enjoyable with all the difficult work done for you, even the wiring is pre-terminated, ready for instant usel. All versions are avallable with Standard components or specially selected Super Audiophile components and Gold Plated speaker terminals and all are also available factory assembled. K1100 Complete STANDARD Stereo Amplifier Kit, K1100S Complete SLAVE Amplifier Kit. K1100M Complete MONOBLOC Amplifier Kit, RLH11 Repnnts of latest Amplifier articles K1100CM Construction Manual with full parts lists

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS.

Now you can throw out those noisy III-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velvet' range components only used selectively in the very top flight of World Class amplifiers. The improvement in track accuracy and matching and rock solid image stabillty. Motorised versions have 5v DC

MANUAL POTENTIOMETERS
2-Gang 100K Lin
$£ 15.67$
$£ 16.40$
2-Gang 10K, 50 K or 100 K Log
2.Gang 10K Special Balance, zero crosstalk and zero centre
loss. loss.

2-Gang 20K Log Volume Control $£ 26.20$ 2-Gang 10K RD Special Balance, zero crosstaik and less than 10\% loss in centre position . 226.96

TOROIDAL MAINS \& OUTPUT TRANSFORMERS
for EL34, 32W VALVE AMPLIFIER
Special set of toroidal transformers, 2 output \& 1 mains for the "Hot Audio Power" valve amplifier design described in the Oct 1995 issue of Wireless Woria'. Total Wt 4.8 Kg . Special pnce for the set £99, Post £8
RJM1. Photocopies of the Articie by Jeff Macaulay. £2
PRECISION Triple Purpose TEST CASSETTE TC1D.
Are you sure your tape recorder is set up to give its best? Our latest triple purpose test cassette checks the three most important tape parameters without test equipment. Ideal when fitting new price anyone can afford. Test Cassette TC1D. Our price only
$\varepsilon 9.99$

If you want the very best sound out of vinyl discs then you need our high quality preamplifier with Shunt Feedback equalisation. The K1450 also has an advanced front end, specially optimised for low mpedance moving coil cartridges as well as moving magnet types Selected discrete components are used throughout for ultimate sound quality. The combination of John Linsley hood design, high quality components and an advanced double sided printed circui board layout make this a product at the leading edge of technology hat you will be proud to own. A recent revlew in cramophone magazine endorsing liss viow. A socyling to assembe or you can bury a factory assembled version it you wish.
This magnificent kit, comes complete with ail parts ready to assemble inside the fully finished $228 \times 134 \times 63 \mathrm{~mm}$ case. Come with full, easy to follow, instructions as well as the Hart Guide to PC8 Construction, we even throw in enough Hart Audiograde Silve Solder to construct your kitl
K1450 Complete Kit ...

A1450SA Factory assembled Audiophile unit $£ 188.94$
"ChiARA" headphone amplifier.

Highest quality, purpose designed, 'single ended' class 'A headphone amplifier for 'stand alone use or to supplement thos many power ampliers instalation win special signal link-through feature, the uni uses our Andante Ulira High Quality power supply
frequency response, low-distortion and 'm it features the wid associates with designs from the renowned John Linsley Hood Volume and balance controls are Alps "Blue Velvet" components. Very easy to build, or available factory assembled, the kit has ver detailed instructions, and comes with Hart audiograde silver solde A valuable personal listening option and an attractive and harmonious addition to any hifi system.
K2100 Complete Standard Kit components £112.50 components

Audiophile', Factory Assembled . $\mathbf{E 2} .50$
"Andanti" Linaar Technology
AUDIOPHILE POWER SUPPLIES
The HART "Andante" series power supplies are specially designed for exacting audio use requiring absolute minimum noise, low hum field and total freedom from mechanical noise.
Utilising linear technology throughout for smoothness and musicality makes it the perfect partner for the above units, or any equipment requiring fully stabilised $\pm 15 \mathrm{v}$ supplies. There are two versions, $K 3550$ has $2 \pm 15 \mathrm{v}$ supplies and a slngie $\pm 15 \mathrm{v}$. Both are in cases to match our 'Chiara' Headphone Amplifier and our K1450 "Shunt Feedback" Plekup preamp. $K 3550$ Fuli Supply with all outputs c94.75
c84.42 K3565 Power Supply for K1450 or K2100
£147.25

SPEAKER DESIGN SOFTWARE

VISATON "Speaker Pro 6" is a complete speaker design program for use on I8M machines. Covers cabinet and crossover design and reccommendable" accolade it tests this program is ideal for the professional speaker builder or serious audiophile.
0303 Speaker Pro 6. 3.5"Disk
0309 Demo Version with Database
.89 .28
Polyester Wool and Pure Lambs Wool both have optimal damping properties and are pieasant to handle. Standard 125 g bag is cient for 20 litres enclosure volume.
5069 Polyester Wool. 125 g
$£ 3.20$
$£ 6.73$

Send for Your FREE copy of our HSTs

A full revised kit will be availabie soon for this excellent and imaginative design from Russel Bredon (WW Feb.97). The latest design will use Driver to give even better performance at slightly reduced cost. Featuring a rubber suspended fibreglass cone, extended pole piate, vented magnet, Kapton carrier and dual 40 hm voice coils the GF250 is unbelievably good value at only $\& 111.45$ each.

SPECIAL OFFERI. SOLENOID CONTROLLED
FRONT LOAD CASSETTE DECK SFL800
High quality (0.08% W8F) cassette mechanism with capability of using standard or downstream monltor R/P head. Offers all standard facilities under remote, logic or software control. The
control requirements are so simple that for many applications not control requiremenis are so simple suliches will suffice. Power requirements are also simple with 12 v solenoids and 12 v speed controlled Motor, total power requirement being under 300 mA . Logic control and wiring circuits are included free with each deck. SFL800 Deck with Standard stereo head 229.50 SFL8000 Fitted with High Quality Downstream monitor head. $£ 44.90$ (The head alone is normally over £60I)

HART TECHNICAL BOOKSHELF

Try us tor:- Bigger Range of Books, Better Prices,

"AUDIO ELECTRONICS" John Linsley Hood
"THE ART OF LINEAR ELECTRONICS"
John Linsley Hood. 1994
. 18.99° John Linsley Hood. 1994 £16.85* "DIGITAL AUDIO AND COMPACT DISC TECHNOLOGY" 3rd.Edn. 0-240 513975
"INTRODUCING DIGITAL AUDIO CD, DAT AND SAMPLING"
"ACTIVE FILTER COOKBOOK" DON Lancaster
"ACTIVE FILTER COOKBOOK" Don Lancaster "TOWERS' INTERNATIONAL TRANSISTOR SELECTOR" 0-572-01062-1 GUIDE."
A SIMPLE CLASS A AMPLIFIER"
J.L.Linsley Hood M.I.E.E. 1969. RLH12
"CLASS-A POWER" Single Ended 15W Amp. J.L.Linsley Hood M.I.E.E. 1996. RLH13

LOUDSPEAKERS; THE WHY AND HOW OF GOOD REPRODUCTION. G.Briggs. 1949 "THE LOUDSPEAKER DESIGN COOKBOOK" Vance Dickason. (5th Edn.)
ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUCTION Ronald Wagner BKT6 DESIGN" V. Capel. BP256
J.E.Benson

Lary D.Sharp LTTY D. Sharp COUPLED CAVITY HANBOOK" David Purton . $£ 8.95$
.84 .90 "VISATON. HOME HI FI CATALOGUE." Full Specifications and
 "VISATON. CABINET PROPOSALS" Book 1. In GERMAN £6.50 "VISATON. CABINET PROPOSALS" Book 2. In GERMAN $£ 6.50$ "SISATON. CABINET PROPOSALS" 800 k 2 . In GERMAN $£ 6.50$ "SPEAKER PRO 6." Demo Version with drive unit database $\mathbf{\varepsilon 9 . 2 8}$
"VALVE AMPLIFIERS" Morgan Jones. 1995/6 $£ 24.50$
$£ 17.95$ THE VTL BOOK David Manley 1994. BKVT LLARD TUBE CIRCUITS FOR AUDIO AMPLFIERS BKAA27
"THE WILLIAMSON AMPLIFIER." 0 -9624-1918-4 $£ 6.95$ AN APPROACH TO AUDIO FREQUENCY AMPLIFIER DESIGN. GEC 1957
AUDIO ANTHOLOGIES, articles from Audio Engineering. Six
volumes covering the days when audio was young and valves were ingl. 8KAA3/1 to 6.

All 112.95 each "THE RADIOTRON DESIGNERS HANDBOOK" (CD) £49.00 "PRINCIPLES OF ELECTRON TUBES" H.D. Reich PH.D. ${ }^{2} 25.95$ "POWER AMP PROJECTS" Anthology, 1970-1989. £15.50 "WORLD TUBE DIRECTORY" 1996-7 Sourcebook of valve
related products Fuller descriptions of the contents of all our books is given in our full Fuller descriptions of the contents of all our books is given in our full
catalogue, price . $\mathbf{~} 4.50$ catalogue, price
Postage on all books, unless starred, is only $£ 2$ per book, maximum $£ 4.50$ for any number, any sizel. Starred items are heavy books costing $£ 3.50$ to send.
Don't forget No waiting at HARTI. All listed books are normally in stockl. Just ring with your Credit Card Number for Instant despatchl.

POSTAGE on UK Orders up to $£ 20$ is $£ 2$. Over $£ 20$ is $£ 4.50$.
OVERSEAS Please Enquire.
Fuller Details of ALL
List, FREE on request.
within its 10 -node limit that will not run within the nominal 25 nodes offered by MCIV/EV.
Complaint to Spectrum about this elicited the grudging offer of a refund on the software's return - something which the company says is normally not available for the evaluation package. If honoured, that still leaves me out of pocket $\$ 85$ for delivery, $£ 25$ for return carriage and - if I can't arrange a refund - $£ 52$ for duty and
VAT: a total of $£ 132$.
I call that a notably poor investment, made all the more frustrating by the fact that Micro-Cap is otherwise such a delightful product to use.
Keith Howard
Twickenham

C here

As an amateur programmer, I was interested to see the C listing in the April 97 EW. I typed it in, as printed and it would not run. It seemed to have () marks where it should have []. Do () marks take the place of [] on some versions of C ?
If not then this error exists in lines
$5,6,22$ and 23 as,
float mult " 10 "
value "24"
"ra" "ma"
"r6" "m6"
These should be, on my C version,

```
float mult [10]
value [24]
[ra] [ma]
[r6] [m6]
```

There is a missing minus sign in line 25 (the program thinks this line is on undeclared function when it is compiled). Original line 25 reads,

```
if (rl<=r2&&rc<=
rs+(rs*percent/100)&&rc >rs (rs*percent/100)
```

It should read,

```
if (r1<=r2&&rc<=
rs+(rs*percent/100)&&rc
>rs-(rs*percent/100)
```

I have also added an extra line, system ("cls") between lines 8 and 9 to erase any garbage left on the screen from previous work etc
Apart from the above comments, these small, useful programs should,
in my view, be given more prominence.
R D Beck
Lydd
Kent

John replies:

Mr Beck is correct in his assumption that the quotes should be square brackets, and for this I can only offer him my sincere apologies. Although both the hard copy and the Word documents on disk supplied to the editorial office were correct, there was obviously a problem in conversion from Word to their DTP format.
The proof copy faxed to me prior to publication, I now see, was also incorrect and I should have picked this up. Omission of the minus sign in line 25 was my fault. The listing was typed into Word and this omission was not picked up - I will have to be more diligent in the future and ensure those sorts of errors are not repeated. With regard to the screen clearing command, each version of 'C' has it's own method of achieving a clear screen. As I wanted the listing to be portable I
used only ANSI C standard commands.
I thank Mr Beck for taking the time to debug my listing. In appreciation I will be sending him a copy of the forthcoming Windows version of the full resistance calculation program.

IR proximity detector

Walter Gray tells us that in his proximity detector circuit on page 499 of the June issue, the TILIOO diodes were shown upside down and the 100 nF capacitor at the receiver output should have been drawn in parallel with the $100 \mu \mathrm{~F}$ decoupler.

Error feedback error

In the same issue, in the Tandberg 3009A circuit on p. 478, the final drivers are powered by the 74 V rails, not by the 64 V rails. Ed Cherry's circuit was originally published as ' A high-quality audio power amplifier' in Proc IREE, Vol. 39, pp. 1-8, Jan/Feb 1978. The unmarked resistor to the left of $\operatorname{Tr}_{7 \mathrm{a}}$ is $3.3 \Omega, 470 \mu \mathrm{~F}$ below this R is wrong polarity and 10 mA on right-hand side should read 100 mA

50\% discount - radio-packet controllers

Designing an of link for data is relatively simple. For a more sophisticated link involving more than two transmitter/receivers, a system is needed to identify each transmitter and receiver.
RPC-UHF is an intelligent transceiver module designed to simplify communication via multiple of data links. It combines a UHF radio transceiver and $40 \mathrm{kbit} / \mathrm{s}$ packet controller. Until 29 August, Radiometrix is offering two RPC-UHF modules for just $£ 97.50$ fully inclusive of VAT and UK postage and packing. This represents a saving of 50% relative to the normal rrp of $£ 195$. Simply fill in the coupon.
The module requires only a simple antenna, 5 V supply and a byte-wide digital i/o port. All if circuits and processor-intensive packetising functions are built in. Full technical data and specifications are included with each order. For further information, tel. 01814281220 or fax 01814281221 , http://www.radiometrix.co.uk.

Packet controller features

SAW controlled FM transmitter and superhet receiver
Reliable 30 m in-building range, 120 m open ground
Complies with ETSi $300-220$ regulations
40kbit/s half duplex
Free format packets of 1-27 bytes
Packet framing and error checking are user transparent Collision avoidance - listen before transmit
Direct interface to 5 V CMOS logic, $5 \mathrm{~V}<20 \mathrm{~mA}$ supply
Power save mode, self-test and status LEDs
*Overseas readers - contact Radiometrix for special-offer details

Incorporating a packet controller, RPC-UHF greatly simplifies wireless networking at speeds of up to $40 \mathrm{kbit} / \mathrm{s}$. A vailable in UK and European versions, RPC-UHF needs only a psu, simple antenna and data path to a pe parallel port or byte-wide microcontroller link.

Use this coupon to order your RPC418A

Please send me one pair of RPC418A Radio Packet
Controllers at the fully inclusive special offer price of £97.50.

Name
Company (if any)
Address
\qquad
\qquad

Post code

E-mail address

Phone number/fax

Please make cheques payable to Radiometrix Ltd.
Moil this coupon to Rodiometrix, together with poyment. Fox 01814281221 or telephone 01814281220 for further informotion. Address orders ond oll correspondence relating to this order to Rodiometrix Ltd at Hantron House, Gibbs Couch, Corpenders Park, Wotford, Herts WD1 5EZ. Overseas readers con olso obtoin this discount bu details vory occording to country. Please ring, write or fox Rodiometrix.

WE WANT TO BUY!!

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD appreciate a TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 0181-445-2713/0749 FAX 0181-445-5702

RECRUITMENT

The University of Vork

department of computer science

 RESEARCH TECHNICIAN COMPUTER ARCHITECTURERef: 97/CS6

As an experienced research technician you will join the Advanced Computer Architecture Group which undertakes research in high performance computer architectures, including neural networks. You will provide hardware support for the group's research work, especially implementing and testing hardware specified and designed by the lecturers and researchers within the group. This will involve both construction of prototype systems in digital logic and the use of sophisticated digital test instruments. You will also support the installation and upgrading of various high performance computers within the group.
Essential skills include a good understanding and experience of digital hardware construction and testing, with some experience of design; basic knowledge of the use of oscilloscopes and logic analysers; familiarity with current digital components, and the operation and construction of micro-computer hardware; good knowledge of workshop practice and safety; an ability to use Windows 3.1 and Windows 95; and good writing and communication skills. A minimum qualification of a good honours degree in computer science or electronic engineering is required, together with appropriate experience.
Salary will be in the range of $£ 12,396-£ 14,799$ per annum.
For an application form and further details for the above post please write on a postcard to the Personnel Office, University of York, Heslington, YORK YO1 5DD. Please quote the reference number. The closing date for applications is Friday 20 June 1997.

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

Lae

Applications are invited from suitably qualified persons for the following position:

SENIOR TECHNICAL INSTRUCTOR

DEPARTMENT OF ELECTRICAL \& COMMUNICATION ENGINEERING

The appointee should have a degree in Electrical Engineering and should be able to teach two or more of the following subjects: Broadcasting Techniques, Electronic Aviation Systems, Power Electronics, Control Engineering, Industrial Electric Machines. On appointment the staff member's duties will include the teaching of subjects allocated by the person administering the relevant courses, the development of teaching aids relevant to the needs of Papua New Guinean students and any other duties allocated via the administrative structure of the Department.
Salary per annum: K31,686-K38,836. (Level of appointment depends upon qualifications and experience).
Initial contract period is normally for three years but shorter periods can be negotiated. Other benefits include a gratuity of 30% in the first year, 35% in the second year and 40% in the third year taxed at 35%, support for approved research; appointment and repatriation fares; leave fares for staff member, spouse and two authorised dependants after 18 months of service; settling-in and settling-out allowances; six weeks' paid leave per year; education fares and assistance towards school fees for two authorised dependants; free housing. Salary protection plan and medical benefit schemes are available. Staff members are also permitted to earn from consultancy up to 50% of earnings annually. Salary is subject to CPI increases. Exchange rate stabilization on the international component of salary and on gratuity payments is payable.
Detailed applications (two copies) with curriculum vitae, including certified copies of qualifications obtained and names, addresses and fax/phone numbers of three referees and an indication of the earliest availability to take up the appointment should be received by: The Registrar, PNG University of Technology, Private Mail Bag, LAE, Papua New Guinea by 20 June 1997. Applicants resident in the United Kingdom should also send one copy to Appointments (45772), Association of Commonwealth Universities, 36 Gordon Square, London WC1H OPF (tel. 01713878572 ext. 206; fax 0171813 3055; email appts@acu.ac.uk) from whom further information may be obtained.

ARIICLES WANIED

VALVES and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGENTRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian and Sovtek items. Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 (£60), PX4/PX25 (£60), KT66 (£38), KT77 (£18), EL34 (£15), EL37 (£15), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to $£ 80$). Ask for a free copy of our wanted List.
BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ
Tel: 01403784961 Fax: 01403783519
VIITTORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER $£ 50$ plus VAT

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited 1 Mayo Road, Croydon Surrey CRO 2QP
TEL: 0181-684 1166
FAX: 0181-684 3056

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS
TEL: 01223862550 FAX: 01223440853

CLASSIFIED

ARTICLES FOR SALE

maseercemo

 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT
Cooke International
ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OHD, U.K. Tel: (+44)01243 545111/2 Fax: (+44)01243 542457

ADVERTISERS INDEX

Adept Scientific 585
M \& B Radio 610
Anchor 535
Ashling 570
Bull 547, 598
Card Professionals 607
Chelmer Valve 571
CMS 606
Conford 548
Dataman OBC
Display Electronics 587
Equinox IBC
Halcyon 607
Hart 612
IOSIS 570
Johns Radio 589
JPG 571
Keytronics 572
Labcenter 591
Langrex 548
Leading Edge 607
Maplin 541
Number One Systems 583
Olson 530
Pico Technology 582
Pyramid 576
Quickroute 548
Radiometrix 583
Radio Tech 552
Ralfe Electronics 616
Stewart of Reading 606
Surrey 552
Tandem Technology IFC
Telford 533
Telnet 576
Those Engineers 571
Tie Pie 533
Ultimate Technology 537
Wier 592/593

ADVANTEST TRA 132100 kHz - $1 \mathrm{GHz} \quad £ 2500$ ANRITSU MSA20B $10 \mathrm{~Hz}-30 \mathrm{MHz}$ network/spactrum analyser 75 ohms $£ 3000$ ADVANTEST TR9407 fte spectrum analyser to 1 MHz TEKTRONIX 492 21GHz portable spectrum analyser, with options 1,2 and 3 £6500 or 57500 with multiplexor and mixers to 40 GHz HP35660A dynamic signal analyser, with 01 option MARCONI 2380/2382 high spacification,
400 MHz spac' on
HP8753C vector network analyser with 6GHz option HP8557A182T 350 MHz
HP8591E 1.8 GHz portable, 75ohm option
$01 \&$ TV option 301

- ralfe elecifoníg o muma
- 36 Eastcote Lane - South Harrow • Middx HA2 8DB • England

TEL $(+44) 0181-4223593$ • FAX (+44) 0181-423 4009
EST 41 YRS

DISTRIBUZIONE E ASSISTENZA, ITALY: TLC RADIO, ROMA (06) 87190254

* URGENTLY REQUIRED *

HEWLETT PACKARD 8720 series network analysers $£ 20,000+$ paid for ' C '
HEWLETT PACKARD 8510 series microwave analysers, anything considerad
HEWLETT PACKARO 8566 B series spectrum analysers £10-E20K paid
HP8753C + vector network analysers,
we'tl pay over the going rate for late is sue. Guaranteed top prices paid for all current model spectrum/network analysis.

MARCONI INSTRUMENTS

ISO9002 ACCREDITED STOCKIST MEASUREMENT \& TEST EQUIPMENT

BRUEL \& KJAER 4426 noise level analyser with 2312 printer

2019 synthesized AM/FM signat gen $8 \mathrm{kHz} \cdot 1040 \mathrm{MHz}$
£1750 FARNELL SSG2000 synthe sized signal generator $10 \mathrm{~Hz}-2000 \mathrm{MHz}$
PHILIPS PM5193 synthesized function generator SCHLUMBERGER 7081 precision voltmeter 8.5 digits TEKTRONIX AM503/A6302TM501 current probe 50000 WANDEL \& GOLTERMANN PCM4 pem channel measuring sat E350 WCM CFEEK 1080 1-1000 sweep generator asch $£ 250$ WAYNE KERR 3245 precision inductance analyser

3235A switch/test unit
3325A synthasized function generator /01/02 $33320 \mathrm{G} / 33322 \mathrm{G}$ programmable attenuators 4 GHz , with driver 11713A
As above but 18 GHz set
35650A mainframe
E3615A bench powar supply
37724A/04 digital hierarchy test set
$\begin{array}{ll} & £ 175 \\ £ 9500\end{array}$
379000 signalling test set with $2 \times 37915 \mathrm{~A}$ interface cards $£ 5500$ 4140B pAmeter, OC voltage source
4275A multi-frequency Ier meter
4285A precision LCR meter with option 02
42841A bias current souce for above
545100 A 1G Hz digitizing oscilloscope,
now inc $2 \times 1 \mathrm{GHz}$ active probes
54620A logic analyser
8018A serial data generator
8082A pulse generator 250 MHz
8111A pulse generator 20 MHz
83811C lightwave receiver $1300 / 1550 \mathrm{~nm}$
83440 C lightwave detector $20 \mathrm{GHz} 1300 / 1550 \mathrm{~mm}$ 8350 B with $83592 \mathrm{~A} 10 \mathrm{MHz}-20 \mathrm{GHz}$ sweep generator $86222 \mathrm{~A} 8620 \mathrm{C} 10 \mathrm{MHz}-2.4 \mathrm{GHz}$ sweep generator 8650 B signal generstor 1300 MHz
87510A gain-phase analyser $100 \mathrm{kHz}-300 \mathrm{MHz}$ 89018 modulation analyser
J2215A FOOI porrable multimade test set
J2304 internet advisor with ethemet interface

$£ 2000$

 £2000 £2000 £2000$\mathbf{£} 1250$ ع15000
15000
$£ 1250$ $£ 3000$

SEND FOR LATEST STOCK LIST. WE FAX LISTS AND SHIP WORLDWIDE. ALL FULLY LAB-TESTED AND NO-QUIBBLE GUARANTEED

CIKCLE NO. I+5 ON REPLI CAKI

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620 A regular advertising feature enabling readers to obtain more information on companies' products or services.

New for '97 Free Data Acquisition Software Tool

DAQ Designer 97 is a free system configuration software tool for the PC that takes you through your application step-by-step, asking you questions, and recommending all the right equipment, including: PC plug-in DAQ boards, PCMCIA DAQ cards, Signal Conditioning and Sensor Interfacing, Cabling and Software.
Call National Instruments for
your free copy on (01635) 523545
CIRCLI NO. 1+- ON KEPLI CARD

NEW Feedback T\&M Catalogue

The latest edition of the Feedback Test \& Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test \& Measurement need the NEW Feedback catalogue will sove your problems, send for a copy NOW1
(IRCII NO). IHY ON RIPI) (ARI)

NEW JENSEN TOOLS CATALOGUE
Colourful new Catalogue, hot off the press from Jensen Tools, presents unique new tool kits for service/support of
communications equipment. Also latest test equipment from many major manufacturers. Includes hard-to-find tools, PC/LAN diagnostics, bench acccessories, static control, technical manuals and more.
Ring 0800833246 or
Fax 01604785573 for a free copy. Jensen Tools, 10-12 Ravens Way. Northampton NN3 9UD

"THE COMPLETE PROGRAMMING SOLUTION FOR 8051 MICROCONTROLLERS \& MUCH MORE"

C51 Mifrocontroller Starter System

The World's Most Powerful, Portable Programmers

$4495+V A T$

S4 GAL module

Programs a wide range of 20 and 24 pin logic devices from the major GAL vendors. Supports JEDEC files from all popular logic compilers.
4195.

NEW

The Dataman Challenge
 Try the Dataman S4 or Dataman-48 without obligution for 30 days. If you do not agrex that these are the mast effective, mest useful, most versatilc additions wow can make to vour pregramming toolhox, we will refund vour money in full.

Dataman 54

Compare the Dataman 54 with any other programmer and you'll see why it's the world's undisputed number one.

54 is capable of programming 8 and 16 -bit EPROMs, EEPROMs, PEROMs, 5 and 12 V FLASH, Boot-Block FLASH, PICs, 8751 Microcontrollers and more. 54 also emulates ROM and RAM as standard!

S4 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

hotline 01300320719

Dataman-48

Our new Dataman-48 programmer adds PinSmarte technology to provide true no-adaptor programming right up to 48 -pin DIL devices. Dataman-48 connects straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

As with 54 , you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming.

The current device library contains over 1800 of the most popular logic and memory devices including GALs, PALS, CEPALS, RALS, 8 and 16 bit EPROMs, EEPROMs, PEROMs, FLASH, BOOTBLOCK, BIPOLAR, MACH, FPGAs, PICs and many other Microcontrollers. We even include a 44pin universal PLCC adaptor.

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP and SDIP. The Dataman-48 is also capable of emulation when used with memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

[^0]: Eloctronics World is published monthly. By post, current issue $£ 2.35$, bock issues (if ovailable $£ 2,50$. Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quodrant, Sutton, Surrey SM2 SAS. Tlx: 892984 REED BP G. Cheques should be made payable to Reed Business Information Lid Newstrade: Distributed by Marketforce (UK) LId, 247 Tottenham Court Road London WIP OAU 0171 261-5108.
 Subscriptions: Quadrant Subscriptian Services, Oaktield House Perymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444445566 . Please notify change af address. Subscription rates 1 yeor $£ 32$ UK 2 years $£ 43.003$ years $£ 75.00$. Surface mail 1 year $£ 37.002$ years $£ 60003$ years $£ 86.00$ Air mail Europe/Eu 1 year $£ 46.002$ years $£ 73.00$ ROW 1 year $£ 56.002$ years $£ 89.00$

 Overseas advertising agents: France and Belgium: Pierre Mussard, 18.20 Place de la Madeleine, Paris 7500 B. United States of America: Ray Barnes, Reed Business Publishing Lid, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 Fax; (212) 6799455 USA mailing agents: Mercury Airfreight International LId Inc, 10 [b] Englehard Ave, Avenel N 07001. 2nd class postage paid at Rahway N Postmaster. Send address changes to above.
 Printed by BPCC Magazines (Carlisle) Lid, Newlown Trading Estate Carlisle. Cumbria, CA2 7NR
 Typeset by Marlin Imaging 2.4 Powerscrott Road, Sidcup,
 Kent DAt 4 SDT,
 © Reed Business Information Lid 1997 ISSN 09598332

[^1]: * A special Educational version is available. The reduced-featured version, Electronics Workbench V5.0, sells at $£ 199$.

[^2]: *Because of trading problems when exporting magazines with cover-mounted gifts, we are unable to offer the CD rom to overseas readers - sorry. If you are overseas and interested in the demonstration, please fax or write to Adept

[^3]: Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

[^4]: Dr Martin Smith is Director of INTRAC operations, Signal Processors Limited.

