PCB CAD - Ranger 2 and Challenger reviews

ELECTRONICS

 WORLD

 WORLD
 INCORPORATING WIRELESS WORLD
 Austric Asch. 68.00 Denmark DKr. 69.00 Germany DM 18.00 Gresce Dra. 1300.00 Holland Df. 12.50 Maly L. 9000.00 Malfa Lm. 1.65

Year 2000 - is your PC safe?

 High-level rf mixers
The perfedt If oscillator?

Neural nets, fuzzy logic Rfi sources and solutions

Aluminium and tantalum caps

400Hz in 3-phases

STDPAPm

The circuit design and analysis package which gives you a great deal more

More Power - More Functionality \quad More Value for Money

Contents

451 COMMENT

Our life is frittered away by detail... Simplify, simplify

453 NEWS

Internet through the three-pinned plug, Virtual recruitment, Offender tagging costs, Hull to get ADSL.

458 YEAR 2000 DEBUGGED

Robert Harcourt looks at the year 2000 pc clock problem from a non-networked user's point of view.

464 HIGH LEVEL RF MIXERS

Darren Conway helps you choose the right mixer option for your receiver design.

There's a number of active high-level rf mixer types but passive alternatives like this one still have applications in modern receiver designs. Find out why on page 464.

470 HANDS-ON INTERNET

Among Cyril's findings this month is a dedicated modelling tool for optical links.

474 CIRCUIT IDEAS

- Heart p-wave detector
- Reducing valve psu ripple
- Low-noise, high-Z op-amp
- Testing digital recorders
- Quieter smps
- Wide-band isolated amplifier
- 1-bit keypad interface
- Enhanced current mirror
- Long-life flasher
- Brake for motors

485 A PERFECT VARIABLE OSCILLATOR?

Ian Hickman's latest invention is an oscillator scheme whereby all the harmonics are filtered, resulting in a near perfect sinewave.

490 BORN AGAIN
Richard Ball reports on how National's trusty old LM300 op-amp family has been given a complete overhaul.

495 UNDERSTANDING CAPACITORS

Aluminium and tantalum electrolytics are the subject of Cyril Bateman's latest article in a series that examines all the popular capacitor types.

506 THE ROUTE TO PCB CAD

Thinking of buying a pcb design package? This month, Rod Cooper reviews Challenger and Ranger 2.

512 NEURAL NETWORKS AND FUZZY LOGIC

Chris MacLeod and Grant Maxwell ask what neural networks and fuzzy logic tell us about future of digital electronics.

516 400Hz IN THREE-PHASES

Winner of the TRAC design competition Ben Sullivan describes his novel circuit for producing a three-phase $40(0) \mathrm{Hz}$ output that can be locked to an external signal.

519 NEW PRODUCTS

Four pages of product news, edited by Phil Darrington.

524 LETTERS

Modelling quartz in Spice, Are your ears flat? Assembler confusion.

526 RFI SOURCES AND SOLUTIONS

Alan Wood looks at potential sources of interference in telemetry applications.

Photography Nicholas Rigg

What can neural networks and fuzzy logic tell us about the future of digital electronics? See page 512.

Are LM300 series op-amps dead? Find out on page 490.

THE IEC 320 CONNECTION

BUY DIRECI!

VISA Caster
 24 HOUR DELIVERY SERVICE MASTERCARD AND VISA CREDIT CARDS ACCEPTED

OLSON HOUSE, 490 HONEYPOT LANE,
STANMORE, MIDDLESEX HA7 1JX
TEL: 0181-905 7273

Our life is frittered away by detail...

EDITOR

Martin Eccles
01816523128

CONSULTANTS

Ian Hickman
Philip Darrington
Frank Ogden
EDITORIAL ADMINISTRATION
Jackie Lowe
0181-6523614

E-MAIL ORDERS

jackie.lowe@rbi.co.uk

ADVERTISEMENT MANAGER

Richard Napier
0181-6523620
DISPLAY SALES EXECUTIVE
Joannah Cox
0181-6523620
ADVERTISING PRODUCTION
0181-6523620

PUBLISHER
Mick Elliot

EDITORIAL FAX
0181-6528111
CLASSIFIED FAX
0181-652 8938
NEWSTRADE ENQUIRIES
01712617704
ISSN 0959-8332

SUBSCRIPTION HOTLINE 01622778000

SUBSCRIPTION QUERIES

rbp.subscriptions@rbi.co.uk
Tel 01444445566
Fax 01444445447

For a full listing of
RBI magazines:
http//www.reedbusiness.com

REED
BUSINESS
INFORMATION

When Windows entered my consciousness years ago, I was terrified of it, because I thought I might disable the beast and not be able to recover. But there was no trouble; Windows 3.1 was robust, there was an enormous and well written manual and the help line worked as promised. All went well.
But that was then; this is now and I have had to "upgrade" - a marketing expression meaning "to shell out for a new computer" - a 50 Mbyte hard disk, 33 MHz 386 and 4Mbyte of ram being a bit limiting. This new marvel was already loaded with Windows 95 and accompanied by a great tribe of cd-roms, many containing advertisements and games that anyone aged over nine has so far found totally incomprehensible. Telephone support - a major selling point - was promised but there were no manuals, since the "help" text was said to be enough. Ha!
It has been my subsequent experience that Windows 95 is the flakiest system yet to be foisted on a receptive public. It is highly susceptible to wobbly mouse operation. If your aim is at all uncertain, or the simple truth is that you don't really know what you are doing, the most entertaining things can and do happen. "Shortcuts" appear on the desktop unbidden - they do on mine, at least - files turn up from nowhere, settings change without any intervention from me and the machine has an infuriating habit of locking up.
Then there is its apparent delight in performing "illegal" operations and implicitly blaming me for them; following the screen instructions after such a hiccup doesn't work, so you have to reset the computer, which means another run of the disk-scanner before it will consent to do any more work, having lost any you haven't saved. And the start-up menu: whoever decided to put Suspend next to Shut Down ought to be suspended and put down, preferably painfully. You can, of course, hide it, but you have to find that out after the first stress-inducing episode of blankness.
Casually ringing the ambitiously named help-line did little towards postponing an incipient seizure. I tried to speak to someone for three days, but was faced with a recording of a silver-tongued young lady every time, explaining that they were busy and would I please hold on.
I tried a computer "expert", but found myself listening to Mozart, who is wonderful, but as a Windows counsellor not particularly helpful. So I wrote to my supplier. That is many weeks ago and all I have yet received is a note to say I will shortly hear from them. I am becoming used to this prima donna of an operating system and the cynical way in which it and computers are now marketed, but cannot help feeling a little resentful.
Windows 95 gives me the impression of being hopelessly over-engineered, providing endless different methods of doing just about anything. It appears that programmers write facilities into it because they can be done, rather than because users need them. Maybe the programmers should be taught that simplicity is usually the winning approach in any branch of engineering.
On-screen help facilities are good, but they cannot

replace well produced manuals, particularly if there is nothing on the screen. An introductory booklet that came with the computer - a very slim volume indeed is all right as far as it goes, but it doesn't go anywhere near far enough. If the simpler Windows 3.1 needed a tome, why doesn't this one?

Most of the cd-roms had little to say about themselves apart from a bit on the cover and some fairly off-hand help on screen.

Cost is, I assume, the reason for a lack of manuals, but I do think an effort should be made to provide something a little more helpful than the booklet on Windows 95 that is currently sent out, particularly some help on how to recover from something disastrous like a blank screen after the boot-up (the F8 procedure at "Starting Windows 95 " gets you out of that one).

Clearly, the computer sellers' army of helpers is hard put to deal with the clamour for assistance and there is no reason why they should have to; it is the responsibility of people like Microsoft to ensure that there is enough printed instruction to enable customers trying to earn a living using Windows to do so without getting themselves in a fix.

Maybe the next version of Windows will be a bit simpler and a lot less vulnerable, but it seems unlikely.

Philip Darrington

[^0]
The $\mathrm{V}^{\text {th }}$

 cencration
Schematic Capture

- Produces attractive schematics like you see in the magazines. - Nettist, Parts List \& ERC reports. OHierarchical Design. ©Full support for buses including bus pins. Extensive
component/model tibraries. Advanced Property Management. - Seamiess integration with simulation and PCB design.

Simulation

- Non-Linear \& Linear Analogue Simulation. ©Event driven Digital Simulation with modelling language. ©Partitioned simulation of large designs with multiple analogue \& digital sections. Graphs displayed directly on the schematic.

Now Features

Gomponent Auto-Placer

 Pinswap/Gateswap Optimizer Background Regeneration of Power Planes Enhanced Amtorouting with Tidy Pass Full Gontrol of Schematic Appearance Extensive New Gomponent LihrariesAvailable in 5 levels - prices from $£ 295$ to $£ 1875$ + VAT. Call now for further information \& upgrade prices.

4PJOJEUS
To parctovituliv © O! !

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756753440 . Fax: 01756752857 . EMALL: info@labcenterco.uk 53-55 Main St, Grassington. BD23 5AA. WWW: http:/hww.labcenter.co.uk
Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT' and delivery. All manufacturer's trademarks acknowledged.

Internet access via the three-pinned plug?

Nortel's technology for delivering Internet access over the mains power cables will be offered by several power utility companies by the end of this year
"We have a considerable number of customers who are committed to feasibility trials." said Dr John Laycock, head of the project at Nortel in Maidenhead. Commercial systems could be in place by September, he claimed. "We'll have announcements next week for content providers and partners," Laycock added.
Companies that install the system will be able to offer a wider range of
services than just Internet access. "We intend to do voice in the future," Laycock said. This would replace the BT land line, and could offer several phone lines at once.
Another application, aimed at small businesses, will back up the computer's hard disk every night. And since the user is permanently connected to the network, a digital camera can be added for surveillance of the home or office.

A production version of the Digital PowerLine technology was announced by Nortel at CeBIT.
"Last year we announced a first generation product for verification
and trials," said Mark Main, the project's marketing manager. This was based on a card in a pc, but restricted the technology to consumers privileged to own a computer, said Main.
The new unit is separate from other equipment and can be used with Web browsers and network computers as well as standard pcs.
Base-station units will be located at transformer substations, modulating data onto the mains.
Each base station handles a $1 \mathrm{Mbit} / \mathrm{s}$ data stream. Houses or businesses that have a link onto the system share the bandwidth.

- See late news
on page 456.

New light on charging NiCd cells

Careful circuit design around NiCd batteries can be difficult, but not as troublesome as problems caused by early cell death.
Simple precautions can extend the working life of rechargeable batteries dramatically. "You mustn't forget that most of the public don't have a clue about battery technology. If they are going to operate your product, it needs protecting from unintended abuse," said John Hutchinson, engineering director at BayGen, the wind-up radio company.
The company has just released a product with an internal NiCd battery pack and Hutchinson has made it as idiot-proof as possible.
"There are essentially two ways to damage a NiCd battery, overcharging and over-discharging them. Most commercial products with NiCds, like hand vacuum cleaners and torches. do both," said Hutchinson.
Overcharging, according to Hutchinson, results in electrolyte evaporation and dendrite growth dendrites are metal crystals that short out the cell internally.
"The majority of simple products charge their batteries continuously at $\mathrm{C} / 5$. This abuses them once they are fully charged and they don't last long," said Hutchinson.
Conventional wisdom is that $\mathrm{C} / 10$ is a safe rate for continuous charge, but Hutchinson has come to differ: "C/10
may be all right for some hours, but charging at this rate for hundreds of hours damages cells." He has found C/30 completely safe as a continuous charge current. "I arrived at this figure initially by talking to a number of cell suppliers. But it is hard to get a consistent story. The most that the makers agree on is that C/10 is worse than C/20."
$\mathrm{C} / 30$ takes around 40 hours to fully charge a flat cell. This is an unacceptably long time for BayGen's application, so some form of controlled fast charge was called for.
It chose $\mathrm{C} / 5$ as a fast charge rate, terminated by a six hour timer. "AC/5 current completely charges the battery in six hours, then the charger switches to a C/30 trickle charge."
Using a timer is not ideal, plugging the equipment in with an already full battery results in it being somewhat overcharged for six hours.
"Sensing battery parameters like temperature and pressure to determine when charge is complete is one way, but the sensors add a lot of cost. Other schemes use voltage sensing which isn't too expensive in hardware, even though you need a microcontroller."
Problems also occur during discharge when more than one cell in a series-connected battery runs out of charge before the others. "We detect the battery voltage and disconnect the

Discharge and charge rates of a battery are usually expressed as a ratio of its capacity. Discharging at $\mathrm{C} / 10$, drawing $\mathbf{4 0 0 \mathrm { mA }}$ from a 4 Ah battery for instance, empties a full battery in 10 hours. As charge efficiency of NiCd technology is around 1.4, charging an empty cell at $\mathrm{C} / 10$ completely fills it in around 14 hours.
load with a transistor when it drops below IV per cell,"said Hutchinson, "this means that no cell ever gets reversed."
By limiting overcharge and overdischarge Hutchinson has made a product that is unlikely to be returned because its battery expired within the warranty period.
Steve Bush, Electronics Weekly

Clearly a torch, but what's the handle for?

Offender tracking has a $£ 100 \mathrm{~m}$ fag

Electronics firms are being asked to tender for four major contracts. worth collectively over $£ 100 \mathrm{~m}$, to extend electronic tagging of offenders throughout England and Wales.
Home Office Ministers have decided that system tests in areas such as Greater Manchester, West Yorkshire, Berkshire, Middlesex and Cambridgeshire have proved a success.
Despite teething troubles, Home Secretary Jack Straw has decided that the system - which has shown an 80 per cent success rate for 1000 persistent petty offenders and people on bail - is ready to go nationwide.
Now his Minister of State, Joyce Quin, is to let four regional contracts from 1999 for systems of a wrist/ankle tag and a receiver linked to the telephone system.
She said: "Companies from a wide range of relevant sectors including the security, telecommunications and electronics industries. are being encouraged to consider the business opportunities created by the
increased use of tagging." The tender details that the four regional contracts - which will let for five years with a two year extension option - will cover a minimum of 4500 offenders and be worth at least $£ 100 \mathrm{~m}$.
The two firms involved in the existing trials - Securicor and Geographics - are favourites for the contracts but a Whitehall source stressed that it was an open competition for any company with the necessary technical expertise.
Firms can bid for one, more or all of the regional contracts by the closing date of April 21.

Are 2000 solutions enough?

The DTI is stepping up its awareness campaign for the
Millennium date change problem and calling on all sectors of the electronics industry to support its initiative.
"The electronics industry has á pivotal role to play," said Ian Edison, acting director of the DTI's Action

US skills crisis a myth?

US labour leaders have attacked high-tech companies' claims that there is a serious IT skills shortage in the US.
The Department for Professional Employees (DPE) has sent a letter of protest to the US Congress complaining that US technology firms' real motivation is not looking for workers but paying lower wages.
"There is no proven crisis regarding the demand for IT workers that justifies the drastic action of filling these jobs with foreign workers," said DPE chairman Morton Bahr. "We should be very careful about IT employers crying wolf just to enlarge the labour pool, depress salaries and benefits, and undermine working conditions."

2000 programme. The focus for this activity, which will involve trade associations and institutions like the IEE, is the problem of finding and providing a fix for all embedded clocks.
'It is getting pretty close to the wire for many large companies,"said Peter Wilkinson of Action 2000.

Virtual Recruitment Fair - free entry

E
Electronics World's sister publication Electronics Weekly has produced the first ever Recruitment Fair on CD Rom.
The 'Virtual Recruitment Fair' uses 3D graphics and sophisticated animation techniques to bring a whole new dimension to job seeking for electronics employees.
Once inside the prestigious life-like venue, you can complete your CV at registration. pick up a virtual carrier bag then visit the impressive array of interactive company stands in the Main Hall.
Take a seat in the big-screen cinema or enjoy a moment of tranquillity in the reading room while you read back issues of Electronics Weekly from the archives.
From the exhibition stands themselves, you can: view - and respond to with CV well over a thousand live vacancies; connect to advertiser web sites; view and print company brochures; launch slide presentations and watch video footage to find out exaculy what it's like to work for a prospective employer.
Recent research illustrates that some 84 per cent of UK electronics professionals have access to CD-Rom facilities - over 30 per cent more than have access to the Internet.
The Virtual Recruitment Fair CD-rom is distributed free to UK Electronics World subscribers with this issue. To obtain your
free copy - whether you are in the UK or overseas - write to Grant Allaway, Recruitment sales, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS or fax
your request on 01816523400
Alternatively, e-mail
grant.allaway@rbi.co.uk. Be sure to mention that you are an Electronics World reader.

Job hunting? Got a CD player? Then you can take a break from browsing the notice board. Check out hundreds of electronics-related vacancies at the Virtual Recruitment Fair - for free, whenever you want, and in the privacy of your own home.

Schematic Capture with a FREE mixed mode simulator.

> Looks like Quickroute 4.0 has Got It All!

Integrated PCB Design with autorouter \& CADCAM support.

FREEphone 08007312824 FAX 01614760505
FREE Demo on www.quickroute.co.uk Ref 401

The new Quickroute 4.0 is here and with it a revolution in our price/performance structure. We've kept the features the same at all levels of quickroute and just varied the number of pins you can use in a design. So now you can get started FAST with Quickroute 4.0 for Just $£ 79$ (300 pins), $£ 149$ (800 pins) or $£ 249$ (full access). Prices exclude P+P and VAT.
*New user inferface with dockable tool bars *Multi-sheet schematic capture *Power rail \& data bus support *1-8 layer autorouter *For a limitted period a FREE infegrated 32 blt mixed mode simulator *Copper Fill *Engineering Change *Gerber import and export *Export NC-Drill, WMF, DXF and SPICE files *Netlist import and export *Over 1000 library parts

Send me a FREE DEMO. My name, address \& phone number are:

Send To: Quickroute Systems Ltd, FREEPOST 13136, Stockport, SK4 IBS Outside the U.K please fax this coupon. (c) 1997. All rights reserved. Ref 401

CIRCIF NO. 108 ON REPLY CARD

NOW AVAILABLE

The Complete, Integrated

 Schematic \& PCB Layout Package
Windows Ranger 2

For Windows 95 \& NT

- New Hierarchical Circuit
- Split Devices • Gate \& Pin Swap
- New Edit Devices in Circuit
- Copper Fill • Power Planes
- Autorouter - Back Annotation

Windows Ranger 2 with Specctra SP2
Ranger \& Specctra Autorouter provide the most cost

Ranger 2 Outputs: Full Windows Outputs Plus - HP-GL

Gerber NC Drill
AutoCod DXF
effective PCB Design system available.A powerful, intuitive system at an outstanding price!

Windows Ranger 2 Upgrade

Upgrade your existing PCB Package to Windows Ranger 2.
SPECIAL, OFFER Ranger $\mathbf{2}$ Lite $\mathbf{£ 3 5}$ (Prices exc VAT/P\&P)
Demo Software -download from http://biz.ukonline.co.uk/seetrax

Fax 01730267273 Old Buriton Limeworks, Kiln Lane,

for Windows 95

Demo Software - available from our Web Address

TEETHAX

Advanced Systems \& Technology for PCB Manufacture

Ten sign up for mains Internet

T
Ten public utility companies in Europe and Asia have signed up to use Digital PowerLine (DPL), the Internet-over-the-mains technology. Nortel and Norweb
Communications, which developed the technology, have formed a joint venture company called NOR.WEB to further market DPL.
Norweb is itself one of the ten utilities committed to installing DPL. Others include Vattenfall and Sydkraft in Sweden. RWE and EnBW of Germany, and Singapore Power. These companies provide electricity services to 35 million people, all of whom could potentially use DPL.
"We had an unprecedented response to the technology," said Steve Pusey,
chief executive of the joint venture. The company received some 1,500 enquiries when DPL was unveiled last October. "We narrowed these down to 40 serious leads," he said.
The remaining 30 companies,
located around the world, are currently in discussion with NOR.WEB with a view to introducing the fast Internet technology.
Digital PowerLine uses the existing mains cables to link homes, small offices and schools to the Internet at $1 \mathrm{Mbit/s}$. "This is 20 times faster than the fastest dial-up modem available today." Pusey said.
NOR.WEB expects the first services to roll out by September, with up to 2000 homes connected by the year end.

Big brother back-off

The US government appears to be relaxing its position on the use of powerful encryption products.
Representatives of the FBI and the Department of Justice testified before the Senate subcommittee saying they would not seek key escrow legislation which would allow the government to read encrypted messages.
The subcommittee also heard from senior high-tech executives. "Strong encryption is the key to privacy on the Internet," said MCI Communication's chief lawyer Tim Casey. "Such privacy, in turn, is the key to realising the enormous potential of the Internet and global electronic commerce."
US high-tech companies have proposed a voluntary, industry-led approach to encryption policy rather then government controls or laws.

Intel outside?

Chief pretenders to the Intel throne, AMD and Cyrix, previewed microprocessors with a 100 MHz system bus at CeBIT.
AMD's offering is the K6-3D, to be launched officially on May 27. Along with the system bus speed increase, it has improved floating point performance to speed up 3D graphics. "The 3D technology is 24 new instructions," said AMD's Claes Berglund. They will do for floating point what MMX did for integer data, he said.

Cyrix has yet to adopt the instructions. The two companies have first to agree whether to use the same set. "The plan is for Cyrix and IDT to use the same instructions as us," said Berglund. By early next year. AMD plans to release the $\mathrm{K} 6-3 \mathrm{D}+$
"This integrates the level two cache on chip which will operate at the processor clock speed," said
Berglund. He claimed the device will match the performance of Intel's Katmai processor.
Cyrix meanwhile seems more concerned with pushing for cheaper devices, with its $6 \times 86 \mathrm{MX}$ and

MediaGX processors. "In 1998 we will see a $\$ 599$ price for a pc," said Forrest Norrod, a Cyrix senior director. "The same phenomenon which swept the consumer market in the US last year will hit Europe and Asia this year."
As with AMD, getting devices manufactured is Cyrix's biggest headache. "Volumes are critical - on our own Cyrix was limited to five or six million units a year," said Steve Tobak, v-p of marketing at Cyrix. Having been acquired by National, Cyrix's fortunes may change.
The $6 \times 86 \mathrm{MX}$ is currently running through a $0.25 \mu \mathrm{~m}$ pilot fab at National.

Hull to get fast ADSL phone link

Kingston Communications plans to offer its customers high-speed interactive services this year using asymmetric digital subscriber line (ADSL) technology.
The scheme, involving up to 170000 customers in the Hull area. is an extension of a successful pilot scheme.

Government reacts on low r\&d spend
 The government seems to have hit the panic button on

 the UK's high technology r\&d performance. With r\&d investment in the civil sector having fallen as a proportion of gross domestic product for three consecutive years, the Treasury has produced a consultative document to demonstrate its commitment to using tax incentives to promote r\&d investment in UK firms.According to the latest official figures, the UK's investment in research and development fell by two per cent in real terms in 1996, the third year in a row that r\&d investment has fallen.

Huw Saunders, Kingston
Communications' technology development director, estimates that the cost of implementation will exceed $£ 10 \mathrm{~m}$, although this figure is dependent on customer uptake. "It is a significant investment for us," he said.
The ADSL network will offer a 2Mbit/s transfer rate with some services provided at $6 \mathrm{Mbit} / \mathrm{s}$.
A modem fitted in the home will provide a standard interface to a pc or set-top box. Initially the modem will be part of the network and be supplied to customers by Kingston Communications in order to retain control over the network. As standards are agreed within ADSL, other connection equipment will be used. Charges for services are still under review but it is likely that payment will be on a subscription basis.
Meanwhile, BT are pressing ahead with plans for a trial of ADSL this summer involving 2000 homes in west London.

DSP like a microcontroller?

Texas Instruments has announced a single-processor dsp chip with microcontroller-like capabilities.
"This is a dsp designed to perform well in areas where microcontrollers are strong, like code density, support for the C language, and i / o and interrupt handling,'s said Jean-Marc Darchy, TI's European marketing and applications manager. "Our new core has ten per cent better code density running C than the ARMTTDMI, which is the industry benchmark."
Called the TMS320C2000 architecture, the dsp core is said to be all-new. It will offer 100 Mips performance at 3 V using a $0.25 \mu \mathrm{~m}$ process. TI is reluctant to talk about power consumption in cores but Darchy said: "The [older] C20x family consumes $1.1 \mathrm{~mA} /$ Mips. The 2000 will be less, perhaps $0.8 \mathrm{~mA} /$ Mips."
The first product will be a dedicated hard disk drive processor. "We are waiting to see how the industry receives this before we decide what other applications to aim the core at." said Darchy.

MSc Advanced

 Microelectronics for Industrialists9DOLTON
INSTITUTE Jointly developed and
provided by
UNIVERSITY of
NORTHUMBRIA
at NEWCASTLE

This innovative new programme, which has been developed with the support of EPSRC, offers the opportunity to keep you at the forefront of the latest developments in microelectronics without losing time at work.
No matter what your location in the UK, the course will come to you via a high spec PC for study when it suits you.

- Taught entirely on the Internet

- Features remote access to ECAD design tools at ISDN speed
- Tutor support via E-mail, fax and telephone
- Multimedia PC running Windows NT
Course starts mid-May and early Nov. 1998 For more information contact: Roy Attwood, IGDS Co-ordinator, Bolton Institute, Deane Road, Bolton, Lancashire BL3 5AB.
Tel 01204903667 Fax 01204370916
For full details see our Web site: http://www.unn.ac.uk/ami
E-mail: r.attwood@bolton.ac.uk

BASIC Stamps-

reprogrammable stamp sized computers
Easy to use BASIC language

- 8 or 16 Input/Output lines each 20 mA capability - 80 or 500 Program lines
- Re-programmable thousands of times from PC or Mac 5-12vDC Supply. Stamps from $\mathbf{£ 2 5 . 0 0}$ each. Development Kits including programming software, Stamp, Cable, Project Board and $25+$ Application notes from $£ 79.00$.

STAMP BUG
Autonomous roving insect using the BASIC Stamp
 as its "brain". Approx 300 mm overall length. KITS FROM $£ 29.00$

IYNX ARM
5 Axis robot arm kit; approx size 300 mm . Control from any serial comms port or Stamp. Includes software to run from PC. KITS FROM $£ 85.00$

New Circuit Design \& SPICE Simulation Tools from intusoft

for Power Design, RF Design or for Analog Test Aufomation

You can use OrCAD, Viewlogic ${ }^{\oplus}$, Protef or Intusoft for schematic entry

- ICAP/4Rx

Easy to learn and reduced in complexity, a complete, integrated, simulation system, which includes our 5 th generation schematic entry tool, simulates unlimited size circuits (AC, DC, Operating Point, Transient, Fourier, Temperature and Parametric, "What-If" analyses, Mechatronic simulations, interactive analyses, parameter sweeping) has comprehensive SPICEmodel libraries (over 3000 parts) and is powerful enough to tackle all of your system, board, and IC level circuit jobs (power, rf, mixed signal, mechanical, filters, ASICs, etc).

- ICAP/4Windows, ICAP for OrCAD, ICAP for Viewlogic, ICAP for Protel
The Professional 's Analog/ Mixed Mode tool with much more capability (e.g., biggest parts libraries available). Use Intusoft's own schematics or integrate intimately with your own ORCAD, Viewlogic or Protel schematic.
- ICAP/4Power, ICAP/4RF For professional Power designers or RF designers, includes all the above plus specialised power or RF libraries.

 indesigns and fauit diagnostics. Includes interactive and automatic methods for test sequencing and test synthesis.
We offer regular Hands-On Tutorial SPICE seminars in Cambridge or (for sufficient numbers) at user sites, as part of our comprehensive customer support systems.
We offer FREE Test Designer DEMONSTRATION SEMINARS in Cambridge. CALL US TO BOOKM.
Download your free IsSpice simulation kit, application notes and model libraries from our Web Site:

WWW.softsim.com
 email: info@softsim.com Te1. 01223-516469, Fax 01223-729916

Technology Sources Ltd.. 2 Signet Court, Swanns Rd. Cambridge C85 8LA trading as

SoftSim

Year

 2000Robert Harcourt looks at how the Year 2000 changeover will affect your pc - if at all.

First the good news. New Year's Eve in 1999 falls on a Friday. This means that companies can shut down over the weekend to convert their pcs to cope with the year 2000. Another piece of good news is that pc real-time clocks usually implement the fact that the year 2000 is a leap year although 1900 was not.

Apple Macintosh computers have not shown a problem with the year 2000 since at least Mac OS version 7. IBM pc compatibles on the other hand contain four or five system levels within which problems can occur with the date. At the lowest level is the realtime clock, which runs on a stand-by battery so that it does not stop running - in theory at least.

The real-time clock passes its date on to the basic input/output system, or BIOS, which only starts up at the moment the computer is switched on
or re-booted. The real-time clock, and hence the BIOS, in many cases rolls over from midnight 1999 to midnight 1900, represented by 00:00:01.
At the third level is the operating system. Windows 3 Windows 95 and DOS, all interpret their version of the date from the date in the BIOS. However, they implement an algorithm so that no date before 1980 is possible. The RTC, BIOS and DOS clocks are shown in Table 1 at a normal time and date before the year 2000.
Table 2 shows these same clocks after being allowed to roll-over - while the computer is left switched on - on new years eve to 2000. You can see that the DOS clock shows correctly the year 2000 but the real-time and BIOS clocks show 1900.

When the computer is switched on, BIOS starts up and loads DOS. At this point it is possible to invoke the DATE
command. The DOS date command forces the BIOS and RTC year, Table 3 into place if they are awry.
This is a complete solution for DOS, but it does not mean that the next level up - i.e. the application program - will function correctly. If your computer runs under DOS, and automatically runs an application program at start up, you will not have the opportunity to change the date. If this is the case, place the simple statement DATE in the file AUTOEXEC.BAT, using a text editor such as EDIT. In this way, each time the computer is switched on, the current date will be displayed and you will have the opportunity to correct it.

The disk operating system asks:
Enter new date (mm-dd-yy):
Although the variable $y y$ implies only two characters for the year, in fact the year input by the user will be accepted
as four characters. If the date displays correctly, just press the return key.
This measure is thought to be necessary only once, as roll-over to 2001 a year later is usually correctly performed.

The fourth and fifth levels

The fourth level involving clock information is application software or Windows running application software. Windows 3 and, to an extent, ' 95 relies on the disk operating system, and uses the DOS date. The fifth level is application software which may or may not make use of the date supplied by DOS. For individual users of pes, all that is required is to invoke the DATE command at the C: prompt of DOS and correct any problems with the operating system DOS date.
With Windows ' 95 it is necessary to go to the Control Panel and enter a four-digit date. This is because, whether the machine is left switched on or off overnight at the Millennium, the hardware real-time clock will fail to roll-over to the year 2000 and will set the date to the 1st of January 1900, while the operating system clock goes to the 4 January 1980 for at least some older and not so old pes, Table 4.
Interestingly, if the pc is left switched on, the software in the DOS clock will in many cases roll-over correctly to 2000 , Table 3. But at the first boot operation, it will revert to 1980 , Table 4.
This is a potential trap for anyone trying to test for the problem, because although DOS initially has the correct date, the real-time clock and BIOS have 1900 as the date, and 'steal' the 2000 date from DOS at boot-up. This implies problems for servers or other machines which are left switched on all the time. They may appear to be working without bugs until their next re-boot.

Planning ahead

For those of you who are planning ahead because you foresee problems with the Millennium changeover, a free diagnostic test is available at the web site http://y2000fix.com.uk. The firm operating this site is Year 2000 Consultants Limited. The company has a second site at http://Y2KPCPro.com.
Part of the free software is a program called ViewCMOS. This package allows you to observe the real-time, BIOS and DOS clocks at the same time, and in real time. The same company sells a fix program for those machines failing their test, called Y2KPCPro.

Table 1. How the three clock systems in a pc view time.

Clock system	Mnemonic	Date	Clock system time
Real-time hardware clock	RTC	$20-03-1998$	$12: 15: 49$
Basic input/output system clock	BIOS	$20-03-1998$	$12: 15: 49$
Operating system clock	DOS	$20-03-1998$	$12: 15: 48.45$

Table 2. How the three clock systems read after rolling over to 2000 while the computer is switched on.

Clock system	Mnemonic	Date	Clock system time
Real-time hardware clock	RTC	$01-01-1900$	$00: 00: 01$
Basic input/output system clock	BIOS	$01-01-1900$	$00: 00: 01$
Operating system clock	DOS	$01-01-2000$	$00: 00: 00.98$

Table 3. Entering a value after the DATE command in DOS forces all three clocks to the required time.
Clock system
Real-time hardware clock
Basic input/output system clock
Operating system clock

Mnemonic	Date	Clock system time
RTC	$01-01-2000$	$00: 34: 12$
BIOS	$01-01-2000$	$00: 34: 12$
DOS	$01-01-2000$	$00: 34: 12.18$

Table 4. All may be ok until you boot - at which point, the clock reverts to 1980.

Clock system	Mnemonic	Date	Clock system time
Real-time hardware clock	RTC	$01-01-1900$	$00: 33: 02$
Basic input/output system clock	BIOS	$01-01-1900$	$00: 33: 02$
Operating system clock	DOS	$04-01-1980$	$00: 33: 01.98$

Other firms selling year 2000 software for pcs are Greenwich Mean Time Inc., Euromax Electronics Ltd, Deeside Technology Ltd, Ninety Nine 2000, and Computer Experts Ltd. Which magazine has carried out a review of the products from these firms in its November 1997 and January 1998 issues. ${ }^{1}$

Are you Year- 2000 compliant?

So far I have considered only the hardware and operating system aspects of the Year 2000 changeover. Problems with the software are a different story - especially where networks are concerned.
Some firms are spending thousands throwing away non-compliant pcs and networks in favour of Year-2000 compliant alternatives. But just what is meant by Year-20000 compliant?
The British Standards Institution has published 'Definition of Year 2000 Conformity Requirements. ${ }^{2}$ It states that, "Year 2000 conformity shall mean that neither performance nor functionality is affected by dates prior to, during and after the year 2000." There's more on this in the panel.
Other requirements cover the prohibition of the use of the date as an end-
of-file marker. The sequence 9/9/99 is said to have been used by programmers as an end-of-file marker, or EOF, clearly limiting the life of the system.
The inferencing rule mentioned in the panel will not fit all situations: for example, if birth-dates are maintained

Year 2000 defined

This is an extract from the BSI publication, 'Definition of Year 2000 Conformity
Requirements,' document reference DISC PD20001, explaining what Year 2000 compliance means:

Rule 1 No value for current date will cause any interruption in operation
Rule 2 Date-based functionality must behave consistently for dates prior to, during and after year 2000.
Rule 3 In all interfaces and data storage, the century in any date must be specified either explicitly or by unambiguous algorithms or inferencing rules. An example of an inferencing rule is "e.g. two digit years with a value greater than 50 imply 19xx, while those with a value equal to or less than 50 imply 20xx.
Rule 4 Year 2000 must be recognised as a leap year.
in a database, and a particular person was born in 1948, the inferencing rule would change their birth-date to 2048, which could mean they died before they were born.
Data files with dates in them must specify the century when there is any sorting applied to chronologically sequence the data, otherwise $2000-$ appearing as 00 - would be sorted before 1999, which appears as 99 .
This could mean that a lot of rewriting of data-base or accounts software is required. DOS 6 and 6.22, Windows 3.1 and Windows 95 all carry the date of creation of files in
the directory on pc's hard drive. These dates appear as only two digits, so the backup and archiving of files could become confused.

In summary

The date mechanism in pcs is not simple, and manual checks have to be meticulously carried out. In particular, it is necessary to check the date at switching on and on re-booting while switched on. It is necessary to do this at least twice to make sure the 21 st century is not lost.
If you are using a pc that is not connected to a server, you will find it easy
to correct any date problems with the DATE command.

References

I. Which, PO Box 44, Herfford SGI4 ISH, November 1997 and January 1998 issues.
2. BSI, 389 Chiswick High Road, London W4 4AL: 'A Definition of Year 2000 Conformity Requirements.' Document reference DISC PD2000-1 Codes of practice are detailed in DISC PD2000-2 and a general outline of the year 2000 problem is presented in DISC PD2000-3. See
www.bsi.org.uk/disc/year2000.html.

Why Test2000 thinks its best

Other testers of this sort test the CMOS real-time clock, which essentially always fails to increment from 1999 to 2000. What is important is not the CMOS itc date itself, but what the BIOS does with the CMOS RTC date. This is because the operating system uses the BIOS date and some applications use the BIOS date.
Although a fundamental design error that causes the year 2000 transition problem exists in the CMOS itc, the CMOS rtc date itself is unimportant because no common application software uses it directly, so testing the CMOS rtc is immaterial, unnecessary and misleading. The BIOS date is what matters and despite its pervasive century error, the CMOS rtc date doesn't matter.
Other testers also test the operating system 1999 to 2000 increment, which will always pass. There is no reason to suspect an operating system date year 2000 failure. Windows 3.1 File Manager does odd things to the year in its displays, but those are only display artifacts; the underlying date is handled correctly.
Other testers also look at a variety of leap year concerns, none of which need any concern. No pc hardware leap year failures have ever been demonstrated, and there is no reason to suspect that pc hardware leap year errors exist. If another tester fails a leap year test, it is probably the testing program that has failed - not the hardware.

Test 2000 is a free Year 2000 diagnostic tool. It checks whether you are going to have a problem, and whether or not the
problem can be avoided by using the company's rectification tool Y2KPCpro

- which isn't free. If that won't work, you are in for a BIOS upgrade.

ViewCMOS allows you to see what's in your pc's CMOS to help you determine what your hardware real-time clock is going to do at the Year 2000 changeover. It shows the clock values update in real time. It is only free "when used for Year 2000 testing by computer users" so don't look at the non rtc locations!

Surely not. Surely someone somewhere has developed a portable programmer that has even more features, even greater flexibility and is even better value for money.

Actually, no. But don't take our word for it. Use the feature summary below to see how other manufacturers' products compare.

Dataman-48LV

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2,2.7,3.3 and 5V
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU for go-anywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

frect anfware

Dataman S4

- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

SA CAL module

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

Still as unbeatable as ever:

Orders received by 4pm will normally be despached same day. Order today, get it tomorrow!
upgrades +

techniceal suppont

for life

Support

- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery - always in stock
- Dedicated UK supplier, established 1978

D. $\mathrm{m} \cdot \mathrm{n}$ an

Dataman Programmers Ltd, Station Road, Maiden Newton, Dorchester, Dorset, DT2 OAE, UK Telephone +44/0 1300320719 Fax +44/0 1300321012 BBS +44/0 1300321095 (24hr) Modem V.34N.FCN.32bis Home page: http://www.dataman.com FTP: ftp.dataman.com Email: sales@dataman.com

20% EW reader discount

Audio signal generator

AG2601 is a portable mains-powered instrument covering 10 Hz to 1 MHz in five overlapping decades. Sinewave distortion between 500 Hz and 50 kHz is just 0.05%.

The AG2601 audio signal generator spans 10 Hz to 1 MHz in five overlapping ranges and features floating output and low distortion. This stable sine and square-wave oscillator is being made available to Electronics World readers at the fully-inclusive special price of $£ 129$. Its normal selling price is £129 excluding VAT and delivery.
Please use the coupon to order your signal generator, and address all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE1 8 2PL, fax 01162773945 or tel. 0116 2771400.

AG2601 audio generator - specifications

General
Frequency range 10 Hz to 1 MHz
Frequency stability within $\pm 2 \mathrm{~Hz}$
Output waveforms sine, square
Output impedance 600Ω
Accuracy $\quad \pm 5 \%+2 \mathrm{~Hz}, 10 \mathrm{~Hz}-1 \mathrm{MHz}$ $\pm 3 \%+2 \mathrm{~Hz}, 100 \mathrm{~Hz}-100 \mathrm{kHz}$
O / P floating voltage within $\pm 1.5 \mathrm{~dB}$
Sinewave characteristics

Distortion $\quad<0.05 \%, 500 \mathrm{~Hz}$ to 50 kHz	
	$<0.5 \%, 50 \mathrm{~Hz}$ to 500 kHz

Output voltage 8 V rms, max
Output flatness $\pm 1.5 \mathrm{~dB}(1 \mathrm{kHz})$
Output impedance 600Ω

Squarewave characteristics

Output voltage $15 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$, min Rise time $\quad 0.5 \mu \mathrm{~s}$

Synchronization input

Input impedance $10 \mathrm{k} \Omega$
Maximum input 10 V rms

Supply

$115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

Physical data

Dimensions
Weight
150 by 250 by 130 mm
*Test leads supplied as standard

Use this coupon to order your AG2601

Please send me AG2601 Audio Generator(s) at the fully inclusive special offer price of $£ 129$.

Name
Company (if any)
Address

Phone number/fax
Total amount

Make cheques payable to Vann Draper Electronics Lid Or, please debit my Master, Visa or Access card.

Card type (Access/Visa)
Card No

Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 01162773945 or telephone on 01162771400 . Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5 , Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.
-Overseas readers can also obtain this discount but details vary according to country.

cool solutions

IN THE WHITE HOT LEADING EDGE OF TECHNOLOGY THINK WARTH
If your technology is heating up, or you need a cost effective cooling solution for your critical components, Warth will provide you with innovative solutions to all your thermal management problems. From sophisticated heatsinks to state of the art thermal interface pads we have the answer. Manufactured by Warth in the UK to ISO9002. Warth Commitment to excellence is just the beginning

Warth International Ltd, Birches Industrial Estate, East Grinstead, West Sussex RH19 1XH tel 01342 315044, fax 01342 312969, http://www.warth.co.uk

The Stereo Headphone Amplifier Box

Balanced or unbalanced line inputs to stereo headphone output
Professional portable units operating from an internal PP3 battery or external mains adaptor

*Precision transformerless differential left and right inputs *Wide range of headphone drive impedances *High common mode rejection *Low noise and distortion *Low quiescent power consumption for extended battery life *Extensive RFI protection

The Balance Box (mic/line amplifier) - The Phantom Power Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient pretector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants gu30 7QW Information line 01428751469 Fax 751223

E-mail contact@confordelec.co.uk
Web http://www.confordelec.co.uk/catalogue/

Darren Conway* helps you decide which is the right mixer option for your receiver design.

*Darren Conway,
Lieutenant
Commander,
ME(Elect), MIPENZ, MIEE, C.Eng, psc, RNZN

The vast majority of radio receivers are based on the super heterodyne principle, where incoming rf signals are mixed with a local oscillator to produce an intermediate frequency. In most cases a receiver uses two mixers to convert from rf to the desired base band signal.
One of the key design choices for a receiver is the selection of mixers - and in particular the first stage mixer. The development of rf mixers over the past forty years has been a process of evolutionary development and refinement. Circuits have improved but the basic principles and techniques have remained largely unchanged.
The aim of this article is to review a representative sample of the current range of high level mixers and discuss the characteristics of each.
Discussion is limited to mixers used up to vhf and those that are readily available. You are encouraged to view the relevant data sheets and references in conjunction with this article as they contain a wealth of information that is not included here.
Although this discussion is limited to vhf , the basic principles and mixer characteristics are applicable at all frequencies. The purpose is to provide you with the information required to select the right mixer for the right application.

Why have a mixer?

The primary application of a mixer is to add an input frequency and a local oscillator frequency to obtain a single intermediate frequency, or IF, output.
Ideally, a mixer output would only contain the desired output frequencies, $F_{\mathrm{RF}}+F_{\mathrm{LO}}$ and $F_{\mathrm{RF}}-F_{\mathrm{LO}}$, where F_{RF} is the received rf signal and F_{LO} is the local oscillator input. But
no such device exists.
In reality, mixers produce a whole range of frequency products

$$
\pm m F_{\mathrm{rf}} \pm n F_{\mathrm{lo}}(n=0 \ldots \infty, \mathrm{n}=0 \ldots \infty)
$$

at the IF output. The unwanted harmonics are filtered out.

The balance of mixers

There are effectively three types of mixers which may all be implemented as passive or active. The basic passive circuits are shown in Figs 1, 2 and 3. For active mixers, the diodes are replaced with fets, mosfets or transistors.
An unbalanced mixer shown in Fig. 1 has no isolation between the two input ports and the output port. They are rarely used because lack of isolation between the local oscillator and the rf input results in unwanted transmissions from the antenna at the local oscillator frequency. These transmissions may be strong enough to contravene emc regulations, and even if they are within legal limits, they are still undesirable.
Detection of local oscillator transmissions has been successfully used in the past to locate clandestine or illegal receivers. The main advantage with unbalanced mixers is that they can operate over a very wide frequency range spanning greater than five decades. In certain applications, this may justify their use.
Single-balanced mixers go some way to solving the problem of unwanted transmissions by providing isolation between the local oscillator and the rf input as shown in Fig. 2. In addition, the local oscillator signal is suppressed at the intermediate-frequency output.
However, like the unbalanced mixer, the rf input appears
at the IF output port. If it is decided to fabricate a mixer from discrete components, then the single balanced mixer offers a reasonable compromise between the superior performance of the double balanced mixer, and the simplicity of the unbalanced mixer.
Double-balanced mixers ideally offer infinite suppression of signals between the three ports. The only output should be the intermediate-frequency signals ($\pm m F_{\mathrm{RF}} \pm n F_{\mathrm{LO}}$) with the rf and local oscillator inputs fully suppressed.
In practice the local oscillator and the rf input are typically suppressed by about 50 dB at the intermediate-frequency output. The ready availability of single package double balanced mixers often means that they are simpler to apply than either single balanced or unbalanced mixers. In most applications, the double balanced mixer shown in Fig. 3 will provide the best performance.

What makes a good mixer?

Practical mixers are complex to analyse and their performance is defined by a number of characteristics. The following define the major specifications of a mixer in order of importance.

Frequency range. Mixers are usually required for all receivers operating from very low frequency to tens of gigahertz. Typical mass-produced mixers operate to maximum frequencies in the range of 100 MHz to 2.5 GHz . The operating frequency range is a fundamental design characteristic that will in part determine the final selection of mixer type.

Dynamic range. This is one of the most important specifications for a mixer. The massive proliferation of of transmitters and other interference sources means that the modern radio receiver is usually operating in the presence of significant rfi.
Even if the desired signal is always very weak - for example satellite transmissions - it is still important that a receiver has the ability to operate in the presence of strong signals so that the desired weak signal is not lost.
The lower limit of dynamic range is defined by the noise figure, while the upper limit is defined by the compression point, intermodulation products and burnout level.

Noise. Typically, mixers have noise figures ranging from 6 dB to 20 dB . The noise figure for passive mixers is about equal to the insertion loss. The noise figure for active mixers depends on the selected devices and circuit topology. It
is usual but not essential in receiver design to include a lownoise rf amplifier ahead of the first mixer in order to improve the noise figure of the receiver system.

Gain. The ready availability of amplifiers that cover the radio-frequency spectrum means that the mixer is not generally required to have any gain. Excess mixer gain can reduce the dynamic range of the receiver.
In most cases, insertion loss through a mixer is also undesirable particularly in the case of passive mixers. Active mixers provide gain in the range of -1 dB to +17 dB while passive mixers have a typical insertion loss of between 5.5 dB and 8.5 dB .

Local-oscillator drive. The ideal mixer would be insensitive to both local oscillator level and harmonic content but in reality, the local oscillator specifications need to match the requirements of the mixer.
Passive double-balanced diode mixers require local oscillator levels from +7 dBm up to +23 dBm . Active mixers require local oscillator output levels ranging from -20 dBm to +30 dBm depending on the selected type. The design of the local oscillator is intimately related to the selected mixer type.

Isolation. Isolation is a measure of the mixer's ability to prevent a signal applied to a port. appearing at either of the other two ports. The only output should be the mixer products at the intermediate-frequency port. The degree of isolation depends on whether the mixer is unbalanced, single balanced or double balanced. Unbalanced mixers exhibit no isolation between ports. Double balanced mixers provide the best isolation between the three ports.

Impedance matching. The three ports of a mixer should be matched at each port. Mismatch in active mixers usually results in reduced mixer gain.
Passive mixers are particularly sensitive to mismatch at the intermediate-frequency output port which causes greater insertion loss and unwanted mixer products. Regardless of whether an active or passive mixer is used, due care should always be taken to implement proper matching to maximise mixer performance.

Simplicity. An important characteristic of any circuit is the ease of design and implementation. Complex designs are often complex to build and difficult to set up. A lower parts

Fig. 4. Example of a high-level active double-balanced mixer - the bipolar AD831.

count has the added benefit of greater reliability, easier maintenance and a smaller spare parts inventory.
Overly complex design is a form of inefficiency that can have a significant effect on the through life cost of equipment. Good design concentrates on gaining the maximum performance from the minimum of components.

Integrated mixers

Given the superior performance of high level double balanced mixers and the availability of both passive and active devices in single packages, there is little incentive to use either an unbalanced or single balanced mixer. This assumes that the requirement for high level performance is one of the main design criteria. Applications demanding low power consumption or specialist functions may be more suited to mixers other than the high level double balanced mixers reviewed below.

AD831. The $A D 83 i$ is a modern example of a bipolar highlevel active double balanced mixer. Housed in a PLCC package it includes a buffer amplifier with a 50Ω input and output, Fig. 4. The gain of the buffer amplifier can be set by appropriate feed back resistors. The buffer is configured as a balanced to unbalanced amplifier without the need for transformers.
The inclusion of the buffer amplifier with the mixer package makes this device particularly appealing as a first stage mixer. In most receiver designs, the first mixer is followed by a low-pass filter and then a buffer amplifier before the
signal is applied to intermediate-frequency band-pass filters.
With the $A D 831$, an additional two capacitors will implement a one-pole low-pass filter between the mixer outputs and the buffer inputs. The gain of the buffer amplifier can be set by two resistors to compensate for insertion loss in the following band-pass filters.
If a buffer gain of one is specified, then the feedback resistors are not required. Excessive gain reduces the gain bandwidth of the buffer amplifier and reflects noise back into the mixer.
When properly applied this single device and associated passive components can combine the mixer/filter/buffer functions into a very small space with no bulky tuneable components.
The $A D 831$ is specified for operation to 400 MHz at the rf and local-oscillator inputs, but this needs qualifying. All performance curves are basically flat up to 100 MHz . Above this frequency, some curves improve while others degrade.
Performance at about 200 MHz is particularly ambiguous. If the application requires very good isolation between ports, then frequencies near 200 MHz should be avoided. Local oscillator to rf isolation falls from 72 dB at 100 MHz , to a minimum of 45 dB at 200 MHz - which is still good by the way. However the high level performance peaks at 250 MHz where the third order intercept reaches 23 dBm and the -1 dB compression point is 11 dBm as shown in Fig. 5. It is an example how variable the important performance characteristics can be. This is not a particular fault of the AD83/ as all types of mixers both active and passive exhibit widely varying characteristics.
The $A D 83$ I may be used with single or dual supplies. A programmable bias allows the user to define the power consumption. For the best third-order intercept performance, the AD831 will typically draw 100 mA quiescent current. The current may be reduced to 45 mA for minimum power consumption.
The noise figure is specified at a high 20 dB for a single ended voltage output. For receiver applications, this means that an rf amplifier ahead of the mixer is mandatory if a reasonable receiver noise figure is to be achieved.
In summary, the $A D 831$ is suitable for most mixer applications to at least 300 MHz . Performance is very good up to 100 MHz but performance varies at higher frequencies, particularly at 200 MHz . The 20 dB noise figure makes this device unsuitable for low noise applications.
The ability to combine a high performance mixer, low pass filter and buffer amplifier into a very small space with no tuneable components means that the AD83I would be a good choice for many applications.

SL6440. The SL6440 is a bipolar double balanced mixer first produced by Plessey about 1980. In spite of its age. it is still a useful device with good performance.
The specified -3 dB frequency range extends to 150 MHz but I consider this to be a little optimistic for practical applications. The intermediate-frequency output level remains constant up to 50 MHz after which the roll off is dependant on the supply voltages.
For a main dc supply voltage of 6 V , the 1 dB roll off occurs at 80 MHz while for a supply of 12 V dc , it occurs at just over 100 MHz . I would conservatively rate this device as being suitable for applications up to 90 MHz .

Mixer selection guide

For applications that require good performance, no tuned components, and a minimum of pcb real-estate, the $A D 831$ is an excellent choice. The implications of the high noise figure need to be considered.
The SL6440 is an old device but for applications that require an average noise figure with a low level local oscillator it remains a good choice.
If very high level performance and gain are the key criteria, then the jfet mixer should be selected. Most applications will require the matching transformers to be hand crafted.
For those after the ultimate in high-level mixers, the mosfet mixer is supreme. But as with the jfet mixer, the effort required
to implement the mixer and related circuitry makes this choice difficult to justify except for the most demanding applications.
When properly applied, the diode double balanced passive mixer combines the lowest noise figure with good high level performance. If low noise is important, and there is reasqnable space and local oscillator power available, then a diode double balanced mixer is the right choice.
Almast all of the values shown in the Table are frequency dependent and can vary greatly depending on the exact operating conditions. Mixers should be chosen based on performance at the intended operating conditions. Prototypes should then be constructed and tested because it is highly unlikely that the test circuits in the data sheets will match exactly the applied circuit.

Table. Comparison between high-level mixers.

Characteristic	Units	Active jfet SBL1*	Diode RAY11*	Diode	Mosfet AD831	Bipolar SL6440	Bipolar
Frequency range	MHz	50-250	0.5-500	0.01-2500	0.2-500	0-400	0-90
Isolation rf local oscillator	dB	35	45	32	30	65	-
Isolation local oscillator - IF	dB	60	40	20	25	28	29
Overall noise figure (ssb)	dB	8	6	7	9	20	11
Local-oscillator drive level	dBm	+15	+7	+23	+16	-10	-5
Two-tone intercept point	dBm	+34	+16	+25	+44	+24	+30
Conversion gain	dB	+4	-5.6	-6.2	-7 to +18	0	-1
1 dB compression	dBm	+13	+1	+15	+16	+10	+10

The 6440 is contained in a 16 -pin DIP package, Fig. 6. It includes two input and two output pins for balanced signals but may also be configured for unbalanced signals. The 6440 also includes an input pin to program the supply current which can be useful for battery operation.
It is possible to implement power load management by programming the supply current to a low value in the absence of a desired signal. When a signal is received, the supply current can be increased to improve the mixer performance. Such a feature would be relatively simple to include with the receiver squelch control
Note that the supply current for most active mixers can be programmed by various means and this is not a unique feature of the 6440. As a general guide for any mixer, either passive or active, intermodulation performance improves with increased supply current and voltage.
Like most active mixers, this device draws a significant current to achieve the best performance. The device requires two positive supply voltages. Rail $V_{\text {ccl }}$ is for the mixer while the on chip oscillator buffer is supplied by $V_{\text {cc2 } 2}$.
Typically the $S L 6440$ draws 30 mA to 60 mA , which may be increased with the use of a heat sink, or decreased to conserve power. The quiescent current drawn by the mixer is determined by the value of $V_{\text {cc2 }}$, and the programming current I_{p} into pin 3. The absolute maximum power dissipation is specified at 1200 mW .
For maximum suppression of intermodulation products, the programming current Ip should be between 10 mA and 12.5 mA giving a total supply current of about 40 mA . The -IdB compression point is then about +7 dBm but can be increased to +15 dBm by increasing I_{p} to 30 mA giving a total supply current of about 77 mA . Reducing the programming current I_{p} below 5 mA attenuates the wanted intermediate-frequency output signal.
Conversion gain or loss is determined by the input and output configuration and programmed current. For resistive, unbalanced inputs and outputs a conversion loss of about 1 dB would be expected. The use of tuned, balanced input

Fig. 6. Around since 1980, the SL6440 still has its uses. A drawback though is that it needs quite a few external components.
and output transformers will provide a measured conversion gain of about 4 dB .
Using tuned transformers on the input and outputs offers the advantage of some gain and filtering without degrading performance. This is because balanced inputs and outputs evenly distribute current flow within the SL644Q. In either case conversion gain is dependant on both the programming current I_{p} and the load impedance. Excessive gain increases the risk of saturating the mixer output transistors and should be avoided.
While adequate, the information provided on the data sheet could not be described as comprehensive. There is a small selection of tables, text and graphs detailing overall performance and design procedure.
No information is giyen about the internal workings of the device nor are there any details of frequency dependent impedance characteristics. The design of matching circuits must therefore be accomplished by trial and measurement.
In summary, the SL6440 may be old but its performance is still good up to about 90 MHz . If you need optimum performance then tuned input and output circuits would typically be used. Even in a basic application, about a dozen passive components are required around the SL6440 which means that this device occupies a reasonably large area of pcb real-estate. The 11 dB noise figure is about as good as can be expected from this type of mixer.

Fig. 7. Circuit for a double-balanced fet mixer by Ed Oxner.

Fig. 8. Local oscillator to rf isolation
performance for a diode mixer based on the Mini Circuits SBL-1.

Using junction and mos fets

Jfet mixer. The junction-fet mixer appears to offer the potential for very good performance. Conversion gain and intermodulation distortion characteristics are superior to typical passive mixers. Junction fets have an inherent square law response which reduces third order intermodulation distortion. And, like passive mixers, jfet mixers have a high burn-out level.
The main disadvantage is that there is no known source of ready-made units incorporating the jfets and transformers. Also a high local-oscillator drive is required.
Unlike double-balanced diode mixers, the jfet mixer has to be built up from individual components. Even commercially produced receivers such as the $/ C O M R 9000$ uses a single balanced jfet mixer made from individual components.
The inability to obtain a single-package double-balanced mixer is a major disadvantage of the jfet mixer. Suitable transformers are difficult to obtain and for prototype work, hand made coils are usually necessary.
If optimum performance is to be achieved then the transformers need to be physically matched to high tolerances. It is possible to obtain good results with a combination of good construction techniques and a suitable balance adjustment.
Optimum power gain and noise do not occur at the operating point. The bias currents, local oscillator drive level and matching transformers must be properly selected to ensure that the fets operate in the square law region and that distortion is minimised. The lowest achievable noise figure is 8 dB .
For optimum performance of a double balanced fet mixer, the fets should be perfectly matched which is very difficult to achieve using discrete fets due to the difficulties in precisely controlling characteristics between batches.
In practice matched characteristics can only be achieved if
the fets are mounted within the same package and are made from the same silicon wafer. Such devices are available from Siliconix which manufactures dual (U430) and quad fets (U350) in single packages specifically for mixer applications.
For single-balanced mixers, the requirement for matched components is less stringent allowing the use of fets matched to within 10%.
Despite the problems of construction, the jfet mixer offers good performance. Their specifications are similar to that of a high-level diode mixer with the advantage of positive gain.
The major disadvantage is the high local-oscillator power requirement and the significant construction effort. For those of you wanting to experiment with jfet mixers, references 3 and 4 provide excellent details on the performance and practical consiruction of the mixer shown in Fig. 7.

Mosfet mixers. If there is a need for very high-level performance. then the jfets can be substituted for either monolithic dmos fet quads or a combination of rf power mosfets. Suitable monolithic devices include Calogic SD8901 and the Siliconix SD5000 from which very good results have been obtained. Double balanced mixers may operate the mosfets as switches with no drain voltage applied resulting in an insertion loss of about -7 dB . Alternatively, drain voltage supplied to the mosfets may be used to give a mixer gain of up to +17 dB .
One of the features of mosfets is that the gate drive voltages are roughly the same for for all mosfet types. This means that the local oscillator power needed for a very high level mosfet mixer is less than the power required for an equivalent diode mixer. A mosfet mixer giving very high level performance does not require an excessively high local oscillator drive.
While mosfet mixers provide excellent very high level performance, they suffer from the same problem as jfet mixers in that the transformers and surrounding circuitry result in a high parts count and the use of a significant area of circuit board. Such a mixer would only be required where the receiver was physically located near a high powered transmitter. Typically, mosfet mixers would be found in very high performance $h f$ and $m f$ receivers.

Double-balanced-diode mixer

The double balanced diode mixer is a design that is positively archaic but still has application in modern receiver design. Its ability to withstand high level input signals. low cost and the ready availability of small mass produced mixers has ensured its continued use.
If the insertion loss is tolerable, the characteristics compare favourably with other high level mixers. Perhaps the most widely used mixer type is the SBL-I from Mini-

SBL-1 diode mixer from Mini-Circuits. Although not an active device, this mixer produces good results in a wide range of receiver applications.

Circuits. It is cheap, compact and available. Mini-Circuits and other companies produce a wide range of passive mixers suitable for most mixer applications.
Like the other mixers described, the performance of the diode double balanced mixer is dependant on a variety of factors including but not limited to frequency, local-oscillator power, matching and temperature. The graph of localoscillator to rf isolation shown in Fig. 8 is typical of the variations seen in performance.
Proper matching of the intermediate-frequency output is essential to gain optimum performance from a diode double balanced mixer. The intermediate-frequency filter should feature a 50Ω resistive impedance across the of spectrum. Failure to ensure proper matching will result in higher conversion losses and the generation of unwanted harmonics. In addition to impedance matching, the intermediate-frequency filter should attenuate all mixer products except the desired intermediate-frequency. Detail of the design of an intermediate-frequency filter for a passive diode mixer is the subject of a future article.
Diode mixers require a high-level local oscillator with at least +7 dBm output. Some very high level passive mixers require up to +23 dBm local oscillator drive. The relationship between local oscillator power and the 1 dB compression point is shown in Fig. 9 for a selection of diode mixers from Mini-Circuits.
The local-oscillator level also effects conversion gain as shown in Fig. 10. It is important that harmonics from the local oscillator are adequately suppressed. Harmonics from the local oscillator mix with the rf input and produce unwanted mixer products.
It can be difficult to design and build oscillators at the required output level combined with the desired spectral purity. This is particularly true for battery operated equipment where available power and voltage are relatively low.
Some mixers are available that include a built-in amplifier on either the local oscillator input, or at the intermediatefrequency output. These may ease the design problem in some situations. Local-oscillator power and purity has a major effect on the design and performance of the mixer stage and therefore the whole receiver system.
One of the main advantages with the diode double-balanced mixer is that being a passive device, it draws no quiescent current. This is somewhat offset by the high localoscillator drive requirements and the need to compensate for the conversion loss.

Although diode mixers are available in very compact packages, the high level local oscillator and intermediate-frequency matching filter will normally require a significant circuit-board area. If high level and low noise are the prime requirements then the double balanced diode mixer remains the best choice.

In summary

The selection of a mixer for any receiver application depends on many variables. The information in the Table has been obtained from a number of sources. The values are representative of actual devices operating under typical conditions and in most instances these values will be different to those specified in data sheets.
As with most design choices, the selection of the right mixer for the right application is based on compromise. There is no single mixer that is suitable for all tasks and it is up to the design engineer to determine which characteristics should dominate the selection process. Selecting the right mixer is a matter of determining the most important characteristics and matching these to the appropriate mixer type.

References

1. 'Get the most from mixers,' Mini-Circuits
2. Yousif, AM and Gardiner, JG, 'Distortion effects in a switching-diode modulator with tuned terminations,' Proc IEE, Vol. 119, No 2, Feb. 1972.
3. Oxner, E, 'FETs work well in active balanced mixers,' Siliconix Inc, EDN, 5 Jan. 1973
4. Oxner, E, 'Active double-balanced mixers made easy with junction FETs,' Siliconix, Inc, EDN, 5 July 1995.
5. Kanazawa, K, et al. ${ }^{\wedge}$ A GaAs Double-Balanced Dual-Gate FET Mixer IC for UHF Receiver Front-End Applications.' IEE Trans on Microwave Theory and Techniques, Vol. MTT33, No 12, Dec. 1985.
6. Hikita, M, and Akagi, T, 'Single Balanced Mixer for SAW Front-End Module used in 800 MHz Cellular Radio,' Electronics Letters, 22 Oct. 1992, Vol. 28, No 22.
7. DeMaw, D and Collins, G, 'Modern Receiver Mixers for High Dynamic Range,' QST, Jan 1981.
8. 'Introduction to Radar Systems,' Skolnik, Merrill Ivan, pub. McGraw-Hill 1981.
9. 'The ARRL Handbook' 1995.

Fig. 9. Diode mixer 1dB compression point versus local oscillator level for various MiniCircuits parts.

Fig. 10. Typical diode-mixer conversion loss versus localoscillator level.

Hands-on Internet
 Cyril's findings on the net include news of Microsoft's continuing legal battle, an announcement that Intel is to sell 'cpu kits' to pc oems, and a dedicated modelling tool for optical links.

To consolidate its processor program discussed last month, Intel is developing a series of cpu kits ${ }^{1}$ for pc makers, designed to speed the production of 'Intel Inside' pcs. These all embracing kits will include the processor, chip set, motherboard, memory types, i/o interfaces and graphics buses, Fig. 1. Some pe vendors are reported to feel these kits will reduce their design options and may reduce their already small profit margins.
Other makers of compatible chip-sets however fear that 'Intel Inside' might soon become 'Only Intel Inside'. ${ }^{2}$ As reported by $Z D N N$, the P 6 , or sixth generation, high speed interface bus for Pentium II is proprietary to Intel so cannot be used without permission or licensing.
Acer Laboratories, Silicon Integrated Systems and Via Technologies all have compatible chip-sets in customer evaluation, but these cannot be released for sale until legal problems have been resolved, leaving Intel as sole supplier.

Microsoft still under pressure

The Senate Judiciary Committee hearing on 'competition in the computer industry' debated the extent of Microsoft's power to dominate desk top operating systems and Internet browsers. As reported by PCWeek, ${ }^{3}$ much discussion centred on Windows 95 and Explorer licensing.
The Senate Judiciary Committee oversees the DOJ. While the hearing produced no substantive result, it was apparently seen as a green light for the DOJ to continue its actions against Microsoft.

Fig. 1. Intel's new kits of CPU, motherboard, chip-set may make choices simpler, but will component costs increase for computer makers?

With the hearing over, the DOJ continues to probe all aspects of Microsoft, to determine whether to proceed with a full-scale anti-trust assault. According to PC Week, ${ }^{4}$ the DOJ is conducting yet another round of depositions with computer oems to find ammunition for its next actions. One particular question regards performance degradation should a different browser be installed on top of Windows 98 with Internet Explorer integrated into it.

Windows 98

Retail shipment of Windows 98 is now planned for June $25 .{ }^{5}$ Domestic users of Windows 95 in the USA and Canada can now purchase a preview release of Windows 98 on cd-rom for $\$ 29.95$ as part of a beta preview programme for technically competent users.
This offer is available in other countries, although the price differs. For UK and Ireland the price is $£ 24.99$, which includes an upgrade voucher ${ }^{6}$ to Internet Explorer Plus. You must already use Windows 95 , have 125 Mbyte available on your hard disk and have at least 16Mbyte ram with a $486 \mathrm{DX} / 66$ or better processor.
It is claimed that Windows 98 speeds up system performance and its more efficient filing system releases some 28% of hard disc space without compressing files. The operating system includes support for DVD-rom and the universal serial bus, or USB, port. This serial port allows a large number of peripherals to be connected and disconnected without turning the machine off.

Browsers

Last month I mentioned the 'Opera' browser. At the moment, Windows versions are available, but I access Internet using only OS/2 Warp4 or Merlin. I installed the 16 bit version of Opera 3.1 under Windows in OS/2 with no problems. But I had difficulty linking the browser with my native OS/2 dialler since it required a Winsock dialler. A 'proper' OS/2 version of Opera is apparently due shortly, so I have decided to await its arrival.
Many other companies are busy writing Net-based software. Browser.Com, ${ }^{7}$ part of CINet, gives a full listing. In its recent review of 'rebel' browsers, Opera was 'editors choice.' This page is also worth visiting if you use Internet Explorer 4 and are troubled with the "No such interface supported" error. Apparently caused by installing over an older beta version, this problem can be cured by uninstalling and reinstalling completely. ${ }^{8}$ A simpler alternative correction is also possible, Fig. 2.

Junk mail

I recently mentioned that I receive far too much junk e-mail. If anything the problem has worsened lately. Not only has

Fig. 2. Visit Browsers.com to find the latest versions and performance test results of major or rebel browsers.
the quantity increased, but I frequently now get more than one copy of a mailing. Since I use an American based service provider and my e-mail address is on my home Web page, it is possible I receive more than the average UK user.
Junk e-mail or 'spam' as it is called, is a problem for both service providers and search engines. A service called Search Engine Watch recently ran some tests on search engines to check their spam content.
At one time Infoseek had a particular problem with junk email and as a result took preventative action. In these latest search engine tests, it was considered equal best with Lycos. ${ }^{9}$

Apart from being annoying, junk e-mail can cause severe problems to Internet providers. In California, a bill giving legal recourse against 'spammers,' is now in hand. One vocal supporter of this bill - Pacific Bell Internet - was recently deluged with spam e-mail, over a four day period. Having 170000 customers and a 50000 spare capacity, the system ran out of processing space. The service provider responded by installing four more gateways, doubling its capacity to 440000 users, at a cost of $\$ 500000$.

Simulation

If you are interested in optical-fibre circuit design, one page worth visiting is Gold. ${ }^{10}$ An acronym for Gigabit Optical Link Designer, this new Australian simulator is specifically for optical systems.
Some of the core software in Gold is licensed from the

Fig. 3. Interested in modelling optical systems?

Where to surf

1. New Intel CPU kits add to PC makers overload.
2. Intel to shut out chip makers from Pentium II.
3. Rivals spar at Senate hearings.
4. DOJ ponders next move in Microsoft case.
5. OEMs might just get what they need with Windows 98 .
6. Preview Windows98.
7. Browsers.com.
8. Sleuthing the IE 4.0 Windows bug.
9. Search Engine Spam Survey
10. GOLD Virtual Photonics.
11. Computer Design Online.
12. Attack your design with a SHARC.
http://www.zdnet.com/pcweek/news/0309/1 3ecpu.html http://www.zdnet.com/zdnn/content/zdnn 0314/294783.html
http://www.zdnet.com/pcweek/news/ 0302/03ehear.html
http://www.zdnet.com/pcweek/news/ 0302/06edoj.html
http://www.zdnet.com/pcweek/news/0309/13ewin98.html
http://www.eu.microsoft.com/uk/Win98.htm
http://www.download.com/Browsers/ 0,145,207-0,201000.html http://www.cnet.com/Content/Builder/ Programming/Kahn/021198/index.htm| http://www.searchenginewatch.com/ reports/spam.html
http://www.vp.com.au/GOLD/GOLDGI.htm
http://www.computer-design.com
http///www.analog.com/SHARC/attack

Australian Photonics Co-operative Research Centre. The package runs on pcs under LabVIEW for Windows, but versions for other platforms will be developed. A Gold demonstration disk is available, but you need to have either the base or development versions of LabVIEW installed, Fig. 3.
Computer Design Online is an on-line magazine and designers' meeting place. It is dedicated to all aspects of seri-
ous computer aided design. ${ }^{11}$ The magazine includes a searchable database of its past publications and provides support for all computer aided design decisions.
This magazine is sponsored in part by Analog Devices. When 1 visited it, the home page featured a flyer for Analog's new digital signal processor - a low-cost 240 pin 'Share' - and its evaluation kit. Fig. 4. ${ }^{12}$

for Windows 95 and NT

- 4th Generation Schematic Design and Printed Circuit Layout.
- By Engineers for Engineers.
- Full links to our Analogue, Digital and Electromagnetic Simulators.
- NO pin, net or layer limits!
- Track and Component Editing - a dream!
- Superb user interface.
- Powerful, high speed Shape based Autorouters available.
- Competitive Pricing.

Number One Systems

UK/EEC:

USA:
Ref: WW, Harding Way, St.Ives, Cambridgeshire, PE17 4WR, United Kingdom Tel: 01480461778 Fax: 01480494042 International: +441480461778 /494042 Ref: WW, 126 Smith Creek Drive, Los Gatos, CA 95030 Tel/Fax: (408) 395-0249

Download working demo from www.numberone.com

Have you got the capacity

ISSUES free to resist ${ }_{\text {this }}$
inducement?

ELECTRONICS

Subscribe to Electronics World for 3 years but pay for just 2!

Please enter my subscription for:

 (tick one of the following)| | UK | Europe | Rest of World |
| :--- | :--- | :--- | :--- |
| I year | $\square £ 34$ | $\square £ 49$ | $\square £ 59$ |
| y ears $\square £ 54$ | $\square £ 78$ | $\square £ 94$ | SAVE 20\% |
| 3 years $\square £ 68$ | $\square £ 98$ | $\square £ 119$ | I year FREE! |

In every monthly issue
 - Detailed circuit diagrams
 - New product reviews
 - Informative design-oriented explanations
 CAE software
 li and more!

Full money back guarantee

If you're not completely satisfied with Electronics World within the first 60 days we'll refund your money in full - no questions asked.

Please allow 28 days for delivery of your first issue.
\square Please tick here if you do not wish to receive direct marketing promotions from other relevant companies.

Three ways to pay

1 I enclose a cheque for $£$ \qquad made payable to Electronics World.
2 Please charge my Visa/Mastercard/American Express/Diners Club (please delete as appropriate)
Card Number \square
Expiry date \square
Signed Date

3 Please invoice me/my company. Purchase Order №. \qquad
Name

Job Title	Company
Address	

Tel. No.
Company VAT registration number
Return your completed form to: Electronics World Subscriptions, FREEPOST RCC 2619, PO Box 302, HAYWARDS HEATH, UK, RHI6 3BR

It＇s easy to design and manage large circuits with hierarchical schematics．Electronics Workbench uses sirtual workspace，so if your circuit gets too big for the screen，just scroll along and kecp building．

Analysis functions are built into Electronics Workbench，among them frequency，transient， Fourier，noise and distortion．You can build a prototype and probe it with an oscilloscope and multimeter－or you can do it all in software with Electronics Workbench！

Electronics Workhench also includes a virual Bode plotter，fiunction generator，word generator，logic analyser and digital multimeter．

It＇s so easy to design，test and analyse circuits with Electronics Workbench version 5．Drag and drop schematics with＂smart＂wires．Hierarchical circuits．True mixed mode simulation． Virtual test instruments．Powerful analysis features．Customisable parts bin．SPICE import／export．Thousands of device models．And more．

Electronics Workbench

 New Version 5

 New Version 5}

Most other software tends to be difficult to leam，awkward to use and expensive to acquire， even when capable of combining all these functions．But Electronics Workbench brings professional－level circuit simulation within the reach of every engineer！
New Electronics Workbench version 5 combines schematic editing and mixed－mode SPICE simulation with a full set of test instruments，a comprehensive library of components and advanced analysis tools．Powerful enough for professional design engineers yet simple enough for first－year electronics engineering students to master，it＇s also surprisingly affordable．
Building a circuit couldn＇t be easier．Electronic Workbench uses the familiar Windows interface－ you just grab the components you need with your mouse，and drop them in place．Connect them together：＂smart＂wiring will automatically choose the route．Fine tune your schematic： when you need to move a component，Electronics Workbench will preserve all connections and re－route them as necessary．
With Electronics Workbench version 5，you can import and export SPICE netlists，choose components，devices and models from a huge，built－in＂parts bin＂，perform analyses using virtual test instruments．Because it＇s all done in the software，your whole design process is faster，more flexible and a great deal easier to complete－accurately．And you can easily export your design files to other programs，including PCB layout packages．In short，if you want to increase your productivity，there＇s no better way than Electronics Workbench．

Fill out the attached order form below and return it to us today！

Adept Scientific plc－Official UK distributor for Electronics Worrkench 6 Business Centre West，Avenue One，Letchworth，Herts，SG6 2HB，UK Telephone： 01462480055 Fax： 01462480213 SCIENTIFIC Email：ewb＠adeptscience．co．uk http：／／www．adeptscience．co．uk／
Please rush me Electronics Workbench version 5
I I would like to pay by：（piease tick the appropriate box）

CIRCUIT IDEAS

Over $£ 600$ for a circuit idea?

New awards scheme for circuit ideas

- Every circuit idea published in Electronics World receives $£ 35$.
- The pick of the month circuit idea receives a Pico Technology ADC42 - worth over £90 - in addition to $£ 35$.
- Once every six months, Pico Technology and Electronics World will select the best circuit idea published during the period and award the winner a Pico Technology ADC200-50 - worth $£ 586$.

How to submit your ideas

The best ideas are the ones that save readers time or money, or that solve a problem in a better or more elegant way than existing circuits. We will also consider the odd solution looking for a problem - if it has a degree of ingenuity. Your submission will be judged on its originality. This means that the idea should certainly not have been published before. Useful modifications to existing circuits will be considered though provided that they are original.
Don't forget to say why you think your idea is worthy. We can accept anything from clear hand writing and hand-drawn circuits on the back of an envelope. Type written text is better. But it helps us if the idea is on disk in a popular pe or Mac format. Include an ascii file and hard-copy drawing as a safety net and please label the disk with as much information as you can.

Turn your PC into a high-performance virtual instrument in return for a circuit idea.

The ADC200-50 is a dual-channel 50 MHz digital storage oscilloscope, a 25 MHz spectrum analyser and a multimeter. Interfacing to a pc via its parallel port, ADC200-50 also offers non-volatile storage and hard-copy facilities. Windows and DOS virtual instrument software is included.
ADC42 is a low-cost, high-resolution a-to-d converter sampling to 12 bits at $20 \mathrm{ksample} / \mathrm{s}$. This single-channel converter benefits from all the instrumentation features of the ADC200-50.

Separating p -waves in cardiac waveforms

An important part of cardiac analysis is the measurement of rate variability, the interval between appearances of the p-wave recently being of most interest. Since the p-wave is a relatively small part of the waveform, it is more difficult to separate it from the rest of the electrocardiogram than the r-wave; this circuit performs that function and measures the $\mathrm{p}-\mathrm{p}$ time interval. In the block diagram of Fig. 1, the input is the ecg, which is amplified and compared with the threshold level $T h_{1}$ to produce a reference pulse in time with the r wave. The comparator triggers two monostables, the outputs of which are shown in Fig. 2 as (c) and (d), Anded to produce the waveform at (e), which falls within the p-wave region. This pulse, which occurs, due to the timing of the monostables, during the p-region, programs the amplifier with a gain of 10 ; for the rest of the cycle, it is zero.
Only the p-wave, therefore, is amplified, the output (f) being compared with Th_{2} and the resulting pulse (h) triggering a further monostable to generate (k) and (1) by means of the two circuits shown in Figs 3 and 4. The pulse output (k) resets a 16 -bit counter (four 7493s) and the one at (1) triggers a latch composed of four 7474 s to hold the time count.

K Balasubramanian

NSS College of Engineering Palakkad
India
(A95)

Fig. 1. Block diagram of the p-wave separator for heart beat analysis. The p-region is the small, rounded part of a cardiac waveform.

16-bit data
(A95a)
(a)

(b)
(d)
(d)

(d)

(e)
(g)

Fig. 2. Timing diagram for circuit arrangement of Fig. 1.
(k)

(A95b)

Fig. 3. Edge-deriving circuits for positive (a) and negative (b) edges of a positive-going square pulse.

(B7c)

Fig. 3. 20 dB improvement in power supply ripple after adjustment of R_{2}.

Fig. 4. Change of power frequency ripple when transformer heater leads to a directly-heated rectifier are reversed.
 up to 20 dB ripple reduction.

Reducing power-supply mains-frequency ripple

f you have a centre-tapped mains transformer driving a full-wave rectifier, it is possible that $50 / 60 \mathrm{~Hz}$ ripple is greater than it theoretically should be. This modification resolves the problem, producing a ripple reduction of about 20 dB at mains frequency and odd harmonics.
With this modification, high voltages are present.
Because power transformers are normally wound serially, one side of the high-voltage winding is of higher resistance than the other. Although one expects the ripple to be primarily at even harmonics of the mains frequency, this effect inserts significant ripple at mains frequency and at odd harmonics, since the output filter network, $R C$ or $L C$, is much less effective at the lower frequency.
The ripple does not occur in full bridge circuits and push-pull amplifiers are relatively invulnerable, but single-ended amplifiers. particularly the triode type. are affected. Depending on loading. between $2 / 3$ to $4 / 5$ of the ripple is applied to the load in a triode power stage and, since speakers have low-frequency resonances, the conditions are right for hum.
My own case is shown in Fig. 1, a power supply for a 1960 s audio amplifier, the transformer being a $375 \mathrm{~V}-0-375 \mathrm{~V}$ model, the windings
of which measure 38 and 40Ω. The 5 V winding drives resistors $R_{1,2.3}$, which apply ac in series with the dc from the rectifier in place of the direct connection at B_{1}. Varying the potentiometer, which is a wirewound type, alters the polarity and aids or bucks each half of the ht winding.
The only other modification is R_{4}, which is included for use during adjustment, which is done by observing current pulses across this resistor at test point C; Fig. 2 shows properly adjusted pulses. If the 6 V ac winding is used, the break should be at B_{2}. Capacitors $C_{3.4}$ must be ceramic types, safety rated for connection the mains.
Both semiconductor and valve rectifiers have been tried, the valve type with varying results, and the same process can be applied to a choke-input filter. The improvement at 60 Hz at the output was, in my case, from 75 mV to 8.5 mV and at 180 Hz from 2.5 mV to 1 mV .
If your power supply has a directly-heated rectifier, there may be no need for all that. Simply reverse the heater leads to get about 15 dB improvement. There is a $50: 50$ chance that they were the wrong way round.
John L Stewart
King City
Ontario
Canada
(B7)

TRANSFORMERS FOR BALANCED LINES IN HIGH PERFORMANCE AUDIO SYSTEMS

 SOWTER" \qquad E
E A SOWTER LTD

PO Box 36 IPSWICH IP1 2EL ENGLAND Tel: +44(0)1473252794
Fax: +44(0)1473236188
E.Mail: sales@sowter.co.uk

Web: http://www.sowter.co.uk
Design and Manufacture of all types of Audio Transformer using Nickel and Grain Oriented cores

Free catalogue

Free technical support service Popular types from stock

CIRCIE NO. 118 ON REPIY CARD

COLOMOR (ELECTRONICS) LIMITED
 Unit 5, Huffwood Trading Estate, Bookers Road,

Billingshurst, West Sussex RH14 9RZ
Tel: +44 (0) 1403786559 Fax +44 (0) 1403786560
Email: sales@colomor.demon.co.uk
Visit our new web site at: hltp://www.colomor.demon.co.uk

OSCILLOSCOPES

TEKTRONIX 7633 with 7AI8 7B53A NEW .. $£ 250.00$
GOUD OS 250 Dual Trace 20 MHz .
GOULD OS 1100 Dual Trace 30 MHz
§ 100.00
11000
PHIUPS PM 3217 Dual Trace 50 MHz
Mp 1800 with 1801 A $1820 \mathrm{C} . \ldots \ldots . .$.
IWATSU SS-5711 Dual Trace 100 MHz
Hp 5248L
$£ 300.00$
$£ 300.00$
$£ 12000$
.. $£ 300.00$
Hp 5328A UNIVERSAL COUNTER 7633 with 7A18 7BS3A
Hp 8616A SIGNAL GENERATOR.
Hp 3354A FREQUENCY COUNIER
Hp 8375A DIGITAL MULTI-METER
Hp 141 T SPEC ANALYZER..
\&100000
$£ 100.00$
$\AA 150.00$
.$£ 250.00$
$\begin{array}{r}£ 100.00 \\ \hline\end{array}$
£ 100.00
£ 150.00
£150.00
$. . . . P . O . A . ~$
PRISM 7301 WIDE BAND AMP
.
MARCONI TF 2171 SYNCRONIZER
£60.00
MARCONI TF 2173 SYNCRONIZER
. 175.00

MARCONI TF 2016 Signal Generator $10 \mathrm{KHz}-120 \mathrm{MHz}$
MARCONI TF 2300 Modulation \& Deviation Meter.
£17500
MARCON 2300 Modulation \& Deviation Meter ... 500
MARCON TF $1152 \mathrm{~A} / 1$ WATTMETER 50 Ohms $10 \& 25 \mathrm{~W}$
MARCONI TFT Microwave RF Power Meter 3MW or $3 \mathrm{~W} 18 \& 12 \mathrm{GHz}$
RACAL DANA 9904 Universal Timer Counter 50 MH
RACAL DANA 9914 Frequency Counter 200 MHz .
.580 .00
.$£ 25.00$
...£45.00

RACAL DANA 9915 Frequency Counter 520 MHz
RACAL DANA 9916 Frequency Counter 520 MHz
VARTA Nicad Charger Type CC 306 C 14 hr timer ch
£50.00
$£ 60.00$
. $£ 80.00$
VARTA Nicad Charger Type CC 306 C 14 hr timer charge current 0.306 c
c4000
ip 3.5321 S . 0.70 Db in 10 dB steps
£35.00
Hp 33321 B Switchable Attenuator $0-700 \mathrm{~b}$ in 10 dB steps \qquad
Hp 8761 B SPDT RF SWITCH DC. 18 GHz
Hp 33311 B COAXIAL SWITCH DC -18 GHz
NARDA 768-20 DC-11 GHz 20 W
OMNI SPECTRA SMA IEAD WITH CHARTS TO 18 GHz
SUHNER SMA 50 Ohm Right Angle 4 Hole Fixing Socket
ANDREWS FSI 450 HEUIXX
ANDREWS FSJ 450 HELIAX
ANOREWS FSJ 450 HEUAX \qquad

DISCOUNT FOR REELS

Carriage : $£ 10.00+$ VAT @ 17.5% to be added to all UK orders.
Overseas customers please contact sales for carriage costs.

CROWNHILL ASSOCIATES LIMITED
The Old Bakery, New Barns Road, Ely Cambs. CB4 7PW
Tel: +44 (0)1353666709 Fax: +44 (0) 1353666710

Low cost professional quality Smart Card Systems

CHIPDRIVE EXTERN

Intelligent programmer for Smart Cards using the International Standard
$\mathrm{T}=0$ or $\mathrm{T}=1$ protocols also Memory and Secure Memory using I ${ }^{2} \mathrm{C}, 2$-wire \& 3-wire interfaces
Supplied with software to read and write to most popular secure smart cards, inc GSM, PAY PHONE and ACCESS CONTROL cards.
$\mathrm{T}=0$ or $\mathrm{T}=1$ © 3.579MHz
RS232 © 9600-11500 bps
Internal Supply/Ni-MH
Size: $100 \times 70 \times 80 \mathrm{~mm}$ Weight 660 Gram Supplied with CardServer API for easy development of SmartCard Applications using Visual Basic, Delphi or C++
Supplied with Sample Memory cards \&
Secure Smart cards
CE compliant

Chip Drive Intern

$3.5^{\prime \prime}$ floppy bay version of the CHIPDRIVE. Applications are available to provide SmartCard controlled access of data on Hard drives or "PC-LOCK", to control access to the whole PC Fully Compatible development.

Most popular smart cards are plastic, the size of a credit card, with an embedded microprocessor containing an operating system and erasable non-volatile memory. Physicat protection against unauthorized tampering with the card is provided through the following scheme:
The microprocessor and memory are created as a

NEW CHIPDRIVE -micro
Fully Compatible with TOOLBOX for application development. Featuring the same functionality as Chip Drive Extern but in a small neat low cost package, similar in size to a smart card.
 single chip. This insures there are no data paths that can be monitored or probed. This chip is connected to a thin circuit board and encapsulated with an epoxy. The "module" is then glued within a well milled into the plastic card. This prohibits physical access to the microprocessor and provides a more durable medium than magnetic stripe cards.
The microprocessor operates under control of a "built in" program called an operating system. A serial interface - which make it impossible to access the memory directly - is employed to communicate with the card.
An iso International Standards
http://www.towitoko.co.uk
http://www.crownhill.co.uk

Driver and application software is available for the CHIPDRIVE family of terminals including the command set DLL for Windows 3.11/95NT, easy to use 16 and 32 Bit DLLs with just one function call to the "CardServer", a powerful Background task which relieves the application programmer from device and card administration.
Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent on the type of card inserted.

Organisation) protocol is used to exchange commands and data with the card.
Finally, Holograms, signature stripes, photos, etc can be applied to card for additional security. And the card can be custom printed with your artwork. Crownhill can supply OPEN ARCHITECTURE cards, that will allow you the end user to create your own operating system, to control access to the EEprom memory of up to $64 \mathrm{Kbits}(8 \mathrm{Kbytes})$ in size. Crownhill have off the shelf operating systems for Control access, Electronic purse and Portable Document applications. Others can be written to your specification.

THE SMARTEST SOLUTION

Crownhill can offer a broad range of smart cards from just $£ 1.00$ and Smart Card sockets for just $£ 1.45$ each. PIC Microchip based Smart Cards now available at just £4.50 each . . . DEVELOP YOUR OWN SMART CARD! Crownhill can supply over 150 different types of IC from more than 12 silicon suppliers, which can all be incorporated into smart card format. Some cards are available from stock, most are manufactured to the customers' specification

Low-noise, high input-impedance amplifier

Although this amplifier was developed for use with a guitar pickup, it may be used as a general-purpose circuit where small voltages must be amplified with very low noise and extremely high input impedance.
Input stage consists of a $U 430$ matched jfet pair in a differential arrangement, the output op-amp having feedback to set the gain. Balance requires that $R_{3,4}$ and $R_{5.6}$ are equal, voltage gain being given by $G=g_{\mathrm{m}} R_{5}$, where g_{m} is the fet transconductance.
Input impedance is equal to R_{1} which, with input bias current at 2 pA , causes an input voltage of $20 \mu \mathrm{~V}$, negligible compared with the input offset of the jfet pair at 5 mV . Bandwidth is 1 MHz and is limited by the opamp. Noise is about $2.5 \mathrm{n} \mathrm{V} / \mathrm{NHz}$. The input capacitor may be left out if dc coupling is needed.

Peter Goodson

Bracknell
Berkshire
(B16)

Economical testing for digital recorders

o
utput from DAT, cd and full solidstate recorders, when fed with a single frequency, should be a pure sine wave without distortion. sidebands, harmonics or beats; a single spectral line. If this is not the case, the system is at fault and observing the extraneous spectral components helps identify the faulty stage.
Commonly, two sampling frequencies are in use: 44.1 kHz for cds and 48 kHz for DAT, the test signal being 11.111 kHz and 12.345 kHz respectively. These frequencies derive from a 1 MHz crystal oscillator by way of a switchable $\div 90$ and $\div 81$ divider using two 4017s.
Oulput from the circuit contains a signal within the bandwidth of the recording system and several harmonics outside it,
including one near the Nyquist frequency. After being recorded and replayed, the signal should, theoretically. be sinusoidal. but the anti-aliasing filter, the dsp or the reconstruction filter will not be ideal and will produce additional frequencies. These extra lines in the spectrum can be used to identify the source of the error. Do not overload the input of the recorder, since digital recorders have absolutely no headroom.
Having selected the output frequency, make the level as high as possible, but within the dynamic range. which is, typically, -1 dB to -0.5 dB . Record this for a few minutes and replay. observing the waveform and spectrum. Additional frequencies shown depend on which input
frequency has been selected and which system fault causes them, as in the Table.
Well adjusted systems with 16 -bit accuracy should have a noise floor below -98 dB , with no spectral component other than the signal. In practice.tests on various systems. some of them professional equipment costing up to $£ 40000$, indicate that all systems suffer from one kind of trouble or another.
Complex music generates a large number of spurious frequencies absent from the signal; it seems likely that this is part of an explanation for 'digital sound'.

Gerd Schmidt

Frankfurt
Germany
(B10)

Table. Fault examples.

Taking 44.1 kHz , with the 48 kHz signal in brackets:
A sampling stage fault, probably anti-aliasing filter, will give a line at, $344 \mathrm{~Hz}(1.383 \mathrm{kHz}), 10.767 \mathrm{kHz}(10.963 \mathrm{kHz}), 11.455 \mathrm{kHz}(13.728 \mathrm{kHz})$ or $21.878 \mathrm{kHz}(23.308 \mathrm{kHz})$
Errors in digital signal processing show at, $32.9989 \mathrm{kHz}(35.654 \mathrm{kHz})$.
And a faulty reconstruction filter shows up at, $22.222 \mathrm{kHz}(24.69 \mathrm{kHz})$ or $33.333 \mathrm{kHz}(37.03 \mathrm{kHz})$.

ANGREX SUPPLES LTD																
PHONE 0181684		DISTRIBUTORS OF ELECTRONIC VALVES TUBES AND SEMICONDUCTORS AND I.C.S.					$\begin{array}{r} \text { FAX } \\ 0181684 \end{array}$									
11661	AYO	AD		N	E	20	3056									
	UR	RESS M	OR	SERV	N S	CK IT										
	£ p	KT66 China	10.00	5Z4GT	3.00	6V6G	8.00									
AZ31	6.00	KT89 China	1200	6405	200	6V6GT	5.00									
CL33	10.00	N78	8.00	6AR5	20.00	6X4	3.00									
E89CC	8.50	OA2	3.00	6AS7G	7.50	6x56T	3.00									
E180F	3.50	O82	3.00	6AU5GT	4.00	12 A 77	3.00									
E810F	20.00	OC3	3.00	6AU6	200	12AU7	3.50									
EABC80	200	OD3	3.00	6awba	4.00	12AX7	5.00									
EB91	1.50	PCF80	200	6B4G	2200	12AX7A	7.50									
EBF60	1.50	PCL82	200	6BA6	1.50	12AX7 W	8.00									
EBF89	1.50	PCL85/805	250	6BE6	1.50	12Ba6	200									
EBL31	15.00	PCL86	280	68H6	200	12BE6	200									
ECC33	1200	PD500	6.00	6807A	200	128H7/1	10.00									
ECC35	1200	PL38	3.00	$6 \mathrm{BR7}$	4.00	128Y7A	7.00									
ECC81	3.00	PL81	200	6BR8	4.00	120w7	15.00									
ECC82	3.50	PL504	3.00	6BW6	4.00	12 E 1	10.00									
ECC83	5.00	PL508	3.00	6BW7	3.00	13 E 1	85.00									
ECC85	3.50	PL509/519	10.00	6B26	3.00	572B	85.00									
ECC88	8.00	PL802	4.00	6 C 4	200	805	45.00									
ECC808	15.00	PY500A	3.00	BCB6A	3.00	807	7.50									
ECF80	1.50	PY800/801	1.50	6CD6G	5.00	8114	25.00									
ECH35	3.50	Covo2.6	1200	6CL6	3.00	812 A	55.00									
ECH42	3.50	Covo3.10	8.00	6CG7	7.50	813	27.50									
ECH81	3.00	aovo3-20A	10.00	${ }_{6} \mathbf{C H} 6$	3.00	833A	85.00									
ECL82	3.50	COV06-40A	1200	6 CW 4	8.00	866A	20.00									
ECL86	3.50	419	8.00	8005	17.50	872A	30.00									
ECLL800	25.00	UABC80	1.50	6006B	10.00	931 A	25.00									
EF37A	3.50	UCH42	5.50	6F6G	8.00	2050A	12.50									
EF39	276	UCL82	200	$6 F 07$	7.50	5751	6.00									
EF40	4.00	UCL83	200	6GK6	4.00	5763	6.00									
EF86	10.00	UF89	4.00	6, 5 G	6.00	5814 A	5.00									
EF91	200	UL41	1200	6. 5 5M	4.00	5842	1200									
EF183/4	200	UL84	3.00	6.57	3.00	6072A	6.00									
El33	15.00	UY41	4.00	6JB6A	27.50	6080	6.00									
EL34	8.00	UY85	200	6JE6C	27.50	6146B	15.00									
EL34G	6.00	VR105/30	3.00	6JS6C	27.50	6201	8.50									
EL36	8.00	VR150/30	3.00	6K6GT	4.00	6336A	35.00									
EL41	3.50	2759	10.00	6L6G	15.00	6550A	25.00									
EL84	2.25	2803U	15.00	6L6GC	15.00	68838	15.00									
EL95	200	2021	3.50	6L6WGB	10.00	7025	7.50									
EL360	15.00	3828	1200	607	3.00	7027A	25.00									
EL509/519	1200	4 CX 250 E	45.00	6SA7	3.00	7199	15.00									
EM34	15.00	5R4GY	7.50	6SC7	3.00	7360	25.00									
EM81/477	4.00	5 U 4 G	10.00	6SG7	3.00	7581A	15.00									
EN91	7.50	5 U 4 GB	10.00	6S.37	3.00	7586	15.00									
E280/81	3.50	5 V 4 G	4.00		3.00	$\begin{array}{ll}7587 & 20.00\end{array}$										
GZ32	8.50	5Y3GT	250		5.00											
KT61 15.00		523	5.00		5.00	Prices correct when going to press.										
		$\begin{array}{lllll}5234 \mathrm{G} & 6.00 & 6 \mathrm{CBA} & 1.50\end{array}$	0.00 6UBA 1.50													
OPEN TO CALLERS MON-FRI 9AM-4PM. CLOSED SATURDAY This is a selection from our etock of over 6000 types. Please enquir for types not listed. Obsolete items are our speciality. Valves are new mainly original British or American branda. Terme CWO/min order $£ 10$ for credit cards. P\&P 1-3 valves £2.00. 4-6 valves £ $£ .00$ Add 17.5\% VAT to total including P\&P.																

CIRCLE NO. 121 ON REPIY CARD

FGM-X Magnetic Field Sensors

High Sensitivity $\pm \mathbf{5 0}$ microtesia range + 5 volt supply

Robust 5 volt rectangular pulse O/P whose perlod is directly proportional to field strength.

Typlcal applications:

Compass, field nulling/Gaussmeter applications. Conventional magnetometry, earth field magnetometry, ferrous metal detectors, Internal vehicle re-orientation alarm sensors, external vehicle or ship passage sensors, wreck-finders, non-contact current sensing or measurement, conveyor belt sensors or counters and in conjunction with small permanent magnets, movement and proximity sensors and ferrous impurity detectors for nonmagnetic alloys.

For data sheets and application notes contact:

[^1]| |
| :---: |
| |
| |
| |

EnuiraMon

Temperature / Humidity

Logger \& Alarm System

EnviroMon has many applications in: food processing - storage and distribution, energy management - waste energy, heating and processing, agriculture - monitoring humidity in greenhouses, and in hospitals - accurate monitoring of temperature sensitive items.

V Monitors up to 30 channels of temperature over a 400 m . distance
$\boldsymbol{\nabla}-55$ to $100^{\circ} \mathrm{C}$ temperature range (typical accuracy $\pm 0.2^{\circ} \mathrm{C}$).
∇ Data can be downloaded to PC.

EnuiraTMon

Starter Kit from $£ 393.00$
3 temperature Sensors on 5 m lead, 3 channel Converter, Enviromon Logger, cables \& fittings. Expandable at any time for around $\mathbf{£ 5 0 / \text { / channe }}$

TC-08

8 channel Thermocouple to PC Converter
Simple to use thermocouple to PC interface.

- Connects to serial port no power supply required.
- Supplied with PicoLog data logging software.
∇ Resolution $0.1^{\circ} \mathrm{C}$.
TC-08 $£ 199.00$
Supplied with serial cable and adaptor. Calibration certificate $£ 25.00$.
Thermocouple probes available.

TH-03 3 channel

Thermistor to PC Converter
∇ Connects to serial port no power supply required.

- Picolog data logging software.
- -55 to $105^{\circ} \mathrm{C}$ temperature range
\checkmark Resolution $0.01^{\circ} \mathrm{C}$.

TH-03 £79.00

Supplied with serial cable and adaptor. Thermistor sensors available.

Call for free demo disk or download our web site: http://www.picotech.com All prices exclusive of VAT.
Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: (0)1954 211716 Fax: (0)1954 211880 E-mail: post@ picotech.co.uk

Fig. 1. Single turn on a ferrite window core, together with the right kind of capacitor, reduces ripple and noise from switchers by over 90%. At a) is the filter and b) shows how to test the power source for noise coming from the load. For circuit boards having their own ground connection, use the arrangement at c).

Quietening switched-mode power supply rails

R^{i}
ipple and spikes from a switchedmode power supply can exceed the noise margin of logic gate inputs, make monostable flip-flops oscillate or misfire and possibly cause embarrassment in phase-locked loops. Low-impedance capacitors across the rails may effect a cure, but some form of inductive filter is often needed, although it must be damped to avoid making matters worse. This circuit, shown in Fig. 1a), provides an economical solution.
Inductance takes the form of a MMG-Neosid ferrite window core with a single wire through the two holes; capacitors are one good $220 \mu \mathrm{~F}$ electrolytic and a number of ceramic types, which may be distributed around the board. This arrangement avoids excessive inductance and large capacitors,
which would also be inductive. Used with a run-of-the-mill 5 V , 2A supply, the filter reduced ripple and spikes from $100 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ to 7 mVpk -pk. Figure 1b) illustrates the method testing for the effect of other sources of trouble such as clock circuits; a square-wave generator producing a 5 V output from 50Ω couples $\pm 50 \mathrm{~mA}$ into the 5 V rail. The worst effect was $20 \mathrm{mVpk}-\mathrm{pk}$ at 800 kHz , with another of about the same amplitude at 20 MHz ,although the power-supply's feedback loop bandwidth is 5 kHz , which makes for sags and overshoots.
If the circuit being supplied has its own ground connection, the arrangement of Fig. 1c) may be used, this having the advantage of some common-mode rejection. With a multi-output power supply, where all rails share a common 0 V , it may
be necessary to bring the 0 V directly and use heavy cable for the 5 V , common-mode connecting to the others. There is no easy method of overcoming dc errors without using properly isolated outputs.
Spikes have been found to cause more trouble than ripple and it is essential to attenuate anything that looks 'sharp'; and this also means that spikes coming back from the load must be decoupled by lowimpedance capacitors. Aluminium types, such as the Rubycon TWSS and, rather better, the same company's YXF are good, the technique having improved in recent times, while the Sanyo Oscon is even better; AVX MicroChip tantalums are very good.

CJD Catto

Cambridge
(B9)
(a)

(c)

$\mathrm{C}_{0} \quad 220 \mu / 35 \mathrm{~V}$ YXF(Rubycon)
$\mathrm{C}_{1}-\mathrm{C}_{10} \quad 100 \mathrm{n} / 100 \mathrm{~V}$ ceramic
$\mathrm{C}_{a} \quad 1 \mu 0 / 100 \mathrm{~V}$ polyester
$100 \mu / 35 \mathrm{~V}$ YXF(Rubycon)
$100 \mathrm{n} / 100 \mathrm{~V}$ ceramic
$12 \mu \mathrm{H} \quad 42-003-36$ (Neosid)

Wide-band, dc-isolated amplifier

${ }^{\mathrm{l}} \mathrm{c}$n applications such as groundedcathode photomultiplication, or scanning electron miscroscopy of dc-biased samples, it is necessary to use an isolation amplifier; wide bandwidth is also sometimes needed and is not often found in such circuits. This design is useful when ac common-mode potentials are not involved and it provides a rise time of less than 100 ns .
Input splits into two paths: an optically isolated amplifier, $A_{1,2}$ and the optocoupler, and an ac coupling via C_{2}, both driving A_{3}.

By virtue of the ac coupling, provided that the time constant $R_{6} C_{3}$ equals $R_{7} C_{2}$ at $20 \mu \mathrm{~s}$ here, frequency response is flat and limited by the bandwidth of A_{3}, not by that of the optically coupled section.
Negative feedback using one diode in the IL300 eliminates nonlinearity in the optoisolator, and $R_{3,5}$ allow bipolar input. Gain of the low-frequency path into the inverting input of the output amplifier is unity and that of the ac-coupled path is 2. Since $R_{6}=2 R_{2}$,
overall gain of the lf path is 2 . Capacitors $C_{1,4}$ preserve stability. This is not a true isolation amplifier and the floating input and grounded output common rails must be well decoupled, in this case by C_{5}. If an unstabilised power supply is used - power connections not shown here - $R_{3,5}$ should be replaced by current sources. Overall frequency response may be extended to over 50 MHz by the use of a faster opamp for A_{3}; voltage op-amps should be used unless $R_{1,7}$ are

Interface between a 4-by-4 keypad and one microcomputer pin

U
Jsed with a microcomputer having an i/o pin that may be shorted to ground while in the high state, such as one of the 8051 family, this circuit enables a 4 -by- 4 keypad to use only that pin, instead of the four or five normally needed.
Neglecting, for the moment, the effect of R_{9}, current through R_{10} is small. Shorting Col_{1} and Row_{1} via the keypad, Q_{1} being low and Q_{5} high, causes current to flow from +5 V through R_{1}, D_{5} and D_{1} through R_{10}, the consequent voltage drop being detected by comparator A_{4}. Most states of the counter give either no path for the current to R_{10} or several but, for every switch position, there is one counter state giving an unambiguous indication of the switch state. For example, if Col_{1} and Row ${ }_{1}$ are shorted by the keypad, the counter code is 00011110 and for Col_{2} and $\mathrm{Row}_{1}, 00101110 \mathrm{etc}$. The process of testing a switch therefore requires the computer to advance the counter to the desired count and to monitor A_{4} output. LM339 op-amps are open-circuit comparators; when on, the output is a short to ground and when off, open-circuit.
Initial conditions are such that point X_{1} is held low by the computer for 100μ s or more, A_{3} has switched off and C_{2} is charging to reset the counter. Current through R_{9} drops a small voltage across R_{10} and the
output of A_{2} and therefore the negative input of A_{4} are grounded and A_{4} is off.
When the computer takes X_{1} high, A_{1} discharges C_{1}, A_{2} goes high and A_{4} pulls X_{1} low again. Switching delays allow C_{1} to discharge completely so that when A_{4} switches A_{1} off, it takes about $10 \mu \mathrm{~s}$ for the voltage across C_{1} to switch A_{2} high again. For a count state and switch position causing the extra current to flow in R_{10}, A_{4} does not switch on and X_{1} stays high.
After driving X_{1} high, the computer monitors it to detect the presense or absence of current through the keypad and then forces \mathbf{X}_{1} low again,
notwithstanding the state of A_{4}. After $14 \mu \mathrm{~s}$, the trailing edge of the pulse at A_{2} has incremented the counter, A_{4} has switched off and the computer drives X_{1} high to start the whole

ADC42 WINNER

 thing again until the counter holds the desired count for the switch under test.S/ Kearley
Hoylake
Wirral Merseyside
4×4 Keyboard
Columns
Rows
Row1 Row2Row3Row4
1 Col 2 Col 3 Col

CONNECT WTHT THE UKS NO. 1 READ FORELECTRONICS
 PROFESSIONALS ON THE

INTERNET

Electronics Weekly HyperAotive is more than just a magazine on the Web. Check out the site and you'll see why thousands of electronics professionals around the world regularly log onto www.electronicsweckly.co.uk/
For NeWS HyperActive's Daily News Service brings you the latest news in the industry -as it breaks. For JODSHNperActive has the largestand most varied collection of jobs available in the electronics market. Now we bring you the improved Jobs and Careers service with a whole range of newand exciting features.
All this plus, the latest technology, market information. taglkit's, a searchable archive, and loads more....
Don't miss out.
 Legister How (isis itee)

Improved-accuracy current mirror

urrent mirrors of the form shown in Fig. 1 achieves increased accuracy by virtue of the emitter follower to reduce input base current. Assuming that all three β s are equal,

$$
A=\frac{1}{1+\frac{2}{\beta(\beta+1)}}
$$

To improve bandwidth, T_{1} may be biased by an emitter resistor which, unfortunately, reduces mirror accuracy by the increased base current.
To regain accuracy, the circuit of Fig. 2

Fig. 1. Emitter follower in this culrent mirror improves bandwidth, but increased base current does nothing for accuracy.

Fig. 2. Further base current added to output restores accuracy while retaining improved bandwidth.
offers an alternative approach by deriving an extra base current and adding it to the output. Again, all β s are equal and gain is now,

$$
A=\frac{1+\frac{2}{(\beta+1)^{2}}}{1+\frac{2}{\beta(\beta+1)}}
$$

Adding Tr_{4} does have the effect of slightly lowering output impedance, but the improved accuracy and bandwidth normally outweigh the effect.

Figure 3 shows the final circuit, in which R_{1} helps to reduce errors caused by offset voltage and R_{2} sets the quiescent current in $T_{1,4}$. Reducing the value of R_{2} does not affect the accuracy significantly, due to the effect of Tr_{4}.
LSzymanski
Stamford
Lincolnshire

Fig. 3. Practical circuit of the wider bandwidth current mirror with uncompromis ed accuracy.
(B13c)

Longer-life led flasher

This 1.5 V high-efficiency led flasher is an astable multivibrator with voltage doubler. The two transistor pairs are wired in Darlington mode to increase gain and reduce current consumption.

Values of C_{1} and C_{2} can be changed to adjust the flashing rate. The ultrabright led is obtainable from RS Components and Farnell Electronics. Ordinary leds can be used, but the flashing intensity is very much reduced since the circuit is trimmed for minimum current consumption.
An ordinary 1N4148 type diode can be used instead of the 1N5819 schottkybarrier diode but led intensity will be reduced due to the higher voltage drop.

Idle current of the circuit is 0.2 mA and with the led on, the current goes up to 0.3 mA . With such a low current consumption, a 1.5 V cell lasts a long time.

The popular LM3909 led flasher from National Semiconductor idles at typical 0.55 mA and with the led active it drains 0.75 mA . According to National's handbook the 3909 will run for around 3 months continuously on an ordinary AA sized cell or for around 6 months on an alkaline type cell.
The circuit shown here should give you twice as much battery life.

Michael Ong Yong Kin

City Beach
Australia

A reliable
(and cheap) method of stopping a dc servo motor very quickly without recourse to electronic sensing.

Rapid stop for dc motors

When used in servos. dc motors usually need travel limit switches. This circuit arrangement stops a motor quickly when the switch is tripped.
When the servo reaches a limit, the bipolar drive circuit should be able to reverse the motor; $D_{1,3}$ across the limit switches perform this function.
Dc motors stop much more quickly if a short circuit is placed across the terminals, since the motor then behaves as a generator. Diodes $D_{2.4}$ provide a virtual short circuit in the direction in which the motor is is moving when the limit is reached. This process is particularly suitable when moving high-inertia loads and does not rely on any exotic sensing devices; it is, therefore, more reliable when driving critical loads. It appears simple and somewhat obvious, but we have not seen it published before.
Limit switches and diodes must be suitably rated

B Vojnovic and RG Newman

Gray Laboratory Cancer Research Trust
Mount Vernon Hospital
Northwood
Middlesex
(B15)

PLUG IN AND MEASURE

TiePie introduces the HANDYSCOPE 2

A powerful 12 bit virtual measuring instrument for the PC

The HANDYSCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is
"PLUG IN AND MEASURE".
Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 KWord memory, 0.1 to 80 volt full scale, 0.2% absolute accuracy, software controlled $\mathrm{AC} / \mathrm{DC}$ switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrument in its category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using:
the speed button bar. Gives direct access to most settings.

- the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu.
- menus. All settings can be changed using the menus.

Some quick examples:
The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32 K samples) can be zoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WYSIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse.

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored.

The spectrum analyzer is capable to calculate an 8 K spectrum and disposes of 6 window functions. Because of this higher harmonics can be measured well (e.g. for power line analysis and audio analysis).

The voltmeter has 6 fully configurable displays. 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values. Besides this, for each display a bar graph is available

When slowly changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec , so it is easy to measure events that last up to almost 200 days.

The extensive possibilities of the cursors in the oscilloscope, the transient recorder and the spectrum analyzer can be used to analyze the measured signal. Besides the standard measurements, also True RMS, Peak- Peak, Mean, Max and Min values of the measured signal are available

To document the measured signal three features is provided for. For common documentation three lines of text are available. These lines are printed on every print out. They can be used e.g. for the company name and address. For measurement specific documentation 240 characters text can be added to the measurement. Also "text balloons" are available, which can be placed within the measurement. These balloons can be configured to your own demands.

For printing both black and white printers and color printers are supported. Exporting data can be done in ASCII
(SCV) so the data can be read in a
spreadsheet program. All instrument settings are stored in a SET file. By reading a SET file, the instument is configured completely and measuring can start at once. Each data file is accompanied by a settings file. The data file contains the measured values (ASCII or binary) and the settings file contains the settings of the instrument. The settings file is in ASCII and can be read easily by other programs.

Other TiePie measuring instruments are: HS508 (50 MHz -8bit), TP112 (1 MHz 12bit), TP208 (20MHz-8bit) and TP508 ($50 \mathrm{MHz}-8$ bit).

Convince yourself and download the demo software from our web page: http://fuww.tiepie.nl.
When you have questions and / or remarks, contact us via e-mail: support@tiepie.nl

Total Package:
The HANDYSCOPE 2 is delivered with two 1:1/1:10 switchable oscilloscope probe's, a user manual, Windows and DOS software. The price of the HANDYSCOPE 2 is $£ 299.00$ excl. VAT.

TiePie enginering (UK), 28 Stephenson Road, Insdustrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK Tel: 01480-460028; Fax: 01480-460340

TiePle engineering (NL)
Koperslagersstraat 37
8601 WL SNEEK
The Netherlands
Tel: +31515415416
Fax +31515418819

A perfect

> Think of a sinewave, distort it to stabilise the amplitude, take away the harmonics you first thought of, and the answer's a pure sinewave. Not quite that straightforward, but that is roughly what lan Hickman's latest invention amounts to. variable oscillator?

This design more or less materialised by itself - perhaps harmonic serendipity describes it. Low distortion audio frequency oscillators have always held a fascination for me. Several designs have appeared in these pages over the years. Some, like the one described in reference 1, offer a modest performance - around 0.07% THD - while the configuration described in reference 2 improves on this by a factor of 20 or more.
Many low-distortion audio oscillator designs, like the one in reference 3 , use a thermistor such as the famous R53, or the R54, for amplitude stabilisation. Though effective, this has certain disadvantages, one of which is the high cost of the device.
The main disadvantage though is a rise in third-harmonic distortion at frequencies below 100 Hz , becoming quite marked at 20 Hz . This is due to the period of the waveform beginning to approach the thermal time-constant of the thermistor, so that the element tends to cool between each half cycle of the waveform, as it passes through zero voltage.
With this in mind, some years ago I designed a 20 Hz 20 kHz audio oscillator ${ }^{4}$ using diodes to stabilise the amplitude in place of the expensive R53. The advantage here is that the limiting action is totally independent of frequency.
At 0.04% total harmonic distortion plus noise over the whole audio frequency range, its performance was good, bearing in mind the low component cost. But in another application ${ }^{5}$ even the diodes were dispensed with. Here, the oscillator consisted of a frequency-selective amplifier whose gain was allowed to reach infinity. The relationship between oscillators and selective amplifiers was discussed in reference 6 which, though predating op-amps, nevertheless contains some interesting ideas.

Another look at the problem

Being now equipped with an HP3580A audio frequency spectrum analyser, I decided it was time to take another look at just how good a low a distortion oscillator could be designed, without recourse to a thermistor for amplitude stabilisation.
As an exercise in making a silk purse out of a sow's ear, that standard low-cost standby of FET input op-amps, the TL084 was selected. I started with the circuit of Fig. 1, which, apart from the frequency, is the same basic circuit as in reference 5 . This circuit produces an output at approximately 1 kHz , the peak to peak amplitude just reaching to the supply rails.
Output spectrum is shown in the upper trace of Fig. 2. This shows the measured at the output of the second integrator, deliberately plotted with rather a wide IF bandwidth. The
largest harmonic is the third, being 63 dB down on the fundamental or 0.07%. Other harmonics are about 70 dB or more down.
Amplitude stabilisation took the form of reducing loop gain at the fundamental component, due to the output hitting the supply rails. In theory, the loop phase shift is exactly 180°. corresponding to a circuit Q of infinity; in practice, the phase shift will be a smidgeon more, due to the inevitable residual phase lag in the integrators, even though this is very small at 1 kHz .
The output waveforms of all three op-amps in the circuit were substantially similar. All were limiting gently, to slightly different degrees. The obvious next step, therefore, was to confine the limiting to the first op-amp, so that the harmonic distortion products caused by the limiting were attenuated by the the 6 dB /octave roll-off of each of the two following integrators.
This was achieved by raising the gain of the first op-amp, so that the amplitude at its output - the high-pass node of the

Fig. 1. Simple low distortion sinewave oscillator

Fig. 2. Upper trace, output of the circuit of Fig. 1. Span $0-5 \mathrm{KHz}_{\text {, }}$ 100 Hz resolution (IF) bandwidth, video (post detection) filter off.
Lower trace, as above, but with component values in brackets,
resolution
bandwidth 30 Hz .

Fig. 4. Output of the circuit of Fig. 3. Span $0-10 \mathrm{kHz}$, 100 Hz resolution (IF) bandwidth, video filter off.

filter - was larger than at the output of the second integrator - the low-pass output. Its feedback resistor was therefore raised by $4.7 \mathrm{k} \Omega$, the integrators between them now providing a gain of 4.7% less than unity.
To do this, the frequency automatically adjusts itself up a little. If the integrator components remained the same, the first integrator would still run at a slightly higher amplitude than the second, so its input resistor was raised by $2.2 \mathrm{k} \Omega$, giving roughly equal amplitude non-limiting outputs at the bandpass and lowpass output nodes.
The spectrum was now as shown in Fig. 2, lower trace. For clarity, this has been recorded at a narrower IF bandwidth, and the slight increase in frequency is clearly visible, more so at the higher harmonics.
The third harmonic is now 70 dB down on the fundamental, and others 80 dB or more down. Incidentally, the reduction in the second harmonic was not all due to the component changes; the opportunity was taken to tweak one of the supply rails to more nearly equalize the clipping of the positive and negative peaks.
For such a simple circuit, a thd plus noise figure of 0.03% is not at all bad, and it is a very useful and economical arrangement for a fixed frequency oscillator. For a widerange audio frequency oscillator it is less suitable, since the excess phase shift in the integrators will increase with frequency, leading to a much worse distortion figure at 10 kHz and above. So my thoughts turned to the type of oscillator described in reference 4.

Diodes for stabilisation

This circuit incorporated negative feedback of such a value as to set the filter to a Q of 11 . Positive feedback was applied from the bandpass output, BP, of a value exceeding the neg-
ative feedback, effectively providing the filter with an input derived from itself.
However, as the amplitude of the oscillation builds up, diodes start to limit the positive feedback; so that the fundamental component of it ceases to increase, or does so orily marginally.
As the negative feedback continues to increase proportionally with the amplitude of the oscillation, an equilibrium point is reached, where the net loop gain at the fundamental just equals infinity. The circuit was arranged so that this occured at a level well below the maximum possible swing set by the supply rails; with the result that the second harmonic distortion was negligible.
An advantage of an oscillator such as this, based upon the state variable filter, is that the circuit can be used both as an oscillator, and simultaneously as a second-order elliptic lowpass filter. Any third harmonic, due to the limiting action of the diodes, present at the high-pass output will be attenuated by a factor of three in each of the integrators.
Furthermore, as each integrator provides a 90° phase shift regardless of frequency, the third harmonic present at the high-pass output is in antiphase to that present at the lowpass output. So by using an additional summing amplifer to combine one ninth of the highpass output with the full lowpass output, the third harmonic sits in a notch.
This results in a signal entirely free of any third harmonic, an arrangement used in reference 4. Meanwhile, the fundamental output is of course also reduced, but only by a ninth.
Handy though this arrangement is, there is a down side to it. While the third harmonic is outphased completely, the fifth harmonic is actually made 5 dB worse. But there is still a net reduction in thd, since, due to the fairly soft limiting action of the diodes, the amplitudes of the harmonics at the high-pass output drop off much more rapidly than in an ideal squarewave.

Outphasing the fifth harmonic

It occurred to me that if I could arrange that the amplitude limiting method inherently did not produce third harmonic, then the fifth harmonic could be outphased instead - simply by adding a twentyfifth of the high-pass output to the lowpass output.
Reduction of selected harmonics by waveform shiaping is a technique long familiar in power engineering. There, it can be used to minimise the filtering required at the output of an inverter, as in for example reference 7 . So I experimented with a circuit designed to avoid producing third harmonic in the stabilisation department, permitting outphasing of the fifth.
This is shown in Fig. 3. Oscillation commences since there is positive feedback from the bandpass output via $1 \mathrm{M} \Omega$ to the inverting input of the first op-amp. Initially, there is no negative feedback via the $22 \mathrm{k} \Omega$ resistor to the noninverting input, as it is blocked by the diodes:
As the amplitude increases. their forward voltage is overcome, and thereafter the stronger negative feedback increases more rapidly than the positive feedback. This leads to equilibrium at a level which can be adjusted by means of the $4.7 \mathrm{k} \Omega$ potentiometer. The $1 \mathrm{M} \Omega$ potentiometer can then be adjusted to feed narrow additional positive feedback pulses at the tips of the waveform.
Following careful setting up, the output spectrum was as shown in Fig. 4. The third harmonic at the low-pass output is at -69 dB , about as low as the diode-free circuit of Fig. 1. It is also lower - without the benefit of outphasing - than achieved by the circuit of reference 4 with diodes.
But setting up was fairly critical, and performance with tuning and with change of ambient temperature would clearly have been unsatisfactory. Nevertheless, the low level of fifth harmonic was encouraging, so the circuit was rear-
ranged to provide low third harmonic output by means of outphasing.

Why not outphase all the

 harmonics?This circuit is shown in Fig. 5, and its performance in Fig. 6. The third harmonic is outphased completely, while compared with Fig. 4, the fifth harmonic has increased by the expected 5 dB .
It would be fine though, I thought, if both the third and the fifth harmonics could be outphased, and why not the seventh and the others to boot? This led to the experimental arrangement of Fig. 7.
Here, the amount of positive feedback is fixed by the $3.3 \mathrm{M} \Omega$ resistor, the desired amplitude of oscillation being set by the amount of negative feedback via the diodes. Having constructed the circuit as shown, with the $100 \mathrm{k} \Omega$ potentiometer at mid-travel, on switching on, the spectrum which met my unbelieving gaze is shown in Fig. 8.
Where had all the harmonics gone? The following day, they were back again, but only just above the -89 dB noise floor of the spectrum analyser. Successive adjustments of the two potentiometers nearly reproduced the previous day's astounding results, but the settings were critical, and the amplitude of the oscillation very unstable. So it was time to don the thinking cap.
The intention had been to use op-amp $/ C_{4}$ as a difference amplifier to pick off the harmonics generated by the diodes. These were then fed into the inverting input of $I C_{1}$. With the identical harmonics fed also into the non-inverting input as part of the negative feedback signal, the harmonic distortion should be rejected by $I C_{1}$ as a common mode signal.
The idea is sound, but it is essential that the harmonics, and only the harmonics, be fed back to the inverting input of $I C_{1}$. For if the fundamental component of the near-squarewave appearing across the diodes be fed back as well, the amplitude stabilisation mechanism is defeated. It is the 'deadspace' created in the negative feedback signal by the diodes that ensures oscillator start-up.
Thereafter, when the signal becomes large enough for the diodes to start to conduct, the negative feedback increases with the amplitude of oscillation, faster than the positive feedback increases.
If the fundamental component of the diode drop is now fed back along with the harmonics, via the difference amplifier, to the inverting terminal of $I C_{1}$, then regardless of level, the ratio of positive to negative feedback becomes independent of level, and amplitude stabilisation is lost.
So the circuit was modified to make $/ C_{4}$ a true difference amplifier, as shown in Fig. 9. Note that the ratio of the two resistors at the inverting input of $I C_{4}$ is equal to the ratio of the resistors at the other input - although these in fact also do double duty as the input divider chain for the negative feedback to $I C_{1}$.

With the wiper of R_{B} at the top of its travel - point B in Fig. $9-I C_{4}$ is a classic difference amplifier, with a near squarewave output representing the voltdrop waveform across the diodes. This, however, is not quite what is wanted; it contains the missing fundamental component of the negative feedback as well as the harmonics, as shown in the upper trace in Fig. 10.
The waveform input to the diodes is shown in the upper trace of Fig. 11, and note that the upper trace in Fig. 10 is in antiphase to this. Thus the voltage applied via the diodes and

Fig. 6. Spectrum of the 10 V peak to peak output of the circuit of Fig. 5. Spectrum analyser settings as for Fig. 4, but with video filter set to 'medium'.

resistors, as negative feedback to $/ C_{1}$, is as shown in Fig. 11, lower trace. Note the dead-space, rather like an underbiased class B output stage.
This illustrates an important point. When any mechanism introduces harmonic distortion onto a pure sinewave, the amplitude of the fundamental component of the distorted waveform will differ from that of the original.
To ensure outphasing of the harmonics by common mode

Fig. 8. Output of the circuit of Fig. 3. 5 pan $0-10 \mathrm{kHz}$, 100 Hz resolution (IF) bandwidth, video filter off.
cancellation in $I C_{1}$ without upsetting the amplitude stabilisation, the waveform fed to that op-amp's inverting input should consist of the harmonics only.
These only exist at the downstream side of the diodes. The fundamental component of the near-square waveform across the diodes represents the amount by which the fundamental input to the diodes exceeds that at their output. The difference amplifier $I C_{4}$ can be arranged to see a slightly smaller sinewave at its inverting input.

Fig. 10. Upper trace (1 V/div), the waveform appearing across the diodes contains a component at the fundamental frequency. Lower trace ($0.2 \mathrm{~V} / \mathrm{div}$), as the upper trace, except with the fundamental component removed.

Horizontal: $500 \mu \mathrm{~s} /$ division.

 the low distortion oscillator. IC_{4} is now a true difference amplifier.

Resistor R_{B} in Fig. 9 allows this to be adjusted to equal the amplitude of the fundamental component of the negative feedback signal shown in the lower trace of Fig. 11. The result is that the output of the difference amplifier $I C_{4}$ then contains the harmonic components only, as shown in Fig. 10, lower trace.
This adjustment is very easily carried out, by displaying the spectrum of the waveform at the distortion products measuring point DP in Fig. 9, on a spectrum analyser, and adjusting R_{B} to minimise the fundamental component displayed.

Measuring the results

Output of the circuit of Fig. 9, measured at the point LP, displayed a third harmonic component just visible above the spectrum analyser's noise floor, with higher harmonics not visible at all
To increase the measurement range, a twin-tee network was made up, using four $15 \mathrm{k} \Omega, 1 \%$ metal film resistors and four $10 \mathrm{nF}, 2.5 \%$ polystyrene capacitors. Figure 9 used 2.5% In polystyrene capacitors, and 1% metal film resistors throughout by the way.
Response of the twin-tee was plotted, using the spectrum analyser's internal tracking generator, and is shown as the upper trace in Fig. 12. With no adjustment, the twin-tee notch reduced the fundamental of the oscillator by 45 dB , permitting the input level to the spectrum analyser to be increased by 40 dB without overloading
The measurement noise floor was now about 120 dB below the oscillator's output, as can be seen in Fig. 12, lower trace. Allowing for the residual attenuation of the notch, the third harmonic is seen to be at -88 dBc , and the fifth at -104 dBc , while the second and fourth are lost in the oscillator's phase noise sidebands.

Some practical extensions

While the circuit has not to date been developed into a complete 20 Hz to 20 kHz audio oscillator, some initial tests were carried out to see if this would be practicable.
To test the performance with change in ambient temperature, an electronic thermometer was used in conjunction with a hair-dryer. The thermometer probe was placed adjacent to the diodes, and the hairdryer at a fair distance, so that the whole circuit was bathed in the same air stream, and left to reach equilibrium.
The temperature was thus raised from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. The oscillator's output level rose by roughly 2 dB , but the distortion figure remained unchanged.
Next, the circuit was modified to operate at 10 kHz by changing the two integrator $150 \mathrm{k} \Omega$ resistors to $15 \mathrm{k} \Omega$. As expected, amplitude control was lost, due to the increased residual phase shift in the integrators. This was largely corrected by fitting three 1.8 pF capacitors shown as C in Fig. 9 .
Some re-adjustment of R_{A} was still necessary, but thereafter, the distortion was, as far as could be determined without another twin-tee filter, similar to that measured previously.
The exact value required for the compensating capacitors C will depend upon layout, and may well be 1.8 pF or even less with a good pcb design - the experiments were carried out using, for speed, Experimentor prototyping plug-board. This exhibits a fairly high stray capacitance between adjacent points, rendering it completely unsuitable for rf work.
Even at audio, the strays can, as here, pose a problem. Bandswitching and fine frequency control, to cover 20 Hz to 20 kHz , can be implemented as in reference 4 .
Figure 13 shows some simple additions which could be accommodated with an additional quad op-amp. In theory, $I C_{5}$ should outphase even the residual third harmonic distortion visible in Fig. 12 - but don't expect perfection. After all, the typical thd of the TLO84 used in all the circuits illus-

Fig. 11. Upper trace, the waveform at point B in Fig. 9. Lower trace, the waveform at point C in Fig. 9. Both traces, $2 \mathrm{~V} /$ division vertical, $500 \mu \mathrm{~s} /$ division horizontal.

Setting up

Setting up the circuit for optimum performance is very straightforward, and no special equipment is needed. The sequence is as follows.
Disconnect the $560 \mathrm{k} \Omega$ resistor from the point DP and connect it to ground instead. This isolates the effect of R_{B}, preventing it interacting with the next step, while ensuring the effective positive feedback ratio is unchanged.
Set R_{A} to give the desired output level. Assuming 15 V supply rails, 10 V peak to peak is a suitable value.
Using the audio monitor of Fig. 13, adjust R_{B} for zero fundamental component in the output of $I C_{4}$; this is conveniently carried out at 1 kHz .
Disconnect the $560 \mathrm{k} \Omega$ resistor from ground and reconnect it to $I C_{4}$'s output. Check that this does not alter the level at the LP output.

References

1 Krause, VR, 'F.E.T. audio oscillator,' Wireless World. September 1971, p. 427.

2 Rosens, R, 'Phase-shifting oscillator,' Wireless World, February 1982. pp. 38-41.
3 Ridler, PF, 'Distortion in Feedback Oscillators.' Electronic Engineering, Vol. 37, No 451, September 1965, p. 604.
4 Hickman, I, 'Low distortion audio frequency oscillators.' Wireless World, April 1982, pp. 345-346; reproduced in 'Analog Circuits Cookbook' by the same author, ISBN 07506 20021. Butterworth-Heinemann 1995.
5 Hickman, I, 'LCR measuring transformed,' Electronics World, November 1994, pp. 931-934; reproduced in Hickman's 'Analog \& RF Circuits,' ISBN 07506 37420. Butterworth-Heinemann 1998.
6 Buter, F, "Transistor R-C Oscillators and Selective Amplifiers," Wireless World, December 1962, pp. 583-589.
7 Tumbull, FG, 'Selected Harmonic Reduction in Static DC-AC Inverters,' IEEE Trans. on Comm. and Electronics, July 1964, p. 374.

Fig. 12. Upper trace, the response of a 1 kHz (nominal) notch filter. Lower trace, the LP output of the circuit of Fig. 9 with the fundamental in the notch, and the sensitivity of the spectrum analyser increased by 40 dB . Span $0-10 \mathrm{kHz}, 30 \mathrm{~Hz}$ bandwidth, video filter at 'medium', 20s/div sweep speed.
trated, is listed as 0.003% or -90 dBc .
Together with $/ C_{5}, J C_{6}$ provides a choice of a 600Ω output, or a variable voltage source for driving high impedance loads. Amplitude monitoring is provided by $/ C_{7}$, enabling any output level variations with temperature to be trimmed out, by adjustment of $R_{\text {A }}$.

The value of R_{m} is determined by the sensitivity of the meter used, while another resistor R_{p}, of suitable value, may be included if desired, for meter protection in the event of overload.

Finally, $I C_{8}$ provides a means of adjusting R_{B} so that the output of difference amplifier $I C_{4}$ contains zero contribution at the fundamental. As R_{B} is adjusted, the sudden complete disappearance of the fundamental is very obvious, no need for the aid of a spectrum analyser

A switch to turn the stage off once the adjustment is complete, is clearly a good idea. Resistors R_{A} and R_{B} should preferably be multi-turn types, and for convenience can be made adjustable via the oscillator's front panel.

How many op-amps can you get from a six-inch wafer? In National Semiconductor's case, with its LMV300 family, then the answer is an incredible 80000 .
National claims it has re-invented the op-amp. The truth is less dramatic, but is certainly significant.

A quarter of a century after its introduction, the company has redesigned the LM300 family of op-amps using a relatively advanced $0.8 \mu \mathrm{~m}$ BiCMOS manufacturing process. For designers of modern equipment, the most important outcome is that supply voltage now ranges from 2.7 to 5.5 V . Other

The LMV321, a single op-amp, is available in the world's smallest package - the SC70-5. The five-pin device measures just 2 mm on each side. By summer, the company expects to have a chip scale package, with solder bumps placed directly over the pads on the device. But placing such a device may prove difficult with the die being only 0.43 mm along a side.

In order to get 80000 die from a wafer, National reduced the size of the pads from four to three mils ($75 \mu \mathrm{~m}$). The scribe street - the gap between each die removed when the wafer is cut with a diamond saw - was also reduced to $50 \mu \mathrm{~m}$. National got its supplier to redesign the saw to get this narrow cut.
parameters have been improved, and because of the huge numbers of die per wafer, cost is actually reduced.
Cyrille Claustres, National's European marketing manager, explained the company's reasons for the redesign. "Many op-amps were introduced up to 25 years ago. They cannot meet today's voltage and packaging requirements," he said.

Devices that can do the job are available, but as Claustres said: "Specialised low power, small products cannot meet the requirement of low cost."

The redesigned family includes the LM324, arguably the most popular device used today.

TELFORD ELECTRONICS

Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford, Shropshire TF6 6DJ, UK Phone: (00 44) 01952605451 Fax: (00 44) 01952677978 e-mail: telfordelectronics@telford2.demon.co.uk Carriage: $£ 10+$ VAT @17.5\% to be added to all UK orders Overseas orders welcome - Please call

ALL OUR EQUIPMENT HAS A 30 DAY GUARANTEE.
(EXCEPT CLEARANCE ITEMS WHICH ARE SOLD AS-IS)

The input section of the op-amp uses a differential pair with a folded cascode stage.

Both op-amps and comparators have been announced, in single, dual and quad form. Part numbers are LMV32I, 358, 324 for op-amps and LMV331, 393 and 339 for comparators. These devices are drop in replacements for their $L M$ ancestors. "Very often when we introduce a new product, designers have to relearn how to use it - not with the $L M V$," said Claustres.

Prices range from $26 \notin$ for single and dual devices in SOIC packages to 30ϕ for a quad LMV324 or 339 device in a TSSOP.

In order to meet, and in some cases exceed, the specification of the LM300 devices, some careful design was required. The major change is of course the use of a BiCMOS process. This has both advantages and disadvantages. Because the process is less than a micron, thousands of die are available from a wafer, reducing cost even though there are four times as
many transistors than the original design's 13.
If CMOS devices are available, then power consumption can be reduced. Bipolar transistor have better matching characteristics and drive capabilities. The main downside of BiCMOS is that it is essentially a digital process, modified for analogue devices. "We had to come up with a completely new architecture." admitted Claustres.

Just to make the redesign even more difficult, the designers set themselves the task of eliminating as far as possible the crossover distortion in the LM300 op-amps. "LM324s are not stable in some applications due to crossover distortion," said Claustres.

The new design, with a class $A B$ output amplifier, has rail to rail outputs with little distortion. Tested in a typical audio configuration, the device had a signal-to-noise ratio of 71 dB and total-harmonic-distortion

Specification table
 Supply current

Input offset voltage
Input bias current
Common mode rejection ratio
Power supply rejection ratio input common mode voltage range Output swing
Slew rate
Gain-bandwidth product
Phase margin

100нA/channel @ 2.7 V
$130 \mu \mathrm{~A} /$ channel @ 5.0 V
7 mV (max) @ $25^{\circ} \mathrm{C}$
11nA (typ) @2.7V
63 dB (typ)
60 dB (typ)
$\mathrm{V}_{-}-0.2 \mathrm{~V}$ to $\mathrm{V}_{+}-0.8 \mathrm{~V}$ (typ)
$V_{-}+120 \mathrm{mV}$ to $\mathrm{V}_{+}-40 \mathrm{mV}$ into 2 k (typ)
$1 \mathrm{~V} / \mathrm{Hs}$
1 MHz with $\mathrm{C}=200 \mathrm{pF}$
60°
plus noise figure of 0.02%.
On the output, CMOS transistors made rail to rail output easier to implement and maintained a 1 MHz gain bandwidth product with up to 200 pF of output capacitance. At low values of output capacitance, the gain bandwidth product increases to 3 MHz .
National is being deliberately secretive about the actual design of the output stage. Chief designer Erroll Dietz would only say: "All I would like to release for now is that the output stage has an extra gain stage sourcing current and uses an n-p-n for sinking and a PMOS for sourcing."
Another problem with the original design is the input common mode voltage range. The inputs cannot go closer than 1.5 V to the supply. With a 15 or 30 V supply this is fine, but at 2.7 V , this does not leave much room for manoeuvre.
National solved this by changing the front end to a bipolar differential pair with a folded cascode configuration. The original design also used a differential pair, but needed a darlington pair on the inputs.
This new arrangement allows the input common mode voltage range to extend to ground and to within 0.8 V of the positive supply. Using bipolar transistors rather than MOS types on the input improves noise and matching characteristics.

The majority of the remaining circuit uses CMOS which brings the benefit of reduced power consumption.

More modern and stringent electromagnetic copmpatibility tests have also been taken into consideration. Electrostatic discharge protection of 250 V on the old devices has been increased to 900 V on the LMV32I and 2000 V on the dual and quad devices.

National is taking the opportunity to design a range of devices on its new BiCMOS process. "The problem with this process is it's pad limited," said National's Seamus Coyle. So the company is looking at further integration. "We will put a three op-amp instrumentation amplifier onto one die," he said. This combines four op amps and eight resistors on a single die. The die could easily be squeezed into an SOT23-5 package.
There are many other building blocks that could be integrated. "We also have an a-to-d converter in this process," Coyle said.

HP New Colour Spectrum Analysers
HP141T +8552 B IF +8553 B RF- $1 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-\varepsilon 700$. HP141T + 8552B IF + 8554B RF $-100 \mathrm{KHz-1250M}-\varepsilon 900$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{~B}$ IF $+8556 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-\varepsilon 700$ $\mathrm{HP141T}+8552 \mathrm{~B} \mathrm{IF}+8556 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-\varepsilon 700$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{~B}$ IF $+8555 \mathrm{~A} 10 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHzS}-£ 1200$. HP8443A Tracking Gen Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200$ HP8445B Tracking Preselector DC to $18 \mathrm{GHz}-\varepsilon 250$.
HP 8444 A Tracking Generator - $5-1300 \mathrm{Mc} / \mathrm{s}-\varepsilon 700$. HP8444A Tracking Generator • $5-1300 \mathrm{Mc} / \mathrm{s}-\varepsilon 700$.
HP8444A OPT 059 Tracking Gen $\cdot 5-1500 \mathrm{Mc} / \mathrm{s}-£ 950$ HP35601A Spectrum Anz Interface - $£ 500$. HP4953A Protocol Anz - £400. HP8970A Noise Figure Meter +346 B Noise Head - $£ 3.5 \mathrm{~K}$ HP8755A Scalar Network Anz PI
Heads 11664 Extra- $£ 150$ each.
HP8756A Scalar Network Anz - $£ 1000$ Heads 11664 Extra. HP8903A Audio Anz - £1500.
HP8656A $100 \mathrm{KHz}-990 \mathrm{Mc} / \mathrm{s}, \mathrm{S} / \mathrm{G}$ AM-FM - $£ 1450$. HP3709B Constellation ANZ £2k
HP11715A AM-FM Test Source - $£ 750$
FARNELL TVS70MKII PU $0-70 \mathrm{~V} 10$ amps - $£ 150$ FARNELL PSG $520 \mathrm{~S} / \mathrm{G} 10 \mathrm{Mc} / \mathrm{s}$ AM-FM - £150. TEK 475 Oscilloscopes $200 \mathrm{Mc} / \mathrm{s}-£ 400$
TEK 474 A Oscilloscopes $250 \mathrm{Mc} / \mathrm{s}-£ 400$
MARCONI 6500 Network Scaler Anz - $£ 750$. Heads available to 40 GHz many types in stock.
HP $3580 \mathrm{~A} 5 \mathrm{~Hz}-50 \mathrm{KHz}$ Spectrum ANZ 875 HP3580A $5 \mathrm{~Hz}-50 \mathrm{KHz}$ Spectrum ANZ $£ 750-£ 1000$ HP3582A .02 Hz to 25.6 KHz Spectrum ANZ $£ 1$.
TEK $7 \mathrm{L5}+\mathrm{L3}-$ Opt 25 Tracking Gen - 9000 TEK $7 \mathrm{LL} 5+$ L3 - Opt 25 Tracking Gen - $£ 900$.
TEK $7 \mathrm{~L} 12-100 \mathrm{KHz}-1800 \mathrm{Mc} / \mathrm{s}-£ 1000$. TEK 7L12-100KHz-1800 M - 1000 .
Mixers are available for the above ANZ's to 60 GHz HP8673D Slgnal Generator . $05-26.5 \mathrm{GHz}$ _ $£ 15 \mathrm{~K}$ Systron Donner 1618 B Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}$ £2k.
ADRET 3310A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 600$. HP5316B Universal Counter A+B.
HP Plotters 7470A-7475A. Up to £250.
HP3730A+3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$.
HP Microwave Amps 491-492-493-494-495-1GHz $12.4 \mathrm{GHz}-£ 250$. each.
HP6034A System Power + HP5087A Dis Amp $£ 500$. HP6034A System Power Supply 0-60V $0-10 \mathrm{~A}--£ 500$
HP6131C Digital Voltage Source $+-100 \mathrm{~V} / 2 \mathrm{Amp}$. HP3779A Primary Multiplex Analyser - $£ 200$ qty HP3779C Primary Multiplex Analyser - $£ 300$ qty HP16310 Logic Analyser - £500.
HP5316A Universal Counter A+B HP5316A Universal Counter A+B.
HP8901A Modulation Meter AM-FM - $£ 1.5 \mathrm{k}$ Marconi TF2374 Zero Loss Probe - $£ 200$. Marconi TF2305 Modulation Meter - $£ 1.5 \mathrm{k}$ Racal/Dana 2101 Microwave Counter - $10 \mathrm{~Hz}-20 \mathrm{GHz}$ with book as new £2k
Racal/Dana 1250-1261 Universal Switch Controller + 200Mc/s PI Cards. IEEE interface- $\mathbf{K 5 0 0}$
TEEE interiace- 5500 . 2 I
TEK FG5010 Programmable Function Genr 20Mc/s - $\varepsilon 600$ TEK $2465 \mathrm{~A} 350 \mathrm{Mc} /$ /s Oscilloscope $-£ 2.5 \mathrm{k}+$ probes $-£ 150$. TEK $2465300 \mathrm{Mc} / \mathrm{s}$ Oscilloscope - $£ 2 \mathrm{k}$ + Probes - $£ 150$ TEK CT-5 High Current Transformer Probe - $£ 250$. TEK $\mathbf{J 1 6}$ Digital Photometer + J6523-2 Luminance Probe HP745A+746A AC Calibrator - $£ 600$. HP11729C Camer Noise Test Set.01-18GHz - LED - £2000. Marconi TF2008 - AM-FM signal generator - also sweeper - $\mathbf{\text { with manual - probe kit in wooden carrying box. }}$ With manual - probe kit in wooden carying box. HP Sweep Oscillators type 8690 A \& B + plug-ins from $20 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$
HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}$
$-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$.
HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s}$ £ $200-$ HP8447A Dual - $£ 300$.
HP Frequency Counter type 5340A - 18 GHz £800.
HP 8410-A - B - C Network Analyzer $110 \mathrm{MC} / \mathrm{s}$ to
12 GHz or 18 GHz - plus most other
units and displays used in this set-up - 8411a - 8412-
8741-8742-8743-8746
Racal/Dana 9301A-9302 RF Millivoltmeter $-1.5-2 \mathrm{GHz}$ qty in stock $£ 250-£ 400$.
Racal/Dana Modulation Meter type 9009-9008-8Mc/s 1.5 GHz - $£ 150 / £ 250$.

Marconi RCL Bridge type TF2700- $£ 150$
Marconi/Saunders Signal Sources type -6058B-6070A - 6055A - 6059A - 6057A
$6056-\varepsilon 250-£ 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi Microwave 6600A 1 sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5-40 \mathrm{GHz}-£ 750$ or P
only $£ 600$. MF only $£ 250$. only $£ 600$. MF only $£ 250$
Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-
7A11-7M11-7S11-7D10-7S12-S1-S2-S6-S52 7A11-7M11-7S11-7D10-7S12-S1-S2-S6 - S52
-PG506 - SC504 - SG502 - SG503 - SG504 - DC503 DC508 - DD501 - WR501 - DM501A - FG501A - TG501 PG502 -DC505A - FG504 - 7B80 + 85-7B92A.
Gould J3B test oscillator + manual - $£ 150$.
Tektronix Mainframes - 7603 - 7623A - 7613 - 7704A 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7834 -7623-7633-7844-7854-7104
Marconi 6155A Signal Source-1 to 2GHz - LED - $£ 400$. Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{Kc} / \mathrm{s}+$ high pass + low pass - E150.
HP 8750A storage normalizer - $£ 400$ with lead + S. A or N, A Interface. Board fitted.
Tektronix - 7S 14-7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11.
Marconi mod meters type TF2304-£250.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ LED readout - £1k.
Farnell electronic load type RB1030-35-£350

Racal/Dana counters - $9904-9905-9906-9915$
$-9917-9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}-£ 100-£ 450-$

- 9917 - $9921-50 \mathrm{Mc} / \mathrm{s}$ -

HP180TR, HP181T, HP182T mainframes $£ 300-5500$ Marconi 6700A sweep oscillator + 18GHz PI's availab Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter type $527 \mathrm{E}+$ rubidium standard type 9475 - $£ 2750$
HP432A - 435A or B-436A - power meters + powerheads to $60 \mathrm{GHz}-£ 150-\kappa 1750$ - spare heads
HP8614A signal gen $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $-£ 400$. HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour $£ 400$ HP 3336A or B syn level generator - $£ 500-£ 600$. HP 3586B or C selective level meter $-£ 750-£ 1000$. HP 8683D S/G microwave 2.3 - 13 GHz - opt 001 - 003 - $£ 2 \mathrm{k}$. HP 8640 B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - $£ 800-£ 1250$.
HP 862220 A Sweep Pl $-01-2.4 \mathrm{GHz}+$ ATT $-£ 1400-\Sigma 1750$ HP 86 Series PI's in stock - splitband from - 10 Mc (s) 18.6 GHz - $£ 250-£ 1 \mathrm{k}$.

HP 8620 C Mainframe - $£ 250$. IEEE - $£ 500$
HP 8615 A Programmable signal source $-1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ opt 002- H 1k.
HP 8601A Sweep generator $.1-110 \mathrm{Mc} / \mathrm{s}-£ 300$. HP 8349A Microwave Amp $2-20 \mathrm{GHz}$ Solid state - $\varepsilon 1500$ HP 1980B Oscilloscope measurement system - $£ 300$. HP 3455/3456A Digital voltmeter - £400
HP 5370 A Universal time interval counter - $£ 1 \mathrm{k}$
HP 5335A Universal counter $-200 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP 5328 A Universal counter $-500 \mathrm{Mc} / \mathrm{s}-£ 250$.
HP 6034A Power supply -0-60V -0-10 amps - $£ 500$. HP 6034A Power supply - $0-60 \mathrm{~V}-0-10$ amps - 5500 .
HP $3710 \mathrm{~A}-3715 A-3716 \mathrm{~A}-3702 \mathrm{~B}-3703 \mathrm{~B}-3705 \mathrm{~A}-$ 3711A-3791B-3712A-3793B microwave link analyse HP 3552A Transmission test set - £350. HP 3763A Error detector - $£ 500$.
HP 3764A Digital transmission analyser - $£ 600$.
HP 3770A Amp delay distortion analyser - $£ 400$ HP3770B - §450.
HP 3780A Pattern generator detector - $£ 400$.
HP 3781A Pattern generator - $£ 400$.
HP 3782A Error detector - $£ 400$.
Tektronix 577 Curve tracer + adaptors - $£ 900$.
Tektronix 1502/1503 TDR cable test set - £400.
Racal 1991-1992-1998-1300Mc/s counters - $400-£ 900$. Racal 1991-1992-1998-1300Mc/s counters - $£ 400-£ 500$
Fluke $80 \mathrm{~K}-40$ High voltage probe in case $-\mathrm{BN}-\Sigma 50-£ 75$ FIP 545 microwave 18 GHz counter $-£ 1200$. Fluke 510A AC ref standard $-400 \mathrm{~Hz}-£ 200$. Fluke 355A DC voltage standard - $£ 300$. Wiltron 6100 Sweep Gen + 6124C PI -4-8GHz - $£ 400$. Wiltron 610D Sweep Generator + 61084D PI - $1 \mathrm{Mc} / \mathrm{s}-$ $1500 \mathrm{Mc} / \mathrm{s} £ 500-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}-£ 1000$. HP 8699 S Sweep PI YIG oscillator . $01-4 \mathrm{GHz}-£ 300$ 8690 B MF - £250. Both $£ 500$.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex equipt - relays attenuators - switches - waveguides -
APC 7 plugs - adaptors etc. qty in stock
B\&K Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell HP - Weir - Thurlby - Racal etc. Ask for list. Large quantity in stock, all types to $400 \mathrm{amp}-100 \mathrm{Kv}$
Marconi 2955 Radio test set - £1800.
Marconi 2955 + 2958 Tacs radio test set - $£ 2000$ Marconi 2955R Radio test set - $£ 2000$.
Marconi TF2015 S/G $10 \mathrm{Mc} / \mathrm{s}-520 \mathrm{Mc} / \mathrm{s}$ AM.FM. $£ 100$. Marconi TF2016A S/G $10 \mathrm{Kc} / \mathrm{s}-120 \mathrm{Mc} / \mathrm{s}$. AM.FM. $£ 100$ Marconi TF2171 Digital syncronizer for 2015/2016.£50. Marconi TF2017 S/G.01-1024Mc/s.AM.FM. High grade low noise - LED readout. - $£ 1500$.
Marconi TF2018 S/G 80Kc/s-520Mc/s. AM. FM. $£ 800$. Marconi TF2018A S/G 80Kc/s-520Mc/s. AM. FM. $£ 1000$ Marconi TF2019 S/G 80Kc/s-1040Mc/s. AM. FM. $£ 1250$ Marconi TF2019A S/G 80Kc/s-1040Mc/s. AM. FM. $£ 1500$ Marconi TF2022E S/G 10Kc/s-1.01GHzs. AM. FM. $£ 1500$. Marconi TF2022E As above but as new + Cal cert. $£ 1800$. c/w TF6501 amplitude Anz. plus heads $10 \mathrm{Kc} / \mathrm{s}-20 \mathrm{GHz}$. Heads available to 40 GHz - $£ 4000$
Farnell S/G ESG 1000 10 Hz-1000Mc/s. AM. FM. $\Sigma 1200$. Farnell S/G PSG1000 $10 \mathrm{~Hz}-1000 \mathrm{Mc} / \mathrm{s}$. AM. FM. $£ 1300$. IFR 1200 S Communications radio test set. $£ 2500$. TF2370 Spectrum Anz's $30 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s}$. Large qty to clear as received from Gov-all sold as is iom pile co plete or add $£ 100$ for basic testing and adjustment. Callers preferred - Pick your own from over sixty units.
A. Early Model - Grey - Rear horizontal alloy cooling fins A. Early Model - Grey - Rear horiz.
qty of $5-\varepsilon 750$ lot - singly - $£ 200$.
B. Late Model - Grey - Vertical alloy cooling fins $-£ 300$. Marconi TK2373 Extender to $1.25 \mathrm{GHz}-£ 400$. - $£ 500$. H.P. 3325A Synthesized function generator - $£ 1000-£ 1500$ H.P. 3325B Synthesized function generator $-£ 2500$. H.P. 8405 A Vector voltmeter - late colour - $£ 400$. H.P. 8508A Vector voltmeter - $£ 2500$.
H.P. 8505A Network Anz $500 \mathrm{KHz}-1.3 \mathrm{GHz}$ - $£ 1000$. H.P. 8505 A +8502 A or $8503 A$ test sets $-£ 12500 / \Sigma 1500$ H.P. $8505 A+8502 \mathrm{~A}$ or $8503 A+8501$ A normalizer H.P. $8557 \mathrm{~A} .01 \mathrm{Mc} / \mathrm{s}-350 \mathrm{Mc} / \mathrm{s}-8558 \mathrm{~B} \quad 0.1-1500 \mathrm{Mc} / \mathrm{s}$ Tek 492 Spectrum Anz-OPT $3-50 \mathrm{Kc} / \mathrm{s}-21 \mathrm{GHz}-£ 3000$ Tek 492 P.S.A.. opt $1-2-3-50 \mathrm{Kc} / \mathrm{s}-2 \mathrm{GHz}$ £3000. Tektronix - HP Oscilloscopes $-100 \mathrm{Mc} / \mathrm{s}-465-465 \mathrm{~B}-1740$ 1741 etc - $£ 300$ - aty in stock.
Phillips $321750 \mathrm{Mc} / \mathrm{s}$ oscilloscopes - £150-£250. phillips $3296350 \mathrm{Mc} / \mathrm{s}$ IR remote oscilloscope - $\mathbf{\varepsilon} 1400$ Hitachi VC6041 Dig storage oscilloscope - $40 \mathrm{Mc} / \mathrm{s}-£ 500$ Tek 2430A Dig storage oscilloscope $-100 \mathrm{Mc} / \mathrm{s}-£ 2000$ Tek 2440 Dig storage oscilloscope $-400 \mathrm{Mc} / \mathrm{s}-£ 2200$ Tektronix 2245 A Oscilloscope - $100 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 1000$. Tektronix $2445+$ DMM $-250 \mathrm{Mc} / \mathrm{s}-£ 1250$.

Schaffner NSG 200E Mainframe - NSG203A low vo interface generator - NSG224 Interface simulator - NSG226 Interface generator - NSG224 Interface sim
Data line simulator - all six items at $£ 1500$.
Schaffner NSG200E - NSG203E low volt var simulator NSG222A interface simulator - all three - $£ 1000$. LIGHT \& OPTICAL EQUIPMENT
Anritsu ML93A \& Optical Lead Power Meter. Anritsu ML93B \& Optical Lead Power Meter. Power Sensors for above MA96A - MA98A - MA913A Battery Pack MZ95A.
Anritsu MW97A Pulse Echo Tester.
PI available - MH914C 1.3-MH915B 1.3-MH913B 0.85 MH925A 1.3-MH929A 1.55 - MH925A 1.3GI.- MH914C 1.3SM.

Anritsu MW98A Time Domain Reflector.
Pi available - MH914C 1.3-MH915B 1.3-MH913B 0.85 MH925A 1.3-MH929A 1.55-MH925A 1.3GI - MH914C 1.35 M .

Anritsu MZ100A E/O Converter

+ MG912B (LD 1.35) Light Source + MG92B (LD 0.85) Light Source
Anritsu MZ118A O/E Converter.
+MH922A 0.8 O/E unit + MH923 A1.3 O/E unit.
Anritsu ML96B Power Meter \& Charger.
Anritsu MN95B Variable Att. 1300.
Barr $\&$ Stroud LS10 Light Source.
BT Power Unit 850-1300-1500.
Photo Dyne 1950 XR Continuous Att. 1300-1500 Photo Dyne 1800 FA. Att.
NKT Electronic 0AM30 Att Meter (MN3032DX) 1300 out.
Electo Optic Developments FO-500 TX Laser.
Cossor-Raytheon 108L Optical Cable Fault Locator
$0-1000 \mathrm{M} 0-10 \mathrm{kM}$.
Intelco 220 Single Mode Att 1532.
TEK P6701 Optical Convertor $700 \mathrm{MC} / \mathrm{S}-850$
TEK Orionics 7000 Type PI OTDR-103A.
HP81512A Head 150MC/S 950-1700 HP84801A Fibre Power Sensor 600-1200. HP8158B ATT OPT 002+011 1300-1550. HP81519A RX DC-400MC/S 550-950. STC OFTX-3 Laser source. STC OFRX-3
STC OFR10 Reflectometer.
STC OFSK15 Machine jointing + eye magnifier.
Anritsu ME453L RX Microwave ANZ.
Anritsu ME453L TX Microwave ANZ.
Anritsu MS420B Network Spectrum ANZ.
Anritsu MH370A Jitter Mod Oscillator.
Anritsu MG642A Pulse Patt Gen.
Complete MS65A Error Detector.
System MS02A Timer \& Digital Printer Anritsu ML612A Sel Level Meter. Anritsu MS2802A Spectrum ANZ $100 \mathrm{~Hz}-32 \mathrm{GHz}$. Anritsu ML244A Sel Level Meter Advantest TR98201 Signal Gen Advantest TR9402 Digital Spectrum ANZ Siemens D2108 Level Meter. Siemens D2150 Blt Error Meter W\& G PCM3 Auto Measuring Set W\& G SPM14 Sel Level Meter. W\&G SPM15 Sel Level Meter. W8G SPM16 Sel Level Meter. W8G PS19 Level Gen.

W\& G DA20+DA1 Data ANZ

W\&G PMG3 Transmission Measuring Set
W\&G PSS16 Generator.
W\&G PS14 Level Generator
W\&G EPM-1 Plus Head Milliwatt Power Meter.
W\&G DLM3 Phase Jitter \& Noise
W\&G DLM4 Data Line Test Set.
W\&G PS10 \& PM10 Level Gen.
H.P. 8660 C S/G AM-FM-Phase *01-110 MC/s - $1300 \mathrm{MC} / \mathrm{s}$ $-2600 \mathrm{MC} / \mathrm{s}$ £1-£2k
H.P. 4274A LCR meter + adaptor
H.P. 8566A High performance S.A - $100 \mathrm{~Hz}-2.5 \mathrm{GHz}$ $2 \mathrm{GHz}-22 \mathrm{GHz}-300 \mathrm{GHz}$ with mixers.
H.P. 8754A Network ANZ 4-1300 MC/s + 8502A + cables. H.P. 8754A Network ANZ H26-2600 MC/s + 8502A + cables.
H.P. 8116A Pulse function Gen $£ 2200$ H.P. 3588A S.A. 10Hz - $150 \mathrm{MC} / \mathrm{s}$ opt 001-003. H.P. 54100A DIG Oscilloscope 1GHz - P.O.R. H.P. 54200A DIG Oscilloscope 1 GHz - P.O.R. H.P. 54501 A DIG Oscilloscope $100 \mathrm{MC} / \mathrm{s}$ - P.O.R. R \& S SMG S/G100KC/s - 1000 MC/s - AM-FM R \& S CMTA 54 Radio Comms. ANZ - 0.1-1000 MC/s R \& S PSA 5 Process Controller 1006-3008. 02 Tek TDS $360200 \mathrm{MC} / \mathrm{s}$ Oscilloscope P.O.R. Tek 2455 - $250 \mathrm{MC} / \mathrm{s}$ Oscilloscope Tek OF150 Fibre Optic TDR.
MAR S/G 2022D $10 \mathrm{KC} / \mathrm{s}-1 \mathrm{GHz}$ - White - $£ 2000$. MAR S/G $2022 \mathrm{C} 10 \mathrm{KC} / \mathrm{s}-1 \mathrm{GHz}-£ 1500$. H.P. 1630-1631-1650 Logic ANZ's.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA. ITEMS MARIED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AMD RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (01274) 684007. Fax: 651160

NEW Unused Test Equipment from one of the UK's Leading Manufacturers

Automatic Modulation Meter Model AMM 255. 1.5MHz-2Ghz Fitted IEEE488. LCD Display ONLY £495 + vat **

Transmitter Test Set Model TTS520. RF power, mod, AF upto 520 MHz 100 W . 50 ohm ONLY £750 + vat

Portable Appliance Tester Model PAT1000. LCD Display ONLY £350 + vat**

Automatic Modulation Meter Model AMM2000. 10Hz-2.4Ghz 32 chr alphanumeric display Fitted GPIB and RS232 ONLY £995 + vat **

Spectrum Analyser Model 352C. $300 \mathrm{kHz}-1 \mathrm{Gz}$. Small and Compact ONLY $£ 1500$ + vat

Synthesised Clock Generator Model SCG50 $15 \mathrm{MHz}-50 \mathrm{MHz}$ LED Display
ONLY £125 + vat **

RF Power Meter Model 2081. to 500 MHz . 100W. 50ohms. 7 ranges ONLY £125 + vat **

*****SPECIAL*****
Oscilloscope Probes. x1 x10 switchable. 100 MHz

ONLY £9.95 + vat

Programmable Signal Generator Model PSG1000. 10Hz-1Ghz fitted GPIB. ONLY £995+vat** Black Star Meteor 100 Frequency Counters with TXO option. To 100 MHz . ONLY £75+vat** Black Star Meteor 1000 Frequency Counters with TXO option. To 1000 MHz . ONLY £150+vat** NOTE: All items marked ** are supplied Complete WITH MANUALS

| SPECIAL OFFER.."PROBE-ABLY the Best Offer you will see this YEAR"" |
| :---: | :---: |
| Brand New $x 1 \times 10$ Switchable Oscilloscope Probes.. OK to 100MHz.. Supplied with adaptors etc |
| Quality German made. NOT Rubbish. Blister Packed. (see picture above) ONLY £9.95 + vat |

ANCHOR SUPIPLIES L'TD

The Cattle Market, Nottingham NG2 3GY. UK Tel: (0115) 9864902 Fax: (0115) 9864667

Mail Order Most Welcome

Open 6 Days a week (Closed Sunday)
WEB Site: http//www.anchor-supplies.Itd.uk e-mail: hitek@anchor-supplies.Itd.uk All Prices are plus VAT. Courier Delivery to UK mainland addresses $£ 7.95$ + vat

> Is it necessary to re-form electrolytic capacitors that have been stored for years? Why do tantalum capacitors fail short circuit? Do electrolytic capacitors have an extremely high dielectric constant? Cyril Bateman knows.

Understanding
 capacitors
 Aloufiniom and fonitalum options

Aluminium and tantalum electrolytic capacitors uniquely balance $C V$ product against physical size. While film or ceramic capacitors are readily available up to $10 \mu \mathrm{~F}$, higher capacitance values are physically large and very expensive. Very large value electrolytic capacitors are available at low cost, and in physically small packages.
The possibility of forming an insulating film on the surface of aluminium was first observed by Wheatstone in 1854. In 1908 a rolled type aluminium capacitor was produced in USA and a viscous electrolyte of ammonium tetraborate and glycerine was developed in Germany. ${ }^{1}$ These two essential discoveries resulting ultimately in the modern electrolytic capacitor.
Regardless of construction or dielectric used, every capacitor is composed essentially of two conducting surfaces, called electrodes, separated by an insulator. ${ }^{2}$ Insulation materials produce differing capacitance values for the same area and thickness, according to their dielectric constant, or ' K ' value.
The permittivity of free space is used as the base unit since all other materials - including air - exhibit increased capacitance. These K values, which range from 1.00059 for air to greater than $\mathbf{1 2 0 0 0}$ for high-K ceramics, significantly influence the capacitance achieved.
Electrolytic capacitors are manufactured using so-called valve metals, the most common being aluminium and tantalum. Valve metals have the ability to form an insulating, semi-conducting and protective surface oxide film Aluminium oxide has a K value of 8 , while that for tantalum pentoxide is 27.6 , approximately. ${ }^{3}$
Aluminium oxide and tantalum pentoxide films grown on the highest purity metals provide very high-quality, low-loss insulators. Aluminium oxide has a dielectric strength approaching the theoretical strength ${ }^{4}$ as predicted by the ionic theory of crystals.
Capacitance value depends on the product of the electrode area and the K value of the insulating dielectric. It is inversely proportional to the distance separating the electrodes. For any chosen dielectric, the capacitance attained depends totally on the insulators thickness and surface area.

When a flexible electrode system that conforms precisely with the insulator's surface is used. The effective or apparent area can then be increased by roughening or abrading, increasing capacitance without increase of physical size. This effect is called surface gain.
Frequently, electrolytic capacitors have been described as having an extremely high dielectric constant. This is wrong, the K values of 8 and 27.6 are correct, ${ }^{3}$ so how can such high capacitance values be attained?
Compared to metallised-plastic film capacitors, which use dielectric film thickness of a micron and above, electrolytic capacitor dielectric films are some fifty times thinner.
This extremely thin dielectric results in electrolytics being the most highly voltage stressed of all capacitors. However this combination of a very thin dielectric having a K value of 8 , or even 27.6, still does not explain how such large capacitance values can be attained.

Surface gain - aluminium

I mentioned roughening or abrading the insulators surface to increase its apparent area. You can see an example of this by closely examining a piece of aluminium kitchen foil. Usually, one side is smooth and shiny, the other matt. Under a times-ten magnifying glass, this matt surface is visibly embossed, providing some surface gain.
The earliest electrolytic capacitors attained usable surface gains by spraying molten aluminium onto a carrier. Known

Fig. 1. Edge on view, much enlarged, of a 100 micron thick etched and formed foil showing large tunnels connecting both foil faces. Taken using an electron microscope. This foil has become porous to liquids.

Fig. 3. This view of a partially wound element, shows a large multiple tabbed radial leaded capacitor. An alternative arrangement using a single anode and cathode tab is more common. Also shown is an extended cathode foil, which improves heat dissipation. With its turns swaged to connect each other, this extended cathode foil can substantially reduce capacitor equivalent series resistance.

Fig. 2. Simplified sketch of an aluminium electrolytic capacitor, showing anode and cathode
aluminium oxide
dielectric films in contact with
highly conductive electrolyte.
as 'fabricated plate', this technique was popular for high voltage capacitors. It was quickly superseded for low voltage capacitors though by chemical etching methods.
Today, the surface gain of aluminium electrolytic capacitor foils is attained by electro-chemical etching in a bath of electrolyte. Reduced to basics, an electrolyte is simply a liquid that conducts electricity, having a low resistance or high conductivity, Fig. 1.
Common examples of electrolytes are car battery acid and sea water. The aluminium to be etched is placed in a bath of electrolyte and current is passed. There's more about this in the panel entitled 'Aluminium etching.'

Surface gain - bead tantalum

The modern bead tantalum capacitor is fabricated from fine particles of tantalum powder surrounding a small tantalum wire. These particles are compressed into pellets or slugs. Compression pressure is controlled to restrict the pellet's density. ${ }^{5}$ The object is to produce a porous body having a very large internal surface area.
To increase the cohesion of these tantalum particles and ensure electrical conductivity, the compressed slugs are sintered at very high temperatures in vacuum furnaces. This provides a mechanically rugged, porous structure.
The high sintering temperature performed in vacuum has a purifying effect. Tantalum is a refractory metal and needs a sintering temperature approaching $2000^{\circ} \mathrm{C}$. At such temperature, most impurities evaporate, and are removed by the vacuum pumping system.
Having attained a large surface area, both aluminium and tantalum oxide dielectrics are grown in situ onto all-metal surfaces. This involves an electro-chemical process called 'forming'. The 'formed' oxide fully covers and insulates all visible metal surfaces and all invisible cavities within the metal.

Forming aluminium oxide

Placed in a bath of suitable electrolyte and with a positive voltage applied to the foil, aluminium oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, grows on the foil's surfaces.
Depending on the electrolyte used, two main forms of this oxide can be grown. A hard non-porous oxide layer is deliberately grown when the aluminium foil is to be used as a capacitor dielectric or other insulator. When the aluminium is to be 'anodised' to provide a coloured decorative finish, a porous oxide is grown.
An aggressive electrolyte simultaneously re-dissolves some existing oxide, resulting in a porous oxide layer. This process is commonly called anodising. In other applications, the pores in the oxide are be filled with coloured dyes, resulting in the popular decorative finish.

Using a non-aggressive electrolyte, a slowly growing, impervious and continuous oxide film is obtained. This nonporous, hard oxide film grown on super-pure aluminium is an excellent insulator that can be formed to withstand at least 600 volts.
I mentioned earlier that the dielectric oxide formed is very thin. Its thickness is self limiting. Oxide growth at any one voltage slows and almost ceases with time, ultimately attaining some $14 \AA$ thickness 3 for each volt applied.
Foil used in commercial capacitors is formed at a voltage at least 120% of the capacitor's rated voltage. This ensures low leakage current and provides the overvoltage capability needed for the 'surge voltage' claimed. A commercial 10 V aluminium electrolytic capacitor will have a dielectric thickness of some 0.02 microns. There's more on this topic in the panel entitled 'Aluminium forming'.

Forming oxide for tantalum devices

Being less reactive than aluminium oxide, tantalum pentoxide is generally grown in an acidic bath. Since the current paths into the centre of a slug can be quite tenuous, a strong, highly conductive electrolyte is used.
Tantalum pentoxide is an excellent insulator, growing to a thickness of $17 \AA$ per formation volt applied to the slug. ${ }^{3}$ This oxide makes a highly amorphous film, but if subjected to a high field strength at a fault site, it can become crystalline, resulting in a short circuited capacitor. ${ }^{5}$ To reduce the risk of this happening, tantalum capacitors are usually formed at much higher voltages than are aluminium capacitors, for the same rated voltage.

Putting it together

Mainstream aluminium electrolytic capacitors are wound then impregnated with liquid electrolyte, while most tantalum capacitors are porous slugs impregnated with a dry electrolyte. However many permutations on these techniques are possible.
Dry or solid aluminium electrolytic capacitors offer an intermediate approach between these two extremes, and wound foil tantalum also wet electrolyte slug tantalum capacitors are also produced.
Wet tantalum capacitors are usually fully hermetically sealed using glass metal seals, for good reason. While protecting the capacitor from moisture, the glass seals also protect the outside world from the electrolyte. For example, sulphuric acid or lithium chloride based electrolytes have been used. ${ }^{6}$
Many wet tantalum capacitors use similar strong electrolytes, so casual dismantling is not advised.
For brevity I only detail the mainstream products here, i.e. those that are commonly available from distributors.

Aluminium - winding methods

Aluminium is non-rusting because, on exposure to air, it forms a protective visually transparent oxide film on its surface. If this naturally occurring oxide film is mechanically removed, aluminium has a characteristic smell, which disappears as the oxide film regrows.
As a result, all aluminium electrolytic capacitor foils and connecting tabs, whether deliberately formed or not, are covered in oxide. Obviously thickness of the oxide coating differs. Naturally occurring oxide is extremely thin, equivalent perhaps to some 1.5 electrical volts of formation. The lowest voltage foil is formed to $8-10$ volts, and is thus 5 or 6 times thicker.
Similar in construction to the foil and paper capacitors described in a previous article, ${ }^{7}$ aluminium electrolytic capacitors comprise two aluminium electrode foils, interwound with separating papers and using tab connections. The whole winding is then vacuum impregnated.
Here all similarity ends. Being an extremely good insulator, the impregnant used in paper capacitors is the true dielectric. Aluminium capacitor electrolyte on the other hand is an extremely good conductor, the aluminium oxide layers form the dielectric, Fig. 2.
When the lowest possible equivalent series resistance is needed, multiple connecting tabs, dispersed along the foils, are common - especially for large windings. Smaller low esr windings can be wound using single tabs, connected to the centre of each foil.
The cathode foil only of low voltage radial capacitors can also be wound extended beyond the papers along one edge. Each cathode turn can then be short circuited to all other cathode turns by passing over the rim of a high speed rotating aluminium 'swaging' wheel, Fig. 3.
I used this intermediate approach many years ago to design some very low profile $4000 \mu \mathrm{~F}, 63 \mathrm{~V}$ capacitors. These were custom designed for the first mass-produced 100 W per channel, hi-fi stereo amplifier. They probably represented the first production capacitors to combine a central tabbed anode with an extended and swaged cathode foil. The construction ensured extremely low esr and inductance, in a case 45 mm diameter and only 50 mm tall.
Most small aluminium electrolytic capacitors however are wound using a buried-foil winding. External connections are made using two formed aluminium connecting tabs, frequently placed towards the outer end of the winding
One exception to this is some very small diameter axial capacitor elements that are wound onto an aluminium spindle or riser. The anode foil is attached to this riser, which remains as part of the finished capacitor, Fig. 4.
The cathode connection for this style of axial capacitor can be made using short tabs connected to the outer end of the cathode foil. Pressure contact with the capacitor case is made by trapping the tabs between the case and its rubber end-seal. Alternatively an extended cathode tab is welded to the bottom of the case, before inserting the wound element. These constructions exhibit from 20 to 85 nH of self inductance, according to case size.

Inductance myth

Since these capacitors are wound, many writers erroneously ascribe very high self-inductance as being inevitable in aluminium electrolytic capacitors. The largest inductance value found browsing several catalogues, was less than 100 nH . This is equivalent to some $10-12 \mathrm{~cm}$ of connecting wire or printed circuit track.
Radial-mounting electrolytic capacitors use multiple distributed tab connections, or single tab connections made close to the mid-turn of each winding. These exhibit an extremely small winding inductance - less than 20 nH and

Fig. 4. One common construction used for the smallest axial wound capacitors. Disadvantages are its pressure contact between cathode tabs and case and increased self inductance due to foil connections being at extreme opposite winding ends. But with small windings, self inductance remains acceptable.

Fig. 5. Sectional view of typical small radial capacitor showing centre foil tab connections, minimising self inductance, which is typically much less than 20 nH .

35 nH respectively. ${ }^{8}$ The major contribution to this is from the connecting tabs and the capacitors leadout wires, Fig. 5.
Axial-leaded capacitors exhibit more inductance. While larger sizes may be centre tabbed, connecting the cathode foil to the case, requires a longer tab. Surplus tab is folded when inserting the capacitor winding into the case.
Inevitably, an axial capacitor exhibits higher self inductance compared with the same sized radial leaded alternative, as illustrated in Fig. 6.
To demonstrate the effects constructional differences of small aluminium electrolytic capacitors have in practice. I used the application test circuit and phase meter, ${ }^{9}$ described in 'Fazed by Phase' to make comparison measurements.
I measured four capacitor from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$. These values are frequently used in audio amplifier coupling circuits. When possible, I selected 50 V rated bi-polar radial, polar radial and polar axial aluminium electrolytic capacitor constructions. Since $10 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum bead capacitors were available, they too were measured.
The un-sanitised measured plots, Figs 7-10, show departure from ideal or theoretical behaviour starting at well below 1 kHz . The esr curves are almost constant with frequency, resulting in capacitor phase angles approaching 45° at the critical mid-audio frequencies. The bi-polar capacitor clearly out-performs the other aluminium types.
Regardless of these differences in construction, to ensure a long service life, the electrolyte used must provide the oxygen needed to regrow any damaged oxide film. It must also be chemically inert to both aluminium and its oxides. Due to electro-chemical potential effects, no other metal can be permitted to contact the electrolyte. Being in contact with electrolyte, the capacitor case must be made of aluminium or a non-metal.
Any two pieces of aluminium in contact with electrolyte and subjected to a voltage differential will grow aluminium oxide. So pressure contacts, as used in foil and paper capac-

Fig. 6. Sectional view of a typical axial capacitor construction used for medium and larger sizes. While having centre foil tab connections, self inductance is increased due to the excess cathode tab length needed to permit assembly.

Fig. 7. As measured, plots of impedance and esr for bi-polar radial, polar radial, polar axial and bead tantalum 10بF capacitors. Shows the Panasonic bi-polar performs best of aluminium variants, but all types have near 45° phase by 10 kHz and deteriorating performance from as low as 1 kHz .

Fig. 9. As for Fig. 8 but this time using 47μ F values. Due to the larger size and foil area, the Panasonic bi-polar style easily outperforms the smaller alternatives.

Fig. 8. As for Fig. 7 aluminium types but $22 \mu \mathrm{~F}$ values. Where possible, 50 V ratings or nearest possible were used for these comparisons. At this value the bi-polar capacitor is the best choice.

Fig. 10. With $100 \mu \mathrm{~F}$ values the Panasonic bi-polar remains a notably better performing capacitor for these tests.
itors, cannot be used to connect the inserted tabs to the electrode foils.

Two common methods to ensure low resistance connections between the electrode foils and connecting tabs are used. Small or low cost capacitors may use a 'stitched' connection. Here, a shaped needle point is burst or punched through the connecting tab and electrode foil. Small 'ears' of tab material are forced out, then turned over and well flattened down. This effectively rivets the two parts together. While simple and crude looking, a good long-life connection results, Fig. 11.
A much better technique, called 'cold pressure welding' is used in larger or more professional capacitors. Here, a specially profiled, small press tool is used. It is given enough pressure and time to allow the metals from the electrode and tab foils to interchange, forming a molecular bond. As with a conventional hot weld, the two joined metals cannot be separated.

This excellent joint results from the tool pattern used. By compressing and displacing metal, the pattern removes the oxide layers, allowing direct metal to metal bonds. Cold welds are easily identified by the press tool's outline and
inner patterns. No bursting through as for a stitched connection can be seen, Fig. 11.

Welding, using either cold pressure or laser, is the preferred method for all aluminium electrolytic capacitor internal connections. However a rivetted connection between connecting tabs and the external solder tags, can be a satisfactory alternative - especially for smaller capacitors.

Aluminium-dielectric systems

The anode electrode foil of an aluminium electrolytic also provides the dielectric oxide which is in intimate contact with the electrolyte - the true second electrode.

Electrical connection to this electrolyte is provided by a second foil, or cathode electrode, which is also covered with dielectric oxide. In other words two foils comprise two distinctly separate capacitances in series, inter connected by the conductive electrolyte.

A polarised aluminium electrolytic possesses two capacitors, the desired one in series with a much larger "cathode' capacitance. This cathode capacitance has a lower voltage withstand, typically 1.5 V and is of opposing polarity to the

Aluminium 'forming'

Placed in a bath of suitable electrolyte and with a positive voltage applied to the foil, aluminium oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, grows on the foil surfaces to a thickness 14 Angstroms for each volt. As mentioned in the main text, two forms of aluminium oxide can be produced, one porous, the other a non-porous and hard oxide. The hard oxide film is an excellent insulator that can be produced to withstand 600 V using super-purity aluminium. Aluminium and electrolyte purity are important, since impurities result in weakness in this insulating oxide film, increasing leakage current.
Pure aluminium can be attacked by pure water at modest elevated temperatures, unless this oxide film has first been hydrated by boiling in water, or is chemically inhibited.
The oxidation process is self regulating. Initially most forming current passes through visible and exposed surfaces. With continued oxide growth, current at these exposed surfaces reduces, slowing local growth and diverting current to less accessible areas. Current flow and oxide growth almost cease when all metal surfaces are insulated.
The aluminium oxide dielectric formed is highly amorphous, except for the outermost surface layer, which may be porous when formed at high voltages. Boiling in very pure water hydrates the oxide sealing this porosity, resulting in very low leakage current capacitors.
Aluminium oxide is visually transparent, but the etched foil surfaces are covered with minute voids and tunnels which absorb light, hence the dark appearance, Fig. 11.
In general, foils are etched and formed from wide rolls of aluminium, then slit to the desired widths for capacitor
manufacture. Each width has thin exposed raw aluminium edges. These edges, together with any mechanical handling damage, will have the oxide film renewed after capacitor winding, as part of the ageing process.
To avoid consuming excess electrolyte, following impregnation and before final assembly, high voltage capacitors may be 'wet aged' while immersed in baths of electrolyte.

Fig. 11. Photograph of a dismantled and partially unwound capacitor shows a good example of the stitched technique used to connect both anode and cathode foils to their respective tab foils central tabbed in this example. Also the cold pressure welded joints connecting anode and cathode tabs to the external tag rivets are clearly visible. This excellent joint results from the tool pattern which, by compressing and displacing metal, removes the oxide layers allowing direct metal to metal bonds.
anode capacitor, Fig. 2.
A non-polarised, or bi-polar capacitor is usually made using two identical anode foils. This provides two equal value and equal voltage capacitors in series, each double the required capacitance and again of opposing polarity.
Being a semi-conductor, aluminium oxide withstands its formed voltage in one direction only, passing a small 'leakage' current. As for a semi-conductor diode, with reversed polarity it conducts at a low voltage, typically 0.4 to 0.5 V while passing a high current.
Regardless of level, this current disassociates some water in the electrolyte. depositing oxygen at the positive electrode, hydrogen at the negative electrode. The oxygen is consumed to generate aluminium oxide.
Many electrolytes contain a hydrogen absorber, to absorb the hydrogen released by normal leakage currents. Even so, with reversed polarity, much of the hydrogen must be allowed to escape.
With the above information, it is now possible to develop an equivalent circuit model of an aluminium electrolytic capacitor, Fig. 12.

Reverse bias effects

In a polarised capacitor the 'cathode' foil capacitance, being in series with that of the anode foil, reduces the net or measured capacitance. It also contributes two advantages not present with the tantalum slug styles.
The withstand voltage of the cathode foil's dielectric oxide allows the capacitor to accept small reverse voltages for a significant time, both in service and in approval testing.
This cathode foil's C / V product, if equal or greater than that of the anode foil, enables charge displacement from anode foil to cathode foil. The cathode foil in a capacitor subjected to normal charge and discharge currents, does not then become reverse biased with respect to the electrolyte. Such capacitors

Fig. 12. Equivalent circuit of a polarised aluminium electrolytic capacitor. Since leakage current can be significant, it is shown as a shunt resistance rather than converting to its series equivalent, as more usual for other capacitor types. Simple Spice analysis shows how easily the electrolyte of a polarised capacitor, used to couple irregular or pulse waveforms, can become internally reverse biased to the cathode foil, resulting in early failure.
are described as being charge-discharge proof, Fig. 12.
Many quality aluminium electrolytic capacitors are subjected to a million charge-discharge cycles with rise and fall times of 100 ms as part of their approvals testing. For IEC 384-4 charge-discharge approval, capacitance change in this test must be less than 10%.
Note, though, that capacitors that are repeatedly 'crash' charged and discharged, as in photoflash or strobe equipment, require special construction. Commercial capacitors used for these duties - regardless of their voltage rating have quickly and very dramatically failed.
The current that flows when polarity is reversed can generate sufficient gas to drive electrolyte out of the winding. Pressure builds up in the capacitor case, resulting ultimately in a capacitor failure.
Direct-current polarity reversal at the capacitor terminals is of course easily measured and avoided.
A less obvious problem occurs when the capacitor is used to couple irregular or pulse waveforms. A repetitive charge

Fig. 13. Plot showing how impedance versus frequency characteristics change with ambient temperature, for a typical 100 1 F 63 V capacitor.
transfer from anode to cathode of a polar capacitor can result in the electrolyte becoming reverse biased relative to the cathode. As a result, a non-polarised or bi-polar capacitor should be used here.
Should this reverse bias exceed permitted levels, oxide growth at the cathode reduces its capacitance. In turn, this further increases the reverse bias voltage. Gas pressure developed drives out electrolyte, resulting in capacitor failure.

Bead or slug tantalum

To produce a capacitor, the formed and sintered tantalum slug only needs impregnating with electrolyte and providing with its connecting cathode electrode.
In most cases the "dry" electrolyte used is manganese dioxide, while the cathode is a graphite or carbon coating. Electrical connection to this coating is provided by layers of
silver loaded ink or epoxy.
As the manganese dioxide is a solid, it is not possible to directly impregnate it. It has to be converted from a suitable liquid medium that can be vacuum impregnated into all voids inside the sintered slug - no matter how small
Resulting from these voids and passageways, the tantalum slug exhibits a level of self inductance. The device becomes self resonant typically between 500 kHz and $5 \mathrm{MHz},{ }^{10}$ according to bead size and capacitance.
In many cases, the medium used is liquid manganese nitrate. Easily impregnated into the slug and converted into manganese dioxide by pyrolysis. or thermal decomposition, at $400^{\circ} \mathrm{C}$. Many repeated impregnations and pyrolysis cycles are needed to ensure sufficient manganese dioxide.
Contact to this manganese dioxide electrolyte generally uses successive layers of colloidal graphite with silver loaded paints or conductive epoxy resins. This is frequently, finished by dipping in molten solder. The external cathode connection is easily attached either by soldering to the solder coating or with conductive epoxy to the silver loaded paint/epoxy coating. ${ }^{5}$
Since the manganese dioxide electrolyte is directly connected to the capacitor's negative lead, only one polarised dielectric is present. Consequently, reverse voltage should not be applied. The Siemens Matsushita data book for example restricts any reverse voltage application to five applications of a minute maximum each hour.
Two dry tantalum beads can be connected back to back to simulate a bi-polar capacitor. To prevent damage to the reversed polarity capacitor, protection diodes must be placed in parallel with each capacitor. These are detailed in the Siemens Matsushita data book

Bead tantalums made with liquid electrolytes must not be subject to any reverse voltages. Excess gassing resulting from reversed polarity builds up internal pressure, destroying the capacitor. Silver from the cathode electrode can also transfer to the anode, leading to a short circuit.
Surge currents for all bead tantalums, should be restricted by series impedances of typically an ohm minimum per applied volt. ${ }^{10}$

Aluminium electrolytes

The manganese dioxide used in solid aluminium electrolytics has already been discussed, but for wet or non-solid aluminium electrolytic capacitors, many different formulations exist. These usually comprise a neutralised weak acid in a suitable solvent.
The solvent used must not freeze or boil at the extremes of the capacitor's working temperature range, nor must they attack pure aluminium
One old but still usable electrolyte is a mixture of ammonia and boric acid dissolved in pure ethylene glycol. Most older electrolytes contained small quantities of water. Prepared using liquid ammonia, they were boiled to reduce water content.
This water content combined with lesser purity foils resulted in early electrolytics having a reputation for leakage current deterioration in storage. They needed re-forming before use.
For the past 30 years, this water attack could easily be inhibited by a chemical additive in the electrolyte, in much the same way that steel is passivated to prevent rust, using phosphoric acid. This, and the use of super purity aluminium foils, has effectively eliminated the need to re-form capacitors.
As an experiment, I recently measured the leakage current of three unused prototype 16 and 25 V capacitors, made almost 30 years ago and stored since then in a box in my garage. All three easily passed their catalogued leakage claims
without reforming.
Modern electrolytes use many different acid formulations and solvents. These range from simple solutions of ammonium borate or ammonium succinate in glycol to organic acids and solvents such as di-methyl-formamide. In principle, many weak acids or their ammonium salts can be used, leading to a wide choice.
A hydrogen absorber, able to cope with hydrogen released by normal leakage current, is provided in many modern electrolytes.
While very conductive electrolytes are used in the lowest voltage capacitors, such electrolytes cannot be used at high voltages. In this context one must view the separating paper tissues used as being part of the electrolyte system. Thick, low-density 'rag' tissue paper can be used at low voltages, while for high voltage work, higher density thin tissue paper and even multiple tissues - may be needed.
While most aluminium capacitor electrolytes are innocuous, it is as well to check the makers literature before dismantling a capacitor to investigate its construction. In any case, you are well advised to wear suitable rubber or plastic gloves, and use eye protection against electrolyte splashes.
Formic acid for example stings the eyes and any broken skin. It may also trigger an allergic reaction in hay fever sufferers, as I can well testify from past experience.

Finishing processes

Following final mechanical assembly, both capacitor types are subjected to temperature and voltage ageing or burn in. This allows minor dielectric fault areas to be removed. and leakage current reduction to catalogue specifications.
In aluminium electrolytic capacitors leakage current is reduced by deliberately growing new oxide, replacing any mechanically damaged during the assembly processes. This regrowth consumes some of the oxygen available from the liquid electrolyte.
A level of regrowth continues throughout the capacitor's service life, stabilising and reducing leakage current. Ultimately at the end of service, the capacitor fails usually as a high impedance or open circuit when the available oxygen in the electrolyte has been consumed.
Tantalum and aluminium solid electrolyte capacitors behave quite differently. Fault repair and leakage current reduction does not occur by oxide regrowth, but rather in a similar fashion to metallised film capacitor self healing. by isolating the faulty area. ${ }^{5}$
The increased current due to a minor fault locally heats the manganese dioxide, which spontaneously degenerates to lower oxides. These exhibit much increased resistivity compared to manganese dioxide, effectively isolating this faulty area.
Should a major fault occur in a bead tantalum capacitor used in a low source impedance circuit, excess heat is generated. This excess may be sufficient to locally crystallise the surrounding area of tantalum pentoxide. Energy available from the circuit may then be sufficient to promote an
avalanche failure condition, ${ }^{5}$ the capacitor failing short circuit. Given sufficient externally supplied power, the capacitor can burn.
In the early days of bead tantalums in order to prevent this avalanche failure mode, a common recommendation was that they should only be used on power rails via a current limiting source impedance of at least $3 \Omega / \mathrm{V}$.
Improvements in materials and manufacture of bead tantalums have much reduced this problem - but they have not eliminated it. While not well publicised, many makers offer low-impedance burnt in and even fuse protected tantalum capacitors. However the advice in MIL-STD-198 is best heeded. ${ }^{10}$ It says you should ensure a $1 \Omega / \mathrm{V}$ source impedance minimum together with substantial capacitor voltage de-rating for high reliability.
One hybrid capacitor combining the best aspects of the two aluminium-foil construction with the long shelf and service life characteristics of the solid tantalum is the solid aluminium wound foil capacitor. ${ }^{11}$ These characteristics provide reliable service in automotive applications, surviving vibration. temperature extremes and voltage surges. Unfortunately this excellent capacitor style is not usually stocked by mainstream distributors.

Temperature effects

Some capacitance variation with temperature is exhibited both by aluminium oxide and tantalum pentoxide. Their leakage currents will follow the Arrenhuis law, roughly doubling or halving for each $10^{\circ} \mathrm{C}$ change of temperature.

By far the most notable effect of temperature is the way the

Aluminium etching

The surface gain of modern aluminium electrolytic capacitor foils is attained by electro-chemical etching in a bath of electrolyte. The aluminium to be etched is placed in a highly conductive bath, usually brine and a high current is passed.
In practice, large rolls of aluminium foil are fed at a controlled speed through a very long etching bath. The foil passes over contacting rollers which supply it with the very high etching current needed. While pure dc can be used, dc with a superimposed alternating component is more common.
Depending on the foil's intended formation voltage or end use, different feed speeds, temperature, current density etc., will be used. Low voltage capacitor anodes for example use only thin oxide growth but need the maximum possible capacitance. The foils are etched to maximise surface gain, creating the smallest possible voids and tunnels, while using the thickest foil base, Fig. 14.
High surface-gain foils usually have much of their original aluminium removed by this process. Tunnels can be formed connecting both foil faces. While remaining visually opaque, as with a filter paper, they become highly porous to liquids.
If 'formed' to a high voltage these tiny tunnels would become choked with oxide, rendering the foil useless. High-
voltage anode foil is etched deliberately to provide much larger tunnels which will not block with oxide, usually on a thinner foil base, Fig. 15.
Various cathode foil etchings and foil thicknesses are needed for differently rated capacitors. The lowest voltage capacitor cathode needs the highest possible surface gain etching. Cathode foil for higher voltage capacitors is much thinner, and modestly etched.
In each case, the object is to provide a cathode $C N$ equal to or larger than that of its anode while minimising size and cost.
Regardless of thickness and etching methods, anode foils use only the highest possible purity aluminium foil - better than 99.99% purity being essential.
By comparison, the cathode foil is not deliberately formed; indeed accidental formation in service is undesirable. Consequently, cathode foils can be made with lower purity material, of typically 99.3\% aluminium.

Following etching, the aluminium foil must be most carefully washed using extremely pure water to remove all traces of chloride residues. Minute traces of chloride increase capacitor leakage current and reduces working life.
All foil batches are checked to ensure much less than 1 milligram of chloride contaminant remains, per square metre of foil.

Fig. 14. Large magnification electron microscope view of the surface of a very high 'gain', low-voltage anode foil. Etching and forming methods are optimised for low voltage capacitor use.

Fig. 15. Very large magnification electron microscope sectional view of low surface gain, very high voltage etched foil. Shows extensive large diameter tunnels able to accept thicker oxide growth needed for high forming voltages. Only the oxide tunnels are seen, the metal having been dissolved away to permit this sectional view.
impedance of wet aluminium electrolytic capacitors changes versus frequency with change of temperature.
The wet electrolyte and separating papers used in aluminium electrolytic capacitor, combined with the minute and tortuous paths into the inner recesses of the anode foils, contributes much of the capacitors series resistance. At $85^{\circ} \mathrm{C}$, resistivity of the elec-trolyte-paper combination is typically half its room temperature value.
At lower temperatures - and especially with higher voltage capacitors - electrolyte viscosity increases more rapidly. By $0^{\circ} \mathrm{C}$, resistivity of the electrolyte/paper combination is typically double its room temperature value.
At the lowest temperatures the normal impedance frequency curve becomes a nearly constant resistance plot. This low temperature behaviour fortunately is of no importance for most decoupling applications, which only require the capacitor to be a low impedance path. Fig. 13.
The conductivity of solid electrolytes is also temperature dependent. But at very low temperatures, increase of impedance is modest, compared to that of the wet aluminium electrolytic capacitor.

Ripple ratings

These temperature and frequency effects on capacitor esr reflect directly into the capacitors ripple ratings above room temperature. At lower temperatures, any ripple current generated heat serves to warm up the capacitor.
Every capacitor has an internal hot-spot maximum temperature that should not be exceeded. Frequently this cannot be measured. except by manufacturing special test capacitors. A more practical method with aluminium electrolytics is to measure the surface temperature at the aluminium case end, underneath any plastic insulation, using a 0.2 mm wire, naked-bead thermocouple with PTFE insulation.
Especially with wet-aluminium electrolytic capacitors, hot-spot temperature directly influences the rate at which electrolyte evaporates through the end seals and thus capacitor life. End-seal materials are chosen to minimise electrolyte losses while allowing excess hydrogen to diffuse out, avoiding undesirable pressure build up.
Makers' ripple current ratings are usually determined in practice by using 100 Hz sinusoidal waveforms. Consequently, other frequencies and non-sinusoidal voltage and current waveform requirements must be related to these 100 Hz catalogue ratings, using appropriate methods.
Frequently this requires the current for each harmonic component be determined using Fourier transforms. ${ }^{8}$ Each harmonic's power is determined from the capacitor's actual esr at that frequency and ambient temperature. ${ }^{12}$ The total capacitor power is calculated as the rms sum of all these powers.
Designers interested in a step by step description of this process for calculating capacitor power dissipation for any repetitive waveform will find details in my April 1995 capacitor article. ${ }^{13}$
Alternatively, having calculated the rms current for each frequency, some makers specify suitable frequency correction multiplying factors. ${ }^{14}$ The rms sum of these corrected currents is then related to the 100 Hz catalogue claims.
In many instances, the waveform may not be sufficiently repetitive, so these methods may not be possible. In that case, a conservative and long-standing rule of thumb is to assume any case temperature rise of less than $5^{\circ} \mathrm{C}$ should be acceptable. This is subject to the proviso that the case operating temperature at the maximum expected equipment ambient does not exceed the maximum service temperature of the capacitor.
Readers interested in this simplistic approach are referred to the IEC 384-4 or CECC 30300 specifications. These provide tables of permissible case temperature rises for differing ambient temperatures. ${ }^{12}$
Ripple-voltage peaks superimposed on any applied dc level must not exceed the capacitor's rated voltage. The resulting cur-
rent must not exceed the permitted ripple current at that frequency and with polar capacitors, no polarity reversal is allowed. ${ }^{8}$
While capacitors generally have a small permitted surge voltage level, this is intended to cover equipment switch on conditions. It should not be used when calculating permitted ripple voltages.
Should it become necessary to bank capacitors in series or parallel to provide the needed ratings, voltage and current sharing arrangements are essential to avoid early and dramatic failures. ${ }^{10}$
Whenever possible capacitors should be used de-rated from the permitted catalogue levels. This extendsß service life. All capacitors - and especially electrolytics - provide a much prolonged service life when operated at a reduced operating voltage, and exhibit no adverse side effects. ${ }^{2}$

Washing

Aluminium electrolytic capacitor end seals need to be taken into account when choosing a flux removal fluid so check the capacitor maker's literature. In principle, any seal designed to allow hydrogen to escape might also permit ingress of chlorinated hydrocarbon solvents. Once inside the case, these could supply free chlorides, causing internal capacitor corrosions and leading to failure.

Chlorinated hydrocarbon solvents. used to clean light metals like copper and aluminium quickly become acidified unless frequently replenished. Acidified solvents cause considerable damage to many components, so must be avoided.

Capacitor mounting

It is common practice to conveniently mount large aluminium electrolytic capacitors, terminals down. In many constructions the hydrogen venting seal will then be mounted as the lowest point of the capacitor.
If the capacitor is used well within its voltage and ripple current ratings, having the vent at the bottom should not present a problem. If the device is used incorrectly though, excess gassing can force electrolyte to exude - probably forcibly - from this venting seal. This usually results in corrosion damage to surrounding areas.
Capacitors designed to mount terminals down usually have a vent at the opposite end of the case from the terminals. For satisfactory service life, again the capacitor maker's mounting instructions, voltage and ripple ratings should be observed.

References

1. International Conference on Components, Proc IEE 1961 p. 548.
2. Bateman, C, 'Understanding capacitors', Electronics World, December 1997.
3. Reference Data for Radio Engineers, Pub. Newnes, Oxford.
4. Electronic Components \& Applications, Vol. 8, No 1, p. 46 (Philips)
5. Engineering Bulletin F-2695D, Kemet, PO Box 5928, Greenville C29606, USA.
6. International Conference on Components, Proc IEE 1961, p. 529.
7. Bateman, C, 'Understanding Capacitors II' Electronics World, Feb. 1998.
8. Data Handbook - Electrolytic Capacitors, pub. Philips Components.
9. Bateman, C, 'Fazed by Phase?' Electronics World, Nov. 1997.
10. Technical Summary \& Application Guidelines. AVX Tantalum Capacitor Data cd rom.
11. Electronic Components \& Applications, Vol. 8 No 4, p. 194 (Philips).
12. Aluminium Electrolytic Capacitors, CD-Rom Data Book, pub. Siemens-Matsushita.
13. Bateman, C. 'Power Dissipation in Capacitors', Electronics World, April 1995.
14. Electrolytic Capacitors 1997-1998, Evox Rifa AB, Box 98 S-563 22 Granna, Sweden

Many apologies. These diagrams did not reproduce properly in Cyril's last article. I sincerely hope that they appear in full this time round, but WYSIWYG doesn't seem to have filtered through to the printing world yet. Ed.

Foil electrodes

Foil or double-metallised film

Metalised electrodes

Fig. 1. Having no discrete electrodes, the metallised film capacitor maximises capacitance and voltage for a given size, but has limited current handling. Use of foil electrodes maximises current handling but reduces capacitance. Double metallised film electrodes, described in a German Patent, offer intermediate capacitance and current handling.

Fig. 2. Metallised film capacitor cross section, illustrating self-healing action. Before and after views show how electrodes and dielectric film are both involved when 'clearing' a fault.

Before

Electrode

Atter

Fig. 3. Stacked film production technology. Large rings of metallised film, of width equal to the final capacitor body length, are wound on 'core' wheels. These rings are metal end sprayed, then sliced to make individual capacitors.

Extended foil welded

Fig. 4. Winding on a larger diameter mandrel allows the roll to be flattened to form the capacitor element. Both metallised and extended-foil electrode capacitors can take advantage of sprayed-metal end connections.
Foil electrodes that extend beyond the dielectric roll allow resistance welded, directly attached lead wires. In the centre is the wound capacitor before compression.

Nine year index - new update

Hard copies and floppy-disk databases both available

** Includes over 600 circuit idea references**
Whether as a PC data base or as hard copy, SoffCopy can supply a complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 k ram and a hard disk.

The disk-based index price is still only $£ 20$ inclusive. Please specify whether you need $5.25 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format. Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Photo copies of Eifectrumio Thorld artiste.

Photo copies from back issues of Electronics World are available at a flat rate of $£ 3.50$ per article, $£ 1$ per circuit idea, excluding postage
flard cops Alvermata thend intes
Indexes on paper for volumes 100,101 and 102 are available at £2 each. excluding postage.

Ordering details

The $E W$ index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.

Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide

For enquiries about photocopies, etc, please send an sae to SoftCopy Ltd at the address below.

Send your order to SoftCopy Lid., 1 Vineries Close, Cheltenham GL.53, tel 01242241455 . or e-mail at softcopy@compuserve.com. Please make cheques payable to SoftCopy Ltd - not EW or Reed Business Publishing. Please allow up to 28 days for delivery.

The Low Cost Controller That's Easy to Use

The K-307 Module provides the features required for most embedded applications

Anologue

- 4 Channels in 1 Channel out

| Diginal | - 36 Digital in or out \& Timers |
| :--- | :--- | :--- |
| Serial | - RS-232 or RS-485 plus I2C |
| Disploy | LCD both text and graphics |
| Keyboord | - Upto 8×8 matrix keyboard |
| Memory | - >2 Mbytes available on board |
| low Power | - Many modes to choose from |

Davelopment

The PC Starter Pack provides the quickest method to get your application up \& running
Operoting System - Real Time Multi Tasking
Languages - 'C ', Modula-2 and Assembler
Exponsion

- Easy to expand to a wide range of peripheral cards

Oflie Fealures

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface

Cambridge Microprocessor Systems Limited

Units 17-18 Zone 'D'
Chelmsford Road Ind Est
Great Dunmow Essex CM6 1XG
E-mail cms@dial.pipex.com
Phone 01371875644

CIRCIF NO. 128 ON REPLY CARD

M\&B RADIO (LEEDS) THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY
86 Bishopsgate Street, Leeds LSI 4BB
Tel: (0113) 2435649 Fax: (0113) 2426881

For more information about any of the products or services in this issue of ELECTRONICS WORLD simply ring the relevant enquiry number.
Enquiry numbers may be found at the bottom of each individual advertisement.

101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122
123	124	125	126	127	128	129	130	131	132	133
134	135	136	137	138	39	140	141	142	143	144
145	146	147	148	149	150					
						500	501	502	503	504
505	506	507	508	509	510	511	512	513	514	515
516	517	518	519	520	521	522	523	524	525	526
527	528	529	530	531	532	533	534	535	536	537
538	539	540	541	542	543	544	545	546	547	548
549	550	551	552	553	554	555	556	557	558	559
560	561	562	563	564	565	566	567	568	569	570
571	572	573	574	575	576	577	578	579	580	581
582	583	584	585	586	587	588	589	590	591	592
593	594	595	596	597	598	599	600			

| Name | |
| :--- | :--- | :--- |
| Job title | |
| | |
| Company Address | |
| | |
| | |

Subscribe today!

Guarantee your own personal copy each month

Save on a 2 year subscription

ELECTRONICS
WORLD
incerpeatime wiatless wonl

Save on a 2 year subscription

 ELECTRONICSWORLD
inconponatmo winless wont

ELECTRONICS WORLD
 imecemeatiot wiealse wosle

SUBSCRIPTION CARD

Postcode \qquad
Tel: \qquad Country

Post to:

SUBSCRIPTION RATES

UK 1 year	$£ 34$
UK2 years	$£ 54$
Student rate(proof required) $£ 21.30$	

Airmail

Europe 1 year	$£ 49$
Europe 2 years	$£ 78$
Rest of the world 1 year	$£ 59$
Rest of the world 2 years	$£ 94$
Surface mail 1 year	$£ 39$

Surface mail 1 year

ELECTRONICS WORLD
P.O. Box 302

Haywards Heath,
West Sussex RH16 3DH UK.
CREDIT CARD hotline
Tel: +44 01444445566
Fax: +44 01444445447

Please tick here if you do not wish to recerve direct marketing-promotion from other companies \square

ELECTRONICS WORLD
 mosaronanme wherlas woete

SUBSCRIPTION CARD

Please enter my subscription to ELECTRONICS WORLD I enclose Cheque/Eurocheque to the value of $£$ made payable to Reed Business Information
Please charge my MastercardNisa/ Amex account \square
With ε \qquad Expiry Date \qquad
Signature
Name
Job Title
Address \qquad
Tel: \quad Postaode

Country

SUBSCRIPTION RATES

UK 1 year	$\mathbf{£ 3 4}$
UK 2 years	$\mathbf{E 5 4}$

Student rate(proof required) $£ 21.30$

Airmail

Europe 1 year

£49

Europe 2 years $£ \mathbf{8 7 8}$
Rest of the world 1 year $£ 59$
Rest of the world 2 years £94
Surface mail 1 year £39

Post to:
ELECTRONICS WORLD
P.O. Box 302

Haywards Heath,
West Sussex RH16 3DH UK.

CREDIT CARD HOTLINE
Tel: +44 01444445566
Fax: +44 01444445447

Please tick here it you do not wish to receive direct marketing-promotion from other companies \square

SCHLUMBERGER－STABILOCK 403I－ Radio Communication Test Set （ 0.4 to 10.00 MHz ）

SCHLUMBERGER－STABILOCK 4040 － 64995
＇High Accuracy＇Radio Communication Test Set．．．．．．．．．．．．．．．．．．． $\mathbf{£ 3 5 0 0}$
WANDEL \＆GOLTERMANN PFJ－8－
Error \＆Jitter
Test Set
（All Options Fitted）
． 12500
WANDEL \＆GOLTERMANN PCM 4 －
PCM Channel Measuring Set
．EP．O．A．
HEWLETT PACKARD 3585A－
Spectrum Analyser（ $20 \mathrm{~Hz}-\mathbf{4 0 M H z}$ ）$£ 5000$

HEWLETT PACKARD 436A－
Power Meter＋Lead + Sensor
（Various Available）from $£ 995$
435A +435 Power Meters Also Available

HEWLETT PACKARD 8656B－ Synthesised Signal Generator $(100 \mathrm{KHz}-990 \mathrm{MHz})$ ．． $\mathbf{~} 2950$
HEWLETT PACKARD 3562 ${ }^{\text {A }}$＇－ Dual Channel Dynamic Signal Analyser （ $64 \mathrm{MHz}-100 \mathrm{KHz}$ ）．． $\mathbf{6} 6250$
HEWLETT PACKARD 8757A－ Scalar Network Analyser \qquad .62250
ANRITSU MS 610 B SPECTRUM－ Analyser （ $10 \mathrm{KHz}-2 \mathrm{GHz}$ ） \qquad $£ 4750$
MARCONI $2305-$ Modulation Meter．． 1995 MACONI 204 （IOKHz－2．7GHz）

ADVANTEST 4133 B
Spectrum Analyser $(10 \mathrm{KHz}-20 \mathrm{GHz}) \ldots4250$
ADVANTEST 4131 B$)-$
Spectrum Analyser（ $10 \mathrm{KHz}-3.5 \mathrm{GHz}$ ．．．．．．．．．．．．．．．． $\mathbf{~} 4750$

LEADER 3216 SIGNAL GENERATOR
100 KHz to 140 MHz －AM／FM／CW with built－in FM Stereo Modulator（as new）

PHILIPS PM5193
Synthesised Function Generator \qquad £ 1500

Marconi 2955 Radio Communications Test Set $£ 2250$
Marconi 2955A $£ 2500$
Marconi 2958 （TACS） £2750
Marconi 2960 （TACS＋Band III） £2750
Marconi 2960A（TACS） $£ 2950$

For Quality Test and Measurement Second－User Equipment

ROHDE \＆SCHWARI CM5 54－－
Radio Communication Service Monitor
（ 0.4 to 1000 MHz ）．． 6250
ROHDE \＆
GSM Radio Comms Analyser．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 7500$

OSCILLOSCOPES

Beckman $9020-20 \mathrm{MHz}$－Dual channel
Gould $05245 \mathrm{~A} 250 / 255 / 300 / 3000 / 335 \mathrm{I} / 4000$

Gould $4074-10 \mathrm{MHz}$－ 4 channel D．S．O．with Printer
Hewlett Packard $541100 \mathrm{D}-1 \mathrm{GHz}$ Digitizing
Hewlett Packard 54200A－50MHz Digitizing
Hewlett Packard 54201A－ 300 MHz Digitizing
Hitachi V152N21 2N222N302B／N302FN353FN550B／V650F HitachiVII00A－ $100 \mathrm{MHz}-4$ channel
Intron $2020-20 \mathrm{MHz}$ ．Dual channel D．5．O．（new）
lwatsu SS55710／S55702－
Kikusui $\operatorname{COS} 5100-100 \mathrm{MHz}$－Dual channel
Kikusui $\operatorname{COS} 6100-100 \mathrm{MHz}$－
Kikusui $\operatorname{COS} 6100-100 \mathrm{MHz}-5$ channel－ 12 Trace
Lecroy $9450 \mathrm{~A}-300 \mathrm{MHz} / 400 \mathrm{MS} / \mathrm{Cl}$
Lecroy 9450A－300MHz／400 MS／s D．S．O． 2 channel
Meguro MSO 1270A－20MHz－D．S．O．（new）
Philips $3055-50 \mathrm{MHz}$－Dual channel
Philips $3335-50 \mathrm{MHz}$－D．S．O．Dual channel
Philips $3295 \mathrm{~A}-400 \mathrm{MHz}$－Dual channel
Panasonic VP574IA－ 100 MHz D．S．O．Dual channe Tektronix $455-50 \mathrm{MHz}$－Dual channel
Tektronix 465 － 100 MHz －Dual channel
Tektronix $464 / 466-100 \mathrm{MHz}$－（with AN．storage）
Tektronix $475 / 475 \mathrm{~A}-200 \mathrm{MHz} / 250 \mathrm{MHz}-$
Tektronix $468-100 \mathrm{MHz}$－D．S．O．
Tektronix $2213 / 2215-60 \mathrm{MHz}$－Dual channel
Tektronix $2225-50 \mathrm{MHz}$－Dual channel
Tektronix $2235-100 \mathrm{MHz}$－Dual channel
Tektronix $2221-60 \mathrm{MHz}$－Dual channel D．S．O．
Tektronix $2240-300 \mathrm{MHz} / 500 \mathrm{MS} / \mathrm{s}$ D．S．O．
Tektronix $2445 \mathrm{~A}-150 \mathrm{MHz}-4$ channel
Tektronix 7000 Series（ 100 MHz to 500 MHz ）

SPECTRUM ANALYSERS

ANDO AC 8211 － 1.7 GHz Spectrum Analyser
AVCOM PSA－65A－ 2 to 1000 MHz 5 pectrum Analyser AVCOM PSA－65A－ 2 to $1000 \mathrm{MHz} 5 p e c$
ANRIT5U M5 $62 \mathrm{~B}-50 \mathrm{~Hz}$ to 1700 MHz
ADVANTEST／TAKEDA RIKEN－ $4132-100 \mathrm{KHz}-1000 \mathrm{MHz}$
HEWLETT PACKARD $8591 \mathrm{~A}-9 \mathrm{KHz}-1.8 \mathrm{GHz}$
HEWLETT PACKARD 8754A－ 2.6 GHz －Network Analyser
HEWLETT PACKARD 8505A－I．3GHz－Network Analyser
HEWLETT PACKARD 8753A－3GHz－Network Analyser
HEWLETT PACKARD 8756A／8757A Scaler Network Analyser from
MEGURO－M5A $4901-30 \mathrm{MHz}$－ 5 pec．Analyser
MEGURO－MSA 4912 － 1 MHz － 1 GHz Spec．Analyser

MISCELLANEOUS

TEKTRONIX 1721 PAL Vectorscope
TEKTRONIX 1741 A PAL Waveform／Vector Monitor
TEKTRONIX 1751 PAL Waveform／Vector Monitor
PHILIPS PM5I 93 Programmable 5ynthesiser／Function Gen 50 MHz
f $f 125$
62750
62750
$〔 500$
61500 from $£ 125$

The route

Challenger is a schematic capture and layout program with two autorouters. Versions with both larger and smaller restrictions than those shown in the availability information panel are available at various prices.
At present, the schematic drawing and capture section, called ULTIcap, is only available for dos, but the pcb layout section, ULTIboard, is available in both dos and Windows. The external rip-up-and-retry autorouter provided for the Challenger, ULTlroute GXR, is designed for Windows. A dos shell. called naturally enough ULTIshell, connects the

Fig. 1. The Ultimate shell which ties in all the modules, including the parts in Windows as well as dos.

Challenger

Maker Ultimate Technology, The Netherlands. UK supplier; Ultimate Technology, Unit 1, Lodges Barn, Coxbury Lane, St. Briavels, Gloucester GL15 6QJ. Tel. 01594 810100, fax 01594810200.
Prices are $£ 395$ for 700 pin limit, $£ 775$ for 1400 pin limit.

Find out the facts about the new Windows versions of Ranger 2, and Ultimate's Challenger dos/Windows package in Rod Cooper's latest set of reviews. to pch cad various parts. For a product having sub-programs in dos and Windows, a shell is a good method of linking them.
Figure 1 clearly shows that the shell is the central control not just for starting projects, but also for configuring how the schematic capture and layout programs work, and transferring data between them.
It is quite feasible to do things this way. For example, CircuitMaker and Traxmaker used to be a successful mixed dos/Windows program until recently - even without a shell interface. Note that Ultimate Technology is developing an all-Windows version of this program.

Both ULTIcap and ULTIshell run successfully under Windows 95 , which is the recommended platform. But the default screen driver is 800 by 600 . If you have a non-multisync 1024 by 768 or larger display you may run into difficulties. I found that neither ULTIcap nor the shell would run full-screen or in a window with Windows 95 on my 21 in monitor. All I got was a blank screen. Transferring to a multisync monitor solved this problem. Nor would these programs run at the higher resolutions in plain dos. The video drivers were incompatible with my graphics card.
I eventually ran ULTIcap, ULTIshell and ULTIboard in dos with a 15 in monitor at 680 by 480 . This solved a lot of the screen capture problems for the review, and because staying in dos made the system much easier to operate overall.
A dos autorouter is provided as standard with ULTlboard, so you could stay in dos for the whole design process. In this mode the program occupies 9Mbyte of disk space.
The dos versions are not limited by the 640 K byte memory restriction. In fact, the amount of memory can be configured for both sections to whatever your hardware can provide. The amount of memory used can be increased from the 1 Mbyte default for ULTIcap and 2Mbyte for ULTlboard by using the configuration set-up in ULTIshell. This is recommended as a first step in operating both programs, otherwise larger circuits will not be accommodated. This is particularly important in

ULTI'hoard if you are using the autorouter.
There is no recommended hardware set-up, but both ULTIcap and ULTIboard are 32-bit, so this would indicate a 386DX minimum. Although I used a Pentium for the tests, I tried the program on a 386 DX and it worked well.
The extra GXR autorouter in Windows is an external addon. Net-list files have to be transferred via a translator. GXR is again a 32 -bit program.
Comprehensive literature is provided with the package in the form of four manuals, covering schematic capture, board design, a tutorial and a library reference for pcb footprints. The books are not a native English translation but, given a few errors in grammar and spelling, are understandable.
Some versions of Ultimate software are protected by registration number, but some higher versions have a dongle. For more on dongles, see my first review in the October 1996 issue.

Schematic drawing

ULTIcap is a typical menu-driven dos program. There is no GUI to temper the dos aspect as there is, for example, in Ranger 2 for dos. One positive result of this is that it gives a good screen drawing area. On a typical 14in monitor you can expect 9.5 in by 6.5 in of drawing space.
Figure 2 shows a typical screen during the compilation of the same test circuit used in the earlier review. Note a large cross-hair pointer replaces the more usual mouse arrow.
The package revolves around a central database. Whereas EDWin calls this plainly "the database," Ranger 2 calls it "the job", and in Ulimate it is referred to as "the project". It is important to realise this before starting off on a design.
The program has autosave, autopan, a 15 -level zoom system, and a good electrical rules checker. All these work with typical dos speed and efficiency. The mouse system is simple and logical - i.e left-hand button starts an action, right-hand button escapes or terminates. The system can be set for metric or imperial units.
Initially, symbols are selected from the "extemal" library in text form. Library accessibility is only fair. For things like resistors and capacitors, there is no immediate way of knowing what the associated footprint is. This is found by crosschecking with the library editor.
The selection of symbols is good. There is also a good

Previous review subjects

PCB Designer: Niche Software Ltd, tel 01432355414 reviewed September 1996.
PIA:AW Software Ltd, Germany tel +49896915352 reviewed September 1996.
Easytrax: Protel International pty, Australia. Available from PDSL, tel 01892663298 - reviewed September 1996.
Ranger 2: Seetrax CAE Ltd, tel. 01705591037 - reviewed October 1996.
Electronics Workbench: Interactive Image Technologies Ltd Canada, tel. 0014169775550 - reviewed October 1996.
CircuitMaker: MicroCode Engineering USA, UK agent Labvolt, tel 01480300695 - reviewed November 1996.

Quickroute 3.5 Pro+: Quickroute Systems Lid, tel 0161 4497101 - reviewed December 1996.
Propak: Labcenter Electronics, tel 01756753440 reviewed December 1996.
Proteus: Labcenter Electronics, Schematic capture and pcb design - reviewed January 1997.
EasyPc Pro XM: Number One Systems, tel 01480461778 - reviewed January 1997.
selection of pcb footprints to match. Although there is no parts bin. a "local" library system like that in EDW in performs a similar duty.
Moving symbols around was easy, but rotating them less so. The method is to crank them round a fixed point using F2 on the keyboard. Again. this is very similar to EDW'in. Text rotates with the symbol and rotating the text back to readability is cumbersome and takes time. This is an area where things could be improved. Text is fully manoeuvrable so the circuit can be tidied up afterwards to make the circuit look good.
Wiring symbols up is easy, and to make it even easier there is an straightforward auto-wirer. Positive confirmation of connectivity is given when you make connections with component pins. However. I still managed somehow to produce a few "bad" nets using this system. It is possible to draw lines in space and these mistakes have to be deleted manually. Pressing the screen redraw does not clear them up. Moreover. they have to be deleted in segments. which is slow. There is a good connectivity checker which you can

Fig. 2. Schematic of test circuit showing an ULTIcap menu. Note good available screen area for drawing.

Fig. 3. Typical linear rat's nest produced from schematic capture.

Fig. 4. Ultimate Rat's nest of test circuit after manual sorting and transfer to Windows. Note the force vectors which can aid component placement.

Fig. 5. The above rat's nest of Fig. 4 after routing with the GXR autorouter.
use before capture.
Autopanning nakes it quite easy to get lost during the learning phase. Although there is no map showing where the circuit is in relation to the drawing area, you can recover the work by selecting "zoom. all." Multi-sheet schematics are possible, and the hierarchy system already described for Labcenter's products in Electronics World December 1996 issue is the preferred method.
There is auto-annotation of symbols, but this is not done in the schematic section but from ULTIshell - a strange system not found in other programs. Returning to ULTIcap shows the results.

Pcb layout

It is possible to draw tracks manually in ULTIhoard, but the emphasis is on automated pcb design. The normal route is to draw the schematic, capture it and transfer the data to ULTlboard, where it appears as a rat's nest. The transfer is done via ULTIshell.
The net list from ULTIcap appears automatically as a linear rat's nest with the component outlines placed along the
top of the board outline, Fig. 3. This method is similar to that used in QuickRoute and EasyPC, but with the advantage that the components are not so spread out. so subsequent arrangement into a logical order is relatively easy.

The rat's nest is re-organised by picking up each component in turn with the mouse and placing it inside the board outline. Rat lines disengage during this process so it is necessary to press "redraw" if you want to see them again. This slows down what would otherwise be a rapid process. Component rotation is done by the same keyboard method as used in ULT/cap, i.e. using F2. Other controls like zoom, pan etc are all in the same style as ULT/cap.

Figure 4 shows the design after component placement. ready for autorouteing. Note the force vectors, similar to those in Proteus, which are used to aid component placement. Any manual routeing of critical tracks is done by a modified rubber-banding method which I found less difficult than others I have tried.

There is design-rule checker which operates in real time. which is very useful if you are manually routing. It is more usual to have the design-rule checker as a post-routing verification. However. setting up some aspects of the design rules is more convoluted than in other programs.
Selecting track width and clearances is different from other other programs. In ULTIBoard you have a choice of 32 preset track widths combined with a clearance. These are configurable to suit your own preference.

The standard dos autorouter is a gridless type - although a nominal grid is actually selected. It has no rip-up-and-retry and cannot autoneck, limiting its routeing power. It is on about the same level as the standard dis autorouter in Ranger 2 and. like that autorouter, is fast but often gives lass than 100% completion.

Rat's nest placement takes considerable effort if you want to get high completion rates. This autorouter worked best on double-sided and multilayer boards. Although it can attempt single-sided boards, the results are predictably, nearly always disappointing.

On the test circuit, Fig. 5, this autorouter fell into category C - a category for autorouters incapable of being able to route the test circuit completely. as defined in my first set of reviews. Category A routers are able to route the circuit while those in category B can route the circuit given some relaxation of the design rules. There is modest amount of pre-run configuration that can be done on this autorouter.
The second autorouter, ULTlioute GXR, is a gridded autorouter with rip-up-and-retry capability. This gives better completion rates, frequently achieving 100% on double-sided boards. To use it you will of course have to quit dos and go into Windows. Transferring a net list to it via the translator mentioned earlier was easy.
The $G X R$ has about the same configurability as the standard autorouter, and it can be set up to do a single-sided board. It managed to complete the test board putting it into category A, but considerable manipulation was needed in setting up in order to do this. A costing method is used to set up strategies whereby cost penalties are attached to various autorouter actions such as routeing a track away from a direct line. This is similar to Ranger 2's rip-up-and-retry autorouter, but much simpler.

As well as the usual output for generating Gerber files, Ultiboard has its own plotter drivers for HP. Houston and Calcomp. Setting up the printer/plotter was somewhat involved. An intermediate plot/print file is generated in ULTIboard. then this is closed and ULTIshell restarted.

Hard copy generation is handled by a post-processing subprogram from the shell. There is plenty of choice of both printers and plotter types and the set-up is comprehensive albeit a little difficult to access - and includes a function for obtaining a mirror image.

The results produced by laser printers and pen plotters was good. Control over plotter pen speed and width was also good.

In summary

The dos versions of ULTIcap and ULTIboard are logical in operation, but slow in some aspects. Functions such as deleting lines and re-rotating text for example are awkward in comparison to competing programs. The libraries are not very user-friendly. The standard autorouter would be acceptable for non-critical double-sided boards.
The more capable GXR is the autorouter most users would probably select. The overall learning curve is steep - almost on par with that of EDWin. On the positive side. this product is a flexible, fuliy-featured program, offering a better screen area than any of the Windows programs.
I hope to review the all-Windows version of this program as soon as it becomes available.

Ranger 2

Ranger 2 for Windows

Maker and supplier; Seetrax CAE Ltd, Old Buriton Limeworks, Kiln Lane, Buriton, Petersfield, Hants GU31 5SJ. Price for the standard version is $£ 250$, or $£ 500$ with Cooper and Chyan Specctra SP2. Tel. 01730260062 , fax. 01730267273.
|n my first set of reviews, Ranger 2 for dos was recommended for its good graphical user interface, overall competence, good pricing, and for offering a choice of autorouters. The subject of this review, Ranger 2 for Windows, has retained much of the character of the previous version, but the appearance has changed out of all recognition. Gone are the full-screen menus, the buttons labelled addpoint, libvol etc.
This approach to conversion to Windows contrasts with Labcenter's Proteus, which retained its dos format in Windows to the extent that dos users could convert immediately. Nevertheless, previous users of Ranger 2 will still recognise the characteristic style of Seetrax products so conversion to the Windows version should not be a problem.
Ranger 2 contrasts sharply with programs such as EDWin in its use of icons. While EDWin uses a lot of icons, Ranger 2 uses relatively few. The main access to functions is via Windows 95 -style menus, supported by a handful of buttons. The screen of Fig. 1 shows a typical Ranger 2 screen and menu. I found the bias towards menus worked very well and was a refreshing change from over-iconed programs.
This new version is intended for use with Windows 95 or NT. It comes on two 3.5in disks and you will need about 5Mbyte to install it.
The operator's manual is in the same style as the original, but much shorter and with a slightly better subject order. Of course, in a Windows program there is often a shorter manual because much more assistance is available in the Help menu. But in the version I tested the Help menu was empty. I am told that the Help text is being prepared and will be available eventually.
The new Ranger 2 is still formulated around Seetrax's

Fig. 3. Results of the Ranger2 rip-up-and-retry autorouter. Compare this with the Specctra results in Figs 5 and 6.

Fig. 1. The completely different schematic drawing controls of Ranger2 for Windows - but note the familiar symbol style.

Fig. 2. Rat's nest produced from the test circuit.

Fig. 4. Typical set of menus for configuring the rip-up-and-retry autorouter. Setting up for optimum results takes some time.
well-grounded concept of "the job" so previous dos users will quickly pick up the threads of operation from this.

Schematic drawing

Figure 1 shows that although the screen layout has changed completely, the symbols and drawing style have not. Note the lack of scroll-bars. Panning is done by selecting this function on the edit menu and pointing with the mouse. Alternatively, you can use the space bar combined with the mouse pointer. Both methods work well. Multi-sheet schematics are supported.

There is no map showing where your circuit is on the page so it quite easy to get lost, but you can recover the circuit with the "view, full" from the view menu. There is no autosave facility yet: this is said to be under development.

Accessing the libraries is done by menus and is straightforward. Symbols are in text only, but if you want to see exactly what you are getting in graphical form before you use them, it is now possible to open library volumes and check. You can also check the associated pcb footprint with this method.

Library volumes are numbered, so if you want to know what they contain without going to the trouble of opening them, you have to refer to the manual. This could be improved. For example, the resistor volume could be labelled "vol 40 - resistors" instead of the cryptic "defndl.v40." The size and content of the libraries appear to be about the same as the former version, so are adequate for general purpose use.

Placing symbols is done via a parts bin - or tray in Seetrax language - and is smooth and well controlled. The tray can be toggled off to increase drawing area, which is a good idea. In fact, with no scroll bars, no map and the on/off parts tray, the screen's drawing area is good for a Windows program, at approximately 9.5 by 5 in on the 14 in screen.
Symbol text stays upright when symbols are rotated but is non-manoevrable. Other text, such as power and signal references, can be moved.

Wiring symbols up is easy due to a strong 'snap-to' function combined with a good orthogonal system. Drawing lines in space is inhibited, but it is possible to draw 'illegal' lines i.e. lines not connecting two component pins. This was prevented automatically in the dos version of Ranger 2 without
the need to go back and delete, although it was not always perfect in operation. The lack of this feature is not welcome in the Windows version
Capture of the schematic is very much as before, with a parts list and wiring list being created. The lists are in plain text - i.e. easily readable. You can export a PSpice list if you want to connect to a simulator, and import a Futurenet list.

Laying out a pcb

Having generated parts and wiring lists, the next step in Ranger 2 is to draw a pcb board outline and this is done with a simple sub-program in the artwork section. Both metric and imperial units are supported. Parts are interactively placed inside this area, and the method is to place the components by hand as they are automatically fed in one-by-one.

You will see from Fig. 2 that the current component being placed is listed in a box next to the icons. This remains a superior system to having component footprints dumped in a line or in a heap. However, Ranger 2 is oriented towards being an automated system so Seetrax should be considering adoption of an autoplacement system in the near future, to keep pace with the competition like Proteus, EDWin, TraxMaker. Force vectors should be considered as well.

A useful feature of Ranger 2 is that the power nets are shown in a different colour from signal nets - see Fig. 2. You might choose to route the power nets manually, as these often take routing precedence over signal routes, and having them shown separately makes this task easier. You could of course autoroute them on their own as well, particularly if there are a lot of them. Having them identified separately also helps to decide which method to use.

Manual routeing of uncompleted nets is by the rubberbanding method. This is still not easy in the Windows version, and is an acquired skill. Although possible, manual track placement is not given much priority in the Ranger 2 scheme. If you want to construct a board entirely using manual methods, I would recommend using a simpler program, such as PIA.
The rat's nest automatically optimises as the components are moved round. When a satisfactory placement has been achieved, you have to digitise before going on to the autorouters. If you want to manually route any tracks left uncompleted by the autorouter after it has finished, it is necessary to de-digitise them with the 'Mroute' function. These extra steps of digitising and de-digitising remain over from the dos version and are not found in other programs.

Autorouter options

Ranger 2 for Windows has three autorouter options. The standard autorouter is a window-ised version of the one provided in the dos version of Ranger 2 and will route doublesided boards. It will attempt single-sided boards but the test results put it into category C. The advantage of the standard autorouter is that it is easy to set up and quick to run.
The second autorouter is a Windows version of Seetrax's former 386 rip-up-and-retry product. This is now referred to as the 'Rip/retry' autorouter in the program menus. With suitable configuration this could route the test board, as shown in Fig. 3, putting it in category A.
This router is capable of routeing a single-sided board, or from two to six layers, and it can autoneck. Like the Dos version of this autorouter, setting up is comprehensive. A costing system is used, so you can set the autorouter a penalty for routeing away from the direct route, making a change of direction, putting in vias etc.

Figure 4 shows a typical menu, and this is repeated in var-
ious forms for each of the strategies listed 1 to 8 in this screen shot. Setting up may take longer than other autorouters, but to outweigh that, you have more control over the way that the autorouter functions.
Some abstract ideas such as axis overshoot, bend, and gravity strength and distance, are used in the strategy set-up. These are best read about in the manual; they take a little time to get accustomed to.
The third autorouter is Cooper \& Chyan's Specctra SP2 for Windows. This is the most capable of the three and is also in category A. All the comments already made in my first review about this autorouter apply, and it should be noted that the track-spreading option is included, and is no longer an extra. However, the security system for this autorouter still uses a dongle, and in addition, a you need a password.
Seetrax has provided another of its excellent short-form interfaces with Specctra, so it is not really necessary to enter the Specctra program fully unless you especially want to. With this interface you can avoid learning another, very different program.
However, if you want master the intricacies of Specctra, you can run it separately. Three chunky Specctra operators manuals are provided should you wish to learn how to do this. I expect that most users will go for the soft option and stick to the Ranger 2 interface. This highlights the difference between the Specctra and the Seetrax Rip/retry autorouter. The latter needs considerable input from the operator to configure it, whereas the Specctra is easy and quick to set up with the Ranger 2 interface and can still produce neat, very well-routed boards.
Hard copy of the routed board is obtained via the Windows printer drivers or from Seetrax's own plotter driver. It is now possible to mirror the output from either. In the dos version this had to be done by means of Gerber input/output files.
The plotter driver is suitable for HP or compatibles and Houston machines. There is no direct output to the plotter but a text file is produced for sending to the plotter. Output is done from the dos prompt but this is not made clear in the manual, and there are no specific instructions for doing this. For those of you who are rusty on dos, I used the following command to get the plotter to run;

C: \PRINT /D:LPT1 A: \TESTCIRC.TXT

The plotter in this instance was on LPT1, which is normally the printer port, and I copied the plotter file TESTCIRC.TXT in advance to a floppy disk, drive A:, to avoid a long path entry.
This is a roundabout method way of achieving plotting but it works. Seetrax could improve this aspect, and should include extra advice in their manual about it. The results of using this plotter driver were good.
Printing out the artwork using the Windows laser printer drivers also gave good results. The position and size of the artwork in relation to the page is shown on-screen before printing, so adjustment is particularly easy.

In summary

As most users are following the inevitable Windows trend, this version of Ranger 2 will undoubtedly attract buyers who would otherwise have passed by the dos version. No major new features over the dos version have been added. Seetrax has simply brought Ranger 2 into the Windows era and incorporated several items that were optional extras in the dos version into one package. The attractions are obvious; this is the lowest-priced unrestricted Windows program that offers a user-friendly schematic drawing program and a capa-

Fig. 5. Results of the Specctra autorouter on the same rat's nest.

Fig. 6. A view from Specctra. The results of using the clean, spread and centre strategies from within Specctra.
ble rip-up-and-retry autorouter.
The added incentive of a clear autorouter up-grade path to the very able Specctra remains, if you eventually find you need more power.
Sensibly, Seetrax still offers its dos version of Ranger 2 at $£ 150$ for the those on a tight budget or who prefer dos. If you are already using Ranger 2 for dos and want to transfer to the Windows version, you can upgrade for $£ 90$.

What's next?

Traxmaker and EDWin are to be reviewed in Rod's next article. Proteus $I V$ was reviewed in last month's issue.

Neural networks and fuzzy logic

> "What can neural networks and fuzzy logic tell us about the future of digital electronics?" ask Chris MacLeod and Grant Maxwell.

Artificial neural networks and fuzzy logic are two popular modern techniques used to improve the performance of intelligent electronic systems.
At first sight, the two appear quite different from each other, and also from standard digital electronics. This article explains why the technologies are actually very similar - but complementary - to each other. It also looks at the possible future of intelligent electronics as a combination of the best of these existing techniques.
Artificial neural networks were developed during the fifties and are an attempt to mimic the structure and behaviour of the biological brain. Their most important attribute is that they are capable of learning. Such a network
may be trained to act as a controller or to recognise characters for example.
Artificial neural networks achieved some early successes in fields such as pattern recognition, but it was quickly realised that they did not live up to the initial promise of real intelligence. During the early eighties, interest revived, and again neural nets are a popular subject of research. However, they have consistently failed to find their way into domestic or consumer products, and most design engineers are not aware of their possibilities.
Fuzzy logic was proposed in a paper by Lotfi Zadah in 1965. It was received with scepticism by the engineering control community, typical comments being that it was common sense and 'just' statistics.

Since the initial reaction, fuzzy logic has steadily gained in acceptance and popularity, especially in Japan. It has found its way into many domestic and industrial products ${ }^{2}$.
In this article, I take a look at these technologies and show that they are actually very similar, in that they are all mapping methods. First, let's consider artificial neural nets and fuzzy logic in a little more detail.

Artificial neural networks

The artificial neural network was proposed by McCulloch and Pitts ${ }^{3}$ in 1943. The first such network was later built by Rosenblat ${ }^{4}$ in 1957.

Artificial neural networks are a network of very simple processing units. Each unit in itself has little power; it simply weights its inputs and sums them together ${ }^{5}$, then applies a transfer function to the result, Fig. 1.
When a network of these simple units is connected together in a manner similar to that shown in Fig. 2, we call the result a neural network.
Networks may have discrete (ie digital) or continuous (ie analogue) outputs. We will be considering those with continuous outputs.
For the network to learn, it requires a training algorithm. This algorithm simply changes the weights of the network until the required outputs are achieved. There are several different methods for achieving this, the most important is called back propagation. This algorithm calculates the difference between the output required and the output that actually occurs and then changes the weights so as to minimise the difference between the two.

Fuzzy logic

Fuzzy logic is most often applied to control systems. The term 'fuzzy' arises from the fact that the system uses continuous as opposed to discrete inputs.
The fuzzy logic system is basically an expert system, in which a continuous input is assigned a membership of several sets. These values are then operated on by inference engine and the result, which is also continuous, is used to control the system, Fig. 3.

Fuzzy logic systems show several advantages over conventional control systems. These include ease of design, and better performance in many systems such as speed controllers in lifts and vehicles. In a speed controller, the continuous nature of Fuzzy logic causes the motor to speed up and slow down more smoothly.

Neural nets, fuzzy logic and digital electronics

These systems all appear quite different from one another, but are actually very similar. In the case of combinational digital electronics the binary inputs are mapped onto binary outputs, Fig. 4.
The user designs the circuit using Boolean algebra or Karnaugh maps to achieve this mapping. In the case of fuzzy logic or neural networks the mapping is of a continuous input to a continuous output, Fig. 5. The system

Inputs

Fig. 3. Elements of a fuzzy system.
knows how to map either because it has learned the relationship, as in the case of neural networks, or because the relationship has been encoded in the inference engine by the user, as in the case of fuzzy logic.
In many books, the operation of the neural net is viewed as dividing up data space with separators. This causes the network to have certain mapping limitations which are beyond the scope of this article. For more on this, see reference 6 .
Although the networks shown above are combinational logic and feedforward networks, the similarities also apply to sequential logic which is equivalent to recurrent neural networks such as the Hopfield net ${ }^{7}$.
The relationship between these systems should now be more obvious. Digital logic is simply a special - discrete - case of a general, or continuous, mapping system. To demonstrate this. let's make up a new entity, the fuzzy gate; this is simply a digital gate which
accepts a continuous input rather than a discrete input - as in the case of 'normal' digital electronics. First, consider the functions of normal logic represented as Venn diagrams, Fig. 6.

In terms of normalised voltage levels these represent MAX, MIN, and COMPLEMENT functions, Fig. 7. These functions are actually used within the fuzzy logic inference engine.
Such a simple system, operating on continuous voltage levels, has important advantages:

- It decomposes to normal logic if the inputs are 1 and 0 . Consider the Boolean expression $A+B(A+B)$ which reduces using normal methods to $A+B$, then take a look at Table 1. You can see that the continuous logic gives the same answer as the standard discrete logic; this can be shown in every case.

It may be arithmetically manipulated in the same way as normal logic. The discussion in

A	B	A	B	$A+B=D$	D. $B=E$	$E+A$	$A+B$
discrete	discrete	cont	cont	MAX	MIN	MAX (answer)	Boolean answer
0	0	small	small	small	small	small	0
0	1	small	large	large	large	large	1
1	0	large	small	large	small	large	1
1	1	large	large	large	large	large	1

$A+B=A \cup B$

$A \cdot B=A \cap B$

A^{\prime}
there could be several number pairs.
Using such techniques it is possible to design, for example, a pattern recognition system which gives similar results to a neural network system. However, the fuzzy gate system has the advantage that it can be manipulated and proved using Boolean algebra.

- The final advantage is that such a system interfaces naturally with the analogue world. This type of system has the advantages already pointed out for fuzzy logic, because it produces intermediate outputs. When used as a controller, it allows outputs to change gradually.

In summary

Looking at the modern techniques, neural networks and fuzzy logic, these technologies give two important advantages over traditional Boolean logic gates.
One advantage is that neural networks can learn from example, so no detailed design is involved. Secondly, neural networks and
the example above shows that the continuous logic reduces to discrete logic if the levels are forced to their maximum and minimum values, in general:

$$
\mathrm{A} \cup \mathrm{~B}=\mathrm{A}+\mathrm{B} \quad \mathrm{~A} \cap \mathrm{~B}=\mathrm{A} \bullet \mathrm{~B} \quad \mathrm{~A}^{\prime}=\overline{\mathrm{A}}
$$

and they may be manipulated as such.

- It degrades gently. Consider the case $\mathrm{A}+\mathrm{B}$, where a high input to a continuous logic gate is 0.7 and low 0.2

A	B	$\mathbf{A}+\mathbf{B}$
0.2	0.2	0.2
0.2	0.7	0.7
0.7	0.2	0.7
0.7	0.7	0.7

- Mathematical logic circuits continue to fulfil their functions. Consider the half adder in Fig 8. The XOR is implemented as $\overline{\mathrm{A}} \cdot \mathrm{B}+\mathrm{A} \bullet \overline{\mathrm{B}}$. Consider,

A	B	A	B	$A B$	$A B$	$A B+A B=S$
0.4	0.5	0.6	0.5	0.1	0	0.1

$\mathrm{A} \cdot \mathrm{B}=\mathrm{C}=0.4$

Output is therefore $\left(0.1 \times 2^{0}\right)+\left(0.4 \times 2^{1}\right)=0.9$. To clarify this, one of the operations involving the complement function is shown in Fig. 9.

As you can see from Fig. 9, because of the NOT or complement function a true fuzzy digital output requires a number pair to represent $i t$. In the case of the function above $0.4,0.5$ ie lower limit, upper limit; for complex functions

$$
\operatorname{cosec}_{2}
$$

MIN

Fig. 6. Venn diagram representation of normal logic building blocks.

Fig. 8. Half adder using AND and exclusiveOR gates.
fuzzy logic operate with continuous signals. As we pointed out earlier, the continuous nature of signals gives the system certain useful properties. It causes the system to degrade gently in the presence of noise. It means that systems such as lifts slow down and speed up gently - i.e. it interfaces better with the natural world. The continuous nature of the signal also makes the system somewhat more fault tolerant.

As you have seen, standard digital logic is a special case of fuzzy digital logic. This means

Fig. 9. An operation using the complement function.

B
that systems designed using fuzzy digital electronics behave in a very similar way to neural networks or fuzzy logic, and further that 'hard' digital logic is a special case of 'fuzzy' digital logic.
The other main difference between standard logic and neural networks is that neural networks learn mappings through a training cycle; the other two systems have a designed structure. However it is possible to design fuzzy digital logic systems that can learn.

One way this can be achieved is by implementing a training algorithm that adjusts the threshold of the MAX and MIN functions of the gates to minimise the output error. You can therefore envisage a compound system neuro-fuzzy digital electronics. This would have all the advantages of Boolean logic for example, easy mathematical manipula-
tion - but have continuous outputs and be trainable in the manner of a artificial neural network.
Looking even further ahead, the design of the neural processing elements is based somewhat loosely on the structure of biological neurones. This association has caused many workers to only consider models which are biologically feasible and this may have hamstrung researchers somewhat - in fact it has almost become an ideology.
Future networks may take a much less rigorous view of neural units, and allow them to have designed or evolved processing capabilities. The end result may be a general technology - a new electronics, one stage beyond neuro-fuzzy digital electronics - which has all the advantages of the previous examples without any of the disadvantages.

For more on this topic, visit the author's web page:
http/www.eee.rgu.ac.uk/staff/cmhome.htm

References

1. Zadah, L, 'Fuzzy sets.' Journal of information and control. Vol. 8, 1965. pp. 338-353.
2. 'Fuzzy controllers.' Resnik, pub. Newnes. 1997. Simple treatment. Also. 'Fuzzy logic with engineering applications.' T J Ross, pub. McGraw-hill, 1995.
3. McCulloch, W and Pitts, W, A logical calculus of the ideas immanent in nervous activity,' Bulletin of mathematical biophysics, Vol. 5. 1943 pp. 115-137.
4. 'The Principles of Neurodynamics.' F. Rosenblatt, pub. Sparten books. 1961
5. 'Neural computing: Theory and practice,' P D Wasserman, pub. Van Nostrand Reinhold. 1989.
6. 'Foundations of Neural Networks.' T Khanna. pub. Addison Wesley, 1990, pp. 69-74.
7. Hopfield, J. 'Neural networks and physical systems with emergent collective computational abilities." Proceedings of the national academy of science. Vol. 79. 1982, pp. 2554-2558.

Circuit simulation can be seriously good fun

-Those [Engingerk litd

When you have the engineering edge, enjoy your work and catch subtle circuit behaviour before it's too late, you can afford to be light hearted. Add to this technical support from practising engineers who take a genuine interest in your work and you are really laughing.

With a free evaluation kit, you can test SpiceAge on your own circuits. The kit comes with an introductory booklet to show you how.

To hear more about this and other nice fouchos in SpiceAge, please contact the friendly people at Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel 01819060155
FAX 01819060969
Email those_engineers@ compuserve.com
Web http://www.spiceage.com

Trac competition winner

Ben Sullivan's winning entry from the Fast Analog Solutions TRAC design competition is a synchronisable 400 Hz three-phase generator with out-of-lock indicator for testing aircraft equipment.

400 Hz in three

Ithe main, modern aircraft electrical systems use 200 V three phase supplies running at 400 Hz . When development. testing and repairing of such instruments, there is a need to power them on the bench. away from their normal supply.
In the early days. a 400 Hz alternator. driven by a mains electric motor was used. But electronic supplies have long been preferred on various grounds. These include flexibility, reliability, the option of synchronising the source with an external 400 Hz pilot signal, and of course the absence of acoustic noise.
An electronic 400 Hz three phase supply consists of a bank of three high power audio amplifiers plus their asso-
ciated dc supplies. driven by a suitable exciter. This note describes the implementation of a 400 Hz three phase exciter, using the TRAC device.

Circuit description

The exciter uses a state-variable filter as the basis of a 400 Hz oscillator. The filter section consists of auxiliary elements at pins 9, 13 and 17. providing high. low and band-pass outputs HP, BP and LP at pins 11. 15 and 19 respectively, Fig. 1.
The band-pass output is attenuated by 20 dB - i.e. a factor of ten - in Aux 14 and applied as the damping term via pin 4 and two adders back to the input of the highpass stage. pin 9 .

Fig. 1. Phases A and C of the output. Also shown is the clipped version of output B, which forms the input to drive the filter. The $0^{\circ}, 120^{\circ}, 240^{\circ}$ phasing is clearly shown.

Fig. 2. The out-of-lock detector output, shown for the case where the oscillafor frequency is not locked to the injected synchronising frequency. The equal
180° spacing of some pulses is evident. In lock, the pulse spacing will not exceed $\pm 90^{\circ}$, as in the right
hand half of the trace.

This sets the filter Q at 10 .
The filter is driven by a limited version of its own output, applied as positive feedback via pin 6 and one adder, again to the input of the high pass stage. Element Aux 20 amplifies the bandpass signal by $26 \mathrm{~dB}(\times 20)$. producing a near squarewave. of peak to peak amplitude limited to the maximum swing permitted by the supply rails
This signal is attenuated by $34 \mathrm{~dB}-\mathrm{a}$ factor of 50 - and is then negated to produce the correct phase for positive feedback to pin 6 . The result is a lowdistortion sinewave at the band-pass filter output. due to the operating Q of the circuit.
The Q enhances the fundamental component of the positive feedback signal by 20 dB , while the action of the integrator Aux 13 attenuates the third harmonic component by 9 dB . As the third harmonic content of the positive feedback signal is in any case only one third the amplitude of the fundamental, the harmonic content of the filtered sinewave at the BP output is only around 1%, the harmonic content at the LP output being of course lower still.
Aux 25 scales the BP output down by 50% while Aux 31 produces an output of 86.6% of the LP output. Combining these in Add 39/40 produces an output at 120° to the BP output. Similarly, combining a negated version of the output of Aux 31 with the output of Aux 25 provides the third phase. The outputs at pins 12. 37 and 41 - scaled to an appropriate level if necessary - drive the inputs of the three high power audio amplifiers.
In hardware the three-phase oscillator runs as described. In simulation, a small input applied to pin 1 is neces-
sary to start oscillation. The amplitude of the positive feedback signal stabilises within a few cycles of start-up, due to the large gain in the limiting amplifier Aux 26.
The three-phase outputs, however, build up more slowly, at a rate determined by the Q of the filter. In hardware, pin 1 may also be used to inject a low-level locking signal. either sine or square. This may be used to synchronise the three phase output with other equipment in use at the same time. Provided the frequency difference is not excessive, the state variable filter oscillator will pull in to the injected external frequency.
Increasing the amplitude of the injected signal increases the frequency range over which lock can be maintained. Designing the oscillator to operate at a lower Q will also increase the frequency range over which lock can be maintained, but at the expense of an increase in harmonic content.

Locked, or not?

When operating with the supply synchronised with an external signal, it is important to know whether the circuit is properly synchronised or whether lock has been lost. This is achieved in conjunction with a dual retriggerable monostable, not shown.
The external sync signal is applied to log stage 45 , which produces a squared up version, approximately independent of its actual amplitude. This is attenuated by 36 dB by Aux 49 , differentiated by Aux 53 and the positive spikes selected by Rec 55 .
The BP signal is processed similarly by items $46-56$. and the two sets of spikes appear combined at pin 59. The characteristics of this pulse train provide a means of detecting the out-oflock' condition as described below.
When the frequency of the external input equals the free running frequency of the oscillator, the BP output will be in phase with the external input. When there is a small difference. lock will be maintained, but with a standing phase shift between the two. As the frequency difference increases. so does the standing phase shift, up to a maximum of 90°. With a larger frequency difference, lock is lost, and a beat frequency appears.
The period of the 400 Hz waveform is 2.5 ms . When the oscillator is in lock. the phase shift between its BP output and the locking signal cannot exceed 90°. There will therefore be 'pairing' of the pulses at pin 59, the gap between pairs being at least $1.875 \mathrm{~ms}-$ i.e. 75% of 2.5 ms .
Positive going spikes at pin 63 are applied to a retriggerable monostable with a period of 1.6 ms . As a result, it
will always time out while the oscillator is in lock.
The output of the 1.6 ms monostable device is applied to a retriggerable mono with a 2.8 ms period. This monostable remains permanently triggered while the oscillator is in lock. But if lock is lost, as the two frequencies drift. a point will be reached where the spikes at pin 63 are evenly spaced at 1.25 ms intervals. Therefore the 1.6 ms mono no longer times out every cycle. Hence it no longer keeps the 2.8 ms monostable triggered, and timeout occurs. This may be used to drive an interrupt on a controlling micro. or may be latched to illuminate an out-oflock indicator lamp, sound an audible warning etc.
Apart from the usual passive components associated with AUX blocks. and a dual retriggerable mono with its timing components, the exciter is realised entirely with Zetex TRAC020 devices.

Inputs representing the simulation stimullii applied to the exciter to get the results shown in Figs 2, 3 and a list of the values applied to the auxiliary functions. Inputs

Pin	Generation	Amplitude	Frequency
1	Sinewave	0.02	400
45	Sinewave	0.02	400

Auxiliaries

Pin	AUX function	Value
9	Amplify	1
13	Integrate	2513
14	Amplify	0.1
17	Integrate	2513
20	Amplify	20
25	Amplify	0.5
26	Amplify	0.02
31	Amplify	0.866
49	Amplify	0.02
50	Amplify	0.02
53	Differentiate	0.1
54	Differentiate	0.1
61	Amplify	1

CIRCLE NO. 132 ON RETLY CARD

TOROIDAL TRANSFORMERS

High Quality
Low Prices In addition to our standard range we will be pleased to quote for your special requirements.

PRICE LIST

VA	Mail Order	Quantity Price Excluding VAT \& Carriage				
		2+	10+	25+	$50+$	$100+$
15	14.59	10.21	7.69	5.69	5.52	5.35
30	16.04	11.23	8.45	6.25	6.06	5.89
50	17.83	12.48	9.40	9.95	6.74	6.53
60	18.02	12.61	9.49	7.02	6.82	6.61
80	17.98	12.60	9.49	7.02	6.81	6.60
100	21.07	14.74	11.11	8.21	7.96	7.72
120	21.54	15.08	11.35	8.39	8.15	7.89
150	25.98	18.19	13.70	10.12	9.82	9.53
160	23.83	16.68	12.56	9.28	9.00	8.73
225	30.10	21.07	15.87	11.73	11.39	11.04
300	34.32	24.02	18.09	13.38	12.98	12.58
400	46.19	32.32	24.35	17.99	17.47	16.94
500	50.48	35.34	26.61	19.67	19.09	18.51
625	53.09	41.36	31.14	23.02	21.24	20.57
750	58.39	44.23	33.30	24.62	23.89	23.17
1000	78.80	55.16	41.54	30.70	29.80	28.89
1200	82.45	57.72	43.46	32.12	31.17	30.23
1500	105.10	73.63	55.40	40.94	39.74	38.53
2000	114.45	96.13	72.39	53.51	51.93	50.36
2500	163.04	114.13	85.94	63.51	61.64	59.79

These prices are for 240 volt primary and two equal secondaries with $8^{\prime \prime}$ colour coded fly leads.
Each transformer is supplied with a mounting kit (steel dish washer pads, nut and boit)
Mail order prices include vat and postage.
Please do not hesitate to telephone or write with your particular requirements.

Ansum Airlink Sales Co
16 Knight Street, Sawbridgeworth, Herts CM21 9AT Tel: 01279600139 Fax: 01279726379

CIRCIE NO. 133 ON REPIY CARD

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

ACTIVE

Discrete active devices

 1GHz power transistor. Ericsson's PTF10007 n-channel, laterally diffused mosfet shows a flat gain curve of at least 13 dB at up to 30 W and is meant for use at frequencies to 1 GHz . It is designed for a 28 V supply and has a maximum drain/source breakdown of 65 V . The device has an advantage over bipolar types in that intermodulation reduces as power is reduced and, at 20 W in class AB , the two-tone IMD3 is -36 dB . The PTF10007 is an alternative to the MRF182, which is in an identical package. Ericsson Components AB. Tel., 01793 488300; fax, 01793 488301Enquiry no 501

Linear integrated circuits

Power op-amps. MSK's MSK0021/41 are fet-input amplifiers producing output currents of 1A/2A, suitable for use in video amplification, comparators, line drivers and fast integrators. Each is a replacement for a military component, the 0021 in a TO-3 package meets the DESC SMD 51651-850088 requirement and the 0041 in TO-8 meets DESC SMD 51651-85087. Ashwell Electronics Ltd. Tel., 01438364194 ; fax, 01438 313461.

Enquiry no 502
Quad, fet-input audio amp. Very low distortion of 0.00008% thd and voltage noise of $8 \mathrm{nV} / \mathrm{NHz}$ are claimed for Burr-Brown's OPA4134, the quad version of the 134 and 2134. A fet cascoded input stage prevents input bias current varying throughout the common-mode range and the output swing is to within 1 V of the rails. It is unity-gain stable and shows no phase inversion or overload problems Characteristics are: 8 MHz gain bandwidth, $20 \mathrm{~V} / \mathrm{us}$ slewing, 5 pA input bias and a supply range of $\pm 2.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Burr-Brown International. Tel., 01923 233837; fax, 01923233979. Enquiry no 503

Quad switch. Siliconix has the DG213 low-cost quad analogue switch that has two normally closed and two normally open switches. It is intended for analogue signal processing and replaces the more expensive DG403/413. On resistance is 45Ω, a current consumption of $1 \mu \mathrm{~A}$ and supply tolerance of $3-22 \mathrm{~V}$ rendering the device very suitable for use in battery-powered equipment. Packages on offer are TSSOP-16,

SOIC-16 and DIP-15. IEC Micromark Electronics Ltd. Tel., 01628 76176; fax, 01628783799.

Enquiry no 504

Memory chips

Mtp flash. Many-time programmable flash memory by Silicon Storage Technology combines the functions of flash and the cost of eprom; each mtp may be electrically erased and reprogrammed at least 1000 times by the use of an external programmer. Lower cost is obtained by means of the company's SuperFlash technique which uses a thick oxide process to give better retention and reliability and also by reducing peripheral circuitry such as single power supply and insystem programming, although the faster write performance of SuperFlash is retained. The devices are pin-compatible with standard eproms and one-time programmable types. First to appear is a 1 Mb device, organised as 128 K by 8 , having the option of reading at either 5 V or 2.7 V programming and erase at 12 V , access at 55ns and program time 70 ns . Silicon Storage Technology Ltd. Tel., 01784 490455; fax, 01784 490512.

Enquiry no 505
$512 \mathrm{~K} \times 32,3.3 \mathrm{~V}$ sram. EDI has a new, fast, $3,3 \vee 16 \mathrm{Mb}$ sram having access times of 15, 17 and 20 ns . The asynchronous ED/18L32512V is byteaddressable and provides a singlechip data memory for the TI TMS320LC31 processor or, since the device may be arranged as a $1 \mathrm{Mbx} \times$ memory, for the Analog Devices SHARC dsp. EDI (UK). Tel., 01276 472637; fax, 01276473748.
Enquiry no 506

Microprocessors and

 controllersC-programmable controller.
Z-World's PK2400 is a
C-programmed controller with a built-in graphic display and keypad, meant for use in machine control, embedded systems and any applications needing operator input. There are nine protected digital inputs, two conditioned analogue inputs for a variety of sensors, six high-current outputs for solenoids and relays, 2A relays, two serial ports and 128 K of non-volatile flash memory. Programming is carried out using the company's Dynamic C version of standard C, which is optimised for real-time, multi-tasking and has an easy editor, compiler and interactive debugger. It also has a library of functions and sotware drivers. A development kit is available. Impulse Corporation Ltd. Tel., 01543 466552; fax, 01543466553
Enquiry no 507

Motors and drivers

Microstepper drive. Digiplan's OEM750 microstepping drive has a 7.7A output, yet is contained in a 127 by 91 by 41 mm module. Outputs are optimised, for 57 and 83 frame size steppers three-state current control being used for efficiency and cooler motor operation. Operation may be from any voltage between 24 V dc and 75 V dc, due to the use of current-loop gain control, which also allows the range of motor inductances to lie between 0.2 mH to 80 mH - in other words, most of the available motors. With Parker motors, holding torque may be up to 3 Nm and resolution is selectable from 200 to 50800 steps per revolution. Parker Hannifin plc, Digiplan Division. Tel., 01202 699000; fax, 01202695750.
Enquiry no 508

Programmable logic
 arrays

24000 -gate pld. Altera announces the EPF6024A, the newest and densest recruit to the FLEX 6000 family of programmable logic devices, this one having 24000 gates and operating from 3.3 V . It uses a 0.35μ, triple-layer metal sram process and incorporates the company's MultiVolt feature that allows the i/o to work with $5 \mathrm{~V}, 3.3 \mathrm{~V}$ and 2.5 V interfaces. All members of the family meet PCI specifications. Altera UK Ltd. Tel., 01494 602020; fax, 01494602021.
Enquiry no 509

Power semiconductors

$7 \mathrm{~m} \Omega 2$ power mosfets. Power mosfets in the DPAK by Siliconix, the SUD50N03-07 and SUD45P03-10 are made using the Siliconix Trench technique and offer $7 \mathrm{~m} \Omega$ and $10 \mathrm{~m} \Omega$ on resistance respectively and provide about one-third more current at 20A and 15A. Siliconix/Temic Marketing. Tel., 01344 707300; fax, 01344427371
Enquiry no 510

PASSIVE

Passive components

Minute mains transformer.
Stontronics believes it has the world's smallest, printed-board-mounted mains transformer, the Mini EE 20/4, which weighs 18 g and is 12 mm high. It has a double-section bobbin for maximum insulation and is rated for use at $70^{\circ} \mathrm{C}$, being approved to UL , CSA and VDE 0551/EN 60742; it is also short-circuit-proof. All versions in the range take 230 V ac input or 115 V ac for the USA. Output voltages are in
the range $6-18 \mathrm{~V}$ ac and the transformers are rated at 0.08 VA . Stontronics Ltd. Tel., 0118 9311199; fax, 01189311145
Enquiry no 512
Inductors. PKH radial lead inductors from Total Frequency Control are wound on flat cores and provide twice the inductance and Q values of axial lead types, as well as taking up less board space. Values range from $1 \mu \mathrm{H}$ to $4700 \mu \mathrm{H}$ to within $\pm 10 \%$ of nominal Total Frequency Control Ltd. Tel., 01903745513 ; fax, 01903742208 ; e-mail, eddie@tic.co.uk.
Enquiry no 513
Thin-film delay lines. Thin-film lines in the $C L, G L$ and $D L 1 L 5$ series by Thin-Film Technology Corp. are based on microstrip, stripline and multiconductor transmission lines. All work at frequencies to 5 GHz , the $G L$ chip lines having delays of $20-200 \mathrm{ps}$ in 20 ps steps. Tolerance is $\pm 10 \mathrm{ps}$ impedance 55Ω and rise time under 10 ps , with insertion loss at 0.5 dB at 1 GHz . GL surface-mounted models delay in the $0.1-4 \mathrm{~ns}$ range with 200ps transition times and the microstrip DL $1 L 5$ type covers the delay range 0.1-5.5ns with transitions of under 1ns. Three-pin types in the DS1L5

Cameras

Miniature camera module. GMC-810 by Fujitsu is a cod camera measuring 38 by 43 by 20 mm and intended for use in security or multimedia work. It generates a standard composite video output and there is a dc to-dc converter to supply the logic and ccd. A 0.25 in ccd array has 440000 pixels and handles both Pal and NTSC formats, with an s:n ratio of 48 dB with agc off. Automatic sensitivity control has a range of 300:1 and the camera will work with a minimum illumination of 1 lux at f 1.2 (6 lux at f2). Through-the-lens sampling effects auto white balance. Adital Ltd. Tel., 01296 337755; fax, 01296 398085.

Enquiry no 511

range cover 0.1-10ns. Rhopoint Components Lid. Tel., 01883717988 fax, 01883712938.
Enquiry no 514

Connectors and cabling

USB plug-and-play. GTK has a range of Universal Serial Bus connectors to work as 'hot pluggable' units for those applications needing plug-and-play capability; they are available as single or dual connectors and support low and high data rates. Series A or B types are on offer in through-hole or surface types. GTK (UK) Ltd. Tel., 01344304123 ; fax, 01344301414
Enquiry no 515
High-temperature DIN connectors. Made by Elco, part of AVX, the AVX 8557/8577 DIN 41612 connectors are fabricated in a liquid-crystal polymer 0 withstand up to 15 s at $150^{\circ} \mathrm{C}$, which allows them to handle the surface-mount process and 20 min of

Materials

Thermally conductive gel. Raychem announces the new HeatPath thermally conductive gels to improve the thermal management of heat-sensitive components, its compliant nature allowing it to fill all gaps between components and heat sinks with little pressure, so avoiding damage and the need for clamps. Three types are available: CTO 1000 is a thin gel on woven glass fibre in thicknesses of 0.25 mm , $0.5 \mathrm{~mm}, 0.75 \mathrm{~mm}$ and 1 mm ; GTO 200 is an open-cell reticulate of $1.5-4 \mathrm{~mm}$ thickness for large gaps; and GTQ 3000 is cast into a sheet or specified profile in 5 15 mm thickness. No heat or curing is needed and the material will not flow away over time. Raychem Ltd. Tel., 01973 572692; fax, 01973572209. Enquiry no 533
pre-process and post-process heat. They are supplied in three-row versions with 48 or 86 contacts in standard and inverted form and in four-row types of 128 contacts, inverted. Hawnt Electronics Ltd. Tel. 0121784 3355; fax, 01217831657. Enquiry no 516

Emc gaskets. With five new types of D-type anti-emi gaskets, Brandauer is now able to cover all standard 9-50way DIN connectors. As a lower cost alternative to silver-loaded models, these gaskets use berylliumcopper as standard or stainless steel with various finishes. Gasket crosssection is wave-like in form to provide maximum attenuation and improve surface contact between surfaces. Brandauer \& Co. Ltd. Tel., 0121359 2822; fax, 01213592836
Enquiry no 517

S-m backplane connectors.

Siemens believes its DensiPac surface-mounted backplane connectors to be the first available. 576 pins are accommodated in a 100 mm strip on a pitch of 1.25 mm about 40% more than is available in other designs, and data rate supported is up to $622 \mathrm{Mb} / \mathrm{s}$. For even greater density, the connectors can, being surface-mounted, go on both sides of the board. Siemens plc. Tel., 01344396313 ; fax, 01344396721. Enquiry no 518

Crystals

S-m crystals. HC-49/U-SMX crystals by Advanced Crystal Technology are said to offer the best value for surface-mounted use. The crystals are AT-cut and come in standard and 2.5 mm high form, frequency and temperature stability both being $\pm 50 \mathrm{ppm}$. Frequency range is 3.18 MHz to 72 MHz , with others available to order. Flat-tab terminations allow the use of reflow soldering. Advanced Crystal
Technology. Tel., 01635 528520; fax, 01635528443.

Enquiry no 519

Displays

Lcd kit. Display Solutions has a kit, assembled from components by various manufacturers, to provide an Icd for mobile computers and vehicle instrumentation. The display itself is a 4.7in or 6in transmissive vga colour type or a 5.3 in mono screen in reflective, transmissive and transflective versions. There are options of software-controlled contrast and backlight control and resistive touch-screen control. Addon modules include processor motherboard, floppy and hard drives, solid-state disks, a modem, a-to-d converters, a sound card, a SCSI port, wireless Ethernet and four-port serial cards. Display Solutions Ltd Tel., 01480 463377: fax, 01480 468989.

Enquiry no 520
Data logging displays. Two new data logging displays by Lascar have joined the EasyLog range: the EL-1-12BIT panel-mounted unit and the EL-2-12BIT, which is in a smal enclosure. Both measure, display, record and control voltage, current and temperature, a 12 -bit a-to-d converter producing a 1999 maximum count with a 1 count resolution on the high-contrast Icd. There is an 8000 -reading memory and a selectable sample rate up to 12h. Both may be set up using the same EL-WIN software as the earlier 8 -bit models. Lascar Electronics Lid. Tel., 01794 884567; fax, 01794 884616.

Enquiry no 521

Filters

Saw filters. Fourteen members of RF Monolithics' SF family of low-loss transversal surface acoustic wave filters cover the frequency range 71 MHz for GSM ifs to 459 MHz for cable television pilot tones, with centre frequencies of $110.59,135.5$, $254.4,254.5$ and 350 MHz , minimum 3 dB pass-band widths being $680 \mathrm{kHz}-1.5 \mathrm{MHz}$. Acal Electronics Ltd. Tel., 01344727272 ; fax, 01344 424262.

Enquiry no 522

Hardware

Qulet fans. Papst now produces fans with sleeve bearings for a quieter life, these being sleeve versions of existing 4400,4300 and 4200 ball-bearing types, which will still be made. The bearings use in the patented Sintec technique, which lasts as long as ball bearings but tolerates a wider temperature range, costs less and makes less noise. Further advantage of the sleeve bearings are that they are less vulnerable to shock and vibration and that the noise does not get worse with age, in contrast to the ball type. Paps plc. Tel., 01264 333388; fax, 01264 332182
Enquiry no 523

Optical-fibre management. RadiallTransradio's Fibre Management Centre is an aid to the secure routeing and connection of multiple, multi-fibre cables, catering for the use of over 2000 connectors. It allows for the breakout and connection of fibres or re-routeing by splicing and accommodates a number of standard connector interfaces. Four standard steel cabinets can be used, which have a central support bar to carry the cassettes and magazines, there being twelve cassettes to one magazine. Cassettes protect fibres and allow access, each holding 12 connectors. Transradio Ltd. Tel., 01819978880 ; fax, 01819970116.
Enquiry no 524

Test and measurement

5 kV megohmmeter. Danbridge's DB600 megohmmeter range, now available in the UK, includes three models: the DB601, a generalpurpose unit for $1 \mathrm{kV} / 25 \mathrm{~mA}$ working; a capacitor tester, the DB602; and the DB604, which is able to test at up to 5 kV , in 1 V steps. All have a large backlit Icd to show variation of leakage current or insulation resistance with time as a bargraph or XY curve, the bargraph using either autoscaling or eight fixed two-decade scales. All the instruments carry out timed sequences of up to 60 min and can use the results to sort components into bins. RS232 and GPIB interfaces are fitted, as is an optically insulated interface. Thurlby Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480450409
Enquiry no 525
Digital wattmeter. Yokogawa's WT110 single-phase power analyser measures voltage, current, effective, apparent and reactive power, power factor and phase angle to an accuracy within $\pm 0.25 \%$ over the $0-50 \mathrm{kHz}$ frequency range. Six voltage ranges are $15-600 \mathrm{~V}$ and six for current in the $500 \mathrm{~mA}-20 \mathrm{~A}$ range Measurement mode is true-rms or mean and there is an optional harmonic analysis function with output to a printer. External current sensors with voltage output such as clamp-on transformers and Hall devices may be used. RS232 or GPIB interfaces are standard and an integration facility provides measurement of watt-hours or amp-hours. Martron Instruments Ltd. Tel., $01494459200 ;$ fax, 01494 535002.

Enquiry no 526
Panel meter for power. Multi-DIN from Howard Butler is a panel meter to measure twelve electrical quantities in the installation and maintenance of power systems, including reactive power, active energy, reactive energy and frequency, any three of which may be displayed at once. The instrument is contained in a DIN 96 case and has a green, backlit screen
with black figures, a locking transparent cover being provided. There is the option of RS 232 output. Farnell Components Ltd. Tel., 0113 263 6311; fax, 01132633411. Enquiry no 527

Visual behaviour analysis. Vision Control Systems announces Testimony, which is a pc-based instrument able to detect, record and analyse the exact point of observation of a user's eyes, which is of advantage in pilot and driver training and surgery. The instrument combines this technique with a miniature field-of-view camera,
Testimony using retinal reflection to provide a cursor to indicate precisely where the user is looking. Currently, connection to the pc is by the serial port, but a radio link is also on the cards. Vision Control Systems. Tel., 0161236 9880; fax, 016123609730. Enquiry no 528

Picoamp current source. PA-1 precision picoamp current source from the Indian company Laxtronics is a secondary standard calibrator, providing outputs of $1 p A-199.99 \mu \mathrm{~A}$ in

Revolutions sensor.
Panasonic's semiconductor magnetoresistive sensor detects rotation in the $0-15 \mathrm{kHz}$ range at temperatures between $-40^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$. The device is said to be an ideal replacement for variablereluctance and Hall sensors often used in vehicles when crankshaft and camshaft positions must be sensed, offering improved tolerance of poor conditions and better low-speed detection; it also maintains a constant output with speed and no amplification is needed of the $0.8-4.8 \mathrm{~V}$ output voltage. Panasonic Industrial (Europe) Ltd. Tel., 01344 853862 ; fax, 01344853310. Enquiry no 540
five ranges, selected by a front-pane rotary switch, with fine and coarse continuous seltings. Current set is displayed on a 4.5 -digit Icd. Power needed is 16.5 mW from mains or batteries, battery power offering freedom from stray pickup and ground-loop leakage and allowing the instrument to 'float', if required. Output resistance is more than $10^{18} \Omega$. Laxtronics. Tel., 0091253 383737; fax, 0091253381873 E-mail: laxtron@bom4.vsnl.net.in. Enquiry no 529

Literature

Fairchild website. Over 5500 products and more than 10000 pages of information, Fairchild's site is divided into search tools, What's new? Products, Contact Fairchild and Company. New information is posted on the same day and customers receive replies quickly and in private. The search facility looks at the whole site when given one word or even a partial part number to show data sheets, application notes and static html pages, and the search process may be narrowed by asking for details under a number of requirements part number, number of pins, price, etc. Fairchild Semiconductor Corporation.
http://www.fairchildsemi.com Enquiry no 530

Data communications. A free catalogue of industrial Data Communications Products is available from Dataforth. There are 60 pages of product data, applications mechanical details and installation information on modems, pc serial i/o boards and rack-mounted modem systems. For systems using RS-232, 422 and 485 and optical networks, the company has products to isolate, protect and extend the operating distance of computers and peripherals. Impulse Corporation L.td Tel., 01543 466552; fax, 01543 466553.

Enquiry no 531

Motor control. Ericsson's 1998 Industrial Circuits short brochure provides an introduction to the company's stepper motor ics and test boards. Applications information includes circuit diagrams and design help, guidance on thermal management and heat sinks. This family of stepper-motor drivers includes single and dual channel drivers with outputs to 1.5 A continuous and voltage handling to 60 V . Also described is a chip set for microstepping control and drivers for inductive load control. Ericsson Components AB. Tel., 01793 488300; fax, 01793488301
Enquiry no 532

Power supplies

Switched-mode, pfc supplies. A large number of single-output, switched-mode power supplies with power factor correction is introduced by Coutant Lambda. The EWSP range contains more than 40 models, all in metal cases and designed for use in industrial applications where conditions can be extreme. Outputs are from 100 W to 600 W at 2.48 V , efficiencies being in the $60-84 \%$ range, depending on the model. EWSP-100 and 150 models accept $47-63 \mathrm{~Hz}$ input and autoselect input voltage of $85-132 \mathrm{~V}$ ac or $170-265 \mathrm{~V}$ ac, while the 300 and 600 types take $47-440 \mathrm{~Hz}$ and $85-265 \mathrm{~V} \mathrm{ac}$. Overvoltage and overcurrent protection and remote sensing are all standard and the higher-power versions are fitted with fans. Coutant Lambda Ltd. Tel., 01271 856666; fax, 01271864894.
Enquiry no 534
Zero-standby regulator. Offering low dropout and zero standby current, the surface-mounted BAOOASFP voltage regulator from Rohm has p-n-p transistor output and provides an output voltage of $1.5-15 \mathrm{~V}$ at up to 1 A from an input of $4-25 \mathrm{~V}$; dropout is 300 mV . Protection includes output over-current/voltage and thermal shutdown. Package is TO252-5DPAK measuring 6.5 by 2.3 by 5.5 mm . Rohm Electronics UK Ltd. Tel., 01908 282666; fax 01908282528.

Radio communications

Agc/demod for digital cellular radio. RF2667 from Anglia Microwaves is a $5-300 \mathrm{MHz}$ if agc amplifier and quadrature demodulator for batterypowered dual-mode cellular radios, spread-spectrum cordless telephones and related equipment. Voltage supply needed is 2.7-3.3V, current taken being 20 mA from 3 V in receive mode and $20 \mu \mathrm{~A}$ in power-down, which is digitally controllied. The dual if stages produce a maximum gain of 50 dB with 100 dB of control; noise figure IP_{3} is -50 dB . An evaluation board is available. Anglia Microwaves L.td. Tel., 01277630000 ; fax, 01277631111. Enquiry no 535

Air-pressure sensors. Sumitomo high-sensitivity airpressure sensors stocked by Anglia include the AS102 basic sensor and the AP104 complete sensing module. Both are immune to norma pressure changes, which makes them suitable for applications such as air-contro systems, door and window opening monitors and intruder detection. Operating temperature is $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ and sensitlvity is 0.1 mm of water at frequencies down to 0.1 Hz . The sensors are in TO5 cans and the supply is 2.2 10 V , the 104 having extra circuitry to make a complete instrument in an inch square metal case, having analogue and digital output. Anglia. Tel., 01945 474747; fax, 01945 474849.

Enquiry no 539

Protection devices

Connector protector. The EMC
range of hoods, housings and accessories for components and connectors by Wieland is announced. Hoods and housings for multi-pole connectors are corrosion resistant and afford 360° hf protection, with shielding to limit em emission. Standard multi-pole connector protection is about 40 dB at 500 MHz , against 80 dB for the EMC components. Versions in 6,10, 16, 24 and $40 / 64$ ways are available Wieland Electric Ltd. Tel., 01483 456262 ; fax, 01483505029. Enquiry no 536

Switches and relays

Power relays. New relays handling 25-125A by Crydom come in two versions: the CMRD Cooloak, with a heat sink; or the CMD Propak,
without. The relays are fully enclosed, input and output terminals having captive screws for easy installation and maintenance, a safety cover being provided and the units may be panel or DIN rail mounted. A green led indicates the state of the control signal. Output is from an ser with or without zero-crossing switching and all types are available with 240,480 and 600 V ac operating voltages. Crydom. Tel., 01202 897969; fax, 01202891918.

Surface-mounted reeds. C P Clare has a new group of reed relays, the SMR Series. These are lower-cost alternatives to solid-state and GaAs switches for high frequencies. A new process ensures a better hermetic seal and an assurance of internal continuity in the presence of thermal stress. These relays handle $0-1.5 \mathrm{GHz}$ and 150 ps rise-time puises and there is a coaxial shield to match a 50Ω line. C P Clare nv. Tel., 003212 672002; fax, 003212672003.

Solid-state relays. Teledyne's military/aerospace and COTS solidstate relays for surface mounting are optically isolated and are in various packages: the gull-wing $C A$ for ac operation and $C D$ for dc; a plastic package to military specification SR75 COTS DC; and the SED and SGD ceramic leadless chip carriers. There are also commercial types in the C60 for ac and dc and the C45 for ac. All may be mounted on both sides of a board for space saving and lower costs and all are short-circuit protected with status indication. Teledyne Tel., 01236 453124; fax,
01634863494.

Enquiry no 537
Small ri relays. Ultraminiature TO-5 relays by Teledyne, the RF300 and RF303 series are meant for switching duty at over 3GHz. Rf signal insertion loss over the whole $300 \mathrm{kHz}-3 \mathrm{GHz}$ bandwidth is $\pm 0.1 \mathrm{~dB}$ or better. The relays are in metal enclosures and there is a ground pin, high control/signal isolation and good resistance to esd. The two types are 7 mm and 10 mm high respectively. Teledyne Electronic Technologies. Tel., 0181-571 9596; fax, 0181-571 9637.

Enquiry no 538

Transducers and
 sensors

Medical pressure sensor. Intended for use in blood pressure measurement, in infusion pumps and in dialysis machines, the NPC-107 disposable pressure sensor is compensated and calibrated to the requirements of the Association for the Advancement of Medical Instrumentation. It is calibrated for the -30 to $300 \mathrm{mmHg}\left(-0.58\right.$ to $\left.5.8 \mathrm{bb} / \mathrm{in}^{2}\right)$ and gives an output of 100 mmHg with no pressure. There is a radiationtolerant sensor die, compensated for low temperature and coming as an
array of $\mathbf{1 2 0}$ sensors. A thick-film resistor network is laser trimmed to provide a linearity of better than 1% over the $-15^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ temperature range. Maximum risk current is $2 \mu \mathrm{~A}$ and offset drift 1 mmHg over eight hours, maximum. Multytech Ltd. Tel., 01747870079 ; fax, 01747871155. Enquiry no 541

Microphone Inserts. Versions of the Magnetone range of microphone inserts are available in sizes down to 6 mm diameter and 3.8 mm high. A sub-miniature type (9.7 mm by 4.5 mm) has a coverage to 16 kHz at 40 dB s:n ratio, the smaller one covering 30 Hz 20 kHz . Both offer a sensitivity of 58 dB . Various terminations are availabie to order, but solder-pad types are in stock. Anglia Microwaves Ltd. Tel., 01277630000 ; fax, 01277 631111.

Enquiry no 542
Rotary encoders. Grayhill Series 25L single-deck mechanical encoders are made with between eight and 36 positions and generate a 2 -bit quadrature code, the 16 -position version also being available with hex. and Gray code output. The encoders are less than an inch square and various shafts, rotation stops and seals may be specified, as may terminations. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444236641.
Enquiry no 543

COMPUTER

Computer board-level products

MMX Pentium cpu card. PCA-6154 from Advantech is the size of an ISA interface card and will take a range of processors including Pentium and MMX, AMD K5/6, Cyrix M1 IDT C6. Being much smaller than usual, this pe motherboard has applications in industrial control and embedded pcs. There is also a 100 Base-T-compliant Ethernet adaptor. A socket is provided for an M-Systems DiskOnChip 200 flash disk of $2-24 \mathrm{Mb}$ capacity, with 72 Mb soon to arrive. A PCI svga takes a crt and shared system memory of $1-4 \mathrm{Mb}$ and two IDE devices may be connected. Power management is on board. Semicom UK Ltd. Tel., 01279 422224; fax, 01279433339.
Enquiry no 544

Computers

Industrial pc. For use in industry, Blue Chip's ICON pc is claimed to be rather more reliable and maintainable than the average computer, being provided with special features with this in mind. There is power rail monitoring that can be fitted with an alarm and warning system and an enhanced systems status display to give cpu diagnostics and internal

temperature monitoring. Hot swap power supplies, accessible filters and two fans with thermistor control further reduce the possibility of serious trouble. Choice of passive backplane is between a 14 -slot ISA and ISA/PCI and ATX, providing for the use of 486 or Pentium cpus; alternatively, a segmented backplane can be fitted to take multiple pcs. Two 5.25 in and two 3.5 in drives can be fitted in a shock-proof cage. The computer is in a stainless steel case, 440 mm deep and fitting a 600 mm 19 in rack, or in a benchtop case. Blue Chip Technology. Tel., 01829 772000; fax, 01829772001. Enquiry no 545

Mobile pc. Densitron's Mobile PC is exactly that - a single-board $p c$ in the boot of a vehicle and a 10.4 in vga ft Icd on the dashboard (passenger side, one hopes). Processing power is a 486 or Pentium and the unit works from $12-24 \mathrm{~V} \mathrm{dc}$, internal batteries being under constant charge to allow working when away from the vehicle. A 72 Mb flash memory looks after the system applications software. Touch-screen operation is provided, so there are no externals, and there are up to four i/o ports, a video card/flat-panel controller, floppy and hard-disk controllers all on the mother board, leaving room for two half ISAbus or standard PC104 expansion cards, with provision for a PCMCIA cardholder. Densitron Europe Ltd., 01959 700100; fax, 01959700300.
Enquiry no 546

Software

Engineer on a ca. DAvE is a digital applications engineer and is of the virtual persuasion, being on a cd-rom. The disk is by Siemens and is meant to assist designers of embedded systems using the company's C500

Reference retrieval. GetARef the reference management package by the Swedish company DatAid AB, is now able to gain access to data on the Internet. The system is a Windows-based program that will locate references from various sources, format them and put them into a word processor document, the latest version taking references from other sources including university and public libraries. As well as accessing data from Medline, Silverplatter, CDPlus, Compact Cambridge and Data Star, the system now takes BIDS data from the University of Bath and the dosbased Papyrus, using a new conversion module GarConv, which is available free from http://www.adeptscience co uk Adept Scientific Micro
Systems Lid. Tel. 01462 480055; fax, 01462480213 Enquiry no 548
and C166 microcontroller families. He, or rather it, will help an engineer to select the best controller for the job, obtain the relevant configuration and then automatically generate the C code. There are context-relevant links to explanatory information, to user manuals and to function registers by menu-clicking. More such support is to be distributed for new controllers over the web site
http://www.smi.siemens.com/DAvE.ht ml, any new files acquired this way working with the cd-rom, even though they will be on a hard disk. Siemens plc. Tel., 01344 396313; fax, 01344 396721.

Enquiry no 547

LOW COST	IC'S -TRANSISTORS - DIODES	19" RACK CABINETS	
SPECIAL BUY	OBSOLETE - SHORT SUPPLY - BULK 6,000,000 items EX STOCK For MAJOR SAIINGS. CALL FOR SEMICONOUCTOR Hothist	Superb quality 6 foot 40U Virtually New, Ultra Smart Less than Half Price!	
	EO MONITOR SPECIAL		
LIMITED QUANTTY only of these 12 Mhz HI GRADE 286 systems Made in the USA to an industrial specirication, the system was board. PSU and EGA video card with single 51/4 1.2 Mb blioppy disk drive \& integral 40 Mb hard disk drive to the front. Real time clock with battery backup is provided as standard. Supplied in good used 	One of the highest specification monitors you will ever see At this price - Don't miss it!! Mitsublishi FA3415ETKL 14^{-1} SVGA Multisync colour monitor with fine 028 da prich rube and resolution of 1024×768 A ers ndurg lem PCs in CGA EGA VGA SVGA modes. BBE. COMMODORE (nolumg Amioa 1200), ARCHMEDES and APPLE. Many Yeatures Elched Acoopalie, tex smidting and LOW KADUTION MPR pecitication. Fully guaranteed, supplied in EXCEL.	ve ever sold. Racks may be stacked side by side and therefore uire only two side panels to stand singly or in multiple bays.	
		dimensions are: $77 \% k^{*} \mathrm{H} \times 32 \% 2^{\prime \prime} \mathrm{D} \times 22^{+1} \mathrm{~W}$. Order as: 	
LOW COST 486DX-33 SYSTEM Limited quantity of this 2nd user, supurb small size deskiop unit. with keyboard, 4 Mb of RAM. SVGA monitor output, 256 k cache and integral 120 Mb IDE drive with single 1.44 Mb 3.5" Fullyppy disted dish dive. only 	VGA cable tor rem PC included. Extemal cabies for other rypes of computars CALL	32U - High Quality - All steel RakCab	
		Made by Eurocraft Enclosures Lid to the highest possible spec, rack features all steel construction with removable side, front and back doors. Front and back doors are	
	As New - Used on film set for 1 week only!! $15^{\prime \prime} 0.28$ SVGA 1024×768 res. colour monitors. Swivel \& tilt etc. Full 90 day guarantee. $£ 145.00$ (E)	hinged for easy access and all are lockable win five secure 5 lever barrel locks. The front door 'designer style' smoked acryllic front panel to	
FLOPPY DISK DRIVES 31/2" - 8"		enable status indicators to be seen through the panel, yet remain unobtrusive. Internally the rack	
$51 / 4$ " or $311 / 2^{\prime \prime}$ from only $£ 18.95$			
	PHILIPS HCS31 Ultra compact 9q clour videe monitor with standard composite 15.625 Khz video inpul via SCARy sockel. Ideal tive square black plastic case measuring w10 $\times 110^{\circ} \times 131 / 2^{\circ} \mathrm{C}$		
		uperb buy at only $f 195.00$ (G)	
	KME $10^{\text {m }} 15 \mathrm{M} 10009$ high definition colour monitors with $0.28^{\circ} \mathrm{dot}$ pitch. Superb clarity and modern styling. source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes \& BBC. Measures only $131 / 2^{\prime} \times 12^{\prime \prime} \times$	to 44 U high. Available from stock !! Call with your requirements.	
D DISK DRIV			
drive with industry standard SMD Intertace, replaces Fuiitsu equivalent model. Full manual. Only $£ 299.00$ or 2 for $£ 525.00$ (E)			
	20" $22^{\prime \prime}$ and 26" AV SPECIALS Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video \& optlonal sound input. Attractive EXCELLENT litile used condition with tull 90 day guarantee.	that translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ en standard serial RS232 or TLL output which continuously gives	
	" 8135 22" ¢155 26" ¢185	硡	
	SPECIAL INTEREST ITENS		
	IBM 8230 TYpe e 1 , Token ring base unit dirive IBM 53 F5501 Token Ring ics 20 porl lobe moales IBM MAU Token ring distribution pane 8228 8.23-5050 Marconi 6310 Programmable 2 to 22 GHz sweep generator $£ 6500$	els, pointing devices, POS systems, controllers for the disabled or Winputer untrained etc etc. Imagine using your finger with Windows', instead of a mouse II 'a driver is indeed availabie IT	
THE AMAZING TELE			
VIDEO TUNER cable compatible	HP3081A Industrila workstation clw Barcode swipe reader	LOW COST RAM \& CPU'S	
		and above) memory. Full data and driver dishs suppliled. RPE.	
	View Eng. Mod 1200 computerised inspection system EPA		
		Order as: XT RAM UG. 256k. . 234.95 or 512 K £39.95 (A1)	
	Fls		
	ICI R5030UY34 Cleanline ultrasonic cleaning system		
	 Andrews LARGE 3.1 m Satellite Dish + mount (For voyager) $£ 950$		
DC POWER SUPPLIES			

Issue 13 of $\mathcal{D i s p l a y ~ N e w s ~ n o w ~ a v a l l a b l e ~ - ~ s e n d ~ l a r g e ~ S A E ~ - ~ P A C K E D ~ w i t h ~ b a r g a i n s ! ~}$

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Modelling quartz in Spice

This letter is in response to Hands on Internet. February 1998, in which Cyril mentioned Tele Quarz's crystal oscillator design tool.
I still regularly use negative resistance models to establish the activity of quartz crystal maintaining circuits, as described by Tele Quarz. This company s design tool. downloadable from its web site, is particularly valuable for SC cut crystal oscillators, where it is necessary to ensure that only one of two closely spaced modes is activated.
You may find the Wireless World article "Quartz crystal oscillator circuit without inductors" interesting Published in the October 1969 issue. it was written by me, J. Roberts and G. Haynes. It involves the same negative resistance method. without benefit of PSpice, to design a maintaining circuit for a 2.5 MHz fifth-overtone crystal. This design provides only sufficient activity to set the required overtone mode into oscillation.
Douglas Dwyer, Frequency

Precision Ltd

101505.3427@compuserve.com Okehampton
Devon

Are your ears flat?

Current hi-fi equipment reviews seem to favour systems with a 'warm, rich and detailed' sound. It has been said that the 'warm rich' sound results from a slightly enhanced - but smooth - lower-mid and bass response.
The extent 10 which the warm, rich' sound is liked can be measured by the growing number of new advertisements for speakers, valve amplifiers and valve d-to-a converters specially designed with this attribute in mind.
Ironically the warm, rich qualities are usually appreciated best when listening at low levels - precisely where the human ear starts to become less sensitive at the lower frequencies. This characteristic is a well established fact, illustrated graphically by the famous Fletcher \& Munson equal loudness contour curves. These curves show the bass and treble lift required to obtain the same subjective. or perceived. loudness level as that of a given reference level, say, at 1 kHz .
For example, at a sound-pressure level of 60 dB . around +10 dB of bass lift is required at 100 Hz to produce the same subjective level as at 1 kHz .

At higher pressure levels, for example 90 to 100 dB , very little or no bass lift is needed, confirming the level dependent characteristic of our hearing. In other words, our hearing becomes 'flatter' at higher sound levels.
Amplifier designs of the late fifties and sixties almost always included a loudness control to compensate for the ear's non-linearities. Why is it no longer considered a useful addition? A loudness-override switch would keep those with 'flat ears' happy. Could it be that some manufacturers already provide the required lift, mainly in d-to-a conventers, on the quiet to achieve the sound qualities that earns them the best-buys and four/five star votes in the reviews?
George Evans
lymington
Hants

Fletcher-Munson perceived loudness curves show that you need more than just a perfectly linear audio system to experience faithful reproduction at all listening levels.

Confused? Read this...

In the letters section of Electronics World. February 1998, Malcolm Bloor stresses the need to fastidiously check code. which I totally agree with. However, he also suggested that assemblers can kill: this is worrying since the assembler he trusts is at fault.
Depending on how the Small Assembler describes its instructions' semantics, it would appear that the issue of the 80×86 instruction format is causing confusion. Let me explain.
The comparison instruction for the AX register will always take the form '0x3D.0xNN. 0xMM'. Here, NN and MM are the two hexadecimal digits of the 16 bit numbers being compared with AX .
However. for the BX, CX and DX registers. the normal format of the instruction is a bit more complicated. It is a four byte string and sometimes three bytes. It is four bytes when the instruction is comparing 0xFF7F (-0×81) to $0 \times 0080(+0 \times 80)$ and three bytes when it is comparing in the range $0 \times$ FFFF $(-0 \times 01) 100 \times F F 80(-0 \times 80)$ AND $0 \times 007 \mathrm{~F}(+0 \times 7 \mathrm{~F})$ to $0 \times 0000(+0 \times 00)$.
In other words the most-significant bit, bit 16 , indicates the sign. If the number is between -128 and +127 then the instruction is a three byte one, possibly due to Intel wanting to use less program space on frequent comparisons. Let me demonstrate.

mov	AX,	0×1234	gives	$0 \times 3 \mathrm{D}$	0×34	0×12	
mov	AX,	$0 \times F F 34$	gives	$0 \times 3 \mathrm{D}$	0×34	$0 \times F F$	
mov	BX,	0×1234	gives	0×81	$0 \times F B$	0×34	0×12
mov	BX,	$0 \times F F 34$	gives	0×81	$0 \times F B$	0×34	$0 \times F F$
mov	BX,	$0 \times F F 81$	gives	0×83	$0 \times F B$	0×81	
mov	BX,	0×0062	gives	0×83	$0 \times F B$	0×62	
mov	BX,	0×0090	gives	0×81	$0 \times F B$	0×90	0×00
mov	BX,	0×62	gives	0×83	$0 \times F B$	0×62	0×00

In the case of the Small Assembler, it produces ' $0 \times 83,0 \times \mathrm{FB}$. $0 \times \mathrm{FFF}$ ' for a 'CMP BX, $0 \times \mathrm{FF}$ ' where it should actually be producing ' 0×81. $0 \times \mathrm{xFB}, 0 \times \mathrm{xFF}, 0 \times 00$ ' (see line 29 of the SMALT. ASM listing from the original letter). Also in error is line 28 of the SMALT.ASM listing for similar reasons. MASM. DEBUG. and the like all produce the correct results. although the following are equivalent and would work just as well.

cmp	BX,	$0 \times 7 \mathrm{f}$	gives	0×83	$0 \times F B$	$0 \times 7 \mathrm{~F}$	
cmp	BX,	$0 \times 7 \mathrm{f}$	gives	0×81	$0 \times F B$	$0 \times 7 \mathrm{f}$	0×00
cmp	BX,	$0 \times f \mathrm{f} 80$	gives	0×83	$0 \times F B$	0×80	
cmp	BX,	$0 \times f \mathrm{f} 80$	gives	0×81	$0 \times F B$	0×80	$0 \times F F$

I hope that has cleared things up. If anyone is interested there is more information like this. and also about electronics and obsolete computer systems on my web site at htt://www.tardis.ed.ac.uk/~lucien.

Lucien Murray-Pitts

Edinburgh

The Home of $\#$ i- Finesse. Its not what you do, its HOW you do it that counts!.

Hart Audio Kits and factory assembled units use the unique combination of circuit designs by the renowned John LInsley hood, the very best audiophlle components, and our own engineering expertise, to give y
We have always led the lield for easy home construction to protessional standards, even in the sixiles we were using easily assembled printed circults when Heathkit In America were stlll using tagboardsl. Many years of experience and Innovatlon, going back to the early Dinsdale and Bailey classics gives us incomparable design tackground in the needs of the home constructor. This simply means that bullding a Hant kit is a real pleasure, resuling in a plece of equipment to own
proud to own.
Why not buy the reprints and construction manual for the kit you are interested in 10 see how easy it is to bulld your own agalnst your subsequent kit purchase.

AUDIO DESIGN' 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get £K performance at bargain
basement prices. Unique design features such as fully FET basement prices. Unique design teatures such as filly FET
stabed power supplies give this amplifier world Class performance with starting clarity and transparency of sound, allied to the famous HART quality components and ease of construction. Standard model comes with a versatile passive front-end giving 3 switched inputs, with ALPS precision "Blue Velvet" tow-noise volume end balance controls, no need for an external preampl. Construction is very simple and enjoyable with all the difficult work done for you, even the wiring is pre-terminated, ready for instant usel. All versions are available with Standard components or specally serecel and are also available factory assembled K1100 Complete STANDARD Stereo Amplifier Kit, £415.21 K1100 Complete STANDARD Stereo Amplifier Kit K1100M Complete MONOBLOC Amplifie RLH11 Reprints of latest Amplifier articles K1100CM Construction Manual with full parts lists

ALPS "Blue Velvel" PRECISION AUDIO CONTROLS.

Now you can throw out those noisy ill-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velver' range components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving better tonal baiance between channels
and rock solid image stability. Motorised versions have 5 v DC motor.
MANUAL POTENTIOMETERS
2-Gang 100K Lin. $\$ 15.67$ Gan 10K' Special BaK Log $\$ 16.40$ 2-Gang 10K Special Balance, zero crosstalk and zero centr

MOTORISED POTENTIOMETERS
2-Gang 20K Log Volume Contro $\$ 17.48$
-Gang 10K RD Special Balance £26.20 loss in centre position an

TOROIDAL MAINS \& OUTPUT TRANSFORMERS for EL34, 32W VALVE AMPLIFIER

Special set of toroidal transtormers, 2 output \& 1 mains for the "Hot Audio Power" valve amplifier design described in the Oct. 1995 issue of Wireless Wond. Tolal Wh.sk. Speciat pice £99, Post $£ 8$

PRECISION Triple Purpose TEST CASSETTE TC1D.
Are you sure your tape recorder is set up to give its best? Our lates mple purpose test cassette checks the three most important tape parameters without test equipment. Ideal when fitting new heads. A professional quality, digitally mastered test tape at price anyone can aford

Test Cassette TC1D. Our price only

If you want the very best sound out of vinyl discs then you need ou high quality preamplifier with Shunt Feedback equallsation. The K1450 also has an advanced front end, specially optimised for low selected discrete components are used throughout for ultimate Selected discrete componenis are used inroughout or uliey Hood design, high sound quality. The combination of John Linsley Mood design, high board layout make thls a product at the leading edge of technology that you will be proud to own. A recent review in "Gramophone magazine endorsing this view. Bought in kit form our step by step instructions it is very easy and satistying to assemble, or you can buy a factory assembled version if you wish.
This magnificent kit, comes complete with all parts ready to assemble inside the fully finished $228 \times 134 \times 63 \mathrm{~mm}$ case. Come With full, easy to follow, instructions as well as the Hart Guide Solder to construct your kit! Solder to construct your kil
K1450SA Audiophile K
§116.58
A1450SA Factory assembled Audiophile uni
188.9
 Highest quality, purpose designed, 'single ended' class 'A
headphone amplifier for 'stand alone' use or to supplement those many power amplifers that do not have a headphone faclity. Easy installation with special signal link-through feature, the unit uses our 'Andante' Ultra High Quality power supply.
Housed in the neat, black finished, Hart minibox it features the wide trequency response, low-distortion and 'musicality' that one associates with designs from the renowned John Linsley Hood Volume and balance controls are Alps "Blue Velver" components Very easy to build, or available factory assembled, the kit has very A valuable personal listening option and an attractive and harmonious addition to any hiti system. K2100 Complete Standard Kit £112.50 K2100SA 'Series Audiophile' Kit with selected audiophile £115.46 A2100SA 'Series Audiophile', Factory Assembled $\$ 115.46$ CM2100 Construction Manual

"Andante" Linear Technology AUOIOPHILE POWER SUPPLIES

The HART "Andante" series power supplies are specially designed for exacting audio use requiring absolute minimum noise, low hum field and total freedom from mechanical noise. Utilising linear technology throughout for smoothness and musicality makes it the perfect partner for the above units, or any equipment requiring fuly stabilised $\pm 15 \mathrm{v}$ supplies. There are two versions, $K 3550$ has $2 \pm 15 \mathrm{v}$ supplies and a single $15 v$. Both are in. K3565 to match our 'Chiara' Headpho has one and our K1450 "Shunt Feedback" Pickup preamp. K3550 Full Supply with all outputs
. 594.75 K3565 Power Supply for K1450 or K2100

ع84.42 A3550 Factory Assembled Full Supply.
£147.25

SPEAKER DESIGN SOFTWARE

VISATON "Speaker Pro 6" is a complete speaker design program for use on IBM machines. Covers cabinet and crossover design and coccommendable" accolade it tests this program is ideal for the professional speaker bulider or serious audiophile. 0303 Speaker Pro 6. 3.5"Disk
$\$ 45.51$
SPEAKER DAMPING MATERIALS
properties properties and are pleasant to handle. Standard 125 g bag is sufficient for 20 litres enclosure volume. 5070 Polyester Wool. 125 g 5069 Pure Lambs Wool. 125 g

SPECIAL OFFERI. SOLENOID CONTROLLE
High quality (0.08% W\&F) cassette mechanism with capability of sing standard or downstream monitor R/P head. Offers al standard facilities under remote, logic or software control. The control requirements are so simple that for many applications no needing all functions manual switches will suffice. Powe equirements are also simple with 12 v solenoids and 12 v speed controlled Motor, total power requirement being under 300 mA . SFL800 Deck with Standard stereo head 29.50 SFL 8000 Fitted with High Ouality Down The Head alone is normally over $£ 601$)

HART TECHNICAL BOOKSHELF
Try us for:- Bigger Range of Books, Better Prices,
New Titles.
"A BEGINNER'S GUIDE TO TUBE AUDIO DESIGN" Bruce Rozenblit. A practical book that does exactly what its title says and takes a modern look at valve amplifier construction. 132pp. ISBN 1 88280-13-3
HIGH PERFORMANCE LOUDSPEAKERS" Edn.5. Martin Colloms. Latest edition, just out A really in-depth coverage of the hole world of speakers and high quality sound reproduction, but entirely readable in style. Just reviewed in "HiFi World". 478pp. SBN 0-4719-7089-1
"AUDIO ELECTRONICS" John Linsley Hood
"THE ART OF LINEAR ELECTRONICS"
John Linsley Hood. 1994
ع19.95*
John Linsley Hood. 1994
£19.95
"DIGITAL AUDIO ANO COMPACT DISC TECHNOLOGY
3rd.Edn. 0-240 513975 19.9
"INTRODUCING DIGITAL AUDIO CD, DAT AND SAMPLING" ISBN 1870775228
£7.95
ACTIVE FILTER COOKBOOK" Don Lancaster
£19.95
. 3.95
THE ART OF SOLDERING" 0-85935-324-3.0 . 3.95
0-572.01062-1 .. $\mathbf{\varepsilon 1 9 . 9 5 ^ { * }}$
"AUDIO" F.A.Wilson. BP111 ...
"HOW TO USE OSCILLOSCOPES \& OTHER TEST EQUIPMENT"
A.A.Pentold. BP267 GUIDE.'
A SIMPLE CLASS A AMPLIFIER'
J.L.Linsley Hood M.I. E.E. 1969. RLH12 $\mathbf{~} 75$

CLASS-A POWER" Single Ended 15W Amp
J.L.LInsley Hood M.I.E.E. 1996. RLH13 £2.50

LOUOSPEAKERS; THE WHY AND HOW OF GOOD REPRODUCTION. G.Briggs. 1949. Vance Dickason. (5th Edn.)
. 58.95

ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUCTION Ronald Wagner BKT6 $£ 15.95$ THE ELECTROSTATIC LOUOS PEAKER DESIGN COOKBOOK Roger P.Sanders. 1995 .BULLOCK ON BOXES" Bullock \& White
-AN INTRODUCTION TO LOUDSPEAKERS \& ENCLOSURE DESIGN" V. Capel. BP256 83.95 DESIGN" V. Capel BP256 ... ${ }^{\text {LOUDSPEAKERS FOR MUSICIANS" BP297 }}$
"THEORY \& DESIGN OF LOUDSPEAKER ENCLOSURES"
J.E.Benson E21. 195
"OUICK \& EASY TRANSMISSION LINE SPEAKER DESIGN"
"THE COUPLED CAVITY HANBOOK" David Purton $£ 4.90$ "VISATON. HOME HI FI CATALOGUE." Full Specifications and Thiele Small Data on all Drive Units
$£ 4.50$
"VISATON. CAR HI FI CATALOGUE." In car guide £3.50
"VISATON. CABINET PROPOSALS" Book 1. In GERMAN $\mathbf{£ 6 . 5 0}$ "VISATON. CABINET PROPOSALS" BOok 2. In GERMAN $£ 6.50$ "SPEAKER PRO 6." VISATON Cabinet Design Software. . £45.51 "SPEAKER PRO 6." Demo Version with drive unit database $£ 9.28$
"VALVE AMPLIFIERS" Morgan Jones. 1995/6 £24.50 THE VTL BOOK David Manley 1994. BKVT1 MULLARD TUBE CIRCUITS FOR AUDIO AMPLIFIERS BKAA27
"THE WILLIAMSON AMPLIFIER." 0-9624-1918-4 £6.95 AN APPROACH TO AUDIO FREQUENCY AMPLIFIER DESIGN. GEC 1957 .. AUDIO ANTHOLOGIES, articles trom Audio Engineering. Six
volumes covering the days when audio was young and valves were volumes covering the days when audio was young and valves were "THE RADIOTRON DESIGNERS HANOBOOK" (CD) £49.00 "PRINCIPLES OF ELECTRON TUBES" HD Reich PH.D. $£ 25.95$ "PRINCIPLES F ELECTS" Anthology 1970-1989. $£ 15.50$ "WORLD TUBE DIRECTORY" 1996-7 Sourcebook of valv
 Fuller descnptions of the contents of all ourbooks is given in our iul catalogue, price

Postage on all books, unless starred, is only $£ 2$ per book maximum $£ 4.50$ for any number, any sizel. Starred items are heav books costing $2 J .50$ send
Don't forget No waiting at HART!. All Ilsted books are normally In stockI. Just ring with your Credit Card Number for instan despatch

Fuller Details of ALL kts are given
in our List, FREE on request.

RF

sources and solutions

Abstract

In today's crowded radio spectrum, it is all too common for radio users to experience interference, the causes of which can be complex. Alan Wood details potential sources of interference in telemetry applications, and suggests possible solutions.

Interference on radio links falls into three categories. There is interference internal to the radio and associated electronics, interference classed as 'in-band' and interference that is described as being 'out of band'.
Reference timing clocks in associated equipment are a source of internal interference. Modern electronic equipment invariably contains a clock for timing purposes. Quite often such clocks are derived from a high-frequency crystal that is divided down to match the lower frequency of the circuitry in use.
It is possible for higher multiples or harmonics of the clock source crystal to fall on the exact frequency that a radio link is attempting to operate on.
Modern high-quality radios use a heterodyne or mixing technique to convert the high frequency uhf or vhf signals to a low frequency that can be filtered and processed more readily. Typically this will be a conversion to $45 \mathrm{MHz}, 21.4 \mathrm{MHz}$ or 10.7 MHz . followed by a second conversion to $450 \mathrm{kHz}, 455 \mathrm{kHz}$, 470 kHz or similar. A clock sub-multiple at any of these frequencies will cause problems for the radio user.

Radio-related sources

In its conversion processes, a radio receiver needs a locally generated frequency source to mix with the incoming signal. The difference between the frequencies of the incoming rf signal and the local oscillator is the intermediate frequency and, as detailed above, is usually a commonly accepted frequency. The second conversion process is likewise.
For each conversion, the local oscillator sig-
nal could be a source of self-interference. This occurs when, perhaps. a multiple of the second local-oscillator signal falls on the frequency being listened to.
For example, 20.945 MHz is often used in receivers to convert 21.4 MHz to 455 kHz . The 21 st harmonic of 20.945 MHz is 439.845 MHz and therefore could cause a problem if this is the frequency being used.
At my company, we use test procedures to bring such problems to light and cure them before any product is issued.

Power-supply ripple

Modern equipment often has a switch-mode power supply to ensure maximum power efficiency. Switch-mode power supplies are electronic chopper circuits that create an ac waveform from a dc input to allow it to be transformed to a new potential where it can be rectified and smoothed back to dc.
This process causes switching noise at the chopper frequency. A great deal of care is needed to ensure that this noise is fully filtered and suppressed from the power supply lines to the radio module. Also, careful choice of switching frequency is needed.
If. for instance. the switching frequency was 25 kHz and this were to pass through into the transmitter, it could cause spurious sideband signals at 25 kHz intervals around the main carrier output. Any receiver listening to adjacent channels would hear these as interference signals. Likewise. a 25 kHz ripple on the receiver local-oscillator signal would create a whole array of mini local-oscillators on the adjacent channel frequencies. causing over-
laying of many channels onto the wanted one.
Careful filtering of the supply to the modules is therefore essential. All Wood \& Douglas modules accept an unstabilised supply since they incorporate stabilisation and filtering. However, it is difficult to ensure total immunity to all possible frequencies that could be carried on the power supply wiring.

In-band interference

In-band interference can be defined as problems due to signals within the rf pass-band of the module in question.
On-channel interference is the worst and most obvious form of interference. It occurs when one user has chosen exactly the same frequency as another user. It can be most frustrating to verify this type of interference if the other signal is intermittent. or if it has a long duty cycle and leads to data loss on the required link for no apparent reason.
A site radio survey is needed to identify the existence of this type of interference, to locate its source and, if necessary. its legality. Data corruptions can then be logged and plotted to determine when and how often the problems occur. Is it only during working hours? Is it at the same time each day or hour. etc?
Having traced the source and its legality, there may be potential to negotiate with the other user to modify their power output levels or the antenna configuration to reduce the impact on your service. It may also be possible to improve your receiving site's immunity to the interference by use of directional antennas, or by changing from vertically polarised antennas to horizontal or vice versa.

Remember, though, that this type of signal is always going to be there and is not a characteristic of the equipment being used. Of course, the technical specification of the radio may be too good and cause it to be too sensitive. Attenuation in the antenna lead, which would reduce sensitivity and transmitted power, might help.
Radio telemetry modules that we make are capable of letting you hear what is on the chosen frequency by simply connecting to the recovered audio output with a high impedance ear piece or small speaker driven amplifier. This is a simple method of monitoring the frequency but very effective.

Adjacent-channel interference. The vhf and uhf radio spectrum is divided up into channels spaced either 12.5 kHz or 25 kHz apart. The channel either side of the one you have chosen is the adjacent channel.
The ability of your receiver to only listen to the signal on the required frequency, while ignoring any signals on the adjacent channels and beyond, is called the selectivity of the receiver, or adjacent channel rejection.
The ability of the receiver to discern only the channel you wish is a reflection of the filtering of the first and second intermediate conversion frequencies. More filtering will ensure better rejection of signals on adjacent channels and typically, figures of 60 dB should be sought to ensure relatively trouble-free operation.
What does this mean in practice? It simply means that a signal on the adjacent channel has to be one million times bigger than the

Impact of intermediate frequency and front-end filtering choices.

Magnified view of reciprocal mixing effect.

signal you are trying to receive. to be heard at the same level. This sounds impressive but such variations in levels are possible and do occur.

Reciprocal mixing

A more complex cause of adjacent-channel interference can come about due to reciprocal mixing, which is more common in poorly designed synthesised receivers.
Reciprocal mixing can occur when a poorly designed synthesised local oscillator in a receiver doesn't inject a pure signal into the conversion mixer. Imagine it as a signal with a host of noise sidebands gradually diminishing in amplitude as you move away from the centre frequency.
Mathematically, if any of this energy spreads over into the adjacent channels and beyond. it will provide a 'local oscillator' of noise, for any signals on the adjacent channels. This will mix and create a down conversion to the intermediate frequency in use, just as the required signal does.
Because this is an 'accepted' signal to the receiver due to its mathematical relationship of rf to local-oscillator to intermediate-frequency conversion, no amount of IF filtering will make any difference. It's a real signal as far as the receiver IF is concerned and will have an impact in relation to the relative amplitude of wanted to unwanted local-oscil-

Third-order intermodulation-free channel options.

lator energy.

This is an important factor to check with the receiver supplier. Ask what the adjacent power of the receiver oscillator is. It should be specified for a transmitter but rarely is for a receiver. A good figure is 70 dB but 80 dB is ideal. Figures below this will falsify the adjacent channel rejection figure based purely on poles of IF filtering.
It is worth noting that the accurate measurement of adjacent channel rejection is also subject to how noisy the signal generator being used for the measurement is.

Of course. paying a little more for a quality receiver will help to avoid this type of problem. Very low cost receivers, which have little adjacent channel filtering, could admit the entire band at once if sufficiently strong signals were on every channel.

Intermodulation

Intermodulation can be an in-band or out of band effect. If two signals get mixed together in an overloaded circuit such as a receiver front end. a mathematical combination of spurious frequencies are generated. These are calculated from $2 F_{\mathrm{A}} \pm F_{\mathrm{B}}$ where F_{A} and F_{B} are the frequencies.
The '+' part is not such a problem as it creates a signal 'miles away' in frequency terms. But the '-' term could be. Suppose you have a signal on 458.650 MHz and another on 458.700 MHz , this would create a signal on 458.600 MHz and another on 458.750 . These are real signals. Admittedly they are at a low level. but they could cause a problem for receivers trying to listen on these frequencies.
The effect is obvious when a receiver listening to its required signal has a very strong signal also coming down its antenna lead on another frequency and a secondary signal at another frequency. The combination of these two signals gets churned up in the receiver front end and the product is a signal 'phantom' on the required channel.
Such a situation can arise on a multi-transmitter site where one transmitter is very close
to the receiver, causing an overload to occur. The effects are made worse if there are lots of overloading signals. Overloading can be avoided in the following ways:

- Careful choice of frequencies. An optimum intermod bandplan should be considered;
- Careful choice of transmitter/receiver siting and use of the minimum power necessary for error free operation helps avoid overload;
- Careful choice of the receiver module is a major factor.

For a receiver to be able to cope with very large signals in a relatively intermod/overload free manner, the front end design needs attention. The filter on the receiver front end is always more than one channel wide and so will allow lots of signals, including the signal you want, through to the first rf amplifier stage.
To avoid the array of inputs causing the receiver to go into overload, the front end device, and subsequent rf stages, will generally need a significant amount of supply current passed through it.
Therefore, a radio receiver designed for low current operation won't be as effective on strong signal handling and intermodulation performance. This is important to note if you have crowded radio spectrum on site. Typically $5-10 \mathrm{~mA}$ will be needed in each rf stage to ensure relatively trouble free operation.
Check the manufacturer's total current consumption and ask what the intermodulation specification is; some receivers offered on the market consume only 5 mA in total. A figure of 50 dB minimum is ideal for a really good product, a figure of 65 dB is typical.

Desensitisation. Desensitisation is a dynamic effect caused by strong signals in band. rather than on the operating frequency. These signals totally overpower the front end of the receiver causing it to partially or fully shut down. This leads to a loss in sensitivity and a reduction in the strength of the signals that the receiver is trying to hear. It can be heard as sudden 'silence' on the receiver audio.
An example of this is when MPT1329 telemetry products operating at 458 MHz are used by utilities on prime sites which are also using MPT1411 equipment. MPT1411 frequencies are duplex and straddle 458 MHz at 457 MHz and 463 MHz . As up to 10 W could be radiated from an MPT1411 device, even a well designed, local MPT1329 receiver would struggle.
The solution, once again, is careful design of the receiver to ensure that the larger signal handling parameters, such as blocking, have
been addressed. Again, a very low current receiver will not perform as well as one with a robust front end.
Ask your supplier what the blocking specification is and then decide if it is appropriate for the site being considered. A typical figure would be $80-100 \mathrm{~dB}$.

Out-of-band effects

In-band effects are defined as occurring within the input acceptance bandwidth of the receiver. Signals outside this band will be attenuated or rejected by the front end filter components.

If the signals outside the front-end 'window' are significantly large to exceed the attenuation due to the filtering circuitry then they will be just as likely to cause in-band type interference.

In-band and out of band effects tend to overlap somewhat; both depend on signal level and receiver characteristics but in general, out of band effects are accepted as being outside the tuned bandwidth of the receiver front end.

Image rejection. The mixing process in a superheterodyne receiver takes the incoming radio signal and mixes it with a locally generated signal derived from a crystal or synthesised source within the receiver module. The difference frequency between the two is then processed to recover the information being carried by the signal. This difference signal is usually chosen from a long list of standard frequencies of which 45 MHz .21 .4 MHz and 10.7 MHz are the most common.

If an incoming radio signal is on 455 MHz and you need a 45 MHz intermediate frequency , then 410 MHz must be generated locally to create a 45 MHz difference.
Alternatively, you could generate $50(0 \mathrm{MHz}$ and still create the required difference. These two possible injection frequencies from the local oscillator give the same result; one is a ' low side mix' and one is a 'high side mix'
Equally, for any one injection frequency there will also be a second radio frequency to give a 45 MHz intermediate frequency. In this

Technical support

Based in Baughurst, near Tadley, Wood \& Douglas is a radio telemetry design and manufacture specialist for the low power radio market. The company provides technical support at both design and after-sales stages. Tel 0118981 1444, fax: 0118981 1567. Also e-mail, to info@woodanddouglas.co.uk or see our web site http://www.woodand-douglas.co.uk+info@woodanddouglas.co.uk
example, while 455 MHz mixed with 410 MHz gave 45 MHz , so does 365 MHz mixed with 410 MHz . This second frequency, which is acceptable to the IF, is called the image frequency.
If the receiver front end filter does not reject any signals on this image frequency, they will pass through and be just as acceptable to the IF processing electronics as the required signals, causing a serious problem.
The image-rejection parameter is specified on radio data sheets and you should look for a figure of 60 dB or more. A manufacturer usually achieves this figure by using a high first intermediate frequency. This simplifies the front-end or rf filtering needed.
This is a brief outline of all the more obvious mechanisms for interference that can occur with modern superheterodyne receiver
modules and transmitters. The problems of spurious responses in receivers are made worse with crystal derived local oscillators as there is more potential for other frequencies to be present at the mixer of the receiver. Modern synthesised receivers have a local oscillator generated at the final injection frequency and are therefore cleaner.

In summary

If you want a robust. reliable device to withstand today's demanding telemetry bands, then you must pay attention to and ask questions about those confusing spec sheet parameters such as intermodulation, blocking. desense, image rejection and adjacent channel rejection. The success and reliability of your radio link may depend on it. But so will the price.

Telemetry module examples

Capable of working in a crowded spectrum, this 10 100 mW synthesised telemetry transmitter can be set to a new frequency simply by sending a programming sequence down a serial or parallel interface. The module is approved to ETSI 300683 and MPI1361. It operates on the UHF $430-470 \mathrm{MHz}$ band and has a switching bandwidth of 5 MHz . Channel spacings are 12.5, 20 or 25 kHz .

The main feature of this telemetry receiver is that it provides programmable operating frequency with the performance of a fixedfrequency crystal alternative. It includes an fsk data extractor and has either modem or controller options. Operating frequency is 450 to 470 MHz , programmable either by replacing the PIC microcontroller or by downloading serial data from a pc.

Lateral Connections At the forefront...

We are one of the market leaders for recruitment in the mubile radio and tellocommunications fields. We currently have a wide range of opportunities with a wide range of clients. These vacancies emhrace all disciplines and at all levels and in this advertsement is all we can do is to give you a Anvour of what is available.

If you interested on one of our opportunities and would like in give your career a kick-start, send us your CV, either by post, fax or e-mail and one of our consultants will contact you to discuss the situation. If you cannot see what you are looking for check out our web site which currently details more than 200 opportmnities

RF DESIGN ENGINEERS Moblle Redin

Thus chent, is an interationally renowned consultancy. specialising in communications, especialty mobule comms Continued expansion requires them to recruit a number of principal radıo systems engamers (Radio Architecture) to provido a consultancy service in clients throughout the world. You must have a mimumen of eight years experience of RF circuit design and/or radio architccture design You should have experience of GSM ur annlogue cellular termiaal or base station design and bove espertise in synthesiser, IIII. I.NA, Mixer, Filter, PA, Tx/Rx eic design. Alcernmively, you mey have developed the above skills in Other areas of monilc radio, including DECT, TETRA, PMR, CT2 of sumiler it will be an adrantage if you also have tean leading expernence

ASIC DESIGN ENGINEERS
 to $\mathbf{x 4 0 , 0 0 0 +}$ E. Anglia

This client, is an cstahlisthed, highly successful, design house and consultancr. specialising in innovative and compiex solutions for mobile comms proplucts they are retaned by many leading compmentes throughout the wortd for their pioncering and erealive designs Continuing sucecess has led to new opportunties within the company and they are now looking to recruit a number of key individuals, at various levels, to cumbine technical challenge with the opportunity to work directly with chents on a wide swaty of products in particular, the company is seeking a number of ASIC. Design Lngincers. Candidates should have experience in the design and implementation of Digital. Analaguc and/or Mixed Signal ASIC's

DSP SOFTWARE ENGINELRS Mobile Radio
 10 £40,000
 M4 East

A majur international client involved in developing GSM. Dual Band and Satellite phones They are seeking DSP Softwase Engineers ω design, implement and integrate DSP softwire. Excellent carcer opportunitics with first elass packnges Ideally, you will have at least onc year's experience of developing real time embodded DSP sotwarc, as well as expenence of developing sofware in a communications environment. This company offiers the ideal environment for creative thinking and innovative design

SOFTWARE ENGINLERS

 Sel Top Technologyto $\mathbf{2 4 0 , 0 0 0 +}$
Hampshire

This client pmvides end-to-end solutions for digital bruadcasting, Totally focused on providing leading systems and services for the management comtrol and broadeast distribution of envertaimment and information to TVs and personal computers. they are already market teaters in Digital Video Compression and Couditional Access. Continued growth means that they are sceking a number of Suftware Engineers to develop software products to support the convergence of set top box and Internet technolont for the distribution of entertainment and data.
Candidates should be expersence in $\mathrm{Cl}++$ and have a solid awareness of haml and other Internet technologics. Candidates should also have an iuterest in Multumedia developments and familiarity with the work of DAVIC. JAVA and Senpt liditors would be an advauage. Opportunities are available from Graduate to Principal Engineer level.

HARDWARE DESIGN ENGRS
 to $\mathbf{5} \mathbf{3 5 , 0 0 0}+$ OT Base Station Design Wiltshire

A world lender in GSM/PCN basc station development. Excellent opportunities for Digital Design Engincers. ideally with a manimum of three years experience. Candidates should bave skills in some of the following: EPLDk ASICs, PLEX, ISP Devices, 68060, 56166 . DSP and High Speed Digital Logic with Mentor Graphics and VHDL Exceptional packages!

SOFTWARE ENGINEERS Moblie Radin Handsers
 to $\mathbf{£ 4 5 , 0 0 0}$ Middr

Our chemt is part of one of the world's unost innovalive and successful multinational companics. They are secking a number of Senior \& Principal Software Engineers to provide competent software design expertise for the developaient of GSM, Dual Band and Satellite phones. You must have an appropriate amount of reatitime embodded $\mathrm{CC}++$ and in interfming with hardware. Excellent peckages including cars at principal enginoer level.

RFDESIGN ENGINEERS
 to $840,000+$ Mobile Radio Solutions Hants

Excellent opportunities for RF Design Enginoers, at all leveis to develop their carcer with one of the mora innovative compaies around. If you are an onginal thinker and have a minimum of two years experience of RP circuit design to 2 GHz this could be the opportunity to pur your bright ideas into practicel Idenlly, your experience should include a background in mobilc radio andfor cordiess phone derelopureul with expertise in sume of the foilowing: TxRx Arehilocture, VCOs, Synethesiscrs, PLLs, Filters, Mixers, LANs, PAs etc.

SOFTWARE ENGINEERS

Mobile Radio

to $\mathbf{5 4 5 , 0 0 0 +}$

A wide ranue of opportunities, all all levels with a varioty of clients involvod in cellular, satclite and condless phone developmens. You should have an appropriate level of experience of developing cmboddod "C" and targeting $8 / 16 \mathrm{bl}$ processors

CDMA

At the Cutting Edge of Mobile Communications..

Based in Surrey, within easy reach of a number of monorways, our client is the European $H Q$ and the premier design centre of a major international manufacturer of mobile and cordiess telephones. At the cutting edge of communications technolngy, they produce a wide range of cellular products, including GSM, NMT, ETACS, AMPS and CDMA phones. In this last area, they are undoubted world leaders and are currently the only company with CDMA phones in volume production.

With several exciting new projects in the CDMA arena, nur clicnt is planalng to signifleantly grow the development team and has asked Luteral Connections to locate the key staft they are seeking.

PROJECT MANAGER

to $£ 40,000+\mathrm{Car}+$ Bowes
You should have a strong technical beckground with prodeact development experiense gained in RF, Baseband or Software. [deally some of this experience will have been gaired in a high volume mobile comms environment. However exceptional candidates will he considered from nther hackgrounds.

SOFTWARE ENGINEERS

Many of the suftwase functions we comnwon to more than one produet and the Sotwarc Group is organised mainly in functional rather then project based team. Movement between teams is encournged and therefore snttwase engineers ane frequently exposed to difiterent products and artas of work. Currently the Group is orgenised inw the following temans: Cell Pronestory Data services, MMI \& Drivers, Anulupere \& Cordlen Handmets and Notsware Tomble Opportunines exist in all of these reems and our client would like to consider applications at all level from Engrineer to Teum Lender.

A backeround in moblle radio or telecomms is desirable, bun not mecessary. Huwever, you should have a mininum of 12 months expsenence of developing real-time cmbedded softwere using "C". with experience of imegrating and debugging software on the turpet hardware. Additionally, you most be self-motivated, be able to work as an individual and as part of a ream. You muse also have a Dexible athtude and be willing to underteke some fremion iravel

MECHANICAL DESIGN ENGRS
 $\omega \mathbf{2 3 0 , 0 0 0}+$ Bugus

Two excelleat opporunites for Mechanical Detige Enginetre ar either Engineer or Seniar Engincer level Yoars brief will be to desigen and development all mechanical aspects of cellular handses and cordicss phones. It is therefure essertial diat you have expernence of desigring for high volume in some or all of the following aras: Electronic Packaging. Plasties. Injection Muuldings. Extrusiuns, Smull Pressed Metal Parts, ete. It wuuld also be useful so have an undersianding of ration isoues, namely screstinge.

PCB DESIGNER

to $\mathbf{2 2 8 , 0 0 0}+$ Beanus
Your opportunity to dexim PCBy for marke: lezding cellulur wnd cordless phomet. You should have experience of designing high demtity, multi-layer, surface mown PCBs, ideally for high volume comromer prodicts An amterstanding of laying ent R1. boands would the distinct advantage, as would PADS or AutoCad experience.

RF DESIGN ENGINEERS

to $\mathbf{2 8 8 , 0 0 0}+$ Boaus
A namher of requirements, from graduete to team leader level. Preferably, you will be dsgree qualified. majoring in RF and Commurucutions duriny your final year. Depending on your seniority, you will have an appmpriate level of experience in designing low power. low cost, high performance RF cireulay ip to 2 GHz for commercial, high volurne upplications. Ideally, you shauld also be fluent in the use of Smith Chat and familiar with a: least one RF CAD packnge such as Super Compart. Tewn leader applicunts shiould ilsu fave nian management skifls and experience of tesoing a small team, as well is the potendal for furve development and promotion in

HARDWARE ENGINEERS

to 538.000 + Bonus
The Hardware Group is reaponsible tor the hardearer basebind design of handacts and accessorics, the design, modification and de bue of low-level triver software and the integration of these desiges with haudset software and RF design. Our client Is keen to coutsider applications from Hardware Engineers at all levels to join this Group. A bockground in mobile radio or telecomms would the unefil, but is not necesury. Ifowever, vou must have an appropriate level of expentise in embended 8/16-bit procvaner develupanent dipial design vecluniques and wonking tinowtergere of "'" and Assembler, idcally gained in a medium to high volume environment

If you are interested in finding out more about our client, please mail, fax or email your CV to Lateral Connections at the address below. quoting Ruf: LCIEWW 3745.

Lateral Connections
 Doncastle House, Doncastle Road, Bracknell. Berkshire RC12 8PI.

Tel: 01341852520 Fax: 01344852522
IT-mail: pailicomstherral-coes.com
Web: ywwitaterateoncom

To find out more about these opportunities, please telephone quoting reference number on 01273820911 until 7.00pm this week or next. Alternatively, post / fax / Email your CV to:

Quest Recruitment Solutions Ltd 24-26 Meeting House Lane The Lanes
Brighton
East Sussex
BN1 1HB
Tel: 01273820911
Fax: 01273820922.
E-mail: quest@pavilion.co.uk
Web: www.questsolutions.co.uk

GSM NETWORKS

Systems Specialists
Technical expertise in cellular switching, signalling or radio systems and excellent communication skills will enable you to specify the future architecture and technical strategy of the most dynamic European mobile network/s. One of top 3 infrastructure companies heavily investing in people \& technology to work directly alongride operators key specialists. Flexible base.

Ref: AW/10

RF IC DESIGN TELECOM APPS

UK/Europe/USA
 Excellent Package

Major semiconductor manufacturers require talented RF IC design engineers with proven initial design experience of min. 2 years in analog (RF) design. biopolar or BICMOS technologies. Knowledge of design tools such as Cadence, Spice, Spectre RF and experience on (SM, DECT, I)CS or Radiocom systems would be a plus. Full relocation for all positions.

Ref: ML/10

HARDWARE DESIGN

UK/Europe Excellent Package A background in digital design will enable you to join this dynamic organisation working on leading edge electronics hardware and software technology for embedded processor design. You will have between 1 to 10 years digital design experience using microcontrollers, FPGA design, ideally knowledge of high level system design tools and be educated to degree level.

Ref: EM/11

SOFTWARE

Get into GSM
>£35K
Mobile comms company willing to provide training to R / T design engineers with a good understanding of embedded systens. Systems analysis and specification through to implementation of design with as much responsibility as you wish to take on. Project ownership leadership available to experienced GSM engineers. Excellent salary + benefits + relocation.

Ref: AW/11

MICROCONTROLLER DESIGN

Europe/USA

Excellent Package
As a result of significant investment in Europe, a brand new design centre dedicated to microcontrollers has been opened by one of the world leaders in electronics. They now seek experienced design engineers to work on next generation microcontrollers. You will be able to contribute from the outset to the success of future products. Opportunities also exist within Europe/USA.

Ref: ML/11

SOFTWARE TEAM LEADER GSM RADIO PLANNING TOOL

 South West Excellent Package International, young rapidly expanding teleconss company needs experienced software developer to lead a team of software engineers to design network planning tool software. Opportunity to work with market leaders across the world. UNIX/C, X Windows, Embedded SQL essential, GSM and team management experience preferred.Ref: AR/11

PRINCIPAL ENGINEER

M3/M4 Corridor Excellent Package Lead a tactical design team of performance planning/analysis engineers to plan and build national carrier grade ATM data network. Help create a new age of communications infrastructure. Desired experience ATM/Frame Relay/Legacy data networks, Newbridge and Nortel platforms, network support/management. Excellent prospects in leading national telecoms player.

Ref: AR/10

RADIO PLANNING LEADER

UK \& International
World leader requires experienced radio planner with understanding of cellular systems implementation and optimisation to take a key role in a UK based international project leadership group. As much responsibility as you can handle on the latest licenses across Europe \& MEA. Excellent Company, group, salary and benefits \& relocation if required.

Ref: AW/12

VLSI/LSI DESIGN

UK
to $£ 45 k$
Rapid expansion within leading IC design houses involved in comms, consumer, automotive and computer markets has created the need for experienced engineers in ASIC: and LSI design using Verilog or VHDL and synthesis tools such as Synopsis. We require engineers at all levels from junior through to
Principal/Project Leader level.
Ref: EM/10

SYSTEMS ENGINEERS - SDH

South UK Excellent Salaries
Join this world leading telecom multinational and work on exciting, state of the art systems projects on SDH. Ideally you will have
experience in either telecoms transmission or datacoms protocols, together with a degree enabling you to contribute to new $10 \mathrm{Gbit} / \mathrm{s}$ (and above) system design. Excellent career prospects with real opportunities for ongoing training and travel.

Ref: EM/12

IC DESIGN / APPS

Europe / USA Full Reloc Excellent Salaries Key players in microelectronics require experienced design and applications engineers with at least 3 years experience in one of the following: full custom digital CMOS, full custom VLSI, semi custom CMOS and bipolar, ASICs with experience of leading EDA tools. Excellent career opportunities for talented and motivated engineers.

Ref: ML/12

R \& D IN EUROPE

Full Relocation
 Excellent Salaries

Top class engineers are required to join "state of the art" R\& D centres involved in wireless developments for the next millennium.

- RADIO FREQUENCY bipolar/frequencies 1-2 Ghz.
- HARDWARE high speed baseband architectures for terminals. IDSP, algorithms. - SOFTWARE C, C++, systems \& protocols design for ATM, GSM, DECT, APls. MMls, Real Time OS, speech recognition \& synthesis. Ref: JPR

CONTACT

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 0HD, U.K Tel: (+44)01243545111/2 Fax: (+44)01243542457

Web: http://www.cooke-int.com E-mail: info@cooke-int.com
CIRCIE NO. 137 ON REPLY CARD

VNA

OPERATING \& SERVICE MANUALS

CONTACT

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 OHD, U.K.
Tel: (+44)01243545111/2 Fax: (+44)01243542457
Web: http://www.cooke-int.com E-mail: info@cooke-int.com CIRCIE NO. 138 ON REPIY CARD

ADVERTISERS' INDEX

ADEPT SCIENTIFIC 473
ANCHOR 494
AIRLINK 518
BOLTON INSTITUTE 457
CMS 504
COLOMORE 477
CONFORD 463
CROWNHILL 477
DATAMAN 461
DISPLAY ELECTRONICS 523
EQUINOX TECHNOLOGY IBC
HART ELECTRONICS 525
JOHNS RADIO 493
JPG ELECTRONICS 518
LABCENTER ELECTRONICS 452
LANGREX 479
M \& B RADIO 504
MILFORD INSTRUMENTS 457
NUMBER ONE SYSTEMS 472
OLSON ELECTRONICS 450
PICO 479
PS CONSULTANTS OBC
QUICKROUTE 455
SEETRAX 455
SOWTER TRANSFORMERS 477
SPEAKE \& CO LTD 479
STEWART OF READING 518
SURREY ELECTRONICS 463
TANDEM TECHNOLOGY IFC
TECHNOLOGY SOURCES 457
TELFORD ELECTRONICS 491
TELNET 505
THOSE ENGINEERS 515
TIE PIE 484
WARTH 463

CLASSIFIED

ARTICLES FOR SALE

AUDIO \& RF DESIGN • DC 10 3GHz

-Stereo Coders \& proce55ors

- RF Amplifiers \& Transmitters
+Wireless Control Systems
- 2.4 GHz Audio \& Videolinks
- Aerial combining Systems

So whatever your need call us!
libra solutions Tel. O181-428 2776
mnoar@globalnet.co.uk

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS

TEL: 01223862550
FAX: 01223440853

FOR SALE-TEST EQUIPMENT

LAB Clear Out
ROTEC 320 \& 350. HP 331A, 350D, 465A, E2373A AVO 8 Mk5. BRADLEY 192. THANDAR TG101 Plus more. Offers Invited. Detailed Listing Tel: 01752781504 Eves. Only

MARCONI 2955 Radio communications test set with GPIB. Full working order. $£ 2,000$ (No VAT). 01814216606.

Power Meters, NRVS $£ 900$, HP435A £400, Analysers HP141T (1250MHz) £700, HP8444A (Opt049) Tracking Generator £700. HP8555A £300, TEK576 Curve Tracer £600, TEK2445 Scope £800, HP3478A £300, HP8012B $£ 100$, PM6668(1GHz) Counter $£ 100$ Racal 9081 Generator $£ 150$, DVMs, Couplers, Attenuators, other equipment. Offers?
Tel: 01276603452

FOR SALE, Copies of Wireless World from 1970 to 1982, UV Exposure box and electronic components. For details telephone: 01952510454 or fax: 510414.

EMC Receiver $\mathbf{3 0 M H z}$ £250. HPB414A $£ 45$. HP412A £60. HP8746B £140. MS1 868 C-V Plonter $£ 400$. $547 / 1$ A4 $£ 150$. TEK $603 £ 40.01476$
550826 .

WANTED: W.W.2. Military Radios. Old Crypto gear. Suitcase sets. OZ8RO. Ras Oterstad Hosterkobvej 10, DK-3460 Birkerod, Denmark EMail: ooterstad@inet.uni2.dk

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited
1 Mayo Road, Croydon Surrey CRO 20P
TEL: 0181-6841166
FAX: 0181-684 3056

WANTED: PRE-WARTV: Offered: Network Analyser HP8505A. Jac Janssen, Hogeham I17D NL-5104JD Dongen Netherlands. Fax: +3113 4624684. Thanks

APPOINTMENTS

VVEST MIERCIA CONSTABULARY

RADIO COMMUNICATIONS MANAGER

Salary range $£ 24,351$ to $£ 27,543$ per annum
dependent on qualifications and experience
A progressive and dynamic organisation, West Mercia Constabulary is at the forefront of organisational and technological change. As a senior manager, you will have a vital role to manage the service provision of radio communications for the constabulary and to ensure a continuing programme of maintenance in respect of existing communication systems.

It is essentlal that the post holder has a thorough understanding of VHF and UHF radio schemes knowledge of radio/telephone control and emergency service radio systems.
The successful applicant will have a minimum of seven years experience working in radio communications three of which should be at management level, with previous experience of budget management. In addition candidates should have a HNC/HND in communications technology (degree level would be advantageous). Good communication and interpersonal skills are essential qualities for this post.

For more information and an application form please contact Amanda Roberts on 01905723000 Ext 2228.
Completed application forms to be returned to Personnel Services, (Support Staff Recruitment), Hindlip Hall, Worcester, WR3 8SP, by Friday 29th May 1998

Policing in Herelordshire, Shropshire, Tellord \& Wrekin and Worcestershire

ARTICLES WANTED

VALVES, etc. WANTED

Most types considered but especially KT88, PX4/PX25, KT66, KT77, EL34, EL37, ECC83. Valves must be UK manufacture to achieve top prices. Also various valve-era equipment e.g. Garrard 301

COURTEOUS, PROFESSIONAL SERVICE Ask for a free copy of our wanted List.
BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ Tel: 01403784961 Fax: 01403783519 Email: billingtonexporttd@btinternet.com VISITORS PLEASE PHONE FOR APPOINTMENT.

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates Please contact Joannah Cox on Tel: 0181-6523620 Fax: 018|-6528956

New for '98 FREE Data Acquisition Software Tool

DAQ Designer '98 from National Instruments, is a free system configuration tool that reduces the complexity and time it takes to configure a PC-based data acquisition system and assures that system developers have the right plug in boards, signal conditioning products, cable assemblies, and software packages for their application

Call National Instruments
now for your FREE copy on
01635523545
CIRCLE NO. 139 ON REPLY CARD

NEW JENSEN TOOLS CATALOGUE

Colourful new Catalogue, hot of the press from Jensen Tools, presents unique new tool kits for service/support of communications equipment. Also latest test equipment from many major manufacturers. Includes hard-to-find tools, PC/LAN diagnostics, bench acccessories, static control, technical manuals and more.

Ring 0800833246 or Fax 01604785573 for a free copy. Jensen Tools, 10-12 Ravens Way, Northampton NN3 9UD CIRCIE NO. 142 ON REPIY CARD

MKDREPASS

66 Following just one year's advertising, our customer base has increased

Over 170,000 buyers are using the UK Kompass Register every day to find companies like yours. Is it you they're finding or your competitors?
To advertise in the next edition, simply fill in the coupon and post it back today to: Reed Business Information, Windsor Court, East Grinstead House, East Grinstead, West Sussex RH19 1xD - Nor Fax it on 01342335747

Please contact me ta advertise in the next edition of Kampass

Title:
Job Title:
Company:
Address:
Nature of Business:

Post Code:

DISTRIBUTORS FOR
eIAR SYSTEMS
IAR Microcontroller Development Tools C-Compilers, Assemblers, Simulators

8051, Atmel AVR, Hitachi H8

MICRO-PRO DEVICE PROCRAMMER

Supports:
MICROCONTROLLERS Atmel 89C,89S, 90S(AVR), Generic 87C, Dallas 87C520 FLASH MEMORY
Atmel 29C, 49F
SERIAL/PARALLEL EEPROM Atmel 24C, 25C, 59C, 93C, 28C CONFIGURATORS Atmel 17C, Xilinx XC17

PROFESSIONAL AVRITM MIGROCONTROLLER STARTER SYSTEM

System Contents

- Combined Serial \& Parallel Device Programmer
- Evaluation module for 8,20 \& 40 -pin DIL devices
- In-System Programming (ISP) Cable
- Integrated Windows ${ }^{\text {M }}$ Development Environment
- AVRTM Basic LITE (1k bytes code) Compiler
- AVRTM Assembler
- Mains Power Supply Adaptor
- PC Serial Cable (Connects to PC COM Port)
- Atmel CD-ROM Datbook
- One AT90S1200 DIL Microcontroller

WRITE IN BASIC RUN IN A FLASH

- Compiled BASIC generates tight AVRTM machine code - Not a Run-Time Interpreter; NO code overhead!
- Target speeds comparable with assembler
- Breaks the cost barrier for 5mall projects
- Ideal for educational, hobbyist and professional use

Only ... \&90.
Order Code: AVR2-ST

Micro-ISP

Serial Programming System for the Atmel AVR ${ }^{\text {TM }}$ \& 895 microcontroller families

Typical in-System Programming (ISP) Scenario shown below:
Supports: Atmel 89S, 89LS, 90S(AVR)

Order Code: UISP-S3-SYS

Only
ly... - 59.95 (ϵ

- Macro Assembler
- Linker
- Software Simulator
- Integrated Editor
- Hex Creator

Starter Systems supplied with 2 K Toolset \& Development Systems supplied with 8 K Toolset are available for Atmel, Dallas, Siemens, Temic 8051 microcontroller derivatives

- Optimising Ansi-C

μ Vision

Integrated Development Environment for Windows ${ }^{\text {M }}$

$1 \ll \square$
SOFTWARE

For sales tel: $\mathbf{+ 4 4}(0) 1204529000$, fax: $\mathbf{+ 4 4}$ (0) 1204 535555, e-mail: sales@equinox-tech.com, Web Ste: wuwequinox-tech.com

 6644 EIRE Farnell +35318309277 FINLAND Farnell +35893455400 FRANCE Farnell +33474659466 Nemek +33145872200 GERMANY Eiektronik Laden +4952328171 Farnell +498961393939 Iretek GmbH +49732193850 , MSC Vertrebs GmbH +4908
 Electronics BV +31104519533 Antratek +31104504949 Farnell +31302412323 NEW ZEALAND Farnell +6493570546 NORWAY ACTE NC +4763898900 lakob Hatteland Electronic AS +4753763000 PORTUGAL Anatronic +35119371834 Farnell +441132890040 SINGAPONE Farnell +657880200 SPAIN Anatronk SA +3413660159 Farnell +441132310447 SWEDEN ACTE NC +4684452870 Farnell +4687305000 SWITZERLAND Anatec Ag +41 417483241 Farnel +4112046464 UNITED KINGDOMA Abacus Polar +441925626626 , Farnell +441132636311 Rapod Electioncs +441206751166 Quarndon Electronics +441332332651 usA Hitoois Inc +14082989077 Newark Electionics +18007181997 , Peachtree Tethnology +17708884002 Pioneer Standard +18888323976

Equinox reserves the right to change prices \& specifications of any of the above products without prior notice. E\&OE. All prices are exclusive of VAT \& carriage. AVR ${ }^{\text {mu }}$ is a trademark of the Atmel Corporation

Is this the end of wireless as we know itn?

Couple all the power of the latest Windows PCs (not just the fraction that you can squeeze down an RS232 connection) to the latest synthesised receiver design techniques, and you'll get the ultimate in wide range, all mode programmable radio reception.

The WR3000iDSP include AD hardware signal processing for total signal processing

WiNRADiO ${ }^{\text {TM }}$ provides a complete communications system on a fulllength ISA PC Card, with software for Windows 3, NT or 95

Your choice of virtual front panel

VisiTune ${ }^{\text {TM }}$ spectrum tuning display

Use WiNRADiO ${ }^{\text {Th }}$ scanning PC communications receiver systems for...

Broadcast • Media monitoring - Professional and amateur radio communications - Scanning Spot frequency and whole spectrum monitoring • Surveillance (and recording) • Instrumentation

Model No
Comatroction Frequency larg Rooter
Tuning fitep size IF batiowithins

Resareribre Soninng speed Aldib oxtpition cars Mase on one mothemoand Dymmuprange Tfishift (passhand funine) DSP in hintwale IRO YGoulised
Speatrum Scopte

Visturt

P(in mied enttware AP Tam Marararmchetuar Muric: fecordinapmytinct Shum Stungith rezortho Lotpert
Price (ex VAT)
Digital Sute Software E69 no. no ynu Yes路 \because 4 no $£ 275$

WR-1000i
Fill mand ISA catc 0. 5.1300 M M $\mathrm{H}=$ Anteghicempileifinal 100 hz 15 the BFOI 6 kHz (AMESEI $77 \mathrm{kHz}(\mathrm{FM}-\mathrm{N})$

 10 chises (AM) 50 chrec ((FM) $200 \mathrm{~mW} \quad 200 \mathrm{~m} /$ Berces 8came 65dB 35 ck

New optional Digital Suite software includes facilities for recording, audio spectrum, packet radio, oscilloscope display, HF fax, Squelch-controlled Audio Recorder and Playback, Signal Classifier, DTMF, ACARS, CTSS - use with SoundBlaster ${ }^{T M}$ compatible audio cards

For a free information pack and scifyare emufation demo disk

 contact Broadercasting Communication SystemsNew! Digital Suite Software option- only $£ 69+$ vat (requires a SoundBlaster 16 compatible sound card), and currently features facilities for:
O WEFAX/HF Fax
O Packet Radio for HF and VHF
O Aircraft Addressing and Reporting System (ACARS)

- Audio Oscilloscope, real time Spectrum Analyzer with calibration cursors
- Squelch-controlled AF Recorder and Playback
- DTMF, CTSS decode and analyse

WR-3000i-DSP
Foil length ISA cand
0. 15 -1505 MAE

AMLSHuSB GMFMEMFMEW
to0 He (to Hz for SSB mod CW) $2.5 \mathrm{kHz}(\mathrm{SSBrW} \mathrm{CW} .9 \mathrm{kHz}$ (AM)
17 (W+2 (FM-N)

72kHz
Yes
$y=5$

$\mathrm{y}=\mathrm{B}$
皆
yes
8.955

869

 curaz illma Mifatwif

[^0]: Overseas advertising agents: France and Belgium: Pierre
 Mussard, 18-20 Place de la Madeleine, Paris 75008. United States af America: Ray Barnes, Reed Business Publishing Lod, 475 Park Avenue Sauth, 2nd Fl New Yark, NY 10016 Tel; (212) 6798888 Fax; (212) 6799455
 USA mailing agents: Mercury Airfreight Internatianal Lid Inc, 10 (b) Englehard Ave, Avenel NJ 07001 . Periodicles Pastage Paid at Rahway NJ Pastmaster. Send address changes ta abave.
 Printed by BPCC Magazines (Carlisle) Ltd, Newtawn Trading Estate Carlisle. Cumbria, CA2 7NR
 Typeset by Marlin Imaging 2-4 Pawer scrat Road, Sidcup, Kent DAt 4 SDT,

[^1]: Speake \& Co Ltd
 Elvicta Estate, Crickhowell, Powys NP8 1DF, U.K.
 Tel: $01873811281 / 810302$ Fax: 01873810958
 Int Tel: ++44 1873811281 Int Fax: ++44 1873810958

