Pulse amplitude modulator with precision limiter

Typical performance
Supply: ±15V, ±3.4mA,
-17mA
A1, A2: 741
R2 to R6: 10kΩ; R7: 1kΩ
linear
D1, D2: PS101
Vin: 4-V positive pulse train,
p.r.f. 10kHz, m.s ratio 1:10
V1m: 1-V pk-pk sinewave,
f = 1kHz
Vm = -3.2V
Vout: p.a.m. output—see diagrams
A common method of producing p.a.m. is by the use of a diode bridge that allows and prevents transmission of the modulating signal under the control of a carrier switching pulse train. For many applications this technique is acceptable although its accuracy is determined by the

Circuit description
In most pulse amplitude modulator realizations the unmodulated carrier is in the form of a low duty-cycle, unidirectional pulse train. So with a symmetrical modulating signal the amplitude of the carrier pulses may be varied over the maximum range of zero to twice their unmodulated value with 100% modulation. The narrower the carrier pulses the greater the conservation of power but this is achieved at the expense of a wider transmission bandwidth for defined performance, as the shape of the pulse tops must be preserved.

IC pulse duration modulator

Typical performance
Supply: ±15V, ±12mA
IC1: 748, IC2: 311
R1, R5, R6, R7: 1kΩ
R4: 100kΩ, R3: 2.2kΩ
C1: 33nF, C2: 1nF, C3: 30pF
V1m: 400mV pk-pk square wave at 100kHz
Vout: 28V pk-pk

Circuit description
In pulse width modulation, the unmodulated pulse train is often in the form of a square wave having a constant pulse repetition rate. The duty cycle of this square wave is then varied under the control of a d.c. or low-frequency modulating signal. The source waveform of the carrier signal may take various forms, e.g. a sinewave which is converted to a square wave for application to an integrator and comparator. The integrator converts the square wave to a triangular wave which is applied to one input of the comparator. In the absence of modulation, which is applied to the other input of the comparator, the output is a periodic pulse-train or square wave having a fixed duty cycle. With a modulating signal applied to the second comparator input, the duty cycle of the output pulse train varies in sympathy with changes in the modulating waveform’s instantaneous value, as the comparator’s output state changes when the modulation input level exceeds or falls below that of the square wave applied to its other input. The above diagram shows an integrated circuit version using a voltage comparator and a
characteristics of the diodes. When more precise p.a.m. is required the effects of the diodes can be greatly reduced by using a precision full-wave rectifier, as shown above which effectivley reduces the forward diode p.d. by the open loop gain of the operational amplifier A1.

When \(V_{1n} \) is a unidirectional positive pulse train, \(V_{m} \) is a symmetrical modulating signal and \(V_{m} \) is negative, the output \(V_{n} \) from \(A_{1} \) is zero when \((V_{1n} + V_{m})\) is less than \(V_{1n} \) and is \(-(V_{1n} + V_{m} + V_{m})\) when \((V_{1n} + V_{m})\) exceeds \(V_{1n} \). The p.a.m. output from the summing amplifier \(A_{1} \) is \(-V_{1n} \) when \(V_{n} = 0 \) and is \((V_{1n} + V_{m})\) when \(V_{n} \) is less than zero.

Component changes

Useful range of supply about ±4 to ±18V with suitable adjustment of \(V_{1n} \), \(V_{1o} \) and \(V_{m} \) levels.

- \(V_{1n} \) (max): 7.5-V pulses
- \(V_{1n} \) (min): 3.5-V pulses
- \(V_{m} \) (max): 3.6V
- \(V_{m} \) (min): 2.8V

Max. p.r.f. of \(V_{1n} \): 70kHz (mark-space ratio of approximately unity required to retain output p.a.m. waveform).

Circuit modifications

To produce a wholly positive pulse amplitude modulated output waveform instead of a purely negative output, the following changes should be made: \(V_{1n} \) is changed to a unidirectional negative pulse train, diodes \(D_{1} \) and \(D_{2} \) are connected with reverse polarity and \(R_{s} \) is connected to the positive supply rail. With a negative p.a.m. output signal the alternative biasing arrangement shown above may be used, i.e. a d.c. bias source can be connected in series with the modulation source, \(V_{RB} \), and \(R_{s} \) and \(R_{s} \) is removed. To produce a purely positive p.a.m. output waveform with this arrangement, the polarity of the \(V_{m} \) bias source and of \(D_{1} \) and \(D_{2} \) is reversed as well as that of the carrier pulse train \(V_{1n} \).

Further reading

Cross references

- Series 15, cards 3 & 7.
- Series 4, card 3.

Additional text about general-purpose, externally-compensated operational amplifier for the integrator. Capacitor \(C \) reduces any d.c. component from the input square wave and \(R_{s} \) provides d.c. negative feedback to define the mean output voltage of the triangular wave. The overall linearity obtainable is a function of the linearity of the triangular waveform applied to the comparator.

Component changes

Supply variation: ±2.2 to ±18V

- \(f_{max} \approx 200kHz \) with components shown.
- Change integrator time constant for different carrier p.r.f.s.

Unidirectional pulse width modulation can be produced by feeding the integrator with a train of narrow pulses and hence a sawtooth is applied to the comparator.

The comparator may be fed directly from a triangular or sawtooth wave source.

Circuit modifications

- If only a large peak-to-peak square wave input is available, the input to the integrator may be clamped using a pair of back-to-back diodes (PS101, 1N914, etc.) as shown left.
- When the available carrier source waveform is in the form of a sine wave it may be converted to a suitable form for application to the integrator by the circuit shown centre which amplifies and clips the output signal applied to the integrator. The input coupling capacitor of the original integrator can be dispensed with. Suitable components could be \(C \): 741; \(D_{s} \): small silicon diode; \(R_{s} \): 100kΩ; \(R_{s} \), \(R_{s} \): 1.5kΩ; \(R_{s} \), \(R_{s} \): 1kΩ.

Resistors \(R_{s} \) and \(R_{s} \) can be trimmed to provide a symmetrical triangular wave at the output of the integrator. Instead of allowing the comparator's output to swing between approximately ±V its excursions may be limited by including a pair of back-to-back zener diodes as shown right.

Further reading

Cross references

- Series 15, cards 4, 6, 7, 8, 10 & 11.
- Series 2, card 1.
- Series 3, card 1.
Pulse amplitude modulator with shunt gate

Typical performance
Supply: ±15V
A1; 741; Tr1; BC126
R1, R2; 5kΩ; R3, R4; 10kΩ
R5; 33kΩ
C1; 22pF
V_{in}; 10-V positive pulse train,
p.r.f. 10kHz, m/s ratio 1:10
V_{mod}; modulation input
(V_{s}+V_{m})
V_{s}; 2V pk-pk 1kHz sinewave
superimposed on bias V_{m}
V_{m}; −2V

Circuit description
Diagram shows a pulse amplitude modulator using a
shunt transistor to gate the
modulating signal, su, imposed on a suitable d.c.
bias, applied to the input of
the inverting operational
amplifier. The modulating signal is thus
only presented to the amplifier

when Tr1 is switched off under
the control of the low
duty-cycle carrier pulse train
applied to its base via R4. This
pulse train is wholly positive
and must be of sufficient
amplitude to overcome the
continuous base drive provided
from the negative supply rail
via R6.

When the modulating signal is
allowed to pass to the
operational amplifier it is
inverted and appears at the
output amplified by the factor
R6/(R1+R2). When Tr1 is
switched on, the voltage
appearing at the junction of
R4 and R5 is the saturation
voltage of Tr1 which is
amplified by the factor R4/R6.
With R1 = R2 and (R1+R2) =

Pulse duration/position modulator

Typical performance
Supply: +10V
IC1, IC2; NE555V
R4; 10kΩ, R5; 680Ω
R6; 330Ω, D; 1N914
C; 10μF
f; 980Hz
output 1: negative pulse,
duration 7μs
output 2: positive-going edge
synchronized to
output 1
negative-going edge
delayed by 0.31ms
for V_{mod}= +3V

Circuit description
If a waveform of defined shape
but variable frequency is
applied to a circuit with
defined upper and lower
threshold voltages, then the
output of that circuit will be a
pulse waveform whose leading
and trailing edges are defined
in position. The relative
positions of the waveforms
then remain unaffected by the
frequency of the generator
provided its waveform is
frequency independent. For a
triangular or similar waveform
both edges of the output can
be modulated while for a
sawtooth waveform one edge
of the output is fixed and the
other alone is modulated.
Independent modulation of
frequency and duty cycle may
be achieved as in the circuit
shown. IC1 is an astable based
on the 555 timer with R_A+R_B
setting the rise-time and R_B
the fall-time (since the junction
of the two resistors is grounded
via pin 7 as the capacitor
potential reaches the upper
threshold). If the capacitive
waveform is applied directly
to the corresponding pins on
IC2, then variation of the
threshold voltages of IC2
modulates its output. By
applying this voltage to pin 5
which sets the upper and lower
threshold voltages in a 2:1
ratio by means of an internal
potential divider both
thresholds are varied. For one
edge of output 2 to retain its
position relative to output 1,
the fall time of the capacitor
voltage should be a small
portion of the total time so
\(R_A \), \(V_{in} \) receives a gain of unity and \(V_{Crest} \) a gain of 2. Ideally, \(V_{Crest} \) is zero but is finite in practice so that an offset will be introduced to the output p.a.m. waveform. Thus, to reduce the significance of this offset the modulating signal must be considerably larger than \(V_{Crest} \) which may only be tens of millivolts with switching transistors and fairly large values of \(R_A \) and \(R_B \). Capacitor \(C_1 \) is included in shunt with \(R_A \) to reduce the switching time of \(T \), which will affect the performance when the carrier pulse train has a high pulse repetition frequency.

Component changes

Useful range of supply \(V \): ±4 to ±18V
Max p.r.f. of \(V_{in} \): 100kHz
(m-s ratio of approximately unity required to retain output p.a.m. waveform)
\(V_{in}(\text{min}) \): 3.5V peak

\[V_m(\text{max}) = 9V \]
\[V_m(\text{min}) = 1V \]
\[V_m(\text{max}) = 10V \text{ pk-pk, with } |V_m| \approx 5.3V \]

\(D_1 \): General-purpose silicon diode
\(V_\alpha \): 4.5 to 18V
Modulation may be capacitively coupled to pin 5 on \(IC_3 \) if normal threshold levels suit the waveform applied to pins 6 & 2. Otherwise apply via resistive network to modify mean potential on pin 5 to suit.

Circuit modifications

As in Series 13, card 5, the thresholds may be varied independently by applying the input waveform through one or two potential dividers. This can be used to narrow the hysteresis from \(V_{3/4} \) towards zero with the penalty that the potential dividers load the source, e.g. with 1k to 100k\(\Omega \) values the waveform could not be taken directly across the capacitor of \(IC_1 \) on original circuit without severe limitations being placed on \(R_A, R_B \).

The main modification that might be required would be the linearizing of the modulation, by replacing the resistors with constant-current sources (i.e. providing a linear variation of capacitor voltage against time).

For a linear ramp, replace \(R_A \) by a constant-current stage (current mirror etc.) leaving \(R_B \) as a low value to minimize the fall-time. If a triangular waveform is required, for modulation of both pulse edges, then one method is to use pin 7 to switch a second current generator of opposite polarity and twice the magnitude. Thus with \(R_A = R_B, R_C = 2R_B \) in Fig. 2, the capacitor is charged by \(T \) for half the cycle and discharged by an equal current for the second half-cycle—two units of current in \(T \), overcoming the constant unit of current in \(T \). Resistor \(R_3 \) allows some simultaneous variation in both currents with little effect on their ratio, but the voltages across \(R_A, R_B \) should be \(< V_{3/4} \).

The method is of general applicability to any switching circuit having variable thresholds as in the op-amp circuits with positive feedback.

Further reading

Cross references

Series 15, cards 1 & 7.
Variable slope modulator

Typical performance
Supplies: ±25V, +2mA, -5mA
+Vx, ±6V, +14mA, -13mA
+Vy = +3V, 14mA
Trs, Tr, To, Tr1: BC125
Tr3, Tr2, Tr4, Tr5: BC126
Diodes: PS101; R1, R4, R5, R6, 10kΩ
R5, R6: 2.7kΩ; R8, R9: 1.5kΩ
R1: 27kΩ
R2: 100Ω; R14: 820Ω
C1 to C4: 50μF
Ci: 1nF; Vx = +8.2V
Vy = -8.8V
Vin 1V pk-pk square wave, p.r.f.: 40kHz
See Vout waveform opposite for Vin and Vout available range

Circuit description
When a capacitor is charged or discharged with a constant current, the p.d. across it changes linearly with time. In the circuit shown the unmodulated output pulse train is in the form of a trapezoidal wave having the same p.r.f. as the input square wave (Vin) and having leading and trailing edge slopes determined by Vx and Vy respectively.

When Vin is negative, Tr5 discharges C2 with a constant current through Tr4. The magnitude of this current is set by R4 and is linearly related to Vx. When Vin is positive, Tr3 is switched on and passes the constant current from Tr1 to charge C2. The magnitude of this current, and hence the rate of rise of Vout is set by R4 and is linearly related to Vx. When Vin is negative, Tr5 discharges C2 with a constant current through Tr4. The magnitude of this current is set by R4 and is linearly related to Vx. Thus the slopes of the leading and trailing edges of the pulse-train output waveform from

Pulse modulation using 555 timer

Typical performance
IC: NE555
Supply: ±12V
C: 4.7μF
R1: 1kΩ, I = 100μA*
Vmod: 5V
Period: 150μs
Output: Duration of low-state 6μs
*Current may be provided by any constant-current circuit; that shown is one example for which Tr3 to Tr5 are elements of IC type CA3084; R1 = 47kΩ.

Circuit description
Modulation of pulse period or repetition-rate may be carried out independently by control of the threshold voltages or the charging rate of the timing capacitor in astable circuits. In the 555 timer a constant-current charging C gives a linear ramp. Upper threshold is equal to the potential at pin 5, Vmod, and the lower threshold to Vmod/2 by virtue of the internal potential divider. The capacitor is thus charged through Vmod/2 at a constant rate, giving a period that is a linear function of the modulation potential provided that the discharge time is very short. This indicates a low value for R1, which may be reduced to zero (except where large values of C would result in the 200mA current limit of the discharge transistor being exceeded for long periods). The constant current is critical to the linearity, since for the usual astable with a resistor from pin 7 to Vs, the charging rate varies throughout the cycle. For example, as Vmod approaches Vs the fractional increase in period is greater than that of the modulation voltage. One possible constant-current circuit is the enhanced current mirror. This requires a low terminal p.d. for the constant-current transistor Tr1, i.e. the constant-current stage does not impose a limit on the upper
the emitter follower T_r are controlled by V_x and V_y, respectively, which can be made to vary independently by sources of modulation V_{in_1} and V_{in_2}. The p.r.f. of the carrier pulse train V_{in_2} is much greater than the modulating frequencies, so the square-wave half-cycles may be considered to be alternatively sampling the signals V_{in_1} and V_{in_2}. During the sampling intervals, the instantaneous values of these signals therefore vary the slopes of the output waveform about their mean positions set by R_1 and R_2. Positive peaks of V_{out} are clamped by D_4 and $+V_x$.

Component changes

V_{in_1} (max) = V_{in_2} (max) $\approx 760\text{mV}$ (1kHz)

Minimum frequency of V_{in_1} and V_{in_2} < 10Hz

V_{in_1} (min) $\approx 700\text{mV}$ pk-pk

Max. p.r.f. of V_{in_2} $\approx 200\text{kHz}$

$C_a = 47\text{pF}$

Min. duty cycle of V_{in_2} 30%

Min. load resistance $\approx 220\Omega$

Vary $+V_x$ to set V_{out} positive peak in range 0 to +3.5V

Vary V_{out} leading edge slope with $+V_x$ in range +3 to +6.6V

Vary V_{out} trailing edge slope with $-V_x$ in range -6 to $-7.5V$

Reduce R_3 to reduce rise time of V_{out}

Reduce R_4 to reduce fall time of V_{out}

Circuit modifications

If the dynamic range of the modulating signals is restricted, the variations in the slopes of the leading and trailing edges of the output waveform will never be sufficient to cause the latter to assume a "triangular" pulse shape. With this restriction, V_{out} is a constant-amplitude trapezoidal pulse train with its positive peaks clamped by D_4 at $+V_x$. Hence, a third signal (V_{in_3}) may be superposed on the $-V_x$ supply to provide trapezoidal-pulse amplitude modulation as shown left with V_{out} assuming.

Further reading

Cross reference

Series 15, card 7.

Component changes

V_x: +4.5 to +18V

C: 100p to 100µF. Taken in conjunction with suitable charging currents, the frequency range extends from < 1Hz to > 100kHz.

1: May be as low as 1µA for very long periods, but should exceed 10µA for reasonable stability of period. Up to 10mA permissible for high frequency generation.

R_1: Should limit discharge current at pin 7 to 200mA. May be reduced to zero for low values of C in most cases, though peak currents exceed this rating for very short times. This reduces duration of low-state of output towards zero.

V_{mod}: For V_x of 12V, V_{mod} may range from 1.5 to 9V. The minimum value is of the same order at other supply voltages, while the upper is about 70% of V_x or greater for $V_x > 10V$. At low supply voltages internal V_{be} drops restrict the range further.

Circuit modifications

In circuits based on capacitor charging to define the period of the waveform, then constant current charging linearizes the waveform and, for defined switching points, the period will be inverse to the current, i.e. the frequency will be a linear function of the current.

A simple adaptation is to apply the modulation to the current generator—a simpler current mirror is shown as an example with the diode p.d. introducing an offset to the V_{mod}/frequency graph together with some drift. Again, $R_2 \rightarrow 0$ minimizes flyback-time errors.

If a clock generator is applied to the monostable in Fig. 2 then the output is at the clock frequency but with a pulse width controlled by the modulation voltage, i.e. p.d.m. Again, for linear modulation the waveform at C has to be linearized by the addition of a constant-current stage.

The clock interconnection from a previous 555 may be as shown. The circuit may be conveniently implemented with a dual 555, but any other unstable giving a negative-going edge approaching supply-voltage magnitude may be used.

Cross references

Series 15, cards 2, 4, 7, 8, 10 & 11.

Series 3, card 9.
CMOS pulse amplitude/duration modulator

Circuit description

In the circuit shown a c.m.o.s. Schmitt-trigger circuit is formed by using A₁ and A₂ as a cascaded pair of inverters with positive feedback. In the absence of modulation, \(V_{123} = 0 \) the Schmitt switching action is determined by the ratio \(R_2/R_1 \) and \(V_{150} \). Provided \(R_2/R_1 \) is less than the forward gain in the linear region of the inverters, the switching action of the Schmitt follows the threshold crossings of the triangular wave input, \(V_{150} \). With a 10-V supply the Schmitt switches to \(+V_{DD}\) when \(V_{150} \) exceeds about \(+2.4\) V and switches back to \(-V_{SS}(0\, \text{V})\) when \(V_{150} \) falls below about \(+1.8\, \text{V}\). For the purposes of pulse-width modulation it may be required to produce an amplitude modulated square-wave output \(V_{out1} \) and this may be obtained by superposing \(V_{150} \) on a suitable d.c. bias \((+2.1\, \text{V})\) to produce unity mark-to-space ratio. This ratio may then be varied by causing the switching times of the Schmitt to be controlled by the p.d.m. signal \(V_{140} \) which is conveniently fed to the A₁ input through \(R_2 \).

Typical performance

- \(V_{DD} = +10\, \text{V} \)
- \(V_{SS} = 0\, \text{V} \)
- \(A_1, A_2 \): 4 × CD4007
- \(R_1 : 10\, \text{MΩ} \), \(R_2 / R_3 : 1\, \text{MΩ} \)
- \(R_4 : 10\, \text{kΩ} \)
- \(V_{150} : 11\, \text{V pk-pk} \)
- \(10\, \text{kHz} \)
- Triangular wave superposed on \(+2.1\, \text{V} \) d.c. bias to make \(V_{out1} \) a square wave
- \(V_{140} \): Pulse-width modulation source \(50\, \text{mV pk-pk at 1kHz} \)
- Modulation source \(2\, \text{V pk-pk at 2kHz} \) superposed on a d.c. bias of \(+5\, \text{V}\)

DC motor control using p.d.m.

Performance data

- Supply: \(+40\, \text{V}\)
- \(D_1 : 1\, \text{N4004} \)
- \(T_3 : \text{BFR41} \)
- \(T_4 : \text{TIP3055} \)
- \(R : 1\, \text{kΩ} \)
- \(V_p : 6\, \text{V} \)
- Pulse frequency: 40 per sec
- Motor: 240V, 0.1-h.p.
- 6500 rev/min universal motor

Circuit description

Circuit shows a pulse driven high-current switch \(T_1 \) and \(T_3 \) controlling the voltage supply to a motor. Basic principle involved is identical to that for thyristor driven motors viz that the average applied voltage controls the motor speed. During the pulse mark time \(T_T \) conducts and the supply is able to supply current to the motor and during the pulse space time \(T_T \) does not conduct and the supply is unable to deliver current. Clearly the greater the mark space ratio of the pulse train the greater is the average applied voltage and with it the average motor current, \(I_m \). Graphs show the results obtained. The linearity of these results, despite the fact that the motor was being used well outside its specifications, indicates the potential usefulness of the scheme.

Values of \(V_p \) and \(R \) are not critical so long as they provide sufficient base drive to \(T_3 \) to effect satisfactory switching and at the same time do not destroy \(T_1 \). In this case since we are switching currents less than \(200\, \text{mA} \) and the current gain of \(T_T \), and \(T_T \) is greater than \(1000 \) then the base drive to \(T_1 \) should be of the order of \(0.2\, \text{mA} \). Considerably less may suffice. The pulse frequency is not critical either. Maintaining a constant mark-space ratio, i.e. maintaining a constant average voltage, the motor ran at the same speed when the frequency was varied from 40Hz up to about 4kHz. At higher frequencies lack of switching speed in the transistor.
The p.d.m. signal is fed to Tr1 which provides a similar output waveform but with its positive peak amplitude determined by the voltage to which R2 is returned. Hence by returning R3 to a second source of modulation (V_{in2}) a waveform (V_{out}) results which is simultaneously modulated in both amplitude and duration.

Component changes
Useful range of V_{DD} +3 to +15V
Maximum useful V_{in1} frequency 150kHz
Maximum pulse width modulation is achieved with V_{in} ≈ 900mV pk-pk
Maximum pulse amplitude modulation is obtained with V_{in} ≈ 12V pk-pk superposed on a d.c. bias of +9V

Circuit modifications
The d.c. bias on which V_{in1} is superposed to provide a square-wave output may be dispensed with if a unity mark-to-space ratio is not required. If a low-duty-cycle pulse train output is required, the d.c. bias may be removed and the amplitude of the triangular wave (V_{in1}) reduced so that it is only slightly in excess of the upper threshold level of the Schmitt but sufficient to allow modulation. An approximately square-wave output can be obtained without a d.c. bias if the input triangular wave has a much larger amplitude. When a d.c. bias is used to control the unmodulated mark-to-space ratio of V_{out}, a constant-current source may be used for this purpose as shown above. One method is to use an integrated circuit current mirror to provide the constant-current bias to set the unmodulated duty cycle as shown left. Negative feedback obtained by the inclusion of the emitter resistor R3 raises the output impedance of the current mirror above that of a common-emitter stage.

Pulse duration modulation may be obtained by controlling I_{in} with the modulation signal.

Further reading
Schmidt, B. Schmitt trigger design uses CMOS logic, "Electronic Design", vol. 20, April 1972, p.72.

Cross references
Series 15, cards 1 to 6, 8 & 10.
Series 2, card 3.
Series 6, card 4.

caused the motor speed to change. Diode D1 is the diode normally necessary with motors to prevent damage due to L/dt effects.

Motor speed control by means of a voltage can be obtained by using the p.d.m. section of the p.p.m. shown in card 4; alternatively, the discrete p.d.m. shown on card 10 can be used with alterations to allow for the use of n-p-n rather than p-n-p transistors.

A possible closed-loop speed control scheme is shown left. This will, of course, reduce the effects of non-linearities, disturbances, etc. If the motor and p.d.m. are known in advance the maximum value of e is fixed and this effectively dictates v_{in}, k and the differentiating amplifier.

Diagram right shows a position control system; the output transducer need not, of course, be a potentiometer. This scheme has a considerable advantage in performance terms over conventional continuous control systems, because the steady state error in response to a step input is in the presence of coulomb friction is eliminated. This is important in small motors in which brush friction is maximum torque developed by the motor. In the actuating signal 'a' and when this torque is less than the coulomb friction torque the motor shaft stops. Hence, 'a' can be non zero. However, if 'a' is feeding a p.d.m. as shown right, the motor develops and maximum torque so long as 'a' is non zero, albeit for shorter and shorter intervals as 'a' reduces. Since the maximum torque is greater than the coulomb friction torque the motor can only come to rest when 'a' is zero.

Further reading

Pulse-width modulation for d.c. motor speed control, "Semiconductors" (Motorola) vol. 2, no. 2, 1971, pp.36-4.

Cross references
Series 15, cards 2, 4, 6, 7 & 10.
Delta modulators

Circuit description
A delta modulator encodes an analogue signal into a train of binary pulses that represent the difference between the input signal at successive sampling times. The encoded pulse train has a repetition rate governed by the rate of change of the analogue signal; the greater this gradient the higher the density of the output pulses produced. The delta modulator shown above employs a monostable multivibrator with \(C_3 \) controlling the monostable period and \(C_4 \) acting as a "speed-up" capacitor. The voltage follower \(A_2 \) is used as a low-output-impedance buffer between the modulation source and the junction of \(C_4 \) and \(R_8 \), \(R_9 \) being included to reduce ringing on the pulses at this junction.

In the stable state \(T_3 \) is on and \(T_4 \) is off so that a complementary \(V_{out} \) waveform is fed to \(C_4 \) via \(R_8 \). This signal is added to the modulating signal at the junction of \(R_8 \) and \(C_3 \). This composite voltage is effectively due to the addition of \(V_{in1} \) and \(V_{in2} \), this combined signal is applied to the input of a two-stage, high-gain, d.c. amplifier containing \(T_3 \) and \(T_4 \) which has the same form as a Schmitt trigger but with the hysteresis removed. When the input to this amplifier is large enough to change the state of \(T_4 \), an output pulse is obtained at \(T_3 \) collector having an amplitude almost equal to that of the \(-V_{cc}\) supply. As the switching threshold is controlled by the level of the modulating signal the duration of the \(V_{out} \) pulses is linearly related to \(V_{in1} \) over a wide range of the latter—superposed on a suitable negative d.c. bias.

DC amplifier/pulse duration modulator

Circuit description
In the above circuit \(C_2 \), \(R_3 \) and \(D_1 \) act as a d.c. restorer where the peaks of the sawtooth wave \((V_{in3}) \) are clamped to a level determined by \(V_{in2} \). In the usual application of such a circuit, \(V_{in3} \) is a fixed d.c. level and provided that the time constant \(C_2 \cdot R_3 \) is very much greater than the periodic time of \(V_{in3} \), the latter will be clamped to the desired level. If a modulating signal, which varies much more slowly than \(V_{in3} \) is used in place of a fixed value of \(V_{in3} \) the level to which the peaks of the sawtooth wave is clamped will be controlled by the variations in \(V_{in2} \). Thus, the voltage appearing at the junction of \(C_1 \) and \(R_1 \) is effectively due to the addition of \(V_{in1} \) and \(V_{in2} \). This combined signal is applied to the input of a two-stage, high-gain, d.c. amplifier containing \(T_3 \) and \(T_4 \) which has the same form as a Schmitt trigger but with the hysteresis removed. When the input to this amplifier is large enough to change the state of \(T_4 \), an output pulse is obtained at \(T_3 \) collector having an amplitude almost equal to that of the \(-V_{cc}\) supply. As the switching threshold is controlled by the level of the modulating signal the duration of the \(V_{out} \) pulses is linearly related to \(V_{in1} \) over a wide range of the latter—superposed on a suitable negative d.c. bias.
compared with a threshold voltage to determine whether the monostable will be triggered to its quasi-stable state. If the composite voltage across \(C_s \) is less than the threshold, the differential clock pulses successfully trigger the monostable via \(D_1 \) until the voltage across \(C_s \) is raised sufficiently to exceed the threshold. When this occurs the clock pulses fail to trigger the monostable circuit and \(C_s \) discharges until the modulating signal input exceeds the voltage on \(C_s \).

Component changes

+ \(V_{CC} \) (min): +7.4V

- \(V_{BE} \) is non-critical: ensures \(T_{Q5} \) off-state

Max. p.f. with above components: 130kHz

\(V_{IN} \) (min): 8.5V pk-pk with 1µs pulse width and \(V_{IN} \) 2V pk-pk

Min. pulse width of \(V_{IN} \): 900ns, with 10V pk-pk amplitude and \(V_{IN} \) 2V pk-pk

Adjust \(C_s \) for required \(V_{OUT} \) period

Circuit modification

Another monostable form of delta modulator using an integrated circuit is shown above where the width of the output binary pulses is controlled by \(C_s \). The analogue signal to be encoded (\(V_{IN} \)) and the clock pulses (\(V_{CLK} \)) are fed to the junction of \(R_1 \) and \(D_1 \) via capacitors \(C_1 \) and \(C_2 \) respectively. As \(V_{IN} \) would normally be a low-output-impedance source the complementary output voltage waveform (\(V_{OUT} \)) is integrated by \(R_2 \) and \(C_1 \). Clock pulses are fed to the monostable via \(D_1 \) after being differentiated by \(C_3 \) and \(R_1 \). If the junction of \(C_1 \) and \(R_1 \) is at a voltage below the threshold set by the amplitude of the clock pulses, their differentiated edges will trigger the monostable, producing a positive pulse into \(R_1 \). If this junction voltage is above the threshold the clock pulses are prevented from triggering the monostable. Junction threshold voltage is correctly adjusted by varying the amplitude of the clock pulses to cause the output pulse rate to be half the clock pulse rate. Typical components are:

- monostable—DTU/L9591
- \(R_1 \) 10kΩ; \(C_1 \) 50nF; \(C_2 \) 50pF.

Hence, \(V_{OUT} \) is a pulse duration modulated pulse train.

Component changes

With a restricted range of pulse width variation of \(V_{CC} \) and

- \(V_{BE} \) have useful minimum values of about 2 and 2V respectively.

Circuit modifications

If required, the modulating signal \(V_{IN} \) may be superposed on a positive d.c. bias if the polarity of \(D_1 \) is reversed. If n-p-n transistors are used in the d.c. amplifier, polarity of the supplies and that of \(D_1 \) should be reversed.

A different approach to linear pulse-duration modulation is shown here. This circuit uses a monostable multivibrator to set the width of the unmodulated output pulses which have a repetition rate determined by that of the input positive pulse train, \(V_{IN} \). Output pulse width is a linear function of the modulating signal (\(V_{IN} \)) applied to the base of \(T_{Q6} \), which serves as a constant-current generator.

When \(T_{Q6} \) is switched on by a \(V_{IN} \) pulse the charge on \(C_1 \) changes at a rate determined by the constant-current transistor \(T_{Q6} \) until the base-emitter voltage of \(T_{Q6} \) rises sufficiently to switch \(T_{Q6} \) on and hence \(T_{Q6} \) off. Capacitor \(C_1 \) is now isolated from \(T_{Q6} \) collector which therefore switches off rapidly. Typical performance is indicated left, with \(V_{CC} \): +24V;

- \(R_3 \), \(R_5 \): 750Ω; \(R_6 \): 7.2kΩ;
- \(R_5 \): 1kΩ; \(R_7 \): 30Ω; \(R_4 \), \(R_7 \): 9.1kΩ; \(R_6 \): 100kΩ; \(R_4 \): 3kΩ;
- \(C_1 \): 1nF.

Further reading

Hughes, R. S. Pulse width vs. control voltage made linear by generator in "100 Ideas for Design", no. 5, Hayden, 1965, p.76.

Cross references

Series 15, cards 2, 4, 6, 7, 8 & 11.
Wireless World - 11

Set 15: Pulse modulators

Pulse position modulator

Circuit description
The pulse-position modulator employs a pulse-duration integrator feeding a t.i.l. integrated-circuit monostable package. Many different pulse-duration modulators could be used to drive the monostable provided that the output pulses are t.i.l.-compatible. The one used was the d.c. amplifier type described in card 10. To provide the required t.i.l. compatibility, the circuit shown in card 10 was modified to use BC125 (n-p-n) transistors with supplies of +Vcc +5V and -VBB -5V the polarity of D1 also being reversed. See card 10 for circuit description.

The t.i.l. monostable package provides complementary output pulses which can be initiated in several ways. With the connections shown, input B (pin 5) is held high and input A3 (pin 4) which is unused is taken to + Vcc through a 1-kΩ resistor. In this form the package acts as a monostable circuit providing an output pulse of defined width whenever input A1 (pin 3) receives a logic-level negative-going trigger pulse. Width of the

Wireless World - 12

Set 15: Pulse modulators

Pulse code modulator

Diagram shows in block form the basic processes used in a single-channel pulse-code modulator. The analogue signal to be encoded, x(t), is passed to a sampling gate via a low-pass filter which defines the bandwidth of the modulation. The sample pulses are of low duty cycle and have a constant p.r.f. (fs) that is at least twice that of the highest modulating signal component (fn). In practice fs > 2fn, e.g. for speech that has been bandlimited to 0.3 to 3.4kHz, fs = 8kHz. The output of the sampler is a p.a.m. signal which has an infinite possible number of amplitudes that are quantized, uniformly or non-uniformly, into a finite number of allowed levels. Although each sample is converted to the nearest allowed level, quantization inherently introduces errors or quantization noise. Non-uniform quantization of speech produces an improvement in the signal-to-quantization noise ratio.

Each quantized sample of the p.a.m. wave is then encoded into a group of pulses according to a binary code, the number of pulses in each code group being determined by the number of allowed levels in the quantization scheme. For speech transmission 128 levels are normally used, hence a 7-bit code is used (2^7 = 128). For transmission, the coded signal is normally converted to a bipolar form to avoid wasting transmitter power by sending a d.c. component containing no information. One such code is alternate-mark-inversion (a.m.i.) which is a pseudo-ternary code with binary significance. See the works, and their bibliographies, listed under in further reading for detailed system and circuitry techniques. Diagram over shows an adaptive pulse code modulator for encoding speech. In this technique the coding signals change to track the changes in the “envelope” of the speech input x(t) after it has been bandlimited by the filter to 0.25 to 2.4kHz. The output is fed simultaneously to the voltage comparators A1, A2 and A3; A1 and A3 together provide updated amplitude information by comparing x(t) with a feedback voltage Vf(t) and its inverse respectively. Comparator A1 produces an output logic 1 when x(t) > +Vf(t) and A2 produces a logic 1 output when x(t) is more negative than - Vf(t). The A1 and A2 outputs are fed to bistable circuit FF2 via an
output pulses is determined by the value of \(C \) with \(R \), ensuring that this width is obtained accurately and repeatedly. Larger \(R \) values for a given \(C \) will widen the output pulses.

As the negative-going edges fed to the monostable circuit are produced from a pulse duration modulator, times of occurrence will vary in sympathy with the instantaneous values of \(V_{IN} \). Hence the shift in time of the monostable output pulses is determined by \(V_{IN} \) giving pulse-position modulation.

Component changes

Useful range of supply \(\approx +3.5 \) to \(+5.25V \) (minimum value not guaranteed)

Max. range of \(V_{IN} \approx 7V \) pk-pk superposed on a bias of \(+3.75V \) gives pulse shift of \(\approx 14\mu s \) at p.p.m. output.

Change \(R \) and \(C \) for different output pulse widths.

Circuit modifications

Pulse-position modulated

Signals may be produced by a variety of electronic circuits which normally perform the signal processing indicated left. In the upper diagram the modulating signal \(x(t) \) is added in a summing amplifier to a pulse train \(c(t) \) having a negative-slope ramp. The composite signal \(x(t) + c(t) \) is fed to a comparator having a fixed reference level which produces a p.d.m. output \(w(t) \) having the modulation on its trailing edge only. Applying \(w(t) \) to a monostable gives time-shifted constant-width pulses (p.p.m.) at its output, \(y(t) \).

In the lower diagram the modulating signal \(x(t) \) has been sampled at regular intervals to produce the flat-topped p.a.m. wave \(p(t) \). The same sampling pulses are used to trigger a generator producing a synchronous train of pulses \(e(t) \) having a negative-slope ramp. The \(c(t) \) and \(p(t) \) signals are added as before and fed to a comparator producing a p.d.m. output \(w(t) \) which in turn feeds a monostable to produce the p.p.m. output \(y(t) \). Reversing the slope of the ramp in \(c(t) \) produces leading-edge p.d.m. to feed to the monostable.

Further reading

Cross references

Series 15, cards 2, 4, 6, 9, 10 & 12.

Series 3, cards 2, 4, 6.

**OR gate, the output of which is sampled at 4.8kHz. Thus, each amplitude information bit at the FF2 output is a logic 0 when the \(x(t) \) sample is in the range \(-V_x < x(t) < +V_x \) and is a logic 1 when \(x(t) \) is outside this range. The \(A_4 \) comparator provides \(x(t) \)-polarity information, producing a logic 1 at its output when \(x(t) \) is positive and a logic 0 when \(x(t) \) is negative. The \(A_2 \) output feeds bistable circuit FF1 which is sampled at 4.8kHz to produce polarity bits that are combined with the amplitude information bits in the multiplexer (M), which simply transmits its 2-channel inputs alternately at 9.6kbit/s. \(V_x(t) \) is obtained by feeding the FF2 output to a 10ms RC integrator giving a positive output \(V_x(t) \) to which is added a small d.c. bias \(V_b \) to ensure that \(V_x(t) \) never falls to zero.

Further reading

Cross reference

Series 15, card 11.